Ab initio structure determination via powder X-ray diffraction
Indian Academy of Sciences (India)
Although the method of structure completion when once the starting model is provided is facile through the Rietveld refinement technique, the structure solution ab initio os still not push-button technology. In this article a survey of the recent development in this area is provided with an illustration of the structure determination ...
Ab initio calculation of the structural, mechanical and ...
African Journals Online (AJOL)
An ab initio plane-wave Pseudopotential calculations using the density functional theory (DFT) implementing the generalised gradient approximation (GGA) to study the structural, elastic constants, phonon dispersion curves, density of state and thermal properties of BeS. Also we calculated the shear modulus, Young's ...
Ab initio nuclear structure - the large sparse matrix eigenvalue problem
International Nuclear Information System (INIS)
Vary, James P; Maris, Pieter; Ng, Esmond; Yang, Chao; Sosonkina, Masha
2009-01-01
The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several ab initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab initio no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds 10 10 and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving this large sparse matrix eigenvalue problem. We also outline the challenges that lie ahead for achieving further breakthroughs in fundamental nuclear theory using these ab initio approaches.
Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes
Energy Technology Data Exchange (ETDEWEB)
Draayer, Jerry P. [Louisiana State Univ., Baton Rouge, LA (United States)
2014-09-28
We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).
Finite Elements in Ab Initio Electronic-Structure Calulations
Pask, J. E.; Sterne, P. A.
Over the course of the past two decades, the density functional theory (DFT) (see e.g., [1]) of Hohenberg, Kohn, and Sham has proven to be an accurate and reliable basis for the understanding and prediction of a wide range of materials properties from first principles (ab initio), with no experimental input or empirical parameters. However, the solution of the Kohn-Sham equations of DFT is a formidable task and this has limited the range of physical systems which can be investigated by such rigorous, quantum mechanical means. In order to extend the interpretive and predictive power of such quantum mechanical theories further into the domain of "real materials", involving nonstoichiometric deviations, defects, grain boundaries, surfaces, interfaces, and the like; robust and efficient methods for the solution of the associated quantum mechanical equations are critical. The finite-element (FE) method (see e.g., [2]) is a general method for the solution of partial differential and integral equations which has found wide application in diverse fields ranging from particle physics to civil engineering. Here, we discuss its application to large-scale ab initio electronic-structure calculations.
Summation of Parquet diagrams as an ab initio method in nuclear structure calculations
International Nuclear Information System (INIS)
Bergli, Elise; Hjorth-Jensen, Morten
2011-01-01
Research highlights: → We present a Green's function based approach for doing ab initio nuclear structure calculations. → In particular the sum the subset of so-called Parquet diagrams. → Applying the theory to a simple but realistic model, results in good agreement with other ab initio methods. → This opens up for ab initio calculations for medium-heavy nuclei. - Abstract: In this work we discuss the summation of the Parquet class of diagrams within Green's function theory as a possible framework for ab initio nuclear structure calculations. The theory is presented and some numerical details are discussed, in particular the approximations employed. We apply the Parquet method to a simple model, and compare our results with those from an exact solution. The main conclusion is that even at the level of approximation presented here, the results shows good agreement with other comparable ab initio approaches.
Ab initio prediction of nano-structured materials using supercomputer
International Nuclear Information System (INIS)
Kumar, V.; Kawazoe, Y.
2003-01-01
Full text: Nano-structured materials are currently attracting great attention due to their promise in future nano-technologies. In the scale of a nanometer, properties of matter are sensitive to the atomic details that are often difficult to obtain from experiments. Impurities could change the properties very significantly. Predictive computer simulations based on ab initio methods are playing a very important role in not only supporting and explaining the experimental findings but also suggesting new possibilities. We shall present a brief overview of the current research done in our group using the supercomputing facilities of the IMR in designing and predicting nano-structured materials. These include the areas of molecular electronics, carbon fullerenes and nanotubes, super-structures on surfaces, multilayers, clusters and nanowires using calculational approaches such as all electron mixed basis, augmented plane wave, localized basis and pseudopotential plane wave methods. More accurate descriptions based on GW and QMC methods are also used. The possibilities of doing large scale calculations are also allowing the study of biological systems such as DNA. We shall discuss in more detail our recent predictions of novel metal encapsulated silicon fullerenes and nanotubes that offer new possibilities in developing silicon based technologies at the nano-scale
Faas, S.; Snijders, Jaap; van Lenthe, J.H.; HernandezLaguna, A; Maruani, J; McWeeny, R; Wilson, S
2000-01-01
In this paper we present the first application of the ZORA (Zeroth Order Regular Approximation of the Dirac Fock equation) formalism in Ab Initio electronic structure calculations. The ZORA method, which has been tested previously in the context of Density Functional Theory, has been implemented in
Ab initio NMR Confirmed Evolutionary Structure Prediction for Organic Molecular Crystals
Pham, Cong-Huy; Kucukbenli, Emine; de Gironcoli, Stefano
2015-03-01
Ab initio crystal structure prediction of even small organic compounds is extremely challenging due to polymorphism, molecular flexibility and difficulties in addressing the dispersion interaction from first principles. We recently implemented vdW-aware density functionals and demonstrated their success in energy ordering of aminoacid crystals. In this work we combine this development with the evolutionary structure prediction method to study cholesterol polymorphs. Cholesterol crystals have paramount importance in various diseases, from cancer to atherosclerosis. The structure of some polymorphs (e.g. ChM, ChAl, ChAh) have already been resolved while some others, which display distinct NMR spectra and are involved in disease formation, are yet to be determined. Here we thoroughly assess the applicability of evolutionary structure prediction to address such real world problems. We validate the newly predicted structures with ab initio NMR chemical shift data using secondary referencing for an improved comparison with experiments.
Ab initio studies of equations of state and chemical reactions of reactive structural materials
Zaharieva, Roussislava
subject of studies of the shock or thermally induced chemical reactions of the two solids comprising these reactive materials, from first principles, is a relatively new field of study. The published literature on ab initio techniques or quantum mechanics based approaches consists of the ab initio or ab initio-molecular dynamics studies in related fields that contain a solid and a gas. One such study in the literature involves a gas and a solid. This is an investigation of the adsorption of gasses such as carbon monoxide (CO) on Tungsten. The motivation for these studies is to synthesize alternate or synthetic fuel technology by Fischer-Tropsch process. In this thesis these studies are first to establish the procedure for solid-solid reaction and then to extend that to consider the effects of mechanical strain and temperature on the binding energy and chemisorptions of CO on tungsten. Then in this thesis, similar studies are also conducted on the effect of mechanical strain and temperature on the binding energies of Titanium and hydrogen. The motivations are again to understand the method and extend the method to such solid-solid reactions. A second motivation is to seek strained conditions that favor hydrogen storage and strain conditions that release hydrogen easily when needed. Following the establishment of ab initio and ab initio studies of chemical reactions between a solid and a gas, the next step of research is to study thermally induced chemical reaction between two solids (Ni+Al). Thus, specific new studies of the thesis are as follows: (1) Ab initio Studies of Binding energies associated with chemisorption of (a) CO on W surfaces (111, and 100) at elevated temperatures and strains and (b) adsorption of hydrogen in titanium base. (2) Equations of state of mixtures of reactive material structures from ab initio methods. (3) Ab initio studies of the reaction initiation, transition states and reaction products of intermetallic mixtures of (Ni+Al) at elevated
Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Sharma, Nalini; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University, Shimla(HP)-171005 (India); Thakur, Anil [Department of Physics, Govt. P. G. College Solan (HP)-173212 (India)
2015-05-15
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.
Computational prediction of muon stopping sites using ab initio random structure searching (AIRSS)
Liborio, Leandro; Sturniolo, Simone; Jochym, Dominik
2018-04-01
The stopping site of the muon in a muon-spin relaxation experiment is in general unknown. There are some techniques that can be used to guess the muon stopping site, but they often rely on approximations and are not generally applicable to all cases. In this work, we propose a purely theoretical method to predict muon stopping sites in crystalline materials from first principles. The method is based on a combination of ab initio calculations, random structure searching, and machine learning, and it has successfully predicted the MuT and MuBC stopping sites of muonium in Si, diamond, and Ge, as well as the muonium stopping site in LiF, without any recourse to experimental results. The method makes use of Soprano, a Python library developed to aid ab initio computational crystallography, that was publicly released and contains all the software tools necessary to reproduce our analysis.
Computational prediction of muon stopping sites using ab initio random structure searching (AIRSS).
Liborio, Leandro; Sturniolo, Simone; Jochym, Dominik
2018-04-07
The stopping site of the muon in a muon-spin relaxation experiment is in general unknown. There are some techniques that can be used to guess the muon stopping site, but they often rely on approximations and are not generally applicable to all cases. In this work, we propose a purely theoretical method to predict muon stopping sites in crystalline materials from first principles. The method is based on a combination of ab initio calculations, random structure searching, and machine learning, and it has successfully predicted the Mu T and Mu BC stopping sites of muonium in Si, diamond, and Ge, as well as the muonium stopping site in LiF, without any recourse to experimental results. The method makes use of Soprano, a Python library developed to aid ab initio computational crystallography, that was publicly released and contains all the software tools necessary to reproduce our analysis.
Ab initio structure determination via powder X-ray diffraction
Indian Academy of Sciences (India)
Unknown
Powder data is especially useful to deduce accurate cell parameters. Rietveld's refinement procedure1,2 has revolutionized the application of powder X-ray diffraction by resulting in a large number of structures being refined in the last decade. If a suitable starting model is available, it has become routine to refine structures ...
Structure of hydrogenated amorphous silicon from ab initio molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Buda, F. (Department of Physics, The Ohio State University, 174 West 18th Avenue, Columbus, Ohio (USA)); Chiarotti, G.L. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Laboratorio Tecnologie Avanzate Superfici e Catalisi del Consorzio Interuniversitario Nazionale di Fisica della Materia, Padriciano 99, I-34012 Trieste (Italy)); Car, R. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Institut Romard de Recherche Numerique en Physique des Materiaux, CH-1015 Lausanne, Switzerland Department of Condensed Matter Physics, University of Geneva, CH-1211 Geneva (Switzerland)); Parrinello, M. (IBM Research Division, Zurich Research Laboratory, CH-8803 Rueschlikon (Switzerland))
1991-09-15
We have generated a model of hydrogenated amorphous silicon by first-principles molecular dynamics. Our results are in good agreement with the available experimental data and provide new insight into the microscopic structure of this material. The calculation lends support to models in which monohydride complexes are prevalent, and indicates a strong tendency of hydrogen to form small clusters.
Ab-initio theoretical predictions of structure properties of semiconductors
International Nuclear Information System (INIS)
Rodriguez, C.O.; Peltzer y Blanca, E.L.; Cappannini, O.M.
1983-01-01
In this paper, calculations of the total energies and related structural properties of Si, GaP and C are presented showing good agreement with experimental values. The total energy is calculated within the local-density functional formalism using first principles non-local pseudopotentials. (A.C.A.S.) [pt
Electronic structure and transport in graphene/haeckelite hybrids: an ab initio study
International Nuclear Information System (INIS)
Zhu, Zhen; Fthenakis, Zacharias G; Tománek, David
2015-01-01
We combine ab initio density functional theory (DFT) structural studies with DFT-based nonequilibrium Green's function calculations to investigate how the presence of non-hexagonal rings affects electronic transport in graphitic structures. We find that infinite monolayers, finite-width nanoribbons, and nanotubes formed of 5–8 haeckelite with only 5- and 8-membered rings are generally more conductive than their graphene-based counterparts. The presence of haeckelite defect lines in the perfect graphitic structure, a model of grain boundaries in CVD-grown graphene, increases the electronic conductivity and renders it highly anisotropic. (paper)
Electronic Structure of Silicon Nanowires Matrix from Ab Initio Calculations.
Monastyrskii, Liubomyr S; Boyko, Yaroslav V; Sokolovskii, Bogdan S; Potashnyk, Vasylyna Ya
2016-12-01
An investigation of the model of porous silicon in the form of periodic set of silicon nanowires has been carried out. The electronic energy structure was studied using a first-principle band method-the method of pseudopotentials (ultrasoft potentials in the basis of plane waves) and linearized mode of the method of combined pseudopotentials. Due to the use of hybrid exchange-correlation potentials (B3LYP), the quantitative agreement of the calculated value of band gap in the bulk material with experimental data is achieved. The obtained results show that passivation of dangling bonds with hydrogen atoms leads to substantial transformation of electronic energy structure. At complete passivation of the dangling silicon bonds by hydrogen atoms, the band gap value takes the magnitude which substantially exceeds that for bulk silicon. The incomplete passivation gives rise to opposite effect when the band gap value decreases down the semimetallic range.
Topological Semimetals Studied by Ab Initio Calculations
Hirayama, Motoaki; Okugawa, Ryo; Murakami, Shuichi
2018-04-01
In topological semimetals such as Weyl, Dirac, and nodal-line semimetals, the band gap closes at points or along lines in k space which are not necessarily located at high-symmetry positions in the Brillouin zone. Therefore, it is not straightforward to find these topological semimetals by ab initio calculations because the band structure is usually calculated only along high-symmetry lines. In this paper, we review recent studies on topological semimetals by ab initio calculations. We explain theoretical frameworks which can be used for the search for topological semimetal materials, and some numerical methods used in the ab initio calculations.
Quantum chemistry the development of ab initio methods in molecular electronic structure theory
Schaefer III, Henry F
2004-01-01
This guide is guaranteed to prove of keen interest to the broad spectrum of experimental chemists who use electronic structure theory to assist in the interpretation of their laboratory findings. A list of 150 landmark papers in ab initio molecular electronic structure methods, it features the first page of each paper (which usually encompasses the abstract and introduction). Its primary focus is methodology, rather than the examination of particular chemical problems, and the selected papers either present new and important methods or illustrate the effectiveness of existing methods in predi
Ramsdellite-structured LiTiO 2: A new phase predicted from ab initio calculations
Koudriachova, M. V.
2008-06-01
A new phase of highly lithiated titania with potential application as an anode in Li-rechargeable batteries is predicted on the basis of ab initio calculations. This phase has a composition LiTiO2 and may be accessed through electrochemical lithiation of ramsdellite-structured TiO2 at the lowest potential reported for titanium dioxide based materials. The potential remains constant over a wide range of Li-concentrations. The new phase is metastable with respect to a tetragonally distorted rock salt structure, which hitherto has been the only known polymorph of LiTiO2.
Ab initio simulations and neutron scattering studies of structure and dynamics in PdH
International Nuclear Information System (INIS)
Totolici, I.E.
2001-07-01
The work presented in this PhD thesis is concerned with the interpretation of the neutron scattering measurements from the palladium hydrogen system by means of ab initio electronic structure calculations. The motivation of performing such calculations was due to recent neutron scattering studies on this system that showed a strong directional dependence to the dynamical structure factor together with a complex dependence on energy. Here we attempt to describe the origin of these features by ab initio simulations of the dynamical structure factor. The method assumes an adiabatic separation of the motion of the proton and palladium atoms. The proton wave functions are calculated by a direct solution of the associated single-particle Schroedinger equation using a plane wave basis set method and a mapping of the adiabatic surface. The Fourier components of the adiabatic potential are obtained from LDA pseudopotential calculations. Using Fermi's golden rule within the Born approximation we were then able to calculate the dynamical structure factor, S(Q,ω), for exciting the proton from its ground state to various excited states as a function of the magnitude and direction of the scattering wave vector. The results are in agreement with the inelastic neutron scattering spectra and allow us to identify the origin of previous inexplicable features, in particular the strong directional dependence to the experimental data. The method was extended to investigate the expansion of the equilibrium lattice constant as a function of the H isotope when the zero-point energy of the proton/deuterium is explicitly taken into account in the relaxation process. The results we obtained predicted a bigger lattice constant for the hydride, as expected. Furthermore, other complex ab initio calculations were carried out in order to describe the origin of the large optic dispersion, seen previously in the coherent neutron scattering data. Our calculated dispersion proved to be in good
Simple synthesis, structure and ab initio study of 1,4-benzodiazepine-2,5-diones
Jadidi, Khosrow; Aryan, Reza; Mehrdad, Morteza; Lügger, Thomas; Ekkehardt Hahn, F.; Ng, Seik Weng
2004-04-01
A simple procedure for the synthesis of pyrido[2,1-c][1,4] benzodiazepine-6,12-dione ( 1) and 1,4-benzodiazepine-2,5-diones ( 2a- 2d), using microwave irradiation and/or conventional heating is reported. The configuration of 1 was determined by single-crystal X-ray diffraction. A detailed ab initio B3LYP/6-31G* calculation of structural parameters and substituent effects on ring inversion barriers (Δ G#) and also free energy differences (Δ G0) for benzodiazepines are reported.
Yang, Jing; He, Bao-Ji; Jang, Richard; Zhang, Yang; Shen, Hong-Bin
2015-12-01
Cysteine-rich proteins cover many important families in nature but there are currently no methods specifically designed for modeling the structure of these proteins. The accuracy of disulfide connectivity pattern prediction, particularly for the proteins of higher-order connections, e.g., >3 bonds, is too low to effectively assist structure assembly simulations. We propose a new hierarchical order reduction protocol called Cyscon for disulfide-bonding prediction. The most confident disulfide bonds are first identified and bonding prediction is then focused on the remaining cysteine residues based on SVR training. Compared with purely machine learning-based approaches, Cyscon improved the average accuracy of connectivity pattern prediction by 21.9%. For proteins with more than 5 disulfide bonds, Cyscon improved the accuracy by 585% on the benchmark set of PDBCYS. When applied to 158 non-redundant cysteine-rich proteins, Cyscon predictions helped increase (or decrease) the TM-score (or RMSD) of the ab initio QUARK modeling by 12.1% (or 14.4%). This result demonstrates a new avenue to improve the ab initio structure modeling for cysteine-rich proteins. http://www.csbio.sjtu.edu.cn/bioinf/Cyscon/ zhng@umich.edu or hbshen@sjtu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Bibby, Jaclyn; Keegan, Ronan M.; Mayans, Olga; Winn, Martyn D.; Rigden, Daniel J.
2012-01-01
Protein ab initio models predicted from sequence data alone can enable the elucidation of crystal structures by molecular replacement. However, the calculation of such ab initio models is typically computationally expensive. Here, a computational pipeline based on the clustering and truncation of cheaply obtained ab initio models for the preparation of structure ensembles is described. Clustering is used to select models and to quantitatively predict their local accuracy, allowing rational tr...
Integration of QUARK and I-TASSER for Ab Initio Protein Structure Prediction in CASP11.
Zhang, Wenxuan; Yang, Jianyi; He, Baoji; Walker, Sara Elizabeth; Zhang, Hongjiu; Govindarajoo, Brandon; Virtanen, Jouko; Xue, Zhidong; Shen, Hong-Bin; Zhang, Yang
2016-09-01
We tested two pipelines developed for template-free protein structure prediction in the CASP11 experiment. First, the QUARK pipeline constructs structure models by reassembling fragments of continuously distributed lengths excised from unrelated proteins. Five free-modeling (FM) targets have the model successfully constructed by QUARK with a TM-score above 0.4, including the first model of T0837-D1, which has a TM-score = 0.736 and RMSD = 2.9 Å to the native. Detailed analysis showed that the success is partly attributed to the high-resolution contact map prediction derived from fragment-based distance-profiles, which are mainly located between regular secondary structure elements and loops/turns and help guide the orientation of secondary structure assembly. In the Zhang-Server pipeline, weakly scoring threading templates are re-ordered by the structural similarity to the ab initio folding models, which are then reassembled by I-TASSER based structure assembly simulations; 60% more domains with length up to 204 residues, compared to the QUARK pipeline, were successfully modeled by the I-TASSER pipeline with a TM-score above 0.4. The robustness of the I-TASSER pipeline can stem from the composite fragment-assembly simulations that combine structures from both ab initio folding and threading template refinements. Despite the promising cases, challenges still exist in long-range beta-strand folding, domain parsing, and the uncertainty of secondary structure prediction; the latter of which was found to affect nearly all aspects of FM structure predictions, from fragment identification, target classification, structure assembly, to final model selection. Significant efforts are needed to solve these problems before real progress on FM could be made. Proteins 2016; 84(Suppl 1):76-86. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Evolution of local atomic structure during solidification of Al2Au liquid: An ab initio study
Energy Technology Data Exchange (ETDEWEB)
Xiong, L H; Lou, H B; Wang, X D; Debela, T T; Cao, Q P; Zhang, D X; Wang, S Y; Wang, C Z; Jiang, J Z
2014-04-01
The local atomic structure evolution in Al2Au alloy during solidification from 2000 K to 400 K was studied by ab initio molecular dynamics simulations and analyzed using the structure factor, pair correlation functions, bond angle distributions, the Honeycutt-Anderson (HA) index and Voronoi tessellation methods. It was found that the icosahedral-like clusters are negligible in the Al2Au stable liquid and supercooled liquid states, and the most abundant clusters are those having HA indices of 131 and 120 or Voronoi indices of < 0,4,4,0 >, < 0,3, 6,0 > and < 0,4,4,2 > with coordination numbers of 8, 9 and 10, respectively. These clusters are similar to the local atomic structures in the CaF2-type Al2Au crystal, revealing the existence of structure heredity between liquid and crystalline phase in Al2Au alloy. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Degoli, Elena; Bisi, O.; Ossicini, Stefano; Cantele, G.; Ninno, D.; Luppi, Eleonora; Magri, Rita
2004-01-01
Electronic and structural properties of small hydrogenated silicon nanoclusters as a function of dimension are calculated from ab initio technique. The effects induced by the creation of an electron-hole pair are discussed in detail, showing the strong interplay between the structural and optical properties of the system. The distortion induced on the structure after an electronic excitation of the cluster is analyzed together with the role of the symmetry constraint during the relaxation. We point out how the overall effect is that of significantly changing the electronic spectrum if no symmetry constraint is imposed to the system. Such distortion can account for the Stokes shift and provides a possible structural model to be linked to the four-level scheme invoked in the literature to explain recent results for the optical gain in silicon nanoclusters. Finally, formation energies for clusters with increasing dimension are calculated and their relative stability discussed
Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules
Zheng, Haoping
2003-04-01
The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with unchanged calculation precision. So the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule becomes a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the Ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), are presented. The reactive sites of the inhibitors are determined and explained. The precision of structure determination of inhibitors are tested theoretically.
Ab initio electronic structure calculations of solid, solution-processed metallotetrabenzoporphyrins
Shea, Patrick B.; Kanicki, Jerzy
2012-04-01
An ab initio study of the electronic structures of solid metallotetrabenzoporphyrins (MTBPs) utilized in organic transistors and photovoltaics is presented. Band structures, densities of states, and orbitals are calculated for H2, Cu, Ni, and Zn core substitutions of the unit cell of solid TBP, as deposited via soluble precursors that are thermally annealed to produce polycrystalline, semiconducting thin-films. While the unit cells of the studied MTBPs are nearly isomorphous, substitution of the core atoms alters the structure of the bands around the energy bandgap and the composition of the densities of states. Cu and Ni core substitutions introduce nearly dispersionless energy bands near the valence and conduction band edges, respectively, that form acceptor or deep generation/recombination states.
International Nuclear Information System (INIS)
Rubin, Yu.V.; Belous, L.F.
2012-01-01
Self-associates of nucleic acid components (stacking trimers and tetramers of the base pairs of nucleic acids) and short fragments of nucleic acids are nanoparticles (linear sizes of these particles are more than 10 A). Modern quantum-mechanical methods and softwares allow one to perform ab initio calculations of the systems consisting of 150-200 atoms with enough large basis sets (for example, 6-31G * ). The aim of this work is to reveal the peculiarities of molecular and electronic structures, as well as the energy features of nanoparticles of nucleic acid components. We had carried out ab initio calculations of the molecular structure and interactions in the stacking dimer, trimer, and tetramer of nucleic base pairs and in the stacking (TpG)(ApC) dimer and (TpGpC) (ApCpG) trimer of nucleotides, which are small DNA fragments. The performed calculations of molecular structures of dimers and trimers of nucleotide pairs showed that the interplanar distance in the structures studied is equal to 3.2 A on average, and the helical angle in a trimer is approximately equal to 30 o : The distance between phosphor atoms in neighboring chains is 13.1 A. For dimers and trimers under study, we calculated the horizontal interaction energies. The analysis of interplanar distances and angles between nucleic bases and their pairs in the calculated short oligomers of nucleic acid base pairs (stacking dimer, trimer, and tetramer) has been carried out. Studies of interactions in the calculated short oligomers showed a considerable role of the cross interaction in the stabilization of the structures. The contribution of cross interactions to the horizontal interactions grows with the length of an oligomer. Nanoparticle components get electric charges in nanoparticles. Longwave low-intensity bands can appear in the electron spectra of nanoparticles.
Directory of Open Access Journals (Sweden)
Salah Belaidi
2011-01-01
Full Text Available The geometric, electronic structure, effect of the substitution, and structure physical-chemistry relationship for oxazoles derivatives have been studied by ab initio and DFT theory. In the present work, the calculated values, namely, net charges, bond lengths, dipole moments, electron affinities, heats of formation, and QSAR properties are reported and discussed in terms of the reactivity of oxazole derivatives.
DEFF Research Database (Denmark)
Gorelik, Tatiana E; van de Streek, Jacco; Kilbinger, Andreas F M
2012-01-01
Ab-initio crystal structure analysis of organic materials from electron diffraction data is presented. The data were collected using the automated electron diffraction tomography (ADT) technique. The structure solution and refinement route is first validated on the basis of the known crystal stru...
Giovannetti, G.; Brocks, G.; van den Brink, J.
2008-01-01
We investigate the effect that potassium intercalation has on the electronic structure of copper phthalocyanine (CuPc) molecular crystals by means of ab initio density functional calculations. Pristine CuPc (in its alpha and beta structures) is found to be an insulator containing local magnetic
Structural properties of iron nitride on Cu(100): An ab-initio molecular dynamics study
Heryadi, Dodi
2011-01-01
Due to their potential applications in magnetic storage devices, iron nitrides have been a subject of numerous experimental and theoretical investigations. Thin films of iron nitride have been successfully grown on different substrates. To study the structural properties of a single monolayer film of FeN we have performed an ab-initio molecular dynamics simulation of its formation on a Cu(100) substrate. The iron nitride layer formed in our simulation shows a p4gm(2x2) reconstructed surface, in agreement with experimental results. In addition to its structural properties, we are also able to determine the magnetization of this thin film. Our results show that one monolayer of iron nitride on Cu(100) is ferromagnetic with a magnetic moment of 1.67 μ B. © 2011 Materials Research Society.
{ital Ab initio} electronic structure, magnetism, and magnetocrystalline anisotropy of UGa{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Divis, M. [Department of Metal Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic)]|[Max-Planck-Gesellschaft, Research Group ``Electron Systems,`` University of Technology, D-01062 Dresden (Germany); Richter, M.; Eschrig, H.; Steinbeck, L. [Max-Planck-Gesellschaft, Research Group ``Electron Systems,`` University of Technology, D-01062 Dresden (Germany)
1996-04-01
{ital Ab} {ital initio} electronic structure calculations for the intermetallic compound UGa{sub 2} were performed using an optimized linear combination of atomic orbitals method based on the local spin density approximation. Three separate calculations were done treating the uranium 5{ital f} states as band states and as localized states with occupation two and three, respectively. In the itinerant approach, spin and orbital moments, magnetocrystalline anisotropy, and the Sommerfeld constant were calculated and found to deviate significantly from the related experimental data. In the localized approach, crystal field parameters were obtained for the 5{ital f} states, which have been treated by self-interaction corrected local-density theory. This approach with 5{ital f}{sup 2} occupation is shown to provide reasonable results for the anisotropy of the susceptibility, for the field dependence of the magnetic moments, and for the Sommerfeld constant. {copyright} {ital 1996 The American Physical Society.}
International Nuclear Information System (INIS)
Moradian, Rostam; Behzad, Somayeh; Chegel, Raad
2008-01-01
By using ab initio density functional theory the structural and electronic properties of isolated and bundled (8,0) and (6,6) silicon carbide nanotubes (SiCNTs) are investigated. Our results show that for such small diameter nanotubes the inter-tube interaction causes a very small radial deformation, while band splitting and reduction of the semiconducting energy band gap are significant. We compared the equilibrium interaction energy and inter-tube separation distance of (8,0) SiCNT bundle with (10,0) carbon nanotube (CNT) bundle where they have the same radius. We found that there is a larger inter-tube separation and weaker inter-tube interaction in the (8,0) SiCNT bundle with respect to (10,0) CNT bundle, although they have the same radius
Ab initio valence calculations in chemistry
Cook, D B
1974-01-01
Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schrödinger equation and the orbital approximation to atomic orbitals; molecular orbital and valence bond methods; practical molecular wave functions; and molecular integrals. Open shell systems, molecular symmetry, and localized descriptions of electronic structure are also discussed. This book is comprised of 13 chapters and begins by introducing the reader to the use of the Schrödinge
Zhang, Yang
2014-02-01
We develop and test a new pipeline in CASP10 to predict protein structures based on an interplay of I-TASSER and QUARK for both free-modeling (FM) and template-based modeling (TBM) targets. The most noteworthy observation is that sorting through the threading template pool using the QUARK-based ab initio models as probes allows the detection of distant-homology templates which might be ignored by the traditional sequence profile-based threading alignment algorithms. Further template assembly refinement by I-TASSER resulted in successful folding of two medium-sized FM targets with >150 residues. For TBM, the multiple threading alignments from LOMETS are, for the first time, incorporated into the ab initio QUARK simulations, which were further refined by I-TASSER assembly refinement. Compared with the traditional threading assembly refinement procedures, the inclusion of the threading-constrained ab initio folding models can consistently improve the quality of the full-length models as assessed by the GDT-HA and hydrogen-bonding scores. Despite the success, significant challenges still exist in domain boundary prediction and consistent folding of medium-size proteins (especially beta-proteins) for nonhomologous targets. Further developments of sensitive fold-recognition and ab initio folding methods are critical for solving these problems. Copyright © 2013 Wiley Periodicals, Inc.
Ab initio electronic band structure calculation of InP in the wurtzite phase
Dacal, Luis C. O.; Cantarero, Andrés
2011-05-01
We present ab initio calculations of the InP band structure in the wurtzite phase and compare it with that of the zincblende phase. In both calculations, we use the full potential linearized augmented plane wave method as implemented in the WIEN2k code and the modified Becke-Johnson exchange potential, which provides an improved value of the bandgap. The structural optimization of the wurtizte InP gives a=0.4150 nm, c=0.6912 nm, and an internal parameter u=0.371, showing the existence of a spontaneous polarization along the growth axis. As compared to the ideal wurtzite structure (that with the lattice parameter derived from the zincblende structure calculations), the actual wurtzite structure is compressed (-1.3%) in plane and expanded (0.7%) along the c-direction. The value of the calculated band gaps agrees well with recent optical experiments. The calculations are also consistent with the optical transitions found using polarized light.
International Nuclear Information System (INIS)
David, W.I.F.; Johnson, M.W.; Wilson, C.C.
1988-01-01
Neutron powder diffraction has, over the past two decades, developed into a powerful technique for the refinement of moderately complex crystal structures. The advent of a new generation of ultra-high resolution X-ray and neutron powder diffractometers, however, not only permits the refinement of more complex materials but also opens up new areas of research. Perhaps the most exciting development in powder diffraction techniques associated with high resolution is the ab initio determination of crystal structures. This has until recently been possible, in a routine way, only by single crystal studies. The compression of three dimensions of diffraction data to the one dimension of a powder diffraction pattern leads to an unavoidable loss of information. For many, but not all, crystal symmetries high resolution minimises this loss thus allowing the intensities of a sufficient number of resolved Bragg reflections from moderately complex materials to be extracted for use in structure solution by direct methods of phase determination and by Patterson methods. Recent structure determination using the high resolution powder diffractometer, HRPD, at ISIS will be presented. The inherent limitations resulting from crystal and instrumental resolution are discussed along with maximum entropy techniques that seek to optimise the information content of a powder diffraction pattern. (author) 36 refs., 1 fig., 3 tabs
Ab initio random structure search for 13-atom clusters of fcc elements
International Nuclear Information System (INIS)
Chou, J P; Hsing, C R; Wei, C M; Cheng, C; Chang, C M
2013-01-01
The 13-atom metal clusters of fcc elements (Al, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au) were studied by density functional theory calculations. The global minima were searched for by the ab initio random structure searching method. In addition to some new lowest-energy structures for Pd 13 and Au 13 , we found that the effective coordination numbers of the lowest-energy clusters would increase with the ratio of the dimer-to-bulk bond length. This correlation, together with the electronic structures of the lowest-energy clusters, divides the 13-atom clusters of these fcc elements into two groups (except for Au 13 , which prefers a two-dimensional structure due to the relativistic effect). Compact-like clusters that are composed exclusively of triangular motifs are preferred for elements without d-electrons (Al) or with (nearly) filled d-band electrons (Ni, Pd, Cu, Ag). Non-compact clusters composed mainly of square motifs connected by some triangular motifs (Rh, Ir, Pt) are favored for elements with unfilled d-band electrons. (paper)
SGO: A fast engine for ab initio atomic structure global optimization by differential evolution
Chen, Zhanghui; Jia, Weile; Jiang, Xiangwei; Li, Shu-Shen; Wang, Lin-Wang
2017-10-01
As the high throughout calculations and material genome approaches become more and more popular in material science, the search for optimal ways to predict atomic global minimum structure is a high research priority. This paper presents a fast method for global search of atomic structures at ab initio level. The structures global optimization (SGO) engine consists of a high-efficiency differential evolution algorithm, accelerated local relaxation methods and a plane-wave density functional theory code running on GPU machines. The purpose is to show what can be achieved by combining the superior algorithms at the different levels of the searching scheme. SGO can search the global-minimum configurations of crystals, two-dimensional materials and quantum clusters without prior symmetry restriction in a relatively short time (half or several hours for systems with less than 25 atoms), thus making such a task a routine calculation. Comparisons with other existing methods such as minima hopping and genetic algorithm are provided. One motivation of our study is to investigate the properties of magnetic systems in different phases. The SGO engine is capable of surveying the local minima surrounding the global minimum, which provides the information for the overall energy landscape of a given system. Using this capability we have found several new configurations for testing systems, explored their energy landscape, and demonstrated that the magnetic moment of metal clusters fluctuates strongly in different local minima.
Czech Academy of Sciences Publication Activity Database
Hemzalová, P.; Friák, Martin; Šob, Mojmír; Ma, D.; Udyansky, A.; Raabe, D.; Neugebauer, J.
2013-01-01
Roč. 88, č. 17 (2013), Art. no. 174103 ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP108/12/0311; GA ČR GD106/09/H035; GA AV ČR IAA100100920 Institutional support: RVO:68081723 Keywords : nitrides * ab initio * thermodynamics * elasticity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013
Electronic Structure of Hydrogenated and Surface-Modified GaAs Nanocrystals: Ab Initio Calculations
Directory of Open Access Journals (Sweden)
Hamsa Naji Nasir
2012-01-01
Full Text Available Two methods are used to simulate electronic structure of gallium arsenide nanocrystals. The cluster full geometrical optimization procedure which is suitable for small nanocrystals and large unit cell that simulates specific parts of larger nanocrystals preferably core part as in the present work. Because of symmetry consideration, large unit cells can reach sizes that are beyond the capabilities of first method. The two methods use ab initio Hartree-Fock and density functional theory, respectively. The results show that both energy gap and lattice constant decrease in their value as the nanocrystals grow in size. The inclusion of surface part in the first method makes valence band width wider than in large unit cell method that simulates the core part only. This is attributed to the broken symmetry and surface passivating atoms that split surface degenerate states and adds new levels inside and around the valence band. Bond length and tetrahedral angle result from full geometrical optimization indicate good convergence to the ideal zincblende structure at the centre of hydrogenated nanocrystal. This convergence supports large unit cell methodology. Existence of oxygen atoms at nanocrystal surface melts down density of states and reduces energy gap.
Ab-initio Electronic and Structural Properties of Rutile Titanium Dioxide
Ekuma, Chinedu E.; Bagayoko, Diola
2011-10-01
Ab-initio, self-consistent electronic energy bands of rutile TiO2 are reported within the local density functional approximation (LDA). Our first principle, non-relativistic and ground state calculations employed a local density functional approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). Within the framework of the Bagayoko-Zhao-Williams (BZW) method, we solved self-consistently both the Kohn-Sham equation and the equation giving the ground state charge density in terms of the wave functions of the occupied states. Our calculated band structure shows that there is significant O 2p-Ti 3d hybridization in the valence bands. These bands are well separated from the conduction bands by an indirect band gap of 2.95 eV, from Γ to R. Consequently, this work predicts that rutile TiO2 is an indirect band gap material, as all other gaps from our calculations are larger than 2.95 eV. We found a slightly larger, direct band gap of 3.05 eV, at the Γ point, in excellent agreement with experiment. Our calculations reproduced the peaks in the measured conduction and valence bands densities of states, within experimental uncertainties. We also calculated electron effective mass. Our structural optimization led to lattice parameters of 4.65 and 2.97 Å for a0 and c0, respectively with a u parameter of 0.3051 and a bulk modulus of 215 GPa.
Structural insights and ab initio sequencing within the DING proteins family
Energy Technology Data Exchange (ETDEWEB)
Elias, Mikael, E-mail: mikael.elias@weizmann.ac.il [Weizmann Institute of Science, Rehovot (Israel); Liebschner, Dorothee [CRM2, Nancy Université (France); Gotthard, Guillaume; Chabriere, Eric [AFMB, Université Aix-Marseille II (France)
2011-01-01
DING proteins constitute a recently discovered protein family that is ubiquitous in eukaryotes. The structural insights and the physiological involvements of these intriguing proteins are hereby deciphered. DING proteins constitute an intriguing family of phosphate-binding proteins that was identified in a wide range of organisms, from prokaryotes and archae to eukaryotes. Despite their seemingly ubiquitous occurrence in eukaryotes, their encoding genes are missing from sequenced genomes. Such a lack has considerably hampered functional studies. In humans, these proteins have been related to several diseases, like atherosclerosis, kidney stones, inflammation processes and HIV inhibition. The human phosphate binding protein is a human representative of the DING family that was serendipitously discovered from human plasma. An original approach was developed to determine ab initio the complete and exact sequence of this 38 kDa protein by utilizing mass spectrometry and X-ray data in tandem. Taking advantage of this first complete eukaryotic DING sequence, a immunohistochemistry study was undertaken to check the presence of DING proteins in various mice tissues, revealing that these proteins are widely expressed. Finally, the structure of a bacterial representative from Pseudomonas fluorescens was solved at sub-angstrom resolution, allowing the molecular mechanism of the phosphate binding in these high-affinity proteins to be elucidated.
Structural insights and ab initio sequencing within the DING proteins family
International Nuclear Information System (INIS)
Elias, Mikael; Liebschner, Dorothee; Gotthard, Guillaume; Chabriere, Eric
2011-01-01
DING proteins constitute a recently discovered protein family that is ubiquitous in eukaryotes. The structural insights and the physiological involvements of these intriguing proteins are hereby deciphered. DING proteins constitute an intriguing family of phosphate-binding proteins that was identified in a wide range of organisms, from prokaryotes and archae to eukaryotes. Despite their seemingly ubiquitous occurrence in eukaryotes, their encoding genes are missing from sequenced genomes. Such a lack has considerably hampered functional studies. In humans, these proteins have been related to several diseases, like atherosclerosis, kidney stones, inflammation processes and HIV inhibition. The human phosphate binding protein is a human representative of the DING family that was serendipitously discovered from human plasma. An original approach was developed to determine ab initio the complete and exact sequence of this 38 kDa protein by utilizing mass spectrometry and X-ray data in tandem. Taking advantage of this first complete eukaryotic DING sequence, a immunohistochemistry study was undertaken to check the presence of DING proteins in various mice tissues, revealing that these proteins are widely expressed. Finally, the structure of a bacterial representative from Pseudomonas fluorescens was solved at sub-angstrom resolution, allowing the molecular mechanism of the phosphate binding in these high-affinity proteins to be elucidated
International Nuclear Information System (INIS)
LaBarge, M.S.; Hillig, K.W. II; Kuczkowski, R.L.; Cremer, D.
1986-01-01
The rotational spectra of six isotopic species of trans-difluoroethylene ozonide (trans-3,5-difluoro-1,2,4-trioxolane) were assigned. These included the parent species, the single- and double-substituted deuterium species, the double 18 O/sub p/, the triple 18 O, and and 13 C species. The spectrum consisted of b-type transitions with a 10:6 intensity alternation. The electric dipole moment was determined from Stark effect measurements to be μ/sub b/ = 0.994 (5) D. These results support an average structure having an O/sub p/-O/sub p/ twist ring conformation with C 2 symmetry and diaxial fluorine substituents. The shortening of the C-O/sub p/ bonds (1.368 A) relative to the C-O/sub c/ bonds (1.401 A) is very apparent in this member of the fluoroozonide series. Ab initio calculations were performed at the HG/6-31G/sup */ level and analyzed in terms of electron density distributions. Experimental and theoretical results are rationalized in terms of anomeric interactions with the peroxy oxygen atoms
Xia, Xiuli; Shao, Yuanzhi
2018-02-01
We report the magneto-electric behavior of a dual-modality biomedical nanoprobe, a ternary nanosystem consisting of gold and gadolinia clusters and water molecules, with the effect of both nanoclusters on the structural and electronic properties of water. The hydrogen-oxygen bond lengths and angles as well as electronic charges of water molecules surrounding both nanoclusters were calculated using Hubbard U corrected density functional theory aided by molecular dynamics approach. The calculations reveal existence of a magneto-electric interaction between gold and gadolinium oxide nanoclusters, which influences the physical properties of surrounding water remarkably. A broader (narrower) distribution of Hsbnd O bond lengths (Hsbnd Osbnd H bond angles) was observed at the presence of either gold or gadolinia nanoclusters. The presence of Gd6O9 cluster leads to the larger charges of neighbour oxygen atoms. The distribution of oxygen atom charges becomes border when both Gd6O9 and Au13 clusters coexist. Ab initio calculation provides a feasible approach to explore the most essential interactions among functional components of a multimodal nanoprobe applied in aqueous environment.
Hao, Xiaohu; Zhang, Guijun; Zhou, Xiaogen
2018-04-01
Computing conformations which are essential to associate structural and functional information with gene sequences, is challenging due to the high dimensionality and rugged energy surface of the protein conformational space. Consequently, the dimension of the protein conformational space should be reduced to a proper level, and an effective exploring algorithm should be proposed. In this paper, a plug-in method for guiding exploration in conformational feature space with Lipschitz underestimation (LUE) for ab-initio protein structure prediction is proposed. The conformational space is converted into ultrafast shape recognition (USR) feature space firstly. Based on the USR feature space, the conformational space can be further converted into Underestimation space according to Lipschitz estimation theory for guiding exploration. As a consequence of the use of underestimation model, the tight lower bound estimate information can be used for exploration guidance, the invalid sampling areas can be eliminated in advance, and the number of energy function evaluations can be reduced. The proposed method provides a novel technique to solve the exploring problem of protein conformational space. LUE is applied to differential evolution (DE) algorithm, and metropolis Monte Carlo(MMC) algorithm which is available in the Rosetta; When LUE is applied to DE and MMC, it will be screened by the underestimation method prior to energy calculation and selection. Further, LUE is compared with DE and MMC by testing on 15 small-to-medium structurally diverse proteins. Test results show that near-native protein structures with higher accuracy can be obtained more rapidly and efficiently with the use of LUE. Copyright © 2018 Elsevier Ltd. All rights reserved.
Matrix-isolation study and ab initio calculations of the structure and spectra of hydroxyacetone.
Sharma, Archna; Reva, Igor; Fausto, Rui
2008-07-03
The structure of hydroxyacetone (HA) isolated in an argon matrix (at 12 K) and in a neat solid phase (at 12-175 K) was characterized by using infrared (IR) spectroscopy. The interpretation of the experimental results was supported by high-level quantum chemical calculations, undertaken by using both ab initio (MP2) and density functional theory methods. A potential-energy surface scan, carried out at the MP2/6-311++G(d,p) level of theory, predicted four nonequivalent minima, Cc, Tt, Tg, and Ct, all of them doubly degenerate by symmetry. The energy barriers for conversion between most of the symmetrically related structures and also between some of the nonequivalent minima (e.g., Tg --> Tt and Ct --> Tt) are very small and stay below the zero-point vibrational level associated with the isomerization coordinate in the higher-energy form in each pair. Therefore, only Cc and Tt conformers have physical significance, with populations of 99 and 1%, respectively, in gas phase at room temperature. For the matrix-isolated compound, only the most stable Cc conformer was observed. On the other hand, the polarizable continuum model calculations indicated that in water solution, the population of Tt and Ct conformers might be high enough (ca. 6 and 11%, respectively) to enable their experimental detection, thus supporting the conclusions of a previous IR spectroscopy study [ Spectrochim. Acta A 2005, 61, 477] in which the presence of more than one HA conformer in aqueous solution was postulated. The signatures of these minor conformers, however, do not appear in the spectra of the neat HA crystal, and the crystal structure was rationalized in terms of centrosymmetric hydrogen-bonded dimers consisting of two Cc-like units. Finally, we calculated (1)H, (13)C, and (17)O NMR chemical shifts at different levels of theory and found them to agree with available experimental data.
International Nuclear Information System (INIS)
Iori, Federico; Degoli, Elena; Luppi, Eleonora; Magri, Rita; Marri, Ivan; Cantele, G.; Ninno, D.; Trani, F.; Ossicini, Stefano
2006-01-01
There are experimental evidences that doping control at the nanoscale can significantly modify the optical properties with respect to the pure systems. This is the case of silicon nanocrystals (Si-nc), for which it has been shown that the photoluminescence (PL) peak can be tuned also below the bulk Si band gap by properly controlling the impurities, for example by boron (B) and phosphorus (P) codoping. In this work, we report on an ab initio study of impurity states in Si-nc. We consider B and P substitutional impurities for Si-nc with a diameter up to 2.2 nm. Formation energies (FEs), electronic, optical and structural properties have been determined as a function of the cluster dimension. For both B-doped and P-doped Si-nc the FE increases on decreasing the dimension, showing that the substitutional doping gets progressively more difficult for the smaller nanocrystals. Moreover, subsurface impurity positions result to be the most stable ones. The codoping reduces the FE strongly favoring this process with respect to the simple n-doping or p-doping. Such an effect can be attributed to charge compensation between the donor and the acceptor atoms. Moreover, smaller structural deformations, with respect to n-doped and p-doped cases, localized only around the impurity sites are observed. The band gap and the optical threshold are largely reduced with respect to the undoped Si-nc showing the possibility of an impurity-based engineering of the Si-nc PL properties
Input/Output of ab-initio nuclear structure calculations for improved performance and portability
International Nuclear Information System (INIS)
Laghave, Nikhil
2010-01-01
Many modern scientific applications rely on highly computation intensive calculations. However, most applications do not concentrate as much on the role that input/output operations can play for improved performance and portability. Parallelizing input/output operations of large files can significantly improve the performance of parallel applications where sequential I/O is a bottleneck. A proper choice of I/O library also offers a scope for making input/output operations portable across different architectures. Thus, use of parallel I/O libraries for organizing I/O of large data files offers great scope in improving performance and portability of applications. In particular, sequential I/O has been identified as a bottleneck for the highly scalable MFDn (Many Fermion Dynamics for nuclear structure) code performing ab-initio nuclear structure calculations. We develop interfaces and parallel I/O procedures to use a well-known parallel I/O library in MFDn. As a result, we gain efficient I/O of large datasets along with their portability and ease of use in the down-stream processing. Even situations where the amount of data to be written is not huge, proper use of input/output operations can boost the performance of scientific applications. Application checkpointing offers enormous performance improvement and flexibility by doing a negligible amount of I/O to disk. Checkpointing saves and resumes application state in such a manner that in most cases the application is unaware that there has been an interruption to its execution. This helps in saving large amount of work that has been previously done and continue application execution. This small amount of I/O provides substantial time saving by offering restart/resume capability to applications. The need for checkpointing in optimization code NEWUOA has been identified and checkpoint/restart capability has been implemented in NEWUOA by using simple file I/O.
Gorelik, Tatiana E; van de Streek, Jacco; Kilbinger, Andreas F M; Brunklaus, Gunther; Kolb, Ute
2012-04-01
Ab-initio crystal structure analysis of organic materials from electron diffraction data is presented. The data were collected using the automated electron diffraction tomography (ADT) technique. The structure solution and refinement route is first validated on the basis of the known crystal structure of tri-p-benzamide. The same procedure is then applied to solve the previously unknown crystal structure of tetra-p-benzamide. In the crystal structure of tetra-p-benzamide, an unusual hydrogen-bonding scheme is realised; the hydrogen-bonding scheme is, however, in perfect agreement with solid-state NMR data.
The role of ab initio electronic structure calculations in studies of the strength of materials
Czech Academy of Sciences Publication Activity Database
Šob, Mojmír; Friák, Martin; Legut, Dominik; Fiala, J.; Vitek, V.
387-389, - (2004), s. 148-157 ISSN 0032-3888. [International Conference on the Strength of Materials /13./. Budapest, 25.08.2003-30.08.2003] R&D Projects: GA AV ČR(CZ) IAA1041302; GA ČR(CZ) GA202/03/1351; GA MŠk(CZ) OC 523.90 Institutional research plan: CEZ:AV0Z2041904 Keywords : theoretical strength * ab initio calculations * metallic materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.224, year: 2004
Pietrucci, Fabio; Andreoni, Wanda
2011-08-01
Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.
Rezaee, Mohammadreza; Compton, Robert
2015-05-01
Collision induced dissociation (CID) and ab initio calculations were utilized to study a few derivatives of azobenzene molecule and their product ions. High level computational methods along with large basis set size yield values in close agreement with the experimental results. Möller-Plesset and coupled-cluster theory including perturbative triple excitations, CCSD(T), method were performed to obtain a high accuracy estimation of the bond dissociation energy value. The electron affinities have been studied experimentally using the photoelectron spectroscopy method as well as theoretically using ab inito calculations. For the trans-2,2',6,6' tetra-fluoro azobenzene the bond dissociation has been experimentally determined to be 1.88 eV and the vertical detachment energy is 1.78 eV.
Ab-initio calculations of electronic, transport, and structural properties of boron phosphide
Energy Technology Data Exchange (ETDEWEB)
Ejembi, J. I.; Nwigboji, I. H.; Franklin, L.; Malozovsky, Y.; Zhao, G. L.; Bagayoko, D., E-mail: diola-bagayoko@subr.edu [Department of Physics, Southern University and A and M College, Baton Rouge, Louisiana 70813 (United States)
2014-09-14
We present results from ab-initio, self-consistent density functional theory calculations of electronic and related properties of zinc blende boron phosphide (zb-BP). We employed a local density approximation potential and implemented the linear combination of atomic orbitals formalism. This technique follows the Bagayoko, Zhao, and Williams method, as enhanced by the work of Ekuma and Franklin. The results include electronic energy bands, densities of states, and effective masses. The calculated band gap of 2.02 eV, for the room temperature lattice constant of a=4.5383 Å, is in excellent agreement with the experimental value of 2.02±0.05 eV. Our result for the bulk modulus, 155.7 GPa, agrees with experiment (152–155 GPa). Our predictions for the equilibrium lattice constant and the corresponding band gap, for very low temperatures, are 4.5269 Å and 2.01 eV, respectively.
International Nuclear Information System (INIS)
Bernholc, J.
1998-01-01
The field of computational materials physics has grown very quickly in the past decade, and it is now possible to simulate properties of complex materials completely from first principles. The presentation has mostly focused on first-principles dynamic simulations. Such simulations have been pioneered by Car and Parrinello, who introduced a method for performing realistic simulations within the context of density functional theory. The Car-Parrinello method and related plane wave approaches are reviewed in depth. The Car-Parrinello method was reviewed and illustrated with several applications: the dynamics of the C 60 solid, diffusion across Si steps, and computing free energy differences. Alternative ab initio simulation schemes, which use preconditioned conjugate gradient techniques for energy minimization and dynamics were also discussed
Hoy, Erik P; Mazziotti, David A
2015-08-14
Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory.
Ab initio-based approach to structural change of compound semiconductor surfaces during MBE growth
Ito, Tomonori; Akiyama, Toru; Nakamura, Kohji
2009-01-01
Phase diagrams of GaAs and GaN surfaces are systematically investigated by using our ab initio-based approach in conjunction with molecular beam epitaxy (MBE). The phase diagrams are obtained as a function of growth parameters such as temperature and beam equivalent pressure (BEP). The versatility of our approach is exemplified by the phase diagram calculations for GaAs(0 0 1) surfaces, where the stable phases and those phase boundaries are successfully determined as functions of temperature and As 2 and As 4 BEPs. The initial growth processes are clarified by the phase diagram calculations for GaAs(1 1 1)B-(2×2). The calculated results demonstrate that the As-trimer desorption on the GaAs(1 1 1)B-(2×2) with Ga adatoms occurs beyond 500-700 K while the desorption without Ga adatoms does beyond 800-1000 K. This self-surfactant effect induced by Ga adsorption crucially affects the initial growth of GaAs on the GaAs(1 1 1)B-(2×2). Furthermore, the phase diagram calculations for GaN(0 0 0 1) suggests that Ga adsorption or desorption during GaN MBE growth can easily change the pseudo-(1×1) to the (2×2)-Ga via newly found (1×1) and vice versa. On the basis of this finding, the possibility of ghost island formation during MBE growth is discussed.
Ab-initio Calculation of Optoelectronic and Structural Properties of Cubic Lithium Oxide (Li2O)
Ziegler, Joshua; Polin, Daniel; Malozovsky, Yuriy; Bagayoko, Diola
Using the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), we performed ab-initio, density functional theory (DFT) calculations of optoelectronic, transport, and bulk properties of Li2S. In so doing, we avoid ``band gap'' and problems plaguing many DET calculations [AIP Advances 4, 127104 (2014)]. We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). With the BZW-EF method, our results possess the full, physical content of DFT and agree with available, corresponding experimental ones. In particular, we found a room temperature indirect band gap of 6.659 eV that compares favorably with experimental values ranging from 5 to 7.99 eV. We also calculated total and partial density of states (DOS and PDOS), effective masses of charge carriers, the equilibrium lattice constant, and the bulk modulus. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award Nos. DE-NA0001861 and DE- NA0002630), LaSPACE, and LONI-SUBR.
McCoy, Anna E.; Caprio, Mark A.; Dytrych, Tomas
2017-09-01
A major challenge in quantitatively predicting nuclear structure ab initio, directly from realistic nucleon-nucleon interactions, arises due to an explosion in the dimension of the traditional configuration interaction basis as the number of nucleons and included shells increases. The need for including highly excited configurations exists, in large part, because the kinetic energy induces strong coupling across shells. However, the kinetic energy conserves symplectic symmetry. Combining symplectic symmetry with the no-core configuration interaction (NCCI) framework provides a means of identifying and restricting the basis to include only the highly excited configurations which dominantly contribute to the nuclear wavefunction, thereby reducing the size of basis necessary to obtain accurate results. We present a framework for ab initio symplectic no-core configuration interaction (SpNCCI) calculations of the nuclear problem and explore convergence behavior of calculations of p-shell nuclei in this framework. Supported by the US DOE under Award No. DE-FG02-95ER-40934 and the Czech Science Foundation under Grant No. 16-16772S.
Bibby, Jaclyn; Keegan, Ronan M; Mayans, Olga; Winn, Martyn D; Rigden, Daniel J
2012-12-01
Protein ab initio models predicted from sequence data alone can enable the elucidation of crystal structures by molecular replacement. However, the calculation of such ab initio models is typically computationally expensive. Here, a computational pipeline based on the clustering and truncation of cheaply obtained ab initio models for the preparation of structure ensembles is described. Clustering is used to select models and to quantitatively predict their local accuracy, allowing rational truncation of predicted inaccurate regions. The resulting ensembles, with or without rapidly added side chains, solved 43% of all test cases, with an 80% success rate for all-α proteins. A program implementing this approach, AMPLE, is included in the CCP4 suite of programs. It only requires the input of a FASTA sequence file and a diffraction data file. It carries out the modelling using locally installed Rosetta, creates search ensembles and automatically performs molecular replacement and model rebuilding.
International Nuclear Information System (INIS)
Hofer, Thomas S.; Rode, Bernd M.; Randolf, Bernhard R.
2005-01-01
Structural properties of the hydrated Ba(II) ion have been investigated by ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations at double zeta HF quantum mechanical level. The first shell coordination number was found to be 9.3, and several other structural parameters such as angular distribution functions, radial distribution functions and tilt- and θ-angle distributions allowed the full characterization of the hydration structure of the Ba(II) ion in dilute aqueous solution. Velocity autocorrelation functions were used to calculate librational and vibrational motions, ion-ligand motions as well as reorientation times. Different dynamical parameters such as water reorientation, mean ligand residence time, the number of ligand exchange processes and rate constants were also analyzed and the ligand exchange rate constant for the first shell was determined as k = 5.3 x 10 10 s -1
Devi, Assa Aravindh Sasikala
2014-05-01
Investigations on freestanding binary and ternary clusters of Fe (x) Co (y) Ir (z) (x + y + z = 5, 6) are carried out using ab initio density functional theory techniques. The geometry, chemical order, binding energy, magnetic moment and electronic structure of the clusters are analyzed for the entire range of composition. Composition dependent structural transition is observed in the five atom clusters, while octahedral geometry prevailed in clusters with six atoms. Both the clusters show increment in binding energy with the increase in number of heterogeneous bonds. Analysis based on the chemical order parameter indicates that clusters favor mixing rather than segregation. The clusters exhibit ferromagnetic ordering and the inter-dependence of optimal cluster geometry to the magnetic moments and electronic structure is observed.
International Nuclear Information System (INIS)
Souto, J; Alemany, M M G; Gallego, L J; González, L E; González, D J
2013-01-01
We report an ab initio molecular dynamics study of the static, dynamic and electronic properties of the liquid Bi x Li 1−x alloy, which is a complex binary system with a marked tendency to heterocoordination. The calculated total static structure factors are in good agreement with the available experimental data. The partial dynamic structure factors exhibit side peaks indicative of propagating density fluctuations, and for some concentrations we have found a density fluctuation mode with phase velocity greater than the hydrodynamic sound velocity. We have also evaluated other dynamical properties such as the diffusion coefficients, the shear viscosity and the adiabatic sound velocity. The electronic density of states show that the liquid Bi x Li 1−x alloy has a metallic character, although with strong deviations from the free-electron parabolic curve. The results reported improve the understanding of binary liquid alloys with both fast and slow propagating collective modes. (paper)
DEFF Research Database (Denmark)
Møgelhøj, Andreas; Kelkkanen, Kari André; Wikfeldt, K Thor
2011-01-01
The structure of liquid water at ambient conditions is studied in ab initio molecular dynamics simulations in the NVE ensemble using van der Waals (vdW) density-functional theory, i.e., using the new exchange-correlation functionals optPBE-vdW and vdW-DF2, where the latter has softer nonlocal...... protocol could cause the deviation. An O-O PCF consisting of a linear combination of 70% from vdW-DF2 and 30% from low-density liquid water, as extrapolated from experiments, reproduces near-quantitatively the experimental O-O PCF for ambient water. This suggests the possibility that the new functionals...... shows some resemblance with experiment for high-density water ( Soper , A. K. and Ricci , M. A. Phys. Rev. Lett. 2000 , 84 , 2881 ), but not directly with experiment for ambient water. Considering the accuracy of the new functionals for interaction energies, we investigate whether the simulation...
Reha, D; Valdés, H; Vondrásek, J; Hobza, P; Abu-Riziq, Ali; Crews, Bridgit; de Vries, Mattanjah S
2005-11-18
We investigated the potential-energy surface (PES) of the phenylalanyl-glycyl-glycine tripeptide in the gas phase by means of IR/UV double-resonance spectroscopy, and quantum chemical and statistical thermodynamic calculations. Experimentally, we observed four conformational structures and we recorded their IR spectra in the spectral region of 3000-4000 cm(-1). Computationally, we investigated the PES by a combination of molecular dynamics/quenching procedures with high-level correlated ab initio calculations. We found that neither empirical potentials nor various DFT functionals provide satisfactory results. On the other hand, the approximative DFT method covering the dispersion energy yields a reliable set of the most stable structures, which we subsequently investigated with an accurate, correlated ab initio treatment. The global minimum contains three moderately strong intramolecular hydrogen bonds and is mainly stabilized by London dispersion forces between the phenyl ring, the carboxylic acid group, and various peptide bonds. A proper description of the last type of interaction requires accurate correlated ab initio calculations, including the complete basis set limit of the MP2 method and CCSD(T) correction terms. Since in our beam experiments the conformations are frozen by cooling from a higher temperature, it is necessary to localize the most stable structures on the free-energy surface rather than on the PES. We used two different procedures (rigid rotor/harmonic oscillator/ideal gas approximation based on ab initio characteristics and evaluation of relative populations from the molecular dynamic simulations using the AMBER potential) and both yield four structures, the global minimum and three local minima. These four structures were among the 15 most energetically stable structures obtained from accurate ab initio optimization. The calculated IR spectra for these four structures agree well with the experimental frequencies, which validates the
O'Connor, Joseph M; Baldridge, Kim K; Rodgers, Betsy L; Aubrey, Marissa; Holland, Ryan L; Kassel, W Scott; Rheingold, Arnold L
2010-08-18
The first demonstration of photochemical enediyne liberation from a metal complex has led to a new class of enediynes, the cyclopentadienidoenediynes, which are demonstrated to exist as air-stable solids with low ionization potentials and large dipole moments. NMR and IR spectroscopy, X-ray crystallography, and ab initio computations enable a comparison with the ubiquitous benzoenediynes.
Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.
1997-01-01
The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to simulate laser heating of crystalline silicon. We found that a high concentration of excited electrons dramatically weakens the covalent bonding. As a result the system undergoes a melting
Giant magnetoresistance An ab-initio description
Binder, J
2000-01-01
A new theoretical concept to study the microscopic origin of Giant Magnetoresistance (GMR) from first principles is presented. The method is based on ab-initio electronic structure calculations within the spin density functional theory using a Screened KORRINGA-KOHNROSTOKER method. Scattering at impurity atoms in the multilayers is described by means of a GREEN's-function method. The scattering potentials are calculated self-consistently. The transport properties are treated quasi-classically solving the BOLTZMANN equation including the electronic structure of the layered system and the anisotropic scattering. The solution of the BOLTZMANN equation is performed iteratively taking into account both scattering out and scattering in terms (vertex corrections). The method is applied to Co/Cu and Fe/Cr multilayers. Trends of scattering cross sections, residual resistivities and GMR ratios are discussed for various transition metal impurities at different positions in the Co/Cu or Fe/Cr multilayers. Furthermore the...
Ab initio design of coherent thermal sources
Drevillon, Jérémie; Ben-Abdallah, Philippe
2007-12-01
Emission of thermal light from a hot body has been considered for a long time as broadband and quasi-isotropic. Today, we know that this paradigm is wrong and it has been shown that many micro- and nanostructured materials are able to radiate in narrow spectral bands and around specific directions of space. However, so far, only heuristic strategies based on trial and error have been followed for engineering such sources. Here, we present a general method for the ab initio design of coherent thermal sources by using only the first principles of optics. Our results pave the way toward the inverse design of new composite emitting structures for high performance applications in optics.
Ab initio electronic stopping power in materials
International Nuclear Information System (INIS)
Shukri, Abdullah-Atef
2015-01-01
The average energy loss of an ion per unit path length when it is moving through the matter is named the stopping power. The knowledge of the stopping power is essential for a variety of contemporary applications which depend on the transport of ions in matter, especially ion beam analysis techniques and ion implantation. Most noticeably, the use of proton or heavier ion beams in radiotherapy requires the knowledge of the stopping power. Whereas experimental data are readily available for elemental solids, the data are much more scarce for compounds. The linear response dielectric formalism has been widely used in the past to study the electronic stopping power. In particular, the famous pioneering calculations due to Lindhard evaluate the electronic stopping power of a free electron gas. In this thesis, we develop a fully ab initio scheme based on linear response time-dependent density functional theory to predict the impact parameter averaged quantity named the random electronic stopping power (RESP) of materials without any empirical fitting. The purpose is to be capable of predicting the outcome of experiments without any knowledge of target material besides its crystallographic structure. Our developments have been done within the open source ab initio code named ABINIT, where two approximations are now available: the Random-Phase Approximation (RPA) and the Adiabatic Local Density Approximation (ALDA). Furthermore, a new method named 'extrapolation scheme' have been introduced to overcome the stringent convergence issues we have encountered. These convergence issues have prevented the previous studies in literature from offering a direct comparison to experiment. First of all, we demonstrate the importance of describing the realistic ab initio electronic structure by comparing with the historical Lindhard stopping power evaluation. Whereas the Lindhard stopping power provides a first order description that captures the general features of the
Directory of Open Access Journals (Sweden)
Dejan Zagorac
2013-03-01
Full Text Available In this research we performed data exploring for binary compounds with elements from groups V, IV-VI, and III-VII, with the goal to identify chemical systems where the recently proposed “5-5” structure type might be experimentally accessible. Among others, TlF, SnO, SnS, SnSe, GeS, GeSe, PbO, PbS, ZnO and ZnS, were chosen for the study. For each of these systems, a local optimization on ab initio level with the LDA functional was performed for the 5-5 structure type, plus other experimentally observed and theoretically proposed structure types, for comparison. Afterwards, the results were combined with earlier theoretical work involving the 5-5 structure in the earth alkaline metal oxides and the alkali metal halides. As a result, we suggest the GeSe and the ZnO systems as the most suitable ones for synthesizing the 5-5 structure type.
Ab Initio molecular dynamics with excited electrons
Alavi, A.; Kohanoff, J.; Parrinello, M.; Frenkel, D.
1994-01-01
A method to do ab initio molecular dynamics suitable for metallic and electronically hot systems is described. It is based on a density functional which is costationary with the finite-temperature functional of Mermin, with state being included with possibly fractional occupation numbers.
Erba, Alessandro; Navarrete-López, Alejandra M; Lacivita, Valentina; D'Arco, Philippe; Zicovich-Wilson, Claudio M
2015-01-28
The evolution under pressures up to 65 GPa of structural, elastic and vibrational properties of the katoite hydrogarnet, Ca3Al2(OH)12, is investigated with an ab initio simulation performed at the B3LYP level of theory, by using all-electron basis sets with the Crystal periodic program. The high-symmetry Ia3d phase of katoite, stable under ambient conditions, is shown to be destabilized, as pressure increases, by interactions involving hydrogen atoms and their neighbors which weaken the hydrogen bonding network of the structure. The corresponding thermodynamical instability is revealed by anomalous deviations from regularity of its elastic constants and by numerous imaginary phonon frequencies, up to 50 GPa. Interestingly, as pressure is further increased above 50 GPa, the Ia3d structure is shown to become stable again (all positive phonon frequencies and regular elastic constants). However, present calculations suggest that, above about 15 GPa and up to at least 65 GPa, a phase of I4[combining macron]3d symmetry (a non-centrosymmetric subgroup of Ia3d) becomes more stable than the Ia3d one, being characterized by strengthened hydrogen bonds. At low-pressures (between about 5 GPa and 15 GPa), both phases show some instabilities (more so for I4[combining macron]3d than for Ia3d), thus suggesting either the existence of a third phase or a possible phase transition of second order.
Energy Technology Data Exchange (ETDEWEB)
Hussain, Altaf, E-mail: altafiub@yahoo.com [Department of Physics, Islamia University of Bahawalpur, Punjab 63100 (Pakistan); Aryal, Sitaram; Rulis, Paul [Department of Physics, University of Missouri-Kansas City, MO 64110 (United States); Choudhry, M. Arshad [Department of Physics, Islamia University of Bahawalpur, Punjab 63100 (Pakistan); Chen, Jun [Institute of Applied Physics and Computational Mathematics, Beijing 10088 (China); Ching, W.Y. [Department of Physics, University of Missouri-Kansas City, MO 64110 (United States)
2011-04-28
The electronic structure and optical properties of the Ni{sub 3}Al intermetallic alloy are studied by the first-principles orthogonalized linear combination of atomic orbitals method. Disordered models at different temperatures were constructed using molecular dynamics and the Vienna ab initio simulation package. The average charge transfer from Al to Ni increases steadily with temperature until the liquid phase is reached. The localization index shows the presence of relatively localized states even above the Fermi level in the disordered models. The calculated optical conductivity of the ordered phase is rich in structures and in reasonable agreement with the experimental data. The spectra of the disordered Ni{sub 3}Al models show a single broadened peak at 4.96 eV in the 0 K model which shifts towards 6.62 eV at 1400 K and then down to 5.83 eV in the liquid phase. Other results on the band structure and density of states are also discussed.
Directory of Open Access Journals (Sweden)
Karna Wijaya
2010-06-01
Full Text Available The theoretical study of double protons migration mechanism on acetic acid-water and acetic acid-ammonia associations has been carried out. The research covered determinations the reactant, transition state and product structures. To gain the goal, the research was conducted in three steps, i.e. (i designing the reactant, transition state and product models, (ii optimizing of structures, and (iii calculating of their uncorrected total energy and frequencies with ab initio methods (basis set 6-31G**. All calculations were performed using Hyperchem ver 5.0 for Windows and Gaussian 94W package program. The computational study result showed that the calculated structures were in good agreement with the hypothetical structures. Keywords: double protons migration, acetic acid, water, ammonia, molecular mechanics and ab-initio
DEFF Research Database (Denmark)
Åstrand, P.-O.; Bak, K.L.; Sauer, S.P.A.
2001-01-01
The two lowest singlet excitation energies of 26 2-imidazolyl-2-thiazolylazo compounds have been investigated by ab initio methods within the second-order polarization propagator approximation (SOPPA). Various combinations of 4- and 5-substituents at both the imidazole and thiazole units have bee...... included in this study, the longest wavelength was calculated to be 1049 nm. (C) 2001 Elsevier Science B.V. All rights reserved....
Oda, Tatsuki; Pasquarello, Alfredo
2002-01-01
The ab initio molecular dynamics was performed toinvestigate the noncollinear magnetism of a system with an evolving atomic structure. As such, application to liquid oxygen provides a picture in which the large majority of colliding O2 molecules assume structural and magnetic configurations which closely resemble those in the O4 molecule. Formation of truly long-living molecular O4 units also occurs but involves a considerably smaller fraction of O2 molecules.
Konstantinou, Konstantinos; Sushko, Peter V; Duffy, Dorothy M
2016-09-21
The nature of chemical bonding of molybdenum in high level nuclear waste glasses has been elucidated by ab initio molecular dynamics simulations. Two compositions, (SiO 2 ) 57.5 -(B 2 O 3 ) 10 -(Na 2 O) 15 -(CaO) 15 -(MoO 3 ) 2.5 and (SiO 2 ) 57.3 -(B 2 O 3 ) 20 -(Na 2 O) 6.8 -(Li 2 O) 13.4 -(MoO 3 ) 2.5 , were considered in order to investigate the effect of ionic and covalent components on the glass structure and the formation of the crystallisation precursors (Na 2 MoO 4 and CaMoO 4 ). The coordination environments of Mo cations and the corresponding bond lengths calculated from our model are in excellent agreement with experimental observations. The analysis of the first coordination shell reveals two different types of molybdenum host matrix bonds in the lithium sodium borosilicate glass. Based on the structural data and the bond valence model, we demonstrate that the Mo cation can be found in a redox state and the molybdate tetrahedron can be connected with the borosilicate network in a way that inhibits the formation of crystalline molybdates. These results significantly extend our understanding of bonding in Mo-containing nuclear waste glasses and demonstrate that tailoring the glass composition to specific heavy metal constituents can facilitate incorporation of heavy metals at high concentrations.
Roy, Soumendra K.; Jian, Tian; Lopez, Gary V.; Li, Wei-Li; Su, Jing; Bross, David H.; Peterson, Kirk A.; Wang, Lai-Sheng; Li, Jun
2016-02-01
The observation of the gaseous UFO- anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO- is linear with an O-U-F structure and a 3H4 spectral term derived from a U 7sσ25fφ15fδ1 electron configuration, whereas the ground state of neutral UFO has a 4H7/2 spectral term with a U 7sσ15fφ15fδ1 electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.
Czekaj, I.; Witko, M.; Hermann, K.
2003-02-01
Electronic properties of the V 2O 3(0001) surface are studied using ab initio density functional theory method. In addition, the nature of surface V-O bonding as well as the electronic states of the structurally different surface oxygen and vanadium sites are discussed and compared with bulk oxygen/vanadium centers. The (0001) surface of vanadium sesquioxide is modeled using clusters of different size where the three ideal bulk-terminated surfaces, denoted as VV 'O (terminated by a double layer of vanadium atoms), V 'OV (terminated by one layer of V atoms), and OVV ' (terminated by one layer of oxygen atoms), are considered. For these surface terminations electronic properties of various surface and bulk centers are discussed. The results confirm bonding in vanadium sesquioxide as a mixture of ionic and covalent characters. Further, charging of structurally non-equivalent surface vanadium and oxygen sites is found to increase with the corresponding coordination number. Large differences in charging between surface and bulk vanadium atoms are found. In addition, the strong interaction between neighboring vanadium ions are observed.
Energy Technology Data Exchange (ETDEWEB)
Juarez-Reyes, Lucila; Dorantes-Davila, Jesus; Pastor, Gustavo [Institut fuer Theoretische Physik, Universitaet Kassel (Germany)
2010-07-01
The magnetic properties of small Co{sub N}Pt{sub M} clusters (N+M{<=}5) are studied using a generalized gradient approximation to the density functional theory (DFT) and a self-consistent tight-binding (SCTB) model. First, we perform a systematic study of all possible different topological geometries, spin-moment configurations and chemical orders in the framework of the DFT. Second, by using the optimal ab initio structures we determine the spin moments, orbital moments and magnetic anisotropy energy within the SCTB method. The DFT calculations yield compact structures with particularly short bond lengths among the Co atoms (d{sub Co-Co}{approx_equal}2.2-2.4 A). Pt doping induces an important enhancement of the Co spin moments {mu}{sub Co} which are about 0.25 {mu}{sub B} larger than {mu}{sub Co} in Co{sub N}. This is mainly due to important charge transfers between the Co and Pt atoms. SCTB calculations show a 15-20 % orbital contribution to the total magnetic moment. Finally, a non trivial dependence of the MAE landscape on Pt concentration is observed.
Weber, Hans; Schumacher, Mathias; Jóvári, Pál; Tsuchiya, Yoshimi; Skrotzki, Werner; Mazzarello, Riccardo; Kaban, Ivan
2017-08-01
GeTe is a prototypical phase-change material employed in data storage devices. In this work, the atomic structure of liquid GeTe is studied by x-ray and neutron diffraction in the temperature range from 1197 to 998 K. The dynamic viscosity is measured from 1273 to 953 K, which is 55 K below the solidification point, using an oscillating-cup viscometer. The density of liquid GeTe between 1293 and 973 K is determined by the high-energy γ -ray attenuation method. The experiments are complemented with ab initio molecular dynamics (AIMD) simulations based on density functional theory (DFT). Compatibility of the AIMD-DFT models with the diffraction data is proven by simultaneous fitting of all data sets in the frame of the reverse Monte Carlo simulation technique. It is shown that octahedral order dominates in liquid GeTe, although tetrahedral structures are also present. The viscosity of the equilibrium and weakly undercooled liquid GeTe obeys the Arrhenius law with a small activation energy of the order of 0.3 eV, which is indicative of a highly fragile liquid. The calculated density of states and electronic wave functions point to the existence of a pseudogap and localized electron states within the gap in the equilibrium liquid near the melting point as well as in the undercooled liquid.
Keith, J. Brandon; Fennick, Jacob R.; Junkermeier, Chad E.; Nelson, Daniel R.; Lewis, James P.
2009-03-01
FIREBALL is an ab initio technique for fast local orbital simulations of nanotechnological, solid state, and biological systems. We have implemented a convenient interface for new users and software architects in the platform-independent Java language to access FIREBALL's unique and powerful capabilities. The graphical user interface can be run directly from a web server or from within a larger framework such as the Computational Science and Engineering Online (CSE-Online) environment or the Distributed Analysis of Neutron Scattering Experiments (DANSE) framework. We demonstrate its use for high-throughput electronic structure calculations and a multi-100 atom quantum molecular dynamics (MD) simulation. Program summaryProgram title: FireballUI Catalogue identifier: AECF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 279 784 No. of bytes in distributed program, including test data, etc.: 12 836 145 Distribution format: tar.gz Programming language: Java Computer: PC and workstation Operating system: The GUI will run under Windows, Mac and Linux. Executables for Mac and Linux are included in the package. RAM: 512 MB Word size: 32 or 64 bits Classification: 4.14 Nature of problem: The set up and running of many simulations (all of the same type), from the command line, is a slow process. But most research quality codes, including the ab initio tight-binding code FIREBALL, are designed to run from the command line. The desire is to have a method for quickly and efficiently setting up and running a host of simulations. Solution method: We have created a graphical user interface for use with the FIREBALL code. Once the user has created the files containing the atomic coordinates for each system that they are
Energy Technology Data Exchange (ETDEWEB)
Tohme, Samir N.; Korek, Mahmoud, E-mail: mahmoud.korek@bau.edu.lb, E-mail: fkorek@yahoo.com; Awad, Ramadan [Faculty of Science, Beirut Arab University, P.O. Box 11-5020 Riad El Solh, Beirut 1107 2809 (Lebanon)
2015-03-21
Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born–Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ω{sub e}, R{sub e}, B{sub e}, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, E{sub v}, the rotational constant, B{sub v}, the centrifugal distortion constant, D{sub v}, and the abscissas of the turning points, R{sub min} and R{sub max}, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time.
Energy Technology Data Exchange (ETDEWEB)
Olsson, Paer
2004-04-01
The efficiency of fast neutron reactors, such as for fusion, breeding and transmutation, depend strongly on the neutron radiation resistance of the materials used in the reactors. The binary Fe-Cr alloy, which has many attractive properties in this regard, is the base for the best steels of today which are, however, still not up to the required standards. Therefore, substantial effort has been devoted to finding new materials that can cope with the demands better. Experimental studies must be complemented with extensive theoretical modelling in order to understand the effects that different alloying elements has on the resistance properties of materials. To this end, the first steps of multi-scale modelling has been taken, starting out with ab initio calculations of the electronic structure of the complete concentration range range of the disordered binary Fe-C alloy. The mixing enthalpy of Fe-Cr has been quantitatively predicted and has, together with data from literature, been used in order to fit two sets of interatomic potentials for the purpose of simulating defect evolution with molecular dynamics and kinetic Monte-Carlo codes. These dedicated Fe-Cr alloy potentials are new and represent important additions to the pure element potentials that can be found in literature.
Relaxation and electronic structure of the V 2O 3(0001) surface: ab initio cluster model studies
Czekaj, I.; Hermann, K.; Witko, M.
2003-02-01
The electronic structure and geometric relaxation of the (0001) surface of rhombohedral vanadium sesquioxide, V 2O 3, is studied theoretically with large surface cluster models where ab initio density functional theory is used to characterize charging and bonding. Geometric relaxation in the topmost surface region, up to 5 layers, with its three different bulk terminations is determined by minimizing total energies of the clusters. This yields major relaxation effects depending on the termination. The oxygen layer termination OVV ' exhibits strong relaxation of sub-surface vanadium layers resulting in increased ionic charging at the surface (measured by corresponding atom charges). The metal layer termination VV 'O leads to inwards relaxation of the two topmost vanadium layers by over 40% resulting also in increased surface charging. Ionic charging at the surface is the smallest for the half metal layer V 'OV termination where only the topmost vanadium layer relaxes inwards by 30% in addition to some rearrangement of sub-surface vanadium. This termination is believed to be the most stable of the three relaxed bulk-type terminations based also on analogies with experiments for Cr 2O 3(0001). However, total density-of-states and atom-projected partial densities-of-states curves depend relatively little on surface termination to allow a clear discrimination which could assist an unambiguous experimental identification.
International Nuclear Information System (INIS)
Olsson, Paer
2004-04-01
The efficiency of fast neutron reactors, such as for fusion, breeding and transmutation, depend strongly on the neutron radiation resistance of the materials used in the reactors. The binary Fe-Cr alloy, which has many attractive properties in this regard, is the base for the best steels of today which are, however, still not up to the required standards. Therefore, substantial effort has been devoted to finding new materials that can cope with the demands better. Experimental studies must be complemented with extensive theoretical modelling in order to understand the effects that different alloying elements has on the resistance properties of materials. To this end, the first steps of multi-scale modelling has been taken, starting out with ab initio calculations of the electronic structure of the complete concentration range range of the disordered binary Fe-C alloy. The mixing enthalpy of Fe-Cr has been quantitatively predicted and has, together with data from literature, been used in order to fit two sets of interatomic potentials for the purpose of simulating defect evolution with molecular dynamics and kinetic Monte-Carlo codes. These dedicated Fe-Cr alloy potentials are new and represent important additions to the pure element potentials that can be found in literature
Binev, I. G.; Stamboliyska, B. A.; Binev, Y. I.
1996-05-01
The structures of acetylsalicylic acid (aspirin) (I) and its oxyanion (II) have been studied by means of infrared spectra and ab initio 3-21 G force field calculations. The 3100-1100 cm -1 region bands of both the aspirin molecule and its oxyanion have been assigned. The theoretical infrared data for the free aspirin anion are in good agreement with the experimental data for aspirin alkali-metal salts in dimethyl sulfoxide- d6. The theoretical geometrical parameters for the isolated aspirin molecule are close to the literature X-ray diffraction data for its dimer in the solid state, except for those of the carboxy group, which participates directly in hydrogen bond formation. The changes in both the spectral and geometrical parameters, caused by the conversion of the aspirin molecule into the anion, are essential, but they are localized mainly within the carboxy group and the adjacent C-Ph bond. This is also true for the changes in the corresponding bond indices and electronic charges.
The Properties of Some Simple Covalent Hydrides: An Ab Initio ...
African Journals Online (AJOL)
Some properties of the monomeric binary hydrides of the elements of the first two rows of the periodic table have been determined using ab initio molecular orbital theory. The properties in question are the energetic, structural, electronic, topological and vibrational characteristics. In general, a gradual convergence towards ...
Hydrogen Bond Dynamics in Aqueous Solutions: Ab initio Molecular ...
Indian Academy of Sciences (India)
Rate equation for the decay of CHB(t) · Definition of Hydrogen Bonds · Results of Molecular Dynamics · Dynamics of anion-water and water-water hydrogen bonds · Structural relaxation of anion-water & water-water H-bonds · Ab initio Molecular Dynamics : · Slide 14 · Dynamics of hydrogen bonds : CPMD results · Slide 16.
Ab initio study of phase equilibria in TiCx
DEFF Research Database (Denmark)
Korzhavyi, P.A.; Pourovskii, L.V.; Hugosson, H.W.
2002-01-01
The phase diagram for the vacancy-ordered structures in the substoichiometric TiCx (x = 0.5-1.0) has been established from Monte Carlo simulations with the long-range pair and multisite effective interactions obtained from ab initio calculations. Three ordered superstructures of vacancies (Ti2C, ...
AB INITIO calculations of magneto-optical effects
Czech Academy of Sciences Publication Activity Database
Kuneš, Jan; Oppeneer, P. M.
2002-01-01
Roč. 2, - (2002), s. 141-146 ISSN 1346-7948 R&D Projects: GA AV ČR IAA1010214 Institutional research plan: CEZ:AV0Z1010914 Keywords : electronic structure * ab initio calculation * polar magneto-optical Kerr effect * transitiom metal * uranium intermetallics * CrO 2 Subject RIV: BM - Solid Matter Physics ; Magnetism
Aryal, Sita Ram
The alumino-silicate solid solution series (Al 4+2xSi2-2 xO10-x) is an important class of ceramics. Except for the end member (x=0), Al2 SiO5 the crystal structures of the other phases, called mullite, have partially occupied sites. Stoichiometric supercell models for the four mullite phases 3Al2O 3 · 2SiO2 · 2Al 2O3 · SiO2, 4 Al2O3· SiO 2, 9Al2O3 · SiO2, and iota-Al2 O3 (iota-alumina) are constructed starting from experimentally reported crystal structures. A large number of models were built for each phase and relaxed using the Vienna ab initio simulation package (VASP) program. The model with the lowest total energy for a given x was chosen as the representative structure for that phase. Electronic structure and mechanical properties of mullite phases were studied via first-principles calculations. Of the various phases of transition alumina, iota-Al 2O3 is the least well known. In addition structural details have not, until now, been available. It is the end member of the aluminosilicate solid solution series with x=1. Based on a high alumina content mullite phase, a structural model for iota- Al2O3 is constructed. The simulated x-ray diffraction (XRD) pattern of this model agrees well with a measured XRD pattern. The iota-Al2 O3 is a highly disordered ultra-low-density phase of alumina with a theoretical density of 2854kg/m3. Using this theoretically constructed model, elastic, thermodynamic, electronic, and spectroscopic properties of iota-Al2 O3 have been calculated and compared it with those of alpha- Al2O3 and gamma- Al2O3. Boron carbide (B4C) undergoes an amorphization under high velocity impacts. The mechanism of amorphization is not clear. Ab initio methods are used to carry out large-scale uniaxial compression simulations on two polytypes of stoichiometric boron carbide (B4C), B 11C-CBC, and B12- CCC where B11C or B12 is the 12-atom icosahedron and CBC or CCC is the three-atom chain. The simulations were performed on large supercells of 180 atoms
Energy Technology Data Exchange (ETDEWEB)
Ventelon, L
2008-11-15
The various methods appropriate for the simulation of dislocations within first-principles calculations have been set up, improved and compared between them. They have been applied to study screw dislocations in body-centered cubic iron using the SIESTA code. A non-degenerate core structure is obtained; its detailed analysis reveals a dilatation effect. Taking it into account in an anisotropic elasticity model, allows explaining the cell-size dependence of the energetics, obtained within the dipole approach. The Peierls potential obtained in ab initio suggests that the metastable core configuration at halfway position in the Peierls barrier, predicted by empirical potential, does not exist. We show how to construct tri-periodic cells optimized to study kinked dislocations. Using empirical potential, we demonstrate the feasibility of ab initio calculations of Peierls stress and kink formation. (author)
Towards hydrogen metallization: an Ab initio approach
International Nuclear Information System (INIS)
Bernard, St.
1998-01-01
The quest for metallic hydrogen is a major goal for both theoretical and experimental condensed matter physics. Hydrogen and deuterium have been compressed up to 200 GPa in diamond anvil cells, without any clear evidence for a metallic behaviour. Loubeyere has recently suggested that hydrogen could metallize, at pressures within experimental range, in a new Van der Waals compound: Ar(H 2 ) 2 which is characterized at ambient pressure by an open and anisotropic sublattice of hydrogen molecules, stabilized by an argon skeleton. This thesis deals with a detailed ab initio investigation, by Car-Parrinello molecular dynamics methods, of the evolution under pressure of this compound. In a last chapter, we go to much higher pressures and temperatures, in order to compare orbital and orbital free ab initio methods for the dense hydrogen plasma. (author)
Thiessen, P. A.; Treder, H.-J.
Jedes initium wird durch experimenta crucis zum eventus. Jedes theoretisch interpretierbare ex-eventu-Resultat führt auf ein neues Initium. Gerade dies ist die gemeinsame Aussage von Atomistik, Quantenmechanik und Relativitätstheorie.Translated AbstractAb initio vel ex eventu. IIEvery initium becomes an eventus by experimenta crucis. Every theoretically interpretable ex-eventu result leads to a new initium. Right this is the joint assertion of atomism, quantum mechanics, and relativity.
Germacrene D Cyclization: An Ab Initio Investigation
Setzer, William N.
2008-01-01
Essential oils that contain large concentrations of germacrene D are typically accompanied by cadinane sesquiterpenoids. The acid-catalyzed cyclization of germacrene D to give cadinane and selinane sesquiterpenes has been computationally investigated using both density functional (B3LYP/6-31G*) and post Hartree-Fock (MP2/6-31G* *) ab initio methods. The calculated energies are in general agreement with experimentally observed product distributions, both from acid-catalyzed cyclizations as wel...
Highly scalable Ab initio genomic motif identification
Marchand, Benoit
2011-01-01
We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.
Roy, Soumendra K; Jian, Tian; Lopez, Gary V; Li, Wei-Li; Su, Jing; Bross, David H; Peterson, Kirk A; Wang, Lai-Sheng; Li, Jun
2016-02-28
The observation of the gaseous UFO(-) anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO(-) is linear with an O-U-F structure and a (3)H4 spectral term derived from a U 7sσ(2)5fφ(1)5fδ(1) electron configuration, whereas the ground state of neutral UFO has a (4)H(7/2) spectral term with a U 7sσ(1)5fφ(1)5fδ(1) electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.
Energy Technology Data Exchange (ETDEWEB)
Caravaca, M A [Facultad de Ingenieria, Universidad Nacional del Nordeste, Avenida Las Heras 727, 3500-Resistencia (Argentina); Casali, R A [Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avenida Libertad, 5600-Corrientes (Argentina)
2005-09-21
The SIESTA approach based on pseudopotentials and a localized basis set is used to calculate the electronic, elastic and equilibrium properties of P 2{sub 1}/c, Pbca, Pnma, Fm3m, P4{sub 2}nmc and Pa3 phases of HfO{sub 2}. Using separable Troullier-Martins norm-conserving pseudopotentials which include partial core corrections for Hf, we tested important physical properties as a function of the basis set size, grid size and cut-off ratio of the pseudo-atomic orbitals (PAOs). We found that calculations in this oxide with the LDA approach and using a minimal basis set (simple zeta, SZ) improve calculated phase transition pressures with respect to the double-zeta basis set and LDA (DZ-LDA), and show similar accuracy to that determined with the PPPW and GGA approach. Still, the equilibrium volumes and structural properties calculated with SZ-LDA compare better with experiments than the GGA approach. The bandgaps and elastic and structural properties calculated with DZ-LDA are accurate in agreement with previous state of the art ab initio calculations and experimental evidence and cannot be improved with a polarized basis set. These calculated properties show low sensitivity to the PAO localization parameter range between 40 and 100 meV. However, this is not true for the relative energy, which improves upon decrease of the mentioned parameter. We found a non-linear behaviour in the lattice parameters with pressure in the P 2{sub 1}/c phase, showing a discontinuity of the derivative of the a lattice parameter with respect to external pressure, as found in experiments. The common enthalpy values calculated with the minimal basis set give pressure transitions of 3.3 and 10.8?GPa for P2{sub 1}/c {yields} Pbca and Pbca {yields} Pnma, respectively, in accordance with different high pressure experimental values.
International Nuclear Information System (INIS)
Caravaca, M A; Casali, R A
2005-01-01
The SIESTA approach based on pseudopotentials and a localized basis set is used to calculate the electronic, elastic and equilibrium properties of P 2 1 /c, Pbca, Pnma, Fm3m, P4 2 nmc and Pa3 phases of HfO 2 . Using separable Troullier-Martins norm-conserving pseudopotentials which include partial core corrections for Hf, we tested important physical properties as a function of the basis set size, grid size and cut-off ratio of the pseudo-atomic orbitals (PAOs). We found that calculations in this oxide with the LDA approach and using a minimal basis set (simple zeta, SZ) improve calculated phase transition pressures with respect to the double-zeta basis set and LDA (DZ-LDA), and show similar accuracy to that determined with the PPPW and GGA approach. Still, the equilibrium volumes and structural properties calculated with SZ-LDA compare better with experiments than the GGA approach. The bandgaps and elastic and structural properties calculated with DZ-LDA are accurate in agreement with previous state of the art ab initio calculations and experimental evidence and cannot be improved with a polarized basis set. These calculated properties show low sensitivity to the PAO localization parameter range between 40 and 100 meV. However, this is not true for the relative energy, which improves upon decrease of the mentioned parameter. We found a non-linear behaviour in the lattice parameters with pressure in the P 2 1 /c phase, showing a discontinuity of the derivative of the a lattice parameter with respect to external pressure, as found in experiments. The common enthalpy values calculated with the minimal basis set give pressure transitions of 3.3 and 10.8?GPa for P2 1 /c → Pbca and Pbca → Pnma, respectively, in accordance with different high pressure experimental values
International Nuclear Information System (INIS)
Nomura, Kenji; Ohta, Hiromichi; Hirano, Masahiro; Kamiya, Toshio; Uruga, Tomoya; Hosono, Hideo
2007-01-01
Ionic amorphous oxide semiconductors (IAOSs) are new materials for flexible thin film transistors that exhibit field-effect mobilities of ∼10 cm 2 V -1 s -1 [K. Nomura et al., Nature 488, 432 (2004)]. The local coordination structure in an IAOS, In-Ga-Zn-O (a-IGZO), was examined using extended x-ray absorption fine structure analysis combined with ab initio calculations. The short-range ordering and coordination structures in a-IGZO are similar to those in the corresponding crystalline phase, InGaZnO 4 , and edge-sharing structures consisting of In-O polyhedra remain in the amorphous structure. The In 3+ 5s orbitals form an extended state with a band effective mass of ∼0.2m e at the conduction band bottom
Pressure induced structural phase transition in SnS—An ab initio study
Indian Academy of Sciences (India)
Unknown
The lead chalcogenides, PbS, PbSe and PbTe and also SnTe, adopt the NaCl structure. The compound, GeS, has an orthorhombic crystal structure. This structure ... The motivation for the present work emerged from the above mentioned experimental work. This is achieved by performing the electronic structure and total.
Bicanonical ab Initio Molecular Dynamics for Open Systems.
Frenzel, Johannes; Meyer, Bernd; Marx, Dominik
2017-08-08
Performing ab initio molecular dynamics simulations of open systems, where the chemical potential rather than the number of both nuclei and electrons is fixed, still is a challenge. Here, drawing on bicanonical sampling ideas introduced two decades ago by Swope and Andersen [ J. Chem. Phys. 1995 , 102 , 2851 - 2863 ] to calculate chemical potentials of liquids and solids, an ab initio simulation technique is devised, which introduces a fictitious dynamics of two superimposed but otherwise independent periodic systems including full electronic structure, such that either the chemical potential or the average fractional particle number of a specific chemical species can be kept constant. As proof of concept, we demonstrate that solvation free energies can be computed from these bicanonical ab initio simulations upon directly superimposing pure bulk water and the respective aqueous solution being the two limiting systems. The method is useful in many circumstances, for instance for studying heterogeneous catalytic processes taking place on surfaces where the chemical potential of reactants rather than their number is controlled and opens a pathway toward ab initio simulations at constant electrochemical potential.
Casali, R A; Lasave, J; Caravaca, M A; Koval, S; Ponce, C A; Migoni, R L
2013-04-03
The pressure dependences of the structural, thermoelastic and vibrational properties of SnO2 in its rutile phase are studied, as well as the pressure-induced transition to a CaCl2-type phase. These studies have been performed by means of ab initio (AI) density functional theory calculations using the localized basis code SIESTA. The results are employed to develop a shell model (SM) for application in future studies of nanostructured SnO2. A good agreement of the SM results for the pressure dependences of the above properties with the ones obtained from present and previous AI calculations as well as from experiments is achieved. The transition is characterized by a rotation of the Sn-centered oxygen octahedra around the tetragonal axis through the Sn. This rotation breaks the tetragonal symmetry of the lattice and an orthorhombic distortion appears above the critical pressure P(c). A zone-center phonon of B1g symmetry in the rutile phase involves such rotation and softens on approaching Pc. It becomes an Ag mode which stabilizes with increasing pressure in the CaCl2 phase. This behavior, together with the softening of the shear modulus (C11-C12)/2 related to the orthorhombic distortion, allows a precise determination of a value for Pc. An additional determination is provided by the splitting of the basal plane lattice parameters. Both the AI and the experimentally observed softening of the B(1g) mode are incomplete, indicating a small discontinuity at the transition. However, all results show continuous changes in volume and lattice parameters, indicating a second-order transition. All these results indicate that there should be sufficient confidence for the future employment of the shell model.
Bharadwaj, Vivek S; Vyas, Shubham; Villano, Stephanie M; Maupin, C Mark; Dean, Anthony M
2015-02-14
The fumarate addition reaction mechanism is central to the anaerobic biodegradation pathway of various hydrocarbons, both aromatic (e.g., toluene, ethyl benzene) and aliphatic (e.g., n-hexane, dodecane). Succinate synthase enzymes, which belong to the glycyl radical enzyme family, are the main facilitators of these biochemical reactions. The overall catalytic mechanism that converts hydrocarbons to a succinate molecule involves three steps: (1) initial H-abstraction from the hydrocarbon by the radical enzyme, (2) addition of the resulting hydrocarbon radical to fumarate, and (3) hydrogen abstraction by the addition product to regenerate the radical enzyme. Since the biodegradation of hydrocarbon fuels via the fumarate addition mechanism is linked to bio-corrosion, an improved understanding of this reaction is imperative to our efforts of predicting the susceptibility of proposed alternative fuels to biodegradation. An improved understanding of the fuel biodegradation process also has the potential to benefit bioremediation. In this study, we consider model aromatic (toluene) and aliphatic (butane) compounds to evaluate the impact of hydrocarbon structure on the energetics and kinetics of the fumarate addition mechanism by means of high level ab initio gas-phase calculations. We predict that the rate of toluene degradation is ∼100 times faster than butane at 298 K, and that the first abstraction step is kinetically significant for both hydrocarbons, which is consistent with deuterium isotope effect studies on toluene degradation. The detailed computations also show that the predicted stereo-chemical preference of the succinate products for both toluene and butane are due to the differences in the radical addition rate constants for the various isomers. The computational and kinetic modeling work presented here demonstrates the importance of considering pre-reaction and product complexes in order to accurately treat gas phase systems that involve intra and inter
International Nuclear Information System (INIS)
Casali, R A; Ponce, C A; Lasave, J; Koval, S; Migoni, R L; Caravaca, M A
2013-01-01
The pressure dependences of the structural, thermoelastic and vibrational properties of SnO 2 in its rutile phase are studied, as well as the pressure-induced transition to a CaCl 2 -type phase. These studies have been performed by means of ab initio (AI) density functional theory calculations using the localized basis code SIESTA. The results are employed to develop a shell model (SM) for application in future studies of nanostructured SnO 2 . A good agreement of the SM results for the pressure dependences of the above properties with the ones obtained from present and previous AI calculations as well as from experiments is achieved. The transition is characterized by a rotation of the Sn-centered oxygen octahedra around the tetragonal axis through the Sn. This rotation breaks the tetragonal symmetry of the lattice and an orthorhombic distortion appears above the critical pressure P c . A zone-center phonon of B 1g symmetry in the rutile phase involves such rotation and softens on approaching P c . It becomes an A g mode which stabilizes with increasing pressure in the CaCl 2 phase. This behavior, together with the softening of the shear modulus (C 11 −C 12 )/2 related to the orthorhombic distortion, allows a precise determination of a value for P c . An additional determination is provided by the splitting of the basal plane lattice parameters. Both the AI and the experimentally observed softening of the B 1g mode are incomplete, indicating a small discontinuity at the transition. However, all results show continuous changes in volume and lattice parameters, indicating a second-order transition. All these results indicate that there should be sufficient confidence for the future employment of the shell model. (paper)
Effect of alkaline metal cations on the ionic structure of cryolite melts: Ab-initio NpT MD study
Bučko, Tomáš; Šimko, František
2018-02-01
Ab initio molecular dynamics simulations in an NpT ensemble have been performed to study the role of alkaline metal cations (Me = Li, Na, K, Rb) on the structure and vibrational properties of melts of Me-cryolites (Me3AlF6) at T = 1300 K. In all melts examined in this work, the species AlF52 - has been found to be formed at the highest abundance [from 58% (Li) to 70% (Na)] among the Al-containing anionic clusters. The concentration of clusters AlF4- increases with the size of cations while that of anions AlF63 - follows the opposite trend and it becomes negligible in the melts of the K- and Rb-cryolites. The computed percentage of the Al atoms participating in the formation of dimers Al2Fm6 -m bridged via common F atoms is significant only in the case of Li- and Na-cryolites (16% and 10%, respectively) and the formation of even larger aggregates is found to be unlikely in all four melts. The percentage of the F atoms that are not bound to Al is ˜20% in all four melts and the ions formed by Me+ and F- are found to be only short-lived. Vibrational analysis has been performed using the velocity autocorrelation functions computed for the Cartesian and selected internal coordinates describing Raman-active symmetric stretching vibrations of different AlFn species. The results of vibrational analysis allowed us to identify trends in the variation of positions and shapes of peaks corresponding to the anionic fragments AlF4-, AlF52 -, and AlF63 - with the size of cations, and these trends are found to be consistent with those deduced from the available Raman spectroscopy experiments. Our findings represent a new insight into the properties of cryolite melts, which will be useful for the interpretation of experimental data.
Krysiak, Yaşar; Barton, Bastian; Marler, Bernd; Neder, Reinhard B; Kolb, Ute
2018-03-01
Nanoscaled porous materials such as zeolites have attracted substantial attention in industry due to their catalytic activity, and their performance in sorption and separation processes. In order to understand the properties of such materials, current research focuses increasingly on the determination of structural features beyond the averaged crystal structure. Small particle sizes, various types of disorder and intergrown structures render the description of structures at atomic level by standard crystallographic methods difficult. This paper reports the characterization of a strongly disordered zeolite structure, using a combination of electron exit-wave reconstruction, automated diffraction tomography (ADT), crystal disorder modelling and electron diffraction simulations. Zeolite beta was chosen for a proof-of-principle study of the techniques, because it consists of two different intergrown polymorphs that are built from identical layer types but with different stacking sequences. Imaging of the projected inner Coulomb potential of zeolite beta crystals shows the intergrowth of the polymorphs BEA and BEB. The structures of BEA as well as BEB could be extracted from one single ADT data set using direct methods. A ratio for BEA/BEB = 48:52 was determined by comparison of the reconstructed reciprocal space based on ADT data with simulated electron diffraction data for virtual nanocrystals, built with different ratios of BEA/BEB. In this way, it is demonstrated that this smart interplay of the above-mentioned techniques allows the elaboration of the real structures of functional materials in detail - even if they possess a severely disordered structure.
The atomistic structure of yttria stabilised zirconia at 6.7 mol%: an ab initio study.
Parkes, Michael A; Tompsett, David A; d'Avezac, Mayeul; Offer, Gregory J; Brandon, Nigel P; Harrison, Nicholas M
2016-11-16
Yttria stabilized zirconia (YSZ) is an important oxide ion conductor used in solid oxide fuel cells, oxygen sensing devices, and for oxygen separation. Doping pure zirconia (ZrO 2 ) with yttria (Y 2 O 3 ) stabilizes the cubic structure against phonon induced distortions and this facilitates high oxide ion conductivity. The local atomic structure of the dopant is, however, not fully understood. X-ray and neutron diffraction experiments have established that, for dopant concentrations below 40 mol% Y 2 O 3 , no long range order is established. A variety of local structures have been suggested on the basis of theoretical and computational models of dopant energetics. These studies have been restricted by the difficulty of establishing force field models with predictive accuracy or exploring the large space of dopant configurations with first principles theory. In the current study a comprehensive search for all symmetry independent configurations (2857 candidates) is performed for 6.7 mol% YSZ modelled in a 2 × 2 × 2 periodic supercell using gradient corrected density functional theory. The lowest energy dopant structures are found to have oxygen vacancy pairs preferentially aligned along the 〈210〉 crystallographic direction in contrast to previous results which have suggested that orientation along the 〈111〉 orientation is favourable. Analysis of the defect structures suggests that the Y 3+ -O vac interatomic separation is an important parameter for determining the relative configurational energies. Current force field models are found to be poor predictors of the lowest energy structures. It is suggested that the energies from a simple point charge model evaluated at unrelaxed geometries is actually a better descriptor of the energy ordering of dopant structures. Using these observations a pragmatic procedure for identifying low energy structures in more complicated material models is suggested. Calculation of the oxygen vacancy migration activation
Energy Technology Data Exchange (ETDEWEB)
Car, R.; Parrinello, M.
1988-01-18
An amorphous silicon structure is obtained with a computer simulation based on a new molecular-dynamics technique in which the interatomic potential is derived from a parameter-free quantum mechanical method. Our results for the atomic structure, the phonon spectrum, and the electronic properties are in excellent agreement with experiment. In addition we study details of the microscopic dynamics which are not directly accessible to experiment. We find in particular that structural defects are associated with weak bonds. These may give rise to low-frequency vibrational modes.
Bakkari, Karim; Fersi, Riadh; Kebir Hlil, El; Bessais, Lotfi; Thabet Mliki, Najeh
2018-03-01
First-principle calculations combining density functional theory and the full-potential linearized augmented plane wave (FP-LAPW) method are performed to investigate the electronic and magnetic structure of Pr2Co7 in its two polymorphic forms, (2:7 H) and (2:7 R), for the first time. This type of calculation was also performed for PrCo5 and PrCo2 intermetallics. We have computed the valence density of states separately for spin-up and spin-down states in order to investigate the electronic band structure. This is governed by the strong contribution of the partial DOS of 3d-Co bands compared to the partial DOS of the 4f-Pr bands. Such a high ferromagnetic state is discussed in terms of the strong spin polarization observed in the total DOS. The magnetic moments carried by the Co and Pr atoms located in several sites for all compounds are computed. These results mainly indicate that cobalt atoms make a dominant contribution to the magnetic moments. The notable difference in the atomic moments of Pr and Co atoms between different structural slabs is explained in terms of the magnetic characteristics of the PrCo2 and PrCo5 compounds and the local chemical environments of the Pr and Co atoms in different structural slabs of Pr2Co7. From spin-polarized calculations we have simulated the 3d and 4f band population to estimate the local magnetic moments. These results are in accordance with the magnetic moments calculated using the FP-LAPW method. In addition, the exchange interactions J ij are calculated and used as input for M(T) simulations. Involving the data obtained from the electronic structure calculations, the appropriate Padé Table is applied to simulate the magnetization M(T) and to estimate the mean-field Curie temperature. We report a fairly good agreement between the ab initio calculation of magnetization and Curie temperature with the experimental data.
Pressure induced structural phase transition in SnS—An ab initio study
Indian Academy of Sciences (India)
Unknown
tural behaviour of SnS by angular dispersive synchrotron powder diffraction up to 38⋅5 GPa and they observed a structural transition from orthorhombic to monoclinic struc- ture around 18⋅15 GPa. The motivation for the present work emerged from the above mentioned experimental work. This is achieved by performing ...
Structural and electronic properties of AlX (X = P, As, Sb) nanowires: Ab initio study
Energy Technology Data Exchange (ETDEWEB)
Srivastava, Anurag, E-mail: anurags@iiitm.ac.in [Advanced Materials Research Group, Computational Nanoscience and Technology Laboratory, ABV-Indian Institute of Information Technology and Management, Gwalior 474015 (India); Tyagi, Neha [Advanced Materials Research Group, Computational Nanoscience and Technology Laboratory, ABV-Indian Institute of Information Technology and Management, Gwalior 474015 (India)
2012-11-15
Present paper discusses the structural stability and electronic properties of AlX (X = P, As and Sb) nanowires in its linear, zigzag, ladder, square and hexagonal type atomic configurations. The structural optimization has been performed in self consistence manner by using generalized gradient approximation with revised Perdew, Burke and Ernzerhof type parameterization. The study observes that in all the three nanowires, the square shaped atomic configuration is the most stable one. The calculated electronic band structures and density of states profile confirms the semiconducting behaviour of linear and zigzag shaped nanowires of AlP, whereas for AlAs and AlSb nanowires are metallic. The ground state properties have also been analysed in terms of bond length, bulk modulus and pressure derivative for all the nanowires along with their bulk counterpart. The lower bulk modulus of all the linear shaped geometries of AlX nanowires in comparison to its bulk counterpart indicates softening of the material at reduced dimension. -- Graphical abstract: Figure-Electronic band structure of zigzag shaped AlP nanowire. The present electronic band structures of zigzag and linear shaped AlP nanowires are showing a clear band gap at {Gamma} point, however others (AlAs and AlSb) in zigzag as well as in linear shape show metallic behaviour. Highlights: Black-Right-Pointing-Pointer Stability analysis of five geometries of AlX (X = P, As and Sb) nanowires studied. Black-Right-Pointing-Pointer Square shaped geometry of AlX nanowires is most stable. Black-Right-Pointing-Pointer Linear and zigzag shaped AlP nanowires are semiconducting. Black-Right-Pointing-Pointer Bulk moduli of all the linear nanowires are lower than their bulk counterpart. Black-Right-Pointing-Pointer Lower bulk moduli defends the softening of material.
Ab-initio study of structural, vibrational and optical properties of solid oxidizers
Energy Technology Data Exchange (ETDEWEB)
Yedukondalu, N.; Vaitheeswaran, G., E-mail: gvsp@uohyd.ernet.in
2016-09-15
We report the structural, elastic and vibrational properties of five ionic-molecular solid oxidizers MNO{sub 3} (M = Li, Na, K) and MClO{sub 3} (M = Na, K). By treating long range electron-correlation effects, dispersion corrected method leads to more accurate predictions of structural properties and phase stability of KNO{sub 3} polymorphs. The obtained elastic moduli show soft nature of these materials and are consistent with Ultrasonic Pulse Echo measurements. We made a complete assignment of vibrational modes which are in good accord with available experimental results. From calculated IR and Raman spectra, it is found that the vibrational frequencies show a red-shift from Li → Na → K (Na → K) and N → Cl for nitrates (chlorates) due to increase in mass of metal and non-metal atoms, respectively. The calculated electronic structure using recently developed Tran-Blaha modified Becke-Johnson potential show that the materials are wide band gap insulators with predominant ionic bonding between M{sup +} (metal) and NO{sub 3}{sup −}/ClO{sub 3}{sup −} ions and covalent bonding (N−O and Cl−O) within nitrate and chlorate anionic group. From the calculated optical spectra, we observe that electric-dipole transitions are due to nitrate/chlorate group below 20 eV and cationic transitions occur above 20 eV. The calculated reflectivity spectra are consistent with the available experimental measurements. - Highlights: • Ground state properties with inclusion of dispersion correction method. • Elastic constants and mechanical properties. • Vibrational spectra and their complete assignment. • Raman and IR spectra. • Electronic structure and optical properties using TB-mBJ potential.
Ab-initio study of structural and electronic properties of AlAs
Munjal, N.; Sharma, G.; Vyas, V.; Joshi, K. B.; Sharma, B. K.
2012-08-01
The structural properties, i.e. equilibrium lattice constant, transition pressure, bulk modulus and its pressure derivatives, together with electronic properties, i.e. energy bands, Compton profile and autocorrelation function, of AlAs are presented in this work. The linear combination of atomic orbitals (LCAO) method of the CRYSTAL code was applied considering the Perdew-Burke-Ernzerhof correlation energy functional and Becke's ansatz for the exchange. The total energy of AlAs as a function of primitive cell volume has also been calculated for the zincblende (B3), nickel arsenide (B8), sodium chloride (B1) and cesium chloride (B2) phases. Structural parameters of the B3, B8, B1 and B2 phases are determined. The calculated structural parameters are found to be in good agreement with the results of previous investigations. The spherically averaged theoretical values of Compton profile are in good agreement with an earlier measurement. The LCAO calculation shows an indirect band gap of 1.85 eV, in reasonable agreement with earlier data. On the basis of the equal-valence-electron-density Compton profile, it is found that AlAs is more ionic compared to AlSb.
Ab-initio calculations of electronic structure and optical properties of TiAl alloy
Energy Technology Data Exchange (ETDEWEB)
Hussain, Altaf [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63120 (Pakistan); Sikandar Hayat, Sardar, E-mail: sikandariub@yahoo.co [Department of Physics, Hazara University, Mansehra 21300 (Pakistan); Choudhry, M.A. [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63120 (Pakistan)
2011-05-01
The electronic structures and optical properties of TiAl intermetallic alloy system are studied by the first-principle orthogonalized linear combination of atomic orbitals method. Results on the band structure, total and partial density of states, localization index, effective atomic charges, and optical conductivity are presented and discussed in detail. Total density of states spectra reveal that (near the Fermi level) the majority of the contribution is from Ti-3d states. The effective charge calculations show an average charge transfer of 0.52 electrons from Ti to Al in primitive cell calculations of TiAl alloy. On the other hand, calculations using supercell approach reveal an average charge transfer of 0.48 electrons from Ti to Al. The localization index calculations, of primitive cell as well as of supercell, show the presence of relatively localized states even above the Fermi level for this alloy. The calculated optical conductivity spectra of TiAl alloy are rich in structures, showing the highest peak at 5.73 eV for supercell calculations. Calculations of the imaginary part of the linear dielectric function show a prominent peak at 5.71 eV and a plateau in the range 1.1-3.5 eV.
Structure and energy of point defects in TiC: An ab initio study
Sun, Weiwei; Ehteshami, Hossein; Korzhavyi, Pavel A.
2015-04-01
We employ first-principles calculations to study the atomic and electronic structure of various point defects such as vacancies, interstitials, and antisites in the stoichiometric as well as slightly off-stoichiometric Ti1 -cCc (including both C-poor and C-rich compositions, 0.49 ≤c ≤0.51 ). The atomic structure analysis has revealed that both interstitial and antisite defects can exist in split conformations involving dumbbells. To characterize the electronic structure changes caused by a defect, we introduce differential density of states (dDOS) defined as a local perturbation of the density of states (DOS) on the defect site and its surrounding relative to the perfect TiC. This definition allows us to identify the DOS peaks characteristic of the studied defects in several conformations. So far, characteristic defect states have been discussed only in connection with carbon vacancies. Here, in particular, we have identified dDOS peaks of carbon interstitials and dumbbells, which can be used for experimental detection of such defects in TiC. The formation energies of point defects in TiC are derived in the framework of a grand-canonical formalism. Among the considered defects, carbon vacancies and interstitials are shown to have, respectively, the lowest and the second-lowest formation energies. Their formation energetics are consistent with the thermodynamic data on the phase stability of nonstoichiometric TiC. A cluster type of point defect is found to be next in energy, a titanium [100] dumbbell terminated by two carbon vacancies.
Ab initio structures and stabilities of HeTM3+ (TM=Sc-Cu)
International Nuclear Information System (INIS)
Wilson, David J.D.; Marsden, Colin J.; Nagy-Felsobuki, Ellak I. von
2002-01-01
The electronic structure and molecular properties of triply charged transition metal helides, HeTM 3+ (where TM = Sc-Cu), have been investigated employing CCSD(T), MCSCF and MRCI methods. Dissociation energies and harmonic vibrational frequencies have also been determined. For all the triply charged helides, the ground state is dominated by the 3d n electronic configuration. In addition, states with configurations that have holes in the metal 3d σ orbital exhibit greater binding energies. The suitability of single-reference methods and diagnostics for this series has been investigated, with the MCSCF wave function being the most reliable diagnostic tool for the applicability of SCF methods
Ab-initio study of electronic structure and elastic properties of ZrC
Energy Technology Data Exchange (ETDEWEB)
Mund, H. S., E-mail: hmoond@gmail.com; Ahuja, B. L. [Department of Physics, University College of Science, M. L. Sukhadia University, Udaipur, Rajasthan313001 (India)
2016-05-23
The electronic and elastic properties of ZrC have been investigated using the linear combination of atomic orbitals method within the framework of density functional theory. Different exchange-correlation functionals are taken into account within generalized gradient approximation. We have computed energy bands, density of states, elastic constants, bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, lattice parameters and pressure derivative of the bulk modulus by calculating ground state energy of the rock salt structure type ZrC.
Ab initio study of the structural, electronic and optical properties of ZnTe compound
Energy Technology Data Exchange (ETDEWEB)
Bahloul, B. [Material Physics Laboratory, Faculty of Physical Sciences, USTHB, 16000 Algiers (Algeria); LCVRN laboratory, University of Bordj Bou-Arreridj, 34000 (Algeria); Deghfel, B., E-mail: b-deghfel@yahoo.fr [Physics Department, Faculty of Sciences, University of M’sila, 28000 M’Sila (Algeria); Amirouche, L.; Bounab, S. [Theoretical Physics Laboratory, Faculty of Physical Sciences, USTHB, 16000 Algiers (Algeria); Bentabet, A. [LCVRN laboratory, University of Bordj Bou-Arreridj, 34000 (Algeria); Bouhadda, Y. [Unit of Applied Research in Renewable Energy, 47000 Ghardaïa (Algeria); Fenineche, N. [LERMPS, UTBM University, Belfort (France)
2015-03-30
Structural, electronic and optical properties of ZnTe compound were calculated using Density Functional Theory (DFT) based on the pseudopotentials and planewaves (PP-PW) method as implemented in the ABINIT computer code, where the exchange–correlation functional is approximated using the local density approximation (LDA) and the generalized gradient approximation (GGA). The obtained results from either LDA or GGa calculation for lattice parameter, energy band gap and optical parameters, such as the fundamental absorption edge, the peaks observed in the imaginary part of the dielectric function, the macroscopic dielectric constants and the optical dielectric constant, are compared with the available theoretical results and experimental data.
Ab initio structural and vibrational properties of GaAs diamondoids and nanocrystals
Directory of Open Access Journals (Sweden)
Mudar Ahmed Abdulsattar
2014-12-01
Full Text Available Gallium arsenide diamondoids structural and vibrational properties are investigated using density functional theory at the PBE/6-31(d level and basis including polarization functions. Variation of energy gap as these diamondoids increase in size is seen to follow confinement theory for diamondoids having nearly equiaxed dimensions. Density of energy states transforms from nearly single levels to band structure as we reach larger diamondoids. Bonds of surface hydrogen with As atoms are relatively localized and shorter than that bonded to Ga atoms. Ga-As bonds have a distribution range of values due to surface reconstruction and effect of bonding to hydrogen atoms. Experimental bulk Ga-As bond length (2.45 Å is within this distribution range. Tetrahedral and dihedral angles approach values of bulk as we go to higher diamondoids. Optical-phonon energy of larger diamondoids stabilizes at 0.037 eV (297 cm-1 compared to experimental 0.035 eV (285.2 cm-1. Ga-As force constant reaches 1.7 mDyne/Å which is comparable to Ga-Ge force constant (1.74 mDyne/Å. Hydrogen related vibrations are nearly constant and serve as a fingerprint of GaAs diamondoids while Ga-As vibrations vary with size of diamondoids.
International Nuclear Information System (INIS)
Minár, J.; Braun, J.; Ebert, H.
2013-01-01
Highlights: ► We compare spin-resolved ARPES data of ferromagnetic 3d transition metals to many-body LSDA + DMFT based spectroscopic calculations. ► We document LSDA + DMFT provides a detailed and reliable interpretation of the data. ► We demonstrate that local correlations are dominant in Ni, whereas non-local correlations are important in Fe and Co. ► We reproduce the 6 eV satellite structure in ferromagnetic Ni LDSDA + DMFT in combination with the one-step model of photoemission provides a more or less complete description of the electronic structure of Fe, Co and Ni. -- Abstract: Various technical developments enlarged the potential of angle-resolved photoemission spectroscopy (ARPES) tremendously during the last two decades. In particular improved momentum and energy resolution in combination with spin-resolution as well as the use of photon energies from few eV up to several keV makes ARPES a rather unique tool to investigate the electronic properties of solids and surfaces. Obviously, this rises the need for a corresponding theoretical formalism that allows to accompany experimental ARPES studies in an adequate way. As will be demonstrated by several examples this goal could be achieved by various recent developments on the basis of density functional theory (DFT) in combination with dynamical mean field theory (DMFT) and with the one-step model of photoemission (1SM). A concrete realization of electronic structure calculations in the framework of multiple scattering theory further more provides direct access to the spectral function of the initial states via the one-electron Green function. Based on this bare spectral function matrix-element and final-state effects as well as surface related features may be calculated in addition using the one-step formalism that offers the possibility to analyse corresponding angle-resolved photoemission experiments in a quantitative sense. The impact of chemical disorder can be handled by means of the coherent
Ab initio electronic band structure study of III-VI layered semiconductors
Olguín, Daniel; Rubio-Ponce, Alberto; Cantarero, Andrés
2013-08-01
We present a total energy study of the electronic properties of the rhombohedral γ-InSe, hexagonal ɛ-GaSe, and monoclinic GaTe layered compounds. The calculations have been done using the full potential linear augmented plane wave method, including spin-orbit interaction. The calculated valence bands of the three compounds compare well with angle resolved photoemission measurements and a discussion of the small discrepancies found has been given. The present calculations are also compared with recent and previous band structure calculations available in the literature for the three compounds. Finally, in order to improve the calculated band gap value we have used the recently proposed modified Becke-Johnson correction for the exchange-correlation potential.
Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine
Srivastava, Santosh K.; Singh, Vipin B.
2013-11-01
Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks.
Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine.
Srivastava, Santosh K; Singh, Vipin B
2013-11-01
Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks. Copyright © 2013 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Dacal, Luis C O; Cantarero, A
2014-01-01
Most III–V semiconductors, which acquire the zinc-blende phase as bulk materials, adopt the metastable wurtzite phase when grown in the form of nanowires. These are new semiconductors with new optical properties, in particular, a different electronic band gap when compared with that grown in the zinc-blende phase. The electronic gap of wurtzite InAs at the Γ–point of the Brillouin zone (E 0 gap) has been recently measured, E 0 =0.46 eV at low temperature. The electronic gap at the A–point of the Brillouin zone (equivalent to the L–point in the zinc-blende structure, E 1 ) has also been obtained recently based on a resonant Raman scattering experiment. In this work, we calculate the band structure of InAs in the zinc-blende and wurtzite phases, using the full potential linearized augmented plane wave method, including spin-orbit interaction. The electronic band gap has been improved through the modified Becke–Johnson exchange-correlation potential. Both the E 0 and E 1 gaps agree very well with the experiment. From the calculations, a crystal field splitting of 0.122 eV and a spin-orbit splitting of 0.312 eV (the experimental value in zinc-blende InAs is 0.4 eV) has been obtained. Finally, we calculate the dielectric function of InAs in both the zinc-blende and wurtzite phases and a comparative discussion is given. (paper)
Dacal, Luis C. O.; Cantarero, A.
2014-03-01
Most III-V semiconductors, which acquire the zinc-blende phase as bulk materials, adopt the metastable wurtzite phase when grown in the form of nanowires. These are new semiconductors with new optical properties, in particular, a different electronic band gap when compared with that grown in the zinc-blende phase. The electronic gap of wurtzite InAs at the \\Gamma -point of the Brillouin zone ({{E}_{0}} gap) has been recently measured, {{E}_{0}}=0.46 eV at low temperature. The electronic gap at the A-point of the Brillouin zone (equivalent to the L-point in the zinc-blende structure, {{E}_{1}}) has also been obtained recently based on a resonant Raman scattering experiment. In this work, we calculate the band structure of InAs in the zinc-blende and wurtzite phases, using the full potential linearized augmented plane wave method, including spin-orbit interaction. The electronic band gap has been improved through the modified Becke-Johnson exchange-correlation potential. Both the {{E}_{0}} and {{E}_{1}} gaps agree very well with the experiment. From the calculations, a crystal field splitting of 0.122 eV and a spin-orbit splitting of 0.312 eV (the experimental value in zinc-blende InAs is 0.4 eV) has been obtained. Finally, we calculate the dielectric function of InAs in both the zinc-blende and wurtzite phases and a comparative discussion is given.
Energy Technology Data Exchange (ETDEWEB)
Jalilian, Jaafar, E-mail: JaafarJalilian@gmail.com [Young Researchers and Elite Club, Kermanshah Br anch, Islamic Azad University, P.O. Box: 6718997551, Kermanshah (Iran, Islamic Republic of); Kanjouri, Faramarz, E-mail: kanjouri@khu.ac.ir [Physics Department, Faculty of Science, Kharazmi University, University Square, P.O. Box: 3197937551, Karaj (Iran, Islamic Republic of)
2016-11-15
Using spin-polarized density functional theory calculations, we demonstrated that carbon doped boron nitride nanowire (C-doped BNNW) has diverse electronic and magnetic properties depending on position of carbon atoms and their percentages. Our results show that only when one carbon atom is situated on the edge of the nanowire, C-doped BNNW is transformed into half-metal. The calculated electronic structure of the C-doped BNNW suggests that doping carbon can induce localized edge states around the Fermi level, and the interaction among localized edge states leads to semiconductor to half-metal transition. Overall, the bond reconstruction causes of appearance of different electronic behavior such as semiconducting, half-metallicity, nonmagnetic metallic, and ferromagnetic metallic characters. The formation energy of the system shows that when a C atom is doped on surface boron site, system is more stable than the other positions of carbon impurity. Our calculations show that C-doped BNNW may offer unique opportunities for developing nanoscale spintronic materials.
Ab initio theory of the electronic structure of nf-ions in solids and liquids
International Nuclear Information System (INIS)
Kulagin, N.
1998-01-01
Full text: In the books and papers we developed the self-consistent field theory of nl- ions in Me+n:[L]k- clusters, where k is number of ligands - L, by ion-ligands distance - R. The results which were obtained for all RE and AC ions for Me+n:[L]k, where L - F - , O -2 and so on ligands, are closely corresponded to experimental data. The expression for energy of the cluster may be write as: E = E 0 + kE 1 + k'(E z + E c + E e + E ex ), (Eq.1), where E 0 and E 1 are the energies of the free nl-ion and surrounding one; E z , E c and E e are the energy of electrons interaction with 'strange' nucleus, Coulomb electron-electron interaction and exchange one. E ex is the energy of the interaction of electrons and nucleus with external field. The equations for the radial one-electron wave functions of the ions in the cluster were obtained by minimizing the Eq. 1 for the radial orbitals of the central ion and ligand one. We have received the general system of equations of the self-consistent field for cluster in liquids and solid states. The results of calculations of the energy structure of clusters and values of the standard radial integrals (spectroscopy parameters) for Ac-ions in 1-2-3 superconductors and RE-ions in garnet crystals by different values of R are qualitatively and quantitatively correct. We've got the best results for pressure dependence of Nd ions spectra, change of optical and X-Ray spectra after irradiation of garnets. We explained the nature of anomalous in SrTiO 3 and separate lasers crystals by used of results of the calculations. In the framework of our approach we obtained the best accuracy for the energy of X- Ray lines for all nf- ions in solids and liquids
Ab initio investigation of the noncollinear magnetic structure of CeFeAsO
Liu, Juan; Luo, Bo; Sun, Zhaoyu; Fu, Huahua; Yao, Kailun
2011-09-01
The noncollinear magnetic ground state in CeFeAsO has been investigated using the density-functional theory. When the spin-orbit coupling is discarded, the magnitude of the Ce-magnetic moment (0.87μB) is independent of the spin direction and is in accordance with the experimental value of 0.83(2)μB. However, when the spin-orbit coupling is considered, the Ce-orbital moments change with the internal magnetic field and affect the total magnetic moment of Ce. One type of Ce ions has a magnetic moment of 0.909μB, which is very close to the experimental value. The other type of Ce ions has a magnetic moment of 0.488μB, which has not been previously reported. The magnetic moments of the rare-earth metals in NdFeAsO and PrFeAsO are also twice those of experimental observations. The difference between the rare earth magnetic-moment errors of the three compounds imply that magnetism is related to the onset of the superconducting critical temperature. At the same time, the calculated Fe-magnetic moments in all solutions are over 2.0μB. From the band structure and density of states (DOS), the Ce 4f and Fe 3d orbits are shown to have major contributions to the Fermi level. Four bands in CeFeAsO cross the Fermi level at the Γ (0, 0, 0) point and form four hole-like pockets. The superexchange interaction between the Ce 4f and Fe 3d electrons via oxygen ions is discussed. Furthermore the results show that the Fermi surface shape varies with the Ce spin direction, revealing that electroconductibility is directly affected by the Ce-spin direction. If the Ce spin is perpendicular to the FeAs plane, the electronic field gradient (EFG) changes from a negative value into a positive value.
Bylaska, Eric J; Glaesemann, Kurt R; Felmy, Andrew R; Vasiliu, Monica; Dixon, David A; Tratnyek, Paul G
2010-11-25
Electronic structure methods were used to calculate the gas and aqueous phase reaction energies for reductive dechlorination (i.e., hydrogenolysis), reductive β-elimination, dehydrochlorination, and nucleophilic substitution by OH− of 1,2,3-trichloropropane. The thermochemical properties ΔH(f)°(298.15 K), S°(298.15 K, 1 bar), and ΔG(S)(298.15 K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for 1,2,3-trichloropropane and several likely degradation products: CH3−CHCl−CH2Cl, CH2Cl−CH2−CH2Cl, C•H2−CHCl−CH2Cl, CH2Cl−C•H−CH2Cl, CH2═CCl−CH2Cl, cis-CHCl═CH−CH2Cl, trans-CHCl═CH−CH2Cl, CH2═CH−CH2Cl, CH2Cl−CHCl−CH2OH, CH2Cl−CHOH−CH2Cl, CH2═CCl−CH2OH, CH2═COH−CH2Cl, cis-CHOH═CH−CH2Cl, trans-CHOH═CH−CH2Cl, CH(═O)−CH2−CH2Cl, and CH3−C(═O)−CH2Cl. On the basis of these thermochemical estimates, together with a Fe(II)/Fe(III) chemical equilibrium model for natural reducing environments, all of the reactions studied were predicted to be very favorable in the standard state and under a wide range of pH conditions. The most favorable reaction was reductive β-elimination (ΔG(rxn)° ≈ −32 kcal/mol), followed closely by reductive dechlorination (ΔG(rxn)° ≈ −27 kcal/mol), dehydrochlorination (ΔG(rxn)° ≈ −27 kcal/mol), and nucleophilic substitution by OH− (ΔG(rxn)° ≈ −25 kcal/mol). For both reduction reactions studied, it was found that the first electron-transfer step, yielding the intermediate C•H2−CHCl−CH2Cl and the CH2Cl−C•H−CH2Cl species, was not favorable in the standard state (ΔG(rxn)° ≈ +15 kcal/mol) and was predicted to occur only at relatively high pH values. This result suggests that reduction by natural attenuation is unlikely.
Germacrene D cyclization: an Ab initio investigation.
Setzer, William N
2008-01-01
Essential oils that contain large concentrations of germacrene D are typically accompanied by cadinane sesquiterpenoids. The acid-catalyzed cyclization of germacrene D to give cadinane and selinane sesquiterpenes has been computationally investigated using both density functional (B3LYP/6-31G(*)) and post Hartree-Fock (MP2/6-31G(* *)) ab initio methods. The calculated energies are in general agreement with experimentally observed product distributions, both from acid-catalyzed cyclizations as well as distribution of the compounds in essential oils.
Germacrene D Cyclization: An Ab Initio Investigation
Directory of Open Access Journals (Sweden)
William N. Setzer
2008-01-01
Full Text Available Essential oils that contain large concentrations of germacrene D are typically accompanied by cadinane sesquiterpenoids. The acid-catalyzed cyclization of germacrene D to give cadinane and selinane sesquiterpenes has been computationally investigated using both density functional (B3LYP/6-31G* and post Hartree-Fock (MP2/6-31G** ab initio methods. The calculated energies are in general agreement with experimentally observed product distributions, both from acid-catalyzed cyclizations as well as distribution of the compounds in essential oils.
Augmented wave ab initio EFG calculations: some methodological warnings
International Nuclear Information System (INIS)
Errico, Leonardo A.; Renteria, Mario; Petrilli, Helena M.
2007-01-01
We discuss some accuracy aspects inherent to ab initio electronic structure calculations in the understanding of nuclear quadrupole interactions. We use the projector augmented wave method to study the electric-field gradient (EFG) at both Sn and O sites in the prototype cases SnO and SnO 2 . The term ab initio is used in the standard context of the also called first principles methods in the framework of the Density Functional Theory. As the main contributions of EFG calculations to problems in condensed matter physics are related to structural characterizations on the atomic scale, we discuss the 'state of the art' on theoretical EFG calculations and make a brief critical review on the subject, calling attention to some fundamental theoretical aspects
Augmented wave ab initio EFG calculations: some methodological warnings
Energy Technology Data Exchange (ETDEWEB)
Errico, Leonardo A. [Departamento de Fisica-IFLP (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC67 (1900) La Plata (Argentina); Renteria, Mario [Departamento de Fisica-IFLP (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC67 (1900) La Plata (Argentina); Petrilli, Helena M. [Instituto de Fisica-DFMT, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil)]. E-mail: hmpetril@macbeth.if.usp.br
2007-02-01
We discuss some accuracy aspects inherent to ab initio electronic structure calculations in the understanding of nuclear quadrupole interactions. We use the projector augmented wave method to study the electric-field gradient (EFG) at both Sn and O sites in the prototype cases SnO and SnO{sub 2}. The term ab initio is used in the standard context of the also called first principles methods in the framework of the Density Functional Theory. As the main contributions of EFG calculations to problems in condensed matter physics are related to structural characterizations on the atomic scale, we discuss the 'state of the art' on theoretical EFG calculations and make a brief critical review on the subject, calling attention to some fundamental theoretical aspects.
Hughes, I. D.; Däne, M.; Ernst, A.; Hergert, W.; Lüders, M.; Staunton, J. B.; Szotek, Z.; Temmerman, W. M.
2008-06-01
We describe an ab initio theory of finite temperature magnetism in strongly-correlated electron systems. The formalism is based on spin density functional theory, with a self-interaction corrected local spin density approximation (SIC-LSDA). The self-interaction correction is implemented locally, within the Kohn-Korringa-Rostoker (KKR) multiple-scattering method. Thermally induced magnetic fluctuations are treated using a mean-field 'disordered local moment' (DLM) approach and at no stage is there a fitting to an effective Heisenberg model. We apply the theory to the 3d transition metal oxides, where our calculations reproduce the experimental ordering tendencies, as well as the qualitative trend in ordering temperatures. We find a large insulating gap in the paramagnetic state which hardly changes with the onset of magnetic order.
Energy Technology Data Exchange (ETDEWEB)
Benrekia, A.R., E-mail: benrekia.ahmed@yahoo.com [Faculty of Science and Technology, University of Medea (Algeria); Benkhettou, N. [Laboratoire des Materiaux Magnetiques, Faculte des Sciences, Universite Djillali Liabes de Sidi Bel Abbes (Algeria); Nassour, A. [Laboratoire de Cristallographie, Resonance Magnetique et Modelisations (CRM2, UMR CNRS 7036) Institut Jean Barriol, Nancy Universite BP 239, Boulevard des Aiguillettes, 54506 Vandoeuvre-les-Nancy (France); Driz, M. [Applied Material Laboratory (AML), Electronics Department, University of Sidi bel Abbes (DZ 22000) (Algeria); Sahnoun, M. [Laboratoire de Physique Quantique de la Matiere et Modelisations Mathematique (LPQ3M), Faculty of Science and Technology,University of Mascara (Algeria); Lebegue, S. [Laboratoire de Cristallographie, Resonance Magnetique et Modelisations (CRM2, UMR CNRS 7036) Institut Jean Barriol, Nancy Universite BP 239, Boulevard des Aiguillettes, 54506 Vandoeuvre-les-Nancy (France)
2012-07-01
We present first-principles VASP calculations of the structural, electronic, vibrational, and optical properties of paraelectric SrTiO{sub 3} and KTaO{sub 3}. The ab initio calculations are performed in the framework of density functional theory with different exchange-correlation potentials. Our calculated lattice parameters, elastic constants, and vibrational frequencies are found to be in good agreement with the available experimental values. Then, the bandstructures are calculated with the GW approximation, and the corresponding band gap is used to obtain the optical properties of SrTiO{sub 3} and KTaO{sub 3}.
Ab-initio study of the electronic structure of sup 1 sup 9 F implanted in GaAs and GaN crystals
Park, J H; Cho, H S; Shin, Y N
1998-01-01
We have studied the nuclear quadrupole interaction of a fluorine atom implanted in gallium arsenide and gallium nitride cluster models using the ab-initio Hartree-Fock theory. For the three possible fluorine sites in GaAs and GaN, we have determined the location of the implanted fluorine atom by using a self-consistent calculation, the electric field gradient at the implanted atom, and the electronic structure. Good agreement is found with experimental data wherever they are available. Predictions are made for the implanted fluorine site associated with the total energy and the electric field gradient which are expected to be measurable by a variety of experimental techniques.
International Nuclear Information System (INIS)
Campetella, M.; Caminiti, R.; Bencivenni, L.; Gontrani, L.; Bovi, D.; Guidoni, L.
2016-01-01
In this work we report an analysis of the bulk phase of 2-methoxyethylammonium nitrate based on ab initio molecular dynamics. The structural and dynamical features of the ionic liquid have been characterized and the computational findings have been compared with the experimental X-ray diffraction patterns, with infrared spectroscopy data, and with the results obtained from molecular dynamics simulations. The experimental infrared spectrum was interpreted with the support of calculated vibrational density of states as well as harmonic frequency calculations of selected gas phase clusters. Particular attention was addressed to the high frequency region of the cation (ω > 2000 cm −1 ), where the vibrational motions involve the NH 3 + group responsible for hydrogen bond formation, and to the frequency range 1200-1400 cm −1 where the antisymmetric stretching mode (ν 3 ) of nitrate is found. Its multiple absorption lines in the liquid arise from the removal of the degeneracy present in the D 3h symmetry of the isolated ion. Our ab initio molecular dynamics leads to a rationalization of the frequency shifts and splittings, which are inextricably related to the structural modifications induced by a hydrogen bonding environment. The DFT calculations lead to an inhomogeneous environment.
Energy Technology Data Exchange (ETDEWEB)
Campetella, M.; Caminiti, R.; Bencivenni, L.; Gontrani, L., E-mail: lorenzo.gontrani@uniroma1.it [Dipartimento di Chimica, Università di Roma, “La Sapienza,” P. le Aldo Moro 5, I-00185 Roma (Italy); Bovi, D. [Dipartimento di Fisica, Università di Roma, “La Sapienza,” P. le Aldo Moro 5, I-00185 Roma (Italy); Guidoni, L. [Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, Coppito, I-67100 L’Aquila (Italy)
2016-07-14
In this work we report an analysis of the bulk phase of 2-methoxyethylammonium nitrate based on ab initio molecular dynamics. The structural and dynamical features of the ionic liquid have been characterized and the computational findings have been compared with the experimental X-ray diffraction patterns, with infrared spectroscopy data, and with the results obtained from molecular dynamics simulations. The experimental infrared spectrum was interpreted with the support of calculated vibrational density of states as well as harmonic frequency calculations of selected gas phase clusters. Particular attention was addressed to the high frequency region of the cation (ω > 2000 cm{sup −1}), where the vibrational motions involve the NH{sub 3}+ group responsible for hydrogen bond formation, and to the frequency range 1200-1400 cm{sup −1} where the antisymmetric stretching mode (ν{sub 3}) of nitrate is found. Its multiple absorption lines in the liquid arise from the removal of the degeneracy present in the D{sub 3h} symmetry of the isolated ion. Our ab initio molecular dynamics leads to a rationalization of the frequency shifts and splittings, which are inextricably related to the structural modifications induced by a hydrogen bonding environment. The DFT calculations lead to an inhomogeneous environment.
Energy Technology Data Exchange (ETDEWEB)
Barrett, Bruce R. [Univ. of Arizona, Tucson, AZ (United States); Navrátil, Petr [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vary, James P. [Ames Lab. and Iowa State Univ., Ames, IA (United States)
2012-11-17
A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory ({chi}EFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The
Inakpenu, Richard; Bamba, Cheick; Nwigboji, Ifeanyi; Franklin, Lashounda; Malozovsky, Yuriy; Zhao, Guang-Lin; Bagayoko, Diola
We report results from several ab-initio, self-consistent computations of electronic, transport and bulk properties of zinc blendeberyllium selenide (zb-BeSe). Our non relativistic calculations utilized a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). The key distinction of our calculations from other DFT ones is our implementation of the Bagayoko, Zhao and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). Our calculated, indirect band gap is 5.46 eV, from to a conduction band minimum between à and X, for a room temperature lattice constant of 5.152 Å. Available, room temperature experimental band gaps of 5.5 eV (direct) and 4.0 - 4.5 eV (unspecified) point to the need for additional measurements. Our calculated bulk modulus of 92.35 GPa is in excellent agreement with experiment (92.2 +/- 1.8 GPa). Our predicted equilibrium lattice constant and band gap, at zero temperature, are 5.0438 Å and 5.4 eV, respectively. Work funded in part by the US Department of Energy (DOE), National Nuclear Security Administration (NNSA) (Award No.DE-NA0002630), the National Science Foundation (NSF) (Award No, 1503226), LaSPACE, and LONI-SUBR.
Energy Technology Data Exchange (ETDEWEB)
Kemege, Kyle E.; Hickey, John M.; Lovell, Scott; Battaile, Kevin P.; Zhang, Yang; Hefty, P. Scott (Michigan); (Kansas); (HWMRI)
2012-02-13
Chlamydia trachomatis is a medically important pathogen that encodes a relatively high percentage of proteins with unknown function. The three-dimensional structure of a protein can be very informative regarding the protein's functional characteristics; however, determining protein structures experimentally can be very challenging. Computational methods that model protein structures with sufficient accuracy to facilitate functional studies have had notable successes. To evaluate the accuracy and potential impact of computational protein structure modeling of hypothetical proteins encoded by Chlamydia, a successful computational method termed I-TASSER was utilized to model the three-dimensional structure of a hypothetical protein encoded by open reading frame (ORF) CT296. CT296 has been reported to exhibit functional properties of a divalent cation transcription repressor (DcrA), with similarity to the Escherichia coli iron-responsive transcriptional repressor, Fur. Unexpectedly, the I-TASSER model of CT296 exhibited no structural similarity to any DNA-interacting proteins or motifs. To validate the I-TASSER-generated model, the structure of CT296 was solved experimentally using X-ray crystallography. Impressively, the ab initio I-TASSER-generated model closely matched (2.72-{angstrom} C{alpha} root mean square deviation [RMSD]) the high-resolution (1.8-{angstrom}) crystal structure of CT296. Modeled and experimentally determined structures of CT296 share structural characteristics of non-heme Fe(II) 2-oxoglutarate-dependent enzymes, although key enzymatic residues are not conserved, suggesting a unique biochemical process is likely associated with CT296 function. Additionally, functional analyses did not support prior reports that CT296 has properties shared with divalent cation repressors such as Fur.
Buchachenko, Alexei A; Chałasiński, Grzegorz; Szcześniak, Małgorzata M
2010-01-14
A thorough ab initio study of the Mn(2) dimer in its lowest electronic states that correlate to the ground Mn((6)S)+Mn((6)S) dissociation limit is reported. Performance of multireference methods is examined in calculations of the fully spin-polarized S=5((11) summation operator(+) (u)) state against the recent accurate single-reference coupled cluster CCSD(T) results [A. A. Buchachenko, Chem. Phys. Lett. 459, 73 (2008)]. The detailed comparison reveals a serious disagreement between the multireference configuration interaction (MRCI) and related nonperturbative results on the one hand and the complete active space perturbation theory (CASPT) calculations on the other. A striking difference found in the CASPT results of the second and third orders indicates poor perturbation expansion convergence. It is shown that a similar problem has affected most of the previous calculations performed using CASPT2 and similar perturbative approximations. The composition of the active space in the reference multiconfigurational self-consistent field calculations, the core correlation contribution, and basis set saturation effects are also analyzed. The lower spin states, S=0-4, are investigated using the MRCI method. The results indicate a similar dispersion binding for all the spin states within the manifold related to the closed 4s shells, which appears to screen and suppress the spin coupling between the half-filled 3d atomic shells. On this premise, the full set of model potentials is built by combining the accurate reference CCSD(T) interaction potential for S=5 and the MRCI spin-exchange energies for the SHeisenberg model. The effective spin-coupling parameter J is estimated as -3.9 cm(-1), a value roughly 2.5 times smaller in magnitude than those measured in the inert gas cryogenic matrices. Compressing of the Mn(2) dimer in the matrix cage is suggested as the prime cause of this disagreement.
Ab initio modeling of small proteins by iterative TASSER simulations
Directory of Open Access Journals (Sweden)
Zhang Yang
2007-05-01
Full Text Available Abstract Background Predicting 3-dimensional protein structures from amino-acid sequences is an important unsolved problem in computational structural biology. The problem becomes relatively easier if close homologous proteins have been solved, as high-resolution models can be built by aligning target sequences to the solved homologous structures. However, for sequences without similar folds in the Protein Data Bank (PDB library, the models have to be predicted from scratch. Progress in the ab initio structure modeling is slow. The aim of this study was to extend the TASSER (threading/assembly/refinement method for the ab initio modeling and examine systemically its ability to fold small single-domain proteins. Results We developed I-TASSER by iteratively implementing the TASSER method, which is used in the folding test of three benchmarks of small proteins. First, data on 16 small proteins (α-root mean square deviation (RMSD of 3.8Å, with 6 of them having a Cα-RMSD α-RMSD α-RMSD of the I-TASSER models was 3.9Å, whereas it was 5.9Å using TOUCHSTONE-II software. Finally, 20 non-homologous small proteins (α-RMSD of 3.9Å was obtained for the third benchmark, with seven cases having a Cα-RMSD Conclusion Our simulation results show that I-TASSER can consistently predict the correct folds and sometimes high-resolution models for small single-domain proteins. Compared with other ab initio modeling methods such as ROSETTA and TOUCHSTONE II, the average performance of I-TASSER is either much better or is similar within a lower computational time. These data, together with the significant performance of automated I-TASSER server (the Zhang-Server in the 'free modeling' section of the recent Critical Assessment of Structure Prediction (CASP7 experiment, demonstrate new progresses in automated ab initio model generation. The I-TASSER server is freely available for academic users http://zhang.bioinformatics.ku.edu/I-TASSER.
Ertürk, Esra; Gürel, Tanju
2018-05-01
We present an ab initio study of structural, elastic and vibrational properties of transition-metal disilicides NbSi2 and TaSi2. The calculations have been carried out within the density-functional theory and linear-response formalism using norm-conserving pseudopotentials and a plane-wave basis. The calculated lattice parameters, bulk moduli, and elastic constants agree well with previous theoretical and experimental results. The calculated phonon frequencies at the Brillouin zone center are in good agreement with the reported Raman spectra and provide reference values for the future infrared and neutron phonon measurements. Phonon dispersion relations, mode Grüneisen parameters, and total and partial phonon density of states are also discussed. Mode Grüneisen parameters of NbSi2 and TaSi2 at Brillouin zone center show similar trends and all values are found to be positive. From phonon dispersion relations and phonon density of states, we have found a gap around 200 cm-1 for TaSi2, where the frequencies below this gap mainly belong to Ta vibrations and frequencies above the gap is mainly related with Si vibrations. In the case of NbSi2, there is no such gap and both Nb and Si atoms contribute to the phonon density of states in an energy range of 150-270 cm-1.
Realization of prediction of materials properties by ab initio ...
Indian Academy of Sciences (India)
Unknown
IMR), Tohoku University, Sendai 980-8577, Japan. Abstract. Ab initio treatment is becoming realistic to predict physical, chemical, and even mechanical pro- perties of academically and industrially interesting materials. There is, however, some ...
Ab initio adiabatic and quasidiabatic potential energy surfaces of H ...
Indian Academy of Sciences (India)
s12039-015-1022-8. Ab initio adiabatic and quasidiabatic potential energy surfaces of H. ++. CN system. BHARGAVA ANUSURI and SANJAY KUMAR. ∗. Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
Ab Initio Atomistic Thermodynamics for Surfaces: A Primer
National Research Council Canada - National Science Library
Rogal, Jutta; Reuter, Karsten
2006-01-01
.... These techniques are referred to as first-principles (or in latin: ab initio) to indicate that they do not rely on empirical or fitted parameters, which then makes them applicable for a wide range of realistic conditions...
Pseudopotential for ab initio calculations of uranium compounds
Smirnov, G. S.; Pisarev, V. V.; Stegailov, V. V.
2018-01-01
The density functional theory (DFT) is a research tool of the highest importance for electronic structure calculations. It is often the only affordable method for ab initio calculations of complex materials. The pseudopotential approach allows reducing the total number of electrons in the model that speeds up calculations. However, there is a lack of pseudopotentials for heavy elements suitable for condensed matter DFT models. In this work, we present a pseudopotential for uranium developed in the Goedecker–Teter–Hutter form. Its accuracy is illustrated using several molecular and solid-state calculations.
Ab initio calculation of tensile strength in iron
Czech Academy of Sciences Publication Activity Database
Friák, Martin; Šob, Mojmír; Vitek, V.
2003-01-01
Roč. 83, 31-34 (2003), s. 3529-3537 ISSN 1478-6435. [Multiscale Materials Modelling: Working Theory for Industry /1./. London, 17.06.2002-20.06.2002] R&D Projects: GA AV ČR IAA1041302; GA ČR GA202/03/1351; GA MŠk OC 523.90 Institutional research plan: CEZ:AV0Z2041904 Keywords : ab initio calculations * electronic structure * theoretical tensile strength Subject RIV: BM - Solid Matter Physics ; Magnetism
Iterative projection algorithms for ab initio phasing in virus crystallography.
Lo, Victor L; Kingston, Richard L; Millane, Rick P
2016-12-01
Iterative projection algorithms are proposed as a tool for ab initio phasing in virus crystallography. The good global convergence properties of these algorithms, coupled with the spherical shape and high structural redundancy of icosahedral viruses, allows high resolution phases to be determined with no initial phase information. This approach is demonstrated by determining the electron density of a virus crystal with 5-fold non-crystallographic symmetry, starting with only a spherical shell envelope. The electron density obtained is sufficiently accurate for model building. The results indicate that iterative projection algorithms should be routinely applicable in virus crystallography, without the need for ancillary phase information. Copyright © 2016 Elsevier Inc. All rights reserved.
Stretching siloxanes: An ab initio molecular dynamics study
Lupton, E. M.; Nonnenberg, C.; Frank, I.; Achenbach, F.; Weis, J.; Bräuchle, C.
2005-10-01
We present an ab initio molecular dynamics study of siloxane elastomers placed under tensile stress for comparison with single molecule AFM experiments. Of particular interest is stress-induced chemical bond breaking in the high force regime, where a description of the molecular electronic structure is essential to determine the rupture mechanism. We predict an ionic mechanism for the bond breaking process with a rupture force of 4.4 nN for an isolated siloxane decamer pulled at a rate of 27.3 m/s and indicate lower values at experimental polymer lengths and pulling rates.
Ucun, Fatih; Sağlam, Adnan; Güçlü, Vesile
2007-06-01
The molecular structures, vibrational frequencies and corresponding vibrational assignments of xanthine and its methyl derivatives (caffeine and theobromine) have been calculated using ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods with 6-31G(d, p) basis set level. The calculations were utilized to the CS symmetries of the molecules. The obtained vibrational frequencies and optimised geometric parameters (bond lengths and bond angles) were seen to be well agreement with the experimental data. The used scale factors which have been obtained the ratio of the frequency values of the strongest peaks in the calculated and experimental spectra seem to cause the gained vibrations well corresponding to the experimental ones. Theoretical infrared intensities and Raman activities are also reported.
Chernyshev, V. A.; Petrov, V. P.; Nikiforov, A. E.; Zakir'yanov, D. O.
2015-06-01
The effect of hydrostatic compression on the lattice structure and dynamics of elpasolites Cs2NaYbF6 and Cs2NaYF6 (sp. gr. 225) has been investigated ab initio. The frequencies and types of fundamental oscillations are determined, and elastic constants are calculated. The computation is performed within the molecular orbitals-linear combinations of atomic orbitals (MO LCAO) approach using the density functional theory (DFT) method with hybrid functionals B3LYP and PBE0 in the CRYSTAL09 program. The rare-earth ion was described by representing the inner (in particular, 4 f) orbitals in the form of a pseudopotential. The outer 5 s and 5 p orbitals, which determine chemical bonding, were described using valence basis sets.
Suetin, D. V.; Shein, I. R.
2018-02-01
Ab initio calculations were used to study the properties of a series of hexagonal (Fe2N-like) subcarbides M2C, where M = Tc, Ru, Rh, Pd, Re, Os, Ir, and Pt, and to calculate their equilibrium structural parameters, electronic properties, phase stability, elastic constants, compression modulus, shear modulus, Young's modulus, compressibility, Pugh's indicator, Poisson ratio, elastic anisotropy indices, and also hardness, Debye temperature, sound velocity, and low-temperature heat capacity. It is found based on these results that all the subcarbides are mechanically stable; however, their formation energies E form are positive with respect to a mixture of d-metal and graphite. In addition, the calculation of the phonon spectra of these subcarbides shows the existence of negative modes, which indicates their dynamical instability. Thus, a successful synthesis of these subcarbides at normal conditions is highly improbable.
International Nuclear Information System (INIS)
Childs, W.J.; Nielsen, U.
1988-01-01
The atomic-beam laser-rf double-resonance method has been used to measure precisely the dipole and quadrupole hyperfine structure (hfs) of 11 levels of the 5d 2 6s configuration and four levels of the 5d 3 configuration of /sup 139/La I. The results, together with earlier results for lower-lying levels, are compared in detail with new multiconfiguration Dirac-Fock (MCDF) ab initio calculations. The agreement is good to fair overall, but is poor in some areas. The comparison yields new insights and suggests areas in which the theoretical approach must be improved. In particular, the theory underestimates the importance of contact hfs in the 5d 2 6s configuration by 25--40 %. In addition, there is at present no self-consistent way in the MCDF approach to take account of the large core polarization observed in the 5d 3 4 F term
Ab initio phonon scattering by dislocations
Wang, Tao; Carrete, Jesús; van Roekeghem, Ambroise; Mingo, Natalio; Madsen, Georg K. H.
2017-06-01
Heat management in thermoelectric and power devices as well as in random access memories poses a grand challenge and can make the difference between a working and an abandoned device design. Despite the prevalence of dislocations in all these technologies, the modeling of their thermal resistance is based on 50-year-old analytical approximations, whose simplicity was driven by practical limitations rather than physical insight. We introduce an efficient ab initio approach based on Green's functions computed by two-dimensional reciprocal space integration. By combining elasticity theory and density functional theory, we calculate the scattering strength of a 90∘ misfit edge dislocation in Si. Because of the breakdown of the Born approximation, earlier literature models fail, even qualitatively. We find that a dislocation density larger than 109cm-2 is necessary to substantially influence thermal conductivity at room temperature and above. We quantify how much of the reduction of thermal conductivity measured in nanograined samples can be explained by realistic dislocation concentrations.
Lifshitz invariants from ab initio lattice dynamics
Schiaffino, Andrea; Stengel, Massimiliano
The interaction between different order parameters is vital to explain the emergence of new functionalities (hybrid improper ferroelectricity, magnetoelectricity) in multiferroic systems. While considerable theoretical efforts have been directed in the past at studying couplings (e.g. trilinear or biquadratic) that occur in a homogeneous sample, recent research has revealed an increasing number of cases where the interesting physics emerges from inhomogeneities in some order parameter (e.g. flexoelectricity, domain walls), rather than the uniform bulk phase itself. These are usually described in phenomenological theories via symmetry-allowed gradient-mediated terms, the so-called Lifshitz invariants. Here I will present a general method to calculate such couplings ab initio, within the framework of density-functional perturbation theory. I will start with a brief overview on the most challenging aspects of these calculations, i.e. how to deal with the breakdown of the translational symmetry, and with the unusual electrostatic effects that occur in such a regime. Next, I will demonstrate this strategy in practice by presenting calculations of the most relevant gradient coefficients involving strain, octahedral tilts and polarization in ferroelastic SrTiO3. MINECO-Spain through Grants No. FIS2013-48668-C2-2-P and No. SEV-2015-0496, and by Generalitat de Catalunya (Grant No. 2014SRG301).
Ab initio simulations for material properties inside Jupiter
French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Wicht, Johannes; Redmer, Ronald
2013-07-01
The behavior of warm dense matter is of paramount importance for interior and dynamo models for solar and extrasolar giant planets. For instance, nonmetal-to-metal transitions (e.g. metallization in hydrogen), demixing phenomena (in H-He or C-N-O-H mixtures), and new exotic phases (e.g. with proton conduction in water and ammonia) may occur at high pressures and elevated temperatures. These effects have to be taken into account consistently in corresponding planetary models. Therefore, we apply ab initio molecular dynamics simulations based on finite-temperature density functional theory to calculate thermophysical properties of warm dense matter. In particular we determine the equation of state (thermal and caloric), material (sound velocity, specific heat) and transport properties (electrical and thermal conductivity, viscosity, diffusion coefficient) along the adiabat of Jupiter, i.e. from ambient conditions up to the multi-megabar range [1,2]. This ab initio data set can be used as input in future interior (structure) and dynamo models (magnetic fields, flow dynamics) for this planet. Similar data sets can also be compiled for interior conditions of other solar giant planets so that important problems such as the size of planetary cores necessary for the accretion of gaseous (H/He) or icy (C-N-O hydrides) envelopes, the origin, location and stability of layer boundaries, or the source of an excess (e.g. Saturn) or deficit luminosity (e.g. Uranus) can be studied. The increasing sample of extrasolar planets poses new questions that can be addressed based on such ab initio data sets, e.g. to explain the wide range of radii for planets with similar mass. [1] N. Nettelmann, A. Becker, B. Holst, R. Redmer, Astrophys. J. 750, 52 (2012). [2] M. French, A. Becker, W. Lorenzen, N. Nettelmann, M. Bethkenhagen, J. Wicht, R. Redmer, Astrophys. J. Suppl. Ser. 202, 5 (2012).
International Nuclear Information System (INIS)
Wang, Y.; Lu, Y.H.; Wang, X.D.; Cao, Q.P.; Zhang, D.X.; Jiang, J.Z.
2014-01-01
Highlights: • The SOC effect affects the cohesion energy of crystal phase. • The effect of SOC was reduced due to random local atomic structures in liquids. • The local geometrical structures also affect the melting points. • Both SOC effect and local atomic structures are important for melting point difference. - Abstract: The origin of different melting points between Al 2 Cu and Al 2 Au has been studied using ab initio molecular dynamics simulations. Cohesive energy, electronic structures and structure information of both crystal and liquid phases have been analyzed. It is found that spin orbital coupling (SOC) plays an important role on the cohesive energy of crystal phase, consistent with the different melting points of these two alloys. Whereas, it seems that SOC has no effect on the formation energy and structure of liquid phase. Possible mechanism of reduced SOC effect at liquid phase is proposed. Our results are helpful to understand the glass formation ability difference between Al 2 Cu and Al 2 Au
AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT
International Nuclear Information System (INIS)
French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes
2012-01-01
We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grüneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.
International Nuclear Information System (INIS)
Kamiya, Toshio; Ueda, Kazushige; Hiramatsu, Hidenori; Kamioka, Hayato; Ohta, Hiromichi; Hirano, Masahiro; Hosono, Hideo
2005-01-01
Electronic structures of layered oxychalcogenides LaCuOCh (Ch=S, Se, Te) were studied using relativistic ab initio band calculations to understand their optical and electronic properties. Step-like structures terminated with one or two sharp peaks were observed in low-temperature (10 K) optical absorption spectra. Third optical nonlinearity measurements supported that the sharp peaks came from split excitonic levels. The ab initio calculations reproduced well these characteristic structures in the spectra and proved that the step-like optical absorption structures originated from two-dimensional nature of the electronic structures associated with the layered crystal structure of LaCuOCh. The split energies of the excitonic levels were quantitatively explained by spin-orbit interaction in the chalcogen ions
International Nuclear Information System (INIS)
Goutenoire, F.; Retoux, R.; Lacorre, P.
1999-01-01
A new mixed valence molybdate, La 7 Mo 7 O 30 , first prepared by high energy ball milling, has been successfully synthesized by controlled hydrogen reduction of La 2 Mo 2 O 9 . Its original crystal structure was determined from X-ray and neutron powder diffraction (space group R 3 ; a = b = 17.0051(2) angstrom, c = 6.8607(1) angstrom; Z = 3; reliability factors: R p = 0.081, R wp = 0.091, χ 2 = 3.1, R Bragg = 0.049, R F = 0.033). It consists in the hexagonal stacking of individual cylinders of perovskite-type arrangement. These cylinders are built up from perovskite cages sharing corners in trans-position along their diagonal axis. Two different mixed-valence molybdenum sites coexist, with more (Mo +5.75 ) or less (Mo +4.5 ) distorted octahedral environments. Lanthanum atoms are located within the perovskite cages and around them, very close to their regular positions in the perovskite structure. Lanthanum and molybdenum atoms thus form two rows of almost perfect cubes, shifted from each other by c/2. An electron microscopy study revealed the defect-free cationic and octahedral arrangements in the (a,b) plane
Bautista-Hernández, A.; Pacheco-Espejel, V.; Rivas-Silva, J. F.
2004-03-01
In this work we present ab initio structural and electronic calculations for the A_c, B1, B2, L1_0, L1_1, and B32 structures of the PtX alloys. The calculations are based on the Density Functional Theory within the Local Density Approximation (LDA) using the Troullier-Martins pseudopotentials. Our predicted geometries for the ground state of PtSc and PtY alloys are the B2 and Ac structures, respectively, in agreement to the experimental phase diagram. The energy and enthalpy curves show a phase transition from B2 to B32 structure at 59 GPa approximately, for the PtSc alloy, and two phase transitions for the PtY alloy: B1 to L10 at 27 GPa and B2 to B32 at 47 GPa. Additionally, we calculate the theoretical tensile strength for the B2 phase of PtX alloys along the [001] and [111] directions.
Energy Technology Data Exchange (ETDEWEB)
Genderen, E. van; Clabbers, M. T. B. [Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands); Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, CH-4058 Basel (Switzerland); Das, P. P. [Nanomegas SPRL, Boulevard Edmond Machtens 79, B 1080, Brussels (Belgium); Stewart, A. [Department of Physics and Energy, Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland); Nederlof, I. [Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands); Amsterdam Scientific Instruments, Postbus 41882, 1009 DB Amsterdam (Netherlands); Barentsen, K. C. [Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands); Portillo, Q. [Nanomegas SPRL, Boulevard Edmond Machtens 79, B 1080, Brussels (Belgium); Centres Científics i Tecnològics de la Universitat de Barcelona, University of Barcelona, Carrer de Lluís Solé i Sabaris, 1-3, Barcelona (Spain); Pannu, N. S. [Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands); Nicolopoulos, S. [Nanomegas SPRL, Boulevard Edmond Machtens 79, B 1080, Brussels (Belgium); Gruene, T., E-mail: tim.gruene@psi.ch [Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), 5232 Villigen (Switzerland); Abrahams, J. P., E-mail: tim.gruene@psi.ch [Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands); Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, CH-4058 Basel (Switzerland); Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), 5232 Villigen (Switzerland)
2016-02-05
A specialized quantum area detector for electron diffraction studies makes it possible to solve the structure of small organic compound nanocrystals in non-cryo conditions by direct methods. Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e{sup −} Å{sup −2} s{sup −1}) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014)
Energy Technology Data Exchange (ETDEWEB)
Wu, S.; Kramer, M.J.; Fang, X.W.; Wang, S.Y.; Wang, C.Z.; Ho, K.M.; Ding, Z.J.; Chen, L.Y. (Ames); (UST - China); (Fudan)
2012-02-06
The local structures and dynamical properties of the liquid Cu{sub 80}Si{sub 20} alloy have been studied by x-ray diffraction and ab initio molecular dynamics (MD) simulations. The pair-correlation functions and the structure factors derived from the three-dimensional coordinates of the MD configurations agree well with the experimental results. The local structure of the liquids is analyzed using Honeycutt-Andersen (HA) indices, Voronoi tessellation (VT), and an atomic cluster-alignment method. The HA indices analysis shows that the pentagonal bipyramid, a fragment of an icosahedron (ICO), plays a dominant role in the short-range order (SRO) of the Cu{sub 80}Si{sub 20} liquid. The HA indices corresponding to the pentagonal bipyramid increase dramatically with decreasing temperature. VT analysis indicates that, while the liquid does exhibit a strong icosahedral SRO, fcc-like SRO is also measurable. The results from VT analysis are further confirmed using the recently developed atomic cluster-alignment method. Finally, self-diffusion constants, as a function of temperature for both Cu and Si species, are calculated.
Ab initio Eliashberg Theory: Making Genuine Predictions of Superconducting Features
Sanna, Antonio; Flores-Livas, José A.; Davydov, Arkadiy; Profeta, Gianni; Dewhurst, Kay; Sharma, Sangeeta; Gross, E. K. U.
2018-04-01
We present an application of Eliashberg theory of superconductivity to study a set of novel superconducting systems with a wide range of structural and chemical properties. The set includes three intercalated group-IV honeycomb layered structures, SH3 at 200 GPa (the superconductor with the highest measured critical temperature), the similar system SeH3 at 150 GPa, and a lithium doped mono-layer of black phosphorus. The theoretical approach we adopt is a recently developed, fully ab initio Eliashberg approach that takes into account the Coulomb interaction in a full energy-resolved fashion avoiding any free parameters like μ*. This method provides reasonable estimations of superconducting properties, including TC and the excitation spectra of superconductors.
Ab initio simulation of transport phenomena in rarefied gases.
Sharipov, Felix; Strapasson, José L
2012-09-01
Ab initio potentials are implemented into the direct simulation Monte Carlo (DSMC) method. Such an implementation allows us to model transport phenomena in rarefied gases without any fitting parameter of intermolecular collisions usually extracted from experimental data. Applying the method proposed by Sharipov and Strapasson [Phys. Fluids 24, 011703 (2012)], the use of ab initio potentials in the DSMC requires the same computational efforts as the widely used potentials such as hard spheres, variable hard sphere, variable soft spheres, etc. At the same time, the ab initio potentials provide more reliable results than any other one. As an example, the transport coefficients of a binary mixture He-Ar, viz., viscosity, thermal conductivity, and thermal diffusion factor, have been calculated for several values of the mole fraction.
Novikov, Vladimir P.; Tarasenko, Svetlana A.; Samdal, Svein; Vilkov, Lev V.
1998-04-01
Gas electron diffraction data are applied to determine the geometrical parameters of the 1,1-dichlorosilacyclobutane molecule using a dynamic model where the ring puckering was treated as a large amplitude motion. The structural parameters and parameters of the potential function were refined taking into account the relaxation of the molecular geometry estimated from ab initio calculations at the Hartree-Fock level of theory using a 6-311 + G∗∗ basis set. The potential function has been described as V(ϕ) = V 0[( {ϕ}/{ϕ e}) 2 - 1] 2 with the following parameters V 0 = 0.57 ± 0.32 {kcal}/{mol} and ϕe = 25.9 ± 2.6°, where ϕ is the puckering angle of the ring. The classic distribution function used for averaging the local molecular configurations was found to underestimate the value V0 by 8% as compared with the exact quantum mechanical distribution function. The geometric parameters at the minimum V( ϕ) ( r a in Å, ∠ α in degrees and errors given as three times the standard deviations including a scale error) are: r(Si-Cl ax) = 2.043(2), r(Si-Cl eq) = 2.038(2), r(Si-C) = 1.860(3), r(C-C) = 1.557(4), r(C-H) = 1.091(8), ∠ClSiCl = 105.2(8), ∠CSiC = 81.1(10), ∠SiCH eq = 118.9(54), ∠SiCH ax = 109.7(54), ∠CC 5H eq = 105.3(63), ∠CC 5H ax = 100.9(63), HC 3H = 108.0, ∠ δ(ClSiCl) = 4.1, ∠ δ(HC 3H) = 3.0, where the tilt angle δ, and ∠HC 3H are estimated from ab initio constraints. The structural parameters are compared with those obtained for related compounds. Distortions of the valence angles at the Si atom in silacyclobutanes are shown to be well explained using the VSEPR model complemented by the concept of bent bonds.
Ab initio prediction of stable nanotwin double layers and 4O structure in Ni.sub.2./sub.MnGa
Czech Academy of Sciences Publication Activity Database
Zelený, M.; Straka, Ladislav; Sozinov, A.; Heczko, Oleg
2016-01-01
Roč. 94, č. 22 (2016), s. 1-6, č. článku 224108. ISSN 2469-9950 R&D Projects: GA ČR GA16-00043S Institutional support: RVO:68378271 Keywords : ab initio * magnetic shape memory * martensite * modulation * Ni-Mn-Ga Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016
Energy Technology Data Exchange (ETDEWEB)
Yaghlane, Saida Ben [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications – LSAMA, Université de Tunis, Tunis (Tunisia); Cotton, C. Eric; Francisco, Joseph S., E-mail: francisc@purdue.edu, E-mail: hochlaf@univ-mlv.fr [Department of Chemistry and Department of Earth and Atmospheric Science, Purdue University, West Lafayette, Indiana 49707 (United States); Linguerri, Roberto; Hochlaf, Majdi, E-mail: francisc@purdue.edu, E-mail: hochlaf@univ-mlv.fr [Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est, 5 bd Descartes, 77454 Marne-la-Vallée (France)
2013-11-07
Accurate ab initio computations of structural and spectroscopic parameters for the HPS/HSP molecules and corresponding cations and anions have been performed. For the electronic structure computations, standard and explicitly correlated coupled cluster techniques in conjunction with large basis sets have been adopted. In particular, we present equilibrium geometries, rotational constants, harmonic vibrational frequencies, adiabatic ionization energies, electron affinities, and, for the neutral species, singlet-triplet relative energies. Besides, the full-dimensional potential energy surfaces (PESs) for HPS{sup x} and HSP{sup x} (x = −1,0,1) systems have been generated at the standard coupled cluster level with a basis set of augmented quintuple-zeta quality. By applying perturbation theory to the calculated PESs, an extended set of spectroscopic constants, including τ, first-order centrifugal distortion and anharmonic vibrational constants has been obtained. In addition, the potentials have been used in a variational approach to deduce the whole pattern of vibrational levels up to 4000 cm{sup −1} above the minima of the corresponding PESs.
Use of ab initio quantum chemical methods in battery technology
Energy Technology Data Exchange (ETDEWEB)
Deiss, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-06-01
Ab initio quantum chemistry can nowadays predict physical and chemical properties of molecules and solids. An attempt should be made to use this tool more widely for predicting technologically favourable materials. To demonstrate the use of ab initio quantum chemistry in battery technology, the theoretical energy density (energy per volume of active electrode material) and specific energy (energy per mass of active electrode material) of a rechargeable lithium-ion battery consisting of a graphite electrode and a nickel oxide electrode has been calculated with this method. (author) 1 fig., 1 tab., 7 refs.
Arjunan, V.; Balamourougane, P. S.; Saravanan, I.; Mohan, S.
2009-10-01
The Fourier transform infrared (FTIR) and FT-Raman spectra of 2-nitro-m-xylene (2NMX), 4-nitro-m-xylene (4NMX) and 5-nitro-m-xylene (5NMX) have been recorded in the range 4000-400 and 4000-100 cm -1, respectively. The experimental vibrational frequency was compared with that obtained theoretically by ab initio HF and DFT-B3LYP gradient calculations employing the standard 6-31G(d,p) basis set for the optimised geometries of the compounds. The complete vibrational assignment, analysis and correlation of the fundamental modes of the compounds were carried out using the experimental FTIR and FT-Raman data, and ab initio and DFT quantum chemical studies. The geometrical parameters and the wavenumbers of normal modes of vibration obtained from the HF and DFT methods are in good agreement with the experimental values. The potential energy distribution of the fundamental modes was calculated with ab initio force fields utilising Wilson's FG matrix method. The influence of bulky methyl groups on the nitro group fundamental modes and on the ring skeletal vibrations are investigated.
Ab initio studies on proton affinities of substituted furans
International Nuclear Information System (INIS)
Lee, Gab Yong; Lee, Hyun Mee
1998-01-01
The geometry of furan, relevant to the binding of bis-furan lexitropsin that contains this ring to the base pair of minor groove of DNA, is optimized by semiempirical (MNDO) and ab initio (Hartree-Fock) methods. The proton affinity and electronic structure are evaluated at the 6-31G and 6-31G level of theory for the optimized geometry. The proton affinities are also studied for various substituted furans with the electron donating and -withdrawing groups to estimate the substituent effect on the proton affinity of furans. It has been found that the electron-donating substituents increase the proton affinity of of furan, whereas the electron-withdrawing substituents decrease it. This result can be explained with atomic charge and electron density at oxygen of substituted furans
Quantum plasmonics: from jellium models to ab initio calculations
Directory of Open Access Journals (Sweden)
Varas Alejandro
2016-08-01
Full Text Available Light-matter interaction in plasmonic nanostructures is often treated within the realm of classical optics. However, recent experimental findings show the need to go beyond the classical models to explain and predict the plasmonic response at the nanoscale. A prototypical system is a nanoparticle dimer, extensively studied using both classical and quantum prescriptions. However, only very recently, fully ab initio time-dependent density functional theory (TDDFT calculations of the optical response of these dimers have been carried out. Here, we review the recent work on the impact of the atomic structure on the optical properties of such systems. We show that TDDFT can be an invaluable tool to simulate the time evolution of plasmonic modes, providing fundamental understanding into the underlying microscopical mechanisms.
Kas, Milaim; Loreau, Jérôme; Liévin, Jacques; Vaeck, Nathalie
2017-05-21
We have performed a systematic ab initio study on alkali and alkaline earth hydroxide neutral (MOH) and anionic (MOH - ) species where M = Li, Na, K, Rb, Cs or Be, Mg, Ca, Sr, Ba. The CCSD(T) method with extended basis sets and Dirac-Fock relativistic effective core potentials for the heavier atoms has been used to study their equilibrium geometries, interaction energies, electron affinities, electric dipole moment, and potential energy surfaces. All neutral and anionic species exhibit a linear shape with the exception of BeOH, BeOH - , and MgOH - , for which the equilibrium structure is found to be bent. Our analysis shows that the alkaline earth hydroxide anions are valence-bound whereas the alkali hydroxide anions are dipole bound. In the context of sympathetic cooling of OH - by collision with ultracold alkali and alkaline earth atoms, we investigate the 2D MOH - potential energy surfaces and the associative detachment reaction M + OH→- MOH + e - , which is the only energetically allowed reactive channel in the cold regime. We discuss the implication for the sympathetic cooling of OH - and conclude that Li and K are the best candidates for an ultracold buffer gas.
Energy Technology Data Exchange (ETDEWEB)
Oda, Y.; Koyama, T.; Funasaka, H. [Japan Nuclear Cycle Development Institute, Tokai Works (Japan)
2000-07-01
Ab initio molecular orbital calculations on the structure and stability of the complex of uranyl nitrate with water or tri-methyl phosphate (TMP) was performed using the Density Functional Theory with the basis set including the relativistic effects. When the aqua uranyl nitrate complex structure was calculated with two water molecules at the first coordination sphere, the optimized complex structure was not in agreement with the experimental data of [UO{sub 2}(NO{sub 3}){sub 2}(H{sub 2}O){sub 6}]. The optimization of the complex structure was improved by taking into account the influence of outer four water molecules at the second coordination sphere, which should bond with inner water molecules through the water hydrogen. It means the solution effect is not negligible for the coordination of the ligands such as water. For the H{sub 3}PO{sub 4} coordination, eight models were preferred, one group had the coordination angle of U-O-P in H{sub 3}PO{sub 4} is bent, and other group had straight and the four combinations of the direction of three O-H groups. [UO{sub 2}(NO{sub 3})2(H{sub 3}PO{sub 4}){sub 2}] had greater stability, when U-O-P angle was bent, and there were on the equatorial plane. Finally, the structure of [UO{sub 2}(NO{sub 3}){sub 2}TMP{sub 2}] is optimized, and the optimized geometry has agreement with experimental values. From the comparison of H{sub 3}PO{sub 4} and TMP coordination, the alkyl group in the organophosphorus ligand strongly influences the bond angle of U-O-P. (authors)
Cyanogen Azide. Ionization Potentials and Ab Initio SCF MO Calculation
DEFF Research Database (Denmark)
Bak, Börge; Jansen, Peter; Stafast, Herbert
1975-01-01
The Ne(I) and He(I) photoelectron(PE) spectra of cyanogen azide, NCN3, have been recorded at high resolution. Their interpretation is achieved by comparison with the PE spectrum of HN3 and an ab initio LCGO SCF MO calculation. Deviations from Koopmans' theorem of quite different magnitudes...
Quantifying transition voltage spectroscopy of molecular junctions: Ab initio calculations
DEFF Research Database (Denmark)
Chen, Jingzhe; Markussen, Troels; Thygesen, Kristian Sommer
2010-01-01
Transition voltage spectroscopy (TVS) has recently been introduced as a spectroscopic tool for molecular junctions where it offers the possibility to probe molecular level energies at relatively low bias voltages. In this work we perform extensive ab initio calculations of the nonlinear current...
Projector augmented wave method: ab initio molecular dynamics ...
Indian Academy of Sciences (India)
Unknown
The projector augmented wave method is an all-electron method for efficient ab initio molecular dynamics simulations with full wave functions. .... In that case the muffin–tin approximation is used solely to define the basis set. ..... functions probe the local character of the auxiliary wave function in the atomic region. Examples ...
Early stage precipitation in aluminum alloys : An ab initio study
Zhang, X.
2017-01-01
Multiscale computational materials science has reached a stage where many complicated phenomena or properties that are of great importance to manufacturing can be predicted or explained. The word “ab initio study” becomes commonplace as the development of density functional theory has enabled the
Young Modulus of Crystalline Polyethylene from ab Initio Molecular Dynamics
Hageman, J.C.L.; Meier, Robert J.; Heinemann, M.; Groot, R.A. de
1997-01-01
The Young modulus for crystalline polyethylene is calculated using ab initio molecular dynamics based on density functional theory in the local density approximation (DFT-LDA). This modulus, which can be seen as the ultimate value for the Young modulus of polyethylene fibers, is found to be 334 GPa.
Ab initio molecular dynamics simulation of laser melting of silicon
Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.
1996-01-01
The method of ab initio molecular dynamics, based on finite temperature density functional theory, is used to simulate laser heating of crystal silicon. We have found that a high concentration of excited electrons dramatically weakens the covalent bond. As a result, the system undergoes a melting
Ab initio calculations of mechanical properties: Methods and applications
Czech Academy of Sciences Publication Activity Database
Pokluda, J.; Černý, Miroslav; Šob, Mojmír; Umeno, Y.
2015-01-01
Roč. 73, AUG (2015), s. 127-158 ISSN 0079-6425 R&D Projects: GA ČR(CZ) GAP108/12/0311 Institutional support: RVO:68081723 Keywords : Ab initio methods * Elastic moduli * Intrinsic hardness * Stability analysis * Theoretical strength * Intrinsic brittleness/ductility Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 31.083, year: 2015
Realization of prediction of materials properties by ab initio ...
Indian Academy of Sciences (India)
Unknown
Ab initio treatment is becoming realistic to predict physical, chemical, and even mechanical pro- perties of academically and ... materials under very high pressure in earth by direct method, and prediction of wavelength of emitted light from Na clusters with GW .... observed band gap value for semiconductors. This big. Quasi- ...
Realization of prediction of materials properties by ab initio ...
Indian Academy of Sciences (India)
Ab initio treatment is becoming realistic to predict physical, chemical, and even mechanical properties of academically and industrially interesting materials. There is, however, some limitation in size and time of the system up to the order of several hundred atoms and ∼ 1 pico second, even if we use the fastest ...
Hao, Xiao-Hu; Zhang, Gui-Jun; Zhou, Xiao-Gen; Yu, Xu-Feng
2016-01-01
To address the searching problem of protein conformational space in ab-initio protein structure prediction, a novel method using abstract convex underestimation (ACUE) based on the framework of evolutionary algorithm was proposed. Computing such conformations, essential to associate structural and functional information with gene sequences, is challenging due to the high-dimensionality and rugged energy surface of the protein conformational space. As a consequence, the dimension of protein conformational space should be reduced to a proper level. In this paper, the high-dimensionality original conformational space was converted into feature space whose dimension is considerably reduced by feature extraction technique. And, the underestimate space could be constructed according to abstract convex theory. Thus, the entropy effect caused by searching in the high-dimensionality conformational space could be avoided through such conversion. The tight lower bound estimate information was obtained to guide the searching direction, and the invalid searching area in which the global optimal solution is not located could be eliminated in advance. Moreover, instead of expensively calculating the energy of conformations in the original conformational space, the estimate value is employed to judge if the conformation is worth exploring to reduce the evaluation time, thereby making computational cost lower and the searching process more efficient. Additionally, fragment assembly and the Monte Carlo method are combined to generate a series of metastable conformations by sampling in the conformational space. The proposed method provides a novel technique to solve the searching problem of protein conformational space. Twenty small-to-medium structurally diverse proteins were tested, and the proposed ACUE method was compared with It Fix, HEA, Rosetta and the developed method LEDE without underestimate information. Test results show that the ACUE method can more rapidly and more
Development of materials science by Ab initio powder diffraction analysis
International Nuclear Information System (INIS)
Fujii, Kotaro
2015-01-01
Crystal structure is most important information to understand properties and behavior of target materials. Technique to analyze unknown crystal structures from powder diffraction data (ab initio powder diffraction analysis) enables us to reveal crystal structures of target materials even we cannot obtain a single crystal. In the present article, three examples are introduced to show the power of this technique in the field of materials sciences. The first example is dehydration/hydration of the pharmaceutically relevant material erythrocycin A. In this example, crystal structures of two anhydrous phases were determined from synchrotron X-ray powder diffraction data and their different dehydration/hydration properties were understood from the crystal structures. In the second example, a crystal structure of a three dimensional metal-organic-framework prepared by a mechanochemical reaction was determined from laboratory X-ray powder diffraction data and the reaction scheme has been revealed. In the third example, a crystal structure of a novel oxide-ion conductor of a new structure family was determined from synchrotron X-ray and neutron powder diffraction data which gave an important information to understand the mechanism of the oxide-ion conduction. (author)
Perspective: Ab initio force field methods derived from quantum mechanics
Xu, Peng; Guidez, Emilie B.; Bertoni, Colleen; Gordon, Mark S.
2018-03-01
It is often desirable to accurately and efficiently model the behavior of large molecular systems in the condensed phase (thousands to tens of thousands of atoms) over long time scales (from nanoseconds to milliseconds). In these cases, ab initio methods are difficult due to the increasing computational cost with the number of electrons. A more computationally attractive alternative is to perform the simulations at the atomic level using a parameterized function to model the electronic energy. Many empirical force fields have been developed for this purpose. However, the functions that are used to model interatomic and intermolecular interactions contain many fitted parameters obtained from selected model systems, and such classical force fields cannot properly simulate important electronic effects. Furthermore, while such force fields are computationally affordable, they are not reliable when applied to systems that differ significantly from those used in their parameterization. They also cannot provide the information necessary to analyze the interactions that occur in the system, making the systematic improvement of the functional forms that are used difficult. Ab initio force field methods aim to combine the merits of both types of methods. The ideal ab initio force fields are built on first principles and require no fitted parameters. Ab initio force field methods surveyed in this perspective are based on fragmentation approaches and intermolecular perturbation theory. This perspective summarizes their theoretical foundation, key components in their formulation, and discusses key aspects of these methods such as accuracy and formal computational cost. The ab initio force fields considered here were developed for different targets, and this perspective also aims to provide a balanced presentation of their strengths and shortcomings. Finally, this perspective suggests some future directions for this actively developing area.
A Review of Solid-Solution Models of High-Entropy Alloys Based on Ab Initio Calculations
Directory of Open Access Journals (Sweden)
Fuyang Tian
2017-11-01
Full Text Available Similar to the importance of XRD in experiments, ab initio calculations, as a powerful tool, have been applied to predict the new potential materials and investigate the intrinsic properties of materials in theory. As a typical solid-solution material, the large degree of uncertainty of high-entropy alloys (HEAs results in the difficulty of ab initio calculations application to HEAs. The present review focuses on the available ab initio based solid-solution models (virtual lattice approximation, coherent potential approximation, special quasirandom structure, similar local atomic environment, maximum-entropy method, and hybrid Monte Carlo/molecular dynamics and their applications and limits in single phase HEAs.
Energy Technology Data Exchange (ETDEWEB)
Ventelon, L. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DANS/DMN/SRMP), 91 - Gif-sur-Yvette (France)
2008-07-01
In the framework of the multi scale simulation of metals and alloys plasticity, the aim of this study is to develop a methodology of ab initio dislocations study and to apply it to the [111] screw dislocation in the bc iron. (A.L.B.)
Energy Technology Data Exchange (ETDEWEB)
Pavloudis, Th. [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Zervos, M. [Nanostructured Materials and Devices Laboratory, Department of Mechanical and Manufacturing Engineering, PO Box 20537, Nicosia 1678 (Cyprus); Komninou, Ph. [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Kioseoglou, J., E-mail: sifisl@auth.gr [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece)
2016-08-31
We carry out ab initio electronic structure calculations of (Si{sub x}Sn{sub 1−x}){sub 3}N{sub 4} using density functional theory with projector augmented-wave potentials under the generalized gradient approximation. We find that the energetically favorable structure of Sn{sub 3}N{sub 4} is the face-centered cubic spinel structure, followed by the hexagonal structure which has energy band gaps of 1.85 eV and 1.44 eV respectively. The (Si{sub x}Sn{sub 1−x}){sub 3}N{sub 4} ternary compound can exhibit both cubic and hexagonal crystal structures over the full range of x. However, the cubic structure is found to be energetically favorable for x < 0.3 above which the hexagonal structure of (Si{sub x}Sn{sub 1−x}){sub 3}N{sub 4} dominates. The energy band gap can be tuned continuously from 1.44 eV up to 5.8 eV in the case of the hexagonal crystal structure of (Si{sub x}Sn{sub 1−x}){sub 3}N{sub 4} and from 1.85 eV to 4.82 eV in the case of cubic (Si{sub x}Sn{sub 1−x}){sub 3}N{sub 4}. Nevertheless the energy gap of (Si{sub x}Sn{sub 1−x}){sub 3}N{sub 4} is direct only for x < 0.3 when it is cubic and for x < 0.5 when hexagonal. - Highlights: • (Si{sub x}Sn{sub 1−x}){sub 3}N{sub 4} exhibits both cubic and hexagonal crystal structures. • The cubic structure is favorable for x < 0.3 and the hexagonal structure for x > 0.3. • The bandgap of hexagonal (Si{sub x}Sn{sub 1−x}){sub 3}N{sub 4} may be tuned from 1.44 eV up to 5.8 eV. • The bandgap may be tuned from 1.85 eV to 4.82 eV for the cubic (Si{sub x}Sn{sub 1−x}){sub 3}N{sub 4}. • Bandgaps are direct for x < 0.3 (cubic) and for x < 0.5 3 (hexagonal (Si{sub x}Sn{sub 1−x}){sub 3}N{sub 4}).
Energy Technology Data Exchange (ETDEWEB)
Neef, Matthias
2007-03-19
Aim of this thesis was to reach by a systematic study of different ab initio procedures an improved description of the electronic properties of FeSi and FeGe. Central result is the itinerant description of FeSi as a semiconductor in the neighbourhood of a ferromagnetic instability. The regardment of the nonlocal exchange in the effective one-particle approximation leads to a metastable magnetic state scarcely above the magnetic ground state. The application of the hybrid functional leads to a 1st order metal-isolator transition for large lattice parameters: FeSi transforms at increasement of the lattice parameter from an unmagnetic isolator to a magnetic metal. A similar behavior is found in the isostructural compound FeGe. The two systems FeSi and FeGe were systematically and detailedly analyzed by means of ab initio procedures. Thereby the structural, electronic, and magnetic properties were studied with DFT and HF calculations. Both calculations with spin polarization and without spin polarization were performed.
Double-walled silicon nanotubes: an ab initio investigation
Lima, Matheus P.
2018-02-01
The synthesis of silicon nanotubes realized in the last decade demonstrates multi-walled tubular structures consisting of Si atoms in {{sp}}2 and the {{sp}}3 hybridizations. However, most of the theoretical models were elaborated taking as the starting point {{sp}}2 structures analogous to carbon nanotubes. These structures are unfavorable due to the natural tendency of the Si atoms to undergo {{sp}}3. In this work, through ab initio simulations based on density functional theory, we investigated double-walled silicon nanotubes proposing layered tubes possessing most of the Si atoms in an {{sp}}3 hybridization, and with few {{sp}}2 atoms localized at the outer wall. The lowest-energy structures have metallic behavior. Furthermore, the possibility to tune the band structure with the application of a strain was demonstrated, inducing a metal-semiconductor transition. Thus, the behavior of silicon nanotubes differs significantly from carbon nanotubes, and the main source of the differences is the distortions in the lattice associated with the tendency of Si to make four chemical bonds.
Ab initio theory of magnetic correlations in itinerant magnets
International Nuclear Information System (INIS)
Ling, M.F.
1997-01-01
One of the challenging problems in modern magnetism is the description of the paramagnetic state because at finite temperatures the effect of spin fluctuation plays a fundamental role in altering the electronic structure. In magnetic metals, the magnetic properties are linked to the underlying spin-polarised electronic structure in a highly complex manner. In recent years, first-principles electronic structure theories based on the spin density functional (SDF) theory have been able to provide a quantitative account of many ground-state magnetic properties. In this article, the effect of spin fluctuation on the spin-polarised electronic structure and thus the magnetic properties will be discussed and its incorporation into ab initio calculations explained. If the magnetic and compositional ordering energies of magnetic metallic alloys are close, the compositional and magnetic correlations can profoundly influence each other. A theoretical formalism for treating these correlations within the framework of a first-principle electronic structure theory will be elaborated and the application to a number of magnetic alloys discussed and compared with experiments. (author)
Homologous series of layered structures in binary and ternary Bi-Sb-Te-Se systems : Ab initio study
Govaerts, K.; Sluiter, M.H.F.; Partoens, B.; Lamoen, D.
2014-01-01
In order to account explicitly for the existence of long-periodic layered structures and the strong structural relaxations in the most common binary and ternary alloys of the Bi-Sb-Te-Se system, we have developed a one-dimensional cluster expansion (CE) based on first-principles electronic structure
Ab initio Molecular Orbital Studies of the Vibrational Spectra of some ...
African Journals Online (AJOL)
NJD
2004-06-15
Jun 15, 2004 ... The binary complexes formed between sulphur dioxide, as electron donor, and the series carbon dioxide, carbonyl sulphide and carbon disulphide, as electron acceptors, have been studied by means of ab initio molecular orbital theory. The optimized structures, the interaction energies and the vibrational ...
Dispersion Interactions between Rare Gas Atoms: Testing the London Equation Using ab Initio Methods
Halpern, Arthur M.
2011-01-01
A computational chemistry experiment is described in which students can use advanced ab initio quantum mechanical methods to test the ability of the London equation to account quantitatively for the attractive (dispersion) interactions between rare gas atoms. Using readily available electronic structure applications, students can calculate the…
Ab initio molecular dynamics simulation of hydrogen fluoride at several thermodynamic states
DEFF Research Database (Denmark)
Kreitmeir, M.; Bertagnolli, H.; Mortensen, Jens Jørgen
2003-01-01
Liquid hydrogen fluoride is a simple but interesting system for studies of the influence of hydrogen bonds on physical properties. We have performed ab initio molecular dynamics simulations of HF at several thermodynamic states, where we examine the microscopic structure of the liquid as well as ...
Ab initio and DFT study of Octanitrocubane. | Ejuh | Journal of the ...
African Journals Online (AJOL)
The molecular stability, structure, dipole moment, charge transfer, polarizability and energy of Octonitrocubane have been studied by using ab- initio Quantum Mechanical calculations. We have used the Restricted Hartree-Fock (RHF) and density functional Becke3LYP (B3LYP) theories by employing 6-31G, 6- 31++G** and ...
Ab initio study of antiphase boundaries and stacking faults in L12 and DO22 compounds
DEFF Research Database (Denmark)
Rosengaard, N. M.; Skriver, Hans Lomholt
1994-01-01
We have performed ab initio calculations of the energies of antiphase boundaries as well as complex and superlattice intrinsic stacking faults in nine intermetallic compounds observed in the face-centered-cubic L1(2) and DO22 structures. The calculations were performed by means of a Green...
Sambathkumar, K; Jeyavijayan, S; Arivazhagan, M
2015-08-05
Combined experimental and theoretical studies were conducted on the molecular structure and vibrational spectra of 4-AminoPhthalhydrazide (APH). The FT-IR and FT-Raman spectra of APH were recorded in the solid phase. The molecular geometry and vibrational frequencies of APH in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking 6-311+G(d,p) basis set. The optimized geometric bond lengths and bond angles obtained by HF and B3LYP method show best agreement with the experimental values. Comparison of the observed fundamental vibrational frequencies of APH with calculated results by HF and density functional methods indicates that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems. The difference between the observed and scaled wave number values of most of the fundamentals is very small. A detailed interpretation of the NMR spectra of APH was also reported. The theoretical spectrograms for infrared and Raman spectra of the title molecule have been constructed. UV-vis spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, were performed by time dependent density functional theory (TD-DFT) approach. Finally the calculations results were applied to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra. And the temperature dependence of the thermodynamic properties of constant pressure (Cp), entropy (S) and enthalpy change (ΔH0→T) for APH were also determined. Copyright © 2015 Elsevier B.V. All rights reserved.
Limbu, Dil K.; Atta-Fynn, Raymond; Drabold, David A.; Elliott, Stephen R.; Biswas, Parthapratim
2017-11-01
We present a force-biased Monte Carlo (FMC) method for structural modeling of the transition-metal clusters of Fe, Ni, and Cu with sizes of 13, 30, and 55 atoms. By employing the Finnis-Sinclair potential for Fe and the Sutton-Chen potential for Ni and Cu, the total energy of the clusters is minimized using the local gradient of the potentials in Monte Carlo simulations. The structural configurations of the clusters, obtained from the biased Monte Carlo approach, are analyzed and compared with the same configurations from the Cambridge Cluster Database (CCD) upon relaxation of the clusters using the first-principles density-functional code nwchem. The results show that the total-energy value and the structure of the FMC clusters are essentially identical to the corresponding value and the structure of the CCD clusters. A comparison of the nwchem-relax FMC and CCD structures is presented by computing the pair-correlation function, the bond-angle distribution, the coordination number of the first-coordination shell, and the Steinhardt bond-orientational order parameter, which provide information about the two- and three-body correlation functions, the local bonding environment of the atoms, and the geometry of the clusters. An atom-by-atom comparison of the FMC and CCD clusters is also provided by superposing one set of clusters onto another, and the electronic properties of the clusters are addressed by computing the density of electronic states.
Yildizhan, Gulsum; Caliskan, Serkan; Ozturk, Ramazan
2018-04-01
Nanoparticles composed of palladium and platinum are particularly interesting for catalytic purposes, for instance, selective hydrogenation and alcohol oxidation. The reactivity and selectivity of nanostructures are mostly based on the size and shape of the nanocrystals in catalytic reactions. In this work, we studied the structural stabilities of Pd and Pt based nanocubes and nanocages and adsorption strength of chemisorbed species on these nanostructures to investigate their structure dependent catalytic activities. Solid cubic and hollow cage like nanostructures of different sizes were designed with Pd and Pt atoms. The volume of the crystal cavity in nanocage structures was tuned by removing of atoms from solid cubic structure. The effect of size and shape on the formation energies and HOMO-LUMO energy gap of nanostructures were elucidated and correlated to structural stabilities, hardness-softness, electronegativity and electrophilicity index. The relationship between size and chemical reactivity clearly showed that increasing the number of atoms participating in a catalyst enhances the activity. For further understanding of the catalytic activity we employed 4-nitro thiophenol, as an S-donor representative molecule, to evaluate the adsorption characteristics of the nanostructures.
Structural stability and decomposition of Mg(BH4)2 isomorphs - an ab initio free energy study
DEFF Research Database (Denmark)
Voss, Johannes; Hummelshøj, Jens Strabo; Lodziana, Z.
2009-01-01
of the unstable modes, we have obtained a new F222 structure, which has a lower energy than all previously experimentally and theoretically proposed phases of Mg( BH4) 2 and is free of imaginary eigenmodes. A new meta-stable high-density I4(1)/amd structure is also derived from the I (4) over bar m2 phase......We present the first comprehensive comparison between free energies, based on a phonon dispersion calculation within density functional theory, of theoretically predicted structures and the experimentally proposed a (P6(1)) and beta (Fddd) phases of the promising hydrogen storage material Mg(BH4)(2......). The recently proposed low-density I (4) over bar m2 ground state is found to be thermodynamically unstable, with soft acoustic phonon modes at the Brillouin zone boundary. We show that such acoustic instabilities can be detected by a macroscopic distortion of the unit cell. Following the atomic displacements...
Czech Academy of Sciences Publication Activity Database
Adler, R. W.; Allen, P. R.; Hnyk, Drahomír; Rankin, D. W. H.; Robertson, H. E.; Smart, B. A.; Gillespie, R. J.; Bytheway, I.
1999-01-01
Roč. 64, č. 12 (1999), s. 4226-4232 ISSN 0022-3263 Institutional research plan: CEZ:AV0Z4032918 Keywords : structure * initio calculations * 3,3-Diethylpentane Subject RIV: CC - Organic Chemistry Impact factor: 3.440, year: 1999
Finding the Stable Structures of WxN1-x with an ab-initio High-Throughput Approach
2014-03-13
properties must be energetically stable against decomposition into other compounds. This stability can only be found after the determination of the...polarized. However, in every structure the self-consistent magnetic moment was negligible, and the final calculations were all done assuming no moment. The...of NaCl) we looked at all 255 combinations. We found 34 unique structures, including NbO itself, CsCl, S3U4, ReO3,[59] cubic perovskite (with formula
Structural, elastic and magnetic properties of Mn and Sb doped chromium nitride – An ab initio study
International Nuclear Information System (INIS)
Ikram Un Nabi Lone; Sheik Sirajuddeen M Mohamed; Shameem Banu, I.B.; Sathik Basha, S.
2017-01-01
Structural, magnetic and elastic properties of Mn and Sb doped CrN were investigated by the electronic band structure calculations using Full Potential Linear Augmented Plane Wave (FP-LAPW) method. The host compound CrN was doped with Mn and Sb separately, in the doping concentration of 12.5% to replace Cr atoms. The introduction of Mn and Sb atoms replacing the Cr atoms does not change the structural stability of the compound. The changes in magnetic and elastic properties were investigated and compared in GGA and GGA+U methods. The doped CrN undergoes a relative increase in the magnetic order with the substitution of Mn and Sb atoms. In GGA method, the magnetic moments are found to be greater in Mn doped CrN than that found in Sb doped Cr 0.875 NSb 0.125 . When doped with Sb, the elastic moduli such as Young’s modulus, bulk modulus and rigidity modulus show a relative increase in comparison with that in Mn doped CrN. Using Hubbard model in GGA+U method, both the magnetic and elastic properties increase in Mn and Sb doped compounds. - Highlights: • Mn and Sb doped Chromium Nitride. • Structural properties. • Magnetic properties. • Elastic properties.
Structural, electronic, and mechanical properties of CoN and NiN. An ab initio study
Energy Technology Data Exchange (ETDEWEB)
Amudhavalli, A.; Manikandan, M.; Cinthia, A. Jemmy; Rajeswarapalanichamy, R. [NMSSVN College, Tamil Nadu (India). Dept. of Physics; Iyakutti, K. [SRM Univ., Tamil Nadu (India). Dept. of Physics and Nanotechnology
2017-07-01
The structural stabilities of cobalt mononitride (CoN) and nickel mono-nitride (NiN) were investigated among the crystal structures, namely, NaCl (B1), CsCl (B2), and zinc blende (B3). It was found that the zinc blende (B3) phase was the most stable phase for both nitrides. A pressure-induced structural phase transition from B3 to B1 phase was predicted in these nitrides. The computed lattice parameter values were in agreement with the experimental values and other theoretical values. The electronic structures reveal that these nitrides are metallic at zero pressure. The computed elastic constants indicate that CoN and NiN are mechanically stable in the B1 and B3 phases. The variations of the elastic constants, bulk modulus, shear modulus, Poisson's ratio, and elastic anisotropy factor with pressure were investigated. The Debye temperature θ{sub D} values are reported for both the nitrides in their B1 and B3 phases. The high-pressure NaCl phase of both CoN and NiN were found to be ferromagnetic.
Rajpoot, Priyanka; Rastogi, Anugya; Verma, U. P.
2018-02-01
Structural, electronic, optical and thermal properties of molybdenum aluminum boride (MoAlB) have been analyzed systematically using the full potential linearized augmented plane wave method based on density functional theory at ambient condition as well as high pressure and high temperature. Density of states and band structure calculation reflect the metallic character of MoAlB. In addition to this, the electron charge density calculation reveals the strong covalent bonding, in between ‘B’ atoms as well as ‘Mo’ and ‘B’ atoms. Optical parameters exhibit anisotropic nature and MoAlB become transparent in ultraviolet region for the radiation of energy above 25 eV. The thermal properties were investigated by using the quasi-harmonic Debye model at high temperature and high pressure.
Jadidi, Khosrow; Khaligh, Nader Ghaffari; Islami, Parisa; Aryan, Reza; Arvin-Nezhad, Hamid
2009-02-01
A detailed study of structural parameters and internal rotational barriers in α-stannyl, germanium and silicon carbamates 1 [H 3 CX-CH 2-N(Me)CO 2Me X dbnd C, Si, Ge, Sn] were calculated at HF/6-311G, HF/3-21G and B3LYP/3-21G//HF/3-21G levels and compared with DNMR data of synthesized molecules and a literature X-ray data. Two minimum-energy conformers, namely A and B, with almost similar energies were found for these molecules. Effect of heteroatom on structure and relative energies ( Erel) between the participants in the conformational equilibrium (A ↔ B) of these carbamates has been investigated.
Ferreira, Ary R.; Küçükbenli, Emine; de Gironcoli, Stefano; Souza, Wladmir F.; Chiaro, Sandra Shirley X.; Konstantinova, Elena; Leitão, Alexandre A.
2013-09-01
The activation of highly catalytic γ-alumina surfaces by thermal treatment and the description of the related chemical processes at atomic scale is a topical issue. According to a recent study [J. Am. Chem. Soc. 134 (2012) 14430], the enhanced reactivity of γ-alumina has been associated to tri-coordinated aluminum sites which supposedly are exposed exclusively on the (1 1 0) surfaces of this oxide. In this work, we explore this possibility by modeling the (1 0 0) and (1 1 0) terminations using Krokidis et al. [J. Phys. Chem. B 105 (2001) 5121] bulk structure and performing an extensive search of the most stable hydrated surface models at conditions consistent with experiment. Among the 156 structures analyzed, we identify several “metastable” models for the (1 1 0) surface with a considerable probability of containing the AlIII centers at OH coverages of 9.0 and 6.0 OH/nm2. We then test the reactivity of these sites through their Lewis acidity by simulating the CO adsorbtion on the surface and our results confirm the high reactivity of AlIII centers. Based on the Gibbs free energy of the explored structures, we carry on a thermodynamical analysis at varying hydroxylation degrees and pretreatment temperatures and simulate the experimental volcano-type behavior reported in [J. Am. Chem. Soc. 134 (2012) 14430] and predict the optimum pretreatment temperature as 700 °C, in very good agreement with experimental findings. We further use infrared and solid state MAS NMR spectroscopies and reproduce the 1H MAS NMR spectra under high vacuum conditions (10-5 Torr). The strong resemblance of spectra to the experimental ones in the literature [J. Phys. Chem. C 116 (2012) 834] validate further the structural models we have generated in this study.
Czech Academy of Sciences Publication Activity Database
Romanyuk, Olexandr; Supplie, O.; Susi, T.; May, M.M.; Hannappel, T.
2016-01-01
Roč. 94, č. 15 (2016), s. 1-9, č. článku 155309. ISSN 2469-9950 R&D Projects: GA ČR GF16-34856L Institutional support: RVO:68378271 Keywords : interface structure * GaP/Si heterointerface * interface electronic states * core- level shifts Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016
Directory of Open Access Journals (Sweden)
H A Badehian
2015-07-01
Full Text Available In recent work the structural, electronic and optical properties of BSb compound in bulk and surface (110 states have been studied. Calculations have been performed using Full-Potential Augmented Plane Wave (FP-LAPW method by WIEN2k code in Density Functional Theory (DFT framework. The structural properties of the bulk such as lattice constant, bulk module and elastic constants have been investigated using four different approximations. The band gap energy of the bulk and the (110 surface of BSb were obtained about 1.082 and 0.38 eV respectively. Moreover the surface energy, the work function, the surface relaxation, surface state and the band structure of BSb (110 were investigated using symmetric and stoichiometric 15 layers slabs with the vacuum of 20 Bohr. In addition, the real and imaginary parts of the dielectric function of the bulk and the BSb (110 slab were calculated and compared to each other. Our obtained results have a good agreement with the available results.
The ab-initio crystal structure determination of UPd 2Sn by synchrotron X-ray powder diffraction
Marezio, M.; Cox, D. E.; Rossel, C.; Maple, M. B.
1988-09-01
The structure of the heavy-fermion compound UPd 2Sn has been determined by synchrotron x-ray radiation powder diffraction techniques. It is orthorhombic, space group Pnma [lattice parameters a = 9.9787(1), b = 4.58843(5), c = 6.89166(8) Å at room temperature] and Z = 4. All atoms, one U, one Sn, and two Pd are in 4d special positions at (x {1}/{4} z). The refinements were carried out by the Rietveld method with a pseudo-Voigt peak shape function. The final conventional R factors were: R wp = 21.3% and R E = 14.3%. The U positions in the unit cell were unequivocally located, but because of the similarity in x-ray scattering factors it was not possible to determine whether the Pd atoms and the Sn atoms are ordered or disordered on the other three sites. The structural arrangement of UPd 2Sn is of either MnCu 2Al, or ordered NaTl, or disordered Fe 3Al type, all these structures being cubic and b.c.c. related. The orthorhombic distortion is large and is probably due to a size effect of the U atoms which would be in a mixed ( {3+}/{4+}) valence state.
International Nuclear Information System (INIS)
Ferreira, Ary R.; Küçükbenli, Emine; Gironcoli, Stefano de; Souza, Wladmir F.; Chiaro, Sandra Shirley X.; Konstantinova, Elena; Leitão, Alexandre A.
2013-01-01
Highlights: • Some γ-Alumina surface models already reported in the literature were revisited. • From statistical thermodynamics experimental volcano-type curve was simulated. • From GIPAW calculations H-1 MAS NMR spectra also could be simulated. - Abstract: The activation of highly catalytic γ-alumina surfaces by thermal treatment and the description of the related chemical processes at atomic scale is a topical issue. According to a recent study [J. Am. Chem. Soc. 134 (2012) 14430], the enhanced reactivity of γ-alumina has been associated to tri-coordinated aluminum sites which supposedly are exposed exclusively on the (1 1 0) surfaces of this oxide. In this work, we explore this possibility by modeling the (1 0 0) and (1 1 0) terminations using Krokidis et al. [J. Phys. Chem. B 105 (2001) 5121] bulk structure and performing an extensive search of the most stable hydrated surface models at conditions consistent with experiment. Among the 156 structures analyzed, we identify several “metastable” models for the (1 1 0) surface with a considerable probability of containing the Al III centers at OH coverages of 9.0 and 6.0 OH/nm 2 . We then test the reactivity of these sites through their Lewis acidity by simulating the CO adsorbtion on the surface and our results confirm the high reactivity of Al III centers. Based on the Gibbs free energy of the explored structures, we carry on a thermodynamical analysis at varying hydroxylation degrees and pretreatment temperatures and simulate the experimental volcano-type behavior reported in [J. Am. Chem. Soc. 134 (2012) 14430] and predict the optimum pretreatment temperature as 700 °C, in very good agreement with experimental findings. We further use infrared and solid state MAS NMR spectroscopies and reproduce the 1 H MAS NMR spectra under high vacuum conditions (10 -5 Torr). The strong resemblance of spectra to the experimental ones in the literature [J. Phys. Chem. C 116 (2012) 834] validate further the
Energy Technology Data Exchange (ETDEWEB)
Ferreira, Ary R. [Universidade Federal de Juiz de Fora (UFJF), Department of Chemistry, Juiz de Fora, MG 36036-330 (Brazil); Küçükbenli, Emine [École Polytechnique Fédérale de Lausanne (EPFL), STI IMX THEOS, CH-1015 Lausanne (Switzerland); Gironcoli, Stefano de [Scuola Internazionale Superiore di Studi Avanzati (SISSA), Condensed Matter Theory Sector, Via Bonomea 265, I-34136 Trieste (Italy); CNR-IOM DEMOCRITOS Simulation Center, Via Bonomea 265, I-34136 Trieste (Italy); Souza, Wladmir F.; Chiaro, Sandra Shirley X. [PETROBRAS-CENPES, Ilha do Fundão, Rio de Janeiro, RJ 21941-915 (Brazil); Konstantinova, Elena [IFSudeste MG, Department of Natural Sciences, Juiz de Fora, MG 36080-001 (Brazil); Leitão, Alexandre A., E-mail: alexandre.leitao@ufjf.edu.br [Universidade Federal de Juiz de Fora (UFJF), Department of Chemistry, Juiz de Fora, MG 36036-330 (Brazil)
2013-09-23
Highlights: • Some γ-Alumina surface models already reported in the literature were revisited. • From statistical thermodynamics experimental volcano-type curve was simulated. • From GIPAW calculations H-1 MAS NMR spectra also could be simulated. - Abstract: The activation of highly catalytic γ-alumina surfaces by thermal treatment and the description of the related chemical processes at atomic scale is a topical issue. According to a recent study [J. Am. Chem. Soc. 134 (2012) 14430], the enhanced reactivity of γ-alumina has been associated to tri-coordinated aluminum sites which supposedly are exposed exclusively on the (1 1 0) surfaces of this oxide. In this work, we explore this possibility by modeling the (1 0 0) and (1 1 0) terminations using Krokidis et al. [J. Phys. Chem. B 105 (2001) 5121] bulk structure and performing an extensive search of the most stable hydrated surface models at conditions consistent with experiment. Among the 156 structures analyzed, we identify several “metastable” models for the (1 1 0) surface with a considerable probability of containing the Al{sub III} centers at OH coverages of 9.0 and 6.0 OH/nm{sup 2}. We then test the reactivity of these sites through their Lewis acidity by simulating the CO adsorbtion on the surface and our results confirm the high reactivity of Al{sub III} centers. Based on the Gibbs free energy of the explored structures, we carry on a thermodynamical analysis at varying hydroxylation degrees and pretreatment temperatures and simulate the experimental volcano-type behavior reported in [J. Am. Chem. Soc. 134 (2012) 14430] and predict the optimum pretreatment temperature as 700 °C, in very good agreement with experimental findings. We further use infrared and solid state MAS NMR spectroscopies and reproduce the {sup 1}H MAS NMR spectra under high vacuum conditions (10{sup -5} Torr). The strong resemblance of spectra to the experimental ones in the literature [J. Phys. Chem. C 116 (2012) 834
Ab initio calculations on structural and electronic transport properties of six-atom GaN clusters
Song, Jinfeng; Long, Xiaojiang; Hao, Yanjun; Zhu, Jun; Guo, Yundong
2017-11-01
The structural and electronic transport properties of GaxNy (x + y = 6) clusters are investigated in the framework of density functional theory (DFT). To get their most stable structures, a strategy of particle swarm optimization (PSO) algorithm is adopted. It is found that the most stable cluster’s binding energy and HOMO-LUMO gap energy decrease with Ga atom’s number in cluster increasing. The electronic transport properties of the clusters connected with two Al(100) electrodes are obtained by a method of combining nonequilibrium Green’s function (NEGF) with DFT. Equilibrium conductance of all six-atom GaN cluster is low (less than 0.65 G0), and Ga2N4 has the highest one (0.635 G0). Significant negative differential resistance (NDR) phenomenon is observed in configurations with cluster Ga2N4, Ga3N3 and Ga5N1, and these three clusters have almost the same current value in voltage region from 0.8 V to 1.3 V.
Srinivasu, K; Chandrakumar, K R S; Ghosh, Swapan K
2010-11-25
Although the boron hydrides are well-known in the literature, the aluminum hydride chemistry is limited to very few systems such as AlH(3), its dimer, and its polymeric form. In view of the recent experimental studies on the possible existence of the aluminum hydrides, herein, we have undertaken a systematic study on the electronic structure and properties of these aluminum hydrides. Under this, we have studied different classes of hydrides, viz., closo (Al(n)H(n+2)), nido (Al(n)H(n+4)), and arachno (Al(n)H(n+6)), similar to the boranes. All the aluminum hydrides are found to have exceptionally large highest-occupied molecular orbital-lowest-unoccupied molecular orbital gaps, low electron affinities, large ionization potentials and also large enthalpy and free energy of atomization. In addition, most of the structures are also found to have high symmetries. These exceptional properties can be indicative of the pronounced stability, and hence, it is expected that other aluminum hydride complexes can indeed be observed experimentally.
Polariton Bose condensate in an open system: Ab initio approach
Elistratov, A. A.; Lozovik, Yu. E.
2018-01-01
In the framework of path-integral formalism and Keldysh technique for a nonequilibrium system we explore the kinetics of the polariton condensate in a quantum well embedded in an optical microcavity. We take into account pumping and leakage of excitons and photons. We make an ab initio derivation of the equations governing the dynamics of the condensates and reservoirs and show that the real open polariton system has a non-Markovian character at times comparable to the Rabi oscillation period.
DFT and ab initio study of structure of dyes derived from 2-hydroxy and 2,4-dihydroxy benzoic acids.
Dabbagh, Hossein A; Teimouri, Abbas; Chermahini, Alireza Najafi; Shahraki, Maryam
2008-02-01
We present a detailed analysis of the structural, infrared spectra and visible spectra of a series of azo dyes preparation of salicylic acid and 2,4-dihydroxy benzoic acid derivatives as the coupling component. The preparation of these azo dyes with salicylic acid and 2,4-dihydroxy benzoic acid derivatives (salicylic acid, methyl salicylate, ethyl salicylate, butyl salicylate, methyl 2,4-dihydroxy benzoate, ethyl 2,4-dihydroxy benzoate, salicylaldehyde, salicylamide, 2,4-dihydroxy benzamide, salicylaldoxime) have been investigated theoretically by performing HF and DFT levels of theory using the standard 6-31G* basis set. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational spectral data obtained from solid phase FT-IR spectra are assigned modes based on the results of the theoretical calculations. The observed spectra are found to be in good agreement with the calculations.
Staunton, J. B.; Ostanin, S.; Razee, S. S.; Gyorffy, B. L.; Szunyogh, L.; Ginatempo, B.; Bruno, Ezio
2004-12-01
Using a first-principles, relativistic electronic structure theory of finite temperature metallic magnetism, we investigate the variation of magnetic anisotropy K with magnetization M in metallic ferromagnets. We apply the theory to the high uniaxial K material, L10-ordered FePt, and find its magnetic easy axis perpendicular to the Fe/Pt layers for all M and K to be proportional to M2 for a broad range of values of M. For small M, near the Curie temperature, the calculations pick out the easy axis for the onset of magnetic order. Our abinitio results for this important magnetic material agree well with recent experimental measurements, whereas the single-ion anisotropy model fails to give the correct qualitative behavior.
Slassi, A.; Hammi, M.; El Rhazouani, O.
2017-07-01
The surface relaxations, surface energies and electronic structures of BaO- and SnO2-terminated BaSnO3 (001) surfaces have been studied by employing the first-principles density functional theory. For both terminations, we find that the upper-layer Ba and Sn atoms move inward, whereas upper-layer O atoms move outward from the surface. Moreover, the largest relaxations are occurred on the first-layer atoms of both terminations. The surface rumpling of BaO-terminated BaSnO3 (001) is slightly less than that of the SnO2-terminated BaSnO3 (001) surface. The surface energies show that both terminated surfaces are energetically stable and favorable. Finally, the surface band gap is slightly decreased for the BaO termination, while it is dramatically decreased for the SnO2 termination.
International Nuclear Information System (INIS)
Guo, G.Y.; Wang, Y.K.; Chen, Y.Y.
2004-01-01
We have carried out a theoretical study of the electronic structure and magnetic properties of both bulk and supercell slab CeCo 2 . The calculations are based on first-principles density functional theory with generalized gradient approximation (GGA) and also with the GGA+U scheme. Both GGA and GGA+U calculations predict bulk CeCo 2 to be nonmagnetic, in agreement with experiments. However, calculations for a supercell slab with a 14 A thickness, show that the system becomes ferrimagnetic. In particular, the local magnetic moments on all the Ce and Co atoms in the thin film are pronounced. This suggests that surface effect may play a significant role in the magnetism observed in nano-particle CeCo 2
Gao, Meng; Li, Qingzhong; Li, Wenzuo; Cheng, Jianbo
2015-04-07
The interplay between cation-π and coinage-metal-oxygen interactions are investigated in the ternary systems N⋅⋅⋅PhCCM⋅⋅⋅O (N=Li(+), Na(+), Mg(2+); M=Ag, Au; O=water, methanol, ethanol). A synergetic effect is observed when cation-π and coinage-metal-oxygen interactions coexist in the same complex. The cation-π interaction in most triads has a greater enhancing effect on the coinage-metal-oxygen interaction. This effect is analyzed in terms of the binding distance, interaction energy, and electrostatic potential in the complexes. Furthermore, the formation, strength, and nature of both the cation-π and coinage-metal-oxygen interactions can be understood in terms of electrostatic potential and energy decomposition. In addition, experimental evidence for the coexistence of both interactions is obtained from the Cambridge Structural Database (CSD). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energy Technology Data Exchange (ETDEWEB)
Murtaza, G., E-mail: murtaza@icp.edu.pk [Materials Modeling Laboratory, Department of Physics, Islamia College Peshawar (Pakistan); Gupta, S.K. [Department of Physics, Michigan Technological University, Houghton, MI 49931 (United States); Seddik, T. [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 Mascara (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 Mascara (Algeria); Alahmed, Z.A. [Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Ahmed, R. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Khachai, H. [Physics Department, Djillali Liabes University of Sidi Bel-Abbes (Algeria); Jha, P.K. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar 364001 (India); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia)
2014-06-01
Highlights: • REGa{sub 3} (RE = Sc or Lu) compounds are mechanical stabile. • Both ScGa{sub 3} and LuGa{sub 3} exhibit metallic behavior just like other REGa{sub 3} compounds. • Melting temperature T{sub m} (K) for ScGa{sub 3} and LuGa{sub 3} are 1244.2 and 1143.8. • High absorption observed in the visible energy region. • The present study would be helpful for future experimental/theoretical explorations. - Abstract: Structural, elastic, optoelectronic and thermodynamic properties of REGa{sub 3} (RE = Sc and Lu) compounds have been studied self consistently by employing state of the art full potential (FP) linearized (L) approach of augmented plane wave (APW) plus local orbitals method. Calculations were executed at the level of Perdew–Burke and Ernzerhof (PBE) parameterized generalized gradient approximation (GGA) for exchange correlation functional in addition to modified Becke–Johnson (mBJ) potential. Our obtained results of lattice parameters show reasonable agreement to the previously reported experimental and other theoretical studies. Analysis of the calculated band structure of ScGa{sub 3} and LuGa{sub 3} compounds demonstrates their metallic character. Moreover, a positive value of calculated Cauchy pressure, in addition to reflecting their ductile nature, endorses their metallic character as well. To understand optical behavior calculations related to the important optical parameters; real and imaginary parts of the dielectric function, reflectivity R(ω), refractive index n(ω) and electron energy-loss function L(ω) have also been performed. In the present work, thermodynamically properties are also investigated by employing lattice vibrations integrated in quasi harmonic Debye model. Obtained results of volume, heat capacity and Debye temperature as a function of temperature for both compounds, at different values of pressure, are found to be consistent. The calculated value of melting temperature for both compounds (ScGa{sub 3} and Lu
Ab-initio calculations for dilute magnetic semiconductors
Energy Technology Data Exchange (ETDEWEB)
Belhadji, Brahim
2008-03-03
This thesis focusses on ab-initio calculations for the electronic structure and the magnetic properties of dilute magnetic semiconductors (DMS). In particular we aim at the understanding of the complex exchange interactions in these systems. Our calculations are based on density functional theory, being ideally suited for a description of the material specific properties of the considered DMS. Moreover we use the KKR Green function method in connection with the coherent potential approximation (CPA), which allows to include the random substitutional disorder in a mean field-like approximation for the electronic structure. Finally we calculate the exchange coupling constants J{sub ij} between two impurities in a CPA medium by using the Lichtenstein formula and from this calculate the Curie temperature by a numerically exact Monte Carlo method. Based on this analysis we found and investigated four different exchange mechanisms being of importance in DMS systems: Double exchange, p-d exchange, antiferromagnetic superexchanges, and ferromagnetic superexchange. A second topic we have investigated in this thesis is the pressure dependence of the exchange interactions and the Curie temperatures in (Ga,Mn)As and (In,Mn)As, using the LDA and the LDA+U approximations. Exact calculations of T{sub C} by Monte Carlo simulations show a somehow different behavior. (orig.)
Ab initio calculation of structural and magnetic properties for Fe mono- and bilayers on Mo(1 1 0)
International Nuclear Information System (INIS)
Qian, X.; Wagner, F.; Petersen, M.; Huebner, W.
2000-01-01
The atomic structures were optimized and magnetic moments calculated for the pseudomorphic Fe overlayers on Mo(1 1 0) substrates employing the all-electron full-potential linearized augmented plane-wave (FP-LAPW) method. Three slabs were considered: (i) 5 monolayer (ML) Mo(1 1 0) substrate, (ii) and (iii) 1 and 2 ML pseudomorphic Fe overlayers on each side of 5 ML Mo(1 1 0) substrate. We found that for the bare Mo substrate, the top Mo-Mo interlayer spacing is contracted by 4.8% with respect to the theoretical bulk Mo(1 1 0) interlayer distance of 2.238 A. For the 1 ML Fe coverage, the Fe-Mo interlayer spacing has a contraction of 10.3% with respect to the calculated bulk Mo(1 1 0) interlayer spacing, while, for the 2 ML Fe, it is reduced by 9.5%. The Fe-Fe interlayer spacing is also contracted by as much as 11.4% with respect to the theoretical bulk Fe(1 1 0) interlayer distance of 2.004 A. The inner Mo-Mo interlayer spacings are slightly expanded ( B compared to the bulk value of 2.2 μ B . For 2 ML Fe coverage, the magnetic moments are 2.81 μ B and 2.32 μ B for the surface and interface Fe layers, respectively
Wong, Kin Mun; Khan, Wilayat; Shoaib, M.; Shah, Umar; Khan, Shah Haider; Murtaza, G.
2018-01-01
The structural, electronic and optical properties of the Li2In2XY6 (X = Si, Ge; Y = S, Se) compounds, which are scarcely studied by theoretical methods previously, have been investigated by ab initio calculations based on the density functional theory (DFT) in this article by using the full potential linearized augmented plane wave method. The equilibrium structural ground state properties of the Li2In2XY6 (X = Si, Ge; Y = S, Se) compounds such as the lattice parameters were obtained from the structural optimization process (with the Perdew-Burke-Ernzerhof generalized gradient approximation), and they are in close agreement with the experimental lattice parameters. Conversely, calculations by the modified Becke Johnson exchange potential indicates that the Li2In2XY6 (X = Si, Ge; Y = S, Se) compounds are semiconductors with direct energy band gaps. It is clearly observed from the DFT-calculated partial density of states, that there are significant contributions of the S- s and S- p states in the Li2In2SiS6 and Li2In2GeS6 compounds as well as the Se- s and Se- p states in the Li2In2SiSe6 and Li2In2GeSe6 compounds, respectively. The calculated band gaps ranging from 1.92 eV to 3.24 eV of the Li2In2XY6 (X = Si, Ge; Y = S, Se) compounds are in good agreement with the experimental results, where the calculated band gap values are positioned in the visible region of the electromagnetic spectrum; therefore, these materials can be efficiently used for opto-electronic and optical applications. Furthermore, some general trends are observed in the optical responses of the compounds, which are possibly correlated to the energy band gaps when the X cations changes from Si to Ge and the Y anions changes from S to Se in the Li2In2XY6 (X = Si, Ge; Y = S, Se) compounds, respectively.
Energy Technology Data Exchange (ETDEWEB)
Hura, Greg; Russo, Daniela; Glaeser, Robert M.; Head-Gordon,Teresa; Krack, Matthias; Parrinello, Michele
2003-03-01
We present high-quality X-ray scattering experiments on pure water taken over a temperature range of 2 to 77 C using a synchrotron beam line at the advanced light source (ALS) at Lawrence Berkeley National Laboratory. The ALS X-ray scattering intensities are qualitatively different in trend of maximum intensity over this temperature range compared to older X-ray experiments. While the common procedure is to report both the intensity curve and radial distribution function(s), the proper extraction of the real-space pair correlation functions from the experimental scattering is very difficult due to uncertainty introduced in the experimental corrections, the proper weighting of OO, OH, and HH contributions, and numerical problems of Fourier transforming truncated data in Q-space. Instead, we consider the direct calculation of X-ray scattering spectra using electron densities derived from density functional theory based on real-space configurations generated with classical water models. The simulation of the experimental intensity is therefore definitive for determining radial distribution functions over a smaller Q-range. We find that the TIP4P, TIP5P and polarizable TIP4P-Pol2 water models, with DFT-LDA densities, show very good agreement with the experimental intensities, and TIP4P-Pol2 in particular shows quantitative agreement over the full temperature range. The resulting radial distribution functions from TIP4P-Pol2 provide the current best benchmarks for real-space water structure over the biologically relevant temperature range studied here.
International Nuclear Information System (INIS)
Hura, Greg; Russo, Daniela; Glaeser, Robert M.; Head-Gordon, Teresa; Krack, Matthias; Parrinello, Michele
2003-01-01
We present high-quality X-ray scattering experiments on pure water taken over a temperature range of 2 to 77 C using a synchrotron beam line at the advanced light source (ALS) at Lawrence Berkeley National Laboratory. The ALS X-ray scattering intensities are qualitatively different in trend of maximum intensity over this temperature range compared to older X-ray experiments. While the common procedure is to report both the intensity curve and radial distribution function(s), the proper extraction of the real-space pair correlation functions from the experimental scattering is very difficult due to uncertainty introduced in the experimental corrections, the proper weighting of OO, OH, and HH contributions, and numerical problems of Fourier transforming truncated data in Q-space. Instead, we consider the direct calculation of X-ray scattering spectra using electron densities derived from density functional theory based on real-space configurations generated with classical water models. The simulation of the experimental intensity is therefore definitive for determining radial distribution functions over a smaller Q-range. We find that the TIP4P, TIP5P and polarizable TIP4P-Pol2 water models, with DFT-LDA densities, show very good agreement with the experimental intensities, and TIP4P-Pol2 in particular shows quantitative agreement over the full temperature range. The resulting radial distribution functions from TIP4P-Pol2 provide the current best benchmarks for real-space water structure over the biologically relevant temperature range studied here
Energy Technology Data Exchange (ETDEWEB)
Bernard, St
1998-12-31
The quest for metallic hydrogen is a major goal for both theoretical and experimental condensed matter physics. Hydrogen and deuterium have been compressed up to 200 GPa in diamond anvil cells, without any clear evidence for a metallic behaviour. Loubeyere has recently suggested that hydrogen could metallize, at pressures within experimental range, in a new Van der Waals compound: Ar(H{sub 2}){sub 2} which is characterized at ambient pressure by an open and anisotropic sublattice of hydrogen molecules, stabilized by an argon skeleton. This thesis deals with a detailed ab initio investigation, by Car-Parrinello molecular dynamics methods, of the evolution under pressure of this compound. In a last chapter, we go to much higher pressures and temperatures, in order to compare orbital and orbital free ab initio methods for the dense hydrogen plasma. (author) 109 refs.
Ab initio modelling of transition metals in diamond
International Nuclear Information System (INIS)
Watkins, M; Mainwood, A
2003-01-01
Transition metals (TM) from the first transition series are commonly used as solvent catalysts in the synthesis of diamond by high pressure, high temperature processes. Ab initio calculations on these metals, in finite clusters of tetrahedrally coordinated carbon, enable us to investigate trends in their stability and properties. By carrying out systematic studies of interstitial, substitutional and semi-vacancy TM defects, we show that the electronic structure of the TMs is complicated by the presence of 'dangling bonds' when the TM disrupts the crystal lattice: interstitial defects conform to the Ludwig-Woodbury (LW) model, whilst substitutional and semi-vacancy defects move from approximating the LW model early in the transition series to approaching the vacancy model for the heavier metals. Multi-configurational self-consistent field methods allow genuine many-electron states to be modelled; for neutral interstitial, and all substitutional TMs, the crystal fields are found to exceed the exchange energies in strength. Consequently, low spin states are found for these defects. We find substitutional defects to be the most stable, but that semi-vacancy TMs are very similar in energy to the substitutional defects late in the transition series; interstitial defects are only metastable in diamond. Given appropriate charge compensators neutral and positively charged interstitial TM defects were stable, while negatively charged species appeared to be strongly disfavoured
Perovskite transparent conducting oxides: an ab initio study.
Dabaghmanesh, S; Saniz, R; Amini, M N; Lamoen, D; Partoens, B
2013-10-16
We present an ab initio study of the electronic structure and of the formation energies of various point defects in BaSnO3 and SrGeO3. We show that La and Y impurities substituting Ba or Sr are shallow donors with a preferred 1 + charge state. These defects have a low formation energy within all the suitable equilibrium growth conditions considered. Oxygen vacancies behave as shallow donors as well, preferring the 2 + charge state. Their formation energies, however, are higher in most growth conditions, indicating a limited contribution to conductivity. The calculated electron effective mass in BaSnO3, with a value of 0.21 m(e), and the very high mobility reported recently in La-doped BaSnO3 single-crystals, suggest that remarkably low scattering rates can be achieved in the latter. In the case of SrGeO3, our results point to carrier density and mobility values in the low range for typical polycrystalline TCOs, in line with experiment.
Energy Technology Data Exchange (ETDEWEB)
Ganster, P
2004-10-15
A calcium aluminosilicate glass of molar composition 67 % SiO{sub 2} - 12 % Al{sub 2}O{sub 3} - 21 % CaO was modelled by classical and ab initio molecular dynamics. The size effect study in classical MD shows that the systems of 100 atoms are more ordered than the larger ones. These effects are mainly due to the 3-body terms in the empirical potentials. Nevertheless, these effects are small and the structures generated are in agreement with experimental data. In such kind of glass, we denote an aluminium avoidance and an excess of non bridging oxygens which can be compensated by tri coordinated oxygens. When the dynamics of systems of 100 and 200 atoms is followed by ab initio MD, some local arrangements occurs (bond length, angular distributions). Thus, more realistic vibrational properties are obtained in ab initio MD. The modelling of thin films shows that aluminium atoms extend to the most external part of the surface and they are all tri-coordinated. Calcium atoms are set in the sub layer part of the surface and they produce a depolymerization of the network. In classical MD, tri-coordinated aluminium atoms produce an important electric field above the surface. With non bridging oxygens, they constitute attractive sites for single water molecules. (author)
DEFF Research Database (Denmark)
Shim, Irene; Baba, M. Sai; Gingerich, K.A.
2002-01-01
The low-lying states of the molecule Ge-2 and of the ion Ge-2(-) have been investigated by all electron ab initio multiconfiguration self-consistent field (CASSCF) and multi-reference configuration interaction (MRCI) calculations. The relativistic corrections for the Darwin contact term...... and for the mass-velocity term have been determined in perturbation calculations. Treatment of the spin-orbit coupling has been included. The ground state of Ge-2 is derived as 0(g)(+)((3)Sigma(g)(-)) with equilibrium distance 2.422 Angstrom, and vibrational frequency 270 cm(-1). The spectroscopic constants of 15...... excited states are presented. Thermal functions based on the theoretically determined molecular parameters were used to derive the thermodynamic properties of the Ge-2 molecule from new mass spectrometric equilibrium data. The literature value for the dissociation energy of Ge-2 has been re...
DEFF Research Database (Denmark)
Berg, Rolf W.
2007-01-01
system of staggered (approximate D3d symmetry), in analogy with the linear Al-O-Al geometry of the analogous [Al2OF6]2- ion, found previously. The calculations included determination of the vibrational harmonic normal modes and the infrared and Raman spectra, (vibrational band wavenumbers and intensities......), without any empiric adjustments of the harmonic force constants, using constants directly predicted from the Gaussian 03W program. Previously obtained IR absorption and Raman scattering spectra of melts are assigned, by comparing to the ab initio quantum mechanical vibrational analysis results....... It is concluded that the small oxide content commonly found in basic and neutral tetrachloroaluminate melts, most probably consist of [Al4O2Cl10]2- ions and the vibrational spectra are given....
DEFF Research Database (Denmark)
Shim, Irene; Gingerich, K. A.
1984-01-01
In the present study we present all-electron ab initio Hartree–Fock (HF) and configuration interaction (CI) calculations of the 2Sigma+ ground state as well as of 16 excited states of the RhC molecule. The calculated spectroscopic constants of the lowest lying states are in good agreement...... with the experimental data. The chemical bond in the electronic ground state is mainly due to interaction of the 4d orbitals of Rh with the 2s and 2p orbitals of C. The bond is a triple bond composed of two pi bonds and one sigma bond. The 5s electron of Rh hardly participates in the bond formation. It is located...
Energy Technology Data Exchange (ETDEWEB)
Fernandez-Liencres, M.P. [Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaen (Spain)], E-mail: liencres@ujaen.es; Navarro, A. [Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaen (Spain); Ben Altabef, A. [Instituto de Quimica Fisica, Facultad de Bioquimica, Quimica y Farmacia, Universidad Nacional de Tucuman, San Lorenzo 456, 4000 S.M. de Tucuman (Argentina); Lopez-Gonzalez, J.J. [Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaen (Spain); Fernandez-Gomez, M. [Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaen (Spain); Kearley, G.J. [Department of Radiation, Radionuclides and Reactors, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)
2006-11-08
The molecular geometry for trimethylsilylisocyanate ((CH{sub 3}){sub 3}SiNCO) has been calculated at MP2 and DFT/B3LYP and DFT/B3PW91 methods, and using the 6-31G*, 6-311G**, 6-311++G**, cc-pVDZ and cc-pVTZ basis sets. The equilibrium structure of the molecule, linear or bent as concerns the -SiNCO moiety, was found to rely on the method employed. The potential energy surface of -SiNC bending has been investigated by quantum mechanical ab initio calculations at MPn (n = 2-4) and QCISD(T) levels of theory with the cc-pVTZ basis set. This large amplitude bending motion (the {upsilon} {sub 24} mode) was determined to be very anharmonic, with a low barrier to linearity of the SiNCO skeleton of {approx}4-25 cm{sup -1}. New vapour and liquid IR, liquid Raman spectra and, for first time, INS spectrum have been recorded, and a complete vibrational assignment has been performed. INS data have allowed to assign two modes at 674 cm{sup -1} and 141 cm{sup -1} which, so far, have been considered as silent, i.e. A{sub 2}, since previous authors have used a frame of C {sub 3v} symmetry for this system. The intermolecular interactions show to have little effect on the torsional region (below 250 cm{sup -1} in INS spectrum) and the isolated-molecule approximation works well in that region. A normal coordinate analysis has been carried out by scaling the force fields calculated at MP2/6-311++G** and B3LYP/cc-pVDZ levels of theory using the scaled quantum mechanical force field (SQMFF) methodology. In order to get the best possible agreement between calculated and observed vibrational wavenumbers, the scale factors were refined by least squares yielding a final r.m.s. of {approx}7 cm{sup -1}.
Approaches to ab initio molecular replacement of α-helical transmembrane proteins.
Thomas, Jens M H; Simkovic, Felix; Keegan, Ronan; Mayans, Olga; Zhang, Chengxin; Zhang, Yang; Rigden, Daniel J
2017-12-01
α-Helical transmembrane proteins are a ubiquitous and important class of proteins, but present difficulties for crystallographic structure solution. Here, the effectiveness of the AMPLE molecular replacement pipeline in solving α-helical transmembrane-protein structures is assessed using a small library of eight ideal helices, as well as search models derived from ab initio models generated both with and without evolutionary contact information. The ideal helices prove to be surprisingly effective at solving higher resolution structures, but ab initio-derived search models are able to solve structures that could not be solved with the ideal helices. The addition of evolutionary contact information results in a marked improvement in the modelling and makes additional solutions possible.
An ab initio molecular dynamics study
Indian Academy of Sciences (India)
Abstract. The hydration structure and translocation of an excess proton in hydrogen bonded water clusters of two different sizes are investigated by means of finite tempera- ture quantum simulations. The simulations are performed by employing the method of. Car–Parrinello molecular dynamics where the forces on the ...
Approaches to ab initio molecular replacement of α-helical transmembrane proteins
Thomas, Jens M. H.; Simkovic, Felix; Keegan, Ronan; Mayans, Olga; Zhang, Chengxin; Zhang, Yang; Rigden, Daniel J.
2017-01-01
α-Helical transmembrane proteins are a ubiquitous and important class of proteins, but present difficulties for crystallographic structure solution. Here, the effectiveness of the AMPLE molecular replacement pipeline in solving α-helical transmembrane-protein structures is assessed using a small library of eight ideal helices, as well as search models derived from ab initio models generated both with and without evolutionary contact information. The ideal helices prove to be surprisingly effe...
Efficient conformational space exploration in ab initio protein folding simulation.
Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A Z M Dayem; Rahman, M Sohel
2015-08-01
Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic-polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency.
Ab initio simulation of amorphous silicon
International Nuclear Information System (INIS)
Cooper, N.C.; McKenzie, D.R.; Goringe, C.M.
1999-01-01
Full text: A first-principles Car-Parrinello molecular dynamics simulation of amorphous silicon is presented. Density Functional Theory is used to describe the forces between the atoms in a 64 atom supercell which is periodically repeated throughout space in order to generate an infinite network of atoms (a good approximation to a real solid). A quench from the liquid phase is used to achieve a quenched amorphous structure, which is subjected to an annealing cycle to improve its stability. The final, annealed network is in better agreement with experiment than any previous simulation of amorphous silicon. Significantly, the predicted average first-coordination numbers of 3.56 and 3.84 for the quenched and annealed structures from this simulation agree very closely with the experimental values of 3.55 and 3.90 respectively, whereas all previous simulations yielded first coordination numbers greater than 4. This improved agreement in coordination numbers is important because it supports the experimental finding that dangling bonds (which are associated with under-coordinated atoms) are more prevalent than floating bonds (the strained, longer bond of a five coordinate atom) in pure amorphous silicon. Finally, the effect of adding hydrogen to amorphous silicon was investigated by specifically placing hydrogen atoms at the likely defect sites. After a structural relaxation to optimise the positions of these hydrogen atoms, the localised electronic states associated with these defects are absent. Thus hydrogen is responsible for removing these defect states (which are able to trap carriers) from the edge of the band gap of the amorphous silicon. These results confirm the widely held ideas about the effect of hydrogen in producing remarkable improvements in the electronic properties of amorphous silicon
Hunca, Batu; Dharmawardhana, Chamila; Sakidja, Ridwan; Ching, Wai-Yim
2016-10-01
The thermomechanical properties and electronic structure of vitreloy (Z r41.2T i13.8C u12.5N i10B e22.5 ) are investigated using accurate ab initio molecular dynamic (AIMD) simulations and ab initio calculations. The structure of the model with 512 atoms is validated by comparison to the experimental data with calculated thermomechanical properties in good agreement with the existing measurements. Detailed calculation of the electronic structure and bonding at the density functional level is obtained. It is revealed that the traditional definition of bond length in metallic glasses has a limited interpretation, and any theory based on geometrical consideration of their values for discussion on the structural units in metallic glasses has similarly limited applications. On the other hand, we advocate the use of a quantum mechanical based metric, the total bond order density (TBOD), and their partial components or PBOD as valuable parameters to characterize the interatomic bonding in multicomponent glasses such as vitreloy.
Ab Initio Studies of Metal Hexaboride Materials
Schmidt, Kevin M.
Metal hexaborides are refractory ceramics with several qualities relevant to materials design, such as low work functions, high hardness, low thermal expansion coefficients, and high melting points, among many other properties of interest for industrial applications. Thermal and mechanical stability is a common feature provided by the covalently-bonded network boron atoms, and electronic properties can vary significantly with the resident metal. While these materials are currently employed as electron emitters and abrasives, promising uses of these materials also include catalytic applications for chemical dissociation reactions of various molecules such as hydrogen, water and carbon monoxide, for example. However, these extensions require a thorough understanding of particular mechanical and electronic properties. This dissertation is a collection of studies focused on understanding the behavior of metal hexaboride materials using computational modeling methods to investigate materials properties of these from both classical and quantum mechanical points of view. Classical modeling is performed using molecular dynamics methods with interatomic potentials obtained from density functional theory (DFT) calculations. Atomic mean-square displacements from the quasi-harmonic approximation and lattice energetic data are produced with DFT for developing the potentials. A generalized method was also developed for the inversion of cohesive energy curves of crystalline materials; pairwise interatomic potentials are extracted using detailed geometrical descriptions of the atomic interactions and a list of atomic displacements and degeneracies. The surface structure of metal hexaborides is studied with DFT using several model geometries to describe the terminal cation layouts, and these provide a basis for further studies on metal hexaboride interactions with hydrogen. The surface electronic structure calculations show that segregated regions of metal and boron
Energy Technology Data Exchange (ETDEWEB)
Dannenberg, Antje
2011-08-30
The mechanism which causes many of the unusual thermomechanical properties of martensitic alloys, as for example, superelasticity and the shape-memory effect, is the martensitic transformation. The prototype ferromagnetic shape memory alloy (FSMA) is Ni{sub 2}MnGa. But a technological breakthrough is missing due to its poor ductility and low operation temperatures. The goal of this thesis is the proposal of new FSMA appropriate for future technological applications. I focus on X{sub 2}YZ Heusler alloys which are mainly based on Mn, Fe, Co, and Ni for the X and Y sites and Z=Ga or Zn. The big challenge of this work is to find material classes which combine the unique magnetomechanical properties of FSMA which are large recoverable magnetostrictive strains, high magnetocrystalline anisotropy energy, and highly mobile twin boundaries with transformation temperatures clearly above room temperature and a reduced brittleness. Such a study, providing material classes which from a theoretical point of view are promising candidates for future FSMA, will help the experimental physicists to select interesting subgroups in the vast number of possible chemical compositions of X{sub 2}YZ Heusler alloys. I have systematically varied the composition in the new Heusler alloys in order to find trends indicating generic tendencies of the material properties, for instance, as a function of the valence electron concentration e/a. A main feature of this thesis is the attempt to find the origin of the competing structural ordering tendencies between conventional X{sub 2}YZ and inverse (XY)XZ Heusler structures which are observed for all systems investigated. In the first part of this work the accuracy and predictive power of ab initio and Monte Carlo simulations is demonstrated by reproducing the experimental phase diagram of Ni-Mn-(Ga,In,Sn,Sb). The linear increasing and decreasing slopes of T{sub M} and T{sub C} can be reproduced by total and free energy calculations and the analysis
Ab-initio theory of scanning tunneling microscopy
di Ventra, M.; Pantelides, S. T.
1998-03-01
An ab-initio theory of the Scanning Tunneling Microscope (STM) has been developed by treating the sample and the tip as a single system. The theory combines density functional theory with the Kubo-Greenwood linear-response formalism for the conductivity( See, e.g., N.F. Mott in Conduction in Non-Crystalline Materials), (Oxford University Press, Oxford, 1987).. The current is computed by taking into account the atomic relaxations that occur on both the surface and the tip due to their mutal interactions. Illustrative examples will be presented for the case of a clean Al(110) surface and the same surface with a vacancy.
Hydrogen diffusion in liquid aluminum from ab initio molecular dynamics
Jakse, N.; Pasturel, A.
2014-05-01
Ab initio molecular dynamics simulations are used to describe the diffusion of hydrogen in liquid aluminum at different temperatures. Quasi-instantaneous jumps separating periods of localized vibrations around a mean position are found to characterize the hydrogen motion at the microscopic scale. The hydrogen motion is furthermore analyzed using the van Hove function. We highlight a non-Fickian behavior for the hydrogen diffusion due to a large spatial distribution of hydrogen jumps. We show that a generalized continuous time random walk (CTRW) model describes the experimental diffusion coefficients in a satisfactory manner. Finally, the impact of impurities and alloying elements on hydrogen diffusion in aluminum is discussed.
Tailoring magnetoresistance at the atomic level: An ab initio study
Tao, Kun
2012-01-05
The possibility of manipulating the tunneling magnetoresistance (TMR) of antiferromagnetic nanostructures is predicted in the framework of ab initio calculations. By the example of a junction composed of an antiferromagnetic dimer and a spin-polarized scanning tunneling microscopy tip we show that the TMR can be tuned and even reversed in sign by lateral and vertical movements of the tip. Moreover, our finite-bias calculations demonstrate that the magnitude and the sign of the TMR can also be tuned by an external voltage. © 2012 American Physical Society.
Resolution of ab initio shapes determined from small-angle scattering
Directory of Open Access Journals (Sweden)
Anne T. Tuukkanen
2016-11-01
Full Text Available Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models.
Ab initio study of ideal tensile strength and mechanical stability of transition-metal disilicides
Czech Academy of Sciences Publication Activity Database
Friák, Martin; Šob, Mojmír; Vitek, V.
2003-01-01
Roč. 68, č. 18 (2003), s. 184101-1 - 181101-10 ISSN 0163-1829 R&D Projects: GA AV ČR IAA1041302; GA ČR GA202/03/1351; GA MŠk OC 523.90 Institutional research plan: CEZ:AV0Z2041904 Keywords : ab initio calculations * electronic structure * theoretical tensile strength Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.962, year: 2003
Ab initio calculations of ideal tensile strength and mechanical stability in copper
Czech Academy of Sciences Publication Activity Database
Černý, M.; Šob, Mojmír; Pokluda, J.; Šandera, P.
2004-01-01
Roč. 16, č. 7 (2004), s. 1045-1052 ISSN 0953-8984 R&D Projects: GA ČR GA202/03/1351; GA AV ČR IAA1041302 Grant - others:GA MŠk1(CZ) 262100002 Institutional research plan: CEZ:AV0Z2041904 Keywords : ab initio calculations * electronic structure * theoretical tensile strength Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.049, year: 2004
Ab initio dynamics of the cytochrome P450 hydroxylation reaction
Energy Technology Data Exchange (ETDEWEB)
Elenewski, Justin E.; Hackett, John C, E-mail: jchackett@vcu.edu [Department of Physiology and Biophysics and The Massey Cancer Center, School of Medicine, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23219-1540 (United States)
2015-02-14
The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.
Stacey, Timothy E; Fredrickson, Daniel C
2012-07-14
Qualitative molecular orbital theory is central to our understanding of the bonding and reactivity of molecules and materials across chemistry. Advances in computational technology and methodology, however, have made ab initio or density functional theory calculations a simpler alternative, offering reliable results on increasingly large systems in a reasonable time-scale without the need for concerns about the approximations and parameterization of semi-empirical one-electron based methods. In this perspective, we illustrate how the availability of higher-level computational results can augment, rather than supplant, the insights provided by approaches such as the simple and extended Hückel methods. We begin by describing a way to parameterize Hückel-type Hamiltonians against DFT results for intermetallic systems. The potential for chemical understanding embodied by such orbital-based models is then demonstrated with two schemes of bonding analysis that originated in them (but can be extended to DFT results): the μ(3)-acid/base model and the μ(2)-Hückel chemical pressure analysis, which translate the molecular concepts of acidity and electronic/steric competition, respectively, into the context of intermetallic chemistry.
Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study
International Nuclear Information System (INIS)
Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil
2016-01-01
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg 10 In 90 , Hg 30 In 70,. Hg 50 In 50 , Hg 70 In 30 , and Hg 90 Pb 10 ) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.
Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study
Energy Technology Data Exchange (ETDEWEB)
Sharma, Nalini, E-mail: nalini-2808@yahoo.co.in; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University, Shimla-1771005 (India); Thakur, Anil [Department Of Physics, Govt. College Solan, Himachal Pradesh-173212 (India)
2016-05-23
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70,.} Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30}, and Hg{sub 90}Pb{sub 10}) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.
Hyperfine Parameters for Aluminum Hydride: An ab Initio Molecular Orbital Study.
Gee, Myrlene; Wasylishen, Roderick E.
2001-06-01
An extensive ab initio molecular orbital study of the (27)Al nuclear spin-rotation and nuclear quadrupolar coupling constants in aluminum hydride, AlH, has been performed. The (27)Al nuclear spin-rotation constant (C( perpendicular)), calculated to be approximately 300 kHz, was neglected in a previous analysis of the hyperfine structure in the microwave spectrum (M. Goto and S. Saito, Astrophys. J. 452, L147-148 (1995)). Unfortunately, the ab initio calculations do not provide a definitive value for the aluminum nuclear quadrupolar coupling constant, but suggest a value of -49+/-4 MHz. It is apparent that the microwave study of AlH should be repeated. Copyright 2001 Academic Press.
Implementation of a vector potential method in an ab initio Hartree-Fock code
Tevekeliyska, Violina; Springborg, Michael; Champagne, Benoît; Kirtman, Bernard
2012-12-01
For extended systems exposed to an external, electrostatic field, the presence of the field leads to an extra term (E⃗. P⃗) to the Hamiltonian, where E⃗ is the field vector and P⃗ is the polarization of the system of interest. In order to find out how a polymer chain responds to an external electric perturbation, a field with a charge and a current term for the polarization is added to an ab initio Hartree-Fock Hamiltonian. The polarization expression is taken from an efficient vector potential approach (VPA) [1] for calculating electronic and nuclear responses of infinite periodic systems to finite electric fields and is implemented in the ab initio LCAO-SCF algorithm [3], which computes band structure of regular or helical polymers, taking into account the one-dimensional translational symmetry. A smoothing procedure for numerical differentiation of the orbital coefficients is used in order to calculate self-consistently the charge flow contribution to the polarization.
An ab initio study of plutonium oxides surfaces; Etude ab initio des surfaces d'oxydes de Pu
Energy Technology Data Exchange (ETDEWEB)
Jomard, G.; Bottin, F.; Amadon, B
2007-07-01
By means of first-principles calculations, we have studied the atomic structure as well as the thermodynamic stability of various plutonium dioxide surfaces in function of their environment (in terms of oxygen partial pressure and temperature). All these simulations have been performed with the ABINIT code. It is well known that DFT fails to describe correctly plutonium-based materials since 5f electrons in such systems are strongly correlated. In order to go beyond DFT, we have treated PuO{sub 2} and {beta}-Pu{sub 2}O{sub 3} in a DFT+U framework. We show that the couple of parameters (U,J) that works well for pure Pu is also well designed for describing ground state (GS) properties of these two oxides. The major improvement with respect with DFT is that we are able to predict an insulating GS in agreement with experiments. The presence of a gap in the DOS (Density of States) of plutonium oxides should play a significant role in the predicted surface reactivity. However, performing DFT+U calculations on surfaces of plutonium oxide from scratch was too ambitious. That is why we decided, as a first step, to study the stability of the (100), (110) and (111) surfaces of PuO{sub 2} in a DFT-GGA framework. For each of these orientations, we considered various terminations. These ab initio results have been introduced in a thermodynamic model which allows us to predict the relative stability of the different terminations as a function of temperature and oxygen partial pressure (p{sub O{sub 2}}). We conclude that at room temperature and for p{sub O{sub 2}}{approx}10 atm., the polar O{sub 2}-(100) termination is favoured. The stabilization of such a polar stoichiometric surface is surprising and should be confirmed by DFT+U calculations before any final conclusion. (authors)
Embedded atom approach for gold–silicon system from ab initio
Indian Academy of Sciences (India)
In the present paper, an empirical embedded atom method (EAM) potential for gold–silicon (Au–Si) is developed by fitting to ab initio force (the 'force matching' method) and experimental data. The force database is generated within ab initio molecular dynamics (AIMD). The database includes liquid phase at various ...
Ab initio and Gordon--Kim intermolecular potentials for two nitrogen molecules
International Nuclear Information System (INIS)
Ree, F.H.; Winter, N.W.
1980-01-01
Both ab initio MO--LCAO--SCF and the electron-gas (or Gordon--Kim) methods have been used to compute the intermolecular potential (Phi) of N 2 molecules for seven different N 2 --N 2 orientations. The ab initio calculations were carried out using a [4s3p] contracted Gaussian basis set with and without 3d polarization functions. The larger basis set provides adequate results for Phi>0.002 hartree or intermolecular separations less than 6.5--7 bohr. We use a convenient analytic expression to represent the ab initio data in terms of the intermolecular distance and three angles defining the orientations of the two N 2 molecules. The Gordon--Kim method with Rae's self-exchange correction yields Phi, which agrees reasonably well over a large repulsive range. However, a detailed comparison of the electron kinetic energy contributions shows a large difference between the ab initio and the Gordon--Kim calculations. Using the ab initio data we derive an atom--atom potential of the two N 2 molecules. Although this expression does not accurately fit the data at some orientations, its spherical average agrees with the corresponding average of the ab initio Phi remarkably well. The spherically averaged ab initio Phi is also compared with the corresponding quantities derived from experimental considerations. The approach of the ab initio Phi to the classical quadrupole--quadrupole interaction at large intermolecular separation is also discussed
Embedded atom approach for gold–silicon system from ab initio ...
Indian Academy of Sciences (India)
In the present paper, an empirical embedded atom method (EAM) potential for gold–silicon (Au–Si) is developed by fitting to ab initio force (the 'force matching' method) and experimental data. The force database is generated within ab initio molecular dynamics (AIMD). The database includes liquid phase at various ...
A molecular mechanics valence force field for sulfonamides derived by ab initio methods
Energy Technology Data Exchange (ETDEWEB)
Nicholas, J.B.; Burke, B.J.; Hopfinger, A.J. (Univ. of Illinois, Chicago (United States)); Vance, R.; Martin, E. (DowElanco, Walnut Creek, CA (United States))
1991-11-28
Molecular mechanics valence force field parameters for the sulfonamide group, SO[sub 2]NH, have been derived from ab initio calculations at the RHF/6-31G* level of theory. The force field parameters were designed to be used in conjunction with existing parameters from the MM2/MMP2 force field. The new parameters are demonstrated to accurately reproduce the ab initio optimized geometries of four molecules that contain the sulfonamide group. The strategy used in force field parametrization is discussed. The conformational flexibility of the sulfonamide group has been investigated. Calculations at the RHF/6-31G* level reveal the existence of two stable conformers and that interconversion is achieved by nitrogen inversion rather than rotation about the S-N bond. The energetic effects of expanding the basis set to 6-31G** and of including MP2 and MP3 corrections for electron correlation are discussed. The geometries and Mulliken charges for the ab initio optimized structures are also reported.
Energy Technology Data Exchange (ETDEWEB)
Feller, D.F.
1993-07-01
This collection of benchmark timings represents a snapshot of the hardware and software capabilities available for ab initio quantum chemical calculations at Pacific Northwest Laboratory`s Molecular Science Research Center in late 1992 and early 1993. The ``snapshot`` nature of these results should not be underestimated, because of the speed with which both hardware and software are changing. Even during the brief period of this study, we were presented with newer, faster versions of several of the codes. However, the deadline for completing this edition of the benchmarks precluded updating all the relevant entries in the tables. As will be discussed below, a similar situation occurred with the hardware. The timing data included in this report are subject to all the normal failures, omissions, and errors that accompany any human activity. In an attempt to mimic the manner in which calculations are typically performed, we have run the calculations with the maximum number of defaults provided by each program and a near minimum amount of memory. This approach may not produce the fastest performance that a particular code can deliver. It is not known to what extent improved timings could be obtained for each code by varying the run parameters. If sufficient interest exists, it might be possible to compile a second list of timing data corresponding to the fastest observed performance from each application, using an unrestricted set of input parameters. Improvements in I/O might have been possible by fine tuning the Unix kernel, but we resisted the temptation to make changes to the operating system. Due to the large number of possible variations in levels of operating system, compilers, speed of disks and memory, versions of applications, etc., readers of this report may not be able to exactly reproduce the times indicated. Copies of the output files from individual runs are available if questions arise about a particular set of timings.
Ab initio and kinetic modeling studies of formic acid oxidation
DEFF Research Database (Denmark)
Marshall, Paul; Glarborg, Peter
2015-01-01
A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism...... have been compared to the experimental results of de Wilde and van Tiggelen (1968) who measured the laminar burning velocities for HOCHO flames over a range of stoichiometries and dilution ratios. The modeling predictions are generally satisfactory. The governing reaction mechanisms are outlined based...... on calculations with the kinetic model. Formic acid is consumed mainly by reaction with OH, yielding OCHO, which dissociates rapidly to CO2 + H, and HOCO, which may dissociate to CO + OH or CO2 + H, or react with H, OH, or O2 to form more stable products. The branching fraction of the HOCHO + OH reaction, as well...
Symplectic ab initio no-core shell model
Energy Technology Data Exchange (ETDEWEB)
Draayer, J. P.; Dytrych, T.; Sviratcheva, K. D.; Bahri, C. [Department of Physics and Astronomy, Lousiana State University, Baton Rouge, 70803 Lousiana (United States); Vary, J. P. [Department of Physics and Astronomy, Iowa State University, Ames, 50011 Iowa (United States)
2008-12-15
The present study confirms the significance of the symplectic Sp(3,R) symmetry in nuclear dynamics as unveiled, for the first time, by examinations of realistic nucleon-nucleon interactions as well as of eigenstates calculated in the framework of the ab initio No-Core Shell Model (NCSM). The results reveal that the NCSM wave functions for light nuclei highly overlap (at the {approx} 90% level) with only a few of the most deformed Sp(3,R)-symmetric basis states. This points to the possibility of achieving convergence of higher-lying collective modes and reaching heavier nuclei by expanding the NCSM basis space beyond its current limits through Sp(3,R) basis states. Furthermore the symplectic symmetry is found to be favored by the JISP 16 and CD-Bonn realistic nucleon-nucleon interactions, which points to a more fundamental origin of the symplectic symmetry. (Author)
Molybdenum-titanium phase diagram evaluated from ab initio calculations
Barzilai, Shmuel; Toher, Cormac; Curtarolo, Stefano; Levy, Ohad
2017-07-01
The design of next generation β -type titanium implants requires detailed knowledge of the relevant stable and metastable phases at temperatures where metallurgical heat treatments can be performed. Recently, a standard specification for surgical implant applications was established for Mo-Ti alloys. However, the thermodynamic properties of this binary system are not well known and two conflicting descriptions of the β -phase stability have been presented in the literature. In this study, we use ab initio calculations to investigate the Mo-Ti phase diagram. These calculations predict that the β phase is stable over a wide concentration range, in qualitative agreement with one of the reported phase diagrams. In addition, they predict stoichiometric compounds, stable at temperatures below 300 ∘C , which have not yet been detected by experiments. The resulting solvus, which defines the transition to the β -phase solid solution, therefore occurs at lower temperatures and is more complex than previously anticipated.
Ab initio dynamical exchange interactions in frustrated antiferromagnets
Simoni, Jacopo; Stamenova, Maria; Sanvito, Stefano
2017-08-01
The ultrafast response to an optical pulse excitation of the spin-spin exchange interaction in transition metal antiferromagnets is studied within the framework of the time-dependent spin-density functional theory. We propose a formulation for the full dynamical exchange interaction, which is nonlocal in space, and it is derived starting from ab initio arguments. Then, we investigate the effect of the laser pulse on the onset of the dynamical process. It is found that we can distinguish two types of excitations, both activated immediately after the action of the laser pulse. While the first one can be associated to a Stoner-like excitation and involves the transfer of spin from one site to another, the second one is related to the ultrafast modification of a Heisenberg-like exchange interaction and can trigger the formation of spin waves in the first few hundred femtoseconds of the time evolution.
Ab initio electron propagator theory of molecular wires. I. Formalism.
Dahnovsky, Yu; Zakrzewski, V G; Kletsov, A; Ortiz, J V
2005-11-08
Ab initio electron propagator methodology may be applied to the calculation of electrical current through a molecular wire. A new theoretical approach is developed for the calculation of the retarded and advanced Green functions in terms of the electron propagator matrix for the bridge molecule. The calculation of the current requires integration in a complex half plane for a trace that involves terminal and Green's-function matrices. Because the Green's-function matrices have complex poles represented by matrices, a special scheme is developed to express these "matrix poles" in terms of ordinary poles. An expression for the current is derived for a terminal matrix of arbitrary rank. For a single terminal orbital, the analytical expression for the current is given in terms of pole strengths, poles, and terminal matrix elements of the electron propagator. It is shown that Dyson orbitals with high pole strengths and overlaps with terminal orbitals are most responsible for the conduction of electrical current.
Ab initio Potential Energy Surface for H-H2
Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene
1993-01-01
Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.
Reactive Monte Carlo sampling with an ab initio potential
International Nuclear Information System (INIS)
Leiding, Jeff; Coe, Joshua D.
2016-01-01
We present the first application of reactive Monte Carlo in a first-principles context. The algorithm samples in a modified NVT ensemble in which the volume, temperature, and total number of atoms of a given type are held fixed, but molecular composition is allowed to evolve through stochastic variation of chemical connectivity. We discuss general features of the method, as well as techniques needed to enhance the efficiency of Boltzmann sampling. Finally, we compare the results of simulation of NH 3 to those of ab initio molecular dynamics (AIMD). We find that there are regions of state space for which RxMC sampling is much more efficient than AIMD due to the “rare-event” character of chemical reactions.
Thermal transport properties of antimonene: an ab initio study.
Wang, Shudong; Wang, Wenhua; Zhao, Guojun
2016-11-16
Searching for low thermal conductivity materials is crucial for thermoelectric devices. Here we report on the phonon transport properties of recently fabricated single layer antimony, antimonene [Ares, et al., Adv. Mater., 2016, 28, 6332]. Ab initio calculations in combination with the Boltzmann transport equation (BTE) for phonons show that antimonene has a low lattice thermal conductivity (15.1 W m -1 K -1 at 300 K), indicating its potential thermoelectric applications. The low lattice thermal conductivity is due to its small group velocity, low Debye temperature and large buckling height. We also investigate in detail the mode contributions to total thermal conductivity and find at low frequency that the longitudinal acoustic (LA) branch dominates the thermal conductivity. Moreover, we show that the lattice thermal conductivity of antimonene can further be reduced by minimizing the sample size. Our findings open the field for thermoelectric applications based on antimonene.
Ab initio engineering of materials with stacked hexagonal tin frameworks
Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.
2016-07-01
The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator.
Constructing ab initio and empirical potential energy surfaces for water
International Nuclear Information System (INIS)
Kain, Jacqueline Sophie
2001-01-01
The infrared spectrum of water is possibly one of the most well studied and yet portions of it are still poorly understood. Recently, significant advances have been made in assigning water spectra using variational nuclear calculations. The major factor determining the accuracy of ro-vibrational spectra of water is the accuracy of the underlying Potential Energy Surface. Even the most accurate ab initio Potential Energy Surface does not reproduce the Born-Oppenheimer surface to sufficient accuracy for spectroscopic studies. Furthermore, effects beyond this model such as the adiabatic correction, the relativistic correction and the non-adiabatic correction have to be considered. This thesis includes a discussion on how the relativistic correction was calculated, for the water molecule, from first-order perturbation theory. The relativistic correction improved vibrational stretching motion while making the prediction of the bending modes far worse. For rotational motion the relativistic effect had an increasing effect with increasing Ka. A further alteration to the ab initio calculations is introduced by adjusting the barrier to linearity in the water potential. This alteration to the barrier was considered in order to compensate for the lack of convergence of quantum chemical calculations of the Born-Oppenheimer surface. This barrier attempts to represent the change in the potential from linear to equilibrium. We show the improvements this has on the calculated energy levels by comparison with the HITRAN database. This then led the way to the improved spectroscopic potential presented here in this thesis. This new spectroscopic potential reduces the overall standard deviation significantly for vibrational and rotational energy levels. (author)
Iron -chromium alloys and free surfaces: from ab initio calculations to thermodynamic modeling
International Nuclear Information System (INIS)
Levesque, M.
2010-11-01
Ferritic steels possibly strengthened by oxide dispersion are candidates as structural materials for generation IV and fusion nuclear reactors. Their use is limited by incomplete knowledge of the iron-chromium phase diagram at low temperatures and of the phenomena inducing preferential segregation of one element at grain boundaries or at surfaces. In this context, this work contributes to the multi-scale study of the model iron-chromium alloy and their free surfaces by numerical simulations. This study begins with ab initio calculations of properties related to the mixture of atoms of iron and chromium. We highlight complex dependency of the magnetic moments of the chromium atoms on their local chemical environment. Surface properties are also proving sensitive to magnetism. This is the case of impurity segregation of chromium in iron and of their interactions near the surface. In a second step, we construct a simple energy model for high numerical efficiency. It is based on pair interactions on a rigid lattice to which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that we compare to Monte Carlo simulations. The last step of our work is to introduce free surfaces in our model. We then study the effect of ab initio calculated bulk and surface properties on surface segregation.Finally, we calculate segregation isotherms. We therefore propose an evolution model of surface composition of iron-chromium alloys as a function of bulk composition. which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that
Heat capacities of xenotime-type ceramics: An accurate ab initio prediction
Ji, Yaqi; Beridze, George; Bosbach, Dirk; Kowalski, Piotr M.
2017-10-01
Because of ability to incorporate actinides into their structure, the lanthanide phosphate ceramics (LnPO4) are considered as potential matrices for the disposal of nuclear waste. Here we present highly reliable ab initio prediction of the variation of heat capacities and the standard entropies of these compounds in zircon structure along lanthanide series (Ln = Dy, …,Lu) and validate them against the existing experimental data. These data are helpful for assessment of thermodynamic parameters of these materials in the context of using them as matrices for immobilization of radionuclides for the purpose of nuclear waste management.
The role of Metals in Amyloid Aggregation: A Test Case for ab initio Simulations
International Nuclear Information System (INIS)
Minicozzi, V.; Rossi, G. C.; Stellato, F.; Morante, S.
2007-01-01
First principle ab initio molecular dynamics simulations of the Car-Parrinello type have proved to be of invaluable help in understanding the microscopic mechanisms of chemical bonding both in solid state physics and in structural biophysics. In this work we present as test cases the study of the Cu coordination mode in two especially important examples: Prion protein and β-amyloids. Using medium size PC-clusters as well as larger parallel platforms, we are able to deal with systems comprising 300 to 500 atoms and 1000 to 1500 electrons for as long as 2-3 ps. We present structural results which confirm indications coming from NMR and XAS data
Benefits of Parallel I/O in Ab Initio Nuclear Physics Calculations
International Nuclear Information System (INIS)
Laghave, Nikhil; Sosonkina, Masha; Maris, Pieter; Vary, James P.
2009-01-01
Many modern scientific applications rely on highly parallel calculations, which scale to 10's of thousands processors. However, most applications do not concentrate on parallelizing input/output operations. In particular, sequential I/O has been identified as a bottleneck for the highly scalable MFDn (Many Fermion Dynamics for nuclear structure) code performing ab initio nuclear structure calculations. In this paper, we develop interfaces and parallel I/O procedures to use a well-known parallel I/O library in MFDn. As a result, we gain efficient input/output of large datasets along with their portability and ease of use in the downstream processing.
Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei
Czech Academy of Sciences Publication Activity Database
Dytrych, Tomáš; Maris, P.; Launey, K. D.; Draayer, J. P.; Vary, J. P.; Langr, D.; Saule, E.; Caprio, M. A.; Catalyurek, U.; Sosonkina, M.
2016-01-01
Roč. 207, OCT (2016), s. 202-210 ISSN 0010-4655 R&D Projects: GA ČR GA16-16772S Institutional support: RVO:61389005 Keywords : nuclear structure * Ab initio methods * Shell model * models based on group theory Subject RIV: BE - Theoretical Physics Impact factor: 3.936, year: 2016
DEFF Research Database (Denmark)
Berg, Rolf W.; Riisager, Anders; Nguyen van Buu, Olivier
2010-01-01
The salt 1,1,3,3-tetramethylguanidinium bromide, [((CH3)2N)2C=NH2]+Br- or [tmgH]Br, was found to melt at 135(5) °C, forming what may be referred to as a moderate temperature ionic liquid. The chemistry was studied and compared with the corresponding chloride compound. We present X-ray diffraction...... and Raman evidence to show that also the bromide salt contains dimeric ion pair “molecules” in the crystalline state and probably also in the liquid state. The structure of [tmgH]Br determined at 120(2) K was found to be monoclinic, space group P21/n, with a = 7.2072(14), b = 13.335(3), c = 9.378(2) Å, beta...... initio molecular orbital density functional theory type calculations. It is not likely that both the bromide and chloride should have identical spectra. As explanation, the formation of 1,1-dimethylcyanamide gas is proposed, by decomposition of [tmgH]X leaving dimethylammonium halogenide (X = Cl, Br...
Ab initio Molecular Orbital Studies of the Vibrational Spectra of some ...
African Journals Online (AJOL)
Ab initio Molecular Orbital Studies of the Vibrational Spectra of some van der Waals Complexes. Part 4. Complexes of Sulphur Dioxide with Carbon Dioxide, Carbonyl Sulphide, Carbon Disulphide and Nitrous Oxide.
Ab initio study of gas phase and water-assisted tautomerization of ...
Indian Academy of Sciences (India)
WINTEC
Ab initio study of gas phase and water-assisted tautomerization of maleimide and formamide. 623. Figure 4. Keto to enol conversion of (a) maleimide and (b) formamide in gas phase. (c) maleimide and (d) forma- mide with water.
Orbital free ab initio study of static and dynamic properties of some liquid transition metals
Directory of Open Access Journals (Sweden)
Bhuiyan G. M.
2017-01-01
Full Text Available Several static and dynamic properties of liquid transition metals Cr, Mn and Co are studied for the first time using the orbital free ab-initio molecular dynamics simulation (OF-AIMD. This method is based on the density functional theory (DFT which accounts for the electronic energy of the system whereas the interionic forces are derived from the electronic energy via the Hellman-Feynman theorem. The external energy functional is treated with a local pseudopotential. Results are reported for static structure factors, isothermal compressibility, diffusion coeffcients, sound velocity and viscosity and comparison is performed with the available experimental data and other theoretical calculations.
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Hashemi, J.; Markussen, Troels
2009-01-01
techniques and tight-binding calculations to illustrate these materials' transmission properties and give physical arguments to interpret the numerical results. Specifically, above the Fermi energy we find a strong reduction in electron transmission due to localized states in certain regions of the structure......Fullerene functionalized carbon nanotubes-NanoBuds-form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab initio...
Jupiter models with improved ab initio hydrogen EOS (H-REOS.2)
Nettelmann, Nadine; Becker, Andreas; Holst, Bastian; Redmer, Ronald
2011-01-01
The amount and distribution of heavy elements in Jupiter gives indications on the process of its formation and evolution. Core mass and metallicity predictions however depend on the equations of state used, and on model assumptions. We present an improved ab initio hydrogen equation of state, H-REOS.2 and compute the internal structure and thermal evolution of Jupiter within the standard three-layer approach. The advance over our previous Jupiter models with H-REOS.1 by Nettelmann et al.(2008...
Monte Carlo methods in AB initio quantum chemistry quantum Monte Carlo for molecules
Lester, William A; Reynolds, PJ
1994-01-01
This book presents the basic theory and application of the Monte Carlo method to the electronic structure of atoms and molecules. It assumes no previous knowledge of the subject, only a knowledge of molecular quantum mechanics at the first-year graduate level. A working knowledge of traditional ab initio quantum chemistry is helpful, but not essential.Some distinguishing features of this book are: Clear exposition of the basic theory at a level to facilitate independent study. Discussion of the various versions of the theory: diffusion Monte Carlo, Green's function Monte Carlo, and release n
Ab initio Disordered Local Moment Approach for a Doped Rare-Earth Magnet
Matsumoto, Munehisa; Banerjee, Rudra; Staunton, Julie B.
Following the finite-temperature ab initio calculation framework based on the relativistic disordered local moments [J. B. Staunton et al., Phys. Rev. Lett. 93, 257204 (2004); Phys. Rev. B 74, 144411 (2006)], we computationally demonstrate the possibility of doping-enhanced coercivity at high-temperatures, taking YCo5 as a working material in order to extract the 3d-electron part of the electronic structure of the rare-earth permanent magnets. Alkaline-earth dopants are shown to be the candidates to realize the proposed phenomenon.
Phonon spectrum of lead oxychloride Pb3O2Cl2: Ab initio calculation and experiment
Zakir'yanov, D. O.; Chernyshev, V. A.; Zakir'yanova, I. D.
2016-02-01
IR and Raman spectra of Pb3O2Cl2 in the range of 50-600 cm-1 have been detected for the first time. Ab initio calculations of the crystal structure and the phonon spectrum of Pb3O2Cl2 in the framework of LCAO approach have been performed by the Hartree-Fock method and in the framework of the density functional theory with the use of hybrid functionals. The results of calculations have made it possible to interpret the experimental vibration spectra and reveal silent modes, which do not manifest themselves in these spectra but influence the optical properties of the crystal.
Pagliai, Marco; Muniz-Miranda, Francesco; Cardini, Gianni; Righini, Roberto; Schettino, Vincenzo
2011-05-01
In order to extract spectroscopic information from trajectories obtained by classical or ab initio molecular dynamics simulations, usually Fourier transforms are employed. In recent years wavelet transforms have been shown to be a valid alternative tool to analyze time-series, due to their capability of localizing a signal both in time and frequency. In this article wavelet transforms are applied for the analysis of Car-Parrinello molecular dynamics simulations to the purpose of time-correlating structural and spectroscopic properties of methyl acetate dissolved in water and methanol. The results demonstrate the possibility of obtaining information that may be of valuable help in the interpretation of time-resolved spectroscopic data.
Spin-orbit interaction effects in zincblende semiconductors: Ab initio pseudopotential calculations
International Nuclear Information System (INIS)
Li, Ming-Fu; Surh, M.P.; Louie, S.G.
1988-06-01
Ab initio band structure calculations have been performed for the spin-orbit interaction effects at the top of the valence bands for GaAs and InSb. Relativistic, norm-conserving pseudopotentials are used with no correction made for the gaps from the local density approximation. The spin-orbit splitting at Γ and linear terms in the /rvec char/k dependence of the splitting are found to be in excellent agreement with existing experiments and previous theoretical results. The effective mass and the cubic splitting terms are also examined. 6 refs., 1 fig., 2 tabs
All-electron ab initio investigations of the electronic states of the NiC molecule
DEFF Research Database (Denmark)
Shim, Irene; Gingerich, Karl. A.
1999-01-01
The low-lying electronic states of NiC are investigated by all-electron ab initio multi-configuration self-consistent-field (CASSCF) calculations including relativistic corrections. The electronic structure of NiC is interpreted as perturbed antiferromagnetic couplings of the localized angular...... with new experimental data by Brugh and Morse. D-e is determined as 2.76 eV, and D-0 as 2.70 eV. (C) 1999 Elsevier Science B.V. All rights reserved....
Ab initio study of spin-dependent transport in carbon nanotubes with iron and vanadium adatoms
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka
2008-01-01
We present an ab initio study of spin-dependent transport in armchair carbon nanotubes with transition metal adsorbates: iron or vanadium. The method based on density functional theory and nonequilibrium Green's functions is used to compute the electronic structure and zero-bias conductance....... The presence of the adsorbate causes scattering of electrons of mainly one spin type. The scattering is shown to be due to a coupling of the two armchair band states to the metal 3d orbitals with matching symmetry, giving rise to Fano antiresonances appearing as dips in the transmission function. The spin type...
2017-03-24
NUMBER (Include area code) 24 March 2017 Briefing Charts 01 March 2017 - 31 March 2017 Ab initio Quantum Chemical and Experimental Reaction Kinetics...Laboratory AFRL/RQRS 1 Ara Road Edwards AFB, CA 93524 *Email: ghanshyam.vaghjiani@us.af.mil Ab initio Quantum Chemical and Experimental Reaction ...Clearance 17161 Zador et al., Prog. Energ. Combust. Sci., 37 371 (2011) Why Quantum Chemical Reaction Kinetics Studies? DISTRIBUTION A: Approved for
Energy Technology Data Exchange (ETDEWEB)
Wang, Y. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Lu, Y.H., E-mail: luyh@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Wang, X.D.; Cao, Q.P. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, D.X. [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China); Jiang, J.Z., E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)
2014-11-15
Highlights: • The SOC effect affects the cohesion energy of crystal phase. • The effect of SOC was reduced due to random local atomic structures in liquids. • The local geometrical structures also affect the melting points. • Both SOC effect and local atomic structures are important for melting point difference. - Abstract: The origin of different melting points between Al{sub 2}Cu and Al{sub 2}Au has been studied using ab initio molecular dynamics simulations. Cohesive energy, electronic structures and structure information of both crystal and liquid phases have been analyzed. It is found that spin orbital coupling (SOC) plays an important role on the cohesive energy of crystal phase, consistent with the different melting points of these two alloys. Whereas, it seems that SOC has no effect on the formation energy and structure of liquid phase. Possible mechanism of reduced SOC effect at liquid phase is proposed. Our results are helpful to understand the glass formation ability difference between Al{sub 2}Cu and Al{sub 2}Au.
Ab initio transport across bismuth selenide surface barriers
Narayan, Awadhesh
2014-11-24
© 2014 American Physical Society. We investigate the effect of potential barriers in the form of step edges on the scattering properties of Bi2Se3(111) topological surface states by means of large-scale ab initio transport simulations. Our results demonstrate the suppression of perfect backscattering, while all other scattering processes, which do not entail a complete spin and momentum reversal, are allowed. Furthermore, we find that the spin of the surface state develops an out-of-plane component as it traverses the barrier. Our calculations reveal the existence of quasibound states in the vicinity of the surface barriers, which appear in the form of an enhanced density of states in the energy window corresponding to the topological state. For double barriers we demonstrate the formation of quantum well states. To complement our first-principles results we construct a two-dimensional low-energy effective model and illustrate its shortcomings. Our findings are discussed in the context of a number of recent experimental works.
Ab Initio Liquid Water Dynamics in Aqueous TMAO Solution.
Usui, Kota; Hunger, Johannes; Sulpizi, Marialore; Ohto, Tatsuhiko; Bonn, Mischa; Nagata, Yuki
2015-08-20
Ab initio molecular dynamics (AIMD) simulations in trimethylamine N-oxide (TMAO)-D2O solution are employed to elucidate the effects of TMAO on the reorientational dynamics of D2O molecules. By decomposing the O-D groups of the D2O molecules into specific subensembles, we reveal that water reorientational dynamics are retarded considerably in the vicinity of the hydrophilic TMAO oxygen (O(TMAO)) atom, due to the O-D···O(TMAO) hydrogen-bond. We find that this reorientational motion is governed by two distinct mechanisms: The O-D group rotates (1) after breaking the O-D···O(TMAO) hydrogen-bond, or (2) together with the TMAO molecule while keeping this hydrogen-bond intact. While the orientational slow-down is prominent in the AIMD simulation, simulations based on force field models exhibit much faster dynamics. The simulated angle-resolved radial distribution functions illustrate that the O-D···O(TMAO) hydrogen-bond has a strong directionality through the sp(3) orbital configuration in the AIMD simulation, and this directionality is not properly accounted for in the force field simulation. These results imply that care must be taken when modeling negatively charged oxygen atoms as single point charges; force field models may not adequately describe the hydration configuration and dynamics.
Ab initio calculations of free-energy reaction barriers
International Nuclear Information System (INIS)
Bucko, T
2008-01-01
The theoretical description of chemical reactions was until recently limited to a 'static' approach in which important parameters such as the rate constant are deduced from the local topology of the potential energy surface close to minima and saddle points. Such an approach has, however, serious limitations. The growing computational power allows us now to use advanced simulation techniques to determine entropic effects accurately for medium-sized systems at ab initio level. Recently, we have implemented free-energy simulation techniques based on molecular dynamics, in particular on the blue-moon ensemble technique and on metadynamics, in the popular DFT code VASP. In the thermodynamic integration (blue-moon ensemble) technique, the free-energy profile is calculated as the path integral over the restoring forces along a parametrized reaction coordinate. In metadynamics, an image of the free-energy surface is constructed on the fly during the simulation by adding small repulsive Gaussian-shaped hills to the Lagrangian driving the dynamics. The two methods are tested on a simple chemical reaction-the nucleophilic substitution of methyl chloride by a chlorine anion
An Ab Initio Based Potential Energy Surface for Water
Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)
1996-01-01
We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.
Accurate ab initio vibrational energies of methyl chloride
International Nuclear Information System (INIS)
Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2015-01-01
Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH 3 35 Cl and CH 3 37 Cl. The respective PESs, CBS-35 HL , and CBS-37 HL , are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY 3 Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35 HL and CBS-37 HL PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm −1 , respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH 3 Cl without empirical refinement of the respective PESs
Accurate ab initio vibrational energies of methyl chloride
Energy Technology Data Exchange (ETDEWEB)
Owens, Alec, E-mail: owens@mpi-muelheim.mpg.de [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany); Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London (United Kingdom); Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan [Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London (United Kingdom); Thiel, Walter [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)
2015-06-28
Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup HL}, and CBS-37{sup HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup HL} and CBS-37{sup HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.
Sumner, Isaiah; Iyengar, Srinivasan S
2007-10-18
We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.
Energy Technology Data Exchange (ETDEWEB)
Tarighi Ahmadpour, Mahdi; Rostamnejadi, Ali [Electroceram Research Center, Malek Ashtar University of Technology, Shahin Shahr (Iran, Islamic Republic of); Hashemifar, S. Javad [Department of Physics, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of)
2016-07-07
We use density functional computations to study the zero temperature structural, electronic, magnetic, and optical properties of (5,0) finite carbon nanotubes (FCNT), with length in the range of 4–44 Å. It is found that the structural and electronic properties of (5,0) FCNTs, in the ground state, converge at a length of about 30 Å, while the excited state properties exhibit long-range edge effects. We discuss that curvature effects enhance energy gap of FCNTs, in contrast to the known trend in the periodic limit. It is seen that compensation of curvature effects in two special small sizes may give rise to spontaneous magnetization. The obtained cohesive energies provide some insights into the effects of environment on the growth of FCNTs. The second-order difference of the total energies reveals an important magic size of about 15 Å. The optical and dynamical magnetic responses of the FCNTs to polarized electromagnetic pulses are studied by time dependent density functional theory. The results show that the static and dynamic magnetic properties mainly come from the edge carbon atoms. The optical absorption properties are described in terms of local field effects and characterized by Casida linear response method.
Energy Technology Data Exchange (ETDEWEB)
Ramos de Debiaggi, S., E-mail: susana.ramos@fain.uncoma.edu.ar [Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas – CONICET-UNCo (Argentina); González Lemus, N.V. [Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Deluque Toro, C. [Grupo de Nuevos Materiales, Universidad de la Guajira, Riohacha (Colombia); Fernández Guillermet, A. [CONICET - Instituto Balseiro, Centro Atómico Bariloche, Avda. Bustillo 9500, 8400 Bariloche (Argentina)
2015-01-15
Highlights: • A DFT study of the compounds involved in CALPHAD modeling of the Ni–In–Sn (hP6) phase. • Several three-sublattice compounds of Ni, In, Sn and vacancies are studied ab initio. • Structural, cohesive and thermodynamic properties and the electronic DOS are reported. • Trends in calculated properties are correlated with changes in electronic structure. • A picture of the chemical bonding trends for these s-p/d type compounds is discussed. - Abstract: The thermodynamic modeling of non-stoichiometric, multisublattice intermetallic phases using the Compound-Energy Formalism (CEF) involves the determination of parameters representing the Gibbs energy (G{sub m}) of binary compounds, the so-called “end-member compounds” (EMCs), which are often metastable or hypothetical. In current CALPHAD (i.e., “Calculation of Phase Diagrams”) work, these quantities are treated as free parameters to be determined by searching for the best fit to the available information in the optimization procedure. The general purpose of this paper is to propose a theoretical approach to the study of the EMCs which makes use of density-functional-theory (DFT) ab initio calculations. The present method is applied to the EMCs involved in the CEF modeling of the non-stoichiometric (hP6) Ni{sub 2}In-structure type phase of the Ni–In and Ni–In–Sn systems using the three-sublattice models (Ni){sub 1}(Ni,Va){sub 1}(In,Ni){sub 1} and (Ni,Va){sub 1}(Ni,Va){sub 1}(In,Ni,Sn){sub 1}, respectively. By means of systematic ab initio projected augmented waves (PAW) calculations using the VASP code we study the EMCs involved in the CEF formulations of the G{sub m} for this phase in the binary and the ternary systems. Specifically, we study the twelve EMCs corresponding to the following sublattice occupations: (Ni){sub 1}(Ni){sub 1}(In){sub 1}, which is usually described as Ni:Ni:In (i.e., a compound with formula “Ni{sub 2}In”), Ni:Ni:Ni (i.e., “Ni{sub 3}”), Ni:Ni:Sn (
Experimental and ab initio investigations on textured Li–Mn–O spinel thin film cathodes
Energy Technology Data Exchange (ETDEWEB)
Fischer, J., E-mail: Julian.Fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Music, D. [RWTH Aachen University, Materials Chemistry, Kopernikusstrasse 10, 52074 Aachen (Germany); Bergfeldt, T.; Ziebert, C.; Ulrich, S.; Seifert, H.J. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)
2014-12-01
This paper describes the tailored preparation of nearly identical lithium–manganese–oxide thin film cathodes with different global grain orientations. The thin films were synthesized by rf magnetron sputtering from a LiMn{sub 2}O{sub 4}-target in a pure argon plasma. Under appropriate processing conditions, thin films with a cubic spinel structure and a nearly similar density and surface topography but different grain orientation, i.e. (111)- and (440)-textured films, were achieved. The chemical composition was determined by inductively coupled plasma optical emission spectroscopy and carrier gas hot extraction. The constitution- and microstructure were evaluated by X-ray diffraction and Raman spectroscopy. The surface morphology and roughness were investigated by scanning electron and atomic force microscopy. The differently textured films represent an ideal model system for studying potential effects of grain orientation on the lithium ion diffusion and electrochemical behavior in LiMn{sub 2}O{sub 4}-based thin films. They are nearly identical in their chemical composition, atomic bonding behavior, surface-roughness, morphology and thickness. Our initial ab initio molecular dynamics data indicate that Li ion transport is faster in (111)-textured structure than in (440)-textured one. - Highlights: • Thin film model system of differently textured cubic Li–Mn–O spinels. • Investigation of the Li–Mn–O thin film mass density by X-ray reflectivity. • Ab initio molecular dynamics simulation on Li ion diffusion in LiMn{sub 2}O{sub 4}.
Ab initio calculations of the concentration dependent band gap reduction in dilute nitrides
Rosenow, Phil; Bannow, Lars C.; Fischer, Eric W.; Stolz, Wolfgang; Volz, Kerstin; Koch, Stephan W.; Tonner, Ralf
2018-02-01
While being of persistent interest for the integration of lattice-matched laser devices with silicon circuits, the electronic structure of dilute nitride III/V-semiconductors has presented a challenge to ab initio computational approaches. The origin of the computational problems is the strong distortion exerted by the N atoms on most host materials. Here, these issues are resolved by combining density functional theory calculations based on the meta-GGA functional presented by Tran and Blaha (TB09) with a supercell approach for the dilute nitride Ga(NAs). Exploring the requirements posed to supercells, it is shown that the distortion field of a single N atom must be allowed to decrease so far that it does not overlap with its periodic images. This also prevents spurious electronic interactions between translational symmetric atoms, allowing us to compute band gaps in very good agreement with experimentally derived reference values. In addition to existing approaches, these results offer a promising ab initio avenue to the electronic structure of dilute nitride semiconductor compounds.
Experimental and ab initio investigations on textured Li–Mn–O spinel thin film cathodes
International Nuclear Information System (INIS)
Fischer, J.; Music, D.; Bergfeldt, T.; Ziebert, C.; Ulrich, S.; Seifert, H.J.
2014-01-01
This paper describes the tailored preparation of nearly identical lithium–manganese–oxide thin film cathodes with different global grain orientations. The thin films were synthesized by rf magnetron sputtering from a LiMn 2 O 4 -target in a pure argon plasma. Under appropriate processing conditions, thin films with a cubic spinel structure and a nearly similar density and surface topography but different grain orientation, i.e. (111)- and (440)-textured films, were achieved. The chemical composition was determined by inductively coupled plasma optical emission spectroscopy and carrier gas hot extraction. The constitution- and microstructure were evaluated by X-ray diffraction and Raman spectroscopy. The surface morphology and roughness were investigated by scanning electron and atomic force microscopy. The differently textured films represent an ideal model system for studying potential effects of grain orientation on the lithium ion diffusion and electrochemical behavior in LiMn 2 O 4 -based thin films. They are nearly identical in their chemical composition, atomic bonding behavior, surface-roughness, morphology and thickness. Our initial ab initio molecular dynamics data indicate that Li ion transport is faster in (111)-textured structure than in (440)-textured one. - Highlights: • Thin film model system of differently textured cubic Li–Mn–O spinels. • Investigation of the Li–Mn–O thin film mass density by X-ray reflectivity. • Ab initio molecular dynamics simulation on Li ion diffusion in LiMn 2 O 4
Machine Learning Force Field Parameters from Ab Initio Data
Energy Technology Data Exchange (ETDEWEB)
Li, Ying [Argonne; Li, Hui [Department; Pickard, Frank C. [Laboratory; Narayanan, Badri [Center; Sen, Fatih G. [Center; Chan, Maria K. Y. [Center; Computational; Sankaranarayanan, Subramanian K. R. S. [Center; Computational; Brooks, Bernard R. [Laboratory; Roux, Benoît [Department; Center; Computational
2017-08-11
Machine learning (ML) techniques with the genetic algorithm (GA) have been applied to determine a polarizable force field parameters using only ab initio data from quantum mechanics (QM) calculations of molecular clusters at the MP2/6-31G(d,p), DFMP2(fc)/jul-cc-pVDZ, and DFMP2(fc)/jul-cc-pVTZ levels to predict experimental condensed phase properties (i.e., density and heat of vaporization). The performance of this ML/GA approach is demonstrated on 4943 dimer electrostatic potentials and 1250 cluster interaction energies for methanol. Excellent agreement between the training data set from QM calculations and the optimized force field model was achieved. The results were further improved by introducing an offset factor during the machine learning process to compensate for the discrepancy between the QM calculated energy and the energy reproduced by optimized force field, while maintaining the local “shape” of the QM energy surface. Throughout the machine learning process, experimental observables were not involved in the objective function, but were only used for model validation. The best model, optimized from the QM data at the DFMP2(fc)/jul-cc-pVTZ level, appears to perform even better than the original AMOEBA force field (amoeba09.prm), which was optimized empirically to match liquid properties. The present effort shows the possibility of using machine learning techniques to develop descriptive polarizable force field using only QM data. The ML/GA strategy to optimize force fields parameters described here could easily be extended to other molecular systems.
Cosmic-ray modulation: an ab initio approach
International Nuclear Information System (INIS)
Engelbrecht, N.E.; Burger, R.A.
2014-01-01
A better understanding of cosmic-ray modulation in the heliosphere can only be gained through a proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays. We present an ab initio model for cosmic-ray modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for periods of minimum solar activity, utilizing boundary values chosen so that model results are in fair to good agreement with spacecraft observations of turbulence quantities, not only in the solar ecliptic plane but also along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modelled slab and 2D turbulence energy spectra. The latter spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers commencing at the 2D outerscale. There currently exist no models or observations for this quantity, and it is the only free parameter in this study. The modelled turbulence spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on cosmic-ray drifts are modelled in a self-consistent way, employing a recently developed model for drift along the wavy current sheet. The resulting diffusion coefficients and drift expressions are applied to the study of galactic cosmic-ray protons and antiprotons using a three dimensional, steady-state cosmic-ray modulation code, and sample solutions in fair agreement with multiple spacecraft observations are presented. (author)
Cosmic-ray modulation: an ab initio approach
Energy Technology Data Exchange (ETDEWEB)
Engelbrecht, N.E.; Burger, R.A., E-mail: 12580996@nwu.ac.za [Center for Space Research, North-West University, Potchefstroom (South Africa)
2014-07-01
A better understanding of cosmic-ray modulation in the heliosphere can only be gained through a proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays. We present an ab initio model for cosmic-ray modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for periods of minimum solar activity, utilizing boundary values chosen so that model results are in fair to good agreement with spacecraft observations of turbulence quantities, not only in the solar ecliptic plane but also along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modelled slab and 2D turbulence energy spectra. The latter spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers commencing at the 2D outerscale. There currently exist no models or observations for this quantity, and it is the only free parameter in this study. The modelled turbulence spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on cosmic-ray drifts are modelled in a self-consistent way, employing a recently developed model for drift along the wavy current sheet. The resulting diffusion coefficients and drift expressions are applied to the study of galactic cosmic-ray protons and antiprotons using a three dimensional, steady-state cosmic-ray modulation code, and sample solutions in fair agreement with multiple spacecraft observations are presented. (author)
AN AB INITIO MODEL FOR COSMIC-RAY MODULATION
Energy Technology Data Exchange (ETDEWEB)
Engelbrecht, N. E.; Burger, R. A. [Center for Space Research, North-West University, Potchefstroom 2520 (South Africa)
2013-07-20
A proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays (CRs) is of vital importance for a better understanding of CR modulation in the heliosphere. This study presents an ab initio model for CR modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for solar minimum heliospheric conditions, utilizing boundary values chosen so that model results are in reasonable agreement with spacecraft observations of turbulence quantities in the solar ecliptic plane and along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modeled slab and two-dimensional (2D) turbulence energy spectra. The modeled 2D spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers. There currently exist no models or observations for the wavenumber where this drop-off occurs, and it is considered to be the only free parameter in this study. The modeled spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on CR drifts are modeled in a self-consistent way, also employing a recently developed model for wavy current sheet drift. The resulting diffusion and drift coefficients are applied to the study of galactic CR protons and antiprotons using a 3D, steady-state CR modulation code, and sample solutions in fair to good agreement with multiple spacecraft observations are presented.
Lithium Insertion In Silicon Nanowires: An ab Initio Study
Zhang, Qianfan
2010-09-08
The ultrahigh specific lithium ion storage capacity of Si nanowires (SiNWs) has been demonstrated recently and has opened up exciting opportunities for energy storage. However, a systematic theoretical study on lithium insertion in SiNWs remains a challenge, and as a result, understanding of the fundamental interaction and microscopic dynamics during lithium insertion is still lacking. This paper focuses on the study of single Li atom insertion into SiNWs with different sizes and axis orientations by using full ab initio calculations. We show that the binding energy of interstitial Li increases as the SiNW diameter grows. The binding energies at different insertion sites, which can be classified as surface, intermediate, and core sites, are quite different. We find that surface sites are energetically the most favorable insertion positions and that intermediate sites are the most unfavorable insertion positions. Compared with the other growth directions, the [110] SiNWs with different diameters always present the highest binding energies on various insertion locations, which indicates that [110] SiNWs are more favorable by Li doping. Furthermore, we study Li diffusion inside SiNWs. The results show that the Li surface diffusion has a much higher chance to occur than the surface to core diffusion, which is consistent with the experimental observation that the Li insertion in SiNWs is layer by layer from surface to inner region. After overcoming a large barrier crossing surface-to-intermediate region, the diffusion toward center has a higher possibility to occur than the inverse process. © 2010 American Chemical Society.
Optical properties of highly compressed polystyrene: An ab initio study
Hu, S. X.; Collins, L. A.; Colgan, J. P.; Goncharov, V. N.; Kilcrease, D. P.
2017-10-01
Using all-electron density functional theory, we have performed an ab initio study on x-ray absorption spectra of highly compressed polystyrene (CH). We found that the K -edge shifts in strongly coupled, degenerate polystyrene cannot be explained by existing continuum-lowering models adopted in traditional plasma physics. To gain insights into the K -edge shift in warm, dense CH, we have developed a model designated as "single mixture in a box" (SMIAB), which incorporates both the lowering of the continuum and the rising of the Fermi surface resulting from high compression. This simple SMIAB model correctly predicts the K -edge shift of carbon in highly compressed CH in good agreement with results from quantum molecular dynamics (QMD) calculations. Traditional opacity models failed to give the proper K -edge shifts as the CH density increased. Based on QMD calculations, we have established a first-principles opacity table (FPOT) for CH in a wide range of densities and temperatures [ρ =0.1 -100 g /c m3 and T =2000 -1 000 000 K ]. The FPOT gives much higher Rosseland mean opacity compared to the cold-opacity-patched astrophysics opacity table for warm, dense CH and favorably compares to the newly improved Los Alamos atomic model for moderately compressed CH (ρCH≤10 g /c m3 ), but remains a factor of 2 to 3 higher at extremely high densities (ρCH≥50 g /c m3 ). We anticipate the established FPOT of CH will find important applications to reliable designs of high-energy-density experiments. Moreover, the understanding of K -edge shifting revealed in this study could provide guides for improving the traditional opacity models to properly handle the strongly coupled and degenerate conditions.
Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules
DEFF Research Database (Denmark)
Zhang, Hao; Lund, Ole; Nielsen, Morten
2010-01-01
Successful predictions of peptide MHC binding typically require a large set of binding data for the specific MHC molecule that is examined. Structure based prediction methods promise to circumvent this requirement by evaluating the physical contacts a peptide can make with an MHC molecule based...... on the highly conserved 3D structure of peptide:MHC complexes. While several such methods have been described before, most are not publicly available and have not been independently tested for their performance. We here implemented and evaluated three prediction methods for MHC class II molecules: statistical...... potentials derived from the analysis of known protein structures; energetic evaluation of different peptide snapshots in a molecular dynamics simulation; and direct analysis of contacts made in known 3D structures of peptide:MHC complexes. These methods are ab initio in that they require structural data...
Stress reduction of Cu-doped diamond-like carbon films from ab initio calculations
Directory of Open Access Journals (Sweden)
Xiaowei Li
2015-01-01
Full Text Available Structure and properties of Cu-doped diamond-like carbon films (DLC were investigated using ab initio calculations. The effect of Cu concentrations (1.56∼7.81 at.% on atomic bond structure was mainly analyzed to clarify the residual stress reduction mechanism. Results showed that with introducing Cu into DLC films, the residual compressive stress decreased firstly and then increased for each case with the obvious deterioration of mechanical properties, which was in agreement with the experimental results. Structural analysis revealed that the weak Cu-C bond and the relaxation of both the distorted bond angles and bond lengths accounted for the significant reduction of residual compressive stress, while at the higher Cu concentration the increase of residual stress attributed to the existence of distorted Cu-C structures and the increased fraction of distorted C-C bond lengths.
Ab Initio Molecular-Dynamics Simulation of Neuromorphic Computing in Phase-Change Memory Materials.
Skelton, Jonathan M; Loke, Desmond; Lee, Taehoon; Elliott, Stephen R
2015-07-08
We present an in silico study of the neuromorphic-computing behavior of the prototypical phase-change material, Ge2Sb2Te5, using ab initio molecular-dynamics simulations. Stepwise changes in structural order in response to temperature pulses of varying length and duration are observed, and a good reproduction of the spike-timing-dependent plasticity observed in nanoelectronic synapses is demonstrated. Short above-melting pulses lead to instantaneous loss of structural and chemical order, followed by delayed partial recovery upon structural relaxation. We also investigate the link between structural order and electrical and optical properties. These results pave the way toward a first-principles understanding of phase-change physics beyond binary switching.
Ab initio results for intermediate-mass, open-shell nuclei
Baker, Robert B.; Dytrych, Tomas; Launey, Kristina D.; Draayer, Jerry P.
2017-01-01
A theoretical understanding of nuclei in the intermediate-mass region is vital to astrophysical models, especially for nucleosynthesis. Here, we employ the ab initio symmetry-adapted no-core shell model (SA-NCSM) in an effort to push first-principle calculations across the sd-shell region. The ab initio SA-NCSM's advantages come from its ability to control the growth of model spaces by including only physically relevant subspaces, which allows us to explore ultra-large model spaces beyond the reach of other methods. We report on calculations for 19Ne and 20Ne up through 13 harmonic oscillator shells using realistic interactions and discuss the underlying structure as well as implications for various astrophysical reactions. This work was supported by the U.S. NSF (OCI-0904874 and ACI -1516338) and the U.S. DOE (DE-SC0005248), and also benefitted from the Blue Waters sustained-petascale computing project and high performance computing resources provided by LSU.
High Accuracy ab Initio Calculations of Rotational-Vibrational Levels of the HCN/HNC System.
Makhnev, Vladimir Yu; Kyuberis, Aleksandra A; Zobov, Nikolai F; Lodi, Lorenzo; Tennyson, Jonathan; Polyansky, Oleg L
2018-02-08
Highly accurate ab initio calculations of vibrational and rotational-vibrational energy levels of the HCN/HNC (hydrogen cyanide/hydrogen isocyanide) isomerising system are presented for several isotopologues. All-electron multireference configuration interaction (MRCI) electronic structure calculations were performed using basis sets up to aug-cc-pCV6Z on a grid of 1541 geometries. The ab initio energies were used to produce an analytical potential energy surface (PES) describing the two minima simultaneously. An adiabatic Born-Oppenheimer diagonal correction (BODC) correction surface as well as a relativistic correction surface were also calculated. These surfaces were used to compute vibrational and rotational-vibrational energy levels up to 25 000 cm -1 which reproduce the extensive set of experimentally known HCN/HNC levels with a root-mean-square deviation σ = 1.5 cm -1 . We studied the effect of nonadiabatic effects by introducing opportune radial and angular corrections to the nuclear kinetic energy operator. Empirical determination of two nonadiabatic parameters results in observed energies up to 7000 cm -1 for four HCN isotopologues (HCN, DCN, H 13 CN, and HC 15 N) being reproduced with σ = 0.37 cm -1 . The height of the isomerization barrier, the isomerization energy and the dissociation energy were computed using a number of models; our best results are 16 809.4, 5312.8, and 43 729 cm -1 , respectively.
Chitnis, Abhishek; Chakraborty, B.; Tripathi, B. M.; Tyagi, A. K.; Garg, Nandini
2018-02-01
Lithium metatitanate (LTO) and lithium metazirconate (LZO) are lithium rich ceramics which can be used as tritium breeder materials for thermonuclear reactors. In-situ x-ray diffraction and ab-initio studies at high pressure show that LTO has a higher bulk modulus than that of LZO. In fact these studies indicate that they are the least compressible of the known lithium rich ceramics like Li2O or Li4SiO4, which are potential candidates for blanket materials. These studies show that the TiO6 octahedra are responsible for the higher bulk modulus of LTO when compared to that of LZO. It has also been shown that the compressibility and distortion of the softer LiO6 octahedra can be controlled by altering the stacking sequence of the more rigid covalently bonded octahedra. This knowledge can be used by chemists to design new lithium based ceramics with higher bulk modulus. It was observed that LTO was stable upto 34 GPa. Ab initio DFT calculations helped to understand the anisotropy in compressibility of both LZO and LTO. This study also shows, that even though the empirical potentials developed by Vijaykumar et al. successfully determine the ambient pressure structure of lithium metatitanate, they cannot be used at non ambient conditions like high pressure [1].
Ab initio phonon point defect scattering and thermal transport in graphene
Polanco, Carlos A.; Lindsay, Lucas
2018-01-01
We study the scattering of phonons from point defects and their effect on lattice thermal conductivity κ using a parameter-free ab initio Green's function methodology. Specifically, we focus on the scattering of phonons by boron (B), nitrogen (N), and phosphorus substitutions as well as single- and double-carbon vacancies in graphene. We show that changes of the atomic structure and harmonic interatomic force constants locally near defects govern the strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the dominant heat carriers in graphene. ZA scattering rates due to N substitutions are nearly an order of magnitude smaller than those for B defects despite having similar mass perturbations. Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in the lower-frequency spectrum in stark contrast to expected trends from simple models. ZA phonon-vacancy scattering rates are found to have a significantly softer frequency dependence (˜ω0 ) in graphene than typically employed in phenomenological models. The rigorous Green's function calculations demonstrate that typical mass-defect models do not adequately describe ZA phonon-defect scattering rates. Our ab initio calculations capture well the trend of κ vs vacancy density from experiments, though not the magnitudes. This work elucidates important insights into phonon-defect scattering and thermal transport in graphene, and demonstrates the applicability of first-principles methods toward describing these properties in imperfect materials.
Phase diagrams from ab-initio calculations: Re-W and Fe-B
Energy Technology Data Exchange (ETDEWEB)
Hammerschmidt, Thomas; Bialon, Arthur; Palumbo, Mauro; Fries, Suzana G.; Drautz, Ralf [ICAMS, Ruhr-Universitaet Bochum (Germany)
2011-07-01
The CALPHAD (CaLculation of Phase Diagrams) method relies on Gibbs energy databases and is of limited predictive power in cases where only limited experimental data is available for constructing the Gibbs energy databases. This is problematic for, e.g., the calculation of the phase transformation kinetics within phase field simulations that not only require the thermodynamic equilibrium data but also information on metastable phases. Such information is difficult to obtain directly from experiment but ab-initio calculations may supplement experimental databases as they comprise metastable phases and arbitrary chemical compositions. We present simulations for two prototypical systems: Re-W and Fe-B. For both systems we calculate the heat of formation for an extensive set of structures using ab-initio calculations and employ the total energies in CALPHAD in order to determine the corresponding phase diagrams. We account for the configurational entropy within the Bragg-Williams approximation and neglect the phenomenological excess-term that is commonly used in CALPHAD as well as the contribution of phonons and electronic excitations to the free energy. According to our calculations the complex intermetallic phases in Re-W are stabilized by the configurational entropy. For Fe-B, we calculate metastable and stable phase diagrams including recently predicted new stable phases.
Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi
Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.
2016-01-01
For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.
Thermodynamic assessment of the Ho–Te system supported by ab initio calculations
Energy Technology Data Exchange (ETDEWEB)
Ghamri, H.; Belgacem-Bouzida, A. [Laboratoire d’étude Physico-Chimique des Matériaux, Département de Physique, Faculté des Sciences, Université de Batna, Rue Chahid Boukhlouf, 05000 Batna (Algeria); Djaballah, Y., E-mail: ydjaballah@yahoo.fr [Laboratoire d’étude Physico-Chimique des Matériaux, Département de Physique, Faculté des Sciences, Université de Batna, Rue Chahid Boukhlouf, 05000 Batna (Algeria); Hidoussi, A. [Laboratoire d’étude Physico-Chimique des Matériaux, Département de Physique, Faculté des Sciences, Université de Batna, Rue Chahid Boukhlouf, 05000 Batna (Algeria)
2013-03-05
Highlights: ► We calculated enthalpies of formation of the HoTe and Ho{sub 2}Te{sub 5} compounds by using ab initio method. ► We modeled the Gibbs energy of the HoTe intermediate phase for the first time. ► The thermodynamic parameters of the all phases existing in the system were determined. ► The complete phase diagram of the system (Ho–Te) is calculated. -- Abstract: The phase diagram of the Ho–Te binary system has been assessed by using the CALPHAD (Calculation of Phase Diagrams) method on the basis of the experimental data of the phase equilibria and enthalpies of formation from ab initio electronic-structure calculations within the framework of density-functional theory. Reasonable models were constructed for all the phases of the system. The liquid phase was described as the substitutional solution model with excess energy expressed by Redlich–Kister polynomial. The compounds Ho{sub 2}Te{sub 5} and HoTe{sub 3} were expressed as stoichiometric phases. The (HoTe) phase was modeled by two-sublattices; (Ho,Va){sub 1}(Te){sub 1}. A consistent set of thermodynamic parameters has been derived, and calculated phase diagram was compared with the experimental data. A good agreement between the calculated results and experimental data was obtained.
Directory of Open Access Journals (Sweden)
Martin Alberto JM
2009-01-01
Full Text Available Abstract Background Prediction of protein structures from their sequences is still one of the open grand challenges of computational biology. Some approaches to protein structure prediction, especially ab initio ones, rely to some extent on the prediction of residue contact maps. Residue contact map predictions have been assessed at the CASP competition for several years now. Although it has been shown that exact contact maps generally yield correct three-dimensional structures, this is true only at a relatively low resolution (3–4 Å from the native structure. Another known weakness of contact maps is that they are generally predicted ab initio, that is not exploiting information about potential homologues of known structure. Results We introduce a new class of distance restraints for protein structures: multi-class distance maps. We show that Cα trace reconstructions based on 4-class native maps are significantly better than those from residue contact maps. We then build two predictors of 4-class maps based on recursive neural networks: one ab initio, or relying on the sequence and on evolutionary information; one template-based, or in which homology information to known structures is provided as a further input. We show that virtually any level of sequence similarity to structural templates (down to less than 10% yields more accurate 4-class maps than the ab initio predictor. We show that template-based predictions by recursive neural networks are consistently better than the best template and than a number of combinations of the best available templates. We also extract binary residue contact maps at an 8 Å threshold (as per CASP assessment from the 4-class predictors and show that the template-based version is also more accurate than the best template and consistently better than the ab initio one, down to very low levels of sequence identity to structural templates. Furthermore, we test both ab-initio and template-based 8
Ab initio calculations of Gamow-Teller strengths in the s d shell
Saxena, Archana; Srivastava, Praveen C.; Suzuki, Toshio
2018-02-01
In the present work we perform a systematic shell-model study of Gamow-Teller transition-strength distributions in s d shell nuclei using ab initio effective interactions. The ab initio effective interactions are based on in-medium similarity renormalization-group and coupled-cluster effective interaction approaches. The aim of the present work is to test the predictive power of ab initio effective interactions by using the available experimental data of Gamow-Teller strength distributions in s d shell nuclei. We perform calculations for 20Ne→20F , 23Na→23Mg , 23Na→23Ne , 24Mg→24Na , 24Mg→24Al , 25Mg→25Al , 26Mg→26Na , 26Mg→26Al , 26Si→26Al , 27Al→27Si , 28Si→28P , 31P→31Si , and 32S→32P transitions. For comparison we also show the results obtained by using the phenomenological USDB Hamiltonian. The phenomenological USDB results of the Gamow-Teller (GT+ and GT-) strength distributions show reasonable agreements with the experimental data in comparison with the ab initio interactions. We also calculate the electron-capture reaction rates for 23Na(e-,ν )23Ne and 25Mg(e-,ν )25Na using ab initio and USDB interactions.
Byrne, Aaron
2015-12-24
Ab initio, density functional theory (DFT)-based molecular dynamics (MD) has been carried out to investigate the effect of explicit solvation on the dynamical and structural properties of a [bmim][NTf2] room-temperature ionic liquid (RTIL), solvating a N719 sensitizing dye adsorbed onto an anatase titania (101) surface. The effect of explicit dispersion on the properties of this dye-sensitized solar cell (DSC) interface has also been studied. Upon inclusion of dispersion interactions in simulations of the solvated system, the average separation between the cations and anions decreases by 0.6 Å; the mean distance between the cations and the surface decreases by about 0.5 Å; and the layering of the RTIL is significantly altered in the first layer surrounding the dye, with the cation being on average 1.5 Å further from the center of the dye. Inclusion of dispersion effects when a solvent is not explicitly included (to dampen longer-range interactions) can result in unphysical "kinking" of the adsorbed dye\\'s configuration. The inclusion of solvent shifts the HOMO and LUMO levels of the titania surface by +3 eV. At this interface, the interplay between the effects of dispersion and solvation combines in ways that are often subtle, such as enhancement or inhibition of specific vibrational modes. © 2015 American Chemical Society.
Estudo ab-initio da a-alanina em meio aquoso
Directory of Open Access Journals (Sweden)
Sambrano Júlio Ricardo
1999-01-01
Full Text Available Ab initio Hartree-Fock (HF, Density Functional (B3LYP and electron correlation (MP2 methods have been used to caracterize the aqueous medium intramolecular hydrogen bond in a-alanine. The 6-31G* and 6-31++G** were taken from Gaussian94 library. We were concerned on the structure of three conformers of a-alanine, in their neutral form plus on the structure of the zwitterionic form (Z. The Z structure is a stationary point at the HF/6-31G* level but it is not when diffuse functions and electron correlation are included. This results shows that the Z form does not exist in the gas phase. The inclusion of solvent effects changed significantly the results obtained in gas phase, therefore this inclusion make the Z form a stationary point within all level of theory, and the relative energy depends dramatically on the level of calculation.
Ab initio study of long-period superstructures in close-packed A3B compounds
DEFF Research Database (Denmark)
Rosengaard, N. M.; Skriver, Hans Lomholt
1994-01-01
We have performed ab initio calculations of the stability of one-dimensional long-period superstructures in Cu3Pd, Cu3Al, and Ag3Mg by means of an interface Green's function technique based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations......-structure calculations of the structural energy differences for the two short-period superstructures DO22 and DO23. We find that at zero temperature the ground states of Cu3Pd, Cu3Al, and Ag3Mg are one-dimensional superstructures with antiphase boundary separations of 2-5 unit cells of the underlying L1(2) structure....
i-PI: A Python interface for ab initio path integral molecular dynamics simulations
Ceriotti, Michele; More, Joshua; Manolopoulos, David E.
2014-03-01
Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these developments requires a considerable programming effort, which has hindered their adoption. Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program. While it is best suited to first principles calculations and path integral molecular dynamics, i-PI can also be used to perform classical molecular dynamics simulations, and can just as easily be interfaced with an empirical forcefield code. To give just one example of the many potential applications of the interface, we use it in conjunction with the CP2K electronic structure package to showcase the importance of nuclear quantum effects in high-pressure water. Catalogue identifier: AERN_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 138626 No. of bytes in distributed program, including test data, etc.: 3128618 Distribution format: tar.gz Programming language: Python. Computer: Multiple architectures. Operating system: Linux, Mac OSX, Windows. RAM: Less than 256 Mb Classification: 7.7. External routines: NumPy Nature of problem: Bringing the latest developments in the modelling of nuclear quantum effects with path integral molecular dynamics to ab initio electronic structure programs with minimal implementational effort. Solution method: State-of-the-art path integral molecular dynamics techniques are implemented in a Python interface. Any electronic structure code can be patched to receive the atomic
Prediction of toxicity of nitrobenzenes using ab initio and least squares support vector machines
Energy Technology Data Exchange (ETDEWEB)
Niazi, Ali [Department of Chemistry, Faculty of Sciences, Azad University of Arak, Arak (Iran, Islamic Republic of)], E-mail: ali.niazi@gmail.com; Jameh-Bozorghi, Saeed; Nori-Shargh, Davood [Department of Chemistry, Faculty of Sciences, Azad University of Arak, Arak (Iran, Islamic Republic of)
2008-03-01
A quantitative structure-property relationship (QSPR) study is suggested for the prediction of toxicity (IGC{sub 50}) of nitrobenzenes. Ab initio theory was used to calculate some quantum chemical descriptors including electrostatic potentials and local charges at each atom, HOMO and LUMO energies, etc. Modeling of the IGC{sub 50} of nitrobenzenes as a function of molecular structures was established by means of the least squares support vector machines (LS-SVM). This model was applied for the prediction of the toxicity (IGC{sub 50}) of nitrobenzenes, which were not in the modeling procedure. The resulted model showed high prediction ability with root mean square error of prediction of 0.0049 for LS-SVM. Results have shown that the introduction of LS-SVM for quantum chemical descriptors drastically enhances the ability of prediction in QSAR studies superior to multiple linear regression and partial least squares.
Prediction of toxicity of nitrobenzenes using ab initio and least squares support vector machines
International Nuclear Information System (INIS)
Niazi, Ali; Jameh-Bozorghi, Saeed; Nori-Shargh, Davood
2008-01-01
A quantitative structure-property relationship (QSPR) study is suggested for the prediction of toxicity (IGC 50 ) of nitrobenzenes. Ab initio theory was used to calculate some quantum chemical descriptors including electrostatic potentials and local charges at each atom, HOMO and LUMO energies, etc. Modeling of the IGC 50 of nitrobenzenes as a function of molecular structures was established by means of the least squares support vector machines (LS-SVM). This model was applied for the prediction of the toxicity (IGC 50 ) of nitrobenzenes, which were not in the modeling procedure. The resulted model showed high prediction ability with root mean square error of prediction of 0.0049 for LS-SVM. Results have shown that the introduction of LS-SVM for quantum chemical descriptors drastically enhances the ability of prediction in QSAR studies superior to multiple linear regression and partial least squares
Ab Initio and Phenomenological Modeling of the Phonon Spectrum of Superhard cp-BC2N
Basalaev, Yu. M.; Kopytov, A. V.; Pavlova, T. Yu.; Poplavnoi, A. S.
2015-11-01
The phonon spectrum of hypothetical superhard cp-BC2N is calculated based on ab initio method of density functional in the center of the Brillouin zone and interpolated over the entire Brillouin zone using the Keating phenomenological model. The interaction parameters are determined by optimization of the IR- and Ramanactive frequencies for a phenomenological model by their comparison with the results of ab initio calculations. Numerical values of short-range interaction constants and charges are in agreement with the characteristics of the chemical bond calculated ab initio. These parameters have transparent physical meaning and chemical nature and can further be used for both qualitative estimations of any physical and physico-chemical quantities and quantitative calculations of the phonon spectra of a number of isostructural compounds. The Keating phenomenological model is used to study the genesis of the phonon spectrum from the spectra of sublattices.
Ab initio study of perovskite type oxide materials for solid oxide fuel cells
Lee, Yueh-Lin
2011-12-01
Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen
Mugnaioli, Enrico; Gemmi, Mauro; Merlini, Marco; Gregorkiewitz, Michele
2016-01-01
(Nax□1 − x)5[MnO2]13 has been synthesized with x = 0.80 (4), corresponding to Na0.31[MnO2]. This well known material is usually cited as Na0.4[MnO2] and is believed to have a romanèchite-like framework. Here, its true structure is determined, ab initio, by single-crystal electron diffraction tomography (EDT) and refined both by EDT data applying dynamical scattering theory and by the Rietveld method based on synchrotron powder diffraction data (χ2 = 0.690, R wp = 0.051, R p = 0.037, R F2 = 0.035). The unit cell is monoclinic C2/m, a = 22.5199 (6), b = 2.83987 (6), c = 14.8815 (4) Å, β = 105.0925 (16)°, V = 918.90 (4) Å3, Z = 2. A hitherto unknown [MnO2] framework is found, which is mainly based on edge- and corner-sharing octahedra and comprises three types of tunnels: per unit cell, two are defined by S-shaped 10-rings, four by egg-shaped 8-rings, and two by slightly oval 6-rings of Mn polyhedra. Na occupies all tunnels. The so-determined structure excellently explains previous reports on the electrochemistry of (Na,□)5[MnO2]13. The trivalent Mn3+ ions concentrate at two of the seven Mn sites where larger Mn—O distances and Jahn–Teller distortion are observed. One of the Mn3+ sites is five-coordinated in a square pyramid which, on oxidation to Mn4+, may easily undergo topotactic transformation to an octahedron suggesting a possible pathway for the transition among different tunnel structures. PMID:27910840
C and Si in the core - an experimental and ab initio approach
Vocadlo, L.; Alfe, D.; Wood, I. G.; Dobson, D.; Price, G. D.
2003-04-01
The fact that the core is largely composed of iron (Fe) was firmly established as a result of Birch's analysis of materials-density/sound-wave velocity systematics. Today we believe that the outer core is about 6 to 10% less dense than pure liquid Fe, while the solid inner core is a few percent less dense than pure Fe. From cosmochemical and other considerations, it is likely that the alloying elements in the core might include S, O, Si, H and C. It is also possible that the core contains minor amounts of other elements, such as Ni and K. Here we present our results from both experiments and ab initio computer calculations on Fe alloyed with C and Si at Earth's core conditions. Neutron diffraction experiments indicate that Fe3C will be non-magnetic at core conditions; ab initio calculations on the non-magnetic phase of Fe3C suggest that, at core P and T, its density and incompressibity are inconsistent with the observations from PREM. Calcuations on FeSi show that it adopts the CsCl structure at core pressures; this result has recently been validated by our high pressure experiments in which we were able to synthesise CsCl-FeSi. This is an extemely interesting result since CsCl-FeSi is iso-structural with bcc-Fe, and experiments have recently shown (Lin et al., 2002) that Si stabilises bcc-Fe with respect to hcp-Fe up to 80 GPa. Ab initio molecular dynamics simulations have been used to calculate the chemical potentials of Fe alloys. In order to match the density jump at the inner core boundary, we predict an inner core with 8 mol% S/Si and 0.3 mol% O, and an outer core containing 10 mol % S/Si and 8 mol % O. Finally we present preliminary results for the calculated high P/T elastic constants of iron alloys as a function of composition.
Ab initio study of the low-lying electronic states of the CaO molecule
Energy Technology Data Exchange (ETDEWEB)
Khalil, Hossain; Brites, Vincent; Quere, Frederic Le [Universite Paris-Est, Laboratoire de Modelisation et Simulation Multi Echelle, UMR 8208 CNRS, Batiment Lavoisier, 5 boulevard Descartes, Champs sur Marne, 77454 Marne-la-Vallee, Cedex 2 (France); Leonard, Celine, E-mail: celine.leonard@univ-paris-est.fr [Universite Paris-Est, Laboratoire de Modelisation et Simulation Multi Echelle, UMR 8208 CNRS, Batiment Lavoisier, 5 boulevard Descartes, Champs sur Marne, 77454 Marne-la-Vallee, Cedex 2 (France)
2011-07-28
Graphical abstract: Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure of the low-lying electronic states of the CaO molecule. The computations are done using the aug-cc-pV5Z basis set for O and the cc-pCV5Z for Ca. The potential energy curves for the molecular states correlating to the lowest three asymptotes are calculated at the CASSCF level. The potential curves of the lowest five molecular states, X{sup 1}{Sigma}{sup +}, a{sup 3}{Pi}, A'{sup 1{Pi}}, b{sup 3}{Sigma}{sup +} and A{sup 1}{Sigma}{sup +}, and the corresponding dipole moment functions have been determined using internally contracted multi-reference configuration interaction approaches. The spectroscopic constants associated with these electronic states are compared to experimental values. The corresponding electronic wavefunctions have also been analyzed using the dipole moment functions. Display Omitted Highlights: {yields} The five lowest electronic states of Cao have been determined ab initio at a high level of accuracy. {yields} Large active space, core-valence correlation and configuration interaction are required. {yields} The multi-configurational nature of the electronic ground state is confirmed as well as its monovalent and divalent ionic nature using dipole moment analysis. {yields} These interacting potentials will serve for future obtention of spin-rovibronic levels. - Abstract: Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure of the low-lying electronic states of the CaO molecule. The computations are done using the aug-cc-pV5Z basis set for O and the cc-pCV5Z for Ca. The potential energy curves for the molecular states correlating to the lowest three asymptotes are calculated at the CASSCF level. The potential curves of the lowest five molecular states, X{sup 1}{Sigma}{sup +}, a{sup 3}{Pi}, A'{sup 1}{Pi}, b{sup 3}{Sigma}{sup +} and A{sup 1
Energy Technology Data Exchange (ETDEWEB)
Borges, P. D., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu; Scolfaro, L., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu [Department of Physics, Texas State University, San Marcos, Texas 78666 (United States)
2014-12-14
The thermoelectric properties of indium nitride in the most stable wurtzite phase (w-InN) as a function of electron and hole concentrations and temperature were studied by solving the semiclassical Boltzmann transport equations in conjunction with ab initio electronic structure calculations, within Density Functional Theory. Based on maximally localized Wannier function basis set and the ab initio band energies, results for the Seebeck coefficient are presented and compared with available experimental data for n-type as well as p-type systems. Also, theoretical results for electric conductivity and power factor are presented. Most cases showed good agreement between the calculated properties and experimental data for w-InN unintentionally and p-type doped with magnesium. Our predictions for temperature and concentration dependences of electrical conductivity and power factor revealed a promising use of InN for intermediate and high temperature thermoelectric applications. The rigid band approach and constant scattering time approximation were utilized in the calculations.
Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei
Energy Technology Data Exchange (ETDEWEB)
Dytrych, T. [Academy of Sciences of the Czech Republic (ASCR), Prague (Czech Republic); Louisiana State Univ., Baton Rouge, LA (United States); Maris, Pieter [Iowa State Univ., Ames, IA (United States); Launey, K. D. [Louisiana State Univ., Baton Rouge, LA (United States); Draayer, J. P. [Louisiana State Univ., Baton Rouge, LA (United States); Vary, James [Iowa State Univ., Ames, IA (United States); Langr, D. [Czech Technical Univ., Prague (Czech Republic); Aerospace Research and Test Establishment, Prague (Czech Republic); Saule, E. [Univ. of North Carolina, Charlotte, NC (United States); Caprio, M. A. [Univ. of Notre Dame, IN (United States); Catalyurek, U. [The Ohio State Univ., Columbus, OH (United States). Dept. of Electrical and Computer Engineering; Sosonkina, M. [Old Dominion Univ., Norfolk, VA (United States)
2016-06-09
We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, dubbed LSU3shell, by analyzing ab initio results for ^{6}Li and ^{12}C in large harmonic oscillator model spaces and SU(3)-selected subspaces. We demonstrate LSU3shell's strong-scaling properties achieved with highly-parallel methods for computing the many-body matrix elements. Results compare favorably with complete model space calculations and signi cant memory savings are achieved in physically important applications. In particular, a well-chosen symmetry-adapted basis a ords memory savings in calculations of states with a fixed total angular momentum in large model spaces while exactly preserving translational invariance.
Driving nuclei with resonant electrons: Ab initio study of (e+H2) 2Σu+
International Nuclear Information System (INIS)
Robicheaux, F.
1991-01-01
We have calculated the cross sections for vibrational excitation and dissociative attachment in H 2 below 5 eV scattering energy. This completely ab initio calculation uses the frame-transformation method of Greene and Jungen [Adv. At. Mol. Phys. 21, 51 (1985)] for electron-vibronic coupling in resonant scattering from a neutral molecule. We found it necessary to modify their method to obtain good agreement with previous theory and experiment for v=0→v f with v f =1--3; for larger v f and for dissociative attachment we obtained good agreement with previous theory and qualitative agreement with experiment. The fixed-nuclei phase shifts were derived from a fully ab initio calculation in prolate spheroidal coordinates and then transformed to spherical l=1 phase shifts. The vibrational structure of H 2 - becomes evident for excitation from higher vibrational states of H 2 as well as for larger Δv's, confirming previous theory and experiment
Lischner, Johannes; Vigil-Fowler, Derek; Louie, Steven G
2013-04-05
We calculate the photoemission spectra of suspended and epitaxial doped graphene using an ab initio cumulant expansion of the Green's function based on the GW self-energy. Our results are compared to experiment and to standard GW calculations. For doped graphene on a silicon carbide substrate, we find, in contrast to earlier calculations, that the spectral function from GW only does not reproduce experimental satellite properties. However, ab initio GW plus cumulant theory combined with an accurate description of the substrate screening results in good agreement with experiment, but gives no plasmaron (i.e., no extra well-defined excitation satisfying Dyson's equation).
Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines
DEFF Research Database (Denmark)
Ullah, Saif; Ishimoto, Takayoshi; Williamson, Mike P.
2011-01-01
Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation. This me......Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation...
Ab initio calculations versus polarized neutron diffraction for the spin density of free radicals
Ressouche, E
2003-01-01
The determination of the magnetization distribution using polarized neutron diffraction has played a key role during the last twenty years in the field of molecular magnetism. This distribution can also be obtained by first principle ab initio calculations. Such calculations always rely on approximations and the question that arises is to know whether the obtained results are reliable enough to represent accurately the properties of these molecules. The comparison between polarized neutron experimental results and ab initio calculations has turned to provide stringent tests for these methods. In the resent article a comparison between experimental and theoretical results is made and is illustrated by examples based on magnetic free radicals. (author)
Ab initio study of thermoelectric properties of doped SnO2 superlattices
International Nuclear Information System (INIS)
Borges, P.D.; Silva, D.E.S.; Castro, N.S.; Ferreira, C.R.; Pinto, F.G.; Tronto, J.; Scolfaro, L.
2015-01-01
Transparent conductive oxides, such as tin dioxide (SnO 2 ), have recently shown to be promising materials for thermoelectric applications. In this work we studied the thermoelectric properties of Fe-, Sb- and Zn-uniformly doping and co-doping SnO 2 , as well as of Sb and Zn planar (or delta)-doped layers in SnO 2 forming oxide superlattices (SLs). Based on the semiclassical Boltzmann transport equations (BTE) in conjunction with ab initio electronic structure calculations, the Seebeck coefficient (S) and figure of merit (ZT) are obtained for these systems, and are compared with available experimental data. The delta doping approach introduces a remarkable modification in the electronic structure of tin dioxide, when compared with the uniform doping, and colossal values for ZT are predicted for the delta-doped oxide SLs. This result is a consequence of the two-dimensional electronic confinement and the strong anisotropy introduced by the doped planes. In comparison with the uniformly doped systems, our predictions reveal a promising use of delta-doped SnO 2 SLs for enhanced S and ZT, which emerge as potential candidates for thermoelectric applications. - Graphical abstract: Band structure and Figure of merit for SnO2:Sb superlattice along Z direction, P. D. Borges, D. E. S. Silva, N. S. Castro, C. R. Ferreira, F. G. Pinto, J. Tronto and L. Scolfaro, Ab initio study of thermoelectric properties of doped SnO2 superlattices. - Highlights: • Thermoelectric properties of SnO 2 -based alloys and superlattices. • High figure of merit is predicted for planar-doped SnO 2 superlattices. • Nanotechnology has an important role for the development of thermoelectric devices.
Ab initio study of thermoelectric properties of doped SnO{sub 2} superlattices
Energy Technology Data Exchange (ETDEWEB)
Borges, P.D., E-mail: pdborges@gmail.com [Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, 38810-000 Rio Paranaíba, MG (Brazil); Silva, D.E.S.; Castro, N.S.; Ferreira, C.R.; Pinto, F.G.; Tronto, J. [Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, 38810-000 Rio Paranaíba, MG (Brazil); Scolfaro, L. [Department of Physics, Texas State University, 78666 San Marcos, TX (United States)
2015-11-15
Transparent conductive oxides, such as tin dioxide (SnO{sub 2}), have recently shown to be promising materials for thermoelectric applications. In this work we studied the thermoelectric properties of Fe-, Sb- and Zn-uniformly doping and co-doping SnO{sub 2}, as well as of Sb and Zn planar (or delta)-doped layers in SnO{sub 2} forming oxide superlattices (SLs). Based on the semiclassical Boltzmann transport equations (BTE) in conjunction with ab initio electronic structure calculations, the Seebeck coefficient (S) and figure of merit (ZT) are obtained for these systems, and are compared with available experimental data. The delta doping approach introduces a remarkable modification in the electronic structure of tin dioxide, when compared with the uniform doping, and colossal values for ZT are predicted for the delta-doped oxide SLs. This result is a consequence of the two-dimensional electronic confinement and the strong anisotropy introduced by the doped planes. In comparison with the uniformly doped systems, our predictions reveal a promising use of delta-doped SnO{sub 2} SLs for enhanced S and ZT, which emerge as potential candidates for thermoelectric applications. - Graphical abstract: Band structure and Figure of merit for SnO2:Sb superlattice along Z direction, P. D. Borges, D. E. S. Silva, N. S. Castro, C. R. Ferreira, F. G. Pinto, J. Tronto and L. Scolfaro, Ab initio study of thermoelectric properties of doped SnO2 superlattices. - Highlights: • Thermoelectric properties of SnO{sub 2}-based alloys and superlattices. • High figure of merit is predicted for planar-doped SnO{sub 2} superlattices. • Nanotechnology has an important role for the development of thermoelectric devices.
Ab-initio electronic and magnetic properties of Fe-Al alloys
Directory of Open Access Journals (Sweden)
Apiñaniz, E.
2000-06-01
Full Text Available This work presents ab-initio self-consistent calculations performed with the TB-LMTO code to study the different phases of the Fe-Al phase diagram, corresponding to the ordered structures B2, DO3 and B32 and for Fe50Al50 and Fe3Al compositions. Both, unpolarized and spin-polarized calculations have been performed to deduce the energetic difference between the paramagnetic and ferromagnetic state of the corresponding structure. Calculations for the disordered structures have also been performed for the previously mentioned compositions. These results show that by disordering the alloy magnetism is enhanced and that the equilibrium lattice parameter increases.
En este trabajo se presentan cálculos autoconsistentes ab-initio realizados con el método TB-LMTO (Tight Binding Linear Muffin Tin Orbital con el fin de estudiar las diferentes estructuras que se presentan en el diagrama de fases de las aleaciones Fe-Al. Se han estudiado las estructuras ordenadas B2, DO3 y B32 para las siguientes concentraciones: Fe50Al50 y Fe3Al. Asimismo, se han realizado cálculos teniendo y sin tener en cuenta la polarización de spin con el fin de poder deducir la diferencia energética entre los estados ferromágneticos y paramágneticos de la misma estructura. Por otra parte se han realizado estos mismos cálculos para estructuras desordenadas y las mismas concentraciones. Los resultados muestran que mediante el desorden aumenta el magnetismo de estas aleaciones y crece el parámetro de red.
Fishchuk, A.V.; Merritt, J.M.; Avoird, A. van der
2007-01-01
The three adiabatic potential surfaces of the Br(P-2)-HCN complex that correlate to the P-2 ground state of the Br atom were calculated ab initio. With the aid of a geometry-dependent diabatic mixing angle, also calculated ab initio, these adiabatic potential surfaces were transformed into a set of
Szekrényes, Zsolt; Kamarás, Katalin; Tarczay, György; Llanes-Pallás, Anna; Marangoni, Tomas; Prato, Maurizio; Bonifazi, Davide; Björk, Jonas; Hanke, Felix; Persson, Mats
2012-04-19
The thermal response of hydrogen bonds is a crucial aspect in the self-assembly of molecular nanostructures. To gain a detailed understanding of their response, we investigated infrared spectra of monomers and hydrogen-bonded dimers of two uracil-derivative molecules, supported by density functional theory calculations. Matrix isolation spectra of monomers, temperature dependence in the solid state, and ab initio molecular dynamics calculations give a comprehensive picture about the dimer structure and dynamics of such systems as well as a proper assignment of hydrogen-bond affected bands. The evolution of the hydrogen bond melting is followed by calculating the C═O···H-N distance distributions at different temperatures. The result of this calculation yields excellent agreement with the H-bond melting temperature observed by experiment.
Carbon diffusion in molten uranium: an ab initio molecular dynamics study
Garrett, Kerry E.; Abrecht, David G.; Kessler, Sean H.; Henson, Neil J.; Devanathan, Ram; Schwantes, Jon M.; Reilly, Dallas D.
2018-04-01
In this work we used ab initio molecular dynamics within the framework of density functional theory and the projector-augmented wave method to study carbon diffusion in liquid uranium at temperatures above 1600 K. The electronic interactions of carbon and uranium were described using the local density approximation (LDA). The self-diffusion of uranium based on this approach is compared with literature computational and experimental results for liquid uranium. The temperature dependence of carbon and uranium diffusion in the melt was evaluated by fitting the resulting diffusion coefficients to an Arrhenius relationship. We found that the LDA calculated activation energy for carbon was nearly twice that of uranium: 0.55 ± 0.03 eV for carbon compared to 0.32 ± 0.04 eV for uranium. Structural analysis of the liquid uranium-carbon system is also discussed.
Ab initio study on the reaction between uranium and O2
International Nuclear Information System (INIS)
Shuai Maobing; Zhao Pengji; Tian Anmin
2000-08-01
Optimized geometries, total energies and electronic structures of some gaseous atoms and molecules of uranium-oxygen system are calculated with harmonic vibration analysis using ab initio method. The potential energy surfaces (PESs) of the uranium oxidation process are also constructed. The calculated optimized geometries, infrared vibrational frequencies and the first ionized potential energies are in well accordance with available experimental data. Although U6p, U7s and U6d valence orbital electrons take part in the formation of U - O bond, the U5f electrons play an dominant role in this process and because the energies of U5f, U6d, U7s and Uds atomic orbitals are close to each other, these orbitals may hybrid and interact with O2p orbital, simultaneously, to form molecular orbitals of uranium oxides. The PESs show that different reaction modes result in different product geometries
Ab-initio study of NiGe/Ge Schottky contact
Vaidya, Dhirendra; Lodha, Saurabh; Ganguly, Swaroop
2017-04-01
Germanium is a promising material for next-generation electronic and photonic devices, and engineering ohmic contacts to it can be expected to be a key challenge therein. The sensitivity of the Schottky barrier height of the NiGe/Ge contact to the detailed interfacial structure is revealed using the ab-initio study of pseudo-epitaxial NiGe(001)/Ge(100) contact using the computationally efficient meta-generalized-gradient-approximation, which can overcome the well-known bandgap underestimation problem. The p-type Schottky barrier height for an atomically flat pseudo-epitaxial NiGe(001)/Ge(100) contact is calculated to be 260 meV, an overestimate of about 160 meV compared to experiments. However, the estimated modulation of this barrier height, by about 270 meV, due to interface morphology points to a possible explanation for this discrepancy and suggests ways to engineer the contact for lesser resistivity.
Progress towards an ab initio real-time treatment of warm dense matter
Baczewski, Andrew; Cangi, Attila; Hansen, Stephanie; Jensen, Daniel
2017-10-01
Time-dependent density functional theory (TDDFT) provides an accurate description of equilibrium properties of warm dense matter, such as the dynamic structure factor (Baczewski et al., Phys. Rev. Lett., 116(11), 2016). While non-equilibrium properties, such as stopping power, have also been demonstrated to be within the grasp of TDDFT, the ultrafast isochoric heating of condensed matter into the warm dense state, enabled by recent advances in XFELs, remains beyond its capabilities. In this talk, we will describe the successes of and continuing challenges for TDDFT for warm dense matter, and present progress towards a more complete ab initio treatment of isochoric x-ray heating. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the DOE's National Nuclear Security Administration under contract DE-NA0003525.
Ab Initio Molecular Dynamics Studies of Pb m Sb n ( m + n ≤ 9) Alloy Clusters
Song, Bingyi; Xu, Baoqiang; Yang, Bin; Jiang, Wenlong; Chen, Xiumin; Xu, Na; Liu, Dachun; Dai, Yongnian
2017-10-01
Structure, stability, and dynamics of Pb m Sb n ( m + n ≤ 9) clusters were investigated using ab initio molecular dynamics. Size dependence of binding energies, the second-order energy difference of clusters, dissociation energy, HOMO-LUMO gaps, Mayer bond order, and the diffusion coefficient of Pb m Sb n clusters were discussed. Results suggest that Pb3Sb2, Pb4Sb2, and Pb5Sb4 ( n = 2 or 4) clusters have higher stability than other clusters, which is consistent with previous findings. In case of Pb-Sb alloy, the dynamics results show that Pb4Sb2 (Pb-22.71 wt pct Sb) can exist in gas phase at 1073 K (800 °C), which reasonably explains the azeotropic phenomenon, and the calculated values are in agreement with the experimental results (Pb-22 wt pct Sb).
Ab initio potential energy surface and vibration-rotation energy levels of sulfur dioxide.
Koput, Jacek
2017-05-05
An accurate potential energy surface of sulfur dioxide, SO 2 , in its ground electronic state X∼ 1A1 has been determined from ab initio calculations using the coupled-cluster approach in conjunction with the correlation-consistent basis sets up to septuple-zeta quality. The results obtained with the conventional and explicitly correlated coupled-cluster methods are compared. The role of the core-electron correlation, higher-order valence-electron correlation, scalar relativistic, and adiabatic effects in determining the structure and dynamics of the SO 2 molecule is discussed. The vibration-rotation energy levels of the 32 SO 2 and 34 SO 2 isotopologues were predicted using a variational approach. It was shown that the inclusion of the aforementioned effects was mandatory to attain the "spectroscopic" accuracy. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Design of two-photon molecular tandem architectures for solar cells by ab initio theory
DEFF Research Database (Denmark)
Ørnsø, Kristian Baruël; García Lastra, Juan Maria; De La Torre, Gema
2015-01-01
An extensive database of spectroscopic properties of molecules from ab initio calculations is used to design molecular complexes for use in tandem solar cells that convert two photons into a single electron–hole pair, thereby increasing the output voltage while covering a wider spectral range...... of the structural and energetic properties of several thousand porphyrin dyes. The third design is a molecular analogy of the intermediate band solar cell, and involves a single dye molecule with strong intersystem crossing to ensure a long lifetime of the intermediate state. Based on the calculated energy levels...... and molecular orbitals, energy diagrams are presented for the individual steps in the operation of such tandem solar cells. We find that theoretical open circuit voltages of up to 1.8 V can be achieved using these tandem designs. Questions about the practical implementation of prototypical devices...
Raman Spectroscopy and Ab-Initio Model Calculations on Ionic Liquids
DEFF Research Database (Denmark)
Berg, Rolf W.
2007-01-01
A review of the recent developments in the study and understanding of room temperature ionic liquids are given. An intimate picture of how and why these liquids are not crystals at ambient conditions is attempted, based on evidence from crystallographical results combined with vibrational...... that the structural resolving power of Raman spectroscopy will be appreciated by the reader. It is of remarkable use on crystals of known different conformations and on the corresponding liquids, especially in combination with modern quantum mechanics calculations. It is hoped that these interdisciplinary methods...... spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT-Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methylimidazolium ([C4mim][X]) salts. The rotational isomerism of the [C4mim]þ cation is described: the presence of anti...
Ab initio atomic recombination reaction energetics on model heat shield surfaces
Senese, Fredrick; Ake, Robert
1992-01-01
Ab initio quantum mechanical calculations on small hydration complexes involving the nitrate anion are reported. The self-consistent field method with accurate basis sets has been applied to compute completely optimized equilibrium geometries, vibrational frequencies, thermochemical parameters, and stable site labilities of complexes involving 1, 2, and 3 waters. The most stable geometries in the first hydration shell involve in-plane waters bridging pairs of nitrate oxygens with two equal and bent hydrogen bonds. A second extremely labile local minimum involves out-of-plane waters with a single hydrogen bond and lies about 2 kcal/mol higher. The potential in the region of the second minimum is extremely flat and qualitatively sensitive to changes in the basis set; it does not correspond to a true equilibrium structure.
International Nuclear Information System (INIS)
Walker, I C; McEwen, I J; Holland, D M P; Shaw, D A; Guest, M F
2008-01-01
The absolute photoabsorption spectrum of ethylene oxide (C 2 H 4 O) has been measured between onset and 30 eV, using monochromated synchrotron radiation. Below the ionization threshold (10.56 eV) the spectrum is dominated by sharp peaks related to excitation of Rydberg series converging on the first ionization energy. Above the ionization threshold, valence-excited states, which give rise to broad bands, predominate. Underlying Rydberg states are signalled in weak vibrational structure on the valence bands. Ab initio multireference configuration interaction (MRDCI) calculations have been carried out to assist in assignment of the excited states, both valence and Rydberg. The lowest-lying valence state is electric-dipole forbidden; the first optically allowed valence state lies close to the ionization onset. The spectrum of the oxide is compared with those of cyclopropane (C 3 H 6 ) and ethylene sulphide (C 2 H 4 S)
Marques, Yuri Bento; de Paiva Oliveira, Alcione; Ribeiro Vasconcelos, Ana Tereza; Cerqueira, Fabio Ribeiro
2016-12-15
MicroRNAs (miRNAs) are key gene expression regulators in plants and animals. Therefore, miRNAs are involved in several biological processes, making the study of these molecules one of the most relevant topics of molecular biology nowadays. However, characterizing miRNAs in vivo is still a complex task. As a consequence, in silico methods have been developed to predict miRNA loci. A common ab initio strategy to find miRNAs in genomic data is to search for sequences that can fold into the typical hairpin structure of miRNA precursors (pre-miRNAs). The current ab initio approaches, however, have selectivity issues, i.e., a high number of false positives is reported, which can lead to laborious and costly attempts to provide biological validation. This study presents an extension of the ab initio method miRNAFold, with the aim of improving selectivity through machine learning techniques, namely, random forest combined with the SMOTE procedure that copes with imbalance datasets. By comparing our method, termed Mirnacle, with other important approaches in the literature, we demonstrate that Mirnacle substantially improves selectivity without compromising sensitivity. For the three datasets used in our experiments, our method achieved at least 97% of sensitivity and could deliver a two-fold, 20-fold, and 6-fold increase in selectivity, respectively, compared with the best results of current computational tools. The extension of miRNAFold by the introduction of machine learning techniques, significantly increases selectivity in pre-miRNA ab initio prediction, which optimally contributes to advanced studies on miRNAs, as the need of biological validations is diminished. Hopefully, new research, such as studies of severe diseases caused by miRNA malfunction, will benefit from the proposed computational tool.
Directory of Open Access Journals (Sweden)
Vadym V. Kulish
2017-12-01
Full Text Available Rational design of active electrode materials is important for the development of advanced lithium and post-lithium batteries. Ab initio modeling can provide mechanistic understanding of the performance of prospective materials and guide design. We review our recent comparative ab initio studies of lithium, sodium, potassium, magnesium, and aluminum interactions with different phases of several actively experimentally studied electrode materials, including monoelemental materials carbon, silicon, tin, and germanium, oxides TiO2 and VxOy as well as sulphur-based spinels MS2 (M = transition metal. These studies are unique in that they provided reliable comparisons, i.e., at the same level of theory and using the same computational parameters, among different materials and among Li, Na, K, Mg, and Al. Specifically, insertion energetics (related to the electrode voltage and diffusion barriers (related to rate capability, as well as phononic effects, are compared. These studies facilitate identification of phases most suitable as anode or cathode for different types of batteries. We highlight the possibility of increasing the voltage, or enabling electrochemical activity, by amorphization and p-doping, of rational choice of phases of oxides to maximize the insertion potential of Li, Na, K, Mg, Al, as well as of rational choice of the optimum sulfur-based spinel for Mg and Al insertion, based on ab initio calculations. Some methodological issues are also addressed, including construction of effective localized basis sets, applications of Hubbard correction, generation of amorphous structures, and the use of a posteriori dispersion corrections.
International Nuclear Information System (INIS)
Colgan, J.; Judge, E.J.; Kilcrease, D.P.; Barefield, J.E.
2014-01-01
We report on efforts to model the Fe emission spectrum generated from laser-induced breakdown spectroscopy (LIBS) measurements on samples of pure iron oxide (Fe 2 O 3 ). Our modeling efforts consist of several components. We begin with ab-initio atomic structure calculations performed by solving the Hartree–Fock equations for the neutral and singly ionized stages of Fe. Our energy levels are then adjusted to their experimentally known values. The atomic transition probabilities and atomic collision quantities are also computed in an ab-initio manner. We perform LTE or non-LTE calculations that generate level populations and, subsequently, an emission spectrum for the iron plasma for a range of electron temperatures and electron densities. Such calculations are then compared to the experimental spectrum. We regard our work as a preliminary modeling effort that ultimately strives towards the modeling of emission spectra from even more complex samples where less atomic data are available. - Highlights: • LIBS plasma of iron oxide • Ab-initio theoretical Modeling • Discussion of LTE versus non-LTE criteria and assessment • Boltzmann plots for Fe—determination of when LTE is a valid assumption • Emission spectra for Fe—comparison of theoretical modeling and measurement: good agreement obtained
Directory of Open Access Journals (Sweden)
S. J Hashemifar
2015-01-01
Full Text Available In this paper, the structural, magnetic, and electronic properties of two- to nine-atom copper and silver clusters and their alloys with one palladium atom are investigated by using full-potential all-electron density functional computations. After calculating minimized energy of several structural isomers of every nanocluster, it is argued that the small size nanoclusters (up to size of 6, prefer planar structures, while by increasing size a 2D-3D structural transformation is observed. The structural transformation of pure and copper-palladium clusters occurs in the size of seven and that of silver-palladium cluster in happens at the size of six. The calculated second difference and dissociation energies confirm that the two- and eight- atom pure clusters and three- and seven- atom alloyed clusters are magic clusters. The electronic and magnetic properties of stable isomers are calculated and considered after applying many body based GW correction.
Yabana, Kazuhiro
2017-05-01
Ab-initio density functional theory (DFT) has been successful for calculations of ground state properties of various materials. Time-dependent density functional theory (TDDFT) is an extension of the DFT and can describe electron dynamics in molecules, nano-structures, and solids induced by optical electric fields. We have been developing a computational method to describe electron dynamics in a crystalline solid under an irradiation of an ultrashort laser pulse, solving the time-dependent Kohn-Sham equation in real time. The method can be used for an ab-initio description of light-matter interactions. We further couple the electron dynamics calculation with the macroscopic Maxwell equations in a multiscale implementation. It can describe laser pulse propagation in dielectrics and, in particular,the energy transfer from the laser pulse to electrons in dielectrics without any empirical parameters. We apply the method to analyze recent experiments utilizing attosecond spectroscopy methods. We show a few examples. One is for the ultrafast changes of dielectric properties of diamond during the irradiation of an intense few-cycle laser pulse. We mimic the pump-probe measurement employing the multiscale Maxwell + TDDFT simulation. We clarified that the dynamical Franz-Keldysh effect is responsible for the mechanism. The other is to identify the onset of the energy transfer from the laser pulse to SiO_2 when we increase the intensity of the laser pulse. We are currently extending the analysis to obtain a clear and intuitive understanding for the initial stage of laser damage processes.
Ab initio study on the paths of oxygen abstraction of hydrogen trioxide
Indian Academy of Sciences (India)
Keywords. Ab initio calculations; atmospheric chemistry; hydrogen trioxide; acid rain. 1. Introduction. Processes such as volcanic eruptions, biogenic activi- ty, and the combustion of fossil fuels are resources for the emission of sulphur gases into the atmosphere. Sul- phur has been recognized as an important constituent of.
DEFF Research Database (Denmark)
Andersen, Vinca Bonde; Berg, Rolf W.; Shim, Irene
2017-01-01
The iminodisulfonate, [N(SO3)2]3–, and phosphinodisulfonate, [P(SO3)2]3–, ions have been investigated by performing ab initio MP2/6-311+G**calculations. The nitrogen and phosphorus atoms as part of the ions are shown to be divalent with a negative charge and two lone pairs on the nitrogen and pho...
DEFF Research Database (Denmark)
Svendsen, Casper Steinmann; Jensen, Jan; Fedorov, Dmitri
2013-01-01
of chorismate mutase in less than four days using 80 cores on 20 nodes, where the whole system containing 2398 atoms is treated in the ab initio fashion without using any force fields. The reaction path is constructed automatically with the only assumption of defining the reaction coordinate a priori. We...
Ab initio calculations of fundamental properties of SrTe1− xOx alloys
Indian Academy of Sciences (India)
Home; Journals; Bulletin of Materials Science; Volume 39; Issue 3. Ab initio ... Department of Physics, Faculty of Sciences, Badji Mokhtar University, P.O. Box 12, 23000 Annaba, Algeria; Laboratoire LPR, Département de Physique, Faculté des Sciences, Université Badji Mokhtar, Annaba, Algeria; Laboratoire de Physique et ...
Calibration of the isomer shift for iodine resonant transition by ab initio calculations
Czech Academy of Sciences Publication Activity Database
Wdowik, U. D.; Legut, Dominik; Ruebenbauer, K.
2010-01-01
Roč. 114, č. 26 (2010), s. 7146-7152 ISSN 1089-5639 Institutional research plan: CEZ:AV0Z20410507 Keywords : ab initio * isomer shift of iodine * calibration * I127 * I129 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.732, year: 2010
DEFF Research Database (Denmark)
Cybulski, Hubert; Fernandez, Berta; Henriksen, Christian
2012-01-01
We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set ...... Institute of Physics. [http://dx.doi.org/10.1063/1.4742153]...
Czech Academy of Sciences Publication Activity Database
Ma, D.; Friák, Martin; von Pezold, J.; Raabe, D.; Neugebauer, J.
2015-01-01
Roč. 85, FEB (2015), s. 53-66 ISSN 1359-6454 Institutional support: RVO:68081723 Keywords : Solid-solution strengthening * DFT * Peierls–Nabarro model * Ab initio * Al alloys Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.058, year: 2015
High accuracy ab initio calculations on reactions of OH with 1-alkenes. The case of propene
Czech Academy of Sciences Publication Activity Database
Izsák, R.; Szöri, Milan; Knowles, P. J.; Viskolcz, B.
2009-01-01
Roč. 5, č. 9 (2009), s. 2313-2321 ISSN 1549-9618 Institutional research plan: CEZ:AV0Z40550506 Keywords : multireference ab initio calculations * OH-addition * H-abstraction by OH Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.804, year: 2009
Non-adiabatic collisions in H + O2 system: An ab initio study
Indian Academy of Sciences (India)
WINTEC
Abstract. An ab initio study on the low-lying potential energy surfaces of H+ + O2 system for different orientations (γ) of H+ have been undertaken employing the multi-reference configuration interaction. (MRCI) method and Dunning's cc-pVTZ basis set to examine their role in influencing the collision dyna- mics. Nonadiabatic ...
Understanding hydration of Zn(2+) in hydrothermal fluids with ab initio molecular dynamics
Liu, X.; Lu, X.; Wang, R.; Meijer, E.J.
2011-01-01
With ab initio molecular dynamics simulations, the free-energy profiles of hydrated Zn2+ are calculated for both gaseous and aqueous systems from ambient to supercritical conditions, and from the derived free-energy information, the speciation of hydrated Zn2+ has been revealed. It is shown that the
An Efficient Method for Electron-Atom Scattering Using Ab-initio Calculations
Energy Technology Data Exchange (ETDEWEB)
Xu, Yuan; Yang, Yonggang; Xiao, Liantuan; Jia, Suotang [Shanxi University, Taiyuan (China)
2017-02-15
We present an efficient method based on ab-initio calculations to investigate electron-atom scatterings. Those calculations profit from methods implemented in standard quantum chemistry programs. The new approach is applied to electron-helium scattering. The results are compared with experimental and other theoretical references to demonstrate the efficiency of our method.
Ab Initio Calculations and Raman and SERS Spectral Analyses of Amphetamine Species
DEFF Research Database (Denmark)
Berg, Rolf W.; Nørbygaard, Thomas; White, Peter C.
2011-01-01
. The spectra of amphetamine and amphetamine-H+ sampleswere obtained and assigned according to a comparison of the experimental spectra and the ab initio MO calculations, performed using the Gaussian 03W program (Gaussian, Inc., Pittsburgh, PA). The analyses were based on complete geometry minimization...
Ab initio and work function and surface energy anisotropy of LaB6
Uijttewaal, M. A.; de Wijs, G. A.; de Groot, R. A.
2006-01-01
Lanthanum hexaboride is one of the cathode materials most used in high-power electronics technology, but the many experimental results do not provide a consistent picture of the surface properties. Therefore, we report the first ab initio calculations of the work functions and surface energies of
New ab initio based pair potential for accurate simulation of phase transitions in ZnO
Wang, Shuaiwei; Fan, Zhaochuan; Koster, Rik S.; Fang, Changming; Van Huis, Marijn A.; Yalcin, Anil O.; Tichelaar, Frans D.; Zandbergen, Henny W.; Vlugt, Thijs J H
2014-01-01
A set of interatomic pair potentials is developed for ZnO based on the partially charged rigid ion model (PCRIM). The derivation of the potentials combines lattice inversion, empirical fitting, and ab initio energy surface fitting. We show that, despite the low number of parameters in this model
DEFF Research Database (Denmark)
Abild-Pedersen, Frank; Nørskov, Jens Kehlet; Rostrup-Nielsen, Jens
2006-01-01
Mechanisms and energetics of graphene growth catalyzed by nickel nanoclusters were studied using ab initio density functional theory calculations. It is demonstrated that nickel step-edge sites act as the preferential growth centers for graphene layers on the nickel surface. Carbon is transported...
Precise Ab-initio prediction of terahertz vibrational modes in crystalline systems
DEFF Research Database (Denmark)
Jepsen, Peter Uhd; Clark, Stewart J.
2007-01-01
We use a combination of experimental THz time-domain spectroscopy and ab-initio density functional perturbative theory to accurately predict the terahertz vibrational spectrum of molecules in the crystalline phase. Our calculations show that distinct vibrational modes found in solid-state materials...
Czech Academy of Sciences Publication Activity Database
Meliá, C.; Ferrer, S.; Řezáč, Jan; Parisel, O.; Reinaud, O.; Moliner, V.; de la Lande, A.
2013-01-01
Roč. 19, č. 51 (2013), s. 17328-17337 ISSN 0947-6539 Institutional support: RVO:61388963 Keywords : ab initio calculations * copper * electron transfer * enzymes * molecular dynamics * reaction mechanisms Subject RIV: CC - Organic Chemistry Impact factor: 5.696, year: 2013
Ab initio study of solute transition-metal interactions with point defects in bcc Fe
Olsson, P.; Klaver, T.P.C.; Domain, C.
2010-01-01
The properties of 3d, 4d, and 5d transition-metal elements in ?-Fe have been studied using ab initio density-functional theory. The intrinsic properties of the solutes have been characterized as well as their interaction with point defects. Vacancies and interstitials of (110) and (111) orientations
Ab initio Calculations of Charge Symmetry Breaking in the A=4 Hypernuclei
Czech Academy of Sciences Publication Activity Database
Gazda, Daniel; Gal, A.
2016-01-01
Roč. 116, č. 12 (2016), s. 122501 ISSN 0031-9007 R&D Projects: GA ČR(CZ) GA15-04301S Institutional support: RVO:61389005 Keywords : ab initio * shell model * four-body calculations Subject RIV: BE - Theoretical Physics Impact factor: 8.462, year: 2016
Ab initio Defect Energetics in LaBO3 Perovskite Solid Oxide Fuel Cell Materials
DEFF Research Database (Denmark)
Lee, Yueh-Lin; Morgan, Dane; Kleis, Jesper
2009-01-01
Perovskite materials of the form ABO3 are a promising family of compounds for use in solid oxide fuel cell (SOFC) cathodes. Study of the physics of these compounds under SOFC conditions with ab initio methods is particularly challenging due to high temperatures, exchange of oxygen with O2 gas...
Gas phase ion chemistry of coumarins: ab initio calculations used to ...
African Journals Online (AJOL)
The gas phase ion chemistry of coumarins using electron ionization (EI), positive chemical ionization (PCI) and negative chemical ionization (NCI) in a time of flight and quadrupole mass spectrometer (qMS) coupled to a gas chromatograph is outlined. The observations in NCI mode were complimented with Ab initio ...
Ab initio prediction of vacancy properties in concentrated alloys : The case of fcc Cu-Ni
Zhang, X.; Sluiter, M.H.F.
2015-01-01
Vacancy properties in concentrated alloys continue to be of great interest because nowadays ab initio supercell simulations reach a scale where even defect properties in disordered alloys appear to be within reach. We show that vacancy properties cannot generally be extracted from supercell total
A fragment-based approach towards ab-initio treatment of polymeric ...
Indian Academy of Sciences (India)
Reshma S Pingale
2017-06-20
Jun 20, 2017 ... conquer'-type approach for the ab-initio studies of these polymeric systems. The method employs a fragmentation technique with independent fragment optimization for obtaining optimized geometries of the oligomers of various polymeric materials such as polyfuran, polypyrrole, polythiophene and other ...
Ab initio výpočty v chemii po 28 letech
Czech Academy of Sciences Publication Activity Database
Čársky, Petr; Urban, M.
2008-01-01
Roč. 102, č. 10 (2008), s. 865-872 ISSN 0009-2770 Institutional research plan: CEZ:AV0Z40400503 Keywords : quantum chemistry * ab-initio calculation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.593, year: 2008
Ab initio study of gas phase and water-assisted tautomerization of ...
Indian Academy of Sciences (India)
WINTEC
Water-assisted tautomerization in maleimide and formamide showed that difference in energy barrier reduces to 2⋅83 kcal/mol from 10⋅41 kcal/mol (in gas phase) at B3LYP level, which resulted that maleimide readily undergoes tautomerization in water molecule. Keywords. Ab Initio calculations; maleimide; formamide; ...
Czech Academy of Sciences Publication Activity Database
Dračínský, Martin; Möller, H. M.; Exner, T. E.
2013-01-01
Roč. 9, č. 8 (2013), s. 3806-3815 ISSN 1549-9618 R&D Projects: GA ČR GA13-24880S Institutional support: RVO:61388963 Keywords : ab initio molecular dynamics * NMR spectroscopy * DFT calculations * hydration Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.310, year: 2013
Ab initio molecular dynamics approach to a quantitative description of ion pairing in water
Czech Academy of Sciences Publication Activity Database
Pluhařová, Eva; Maršálek, Ondřej; Schmidt, B.; Jungwirth, Pavel
2013-01-01
Roč. 4, č. 23 (2013), s. 4177-4181 ISSN 1948-7185 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : ion pairing * charge transfer * water * ab initio molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.687, year: 2013
Ab initio calculation atomics ground state wave function for interactions Ion- Atom
International Nuclear Information System (INIS)
Shojaee, F.; Bolori zadeh, M. A.
2007-01-01
Ab initio calculation atomics ground state wave function for interactions Ion- Atom Atomic wave function expressed in a Slater - type basis obtained within Roothaan- Hartree - Fock for the ground state of the atoms He through B. The total energy is given for each atom.
Mechanical properties of carbynes investigated by ab initio total-energy calculations
DEFF Research Database (Denmark)
Castelli, Ivano E.; Salvestrini, Paolo; Manini, Nicola
2012-01-01
As sp carbon chains (carbynes) are relatively rigid molecular objects, can we exploit them as construction elements in nanomechanics? To answer this question, we investigate their remarkable mechanical properties by ab initio total-energy simulations. In particular, we evaluate their linear...... response to small longitudinal and bending deformations and their failure limits for longitudinal compression and elongation....
Sanz, Cristina; Lin, Hui-Ju; Lado, Beatriz; Stafford, Catherine A.; Bowden, Harriet W.
2016-01-01
The article summarizes results from two experimental studies (N = 23, N = 21) investigating the extent to which working memory capacity (WMC) intervenes in "ab initio" language development under two pedagogical conditions [± grammar lesson + input-based practice + explicit feedback]. The linguistic target is the use of morphosyntax to…
Czech Academy of Sciences Publication Activity Database
Sandlöbes, S.; Pei, Z.; Friák, Martin; Zhu, L.-F.; Wang, F.; Zaefferer, S.; Raabe, D.; Neugebauer, J.
2014-01-01
Roč. 70, MAY (2014), s. 92-104 ISSN 1359-6454 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:68081723 Keywords : Magnesium * Rare-earth elements * Ductility * Modeling * Ab initio Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.465, year: 2014
Ab initio study of the bcc-hcp transformation in iron
Czech Academy of Sciences Publication Activity Database
Friák, Martin; Šob, Mojmír
2008-01-01
Roč. 77, č. 17 (2008), 174117/1-174117/7 ISSN 1098-0121 R&D Projects: GA MŠk OC 147; GA AV ČR IAA1041302 Institutional research plan: CEZ:AV0Z20410507 Keywords : ab initio calculations * phase transformations * iron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008
Sprik, M.; Meijer, E.M.
1998-01-01
Ab initio molecular dynamics methods have been used to study the reaction mechanism of acidcatalyzed addition of water to formaldehyde in a model system of an aqueous solution of sulfuric acid. Using the method of constraints we find that an H
DEFF Research Database (Denmark)
Berg, Rolf W.; Riisager, Anders; Nguyen van Buu, Olivier
2009-01-01
The salt 1,1,3,3-tetramethylguanidinium bis{(trifluoromethyl)sulfonyl}amide, [((CH3)(2)N)(2)C=NH2](+)[N(SO2-CF3)(2)](-) or [tmgH][NTf2], easily forms an ionic liquid with high SO2 absorbing capacity. The crystal structure of the salt was determined at 120(2) K by X-ray diffraction. The structure...
International Nuclear Information System (INIS)
Bhattacharya, Somesh Kr; Tanaka, Shingo; Kohyama, Masanori; Shiihara, Yoshinori
2013-01-01
We present first-principle calculations on symmetric tilt grain boundaries (GBs) in bcc Fe. Using density functional theory (DFT), we studied the structural, electronic and magnetic properties of Σ3(111) and Σ11(332) GBs formed by rotation around the [110] axis. The optimized structures, GB energies and GB excess free volumes are consistent with previous DFT and classical simulation studies. The GB configurations can be interpreted by the structural unit model as given by Nakashima and Takeuchi (2000 ISIJ 86 357). Both the GBs are composed of similar structural units of three- and five-membered rings with different densities at the interface according to the rotation angle. The interface atoms with larger atomic volumes reveal higher magnetic moments than the bulk value, while the interface atoms with shorter bond lengths have reduced magnetic moments in each GB. The charge density and local density of states reveal that the interface bonds with short bond lengths have more covalent nature, where minority-spin electrons play a dominant role as the typical nature of ferromagnetic Fe. In order to understand the structural stability of these GBs, we calculated the local energy and local stress for each atomic region using the scheme of Shiihara et al (2010 Phys. Rev. B 81 075441). In each GB, the interface atoms with larger atomic volumes and enhanced magnetic moments reveal larger local energy increase and tensile stress. The interface atoms constituting more covalent-like bonds with reduced magnetic moments have lower local energy increase, contributing to the stabilization, while compressive stress is generated at these atoms. The relative stability between the two GBs can be understood by the local energies at the structural units. The local energy and local stress analysis is a powerful tool to investigate the structural properties of GBs based on the behavior of valence electrons. (paper)
International Nuclear Information System (INIS)
Berri, Saadi; Maouche, Djamel; Zerarga, Fares; Medkour, Youcef
2012-01-01
We preformed first-principle calculations for the structural, electronic, elastic and magnetic properties of Cu 2 GdIn, Ag 2 GdIn and Au 2 GdIn using the full-potential linearized augmented plane wave (FP-LAPW) scheme within the generalized gradient approximation by Wu and Cohen (GGA-WC), GGA+U, the local spin density approximation (LSDA) and LSDA+U. The lattice parameters, the bulk modulus and its pressure derivative and the elastic constants were determined. Also, we present the band structures and the densities of states. The electronic structures of the ferromagnetic configuration for Heusler compounds (X 2 GdIn) have a metallic character. The magnetic moments were mostly contributed by the rare-earth Gd 4f ion.
Liévin, J; Demaison, J; Herman, M; Fayt, A; Puzzarini, C
2011-02-14
The equilibrium structure of acetylene (also named ethyne) has been reinvestigated to resolve the small discrepancies noted between different determinations. The size of the system as well as the large amount of available experimental data provides the quite unique opportunity to check the magnitude and relevance of various contributions to equilibrium structure as well as to verify the accuracy of experimental results. With respect to pure theoretical investigation, quantum-chemical calculations at the coupled-cluster level have been employed together with extrapolation to the basis set limit, consideration of higher excitations in the cluster operator, inclusion of core correlation effects as well as relativistic and diagonal Born-Oppenheimer corrections. In particular, it is found that the extrapolation to the complete basis set limit, the inclusion of higher excitations in the electronic-correlation treatment and the relativistic corrections are of the same order of magnitude. It also appears that a basis set as large as a core-valence quintuple-zeta set is required for accurately accounting for the inner-shell correlation contribution. From a pure experimental point of view, the equilibrium structure has been determined using very accurate rotational constants recently obtained by a "global analysis" (that is to say that all non-negligible interactions are explicitly included in the Hamiltonian matrix) of rovibrational spectra. Finally, a semi-experimental equilibrium structure (where the equilibrium rotational constants are obtained from the experimental ground state rotational constants and computed rovibrational corrections) has been obtained from the available experimental ground-state rotational constants for ten isotopic species corrected for computed vibrational corrections. Such a determination led to the revision of the ground-state rotational constants of two isotopologues, thus showing that structural determination is a good method to identify
CSIR Research Space (South Africa)
Kebede, MA
2014-03-01
Full Text Available Pristine and Al-doped lithium manganese oxide (LiAlxMn2-xO4) spinel cathode materials were successfully synthesized by combustion method using urea as reducer and fuel. The structural and electrochemical properties of the as-synthesized powders were...
International Nuclear Information System (INIS)
Kuzmin, A.; Kalinko, A.; Evarestov, R.A.
2013-01-01
The electronic, structural and phonon properties of antiferromagnetic triclinic CuWO 4 have been studied using the first-principles spin-polarized linear combination of atomic orbital (LCAO) calculations based on the hybrid exchange–correlation density functional (DFT)/Hartree–Fock (HF) scheme. In addition, the local atomic structure around both Cu and W atoms has been probed using extended X-ray absorption fine structure (EXAFS) spectroscopy. We show that, by using the hybrid DFT–HF functional, one can accurately and simultaneously describe the atomic structure (the unit cell parameters and the atomic fractional coordinates), the band gap and the phonon frequencies. In agreement with our EXAFS results, the LCAO calculations reproduce a strong distortion of both the CuO 6 and the WO 6 octahedra, which occur due to the first-order and second-order Jahn–Teller effects, respectively. We found that the HF admixture of 13–16%, which is implemented in the PBE0–13% and WCGGA–PBE-16% functionals, produces the best result for CuWO 4 . The calculated properties agree well with the available experimental data provided by diffraction, optical, X-ray photoelectron and Raman spectroscopies.
Martineau, Charlotte; Allix, Mathieu; Suchomel, Matthew R; Porcher, Florence; Vivet, François; Legein, Christophe; Body, Monique; Massiot, Dominique; Taulelle, Francis; Fayon, Franck
2016-10-04
The room temperature structure of Ba 5 AlF 13 has been investigated by coupling electron, synchrotron and neutron powder diffraction, solid-state high-resolution NMR ( 19 F and 27 Al) and first principles calculations. An initial structural model has been obtained from electron and synchrotron powder diffraction data, and its main features have been confirmed by one- and two-dimensional NMR measurements. However, DFT GIPAW calculations of the 19 F isotropic shieldings revealed an inaccurate location of one fluorine site (F3, site 8a), which exhibited unusual long F-Ba distances. The atomic arrangement was reinvestigated using neutron powder diffraction data. Subsequent Fourier maps showed that this fluorine atom occupies a crystallographic site of lower symmetry (32e) with partial occupancy (25%). GIPAW computations of the NMR parameters validate the refined structural model, ruling out the presence of local static disorder and indicating that the partial occupancy of this F site reflects a local motional process. Visualisation of the dynamic process was then obtained from the Rietveld refinement of neutron diffraction data using an anharmonic description of the displacement parameters to account for the thermal motion of the mobile fluorine. The whole ensemble of powder diffraction and NMR data, coupled with first principles calculations, allowed drawing an accurate structural model of Ba 5 AlF 13 , including site-specific dynamical disorder in the fluorine sub-network.
International Nuclear Information System (INIS)
Arghavani Nia, Borhan; Sedighi, Matin; Shahrokhi, Masoud; Moradian, Rostam
2013-01-01
A density functional theory study of structural, electronical and optical properties of Ca 3 Sb 2 compound in hexagonal and cubic phases is presented. In the exchange–correlation potential, generalized gradient approximation (PBE-GGA) has been used to calculate lattice parameters, bulk modulus, cohesive energy, dielectric function and energy loss spectra. The electronic band structure of this compound has been calculated using the above two approximations as well as another form of PBE-GGA, proposed by Engle and Vosko (EV-GGA). It is found that the hexagonal phase of Ca 3 Sb 2 has an indirect gap in the Γ→N direction; while in the cubic phase there is a direct-gap at the Γ point in the PBE-GGA and EV-GGA. Effects of applying pressure on the band structure of the system studied and optical properties of these systems were calculated. - Graphical abstract: A density functional theory study of structural, electronic and optical properties of Ca 3 Sb 2 compound in hexagonal and cubic phases is presented. Display Omitted - Highlights: • Physical properties of Ca 3 Sb 2 in hexagonal and cubic phases are investigated. • It is found that the hexagonal phase is an indirect gap semiconductor. • Ca 3 Sb 2 is a direct-gap semiconductor at the Γ point in the cubic phase. • By increasing pressure the semiconducting band gap and anti-symmetry gap are decreased
High pressure behaviour of uranium dicarbide (UC{sub 2}): Ab-initio study
Energy Technology Data Exchange (ETDEWEB)
Sahoo, B. D., E-mail: bdsahoo@barc.gov.in; Mukherjee, D.; Joshi, K. D.; Kaushik, T. C. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)
2016-08-28
The structural stability of uranium dicarbide has been examined under hydrostatic compression employing evolutionary structure search algorithm implemented in the universal structure predictor: evolutionary Xtallography (USPEX) code in conjunction with ab-initio electronic band structure calculation method. The ab-initio total energy calculations involved for this purpose have been carried out within both generalized gradient approximations (GGA) and GGA + U approximations. Our calculations under GGA approximation predict the high pressure structural sequence of tetragonal → monoclinic → orthorhombic for this material with transition pressures of ∼8 GPa and 42 GPa, respectively. The same transition sequence is predicted by calculations within GGA + U also with transition pressures placed at ∼24 GPa and ∼50 GPa, respectively. Further, on the basis of comparison of zero pressure equilibrium volume and equation of state with available experimental data, we find that GGA + U approximation with U = 2.5 eV describes this material better than the simple GGA approximation. The theoretically predicted high pressure structural phase transitions are in disagreement with the only high experimental study by Dancausse et al. [J. Alloys. Compd. 191, 309 (1993)] on this compound which reports a tetragonal to hexagonal phase transition at a pressure of ∼17.6 GPa. Interestingly, during lowest enthalpy structure search using USPEX, we do not see any hexagonal phase to be closer to the predicted monoclinic phase even within 0.2 eV/f. unit. More experiments with varying carbon contents in UC{sub 2} sample are required to resolve this discrepancy. The existence of these high pressure phases predicted by static lattice calculations has been further substantiated by analyzing the elastic and lattice dynamic stability of these structures in the pressure regimes of their structural stability. Additionally, various thermo-physical quantities such as
International Nuclear Information System (INIS)
Nahif, F; Music, D; Mráz, S; To Baben, M; Schneider, J M
2013-01-01
Using density functional theory, the effect of Si on the stability and electronic structure of γ- and α-Al 2 O 3 has been investigated. The concentration range from 0 to 5 at.% is probed and the additive is positioned at different substitutional sites in the γ-phase. The calculations for (Al,Si) 2 O 3 predict a trend towards spontaneous decomposition into α-/γ-Al 2 O 3 and SiO 2 . Therefore, the formation of the metastable γ-(Al,Si) 2 O 3 phase can only be expected during non-equilibrium processing where the decomposition is kinetically hindered. The Si-induced changes in stability of this metastable solid solution may be understood based on the electronic structure. As the Si concentration is increased, stiff silicon–oxygen bonds are formed giving rise to the observed stabilization of the γ-phase. (paper)
Energy Technology Data Exchange (ETDEWEB)
Leitsmann, Roman, E-mail: leitsmann@matcalc.de; Lazarevic, Florian; Plänitz, Philipp [AQomputare GmbH, Annabergerstr. 240, 09125 Chemnitz (Germany); Nadimi, Ebrahim [Faculty of Electrical Engineering, K. N. Toosi University of Technology, 16317-14191 Tehran (Iran, Islamic Republic of); Öttking, Rolf [Institut für Physik, Technische Universität Illmenau, 98693 Illmenau (Germany); Erben, Elke [Globalfoundries Dresden, Wilschdorfer Landstr. 101, 01109 Dresden (Germany)
2015-06-28
Intrinsic defect structures and impurity atoms are one of the main sources of leakage current in metal-oxide-semiconductor devices. Using state of the art density functional theory, we have investigated oxygen, lanthanum, and fluorine related defect structures and possible combinations of them. In particular, we have calculated their charge transition levels in bulk m-HfO{sub 2}. For this purpose, we have developed a new scaling scheme to account for the band gap underestimation within the density functional theory. The obtained results are able to explain the recent experimental observation of a reduction of the trap density near the silicon valence band edge after NF{sub 3} treatment and the associated reduction of the device degradation.
Directory of Open Access Journals (Sweden)
Berrahal Mokhtar
2015-12-01
Full Text Available The paper presents an investigation on crystalline, elastic and electronic structure in addition to the thermodynamic properties for a CeRu4P12 filled skutterudite device by using the full-potential linear muffin-tin orbital (FP-LMTO method within the generalized gradient approximations (GGA in the frame of density functional theory (DFT. For this purpose, the structural properties, such as the equilibrium lattice parameter, bulk modulus and pressure derivatives of the bulk modulus, were computed. By using the total energy variation as a function of strain we have determined the independent elastic constants and their pressure dependence. Additionally, the effect of pressure P and temperature T on the lattice parameters, bulk modulus, thermal expansion coefficient, Debye temperature and the heat capacity for CeRu4P12 compound were investigated taking into consideration the quasi-harmonic Debye model.
Energy Technology Data Exchange (ETDEWEB)
Miloud Abid, O.; Yakoubi, A. [Laboratoire d’Etudes des Matériaux et Instrumentations Expérimentales, Université Djilali Liabes de Sidi Bel-Abbes, 22000 (Algeria); Tadjer, A. [Modeling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, Sidi Bel-Abbes (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique de la Modélisation Mathématique (LPQ3M), Université de Mascara, 29000 (Algeria); Ahmed, R. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Murtaza, G. [Materials Modeling Laboratory, Department of Physics, Islamia College University, Peshawar (Pakistan); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Azam, Sikander [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic)
2014-12-15
Highlights: • The calculated structural parameters of RMn{sub 2}Ge{sub 2} (R = Ca, Nd and Y) compounds are found in good agreement with the experimental data. • The structural and band structure calculation reveals that these compounds are ferromagnetic brittle metals. • The elastic and thermodynamic properties for the herein studied compounds are investigated for the first time. - Abstract: Intermetallic RMn{sub 2}Ge{sub 2} ternary compounds have attracted considerable attention from researchers in recent years because they show strong indications for novel magnetic characteristics and they have the potential to reveal the mechanism of superlattices. The study of the paramagnetic, ferromagnetic and antiferromagnetic phases affirms the strong dependence to the distance between atomic species in these compounds. In this study, we investigated the structural, elastic, electronic and thermodynamic properties of the intermetallic RMn{sub 2}Ge{sub 2} (R = Ca, Nd and Y) compounds. To carry out this study, we used the full potential (FP) linearized (L) augmented plane wave plus local orbitals (APW + lo), a scheme of calculations developed within the frame work of density functional theory (DFT). To incorporate the exchange correlation (XC) energy and corresponding potential into the total energy calculations, local density approximation (LDA) parameterized by Perdew and Wang is taken into account. Analysis of the density of states (DOS) profile illustrates the conducting nature of these intermetallic compounds; with a predominantly contribution from the R and Mn-d states. At ambient conditions, calculations for elastic constants (C{sub 11}, C{sub 12}, C{sub 13}, C{sub 44}, C{sub 33} and C{sub 66}) are also performed, which point to their brittle character. In addition, the quasi harmonic Debye model was used to predict the thermal properties, together with relative expansion coefficients and heat capacity.
Energy Technology Data Exchange (ETDEWEB)
Arghavani Nia, Borhan, E-mail: b.arghavani@gmail.com [Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Sedighi, Matin [Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Shahrokhi, Masoud [Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Moradian, Rostam [Nano-Science and Nano-Technology Research Center, Razi University, Kermanshah (Iran, Islamic Republic of); Computational Physics Science Research Laboratory, Department of Nano-Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-1795, Tehran (Iran, Islamic Republic of)
2013-11-15
A density functional theory study of structural, electronical and optical properties of Ca{sub 3}Sb{sub 2} compound in hexagonal and cubic phases is presented. In the exchange–correlation potential, generalized gradient approximation (PBE-GGA) has been used to calculate lattice parameters, bulk modulus, cohesive energy, dielectric function and energy loss spectra. The electronic band structure of this compound has been calculated using the above two approximations as well as another form of PBE-GGA, proposed by Engle and Vosko (EV-GGA). It is found that the hexagonal phase of Ca{sub 3}Sb{sub 2} has an indirect gap in the Γ→N direction; while in the cubic phase there is a direct-gap at the Γ point in the PBE-GGA and EV-GGA. Effects of applying pressure on the band structure of the system studied and optical properties of these systems were calculated. - Graphical abstract: A density functional theory study of structural, electronic and optical properties of Ca{sub 3}Sb{sub 2} compound in hexagonal and cubic phases is presented. Display Omitted - Highlights: • Physical properties of Ca{sub 3}Sb{sub 2} in hexagonal and cubic phases are investigated. • It is found that the hexagonal phase is an indirect gap semiconductor. • Ca{sub 3}Sb{sub 2} is a direct-gap semiconductor at the Γ point in the cubic phase. • By increasing pressure the semiconducting band gap and anti-symmetry gap are decreased.
Energy Technology Data Exchange (ETDEWEB)
Guemou, M., E-mail: guemoumhamed7@gmail.com [Engineering Physics Laboratory, Ibn Khaldoun University of Tiaret, Postbox 78-Zaaroura, 14000 Tiaret (Algeria); Abdiche, A.; Riane, R. [Applied Materials Laboratory, Research Center, University of Sidi Bel Abbes, 22000 Sidi Bel Abbes (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique (LPQ3M), Département de Technologie, Université de Mascara, 29000 Mascara (Algeria)
2014-03-01
In this work, we present a density-functional theory study of structural, electronic and optical properties of BAs, BN binary compounds and their ternary BN{sub x}As{sub 1−x} solid solutions. The calculations are done by using the all-electron full potential linear augmented plane-wave method (FP-LAPW) as employed in WIEN2k code. For the exchange-correlation potential, local-density approximation (LDA) and generalized gradient approximation (GGA) have been used to calculate theoretical lattice parameters, bulk modulus, and its pressure derivative. The electronic band structure of these compounds have been calculated by using the above two approximations. We have also investigated in this article the density of state and the optical properties such as the dielectric function and the refractive index of BAs, BN and BN{sub 0.25}As{sub 0.75} compounds by using the above method. The results obtained for structural and electronic properties are compared with experimental data and other computational work. It has been found that the energy bands with all these approximations are similar except the band gap values. It has also been found that our results with LDA and GGA are in good agreement with other computational work wherever these are available.
Palmer, Michael H.; Christen, Dines
2004-11-01
The equilibrium structures of the 3-amino- and 5-amino-1H-1,2,4-triazoles and 4-amino-4H-1,2,4-triazoles, have been studied as a function of the conformation of the amino group in relation to the ring. The electric field gradients and dipole moments have been evaluated, again to assist experiment, where the complexity of the microwave spectrum through the presence of 4 14N quadrupolar nuclei, and low vapour pressure of the compounds has so far made spectral acquisition and interpretation impossible. The basis sets used were triple zeta + polarization, and the methodology was MP2. In order to determine the incremental effects on both structure and molecular properties when aza- and amino-substitution occurs in these five-membered heterocycles, the structures and molecular properties of the parent compounds 1H- and 4H-1,2,4-triazole have been obtained for comparison, using the same theoretical methods. The energy differences between tautomeric forms have been evaluated. Harmonic vibration frequencies have identified true minima, as well as some saddle points.
Helal, Mustafa R; Yousef, Yaser A; Afaneh, Akef T
2002-07-30
HF, MP2, and B3LYP calculations with different basis sets have been used in the computation of the stabilization energies of C(3)H(7)X isomers, where X is F, Cl, and Br. The experimental stabilization energies of the structural isomers of C(3)H(7)Cl and C(3)H(7)Br have been reproduced via B3LYP calculations. However, the calculated stabilization energies of fluoropropane isomers from their reported enthalpies of formation have been reproduced in all methods of calculations in present work. The experimental relative stabilities of the gauche conformers of 1-fluoro-, 1-chloro-, and 1-bromopropanes have been also reproduced via some of the used calculations in the present work. The effect of the geminal interactions on X atomic charges and on the C-X and C-C bond lengths in halopropane isomers are also discussed. Copyright 2002 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Chelli S.
2015-12-01
Full Text Available The structural, elastic, electronic and thermodynamic properties of BaxSr1−xS ternary alloys have been investigated using the full-potential (linearized augmented plane wave method. The ground state properties, such as lattice constant, bulk modulus and elastic constants, are in good agreement with numerous experimental and theoretical data. The dependence of the lattice parameters, bulk modulus and band gap on the composition x was analyzed. Deviation of the lattice constant from Vegard’s law and the bulk modulus from linear concentration dependence (LCD was observed. The microscopic origins of the gap bowing were explained by using the approach of Zunger et al. The thermodynamic stability of BaxSr1−xS alloy was investigated by calculating the excess enthalpy of mixing, ΔHm and the calculated phase diagram showed a broad miscibility gap with a critical temperature.
Santos-Carballal, David; Ngoepe, Phuti E.; de Leeuw, Nora H.
2018-02-01
The spinel-structured lithium manganese oxide (LiMn2O4 ) is a material currently used as cathode for secondary lithium-ion batteries, but whose properties are not yet fully understood. Here, we report a computational investigation of the inversion thermodynamics and electronic behavior of LiMn2O4 derived from spin-polarized density functional theory calculations with a Hubbard Hamiltonian and long-range dispersion corrections (DFT+U-D3). Based on the analysis of the configurational free energy, we have elucidated a partially inverse equilibrium cation distribution for the LiMn2O4 spinel. This equilibrium degree of inversion is rationalized in terms of the crystal field stabilization effects and the difference between the size of the cations. We compare the atomic charges with the oxidation numbers for each degree of inversion. We found segregation of the Mn charge once these ions occupy the tetrahedral and octahedral sites of the spinel. We have obtained the atomic projections of the electronic band structure and density of states, showing that the normal LiMn2O4 has half-metallic properties, while the fully inverse spinel is an insulator. This material is in the ferrimagnetic state for the inverse and partially inverse cation arrangement. The optimized lattice and oxygen parameters, as well as the equilibrium degree of inversion, are in agreement with the available experimental data. The partial equilibrium degree of inversion is important in the interpretation of the lithium ion migration and surface properties of the LiMn2O4 spinel.
International Nuclear Information System (INIS)
Fuh, Huei-Ru; Liu, Yun-Ping; Chen, Shao-Hua; Wang, Yin-Kuo
2013-01-01
Highlights: ► Double perovskite. ► Compensated magnetism. ► First principle. - Abstract: We investigated possible candidates for a compensated half-metal (CHM) with a double perovskite structure A 2 CrRu(Os)O 6 (A = Si, Ge, Sn, and Pb). Electronic structures and magnetic properties were analyzed using the accurate full-potential linear augmented plane wave method within the generalized gradient approximation (GGA). The compensated magnetism can be divided into half-metallic antiferromagnets (HM-AF) and antiferromagnetic insulator (AF-Is) based on their zero magnetic moments. A 2 CrRuO 6 (A = Si, Ge, Sn, and Pb) is a potential candidate for HM-AF, and Sn 2 CrOsO 6 and Pb 2 CrOsO 6 can be classified as AF-Is. The HM-AF and AF-Is states are both attributed to the superexchange and generalized double exchange mechanism. When the GGA + U calculation is taken into account, all A 2 CrRu(Os)O 6 (A = Si, Ge, Sn, and Pb) states become unconventional AF-Is because the two AF state-coupled ions consisted of two different elements and the two spin-resolved densities of states were no longer the same. Further experimental confirmation will be done for the possible CHM of A 2 CrRuO 6 (A = Si, Ge, Sn, and Pb), Sn 2 CrOsO 6 , and Pb 2 CrOsO 6 .
Ab initio study of structural, electronic and optical properties of MnHg(SCN)4 and FeHg(SCN)4
International Nuclear Information System (INIS)
He, K.H.; Zheng, G.; Chen, G.; Lue, T.; Wan, M.; Ji, G.F.
2007-01-01
The structural, electronic and optical properties of MnHg(SCN) 4 and FeHg(SCN) 4 were studied by means of quantum-mechanical calculations based on the density-functional theory and pseudopotential method. The lattice constants can be compared with the experimental values when the effects of temperature are considered. The peaks of partial density of states of S, C, N and Hg of FeHg(SCN) 4 have a tendency of shifting to the higher energy levels relative to those of MnHg(SCN) 4 . The distributions of the 3d electronic states in the transition metal atoms show quite large difference and decide different optical properties. We found that absorptional peaks of FeHg(SCN) 4 lag behind those of MnHg(SCN) 4 and the peak in the infrared range has a higher absorptional intensity, which are in accord with the experimental results. By analyzing the distributions and transitions of the 3d electronic states, we explained the different absorption phenomena
Rudysh, M. Ya.; Brik, M. G.; Stadnyk, V. Yo.; Brezvin, R. S.; Shchepanskyi, P. A.; Fedorchuk, A.; Khyzhun, O. Y.; Kityk, I. V.; Piasecki, M.
2018-01-01
In the present work complex experimental and theoretical studies of electronic and optical properties for β-lithium-ammonium sulfate crystals of good optical quality are performed using the X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES). Standard immersion and spectroscopic techniques accompanied by the theoretical quantum-chemical calculations in the density functional theory (DFT) framework were applied. Calculations of band structure and related properties were carried out within a framework of local density and generalized gradient approximations as well as hybrid B3LYP functionals. The energy levels features and their origin are established from the DFT calculations and they were ferified by XPS and XES measurements. Theoretical and experimental refractive indices dispersions along the principal crystallographic directions (nx, ny and nz) as well as birefringence dispersion (Δnx, Δny and Δnz) in the visible spectral range are obtained. It was found a closeness of nx and ny curves for the titled crystals. More precise birefringence examining predicts their intersection at λ ≈ 190 nm.
Energy Technology Data Exchange (ETDEWEB)
He, K.H. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China)]. E-mail: he23981006@126.com; Zheng, G. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China)]. E-mail: gzheng25@yahoo.com; Chen, G. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China); Lue, T. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China); Wan, M. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China); Ji, G.F. [Laboratory for Shock Wave and Detonation Physics, China Academy of Engineering Physics, Mianyang 621900 (China)
2007-03-01
The structural, electronic and optical properties of MnHg(SCN){sub 4} and FeHg(SCN){sub 4} were studied by means of quantum-mechanical calculations based on the density-functional theory and pseudopotential method. The lattice constants can be compared with the experimental values when the effects of temperature are considered. The peaks of partial density of states of S, C, N and Hg of FeHg(SCN){sub 4} have a tendency of shifting to the higher energy levels relative to those of MnHg(SCN){sub 4}. The distributions of the 3d electronic states in the transition metal atoms show quite large difference and decide different optical properties. We found that absorptional peaks of FeHg(SCN){sub 4} lag behind those of MnHg(SCN){sub 4} and the peak in the infrared range has a higher absorptional intensity, which are in accord with the experimental results. By analyzing the distributions and transitions of the 3d electronic states, we explained the different absorption phenomena.
Indari, E. D.; Wungu, T. D. K.; Hidayat, R.
2017-07-01
Organic lead halide perovskite material based solar cells show impressive power conversion efficiencies, which can reach above 19 percent for perovskite solar cell with methyl-ammonium cations. These efficiencies are originated from efficient photoexcitation and charge carrier transport and not observed in conventional perovskite crystals. In this preliminary research work, we therefore performed Density Functional Theory (DFT) calculation of formamidinium lead iodide (FAPI), an alternative to methyl-ammonium lead iodide (MAPI), to predict their electronic structure and density of state (DOS). The calculation result at the most stable lattice parameters show a good agreement with the experiment results. The obtained band gap energy is 1.307 eV. The valence band is dominantly formed by the 5p orbitals of I- anions, while the conduction band is dominantly formed by the 6p orbitals of Pb2+ cations. The DOS of valence band of this perovskite seems smaller compared to the case of methyl-ammonium lead iodide perovskite, which then may explain the observation of smaller power conversion efficiencies in perovskite solar cells with this formamidinium cations.
Characterization of adsorbed water in MIL-53(Al) by FTIR spectroscopy and ab-initio calculations.
Salazar, J M; Weber, G; Simon, J M; Bezverkhyy, I; Bellat, J P
2015-03-28
Here, we report ab-initio calculations developed with a twofold purpose: understand how adsorbed water molecules alter the infrared spectrum of the metal-organic framework MIL-53(Al) and to investigate which are the associated physico-chemical processes. The analyzed structures are the two anhydrous narrow (np⊘) and large (lp⊘) pore forms and the hydrated narrow pore form (np-H2O) of the MIL-53(Al). For these structures, we determined their corresponding infrared spectra (FTIR) and we identified the vibrational modes associated to the dominant spectral lines. We show that wagging and scissoring modes of CO2 give flexibility to the structure for facilitating the lp⊘- np⊘ transition. In our studies, this transition is identified by eight vibrational modes including the δCH(18a) vibrational mode currently used to identify the mentioned transition. We report an exhaustive band identification of the infrared spectra associated to the analyzed structures. Moreover, the FTIR for the np-H2O structure allowed us to identify four types of water molecules linked to the host structure by one to three hydrogen bonds.
Characterization of adsorbed water in MIL-53(Al) by FTIR spectroscopy and ab-initio calculations
Salazar, J. M.; Weber, G.; Simon, J. M.; Bezverkhyy, I.; Bellat, J. P.
2015-03-01
Here, we report ab-initio calculations developed with a twofold purpose: understand how adsorbed water molecules alter the infrared spectrum of the metal-organic framework MIL-53(Al) and to investigate which are the associated physico-chemical processes. The analyzed structures are the two anhydrous narrow (np⊘) and large (lp⊘) pore forms and the hydrated narrow pore form (np-H2O) of the MIL-53(Al). For these structures, we determined their corresponding infrared spectra (FTIR) and we identified the vibrational modes associated to the dominant spectral lines. We show that wagging and scissoring modes of CO2 give flexibility to the structure for facilitating the lp⊘- np⊘ transition. In our studies, this transition is identified by eight vibrational modes including the δCH(18a) vibrational mode currently used to identify the mentioned transition. We report an exhaustive band identification of the infrared spectra associated to the analyzed structures. Moreover, the FTIR for the np-H2O structure allowed us to identify four types of water molecules linked to the host structure by one to three hydrogen bonds.
Lee, Yung Ting; Lin, Jyh Shing
2013-12-05
The reaction dynamics of ethylene adsorption onto the Si(001) surface have been studied by combining density functional theory-based molecular dynamics simulations with molecular adsorption sampling scheme for investigating all kinds of reaction pathways and corresponding populations. Based on the calculated results, three possible reaction pathways--the indirect adsorption, the direct adsorption, and the repelling reaction--have been found. First, the indirect adsorption, in which the ethylene (C2H(4(ads))) forms the π-bonded C2H(4(ads)) with the buckled-down Si atom to adsorb on the Si(001) surface and then turns into the di-σ-bonded C2H(4(ads)), is the major reaction pathway. The short-time Fourier transform analysis of structural coordinate autocorrelation function is performed to further investigate the evolution of different vibrational modes along this indirect reaction pathway. This analysis illustrates that the Infrared (IR) inactive peak of the C=C stretching mode of the π-bonded C2 H4(ads) shifts to the IR inactive peak of the C-C stretching mode of di-σ-bonded C2H(4(ads)), which is in a good agreement with the IR inactive peak of the C=C stretching mode vanished in the vibrational spectrum at 150 K (Nagao et al., J. Am. Chem. Soc. 2004, 126, 9922). Second, the direct adsorption, in which the di-σ-bonded C2H(4(ads)) is formed directly with the Si intradimer or the Si interdimer on the Si(001) surface, is the less significant reaction pathway. This reaction pathway leads to the C-C stretching mode and the C-H stretching mode of the di-σ-bonded C2H(4(ads)) appeared in the vibrational spectra at 48 and 150 K, respectively (Nagao et al., J. Am. Chem. Soc. 2004, 126, 9922). Finally, the repelling reaction, in which the C2H(4(g)) first interacts with the Si dimer and then is repelled by Si atoms, is the least important reaction pathway. Consequently, neither the π-bonded C2H(4(ads)) nor the di-σ-bonded C2H(4(ads)) is formed on the Si(001) surface
Dos, Alexandra; Schimming, Volkmar; Tosoni, Sergio; Limbach, Hans-Heinrich
2008-12-11
The interactions of the 15N-labeled amino groups of dry solid poly-L-lysine (PLL) with various halogen and oxygen acids HX and the relation to the secondary structure have been studied using solid-state 15N and 13C CPMAS NMR spectroscopy (CP = cross polarization and MAS = magic angle spinning). For comparison, 15N NMR spectra of an aqueous solution of PLL were measured as a function of pH. In order to understand the effects of protonation and hydration on the 15N chemical shifts of the amino groups, DFT and chemical shielding calculations were performed on isolated methylamine-acid complexes and on periodic halide clusters of the type (CH3NH3(+)X(-))n. The combined experimental and computational results reveal low-field shifts of the amino nitrogens upon interaction with the oxygen acids HX = HF, H2SO4, CH3COOH, (CH3)2POOH, H3PO4, HNO3, and internal carbamic acid formed by reaction of the amino groups with gaseous CO2. Evidence is obtained that only hydrogen-bonded species of the type (Lys-NH2***H-X)n are formed in the absence of water. 15N chemical shifts are maximum when H is located in the hydrogen bond center and then decrease again upon full protonation, as found for aqueous solution at low pH. By contrast, halogen acids interact in a different way. They form internal salts of the type (Lys-NH3(+)X(-))n via the interaction of many acid-base pairs. This salt formation is possible only in the beta-sheet conformation. By contrast, the formation of hydrogen-bonded complexes can occur both in beta-sheet domains as well as in alpha-helical domains. The 15N chemical shifts of the protonated ammonium groups increase when the size of the interacting halogen anions is increased from chloride to iodide and when the number of the interacting anions is increased. Thus, the observed high-field 15N shift of ammonium groups upon hydration is the consequence of replacing interacting halogen atoms by oxygen atoms.
Ab initio and homology based prediction of protein domains by recursive neural networks
Directory of Open Access Journals (Sweden)
Mooney Catherine
2009-06-01
Full Text Available Abstract Background Proteins, especially larger ones, are often composed of individual evolutionary units, domains, which have their own function and structural fold. Predicting domains is an important intermediate step in protein analyses, including the prediction of protein structures. Results We describe novel systems for the prediction of protein domain boundaries powered by Recursive Neural Networks. The systems rely on a combination of primary sequence and evolutionary information, predictions of structural features such as secondary structure, solvent accessibility and residue contact maps, and structural templates, both annotated for domains (from the SCOP dataset and unannotated (from the PDB. We gauge the contribution of contact maps, and PDB and SCOP templates independently and for different ranges of template quality. We find that accurately predicted contact maps are informative for the prediction of domain boundaries, while the same is not true for contact maps predicted ab initio. We also find that gap information from PDB templates is informative, but, not surprisingly, less than SCOP annotations. We test both systems trained on templates of all qualities, and systems trained only on templates of marginal similarity to the query (less than 25% sequence identity. While the first batch of systems produces near perfect predictions in the presence of fair to good templates, the second batch outperforms or match ab initio predictors down to essentially any level of template quality. We test all systems in 5-fold cross-validation on a large non-redundant set of multi-domain and single domain proteins. The final predictors are state-of-the-art, with a template-less prediction boundary recall of 50.8% (precision 38.7% within ± 20 residues and a single domain recall of 80.3% (precision 78.1%. The SCOP-based predictors achieve a boundary recall of 74% (precision 77.1% again within ± 20 residues, and classify single domain proteins as
Ab initio study of charge, spin and orbital ordering in manganites
Tyer, R
2001-01-01
The subject of this thesis was the calculation of the electronic structure for the manganites LaMnO sub 3 and CaMnO sub 3. The implementation of the Self-Interaction Corrected Local Spin Density (SIC-LSD) formalism within the Tight Binding Linear Muffin-Tin Orbital method in conjunction with the Atomic Sphere Approximation was used for these calculations. The SIC-LSD total energy functional has been used to investigate the spin ordering and valency of CaMnO sub 3 and LaMnO sub 3. In order to assess the role of the structural distortion in LaMnO sub 3 , these calculations were performed for an idealised cubic structure as well as for the observed distorted orthorhombic structure. Orbital rotations of the localised (SIC corrected) states were implemented. These orbital rotations were then used to perform the first ab-initio investigation of orbital ordering in LaMnO sub 3. For the experimentally observed A-type antiferromagnetic ordering, the correct orbital structure of alternating manganese d sub 3 sub x sub ...
Speciation of magnesium in monohydrocalcite: XANES, ab initio and geochemical modeling
Fukushi, Keisuke; Suzuki, Yuma; Kawano, Jun; Ohno, Takeshi; Ogawa, Masahiro; Yaji, Toyonari; Takahashi, Yoshio
2017-09-01
Monohydrocalcite (MHC: CaCO3·H2O), a rare carbonate mineral formed under surface conditions, is usually observed in nature as containing a variable amount of Mg, with a 0.007-0.45 Mg/Ca mole ratio. The variable Mg composition in MHC is anticipated as a promising proxy to assess paleo-hydrochemistry especially in saline lakes. Although the roles of Mg on the formation and stability of MHC have been studied intensively, the Mg speciation in MHC has remained unclear and controversial. This study examined Mg speciation in MHC using X-ray absorption near edge structure (XANES), ab initio molecular simulation, and geochemical modeling. Mg-XANES spectra of MHC with different Mg/Ca ratios prepared from mixing solutions of Na2CO3, CaCl2 and MgCl2 revealed that the Mg in MHC is a mixture of amorphous Mg carbonate (AMC) and other Mg containing phase. The contribution of AMC to total Mg is negatively correlated to the crystallinity of MHC. Results show that AMC might play a protective role in the crystallization and the transformation to stable calcium carbonates. Ab initio calculation of Mg2+ substitution into MHC showed that a limited amount of Mg2+ can be incorporated into the MHC structure. Six-fold coordination of Mg2+ is substituted for eight-fold coordination of Ca2+ in the MHC structure. The other type of Mg in MHC revealed from the XANES analyses most likely corresponds to the structural Mg in MHC. The contribution of the structural Mg is almost constant at 0.06 in Mg/Ca, representing the limit of solid solubility of Mg in MHC. The solubility products of the MHC with the limit of solid solubility of Mg and the AMC associated with MHC were estimated from the reacted solution compositions. Prediction of the Mg/Ca ratio as a function of the initial solution conditions using solubility reasonably reproduces the observed apparent Mg/Ca ratios in MHC from the present study and earlier studies. The apparent Mg/Ca ratio of MHC is useful to elucidate water chemistry
Directory of Open Access Journals (Sweden)
G.M. Bhuiyan
2012-10-01
Full Text Available Several static and dynamic properties of liquid Cu, Ag and Au at thermodynamic states near their respective melting points, have been evaluated by means of the orbital free ab-initio molecular dynamics simulation method. The calculated static structure shows good agreement with the available X-ray and neutron diffraction data. As for the dynamic properties, the calculated dynamic structure factors point to the existence of collective density excitations along with a positive dispersion for l-Cu and l-Ag. Several transport coefficients have been obtained which show a reasonable agreement with the available experimental data.
Linker, Gerrit-Jan; van Loosdrecht, Paul H. M.; van Duijnen, Piet; Broer, Ria
2010-01-01
We performed ab initio quantum chemical calculations for the geometrical and electronic structure of the EDO-TTF (ethylenedioxy-tetrathiafulvalene) molecule using HF, CASSCF and DFT methods. We compare these in vacuo results with the properties of the (EDO-TTF)(2)PF6 crystal at near room
Ab initio Hadron structure from lattice QCD
International Nuclear Information System (INIS)
Bratt, J D; Edwards, R G; Engelhardt, M; Fleming, G T; Haegler, Ph; Musch, B; Negele, J W; Orginos, K; Pochinsky, A V; Renner, D B; Richards, D G; Schroers, W
2007-01-01
Early scattering experiments revealed that the proton was not a point particle but a bound state of many quarks and gluons. Deep inelastic scattering (DIS) experiments have accurately determined the probability of struck quarks carrying a fraction of the proton's momentum. The current generation of experiments and Lattice QCD calculations will provide detailed multi-dimensional pictures of the distributions of quarks and gluons inside the proton
Ab initio lattice dynamics of complex structures
DEFF Research Database (Denmark)
Voss, Johannes
2008-01-01
In this thesis, density functional theory is applied in a study of thermodynamic properties of so-called complex metal hydrides, which are promising materials for hydrogen storage applications. Since the unit cells of these crystals can be relatively large with many symmetrically inequivalent...... and the electrostatics of effective point charge systems. The method is O(N) times faster than conventional approaches employing a calculation of the full Hessian matrix (N: number of atoms per unit cell) and is thus suitable for the assessment of thermodynamic stabilities based on the vibrational entropies of large...
Allen, B. Danette; Alexandrov, Natalia
2016-01-01
Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that
Communication: A hydrogen-bonded difluorocarbene complex: Ab initio and matrix isolation study
Sosulin, Ilya S.; Shiryaeva, Ekaterina S.; Tyurin, Daniil A.; Feldman, Vladimir I.
2017-10-01
Structure and spectroscopic features of the CF2⋯HF complexes were studied by ab initio calculations at the CCSD(T) level and matrix isolation FTIR spectroscopy. The calculations predict three stable structures. The most energetically favorable structure corresponds to hydrogen bonding of HF to the lone pair of the C atom (the interaction energy of 3.58 kcal/mol), whereas two less stable structures are the H⋯F bonded complexes (the interaction energies of 0.30 and 0.24 kcal/mol). The former species was unambiguously characterized by the absorptions in the FTIR spectra observed after X-ray irradiation of fluoroform in a xenon matrix at 5 K. The corresponding features appear at 3471 (H-F stretching), 1270 (C-F symmetric stretching, shoulder), 1175 (antisymmetric C-F stretching), and 630 (libration) cm-1, in agreement with the computational predictions. To our knowledge, it is the first hydrogen-bonded complex of dihalocarbene. Possible weaker manifestations of the H⋯F bonded complexes were also found in the C-F stretching region; however, their assignment is tentative. The H⋯C bonded complex is protected from reaction yielding a fluoroform molecule by a remarkably high energy barrier (23.85 kcal/mol), so it may be involved in various chemical reactions.
Au55, a stable glassy cluster: results of ab initio calculations
Directory of Open Access Journals (Sweden)
Dieter Vollath
2017-10-01
Full Text Available Structure and properties of small nanoparticles are still under discussion. Moreover, some thermodynamic properties and the structural behavior still remain partially unknown. One of the best investigated nanoparticles is the Au55 cluster, which has been analyzed experimentally and theoretically. However, up to now, the results of these studies are still inconsistent. Consequently, we have carried out the present ab initio study of the Au55 cluster, using up-to-date computational concepts, in order to clarify these issues. Our calculations have confirmed the experimental result that the thermodynamically most stable structure is not crystalline, but it is glassy. The non-crystalline structure of this cluster was validated by comparison of the coordination numbers with those of a crystalline cluster. It was found that, in contrast to bulk materials, glass formation is connected to an energy release that is close to the melting enthalpy of bulk gold. Additionally, the surface energy of this cluster was calculated using two different theoretical approaches resulting in values close to the surface energy for bulk gold. It shall be emphasized that it is now possible to give a confidence interval for the value of the surface energy.
Ab initio study of the EFG tensor at Cd impurities in Sc2O3 semiconductor
International Nuclear Information System (INIS)
Munoz, E.L.; Richard, D.; Errico, L.A.; Renteria, M.
2009-01-01
We present an ab initio study of diluted Cd impurities localized at both cation sites of the semiconductor Sc 2 O 3 . The electric-field-gradient (EFG) tensor at Cd impurities located at both cationic sites of the host structure was determined from the calculation of the electronic structure of the doped system. Calculations were performed with the full-potential augmented-plane wave plus local orbitals (APW+lo) method within the framework of the density functional theory. We studied the atomic structural relaxations and the perturbation of the electronic charge density induced by the impurities in the host system in a fully self-consistent way. We showed that the Cd impurity introduces an increase of 8% in the nearest oxygen neighbors bond-lengths, changing the EFG sign for probes located at the asymmetric cation site. The APW+lo predictions for the charged state of the Cd impurity were compared with EFG results existent in the literature, coming from time-differential γ-γ perturbed-angular-correlations experiments performed on 111 Cd-implanted Sc 2 O 3 powder samples. From the excellent agreement between theory and experiment, we can strongly suggest that the Cd acceptor impurities are ionized at room temperature. Finally, we showed that simple calculations like those performed within the point-charge model with antishielding factors do not correctly describe the problem of a Cd impurity in Sc 2 O 3 .
Chen, Chen; Arntsen, Christopher; Voth, Gregory A.
2017-10-01
Incorporation of quantum mechanical electronic structure data is necessary to properly capture the physics of many chemical processes. Proton hopping in water, which involves rearrangement of chemical and hydrogen bonds, is one such example of an inherently quantum mechanical process. Standard ab initio molecular dynamics (AIMD) methods, however, do not yet accurately predict the structure of water and are therefore less than optimal for developing force fields. We have instead utilized a recently developed method which minimally biases AIMD simulations to match limited experimental data to develop novel multiscale reactive molecular dynamics (MS-RMD) force fields by using relative entropy minimization. In this paper, we present two new MS-RMD models using such a parameterization: one which employs water with harmonic internal vibrations and another which uses anharmonic water. We show that the newly developed MS-RMD models very closely reproduce the solvation structure of the hydrated excess proton in the target AIMD data. We also find that the use of anharmonic water increases proton hopping, thereby increasing the proton diffusion constant.
Conformational study of glyoxal bis(amidinohydrazone) by ab initio methods
Mannfors, B.; Koskinen, J. T.; Pietilä, L.-O.
1997-08-01
We report the first ab initio molecular orbital study on the ground state of the endiamine tautomer of glyoxal bis(amidinohydrazone) (or glyoxal bis(guanylhydrazone), GBG) free base. The calculations were performed at the following levels of theory: Hartree-Fock, second-order Møller-Plesset perturbation theory and density functional theory (B-LYP and B3-LYP) as implemented in the Gaussian 94 software. The standard basis set 6-31G(d) was found to be sufficient. The default fine grid of Gaussian 94 was used in the density functional calculations. Molecular properties, such as optimized structures, total energies and the electrostatic potential derived (CHELPG) atomic charges, were studied as functions of C-C and N-N conformations. The lowest energy conformation was found to be all- trans, in agreement with the experimental solid-state structure. The second conformer with respect to rotation around the central C-C bond was found to be the cis conformer with an MP2//HF energy of 4.67 kcal mol -1. For rotation around the N-N bond the energy increased monotonically from the trans conformation to the cis conformation, the cis energy being very high, 22.01 kcal mol -1 (MP2//HF). The atomic charges were shown to be conformation dependent, and the bond charge increments and especially the conformational changes of the bond charge increments were found to be easily transferable between structurally related systems.
Ab initio study of effects of substitutional additives on the phase stability of γ-alumina
International Nuclear Information System (INIS)
Jiang Kaiyun; Music, Denis; Sarakinos, Kostas; Schneider, Jochen M
2010-01-01
Using ab initio calculations, we have evaluated two structural descriptions of γ-Al 2 O 3 , spinel and tetragonal hausmannite, and explored the relative stability of γ-Al 2 O 3 with respect to α-Al 2 O 3 with 2.5 at.% of Si, Cr, Ti, Sc, and Y additives to identify alloying element induced electronic structure changes that impede the γ to α transition. The total energy calculations indicate that Si stabilizes γ-Al 2 O 3 , while Cr stabilizes α-Al 2 O 3 . As Si is added, a bond length increase in α-Al 2 O 3 is observed, while strong and short Si-O bonds are formed in γ-Al 2 O 3 , consequently stabilizing this phase. On the other hand, Cr additions induce a smaller bond length increase in α-Al 2 O 3 than in γ-Al 2 O 3 , therefore stabilizing the α-phase. The bulk moduli of γ-Al 2 O 3 with these additives show no significant changes. The phase stability and elastic property data discussed here underline the application potential of Si alloyed γ-Al 2 O 3 for applications at elevated temperatures. Furthermore it is evident that the tetragonal hausmannite structure is a suitable description for γ-Al 2 O 3 .
Ab-initio study of the dielectric response of high-permittivity perovskites for energy storage
International Nuclear Information System (INIS)
Do-Amaral-De-Andrade-Sophia, Gustavo
2014-01-01
Many of materials based on transition metals have a wide range of applications, such as the storage of energy, due to their peculiar properties (high-dielectric constants, ferro-electricity,...). The knowledge of their bulk properties is essential in designing targeted devices with high performance. For instance, ABO 3 perovskites are peculiarly interesting for their atomic structural flexibility, allowing high number of atoms substitution and giving them specific chemical and electrical properties compared to the pure compounds. In this context, first principles calculations can be useful to understand the structural and electronic properties of these materials. The pressure-induced giant dielectric anomaly of ABO 3 perovskites has been investigated at the ab initio level. Its mechanism has been analyzed in terms of thermodynamic phase stability, structural and phonon contributions and Born effective charges. It is shown that the IR-active soft phonon is responsible for the anomaly. This mode always involves a displacement and a deformation of the oxygen octahedra, while the roles of A and B ions vary among the materials and between high- and low-pressure phase transitions. A sharp increase in the phonon amplitude near the phase transition gives rise to the dielectric anomaly. The use of hybrid functionals is required for agreement with experimental data. The calculations show that the dielectric anomaly in the pressure-induced phase transitions of these perovskites is a property of the bulk material. (author)
Ab initio molecular dynamics: basic concepts, current trends and novel applications
International Nuclear Information System (INIS)
Tuckerman, Mark E
2002-01-01
The field of ab initio molecular dynamics (AIMD), in which finite temperature molecular dynamics (MD) trajectories are generated with forces obtained from accurate 'on the fly' electronic structure calculations, is a rapidly evolving and growing technology that allows chemical processes in condensed phases to be studied in an accurate and unbiased way. This article is intended to present the basics of the AIMD method as well as to provide a broad survey of the state of the art of the field and showcase some of its capabilities. Beginning with a derivation of the method from the Born-Oppenheimer approximation, issues including the density functional representation of electronic structure, basis sets, calculation of observables and the Car-Parrinello extended Lagrangian algorithm are discussed. A number of example applications, including liquid structure and dynamics and aqueous proton transport, are presented in order to highlight some of the current capabilities of the approach. Finally, advanced topics such as inclusion of nuclear quantum effects, excited states and scaling issues are addressed. (topical review)
International Nuclear Information System (INIS)
Hawlitzky, M; Horbach, J; Binder, K; Ispas, S; Krack, M
2008-01-01
A molecular dynamics (MD) study of the static and dynamic properties of molten and glassy germanium dioxide is presented. The interactions between the atoms are modeled by the classical pair potential proposed by Oeffner and Elliott (OE) (1998 Phys. Rev. B 58 14791). We compare our results to experiments and previous simulations. In addition, an 'ab initio' method, the so-called Car-Parrinello molecular dynamics (CPMD), is applied to check the accuracy of the structural properties, as obtained by the classical MD simulations with the OE potential. As in a similar study for SiO 2 , the structure predicted by CPMD is only slightly softer than that resulting from the classical MD. In contrast to earlier simulations, both the static structure and dynamic properties are in very good agreement with pertinent experimental data. MD simulations with the OE potential are also used to study the relaxation dynamics. As previously found for SiO 2 , for high temperatures the dynamics of molten GeO 2 is compatible with a description in terms of mode coupling theory
Ab initio Equation of State and Phase Diagram of MgO in the megabar regime
Soubiran, F.; Militzer, B.
2017-12-01
Accurate equations of state (EOS) and phase diagrams for silicate materials are a cornerstone of Earth, Super-Earth's and giant planet cores' models. While recent shock wave experiments have provided new data on the principal Hugoniot curve, accessing off-Hugoniot states is much more challenging. Ab initio computer simulations offer the possibility to complement the experiments in this regard. Here we report results of an extensive set of ab initio simulations of MgO in solid and liquid phases over a wide range of parameters relevant for Earth, Super-Earth's and giant planet's interiors. Using the thermodynamic integration technique, we derive a consistent EOS including free energy and entropy information. We will discuss the relative stability of different phases.
Low-temperature metallic liquid hydrogen: an ab-initio path-integral molecular dynamics perspective
Chen, Ji; Li, Xin-Zheng; Zhang, Qianfan; Probert, Matthew; Pickard, Chris; Needs, Richard; Michaelides, Angelos; Wang, Enge
2013-03-01
Experiments and computer simulations have shown that the melting temperature of solid hydrogen drops with pressure above about 65 GPa, suggesting that a low temperature liquid state might exist. It has also been suggested that this liquid state might be non-molecular and metallic, although evidence for such behaviour is lacking. Using a combination of ab initio path-integral molecular dynamics and the two-phase methods, we have simulated the melting of solid hydrogen under finite temperatures. We found an atomic solid phase from 500 to 800 GPa which melts at < 200 K. Beyond this and up to pressures of 1,200 GPa a metallic atomic liquid is stable at temperatures as low as 50 K. The quantum motion of the protons is critical to the low melting temperature in this system as ab initio simulations with classical nuclei lead to a considerably higher melting temperature of ~300 K across the entire pressure range considered.
Ab initio model of optical properties of two-temperature warm dense matter
International Nuclear Information System (INIS)
Holst, B.; Recoules, V.; Mazevet, S.; Torrent, M.
2014-01-01
We present a model to describe thermophysical and optical properties of two-temperature systems consisted of heated electrons and cold ions in a solid lattice that occur during ultrafast heating experiments. Our model is based on ab initio simulations within the framework of density functional theory. The optical properties are obtained by evaluating the Kubo-Greenwood formula. By applying the material parameters of our ab initio model to a two-temperature model we are able to describe the temperature relaxation process of femtosecond-laser-heated gold and its optical properties within the same theoretical framework. Recent time-resolved measurements of optical properties of ultrafast heated gold revealed the dynamics of the interaction between femtosecond laser pulses and solid state matter. Different scenarios obtained from simulations of our study are compared with experimental data. (authors)
Nuclear quantum effects in ab initio dynamics: Theory and experiments for lithium imide
Ceriotti, Michele; Miceli, Giacomo; Pietropaolo, Antonino; Colognesi, Daniele; Nale, Angeloclaudio; Catti, Michele; Bernasconi, Marco; Parrinello, Michele
2010-11-01
Owing to their small mass, hydrogen atoms exhibit strong quantum behavior even at room temperature. Including these effects in first-principles calculations is challenging because of the huge computational effort required by conventional techniques. Here we present the first ab initio application of a recently developed stochastic scheme, which allows to approximate nuclear quantum effects inexpensively. The proton momentum distribution of lithium imide, a material of interest for hydrogen storage, was experimentally measured by inelastic neutron-scattering experiments and compared with the outcome of quantum thermostatted ab initio dynamics. We obtain favorable agreement between theory and experiments for this purely quantum-mechanical property, thereby demonstrating that it is possible to improve the modeling of complex hydrogen-containing materials without additional computational effort.
Ab initio quantum-enhanced optical phase estimation using real-time feedback control
DEFF Research Database (Denmark)
Berni, Adriano; Gehring, Tobias; Nielsen, Bo Melholt
2015-01-01
as demonstrated in a variety of different optical systems(3-8). Most of these accounts, however, deal with the measurement of a very small shift of an already known phase, which is in stark contrast to ab initio phase estimation where the initial phase is unknown(9-12). Here, we report on the realization......Optical phase estimation is a vital measurement strategy that is used to perform accurate measurements of various physical quantities including length, velocity and displacements(1,2). The precision of such measurements can be greatly enhanced by the use of entangled or squeezed states of light...... of a quantum-enhanced and fully deterministic ab initio phase estimation protocol based on real-time feedback control. Using robust squeezed states of light combined with a real-time Bayesian adaptive estimation algorithm, we demonstrate deterministic phase estimation with a precision beyond the quantum shot...
Atomic carbon chains as spin-transmitters: An ab initio transport study
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka
2010-01-01
An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin-polarization of the transmi......An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin...... and chain. This effect should in general hold for any p-conjugated molecules bridging the zig-zag edges of graphene electrodes. The polarization of the transmission can be controlled by chemically or mechanically modifying the molecule, or by applying an electrical gate....
Ab initio STM and STS simulations on magnetic and nonmagnetic metallic surfaces
Energy Technology Data Exchange (ETDEWEB)
Dick, Alexey
2008-04-14
The aim of this work was to provide an in-depth understanding of a new generation of scan- ning tunneling microscopy experiments, performed employing different regimes of the STM: the spectroscopy-mode (the so-called Fourier Transformed STM, FT-STM), and the spin-sensitive mode (the so-called spin-polarized STM, SP-STM). In the present thesis ab initio tools are proposed that are based on DFT calculations to theoretically predict and analyze such types of the STM. The first part of this thesis focusses on the simulation of FT-STM, the mode that allows to probe local dispersion properties of the electrons at the surface. In order to provide the theoretical counterpart of the experimental FT-STM spectra we have introduced a new implicit approach that is derived from Tersoff-Hamann theory of the STM. The importance of an accurate description of surface wavefunctions at 5-15 A above the surface as well as the spurious quantum- size effects have been discussed in detail together with approaches to obtain converged FT-STM images. We applied our method to FT-STM experiments performed on Ag(110) surfaces. In the second part of the thesis we discuss the modeling of the spin-resolved STM, the mode that allows to characterize the magnetic structure of a surface. As a case system we studied here the magnetically-ordered transition-metal nitride surface Mn{sub 3}N{sub 2}(010). Because SP-STM experiments did not allow a conclusive understanding of the surface structure, we have first employed ab initio thermodynamics to figure out the most stable magnetic and atomic configuration of the surface that are consistent with experiments. To simulate SP-STM images on the most stable Mn{sub 3}N{sub 2}(010) surface we have employed the spin-generalized transfer-Hamiltonian formalism, assuming that the tip wavefunctions have dominant radial symmetry (s-like tip). (orig.)
Energy Technology Data Exchange (ETDEWEB)
Halasyamani, Shiv [Univ. of Houston, TX (United States); Fennie, Craig [Cornell Univ., Ithaca, NY (United States)
2016-11-03
We have focused on the synthesis, characterization, and ab initio theory on multi-functional mixed-metal fluorides. With funding from the DOE, we have successfully synthesized and characterized a variety of mixed metal fluoride materials.
Study of carvedilol by combined Raman spectroscopy and ab initio MO calculations
Marques, M. P. M.; Oliveira, P. J.; Moreno, A. J. M.; Carvalho, L. A. E. Batista de
2002-01-01
The novel cardioprotective drug carvedilol was studied by both Raman spectroscopy and ab initio molecular orbital methods (using the density functional theory approach). The spectra, acquired both for the solid samples and DMSO solutions as a function of pH, were assigned in view of the calculated wavenumbers and intensities, and also based on the experimental data obtained for individual compounds which comprise the molecule, namely carbazole and 1,2-dimethoxybenzene. The pH dependence of th...
Ab initio excited states calculations of Kr3+, probing semi-empirical modelling
Czech Academy of Sciences Publication Activity Database
Milko, Petr; Kalus, R.; Paidarová, Ivana; Hrušák, Jan; Gadéa, F. X.
-, 23 June (2009), s. 25 ISSN 1432-2234 R&D Projects: GA AV ČR IAA100400501 Institutional research plan: CEZ:AV0Z40400503 Keywords : cluster modelling * rare gas ions * ab initio potential energie * evaporation energies Subject RIV: CF - Physical ; Theoretical Chemistry http://www.springerlink.com/content/100493/?Content+Status=Accepted&sort=p_OnlineDate&sortorder=desc&v=condensed&o=20
Base pairing motifs involving 1,8-naphthyridine: an ab initio study
Czech Academy of Sciences Publication Activity Database
Czernek, Jiří
2006-01-01
Roč. 7, - (2006), s. 124-127. ISBN 90-6764-443-9. ISSN 1573-4196. [International Conference on Computational Methods in Sciences and Engineering. Chania, Crete, 27.10.2006-01.11.2006] R&D Projects: GA AV ČR KJB400500602; GA AV ČR 1ET400500402 Institutional research plan: CEZ:AV0Z40500505 Keywords : ab initio * electron correlation * MP2 Subject RIV: CD - Macromolecular Chemistry
Ab initio theory of the N2V defect in diamond for quantum memory implementation
Udvarhelyi, Péter; Thiering, Gergő; Londero, Elisa; Gali, Adam
2017-10-01
The N2V defect in diamond is characterized by means of ab initio methods relying on density functional theory calculated parameters of a Hubbard model Hamiltonian. It is shown that this approach appropriately describes the energy levels of correlated excited states induced by this defect. By determining its critical magneto-optical parameters, we propose to realize a long-living quantum memory by N2V defect, i.e., H 3 color center in diamond.
An ab initio study of core-valence correlation. [in atoms
Partridge, H.; Bauschlicher, C. W., Jr.; Walch, S. P.; Liu, B.
1983-01-01
Especially in the cases of the first two columns of the periodic table, the inclusion of core-valence correlation in ab initio CI calculations yields a contraction of the atomic valence shell and improves both calculated atomic ionization potentials and atomic energy separations. For the alkali dimers Na2, K2, and Rb2, the presently calculated bond lengths are in excellent agreement with experiments when core-valence is included. In addition, the valence dissociation energies are accurate.
Ab initio study of Co and Ni under uniaxial and biaxial loading and in epitaxial overlayers
Czech Academy of Sciences Publication Activity Database
Zelený, Martin; Legut, Dominik; Šob, Mojmír
2008-01-01
Roč. 78, č. 22 (2008), 224105/1-224105/11 ISSN 1098-0121 R&D Projects: GA ČR GD106/05/H008; GA AV ČR IAA1041302; GA MŠk OC 147 Institutional research plan: CEZ:AV0Z20410507 Keywords : ab initio calculations * epitaxial overlayers * uniaxial and biaxial loading Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008
Ab initio study of phase transformations in transition-metal disilicides
Czech Academy of Sciences Publication Activity Database
Káňa, Tomáš; Šob, Mojmír; Vitek, V.
2011-01-01
Roč. 19, č. 7 (2011), s. 919-926 ISSN 0966-9795 R&D Projects: GA AV ČR IAA100100920; GA MŠk(CZ) OC10008 Institutional research plan: CEZ:AV0Z20410507 Keywords : silicides various * phase transformation * plastic deformation mechanisms * defects * dislocation geometry and arrangement * ab-initio calculations * aero-engine components Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.649, year: 2011
Czech Academy of Sciences Publication Activity Database
Slavíček, Petr; Fárník, Michal
2011-01-01
Roč. 13, č. 26 (2011), s. 12123-12137 ISSN 1463-9076 R&D Projects: GA ČR GA203/09/0422; GA ČR GAP208/11/0161 Institutional research plan: CEZ:AV0Z40400503 Keywords : photochemistry * hydrogen bonded heterocycles * ab initio methods Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.573, year: 2011
DNA oligonucleotide-cis-platin Binding: Ab initio interpretation of the vibrational spectra
Czech Academy of Sciences Publication Activity Database
Andrushchenko, Valery; Wieser, H.; Bouř, Petr
2007-01-01
Roč. 111, č. 39 (2007), s. 9714-9723 ISSN 1089-5639 R&D Projects: GA AV ČR IAA400550702; GA ČR GA202/07/0732 Institutional research plan: CEZ:AV0Z40550506 Keywords : cis - platin * DNA * vibrational spektra * ab initio Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.918, year: 2007
Ab Initio theory of the Gilbert damping in random ferromagnetic alloys
Czech Academy of Sciences Publication Activity Database
Drchal, Václav; Turek, I.; Kudrnovský, Josef
2017-01-01
Roč. 30, č. 6 (2017), s. 1669-1672 ISSN 1557-1939 R&D Projects: GA ČR GA15-13436S Institutional support: RVO:68378271 Keywords : Gilbert damping * ferromagnetic alloys * ab initio * nonlocal torques Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.180, year: 2016
Optical absorption spectra and g factor of MgO: Mn2+explored by ab initio and semi empirical methods
Andreici Eftimie, E.-L.; Avram, C. N.; Brik, M. G.; Avram, N. M.
2018-02-01
In this paper we present a methodology for calculations of the optical absorption spectra, ligand field parameters and g factor for the Mn2+ (3d5) ions doped in MgO host crystal. The proposed technique combines two methods: the ab initio multireference (MR) and the semi empirical ligand field (LF) in the framework of the exchange charge model (ECM) respectively. Both methods of calculations are applied to the [MnO6]10-cluster embedded in an extended point charge field of host matrix ligands based on Gellé-Lepetit procedure. The first step of such investigations was the full optimization of the cubic structure of perfect MgO crystal, followed by the structural optimization of the doped of MgO:Mn2+ system, using periodic density functional theory (DFT). The ab initio MR wave functions approaches, such as complete active space self-consistent field (CASSCF), N-electron valence second order perturbation theory (NEVPT2) and spectroscopy oriented configuration interaction (SORCI), are used for the calculations. The scalar relativistic effects have also been taken into account through the second order Douglas-Kroll-Hess (DKH2) procedure. Ab initio ligand field theory (AILFT) allows to extract all LF parameters and spin-orbit coupling constant from such calculations. In addition, the ECM of ligand field theory (LFT) has been used for modelling theoptical absorption spectra. The perturbation theory (PT) was employed for the g factor calculation in the semi empirical LFT. The results of each of the aforementioned types of calculations are discussed and the comparisons between the results obtained and the experimental results show a reasonable agreement, which justifies this new methodology based on the simultaneous use of both methods. This study establishes fundamental principles for the further modelling of larger embedded cluster models of doped metal oxides.
Barabash, Sergey V.; Pramanik, Dipankar
2015-03-01
Development of low-leakage dielectrics for semiconductor industry, together with many other areas of academic and industrial research, increasingly rely upon ab initio tunneling and transport calculations. Complex band structure (CBS) is a powerful formalism to establish the nature of tunneling modes, providing both a deeper understanding and a guided optimization of materials, with practical applications ranging from screening candidate dielectrics for lowest ``ultimate leakage'' to identifying charge-neutrality levels and Fermi level pinning. We demonstrate that CBS is prone to a particular type of spurious ``phantom'' solution, previously deemed true but irrelevant because of a very fast decay. We demonstrate that (i) in complex materials, phantom modes may exhibit very slow decay (appearing as leading tunneling terms implying qualitative and huge quantitative errors), (ii) the phantom modes are spurious, (iii) unlike the pseudopotential ``ghost'' states, phantoms are an apparently unavoidable artifact of large numerical basis sets, (iv) a presumed increase in computational accuracy increases the number of phantoms, effectively corrupting the CBS results despite the higher accuracy achieved in resolving the true CBS modes and the real band structure, and (v) the phantom modes cannot be easily separated from the true CBS modes. We discuss implications for direct transport calculations. The strategy for dealing with the phantom states is discussed in the context of optimizing high-quality high- κ dielectric materials for decreased tunneling leakage.
Černý, Jiří; Schneider, Bohdan; Biedermannová, Lada
2017-07-14
Water molecules represent an integral part of proteins and a key determinant of protein structure, dynamics and function. WatAA is a newly developed, web-based atlas of amino-acid hydration in proteins. The atlas provides information about the ordered first hydration shell of the most populated amino-acid conformers in proteins. The data presented in the atlas are drawn from two sources: experimental data and ab initio quantum-mechanics calculations. The experimental part is based on a data-mining study of a large set of high-resolution protein crystal structures. The crystal-derived data include 3D maps of water distribution around amino-acids and probability of occurrence of each of the identified hydration sites. The quantum mechanics calculations validate and extend this primary description by optimizing the water position for each hydration site, by providing hydrogen atom positions and by quantifying the interaction energy that stabilizes the water molecule at the particular hydration site position. The calculations show that the majority of experimentally derived hydration sites are positioned near local energy minima for water, and the calculated interaction energies help to assess the preference of water for the individual hydration sites. We propose that the atlas can be used to validate water placement in electron density maps in crystallographic refinement, to locate water molecules mediating protein-ligand interactions in drug design, and to prepare and evaluate molecular dynamics simulations. WatAA: Atlas of Protein Hydration is freely available without login at .
Tunneling of electrons via rotor–stator molecular interfaces: Combined ab initio and model study
Energy Technology Data Exchange (ETDEWEB)
Petreska, Irina, E-mail: irina.petreska@pmf.ukim.mk [Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, PO Box 162, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Ohanesjan, Vladimir [Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, PO Box 162, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Pejov, Ljupčo [Institute of Chemistry, Department of Physical Chemistry, Ss. Cyril and Methodius University, Arhimedova 5, P.O. Box 162, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Kocarev, Ljupčo [Macedonian Academy of Sciences and Arts, Krste Misirkov 2, PO Box 428, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of)
2016-07-01
Tunneling of electrons through rotor–stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons’ formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that conformation-dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previous work where we investigated the coherent transport via strongly coupled delocalized orbital by application of Non-equilibrium Green’s Function Formalism.
Varnali, Tereza; Edwards, Howell G M
2010-07-13
The recognition that scytonemin, the radiation protectant pigment produced by extremophilic cyanobacterial colonies in stressed terrestrial environments, is a key biomarker for extinct or extant life preserved in geological scenarios is critically important for the detection of life signatures by remote analytical instrumentation on planetary surfaces and subsurfaces. The ExoMars mission to seek life signatures on Mars is just one experiment that will rely upon the detection of molecules such as scytonemin in the Martian regolith. Following a detailed structural analysis of the parent scytonemin, we report here for the first time a similar analysis of several of its methoxy derivatives that have recently been extracted from stressed cyanobacteria. Ab initio calculations have been carried out to determine the most stable molecular configurations, and the implications of the structural changes imposed by the methoxy group additions on the spectral characteristics of the parent molecule are discussed. The calculated electronic absorption bands of the derivative molecules reveal that their capability of removing UVA wavelengths is removed while preserving the ability to absorb the shorter wavelength UVB and UVC radiation, in contrast to scytonemin itself. This is indicative of a special role for these molecules in the protective strategy of the cyanobacterial extremophiles.
Adane, Legesse; Bharatam, Prasad V.
In several literature reports biuret and its sulfur analogs are reported to exist in their diketo form with general formula H2N bond CX bond NH bond CY bond NH2 (X = O, Y = O, biuret; X = Y = S, dithiobiuret; and X = O, Y = S, thiobiuret). On the other hand, recently reported results on the electronic structure of biguanide analogs (X = Y = NH)demonstrated that a form equivalent to diketo is not the preferred structure. Thus, a systematic ab initio study on the tautomeric preferences of biuret and its sulfur analogs (dithiobiuret and thiobiuret) has been carried out. The results indicate that an interplay of conjugative stabilization and intramolecular hydrogen bonding to play a role in tautomeric preferences. Energy and geometric parameters, natural bond orbital analyses have been employed to understand the chemistry of the title compounds. The results indicate that unlike biguanides, these compounds prefer diketo forms containing hydrogen on the bridging nitrogen (N4) and in a trans-arrangement (1a-4a). However, tautomerization of these keto forms to the corresponding enol isomers was also found to be highly probable.
Rutigliano, M.; Zazza, C.; Sanna, N.; Pieretti, A.; Mancini, G.; Barone, V.; Cacciatore, M.
2009-10-01
The adsorption dynamics of atomic oxygen on a model β-cristobalite silica surface has been studied by combining ab initio electronic structure calculations with a molecular dynamics semiclassical approach. We have evaluated the interaction potential of atomic and molecular oxygen interacting with an active Si site of a model β-cristobalite surface by performing DFT electronic structure calculations. As expected, O is strongly chemisorbed, Eb = 5.57 eV, whereas molecular oxygen can be weakly adsorbed with a high-energy barrier to the adsorption state of ˜2 eV. The binding energies calculated for silica clusters of different sizes have revealed the local nature of the O,O2-silica interaction. Semiclassical collision dynamic calculations show that O is mainly adsorbed in single-bounce collisions, with a smaller probability for adsorption via a multicollision mechanism. The probability for adsorption/desorption (reflected) collisions at the three impact energies is small but not negligible at the higher energy considered in the trajectory calculations, about Pr = 0.2 at Ekin = 0.8 eV. The calculations give evidence of a complex multiphonon excitation-deexcitation mechanism underlying the dynamics of stable adsorption and inelastic reflection collisions.
Ab Initio Enhanced calphad Modeling of Actinide-Rich Nuclear Fuels
Energy Technology Data Exchange (ETDEWEB)
Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Yang, Yong Austin [Univ. of Wisconsin, Madison, WI (United States)
2013-10-28
The process of fuel recycling is central to the Advanced Fuel Cycle Initiative (AFCI), where plutonium and the minor actinides (MA) Am, Np, and Cm are extracted from spent fuel and fabricated into new fuel for a fast reactor. Metallic alloys of U-Pu-Zr-MA are leading candidates for fast reactor fuels and are the current basis for fast spectrum metal fuels in a fully recycled closed fuel cycle. Safe and optimal use of these fuels will require knowledge of their multicomponent phase stability and thermodynamics (Gibbs free energies). In additional to their use as nuclear fuels, U-Pu-Zr-MA contain elements and alloy phases that pose fundamental questions about electronic structure and energetics at the forefront of modern many-body electron theory. This project will validate state-of-the-art electronic structure approaches for these alloys and use the resulting energetics to model U-Pu-Zr-MA phase stability. In order to keep the work scope practical, researchers will focus on only U-Pu-Zr-{Np,Am}, leaving Cm for later study. The overall objectives of this project are to: Provide a thermodynamic model for U-Pu-Zr-MA for improving and controlling reactor fuels; and, Develop and validate an ab initio approach for predicting actinide alloy energetics for thermodynamic modeling.
Proper construction of ab initio global potential surfaces with accurate long-range interactions
International Nuclear Information System (INIS)
Ho, Tak-San; Rabitz, Herschel
2000-01-01
An efficient procedure based on the reproducing kernel Hilbert space interpolation method is presented for constructing intermolecular potential energy surfaces (PES) using not only calculated ab initio data but also a priori information on long-range interactions. Explicitly, use of the reciprocal power reproducing kernel on the semiinfinite interval [0,∞) yields a set of exact linear relations between dispersion (multipolar) coefficients and PES data points at finite internuclear separations. Consequently, given a combined set of ab initio data and the values of dispersion (multipolar) coefficients, the potential interpolation problem subject to long-range interaction constraints can be solved to render globally smooth, asymptotically accurate ab initio potential energy surfaces. Very good results have been obtained for the one-dimensional He-He potential curve and the two-dimensional Ne-CO PES. The construction of the Ne-CO PES was facilitated by invoking a new reproducing kernel for the angular coordinate based on the optimally stable and shape-preserving Bernstein basis functions. (c) 2000 American Institute of Physics
Legrain, Fleur; Carrete, Jesús; van Roekeghem, Ambroise; Madsen, Georg K H; Mingo, Natalio
2018-01-18
Machine learning (ML) is increasingly becoming a helpful tool in the search for novel functional compounds. Here we use classification via random forests to predict the stability of half-Heusler (HH) compounds, using only experimentally reported compounds as a training set. Cross-validation yields an excellent agreement between the fraction of compounds classified as stable and the actual fraction of truly stable compounds in the ICSD. The ML model is then employed to screen 71 178 different 1:1:1 compositions, yielding 481 likely stable candidates. The predicted stability of HH compounds from three previous high-throughput ab initio studies is critically analyzed from the perspective of the alternative ML approach. The incomplete consistency among the three separate ab initio studies and between them and the ML predictions suggests that additional factors beyond those considered by ab initio phase stability calculations might be determinant to the stability of the compounds. Such factors can include configurational entropies and quasiharmonic contributions.
Ab initio and matrix isolation study of the acetylene-furan dimer
International Nuclear Information System (INIS)
Sanchez-Garcia, Elsa; Mardyukov, Artur; Tekin, Adem; Crespo-Otero, Rachel; Montero, Luis A.; Sander, Wolfram; Jansen, Georg
2008-01-01
Five acetylene-furan dimer structures are identified using ab initio calculations at the second-order Moller-Plesset (MP2) level of theory. The structures are stabilized by two basic types of intermolecular interactions: the CH...O and the CH...π interaction. The CH...π interaction appears in two variants, depending on which molecule provides the hydrogen atom and which molecule the π system. The MP2 results indicate that the CH...π interaction between one of the hydrogen atoms of acetylene and the π system of furan as found in structure A is the strongest interaction, followed by the in-plane CH...O interaction in the second most stable acetylene-furan dimer structure B. A matrix isolation study shows the acetylene-furan dimer to exist in an argon matrix, but likely rather as structure B than as A. High level coupled cluster calculations with up to triple excitations (CCSD(T)) yield the interaction energy of structure A as about -2.4 kcal/mol in the complete basis set limit and find structure B to be nearly isoenergetic with -2.3 kcal/mol. This is confirmed in calculations employing the density functional theory combined with symmetry adapted intermolecular perturbation theory (DFT-SAPT) approach yielding interaction energies of -2.3 and -2.0 kcal/mol for A and B, respectively. DFT-SAPT also helps to understand the importance of the electrostatic, induction and dispersion interaction energies and their respective exchange counterparts for the stability of the various acetylene-furan dimer structures. The CH...O and CH...π interactions are furthermore analyzed with the help of the atoms in molecules (AIM) theory
Evertz, Simon; Music, Denis; Schnabel, Volker; Bednarcik, Jozef; Schneider, Jochen M
2017-11-16
Metallic glasses are promising structural materials due to their unique properties. For structural applications and processing the coefficient of thermal expansion is an important design parameter. Here we demonstrate that predictions of the coefficient of thermal expansion for metallic glasses by density functional theory based ab initio calculations are efficient both with respect to time and resources. The coefficient of thermal expansion is predicted by an ab initio based method utilising the Debye-Grüneisen model for a Pd-based metallic glass, which exhibits a pronounced medium range order. The predictions are critically appraised by in situ synchrotron X-ray diffraction and excellent agreement is observed. Through this combined theoretical and experimental research strategy, we show the feasibility to predict the coefficient of thermal expansion from the ground state structure of a metallic glass until the onset of structural changes. Thereby, we provide a method to efficiently probe a potentially vast number of metallic glass alloying combinations regarding thermal expansion.
Bakowies, Dirk
2009-04-01
A theoretical composite approach, termed ATOMIC for Ab initio Thermochemistry using Optimal-balance Models with Isodesmic Corrections, is introduced for the calculation of molecular atomization energies and enthalpies of formation. Care is taken to achieve optimal balance in accuracy and cost between the various components contributing to high-level estimates of the fully correlated energy at the infinite-basis-set limit. To this end, the energy at the coupled-cluster level of theory including single, double, and quasiperturbational triple excitations is decomposed into Hartree-Fock, low-order correlation (MP2, CCSD), and connected-triples contributions and into valence-shell and core contributions. Statistical analyses for 73 representative neutral closed-shell molecules containing hydrogen and at least three first-row atoms (CNOF) are used to devise basis-set and extrapolation requirements for each of the eight components to maintain a given level of accuracy. Pople's concept of bond-separation reactions is implemented in an ab initio framework, providing for a complete set of high-level precomputed isodesmic corrections which can be used for any molecule for which a valence structure can be drawn. Use of these corrections is shown to lower basis-set requirements dramatically for each of the eight components of the composite model. A hierarchy of three levels is suggested for isodesmically corrected composite models which reproduce atomization energies at the reference level of theory to within 0.1 kcal/mol (A), 0.3 kcal/mol (B), and 1 kcal/mol (C). Large-scale statistical analysis shows that corrections beyond the CCSD(T) reference level of theory, including coupled-cluster theory with fully relaxed connected triple and quadruple excitations, first-order relativistic and diagonal Born-Oppenheimer corrections can normally be dealt with using a greatly simplified model that assumes thermoneutral bond-separation reactions and that reduces the estimate of these
Synthesis, FTIR, FT-Raman, UV-visible, ab initio and DFT studies on benzohydrazide.
Arjunan, V; Rani, T; Mythili, C V; Mohan, S
2011-08-01
A systematic vibrational spectroscopic assignment and analysis of benzohydrazide (BH) has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis were aided by electronic structure calculations--ab initio (RHF) and hybrid density functional methods (B3LYP and B3PW91) performed with 6-31G(d,p) and 6-311++G(d,p) basis sets. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λ(max) were determined by time-dependent DFT (TD-DFT) method. The geometrical, thermodynamical parameters and absorption wavelengths were compared with the experimental data. The interactions of carbonyl and hydrazide groups on the benzene ring skeletal modes were investigated. Copyright © 2011 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Music, Denis; Schneider, Jochen M
2008-01-01
We have studied the correlation between chemical composition, structure, chemical bonding and elastic properties of amorphous B 6 O based solids using ab initio molecular dynamics. These solids are of different chemical compositions, but the elasticity data appear to be a function of density. This is in agreement with previous experimental observations. As the density increases from 1.64 to 2.38 g cm -3 , the elastic modulus increases from 74 to 253 GPa. This may be understood by analyzing the cohesive energy and the chemical bonding of these compounds. The cohesive energy decreases from -7.051 to -7.584 eV/atom in the elastic modulus range studied. On the basis of the electron density distributions, Mulliken analysis and radial distribution functions, icosahedral bonding is the dominating bonding type. C and N promote cross-linking of icosahedra and thus increase the density, while H hinders the cross-linking by forming OH groups. The presence of icosahedral bonding is independent of the density
Ab initio calculation of the electronic absorption spectrum of liquid water
Energy Technology Data Exchange (ETDEWEB)
Martiniano, Hugo F. M. C.; Galamba, Nuno [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP (Brazil)
2014-04-28
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.
Ab initio study of interaction of helium with edge and screw dislocations in tungsten
International Nuclear Information System (INIS)
Bakaev, Alexander; Terentyev, Dmitry; Grigorev, Petr; Posselt, Matthias; Zhurkin, Evgeny E.
2017-01-01
Highlights: • Both screw (SD) and edge dislocations (ED) offer trapping sites for He in tungsten. • He atom is attracted to SD and ED with the interaction energy of ~1.3 and ~3.0 eV, respectively. • The attraction of He to dislocations can contribute to the nucleation of He clusters at high T. - Abstract: The interaction of a single He atom with edge and screw dislocations in tungsten has been studied using ab initio calculations. It was revealed that He is strongly attracted to the core of both dislocations with the interaction energy of −1.3 and −3.0 eV for screw and edge dislocations, respectively, which corresponds to the detrapping temperature in thermal desorption spectroscopy experiments of about 500 K and 1050 K, respectively. The lowest energy positions for He around the dislocation cores are identified and the atomic structures are rationalized on the basis of elasticity theory considerations. Both types of dislocations exhibit a higher binding energy for He as compared to the He-He binding (known as self-trapping) and are weaker traps as compared to a single vacancy. It is, thus, concluded that the strong attraction to dislocation lines can contribute to the nucleation of He clusters in the temperature range which already excludes He self-trapping.
Ab initio calculation of the electronic absorption spectrum of liquid water
International Nuclear Information System (INIS)
Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa
2014-01-01
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase
Ab initio study of interaction of helium with edge and screw dislocations in tungsten
Energy Technology Data Exchange (ETDEWEB)
Bakaev, Alexander, E-mail: bakaev_vic@mail.ru [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol 2400 (Belgium); Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation); Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden (Germany); Terentyev, Dmitry [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol 2400 (Belgium); Grigorev, Petr [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol 2400 (Belgium); Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation); Ghent University, Applied Physics EA17 FUSION-DC, St. Pietersnieuwstraat, 41 B4, B-9000 Gent (Belgium); Posselt, Matthias [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden (Germany); Zhurkin, Evgeny E. [Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation)
2017-02-15
Highlights: • Both screw (SD) and edge dislocations (ED) offer trapping sites for He in tungsten. • He atom is attracted to SD and ED with the interaction energy of ~1.3 and ~3.0 eV, respectively. • The attraction of He to dislocations can contribute to the nucleation of He clusters at high T. - Abstract: The interaction of a single He atom with edge and screw dislocations in tungsten has been studied using ab initio calculations. It was revealed that He is strongly attracted to the core of both dislocations with the interaction energy of −1.3 and −3.0 eV for screw and edge dislocations, respectively, which corresponds to the detrapping temperature in thermal desorption spectroscopy experiments of about 500 K and 1050 K, respectively. The lowest energy positions for He around the dislocation cores are identified and the atomic structures are rationalized on the basis of elasticity theory considerations. Both types of dislocations exhibit a higher binding energy for He as compared to the He-He binding (known as self-trapping) and are weaker traps as compared to a single vacancy. It is, thus, concluded that the strong attraction to dislocation lines can contribute to the nucleation of He clusters in the temperature range which already excludes He self-trapping.
Energy Technology Data Exchange (ETDEWEB)
Walker, I C; McEwen, I J [School of Engineering and Physical Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS (United Kingdom); Holland, D M P; Shaw, D A; Guest, M F [Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom)
2008-06-14
The absolute photoabsorption spectrum of ethylene oxide (C{sub 2}H{sub 4}O) has been measured between onset and 30 eV, using monochromated synchrotron radiation. Below the ionization threshold (10.56 eV) the spectrum is dominated by sharp peaks related to excitation of Rydberg series converging on the first ionization energy. Above the ionization threshold, valence-excited states, which give rise to broad bands, predominate. Underlying Rydberg states are signalled in weak vibrational structure on the valence bands. Ab initio multireference configuration interaction (MRDCI) calculations have been carried out to assist in assignment of the excited states, both valence and Rydberg. The lowest-lying valence state is electric-dipole forbidden; the first optically allowed valence state lies close to the ionization onset. The spectrum of the oxide is compared with those of cyclopropane (C{sub 3}H{sub 6}) and ethylene sulphide (C{sub 2}H{sub 4}S)
Electronic and magnetic properties of α-MnO2 from ab initio calculations
Crespo, Y.; Seriani, N.
2013-10-01
α-MnO2, an active catalyst for oxygen reduction and evolution reactions, has been investigated using ab initio calculations with different exchange-correlation functionals: the generalized-gradient approximation in the version of Perdew, Burke, and Ernzerhof (PBE), PBE+U, and hybrid functionals. Both hybrid functionals and PBE+U (U≥2.0 eV) fail to capture the antiferromagnetic (AFM) ground state found experimentally, and a ferromagnetic configuration has the lowest energy. An AFM ground state is then recovered when using PBE or PBE+U (U≤1.6 eV). Interestingly, a reduction of the gap is observed at increasing values of the U parameter. We offer a qualitative explanation for the change in the calculated ground state employing the results for the electronic structure and physical arguments similar to those exposed in the Goodenough-Kanamori-Anderson rules. It is argued that the pz orbital of oxygen atoms with sp2 hybridization plays a fundamental role in the superexchange AFM interaction and in the reduction of the gap.
Single-particle cryo-EM-Improved ab initio 3D reconstruction with SIMPLE/PRIME.
Reboul, Cyril F; Eager, Michael; Elmlund, Dominika; Elmlund, Hans
2018-01-01
Cryogenic electron microscopy (cryo-EM) and single-particle analysis now enables the determination of high-resolution structures of macromolecular assemblies that have resisted X-ray crystallography and other approaches. We developed the SIMPLE open-source image-processing suite for analysing cryo-EM images of single-particles. A core component of SIMPLE is the probabilistic PRIME algorithm for identifying clusters of images in 2D and determine relative orientations of single-particle projections in 3D. Here, we extend our previous work on PRIME and introduce new stochastic optimization algorithms that improve the robustness of the approach. Our refined method for identification of homogeneous subsets of images in accurate register substantially improves the resolution of the cluster centers and of the ab initio 3D reconstructions derived from them. We now obtain maps with a resolution better than 10 Å by exclusively processing cluster centers. Excellent parallel code performance on over-the-counter laptops and CPU workstations is demonstrated. © 2017 The Protein Society.
Ab-initio Computation of the Electronic, transport, and Bulk Properties of Calcium Oxide.
Mbolle, Augustine; Banjara, Dipendra; Malozovsky, Yuriy; Franklin, Lashounda; Bagayoko, Diola
We report results from ab-initio, self-consistent, local Density approximation (LDA) calculations of electronic and related properties of calcium oxide (CaO) in the rock salt structure. We employed the Ceperley and Alder LDA potential and the linear combination of atomic orbitals (LCAO) formalism. Our calculations are non-relativistic. We implemented the LCAO formalism following the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). The BZW-EF method involves a methodical search for the optimal basis set that yields the absolute minima of the occupied energies, as required by density functional theory (DFT). Our calculated, indirect band gap of 6.91eV, from towards the L point, is in excellent agreement with experimental value of 6.93-7.7eV, at room temperature (RT). We have also calculated the total (DOS) and partial (pDOS) densities of states as well as the bulk modulus. Our calculated bulk modulus is in excellent agreement with experiment. Work funded in part by the US Department of Energy (DOE), National Nuclear Security Administration (NNSA) (Award No.DE-NA0002630), the National Science Foundation (NSF) (Award No, 1503226), LaSPACE, and LONI-SUBR.
Erbium(III) in aqueous solution: an ab initio molecular dynamics study.
Canaval, Lorenz R; Sakwarathorn, Theerathad; Rode, Bernd M; Messner, Christoph B; Lutz, Oliver M D; Bonn, Günther K
2013-12-05
Structural and dynamical properties of the erbium(III) ion in water have been obtained by means of ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) simulations for the ground state and an excited state. The quality of the simulations has been monitored by recording UV/vis and Raman spectra of dilute solutions of ErCl3 and Er(NO3)3 in water and by comparison with EXAFS data from literature. Slight deviations between these data can be mainly attributed to relativistic effects, which are not sufficiently considered by the methodological framework. In both simulations, a mixture of coordination numbers eight and nine and a ligand exchange on the picosecond range are observed. The strength of the Er-ligand bond is considerably lower than that of trivalent transition metal ions but higher than that for La(III) and Ce(III) in aqueous solution. The main difference between ground state and excited state is the ligand exchange rate of the first shell. The second hydration shell is stable in both cases but with significantly different properties.
Silicon and Germanium Nanostructures for Photovoltaic Applications: Ab-Initio Results
Directory of Open Access Journals (Sweden)
Pulci Olivia
2010-01-01
Full Text Available Abstract Actually, most of the electric energy is being produced by fossil fuels and great is the search for viable alternatives. The most appealing and promising technology is photovoltaics. It will become truly mainstream when its cost will be comparable to other energy sources. One way is to significantly enhance device efficiencies, for example by increasing the number of band gaps in multijunction solar cells or by favoring charge separation in the devices. This can be done by using cells based on nanostructured semiconductors. In this paper, we will present ab-initio results of the structural, electronic and optical properties of (1 silicon and germanium nanoparticles embedded in wide band gap materials and (2 mixed silicon-germanium nanowires. We show that theory can help in understanding the microscopic processes important for devices performances. In particular, we calculated for embedded Si and Ge nanoparticles the dependence of the absorption threshold on size and oxidation, the role of crystallinity and, in some cases, the recombination rates, and we demonstrated that in the case of mixed nanowires, those with a clear interface between Si and Ge show not only a reduced quantum confinement effect but display also a natural geometrical separation between electron and hole.
Ab initio study of basal slip in Nb2AlC
International Nuclear Information System (INIS)
Music, Denis; Sun, Zhimei; Voevodin, Andrey A; Schneider, Jochen M
2006-01-01
Using ab initio calculations, we have studied shearing in Nb 2 AlC, where NbC and Al layers are interleaved. The stress-strain analysis of this deformation mode reveals Nb-Al bond breaking, while the Nb-C bond length decreases by 4.1%. Furthermore, there is no evidence for phase transformation during deformation. This is consistent with basal slip and may be understood on the basis of the electronic structure: bands below the Fermi level are responsible for the dd bonding between NbC basal planes and only a single band with a weak dd interaction is not resistant to shearing, while all other bands are unaffected. The Al-Nb bonding character can be described as mainly metallic with weak covalent-ionic contributions. Our study demonstrates that Al layers move with relative ease under shear strain. Phase conservation upon shearing is unusual for carbides and may be due to the layered nature of the phase studied. Here, we describe the electronic origin of basal slip in Nb 2 AlC, the atomic mechanism which enables reversible plasticity in this class of materials
Ab initio quasiparticle bandstructure of ABA and ABC-stacked graphene trilayers
Menezes, Marcos; Capaz, Rodrigo; Louie, Steven
2013-03-01
We obtain the quasiparticle band structure of ABA and ABC-stacked graphene trilayers through ab initio density functional theory (DFT) and many-body quasiparticle calculations within the GW approximation. To interpret our results, we fit the DFT and GW π bands to a low energy tight-binding model, which is found to reproduce very well the observed features near the K point. The values of the extracted hopping parameters are reported and compared with available theoretical and experimental data. For both stackings, the quasiparticle corrections lead to a renormalization of the Fermi velocity, an effect also observed in previous calculations on monolayer graphene. They also increase the separation between the higher energy bands, which is proportional to the nearest neighbor interlayer hopping parameter γ1. Both features are brought to closer agreement with experiment through the quasiparticle corrections. Finally, other effects, such as trigonal warping, electron-hole assymetry and energy gaps are discussed in terms of the associated parameters. This work was supported by the Brazilian funding agencies: CAPES, CNPq, FAPERJ and INCT-Nanomateriais de Carbono. It was also supported by NSF grant No. DMR10-1006184 and U.S. DOE under Contract No. DE-AC02-05CH11231.
Ab initio modelling of screw dislocations in body-centered cubic transition metals
International Nuclear Information System (INIS)
Dezerald, Lucile
2014-01-01
We performed electronic structure ab initio calculations based on density functional theory (DFT) to study the <111> screw dislocation properties in body-centered cubic transition metals (V, Nb, Ta, Mo, W and Fe). In all investigated elements, the nondegenerate easy core is the minimum energy configuration and the split core configuration has a high energy near or above that of the hard core, contrary to interatomic potential predictions. A strong group dependence of the core energy of the easy dislocation is also evidenced, related to the position of the Fermi level with respect to the minimum of the pseudo-gap of the electronic density of states. Our work also reveals an atypical behavior in Fe, with a low relative energy at the hard core position, close to that of the saddle configuration between easy cores, resulting in a flat Peierls potential around the hard core configuration, at variance with other elements. From these DFT calculations, the two-dimensional energetic landscape in the {111} plane (Peierls potential) is constructed and we investigated several properties of dislocation glide and in particular, the kink-pair formation enthalpy, as well as the dependence of the Peierls stress on crystal orientation. We proposed a simple modification to the Schmid law that takes account of the non-straight trajectory of the dislocation and that qualitatively explains why the twinning/anti-twinning asymmetry is less pronounced in Fe than in other body-centered cubic metals. (author) [fr
Ab initio thermodynamic evaluation of Pd atom interaction with CeO(2) surfaces.
Mayernick, Adam D; Janik, Michael J
2009-08-28
Palladium supported on ceria is an effective catalytic material for three-way automotive catalysis, catalytic combustion, and solid-oxide fuel cell (SOFC) anodes. The morphology, oxidation state, and particle size of Pd on ceria affect catalytic activity and are a function of experimental conditions. This work utilizes ab initio thermodynamics using density functional theory (DFT) (DFT+U) methods to evaluate the stability of Pd atoms, PdO(x) species, and small Pd particles in varying configurations on CeO(2) (111), (110), and (100) single crystal surfaces. Over specific oxygen partial pressure and temperature ranges, palladium incorporation to form a mixed surface oxide is thermodynamically favorable versus other single Pd atom states on each ceria surface. For example, Pd atoms may incorporate into Ce fluorite lattice positions in a Pd(4+) oxidation state on the CeO(2) (111) surface. The ceria support shifts the transition between formal Pd oxidation states (Pd(0), Pd(2+), Pd(4+)) relative to bulk palladium and stabilizes certain oxidized palladium species on each surface. We show that temperature, oxygen pressure, and cell potential in a SOFC can influence the stable states of palladium supported on ceria surfaces, providing insight into structural stability during catalytic operation.
The role of metallic ions in nano-bio hybrid catalysts from ab initio first principles
Behera, Sushant; Deb, Pritam
We employ high-accuracy linear-scaling density functional theory calculations with a near-complete basis set and a minimal parameter implicit solvent model, within the self-consistent calculation, on silver ion assimilated on bacteriorhodopsin (bR) at specific binding sites. The geometry optimization indicates the formation of stable active sites at the interface of nano-bio hybrid and density of states reflects the metallic behavior of the active sites. Detailed kinetics of the catalytic reaction is revealed using ab initio electronic structure calculations. We observed that the metal ion incorporated active sites are more efficient in electrolytic splitting of water than pristine sites due to their less value of Gibbs free energy for hydrogen evolution reaction and strong synergistic effect. The volcano plot analysis and free energy diagram are considered to understan hydrogen evolution efficiency. Moreover, the essential role of metallic ion on catalytic efficiency is elucidated. DBT, Government of India, vide Grant No BT/357/NE/TBP/ 2012. DST, GoI for financial support under INSPIRE Fellowship(IF150325).
Simkovic, Felix; Thomas, Jens M. H.; Keegan, Ronan M.; Winn, Martyn D.; Mayans, Olga; Rigden, Daniel J.
2016-01-01
For many protein families, the deluge of new sequence information together with new statistical protocols now allow the accurate prediction of contacting residues from sequence information alone. This offers the possibility of more accurate ab initio (non-homology-based) structure prediction. Such models can be used in structure solution by molecular replacement (MR) where the target fold is novel or is only distantly related to known structures. Here, AMPLE, an MR pipeline that assembles sea...
Ultra strong polymer fibers : Ab initio calculations on polyethylene
Hageman, J.C.L.; Groot, R.A. de; Meier, Robert J.
1998-01-01
The Car-Parrinello technique is used to study the electronic structure of orthorhombic polyethylene as well as the elastic modulus. The theoretical band structure and density of states are in very good agreement with experiments. The best experimentally realized elastic modulus is better than 86% of
Duan, Defang; Tian, Fubo; He, Zhi; Meng, Xing; Wang, Liancheng; Chen, Changbo; Zhao, Xiusong; Liu, Bingbing; Cui, Tian
2010-08-21
Ab initio calculations are performed to probe the hydrogen bonding, structural, and superconducting behaviors of HBr and HCl under high pressure. The calculated results show that the hydrogen bond symmetrization (Cmc2(1)-->Cmcm transition) of HBr and HCl occurs at 25 and 40 GPa, respectively, which can be attributed to the symmetry stretching A(1) mode softening. After hydrogen bond symmetrization, a pressure-induced soft transverse acoustic phonon mode of Cmcm phase is identified and a unique metallic phase with monoclinic structure of P2(1)/m (4 molecules/cell) for both compounds is revealed by ab initio phonon calculations. This phase preserves the symmetric hydrogen bond and is stable in the pressure range from 134 to 196 GPa for HBr and above 233 GPa for HCl, while HBr is predicted to decompose into Br(2)+H(2) above 196 GPa. Perturbative linear-response calculations predict that the phase P2(1)/m is a superconductor with T(c) of 27-34 K for HBr at 160 GPa and 9-14 K for HCl at 280 GPa.
International Nuclear Information System (INIS)
Churakov, S.V.
2005-01-01
Pyrophyllite, Al 2 [Si 4 O 10 ](OH) 2 , is the simplest structural prototype for 2:1 dioctahedral phyllosilicate. Because the net electric charge in pyrophyllite is zero, it is the best candidate for investigating the non electrostatic contribution to sorption and transport phenomena in clays. Using ab-initio simulations, we have investigated the reactivity and structure of the water-solid interface on the basal plane and edge sites of pyrophyllite. The calculations predict slightly hydrophobic behaviour of the basal plane. For the high water coverage (100), (110) and (-110), lateral facets have a lower energy than for the (010), (130) and (-130) surfaces. Analysis of the surface reactivity reveals that the =Al-OH groups are most easily protonated on the (010), (130) and (-130) facets. The =Al-O-Si= sites will be protonated on the (100), (130), (110), (-110) and (-130) surfaces. The =Al-OH 2 complexes are more easily de-protonated than the =Si-OH and =Al-OH sites. A spontaneous, reversible exchange of the protons between the solution and the edge sites has been observed in ab-initio molecular dynamics simulations at 300 K. Such near-surface proton diffusion may result in a significant contribution to the diffusion coefficients measured in neutron scattering experiments. (author)
Arroyo-Currás, Netzahualcóyotl; Rosas-García, Víctor M; Videa, Marcelo
2016-10-27
Flavonoids are natural products commonly found in the human diet that show antioxidant, anti-inflammatory and anti-hepatotoxic activities. These nutraceutical properties may relate to the electrochemical activity of flavonoids. To increase the understanding of structure-electrochemical activity relations and the inductive effects that OH substituents have on the redox potential of flavonoids, we carried out square-wave voltammetry experiments and ab initio calculations of eight flavonoids selected following a systematic variation in the number of hydroxyl substituents and their location on the flavan backbone: three flavonols, three anthocyanidins, one anthocyanin and the flavonoid backbone flavone. We compared the effect that the number of -OH groups in the ring B of flavan has on the oxidation potential of the flavonoids considered, finding linear correlations for both flavonols and anthocyanidins ( R 2 = 0.98 ). We analyzed the effects that position and number of -OH substituents have on electron density distributions via ab initio quantum chemical calculations. We present direct correlations between structural features and oxidation potentials that provide a deeper insight into the redox chemistry of these molecules.