WorldWideScience

Sample records for ab initio electronic-structure

  1. Ab initio study of electron-ion structure factors in binary liquids with different types of chemical bonding

    International Nuclear Information System (INIS)

    Klevets, Ivan; Bryk, Taras

    2014-01-01

    Electron-ion structure factors, calculated in ab initio molecular dynamics simulations, are reported for several binary liquids with different kinds of chemical bonding: metallic liquid alloy Bi–Pb, molten salt RbF, and liquid water. We derive analytical expressions for the long-wavelength asymptotes of the partial electron-ion structure factors of binary systems and show that the analytical results are in good agreement with the ab initio simulation data. The long-wavelength behaviour of the total charge structure factors for the three binary liquids is discussed

  2. Positive semidefinite tensor factorizations of the two-electron integral matrix for low-scaling ab initio electronic structure.

    Science.gov (United States)

    Hoy, Erik P; Mazziotti, David A

    2015-08-14

    Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory.

  3. Positive semidefinite tensor factorizations of the two-electron integral matrix for low-scaling ab initio electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Hoy, Erik P.; Mazziotti, David A., E-mail: damazz@uchicago.edu [Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-08-14

    Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory.

  4. Ab-initio crystal structure analysis and refinement approaches of oligo p-benzamides based on electron diffraction data

    DEFF Research Database (Denmark)

    Gorelik, Tatiana E; van de Streek, Jacco; Kilbinger, Andreas F M

    2012-01-01

    Ab-initio crystal structure analysis of organic materials from electron diffraction data is presented. The data were collected using the automated electron diffraction tomography (ADT) technique. The structure solution and refinement route is first validated on the basis of the known crystal stru...

  5. All-electron ab initio investigations of the electronic states of the NiC molecule

    DEFF Research Database (Denmark)

    Shim, Irene; Gingerich, Karl. A.

    1999-01-01

    The low-lying electronic states of NiC are investigated by all-electron ab initio multi-configuration self-consistent-field (CASSCF) calculations including relativistic corrections. The electronic structure of NiC is interpreted as perturbed antiferromagnetic couplings of the localized angular...

  6. Ab initio calculations and modelling of atomic cluster structure

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Lyalin, Andrey G.; Solov'yov, Andrey V.

    2004-01-01

    The optimized structure and electronic properties of small sodium and magnesium clusters have been investigated using it ab initio theoretical methods based on density-functional theory and post-Hartree-Fock many-body perturbation theory accounting for all electrons in the system. A new theoretical...

  7. Ab initio electronic structure and correlations in pristine and potassium-doped molecular crystals of copper phthalocyanine

    NARCIS (Netherlands)

    Giovannetti, G.; Brocks, G.; van den Brink, J.

    2008-01-01

    We investigate the effect that potassium intercalation has on the electronic structure of copper phthalocyanine (CuPc) molecular crystals by means of ab initio density functional calculations. Pristine CuPc (in its alpha and beta structures) is found to be an insulator containing local magnetic

  8. Quantum chemistry the development of ab initio methods in molecular electronic structure theory

    CERN Document Server

    Schaefer III, Henry F

    2004-01-01

    This guide is guaranteed to prove of keen interest to the broad spectrum of experimental chemists who use electronic structure theory to assist in the interpretation of their laboratory findings. A list of 150 landmark papers in ab initio molecular electronic structure methods, it features the first page of each paper (which usually encompasses the abstract and introduction). Its primary focus is methodology, rather than the examination of particular chemical problems, and the selected papers either present new and important methods or illustrate the effectiveness of existing methods in predi

  9. Ab initio pseudopotential theory

    International Nuclear Information System (INIS)

    Yin, M.T.; Cohen, M.L.

    1982-01-01

    The ab initio norm-conserving pseudopotential is generated from a reference atomic configuration in which the pseudoatomic eigenvalues and wave functions outside the core region agree with the corresponding ab initio all-electron results within the density-functional formalism. This paper explains why such pseudopotentials accurately reproduce the all-electron results in both atoms and in multiatomic systems. In particular, a theorem is derived to demonstrate the energy- and perturbation-independent properties of ab initio pseudopotentials

  10. Ab initio electronic structure of quasi-two-dimensional materials: A “native” Gaussian–plane wave approach

    Energy Technology Data Exchange (ETDEWEB)

    Trevisanutto, Paolo E. [Graphene Research Centre and CA2DM, National University of Singapore, Singapore 117542, Singapore and Singapore Synchrotron Light Source, National University of Singapore, Singapore 117603 (Singapore); Vignale, Giovanni, E-mail: vignaleg@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211 (United States)

    2016-05-28

    Ab initio electronic structure calculations of two-dimensional layered structures are typically performed using codes that were developed for three-dimensional structures, which are periodic in all three directions. The introduction of a periodicity in the third direction (perpendicular to the layer) is completely artificial and may lead in some cases to spurious results and to difficulties in treating the action of external fields. In this paper we develop a new approach, which is “native” to quasi-2D materials, making use of basis function that are periodic in the plane, but atomic-like in the perpendicular direction. We show how some of the basic tools of ab initio electronic structure theory — density functional theory, GW approximation and Bethe-Salpeter equation — are implemented in the new basis. We argue that the new approach will be preferable to the conventional one in treating the peculiarities of layered materials, including the long range of the unscreened Coulomb interaction in insulators, and the effects of strain, corrugations, and external fields.

  11. Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules

    Science.gov (United States)

    Zheng, Haoping

    2003-04-01

    The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with unchanged calculation precision. So the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule becomes a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the Ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), are presented. The reactive sites of the inhibitors are determined and explained. The precision of structure determination of inhibitors are tested theoretically.

  12. Molecular structure determination of cyclooctane by Ab Initio and electron diffraction methods in the gas phase

    International Nuclear Information System (INIS)

    Almeida, Wagner B. de

    2000-01-01

    The determination of the molecular structure of molecules is of fundamental importance in chemistry. X-rays and electron diffraction methods constitute in important tools for the elucidation of the molecular structure of systems in the solid state and gas phase, respectively. The use of quantum mechanical molecular orbital ab initio methods offer an alternative for conformational analysis studies. Comparison between theoretical results and those obtained experimentally in the gas phase can make a significant contribution for an unambiguous determination of the geometrical parameters. In this article the determination for an unambiguous determination of the geometrical parameters. In this article the determination of the molecular structure of the cyclooctane molecule by electron diffraction in the gas phase an initio calculations will be addressed, providing an example of a comparative analysis of theoretical and experimental predictions. (author)

  13. Ab Initio Calculations for the BaTiO3 (001) Surface Structure

    Institute of Scientific and Technical Information of China (English)

    XUE Xu-Yan; WANG Chun-Lei; ZHONG Wei-Lie

    2004-01-01

    @@ The ab initio method within the local density approximation is applied to calculate cubic BaTiO3 (001) surface relaxation and rumpling for two different terminations (BaO and TiO2). Our calculations demonstrate that cubic perovskite BaTiO3 crystals possess surface polarization, accompanied by the presence of the relevant electric field.We analyse their electronic structures (band structure, density of states and the electronic density redistribution with emphasis on the covalency effects). The results are also compared with that of the previous ab initio calculations. Considerable increases of Ti-O chemical bond covalency nearby the surface have been observed.The band gap reduces especially for the TiO2 termination.

  14. Ab Initio molecular dynamics with excited electrons

    NARCIS (Netherlands)

    Alavi, A.; Kohanoff, J.; Parrinello, M.; Frenkel, D.

    1994-01-01

    A method to do ab initio molecular dynamics suitable for metallic and electronically hot systems is described. It is based on a density functional which is costationary with the finite-temperature functional of Mermin, with state being included with possibly fractional occupation numbers.

  15. Ab initio electronic stopping power in materials

    International Nuclear Information System (INIS)

    Shukri, Abdullah-Atef

    2015-01-01

    The average energy loss of an ion per unit path length when it is moving through the matter is named the stopping power. The knowledge of the stopping power is essential for a variety of contemporary applications which depend on the transport of ions in matter, especially ion beam analysis techniques and ion implantation. Most noticeably, the use of proton or heavier ion beams in radiotherapy requires the knowledge of the stopping power. Whereas experimental data are readily available for elemental solids, the data are much more scarce for compounds. The linear response dielectric formalism has been widely used in the past to study the electronic stopping power. In particular, the famous pioneering calculations due to Lindhard evaluate the electronic stopping power of a free electron gas. In this thesis, we develop a fully ab initio scheme based on linear response time-dependent density functional theory to predict the impact parameter averaged quantity named the random electronic stopping power (RESP) of materials without any empirical fitting. The purpose is to be capable of predicting the outcome of experiments without any knowledge of target material besides its crystallographic structure. Our developments have been done within the open source ab initio code named ABINIT, where two approximations are now available: the Random-Phase Approximation (RPA) and the Adiabatic Local Density Approximation (ALDA). Furthermore, a new method named 'extrapolation scheme' have been introduced to overcome the stringent convergence issues we have encountered. These convergence issues have prevented the previous studies in literature from offering a direct comparison to experiment. First of all, we demonstrate the importance of describing the realistic ab initio electronic structure by comparing with the historical Lindhard stopping power evaluation. Whereas the Lindhard stopping power provides a first order description that captures the general features of the

  16. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Draayer, Jerry P. [Louisiana State Univ., Baton Rouge, LA (United States)

    2014-09-28

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  17. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    International Nuclear Information System (INIS)

    Draayer, Jerry P.

    2014-01-01

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  18. Ab initio study of isomerism in molecular ions Li2AB+ with 10 valence electrons

    International Nuclear Information System (INIS)

    Charkin, O.P.; Mak-Ki, M.L.; Shlojer, P.R.

    1997-01-01

    Ab initio calculations of surfaces of Li 2 AB + molecular ion potential energy with biatomic anions AB - with 10 valence electrons have been made in the framework of approximations MP2/6-31G 1 /HF/6-31G*+ZPE(HF/6-31G*) and MP4SDTQ/631G*//MP2/6-31G*+ZPE(MP2/6-31G*). Influence of electron correlation on the accuracy of calculations of their structural and vibrational characteristics is studied. The following most favourable structures have been found: linear for Li 2 BO + , Li 2 CN + , and bent one for Li 2 BS + , with cations coordinated at different anion atoms; onium one for AlOLi 2 + , AlSLi 2 + , SiNLi 2 + and SiPLi 2 + with both cations at electronegative atom of anion

  19. Ab initio density functional theory investigation of structural and electronic properties of double-walled silicon carbide nanotubes

    Science.gov (United States)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2009-12-01

    By using ab initio density functional theory, the structural and electronic properties of (n,n)@(11,11) double-walled silicon carbide nanotubes (SiCNTs) are investigated. Our calculations reveal the existence of an energetically favorable double-walled nanotube whose interwall distance is about 4.3 Å. Interwall spacing and curvature difference are found to be essential for the electronic states around the Fermi level.

  20. Speed-up of ab initio hybrid Monte Carlo and ab initio path integral hybrid Monte Carlo simulations by using an auxiliary potential energy surface

    International Nuclear Information System (INIS)

    Nakayama, Akira; Taketsugu, Tetsuya; Shiga, Motoyuki

    2009-01-01

    Efficiency of the ab initio hybrid Monte Carlo and ab initio path integral hybrid Monte Carlo methods is enhanced by employing an auxiliary potential energy surface that is used to update the system configuration via molecular dynamics scheme. As a simple illustration of this method, a dual-level approach is introduced where potential energy gradients are evaluated by computationally less expensive ab initio electronic structure methods. (author)

  1. Molecular structure determination of cyclootane by ab initio and electron diffraction methods in the gas phase

    OpenAIRE

    De Almeida, Wagner B.

    2000-01-01

    The determination of the molecular structure of molecules is of fundamental importance in chemistry. X-rays and electron diffraction methods constitute in important tools for the elucidation of the molecular structure of systems in the solid state and gas phase, respectively. The use of quantum mechanical molecular orbital ab initio methods offer an alternative for conformational analysis studies. Comparison between theoretical results and those obtained experimentally in the gas phase can ma...

  2. Ab-initio ZORA calculations

    NARCIS (Netherlands)

    Faas, S.; Snijders, Jaap; van Lenthe, J.H.; HernandezLaguna, A; Maruani, J; McWeeny, R; Wilson, S

    2000-01-01

    In this paper we present the first application of the ZORA (Zeroth Order Regular Approximation of the Dirac Fock equation) formalism in Ab Initio electronic structure calculations. The ZORA method, which has been tested previously in the context of Density Functional Theory, has been implemented in

  3. An ab-initio study of mechanical, dynamical and electronic properties of MgEu intermetallic

    Science.gov (United States)

    Kumar, S. Ramesh; Jaiganesh, G.; Jayalakshmi, V.

    2018-04-01

    The theoretical investigation on the mechanical, dynamical and electronic properties of MgEu in CsCl-type structure has been carried out through the ab-initio calculations within the framework of the density functional theory and the density functional perturbation theory. For the purpose, Vienna Ab initio Simulation Package and Phonopy packages were used. Our calculated ground-state properties of MgEu are in good agreement with other available results. Our computed elastic constants and phonon spectrum results suggest that MgEu is mechanically and dynamically stable up to 5 GPa. The thermodynamic quantities as a function of temperatures are also reported and discussed. The band structure, density of states and charge density also calculated to understand the electronic properties of MgEu.

  4. The role of ab initio electronic structure calculations in studies of the strength of materials

    International Nuclear Information System (INIS)

    Sob, M.; Friak, M.; Legut, D.; Fiala, J.; Vitek, V.

    2004-01-01

    In this paper we give an account of applications of quantum-mechanical (first-principles) electronic structure calculations to the problem of theoretical tensile strength in metals and intermetallics. First, we review previous as well as ongoing research on this subject. We then describe briefly the electronic structure calculational methods and simulation of the tensile test. This approach is then illustrated by calculations of theoretical tensile strength in iron and in the intermetallic compound Ni 3 Al. The anisotropy of calculated tensile strength is explained in terms of higher-symmetry structures encountered along the deformation paths studied. The table summarizing values of theoretical tensile strengths calculated up to now is presented and the role of ab initio electronic structure calculations in contemporary studies of the strength of material is discussed

  5. Ab-initio simulations of pressure effects on structural and electronic properties of iron based superconductors

    International Nuclear Information System (INIS)

    Tomic, Milan

    2013-01-01

    The ab-initio molecular dynamics framework has been the cornerstone of computational solid state physics in the last few decades. Although it is already a mature field it is still rapidly developing to accommodate the growth in solid state research as well as to efficiently utilize the increase in computing power. Starting from the first principles, the ab-initio molecular dynamics provides essential information about structural and electronic properties of matter under various external conditions. In this thesis we use the ab-initio molecular dynamics to study the behavior of BaFe 2 As 2 and CaFe 2 As 2 under the application of external pressure. BaFe 2 As 2 and CaFe 2 As 2 belong to the family of iron based superconductors which are a novel and promising superconducting materials. The application of pressure is one of two key methods by which electronic and structural properties of iron based superconductors can be modified, the other one being doping (or chemical pressure). In particular, it has been noted that pressure conditions have an important effect, but their exact role is not fully understood. To better understand the effect of different pressure conditions we have performed a series of ab-initio simulations of pressure application. In order to apply the pressure with arbitrary stress tensor we have developed a method based on the Fast Inertial Relaxation Engine, whereby the unit cell and the atomic positions are evolved according to the metadynamical equations of motion. We have found that the application of hydrostatic and c axis uniaxial pressure induces a phase transition from the magnetically ordered orthorhombic phase to the non-magnetic collapsed tetragonal phase in both BaFe 2 As 2 and CaFe 2 As 2 . In the case of BaFe 2 As 2 , an intermediate tetragonal non-magnetic tetragonal phase is observed in addition. Application of the uniaxial pressure parallel to the c axis reduces the critical pressure of the phase transition by an order of magnitude

  6. Ab initio valence calculations in chemistry

    CERN Document Server

    Cook, D B

    1974-01-01

    Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schrödinger equation and the orbital approximation to atomic orbitals; molecular orbital and valence bond methods; practical molecular wave functions; and molecular integrals. Open shell systems, molecular symmetry, and localized descriptions of electronic structure are also discussed. This book is comprised of 13 chapters and begins by introducing the reader to the use of the Schrödinge

  7. Bicanonical ab Initio Molecular Dynamics for Open Systems.

    Science.gov (United States)

    Frenzel, Johannes; Meyer, Bernd; Marx, Dominik

    2017-08-08

    Performing ab initio molecular dynamics simulations of open systems, where the chemical potential rather than the number of both nuclei and electrons is fixed, still is a challenge. Here, drawing on bicanonical sampling ideas introduced two decades ago by Swope and Andersen [ J. Chem. Phys. 1995 , 102 , 2851 - 2863 ] to calculate chemical potentials of liquids and solids, an ab initio simulation technique is devised, which introduces a fictitious dynamics of two superimposed but otherwise independent periodic systems including full electronic structure, such that either the chemical potential or the average fractional particle number of a specific chemical species can be kept constant. As proof of concept, we demonstrate that solvation free energies can be computed from these bicanonical ab initio simulations upon directly superimposing pure bulk water and the respective aqueous solution being the two limiting systems. The method is useful in many circumstances, for instance for studying heterogeneous catalytic processes taking place on surfaces where the chemical potential of reactants rather than their number is controlled and opens a pathway toward ab initio simulations at constant electrochemical potential.

  8. Ab-initio calculations of superconducting properties of YBa2Cu3O7

    International Nuclear Information System (INIS)

    Zhao, G.L.; Bagayoko, D.

    1999-01-01

    The authors present ab-initio calculations for the electronic structure and superconducting properties of YBa 2 Cu 3 O 7 (YBCO). The electronic structure was calculated using a self-consistent ab-initio LCAO method. They solved the anisotropic Eliashberg gap equation numerically. The strong coupling of the high energy optical phonons around 60--73 meV, with the electrons at the Fermi surface, leads to a high Tc in YBCO. The calculated Tc is about 89 K for μ* = 0.1. The good agreement of the calculated results with experimental measurements and the ab-initio nature of the calculations support the scenario of an anisotropic s-wave superconductor for YBCO

  9. Ab-initio simulations of pressure effects on structural and electronic properties of iron based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tomic, Milan

    2013-07-01

    The ab-initio molecular dynamics framework has been the cornerstone of computational solid state physics in the last few decades. Although it is already a mature field it is still rapidly developing to accommodate the growth in solid state research as well as to efficiently utilize the increase in computing power. Starting from the first principles, the ab-initio molecular dynamics provides essential information about structural and electronic properties of matter under various external conditions. In this thesis we use the ab-initio molecular dynamics to study the behavior of BaFe{sub 2}As{sub 2} and CaFe{sub 2}As{sub 2} under the application of external pressure. BaFe{sub 2}As{sub 2} and CaFe{sub 2}As{sub 2} belong to the family of iron based superconductors which are a novel and promising superconducting materials. The application of pressure is one of two key methods by which electronic and structural properties of iron based superconductors can be modified, the other one being doping (or chemical pressure). In particular, it has been noted that pressure conditions have an important effect, but their exact role is not fully understood. To better understand the effect of different pressure conditions we have performed a series of ab-initio simulations of pressure application. In order to apply the pressure with arbitrary stress tensor we have developed a method based on the Fast Inertial Relaxation Engine, whereby the unit cell and the atomic positions are evolved according to the metadynamical equations of motion. We have found that the application of hydrostatic and c axis uniaxial pressure induces a phase transition from the magnetically ordered orthorhombic phase to the non-magnetic collapsed tetragonal phase in both BaFe{sub 2}As{sub 2} and CaFe{sub 2}As{sub 2}. In the case of BaFe{sub 2}As{sub 2}, an intermediate tetragonal non-magnetic tetragonal phase is observed in addition. Application of the uniaxial pressure parallel to the c axis reduces the

  10. Molecular structure determination of cyclooctane by Ab Initio and electron diffraction methods in the gas phase; Determinacao da estrutura molecular do ciclooctano por metodos Ab Initio e difracao de eletrons na fase gasosa

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Wagner B. de [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Quimica

    2000-10-01

    The determination of the molecular structure of molecules is of fundamental importance in chemistry. X-rays and electron diffraction methods constitute in important tools for the elucidation of the molecular structure of systems in the solid state and gas phase, respectively. The use of quantum mechanical molecular orbital ab initio methods offer an alternative for conformational analysis studies. Comparison between theoretical results and those obtained experimentally in the gas phase can make a significant contribution for an unambiguous determination of the geometrical parameters. In this article the determination for an unambiguous determination of the geometrical parameters. In this article the determination of the molecular structure of the cyclooctane molecule by electron diffraction in the gas phase an initio calculations will be addressed, providing an example of a comparative analysis of theoretical and experimental predictions. (author)

  11. Ab initio structural and electronic properties of hydrogenated silicon nanoclusters in the ground and excited state

    International Nuclear Information System (INIS)

    Degoli, Elena; Bisi, O.; Ossicini, Stefano; Cantele, G.; Ninno, D.; Luppi, Eleonora; Magri, Rita

    2004-01-01

    Electronic and structural properties of small hydrogenated silicon nanoclusters as a function of dimension are calculated from ab initio technique. The effects induced by the creation of an electron-hole pair are discussed in detail, showing the strong interplay between the structural and optical properties of the system. The distortion induced on the structure after an electronic excitation of the cluster is analyzed together with the role of the symmetry constraint during the relaxation. We point out how the overall effect is that of significantly changing the electronic spectrum if no symmetry constraint is imposed to the system. Such distortion can account for the Stokes shift and provides a possible structural model to be linked to the four-level scheme invoked in the literature to explain recent results for the optical gain in silicon nanoclusters. Finally, formation energies for clusters with increasing dimension are calculated and their relative stability discussed

  12. Summation of Parquet diagrams as an ab initio method in nuclear structure calculations

    International Nuclear Information System (INIS)

    Bergli, Elise; Hjorth-Jensen, Morten

    2011-01-01

    Research highlights: → We present a Green's function based approach for doing ab initio nuclear structure calculations. → In particular the sum the subset of so-called Parquet diagrams. → Applying the theory to a simple but realistic model, results in good agreement with other ab initio methods. → This opens up for ab initio calculations for medium-heavy nuclei. - Abstract: In this work we discuss the summation of the Parquet class of diagrams within Green's function theory as a possible framework for ab initio nuclear structure calculations. The theory is presented and some numerical details are discussed, in particular the approximations employed. We apply the Parquet method to a simple model, and compare our results with those from an exact solution. The main conclusion is that even at the level of approximation presented here, the results shows good agreement with other comparable ab initio approaches.

  13. All electron ab initio investigations of the electronic states of the FeC molecule

    DEFF Research Database (Denmark)

    Shim, Irene; Gingerich, Karl A.

    1999-01-01

    The low lying electronic states of the molecule FeC have been investigated by performing all electron ab initio multi-configuration self-consistent-field (CASSCF) and multi reference configuration interaction (MRCI) calculations. The relativistic corrections for the one electron Darwin contact term...

  14. All Electron ab initio Investigations of the Electronic States of the MoN Molecule

    DEFF Research Database (Denmark)

    Shim, Irene; Gingerich, Karl A.

    1999-01-01

    The low lying electronic states of the molecule MoN have been investigated by performing all electron ab initio multi-configuration self-consistent-field (CASSCF) calculations. The relativistic corrections for the one electron Darwin contact term and the relativistic mass-velocity correction have...

  15. Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study

    International Nuclear Information System (INIS)

    Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil

    2016-01-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg_1_0In_9_0, Hg_3_0In_7_0_,_. Hg_5_0In_5_0, Hg_7_0In_3_0, and Hg_9_0Pb_1_0) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.

  16. Ab initio study of hot electrons in GaAs

    OpenAIRE

    Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B.; Louie, Steven G.

    2015-01-01

    Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation...

  17. Structural, dynamical, electronic, and bonding properties of laser-heated silicon: An ab initio molecular-dynamics study

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1997-01-01

    The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to simulate laser heating of crystalline silicon. We found that a high concentration of excited electrons dramatically weakens the covalent bonding. As a result the system undergoes a melting

  18. Magnetism and metal insulator transition in FeSi and FeGe. Ab Initio investigations of the electronic structure; Magnetismus und Metall-Isolator-Uebergang in FeSi und FeGe. Ab-initio-Untersuchungen der elektronischen Struktur

    Energy Technology Data Exchange (ETDEWEB)

    Neef, Matthias

    2007-03-19

    Aim of this thesis was to reach by a systematic study of different ab initio procedures an improved description of the electronic properties of FeSi and FeGe. Central result is the itinerant description of FeSi as a semiconductor in the neighbourhood of a ferromagnetic instability. The regardment of the nonlocal exchange in the effective one-particle approximation leads to a metastable magnetic state scarcely above the magnetic ground state. The application of the hybrid functional leads to a 1st order metal-isolator transition for large lattice parameters: FeSi transforms at increasement of the lattice parameter from an unmagnetic isolator to a magnetic metal. A similar behavior is found in the isostructural compound FeGe. The two systems FeSi and FeGe were systematically and detailedly analyzed by means of ab initio procedures. Thereby the structural, electronic, and magnetic properties were studied with DFT and HF calculations. Both calculations with spin polarization and without spin polarization were performed.

  19. Investigation of electronic structure and chemical bonding of intermetallic Pd2HfIn: An ab-initio study

    Science.gov (United States)

    Bano, Amreen; Gaur, N. K.

    2018-05-01

    Ab-initio calculations are carried out to study the electronic and chemical bonding properties of Intermetallic full Heusler compound Pd2HfIn which crystallizes in F-43m structure. All calculations are performed by using density functional theory (DFT) based code Quantum Espresso. Generalized gradient approximations (GGA) of Perdew- Burke- Ernzerhof (PBE) have been adopted for exchange-correlation potential. Calculated electronic band structure reveals the metallic character of the compound. From partial density of states (PDoS), we found the presence of relatively high intensity electronic states of 4d-Pd atom at Fermi level. We have found a pseudo-gap just abouve the Fermi level and N(E) at Fermi level is observed to be 0.8 states/eV, these finding indicates the existence of superconducting character in Pd2HfIn.

  20. Permanent and induced dipole requirements in ab initio calculations of electron affinities of polar molecules

    International Nuclear Information System (INIS)

    Garrett, W.R.

    1979-01-01

    Through the use of a molecular pseudopotential method, we determine the a approximate magnitudes of errors that result when electron affinity determinations of polar negative ions are made through ab initio calculations in which the use of a given basis set yields inappropriate values for permanent and induced dipole moments of the neutral molecule. These results should prove useful in assessing the adequacy of basis sets in ab initio calculations of molecular electron affinities for simple linear polar molecules

  1. Ab initio/interpolated quantum dynamics on coupled electronic states with full configuration interaction wave functions

    International Nuclear Information System (INIS)

    Thompson, K.; Martinez, T.J.

    1999-01-01

    We present a new approach to first-principles molecular dynamics that combines a general and flexible interpolation method with ab initio evaluation of the potential energy surface. This hybrid approach extends significantly the domain of applicability of ab initio molecular dynamics. Use of interpolation significantly reduces the computational effort associated with the dynamics over most of the time scale of interest, while regions where potential energy surfaces are difficult to interpolate, for example near conical intersections, are treated by direct solution of the electronic Schroedinger equation during the dynamics. We demonstrate the concept through application to the nonadiabatic dynamics of collisional electronic quenching of Li(2p). Full configuration interaction is used to describe the wave functions of the ground and excited electronic states. The hybrid approach agrees well with full ab initio multiple spawning dynamics, while being more than an order of magnitude faster. copyright 1999 American Institute of Physics

  2. An Efficient Method for Electron-Atom Scattering Using Ab-initio Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan; Yang, Yonggang; Xiao, Liantuan; Jia, Suotang [Shanxi University, Taiyuan (China)

    2017-02-15

    We present an efficient method based on ab-initio calculations to investigate electron-atom scatterings. Those calculations profit from methods implemented in standard quantum chemistry programs. The new approach is applied to electron-helium scattering. The results are compared with experimental and other theoretical references to demonstrate the efficiency of our method.

  3. Ab initio vel ex eventu

    Science.gov (United States)

    Thiessen, P. A.; Treder, H.-J.

    Der gegenwärtige Stand der physikalischen Erkenntnis, in Sonderheit die Atomistik und die Quantentheorie, ermöglicht (in wohldefinierten Energie-Bereichen) eine ab initio-Berechnung aller physikalischen und chemischen Prozesse und Strukturen. Die Schrödinger-Gleichung erlaubt zusammen mit den Prinzipien der Quantenstatistik (Pauli-Prinzip) aus dem Planckschen Wirkungsquantum h und den atomischen Konstanten die Berechnung aller Energieumsätze, Zeitabläufe etc., die insbesondere die chemische Physik bestimmen. Die Rechenresultate gelten auch quantitativ bis auf die unvermeidliche Stochastik.Die ab initio-Berechnungen korrespondieren einerseits und sind andererseits komplementär zu den auf den Methoden der theoretischen Chemie und der klassischen Thermodynamik beruhenden Ergebnissen ex eventu. Die theoretische Behandlung ab initio führt zu mathematischen Experimenten, die die Laboratoriums-Experimente ergänzen oder auch substituieren.Translated AbstractAb initio vel ex eventuThe present state of physical knowledge, in peculiar atomistic and quantum theory, makes an ab initio calculation of all physical and chemical processes and structures possible (in well defined reaches of energy). The Schrödinger equation together with the principles of quantum statistics (Pauli principle) permits from the Planck and atomistic constants to calculate all exchanges of energy, courses of time, etc. which govern chemical physics. The calculated results are valid even quantitatively apart from the unavoidable stochastics.These ab initio calculations on the one hand correspond and are on the other complimentary to results ex eventu based on the methods of theoretical chemistry and classical thermodynamics. Theoretical treatment ab initio leads to mathematical experiments which add to or even substitute experiments in the laboratory.

  4. Ab initio study on electron excitation and electron transfer in tryptophan-tyrosine system

    International Nuclear Information System (INIS)

    Tong Jing; Li Xiangyuan

    2002-01-01

    In this article, ab initio calculation has been performed to evaluate the transition energy of electronic excitation in tryptophan and tyrosine by using semiempirical molecular orbital method AM1 and complete active space self-consistent field method. The solvent effect has been considered by means of the conductor-like screening model. After geometric optimizations of isolated tryptophan and tyrosine, and their corresponding radicals and cations, reaction heat of these electron transfer reactions have been obtained by the means of complete active space self-consistent field method. The transition energies from the ground state, respectively, to the lowest excited state and to the lowest triplet state of these two amino acids are also calculated and compared with the experimentally observed values. The ionization potential and electron affinity are also calculated for tryptophan and tyrosine employing Koopmans' theorem and ab initio calculation. Compared with the experimental measurements, the theoretical results are found satisfactory. Theoretical results give good explanations on the experimental phenomena that N 3 · can preferably oxide the side chain of tryptophan residue and then the electron transfer from tyrosine residue to tryptophan residue follows in peptides involving tryptophan and tyrosine

  5. Ab initio theoretical calculations of the electronic excitation energies of small water clusters.

    Science.gov (United States)

    Tachikawa, Hiroto; Yabushita, Akihiro; Kawasaki, Masahiro

    2011-12-14

    A direct ab initio molecular dynamics method has been applied to a water monomer and water clusters (H(2)O)(n) (n = 1-3) to elucidate the effects of zero-point energy (ZPE) vibration on the absorption spectra of water clusters. Static ab initio calculations without ZPE showed that the first electronic transitions of (H(2)O)(n), (1)B(1)←(1)A(1), are blue-shifted as a function of cluster size (n): 7.38 eV (n = 1), 7.58 eV (n = 2) and 8.01 eV (n = 3). The inclusion of the ZPE vibration strongly affects the excitation energies of a water dimer, and a long red-tail appears in the range of 6.42-6.90 eV due to the structural flexibility of a water dimer. The ultraviolet photodissociation of water clusters and water ice surfaces is relevant to these results.

  6. 'Ab initio' structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique

    International Nuclear Information System (INIS)

    Mugnaioli, E.; Gorelik, T.; Kolb, U.

    2009-01-01

    Using a combination of our recently developed automated diffraction tomography (ADT) module with precession electron technique (PED), quasi-kinematical 3D diffraction data sets of an inorganic salt (BaSO 4 ) were collected. The lattice cell parameters and their orientation within the data sets were found automatically. The extracted intensities were used for 'ab initio' structure analysis by direct methods. The data set covered almost the complete set of possible symmetrically equivalent reflections for an orthorhombic structure. The structure solution in one step delivered all heavy (Ba, S) as well as light atoms (O). Results of the structure solution using direct methods, charge flipping and maximum entropy algorithms as well as structure refinement for three different 3D electron diffraction data sets were presented.

  7. Ab initio methods for electron-molecule collisions

    International Nuclear Information System (INIS)

    Collins, L.A.; Schneider, B.I.

    1987-01-01

    This review concentrates on the recent advances in treating the electronic aspect of the electron-molecule interaction and leaves to other articles the description of the rotational and vibrational motions. Those methods which give the most complete treatment of the direct, exchange, and correlation effects are focused on. Such full treatments are generally necessary at energies below a few Rydbergs (≅ 60 eV). This choice unfortunately necessitates omission of those active and vital areas devoted to the development of model potentials and approximate scattering formulations. The ab initio and model approaches complement each other and are both extremely important to the full explication of the electron-scattering process. Due to the rapid developments of recent years, the approaches that provide the fullest treatment are concentrated on. 81 refs

  8. Ab initio calculations of the electronic structure and bonding characteristics of LaB6

    International Nuclear Information System (INIS)

    Hossain, Faruque M.; Riley, Daniel P.; Murch, Graeme E.

    2005-01-01

    Lanthanum hexaboride (LaB 6 , NIST SRM-660a) is widely used as a standard reference material for calibrating the line position and line shape parameters of powder diffraction instruments. The accuracy of this calibration technique is highly dependent on how completely the reference material is characterized. Critical to x-ray diffraction, this understanding must include the valence of the La atomic position, which in turn will influence the x-ray form factor (f) and hence the diffracted intensities. The electronic structure and bonding properties of LaB 6 have been investigated using ab initio plane-wave pseudopotential total energy calculations. The electronic properties and atomic bonding characteristics were analyzed by estimating the energy band structure and the density of states around the Fermi energy level. The calculated energy band structure is consistent with previously reported experimental findings; de Haas-van Alphen and two-dimensional angular correlation of electron-positron annihilation radiation. In addition, the bond strengths and types of atomic bonds in the LaB 6 compound were estimated by analyzing the Mulliken charge density population. The calculated result revealed the coexistence of covalent, ionic, and metallic bonding in the LaB 6 system and partially explains its high efficiency as a thermionic emitter

  9. Ab-initio study on electronic properties of rocksalt SnAs

    Science.gov (United States)

    Babariya, Bindiya; Vaghela, M. V.; Gajjar, P. N.

    2018-05-01

    Within the frame work of Local Density Approximation of Exchange and Correlation, ab-initio method of density functional theory with Abinit code is used to compute electronic energy band structure, density of States and charge density of SnAs in rocksalt phase. Our result after optimization for lattice constant agrees with experimental value within 0.59% deviation. The computed electronic energy bands in high symmetry directions Γ→K→X→Γ→L→X→W→L→U shown metallic nature. The lowest band in the electronic band structure is showing band-gap approximately 1.70 eV from next higher band and no crossing between lowest two bands are seen. The density of states revels p-p orbit hybridization between Sn and As atoms. The spherical contour around Sn and As in the charge density plot represent partly ionic and partly covalent bonding. Fermi surface topology is the resultant effect of the single band crossing along L direction at Ef.

  10. Accuracy and Transferability of Ab Initio Electronic Band Structure Calculations for Doped BiFeO3

    Science.gov (United States)

    Gebhardt, Julian; Rappe, Andrew M.

    2017-11-01

    BiFeO3 is a multiferroic material and, therefore, highly interesting with respect to future oxide electronics. In order to realize such devices, pn junctions need to be fabricated, which are currently impeded by the lack of successful p-type doping in this material. In order to guide the numerous research efforts in this field, we recently finished a comprehensive computational study, investigating the influence of many dopants onto the electronic structure of BiFeO3. In order to allow for this large scale ab initio study, the computational setup had to be accurate and efficient. Here we discuss the details of this assessment, showing that standard density-functional theory (DFT) yields good structural properties. The obtained electronic structure, however, suffers from well-known shortcomings. By comparing the conventional DFT results for alkali and alkaline-earth metal doping with more accurate hybrid-DFT calculations, we show that, in this case, the problems of standard DFT go beyond a simple systematic error. Conventional DFT shows bad transferability and the more reliable hybrid-DFT has to be chosen for a qualitatively correct prediction of doping induced changes in the electronic structure of BiFeO3.

  11. Collective rotation from ab initio theory

    International Nuclear Information System (INIS)

    Caprio, M.A.; Maris, P.; Vary, J.P.; Smith, R.

    2015-01-01

    Through ab initio approaches in nuclear theory, we may now seek to quantitatively understand the wealth of nuclear collective phenomena starting from the underlying internucleon interactions. No-core configuration interaction (NCCI) calculations for p-shell nuclei give rise to rotational bands, as evidenced by rotational patterns for excitation energies, electromagnetic moments and electromagnetic transitions. In this review, NCCI calculations of 7–9 Be are used to illustrate and explore ab initio rotational structure, and the resulting predictions for rotational band properties are compared with experiment. We highlight the robustness of ab initio rotational predictions across different choices for the internucleon interaction. (author)

  12. AB INITIO calculations of magneto-optical effects

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jan; Oppeneer, P. M.

    2002-01-01

    Roč. 2, - (2002), s. 141-146 ISSN 1346-7948 R&D Projects: GA AV ČR IAA1010214 Institutional research plan: CEZ:AV0Z1010914 Keywords : electronic structure * ab initio calculation * polar magneto-optical Kerr effect * transitiom metal * uranium intermetallics * CrO 2 Subject RIV: BM - Solid Matter Physics ; Magnetism

  13. Structural, magnetic and electronic properties of FexCoyIrz (x + y + z = 5, 6) clusters: an ab initio study

    KAUST Repository

    Devi, Assa Aravindh Sasikala

    2014-05-01

    Investigations on freestanding binary and ternary clusters of Fe (x) Co (y) Ir (z) (x + y + z = 5, 6) are carried out using ab initio density functional theory techniques. The geometry, chemical order, binding energy, magnetic moment and electronic structure of the clusters are analyzed for the entire range of composition. Composition dependent structural transition is observed in the five atom clusters, while octahedral geometry prevailed in clusters with six atoms. Both the clusters show increment in binding energy with the increase in number of heterogeneous bonds. Analysis based on the chemical order parameter indicates that clusters favor mixing rather than segregation. The clusters exhibit ferromagnetic ordering and the inter-dependence of optimal cluster geometry to the magnetic moments and electronic structure is observed.

  14. Ab initio nuclear structure - the large sparse matrix eigenvalue problem

    Energy Technology Data Exchange (ETDEWEB)

    Vary, James P; Maris, Pieter [Department of Physics, Iowa State University, Ames, IA, 50011 (United States); Ng, Esmond; Yang, Chao [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sosonkina, Masha, E-mail: jvary@iastate.ed [Scalable Computing Laboratory, Ames Laboratory, Iowa State University, Ames, IA, 50011 (United States)

    2009-07-01

    The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several ab initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab initio no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds 10{sup 10} and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving this large sparse matrix eigenvalue problem. We also outline the challenges that lie ahead for achieving further breakthroughs in fundamental nuclear theory using these ab initio approaches.

  15. Ab initio nuclear structure - the large sparse matrix eigenvalue problem

    International Nuclear Information System (INIS)

    Vary, James P; Maris, Pieter; Ng, Esmond; Yang, Chao; Sosonkina, Masha

    2009-01-01

    The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several ab initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab initio no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds 10 10 and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving this large sparse matrix eigenvalue problem. We also outline the challenges that lie ahead for achieving further breakthroughs in fundamental nuclear theory using these ab initio approaches.

  16. Structural, magnetic and electronic properties of FexCoyIrz (x + y + z = 5, 6) clusters: an ab initio study

    KAUST Repository

    Devi, Assa Aravindh Sasikala

    2014-01-01

    Investigations on freestanding binary and ternary clusters of Fe (x) Co (y) Ir (z) (x + y + z = 5, 6) are carried out using ab initio density functional theory techniques. The geometry, chemical order, binding energy, magnetic moment and electronic

  17. Electronic states and nature of bonding of the molecule PdGe by all electron ab initio HF–CI calculations and mass spectrometric equilibrium experiments

    DEFF Research Database (Denmark)

    Shim, Irene; Kingcade, Joseph E. , Jr.; Gingerich, Karl A.

    1986-01-01

    In the present work we present all-electron ab initio Hartree–Fock (HF) and configuration interaction (CI) calculations of six electronic states of the PdGe molecule. The molecule is predicted to have a 3Pi ground state and two low-lying excited states 3Sigma− and 1Sigma+. The electronic structure...

  18. Supplementary Material for Finding the Stable Structures of N1-xWX with an Ab-initio High-Throughput Approach

    Science.gov (United States)

    2015-05-08

    Supplementary material for “Finding the stable structures of N1−xWX with an ab - initio high-throughput approach” Michael J. Mehl∗ Center for...AND SUBTITLE Supplementary Material for ’Finding the Stable Structures of N1-xWX with an ab - initio High-throughput Approach’ 5a. CONTRACT NUMBER 5b...and J. Hafner, Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B 48, 13115–13118 (1993). 2 G. Kresse and J. Hafner, Ab initio

  19. Augmented wave ab initio EFG calculations: some methodological warnings

    International Nuclear Information System (INIS)

    Errico, Leonardo A.; Renteria, Mario; Petrilli, Helena M.

    2007-01-01

    We discuss some accuracy aspects inherent to ab initio electronic structure calculations in the understanding of nuclear quadrupole interactions. We use the projector augmented wave method to study the electric-field gradient (EFG) at both Sn and O sites in the prototype cases SnO and SnO 2 . The term ab initio is used in the standard context of the also called first principles methods in the framework of the Density Functional Theory. As the main contributions of EFG calculations to problems in condensed matter physics are related to structural characterizations on the atomic scale, we discuss the 'state of the art' on theoretical EFG calculations and make a brief critical review on the subject, calling attention to some fundamental theoretical aspects

  20. Augmented wave ab initio EFG calculations: some methodological warnings

    Energy Technology Data Exchange (ETDEWEB)

    Errico, Leonardo A. [Departamento de Fisica-IFLP (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC67 (1900) La Plata (Argentina); Renteria, Mario [Departamento de Fisica-IFLP (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC67 (1900) La Plata (Argentina); Petrilli, Helena M. [Instituto de Fisica-DFMT, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil)]. E-mail: hmpetril@macbeth.if.usp.br

    2007-02-01

    We discuss some accuracy aspects inherent to ab initio electronic structure calculations in the understanding of nuclear quadrupole interactions. We use the projector augmented wave method to study the electric-field gradient (EFG) at both Sn and O sites in the prototype cases SnO and SnO{sub 2}. The term ab initio is used in the standard context of the also called first principles methods in the framework of the Density Functional Theory. As the main contributions of EFG calculations to problems in condensed matter physics are related to structural characterizations on the atomic scale, we discuss the 'state of the art' on theoretical EFG calculations and make a brief critical review on the subject, calling attention to some fundamental theoretical aspects.

  1. Ab initio study of isomerism in molecular Li2AB+ ions with 12 and 14 valence electrons

    International Nuclear Information System (INIS)

    Charkin, O.P.; Klimenko, N.M.; Mak-Ki, M.L.; Shlojer, P.R.

    1997-01-01

    Ab initio calculations of potential energy surfaces (PES) of molecular ions Li 2 AB + with 12 and 14 valence electrons have been made in the framework of approximations MP2/6-31G*//HF/6-31G*+ZPE(HF/6-31G*) and MP4SDTQ/6-31*//MP2/6-31G*+ZPE(MP2/6-31G*). The following most favourable structures have been found: a double-terminal linear for LiNO + (a triplet); a plane bicyclic one for Li 2 OF + , Li 2 SCl + , Li 2 NO + (a singlet) and Li 2 PS + (a singlet), where both cations are coordinated to A-B bond; rectangular (T-shaped) for Li 2 OCl + and SFLi + , as well as for LiNS + and POLi 2 + ions in singlet and triplet states; in the form of a half-opened butterfly for Li 2 PS + (a triplet) and Li 2 SCl +

  2. Ab initio and Gordon--Kim intermolecular potentials for two nitrogen molecules

    International Nuclear Information System (INIS)

    Ree, F.H.; Winter, N.W.

    1980-01-01

    Both ab initio MO--LCAO--SCF and the electron-gas (or Gordon--Kim) methods have been used to compute the intermolecular potential (Phi) of N 2 molecules for seven different N 2 --N 2 orientations. The ab initio calculations were carried out using a [4s3p] contracted Gaussian basis set with and without 3d polarization functions. The larger basis set provides adequate results for Phi>0.002 hartree or intermolecular separations less than 6.5--7 bohr. We use a convenient analytic expression to represent the ab initio data in terms of the intermolecular distance and three angles defining the orientations of the two N 2 molecules. The Gordon--Kim method with Rae's self-exchange correction yields Phi, which agrees reasonably well over a large repulsive range. However, a detailed comparison of the electron kinetic energy contributions shows a large difference between the ab initio and the Gordon--Kim calculations. Using the ab initio data we derive an atom--atom potential of the two N 2 molecules. Although this expression does not accurately fit the data at some orientations, its spherical average agrees with the corresponding average of the ab initio Phi remarkably well. The spherically averaged ab initio Phi is also compared with the corresponding quantities derived from experimental considerations. The approach of the ab initio Phi to the classical quadrupole--quadrupole interaction at large intermolecular separation is also discussed

  3. Ab initio studies of the electronic structure of the quaternary system LiBC4N4

    International Nuclear Information System (INIS)

    Matar, S.F.; Betranhandy, E.; Nakhl, M.

    2007-01-01

    Starting from experimental data on the synthesis of solid LiBC 4 N 4 , an ab initio study has been carried out within the DFT-LDA framework of its structure and completed by accounting for other potential cubic arrangements. The consideration of stabilization energies confirms the experimental phase as the most stable one but predicts some other potential arrangements. The system is found very compressible with a bulk modulus close to that of gypsum (B 0 = 35 GPa). The electronic structure characteristics are provided allowing to confirm an ionic behavior involving complex anionic species (Li + [B(China) 4 ] - ). The control of the crystal cell size by a stoichiometry modification, such as by a CN group substitution is also studied. The proposition of LiBX 4 and LiBS 4 N 4 stoichiometries leads to predict new materials

  4. Ab initio density functional theory investigation of structural and electronic properties of silicon carbide nanotube bundles

    Science.gov (United States)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2008-10-01

    By using ab initio density functional theory the structural and electronic properties of isolated and bundled (8,0) and (6,6) silicon carbide nanotubes (SiCNTs) are investigated. Our results show that for such small diameter nanotubes the inter-tube interaction causes a very small radial deformation, while band splitting and reduction of the semiconducting energy band gap are significant. We compared the equilibrium interaction energy and inter-tube separation distance of (8,0) SiCNT bundle with (10,0) carbon nanotube (CNT) bundle where they have the same radius. We found that there is a larger inter-tube separation and weaker inter-tube interaction in the (8,0) SiCNT bundle with respect to (10,0) CNT bundle, although they have the same radius.

  5. Ab initio density functional theory investigation of structural and electronic properties of silicon carbide nanotube bundles

    International Nuclear Information System (INIS)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2008-01-01

    By using ab initio density functional theory the structural and electronic properties of isolated and bundled (8,0) and (6,6) silicon carbide nanotubes (SiCNTs) are investigated. Our results show that for such small diameter nanotubes the inter-tube interaction causes a very small radial deformation, while band splitting and reduction of the semiconducting energy band gap are significant. We compared the equilibrium interaction energy and inter-tube separation distance of (8,0) SiCNT bundle with (10,0) carbon nanotube (CNT) bundle where they have the same radius. We found that there is a larger inter-tube separation and weaker inter-tube interaction in the (8,0) SiCNT bundle with respect to (10,0) CNT bundle, although they have the same radius

  6. Electronic Structure of Hydrogenated and Surface-Modified GaAs Nanocrystals: Ab Initio Calculations

    Directory of Open Access Journals (Sweden)

    Hamsa Naji Nasir

    2012-01-01

    Full Text Available Two methods are used to simulate electronic structure of gallium arsenide nanocrystals. The cluster full geometrical optimization procedure which is suitable for small nanocrystals and large unit cell that simulates specific parts of larger nanocrystals preferably core part as in the present work. Because of symmetry consideration, large unit cells can reach sizes that are beyond the capabilities of first method. The two methods use ab initio Hartree-Fock and density functional theory, respectively. The results show that both energy gap and lattice constant decrease in their value as the nanocrystals grow in size. The inclusion of surface part in the first method makes valence band width wider than in large unit cell method that simulates the core part only. This is attributed to the broken symmetry and surface passivating atoms that split surface degenerate states and adds new levels inside and around the valence band. Bond length and tetrahedral angle result from full geometrical optimization indicate good convergence to the ideal zincblende structure at the centre of hydrogenated nanocrystal. This convergence supports large unit cell methodology. Existence of oxygen atoms at nanocrystal surface melts down density of states and reduces energy gap.

  7. Ab initio molecular crystal structures, spectra, and phase diagrams.

    Science.gov (United States)

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling

  8. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector

    Energy Technology Data Exchange (ETDEWEB)

    Genderen, E. van; Clabbers, M. T. B. [Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands); Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, CH-4058 Basel (Switzerland); Das, P. P. [Nanomegas SPRL, Boulevard Edmond Machtens 79, B 1080, Brussels (Belgium); Stewart, A. [Department of Physics and Energy, Materials and Surface Science Institute (MSSI), University of Limerick, Limerick (Ireland); Nederlof, I. [Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands); Amsterdam Scientific Instruments, Postbus 41882, 1009 DB Amsterdam (Netherlands); Barentsen, K. C. [Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands); Portillo, Q. [Nanomegas SPRL, Boulevard Edmond Machtens 79, B 1080, Brussels (Belgium); Centres Científics i Tecnològics de la Universitat de Barcelona, University of Barcelona, Carrer de Lluís Solé i Sabaris, 1-3, Barcelona (Spain); Pannu, N. S. [Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands); Nicolopoulos, S. [Nanomegas SPRL, Boulevard Edmond Machtens 79, B 1080, Brussels (Belgium); Gruene, T., E-mail: tim.gruene@psi.ch [Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), 5232 Villigen (Switzerland); Abrahams, J. P., E-mail: tim.gruene@psi.ch [Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands); Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, CH-4058 Basel (Switzerland); Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), 5232 Villigen (Switzerland)

    2016-02-05

    A specialized quantum area detector for electron diffraction studies makes it possible to solve the structure of small organic compound nanocrystals in non-cryo conditions by direct methods. Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e{sup −} Å{sup −2} s{sup −1}) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014)

  9. Ab-initio calculation of electronic structure and optical properties of AB-stacked bilayer α-graphyne

    Science.gov (United States)

    Behzad, Somayeh

    2016-09-01

    Monolayer α-graphyne is a new two-dimensional carbon allotrope with many special features. In this work the electronic properties of AA- and AB-stacked bilayers of this material and then the optical properties are studied, using first principle plane wave method. The electronic spectrum has two Dirac cones for AA stacked bilayer α-graphyne. For AB-stacked bilayer, the interlayer interaction changes the linear bands into parabolic bands. The optical spectra of the most stable AB-stacked bilayer closely resemble to that of the monolayer, except for small shifts of peak positions and increasing of their intensity. For AB-stacked bilayer, a pronounced peak has been found at low energies under the perpendicular polarization. This peak can be clearly ascribed to the transitions at the Dirac point as a result of the small degeneracy lift in the band structure.

  10. Ab initio studies of the electronic structure of Be93, Be105, Be111, and Be123 clusters

    International Nuclear Information System (INIS)

    Ross, R.B.; Kern, C.W.; Pitzer, R.M.; Ermler, W.C.

    1995-01-01

    Ab initio self-consistent-field calculations are reported for electronic states of beryllium clusters comprised of 93, 105, 111, and 123 atoms. The respective clusters correspond to coordination shells 12-15 of a central Be atom with internuclear separations derived from the lattice constants of the bulk metal. Ab initio effective core potentials have been employed to replace the 1s electrons, thereby reducing the complexity of the calculations. In addition, use of the full D 3h point group symmetry or the clusters results in a substantial reduction of the numbers of two-electron integrals that must be computed and processed. Binding energies, orbital energies, electric field gradient, nuclear-electrostatic potential, diamagnetic shielding constant, second moments, and Mulliken populations are calculated for selected electronic states. Calculated binding energies when compared among the different clusters as well as to smaller and larger fragments from earlier studies provide evidence for the onset of convergence to the Hartree-Fock limit of the bulk. Lowest-state ionization potentials are consistently above and agree to within 14% of the experimental workfunction. The net charge on the central beryllium atom decreases toward zero. The variability of observed bulklike behavior is not sharp and depends on the quantity of interest. 24 refs., 8 figs., 13 tabs

  11. Structures and Electronic Properties of Cu{sub 3}O{sub n} (n =1-6) Clusters using ab initio Monte Carlo Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Gyun-Tack [Chungbuk National University, Cheongju (Korea, Republic of)

    2016-05-15

    We studied the structures and electronic properties of copper oxide clusters, Cu{sub 3}O{sub n} (n =1-6), using ab initio Monte Carlo simulations and density functional theory calculations. All lowest energy structures of neutral and charged Cu{sub 3}O{sub n} clusters with n =1-6 are optimized with the B3LYP functional and LANL2DZ basis set. We found that the lowest energy structures of neutral and charged Cu{sub 3}O{sub n} (n =1-6) clusters are planar or near-planar. Selected electronic properties including atomization energies, ionization energies, electron affinities, second difference in energies, HOMO - LUMO gaps, and Bader charges are calculated and examined for each n. We concluded that the Cu{sub 3}O{sub 3} cluster is the first ring structure and the most stable structure.

  12. Ab Initio Analysis of Auger-Assisted Electron Transfer.

    Science.gov (United States)

    Hyeon-Deuk, Kim; Kim, Joonghan; Prezhdo, Oleg V

    2015-01-15

    Quantum confinement in nanoscale materials allows Auger-type electron-hole energy exchange. We show by direct time-domain atomistic simulation and analytic theory that Auger processes give rise to a new mechanism of charge transfer (CT) on the nanoscale. Auger-assisted CT eliminates the renown Marcus inverted regime, rationalizing recent experiments on CT from quantum dots to molecular adsorbates. The ab initio simulation reveals a complex interplay of the electron-hole and charge-phonon channels of energy exchange, demonstrating a variety of CT scenarios. The developed Marcus rate theory for Auger-assisted CT describes, without adjustable parameters, the experimental plateau of the CT rate in the region of large donor-acceptor energy gap. The analytic theory and atomistic insights apply broadly to charge and energy transfer in nanoscale systems.

  13. Structure impact on the thermal and electronic properties of bismuth telluride by ab-initio and molecular dynamics calculations

    International Nuclear Information System (INIS)

    Termentzidis, K; Pokropivny, A; Xiong, S-Y; Chumakov, Y; Volz, S; Woda, M; Cortona, P

    2012-01-01

    We use molecular dynamics and ab-initio methods to predict the thermal and electronic properties of new materials with high figures of merit. The simulated systems are bulk bismuth tellurides with antisite and vacancy defects. Optimizations of the materials under investigation are performed by the SIESTA code for subsequent calculations of force constants, electronic properties, and Seebeck coefficients. The prediction of the thermal conductivity is made by Non-Equilibrium Molecular Dynamics (NEMD) using the LAMMPS code. The thermal conductivity of bulk bismuth telluride with different stoichiometry and with a number of substitution defects is calculated. We have found that the thermal conductivity can be decreased by 60% by introducing vacancy defects. The calculated thermal conductivities for the different structures are compared with the available experimental and theoretical results.

  14. QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

    Science.gov (United States)

    Kim, Jeongnim; Baczewski, Andrew D.; Beaudet, Todd D.; Benali, Anouar; Chandler Bennett, M.; Berrill, Mark A.; Blunt, Nick S.; Josué Landinez Borda, Edgar; Casula, Michele; Ceperley, David M.; Chiesa, Simone; Clark, Bryan K.; Clay, Raymond C., III; Delaney, Kris T.; Dewing, Mark; Esler, Kenneth P.; Hao, Hongxia; Heinonen, Olle; Kent, Paul R. C.; Krogel, Jaron T.; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M. Graham; Luo, Ye; Malone, Fionn D.; Martin, Richard M.; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A.; Mitas, Lubos; Morales, Miguel A.; Neuscamman, Eric; Parker, William D.; Pineda Flores, Sergio D.; Romero, Nichols A.; Rubenstein, Brenda M.; Shea, Jacqueline A. R.; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F.; Townsend, Joshua P.; Tubman, Norm M.; Van Der Goetz, Brett; Vincent, Jordan E.; ChangMo Yang, D.; Yang, Yubo; Zhang, Shuai; Zhao, Luning

    2018-05-01

    QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater–Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.

  15. Unraveling the structure of the h-BN/Rh(111) nanomesh with ab initio calculations

    International Nuclear Information System (INIS)

    Laskowski, R; Blaha, P

    2008-01-01

    The properties of a single layer of h-BN on top of a Rh(111) surface are discussed in terms of an ab initio generated force field approach as well as by direct ab initio density-functional theory (DFT) calculations. A single-layer model for the h-BN/Rh(111) nanomesh, in contrast to a previously considered (incomplete) double-layer model of h-BN, can explain the experimental data. The main focus of this work is to compare a force field approach described earlier in (Laskowski et al 2007 Phys. Rev. Lett. 98 106802) with direct ab initio calculations. The calculated geometry of the h-BN layer is very similar to the structure predicted by the force field approach. The ab initio calculated density of states projected on N-p x,y of BN corresponding to 'low' and 'high' regions with respect to the Rh surface shows a 1 eV splitting and thus explains the observed σ-band splitting. Moreover, we find good agreement between calculated and experimental scanning tunneling microscope (STM) images of this system

  16. Virtual synthesis of crystals using ab initio MD: Case study on LiFePO4

    Science.gov (United States)

    Mishra, S. B.; Nanda, B. R. K.

    2017-05-01

    Molecular dynamics simulation technique is fairly successful in studying the structural aspects and dynamics of fluids. Here we study the ability of ab initio molecular dynamics (ab initio MD) to carry out virtual experiments to synthesize new crystalline materials and to predict their structures. For this purpose the olivine phosphate LiFePO4 (LFPO) is used as an example. As transition metal oxides in general are stabilized with layered geometry, we carried out ab initio MD simulations over a hypothetical layered configuration consisting of alternate LiPO2 and FeO2 layers. With intermittent steps of electron minimization, the resulted equilibrium lattice consist of PO4 tetrahedra and distorted Fe-O complexes similar to the one observed in the experimental lattice.

  17. Electronic structure of Ge-2 and Ge-2 and thermodynamic properties of Ge-2 from all electron ab initio investigations and Knudsen effusion mass spectroscopic measurements

    DEFF Research Database (Denmark)

    Shim, Irene; Baba, M. Sai; Gingerich, K.A.

    2002-01-01

    The low-lying states of the molecule Ge-2 and of the ion Ge-2(-) have been investigated by all electron ab initio multiconfiguration self-consistent field (CASSCF) and multi-reference configuration interaction (MRCI) calculations. The relativistic corrections for the Darwin contact term and for t......The low-lying states of the molecule Ge-2 and of the ion Ge-2(-) have been investigated by all electron ab initio multiconfiguration self-consistent field (CASSCF) and multi-reference configuration interaction (MRCI) calculations. The relativistic corrections for the Darwin contact term...... excited states are presented. Thermal functions based on the theoretically determined molecular parameters were used to derive the thermodynamic properties of the Ge-2 molecule from new mass spectrometric equilibrium data. The literature value for the dissociation energy of Ge-2 has been re...

  18. Static structure, microscopic dynamics and electronic properties of the liquid Bi–Li alloy. An ab initio molecular dynamics study

    International Nuclear Information System (INIS)

    Souto, J; Alemany, M M G; Gallego, L J; González, L E; González, D J

    2013-01-01

    We report an ab initio molecular dynamics study of the static, dynamic and electronic properties of the liquid Bi x Li 1−x alloy, which is a complex binary system with a marked tendency to heterocoordination. The calculated total static structure factors are in good agreement with the available experimental data. The partial dynamic structure factors exhibit side peaks indicative of propagating density fluctuations, and for some concentrations we have found a density fluctuation mode with phase velocity greater than the hydrodynamic sound velocity. We have also evaluated other dynamical properties such as the diffusion coefficients, the shear viscosity and the adiabatic sound velocity. The electronic density of states show that the liquid Bi x Li 1−x alloy has a metallic character, although with strong deviations from the free-electron parabolic curve. The results reported improve the understanding of binary liquid alloys with both fast and slow propagating collective modes. (paper)

  19. Electronic and thermoelectric properties of InN studied using ab initio density functional theory and Boltzmann transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Borges, P. D., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu; Scolfaro, L., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu [Department of Physics, Texas State University, San Marcos, Texas 78666 (United States)

    2014-12-14

    The thermoelectric properties of indium nitride in the most stable wurtzite phase (w-InN) as a function of electron and hole concentrations and temperature were studied by solving the semiclassical Boltzmann transport equations in conjunction with ab initio electronic structure calculations, within Density Functional Theory. Based on maximally localized Wannier function basis set and the ab initio band energies, results for the Seebeck coefficient are presented and compared with available experimental data for n-type as well as p-type systems. Also, theoretical results for electric conductivity and power factor are presented. Most cases showed good agreement between the calculated properties and experimental data for w-InN unintentionally and p-type doped with magnesium. Our predictions for temperature and concentration dependences of electrical conductivity and power factor revealed a promising use of InN for intermediate and high temperature thermoelectric applications. The rigid band approach and constant scattering time approximation were utilized in the calculations.

  20. The Properties of Some Simple Covalent Hydrides: An Ab Initio ...

    African Journals Online (AJOL)

    Some properties of the monomeric binary hydrides of the elements of the first two rows of the periodic table have been determined using ab initio molecular orbital theory. The properties in question are the energetic, structural, electronic, topological and vibrational characteristics. In general, a gradual convergence towards ...

  1. Ab initio study of isomerism of Li2AB2 molecules and Li2AB2+ ions with 16 valent electrons

    International Nuclear Information System (INIS)

    Charkin, O.P.; Klimenko, N.M.; MakKi, M.L.

    2000-01-01

    In the framework of MP2(6-31*//HF/6-31G + ZPE(HF/6-31G*) and MP4SDTQ/6-31G*//MP2/6-31G* + ZPE(MP2/6-31G*) approximations ab initio calculations of surfaces of potential energy of molecules of lithium salts of Li 2 AB 2 (Li 2 BeO 2 , L 2 MgO 2 , Li 2 BeS 2 , Li 2 MgS 2 , Li 2 CN 2 , Li 2 SiN 2 , Li 2 CP 2 ) type and ions of Li 2 AB 2 + (Li 2 BO 2 + , Li 2 AlO 2 + , Li 2 BS 2 + , Li 2 AlS 2 + , Li 2 N 3 + , Li 2 PN 2 + , Li 2 P 3 + ) type with 16 valent electrons are done. For oxide and nitride systems global minimum corresponds to symmetric linear structure D ∞h and for their sulfide and phosphorus analogues curved plane or unplane (C 2 ) structure with bond angle φ(LBA)=90-110 Deg are preferable. Equilibrium geometric parameters, relative energies and energies of isomer decomposition, frequencies and IR-intensities of normal vibrations are determined [ru

  2. Ab initio investigation of barium-scandium-oxygen coatings on tungsten for electron emitting cathodes

    Science.gov (United States)

    Vlahos, Vasilios; Booske, John H.; Morgan, Dane

    2010-02-01

    Microwave, x-ray, and radio-frequency radiation sources require a cathode emitting electrons into vacuum. Thermionic B-type dispenser cathodes consist of BaxOz coatings on tungsten (W), where the surface coatings lower the W work function and enhance electron emission. The new and promising class of scandate cathodes modifies the B-type surface through inclusion of Sc, and their superior emissive properties are also believed to stem from the formation of a low work function surface alloy. In order to better understand these cathode systems, density-functional theory (DFT)-based ab initio modeling is used to explore the stability and work function of BaxScyOz on W(001) monolayer-type surface structures. It is demonstrated how surface depolarization effects can be calculated easily using ab initio calculations and fitted to an analytic depolarization equation. This approach enables the rapid extraction of the complete depolarization curve (work function versus coverage relation) from relatively few DFT calculations, useful for understanding and characterizing the emitting properties of novel cathode materials. It is generally believed that the B-type cathode has some concentration of Ba-O dimers on the W surface, although their structure is not known. Calculations suggest that tilted Ba-O dimers are the stable dimer surface configuration and can explain the observed work function reduction corresponding to various dimer coverages. Tilted Ba-O dimers represent a new surface coating structure not previously proposed for the activated B-type cathode. The thermodynamically stable phase of Ba and O on the W surface was identified to be the Ba0.25O configuration, possessing a significantly lower Φ value than any of the Ba-O dimer configurations investigated. The identification of a more stable Ba0.25O phase implies that if Ba-O dimers cover the surface of emitting B-type cathodes, then a nonequilibrium steady state must dominate the emitting surface. The identification of

  3. Ab Initio Electronic Structure Calculation of [4Fe-3S] Cluster of Hydrogenase as Dihydrogen Dissociation/Production Catalyst

    Science.gov (United States)

    Kim, Jaehyun; Kang, Jiyoung; Nishigami, Hiroshi; Kino, Hiori; Tateno, Masaru

    2018-03-01

    Hydrogenases catalyze both the dissociation and production of dihydrogen (H2). Most hydrogenases are inactivated rapidly and reactivated slowly (in vitro), in the presence of dioxygen (O2) and H2, respectively. However, membrane-bound [NiFe] hydrogenases (MBHs) sustain their activity even together with O2, which is termed "O2 tolerance". In previous experimental analyses, an MBH was shown to include a hydroxyl ion (OH-) bound to an Fe of the super-oxidized [4Fe-3S]5+ cluster in the proximity of the [NiFe] catalytic cluster. In this study, the functional role of the OH- in the O2 tolerance was investigated by ab initio electronic structure calculation of the [4Fe-3S] proximal cluster. The analysis revealed that the OH- significantly altered the electronic structure, thereby inducing the delocalization of the lowest unoccupied molecular orbital (LUMO) toward the [NiFe] catalytic cluster, which may intermediate the electron transfer between the catalytic and proximal clusters. This can promote the O2-tolerant catalytic cycle in the hydrogenase reaction.

  4. Ab initio random structure search for 13-atom clusters of fcc elements

    International Nuclear Information System (INIS)

    Chou, J P; Hsing, C R; Wei, C M; Cheng, C; Chang, C M

    2013-01-01

    The 13-atom metal clusters of fcc elements (Al, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au) were studied by density functional theory calculations. The global minima were searched for by the ab initio random structure searching method. In addition to some new lowest-energy structures for Pd 13 and Au 13 , we found that the effective coordination numbers of the lowest-energy clusters would increase with the ratio of the dimer-to-bulk bond length. This correlation, together with the electronic structures of the lowest-energy clusters, divides the 13-atom clusters of these fcc elements into two groups (except for Au 13 , which prefers a two-dimensional structure due to the relativistic effect). Compact-like clusters that are composed exclusively of triangular motifs are preferred for elements without d-electrons (Al) or with (nearly) filled d-band electrons (Ni, Pd, Cu, Ag). Non-compact clusters composed mainly of square motifs connected by some triangular motifs (Rh, Ir, Pt) are favored for elements with unfilled d-band electrons. (paper)

  5. Ab initio density functional theory investigation of electronic properties of semiconducting single-walled carbon nanotube bundles

    Science.gov (United States)

    Moradian, Rostam; Behzad, Somayeh; Azadi, Sam

    2008-09-01

    By using ab initio density functional theory we investigated the structural and electronic properties of semiconducting (7, 0), (8, 0) and (10, 0) carbon nanotube bundles. The energetic and electronic evolutions of nanotubes in the bundling process are also studied. The effects of inter-tube coupling on the electronic dispersions of semiconducting carbon nanotube bundles are demonstrated. Our results show that the inter-tube coupling decreases the energy gap in semiconducting nanotubes. We found that bundles of (7, 0) and (8, 0) carbon nanotubes have metallic feature, while (10, 0) bundle is a semiconductor with an energy gap of 0.22 eV. To clarify our results the band structures of isolated and bundled nanotubes are compared.

  6. Ab initio determination of effective electron-phonon coupling factor in copper

    Science.gov (United States)

    Ji, Pengfei; Zhang, Yuwen

    2016-04-01

    The electron temperature Te dependent electron density of states g (ε), Fermi-Dirac distribution f (ε), and electron-phonon spectral function α2 F (Ω) are computed as prerequisites before achieving effective electron-phonon coupling factor Ge-ph. The obtained Ge-ph is implemented into a molecular dynamics (MD) and two-temperature model (TTM) coupled simulation of femtosecond laser heating. By monitoring temperature evolutions of electron and lattice subsystems, the result utilizing Ge-ph from ab initio calculation shows a faster decrease of Te and increase of Tl than those using Ge-ph from phenomenological treatment. The approach of calculating Ge-ph and its implementation into MD-TTM simulation is applicable to other metals.

  7. Ab initio electronic band structure calculation of InP in the wurtzite phase

    Science.gov (United States)

    Dacal, Luis C. O.; Cantarero, Andrés

    2011-05-01

    We present ab initio calculations of the InP band structure in the wurtzite phase and compare it with that of the zincblende phase. In both calculations, we use the full potential linearized augmented plane wave method as implemented in the WIEN2k code and the modified Becke-Johnson exchange potential, which provides an improved value of the bandgap. The structural optimization of the wurtizte InP gives a=0.4150 nm, c=0.6912 nm, and an internal parameter u=0.371, showing the existence of a spontaneous polarization along the growth axis. As compared to the ideal wurtzite structure (that with the lattice parameter derived from the zincblende structure calculations), the actual wurtzite structure is compressed (-1.3%) in plane and expanded (0.7%) along the c-direction. The value of the calculated band gaps agrees well with recent optical experiments. The calculations are also consistent with the optical transitions found using polarized light.

  8. A combined photoelectron spectroscopy and relativistic ab initio studies of the electronic structures of UFO and UFO-

    Science.gov (United States)

    Roy, Soumendra K.; Jian, Tian; Lopez, Gary V.; Li, Wei-Li; Su, Jing; Bross, David H.; Peterson, Kirk A.; Wang, Lai-Sheng; Li, Jun

    2016-02-01

    The observation of the gaseous UFO- anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO- is linear with an O-U-F structure and a 3H4 spectral term derived from a U 7sσ25fφ15fδ1 electron configuration, whereas the ground state of neutral UFO has a 4H7/2 spectral term with a U 7sσ15fφ15fδ1 electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.

  9. A combined photoelectron spectroscopy and relativistic ab initio studies of the electronic structures of UFO and UFO(-).

    Science.gov (United States)

    Roy, Soumendra K; Jian, Tian; Lopez, Gary V; Li, Wei-Li; Su, Jing; Bross, David H; Peterson, Kirk A; Wang, Lai-Sheng; Li, Jun

    2016-02-28

    The observation of the gaseous UFO(-) anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO(-) is linear with an O-U-F structure and a (3)H4 spectral term derived from a U 7sσ(2)5fφ(1)5fδ(1) electron configuration, whereas the ground state of neutral UFO has a (4)H(7/2) spectral term with a U 7sσ(1)5fφ(1)5fδ(1) electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.

  10. Ab initio investigations of the electronic structure and chemical bonding of Li2ZrN2

    International Nuclear Information System (INIS)

    Matar, S.F.; Pöttgen, R.; Al Alam, A.F.; Ouaini, N.

    2012-01-01

    The electronic structure of the ternary nitride Li 2 ZrN 2 is examined from ab initio with DFT computations for an assessment of the properties of chemical bonding. The compound is found insulating with 1.8 eV band gap; it becomes metallic and less ionic upon removal of one equivalent of Li. The chemical interaction is found mainly between Zr and N on one hand and Li and N on the other hand. While all pair interactions are bonding, antibonding N–N interactions are found dominant at the top of the valence band of Li 2 ZrN 2 and they become less intense upon removal of Li. From energy differences the partial delithiation leading to Li 2−x ZrN 2 (x=∼1) is favored. - Graphical abstract: Trigonal structure of Li 2 ZrN 2 showing the Zr–N–Li layers along the c-axis. Highlights: ► Li 2 ZrN 2 calculated insulating with a 1.8 eV gap in agreement with its light green color. ► Lithium de-intercalation is energetically favored for one out of two Li equivalents. ► Li plays little role in the change of the structure, ensured by Zr and N binding. ► Similar changes in the electronic structure as for various intercalated phases of ZrN.

  11. Ab initio, mean field theory and series expansions calculations study of electronic and magnetic properties of antiferromagnetic MnSe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, BP. 63, 46000 Safi (Morocco); LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Mounkachi, O.; El Moussaoui, H. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2014-06-01

    Self-consistent ab initio calculations, based on DFT (Density Functional Theory) approach and using FLAPW (Full potential Linear Augmented Plane Wave) method, are performed to investigate both electronic and magnetic properties of the MnSe lattice. Polarized spin and spin–orbit coupling are included in calculations within the framework of the antiferromagnetic state between two adjacent Mn lattices. Magnetic moments considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters. The zero-field high temperature static susceptibility series of the spin −4.28 nearest-neighbor Ising model on face centered cubic (fcc) and lattices is thoroughly analyzed by means of a power series coherent anomaly method (CAM). The exchange interaction between the magnetic atoms and the Néel temperature are deduced using the mean filed and HTSEs theories. - Highlights: • Ab initio calculations are used to investigate both electronic and magnetic properties of the MnSe alloys. • Obtained data from ab initio calculations are used as input for the HTSEs. • The Néel temperature is obtained for MnSe alloys.

  12. Molecular structure and interactions of nucleic acid components in nanoparticles: ab initio calculations

    International Nuclear Information System (INIS)

    Rubin, Yu.V.; Belous, L.F.

    2012-01-01

    Self-associates of nucleic acid components (stacking trimers and tetramers of the base pairs of nucleic acids) and short fragments of nucleic acids are nanoparticles (linear sizes of these particles are more than 10 A). Modern quantum-mechanical methods and softwares allow one to perform ab initio calculations of the systems consisting of 150-200 atoms with enough large basis sets (for example, 6-31G * ). The aim of this work is to reveal the peculiarities of molecular and electronic structures, as well as the energy features of nanoparticles of nucleic acid components. We had carried out ab initio calculations of the molecular structure and interactions in the stacking dimer, trimer, and tetramer of nucleic base pairs and in the stacking (TpG)(ApC) dimer and (TpGpC) (ApCpG) trimer of nucleotides, which are small DNA fragments. The performed calculations of molecular structures of dimers and trimers of nucleotide pairs showed that the interplanar distance in the structures studied is equal to 3.2 A on average, and the helical angle in a trimer is approximately equal to 30 o : The distance between phosphor atoms in neighboring chains is 13.1 A. For dimers and trimers under study, we calculated the horizontal interaction energies. The analysis of interplanar distances and angles between nucleic bases and their pairs in the calculated short oligomers of nucleic acid base pairs (stacking dimer, trimer, and tetramer) has been carried out. Studies of interactions in the calculated short oligomers showed a considerable role of the cross interaction in the stabilization of the structures. The contribution of cross interactions to the horizontal interactions grows with the length of an oligomer. Nanoparticle components get electric charges in nanoparticles. Longwave low-intensity bands can appear in the electron spectra of nanoparticles.

  13. Ab initio calculation of tensile strength in iron

    Czech Academy of Sciences Publication Activity Database

    Friák, Martin; Šob, Mojmír; Vitek, V.

    2003-01-01

    Roč. 83, 31-34 (2003), s. 3529-3537 ISSN 1478-6435. [Multiscale Materials Modelling: Working Theory for Industry /1./. London, 17.06.2002-20.06.2002] R&D Projects: GA AV ČR IAA1041302; GA ČR GA202/03/1351; GA MŠk OC 523.90 Institutional research plan: CEZ:AV0Z2041904 Keywords : ab initio calculations * electronic structure * theoretical tensile strength Subject RIV: BM - Solid Matter Physics ; Magnetism

  14. Efficient Ab-Initio Electron Transport Calculations for Heterostructures by the Nonequilibrium Green’s Function Method

    Directory of Open Access Journals (Sweden)

    Hirokazu Takaki

    2014-01-01

    Full Text Available We present an efficient computation technique for ab-initio electron transport calculations based on density functional theory and the nonequilibrium Green’s function formalism for application to heterostructures with two-dimensional (2D interfaces. The computational load for constructing the Green’s functions, which depends not only on the energy but also on the 2D Bloch wave vector along the interfaces and is thus catastrophically heavy, is circumvented by parallel computational techniques with the message passing interface, which divides the calculations of the Green’s functions with respect to energy and wave vectors. To demonstrate the computational efficiency of the present code, we perform ab-initio electron transport calculations of Al(100-Si(100-Al(100 heterostructures, one of the most typical metal-semiconductor-metal systems, and show their transmission spectra, density of states (DOSs, and dependence on the thickness of the Si layers.

  15. Ab initio simulations and neutron scattering studies of structure and dynamics in PdH

    International Nuclear Information System (INIS)

    Totolici, I.E.

    2001-07-01

    The work presented in this PhD thesis is concerned with the interpretation of the neutron scattering measurements from the palladium hydrogen system by means of ab initio electronic structure calculations. The motivation of performing such calculations was due to recent neutron scattering studies on this system that showed a strong directional dependence to the dynamical structure factor together with a complex dependence on energy. Here we attempt to describe the origin of these features by ab initio simulations of the dynamical structure factor. The method assumes an adiabatic separation of the motion of the proton and palladium atoms. The proton wave functions are calculated by a direct solution of the associated single-particle Schroedinger equation using a plane wave basis set method and a mapping of the adiabatic surface. The Fourier components of the adiabatic potential are obtained from LDA pseudopotential calculations. Using Fermi's golden rule within the Born approximation we were then able to calculate the dynamical structure factor, S(Q,ω), for exciting the proton from its ground state to various excited states as a function of the magnitude and direction of the scattering wave vector. The results are in agreement with the inelastic neutron scattering spectra and allow us to identify the origin of previous inexplicable features, in particular the strong directional dependence to the experimental data. The method was extended to investigate the expansion of the equilibrium lattice constant as a function of the H isotope when the zero-point energy of the proton/deuterium is explicitly taken into account in the relaxation process. The results we obtained predicted a bigger lattice constant for the hydride, as expected. Furthermore, other complex ab initio calculations were carried out in order to describe the origin of the large optic dispersion, seen previously in the coherent neutron scattering data. Our calculated dispersion proved to be in good

  16. Ab initio study of low-energy electron collisions with ethylene

    International Nuclear Information System (INIS)

    Trevisan, C.S.; Orel, A.E.; Rescigno, T.N.

    2003-01-01

    We present the results of an investigation of elastic electron scattering by ethylene C 2 H 4 with incident electron energies ranging from 0.5 to 20 eV, using the complex Kohn variational method. These fully ab initio calculations accurately reproduce experimental angular differential cross sections at energies below 3 eV. Low-energy electron scattering by ethylene is sensitive to the inclusion of electronic correlation and target-distortion effects. We therefore report results that describe the dynamic polarization of the target by the incident electron and involve calculations over a range of different geometries, including the effects of nuclear motion in the resonant 2 B 2g symmetry with an adiabatic nuclei treatment of the C-C stretch mode. The inclusion of dynamic polarization and the effect of nuclear motion are equally critical in obtaining accurate results. The calculated cross sections are compared with recent experimental measurements

  17. Perspective: Ab initio force field methods derived from quantum mechanics

    Science.gov (United States)

    Xu, Peng; Guidez, Emilie B.; Bertoni, Colleen; Gordon, Mark S.

    2018-03-01

    It is often desirable to accurately and efficiently model the behavior of large molecular systems in the condensed phase (thousands to tens of thousands of atoms) over long time scales (from nanoseconds to milliseconds). In these cases, ab initio methods are difficult due to the increasing computational cost with the number of electrons. A more computationally attractive alternative is to perform the simulations at the atomic level using a parameterized function to model the electronic energy. Many empirical force fields have been developed for this purpose. However, the functions that are used to model interatomic and intermolecular interactions contain many fitted parameters obtained from selected model systems, and such classical force fields cannot properly simulate important electronic effects. Furthermore, while such force fields are computationally affordable, they are not reliable when applied to systems that differ significantly from those used in their parameterization. They also cannot provide the information necessary to analyze the interactions that occur in the system, making the systematic improvement of the functional forms that are used difficult. Ab initio force field methods aim to combine the merits of both types of methods. The ideal ab initio force fields are built on first principles and require no fitted parameters. Ab initio force field methods surveyed in this perspective are based on fragmentation approaches and intermolecular perturbation theory. This perspective summarizes their theoretical foundation, key components in their formulation, and discusses key aspects of these methods such as accuracy and formal computational cost. The ab initio force fields considered here were developed for different targets, and this perspective also aims to provide a balanced presentation of their strengths and shortcomings. Finally, this perspective suggests some future directions for this actively developing area.

  18. The Pu–U–Am system: An ab initio informed CALPHAD thermodynamic study

    International Nuclear Information System (INIS)

    Perron, A.; Turchi, P.E.A.; Landa, A.; Söderlind, P.; Ravat, B.; Oudot, B.; Delaunay, F.

    2015-01-01

    Highlights: • The ab initio informed CALPHAD assessment of the Am–U system has been realized. • A strong tendency toward phase separation across the whole composition range is predicted. • The ab initio informed Pu–U–Am thermodynamic database has been developed. • The solubility of Am and U in the liquid phase is improved by adding Pu. • The δ-Pu (fcc) phase is strongly stabilized by Am, on the contrary to the bcc phase. - Abstract: Phase diagram and thermodynamic properties of the Am–U system, that are experimentally unknown, are calculated using the CALPHAD method with input from ab initio electronic-structure calculations for the fcc and bcc phases. A strong tendency toward phase separation across the whole composition range is predicted. In addition, ab initio informed Pu–U and Am–Pu thermodynamic assessments are combined to build a Pu–U–Am thermodynamic database. Regarding the Pu-rich corner of the ternary system, predictions indicate that Am acts as a powerful δ-Pu (fcc) stabilizer. In the U-rich corner, similar predictions are made but to a lesser extent. In both cases, the bcc phase is destabilized and the fcc phase is enhanced. Finally, results and methodology are discussed and compared with previous assessments and guidelines are provided for further experimental studies

  19. The Pu–U–Am system: An ab initio informed CALPHAD thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Perron, A., E-mail: perron1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Turchi, P.E.A.; Landa, A.; Söderlind, P. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Ravat, B.; Oudot, B.; Delaunay, F. [CEA-Centre de Valduc, 21120 Is sur Tille (France)

    2015-03-15

    Highlights: • The ab initio informed CALPHAD assessment of the Am–U system has been realized. • A strong tendency toward phase separation across the whole composition range is predicted. • The ab initio informed Pu–U–Am thermodynamic database has been developed. • The solubility of Am and U in the liquid phase is improved by adding Pu. • The δ-Pu (fcc) phase is strongly stabilized by Am, on the contrary to the bcc phase. - Abstract: Phase diagram and thermodynamic properties of the Am–U system, that are experimentally unknown, are calculated using the CALPHAD method with input from ab initio electronic-structure calculations for the fcc and bcc phases. A strong tendency toward phase separation across the whole composition range is predicted. In addition, ab initio informed Pu–U and Am–Pu thermodynamic assessments are combined to build a Pu–U–Am thermodynamic database. Regarding the Pu-rich corner of the ternary system, predictions indicate that Am acts as a powerful δ-Pu (fcc) stabilizer. In the U-rich corner, similar predictions are made but to a lesser extent. In both cases, the bcc phase is destabilized and the fcc phase is enhanced. Finally, results and methodology are discussed and compared with previous assessments and guidelines are provided for further experimental studies.

  20. Electronic structure and bonding in the RhC molecule by all-electron ab initio HF–Cl calculations and mass spectrometric measurements

    DEFF Research Database (Denmark)

    Shim, Irene; Gingerich, K. A.

    1984-01-01

    In the present study we present all-electron ab initio Hartree–Fock (HF) and configuration interaction (CI) calculations of the 2Sigma+ ground state as well as of 16 excited states of the RhC molecule. The calculated spectroscopic constants of the lowest lying states are in good agreement...... with the experimental data. The chemical bond in the electronic ground state is mainly due to interaction of the 4d orbitals of Rh with the 2s and 2p orbitals of C. The bond is a triple bond composed of two pi bonds and one sigma bond. The 5s electron of Rh hardly participates in the bond formation. It is located...

  1. Electronic structure and magnetism of titanium substituted Cd3P2: An ab-initio study

    Science.gov (United States)

    Jaiganesh, G.; Jaya, S. Mathi

    2018-05-01

    Using the ab-initio computations that are based on the density functional theory, we have investigated the magnetism and electronic properties of one and two Ti atom substituted Cd3P2 compound. The magnetic stability of the substituted compounds was obtained by analyzing the minimum total energies in nonmagnetic, ferromagnetic and antiferromagnetic phases. Our results indicated the formation of magnetic order in one and two Ti atom substituted Cd3P2 as well as metallic characteristics in these systems. A significant value of the magnetic moment of Ti atom is observed from our calculations. We further find that the neighboring Cd and P atoms too acquire a small magnetic moment.

  2. Ab initio study on the effect of structural relaxation on the electronic and optical properties of P-doped Si nanocrystals

    International Nuclear Information System (INIS)

    Pi, Xiaodong; Ni, Zhenyi; Yang, Deren; Delerue, Christophe

    2014-01-01

    In contrast to the conventional doping of bulk silicon (Si), the doping of Si nanocrystals (NCs) that are often smaller than 5 nm in diameter may lead to serious structural changes. Since the electronic and optical properties of Si NCs are intimately associated with their structures, it is critical to understand how doping impacts the structures of Si NCs. By means of ab initio calculation we now compare 1.4 nm phosphorus (P)-doped Si NCs without structural relaxation and those with structural relaxation. Structural changes induced by structural relaxation are manifested by the stretching and compressing of bonds and apparent variations in bond angles. With the increase of the concentration of P structural changes induced by structural relaxation become more serious. It is found that structural relaxation makes differences in the energy-level schemes of P-doped Si NCs. Structural relaxation also causes the binding energy of an electron in a P-doped Si NC to more significantly increase as the concentration of P increases. With the increase of the concentration of P structural relaxation leads to more pronounced changes in the optical absorption of P-doped Si NCs

  3. Tunneling of electrons via rotor–stator molecular interfaces: Combined ab initio and model study

    Energy Technology Data Exchange (ETDEWEB)

    Petreska, Irina, E-mail: irina.petreska@pmf.ukim.mk [Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, PO Box 162, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Ohanesjan, Vladimir [Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, PO Box 162, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Pejov, Ljupčo [Institute of Chemistry, Department of Physical Chemistry, Ss. Cyril and Methodius University, Arhimedova 5, P.O. Box 162, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Kocarev, Ljupčo [Macedonian Academy of Sciences and Arts, Krste Misirkov 2, PO Box 428, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of)

    2016-07-01

    Tunneling of electrons through rotor–stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons’ formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that conformation-dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previous work where we investigated the coherent transport via strongly coupled delocalized orbital by application of Non-equilibrium Green’s Function Formalism.

  4. Multiple time step integrators in ab initio molecular dynamics

    International Nuclear Information System (INIS)

    Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.

    2014-01-01

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy

  5. State-dependent electron delocalization dynamics at the solute-solvent interface: soft-x-ray absorption spectroscopy and ab initio calculations.

    Science.gov (United States)

    Bokarev, Sergey I; Dantz, Marcus; Suljoti, Edlira; Kühn, Oliver; Aziz, Emad F

    2013-08-23

    Nonradiative decay channels in the L-edge fluorescence yield spectra from transition-metal-aqueous solutions give rise to spectral distortions with respect to x-ray transmission spectra. Their origin is unraveled here using partial and inverse partial fluorescence yields on the microjet combined with multireference ab initio electronic structure calculations. Comparing Fe2+, Fe3+, and Co2+ systems we demonstrate and quantify unequivocally the state-dependent electron delocalization within the manifold of d orbitals as one origin of this observation.

  6. Structural, electronic and optical properties of cubic SrTiO{sub 3} and KTaO{sub 3}: Ab initio and GW calculations

    Energy Technology Data Exchange (ETDEWEB)

    Benrekia, A.R., E-mail: benrekia.ahmed@yahoo.com [Faculty of Science and Technology, University of Medea (Algeria); Benkhettou, N. [Laboratoire des Materiaux Magnetiques, Faculte des Sciences, Universite Djillali Liabes de Sidi Bel Abbes (Algeria); Nassour, A. [Laboratoire de Cristallographie, Resonance Magnetique et Modelisations (CRM2, UMR CNRS 7036) Institut Jean Barriol, Nancy Universite BP 239, Boulevard des Aiguillettes, 54506 Vandoeuvre-les-Nancy (France); Driz, M. [Applied Material Laboratory (AML), Electronics Department, University of Sidi bel Abbes (DZ 22000) (Algeria); Sahnoun, M. [Laboratoire de Physique Quantique de la Matiere et Modelisations Mathematique (LPQ3M), Faculty of Science and Technology,University of Mascara (Algeria); Lebegue, S. [Laboratoire de Cristallographie, Resonance Magnetique et Modelisations (CRM2, UMR CNRS 7036) Institut Jean Barriol, Nancy Universite BP 239, Boulevard des Aiguillettes, 54506 Vandoeuvre-les-Nancy (France)

    2012-07-01

    We present first-principles VASP calculations of the structural, electronic, vibrational, and optical properties of paraelectric SrTiO{sub 3} and KTaO{sub 3}. The ab initio calculations are performed in the framework of density functional theory with different exchange-correlation potentials. Our calculated lattice parameters, elastic constants, and vibrational frequencies are found to be in good agreement with the available experimental values. Then, the bandstructures are calculated with the GW approximation, and the corresponding band gap is used to obtain the optical properties of SrTiO{sub 3} and KTaO{sub 3}.

  7. Ab-initio study of the electronic structure of sup 1 sup 9 F implanted in GaAs and GaN crystals

    CERN Document Server

    Park, J H; Cho, H S; Shin, Y N

    1998-01-01

    We have studied the nuclear quadrupole interaction of a fluorine atom implanted in gallium arsenide and gallium nitride cluster models using the ab-initio Hartree-Fock theory. For the three possible fluorine sites in GaAs and GaN, we have determined the location of the implanted fluorine atom by using a self-consistent calculation, the electric field gradient at the implanted atom, and the electronic structure. Good agreement is found with experimental data wherever they are available. Predictions are made for the implanted fluorine site associated with the total energy and the electric field gradient which are expected to be measurable by a variety of experimental techniques.

  8. Ab Initio Predictions of Hexagonal Zr(B,C,N) Polymorphs for Coherent Interface Design

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chongze [Univ. of Minnesota-Twin Cities, Minneapolis, MN (United States); Huang, Jingsong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sumpter, Bobby G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meletis, Efstathios [Univ. of Texas at Arlington, Arlington, TX (United States); Dumitrica, Traian [Univ. of Minnesota-Twin Cities, Minneapolis, MN (United States)

    2017-10-27

    Density functional theory calculations are used to explore hexagonal (HX) NiAs-like polymorphs of Zr(B,C,N) and compare with corresponding Zr(B,C,N) Hagg-like face-centered cubic rocksalt (B1) phases. While all predicted compounds are mechanically stable according to the Born-Huang criteria, only HX Zr(C,N) are found dynamically stable from ab initio molecular dynamics simulations and lattice dynamics calculations. HX ZrN emerges as a candidate structure with ground state energy, elastic constants, and extrinsic mechanical parameters comparable with those of B1 ZrN. Ab initio band structure and semi-classical Boltzmann transport calculations predict a metallic character and a monotonic increase in electrical conductivity with the number of valence electrons. Electronic structure calculations indicate that the HX phases gain their stability and mechanical attributes by Zr d- non-metal p hybridization and by broadening of Zr d bands. Furthermore, it is shown that the HX ZrN phase provides a low-energy coherent interface model for connecting B1 ZrN domains, with significant energetic advantage over an atomistic interface model derived from high resolution transmission electron microscopy images. The ab initio characterizations provided herein should aid the experimental identification of non-Hagg-like hard phases. Furthermore, the results can also enrich the variety of crystalline phases potentially available for designing coherent interfaces in superhard nanostructured materials and in materials with multilayer characteristics.

  9. Atomic carbon chains as spin-transmitters: An ab initio transport study

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka

    2010-01-01

    An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin-polarization of the transmi......An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin...

  10. Ab initio calculation of the electronic spectrum of azobenzene dyes and its impact on the design of optical data storage materials

    DEFF Research Database (Denmark)

    Åstrand, Per-Olof; Ramanujam, P.S.; Hvilsted, Søren

    2000-01-01

    Electronic excitation energies of 16 azobenzene dyes have been calculated by ab initio methods within the second-order polarization propagator approximation (SOPPA). Good agreement with expriment is found for the lowest singlet and triplet states for both the trans- and cis-azobenzene molecules......, the experimental singlet π → π* transitions are reproduced for a set of azobenzene dyes with different electron donor and acceptor groups and the correct shifts in excitation energy are obtained for the different substituents. It has also been demonstrated that ab initio methods can be used to determine suitable...

  11. Ab-initio electronic and magnetic properties of Fe-Al alloys

    Directory of Open Access Journals (Sweden)

    Apiñaniz, E.

    2000-06-01

    Full Text Available This work presents ab-initio self-consistent calculations performed with the TB-LMTO code to study the different phases of the Fe-Al phase diagram, corresponding to the ordered structures B2, DO3 and B32 and for Fe50Al50 and Fe3Al compositions. Both, unpolarized and spin-polarized calculations have been performed to deduce the energetic difference between the paramagnetic and ferromagnetic state of the corresponding structure. Calculations for the disordered structures have also been performed for the previously mentioned compositions. These results show that by disordering the alloy magnetism is enhanced and that the equilibrium lattice parameter increases.

    En este trabajo se presentan cálculos autoconsistentes ab-initio realizados con el método TB-LMTO (Tight Binding Linear Muffin Tin Orbital con el fin de estudiar las diferentes estructuras que se presentan en el diagrama de fases de las aleaciones Fe-Al. Se han estudiado las estructuras ordenadas B2, DO3 y B32 para las siguientes concentraciones: Fe50Al50 y Fe3Al. Asimismo, se han realizado cálculos teniendo y sin tener en cuenta la polarización de spin con el fin de poder deducir la diferencia energética entre los estados ferromágneticos y paramágneticos de la misma estructura. Por otra parte se han realizado estos mismos cálculos para estructuras desordenadas y las mismas concentraciones. Los resultados muestran que mediante el desorden aumenta el magnetismo de estas aleaciones y crece el parámetro de red.

  12. Single-ion 4f element magnetism: an ab-initio look at Ln(COT)2(-).

    Science.gov (United States)

    Gendron, Frédéric; Pritchard, Benjamin; Bolvin, Hélène; Autschbach, Jochen

    2015-12-14

    The electron densities associated with the Ln 4f shell, and spin and orbital magnetizations ('magnetic moment densities'), are investigated for the Ln(COT)2(-) series. The densities are obtained from ab-initio calculations including spin-orbit coupling. For Ln = Ce, Pr the magnetizations are also derived from crystal field models and shown to agree with the ab-initio results. Analysis of magnetizations from ab-initio calculations may be useful in assisting research on single molecule magnets.

  13. Electronic structure, thermodynamic properties and hydrogenation of LaPtIn and CePtIn compounds by ab-initio methods

    International Nuclear Information System (INIS)

    Jezierski, Andrzej; Szytuła, Andrzej

    2016-01-01

    The electronic structures and thermodynamic properties of LaPtIn and CePtIn are studied by means of ab-initio full-relativistic full-potential local orbital basis (FPLO) method within densities functional (DFT) methodologies. We have also examined the influence of hydrogen on the electronic structure and stability of CePtInH and LaPtInH systems. The positions of the hydrogen atoms have been found from the minimum of the total energy. Our calculations have shown that band structure and topology of the Fermi surfaces changed significantly during the hydrogenation. The thermodynamic properties (bulk modulus, Debye temperatures, constant pressure heat capacity) calculated in quasi-harmonic Debye-Grüneisen model are in a good agreement with the experimental data. We have applied different methods of the calculation of the equation of states (EOS) (Murnaghan, Birch-Murnaghan, Poirier–Tarantola, Vinet). The thermodynamic properties are presented for the pressure 0< P<9 GPa and the temperature range 0< T<300 K. - Highlights: • Full relativistic band structure of LaPtIn and CePtIn. • Fermi surface of LaPtIn, LaPtInH, CePtIn, CePtInH. • Effect of hydrogenation on the electronic structure of LaPtIn and CePtIn. • Thermodynamic properties in the quasi-harmonic Debye-Grüneisen model.

  14. Ab initio investigation of superconductivity in orthorhombic MgPtSi

    Energy Technology Data Exchange (ETDEWEB)

    Tütüncü, H.M., E-mail: tutuncu@sakarya.edu.tr [Sakarya Üniversitesi, Fen-Edebiyat Fakültesi, Fizik Bölümü, 54187, Adapazarı (Turkey); Sakarya Üniversitesi, BIMAYAM Biyomedikal, Manyetik ve Yarıiletken Malzemeler Araştırma Merkezi, 54187, Adapazarı (Turkey); Ertuǧrul Karaca [Sakarya Üniversitesi, Fen-Edebiyat Fakültesi, Fizik Bölümü, 54187, Adapazarı (Turkey); Srivastava, G.P. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2016-07-15

    We have performed an ab initio study of electronic, vibrational and superconducting properties of the orthorhombic MgPtSi by employing the density functional theory, a linear-response formalism, and the plane-wave pseudopotential method. Our electronic results suggest that the density of states at the Fermi level is primarily contributed by Pt 5d and Si 3p states with much smaller contribution from Mg electronic states. Phonon anomalies have been found for all three acoustic branches. Due to these phonon anomalies, the acoustic branches make large contributions to the average electron-phonon coupling parameter. From the Eliashberg spectral function, the value of average electron-phonon coupling parameter is found to 0.707. Using this value, the superconducting critical temperature is obtained to be 2.4 K, in excellent accordance with its experimental value of 2.5 K. - Highlights: • The electronic structure of MgPtSi is studied using ab initio pseudopotential method. • Phonons and electron–phonon interaction in MgPtSi are studied using a linear response theory. • The acoustic phonon modes couple more strongly with electrons. • The value of λ is found to be 0.707 which shows that MgPtSi is a conventional honon-mediated superconductor. • The calculated T{sub c} of 2.4 K is in excellent accordance with its experimental value of 2.5 K.

  15. Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O: Experiment and ab initio calculations

    International Nuclear Information System (INIS)

    Nomura, Kenji; Ohta, Hiromichi; Hirano, Masahiro; Kamiya, Toshio; Uruga, Tomoya; Hosono, Hideo

    2007-01-01

    Ionic amorphous oxide semiconductors (IAOSs) are new materials for flexible thin film transistors that exhibit field-effect mobilities of ∼10 cm 2 V -1 s -1 [K. Nomura et al., Nature 488, 432 (2004)]. The local coordination structure in an IAOS, In-Ga-Zn-O (a-IGZO), was examined using extended x-ray absorption fine structure analysis combined with ab initio calculations. The short-range ordering and coordination structures in a-IGZO are similar to those in the corresponding crystalline phase, InGaZnO 4 , and edge-sharing structures consisting of In-O polyhedra remain in the amorphous structure. The In 3+ 5s orbitals form an extended state with a band effective mass of ∼0.2m e at the conduction band bottom

  16. Study of wide band-gap crystal LiCaAlF6 by IR-reflection spectroscopy and ab initio calculations

    International Nuclear Information System (INIS)

    Novikova, N.N.; Klimin, S.A.; Mavrin, B.N.

    2017-01-01

    Polarized IR-reflection spectra and results of ab initio calculations of vibrational and electronic properties of LiCaAlF6 single crystal are presented. It is shown that the crystal band gap is direct. Experimental and theoretical parameters are obtained for dipole-active and all phonons, respectively, including silent modes. Experimental IR-reflection and Raman spectra are well described in the frame of results obtained by ab initio calculations. The peculiarities are discussed concerning the structure of electronic bands, the interatomic interactions, the character of lattice vibrations, and the phonon dispersion.

  17. Ab initio calculation of the electronic absorption spectrum of liquid water

    International Nuclear Information System (INIS)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-01-01

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase

  18. Ab initio and empirical studies on the asymmetry of molecular current-voltage characteristics

    International Nuclear Information System (INIS)

    Hoft, R C; Armstrong, N; Ford, M J; Cortie, M B

    2007-01-01

    We perform theoretical calculations of the tunnelling current through various small organic molecules sandwiched between gold electrodes by using both a tunnel barrier model and an ab initio transport code. The height of the tunnelling barrier is taken to be the work function of gold as modified by the adsorbed molecule and calculated from an ab initio electronic structure code. The current-voltage characteristics of these molecules are compared. Asymmetry is introduced into the system in two ways: an asymmetric molecule and a gap between the molecule and the right electrode. The latter is a realistic situation in scanning probe experiments. The asymmetry is also realized in the tunnel barrier model by two distinct work functions on the left and right electrodes. Significant asymmetry is observed in the ab initio i(V) curves. The tunnel barrier i(V) curves show much less pronounced asymmetry. The relative sizes of the currents through the molecules are compared. In addition, the performance of the WKB approximation is compared to the results obtained from the exact Schroedinger solution to the tunnelling barrier problem

  19. Ab initio study of alanine polypeptide chain twisting

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2006-01-01

    chains. These particular degrees of freedom are essential for the characterization of the proteins folding process. Calculations have been carried out within the ab initio theoretical framework based on the density functional theory and accounting for all the electrons in the system. We have determined...

  20. Importance of dispersion and electron correlation in ab initio protein folding.

    Science.gov (United States)

    He, Xiao; Fusti-Molnar, Laszlo; Cui, Guanglei; Merz, Kenneth M

    2009-04-16

    Dispersion is well-known to be important in biological systems, but the effect of electron correlation in such systems remains unclear. In order to assess the relationship between the structure of a protein and its electron correlation energy, we employed both full system Hartree-Fock (HF) and second-order Møller-Plesset perturbation (MP2) calculations in conjunction with the Polarizable Continuum Model (PCM) on the native structures of two proteins and their corresponding computer-generated decoy sets. Because of the expense of the MP2 calculation, we have utilized the fragment molecular orbital method (FMO) in this study. We show that the sum of the Hartree-Fock (HF) energy and force field (LJ6)-derived dispersion energy (HF + LJ6) is well correlated with the energies obtained using second-order Møller-Plesset perturbation (MP2) theory. In one of the two examples studied, the correlation energy as well as the empirical dispersive energy term was able to discriminate between native and decoy structures. On the other hand, for the second protein we studied, neither the correlation energy nor dispersion energy showed discrimination capabilities; however, the ab initio MP2 energy and the HF+LJ6 both ranked the native structure correctly. Furthermore, when we randomly scrambled the Lennard-Jones parameters, the correlation between the MP2 energy and the sum of the HF energy and dispersive energy (HF+LJ6) significantly drops, which indicates that the choice of Lennard-Jones parameters is important.

  1. Ab initio electronic structure calculations for Mn linear chains deposited on CuN/Cu(001) surfaces

    International Nuclear Information System (INIS)

    Barral, Maria Andrea; Weht, Ruben; Lozano, Gustavo; Maria Llois, Ana

    2007-01-01

    In a recent experiment, scanning tunneling microscopy has been used to obtain a direct probe of the magnetic interaction in linear manganese chains arranged by atomic manipulation on thin insulating copper nitride islands grown on Cu(001). The local spin excitation spectra of these chains have been measured with inelastic electron tunneling spectroscopy. Analyzing the spectroscopic results with a Heisenberg Hamiltonian the interatomic coupling strength within the chains has been obtained. It has been found that the coupling strength depends on the deposition sites of the Mn atoms on the islands. In this contribution, we perform ab initio calculations for different arrangements of infinite Mn chains on CuN in order to understand the influence of the environment on the value of the magnetic interactions

  2. Ab Initio Predictions of Structures and Densities of Energetic Solids

    National Research Council Canada - National Science Library

    Rice, Betsy M; Sorescu, Dan C

    2004-01-01

    We have applied a powerful simulation methodology known as ab initio crystal prediction to assess the ability of a generalized model of CHNO intermolecular interactions to predict accurately crystal...

  3. Structural investigation of water-acetonitrile mixtures: An ab initio, molecular dynamics and X-ray diffraction study

    International Nuclear Information System (INIS)

    Bako, Imre; Megyes, Tuende; Palinkas, Gabor

    2005-01-01

    In this work, we present a study on water-acetonitrile (AN) mixtures by molecular dynamics ab initio and X-ray diffraction techniques. Comparison of the experimental total G(r) functions of the mixtures with the results of molecular dynamics simulation shows an overall good agreement. The properties of hydrogen bonded clusters (water clusters, and water-AN clusters) in these mixtures have been determined. Two different types of AN-water dimers were identified by ab initio quantum chemical calculation. One of these structures proved to be a true H-bonded dimer and the other a dipole bound dimer

  4. Ab initio electronic properties of dual phosphorus monolayers in silicon

    DEFF Research Database (Denmark)

    Drumm, Daniel W.; Per, Manolo C.; Budi, Akin

    2014-01-01

    In the midst of the epitaxial circuitry revolution in silicon technology, we look ahead to the next paradigm shift: effective use of the third dimension - in particular, its combination with epitaxial technology. We perform ab initio calculations of atomically thin epitaxial bilayers in silicon...

  5. Ground state analytical ab initio intermolecular potential for the Cl2-water system

    International Nuclear Information System (INIS)

    Hormain, Laureline; Monnerville, Maurice; Toubin, Céline; Duflot, Denis; Pouilly, Brigitte; Briquez, Stéphane; Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón

    2015-01-01

    The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl 2 molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl 2 − H 2 O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by the comparison of ab initio results of Cl 2 interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl 2 on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results

  6. On the room-temperature phase diagram of high pressure hydrogen: An ab initio molecular dynamics perspective and a diffusion Monte Carlo study

    International Nuclear Information System (INIS)

    Chen, Ji; Ren, Xinguo; Li, Xin-Zheng; Alfè, Dario; Wang, Enge

    2014-01-01

    The finite-temperature phase diagram of hydrogen in the region of phase IV and its neighborhood was studied using the ab initio molecular dynamics (MD) and the ab initio path-integral molecular dynamics (PIMD). The electronic structures were analyzed using the density-functional theory (DFT), the random-phase approximation, and the diffusion Monte Carlo (DMC) methods. Taking the state-of-the-art DMC results as benchmark, comparisons of the energy differences between structures generated from the MD and PIMD simulations, with molecular and dissociated hydrogens, respectively, in the weak molecular layers of phase IV, indicate that standard functionals in DFT tend to underestimate the dissociation barrier of the weak molecular layers in this mixed phase. Because of this underestimation, inclusion of the quantum nuclear effects (QNEs) in PIMD using electronic structures generated with these functionals leads to artificially dissociated hydrogen layers in phase IV and an error compensation between the neglect of QNEs and the deficiencies of these functionals in standard ab initio MD simulations exists. This analysis partly rationalizes why earlier ab initio MD simulations complement so well the experimental observations. The temperature and pressure dependencies for the stability of phase IV were also studied in the end and compared with earlier results

  7. Ab Initio periodic Hartree-Fock study of group IA cations in ANA-type zeolites

    International Nuclear Information System (INIS)

    Anchell, J.L.; White, J.C.; Thompson, M.R.; Hess, A.C.

    1994-01-01

    This study investigates the electronic structure of Group IA cations intercalated into zeolites with the analcime (ANA) framework using ab initio periodic Hartree-Fock theory. The purpose of the study is to gain a better understanding of the role played by electron-donating species in zeolites in general, with specific applications to materials that have been suggested as storage matrices for radioactive materials. The effect of the intercalated species (Na, K, Rb, and Cs) on the electronic structure of the zeolite is presented on the basis of an analysis of the total and projected density of states, Mulliken charges, and charge density differences. The results of those analyses indicate that, relative to a charge neutral atomic state, the Group IA species donate an electron to the zeolite lattice and interact most strongly with the s and p atomic states of oxygen as the species are moved through the lattice. In addition, estimates of the self-diffusion constants of Na, K, Rb, and Cs based upon a one-dimensional diffusion model parameterized from the ab initio total energy data will be presented. 24 refs., 8 figs., 4 tabs

  8. Increasing the efficiency and accuracy of time-resolved electronic spectra calculations with on-the-fly ab initio quantum dynamics methods

    Science.gov (United States)

    Vanicek, Jiri

    2014-03-01

    Rigorous quantum-mechanical calculations of coherent ultrafast electronic spectra remain difficult. I will present several approaches developed in our group that increase the efficiency and accuracy of such calculations: First, we justified the feasibility of evaluating time-resolved spectra of large systems by proving that the number of trajectories needed for convergence of the semiclassical dephasing representation/phase averaging is independent of dimensionality. Recently, we further accelerated this approximation with a cellular scheme employing inverse Weierstrass transform and optimal scaling of the cell size. The accuracy of potential energy surfaces was increased by combining the dephasing representation with accurate on-the-fly ab initio electronic structure calculations, including nonadiabatic and spin-orbit couplings. Finally, the inherent semiclassical approximation was removed in the exact quantum Gaussian dephasing representation, in which semiclassical trajectories are replaced by communicating frozen Gaussian basis functions evolving classically with an average Hamiltonian. Among other examples I will present an on-the-fly ab initio semiclassical dynamics calculation of the dispersed time-resolved stimulated emission spectrum of the 54-dimensional azulene. This research was supported by EPFL and by the Swiss National Science Foundation NCCR MUST (Molecular Ultrafast Science and Technology) and Grant No. 200021124936/1.

  9. Feasible and realiable ab initio atomistic modeling for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Beridze, George

    2016-07-01

    The studies in this PhD dissertation focus on finding a computationally feasible ab initio methodology which would make the reliable first principle atomistic modeling of nuclear materials possible. Here we tested the performance of the different DFT functionals and the DFT-based methods that explicitly account for the electronic correlations, such as the DFT+U approach, for prediction of structural and thermochemical properties of lanthanide- and actinide-bearing materials. In the previous studies, the value of the Hubbard U parameter, required by the DFT+U method, was often guessed or empirically derived. We applied and extensively tested the recently developed ab initio methods such as the constrained local density approximation (cLDA) and the constrained random phase approximation (cRPA), to compute the Hubbard U parameter values from first principles, thus making the DFT+U method a real it ab initio parameter free approach. Our successful benchmarking studies of the parameter-free DFT+U method, for prediction of the structures and the reaction enthalpies of actinide- and lanthanide-bearing molecular compounds and solids indicate, that the linear response method (cLDA) provides a very good, and consistent with the cRPA prediction, estimate of the Hubbard U parameter. In particular, we found that the Hubbard U parameter value, which describes the strength of the on-site Coulomb repulsion between f-electrons, depends strongly on the oxidation state of the f-element, its local bonding environment and crystalline structure of the materials, which has never been considered in such detail before. We have shown, that the applied computational approach substantially, if not dramatically, reduces the error of the predicted reaction enthalpies making the accuracy of the prediction comparable with the uncertainty of the computational unfeasible, higher order methods of quantum chemistry, and experiments. The derived methodology resulted in various, already published

  10. Feasible and realiable ab initio atomistic modeling for nuclear waste management

    International Nuclear Information System (INIS)

    Beridze, George

    2016-01-01

    The studies in this PhD dissertation focus on finding a computationally feasible ab initio methodology which would make the reliable first principle atomistic modeling of nuclear materials possible. Here we tested the performance of the different DFT functionals and the DFT-based methods that explicitly account for the electronic correlations, such as the DFT+U approach, for prediction of structural and thermochemical properties of lanthanide- and actinide-bearing materials. In the previous studies, the value of the Hubbard U parameter, required by the DFT+U method, was often guessed or empirically derived. We applied and extensively tested the recently developed ab initio methods such as the constrained local density approximation (cLDA) and the constrained random phase approximation (cRPA), to compute the Hubbard U parameter values from first principles, thus making the DFT+U method a real it ab initio parameter free approach. Our successful benchmarking studies of the parameter-free DFT+U method, for prediction of the structures and the reaction enthalpies of actinide- and lanthanide-bearing molecular compounds and solids indicate, that the linear response method (cLDA) provides a very good, and consistent with the cRPA prediction, estimate of the Hubbard U parameter. In particular, we found that the Hubbard U parameter value, which describes the strength of the on-site Coulomb repulsion between f-electrons, depends strongly on the oxidation state of the f-element, its local bonding environment and crystalline structure of the materials, which has never been considered in such detail before. We have shown, that the applied computational approach substantially, if not dramatically, reduces the error of the predicted reaction enthalpies making the accuracy of the prediction comparable with the uncertainty of the computational unfeasible, higher order methods of quantum chemistry, and experiments. The derived methodology resulted in various, already published

  11. Ab initio investigations of the electronic structure and chemical bonding of Li{sub 2}ZrN{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Matar, S.F., E-mail: matar@icmcb-bordeaux.cnrs.fr [CNRS, Universite de Bordeaux, ICMCB, 87 Avenue du Docteur Albert Schweitzer, 33600 Pessac (France); Poettgen, R., E-mail: pottgen@uni-muenster.de [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster, Corrensstrasse 30, D-48149 Muenster (Germany); Al Alam, A.F., E-mail: adelalalam@usek.edu.lb [Universite Saint Esprit de Kaslik (USEK), Faculte des Sciences, URA GREVE (CNRS/USEK/UL), Jounieh (Lebanon); Ouaini, N., E-mail: naimouaini@usek.edu.lb [Universite Saint Esprit de Kaslik (USEK), Faculte des Sciences, URA GREVE (CNRS/USEK/UL), Jounieh (Lebanon)

    2012-06-15

    The electronic structure of the ternary nitride Li{sub 2}ZrN{sub 2} is examined from ab initio with DFT computations for an assessment of the properties of chemical bonding. The compound is found insulating with 1.8 eV band gap; it becomes metallic and less ionic upon removal of one equivalent of Li. The chemical interaction is found mainly between Zr and N on one hand and Li and N on the other hand. While all pair interactions are bonding, antibonding N-N interactions are found dominant at the top of the valence band of Li{sub 2}ZrN{sub 2} and they become less intense upon removal of Li. From energy differences the partial delithiation leading to Li{sub 2-x}ZrN{sub 2} (x={approx}1) is favored. - Graphical abstract: Trigonal structure of Li{sub 2}ZrN{sub 2} showing the Zr-N-Li layers along the c-axis. Highlights: Black-Right-Pointing-Pointer Li{sub 2}ZrN{sub 2} calculated insulating with a 1.8 eV gap in agreement with its light green color. Black-Right-Pointing-Pointer Lithium de-intercalation is energetically favored for one out of two Li equivalents. Black-Right-Pointing-Pointer Li plays little role in the change of the structure, ensured by Zr and N binding. Black-Right-Pointing-Pointer Similar changes in the electronic structure as for various intercalated phases of ZrN.

  12. Computational prediction of muon stopping sites using ab initio random structure searching (AIRSS)

    Science.gov (United States)

    Liborio, Leandro; Sturniolo, Simone; Jochym, Dominik

    2018-04-01

    The stopping site of the muon in a muon-spin relaxation experiment is in general unknown. There are some techniques that can be used to guess the muon stopping site, but they often rely on approximations and are not generally applicable to all cases. In this work, we propose a purely theoretical method to predict muon stopping sites in crystalline materials from first principles. The method is based on a combination of ab initio calculations, random structure searching, and machine learning, and it has successfully predicted the MuT and MuBC stopping sites of muonium in Si, diamond, and Ge, as well as the muonium stopping site in LiF, without any recourse to experimental results. The method makes use of Soprano, a Python library developed to aid ab initio computational crystallography, that was publicly released and contains all the software tools necessary to reproduce our analysis.

  13. Systematic ab initio study of the electronic and magnetic properties of different pure and mixed iron systems

    International Nuclear Information System (INIS)

    Izquierdo, J.; Vega, A.; Balbas, L. C.; Sanchez-Portal, Daniel; Junquera, Javier; Artacho, Emilio; Soler, Jose M.; Ordejon, Pablo

    2000-01-01

    We present a theoretical study of the electronic and magnetic properties of iron systems in different environments: pure iron systems [dimer, bcc bulk, (100) surface, and free-standing iron monolayer], and low-dimensional iron systems deposited on Ag (100) surface (monoatomic linear wires, iron monolayer, planar, and three-dimensional clusters). Electronic and magnetic properties have been calculated using a recently developed total-energy first-principles method based on density-functional theory with numerical atomic orbitals as a basis set for the description of valence electrons and nonlocal pseudopotentials for the atomic core. The Kohn-Sham equations are solved self-consistently within the generalized gradient approximation for the exchange-correlation potential. Tests on the pseudopotential, the basis set, grid spacing, and k sampling are carefully performed. This technique, which has been proved to be very efficient for large nonmagnetic systems, is applied in this paper to calculate electronic and magnetic properties of different iron nanostructures. The results compare well with previous ab initio all-electron calculations and with experimental data. The method predicts the correct trends in the magnetic moments of Fe systems for a great variety of environments and requires a smaller computational effort than other ab initio methods. (c) 2000 The American Physical Society

  14. Systematic ab initio study of the electronic and magnetic properties of different pure and mixed iron systems

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, J. [Departamento de Fisica Teorica, Universidad de Valladolid, E-47011 Valladolid, (Spain); Vega, A. [Departamento de Fisica Teorica, Universidad de Valladolid, E-47011 Valladolid, (Spain); Balbas, L. C. [Departamento de Fisica Teorica, Universidad de Valladolid, E-47011 Valladolid, (Spain); Sanchez-Portal, Daniel [Department of Physics and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Junquera, Javier [Departamento de Fisica de la Materia Condensada, C-III, and Institut Nicolas Cabrera, Universidad Autonoma de Madrid, 28049 Madrid, (Spain); Artacho, Emilio [Departamento de Fisica de la Materia Condensada, C-III, and Institut Nicolas Cabrera, Universidad Autonoma de Madrid, 28049 Madrid, (Spain); Soler, Jose M. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Ordejon, Pablo [Institut de Ciencia de Materials de Barcelona (CSIC), Campus de la U.A.B., Bellaterra, E-08193 Barcelona, (Spain)

    2000-05-15

    We present a theoretical study of the electronic and magnetic properties of iron systems in different environments: pure iron systems [dimer, bcc bulk, (100) surface, and free-standing iron monolayer], and low-dimensional iron systems deposited on Ag (100) surface (monoatomic linear wires, iron monolayer, planar, and three-dimensional clusters). Electronic and magnetic properties have been calculated using a recently developed total-energy first-principles method based on density-functional theory with numerical atomic orbitals as a basis set for the description of valence electrons and nonlocal pseudopotentials for the atomic core. The Kohn-Sham equations are solved self-consistently within the generalized gradient approximation for the exchange-correlation potential. Tests on the pseudopotential, the basis set, grid spacing, and k sampling are carefully performed. This technique, which has been proved to be very efficient for large nonmagnetic systems, is applied in this paper to calculate electronic and magnetic properties of different iron nanostructures. The results compare well with previous ab initio all-electron calculations and with experimental data. The method predicts the correct trends in the magnetic moments of Fe systems for a great variety of environments and requires a smaller computational effort than other ab initio methods. (c) 2000 The American Physical Society.

  15. All-electron ab initio calculations of YBa2Cu3O7 with self-consistence crystal field

    Institute of Scientific and Technical Information of China (English)

    刘洪霖; 陈念贻

    1995-01-01

    The quantum chemical calculations of cluster YBa2Cu3O7 considering all electrons have been per-formed by using the ab initio HF method with self-consistence crystal field.A Hartree-Fork surface potentialis proposed to make an asymmetric duster model possess a relatively symmetric potential field and to obtaina relatively symmetric electronic structure,electronic distributions,frontier orbitals,and bond order,etc.Thesuggestions that there exists a covalent bonding complex,[CuO2-O-CuO-O-Cu2]6,8-,in the cell unit ofthe crystal,and the cell units are connected with each other by ionic bonds along the c direction of the crys-tal lattice are offered based on the chemical bonding characteristics from the calculated results.The importantcontribution of the apical oxygen to superconductivities is emphasized as well.

  16. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Makhov, Dmitry V.; Shalashilin, Dmitrii V. [Department of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom); Glover, William J.; Martinez, Todd J. [Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  17. Ab initio model of porous periclase

    International Nuclear Information System (INIS)

    Drummond, Neil D.; Swift, Damian C.; Ackland, Graeme J.

    2004-01-01

    A two-phase equilibrium equation of state (EOS) for periclase (MgO) was constructed using ab initio quantum mechanics, including a rigorous calculation of quasiharmonic phonon modes. Much of the shock wave data reported for periclase is on porous material. We compared the theoretical EOS with porous data using a simple 'snowplough' treatment and also a model using finite equilibration rates suitable for continuum mechanics simulations. (This model has been applied previously to various heterogeneous explosives as well as other porous materials.) The results were consistent and matched the data well at pressures above the regime affected by strength - and ramp-wave formation - during compaction. Ab initio predictions of the response of porous material have been cited recently as a novel and advanced capability; we feel that this is a fairly routine extension to established ab initio techniques

  18. Doping in silicon nanocrystals: An ab initio study of the structural, electronic and optical properties

    International Nuclear Information System (INIS)

    Iori, Federico; Degoli, Elena; Luppi, Eleonora; Magri, Rita; Marri, Ivan; Cantele, G.; Ninno, D.; Trani, F.; Ossicini, Stefano

    2006-01-01

    There are experimental evidences that doping control at the nanoscale can significantly modify the optical properties with respect to the pure systems. This is the case of silicon nanocrystals (Si-nc), for which it has been shown that the photoluminescence (PL) peak can be tuned also below the bulk Si band gap by properly controlling the impurities, for example by boron (B) and phosphorus (P) codoping. In this work, we report on an ab initio study of impurity states in Si-nc. We consider B and P substitutional impurities for Si-nc with a diameter up to 2.2 nm. Formation energies (FEs), electronic, optical and structural properties have been determined as a function of the cluster dimension. For both B-doped and P-doped Si-nc the FE increases on decreasing the dimension, showing that the substitutional doping gets progressively more difficult for the smaller nanocrystals. Moreover, subsurface impurity positions result to be the most stable ones. The codoping reduces the FE strongly favoring this process with respect to the simple n-doping or p-doping. Such an effect can be attributed to charge compensation between the donor and the acceptor atoms. Moreover, smaller structural deformations, with respect to n-doped and p-doped cases, localized only around the impurity sites are observed. The band gap and the optical threshold are largely reduced with respect to the undoped Si-nc showing the possibility of an impurity-based engineering of the Si-nc PL properties

  19. Many-body optimization using an ab initio monte carlo method.

    Science.gov (United States)

    Haubein, Ned C; McMillan, Scott A; Broadbelt, Linda J

    2003-01-01

    Advances in computing power have made it possible to study solvated molecules using ab initio quantum chemistry. Inclusion of discrete solvent molecules is required to determine geometric information about solute/solvent clusters. Monte Carlo methods are well suited to finding minima in many-body systems, and ab initio methods are applicable to the widest range of systems. A first principles Monte Carlo (FPMC) method was developed to find minima in many-body systems, and emphasis was placed on implementing moves that increase the likelihood of finding minimum energy structures. Partial optimization and molecular interchange moves aid in finding minima and overcome the incomplete sampling that is unavoidable when using ab initio methods. FPMC was validated by studying the boron trifluoride-water system, and then the method was used to examine the methyl carbenium ion in water to demonstrate its application to solvation problems.

  20. Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen

    International Nuclear Information System (INIS)

    Holst, Bastian; French, Martin; Redmer, Ronald

    2011-01-01

    Using Kubo's linear response theory, we derive expressions for the frequency-dependent electrical conductivity (Kubo-Greenwood formula), thermopower, and thermal conductivity in a strongly correlated electron system. These are evaluated within ab initio molecular dynamics simulations in order to study the thermoelectric transport coefficients in dense liquid hydrogen, especially near the nonmetal-to-metal transition region. We also observe significant deviations from the widely used Wiedemann-Franz law, which is strictly valid only for degenerate systems, and give an estimate for its valid scope of application toward lower densities.

  1. Ab initio derivation of model energy density functionals

    International Nuclear Information System (INIS)

    Dobaczewski, Jacek

    2016-01-01

    I propose a simple and manageable method that allows for deriving coupling constants of model energy density functionals (EDFs) directly from ab initio calculations performed for finite fermion systems. A proof-of-principle application allows for linking properties of finite nuclei, determined by using the nuclear nonlocal Gogny functional, to the coupling constants of the quasilocal Skyrme functional. The method does not rely on properties of infinite fermion systems but on the ab initio calculations in finite systems. It also allows for quantifying merits of different model EDFs in describing the ab initio results. (letter)

  2. Ab initio molecular-orbital study on electron correlation effects in CuO6 clusters relating to high-Tc superconductivity

    International Nuclear Information System (INIS)

    Yamamoto, S.; Yamaguchi, K.; Nasu, K.

    1990-01-01

    Ab initio molecular-orbital calculations for CuO 6 clusters have been performed to elucidate the electronic structures of undoped and doped copper oxides, which are of current interest in relation to high-T c superconductivity. The electron correlation effects for these species are thoroughly investigated by the full-valence configuration-interaction method and the complete-active-space self-consistent-field method. The electron correlation effect is relatively simple for the A g state (σ hole), whereas pair excitations and spin-flip excitations give sizable contributions to the configuration-interaction wave function for the B state (in-plane π hole). Implications of these results are discussed in relation to the mechanisms of the high-T c superconductivity

  3. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field.

    Science.gov (United States)

    Xu, Dong; Zhang, Yang

    2012-07-01

    Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1-20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field. Copyright © 2012 Wiley Periodicals, Inc.

  4. Ab initio calculations of the structure and conformations of 2,6-lutidine

    International Nuclear Information System (INIS)

    Porcinai, S.; Foggi, P.

    1997-01-01

    Ab initio molecular orbital calculations at the SCF level have been utilized to determine the structure and the electronic and vibrational properties of 2,6-lutidine (2,6-dimethyl-pyridine) in the ground electronic state. Comparative calculations have been performed on the parent molecule pyridine. Structure predictions of both molecules are in good agreement with experimental data. The most stable rotamer of 2,6-lutidine has C 2v symmetry with one of the C-H bonds of both the methyl groups lying in the plane of the aromatic ring and pointing in the opposite direction with respect to the nitrogen atom. This is the result of the minimization of competing forces deriving from steric hindrance and electronic stabilization. Vibrational frequencies and oscillator strengths of C-H stretching in the fundamental region have been calculated for both pyridine and the most stable rotamer of 2,6-lutidine and compared to IR data obtained in pure liquids. The potential energy profile of the C-H bond in and out of plane has been investigated up to five times the equilibrium distance. The trend of the potential curves confirms that the C-H bond lying in the plane has a higher dissociation energy than that of the in-plane bonds as observed in experiments on vibrational overtones

  5. Molecular structures of Se(SCH3)2 and Te(SCH3)2 using gas-phase electron diffraction and ab initio and DFT geometry optimisations.

    Science.gov (United States)

    Fleischer, Holger; Wann, Derek A; Hinchley, Sarah L; Borisenko, Konstantin B; Lewis, James R; Mawhorter, Richard J; Robertson, Heather E; Rankin, David W H

    2005-10-07

    The molecular structures of Se(SCH(3))(2) and Te(SCH(3))(2) were investigated using gas-phase electron diffraction (GED) and ab initio and DFT geometry optimisations. While parameters involving H atoms were refined using flexible restraints according to the SARACEN method, parameters that depended only on heavy atoms could be refined without restraints. The GED-determined geometric parameters (r(h1)) are: rSe-S 219.1(1), rS-C 183.2(1), rC-H 109.6(4) pm; angleS-Se-S 102.9(3), angleSe-S-C 100.6(2), angleS-C-H (mean) 107.4(5), phiS-Se-S-C 87.9(20), phiSe-S-C-H 178.8(19) degrees for Se(SCH(3))(2), and rTe-S 238.1(2), rS-C 184.1(3), rC-H 110.0(6) pm; angleS-Te-S 98.9(6), angleTe-S-C 99.7(4), angleS-C-H (mean) 109.2(9), phiS-Te-S-C 73.0(48), phiTe-S-C-H 180.1(19) degrees for Te(SCH(3))(2). Ab initio and DFT calculations were performed at the HF, MP2 and B3LYP levels, employing either full-electron basis sets [3-21G(d) or 6-31G(d)] or an effective core potential with a valence basis set [LanL2DZ(d)]. The best fit to the GED structures was achieved at the MP2 level. Differences between GED and MP2 results for rS-C and angleS-Te-S were explained by the thermal population of excited vibrational states under the experimental conditions. All theoretical models agreed that each compound exists as two stable conformers, one in which the methyl groups are on the same side (g(+)g(-) conformer) and one in which they are on different sides (g(+)g(+) conformer) of the S-Y-S plane (Y = Se, Te). The conformational composition under the experimental conditions could not be resolved from the GED data. Despite GED R-factors and ab initio and DFT energies favouring the g(+)g(+) conformer, it is likely that both conformers are present, for Se(SCH(3))(2) as well as for Te(SCH(3))(2).

  6. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    Science.gov (United States)

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  7. Ab initio calculation of positron distribution, ACAR and lifetime in TTF-TCNQ

    International Nuclear Information System (INIS)

    Ishibashi, Shoji; Kohyama, Masanori

    2000-01-01

    We have performed ab initio calculations of positron distribution, ACAR and lifetime in the quasi-one-dimensional organic conductor TTF-TCNQ. The electronic structure is obtained within the LDA, while the positron state is calculated either with the LDA or with the GGA. Except the positron lifetime, differences between the LDA and GGA results are rather small. The obtained results are compared with our previous experiments and calculations.

  8. An ab initio molecular

    Indian Academy of Sciences (India)

    mechanisms of two molecular crystals: An ab initio molecular dynamics ... for Computation in Molecular and Materials Science and Department of Chemistry, School of ..... NSAF Foundation of National Natural Science Foun- ... Matter 14 2717.

  9. Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10.

    Science.gov (United States)

    Zhang, Yang

    2014-02-01

    We develop and test a new pipeline in CASP10 to predict protein structures based on an interplay of I-TASSER and QUARK for both free-modeling (FM) and template-based modeling (TBM) targets. The most noteworthy observation is that sorting through the threading template pool using the QUARK-based ab initio models as probes allows the detection of distant-homology templates which might be ignored by the traditional sequence profile-based threading alignment algorithms. Further template assembly refinement by I-TASSER resulted in successful folding of two medium-sized FM targets with >150 residues. For TBM, the multiple threading alignments from LOMETS are, for the first time, incorporated into the ab initio QUARK simulations, which were further refined by I-TASSER assembly refinement. Compared with the traditional threading assembly refinement procedures, the inclusion of the threading-constrained ab initio folding models can consistently improve the quality of the full-length models as assessed by the GDT-HA and hydrogen-bonding scores. Despite the success, significant challenges still exist in domain boundary prediction and consistent folding of medium-size proteins (especially beta-proteins) for nonhomologous targets. Further developments of sensitive fold-recognition and ab initio folding methods are critical for solving these problems. Copyright © 2013 Wiley Periodicals, Inc.

  10. All Electron ab initio Investigations of the Three Lowest Lying Electronic States of the RuC Molecule

    DEFF Research Database (Denmark)

    Shim, Irene; Gingerich, K. A.

    2000-01-01

    The three lowest-lying electronic states of RuC, (1)Sigma(+), (3)Delta, and (1)Delta, have been investigated by performing all-electron ab initio multi-configuration self-consistent-field (CASSCF) and multi-reference configuration interaction (MRCI) calculations including relativistic corrections....... The electronic ground state is derived as (1)Sigma(+) with the spectroscopic constants r(e) = 1.616 Angstrom and omega(e) = 1085 cm(-1). The lowest-lying excited state, (3)Delta, has r(e) = 1.632 Angstrom, omega(e) = 1063 cm(-1), and T-e = 912 cm(-1). These results are consistent with recent spectroscopic values....... The chemical bonds in all three lowest-lying states are triple bonds composed of one sigma and two pi bonds. (C) 2000 Elsevier Science B.V. All rights reserved....

  11. Multi-scale modelling of radiation damage in Fe-Cr based on ab initio electronic structure calculations

    International Nuclear Information System (INIS)

    Olsson, Paer

    2004-04-01

    The efficiency of fast neutron reactors, such as for fusion, breeding and transmutation, depend strongly on the neutron radiation resistance of the materials used in the reactors. The binary Fe-Cr alloy, which has many attractive properties in this regard, is the base for the best steels of today which are, however, still not up to the required standards. Therefore, substantial effort has been devoted to finding new materials that can cope with the demands better. Experimental studies must be complemented with extensive theoretical modelling in order to understand the effects that different alloying elements has on the resistance properties of materials. To this end, the first steps of multi-scale modelling has been taken, starting out with ab initio calculations of the electronic structure of the complete concentration range range of the disordered binary Fe-C alloy. The mixing enthalpy of Fe-Cr has been quantitatively predicted and has, together with data from literature, been used in order to fit two sets of interatomic potentials for the purpose of simulating defect evolution with molecular dynamics and kinetic Monte-Carlo codes. These dedicated Fe-Cr alloy potentials are new and represent important additions to the pure element potentials that can be found in literature

  12. Multi-scale modelling of radiation damage in Fe-Cr based on ab initio electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Paer

    2004-04-01

    The efficiency of fast neutron reactors, such as for fusion, breeding and transmutation, depend strongly on the neutron radiation resistance of the materials used in the reactors. The binary Fe-Cr alloy, which has many attractive properties in this regard, is the base for the best steels of today which are, however, still not up to the required standards. Therefore, substantial effort has been devoted to finding new materials that can cope with the demands better. Experimental studies must be complemented with extensive theoretical modelling in order to understand the effects that different alloying elements has on the resistance properties of materials. To this end, the first steps of multi-scale modelling has been taken, starting out with ab initio calculations of the electronic structure of the complete concentration range range of the disordered binary Fe-C alloy. The mixing enthalpy of Fe-Cr has been quantitatively predicted and has, together with data from literature, been used in order to fit two sets of interatomic potentials for the purpose of simulating defect evolution with molecular dynamics and kinetic Monte-Carlo codes. These dedicated Fe-Cr alloy potentials are new and represent important additions to the pure element potentials that can be found in literature.

  13. Ab-initio study of structural and electronic properties of WS2/h-BN van der Waals heterostructure

    Science.gov (United States)

    Ghasemi majd, Zahra; Amiri, Peiman; Taghizadeh, Seyed Fardin

    2018-06-01

    First-principle calculations with different exchange-correlation functionals, including LDA, GGA, semi-empirical and ab-initio van der Waals in the forms of vdW-DF2B86R and vdW-DF2 were performed to evaluate the performance of different functionals in describing the bonding mechanism, adsorption energy and interlayer distance of WS2 monolayer on and between h-BN layers. The finding was that the vdW-DF2B86R seems to be the approach best lending itself to this purpose. In order to include the van der Waals (vdW) interactions in our calculations, we used the DFT-D2 and vdW methods, which gave rise to a physical adsorption with no net charge transfer between the WS2 layer and the corresponding substrates. In addition, we investigated the electronic and structural properties of WS2 and h-BN heterolayers, using vdW-DF2B86R functional. Based on density functional theory calculations, WS2 on and between h-BN layers showed a direct band gap at the K-point, which was experimentally observed.

  14. Electronic, elastic, thermodynamic properties and structure disorder of γ-AlON solid solution from ab initio calculations

    International Nuclear Information System (INIS)

    Wang, Yuezhong; Lu, Tiecheng; Zhang, Rongshi; Jiang, Shengli; Qi, Jianqi; Wang, Ying; Chen, Qingyun; Miao, Naihua; He, Duanwei

    2013-01-01

    Highlights: ► We reassess the chemical bonding character of γ-AlON which shows strong ionicity. ► γ-AlON single-crystals exhibit highly elastic anisotropy. ► The thermodynamic properties are investigated in a wider temperature/pressure range. ► γ-AlON is an O/N partially disordered structure. - Abstract: Spinel aluminium oxynitride (γ-AlON), as a kind of transparent ceramic material expectable, is studied using the ab initio density functional method, in terms of electronic, elastic, thermodynamic properties and structure disorder. The results show that γ-AlON exhibits strong ionicity, as quantitatively expressed by (Al O 2.43+ ) 15 (Al T 2.41+ ) 8 (O 1.64- ) 27 (N 2.27- ) 5 from our reassessment of the ionic character. We summarize and speculate that the considered oxynitride single-crystals exhibit highly elastic anisotropy. The interpretation of the thermodynamic properties of γ-AlON according to quasi-harmonic Debye model confirm the available experiments and are extended to a wider temperature/pressure range. This material holds high elastic strength under extreme environments, where dB/dT absolute value is less than 0.03 GPa/K, independent of the pressure. Finally, we study the O/N structure disorder character of γ-AlON solid solution by investigating nine possible crystal structures. It is found that γ-AlON should be partially disordered, and in fact, the O/N ordering has a significant effect on the properties.

  15. Ab initio study of thermodynamic, electronic, magnetic, structural, and elastic properties of Ni4N allotropes

    Czech Academy of Sciences Publication Activity Database

    Hemzalová, P.; Friák, Martin; Šob, Mojmír; Ma, D.; Udyansky, A.; Raabe, D.; Neugebauer, J.

    2013-01-01

    Roč. 88, č. 17 (2013), Art. no. 174103 ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP108/12/0311; GA ČR GD106/09/H035; GA AV ČR IAA100100920 Institutional support: RVO:68081723 Keywords : nitrides * ab initio * thermodynamics * elasticity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013

  16. Explicit polarization (X-Pol) potential using ab initio molecular orbital theory and density functional theory.

    Science.gov (United States)

    Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali

    2009-10-29

    The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree-Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations.

  17. Ab Initio factorized LCAO calculations of the electronic band structure of ZnSe, ZnS, and the (ZnSe)1(ZnS)1 strained-layer superlattice

    International Nuclear Information System (INIS)

    Marshall, T.S.; Wilson, T.M.

    1992-01-01

    The authors report on the results of electronic band structure calculations of bulk ZnSe, bulk ZnS and the (ZnSe) 1 (ZnS) 1 , strained-layer superlattice (SLS) using the ab initio factorized linear combination of atomic orbitals method. The bulk calculations were done using the standard primitive nonrectangular 2-atom zinc blende unit cell, while the SLS calculation was done using a primitive tetragonal 4-atom unit cell modeled from the CuAu I structure. The analytic fit to the SLS crystalline potential was determined by using the nonlinear coefficients from the bulk fits. The CPU time saved by factorizing the energy matrix integrals and using a rectangular unit cell is discussed

  18. Ab-initio calculations of Co-based diluted magnetic semiconductors Cd 1-xCoxX (X=S, Se, Te)

    KAUST Repository

    Saeed, Yasir; Nazir, Safdar; Shaukat, Ali; Reshak, A. H.

    2010-01-01

    Ab-initio calculations are performed to investigate the structural, electronic and magnetic properties of spin-polarized diluted magnetic semiconductors composed of IIVI compounds Cd1-xCoxX (X=S, Se, Te) at x=0.25. From the calculated results

  19. Towards efficient ab initio calculations of electron scattering by polyatomic molecules: II. Efficient evaluation of exchange integrals

    Czech Academy of Sciences Publication Activity Database

    Čársky, Petr

    2010-01-01

    Roč. 43, č. 17 (2010), s. 175204 ISSN 0953-4075 R&D Projects: GA MŠk OC09079; GA MŠk(CZ) OC10046; GA ČR GA202/08/0631 Institutional research plan: CEZ:AV0Z40400503 Keywords : ab initio calculations * electron scattering * polyatomic molecules Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.902, year: 2010

  20. Investigation on electronic and magnetic properties of Mn2NiAl by ab initio calculations and Monte Carlo simulations

    International Nuclear Information System (INIS)

    Masrour, R.; Jabar, A.; Hlil, E.K.; Hamedoun, M.; Benyoussef, A.; Hourmatallah, A.; Rezzouk, A.; Bouslykhane, K.; Benzakour, N.

    2017-01-01

    Self-consistent ab initio calculations, based on Density Functional Theory (DFT) approach and using Full potential Linear Augmented Plane Wave (FLAPW) method, are performed to investigate both electronic and magnetic properties of the Mn 2 NiAl. Magnetic moment considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for Monte Carlo simulations to compute other magnetic parameters. Also, the magnetic properties of Mn 2 NiAl are studied using the Monte Carlo simulations. The variation of magnetization and magnetic susceptibility with the reduced temperature of Mn 2 NiAl are investigated. The transition temperature of this system is deduced for different values exchange interaction and crystal field. The thermal total magnetization has been obtained, and the magnetic hysteresis cycle is established. The total magnetic moment is superior to those obtained by the other method and is mainly determined by the antiparallel aligned Mn I , Mn II and Ni spin moments. The superparamagnetic phase is found at the neighborhood of transition temperature. - Highlights: • Ab initio calculations are used to study magnetic and electronic properties of Mn 2 NiX. • The transition temperature of Mn 2 NiX is established. • The magnetic hysteresis cycle of M n2 NiX (X = Al, Ga, In, Sn) is deduced. • The magnetic coercive field of Mn 2 NiX (X = Al, Ga, In, Sn) is given.

  1. Ab initio study of II-(VI){sub 2} dichalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, P; Vidal, J; Lincot, D, E-mail: polsson@kth.se [Institut de R and D sur l' energie photovoltaique (IRDEP), UMR 7174-EDF-CNRS-ENSCP, 6 quai Watier, 78401 Chatou Cedex (France)

    2011-10-12

    The structural stabilities of the (Zn,Cd)(S,Se,Te){sub 2} dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe{sub 2} pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications. (paper)

  2. Estudo ab-initio da a-alanina em meio aquoso

    Directory of Open Access Journals (Sweden)

    Sambrano Júlio Ricardo

    1999-01-01

    Full Text Available Ab initio Hartree-Fock (HF, Density Functional (B3LYP and electron correlation (MP2 methods have been used to caracterize the aqueous medium intramolecular hydrogen bond in a-alanine. The 6-31G* and 6-31++G** were taken from Gaussian94 library. We were concerned on the structure of three conformers of a-alanine, in their neutral form plus on the structure of the zwitterionic form (Z. The Z structure is a stationary point at the HF/6-31G* level but it is not when diffuse functions and electron correlation are included. This results shows that the Z form does not exist in the gas phase. The inclusion of solvent effects changed significantly the results obtained in gas phase, therefore this inclusion make the Z form a stationary point within all level of theory, and the relative energy depends dramatically on the level of calculation.

  3. Ab Initio Calculations Of Light-Ion Reactions

    International Nuclear Information System (INIS)

    Navratil, P.; Quaglioni, S.; Roth, R.; Horiuchi, W.

    2012-01-01

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of nuclear forces, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD employing Hamiltonians constructed within chiral effective field theory. In this contribution, we present one of such promising techniques capable of describing simultaneously both bound and scattering states in light nuclei. By combining the resonating-group method (RGM) with the ab initio no-core shell model (NCSM), we complement a microscopic cluster approach with the use of realistic interactions and a microscopic and consistent description of the clusters. We discuss applications to light nuclei scattering, radiative capture and fusion reactions.

  4. A theoretical-spectroscopy, ab initio-based study of the electronic ground state of 121SbH3

    International Nuclear Information System (INIS)

    Yurchenko, Sergei N.; Carvajal, Miguel; Yachmenev, Andrey; Thiel, Walter; Jensen, Per

    2010-01-01

    For the stibine isotopologue 121 SbH 3 , we report improved theoretical calculations of the vibrational energies below 8000 cm -1 and simulations of the rovibrational spectrum in the 0-8000 cm -1 region. The calculations are based on a refined ab initio potential energy surface and on a new dipole moment surface obtained at the coupled cluster CCSD(T) level. The theoretical results are compared with the available experimental data in order to validate the ab initio surfaces and the TROVE computational method [Yurchenko SN, Thiel W, Jensen P. J Mol Spectrosc 2007;245:126-40] for calculating rovibrational energies and simulating rovibrational spectra of arbitrary molecules in isolated electronic states. A number of predicted vibrational energies of 121 SbH 3 are provided in order to stimulate new experimental investigations of stibine. The local-mode character of the vibrations in stibine is demonstrated through an analysis of the results in terms of local-mode theory.

  5. (4)He Thermophysical Properties: New Ab Initio Calculations.

    Science.gov (United States)

    Hurly, John J; Mehl, James B

    2007-01-01

    Since 2000, atomic physicists have reduced the uncertainty of the helium-helium "ab initio" potential; for example, from approximately 0.6 % to 0.1 % at 4 bohr, and from 0.8 % to 0.1 % at 5.6 bohr. These results led us to: (1) construct a new inter-atomic potential ϕ 07, (2) recalculate values of the second virial coefficient, the viscosity, and the thermal conductivity of (4)He from 1 K to 10,000 K, and (3), analyze the uncertainties of the thermophysical properties that propagate from the uncertainty of ϕ 07 and from the Born-Oppenheimer approximation of the electron-nucleon quantum mechanical system. We correct minor errors in a previous publication [J. J. Hurly and M. R. Moldover, J. Res. Nat. Inst. Standards Technol. 105, 667 (2000)] and compare our results with selected data published after 2000. The ab initio results tabulated here can serve as standards for the measurement of thermophysical properties.

  6. Ab initio molecular dynamics simulation of laser melting of silicon

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite temperature density functional theory, is used to simulate laser heating of crystal silicon. We have found that a high concentration of excited electrons dramatically weakens the covalent bond. As a result, the system undergoes a melting

  7. Hydrated Electron Transfer to Nucleobases in Aqueous Solutions Revealed by Ab Initio Molecular Dynamics Simulations.

    Science.gov (United States)

    Zhao, Jing; Wang, Mei; Fu, Aiyun; Yang, Hongfang; Bu, Yuxiang

    2015-08-03

    We present an ab initio molecular dynamics (AIMD) simulation study into the transfer dynamics of an excess electron from its cavity-shaped hydrated electron state to a hydrated nucleobase (NB)-bound state. In contrast to the traditional view that electron localization at NBs (G/A/C/T), which is the first step for electron-induced DNA damage, is related only to dry or prehydrated electrons, and a fully hydrated electron no longer transfers to NBs, our AIMD simulations indicate that a fully hydrated electron can still transfer to NBs. We monitored the transfer dynamics of fully hydrated electrons towards hydrated NBs in aqueous solutions by using AIMD simulations and found that due to solution-structure fluctuation and attraction of NBs, a fully hydrated electron can transfer to a NB gradually over time. Concurrently, the hydrated electron cavity gradually reorganizes, distorts, and even breaks. The transfer could be completed in about 120-200 fs in four aqueous NB solutions, depending on the electron-binding ability of hydrated NBs and the structural fluctuation of the solution. The transferring electron resides in the π*-type lowest unoccupied molecular orbital of the NB, which leads to a hydrated NB anion. Clearly, the observed transfer of hydrated electrons can be attributed to the strong electron-binding ability of hydrated NBs over the hydrated electron cavity, which is the driving force, and the transfer dynamics is structure-fluctuation controlled. This work provides new insights into the evolution dynamics of hydrated electrons and provides some helpful information for understanding the DNA-damage mechanism in solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The T2 phase in the Nb–Si–B system studied by ab initio calculations and synchrotron X-ray diffraction

    International Nuclear Information System (INIS)

    Joubert, J.-M.; Colinet, C.; Rodrigues, G.; Suzuki, P.A.; Nunes, C.A.; Coelho, G.C.; Tedenac, J.-C.

    2012-01-01

    The solid solution based on Nb 5 Si 3 (Cr 5 B 3 structure type, D8 l , tI32, I4/mcm, No140, a=6.5767 Å, c=11.8967 Å) in the Nb–Si–B system was studied from the structural and thermodynamic point of view both experimentally and by ab initio calculations. Rietveld refinement of powder X-ray synchrotron data allowed to determine the boron to silicon substitution mechanism and the structural parameters. Ab initio calculations of different ordered compounds and selected disordered alloys allowed to obtain in addition to the enthalpy of formation of the solution, substitution mechanism and structural parameters which are in excellent agreement with the experimental data. The stability of the phase is discussed. - Graphial abstract: Valence-charge electron localization function in the z=0 plane of the D8 l structure for the ordered compound Nb 5 SiB 2 . Highlights: ► Coupling between ab initio data and experimental results from synchrotron powder diffraction. ► Excellent agreement between the two techniques for the site occupancies and internal coordinates. ► Explanation of the phase stability up to Nb 5 SiB 2 .

  9. Electronic structure of polycrystalline cadmium dichloride studied by X-ray spectroscopies and ab initio calculations

    International Nuclear Information System (INIS)

    Demchenko, I.N.; Chernyshova, M.; Stolte, W.C.; Speaks, D.T.; Derkachova, A.

    2012-01-01

    The electronic structure of cadmium dichloride has been studied by X-ray absorption near edge structure (XANES) and, for the first time, by resonant inelastic X-ray scattering (RIXS) at the Cl K edge. Good agreement was obtained between the non-resonant X-ray emission (XES) along with XANES experimental spectra and the calculated Cl 3p local partial density of states (DOS). The calculations were performed using the full-potential linearized-augmented-plane-wave with the local orbitals (FP-(L)APW l o) method utilized in the WIEN2k code. It was shown that the position of the RIXS band in CdCl 2 follows a linear dispersion according to the Raman–Stokes law if the excitation energy is tuned below the absorption threshold. The situation changes for core excitation above the photoabsorption threshold where the dispersion relation is split into two branches. The position of the resonant contribution does not depend on the excitation energy, while the excitonic sideband follows the Raman–Stoke law. Combined XANES and RIXS measurements compared to calculated band structure allowed us to determine the direct band gap of CdCl 2 to be at 5.7 ± 0.05 eV. -- Highlights: ► XANES at the K edge of Cl and related emission KV band interpreted within the ab initio DFT formalism. ► Two dominant contributions observed in RIXS data: the resonant and the excitonic ones. ► The dispersion relation below the absorption threshold follows Raman–Stokes law. ► Dispersion above the threshold splits into two qualitatively different relations. ► Overlapping of XAS spectrum with RIXS one makes possible to estimate direct band gap value to be 5.7 eV.

  10. Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction.

    Science.gov (United States)

    Marks, Claire; Nowak, Jaroslaw; Klostermann, Stefan; Georges, Guy; Dunbar, James; Shi, Jiye; Kelm, Sebastian; Deane, Charlotte M

    2017-05-01

    Loops are often vital for protein function, however, their irregular structures make them difficult to model accurately. Current loop modelling algorithms can mostly be divided into two categories: knowledge-based, where databases of fragments are searched to find suitable conformations and ab initio, where conformations are generated computationally. Existing knowledge-based methods only use fragments that are the same length as the target, even though loops of slightly different lengths may adopt similar conformations. Here, we present a novel method, Sphinx, which combines ab initio techniques with the potential extra structural information contained within loops of a different length to improve structure prediction. We show that Sphinx is able to generate high-accuracy predictions and decoy sets enriched with near-native loop conformations, performing better than the ab initio algorithm on which it is based. In addition, it is able to provide predictions for every target, unlike some knowledge-based methods. Sphinx can be used successfully for the difficult problem of antibody H3 prediction, outperforming RosettaAntibody, one of the leading H3-specific ab initio methods, both in accuracy and speed. Sphinx is available at http://opig.stats.ox.ac.uk/webapps/sphinx. deane@stats.ox.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  11. A hydronitrogen solid: high pressure ab initio evolutionary structure searches

    International Nuclear Information System (INIS)

    Hu Anguang; Zhang Fan

    2011-01-01

    High pressure ab initio evolutionary structure searches resulted in a hydronitrogen solid with a composition of (NH) 4 . The structure searches also provided two molecular isomers, ammonium azide (AA) and trans-tetrazene (TTZ) which were previously discovered experimentally and can be taken as molecular precursors for high pressure synthesis of the hydronitrogen solid. The computed pressure versus enthalpy diagram showed that the transformation pressure to the hydronitrogen solid is 36 GPa from AA and 75 GPa from TTZ. Its metastability was analyzed by the phonon dispersion spectrum and room-temperature vibrational density of state together with the transformation energy barrier back to molecular phases at 298 K. The predicted energy barrier of 0.21 eV/atom means that the proposed hydronitrogen solid should be very stable at ambient conditions. (fast track communication)

  12. Electronic, elastic, thermodynamic properties and structure disorder of {gamma}-AlON solid solution from ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuezhong, E-mail: wyzphysics@163.com [Department of Physics and Key Laboratory for Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Tianjin Jinhang Institute of Technical Physics, Tianjin 300192 (China); Lu, Tiecheng, E-mail: lutiecheng@scu.edu.cn [Department of Physics and Key Laboratory for Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); International Center for Material Physics, Chinese Academy of Sciences, Shenyang 110015 (China); Zhang, Rongshi [Tianjin Jinhang Institute of Technical Physics, Tianjin 300192 (China); Jiang, Shengli; Qi, Jianqi; Wang, Ying [Department of Physics and Key Laboratory for Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Chen, Qingyun [Department of Physics and Key Laboratory for Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); National Defense Key Discipline Laboratory of Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010 (China); Miao, Naihua [Physique Theorique des Materiaux, Universite de Liege, Sart Tilman B-4000 (Belgium); He, Duanwei [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610064 (China)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer We reassess the chemical bonding character of {gamma}-AlON which shows strong ionicity. Black-Right-Pointing-Pointer {gamma}-AlON single-crystals exhibit highly elastic anisotropy. Black-Right-Pointing-Pointer The thermodynamic properties are investigated in a wider temperature/pressure range. Black-Right-Pointing-Pointer {gamma}-AlON is an O/N partially disordered structure. - Abstract: Spinel aluminium oxynitride ({gamma}-AlON), as a kind of transparent ceramic material expectable, is studied using the ab initio density functional method, in terms of electronic, elastic, thermodynamic properties and structure disorder. The results show that {gamma}-AlON exhibits strong ionicity, as quantitatively expressed by (Al{sub O}{sup 2.43+}){sub 15}(Al{sub T}{sup 2.41+}){sub 8}(O{sup 1.64-}){sub 27}(N{sup 2.27-}){sub 5} from our reassessment of the ionic character. We summarize and speculate that the considered oxynitride single-crystals exhibit highly elastic anisotropy. The interpretation of the thermodynamic properties of {gamma}-AlON according to quasi-harmonic Debye model confirm the available experiments and are extended to a wider temperature/pressure range. This material holds high elastic strength under extreme environments, where dB/dT absolute value is less than 0.03 GPa/K, independent of the pressure. Finally, we study the O/N structure disorder character of {gamma}-AlON solid solution by investigating nine possible crystal structures. It is found that {gamma}-AlON should be partially disordered, and in fact, the O/N ordering has a significant effect on the properties.

  13. Ab initio study of He-He interactions in homogeneous electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinlong; Niu, Liang-Liang; Zhang, Ying, E-mail: zhyi@buaa.edu.cn

    2017-02-15

    Highlights: • Helium atoms interact via the He induced Friedel oscillations of electron densities. • He-He global binding energy minimum of ∼−0.09 eV is reached at an optimal electron density of 0.04 e/Å{sup 3}, corresponding to an optimal He-He separation of ∼1.7 Å. • The present results can qualitatively interpret the well-known He self-trapping behavior in metals. - Abstract: We have investigated the immersion energy of a single He and the He-He interactions in homogeneous electron gas using ab initio calculations. It is found that He dislikes electrons and He-He interact via the He induced Friedel oscillations of electron densities. A critical electron density at which the global binding energy extremum shifts from the first minimum to the second one is identified. We also discover that the He-He global binding energy minimum of ∼−0.09 eV is reached at an optimal electron density of 0.04 e/Å{sup 3}, corresponding to an optimal He-He separation of ∼1.7 Å. Further, the He atoms are found to gain a trivial amount of 2s and 2p states from the free electrons, inducing a hybridization between the He s- and p-states. The present results can qualitatively interpret the well-known He self-trapping behavior in metals.

  14. Ab-initio modeling of an iron laser-induced plasma: Comparison between theoretical and experimental atomic emission spectra

    International Nuclear Information System (INIS)

    Colgan, J.; Judge, E.J.; Kilcrease, D.P.; Barefield, J.E.

    2014-01-01

    We report on efforts to model the Fe emission spectrum generated from laser-induced breakdown spectroscopy (LIBS) measurements on samples of pure iron oxide (Fe 2 O 3 ). Our modeling efforts consist of several components. We begin with ab-initio atomic structure calculations performed by solving the Hartree–Fock equations for the neutral and singly ionized stages of Fe. Our energy levels are then adjusted to their experimentally known values. The atomic transition probabilities and atomic collision quantities are also computed in an ab-initio manner. We perform LTE or non-LTE calculations that generate level populations and, subsequently, an emission spectrum for the iron plasma for a range of electron temperatures and electron densities. Such calculations are then compared to the experimental spectrum. We regard our work as a preliminary modeling effort that ultimately strives towards the modeling of emission spectra from even more complex samples where less atomic data are available. - Highlights: • LIBS plasma of iron oxide • Ab-initio theoretical Modeling • Discussion of LTE versus non-LTE criteria and assessment • Boltzmann plots for Fe—determination of when LTE is a valid assumption • Emission spectra for Fe—comparison of theoretical modeling and measurement: good agreement obtained

  15. Investigation on electronic and magnetic properties of Mn{sub 2}NiAl by ab initio calculations and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000 Safi (Morocco); Jabar, A. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000 Safi (Morocco); Hlil, E.K. [Institut Néel, CNRS, Université Grenoble Alpes, BP 166, F-38042 Grenoble cedex 9 (France); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hourmatallah, A. [Equipe de Physique du Solide, Laboratoire LIPI, Ecole Normale Supérieure, BP 5206, Bensouda, Fes (Morocco); Rezzouk, A.; Bouslykhane, K.; Benzakour, N. [Laboratoire de Physique du Solide, Université Sidi Mohammed Ben Abdellah, Faculté des sciences DharMahraz, BP 1796, Fes (Morocco)

    2017-04-15

    Self-consistent ab initio calculations, based on Density Functional Theory (DFT) approach and using Full potential Linear Augmented Plane Wave (FLAPW) method, are performed to investigate both electronic and magnetic properties of the Mn{sub 2}NiAl. Magnetic moment considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for Monte Carlo simulations to compute other magnetic parameters. Also, the magnetic properties of Mn{sub 2}NiAl are studied using the Monte Carlo simulations. The variation of magnetization and magnetic susceptibility with the reduced temperature of Mn{sub 2}NiAl are investigated. The transition temperature of this system is deduced for different values exchange interaction and crystal field. The thermal total magnetization has been obtained, and the magnetic hysteresis cycle is established. The total magnetic moment is superior to those obtained by the other method and is mainly determined by the antiparallel aligned Mn{sub I}, Mn{sub II} and Ni spin moments. The superparamagnetic phase is found at the neighborhood of transition temperature. - Highlights: • Ab initio calculations are used to study magnetic and electronic properties of Mn{sub 2}NiX. • The transition temperature of Mn{sub 2}NiX is established. • The magnetic hysteresis cycle of M{sub n2}NiX (X = Al, Ga, In, Sn) is deduced. • The magnetic coercive field of Mn{sub 2}NiX (X = Al, Ga, In, Sn) is given.

  16. Weak interactions in Graphane/BN systems under static electric fields—A periodic ab-initio study.

    Science.gov (United States)

    Steinkasserer, Lukas Eugen Marsoner; Gaston, Nicola; Paulus, Beate

    2015-04-21

    Ab-initio calculations via periodic Hartree-Fock (HF) and local second-order Møller-Plesset perturbation theory (LMP2) are used to investigate the adsorption properties of combined Graphane/boron nitride systems and their response to static electric fields. It is shown how the latter can be used to alter both structural as well as electronic properties of these systems.

  17. Steel — ab Initio: Quantum Mechanics Guided Design of New Fe-Based Materials

    Science.gov (United States)

    Prahl, Ulrich; Bleck, Wolfgang; Saeed-Akbari, Alireza

    This contribution reports the results of the collaborative research unit SFB 761 "Steel — ab initio", a cooperative project between RWTH Aachen University and the Max-Planck-Institute for Iron Research in Düsseldorf (MPIE) financed by the German Research Foundation (DFG). For the first time, it is exploited how ab initio approaches may lead to a detailed understanding and thus to a specific improvement of material development. The challenge lies in the combination of abstract natural science theories with rather engineering-like established concepts. Aiming at the technological target of the development of a new type of structural materials based on Fe-Mn-C alloys, the combination of ab initio and engineering methods is new, but could be followed quite successfully. Three major topics are treated in this research unit: a) development of a new method for material- and process-development based on ab initio calculations; b) design of a new class of structural materials with extraordinary property combinations; c) acceleration of development time and reduction of experimental efforts and complexity for material- and process-development. In the present work, an overview of the results of the first five years as well as an outlook for the upcoming three-year period is given.

  18. Ab initio molecular dynamics, iterative methods and multiscale approaches in electronic structure calculations

    International Nuclear Information System (INIS)

    Bernholc, J.

    1998-01-01

    The field of computational materials physics has grown very quickly in the past decade, and it is now possible to simulate properties of complex materials completely from first principles. The presentation has mostly focused on first-principles dynamic simulations. Such simulations have been pioneered by Car and Parrinello, who introduced a method for performing realistic simulations within the context of density functional theory. The Car-Parrinello method and related plane wave approaches are reviewed in depth. The Car-Parrinello method was reviewed and illustrated with several applications: the dynamics of the C 60 solid, diffusion across Si steps, and computing free energy differences. Alternative ab initio simulation schemes, which use preconditioned conjugate gradient techniques for energy minimization and dynamics were also discussed

  19. Large-scale ab initio configuration interaction calculations for light nuclei

    International Nuclear Information System (INIS)

    Maris, Pieter; Potter, Hugh; Vary, James P; Aktulga, H Metin; Ng, Esmond G; Yang Chao; Caprio, Mark A; Çatalyürek, Ümit V; Saule, Erik; Oryspayev, Dossay; Sosonkina, Masha; Zhou Zheng

    2012-01-01

    In ab-initio Configuration Interaction calculations, the nuclear wavefunction is expanded in Slater determinants of single-nucleon wavefunctions and the many-body Schrodinger equation becomes a large sparse matrix problem. The challenge is to reach numerical convergence to within quantified numerical uncertainties for physical observables using finite truncations of the infinite-dimensional basis space. We discuss strategies for constructing and solving the resulting large sparse matrix eigenvalue problems on current multicore computer architectures. Several of these strategies have been implemented in the code MFDn, a hybrid MPI/OpenMP Fortran code for ab-initio nuclear structure calculations that can scale to 100,000 cores and more. Finally, we will conclude with some recent results for 12 C including emerging collective phenomena such as rotational band structures using SRG evolved chiral N3LO interactions.

  20. Atomic ionization of germanium by neutrinos from an ab initio approach

    International Nuclear Information System (INIS)

    Chen, Jiunn-Wei; Chi, Hsin-Chang; Huang, Keh-Ning; Liu, C.-P.; Shiao, Hao-Tse; Singh, Lakhwinder; Wong, Henry T.; Wu, Chih-Liang; Wu, Chih-Pan

    2014-01-01

    An ab initio calculation of atomic ionization of germanium by neutrinos was carried out in the framework of multiconfiguration relativistic random phase approximation and benchmarked by related atomic structure and photoabsorption data. This improves over the conventional approach based on scattering off free electrons whose validity at sub-keV energy transfer is questionable. Limits on neutrino magnetic moments are derived using reactor neutrino data taken with low threshold germanium detectors. Future applications of these atomic techniques will greatly reduce the atomic uncertainties in low-energy neutrino and dark matter detections.

  1. Ab initio study of structural, electronic, optical, and vibrational properties of ZnxSy (x + y = 2 to 5) nanoclusters

    International Nuclear Information System (INIS)

    Yadav, P. S.; Pandey, D. K.; Agrawal, S.; Agrawal, B. K.

    2010-01-01

    An ab initio study of the stability, structural, electronic. and optical properties has been performed for 46 zinc sulfide nanoclusters Zn x S y (x + y = n = 2 to 5). Five out of them are seen to be unstable as their vibrational frequencies are found to be imaginary. A B3LYP-DFT/6-311G(3df) method is employed to optimize the geometries and a TDDFT method is used for the study of the optical properties. The binding energies (BE), HOMO-LUMO gaps and the bond lengths have been obtained for all the clusters. For the ZnS 2 , ZnS 3 , and ZnS 4 nanoclusters, our stable structures are seen to be different from those obtained earlier by using the effective core potentials. We have also considered the zero point energy (ZPE) corrections ignored by the earlier workers. For a fixed value of n, we designate the most stable structure the one, which has maximum final binding energy per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), charges on the atoms, dipole moments, optical properties, vibrational frequencies, infrared intensities, relative infrared intensities, and Raman scattering activities have been investigated for the most stable structures. The nanoclusters containing large number of S atoms for each n is found to be most stable. The HOMO-LUMO gap decreases from n = 2-3 and then increases above n = 3. The IP and EA both fluctuate with the cluster size n. The optical absorption is quite weak in visible region but strong in the ultraviolet region in most of the nanoclusters except a few. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every nanocluster and may be used to characterize a specific nanocluster. The growth of most stable nanoclusters may be possible in the experiments.

  2. Electronic structure and magnetic properties of Pr-Co intermetallics: ab initio FP-LAPW calculations and correlation with experiments

    Science.gov (United States)

    Bakkari, Karim; Fersi, Riadh; Kebir Hlil, El; Bessais, Lotfi; Thabet Mliki, Najeh

    2018-03-01

    First-principle calculations combining density functional theory and the full-potential linearized augmented plane wave (FP-LAPW) method are performed to investigate the electronic and magnetic structure of Pr2Co7 in its two polymorphic forms, (2:7 H) and (2:7 R), for the first time. This type of calculation was also performed for PrCo5 and PrCo2 intermetallics. We have computed the valence density of states separately for spin-up and spin-down states in order to investigate the electronic band structure. This is governed by the strong contribution of the partial DOS of 3d-Co bands compared to the partial DOS of the 4f-Pr bands. Such a high ferromagnetic state is discussed in terms of the strong spin polarization observed in the total DOS. The magnetic moments carried by the Co and Pr atoms located in several sites for all compounds are computed. These results mainly indicate that cobalt atoms make a dominant contribution to the magnetic moments. The notable difference in the atomic moments of Pr and Co atoms between different structural slabs is explained in terms of the magnetic characteristics of the PrCo2 and PrCo5 compounds and the local chemical environments of the Pr and Co atoms in different structural slabs of Pr2Co7. From spin-polarized calculations we have simulated the 3d and 4f band population to estimate the local magnetic moments. These results are in accordance with the magnetic moments calculated using the FP-LAPW method. In addition, the exchange interactions J ij are calculated and used as input for M(T) simulations. Involving the data obtained from the electronic structure calculations, the appropriate Padé Table is applied to simulate the magnetization M(T) and to estimate the mean-field Curie temperature. We report a fairly good agreement between the ab initio calculation of magnetization and Curie temperature with the experimental data.

  3. Raman spectroscopy, ab-initio model calculations, and conformational, equilibria in ionic liquids

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    2009-01-01

    spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT- Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methyl-imidazolium ([C4C1Im]+X-) salts. The rotational isomerism of the [C4C1Im]+ cation is described: the presence of anti.......3 Brief introduction to ab-initio model calculations .... 312 12.4 Case study on Raman spectroscopy and structure of imidazolium-based ionic liquids ..... 312 12.5 Raman spectra and structure of [C4C1Im]+ liquids ..... 315 12.6 Normal mode analysis and rotational isomerism of the [C4C1Im]+ cation...

  4. Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models

    Energy Technology Data Exchange (ETDEWEB)

    Keegan, Ronan M. [STFC Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom); Bibby, Jaclyn; Thomas, Jens [University of Liverpool, Liverpool L69 7ZB (United Kingdom); Xu, Dong [Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 (United States); Zhang, Yang [University of Michigan, Ann Arbor, MI 48109 (United States); Mayans, Olga [University of Liverpool, Liverpool L69 7ZB (United Kingdom); Winn, Martyn D. [Science and Technology Facilities Council Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Rigden, Daniel J., E-mail: drigden@liv.ac.uk [University of Liverpool, Liverpool L69 7ZB (United Kingdom); STFC Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom)

    2015-02-01

    Two ab initio modelling programs solve complementary sets of targets, enhancing the success of AMPLE with small proteins. AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.

  5. Ab Initio Calculations on Halogen Bond Between N-Br and Electron-donating Groups

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-hua; CHEN Xue-song; ZOU Jian-wei; YU Qing-sen

    2007-01-01

    Ab initio calculations of complexes formed between N-bromosuccinimide and a series of electron-donating groups were performed at the level of MP2/Lanl2DZ* to gain a deeper insight into the nature of the N-Br halogen stronger halogen-bonding complex than the C-Br. A comparison of neutral hydrogen bond complex series reveals that the electron-donating capacities of the atoms decrease in the order, N>O>S; O(sp3)>O(sp2), which is adequate for the C-Br halogen bonding. Interaction energies, in conjunction with the geometrical parameters show that the affinitive capacity of trihalide anions X-3 with N-bromosuccinimide are markedly lower than that of the corresponding X- with N-bromosuccinimide, even lower than those of neutral molecules with N-bromosuccinimide. AIM analyses further confirmed the above results.

  6. Ab initio study of thermoelectric properties of doped SnO_2 superlattices

    International Nuclear Information System (INIS)

    Borges, P.D.; Silva, D.E.S.; Castro, N.S.; Ferreira, C.R.; Pinto, F.G.; Tronto, J.; Scolfaro, L.

    2015-01-01

    Transparent conductive oxides, such as tin dioxide (SnO_2), have recently shown to be promising materials for thermoelectric applications. In this work we studied the thermoelectric properties of Fe-, Sb- and Zn-uniformly doping and co-doping SnO_2, as well as of Sb and Zn planar (or delta)-doped layers in SnO_2 forming oxide superlattices (SLs). Based on the semiclassical Boltzmann transport equations (BTE) in conjunction with ab initio electronic structure calculations, the Seebeck coefficient (S) and figure of merit (ZT) are obtained for these systems, and are compared with available experimental data. The delta doping approach introduces a remarkable modification in the electronic structure of tin dioxide, when compared with the uniform doping, and colossal values for ZT are predicted for the delta-doped oxide SLs. This result is a consequence of the two-dimensional electronic confinement and the strong anisotropy introduced by the doped planes. In comparison with the uniformly doped systems, our predictions reveal a promising use of delta-doped SnO_2 SLs for enhanced S and ZT, which emerge as potential candidates for thermoelectric applications. - Graphical abstract: Band structure and Figure of merit for SnO2:Sb superlattice along Z direction, P. D. Borges, D. E. S. Silva, N. S. Castro, C. R. Ferreira, F. G. Pinto, J. Tronto and L. Scolfaro, Ab initio study of thermoelectric properties of doped SnO2 superlattices. - Highlights: • Thermoelectric properties of SnO_2-based alloys and superlattices. • High figure of merit is predicted for planar-doped SnO_2 superlattices. • Nanotechnology has an important role for the development of thermoelectric devices.

  7. Ab initio theory of charge-carrier conduction in ultrapure organic crystals

    NARCIS (Netherlands)

    Hannewald, K.; Bobbert, P.A.

    2004-01-01

    We present an ab initio description of charge-carrier mobilities in organic molecular crystals of high purity. Our approach is based on Holstein's original concept of small-polaron bands but generalized with respect to the inclusion of nonlocal electron-phonon coupling. By means of an explicit

  8. Cooperative effects in the structuring of fluoride water clusters: Ab initio hybrid quantum mechanical/molecular mechanical model incorporating polarizable fluctuating charge solvent

    Science.gov (United States)

    Bryce, Richard A.; Vincent, Mark A.; Malcolm, Nathaniel O. J.; Hillier, Ian H.; Burton, Neil A.

    1998-08-01

    A new hybrid quantum mechanical/molecular mechanical model of solvation is developed and used to describe the structure and dynamics of small fluoride/water clusters, using an ab initio wave function to model the ion and a fluctuating charge potential to model the waters. Appropriate parameters for the water-water and fluoride-water interactions are derived, with the fluoride anion being described by density functional theory and a large Gaussian basis. The role of solvent polarization in determining the structure and energetics of F(H2O)4- clusters is investigated, predicting a slightly greater stability of the interior compared to the surface structure, in agreement with ab initio studies. An extended Lagrangian treatment of the polarizable water, in which the water atomic charges fluctuate dynamically, is used to study the dynamics of F(H2O)4- cluster. A simulation using a fixed solvent charge distribution indicates principally interior, solvated states for the cluster. However, a preponderance of trisolvated configurations is observed using the polarizable model at 300 K, which involves only three direct fluoride-water hydrogen bonds. Ab initio calculations confirm this trisolvated species as a thermally accessible state at room temperature, in addition to the tetrasolvated interior and surface structures. Extension of this polarizable water model to fluoride clusters with five and six waters gave less satisfactory agreement with experimental energies and with ab initio geometries. However, our results do suggest that a quantitative model of solvent polarization is fundamental for an accurate understanding of the properties of anionic water clusters.

  9. A Review of Solid-Solution Models of High-Entropy Alloys Based on Ab Initio Calculations

    Directory of Open Access Journals (Sweden)

    Fuyang Tian

    2017-11-01

    Full Text Available Similar to the importance of XRD in experiments, ab initio calculations, as a powerful tool, have been applied to predict the new potential materials and investigate the intrinsic properties of materials in theory. As a typical solid-solution material, the large degree of uncertainty of high-entropy alloys (HEAs results in the difficulty of ab initio calculations application to HEAs. The present review focuses on the available ab initio based solid-solution models (virtual lattice approximation, coherent potential approximation, special quasirandom structure, similar local atomic environment, maximum-entropy method, and hybrid Monte Carlo/molecular dynamics and their applications and limits in single phase HEAs.

  10. Ab initio theory and calculations of X-ray spectra

    International Nuclear Information System (INIS)

    Rehr, J.J.; Kas, J.J.; Prange, M.P.; Sorini, A.P.; Takimoto, Y.; Vila, F.

    2009-01-01

    There has been dramatic progress in recent years both in the calculation and interpretation of various x-ray spectroscopies. However, current theoretical calculations often use a number of simplified models to account for many-body effects, in lieu of first principles calculations. In an effort to overcome these limitations we describe in this article a number of recent advances in theory and in theoretical codes which offer the prospect of parameter free calculations that include the dominant many-body effects. These advances are based on ab initio calculations of the dielectric and vibrational response of a system. Calculations of the dielectric function over a broad spectrum yield system dependent self-energies and mean-free paths, as well as intrinsic losses due to multielectron excitations. Calculations of the dynamical matrix yield vibrational damping in terms of multiple-scattering Debye-Waller factors. Our ab initio methods for determining these many-body effects have led to new, improved, and broadly applicable x-ray and electron spectroscopy codes. (authors)

  11. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    Science.gov (United States)

    Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P.; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J.; Neves, R. F. C.; Lopes, M. C. A.; de Oliveira, E. M.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Lima, M. A. P.; Jones, D. B.

    2015-10-01

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  12. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    International Nuclear Information System (INIS)

    Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P.; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J.

    2015-01-01

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range

  13. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira da Silva, F.; Lange, E. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt, E-mail: michael.brunger@flinders.edu.au, E-mail: maplima@ifi.unicamp.br [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Jones, N. C.; Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Århus C (Denmark); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Institut de Chimie-Bât. B6C, Université de Liège, B-4000 Liège 1 (Belgium); Brunger, M. J., E-mail: plimaovieira@fct.unl.pt, E-mail: michael.brunger@flinders.edu.au, E-mail: maplima@ifi.unicamp.br [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); and others

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  14. Calculation of electronic stopping power along glancing swift heavy ion tracks in perovskites using ab initio electron density data

    Energy Technology Data Exchange (ETDEWEB)

    Osmani, O; Duvenbeck, A; Akcoeltekin, E; Meyer, R; Schleberger, M [Department of Physics, University of Duisburg-Essen, D-47048 Duisburg (Germany); Lebius, H [CIMAP, blvd Henri Becquerel, 14070 Caen (France)], E-mail: marika.schleberger@uni-due.de

    2008-08-06

    In recent experiments the irradiation of insulators of perovskite type with swift (E{approx}100 MeV) heavy ions under glancing incidence has been shown to provide a unique means to generate periodically arranged nanodots at the surface. The physical origin of these patterns has been suggested as stemming from a highly anisotropic electron density distribution within the bulk. In order to show the relevance of the electron density distribution of the target we present a model calculation for the system Xe{sup 23+} {yields} SrTiO{sub 3} that is known to produce the aforementioned surface modifications. On the basis of the Lindhard model of electronic stopping, we employ highly-resolved ab initio electron density data to describe the conversion of kinetic energy into excitation energy along the ion track. The primary particle dynamics are obtained via integration of the Newtonian equations of motion that are governed by a space- and time-dependent frictional force originating from Lindhard stopping. The analysis of the local electronic stopping power along the ion track reveals a pronounced periodic structure. The periodicity length varies strongly with the particular choice of the polar angle of incidence and is directly correlated to the experimentally observed formation of periodic nanodots at insulator surfaces.

  15. Application of Ab Initio Electronic Structure Calculations in Construction of Phase Diagrams of Metallic Systems with Complex Phases

    Czech Academy of Sciences Publication Activity Database

    Šob, Mojmír; Kroupa, Aleš; Pavlů, Jana; Vřešťál, Jan

    2009-01-01

    Roč. 150, č. 1 (2009), s. 1-28 ISSN 1012-0394 R&D Projects: GA MŠk OC 147; GA ČR GA106/07/1078 Institutional research plan: CEZ:AV0Z20410507 Keywords : Ab initio calculations * CALPHAD method * Laves phases * sigma phase * ternary systems * super-austenitic steels Subject RIV: BM - Solid Matter Physics ; Magnetism

  16. Electron ejection cross sections in electron and ion impact ionization: Ab initio and semiempirical calculations

    International Nuclear Information System (INIS)

    Manson, S.T.; Miller, J.H.; Pacific Northwest Lab., Richland, WA)

    1983-01-01

    Ionization cross sections for heavy ions and electrons incident on various atoms and molecules are required in the modeling of the interaction of radiation with matter. For each case, the energy distribution of secondary electrons (the single differential cross section, SDCS) is needed over a broad range of projectile and secondary electron (delta-ray) energies. In many cases the energy and angular distribution of secondary electrons (the double differential cross section, DDCS) is also necessary. Clearly, it would be desirable to have laboratory SDCS and DDCS measurements for all of the cases required. For a variety of reasons, this is not yet possible. Thus, one must turn elsewhere to obtain the needed cross sections. In this paper, we discuss cross sections obtained in two different ways; ab initio theory based on the first Born approximation, and a semi-empirical method based on the Bethe-Born Approximation. In both cases, results on helium will be presented since the largest amount of data is available in this case. Applications of both methods to other target species are given in the references. The accuracy of the methods and plans for the near future are also discussed. 23 references, 6 figures

  17. Ab initio lattice dynamics of metal surfaces

    International Nuclear Information System (INIS)

    Heid, R.; Bohnen, K.-P.

    2003-01-01

    Dynamical properties of atoms on surfaces depend sensitively on their bonding environment and thus provide valuable insight into the local geometry and chemical binding at the boundary of a solid. Density-functional theory provides a unified approach to the calculation of structural and dynamical properties from first principles. Its high accuracy and predictive power for lattice dynamical properties of semiconductor surfaces has been demonstrated in a previous article by Fritsch and Schroeder (Phys. Rep. 309 (1999) 209). In this report, we review the state-of-the-art of these ab initio approaches to surface dynamical properties of metal surfaces. We give a brief introduction to the conceptual framework with focus on recent advances in computational procedures for the ab initio linear-response approach, which have been a prerequisite for an efficient treatment of surface dynamics of noble and transition metals. The discussed applications to clean and adsorbate-covered surfaces demonstrate the high accuracy and reliability of this approach in predicting detailed microscopic properties of the phonon dynamics for a wide range of metallic surfaces

  18. Ab-initio study of magnetism behavior in TiO{sub 2} semiconductor with structural defects

    Energy Technology Data Exchange (ETDEWEB)

    Zarhri, Z., E-mail: z.zarhri@gmail.com; Houmad, M.; Ziat, Y.; El Rhazouani, O.; Slassi, A.; Benyoussef, A.; El Kenz, A.

    2016-05-15

    Magnetic, electronic and structural properties of titanium dioxide material with different structural defects are studied using the first-principles ab-initio calculations and the Korringa–Kohn–Rostoker method (KKR) combined with the coherent potential approximation (CPA) method in connection with the local density approximation (LDA). We investigated all structural defects in rutile TiO{sub 2} such as Titanium interstitial (Ti{sub i}), Titanium anti-sites (Ti{sub o}), Titanium vacancies (V{sub Ti}), Oxygen interstitial (O{sub i}), Oxygen anti-sites (O{sub Ti}) and oxygen vacancies (V{sub o}). Mechanisms of hybridization and interaction between magnetic atoms are investigated. The transition temperature is computed using the Mean Field Approximation (MFA).Magnetic stability energy of ferromagnetic and disordered local moment states is calculated to determine the most stable state. Titanium anti-sites have a half-metallic aspect. We also studied the change type caused by structural defects in this material. - Highlights: • Green function technique is used to study disordered systems. • We used DFT to study electronic structure of TiO{sub 2} perturbed by defects. • TiO{sub 2} with titanium antisite defect posesses a magnetic behavior. • The transition temperature is computed using the Mean Field Approximation.

  19. Ab initio study of phase equilibria in TiCx

    DEFF Research Database (Denmark)

    Korzhavyi, P.A.; Pourovskii, L.V.; Hugosson, H.W.

    2002-01-01

    The phase diagram for the vacancy-ordered structures in the substoichiometric TiCx (x = 0.5-1.0) has been established from Monte Carlo simulations with the long-range pair and multisite effective interactions obtained from ab initio calculations. Three ordered superstructures of vacancies (Ti2C, Ti...

  20. Highly scalable Ab initio genomic motif identification

    KAUST Repository

    Marchand, Benoit; Bajic, Vladimir B.; Kaushik, Dinesh

    2011-01-01

    We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.

  1. Dominant Modes in Light Nuclei - Ab Initio View of Emergent Symmetries

    International Nuclear Information System (INIS)

    Draayer, J P; Dytrych, T; Launey, K D; Dreyfuss, A C; Langr, D

    2015-01-01

    An innovative symmetry-guided concept is discussed with a focus on emergent symmetry patterns in complex nuclei. In particular, the ab initio symmetry-adapted no-core shell model (SA-NCSM), which capitalizes on exact as well as partial symmetries that underpin the structure of nuclei, provides remarkable insight into how simple symmetry patterns emerge in the many-body nuclear dynamics from first principles. This ab initio view is complemented by a fully microscopic no-core symplectic shell-model framework (NCSpM), which, in turn, informs key features of the primary physics responsible for the emergent phenomena of large deformation and alpha-cluster substructures in studies of the challenging Hoyle state in Carbon-12 and enhanced collectivity in intermediate-mass nuclei. Furthermore, by recognizing that deformed configurations often dominate the low-energy regime, the SA-NCSM provides a strategy for determining the nature of bound states of nuclei in terms of a relatively small subspace of the symmetry-reorganized complete model space, which opens new domains of nuclei for ab initio investigations, namely, the intermediate-mass region, including isotopes of Ne, Mg, and Si

  2. Determination of the electronic energy levels of colloidal nanocrystals using field-effect transistors and Ab-initio calculations.

    Science.gov (United States)

    Bisri, Satria Zulkarnaen; Degoli, Elena; Spallanzani, Nicola; Krishnan, Gopi; Kooi, Bart Jan; Ghica, Corneliu; Yarema, Maksym; Heiss, Wolfgang; Pulci, Olivia; Ossicini, Stefano; Loi, Maria Antonietta

    2014-08-27

    Colloidal nanocrystals electronic energy levels are determined by strong size-dependent quantum confinement. Understanding the configuration of the energy levels of nanocrystal superlattices is vital in order to use them in heterostructures with other materials. A powerful method is reported to determine the energy levels of PbS nanocrystal assemblies by combining the utilization of electric-double-layer-gated transistors and advanced ab-initio theory. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electronic structure investigation of MoS2 and MoSe2 using angle-resolved photoemission spectroscopy and ab initio band structure studies.

    Science.gov (United States)

    Mahatha, S K; Patel, K D; Menon, Krishnakumar S R

    2012-11-28

    Angle-resolved photoemission spectroscopy (ARPES) and ab initio band structure calculations have been used to study the detailed valence band structure of molybdenite, MoS(2) and MoSe(2). The experimental band structure obtained from ARPES has been found to be in good agreement with the theoretical calculations performed using the linear augmented plane wave (LAPW) method. In going from MoS(2) to MoSe(2), the dispersion of the valence bands decreases along both k(parallel) and k(perpendicular), revealing the increased two-dimensional character which is attributed to the increasing interlayer distance or c/a ratio in these compounds. The width of the valence band and the band gap are also found to decrease, whereas the valence band maxima shift towards the higher binding energy from MoS(2) to MoSe(2).

  4. Ab Initio Calculation of Hyperfine Interaction Parameters: Recent Evolutions, Recent Examples

    International Nuclear Information System (INIS)

    Cottenier, Stefaan; Vanhoof, Veerle; Torumba, Doru; Bellini, Valerio; Cakmak, Mehmet; Rots, Michel

    2004-01-01

    For some years already, ab initio calculations based on Density Functional Theory (DFT) belong to the toolbox of the field of hyperfine interaction studies. In this paper, the standard ab initio approach is schematically sketched. New features, methods and possibilities that broke through during the past few years are listed, and their relation to the standard approach is explained. All this is illustrated by some highlights of recent ab initio work done by the Nuclear Condensed Matter Group at the K.U.Leuven.

  5. Ab initio study of the EFG at the N sites in imidazole

    Energy Technology Data Exchange (ETDEWEB)

    Brown Goncalves, Marcos, E-mail: browngon@if.usp.br [Universidade de Sao Paulo, Instituto de Fisica (Brazil); Di Felice, R. [National Center on Nanostructures and Biosystems at Surfaces (S3) of INFM-CNR (Italy); Poleshchuk, O. Kh. [Tomsk State Pedagogical University (Russian Federation); Petrilli, H. M. [Universidade de Sao Paulo, Instituto de Fisica (Brazil)

    2008-01-15

    We study the nuclear quadrupole interaction at the nitrogen sites in the molecular and crystalline phases of the imidazole compound. We use PAW which is a state-of-the-art method to calculate the electronic structure and electric field gradient at the nucleus in the framework of the density functional theory. The quadrupole frequencies at both imino and amino N sites are in excellent agreement with measurements. This is the first time that the electric field gradient at crystalline imidazole is correctly treated by an ab initio theoretical approach.

  6. Structural, electronic and magnetic properties of LaCr2Si2C: Ab initio calculation, mean field approximation and Monte-Carlo simulation

    Science.gov (United States)

    Endichi, A.; Zaari, H.; Benyoussef, A.; El Kenz, A.

    2018-06-01

    The magnetic behavior of LaCr2Si2C compound is investigated in this work, using first principle methods, Monte Carlo simulation (MCS) and mean field approximation (MFA). The structural, electronic and magnetic properties are described using ab initio method in the framework of the Generalized Gradient Approximation (GGA), and the Full Potential-Linearized Augmented Plane Wave (FP-LAPW) method implemented in the WIEN2K packages. We have also computed the coupling terms between magnetic atoms which are used in Hamiltonian model. A theoretical study realized by mean field approximation and Monte Carlo Simulation within the Ising model is used to more understand the magnetic properties of this compound. Thereby, our results showed a ferromagnetic ordering of the Cr magnetic moments below the Curie temperature of 30 K (Tc magnetization, the energy, the specific heat and the susceptibility. This material shows the small sign of supra-conductivity; and future researches could be focused to enhance the transport and magnetic properties of this system.

  7. Mechanical and magneto-opto-electronic investigation of transition metal based fluoro-perovskites: An ab-initio DFT study

    Science.gov (United States)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2017-09-01

    Detailed ab-initio calculations are performed to investigate structural, elastic, mechanical, magneto-electronic and optical properties of the KXF3 (X = V, Fe, Co, Ni) fluoro-perovskites using Full Potential Linearized Augmented Plane Wave (FP-LAPW) method within the framework of density functional theory (DFT). The calculated structural parameters by DFT and analytical methods are found consistent with the experimental results. From the elastic and mechanical properties, it can be inferred that these compounds are elastically stable and anisotropic while KCoF3 is harder than rest of the compounds. Furthermore, thermal behavior of these compounds is analyzed by calculating Debye temperature (θD). The calculated spin dependent magneto-electronic properties in these compounds reveal that exchange splitting is dominated by N-3d orbital. The stable magnetic phase optimizations verify the experimental observations at low temperature. Type of chemical bonding is analyzed with the help of variations in electron density difference distribution that is induced due to changes of the second cation. The linear optical properties are also discussed in terms of optical spectra. The present methodology represents an influential approach to calculate the whole set of mechanical and magneto-opto-electronic parameters, which would support to understand various physical phenomena and empower device engineers for implementing these materials in spintronic applications.

  8. Electronic structure and metallization of cubic GdH{sub 3} under pressure: Ab initio many-body GW calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Bo, E-mail: kong79@yeah.net, E-mail: yachao.zhang@pku.edu.cn [School of Physics and Electronic Sciences, Guizhou Education University, Guiyang 550018 (China); Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018 (China); Zhang, Yachao, E-mail: kong79@yeah.net, E-mail: yachao.zhang@pku.edu.cn [Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018 (China)

    2016-07-07

    The electronic structures of the cubic GdH{sub 3} are extensively investigated using the ab initio many-body GW calculations treating the Gd 4f electrons either in the core (4f-core) or in the valence states (4f-val). Different degrees of quasiparticle (QP) self-consistent calculations with the different starting points are used to correct the failures of the GGA/GGA + U/HSE03 calculations. In the 4f-core case, GGA + G{sub 0}W{sub 0} calculations give a fundamental band gap of 1.72 eV, while GGA+ GW{sub 0} or GGA + GW calculations present a larger band gap. In the 4f-val case, the nonlocal exchange-correlation (xc) functional HSE03 can account much better for the strong localization of the 4f states than the semilocal or Hubbard U corrected xc functional in the Kohn–Sham equation. We show that the fundamental gap of the antiferromagnetic (AFM) or ferromagnetic (FM) GdH{sub 3} can be opened up by solving the QP equation with improved starting point of eigenvalues and wave functions given by HSE03. The HSE03 + G{sub 0}W{sub 0} calculations present a fundamental band gap of 2.73 eV in the AFM configuration, and the results of the corresponding GW{sub 0} and GW calculations are 2.89 and 3.03 eV, respectively. In general, for the cubic structure, the fundamental gap from G{sub 0}W{sub 0} calculations in the 4f-core case is the closest to the real result. By G{sub 0}W{sub 0} calculations in the 4f-core case, we find that H or Gd defects can strongly affect the band structure, especially the H defects. We explain the mechanism in terms of the possible electron correlation on the hydrogen site. Under compression, the insulator-to-metal transition in the cubic GdH{sub 3} occurs around 40 GPa, which might be a satisfied prediction.

  9. Ab Initio Description of Disordered Sr1−xKxFe2As2 Using the Coherent Potential Approximation

    KAUST Repository

    Pulikkotil, J. J.; Schwingenschlö gl, Udo

    2010-01-01

    The electronic structure of disordered Sr1−xKxFe2As2 is studied by ab initio density functional theory. As no superstructure and/or atomic short range ordering is reported for Sr1−xKxFe2As2, the coherent potential approximation can be used

  10. Modeling Disordered Materials with a High Throughput ab-initio Approach

    Science.gov (United States)

    2015-11-13

    Modeling Disordered Materials with a High Throughput ab - initio Approach Kesong Yang,1 Corey Oses,2 and Stefano Curtarolo3, 4 1Department of...J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169–11186 (1996

  11. Embedded atom approach for gold–silicon system from ab initio

    Indian Academy of Sciences (India)

    In the present paper, an empirical embedded atom method (EAM) potential for gold–silicon (Au–Si) is developed by fitting to ab initio force (the 'force matching' method) and experimental data. The force database is generated within ab initio molecular dynamics (AIMD). The database includes liquid phase at various ...

  12. Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks

    Directory of Open Access Journals (Sweden)

    Martin Alberto JM

    2009-01-01

    Full Text Available Abstract Background Prediction of protein structures from their sequences is still one of the open grand challenges of computational biology. Some approaches to protein structure prediction, especially ab initio ones, rely to some extent on the prediction of residue contact maps. Residue contact map predictions have been assessed at the CASP competition for several years now. Although it has been shown that exact contact maps generally yield correct three-dimensional structures, this is true only at a relatively low resolution (3–4 Å from the native structure. Another known weakness of contact maps is that they are generally predicted ab initio, that is not exploiting information about potential homologues of known structure. Results We introduce a new class of distance restraints for protein structures: multi-class distance maps. We show that Cα trace reconstructions based on 4-class native maps are significantly better than those from residue contact maps. We then build two predictors of 4-class maps based on recursive neural networks: one ab initio, or relying on the sequence and on evolutionary information; one template-based, or in which homology information to known structures is provided as a further input. We show that virtually any level of sequence similarity to structural templates (down to less than 10% yields more accurate 4-class maps than the ab initio predictor. We show that template-based predictions by recursive neural networks are consistently better than the best template and than a number of combinations of the best available templates. We also extract binary residue contact maps at an 8 Å threshold (as per CASP assessment from the 4-class predictors and show that the template-based version is also more accurate than the best template and consistently better than the ab initio one, down to very low levels of sequence identity to structural templates. Furthermore, we test both ab-initio and template-based 8

  13. Ab initio study of thermoelectric properties of doped SnO{sub 2} superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Borges, P.D., E-mail: pdborges@gmail.com [Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, 38810-000 Rio Paranaíba, MG (Brazil); Silva, D.E.S.; Castro, N.S.; Ferreira, C.R.; Pinto, F.G.; Tronto, J. [Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, 38810-000 Rio Paranaíba, MG (Brazil); Scolfaro, L. [Department of Physics, Texas State University, 78666 San Marcos, TX (United States)

    2015-11-15

    Transparent conductive oxides, such as tin dioxide (SnO{sub 2}), have recently shown to be promising materials for thermoelectric applications. In this work we studied the thermoelectric properties of Fe-, Sb- and Zn-uniformly doping and co-doping SnO{sub 2}, as well as of Sb and Zn planar (or delta)-doped layers in SnO{sub 2} forming oxide superlattices (SLs). Based on the semiclassical Boltzmann transport equations (BTE) in conjunction with ab initio electronic structure calculations, the Seebeck coefficient (S) and figure of merit (ZT) are obtained for these systems, and are compared with available experimental data. The delta doping approach introduces a remarkable modification in the electronic structure of tin dioxide, when compared with the uniform doping, and colossal values for ZT are predicted for the delta-doped oxide SLs. This result is a consequence of the two-dimensional electronic confinement and the strong anisotropy introduced by the doped planes. In comparison with the uniformly doped systems, our predictions reveal a promising use of delta-doped SnO{sub 2} SLs for enhanced S and ZT, which emerge as potential candidates for thermoelectric applications. - Graphical abstract: Band structure and Figure of merit for SnO2:Sb superlattice along Z direction, P. D. Borges, D. E. S. Silva, N. S. Castro, C. R. Ferreira, F. G. Pinto, J. Tronto and L. Scolfaro, Ab initio study of thermoelectric properties of doped SnO2 superlattices. - Highlights: • Thermoelectric properties of SnO{sub 2}-based alloys and superlattices. • High figure of merit is predicted for planar-doped SnO{sub 2} superlattices. • Nanotechnology has an important role for the development of thermoelectric devices.

  14. Equations of state of heavy metals: ab initio approaches; Equations d'etat des metaux lourds: approches ab initio

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, S.; Jollet, F.; Jomard, G.; Siberchicot, B.; Torrent, M.; Zerah, G.; Amadon, B.; Bouchet, J.; Richard, N.; Robert, G. [CEA Bruyeres-le-Chatel, 91 (France)

    2005-07-01

    The determination of equations of states of heavy metals through ab initio calculation, i.e. without any adjustable parameter, allows to access to pressure and temperature thermodynamic conditions sometimes inaccessible to experiment. To perform such calculations, density functional theory (DFT) is a good starting point: when electronic densities are homogeneous enough, the local density approximation (LDA) remarkably accounts for thermodynamic properties of heavy metals, such as tantalum, or the light actinides, as well for static properties - equilibrium volume, elastic constants - as for dynamical quantities like phonon spectra. For heavier elements, like neptunium or plutonium, relativistic effects and strong electronic interactions must be taken into account, which requires more sophisticated theoretical approaches. (authors)

  15. Ab initio investigation of isomerism in not rigid dimer molecules of (LiAB)2 salts with 20 valent electrons (AB-=BO-, AlO-, BS-, AlS-, CN-, CP-, SiN-, SiP-)

    International Nuclear Information System (INIS)

    Charkin, O.P.; Klimenko, N.M.; MakKi, M.L.; Shlojer, P.R.

    1999-01-01

    Ab initio calculations of potential energy surfaces in neighborhood of key structures of non rigid dimer molecules of lithium salts of (LiAB) 2 type - (LiBO) 2 , (LiAlO) 2 , (LiBS) 2 , (LiAlS) 2 , (LiCN) 2 , (LiSiN) 2 , (LiCP) 2 , (LiSiP) 2 - with 20 valent electrons are done in the framework of MP2/6-31G8//HF/6-31G* + ZPE(HF/6-31G*) and MP4SDTQ/6-31G*//MP2/6-31G* + ZPE(MP2/6-31G*) approximations. Totality of low-lying isomers containing four- and six-membered cycles with lithium bridges is localized. It is shown that for all cycles not rigidity to high deformation of angles in the case of low energy changes is characterized. Equilibrium geometrical parameters, relative energy and energy of isomer decomposition, frequency and intensities of normal vibrations are determined [ru

  16. Ab initio investigation of the structure and nonlinear optical properties of five-membered heterocycles containing sulfur

    International Nuclear Information System (INIS)

    Spassova, Milena; Enchev, Venelin

    2004-01-01

    An ab initio HF and MP2 study of the static (hyper)polarizabilities of 2,4-substituted imidazoles and thiazoles is presented. The comparison of the two types of five-membered heterocycles suggests, that the exocyclic heteroatoms have much more influence upon the calculated hyperpolarizabilities, than the ring heteroatoms. It has been found, that adding diffuse functions to the 6-31G** basis set and inclusion of the electron correlation result in drastic changes in the second hyperpolarizability. The changes are more pronounced for the structures with larger number of sulfur atoms. A HF/6-31G** investigation of a push-pull system, in which thiorhodanine has been chosen as acceptor fragment shows an enhancement of the molecular polarizabilities with respect to the corresponding typical donor-acceptor NH 2 /NO 2 polyene

  17. Quantum mechanical ab initio simulation of the electron screening effect in metal deuteride crystals

    Energy Technology Data Exchange (ETDEWEB)

    Huke, A.; Chun, S.M.; Biller, A.; Heide, P. [Technische Universitaet Berlin, Institut fuer Optik und Atomare Physik, Berlin (Germany); Czerski, K. [Technische Universitaet Berlin, Institut fuer Optik und Atomare Physik, Berlin (Germany); University of Szczecin, Institute of Physics, Szczecin (Poland)

    2008-02-15

    In antecedent experiments the electron screening energies of the d+d reactions in metallic environments have been determined to be enhanced by an order of magnitude in comparison to the case of gaseous deuterium targets. The analytical models describing averaged material properties have not been able to explain the experimental results so far. Therefore, a first effort has been undertaken to simulate the dynamics of reacting deuterons in a metallic lattice by means of an ab initio Hartree-Fock calculation of the total electrostatic force between the lattice and the successively approaching deuterons via path integration. The calculations have been performed for Li and Ta, clearly showing a migration of electrons from host metallic to the deuterium atoms. However, in order to avoid more of the necessary simplifications in the model the utilization of a massive parallel supercomputer would be required. (orig.) 3.

  18. Ab-initio atomic level stress and role of d-orbitals in CuZr, CuZn and CuY

    Science.gov (United States)

    Ojha, Madhusudan; Nicholson, Don M.; Egami, Takeshi

    2015-03-01

    Atomic level stress offers a new tool to characterize materials within the local approximation to density functional theory (DFT). Ab-initio atomic level stresses in B2 structures of CuZr, CuZn and CuY are calculated and results are explained on the basis of d-orbital contributions to Density of States (DOS). The overlap of d-orbital DOS plays an important role in the relative magnitude of atomic level stresses in these structures. The trends in atomic level stresses that we observed in these simple B2 structures are also seen in complex structures such as liquids, glasses and solid solutions. The stresses are however modified by the different coordination and relaxed separation distances in these complex structures. We used the Locally Self-Consistent Multiple Scattering (LSMS) code and Vienna Ab-initio Simulation Package (VASP) for ab-initio calculations.

  19. Towards hydrogen metallization: an Ab initio approach; Vers la metallisation de l`hydrogene: approche AB initio

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, St

    1998-12-31

    The quest for metallic hydrogen is a major goal for both theoretical and experimental condensed matter physics. Hydrogen and deuterium have been compressed up to 200 GPa in diamond anvil cells, without any clear evidence for a metallic behaviour. Loubeyere has recently suggested that hydrogen could metallize, at pressures within experimental range, in a new Van der Waals compound: Ar(H{sub 2}){sub 2} which is characterized at ambient pressure by an open and anisotropic sublattice of hydrogen molecules, stabilized by an argon skeleton. This thesis deals with a detailed ab initio investigation, by Car-Parrinello molecular dynamics methods, of the evolution under pressure of this compound. In a last chapter, we go to much higher pressures and temperatures, in order to compare orbital and orbital free ab initio methods for the dense hydrogen plasma. (author) 109 refs.

  20. Towards hydrogen metallization: an Ab initio approach; Vers la metallisation de l`hydrogene: approche AB initio

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, St

    1999-12-31

    The quest for metallic hydrogen is a major goal for both theoretical and experimental condensed matter physics. Hydrogen and deuterium have been compressed up to 200 GPa in diamond anvil cells, without any clear evidence for a metallic behaviour. Loubeyere has recently suggested that hydrogen could metallize, at pressures within experimental range, in a new Van der Waals compound: Ar(H{sub 2}){sub 2} which is characterized at ambient pressure by an open and anisotropic sublattice of hydrogen molecules, stabilized by an argon skeleton. This thesis deals with a detailed ab initio investigation, by Car-Parrinello molecular dynamics methods, of the evolution under pressure of this compound. In a last chapter, we go to much higher pressures and temperatures, in order to compare orbital and orbital free ab initio methods for the dense hydrogen plasma. (author) 109 refs.

  1. Ab initio study of structural and mechanical property of solid molecular hydrogens

    Science.gov (United States)

    Ye, Yingting; Yang, Li; Yang, Tianle; Nie, Jinlan; Peng, Shuming; Long, Xinggui; Zu, Xiaotao; Du, Jincheng

    2015-06-01

    Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H2). The influence of molecular axes of H2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.

  2. Computational methods for ab initio detection of microRNAs

    Directory of Open Access Journals (Sweden)

    Malik eYousef

    2012-10-01

    Full Text Available MicroRNAs are small RNA sequences of 18-24 nucleotides in length, which serve as templates to drive post transcriptional gene silencing. The canonical microRNA pathway starts with transcription from DNA and is followed by processing via the Microprocessor complex, yielding a hairpin structure. Which is then exported into the cytosol where it is processed by Dicer and then incorporated into the RNA induced silencing complex. All of these biogenesis steps add to the overall specificity of miRNA production and effect. Unfortunately, their modes of action are just beginning to be elucidated and therefore computational prediction algorithms cannot model the process but are usually forced to employ machine learning approaches. This work focuses on ab initio prediction methods throughout; and therefore homology-based miRNA detection methods are not discussed. Current ab initio prediction algorithms, their ties to data mining, and their prediction accuracy are detailed.

  3. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.

    Science.gov (United States)

    Yang, Lina; Minnich, Austin J

    2017-03-14

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.

  4. Phase diagrams from ab-initio calculations: Re-W and Fe-B

    Energy Technology Data Exchange (ETDEWEB)

    Hammerschmidt, Thomas; Bialon, Arthur; Palumbo, Mauro; Fries, Suzana G.; Drautz, Ralf [ICAMS, Ruhr-Universitaet Bochum (Germany)

    2011-07-01

    The CALPHAD (CaLculation of Phase Diagrams) method relies on Gibbs energy databases and is of limited predictive power in cases where only limited experimental data is available for constructing the Gibbs energy databases. This is problematic for, e.g., the calculation of the phase transformation kinetics within phase field simulations that not only require the thermodynamic equilibrium data but also information on metastable phases. Such information is difficult to obtain directly from experiment but ab-initio calculations may supplement experimental databases as they comprise metastable phases and arbitrary chemical compositions. We present simulations for two prototypical systems: Re-W and Fe-B. For both systems we calculate the heat of formation for an extensive set of structures using ab-initio calculations and employ the total energies in CALPHAD in order to determine the corresponding phase diagrams. We account for the configurational entropy within the Bragg-Williams approximation and neglect the phenomenological excess-term that is commonly used in CALPHAD as well as the contribution of phonons and electronic excitations to the free energy. According to our calculations the complex intermetallic phases in Re-W are stabilized by the configurational entropy. For Fe-B, we calculate metastable and stable phase diagrams including recently predicted new stable phases.

  5. Ab-initio Computation of the Electronic, transport, and Bulk Properties of Calcium Oxide.

    Science.gov (United States)

    Mbolle, Augustine; Banjara, Dipendra; Malozovsky, Yuriy; Franklin, Lashounda; Bagayoko, Diola

    We report results from ab-initio, self-consistent, local Density approximation (LDA) calculations of electronic and related properties of calcium oxide (CaO) in the rock salt structure. We employed the Ceperley and Alder LDA potential and the linear combination of atomic orbitals (LCAO) formalism. Our calculations are non-relativistic. We implemented the LCAO formalism following the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). The BZW-EF method involves a methodical search for the optimal basis set that yields the absolute minima of the occupied energies, as required by density functional theory (DFT). Our calculated, indirect band gap of 6.91eV, from towards the L point, is in excellent agreement with experimental value of 6.93-7.7eV, at room temperature (RT). We have also calculated the total (DOS) and partial (pDOS) densities of states as well as the bulk modulus. Our calculated bulk modulus is in excellent agreement with experiment. Work funded in part by the US Department of Energy (DOE), National Nuclear Security Administration (NNSA) (Award No.DE-NA0002630), the National Science Foundation (NSF) (Award No, 1503226), LaSPACE, and LONI-SUBR.

  6. Electron transport in all-Heusler Co2CrSi/Cu2CrAl/Co2CrSi device, based on ab-initio NEGF calculations

    Science.gov (United States)

    Mikaeilzadeh, L.; Pirgholi, M.; Tavana, A.

    2018-05-01

    Based on the ab-initio non-equilibrium Green's function (NEGF) formalism based on the density functional theory (DFT), we have studied the electron transport in the all-Heusler device Co2CrSi/Cu2CrAl/Co2CrSi. Results show that the calculated transmission spectra is very sensitive to the structural parameters and the interface. Also, we obtain a range for the thickness of the spacer layer for which the MR effect is optimum. Calculations also show a perfect GMR effect in this device.

  7. Ab initio potential for solids

    DEFF Research Database (Denmark)

    Chetty, N.; Stokbro, Kurt; Jacobsen, Karsten Wedel

    1992-01-01

    . At the most approximate level, the theory is equivalent to the usual effective-medium theory. At all levels of approximation, every term in the total-energy expression is calculated ab initio, that is, without any fitting to experiment or to other calculations. Every step in the approximation procedure can...

  8. Hydrogen Bond Dynamics in Aqueous Solutions: Ab initio Molecular ...

    Indian Academy of Sciences (India)

    Rate equation for the decay of CHB(t) · Definition of Hydrogen Bonds · Results of Molecular Dynamics · Dynamics of anion-water and water-water hydrogen bonds · Structural relaxation of anion-water & water-water H-bonds · Ab initio Molecular Dynamics : · Slide 14 · Dynamics of hydrogen bonds : CPMD results · Slide 16.

  9. Ramsdellite-structured LiTiO 2: A new phase predicted from ab initio calculations

    Science.gov (United States)

    Koudriachova, M. V.

    2008-06-01

    A new phase of highly lithiated titania with potential application as an anode in Li-rechargeable batteries is predicted on the basis of ab initio calculations. This phase has a composition LiTiO2 and may be accessed through electrochemical lithiation of ramsdellite-structured TiO2 at the lowest potential reported for titanium dioxide based materials. The potential remains constant over a wide range of Li-concentrations. The new phase is metastable with respect to a tetragonally distorted rock salt structure, which hitherto has been the only known polymorph of LiTiO2.

  10. Ab initio study of H + + H 2 collisions: Elastic/inelastic and charge transfer processes

    Science.gov (United States)

    Saieswari, A.; Kumar, Sanjay

    2007-12-01

    An ab initio full configuration interaction study has been undertaken to obtain the global potential energy surfaces for the ground and the first excited electronic state of the H + + H 2 system employing Dunning's cc-pVQZ basis set. Using the ab initio approach the corresponding quasi-diabatic potential energy surfaces and coupling potentials have been obtained. A time-independent quantum mechanical study has been also undertaken for both the inelastic and charge transfer processes at the experimental collision energy Ec.m. = 20.0 eV and the preliminary results show better agreement with the experimental data as compared to the earlier available theoretical studies.

  11. Ab-initio calculations for dilute magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Belhadji, Brahim

    2008-03-03

    This thesis focusses on ab-initio calculations for the electronic structure and the magnetic properties of dilute magnetic semiconductors (DMS). In particular we aim at the understanding of the complex exchange interactions in these systems. Our calculations are based on density functional theory, being ideally suited for a description of the material specific properties of the considered DMS. Moreover we use the KKR Green function method in connection with the coherent potential approximation (CPA), which allows to include the random substitutional disorder in a mean field-like approximation for the electronic structure. Finally we calculate the exchange coupling constants J{sub ij} between two impurities in a CPA medium by using the Lichtenstein formula and from this calculate the Curie temperature by a numerically exact Monte Carlo method. Based on this analysis we found and investigated four different exchange mechanisms being of importance in DMS systems: Double exchange, p-d exchange, antiferromagnetic superexchanges, and ferromagnetic superexchange. A second topic we have investigated in this thesis is the pressure dependence of the exchange interactions and the Curie temperatures in (Ga,Mn)As and (In,Mn)As, using the LDA and the LDA+U approximations. Exact calculations of T{sub C} by Monte Carlo simulations show a somehow different behavior. (orig.)

  12. Comparison between s - and d -electron mediated transport in a photoswitching dithienylethene molecule using ab initio transport methods

    KAUST Repository

    Odell, Anders

    2011-10-03

    The influence of the electrode\\'s Fermi surface on the transport properties of a photoswitching molecule is investigated with state-of-the-art ab initio transport methods. We report results for the conducting properties of the two forms of dithienylethene attached either to Ag or to nonmagnetic Ni leads. The I-V curves of the Ag/dithienylethene/Ag device are found to be very similar to those reported previously for Au. In contrast, when Ni is used as the electrode material the zero-bias transmission coefficient is profoundly different as a result of the role played by the Ni d bands in the bonding between the molecule and the electrodes. Intriguingly, despite these differences the overall conducting properties depend little on the electrode material. We thus conclude that electron transport in dithienylethene is, for the cases studied, mainly governed by the intrinsic electronic structure of the molecule. © 2011 American Physical Society.

  13. Ab initio study of structural, electronic, optical, and vibrational properties of Zn x S y ( x + y = 2 to 5) nanoclusters

    Science.gov (United States)

    Yadav, P. S.; Pandey, D. K.; Agrawal, S.; Agrawal, B. K.

    2010-03-01

    An ab initio study of the stability, structural, electronic. and optical properties has been performed for 46 zinc sulfide nanoclusters Zn x S y ( x + y = n = 2 to 5). Five out of them are seen to be unstable as their vibrational frequencies are found to be imaginary. A B3LYP-DFT/6-311G(3df) method is employed to optimize the geometries and a TDDFT method is used for the study of the optical properties. The binding energies (BE), HOMO-LUMO gaps and the bond lengths have been obtained for all the clusters. For the ZnS2, ZnS3, and ZnS4 nanoclusters, our stable structures are seen to be different from those obtained earlier by using the effective core potentials. We have also considered the zero point energy (ZPE) corrections ignored by the earlier workers. For a fixed value of n, we designate the most stable structure the one, which has maximum final binding energy per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), charges on the atoms, dipole moments, optical properties, vibrational frequencies, infrared intensities, relative infrared intensities, and Raman scattering activities have been investigated for the most stable structures. The nanoclusters containing large number of S atoms for each n is found to be most stable. The HOMO-LUMO gap decreases from n = 2-3 and then increases above n = 3. The IP and EA both fluctuate with the cluster size n. The optical absorption is quite weak in visible region but strong in the ultraviolet region in most of the nanoclusters except a few. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every nanocluster and may be used to characterize a specific nanocluster. The growth of most stable nanoclusters may be possible in the experiments.

  14. Phase stability and electronic structure of transition-metal aluminides

    International Nuclear Information System (INIS)

    Carlsson, A.E.

    1992-01-01

    This paper will describe the interplay between die electronic structure and structural energetics in simple, complex, and quasicrystalline Al-transition metal (T) intermetallics. The first example is the Ll 2 -DO 22 competition in Al 3 T compounds. Ab-initio electronic total-energy calculations reveal surprisingly large structural-energy differences, and show that the phase stability of both stoichiometric and ternary-substituted compounds correlates closely with a quasigap in the electronic density of states (DOS). Secondly, ab-initio calculations for the structural stability of the icosahedrally based Al 12 W structure reveal similar quasigap effects, and provide a simple physical explanation for the stability of the complex aluminide structures. Finally, parametrized tight-binding model calculations for the Al-Mn quasicrystal reveal a large spread in the local Mn DOS behavior, and support a two-site model for the quasicrystal's magnetic behavior

  15. Ab initio density functional theory investigation of Li-intercalated silicon carbide nanotube bundles

    International Nuclear Information System (INIS)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2009-01-01

    We present the results of ab initio density functional theory calculations on the energetic, and geometric and electronic structure of Li-intercalated (6,6) silicon carbide nanotube (SiCNT) bundles. Our results show that intercalation of lithium leads to the significant changes in the geometrical structure. The most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the SiCNTs. All the Li-intercalated (6,6) SiCNT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial space are susceptible for intercalation. The present calculations suggest that the SiCNT bundle is a promising candidate for the anode material in battery applications.

  16. Ab initio density functional theory investigation of Li-intercalated silicon carbide nanotube bundles

    Science.gov (United States)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2009-06-01

    We present the results of ab initio density functional theory calculations on the energetic, and geometric and electronic structure of Li-intercalated ( 6,6) silicon carbide nanotube (SiCNT) bundles. Our results show that intercalation of lithium leads to the significant changes in the geometrical structure. The most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the SiCNTs. All the Li-intercalated ( 6,6) SiCNT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial space are susceptible for intercalation. The present calculations suggest that the SiCNT bundle is a promising candidate for the anode material in battery applications.

  17. Ab initio density functional theory investigation of Li-intercalated silicon carbide nanotube bundles

    Energy Technology Data Exchange (ETDEWEB)

    Moradian, Rostam [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Science and Technology Research Center, Razi University, Kermanshah (Iran, Islamic Republic of); Computational Physical Science Research Laboratory, Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: moradian.rostam@gmail.com; Behzad, Somayeh; Chegel, Raad [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)

    2009-06-15

    We present the results of ab initio density functional theory calculations on the energetic, and geometric and electronic structure of Li-intercalated (6,6) silicon carbide nanotube (SiCNT) bundles. Our results show that intercalation of lithium leads to the significant changes in the geometrical structure. The most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the SiCNTs. All the Li-intercalated (6,6) SiCNT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial space are susceptible for intercalation. The present calculations suggest that the SiCNT bundle is a promising candidate for the anode material in battery applications.

  18. Simple synthesis, structure and ab initio study of 1,4-benzodiazepine-2,5-diones

    Science.gov (United States)

    Jadidi, Khosrow; Aryan, Reza; Mehrdad, Morteza; Lügger, Thomas; Ekkehardt Hahn, F.; Ng, Seik Weng

    2004-04-01

    A simple procedure for the synthesis of pyrido[2,1-c][1,4] benzodiazepine-6,12-dione ( 1) and 1,4-benzodiazepine-2,5-diones ( 2a- 2d), using microwave irradiation and/or conventional heating is reported. The configuration of 1 was determined by single-crystal X-ray diffraction. A detailed ab initio B3LYP/6-31G* calculation of structural parameters and substituent effects on ring inversion barriers (Δ G#) and also free energy differences (Δ G0) for benzodiazepines are reported.

  19. Common lines modeling for reference free Ab-initio reconstruction in cryo-EM.

    Science.gov (United States)

    Greenberg, Ido; Shkolnisky, Yoel

    2017-11-01

    We consider the problem of estimating an unbiased and reference-free ab initio model for non-symmetric molecules from images generated by single-particle cryo-electron microscopy. The proposed algorithm finds the globally optimal assignment of orientations that simultaneously respects all common lines between all images. The contribution of each common line to the estimated orientations is weighted according to a statistical model for common lines' detection errors. The key property of the proposed algorithm is that it finds the global optimum for the orientations given the common lines. In particular, any local optima in the common lines energy landscape do not affect the proposed algorithm. As a result, it is applicable to thousands of images at once, very robust to noise, completely reference free, and not biased towards any initial model. A byproduct of the algorithm is a set of measures that allow to asses the reliability of the obtained ab initio model. We demonstrate the algorithm using class averages from two experimental data sets, resulting in ab initio models with resolutions of 20Å or better, even from class averages consisting of as few as three raw images per class. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Ab initio results for intermediate-mass, open-shell nuclei

    Science.gov (United States)

    Baker, Robert B.; Dytrych, Tomas; Launey, Kristina D.; Draayer, Jerry P.

    2017-01-01

    A theoretical understanding of nuclei in the intermediate-mass region is vital to astrophysical models, especially for nucleosynthesis. Here, we employ the ab initio symmetry-adapted no-core shell model (SA-NCSM) in an effort to push first-principle calculations across the sd-shell region. The ab initio SA-NCSM's advantages come from its ability to control the growth of model spaces by including only physically relevant subspaces, which allows us to explore ultra-large model spaces beyond the reach of other methods. We report on calculations for 19Ne and 20Ne up through 13 harmonic oscillator shells using realistic interactions and discuss the underlying structure as well as implications for various astrophysical reactions. This work was supported by the U.S. NSF (OCI-0904874 and ACI -1516338) and the U.S. DOE (DE-SC0005248), and also benefitted from the Blue Waters sustained-petascale computing project and high performance computing resources provided by LSU.

  1. Ab initio thermodynamic properties of stoichiometric phases in the Ni-Al system

    International Nuclear Information System (INIS)

    Arroyave, R.; Shin, D.; Liu, Z.-K.

    2005-01-01

    In this work the thermodynamic properties of Al, Ni, NiAl and Ni 3 Al were obtained through ab initio methods. Through the use of density functional theory within the generalized gradient approximation and projector augmented-wave (PAW) pseudopotentials, the 0 K energetics of the structures were calculated. The supercell method was used to calculate the vibrational contributions to the free energy. The contribution of electronic degrees of freedom to the total free energy was also included in the calculations. The resulting free energy was used to calculate the enthalpies and entropies of the structures investigated. The comparison with experimental data is satisfactory, and the calculations compare well with recent results using linear response theory

  2. X-ray absorption near-edge structure in alpha-quartz and stishovite: Ab initio calculation with core - hole interaction

    International Nuclear Information System (INIS)

    Mo, Shang-Di; Ching, W. Y.

    2001-01-01

    Ab initio calculation of the XANSE/ELNES spectra for α quartz and stishovite were carried out using a large-supercell approach that includes the electron - core - hole interaction. Excellent agreements with experimental spectra were obtained for Si - K, Si - L 2,3 , and O - K edges. The usual interpretation using orbital-resolved local density of states in the conduction band is unsatisfactory. [copyright] 2001 American Institute of Physics

  3. Effects of spin orbital coupling on atomic and electronic structures in Al2Cu and Al2Au crystal and liquid phases via ab initio molecular dynamics simulations

    International Nuclear Information System (INIS)

    Wang, Y.; Lu, Y.H.; Wang, X.D.; Cao, Q.P.; Zhang, D.X.; Jiang, J.Z.

    2014-01-01

    Highlights: • The SOC effect affects the cohesion energy of crystal phase. • The effect of SOC was reduced due to random local atomic structures in liquids. • The local geometrical structures also affect the melting points. • Both SOC effect and local atomic structures are important for melting point difference. - Abstract: The origin of different melting points between Al 2 Cu and Al 2 Au has been studied using ab initio molecular dynamics simulations. Cohesive energy, electronic structures and structure information of both crystal and liquid phases have been analyzed. It is found that spin orbital coupling (SOC) plays an important role on the cohesive energy of crystal phase, consistent with the different melting points of these two alloys. Whereas, it seems that SOC has no effect on the formation energy and structure of liquid phase. Possible mechanism of reduced SOC effect at liquid phase is proposed. Our results are helpful to understand the glass formation ability difference between Al 2 Cu and Al 2 Au

  4. Ab initio molecular dynamics simulation of structural transformation in zinc blende GaN under high pressure

    International Nuclear Information System (INIS)

    Xiao, H.Y.; Gao, Fei; Zu, X.T.; Weber, W.J.

    2010-01-01

    High-pressure induced zinc blende to rocksalt phase transition in GaN has been investigated by ab initio molecular dynamics method to characterize the transformation mechanism at the atomic level. It was shown that at 100 GPa GaN passes through tetragonal and monoclinic states before rocksalt structure is formed. The transformation mechanism is consistent with that for other zinc blende semiconductors obtained from the same method. Detailed structural analysis showed that there is no bond breaking involved in the phase transition.

  5. Ab initio study of the electron-phonon coupling at the Cr(001) surface

    Science.gov (United States)

    Peters, L.; Rudenko, A. N.; Katsnelson, M. I.

    2018-04-01

    It is experimentally well established that the Cr(001) surface exhibits a sharp resonance around the Fermi level. However, there is no consensus about its physical origin. It is proposed to be either due to a single particle dz2 surface state renormalized by electron-phonon coupling or the orbital Kondo effect involving the degenerate dx z/ dy z states. In this paper we examine the electron-phonon coupling of the Cr(001) surface by means of ab-initio calculations in the form of density functional perturbation theory. More precisely, the electron-phonon mass-enhancement factor of the surface layer is investigated for the 3d states. For the majority and minority spin dz2 surface states we find values of 0.19 and 0.16. We show that these calculated electron-phonon mass-enhancement factors are not in agreement with the experimental data even if we use realistic values for the temperature range and surface Debye frequency for the fit of the experimental data. More precisely, then experimentally an electron-phonon mass-enhancement factor of 0.70 ±0.10 is obtained, which is not in agreement with our calculated values of 0.19 and 0.16. Our findings suggest that the experimentally observed resonance at the Cr(001) surface is not due to electron-phonon effects but due to electron-electron correlation effects.

  6. Ab initio study of ortho-meta-isomerism of Li4AB3+ ions of nitrite and phosphite oxo- and thiosalts (A=N, P; B=O, S)

    International Nuclear Information System (INIS)

    Charkin, O.D.; MakKi, M.L.; Charkin, O.P.

    2000-01-01

    In the framework of MP2(6-31*//HF/6-31G + ZPE(HF/6-31G*) and MP4SDTQ/6-31G*//MP2/6-31G* + ZPE(MP2/6-31G*) approximations ab initio calculations of surfaces of potential energy of Li 4 NO 3 + , Li 4 PO 3 + , Li 4 NS 3 + , LiPS 3 + ions and Li 3 NO 3 , Li 3 PO 3 , Li 3 NS 3 , Li 3 PS 3 molecules of lithium oxo-and thiosalts with 26 valent electrons. Several low-level energy local minimums are determined for each of these ions including (Li + ) 4 ·AB 3 3- ortho-structure of C 3V symmetry with pyramidal three-charge AB 3 3- anion and totality of meta-structures of L + ·AB 2 - ·BL 3 + ion type and AB 2 - ·BL 4 2+ ion pair of C 2V and C s symmetry with onium OLi 3 + , OLi 4 2+ cations or their thio-analogues. Equilibrium geometric parameters and relative energy of isomers, energy of different channels of decomposition, frequencies and IR-intensities of normal vibrations, characteristics of electron density distribution are determined [ru

  7. LDA+U and tight-binding electronic structure of InN nanowires

    Science.gov (United States)

    Molina-Sánchez, A.; García-Cristóbal, A.; Cantarero, A.; Terentjevs, A.; Cicero, G.

    2010-10-01

    In this paper we employ a combined ab initio and tight-binding approach to obtain the electronic and optical properties of hydrogenated Indium nitride (InN) nanowires. We first discuss InN band structure for the wurtzite structure calculated at the LDA+U level and use this information to extract the parameters needed for an empirical tight-binging implementation. These parameters are then employed to calculate the electronic and optical properties of InN nanowires in a diameter range that would not be affordable by ab initio techniques. The reliability of the large nanowires results is assessed by explicitly comparing the electronic structure of a small diameter wire studied both at LDA+U and tight-binding level.

  8. Ab initio study of the isomerism of (LiAB)2 salt dimers with 24 valence electrons (AB- = NO-, PO-, NS-, PS-)

    International Nuclear Information System (INIS)

    Charkin, O.P.; Klimenko, N.M.; MakKi, M.L.

    2000-01-01

    The nonempiric calculations of the potential energies surfaces in the vicinity of the key structures of the loose dimer molecules of the (LiNO) 2 , (LiPO) 2 , (LiNS) 2 and (LiPS) 2 lithium salts with 24 valence electrons are accomplished within the frames of the MP2/6-31G * //HF/6-31g * + ZPE(HF/6-31G * and MP4SDTQ/6-31G * //MP2/6-31G * + ZPE(MP2/6-31G * ) approximation. The equilibrium geometrical parameters, relative energies and isomer decay energies, frequencies and IR-intensities of normal vibrations are determined. The geometrical deformations and shifts of vibrational frequencies of the cis- and trans-dianions under the effect of cations by different ways of their coordination as well as tendencies of the molecular properties behaviour in various series of dimers (LiAB) 2 are analyzed. The results obtained are compared with the data of previous calculations of the LiAB salts monomeric molecules, the Li 2 AB + ions with 12 valence electrons and the (LiAB) 2 dimers with 20 valence electrons [ru

  9. Ab initio and work function and surface energy anisotropy of LaB6

    NARCIS (Netherlands)

    Uijttewaal, M. A.; de Wijs, G. A.; de Groot, R. A.

    2006-01-01

    Lanthanum hexaboride is one of the cathode materials most used in high-power electronics technology, but the many experimental results do not provide a consistent picture of the surface properties. Therefore, we report the first ab initio calculations of the work functions and surface energies of

  10. CONFOLD2: improved contact-driven ab initio protein structure modeling.

    Science.gov (United States)

    Adhikari, Badri; Cheng, Jianlin

    2018-01-25

    Contact-guided protein structure prediction methods are becoming more and more successful because of the latest advances in residue-residue contact prediction. To support contact-driven structure prediction, effective tools that can quickly build tertiary structural models of good quality from predicted contacts need to be developed. We develop an improved contact-driven protein modelling method, CONFOLD2, and study how it may be effectively used for ab initio protein structure prediction with predicted contacts as input. It builds models using various subsets of input contacts to explore the fold space under the guidance of a soft square energy function, and then clusters the models to obtain the top five models. CONFOLD2 obtains an average reconstruction accuracy of 0.57 TM-score for the 150 proteins in the PSICOV contact prediction dataset. When benchmarked on the CASP11 contacts predicted using CONSIP2 and CASP12 contacts predicted using Raptor-X, CONFOLD2 achieves a mean TM-score of 0.41 on both datasets. CONFOLD2 allows to quickly generate top five structural models for a protein sequence when its secondary structures and contacts predictions at hand. The source code of CONFOLD2 is publicly available at https://github.com/multicom-toolbox/CONFOLD2/ .

  11. Plasmon Lifetime in K: A Case Study of Correlated Electrons in Solids Amenable to Ab Initio Theory

    International Nuclear Information System (INIS)

    Ku, W.; Eguiluz, A.G.

    1999-01-01

    We solve the puzzle posed by the anomalous dispersion of the plasmon linewidth in K via all-electron density-response calculations, performed within the framework of time-dependent density-functional theory. The key damping mechanism is shown to be decay into particle-hole pairs involving empty states of d symmetry. While the effect of many-particle correlations is small, the correlations built into the 'final-state' d bands play an important, and novel, role related to the phase-space complexity introduced by these flat bands. Our case study of plasmon lifetime in K illustrates the importance of ab initio paradigms for the study of excitations in correlated-electron systems. copyright 1999 The American Physical Society

  12. Ab initio calculations on hydrogen storage in porous carbons

    International Nuclear Information System (INIS)

    Maresca, O.; Marinelli, F.; Pellenq, R.J.M.; Duclaux, L.; Azais, Ph.; Conard, J.

    2005-01-01

    We have investigated through ab initio computations the possible ways to achieve efficient hydrogen storage on carbons. Firstly, we have considered how the curvature of a carbon surface could affect the chemisorption of atomic H 0 Secondly, we show that electron donor elements such as Li and K, used as dopants for the carbon substrate, strongly enhance the physi-sorption energy of H 2 , allowing in principle its storage in this type of material at room temperature under mild conditions of pressure. (authors)

  13. Modeling of nuclear glasses by classical and ab initio molecular dynamics

    International Nuclear Information System (INIS)

    Ganster, P.

    2004-01-01

    A calcium aluminosilicate glass of molar composition 67 % SiO 2 - 12 % Al 2 O 3 - 21 % CaO was modelled by classical and ab initio molecular dynamics. The size effect study in classical MD shows that the systems of 100 atoms are more ordered than the larger ones. These effects are mainly due to the 3-body terms in the empirical potentials. Nevertheless, these effects are small and the structures generated are in agreement with experimental data. In such kind of glass, we denote an aluminium avoidance and an excess of non bridging oxygens which can be compensated by tri-coordinated oxygens. When the dynamics of systems of 100 and 200 atoms is followed by ab initio MD, some local arrangements occurs (bond length, angular distributions). Thus, more realistic vibrational properties are obtained in ab initio MD. The modelling of thin films shows that aluminum atoms extend to the most external part of the surface and they are all tri-coordinated. Calcium atoms are set in the sub layer part of the surface and they produce a depolymerization of the network. In classical MD, tri-coordinated aluminium atoms produce an important electric field above the surface. With non bridging oxygens, they constitute attractive sites for single water molecules. (author) [fr

  14. Modelling of nuclear glasses by classical and ab initio molecular dynamics

    International Nuclear Information System (INIS)

    Ganster, P.

    2004-10-01

    A calcium aluminosilicate glass of molar composition 67 % SiO 2 - 12 % Al 2 O 3 - 21 % CaO was modelled by classical and ab initio molecular dynamics. The size effect study in classical MD shows that the systems of 100 atoms are more ordered than the larger ones. These effects are mainly due to the 3-body terms in the empirical potentials. Nevertheless, these effects are small and the structures generated are in agreement with experimental data. In such kind of glass, we denote an aluminium avoidance and an excess of non bridging oxygens which can be compensated by tri coordinated oxygens. When the dynamics of systems of 100 and 200 atoms is followed by ab initio MD, some local arrangements occurs (bond length, angular distributions). Thus, more realistic vibrational properties are obtained in ab initio MD. The modelling of thin films shows that aluminium atoms extend to the most external part of the surface and they are all tri-coordinated. Calcium atoms are set in the sub layer part of the surface and they produce a depolymerization of the network. In classical MD, tri-coordinated aluminium atoms produce an important electric field above the surface. With non bridging oxygens, they constitute attractive sites for single water molecules. (author)

  15. Free energies for degradation reactions of 1,2,3-trichloropropane from ab initio electronic structure theory.

    Science.gov (United States)

    Bylaska, Eric J; Glaesemann, Kurt R; Felmy, Andrew R; Vasiliu, Monica; Dixon, David A; Tratnyek, Paul G

    2010-11-25

    Electronic structure methods were used to calculate the gas and aqueous phase reaction energies for reductive dechlorination (i.e., hydrogenolysis), reductive β-elimination, dehydrochlorination, and nucleophilic substitution by OH− of 1,2,3-trichloropropane. The thermochemical properties ΔH(f)°(298.15 K), S°(298.15 K, 1 bar), and ΔG(S)(298.15 K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for 1,2,3-trichloropropane and several likely degradation products: CH3−CHCl−CH2Cl, CH2Cl−CH2−CH2Cl, C•H2−CHCl−CH2Cl, CH2Cl−C•H−CH2Cl, CH2═CCl−CH2Cl, cis-CHCl═CH−CH2Cl, trans-CHCl═CH−CH2Cl, CH2═CH−CH2Cl, CH2Cl−CHCl−CH2OH, CH2Cl−CHOH−CH2Cl, CH2═CCl−CH2OH, CH2═COH−CH2Cl, cis-CHOH═CH−CH2Cl, trans-CHOH═CH−CH2Cl, CH(═O)−CH2−CH2Cl, and CH3−C(═O)−CH2Cl. On the basis of these thermochemical estimates, together with a Fe(II)/Fe(III) chemical equilibrium model for natural reducing environments, all of the reactions studied were predicted to be very favorable in the standard state and under a wide range of pH conditions. The most favorable reaction was reductive β-elimination (ΔG(rxn)° ≈ −32 kcal/mol), followed closely by reductive dechlorination (ΔG(rxn)° ≈ −27 kcal/mol), dehydrochlorination (ΔG(rxn)° ≈ −27 kcal/mol), and nucleophilic substitution by OH− (ΔG(rxn)° ≈ −25 kcal/mol). For both reduction reactions studied, it was found that the first electron-transfer step, yielding the intermediate C•H2−CHCl−CH2Cl and the CH2Cl−C•H−CH2Cl species, was not favorable in the standard state (ΔG(rxn)° ≈ +15 kcal/mol) and was predicted to occur only at relatively high pH values. This result suggests that reduction by natural attenuation is unlikely.

  16. Integration of QUARK and I-TASSER for Ab Initio Protein Structure Prediction in CASP11.

    Science.gov (United States)

    Zhang, Wenxuan; Yang, Jianyi; He, Baoji; Walker, Sara Elizabeth; Zhang, Hongjiu; Govindarajoo, Brandon; Virtanen, Jouko; Xue, Zhidong; Shen, Hong-Bin; Zhang, Yang

    2016-09-01

    We tested two pipelines developed for template-free protein structure prediction in the CASP11 experiment. First, the QUARK pipeline constructs structure models by reassembling fragments of continuously distributed lengths excised from unrelated proteins. Five free-modeling (FM) targets have the model successfully constructed by QUARK with a TM-score above 0.4, including the first model of T0837-D1, which has a TM-score = 0.736 and RMSD = 2.9 Å to the native. Detailed analysis showed that the success is partly attributed to the high-resolution contact map prediction derived from fragment-based distance-profiles, which are mainly located between regular secondary structure elements and loops/turns and help guide the orientation of secondary structure assembly. In the Zhang-Server pipeline, weakly scoring threading templates are re-ordered by the structural similarity to the ab initio folding models, which are then reassembled by I-TASSER based structure assembly simulations; 60% more domains with length up to 204 residues, compared to the QUARK pipeline, were successfully modeled by the I-TASSER pipeline with a TM-score above 0.4. The robustness of the I-TASSER pipeline can stem from the composite fragment-assembly simulations that combine structures from both ab initio folding and threading template refinements. Despite the promising cases, challenges still exist in long-range beta-strand folding, domain parsing, and the uncertainty of secondary structure prediction; the latter of which was found to affect nearly all aspects of FM structure predictions, from fragment identification, target classification, structure assembly, to final model selection. Significant efforts are needed to solve these problems before real progress on FM could be made. Proteins 2016; 84(Suppl 1):76-86. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules

    DEFF Research Database (Denmark)

    Zhang, Hao; Lund, Ole; Nielsen, Morten

    2010-01-01

    potentials derived from the analysis of known protein structures; energetic evaluation of different peptide snapshots in a molecular dynamics simulation; and direct analysis of contacts made in known 3D structures of peptide:MHC complexes. These methods are ab initio in that they require structural data...

  18. Sensitivity of core-level spectroscopy to electrostatic environments of nitrile groups: An ab initio study

    Directory of Open Access Journals (Sweden)

    Abid Hussain

    2017-09-01

    Full Text Available Ab initio quantum chemistry calculations have been performed to probe the influence of hydrogen bonding on the electronic structure of hydrogen cyanide (HCN. Our calculations determine the origin of nitrogen-specific Raman spectral features from resonant inelastic X-ray scattering occurring in the presence of a water molecule and an electric dipole field. The similarity of the two interactions in altering the electronic structure of the nitrogen atom differs only in the covalent contributions from the water molecule. The CN stretching mode as a structural probe was also investigated to study the electronic origin of the anomalous frequency shift of the nitrile group when subjected to hydrogen bonding and an electrostatic dipole field. The major changes in the electronic structure of HCN are electrostatic in nature and originate from dipole-dipole interactions. The relative shifts of the CN stretching frequency are in good agreement with those experimentally observed.

  19. Many-body perturbation theory for ab initio nuclear structure

    International Nuclear Information System (INIS)

    Tichai, Alexander

    2017-01-01

    The solution of the quantum many-body problem for medium-mass nuclei using realistic nuclear interactions poses a superbe challenge for nuclear structure research. Because an exact solution can only be provided for the lightest nuclei, one has to rely on approximate solutions when proceeding to heavier systems. Over the past years, tremendous progress has been made in the development and application of systematically improvable expansion methods and an accurate description of nuclear observables has become viable up to mass number A ∼ 100. While closed-shell systems are consistently described via a plethora of different many-body methods, the extension to genuine open-shell systems still remains a major challenge and up to now there is no ab initio many-body method which applies equally well to systems with even and odd mass numbers. The goal of this thesis is the development and implementation of innovative perturbative approaches with genuine open-shell capabilities. This requires the extension of well-known single-reference approaches to more general vacua. In this work we choose two complementary routes for the usage of generalized reference states. First, we derive a new ab initio approach based on multi-configurational reference states that are conveniently derived from a prior no-core shell model calculation. Perturbative corrections are derived via second-order many-body perturbation theory, thus, merging configuration interaction and many-body perturbation theory. The generality of this ansatz enables for a treatment of medium-mass systems with arbitrary mass number, as well as the extension to low-lying excited states such that ground and excited states are treated on an equal footing. In a complementary approach, we use reference states that break a symmetry of the underlying Hamiltonian. In the simplest case this corresponds to the expansion around a particle-number-broken Hartree-Fock-Bogolyubov vacuum which is obtained from a mean-field calculation

  20. Ab initio study on the reaction between uranium and O2

    International Nuclear Information System (INIS)

    Shuai Maobing; Zhao Pengji; Tian Anmin

    2000-08-01

    Optimized geometries, total energies and electronic structures of some gaseous atoms and molecules of uranium-oxygen system are calculated with harmonic vibration analysis using ab initio method. The potential energy surfaces (PESs) of the uranium oxidation process are also constructed. The calculated optimized geometries, infrared vibrational frequencies and the first ionized potential energies are in well accordance with available experimental data. Although U6p, U7s and U6d valence orbital electrons take part in the formation of U - O bond, the U5f electrons play an dominant role in this process and because the energies of U5f, U6d, U7s and Uds atomic orbitals are close to each other, these orbitals may hybrid and interact with O2p orbital, simultaneously, to form molecular orbitals of uranium oxides. The PESs show that different reaction modes result in different product geometries

  1. Instructional Approach to Molecular Electronic Structure Theory

    Science.gov (United States)

    Dykstra, Clifford E.; Schaefer, Henry F.

    1977-01-01

    Describes a graduate quantum mechanics projects in which students write a computer program that performs ab initio calculations on the electronic structure of a simple molecule. Theoretical potential energy curves are produced. (MLH)

  2. Ab initio study of vibronic transitions between x2π and 12Σ+ electronic states of HCP+ ion

    Directory of Open Access Journals (Sweden)

    Stojanović Ljiljana

    2013-01-01

    Full Text Available The ground and low-lying excited doublet electronic states of the HCP+ ion were studied by means of multireference configuration interaction method. Vibronic energy levels of the X2Π state of Σ, Π, Δ, and Φ symmetry, up to the 2500 cm-1, have been calculated variationally, employing previously developed ab initio methods which take into account vibronic and spin-orbit interactions. Obtained vibronic wave functions were used to estimate transition moments between vibronic energy levels of the X2Π and 12Σ+ electronic states. Results were compared to available experimental and theoretical data. [Projekat Ministarstva nauke Republike Srbije, br. 172040

  3. A Force Balanced Fragmentation Method for ab Initio Molecular Dynamic Simulation of Protein

    Directory of Open Access Journals (Sweden)

    Mingyuan Xu

    2018-05-01

    Full Text Available A force balanced generalized molecular fractionation with conjugate caps (FB-GMFCC method is proposed for ab initio molecular dynamic simulation of proteins. In this approach, the energy of the protein is computed by a linear combination of the QM energies of individual residues and molecular fragments that account for the two-body interaction of hydrogen bond between backbone peptides. The atomic forces on the caped H atoms were corrected to conserve the total force of the protein. Using this approach, ab initio molecular dynamic simulation of an Ace-(ALA9-NME linear peptide showed the conservation of the total energy of the system throughout the simulation. Further a more robust 110 ps ab initio molecular dynamic simulation was performed for a protein with 56 residues and 862 atoms in explicit water. Compared with the classical force field, the ab initio molecular dynamic simulations gave better description of the geometry of peptide bonds. Although further development is still needed, the current approach is highly efficient, trivially parallel, and can be applied to ab initio molecular dynamic simulation study of large proteins.

  4. An ab initio study on the structural, electronic and mechanical properties of quaternary full-Heusler alloys FeMnCrSn and FeMnCrSb

    Science.gov (United States)

    Erkişi, Aytaç

    2018-06-01

    The quaternary full Heusler alloys FeMnCrSn and FeMnCrSb, which have face-centred cubic (FCC) crystal structure and conform to ? space group with 216 space number, have been investigated using Generalised Gradient Approximation (GGA) in the Density Functional Theory (DFT) as implemented in VASP (Vienna Ab initio Simulation Package) software. These alloys are considered in ferromagnetic (FM) order. After the investigation of structural stability of these alloys, their mechanical and thermal properties and also electronic band structures have been examined. The calculated spin-polarised electronic band structures and total electronic density of states (DOS) within GGA approximation show that these alloys can exhibit both metallic and half-metallic characters in different structural phases. The calculated formation enthalpies and the plotted energy-volume graphs show that Type-III phase is most stable structural phase for these materials. Also, FeMnCrSb alloy in Type-I/Type-III phases and FeMnCrSn alloy in Type-III phase show half-metallic behaviour with integer total magnetic moments almost 2 and 1 μB per formula unit, respectively, since there are band gaps observed in spin-down states, whereas they have metallic behaviour in majority bands. Other structural phases of both systems are also metallic. Moreover, the calculated elastic constants and the estimated anisotropy shear factors indicate that these materials are stable mechanically in all of three phases except FeMnCrSn in Type-I phase that does not satisfy Born stability criteria in this phase and have high anisotropic behaviour.

  5. Ab initio studies on [bmim][PF6]–CO2 mixture and CO2 clusters

    Indian Academy of Sciences (India)

    Wintec

    Ionic liquids; supercritical carbon dioxide; ab initio; molecular dynamics. 1. Introduction .... Several experi- mental and simulation studies have been carried out to .... from an analysis of its electronic polarizability (α), which is a measure of the ...

  6. Towards hydrogen metallization: an Ab initio approach

    International Nuclear Information System (INIS)

    Bernard, St.

    1998-01-01

    The quest for metallic hydrogen is a major goal for both theoretical and experimental condensed matter physics. Hydrogen and deuterium have been compressed up to 200 GPa in diamond anvil cells, without any clear evidence for a metallic behaviour. Loubeyere has recently suggested that hydrogen could metallize, at pressures within experimental range, in a new Van der Waals compound: Ar(H 2 ) 2 which is characterized at ambient pressure by an open and anisotropic sublattice of hydrogen molecules, stabilized by an argon skeleton. This thesis deals with a detailed ab initio investigation, by Car-Parrinello molecular dynamics methods, of the evolution under pressure of this compound. In a last chapter, we go to much higher pressures and temperatures, in order to compare orbital and orbital free ab initio methods for the dense hydrogen plasma. (author)

  7. Investigation of the Hydroxylation Mechanism of Noncoupled Copper Oxygenases by Ab Initio Molecular Dynamics Simulations

    Czech Academy of Sciences Publication Activity Database

    Meliá, C.; Ferrer, S.; Řezáč, Jan; Parisel, O.; Reinaud, O.; Moliner, V.; de la Lande, A.

    2013-01-01

    Roč. 19, č. 51 (2013), s. 17328-17337 ISSN 0947-6539 Institutional support: RVO:61388963 Keywords : ab initio calculations * copper * electron transfer * enzymes * molecular dynamics * reaction mechanisms Subject RIV: CC - Organic Chemistry Impact factor: 5.696, year: 2013

  8. The role of Metals in Amyloid Aggregation: A Test Case for ab initio Simulations

    International Nuclear Information System (INIS)

    Minicozzi, V.; Rossi, G. C.; Stellato, F.; Morante, S.

    2007-01-01

    First principle ab initio molecular dynamics simulations of the Car-Parrinello type have proved to be of invaluable help in understanding the microscopic mechanisms of chemical bonding both in solid state physics and in structural biophysics. In this work we present as test cases the study of the Cu coordination mode in two especially important examples: Prion protein and β-amyloids. Using medium size PC-clusters as well as larger parallel platforms, we are able to deal with systems comprising 300 to 500 atoms and 1000 to 1500 electrons for as long as 2-3 ps. We present structural results which confirm indications coming from NMR and XAS data

  9. Hydrogen atom injection into carbon surfaces by comparison between Monte-Carlo, molecular dynamics and ab-initio calculations

    International Nuclear Information System (INIS)

    Ito, A.; Kenmotsu, T.; Kikuhara, Y.; Inai, K.; Ohya, K.; Wang, Y.; Irle, S.; Morokuma, K.; Nakamura, H.

    2009-01-01

    Full text: To understand the plasma-wall interaction on divertor plates, we investigate the interaction of hydrogen atoms and carbon materials used in the high heat flux components by the use of the following simulations. Monte-Carlo (MC) method based on binary collision approximation can calculate the sputtering process of hydrogen atoms on the carbon material quickly. Classical molecular dynamics (MD) method employs multi-body potential models and can treat realistic structures of crystal and molecule. The ab-initio method can calculate electron energy in quantum mechanics, which is regarded as realistic potential for atoms. In the present paper, the interaction of the hydrogen and the carbon material is investigated using the multi-scale (MC, MD and ab-initio) methods. The bombardment of hydrogen atoms onto the carbon material is simulated by the ACAT-code of the MC method, which cannot represent the structure of crystal, and the MD method using modified reactive empirical bond order (REBO) potential, which treats single crystal graphite and amorphous carbon. Consequently, we clarify that the sputtering yield and the reflection rate calculated by the ACAT-code agree with those on the amorphous carbon calculated by the MD. Moreover, there are many kinds of REBO potential for the MD. Adsorption, reflection and penetration rates between a hydrogen atom and a graphene surface are calculated by the MD simulations using the two kinds of potential model. For the incident energy of less than 1 eV, the MD simulation using the modified REBO potential, which is based on Brenner's REBO potential in 2002, shows that reflection is dominant, while the most popular Brenner's REBO potential in 1990 shows that adsorption is dominant. This reflection of the low energy injection is caused by a small potential barrier for the hydrogen atom in the modified REBO potential. The small potential barrier is confirmed by the ab-initio calculations, which are hybrid DFT (B3LYP/cc-pVDZ), ab-initio

  10. Physical properties of molybdenum monoboride: Ab-initio study

    Science.gov (United States)

    Rajpoot, Priyanka; Rastogi, Anugya; Verma, U. P.

    2018-02-01

    The Ab initio investigations on structural, electronic, optical and thermal properties of MoB have been reported using full potential linearised-augmented plane wave method within the framework of density functional theory. The exchange and correlation potentials were calculated using the Perdew-Burke-Ernzerhof-Sol generalised gradient approximation. The calculated equilibrium lattice constants and cell volume are in excellent agreement with the experimental results as compared to the available theoretical data. Electronic band structure shows that MoB is metallic in nature. From the partial densities of states of MoB it has been found that major contribution on the Fermi level is due to Mo-4d states. Among the reported optical parameters the large value of reflectivity at low energy shows that MoB can be used as a coating material in IR region. Maximum absorption in extreme UV region shows that it can be used in production of electricity through solar power in space vehicles. Various thermal properties have been calculated in a wide temperature range at high pressures. Change in thermal expansion coefficient with respect to temperature shows that anharmonic effect in MoB is very weak at high temperature. The optical and thermal properties of MoB are presented for the first time in this work.

  11. Ab initio molecular dynamics simulations on the structural change of liquid eutectic alloy Si15Te85 from 673 to 1373 k

    International Nuclear Information System (INIS)

    Wang Yubing; Zhao Gang; Liu Changsong; Zhu Zhengang

    2010-01-01

    Using ab initio molecular dynamics simulations and inherent structure formalism, the local atomic structure and electronic properties of liquid Si 15 Te 85 alloy were studied at eight different temperatures from 673 to 1373 K. In comparison with available experimental data, our calculated structure factors are acceptable. With increasing temperature from 773 to 1173 K, the calculated total coordination number N Total increases gradually in contrast to the behavior of a classical isotropic fluid. Our results of pair-correlation functions, bond-angle distribution functions and angular limited triplet correlation functions suggest that the temperature-dependence of the preserved sp 3 hybridization of Si atoms and Peierls-type distorted local structure around Te atoms both play important roles in the structural change of Si 15 Te 85 characterized by thermodynamic anomalies.

  12. Modelling of nuclear glasses by classical and ab initio molecular dynamics; Modelisation de verres intervenant dans le conditionnement des dechets radioactifs par dynamiques moleculaires classique et ab initio

    Energy Technology Data Exchange (ETDEWEB)

    Ganster, P

    2004-10-15

    A calcium aluminosilicate glass of molar composition 67 % SiO{sub 2} - 12 % Al{sub 2}O{sub 3} - 21 % CaO was modelled by classical and ab initio molecular dynamics. The size effect study in classical MD shows that the systems of 100 atoms are more ordered than the larger ones. These effects are mainly due to the 3-body terms in the empirical potentials. Nevertheless, these effects are small and the structures generated are in agreement with experimental data. In such kind of glass, we denote an aluminium avoidance and an excess of non bridging oxygens which can be compensated by tri coordinated oxygens. When the dynamics of systems of 100 and 200 atoms is followed by ab initio MD, some local arrangements occurs (bond length, angular distributions). Thus, more realistic vibrational properties are obtained in ab initio MD. The modelling of thin films shows that aluminium atoms extend to the most external part of the surface and they are all tri-coordinated. Calcium atoms are set in the sub layer part of the surface and they produce a depolymerization of the network. In classical MD, tri-coordinated aluminium atoms produce an important electric field above the surface. With non bridging oxygens, they constitute attractive sites for single water molecules. (author)

  13. Ab initio molecular dynamics: basic concepts, current trends and novel applications

    International Nuclear Information System (INIS)

    Tuckerman, Mark E

    2002-01-01

    The field of ab initio molecular dynamics (AIMD), in which finite temperature molecular dynamics (MD) trajectories are generated with forces obtained from accurate 'on the fly' electronic structure calculations, is a rapidly evolving and growing technology that allows chemical processes in condensed phases to be studied in an accurate and unbiased way. This article is intended to present the basics of the AIMD method as well as to provide a broad survey of the state of the art of the field and showcase some of its capabilities. Beginning with a derivation of the method from the Born-Oppenheimer approximation, issues including the density functional representation of electronic structure, basis sets, calculation of observables and the Car-Parrinello extended Lagrangian algorithm are discussed. A number of example applications, including liquid structure and dynamics and aqueous proton transport, are presented in order to highlight some of the current capabilities of the approach. Finally, advanced topics such as inclusion of nuclear quantum effects, excited states and scaling issues are addressed. (topical review)

  14. Structure and lattice dynamics of GaN and AlN. Ab-initio investigations of strained polytypes and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Jan-Martin

    2004-10-14

    In this dissertation, ab-initio investigations of the strain influence on vibrational properties of GaN and AlN as well as of short-period GaN/AlN superlattices are presented. Based on densityfunctional theory and density-functional perturbation theory, for differently strained structures complete phonon spectra and related properties are calculated using the local-density approximation and norm-conserving pseudopotentials. (orig.)

  15. An ab initio model of electron transport in hematite (a-Fe2O3) basal planes

    International Nuclear Information System (INIS)

    Rosso, Kevin M.; Smith, Dayle MA; Dupuis, Michel

    2003-01-01

    Transport of conduction electrons through basal planes of the hematite lattice was modeled as a valence alternation of iron cations using ab initio molecular orbital calculations and electron transfer theory. A cluster approach was successfully implemented to compute electron transfer rate-controlling quantities such as the reorganization energy and electronic coupling matrix element. Localization of a conduction electron at an iron lattice site is accompanied by large iron/oxygen bond length increases that give rise to a large inner-sphere component of the reorganization energy. The interaction between the reactant and product electronic states in the crossing?point configuration is substantial and leads to an adiabatic electron transfer system. Electron transfer is predicted to possess a small positive activation energy that turns out to be in excellent agreement with values deduced from conductivity measurements. Measured electron mobility can be explained in terms of nearest neighbor electron hops without significant contribution from iron atoms further away. Comparison of the predicted maximum polaron binding energy with the predicted half bandwidth indicates compliance with the small polaron condition. Therefore the localized electron treatment is appropriate to describe electron transport in this system

  16. The computation of ionization potentials for second-row elements by ab initio and density functional theory methods

    International Nuclear Information System (INIS)

    Jursic, B.S.

    1996-01-01

    Up to four ionization potentials of elements from the second-row of the periodic table were computed using the ab initio (HF, MP2, MP3, MP4, QCISD, GI, G2, and G2MP2) and DFT (B3LY, B3P86, B3PW91, XALPHA, HFS, HFB, BLYP, BP86, BPW91, BVWN, XAPLY, XAP86, XAPW91, XAVWN, SLYR SP86, SPW91 and SVWN) methods. In all of the calculations, the large 6-311++G(3df,3pd) gaussian type of basis set was used. The computed values were compared with the experimental results and suitability of the ab initio and DFF methods were discussed, in regard to reproducing the experimental data. From the computed ionization potentials of the second-row elements, it can be concluded that the HF ab initio computation is not capable of reproducing the experimental results. The computed ionization potentials are too low. However, by using the ab initio methods that include electron correlation, the computed IPs are becoming much closer to the experimental values. In all cases, with the exception of the first ionization potential for oxygen, the G2 computation result produces ionization potentials that are indistinguishable from the experimental results

  17. Ab initio configuration interaction study on the energetics and electronic structure of the 1-52Σ+ and 1-32Π states of CS+

    International Nuclear Information System (INIS)

    Honjou, Nobumitsu

    2006-01-01

    The energetics and electronic structure of the 1-5 2 Σ + and 1-3 2 Π states of CS + at and around the equilibrium internuclear distance R e for the CS X 1 Σ + state are studied by carrying out ab initio configuration interaction (CI) calculations. The spectroscopic constants of T e , ω e , and R e for the 1-4 2 Σ + , 1 2 Π, and 3 2 Π states are evaluated from the CI potential energy curves (PECs). The avoided crossing between the 2-3 2 Σ + PECs causes the 3 2 Σ + minimum and explains the observed high intensities for the photoionization from the CS X 1 Σ + state to both the 2-3 2 Σ + states. The avoided crossing between the 3-4 2 Σ + PECs produces the 3 2 Σ + maximum and 4 2 Σ + well minimum. The avoided crossing between the 2-3 2 Π PECs results in the 3 2 Π minimum and a small minimum spacing (0.14 eV) between the PECs

  18. Ab initio molecular dynamics simulation of hydrogen fluoride at several thermodynamic states

    DEFF Research Database (Denmark)

    Kreitmeir, M.; Bertagnolli, H.; Mortensen, Jens Jørgen

    2003-01-01

    Liquid hydrogen fluoride is a simple but interesting system for studies of the influence of hydrogen bonds on physical properties. We have performed ab initio molecular dynamics simulations of HF at several thermodynamic states, where we examine the microscopic structure of the liquid as well...

  19. An ab initio and TD DFT

    Indian Academy of Sciences (India)

    The photophysical behaviour of N-(2-hydroxy benzylidene) aniline or most commonly known as salicylideneaniline (SA) has been investigated using the ab initio and DFT levels of theory. The quantum chemical calculations show that the optimized non planar enol (1) form of the SA molecule is the most stable conformer ...

  20. Substituent Inductive Effects on the Electrochemical Oxidation of Flavonoids Studied by Square Wave Voltammetry and Ab Initio Calculations.

    Science.gov (United States)

    Arroyo-Currás, Netzahualcóyotl; Rosas-García, Víctor M; Videa, Marcelo

    2016-10-27

    Flavonoids are natural products commonly found in the human diet that show antioxidant, anti-inflammatory and anti-hepatotoxic activities. These nutraceutical properties may relate to the electrochemical activity of flavonoids. To increase the understanding of structure-electrochemical activity relations and the inductive effects that OH substituents have on the redox potential of flavonoids, we carried out square-wave voltammetry experiments and ab initio calculations of eight flavonoids selected following a systematic variation in the number of hydroxyl substituents and their location on the flavan backbone: three flavonols, three anthocyanidins, one anthocyanin and the flavonoid backbone flavone. We compared the effect that the number of -OH groups in the ring B of flavan has on the oxidation potential of the flavonoids considered, finding linear correlations for both flavonols and anthocyanidins ( R 2 = 0.98 ). We analyzed the effects that position and number of -OH substituents have on electron density distributions via ab initio quantum chemical calculations. We present direct correlations between structural features and oxidation potentials that provide a deeper insight into the redox chemistry of these molecules.

  1. Ab initio calculations of dissociative excitation of water and methane molecules upon electron impact at low energies

    International Nuclear Information System (INIS)

    Gil, T.J.; McCurdy, C.W.; Rescigno, T.N.; Lengsfield, B.H. III

    1994-01-01

    The authors are reporting results of ab-initio calculations of electron-impact excitation of water and methane occurring at scattering energies up to 60 eV. The authors consider dissociative excited states of both systems since the understanding of their chemistry has considerable importance in plasma technology and atmospheric research. In the case of methane the authors are dealing with the promotion of a valence electron into Rydberg orbitals, while in water the excited states have one electron in an antibonding unoccupied valence orbital and support Feshbach resonances. The authors discuss issues related to convergence of the close-coupling expansion in the case of Rydberg excitation, where the authors have coupled up to 16 channels. The practical realization of the calculation within the framework of the complex Kohn variational principle represents merging of quantum chemistry and quantum scattering theory and is also discussed

  2. From empirical to ab initio: transferable potentials in the atomistic simulation of amorphous carbons

    International Nuclear Information System (INIS)

    Marks, N.A.; Goringe, C.M.; McKenzie, D.R.; McCulloch, D.G.; Royal Melbourne Institute of Technology University, Melbourne, VIC

    2000-01-01

    Full text: Silicon is often described as the prototype covalent material, and when it comes to developing atomistic models this situation is well described by the sentiment that 'everything works for silicon'. The same cannot be said for carbon though, where the interaction potential has always proved problematical, be it with empirical, tight-binding or ab initio methods. Thus far the most decisive contributions to understanding amorphous carbon networks have come from ab initio simulations using the Car-Parrinello method, where the fully quantum treatment of the valence electrons has provided unexpected insight into the local structure. However such first principles calculations are restricted spatially and temporally to systems with approximately 100 atoms and times of order one picosecond. There is therefore demand for less expensive techniques capable of resolving important questions whose solution can only to found with larger simulations running for longer times. In the case of tetrahedral amorphous carbon, such issues include the release of compressive stress through annealing, the origin of graphitic surface layers and the nature of the film growth process and thermal spike. Against this background tight-binding molecular dynamics has emerged as a popular alternative to first principles methods, and our group has an ongoing program to understand film growth using one of the efficient variants of tight-binding. Another direction of research is a new empirical potential based on the Environment Dependent Interaction Potential (EDIP) recently developed for silicon. The EDIP approach represents a promising direction for empirical potentials through its use of ab initio data to motivate the functional form as well as the more conventional parametrisation. By inverting ab initio cohesive energy curves the authors of EDIP arrived at a pair potential expression which reduces to the well-known Stillinger-Weber form at integer coordination, while providing

  3. Ab initio density functional theory investigation of crystalline bundles of polygonized single-walled silicon carbide nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)], E-mail: moradian.rostam@gmail.com

    2008-11-19

    By using ab initio density functional theory, the structural characterizations and electronic properties of two large-diameter (13, 13) and (14, 14) armchair silicon carbide nanotube (SiCNT) bundles are investigated. Full structural optimizations show that the cross sections of these large-diameter SiCNTs in the bundles have a nearly hexagonal shape. The effects of inter-tube coupling on the electronic dispersions of large-diameter SiCNT bundles are demonstrated. By comparing the band structures of the triangular lattices of (14, 14) SiCNTs with nearly hexagonal and circular cross sections we found that the polygonization of the tubes in the bundle leads to a further dispersion of the occupied bands and an increase in the bandgap by 0.18 eV.

  4. Ab initio density functional theory investigation of crystalline bundles of polygonized single-walled silicon carbide nanotubes

    International Nuclear Information System (INIS)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2008-01-01

    By using ab initio density functional theory, the structural characterizations and electronic properties of two large-diameter (13, 13) and (14, 14) armchair silicon carbide nanotube (SiCNT) bundles are investigated. Full structural optimizations show that the cross sections of these large-diameter SiCNTs in the bundles have a nearly hexagonal shape. The effects of inter-tube coupling on the electronic dispersions of large-diameter SiCNT bundles are demonstrated. By comparing the band structures of the triangular lattices of (14, 14) SiCNTs with nearly hexagonal and circular cross sections we found that the polygonization of the tubes in the bundle leads to a further dispersion of the occupied bands and an increase in the bandgap by 0.18 eV.

  5. Ab initio density functional theory investigation of crystalline bundles of polygonized single-walled silicon carbide nanotubes

    Science.gov (United States)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2008-11-01

    By using ab initio density functional theory, the structural characterizations and electronic properties of two large-diameter (13, 13) and (14, 14) armchair silicon carbide nanotube (SiCNT) bundles are investigated. Full structural optimizations show that the cross sections of these large-diameter SiCNTs in the bundles have a nearly hexagonal shape. The effects of inter-tube coupling on the electronic dispersions of large-diameter SiCNT bundles are demonstrated. By comparing the band structures of the triangular lattices of (14, 14) SiCNTs with nearly hexagonal and circular cross sections we found that the polygonization of the tubes in the bundle leads to a further dispersion of the occupied bands and an increase in the bandgap by 0.18 eV.

  6. Coupling of ab initio density functional theory and molecular dynamics for the multiscale modeling of carbon nanotubes

    International Nuclear Information System (INIS)

    Ng, T Y; Yeak, S H; Liew, K M

    2008-01-01

    A multiscale technique is developed that couples empirical molecular dynamics (MD) and ab initio density functional theory (DFT). An overlap handshaking region between the empirical MD and ab initio DFT regions is formulated and the interaction forces between the carbon atoms are calculated based on the second-generation reactive empirical bond order potential, the long-range Lennard-Jones potential as well as the quantum-mechanical DFT derived forces. A density of point algorithm is also developed to track all interatomic distances in the system, and to activate and establish the DFT and handshaking regions. Through parallel computing, this multiscale method is used here to study the dynamic behavior of single-walled carbon nanotubes (SWCNTs) under asymmetrical axial compression. The detection of sideways buckling due to the asymmetrical axial compression is reported and discussed. It is noted from this study on SWCNTs that the MD results may be stiffer compared to those with electron density considerations, i.e. first-principle ab initio methods

  7. Ab initio calculations of 3H(d,n)4He fusion

    International Nuclear Information System (INIS)

    Navratil, Petr; Quaglioni, Sofia

    2012-01-01

    We build a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the ab initio no-core shell model. In this way, we complement a microscopic-cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. We will present the first results of the d- 3 H and d- 3 He fusion calculation obtained within our ab initio approach. We will also discuss our d- 4 He, 3 H- 4 He and 3 H- 3 H scattering calculations and the outline of the extension of the formalism to include three-cluster final states with the goal to calculate the 3 H( 3 H,2n) 4 He cross section

  8. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Y., E-mail: kurita@cs.tut.ac.jp; Murakawa, T., E-mail: kurita@cs.tut.ac.jp; Shimamura, K., E-mail: kurita@cs.tut.ac.jp; Oishi, M., E-mail: kurita@cs.tut.ac.jp; Ohyama, T., E-mail: kurita@cs.tut.ac.jp; Kurita, N., E-mail: kurita@cs.tut.ac.jp [Department of Computer Science and Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi, 441-8580 (Japan)

    2015-02-27

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.

  9. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    International Nuclear Information System (INIS)

    Matsushita, Y.; Murakawa, T.; Shimamura, K.; Oishi, M.; Ohyama, T.; Kurita, N.

    2015-01-01

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA

  10. Ab initio study of spin-dependent transport in carbon nanotubes with iron and vanadium adatoms

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka

    2008-01-01

    (majority or minority) being scattered depends on the adsorbate and is explained in terms of d-state filling. We contrast the single-walled carbon nanotube results to the simpler case of the adsorbate on a flat graphene sheet with periodic boundary conditions and corresponding width in the zigzag direction......We present an ab initio study of spin-dependent transport in armchair carbon nanotubes with transition metal adsorbates: iron or vanadium. The method based on density functional theory and nonequilibrium Green's functions is used to compute the electronic structure and zero-bias conductance...

  11. Thermal, spectroscopic, and ab initio structural characterization of carprofen polymorphs.

    Science.gov (United States)

    Bruni, Giovanna; Gozzo, Fabia; Capsoni, Doretta; Bini, Marcella; Macchi, Piero; Simoncic, Petra; Berbenni, Vittorio; Milanese, Chiara; Girella, Alessandro; Ferrari, Stefania; Marini, Amedeo

    2011-06-01

    Commercial and recrystallized polycrystalline samples of carprofen, a nonsteroidal anti-inflammatory drug, were studied by thermal, spectroscopic, and structural techniques. Our investigations demonstrated that recrystallized sample, stable at room temperature (RT), is a single polymorphic form of carprofen (polymorph I) that undergoes an isostructural polymorphic transformation by heating (polymorph II). Polymorph II remains then metastable at ambient conditions. Commercial sample is instead a mixture of polymorphs I and II. The thermodynamic relationships between the two polymorphs were determined through the construction of an energy/temperature diagram. The ab initio structural determination performed on synchrotron X-Ray powder diffraction patterns recorded at RT on both polymorphs allowed us to elucidate, for the first time, their crystal structure. Both crystallize in the monoclinic space group type P2(1) /c, and the unit cell similarity index and the volumetric isostructurality index indicate that the temperature-induced polymorphic transformation I → II is isostructural. Polymorphs I and II are conformational polymorphs, sharing a very similar hydrogen bond network, but with different conformation of the propanoic skeleton, which produces two different packing. The small conformational change agrees with the low value of transition enthalpy obtained by differential scanning calorimetry measurements and the small internal energy computed with density functional methods. Copyright © 2011 Wiley-Liss, Inc.

  12. Direct observations of the MOF (UiO-66) structure by transmission electron microscopy

    KAUST Repository

    Zhu, Liangkui; Zhang, Daliang; Xue, Ming; Li, Huan; Qiu, Shilun

    2013-01-01

    As a demonstration of ab initio structure characterizations of nano metal organic framework (MOF) crystals by high resolution transmission electron microscopy (HRTEM) and electron diffraction tomography methods, a Zr-MOF (UiO-66) structure

  13. Analytical modeling of electron energy loss spectroscopy of graphene: Ab initio study versus extended hydrodynamic model.

    Science.gov (United States)

    Djordjević, Tijana; Radović, Ivan; Despoja, Vito; Lyon, Keenan; Borka, Duško; Mišković, Zoran L

    2018-01-01

    We present an analytical modeling of the electron energy loss (EEL) spectroscopy data for free-standing graphene obtained by scanning transmission electron microscope. The probability density for energy loss of fast electrons traversing graphene under normal incidence is evaluated using an optical approximation based on the conductivity of graphene given in the local, i.e., frequency-dependent form derived by both a two-dimensional, two-fluid extended hydrodynamic (eHD) model and an ab initio method. We compare the results for the real and imaginary parts of the optical conductivity in graphene obtained by these two methods. The calculated probability density is directly compared with the EEL spectra from three independent experiments and we find very good agreement, especially in the case of the eHD model. Furthermore, we point out that the subtraction of the zero-loss peak from the experimental EEL spectra has a strong influence on the analytical model for the EEL spectroscopy data. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Double ionization in Helium. Ab initio calculations beyond the one dimensional approximation

    International Nuclear Information System (INIS)

    Camilo Ruiz; Luis Plaja; Luis Roso; Andreas Becker

    2006-01-01

    Complete test of publication follows. We present ab-initio computations of the ionization of two-electron atoms by short pulses of coherent radiation beyond the one-dimensional approximation. In the model the electron correlation is included in its full dimensionality, while the center-of-mass motion is restricted along the polarization axis. We show some result for Non Sequential Double Ionization (NSDI) as well as for SDI for high intensity low IR frequency. Some recent applications for this correlated system is also presented.

  15. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions

    International Nuclear Information System (INIS)

    Wang, Yimin; Bowman, Joel M.; Kamarchik, Eugene

    2016-01-01

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na + H 2 O, F − H 2 O, and Cl − H 2 O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H 2 O potentials are permutationally invariant fits to roughly 20 000 coupled cluster CCSD(T) energies (awCVTZ basis for Na + and aVTZ basis for Cl − and F − ), over a large range of distances and H 2 O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.

  16. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations.

    Science.gov (United States)

    Timko, Jeff; Kuyucak, Serdar

    2012-11-28

    Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K(+) ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K(+) ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K(+) ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K(+) ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.

  17. Static, dynamic and electronic properties of expanded fluid mercury in the metal-nonmetal transition range. An ab initio study

    International Nuclear Information System (INIS)

    CalderIn, L; Gonzalez, L E; Gonzalez, D J

    2011-01-01

    Fluid Hg undergoes a metal-nonmetal (M-NM) transition when expanded toward a density of around 9 g cm -3 . We have performed ab initio molecular dynamics simulations for several thermodynamic states around the M-NM transition range and the associated static, dynamic and electronic properties have been analyzed. The calculated static structure shows a good agreement with the available experimental data. It is found that the volume expansion decreases the number of nearest neighbors from 10 (near the triple point) to around 8 at the M-NM transition region. Moreover, these neighbors are arranged into two subshells and the decrease in the number of neighbors occurs in the inner subshell. The calculated dynamic structure factors agree fairly well with their experimental counterparts obtained by inelastic x-ray scattering experiments, which display inelastic side peaks. The derived dispersion relation exhibits some positive dispersion for all the states, although its value around the M-NM transition region is not as marked as suggested by the experiment. We have also calculated the electronic density of states, which shows the appearance of a gap at a density of around 8.3 g cm -3 . (paper)

  18. Ab Initio Modeling of Structure and Properties of Single and Mixed Alkali Silicate Glasses.

    Science.gov (United States)

    Baral, Khagendra; Li, Aize; Ching, Wai-Yim

    2017-10-12

    A density functional theory (DFT)-based ab initio molecular dynamics (AIMD) has been applied to simulate models of single and mixed alkali silicate glasses with two different molar concentrations of alkali oxides. The structural environments and spatial distributions of alkali ions in the 10 simulated models with 20% and 30% of Li, Na, K and equal proportions of Li-Na and Na-K are studied in detail for subtle variations among the models. Quantum mechanical calculations of electronic structures, interatomic bonding, and mechanical and optical properties are carried out for each of the models, and the results are compared with available experimental observation and other simulations. The calculated results are in good agreement with the experimental data. We have used the novel concept of using the total bond order density (TBOD), a quantum mechanical metric, to characterize internal cohesion in these glass models. The mixed alkali effect (MAE) is visible in the bulk mechanical properties but not obvious in other physical properties studied in this paper. We show that Li doping deviates from expected trend due to the much stronger Li-O bonding than those of Na and K doping. The approach used in this study is in contrast with current studies in alkali-doped silicate glasses based only on geometric characterizations.

  19. Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State

    Science.gov (United States)

    2018-01-01

    We introduce a simple scheme to efficiently compute photon exchange-correlation contributions due to the coupling to transversal photons as formulated in the newly developed quantum-electrodynamical density-functional theory (QEDFT).1−5 Our construction employs the optimized-effective potential (OEP) approach by means of the Sternheimer equation to avoid the explicit calculation of unoccupied states. We demonstrate the efficiency of the scheme by applying it to an exactly solvable GaAs quantum ring model system, a single azulene molecule, and chains of sodium dimers, all located in optical cavities and described in full real space. While the first example is a two-dimensional system and allows to benchmark the employed approximations, the latter two examples demonstrate that the correlated electron-photon interaction appreciably distorts the ground-state electronic structure of a real molecule. By using this scheme, we not only construct typical electronic observables, such as the electronic ground-state density, but also illustrate how photon observables, such as the photon number, and mixed electron-photon observables, for example, electron–photon correlation functions, become accessible in a density-functional theory (DFT) framework. This work constitutes the first three-dimensional ab initio calculation within the new QEDFT formalism and thus opens up a new computational route for the ab initio study of correlated electron–photon systems in quantum cavities. PMID:29594185

  20. Ab initio study of structural, electronic, optical, and vibrational properties of Zn{sub x}S{sub y} (x + y = 2 to 5) nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, P. S.; Pandey, D. K., E-mail: pdhiraj2000@gmail.com; Agrawal, S.; Agrawal, B. K. [Allahabad University, Department of Physics (India)

    2010-03-15

    An ab initio study of the stability, structural, electronic. and optical properties has been performed for 46 zinc sulfide nanoclusters Zn{sub x}S{sub y} (x + y = n = 2 to 5). Five out of them are seen to be unstable as their vibrational frequencies are found to be imaginary. A B3LYP-DFT/6-311G(3df) method is employed to optimize the geometries and a TDDFT method is used for the study of the optical properties. The binding energies (BE), HOMO-LUMO gaps and the bond lengths have been obtained for all the clusters. For the ZnS{sub 2}, ZnS{sub 3}, and ZnS{sub 4} nanoclusters, our stable structures are seen to be different from those obtained earlier by using the effective core potentials. We have also considered the zero point energy (ZPE) corrections ignored by the earlier workers. For a fixed value of n, we designate the most stable structure the one, which has maximum final binding energy per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), charges on the atoms, dipole moments, optical properties, vibrational frequencies, infrared intensities, relative infrared intensities, and Raman scattering activities have been investigated for the most stable structures. The nanoclusters containing large number of S atoms for each n is found to be most stable. The HOMO-LUMO gap decreases from n = 2-3 and then increases above n = 3. The IP and EA both fluctuate with the cluster size n. The optical absorption is quite weak in visible region but strong in the ultraviolet region in most of the nanoclusters except a few. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every nanocluster and may be used to characterize a specific nanocluster. The growth of most stable nanoclusters may be possible in the experiments.

  1. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg

    International Nuclear Information System (INIS)

    Hay, P.J.; Wadt, W.R.

    1985-01-01

    Ab initio effective core potentials (ECP's) have been generated to replace the Coulomb, exchange, and core-orthogonality effects of the chemically inert core electron in the transition metal atoms Sc to Hg. For the second and third transition series relative ECP's have been generated which also incorporate the mass--velocity and Darwin relativistic effects into the potential. The ab initio ECP's should facilitate valence electron calculations on molecules containing transition-metal atoms with accuracies approaching all-electron calculations at a fraction of the computational cost. Analytic fits to the potentials are presented for use in multicenter integral evaluation. Gaussian orbital valence basis sets are developed for the (3d,4s,4p), (4d,5s,5p), and (5d,6s,6p) orbitals of the first, second, and third transition series atoms, respectively. All-electron and valence-electron atomic excitation energies are also compared for the low-lying states of Sc--Hg, and the valence-electron calculations are found to reproduce the all-electron excitation energies (typically within a few tenths of an eV)

  2. An experimental and ab initio study of the electronic spectrum of the jet-cooled F{sub 2}BO free radical

    Energy Technology Data Exchange (ETDEWEB)

    Grimminger, Robert; Clouthier, Dennis J., E-mail: dclaser@uky.edu [Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055 (United States); Sheridan, Phillip M. [Department of Chemistry and Biochemistry, Canisius College, Buffalo, New York 14208 (United States)

    2014-04-28

    We have studied the B{sup ~} {sup 2}A{sub 1}–X{sup ~} {sup 2}B{sub 2} laser-induced fluorescence (LIF) spectrum of the jet-cooled F{sub 2}BO radical for the first time. The transition consists of a strong 0{sub 0}{sup 0} band at 446.5 nm and eight weak sequence bands to shorter wavelengths. Single vibronic level emission spectra obtained by laser excitation of individual levels of the B{sup ~} state exhibit two electronic transitions: a very weak, sparse B{sup ~}–X{sup ~} band system in the 450–500 nm region and a stronger, more extensive set of B{sup ~} {sup 2}A{sub 1}–A{sup ~} {sup 2}B{sub 1} bands in the 580–650 nm region. We have also performed a series of high level ab initio calculations to predict the electronic energies, molecular structures, vibrational frequencies, and rotational and spin-rotation constants in the X{sup ~} {sup 2}B{sub 2}, A{sup ~2}B{sub 1} and B{sup ~} {sup 2}A{sub 1} electronic states as an aid to the analysis of the experimental data. The theoretical results have been used as input for simulations of the rotationally resolved B{sup ~} {sup 2}A{sub 1}–X{sup ~} {sup 2}B{sub 2} 0{sub 0}{sup 0} LIF band and Franck-Condon profiles of the LIF and single vibronic level emission spectra. The agreement between the simulations obtained with purely ab initio parameters and the experimental spectra validates the geometries calculated for the ground and excited states and the conclusion that the radical has C{sub 2v} symmetry in the X{sup ~}, A{sup ~}, and B{sup ~} states. The spectra provide considerable new information about the vibrational energy levels of the X{sup ~} and A{sup ~} states, but very little for the B{sup ~} state, due to the very restrictive Franck-Condon factors in the LIF spectra.

  3. Simulations of the dissociation of small helium clusters with ab initio molecular dynamics in electronically excited states

    International Nuclear Information System (INIS)

    Closser, Kristina D.; Head-Gordon, Martin; Gessner, Oliver

    2014-01-01

    The dynamics resulting from electronic excitations of helium clusters were explored using ab initio molecular dynamics. The simulations were performed with configuration interaction singles and adiabatic classical dynamics coupled to a state-following algorithm. 100 different configurations of He 7 were excited into the 2s and 2p manifold for a total of 2800 trajectories. While the most common outcome (90%) was complete fragmentation to 6 ground state atoms and 1 excited state atom, 3% of trajectories yielded bound, He 2 * , and <0.5% yielded an excited helium trimer. The nature of the dynamics, kinetic energy release, and connections to experiments are discussed

  4. A nonlocal, ab initio model of dissociative electron attachment and vibrational excitation of NO

    International Nuclear Information System (INIS)

    Trevisan, Cynthia S.; Houfek, Karel; Zhang, Zhiyong; Orel, Ann E.; McCurdy, C. William; Rescigno, Thomas N.

    2005-01-01

    We present the results of an ab initio study of elastic scattering and vibrational excitation of NO by electron impact in the loW--energy (0-2 eV) region where the cross sections are dominated by resonance contributions. The 3Sigma-, 1Delta and 1Sigma+ NO- resonance lifetimes are taken from our earlier study [Phys. Rev. A 69, 062711 (2004)], but the resonance energies used here are obtained from new configuration-interaction studies. Here we employ a more elaborate nonlocal treatment of the nuclear dynamics, which is found to remedy the principal deficiencies of the local complex potential model we employed in our earlier study, and gives cross sections in better agreement with the most recent experiments. We also present cross sections for dissociative electron attachment to NO leading to groundstate products. The calculations show that, while the peak cross sections starting from NO in its ground vibrational state are very small, the cross sections are extremely sensitive to vibrational excitation of the target and should be readily observable for target NO molecules excited to v = 10 and above

  5. Core structure of screw dislocations in Fe from first-principles; Simulation ab initio des coeurs de dislocation vis dans le fer

    Energy Technology Data Exchange (ETDEWEB)

    Ventelon, L

    2008-11-15

    The various methods appropriate for the simulation of dislocations within first-principles calculations have been set up, improved and compared between them. They have been applied to study screw dislocations in body-centered cubic iron using the SIESTA code. A non-degenerate core structure is obtained; its detailed analysis reveals a dilatation effect. Taking it into account in an anisotropic elasticity model, allows explaining the cell-size dependence of the energetics, obtained within the dipole approach. The Peierls potential obtained in ab initio suggests that the metastable core configuration at halfway position in the Peierls barrier, predicted by empirical potential, does not exist. We show how to construct tri-periodic cells optimized to study kinked dislocations. Using empirical potential, we demonstrate the feasibility of ab initio calculations of Peierls stress and kink formation. (author)

  6. Mechanical properties and electronic structure of anti-ReO3 structured cubic nitrides, M3N, of d block transition metals M: An ab initio study

    International Nuclear Information System (INIS)

    Zhou, Xiuquan; Gall, Daniel; Khare, Sanjay V.

    2014-01-01

    Highlights: • We use DFT to model the anti-ReO 3 structured transition metal nitrides M 3 N. • We predict their lattice constants, electronic structures and mechanical properties. • We correlate the metal d and nitrogen 2p orbitals with stability and hardness. • We established a high-throughput database for materials design. - Abstract: We report a systematic study of the anti-ReO 3 structured transition metal nitrides, M 3 N, using ab initio density functional theory computations in the local density approximation. Here M denotes all the 3d, 4d and 5d transition metals. Our calculations indicate that all M 3 N compounds except V 3 N of group 5 and Zn 3 N and Hg 3 N of group 12 are mechanically stable. For the stable M 3 N compounds, we report a database of predictions for their lattice constants, electronic properties and mechanical properties including bulk modulus, Young’s modulus, shear modulus, ductility, hardness and Debye temperature. It is found that most M 3 N compounds exhibit ductility with Vickers hardness between 0.4 GPa and 11.2 GPa. Our computed lattice constant for Cu 3 N, the only M 3 N compound where experiments exist, agrees well with the experimentally reported values. We report ratios of the melting points of all M 3 N compounds to that of Cu 3 N. The local density of states for all M 3 N compounds are obtained, and electronic band gaps are observed only for M of group 11 (Cu, Ag and Au) while the remaining M 3 N compounds are metallic without band gaps. Valence electron density along with the hybridization of the metal d and nitrogen 2p orbitals play an important role in determining the stability and hardness of different compounds. Our high-throughput databases for the cubic anti-ReO 3 structured transition metal nitrides should motivate future experimental work and shorten the time to their discovery

  7. Electronic structure of shandite Co3Sn2S2

    Science.gov (United States)

    Dedkov, Y. S.; Holder, M.; Molodtsov, S. L.; Rosner, H.

    2008-03-01

    The electronic structure of shandite Co3Sn2S2 was determined by photoelectron spectroscopy and compared with ab initio band structure calculations. Presented results give evidence that this compound has half-metallic ferromagnetic properties.

  8. Use of ab initio quantum chemical methods in battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Deiss, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Ab initio quantum chemistry can nowadays predict physical and chemical properties of molecules and solids. An attempt should be made to use this tool more widely for predicting technologically favourable materials. To demonstrate the use of ab initio quantum chemistry in battery technology, the theoretical energy density (energy per volume of active electrode material) and specific energy (energy per mass of active electrode material) of a rechargeable lithium-ion battery consisting of a graphite electrode and a nickel oxide electrode has been calculated with this method. (author) 1 fig., 1 tab., 7 refs.

  9. Summary of workshop 'Theory Meets Industry' - the impact of ab initio solid state calculations on industrial materials research

    International Nuclear Information System (INIS)

    Wimmer, E

    2008-01-01

    A workshop, 'Theory Meets Industry', was held on 12-14 June 2007 in Vienna, Austria, attended by a well balanced number of academic and industrial scientists from America, Europe, and Japan. The focus was on advances in ab initio solid state calculations and their practical use in industry. The theoretical papers addressed three dominant themes, namely (i) more accurate total energies and electronic excitations (ii) more complex systems, and (iii) more diverse and accurate materials properties. Hybrid functionals give some improvements in energies, but encounter difficulties for metallic systems. Quantum Monte Carlo methods are progressing, but no clear breakthrough is on the horizon. Progress in order-N methods is steady, as is the case for efficient methods for exploring complex energy hypersurfaces and large numbers of structural configurations. The industrial applications were dominated by materials issues in energy conversion systems, the quest for hydrogen storage materials, improvements of electronic and optical properties of microelectronic and display materials, and the simulation of reactions on heterogeneous catalysts. The workshop is a clear testimony that ab initio computations have become an industrial practice with increasingly recognized impact

  10. Single-layer 1T‧-MoS2 under electron irradiation from ab initio molecular dynamics

    Science.gov (United States)

    Pizzochero, Michele; Yazyev, Oleg V.

    2018-04-01

    Irradiation with high-energy particles has recently emerged as an effective tool for tailoring the properties of two-dimensional transition metal dichalcogenides. In order to carry out an atomically-precise manipulation of the lattice, a detailed understanding of the beam-induced events occurring at the atomic scale is necessary. Here, we investigate the response of 1T' -MoS2 to the electron irradiation by ab initio molecular dynamics means. Our simulations suggest that an electron beam with energy smaller than 75 keV does not result in any knock-on damage. The displacement threshold energies are different for the two nonequivalent sulfur atoms in 1T' -MoS2 and strongly depend on whether the top or bottom chalcogen layer is considered. As a result, a careful tuning of the beam energy can promote the formation of ordered defects in the sample. We further discuss the effect of the electron irradiation in the neighborhood of a defective site, the mobility of the sulfur vacancies created and their tendency to aggregate. Overall, our work provides useful guidelines for the imaging and the defect engineering of 1T' -MoS2 using electron microscopy.

  11. 4He Thermophysical Properties: New Ab Initio Calculations

    Science.gov (United States)

    Hurly, John J.; Mehl, James B.

    2007-01-01

    Since 2000, atomic physicists have reduced the uncertainty of the helium-helium “ab initio” potential; for example, from approximately 0.6 % to 0.1 % at 4 bohr, and from 0.8 % to 0.1 % at 5.6 bohr. These results led us to: (1) construct a new inter-atomic potential ϕ07, (2) recalculate values of the second virial coefficient, the viscosity, and the thermal conductivity of 4He from 1 K to 10,000 K, and (3), analyze the uncertainties of the thermophysical properties that propagate from the uncertainty of ϕ07 and from the Born-Oppenheimer approximation of the electron-nucleon quantum mechanical system. We correct minor errors in a previous publication [J. J. Hurly and M. R. Moldover, J. Res. Nat. Inst. Standards Technol. 105, 667 (2000)] and compare our results with selected data published after 2000. The ab initio results tabulated here can serve as standards for the measurement of thermophysical properties. PMID:27110456

  12. Charge carrier motion in disordered conjugated polymers: a multiscale ab-initio study

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    We developed an ab-initio multiscale method for simulation of carrier transport in large disordered systems, based on direct calculation of electronic states and electron-phonon coupling constants. It enabled us to obtain the never seen before rich microscopic details of carrier motion in conjugated polymers, which led us to question several assumptions of phenomenological models, widely used in such systems. The macroscopic mobility of disordered poly(3- hexylthiophene) (P3HT) polymer, extracted from our simulation, is in agreement with experimental results from the literature.

  13. Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering

    Science.gov (United States)

    Martinek, Tomas; Duboué-Dijon, Elise; Timr, Štěpán; Mason, Philip E.; Baxová, Katarina; Fischer, Henry E.; Schmidt, Burkhard; Pluhařová, Eva; Jungwirth, Pavel

    2018-06-01

    We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.

  14. Ab initio study of Ni2MnGa under shear deformation

    Directory of Open Access Journals (Sweden)

    Zelený Martin

    2015-01-01

    Full Text Available The effect of shear deformation on Ni2MnGa magnetic shape memory alloy has been investigated using ab initio electronic structure calculations. We used the projector-augmented wave method for the calculations of total energies and stresses as functions of applied affine shear deformation. The studied nonmodulated martensite (NM phase exhibits a tetragonally distorted L21 structure with c/a > 1. A large strain corresponding to simple shears in {001}, {100} and {100} systems was applied to describe a full path between two equivalent NM lattices. We also studied {101} shear which is related to twining of NM phase. Twin reorientation in this system is possible, because applied positive shear results in path with significantly smaller energetic barrier than for negative shear and for shears in other studied systems. When the full relaxation of lattice parameters is allowed, the barriers further strongly decrease and the structures along the twinning path can be considered as orthorhombic.

  15. Magneto-Structural Correlations in Pseudotetrahedral Forms of the [Co(SPh)4]2- Complex Probed by Magnetometry, MCD Spectroscopy, Advanced EPR Techniques, and ab Initio Electronic Structure Calculations.

    Science.gov (United States)

    Suturina, Elizaveta A; Nehrkorn, Joscha; Zadrozny, Joseph M; Liu, Junjie; Atanasov, Mihail; Weyhermüller, Thomas; Maganas, Dimitrios; Hill, Stephen; Schnegg, Alexander; Bill, Eckhard; Long, Jeffrey R; Neese, Frank

    2017-03-06

    The magnetic properties of pseudotetrahedral Co(II) complexes spawned intense interest after (PPh 4 ) 2 [Co(SPh) 4 ] was shown to be the first mononuclear transition-metal complex displaying slow relaxation of the magnetization in the absence of a direct current magnetic field. However, there are differing reports on its fundamental magnetic spin Hamiltonian (SH) parameters, which arise from inherent experimental challenges in detecting large zero-field splittings. There are also remarkable changes in the SH parameters of [Co(SPh) 4 ] 2- upon structural variations, depending on the counterion and crystallization conditions. In this work, four complementary experimental techniques are utilized to unambiguously determine the SH parameters for two different salts of [Co(SPh) 4 ] 2- : (PPh 4 ) 2 [Co(SPh) 4 ] (1) and (NEt 4 ) 2 [Co(SPh) 4 ] (2). The characterization methods employed include multifield SQUID magnetometry, high-field/high-frequency electron paramagnetic resonance (HF-EPR), variable-field variable-temperature magnetic circular dichroism (VTVH-MCD), and frequency domain Fourier transform THz-EPR (FD-FT THz-EPR). Notably, the paramagnetic Co(II) complex [Co(SPh) 4 ] 2- shows strong axial magnetic anisotropy in 1, with D = -55(1) cm -1 and E/D = 0.00(3), but rhombic anisotropy is seen for 2, with D = +11(1) cm -1 and E/D = 0.18(3). Multireference ab initio CASSCF/NEVPT2 calculations enable interpretation of the remarkable variation of D and its dependence on the electronic structure and geometry.

  16. Ab initio thermodynamic model for magnesium carbonates and hydrates.

    Science.gov (United States)

    Chaka, Anne M; Felmy, Andrew R

    2014-09-04

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  17. Ab Initio Enhanced calphad Modeling of Actinide-Rich Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Yang, Yong Austin [Univ. of Wisconsin, Madison, WI (United States)

    2013-10-28

    The process of fuel recycling is central to the Advanced Fuel Cycle Initiative (AFCI), where plutonium and the minor actinides (MA) Am, Np, and Cm are extracted from spent fuel and fabricated into new fuel for a fast reactor. Metallic alloys of U-Pu-Zr-MA are leading candidates for fast reactor fuels and are the current basis for fast spectrum metal fuels in a fully recycled closed fuel cycle. Safe and optimal use of these fuels will require knowledge of their multicomponent phase stability and thermodynamics (Gibbs free energies). In additional to their use as nuclear fuels, U-Pu-Zr-MA contain elements and alloy phases that pose fundamental questions about electronic structure and energetics at the forefront of modern many-body electron theory. This project will validate state-of-the-art electronic structure approaches for these alloys and use the resulting energetics to model U-Pu-Zr-MA phase stability. In order to keep the work scope practical, researchers will focus on only U-Pu-Zr-{Np,Am}, leaving Cm for later study. The overall objectives of this project are to: Provide a thermodynamic model for U-Pu-Zr-MA for improving and controlling reactor fuels; and, Develop and validate an ab initio approach for predicting actinide alloy energetics for thermodynamic modeling.

  18. Hydration structure and dynamics of a hydroxide ion in water clusters of varying size and temperature: Quantum chemical and ab initio molecular dynamics studies

    International Nuclear Information System (INIS)

    Bankura, Arindam; Chandra, Amalendu

    2012-01-01

    Highlights: ► A theoretical study of hydroxide ion-water clusters is carried for varying cluster size and temperature. ► The structures of OH − (H 2 O) n are found out through quantum chemical calculations for n = 4, 8, 16 and 20. ► The finite temperature behavior of the clusters is studied through ab initio dynamical simulations. ► The spectral features of OH modes (deuterated) and their dependence on hydrogen bonding states of water are discussed. ► The mechanism and kinetics of proton transfer processes in these anionic clusters are also investigated. - Abstract: We have investigated the hydration structure and dynamics of OH − (H 2 O) n clusters (n = 4, 8, 16 and 20) by means of quantum chemical and ab initio molecular dynamics calculations. Quantum chemical calculations reveal that the solvation structure of the hydroxide ion transforms from three and four-coordinated surface states to five-coordinated interior state with increase in cluster size. Several other isomeric structures with energies not very different from the most stable isomer are also found. Ab initio simulations show that the most probable configurations at higher temperatures need not be the lowest energy isomeric structure. The rates of proton transfer in these clusters are found to be slower than that in bulk water. The vibrational spectral calculations reveal distinct features for free OH (deuterated) stretch modes of water in different hydrogen bonding states. Effects of temperature on the structural and dynamical properties are also investigated for the largest cluster considered here.

  19. Oxygen-metal bonding in Ti-bearing compounds from O 1s spectra and ab initio full multiple-scattering calculations

    International Nuclear Information System (INIS)

    Ziyu Wu; Paris, E.; Langenhorst, F.; Seifert, F.

    2002-01-01

    The O K-edge spectra of a series of Ti-bearing compounds with Ti in diffrent structural and chemical environments have been measured using electron energy-loss spectroscopy and analyzed using ab initio full multiple-scattering (MS) calculations. The near-edge structures arise mainly from covalency by direct and/or indirect interaction between O and metal atoms and between O and Si atoms. The coordination number of the cation and the site symmetry also influence the spectral shape and structures. Using different size clusters around the excited atom in the full MS simulation, it is possible to interpret and assign the features present in the spectra of each compund to its specific atomic arrangement and electronic structure. (au)

  20. Functionalization of silicon-doped single walled carbon nanotubes at the doping site: An ab initio study

    International Nuclear Information System (INIS)

    Song Chen; Xia Yueyuan; Zhao Mingwen; Liu Xiangdong; Li Feng; Huang Boda; Zhang Hongyu; Zhang Bingyun

    2006-01-01

    We performed ab initio calculations on the cytosine-functionalized silicon-doped single walled carbon nanotubes (SWNT). The results show that silicon substitutional doping to SWNT can dramatically change the atomic and electronic structures of the SWNT. And more importantly, it may provide an efficient pathway for further sidewall functionalization to synthesize more complicated SWNT based complex materials, for example, our previously proposed base-functionalized SWNTs, because the doping silicon atom can improve the reaction activity of the tube at the doping site due to its preference to form sp3 hybridization bonding

  1. High pressure behaviour of uranium dicarbide (UC{sub 2}): Ab-initio study

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, B. D., E-mail: bdsahoo@barc.gov.in; Mukherjee, D.; Joshi, K. D.; Kaushik, T. C. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-08-28

    The structural stability of uranium dicarbide has been examined under hydrostatic compression employing evolutionary structure search algorithm implemented in the universal structure predictor: evolutionary Xtallography (USPEX) code in conjunction with ab-initio electronic band structure calculation method. The ab-initio total energy calculations involved for this purpose have been carried out within both generalized gradient approximations (GGA) and GGA + U approximations. Our calculations under GGA approximation predict the high pressure structural sequence of tetragonal → monoclinic → orthorhombic for this material with transition pressures of ∼8 GPa and 42 GPa, respectively. The same transition sequence is predicted by calculations within GGA + U also with transition pressures placed at ∼24 GPa and ∼50 GPa, respectively. Further, on the basis of comparison of zero pressure equilibrium volume and equation of state with available experimental data, we find that GGA + U approximation with U = 2.5 eV describes this material better than the simple GGA approximation. The theoretically predicted high pressure structural phase transitions are in disagreement with the only high experimental study by Dancausse et al. [J. Alloys. Compd. 191, 309 (1993)] on this compound which reports a tetragonal to hexagonal phase transition at a pressure of ∼17.6 GPa. Interestingly, during lowest enthalpy structure search using USPEX, we do not see any hexagonal phase to be closer to the predicted monoclinic phase even within 0.2 eV/f. unit. More experiments with varying carbon contents in UC{sub 2} sample are required to resolve this discrepancy. The existence of these high pressure phases predicted by static lattice calculations has been further substantiated by analyzing the elastic and lattice dynamic stability of these structures in the pressure regimes of their structural stability. Additionally, various thermo-physical quantities such as

  2. Conformational analysis of an acyclic tetrapeptide: ab-initio structure determination from X-ray powder diffraction, Hirshfeld surface analysis and electronic structure.

    Science.gov (United States)

    Das, Uday; Naskar, Jishu; Mukherjee, Alok Kumar

    2015-12-01

    A terminally protected acyclic tetrapeptide has been synthesized, and the crystal structure of its hydrated form, Boc-Tyr-Aib-Tyr-Ile-OMe·2H2O (1), has been determined directly from powder X-ray diffraction data. The backbone conformation of tetrapeptide (1) exhibiting two consecutive β-turns is stabilized by two 4 → 1 intramolecular N-H · · · O hydrogen bonds. In the crystalline state, the tetrapeptide molecules are assembled through water-mediated O-H · · · O hydrogen bonds to form two-dimensional molecular sheets, which are further linked by intermolecular C-H · · · O hydrogen bonds into a three-dimensional supramolecular framework. The molecular electrostatic potential (MEP) surface of (1) has been used to supplement the crystallographic observations. The nature of intermolecular interactions in (1) has been analyzed quantitatively through the Hirshfeld surface and two-dimensional fingerprint plot. The DFT optimized molecular geometry of (1) agrees closely with that obtained from the X-ray structure analysis. The present structure analysis of Boc-Tyr-Aib-Tyr-Ile-OMe·2H2 O (1) represents a case where ab-initio crystal structure of an acyclic tetrapeptide with considerable molecular flexibility has been accomplished from laboratory X-ray powder diffraction data. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  3. Ab initio studies of structural, electronic, optical, elastic and thermal properties of silver gallium dichalcogenides (AgGaX2: X = S, Se, Te)

    International Nuclear Information System (INIS)

    Sharma, Sheetal; Verma, A.S.; Jindal, V.K.

    2014-01-01

    Graphical abstract: - Highlights: • FP-LAPW method has been used to compute the solid state properties of AgGaX 2 (X = S, Se, Te). • Electronic and optical properties reported with recently developed mBJ potential. • Thermal expansion, heat capacity, Debye temperature, entropy and Grüneisen parameter were evaluated. • Hardness was calculated for the first time at different temperature and pressure. - Abstract: We have performed ab initio calculations for the structural, electronic, optical, elastic and thermal properties of the silver gallium dichalcogenides (AgGaX 2 : X = S, Se, Te). In this study, we have used the accurate full potential linearized augmented plane wave (FP-LAPW) method to find the equilibrium structural parameters and to compute the six elastic constants (C 11 , C 12 , C 13 , C 33 , C 44 and C 66 ). We have reported electronic and optical properties with the recently developed density functional theory of Tran and Blaha, and this theory is used along with the Wu-Cohen generalized gradient approximation (WC-GGA) for the exchange-correlation potential. Furthermore, optical features such as dielectric functions, refractive indices, extinction coefficient, optical reflectivity, absorption coefficients and optical conductivities were calculated for photon energies up to 40 eV. The thermodynamical properties such as thermal expansion, heat capacity, debye temperature, entropy, Grüneisen parameter and bulk modulus were calculated employing the quasi-harmonic Debye model at different temperatures (0–900 K) and pressures (0–8 GPa) and the silent results were interpreted. Hardness of the materials was calculated for the first time at different temperatures and pressures

  4. Structural properties of iron nitride on Cu(100): An ab-initio molecular dynamics study

    KAUST Repository

    Heryadi, Dodi

    2011-01-01

    Due to their potential applications in magnetic storage devices, iron nitrides have been a subject of numerous experimental and theoretical investigations. Thin films of iron nitride have been successfully grown on different substrates. To study the structural properties of a single monolayer film of FeN we have performed an ab-initio molecular dynamics simulation of its formation on a Cu(100) substrate. The iron nitride layer formed in our simulation shows a p4gm(2x2) reconstructed surface, in agreement with experimental results. In addition to its structural properties, we are also able to determine the magnetization of this thin film. Our results show that one monolayer of iron nitride on Cu(100) is ferromagnetic with a magnetic moment of 1.67 μ B. © 2011 Materials Research Society.

  5. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yimin, E-mail: yimin.wang@emory.edu; Bowman, Joel M., E-mail: jmbowma@emory.edu [Department of Chemistry, Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States); Kamarchik, Eugene, E-mail: eugene.kamarchik@gmail.com [Quantum Pomegranate, LLC, 2604 Kings Lake Court NE, Atlanta, Georgia 30345 (United States)

    2016-03-21

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na{sup +}H{sub 2}O, F{sup −}H{sub 2}O, and Cl{sup −}H{sub 2}O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H{sub 2}O potentials are permutationally invariant fits to roughly 20 000 coupled cluster CCSD(T) energies (awCVTZ basis for Na{sup +} and aVTZ basis for Cl{sup −} and F{sup −}), over a large range of distances and H{sub 2}O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.

  6. Ab Initio Atomistic Thermodynamics for Surfaces: A Primer

    National Research Council Canada - National Science Library

    Rogal, Jutta; Reuter, Karsten

    2006-01-01

    .... These techniques are referred to as first-principles (or in latin: ab initio) to indicate that they do not rely on empirical or fitted parameters, which then makes them applicable for a wide range of realistic conditions...

  7. Electronic structure of MgB 2

    Indian Academy of Sciences (India)

    Results of ab initio electronic structure calculations on the compound MgB2 using the FPLAPW method employing GGA for the exchange-correlation energy are presented. Total energy minimization enables us to estimate the equilibrium volume, / ratio and the bulk modulus, all of which are in excellent agreement with ...

  8. Electronic structure of MgB2

    Indian Academy of Sciences (India)

    Abstract. Results of ab initio electronic structure calculations on the compound MgB2 using the. FPLAPW method employing GGA for the exchange-correlation energy are presented. Total energy minimization enables us to estimate the equilibrium volume, c/a ratio and the bulk modulus, all of which are in excellent ...

  9. Summary of workshop 'Theory Meets Industry'—the impact of ab initio solid state calculations on industrial materials research

    Science.gov (United States)

    Wimmer, E.

    2008-02-01

    A workshop, 'Theory Meets Industry', was held on 12-14 June 2007 in Vienna, Austria, attended by a well balanced number of academic and industrial scientists from America, Europe, and Japan. The focus was on advances in ab initio solid state calculations and their practical use in industry. The theoretical papers addressed three dominant themes, namely (i) more accurate total energies and electronic excitations, (ii) more complex systems, and (iii) more diverse and accurate materials properties. Hybrid functionals give some improvements in energies, but encounter difficulties for metallic systems. Quantum Monte Carlo methods are progressing, but no clear breakthrough is on the horizon. Progress in order-N methods is steady, as is the case for efficient methods for exploring complex energy hypersurfaces and large numbers of structural configurations. The industrial applications were dominated by materials issues in energy conversion systems, the quest for hydrogen storage materials, improvements of electronic and optical properties of microelectronic and display materials, and the simulation of reactions on heterogeneous catalysts. The workshop is a clear testimony that ab initio computations have become an industrial practice with increasingly recognized impact.

  10. Iron -chromium alloys and free surfaces: from ab initio calculations to thermodynamic modeling

    International Nuclear Information System (INIS)

    Levesque, M.

    2010-11-01

    Ferritic steels possibly strengthened by oxide dispersion are candidates as structural materials for generation IV and fusion nuclear reactors. Their use is limited by incomplete knowledge of the iron-chromium phase diagram at low temperatures and of the phenomena inducing preferential segregation of one element at grain boundaries or at surfaces. In this context, this work contributes to the multi-scale study of the model iron-chromium alloy and their free surfaces by numerical simulations. This study begins with ab initio calculations of properties related to the mixture of atoms of iron and chromium. We highlight complex dependency of the magnetic moments of the chromium atoms on their local chemical environment. Surface properties are also proving sensitive to magnetism. This is the case of impurity segregation of chromium in iron and of their interactions near the surface. In a second step, we construct a simple energy model for high numerical efficiency. It is based on pair interactions on a rigid lattice to which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that we compare to Monte Carlo simulations. The last step of our work is to introduce free surfaces in our model. We then study the effect of ab initio calculated bulk and surface properties on surface segregation.Finally, we calculate segregation isotherms. We therefore propose an evolution model of surface composition of iron-chromium alloys as a function of bulk composition. which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that

  11. Effects of spin orbital coupling on atomic and electronic structures in Al{sub 2}Cu and Al{sub 2}Au crystal and liquid phases via ab initio molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Lu, Y.H., E-mail: luyh@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Wang, X.D.; Cao, Q.P. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, D.X. [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China); Jiang, J.Z., E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2014-11-15

    Highlights: • The SOC effect affects the cohesion energy of crystal phase. • The effect of SOC was reduced due to random local atomic structures in liquids. • The local geometrical structures also affect the melting points. • Both SOC effect and local atomic structures are important for melting point difference. - Abstract: The origin of different melting points between Al{sub 2}Cu and Al{sub 2}Au has been studied using ab initio molecular dynamics simulations. Cohesive energy, electronic structures and structure information of both crystal and liquid phases have been analyzed. It is found that spin orbital coupling (SOC) plays an important role on the cohesive energy of crystal phase, consistent with the different melting points of these two alloys. Whereas, it seems that SOC has no effect on the formation energy and structure of liquid phase. Possible mechanism of reduced SOC effect at liquid phase is proposed. Our results are helpful to understand the glass formation ability difference between Al{sub 2}Cu and Al{sub 2}Au.

  12. Experimental and ab initio investigations on textured Li–Mn–O spinel thin film cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J., E-mail: Julian.Fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Music, D. [RWTH Aachen University, Materials Chemistry, Kopernikusstrasse 10, 52074 Aachen (Germany); Bergfeldt, T.; Ziebert, C.; Ulrich, S.; Seifert, H.J. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-01

    This paper describes the tailored preparation of nearly identical lithium–manganese–oxide thin film cathodes with different global grain orientations. The thin films were synthesized by rf magnetron sputtering from a LiMn{sub 2}O{sub 4}-target in a pure argon plasma. Under appropriate processing conditions, thin films with a cubic spinel structure and a nearly similar density and surface topography but different grain orientation, i.e. (111)- and (440)-textured films, were achieved. The chemical composition was determined by inductively coupled plasma optical emission spectroscopy and carrier gas hot extraction. The constitution- and microstructure were evaluated by X-ray diffraction and Raman spectroscopy. The surface morphology and roughness were investigated by scanning electron and atomic force microscopy. The differently textured films represent an ideal model system for studying potential effects of grain orientation on the lithium ion diffusion and electrochemical behavior in LiMn{sub 2}O{sub 4}-based thin films. They are nearly identical in their chemical composition, atomic bonding behavior, surface-roughness, morphology and thickness. Our initial ab initio molecular dynamics data indicate that Li ion transport is faster in (111)-textured structure than in (440)-textured one. - Highlights: • Thin film model system of differently textured cubic Li–Mn–O spinels. • Investigation of the Li–Mn–O thin film mass density by X-ray reflectivity. • Ab initio molecular dynamics simulation on Li ion diffusion in LiMn{sub 2}O{sub 4}.

  13. Experimental and ab initio investigations on textured Li–Mn–O spinel thin film cathodes

    International Nuclear Information System (INIS)

    Fischer, J.; Music, D.; Bergfeldt, T.; Ziebert, C.; Ulrich, S.; Seifert, H.J.

    2014-01-01

    This paper describes the tailored preparation of nearly identical lithium–manganese–oxide thin film cathodes with different global grain orientations. The thin films were synthesized by rf magnetron sputtering from a LiMn 2 O 4 -target in a pure argon plasma. Under appropriate processing conditions, thin films with a cubic spinel structure and a nearly similar density and surface topography but different grain orientation, i.e. (111)- and (440)-textured films, were achieved. The chemical composition was determined by inductively coupled plasma optical emission spectroscopy and carrier gas hot extraction. The constitution- and microstructure were evaluated by X-ray diffraction and Raman spectroscopy. The surface morphology and roughness were investigated by scanning electron and atomic force microscopy. The differently textured films represent an ideal model system for studying potential effects of grain orientation on the lithium ion diffusion and electrochemical behavior in LiMn 2 O 4 -based thin films. They are nearly identical in their chemical composition, atomic bonding behavior, surface-roughness, morphology and thickness. Our initial ab initio molecular dynamics data indicate that Li ion transport is faster in (111)-textured structure than in (440)-textured one. - Highlights: • Thin film model system of differently textured cubic Li–Mn–O spinels. • Investigation of the Li–Mn–O thin film mass density by X-ray reflectivity. • Ab initio molecular dynamics simulation on Li ion diffusion in LiMn 2 O 4

  14. Ab initio study on stacking sequences, free energy, dynamical stability and potential energy surfaces of graphite structures

    International Nuclear Information System (INIS)

    Anees, P; Valsakumar, M C; Chandra, Sharat; Panigrahi, B K

    2014-01-01

    Ab initio simulations have been performed to study the structure, energetics and stability of several plausible stacking sequences in graphite. These calculations suggest that in addition to the standard structures, graphite can also exist in AA-simple hexagonal, AB-orthorhombic and ABC-hexagonal type stacking. The free energy difference between these structures is very small (∼1 meV/atom), and hence all the structures can coexist from purely energetic considerations. Calculated x-ray diffraction patterns are similar to those of the standard structures for 2θ ⩽ 70°. Shear elastic constant C 44 is negative in AA-simple hexagonal, AB-orthorhombic and ABC-hexagonal structures, suggesting that these structures are mechanically unstable. Phonon dispersions show that the frequencies of some modes along the Γ–A direction in the Brillouin zone are imaginary in all of the new structures, implying that these structures are dynamically unstable. Incorporation of zero point vibrational energy via the quasi-harmonic approximation does not result in the restoration of dynamical stability. Potential energy surfaces for the unstable normal modes are seen to have the topography of a potential hill for all the new structures, confirming that all of the new structures are inherently unstable. The fact that the potential energy surface is not in the form of a double well implies that the structures are linearly as well as globally unstable. (paper)

  15. Ab-initio theoretical study of electronic excitations and optical properties in nanostructures

    OpenAIRE

    Marchesín, Federico

    2017-01-01

    218 p. La miniaturización de los dispositivos electrónicos para la transferencia de información y procesado de señales ha impulsado el estudio de las propiedades electrónicas y la dinámica de excitaciones electrónicas en nanoestructuras. En particular, los cálculos ab-initio de las repuestas ópticas y los modos plasmónicos colectivos de nanoestructuras metálicas y de grafeno, han permitido profundizar en el conocimiento de la física y así poder avanzar hacia aplicaciones industriales en mu...

  16. Time-resolved photoelectron spectroscopy and ab initio multiple spawning studies of hexamethylcyclopentadiene

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.

    2014-01-01

    Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom.......Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom....

  17. Ab Initio Molecular Dynamics Simulations of Furfural at the Liquid-Solid Interface

    OpenAIRE

    Sanwu Wang; Hongli Dang; Wenhua Xue; Darwin Shields; Xin Liu; Friederike C. Jentoft; Daniel E. Resasco

    2013-01-01

    The bonding configuration and the heat of adsorption of a furfural molecule on the Pd(111) surface were determined by ab initio density-functional-theory calculations. The dynamics of pure liquid water, the liquid-solid interface formed by liquid water and the Pd(111) surface, as well as furfural at the water-Pd interface, were investigated by ab initio molecular dynamics simulations at finite temperatures. Calculations and simulations suggest that the bonding configurati...

  18. Equation of state of U2Mo up-to Mbar pressure range: Ab-initio study

    Science.gov (United States)

    Mukherjee, D.; Sahoo, B. D.; Joshi, K. D.; Kaushik, T. C.

    2018-04-01

    Experimentally, U2Mo is known to exist in tetragonal structure at ambient conditions. In contrast to experimental reports, the past theoretical studies carried out in this material do not find this phase to be stable structure at zero pressure. In order to examine this discrepancy between experiment and theory, we have performed ab-initio electronic band structure calculations on this material. In our theoretical study, we have attempted to search for lowest enthalpy structure at ambient as well at high pressure up to 200 GPa, employing evolutionary structure search algorithm in conjunction with ab-inito method. Our investigations suggest that a hexagonal structure with space group symmetry P6/mmm is the lowest enthalpy structure not only at ambient pressure but also up to pressure range of ˜200 GPa. To further, substantiate the results of these static lattice calculations the elastic and lattice dynamical stability has also been analysed. The theoretical isotherm derived from these calculations has been utilized to determine the Hugoniot of this material. Various physical properties such as zero pressure equilibrium volume, bulk modulus and its pressure derivative has also been derived from theoretical isotherm.

  19. Vibrational lifetimes of hydrogen on lead films: An ab initio molecular dynamics with electronic friction (AIMDEF) study

    Energy Technology Data Exchange (ETDEWEB)

    Saalfrank, Peter [Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam (Germany); Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Juaristi, J. I. [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián (Spain); Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20018 Donostia-San Sebastián (Spain); Alducin, M.; Muiño, R. Díez [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián (Spain); Blanco-Rey, M. [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20018 Donostia-San Sebastián (Spain)

    2014-12-21

    Using density functional theory and Ab Initio Molecular Dynamics with Electronic Friction (AIMDEF), we study the adsorption and dissipative vibrational dynamics of hydrogen atoms chemisorbed on free-standing lead films of increasing thickness. Lead films are known for their oscillatory behaviour of certain properties with increasing thickness, e.g., energy and electron spillout change in discontinuous manner, due to quantum size effects [G. Materzanini, P. Saalfrank, and P. J. D. Lindan, Phys. Rev. B 63, 235405 (2001)]. Here, we demonstrate that oscillatory features arise also for hydrogen when chemisorbed on lead films. Besides stationary properties of the adsorbate, we concentrate on finite vibrational lifetimes of H-surface vibrations. As shown by AIMDEF, the damping via vibration-electron hole pair coupling dominates clearly over the vibration-phonon channel, in particular for high-frequency modes. Vibrational relaxation times are a characteristic function of layer thickness due to the oscillating behaviour of the embedding surface electronic density. Implications derived from AIMDEF for frictional many-atom dynamics, and physisorbed species will also be given.

  20. Ab-initio study of pressure evolution of structural, mechanical and magnetic properties of cementite (Fe3C) phase

    Science.gov (United States)

    Gorai, S.; Ghosh, P. S.; Bhattacharya, C.; Arya, A.

    2018-04-01

    The pressure evolution of phase stability, structural and mechanical properties of Fe3C in ferro-magnetic (FM) and high pressure non magnetic (NM) phase is investigated from first principle calculations. The 2nd order FM to NM phase transition of Fe3C is identified around 60 GPa. Pressure (or density) variation of sound velocities from our ab-initio calculated single crystal elastic constants are determined to predict these parameters at Earth's outer core pressure.

  1. Carbon diffusion in molten uranium: an ab initio molecular dynamics study

    Science.gov (United States)

    Garrett, Kerry E.; Abrecht, David G.; Kessler, Sean H.; Henson, Neil J.; Devanathan, Ram; Schwantes, Jon M.; Reilly, Dallas D.

    2018-04-01

    In this work we used ab initio molecular dynamics within the framework of density functional theory and the projector-augmented wave method to study carbon diffusion in liquid uranium at temperatures above 1600 K. The electronic interactions of carbon and uranium were described using the local density approximation (LDA). The self-diffusion of uranium based on this approach is compared with literature computational and experimental results for liquid uranium. The temperature dependence of carbon and uranium diffusion in the melt was evaluated by fitting the resulting diffusion coefficients to an Arrhenius relationship. We found that the LDA calculated activation energy for carbon was nearly twice that of uranium: 0.55 ± 0.03 eV for carbon compared to 0.32 ± 0.04 eV for uranium. Structural analysis of the liquid uranium-carbon system is also discussed.

  2. Ab initio transport across bismuth selenide surface barriers

    KAUST Repository

    Narayan, Awadhesh; Rungger, Ivan; Droghetti, Andrea; Sanvito, Stefano

    2014-01-01

    © 2014 American Physical Society. We investigate the effect of potential barriers in the form of step edges on the scattering properties of Bi2Se3(111) topological surface states by means of large-scale ab initio transport simulations. Our results

  3. Residue contacts predicted by evolutionary covariance extend the application of ab initio molecular replacement to larger and more challenging protein folds

    Directory of Open Access Journals (Sweden)

    Felix Simkovic

    2016-07-01

    Full Text Available For many protein families, the deluge of new sequence information together with new statistical protocols now allow the accurate prediction of contacting residues from sequence information alone. This offers the possibility of more accurate ab initio (non-homology-based structure prediction. Such models can be used in structure solution by molecular replacement (MR where the target fold is novel or is only distantly related to known structures. Here, AMPLE, an MR pipeline that assembles search-model ensembles from ab initio structure predictions (`decoys', is employed to assess the value of contact-assisted ab initio models to the crystallographer. It is demonstrated that evolutionary covariance-derived residue–residue contact predictions improve the quality of ab initio models and, consequently, the success rate of MR using search models derived from them. For targets containing β-structure, decoy quality and MR performance were further improved by the use of a β-strand contact-filtering protocol. Such contact-guided decoys achieved 14 structure solutions from 21 attempted protein targets, compared with nine for simple Rosetta decoys. Previously encountered limitations were superseded in two key respects. Firstly, much larger targets of up to 221 residues in length were solved, which is far larger than the previously benchmarked threshold of 120 residues. Secondly, contact-guided decoys significantly improved success with β-sheet-rich proteins. Overall, the improved performance of contact-guided decoys suggests that MR is now applicable to a significantly wider range of protein targets than were previously tractable, and points to a direct benefit to structural biology from the recent remarkable advances in sequencing.

  4. Ab initio molecular dynamics simulations on the structural change of liquid eutectic alloy Si{sub 15}Te{sub 85} from 673 to 1373 k

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yubing, E-mail: ybwang1985@gmail.co [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Post Office 1129, Hefei 230031 (China); Zhao Gang [Department of Physics and Electronic Engineering, Ludong University, Hongqi Road, No. 186, Yantai 264025 (China); Liu Changsong; Zhu Zhengang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Post Office 1129, Hefei 230031 (China)

    2010-01-15

    Using ab initio molecular dynamics simulations and inherent structure formalism, the local atomic structure and electronic properties of liquid Si{sub 15}Te{sub 85} alloy were studied at eight different temperatures from 673 to 1373 K. In comparison with available experimental data, our calculated structure factors are acceptable. With increasing temperature from 773 to 1173 K, the calculated total coordination number N{sub Total} increases gradually in contrast to the behavior of a classical isotropic fluid. Our results of pair-correlation functions, bond-angle distribution functions and angular limited triplet correlation functions suggest that the temperature-dependence of the preserved sp{sup 3} hybridization of Si atoms and Peierls-type distorted local structure around Te atoms both play important roles in the structural change of Si{sub 15}Te{sub 85} characterized by thermodynamic anomalies.

  5. Systematic ab initio study of half-Heusler materials for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Gruhn, Thomas; Felser, Claudia [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University, Mainz (Germany)

    2010-07-01

    The development of new, optimized optoelectronic devices depends crucially on the availability of semiconductors with taylored electronic and structural properties. At the moment, the majority of applications is based on a rather small set of semiconducting materials, while many more semiconductors exist in the huge class of ternary compounds. Especially, the class of 8-electron half-Heusler materials comprises a large number semiconducters with various properties. With the help of ab initio density functional theory we have studied essentially all 8-electron half-Heusler compounds that are of technological relevance. For more than 650 compounds we have determined the optimum configuration by varying the lattice constant and permuting the elements over the sublattices. Within this exceptionally large data set we have studied the band structure and the lattice constants as a function of the electronegativities of the elements, the arrangement of the atoms, and the atomic radii. The results are used to select suitable materials for the buffer layer in thin-film solar cells with a Cu(In,Ga)Se{sub 2} (CIGS) absorber layer. Considering the bandgap and the geometrical matching with the CIGS film, we have obtained a set of 29 compounds that are promissing materials for cadmium-free CIGS buffer layer.

  6. Ab initio simulation of dislocation cores in metals

    International Nuclear Information System (INIS)

    Ventelon, L.

    2008-01-01

    In the framework of the multi scale simulation of metals and alloys plasticity, the aim of this study is to develop a methodology of ab initio dislocations study and to apply it to the [111] screw dislocation in the bc iron. (A.L.B.)

  7. Electronic structure and tautomerism of aryl ketones

    International Nuclear Information System (INIS)

    Novak, Igor; Klasinc, Leo; Šket, Boris; McGlynn, S.P.

    2015-01-01

    Graphical abstract: Photoelectron spectroscopy, tautomerism. - Highlights: • UV photoelectron spectroscopy of aryl ketones. • The relative stability of tautomers and their electronic structures. • The factors influencing tautomerism. - Abstract: The electronic structures of several aryl ketones (AK) and their α-halo derivatives have been studied by UV photoelectron spectroscopy (UPS). The relative stabilities of keto–enol tautomers have been determined using high-level ab initio calculations and the results were used in the analysis of UPS spectra. The main features of electronic structure and tautomerism of the AK derivatives are discussed

  8. Electronic structure and tautomerism of aryl ketones

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Igor, E-mail: inovak@csu.edu.au [Charles Sturt University, POB 883, Orange, NSW 2800 (Australia); Klasinc, Leo, E-mail: klasinc@irb.hr [Physical Chemistry Department, Ruđer Bošković Institute, HR-10002 Zagreb (Croatia); Šket, Boris, E-mail: Boris.Sket@fkkt.uni-lj.si [Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 (Slovenia); McGlynn, S.P., E-mail: sean.mcglynn@chemgate.chem.lsu.edu [Louisiana State University, Baton Rouge, LA 70803 (United States)

    2015-07-15

    Graphical abstract: Photoelectron spectroscopy, tautomerism. - Highlights: • UV photoelectron spectroscopy of aryl ketones. • The relative stability of tautomers and their electronic structures. • The factors influencing tautomerism. - Abstract: The electronic structures of several aryl ketones (AK) and their α-halo derivatives have been studied by UV photoelectron spectroscopy (UPS). The relative stabilities of keto–enol tautomers have been determined using high-level ab initio calculations and the results were used in the analysis of UPS spectra. The main features of electronic structure and tautomerism of the AK derivatives are discussed.

  9. Comparison between s - and d -electron mediated transport in a photoswitching dithienylethene molecule using ab initio transport methods

    KAUST Repository

    Odell, Anders; Delin, Anna; Johansson, Bö rje; Ulman, Kanchan; Narasimhan, Shobhana; Rungger, Ivan; Sanvito, Stefano

    2011-01-01

    The influence of the electrode's Fermi surface on the transport properties of a photoswitching molecule is investigated with state-of-the-art ab initio transport methods. We report results for the conducting properties of the two forms

  10. Realization of prediction of materials properties by ab initio ...

    Indian Academy of Sciences (India)

    Unknown

    alization of the results of ab initio molecular dynamics simulation on atom insertion process to C60 and to carbon nanotube ... micro-clusters to estimate absolute highest occupied mo- .... To analyse the observed properties theoretically,.

  11. Ab initio pseudopotential studies of cubic BC2N under high pressure

    International Nuclear Information System (INIS)

    Pan Zicheng; Sun Hong; Chen Changfeng

    2005-01-01

    We present the results of a systematic study of the structural, electronic, and vibrational properties of various cubic BC 2 N phases under high pressure. Ab initio pseudopotential total-energy and phonon calculations have been carried out to examine the changes in the structural parameters, bonding behaviours, band structures, and dynamic instabilities caused by phonon softening in these phases. We find that an experimentally synthesized high-density phase of cubic BC 2 N exhibits outstanding stability in the structural and electronic properties up to very high pressures. On the other hand, another experimentally identified phase with lower density and lower symmetry undergoes a dramatic structural transformation with a volume and bond-length collapse and a concomitant semi-metal to semiconductor transition. A third phase is predicted to be favourable over the above-mentioned lower-density phase by the enthalpy calculations. However, the dynamic phonon calculations reveal that it develops imaginary phonon modes and, therefore, is unstable in the experimental pressure range. The calculations indicate that its synthesis may be achieved at reduced pressures. These results provide a comprehensive understanding for the high-pressure behaviour of the cubic BC 2 N phases and reveal their interesting properties that can be verified by experiments

  12. Nanolines of transition metals ruled by grain boundaries in graphene: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Lima, F.D.C. de, E-mail: felipe.lima@ufu.br; Miwa, R.H., E-mail: hiroki@infis.ufu.br

    2017-06-15

    We have performed an ab initio investigation of the energetic stability, and the electronic properties of transition metals (TMs = Mn, Fe, Co, and Ru) adsorbed on graphene, upon the presence of grain boundaries (GBs); where we found an energetic preference for the TMs lying on the GB sites (TM/GB). Further energy barrier calculations, of the transition metals in TM/GB, reveal that the GBs promote the formation of energetically favorable diffusion channels on graphene. By increasing the concentration of the TM adatoms, the energetic stability of the TM/GB systems has been strengthened; giving rise to TM nanolines (TM-NLs). The electronic properties of those TM-NLs were characterized through extensive electronic band structure calculations, where the energy bands of the TM/GB systems indicate the appearance of an anisotropic spin-polarized electronic current along the TM-NLs on graphene. - Highlights: • Formation of transition metal (TM) nanolines on graphene ruled by extended defects. • Those extended defects give rise to diffusion pipes of TMs on graphene. • The electronic band structure calculations indicate the formation of spin-polarized current upon the presence of TM nanolines. • The formation of those TM nanolines support the recent experimental findings.

  13. Ab Initio Calculations of Transport in Titanium and Aluminum Mixtures

    Science.gov (United States)

    Walker, Nicholas; Novak, Brian; Tam, Ka Ming; Moldovan, Dorel; Jarrell, Mark

    In classical molecular dynamics simulations, the self-diffusion and shear viscosity of titanium about the melting point have fallen within the ranges provided by experimental data. However, the experimental data is difficult to collect and has been rather scattered, making it of limited value for the validation of these calculations. By using ab initio molecular dynamics simulations within the density functional theory framework, the classical molecular dynamics data can be validated. The dynamical data from the ab initio molecular dynamics can also be used to calculate new potentials for use in classical molecular dynamics, allowing for more accurate classical dynamics simulations for the liquid phase. For metallic materials such as titanium and aluminum alloys, these calculations are very valuable due to an increasing demand for the knowledge of their thermophysical properties that drive the development of new materials. For example, alongside knowledge of the surface tension, viscosity is an important input for modeling the additive manufacturing process at the continuum level. We are developing calculations of the viscosity along with the self-diffusion for aluminum, titanium, and titanium-aluminum alloys with ab initio molecular dynamics. Supported by the National Science Foundation through cooperative agreement OIA-1541079 and the Louisiana Board of Regents.

  14. Ab Initio Calculations and Raman and SERS Spectral Analyses of Amphetamine Species

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Nørbygaard, Thomas; White, Peter C.

    2011-01-01

    For the first time, the differences between the spectra of amphetamine and amphetamine-H+ and between different conformers are thoroughly studied by ab initio model calculations, and Raman and surface-enhanced Raman spectroscopy (SERS) spectra are measured for different species of amphetamine....... The spectra of amphetamine and amphetamine-H+ sampleswere obtained and assigned according to a comparison of the experimental spectra and the ab initio MO calculations, performed using the Gaussian 03W program (Gaussian, Inc., Pittsburgh, PA). The analyses were based on complete geometry minimization...

  15. Ab initio study of properties of BaBiO3 at high pressure

    Science.gov (United States)

    Martoňák, Roman; Ceresoli, Davide; Kagayama, Tomoko; Tosatti, Erio

    BaBiO3 is a mixed-valence perovskite which escapes metallic state by creating a Bi-O bond disproportionation or CDW pattern, resulting in a Peierls semiconductor with gap of nearly 1 eV at zero pressure. Evolution of structural and electronic properties at high pressure is, however, largely unknown. Pressure, it might be natural to expect, could reduce the bond-disproportionation and bring the system closer to metalicity or even superconductivity. We address this question by ab initio DFT methods based on GGA and hybrid functionals in combination with crystal structure prediction techniques based on genetic algorithms. We analyze the pressure evolution of bond disproportionation as well as other order parameters related to octahedra rotation for various phases in connection with corresponding evolution of the electronic structure. Results indicate that BaBiO3 continues to resist metalization also under pressure, through structural phase transitions which sustain and in fact increase the diversity of length of Bi-O bonds for neighboring Bi ions, in agreement with preliminary high pressure resistivity data. R.M. Slovak Research and Development Agency Contract APVV-15-0496, VEGA project No. 1-0904-15; E.T. ERC MODPHYSFRICT Advanced Grant No. 320796.

  16. Ab initio study of weakly bound halogen complexes: RX⋯PH3.

    Science.gov (United States)

    Georg, Herbert C; Fileti, Eudes E; Malaspina, Thaciana

    2013-01-01

    Ab initio calculations were employed to study the role of ipso carbon hybridization in halogenated compounds RX (R=methyl, phenyl, acetyl, H and X=F, Cl, Br and I) and its interaction with a phosphorus atom, as occurs in the halogen bonded complex type RX⋯PH3. The analysis was performed using ab initio MP2, MP4 and CCSD(T) methods. Systematic energy analysis found that the interaction energies are in the range -4.14 to -11.92 kJ mol(-1) (at MP2 level without ZPE correction). Effects of electronic correlation levels were evaluated at MP4 and CCSD(T) levels and a reduction of up to 27% in interaction energy obtained in MP2 was observed. Analysis of the electrostatic maps confirms that the PhCl⋯PH3 and all MeX⋯PH3 complexes are unstable. NBO analysis suggested that the charge transfer between the moieties is bigger when using iodine than bromine and chlorine. The electrical properties of these complexes (dipole and polarizability) were determined and the most important observed aspect was the systematic increase at the dipole polarizability, given by the interaction polarizability. This increase is in the range of 0.7-6.7 u.a. (about 3-7%).

  17. Exploring the ab initio/classical free energy perturbation method: The hydration free energy of water

    International Nuclear Information System (INIS)

    Sakane, Shinichi; Yezdimer, Eric M.; Liu, Wenbin; Barriocanal, Jose A.; Doren, Douglas J.; Wood, Robert H.

    2000-01-01

    The ab initio/classical free energy perturbation (ABC-FEP) method proposed previously by Wood et al. [J. Chem. Phys. 110, 1329 (1999)] uses classical simulations to calculate solvation free energies within an empirical potential model, then applies free energy perturbation theory to determine the effect of changing the empirical solute-solvent interactions to corresponding interactions calculated from ab initio methods. This approach allows accurate calculation of solvation free energies using an atomistic description of the solvent and solute, with interactions calculated from first principles. Results can be obtained at a feasible computational cost without making use of approximations such as a continuum solvent or an empirical cavity formation energy. As such, the method can be used far from ambient conditions, where the empirical parameters needed for approximate theories of solvation may not be available. The sources of error in the ABC-FEP method are the approximations in the ab initio method, the finite sample of configurations, and the classical solvent model. This article explores the accuracy of various approximations used in the ABC-FEP method by comparing to the experimentally well-known free energy of hydration of water at two state points (ambient conditions, and 973.15 K and 600 kg/m3). The TIP4P-FQ model [J. Chem. Phys. 101, 6141 (1994)] is found to be a reliable solvent model for use with this method, even at supercritical conditions. Results depend strongly on the ab initio method used: a gradient-corrected density functional theory is not adequate, but a localized MP2 method yields excellent agreement with experiment. Computational costs are reduced by using a cluster approximation, in which ab initio pair interaction energies are calculated between the solute and up to 60 solvent molecules, while multi-body interactions are calculated with only a small cluster (5 to 12 solvent molecules). Sampling errors for the ab initio contribution to

  18. Ab initio research of stopping power for energetic ions in solids

    Energy Technology Data Exchange (ETDEWEB)

    He, Bin, E-mail: hebin-rc@163.com; Meng, Xu-Jun; Wang, Jian-Guo

    2017-03-01

    A new physical scenario is suggested to estimate the stopping power of energetic α particles in solid-density Be, Na, and Al at room temperature in an ab initio way based on the average atom model. In the scenario the stopping power is caused by the transition of free electrons to higher energy states and the ionization of bound electrons of the atom. Our results are found generally in good agreement with the recommended data in Al, Be and Na as well as the experimental data in Al. A comparison of energy loss with the recent experiment of protons in Be indicates that the scenario is more reasonable than the local density approximation in this case.

  19. Ab initio modelling of transition metals in diamond

    International Nuclear Information System (INIS)

    Watkins, M; Mainwood, A

    2003-01-01

    Transition metals (TM) from the first transition series are commonly used as solvent catalysts in the synthesis of diamond by high pressure, high temperature processes. Ab initio calculations on these metals, in finite clusters of tetrahedrally coordinated carbon, enable us to investigate trends in their stability and properties. By carrying out systematic studies of interstitial, substitutional and semi-vacancy TM defects, we show that the electronic structure of the TMs is complicated by the presence of 'dangling bonds' when the TM disrupts the crystal lattice: interstitial defects conform to the Ludwig-Woodbury (LW) model, whilst substitutional and semi-vacancy defects move from approximating the LW model early in the transition series to approaching the vacancy model for the heavier metals. Multi-configurational self-consistent field methods allow genuine many-electron states to be modelled; for neutral interstitial, and all substitutional TMs, the crystal fields are found to exceed the exchange energies in strength. Consequently, low spin states are found for these defects. We find substitutional defects to be the most stable, but that semi-vacancy TMs are very similar in energy to the substitutional defects late in the transition series; interstitial defects are only metastable in diamond. Given appropriate charge compensators neutral and positively charged interstitial TM defects were stable, while negatively charged species appeared to be strongly disfavoured

  20. Structural insights and ab initio sequencing within the DING proteins family

    International Nuclear Information System (INIS)

    Elias, Mikael; Liebschner, Dorothee; Gotthard, Guillaume; Chabriere, Eric

    2011-01-01

    DING proteins constitute a recently discovered protein family that is ubiquitous in eukaryotes. The structural insights and the physiological involvements of these intriguing proteins are hereby deciphered. DING proteins constitute an intriguing family of phosphate-binding proteins that was identified in a wide range of organisms, from prokaryotes and archae to eukaryotes. Despite their seemingly ubiquitous occurrence in eukaryotes, their encoding genes are missing from sequenced genomes. Such a lack has considerably hampered functional studies. In humans, these proteins have been related to several diseases, like atherosclerosis, kidney stones, inflammation processes and HIV inhibition. The human phosphate binding protein is a human representative of the DING family that was serendipitously discovered from human plasma. An original approach was developed to determine ab initio the complete and exact sequence of this 38 kDa protein by utilizing mass spectrometry and X-ray data in tandem. Taking advantage of this first complete eukaryotic DING sequence, a immunohistochemistry study was undertaken to check the presence of DING proteins in various mice tissues, revealing that these proteins are widely expressed. Finally, the structure of a bacterial representative from Pseudomonas fluorescens was solved at sub-angstrom resolution, allowing the molecular mechanism of the phosphate binding in these high-affinity proteins to be elucidated

  1. Structural insights and ab initio sequencing within the DING proteins family

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Mikael, E-mail: mikael.elias@weizmann.ac.il [Weizmann Institute of Science, Rehovot (Israel); Liebschner, Dorothee [CRM2, Nancy Université (France); Gotthard, Guillaume; Chabriere, Eric [AFMB, Université Aix-Marseille II (France)

    2011-01-01

    DING proteins constitute a recently discovered protein family that is ubiquitous in eukaryotes. The structural insights and the physiological involvements of these intriguing proteins are hereby deciphered. DING proteins constitute an intriguing family of phosphate-binding proteins that was identified in a wide range of organisms, from prokaryotes and archae to eukaryotes. Despite their seemingly ubiquitous occurrence in eukaryotes, their encoding genes are missing from sequenced genomes. Such a lack has considerably hampered functional studies. In humans, these proteins have been related to several diseases, like atherosclerosis, kidney stones, inflammation processes and HIV inhibition. The human phosphate binding protein is a human representative of the DING family that was serendipitously discovered from human plasma. An original approach was developed to determine ab initio the complete and exact sequence of this 38 kDa protein by utilizing mass spectrometry and X-ray data in tandem. Taking advantage of this first complete eukaryotic DING sequence, a immunohistochemistry study was undertaken to check the presence of DING proteins in various mice tissues, revealing that these proteins are widely expressed. Finally, the structure of a bacterial representative from Pseudomonas fluorescens was solved at sub-angstrom resolution, allowing the molecular mechanism of the phosphate binding in these high-affinity proteins to be elucidated.

  2. Ab initio studies on the solvation, electronic structures and intracluster reactions in M(+)L(n), with M(+)=magnesium and calcium singly-charged ions, L=water, methanol, ammonia, and n=1-6, and the elimination of a hydrogen atom in H atom in hydrated sodium clusters

    Science.gov (United States)

    Chan, Ka Wai

    The solvation and electronic structures of M+Ln, with M+ = Mg+ and Cat, L = H2O, CH 3OH and NH3, n=1-6 were investigated by ab initio calculations using G03 package and density functional theory based ab initio molecular dynamics (AIMD) simulations with projector augmented-wave (PAW) method and a planewave basis set using Vienna Ab initio Simulation Package (VASP). Furthermore, ab initio studies on the intracluster reactions of Mg+ and Ca+ ions with different solvent molecules, H2O, CH3OH and NH3, were also done using G03 package. Finally, the elimination of a H atom in Na(H2O)n was studied. Such studies on the interactions and reactivity in gas clusters can provide insights into their analogies existing in condense phase. Interactions of Mg+ and Ca+ ions in different solvent molecules, H2O, CH3OH and NH3, were calculated with B3LYP and MP2 methods with basis sets 6-31+g** and 6-311+g**. A systematic comparison on the structures and reactivities of these clusters should provide a better understanding on the interplay of the ion-solvent, solvent-solvent, and electron-solvent interactions. It can provide a better understanding on the structures and bonding of complexes having analogies to those existing in condense phase. For Mg+(CH3OH)n and Ca+(CH 3OH)n, both H-elimination from OH/CH bond and CH3-elimination were investigated. H-elimination from O---H bond becomes more accessible for large cluster due to the diffusion of electron density to O---H bond. Studies on the H-elimination in Mg+(NH3)n and H-elimination from C---H bond in Mg+(CH3OH) n show that the reaction barriers flatten above 20 kcal/mol as n reaches 4 and above. These calculation results prove that the source of loss of H atom in ground state Mg+(CH3OH)n should be through the O---H bond rather than through the C---H bond. Compared to Mg+(CH3OH)n, the reaction barriers for H-elimination in Mg+(NH3)n is much larger, which is in consistent with the experimental observation of little H-elimination for Mg

  3. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    Science.gov (United States)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  4. Electric dipole, polarizability and structure of cesium chloride clusters with one-excess electron

    International Nuclear Information System (INIS)

    Jraij, A.; Allouche, A.R.; Rabilloud, F.; Korek, M.; Aubert-Frecon, M.; Rayane, D.; Compagnon, I.; Antoine, R.; Broyer, M.; Dugourd, Ph.

    2006-01-01

    The measurement of the electric dipole of gas phase one-excess electron Cs n Cl n-1 clusters is reported together with a theoretical ab initio prediction of stable structures, dipole moments and electronic polarizabilities for these species in their ground state. Results are in agreement with NaCl cubic structures

  5. Magnetization, resistivity, specific heat and ab initio calculations of Gd5Sb3.

    Science.gov (United States)

    Samatham, S Shanmukharao; Patel, Akhilesh Kumar; Lukoyanov, Alexey V; Suresh, K G

    2018-06-07

    We report on the combined results of structural, magnetic, transport and calorimetric properties of Mn5Si3-type hexagonal Gd5Sb3, together with ab-initio calculations. It exhibits a ferromagnetic (FM)-like transition at 265 K, antiferromagnetic (AFM) Néel transition at 95.5 K followed by a spin-orientation transition at 62 K. The system is found to be in AFM state down to 2 K in a field of 70 kOe. The FM-AFM phase coexistence is not noticeable despite large positive Curie-Weiss temperature (θCW = 223.5 ± 0.2 K). Instead, low-temperature AFM and high-temperature FM-like phases are separated in large temperatures. Temperature-magnetic field (H-T) phase diagram reveals field-driven complex magnetic phases. Within the AFM phase, the system is observed to undergo field-driven spin-orientation transitions. Field-induced tricritical and quantum critical points appear to be absent due to strong AFM nature and by the intervention of FM-like state between paramagnetic and AFM states, respectively. The metallic behavior of the compound is inferred from resistivity along with large Sommerfeld parameter. However, no sign of strong electron-correlations is reasoned from the Kadowaki-Wood's ratio A2 ∼ 1.9×10-6 μΩ.cm.(mol.K)2(mJ)-2, despite heavy γ. Essentially, ab initio calculations accounting for electronic correlations confirm AFM nature of low-temperature magnetic state in Gd5Sb3 and attainable FM ordering in agreement with experimental data. © 2018 IOP Publishing Ltd.

  6. Geometry optimization of supersymmetrical molecules in quantum chemical ab-initio calculations

    International Nuclear Information System (INIS)

    Gruenbichler, H.

    1985-01-01

    One-dimensional geometry optimizations in ab-initio SCF-calculations are investigated. It is shown, that the well known standard algorithms are sometimes too expensive and can be replaced or accompanied by more recent algorithms. Two alternatives were realized in the molecule calculating program GAUSSIAN 80, basing on the Fibonacci algorithm and Kryachco potential adjustment. The algorithms were compared in terms of accuracy of results, CPU-time used and reliability of the method. The results are presented in various tables, showing the efficiency of the various methods. A survey of the usual model potentials is given and the compatibility with ab-initio data is evaluated. (Author, shortened and translated by A.N.)

  7. Electronic structure and superconductivity of MgB 2

    Indian Academy of Sciences (India)

    Results of ab initio electronic structure calculations on the compound, MgB2, using the FPLAPW method employing GGA for the exchange–correlation energy are presented. Total energy minimization enables us to estimate the equilibrium volume, / ratio and the bulk modulus, all of which are in excellent agreement with ...

  8. Structure of the glass-forming metallic liquids by ab-initio and classical molecular dynamics, a case study: Quenching the Cu{sub 60}Ti{sub 20}Zr{sub 20} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Amokrane, S.; Ayadim, A.; Levrel, L. [Groupe “Physique des Liquides et Milieux Complexes,” Faculté des Sciences et Technologie, Université Paris-Est (Créteil), 61 av. du Général de Gaulle, 94010 Créteil Cedex (France)

    2015-11-21

    We consider the question of the amorphization of metallic alloys by melt quenching, as predicted by molecular dynamics simulations with semi-empirical potentials. The parametrization of the potentials is discussed on the example of the ternary Cu-Ti-Zr transition metals alloy, using the ab-initio simulation as a reference. The pair structure in the amorphous state is computed from a potential of the Stillinger-Weber form. The transferability of the parameters during the quench is investigated using two parametrizations: from solid state data, as usual and from a new parametrization on the liquid structure. When the adjustment is made on the pair structure of the liquid, a satisfactory transferability is found between the pure components and their alloys. The liquid structure predicted in this way agrees well with experiment, in contrast with the one obtained using the adjustment on the solid. The final structure, after quenches down to the amorphous state, determined with the new set of parameters is shown to be very close to the ab-initio one, the latter being in excellent agreement with recent X-rays diffraction experiments. The corresponding critical temperature of the glass transition is estimated from the behavior of the heat capacity. Discussion on the consistency between the structures predicted using semi-empirical potentials and ab-initio simulation, and comparison of different experimental data underlines the question of the dependence of the final structure on the thermodynamic path followed to reach the amorphous state.

  9. Avoiding fractional electrons in subsystem DFT based ab-initio molecular dynamics yields accurate models for liquid water and solvated OH radical

    International Nuclear Information System (INIS)

    Genova, Alessandro; Pavanello, Michele; Ceresoli, Davide

    2016-01-01

    In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange–correlation potentials that are linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH • radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH • radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.

  10. Avoiding fractional electrons in subsystem DFT based ab-initio molecular dynamics yields accurate models for liquid water and solvated OH radical.

    Science.gov (United States)

    Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele

    2016-06-21

    In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange-correlation potentials that are linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH(•) radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH(•) radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.

  11. Optical absorption spectra and g factor of MgO: Mn2+explored by ab initio and semi empirical methods

    Science.gov (United States)

    Andreici Eftimie, E.-L.; Avram, C. N.; Brik, M. G.; Avram, N. M.

    2018-02-01

    In this paper we present a methodology for calculations of the optical absorption spectra, ligand field parameters and g factor for the Mn2+ (3d5) ions doped in MgO host crystal. The proposed technique combines two methods: the ab initio multireference (MR) and the semi empirical ligand field (LF) in the framework of the exchange charge model (ECM) respectively. Both methods of calculations are applied to the [MnO6]10-cluster embedded in an extended point charge field of host matrix ligands based on Gellé-Lepetit procedure. The first step of such investigations was the full optimization of the cubic structure of perfect MgO crystal, followed by the structural optimization of the doped of MgO:Mn2+ system, using periodic density functional theory (DFT). The ab initio MR wave functions approaches, such as complete active space self-consistent field (CASSCF), N-electron valence second order perturbation theory (NEVPT2) and spectroscopy oriented configuration interaction (SORCI), are used for the calculations. The scalar relativistic effects have also been taken into account through the second order Douglas-Kroll-Hess (DKH2) procedure. Ab initio ligand field theory (AILFT) allows to extract all LF parameters and spin-orbit coupling constant from such calculations. In addition, the ECM of ligand field theory (LFT) has been used for modelling theoptical absorption spectra. The perturbation theory (PT) was employed for the g factor calculation in the semi empirical LFT. The results of each of the aforementioned types of calculations are discussed and the comparisons between the results obtained and the experimental results show a reasonable agreement, which justifies this new methodology based on the simultaneous use of both methods. This study establishes fundamental principles for the further modelling of larger embedded cluster models of doped metal oxides.

  12. Inelastic neutron scattering an ab-initio calculation of negative thermal expansion in Ag2O

    International Nuclear Information System (INIS)

    Gupta, M.K.; Mittal, R.; Rols, S.; Chaplot, S.L.

    2012-01-01

    The compound Ag 2 O undergoes large and isotropic negative thermal expansion over 0-500 K. We report temperature dependent inelastic neutron scattering measurements and ab-initio calculations of the phonon spectrum. The temperature dependence of the experimental phonon spectrum shows strong anharmonic nature of phonon modes of energy around 2.4 meV. The ab-initio calculations reveal that the maximum negative Grüneisen parameter, which is a measure of the relevant anharmonicity, occurs for the transverse phonon modes that involve bending motions of the Ag 4 O tetrahedra. The thermal expansion is evaluated from the ab-initio calculation of the pressure dependence of the phonon modes, and found in good agreement with available experimental data.

  13. Atomic and electronic structure of exfoliated black phosphorus

    International Nuclear Information System (INIS)

    Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok; Wentzcovitch, Renata M.; Mkhoyan, K. Andre; Low, Tony; Robbins, Matthew C.; Haratipour, Nazila; Koester, Steven J.

    2015-01-01

    Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolution view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO 3 or H 3 PO 3 during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time

  14. Ab initio CASSCF study of the electronic structure of the transition-metal alkylidene-like complexes Mo-M[prime]H[sub 2] (M[prime] = C, Si, Ge, and Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Marquez, A.; Sanz, J.F. (Universidad de Sevilla (Spain))

    1992-12-02

    Experimental and theoretical research on the electronic and geometric structure of transition-metal-carbenes and -alkylidenes is an active area in chemistry nowadays due to their potential activity in catalysis and in organic and organometallic synthesis. A theoretical investigation of the electronic structure of the high-valent, transition-metal, alkylidene-like complexes MoM[prime]H[sub 2] (M[prime] = C, Si, Ge, and Sn) is reported. Based on ab initio calculations carried out at the complete active space multiconfiguration self-consistent field (CASSCF) level, the molecular structure of the ground state and some low-lying excited states have been determined. For M[prime] = C, Si, and Ge, the ground state has C[sub 2v] symmetry (state [sup 5]B[sub 1]) and corresponds to pairing each electron of the M[prime]H[sub 2] triplet [sup 3]B[sub 1] with an electron of Mo ([sup 7]S). In the case of MoSnH[sub 2], the lowest state is bent (C[sub s] symmetry, state [sup 7]A[prime]), the out-of-plane angle being 68[degrees], and dissociates into SnH[sub 2] ([sup 1]A[sub 1]) + Mo ([sup 7]S). Dissociation energies, potential energy profiles for the dissociation, harmonic force constants in terms of internal symmetry coordinates, and vibrational frequencies are reported. The comparison of these properties with those of their pentacarbonylated homologous (CO)[sub 5]M[double bond]M[prime]H[sub 2] shows that the carbene-like (Fischer) type of complexation is stronger than the alkylidene-like one (Schrock). 28 refs., 4 figs., 6 tabs.

  15. Towards efficient ab initio calculations of electron scattering by polyatomic molecules: III. Modelling correlation-polarization interactions

    Czech Academy of Sciences Publication Activity Database

    Čurík, Roman; Šulc, M.

    2010-01-01

    Roč. 43, č. 17 (2010), s. 175205 ISSN 0953-4075 R&D Projects: GA MŠk(CZ) OC10046; GA MŠk OC09079; GA AV ČR KJB400400803; GA ČR GA202/08/0631 Institutional research plan: CEZ:AV0Z40400503 Keywords : Ab initio calculations * Commonly used * DFT potential Subject RIV: CF - Physical ; The oretical Chemistry Impact factor: 1.902, year: 2010

  16. Hydration structures of U(III) and U(IV) ions from ab initio molecular dynamics simulations

    International Nuclear Information System (INIS)

    Leung, Kevin; Nenoff, Tina M.

    2012-01-01

    We apply DFT+U-based ab initio molecular dynamics simulations to study the hydration structures of U(III) and U(IV) ions, pertinent to redox reactions associated with uranium salts in aqueous media. U(III) is predicted to be coordinated to 8 water molecules, while U(IV) has a hydration number between 7 and 8. At least one of the innershell water molecules of the hydrated U(IV) complex becomes spontaneously deprotonated. As a result, the U(IV)–O pair correlation function exhibits a satellite peak at 2.15 Å associated with the shorter U(IV)–(OH − ) bond. This feature is not accounted for in analysis of extended x-ray absorption fine structure and x-ray adsorption near edge structure measurements, which yield higher estimates of U(IV) hydration numbers. This suggests that it may be useful to include the effect of possible hydrolysis in future interpretation of experiments, especially when the experimental pH is close to the reported hydrolysis equilibrium constant value.

  17. Ab initio calculations of the electron spectrum and density of states of TlFeS{sub 2} and TlFeSe{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ismayilova, N. A., E-mail: ismayilova-narmin-84@mail.ru; Orudjev, H. S.; Jabarov, S. H. [Azerbaijan National Academy of Sciences, Institute of Physics (Azerbaijan)

    2017-04-15

    The results of ab initio calculations of the electron spectrum of TlFeS{sub 2} and TlFeSe{sub 2} crystals in the antiferromagnetic phase are reported. Calculations are carried out in the context of the density functional theory. The origin of the bands of s, p, and d electron states of Tl, Fe, S, and Se atoms is studied. It is established that, in the antiferromagnetic phase, the crystals possess semiconductor properties. The band gaps are found to be 0.05 and 0.34 eV for TlFeS{sub 2} and TlFeSe{sub 2} crystals, respectively.

  18. Shear stiffness in nanolaminar Ti3SiC2 challenges ab initio calculations

    International Nuclear Information System (INIS)

    Kisi, E H; Zhang, J F; Kirstein, O; Riley, D P; Styles, M J; Paradowska, A M

    2010-01-01

    Nanolaminates such as the M n+1 AX n (MAX) phases are a material class with ab initio derived elasticity tensors published for over 250 compounds. We have for the first time experimentally determined the full elasticity tensor of the archetype MAX phase, Ti 3 SiC 2 , using polycrystalline samples and in situ neutron diffraction. The experimental elastic constants show extreme shear stiffness, with c 44 more than five times greater than expected for an isotropic material. Such shear stiffness is quite rare in hexagonal materials and strongly contradicts the predictions of all published MAX phase elastic constants derived from ab initio calculations. It is concluded that second order properties such as elastic moduli derived from ab initio calculations require careful experimental verification. The diffraction technique used currently provides the only method of verification for the elasticity tensor for the majority of new materials where single crystals are not available. (fast track communication)

  19. Proper construction of ab initio global potential surfaces with accurate long-range interactions

    International Nuclear Information System (INIS)

    Ho, Tak-San; Rabitz, Herschel

    2000-01-01

    An efficient procedure based on the reproducing kernel Hilbert space interpolation method is presented for constructing intermolecular potential energy surfaces (PES) using not only calculated ab initio data but also a priori information on long-range interactions. Explicitly, use of the reciprocal power reproducing kernel on the semiinfinite interval [0,∞) yields a set of exact linear relations between dispersion (multipolar) coefficients and PES data points at finite internuclear separations. Consequently, given a combined set of ab initio data and the values of dispersion (multipolar) coefficients, the potential interpolation problem subject to long-range interaction constraints can be solved to render globally smooth, asymptotically accurate ab initio potential energy surfaces. Very good results have been obtained for the one-dimensional He-He potential curve and the two-dimensional Ne-CO PES. The construction of the Ne-CO PES was facilitated by invoking a new reproducing kernel for the angular coordinate based on the optimally stable and shape-preserving Bernstein basis functions. (c) 2000 American Institute of Physics

  20. Ab initio calculation of the shear viscosity of neon in the liquid and hypercritical state over a wide pressure and temperature range

    Science.gov (United States)

    Eggenberger, Rolf; Gerber, Stefan; Huber, Hanspeter; Searles, Debra; Welker, Marc

    1992-08-01

    The shear viscosity is calculated ab initio for the liquid and hypercritical state, i.e. a previously published potential for Ne 2, obtained from ab initio calculations including electron correlation, is used in classical equilibrium molecular dynamics simulations to obtain the shear viscosity from a Green-Kubo integral. The quality of the results is quite uniform over a large pressure range up to 1000 MPa and a wide temperature range from 26 to 600 K. In most cases the calculated shear viscosity deviates by less than 10% from the experimental value, in general the error being only a few percent.

  1. Benefits of Parallel I/O in Ab Initio Nuclear Physics Calculations

    International Nuclear Information System (INIS)

    Laghave, Nikhil; Sosonkina, Masha; Maris, Pieter; Vary, James P.

    2009-01-01

    Many modern scientific applications rely on highly parallel calculations, which scale to 10's of thousands processors. However, most applications do not concentrate on parallelizing input/output operations. In particular, sequential I/O has been identified as a bottleneck for the highly scalable MFDn (Many Fermion Dynamics for nuclear structure) code performing ab initio nuclear structure calculations. In this paper, we develop interfaces and parallel I/O procedures to use a well-known parallel I/O library in MFDn. As a result, we gain efficient input/output of large datasets along with their portability and ease of use in the downstream processing.

  2. Ab initio thermodynamics for the growth of ultra-thin Cu film on a perfect Mg O(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhukovskii, Yuri F. [Institute for Solid State Physics, University of Latvia, Kengaraga str. 8, Riga LV-1063 (Latvia)]. E-mail: quantzh@latnet.lv; Fuks, David [Materials Engineering Department, Ben-Gurion University of the Negev, POB 653, Beer-Sheva IL-84105 (Israel); Kotomin, Eugene A. [Institute for Solid State Physics, University of Latvia, Kengaraga str. 8, Riga LV-1063 (Latvia); Dorfman, Simon [Department of Physics, Israel Institute of Technology-Technion, Haifa IL-32000 (Israel)

    2005-12-15

    Controlled growth of thin metallic films on oxide substrates is important for numerous micro-and nano electronic applications. Our ab initio study is devoted to the periodic slab simulations for a series of ordered 2a Cu superlattices on the regular Mg O(001) substrate. Submonolayer and monolayer substrate Cu coverages were calculated using the Daft-Gaga method, as implemented into the Crystal-98 code. The results of ab initio calculations have been combined with thermodynamic theory which allows US to predict the growth mode of ultra-thin metal films (spinodal decomposition vs. nucleation-and-growth regime) as a function of the metal coverage and the temperature, and to estimate the metal density in clusters. We show that 3a cluster formation becomes predominant already at low Cu coverages, in agreement with the experiment.

  3. Ab initio thermodynamics for the growth of ultra-thin Cu film on a perfect Mg O(001) surface

    International Nuclear Information System (INIS)

    Zhukovskii, Yuri F.; Fuks, David; Kotomin, Eugene A.; Dorfman, Simon

    2005-01-01

    Controlled growth of thin metallic films on oxide substrates is important for numerous micro-and nano electronic applications. Our ab initio study is devoted to the periodic slab simulations for a series of ordered 2a Cu superlattices on the regular Mg O(001) substrate. Submonolayer and monolayer substrate Cu coverages were calculated using the Daft-Gaga method, as implemented into the Crystal-98 code. The results of ab initio calculations have been combined with thermodynamic theory which allows US to predict the growth mode of ultra-thin metal films (spinodal decomposition vs. nucleation-and-growth regime) as a function of the metal coverage and the temperature, and to estimate the metal density in clusters. We show that 3a cluster formation becomes predominant already at low Cu coverages, in agreement with the experiment

  4. Ab initio structural and spectroscopic study of HPS{sup x} and HSP{sup x} (x = 0,+1,−1) in the gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Yaghlane, Saida Ben [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications – LSAMA, Université de Tunis, Tunis (Tunisia); Cotton, C. Eric; Francisco, Joseph S., E-mail: francisc@purdue.edu, E-mail: hochlaf@univ-mlv.fr [Department of Chemistry and Department of Earth and Atmospheric Science, Purdue University, West Lafayette, Indiana 49707 (United States); Linguerri, Roberto; Hochlaf, Majdi, E-mail: francisc@purdue.edu, E-mail: hochlaf@univ-mlv.fr [Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est, 5 bd Descartes, 77454 Marne-la-Vallée (France)

    2013-11-07

    Accurate ab initio computations of structural and spectroscopic parameters for the HPS/HSP molecules and corresponding cations and anions have been performed. For the electronic structure computations, standard and explicitly correlated coupled cluster techniques in conjunction with large basis sets have been adopted. In particular, we present equilibrium geometries, rotational constants, harmonic vibrational frequencies, adiabatic ionization energies, electron affinities, and, for the neutral species, singlet-triplet relative energies. Besides, the full-dimensional potential energy surfaces (PESs) for HPS{sup x} and HSP{sup x} (x = −1,0,1) systems have been generated at the standard coupled cluster level with a basis set of augmented quintuple-zeta quality. By applying perturbation theory to the calculated PESs, an extended set of spectroscopic constants, including τ, first-order centrifugal distortion and anharmonic vibrational constants has been obtained. In addition, the potentials have been used in a variational approach to deduce the whole pattern of vibrational levels up to 4000 cm{sup −1} above the minima of the corresponding PESs.

  5. Electronic structure and tautomerism of thioamides

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Igor, E-mail: inovak@csu.edu.au [Charles Sturt University, POB 883, Orange, NSW 2800 (Australia); Klasinc, Leo, E-mail: klasinc@irb.hr [Physical Chemistry Department, Ruđer Bošković Institute, HR-10002 Zagreb (Croatia); McGlynn, Sean P., E-mail: sean.mcglynn@chemgate.chem.lsu.edu [Louisiana State University, Baton Rouge, LA 70803 (United States)

    2016-05-15

    Highlights: • Electronic structure of thioamide group and its relation to Lewis basicity. • Tautomerism of the (thio)amide groups. • Substituent effects on the electronic structure of (thio)amide group. - Abstract: The electronic structures of several thioamides have been studied by UV photoelectron spectroscopy (UPS). The relative stabilities of keto–enol tautomers have been determined using high-level ab initio calculations and the results were used in the analysis of UPS spectra. The main features of electronic structure and tautomerism of thioamide derivatives are discussed. The predominant tautomers in the gas phase are of keto–(thio)keto form. The addition of cyclohexanone moiety to the thioamide group enhances the Lewis base character of the sulfur atom. The addition of phenyl group to the (thio)amide group significantly affects its electronic structure.

  6. High multiplicity states in disordered carbon systems: Ab initio and semiempirical study

    International Nuclear Information System (INIS)

    Khavryuchenko, Volodymyr D.; Khavryuchenko, Oleksiy V.; Lisnyak, Vladyslav V.

    2010-01-01

    Stability of non-zero spin projection states for disordered carbon clusters of low symmetry were examined using semiempirical and ab initio methods. The study proves previous results of V.D. Khavryuchenko, Y.A. Tarasenko, V.V. Strelko, O.V. Khavryuchenko, V.V. Lisnyak, Int. J. Mod. Phys. B 21 (2007) 4507, obtained for the large polyaromatic hydrocarbons clusters and shows that the phenomenon is intrinsic for carbon-rich systems and independent of their symmetries. The electronic properties of the carbon clusters may alter from insulating to semiconducting upon change of C/H ratio and stabilization of non-zero spin projection states. A partial collectivization of the electrons is observed in deeply carbonized carbon clusters in higher S z states.

  7. Some implications of the Hartree product treatment of the quantum nuclei in the ab initio nuclear–electronic orbital methodology

    Energy Technology Data Exchange (ETDEWEB)

    Gharabaghi, Masumeh [Faculty of Chemical and Petroleum Sciences, Shahid Beheshti University, G. C., Evin, Tehran, 19839, P.O. Box 19395-4716 (Iran, Islamic Republic of); Shahbazian, Shant, E-mail: chemist_shant@yahoo.com [Department of Physics, Shahid Beheshti University, G. C., Evin, Tehran, 19839, P.O. Box 19395-4716 (Iran, Islamic Republic of)

    2016-12-09

    In this letter the conceptual and computational implications of the Hartree product type nuclear wavefunction introduced recently within the context of the ab initio non-Born–Oppenheimer Nuclear–electronic orbital (NEO) methodology are considered. It is demonstrated that this wavefunction may imply a pseudo-adiabatic separation of the nuclei and electrons and each nucleus is conceived as a quantum oscillator while a non-Coulombic effective Hamiltonian is deduced for electrons. Using the variational principle this Hamiltonian is employed to derive a modified set of single-component Hartree–Fock equations which are equivalent to the multi-component version derived previously within the context of the NEO and, easy to be implemented computationally. - Highlights: • The Hartree product wavefunction is used for the quantum nuclei of a molecule. • With this wavefunction quantum nuclei may be conceived as quantum oscillators. • Using variational integral, non-Coulomb effective electronic Hamiltonian was derived. • A set of modified Hartree–Fock equations were derived from this Hamiltonian. • The derived equations are equivalent to the multi-component Hartree–Fock equations.

  8. Ab Initio Many-Body Calculations Of Nucleon-Nucleus Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Quaglioni, S; Navratil, P

    2008-12-17

    We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We outline technical details and present phase shift results for neutron scattering on {sup 3}H, {sup 4}He and {sup 10}Be and proton scattering on {sup 3,4}He, using realistic nucleon-nucleon (NN) potentials. Our A = 4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-{sup 4}He S-wave phase shifts. We demonstrate that a proper treatment of the coupling to the n-{sup 10}Be continuum is successful in explaining the parity-inverted ground state in {sup 11}Be.

  9. Study on the effects of fluorine and oxygen deficiency on YBa2Cu3O7 by ab initio method

    Institute of Scientific and Technical Information of China (English)

    刘洪霖; 曹晓卫; 瞿丽曼; 陈念贻

    1997-01-01

    The calculations of clusters modeling the fluorine-doping and oxygen deficiency of YBa2Cu3O2,have been performed by the method of all-electron ab initio Hartree-Fock with self-consistent crystal field Results show that in CuO planes electric charge significantly increases,the chemical valence of Cu decreases and the covalent bonding of Cu-O greatly weakens owing to oxygen deficiency,while the effect of F restores the local electronic structure of YBa2Cu3O7 The reported opinion that F occupied the oxygen vacancy in Cu-O chains seems disputable according to the calculated bonding characteristics.

  10. Sensitivity of ab Initio vs Empirical Methods in Computing Structural Effects on NMR Chemical Shifts for the Example of Peptides.

    Science.gov (United States)

    Sumowski, Chris Vanessa; Hanni, Matti; Schweizer, Sabine; Ochsenfeld, Christian

    2014-01-14

    The structural sensitivity of NMR chemical shifts as computed by quantum chemical methods is compared to a variety of empirical approaches for the example of a prototypical peptide, the 38-residue kaliotoxin KTX comprising 573 atoms. Despite the simplicity of empirical chemical shift prediction programs, the agreement with experimental results is rather good, underlining their usefulness. However, we show in our present work that they are highly insensitive to structural changes, which renders their use for validating predicted structures questionable. In contrast, quantum chemical methods show the expected high sensitivity to structural and electronic changes. This appears to be independent of the quantum chemical approach or the inclusion of solvent effects. For the latter, explicit solvent simulations with increasing number of snapshots were performed for two conformers of an eight amino acid sequence. In conclusion, the empirical approaches neither provide the expected magnitude nor the patterns of NMR chemical shifts determined by the clearly more costly ab initio methods upon structural changes. This restricts the use of empirical prediction programs in studies where peptide and protein structures are utilized for the NMR chemical shift evaluation such as in NMR refinement processes, structural model verifications, or calculations of NMR nuclear spin relaxation rates.

  11. Magnetic properties and electronic structure of neptunyl(VI) complexes: wavefunctions, orbitals, and crystal-field models

    Energy Technology Data Exchange (ETDEWEB)

    Gendron, Frederic; Pritchard, Ben; Autschbach, Jochen [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY (United States); Paez-Hernandez, Dayan; Bolvin, Helene [Laboratoire de Physique et de Chimie Quantiques, Universite Toulouse 3 (France); Notter, Francois-Paul [Laboratoire de Chimie Quantique, Universite de Strasbourg (France)

    2014-06-23

    The electronic structure and magnetic properties of neptunyl(VI), NpO{sub 2}{sup 2+}, and two neptunyl complexes, [NpO{sub 2}(NO{sub 3}){sub 3}]{sup -} and [NpO{sub 2}Cl{sub 4}]{sup 2-}, were studied with a combination of theoretical methods: ab initio relativistic wavefunction methods and density functional theory (DFT), as well as crystal-field (CF) models with parameters extracted from the ab initio calculations. Natural orbitals for electron density and spin magnetization from wavefunctions including spin-orbit coupling were employed to analyze the connection between the electronic structure and magnetic properties, and to link the results from CF models to the ab initio data. Free complex ions and systems embedded in a crystal environment were studied. Of prime interest were the electron paramagnetic resonance g-factors and their relation to the complex geometry, ligand coordination, and nature of the nonbonding 5f orbitals. The g-factors were calculated for the ground and excited states. For [NpO{sub 2}Cl{sub 4}]{sup 2-}, a strong influence of the environment of the complex on its magnetic behavior was demonstrated. Kohn-Sham DFT with standard functionals can produce reasonable g-factors as long as the calculation converges to a solution resembling the electronic state of interest. However, this is not always straightforward. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Quantum-chemical ab initio and B3LYP investigation of tricyanides and triisocyanides of Al, Ga, In

    International Nuclear Information System (INIS)

    Timoshkin, A.Yu.; Shefer, G.F.

    2000-01-01

    Ab initio and density functional B3LYP methods are used to obtain structural parameters, standard entropies and vibrational spectra of cyanides and isocyanides of trivalent Al, Ga, In for the first time. It is pointed out that for In cyanide form is more stable. There is divergence in data obtained in the framework of self-consistent field and by B3LYP methods what indicates importance of estimation of energy of electronic correlation and in the same time comparison of basic sets DZP and LANL2DZP demonstrates insufficiency of basic sets with effective potentials of skeleton for description molecular tricyanides of elements of the 3a group [ru

  13. Evolution of local atomic structure during solidification of Al2Au liquid: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, L H; Lou, H B; Wang, X D; Debela, T T; Cao, Q P; Zhang, D X; Wang, S Y; Wang, C Z; Jiang, J Z

    2014-04-01

    The local atomic structure evolution in Al2Au alloy during solidification from 2000 K to 400 K was studied by ab initio molecular dynamics simulations and analyzed using the structure factor, pair correlation functions, bond angle distributions, the Honeycutt-Anderson (HA) index and Voronoi tessellation methods. It was found that the icosahedral-like clusters are negligible in the Al2Au stable liquid and supercooled liquid states, and the most abundant clusters are those having HA indices of 131 and 120 or Voronoi indices of < 0,4,4,0 >, < 0,3, 6,0 > and < 0,4,4,2 > with coordination numbers of 8, 9 and 10, respectively. These clusters are similar to the local atomic structures in the CaF2-type Al2Au crystal, revealing the existence of structure heredity between liquid and crystalline phase in Al2Au alloy. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Evolution of local atomic structure during solidification of Al2Au liquid: An ab initio study

    International Nuclear Information System (INIS)

    Xiong, L.H.; Lou, H.B.; Wang, X.D.; Debela, T.T.; Cao, Q.P.; Zhang, D.X.; Wang, S.Y.; Wang, C.Z.; Jiang, J.Z.

    2014-01-01

    The local atomic structure evolution in Al 2 Au alloy during solidification from 2000 K to 400 K was studied by ab initio molecular dynamics simulations and analyzed using the structure factor, pair correlation functions, bond angle distributions, the Honeycutt–Anderson (HA) index and Voronoi tessellation methods. It was found that the icosahedral-like clusters are negligible in the Al 2 Au stable liquid and supercooled liquid states, and the most abundant clusters are those having HA indices of 131 and 120 or Voronoi indices of 〈0, 4, 4, 0〉, 〈0, 3, 6, 0〉 and 〈0, 4, 4, 2〉 with coordination numbers of 8, 9 and 10, respectively. These clusters are similar to the local atomic structures in the CaF 2 -type Al 2 Au crystal, revealing the existence of structure heredity between liquid and crystalline phase in Al 2 Au alloy

  15. Ab initio study of antiphase boundaries and stacking faults in L12 and DO22 compounds

    DEFF Research Database (Denmark)

    Rosengaard, N. M.; Skriver, Hans Lomholt

    1994-01-01

    We have performed ab initio calculations of the energies of antiphase boundaries as well as complex and superlattice intrinsic stacking faults in nine intermetallic compounds observed in the face-centered-cubic L1(2) and DO22 structures. The calculations were performed by means of a Green...

  16. Relaxation of structural parameters and potential coefficients of nonrigid molecules. General symmetry properties and application to ab initio study of 1,2-difluoroethane

    Science.gov (United States)

    Ha, T.-K.; Günthard, H. H.

    1989-07-01

    Structural parameters like bond length, bond angles, etc. and harmonic and anharmonic potential coefficients of molecules with internal rotation, inversion or puckering modes are generally assumed to vary with the large amplitude internal coordinates in a concerted manner (relaxation). Taking the coordinate vectors of the nuclear configuration of semirigid molecules with relaxation (SRMRs) as functions of relaxing structural parameters and finite amplitude internal coordinate, the isometric group of SRMRs is discussed and the irreducible representations of the latter are shown to classify into engendered and nonengendered ones. On this basis a concept of equivalent sets of nuclei SRMRs is introduced and an analytical expression is derived which defines the most general functional form of relaxation increments of all common types of structural parameters compatible with isometric symmetry. This formula is shown to be a close analog of an analytical expression defining the transformations induced by the isometric group of infinitesimal internal coordinates associated with typical structural parameters. Furthermore analogous formulae are given for the most general form of the relaxation of harmonic potential coefficients as a function of finite internal coordinates. The general relations are illustrated by ab initio calculations for 1,2-difluoroethane at the MP4/DZP//HF/4-31G* level for twelve values of the dihedral angle including complete structure optimization. The potential to internal rotation is found to be in essential agreement with experimentally derived data. For a complete set of ab initio structural parameters the associated relaxation increments are represented as Fourier series, which are shown to confirm the form predicted by the general formula and the isometric group of 1,2-difluoroethane. Depending on type of the structural parameters (bond length, bond angles, etc.), the associated relaxation increments appear to follow some simple rules. Similarly

  17. Ab initio assisted process modeling for Si-based nanoelectronic devices

    International Nuclear Information System (INIS)

    Windl, Wolfgang

    2005-01-01

    In this paper, we discuss concepts and examples of ab initio calculations assisting physics-based process simulation. We focus on how to determine diffusion and reaction constants, where modern methods such as the nudged elastic band method allow a systematic and reliable search for the minimum energy migration path and barrier. We show that once the saddle point is determined, the underlying harmonic transition state theory also allows to calculate the prefactors. The discussed examples include nitrogen diffusion, boron deactivation and boron interface segregation. Finally, some concepts are discussed for future device technologies such as molecular devices, where the currently prevalent multiscale approach (kinetic parameters used in higher level models like diffusion-reaction or kinetic Monte Carlo modeling) would not be sensible anymore. As an example, we described the ab initio temperature-accelerated dynamics modeling of contact formation in carbon nanotube devices

  18. Ab initio Eliashberg Theory: Making Genuine Predictions of Superconducting Features

    Science.gov (United States)

    Sanna, Antonio; Flores-Livas, José A.; Davydov, Arkadiy; Profeta, Gianni; Dewhurst, Kay; Sharma, Sangeeta; Gross, E. K. U.

    2018-04-01

    We present an application of Eliashberg theory of superconductivity to study a set of novel superconducting systems with a wide range of structural and chemical properties. The set includes three intercalated group-IV honeycomb layered structures, SH3 at 200 GPa (the superconductor with the highest measured critical temperature), the similar system SeH3 at 150 GPa, and a lithium doped mono-layer of black phosphorus. The theoretical approach we adopt is a recently developed, fully ab initio Eliashberg approach that takes into account the Coulomb interaction in a full energy-resolved fashion avoiding any free parameters like μ*. This method provides reasonable estimations of superconducting properties, including TC and the excitation spectra of superconductors.

  19. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction.

    Science.gov (United States)

    Spencer, Matt; Eickholt, Jesse; Jianlin Cheng

    2015-01-01

    Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80 percent and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test dataset of 198 proteins, achieving a Q3 accuracy of 80.7 percent and a Sov accuracy of 74.2 percent.

  20. Ab initio computation of electron affinities of substituted benzalacetophenones (chalcones): a new approach to substituent effects in organic electrochemistry

    International Nuclear Information System (INIS)

    Hicks, Latorya D.; Fry, Albert J.; Kurzweil, Vanessa C.

    2004-01-01

    The electron affinities (EAs) of a training set of 29 monosubstituted benzalacetophenones (chalcones) were computed at the ab initio density functional B3LYP/6-31G * level of theory. The EAs and experimental reduction potentials of the training set are highly linearly correlated (correlation coefficient of 0.969 and standard deviation of 10.8 mV). An additional 72 di-, tri-, and tetrasubstituted chalcones were then synthesized. Their reduction potentials were predicted from computed EAs using the linear correlation derived from the training set. Agreement between the experimental and computed reduction potentials is remarkably good, with a standard deviation of less than 22 mV for this very large set of substances whose potentials extend over a range of almost 700 mV

  1. H3+: Ab initio calculation of the vibration spectrum

    International Nuclear Information System (INIS)

    Carney, G.D.; Porter, R.N.

    1976-01-01

    The vibration spectrum of H 3 + is calculated from the representation of a previously reported [J. Chem Phys. 60, 4251 (1974)] ab initio potential-energy surface in a fifth degree Simons--Parr--Finlan (SPF) expansion. Morse- and harmonic-oscillator basis functions are used to describe the motions of the three oscillators and the Harris--Engerholm--Gwinn quadrature technique is used to obtain matrix elements of the Hamiltonian in the basis of vibrational configurations. Our variational method is thus analogous to configuration--interaction calculations for electronic states. The ground state is found to have a zero-point energy of 4345 cm -1 and a vibrationally averaged geometry of R 1 =R 2 =0.91396 A, theta=60.0012degree, where theta is the angle between the two equivalent bonds. The transition frequencies for the E and A 1 fundamentals are nu-bar/sub E/=2516 cm -1 and nu-bar/sub A/=3185 cm -1 and those for the corresponding first overtones of the bending mode are 2nu-bar/sub E/=5004 +- 4 cm -1 and 2nu-bar/sub A/=4799 cm -1 . The first overtone of the breathing mode is 6264 cm -1 . The first-excited A 1 vibration state is metastable with a dipole--radiation lifetime of 3 sec. Transition frequencies, Einstein coefficients, and lifetimes are reported for a total of 21 transitions. Analysis of results for Dunham number and normal-coordinate expansions in comparison with those for SPF expansion show the latter to be superior for ab initio vibrational calculations. A scheme for possible direct measurement of the fundamental A 1 and E vibrational bands is suggested

  2. Structural stability, electronic structure and mechanical properties of actinide carbides AnC (An = U, Np)

    International Nuclear Information System (INIS)

    Manikandan, M.; Santhosh, M.; Rajeswarapalanichamy, R.

    2016-01-01

    Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of actinide carbides AnC (An=U, Np) for three different crystal structures, namely NaCl, CsCl and ZnS. Among the considered structures, NaCl structure is found to be the most stable structure for these carbides at normal pressure. A pressure induced structural phase transition from NaCl to ZnS is observed. The electronic structure reveals that these carbides are metals. The calculated elastic constants indicate that these carbides are mechanically stable at normal pressure.

  3. Determinação da estrutura molecular do ciclooctano por métodos ab initio e difração de elétrons na fase gasosa

    OpenAIRE

    De Almeida,Wagner B.

    2000-01-01

    The determination of the molecular structure of molecules is of fundamental importance in chemistry. X-rays and electron diffraction methods constitute in important tools for the elucidation of the molecular structure of systems in the solid state and gas phase, respectively. The use of quantum mechanical molecular orbital ab initio methods offer an alternative for conformational analysis studies. Comparison between theoretical results and those obtained experimentally in the gas phase can ma...

  4. The ab-initio density matrix renormalization group in practice

    Energy Technology Data Exchange (ETDEWEB)

    Olivares-Amaya, Roberto; Hu, Weifeng; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Nakatani, Naoki [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Catalysis Research Center, Hokkaido University, Kita 21 Nishi 10, Sapporo, Hokkaido 001-0021 (Japan)

    2015-01-21

    The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

  5. The ab-initio density matrix renormalization group in practice.

    Science.gov (United States)

    Olivares-Amaya, Roberto; Hu, Weifeng; Nakatani, Naoki; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic

    2015-01-21

    The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.

  6. Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei

    Czech Academy of Sciences Publication Activity Database

    Dytrych, Tomáš; Maris, P.; Launey, K. D.; Draayer, J. P.; Vary, J. P.; Langr, D.; Saule, E.; Caprio, M. A.; Catalyurek, U.; Sosonkina, M.

    2016-01-01

    Roč. 207, OCT (2016), s. 202-210 ISSN 0010-4655 R&D Projects: GA ČR GA16-16772S Institutional support: RVO:61389005 Keywords : nuclear structure * Ab initio methods * Shell model * models based on group theory Subject RIV: BE - Theoretical Physics Impact factor: 3.936, year: 2016

  7. Double-walled silicon nanotubes: an ab initio investigation

    Science.gov (United States)

    Lima, Matheus P.

    2018-02-01

    The synthesis of silicon nanotubes realized in the last decade demonstrates multi-walled tubular structures consisting of Si atoms in {{sp}}2 and the {{sp}}3 hybridizations. However, most of the theoretical models were elaborated taking as the starting point {{sp}}2 structures analogous to carbon nanotubes. These structures are unfavorable due to the natural tendency of the Si atoms to undergo {{sp}}3. In this work, through ab initio simulations based on density functional theory, we investigated double-walled silicon nanotubes proposing layered tubes possessing most of the Si atoms in an {{sp}}3 hybridization, and with few {{sp}}2 atoms localized at the outer wall. The lowest-energy structures have metallic behavior. Furthermore, the possibility to tune the band structure with the application of a strain was demonstrated, inducing a metal-semiconductor transition. Thus, the behavior of silicon nanotubes differs significantly from carbon nanotubes, and the main source of the differences is the distortions in the lattice associated with the tendency of Si to make four chemical bonds.

  8. Asymmetrical distorted structure, dynamics, and reactions of the silacyclohexane and related radical cations: ESR and ab-initio MO study

    International Nuclear Information System (INIS)

    Komaguchi, Kenji; Shiotani, Masaru; Ishikawa, Mitsuo

    1995-01-01

    The σ-type radical cations generated by one electron oxidation of the saturated hydrocarbon have been attracted much attention because of their fundamental importance as primary reactant species in radiation chemistry. Our studies on σ-type radical cations were recently extended to the silacyclohexane (cSiC5), silacyclopentane (cSiC4), and silacyclobutane (cSiC3) radical cations. Their electronic structure, dynamics, and reactions were investigated by means of low temperature matrix isolation ESR technique combined with ionizing radiation (γ-rays from 60 Co). In the preceding paper, the 1-methylsilacyclohexane (1-Me-cSiC5) radical cation has been found to take an asymmetrically distorted C 1 structure with one of two Si-C bonds elongated in which the unpaired electron mainly resides ( 2 A in C 1 ). This conclusion was based on the 4.2 K ESR spectra of radical cations of selectively deuteriated and/or methylsubstituted silacyclohexanes, i.e., cSiC5-2,2,6,6-d 4 + , 1-Me-cSiC5 + , 1-Me-cSiC5-2,2-d 2 + , 1-Me-cSiC5-2,2,6,6-d 4 + , 1,1-Me 2 -cSiC5 + , and 4,4-Me 2 -cSiC5 + , in a frozen CF 3 -cC 6 F 11 matrix. Here we report further experimental and theoretical results on 1-methylsilacyclohexane radical cation, especially on the ab initio MO results and matrix effects on the structural distortion, as well as thermal reactions of the radical cations. The results will make it clear that the distorted C 1 structure of the 1-Me-cSiC5 + is the intrinsic nature at the ground electronic state. (J.P.N.)

  9. Electronic structure of incident carbon ions on a graphite surface

    International Nuclear Information System (INIS)

    Kiuchi, Masato; Takeuchi, Takae; Yamamoto, Masao.

    1997-01-01

    The electronic structure of an incident carbon ion on a graphite surface is discussed on the basis of ab initio molecular orbital calculations. A carbon cation forms a covalent bond with the graphite, and a carbon nonion is attracted to the graphite surface through van der Waals interaction. A carbon anion has no stable state on a graphite surface. The charge effects of incident ions become clear upon detailed examination of the electronic structure. (author)

  10. Ab initio study of the excited-state coupled electron-proton-transfer process in the 2-aminopyridine dimer

    International Nuclear Information System (INIS)

    Sobolewski, Andrzej L.; Domcke, Wolfgang

    2003-01-01

    The low-lying 1 ππ* excited states of the 2-aminopyridine dimer have been investigated with multi-reference ab initio methods (CASSCF and MRMP2). The 2-aminopyridine dimer can be considered as a mimetic model of Watson-Crick DNA base pairs. The reaction path and the energy profile for single proton transfer in the lowest 1 ππ* inter-monomer charge-transfer state have been obtained. A weakly avoided crossing of the 1 ππ* surface with the electronic ground-state surface has been found near the single-proton-transfer minimum of the 1 ππ* surface. From the splitting of the adiabatic surfaces at the avoided crossing, an internal-conversion lifetime of the excited state of <100 ps has been estimated. The potential relevance of these results for the rationalization of radiation-induced mutations and the photostability of the genetic code is briefly discussed

  11. Atomic and electronic structure of exfoliated black phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok; Wentzcovitch, Renata M.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Low, Tony; Robbins, Matthew C.; Haratipour, Nazila; Koester, Steven J. [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-11-15

    Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolution view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO{sub 3} or H{sub 3}PO{sub 3} during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time.

  12. Ab Initio Studies of Shock-Induced Chemical Reactions of Inter-Metallics

    Science.gov (United States)

    Zaharieva, Roussislava; Hanagud, Sathya

    2009-06-01

    Shock-induced and shock assisted chemical reactions of intermetallic mixtures are studied by many researchers, using both experimental and theoretical techniques. The theoretical studies are primarily at continuum scales. The model frameworks include mixture theories and meso-scale models of grains of porous mixtures. The reaction models vary from equilibrium thermodynamic model to several non-equilibrium thermodynamic models. The shock-effects are primarily studied using appropriate conservation equations and numerical techniques to integrate the equations. All these models require material constants from experiments and estimates of transition states. Thus, the objective of this paper is to present studies based on ab initio techniques. The ab inito studies, to date, use ab inito molecular dynamics. This paper presents a study that uses shock pressures, and associated temperatures as starting variables. Then intermetallic mixtures are modeled as slabs. The required shock stresses are created by straining the lattice. Then, ab initio binding energy calculations are used to examine the stability of the reactions. Binding energies are obtained for different strain components super imposed on uniform compression and finite temperatures. Then, vibrational frequencies and nudge elastic band techniques are used to study reactivity and transition states. Examples include Ni and Al.

  13. Mobility gaps in disordered graphene-based materials: an ab initio -based tight-binding approach to mesoscopic transport

    Energy Technology Data Exchange (ETDEWEB)

    Biel, Blanca [Dpto. Electronica y Tecnologia de Computadores, Facultad de Ciencias, and CITIC, Universidad de Granada (Spain); Cresti, Alessandro; Triozon, Francois [CEA, LETI, MINATEC, Grenoble (France); Avriller, Remi [Departamento de Fysica Teorica de la Materia Condensada C-V, Facultad de Ciencias, Universidad Autonoma de Madrid (Spain); Dubois, Simon; Charlier, Jean-Christophe [PCPM and ETSF, Universit' e Catholique de Louvain (Belgium); Lopez-Bezanilla, Alejandro [CEA, INAC, SPSMS, Grenoble (France); Blase, X. [Institut N' eel, CNRS et Universit' e Joseph Fourier, Grenoble (France); Roche, Stephan [CIN2 (CSIC-ICN), Campus UAB, Barcelona (Spain); CEA, INAC, SP2M, Grenoble (France)

    2010-11-15

    As is common knowledge, armchair graphene nanoribbons (aGNRs) share many electronic features with carbon nanotubes (CNTs). Nevertheless, crucial differences emerge when disorder comes into play. It is thus instructive, both from a theoretical and a technological perspective, to analyze the impact of possible types of disorder on the transport properties of these graphene-based materials. Here we report such a comparative study between CNTs and GNRs, which points out the similarities and differences emerging as a consequence of doping by substitutional boron and nitrogen impurities. The role of edge defects (absent in CNTs) is also contrasted with chemical doping disorder. All disorder models have been derived from accurate ab initio calculations of the electronic structures (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Ab initio STM and STS simulations on magnetic and nonmagnetic metallic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dick, Alexey

    2008-04-14

    The aim of this work was to provide an in-depth understanding of a new generation of scan- ning tunneling microscopy experiments, performed employing different regimes of the STM: the spectroscopy-mode (the so-called Fourier Transformed STM, FT-STM), and the spin-sensitive mode (the so-called spin-polarized STM, SP-STM). In the present thesis ab initio tools are proposed that are based on DFT calculations to theoretically predict and analyze such types of the STM. The first part of this thesis focusses on the simulation of FT-STM, the mode that allows to probe local dispersion properties of the electrons at the surface. In order to provide the theoretical counterpart of the experimental FT-STM spectra we have introduced a new implicit approach that is derived from Tersoff-Hamann theory of the STM. The importance of an accurate description of surface wavefunctions at 5-15 A above the surface as well as the spurious quantum- size effects have been discussed in detail together with approaches to obtain converged FT-STM images. We applied our method to FT-STM experiments performed on Ag(110) surfaces. In the second part of the thesis we discuss the modeling of the spin-resolved STM, the mode that allows to characterize the magnetic structure of a surface. As a case system we studied here the magnetically-ordered transition-metal nitride surface Mn{sub 3}N{sub 2}(010). Because SP-STM experiments did not allow a conclusive understanding of the surface structure, we have first employed ab initio thermodynamics to figure out the most stable magnetic and atomic configuration of the surface that are consistent with experiments. To simulate SP-STM images on the most stable Mn{sub 3}N{sub 2}(010) surface we have employed the spin-generalized transfer-Hamiltonian formalism, assuming that the tip wavefunctions have dominant radial symmetry (s-like tip). (orig.)

  15. Efficacy of the semiempirical sparkle model as compared to ECP ab-initio calculations for the prediction of ligand field parameters of europium (III) complexes

    International Nuclear Information System (INIS)

    Freire, Ricardo O.; Rocha, Gerd B.; Albuquerque, Rodrigo Q.; Simas, Alfredo M.

    2005-01-01

    The second version of the sparkle model for the calculation of lanthanide complexes (SMLC II) as well as ab-initio calculations (HF/STO-3G and HF/3-21G) have been used to calculate the geometries of a series of europium (III) complexes with different coordination numbers (CN=7, 8 and 9), ligating atoms (O and N) and ligands (mono, bi and polydentate). The so-called ligand field parameters, Bqk's, have been calculated from both SMLC II and ab-initio optimized structures and compared to the ones calculated from crystallographic data. The results show that the SMLC II model represents a significant improvement over the previous version (SMLC) and has given good results when compared to ab-initio methods, which demand a much higher computational effort. Indeed, ab-initio methods take around a hundred times more computing time than SMLC. As such, our results indicate that our sparkle model can be a very useful and a fast tool when applied to the prediction of both ground state geometries and ligand field parameters of europium (III) complexes

  16. Direct observations of the MOF (UiO-66) structure by transmission electron microscopy

    KAUST Repository

    Zhu, Liangkui

    2013-01-01

    As a demonstration of ab initio structure characterizations of nano metal organic framework (MOF) crystals by high resolution transmission electron microscopy (HRTEM) and electron diffraction tomography methods, a Zr-MOF (UiO-66) structure was determined and further confirmed by Rietveld refinements of powder X-ray diffraction. HRTEM gave direct imaging of the channels. © 2013 The Royal Society of Chemistry.

  17. Electronic and structural properties of B i2S e3:Cu

    Science.gov (United States)

    Sobczak, Kamil; Strak, Pawel; Kempisty, Pawel; Wolos, Agnieszka; Hruban, Andrzej; Materna, Andrzej; Borysiuk, Jolanta

    2018-04-01

    Electronic and structural properties of B i2S e3 and its extension to copper doped B i2S e3:Cu were studied using combined ab initio simulations and transmission electron microscopy based techniques, including electron energy loss spectroscopy, energy filtered transmission electron microscopy, and energy dispersive x-ray spectroscopy. The stability of the mixed phases was investigated for substitutional and intercalation changes of basic B i2S e3 structure. Four systems were compared: B i2S e3 , structures obtaining by Cu intercalation of the van der Waals gap, by substitution of Bi by Cu in quintuple layers, and C u2Se . The structures were identified and their electronic properties were obtained. Transmission electron microscopy measurements of B i2S e3 and the B i2S e3:Cu system identified the first structure as uniform and the second as composite, consisting of a nonuniform lower-Cu-content matrix and randomly distributed high-Cu-concentration precipitates. Critical comparison of the ab initio and experimental data identified the matrix as having a B i2S e3 dominant part with randomly distributed Cu-intercalated regions having 1Cu-B i2S e3 structure. The precipitates were determined to have 3Cu-B i2S e3 structure.

  18. Spin-orbit interaction effects in zincblende semiconductors: Ab initio pseudopotential calculations

    International Nuclear Information System (INIS)

    Li, Ming-Fu; Surh, M.P.; Louie, S.G.

    1988-06-01

    Ab initio band structure calculations have been performed for the spin-orbit interaction effects at the top of the valence bands for GaAs and InSb. Relativistic, norm-conserving pseudopotentials are used with no correction made for the gaps from the local density approximation. The spin-orbit splitting at Γ and linear terms in the /rvec char/k dependence of the splitting are found to be in excellent agreement with existing experiments and previous theoretical results. The effective mass and the cubic splitting terms are also examined. 6 refs., 1 fig., 2 tabs

  19. Quantifying transition voltage spectroscopy of molecular junctions: Ab initio calculations

    DEFF Research Database (Denmark)

    Chen, Jingzhe; Markussen, Troels; Thygesen, Kristian Sommer

    2010-01-01

    Transition voltage spectroscopy (TVS) has recently been introduced as a spectroscopic tool for molecular junctions where it offers the possibility to probe molecular level energies at relatively low bias voltages. In this work we perform extensive ab initio calculations of the nonlinear current...

  20. Structural and vibrational study of 2-MethoxyEthylAmmonium Nitrate (2-OMeEAN): Interpretation of experimental results with ab initio molecular dynamics

    International Nuclear Information System (INIS)

    Campetella, M.; Caminiti, R.; Bencivenni, L.; Gontrani, L.; Bovi, D.; Guidoni, L.

    2016-01-01

    In this work we report an analysis of the bulk phase of 2-methoxyethylammonium nitrate based on ab initio molecular dynamics. The structural and dynamical features of the ionic liquid have been characterized and the computational findings have been compared with the experimental X-ray diffraction patterns, with infrared spectroscopy data, and with the results obtained from molecular dynamics simulations. The experimental infrared spectrum was interpreted with the support of calculated vibrational density of states as well as harmonic frequency calculations of selected gas phase clusters. Particular attention was addressed to the high frequency region of the cation (ω > 2000 cm −1 ), where the vibrational motions involve the NH 3 + group responsible for hydrogen bond formation, and to the frequency range 1200-1400 cm −1 where the antisymmetric stretching mode (ν 3 ) of nitrate is found. Its multiple absorption lines in the liquid arise from the removal of the degeneracy present in the D 3h symmetry of the isolated ion. Our ab initio molecular dynamics leads to a rationalization of the frequency shifts and splittings, which are inextricably related to the structural modifications induced by a hydrogen bonding environment. The DFT calculations lead to an inhomogeneous environment.

  1. Structural and vibrational study of 2-MethoxyEthylAmmonium Nitrate (2-OMeEAN): Interpretation of experimental results with ab initio molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Campetella, M.; Caminiti, R.; Bencivenni, L.; Gontrani, L., E-mail: lorenzo.gontrani@uniroma1.it [Dipartimento di Chimica, Università di Roma, “La Sapienza,” P. le Aldo Moro 5, I-00185 Roma (Italy); Bovi, D. [Dipartimento di Fisica, Università di Roma, “La Sapienza,” P. le Aldo Moro 5, I-00185 Roma (Italy); Guidoni, L. [Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, Coppito, I-67100 L’Aquila (Italy)

    2016-07-14

    In this work we report an analysis of the bulk phase of 2-methoxyethylammonium nitrate based on ab initio molecular dynamics. The structural and dynamical features of the ionic liquid have been characterized and the computational findings have been compared with the experimental X-ray diffraction patterns, with infrared spectroscopy data, and with the results obtained from molecular dynamics simulations. The experimental infrared spectrum was interpreted with the support of calculated vibrational density of states as well as harmonic frequency calculations of selected gas phase clusters. Particular attention was addressed to the high frequency region of the cation (ω > 2000 cm{sup −1}), where the vibrational motions involve the NH{sub 3}+ group responsible for hydrogen bond formation, and to the frequency range 1200-1400 cm{sup −1} where the antisymmetric stretching mode (ν{sub 3}) of nitrate is found. Its multiple absorption lines in the liquid arise from the removal of the degeneracy present in the D{sub 3h} symmetry of the isolated ion. Our ab initio molecular dynamics leads to a rationalization of the frequency shifts and splittings, which are inextricably related to the structural modifications induced by a hydrogen bonding environment. The DFT calculations lead to an inhomogeneous environment.

  2. Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Dytrych, T. [Academy of Sciences of the Czech Republic (ASCR), Prague (Czech Republic); Louisiana State Univ., Baton Rouge, LA (United States); Maris, Pieter [Iowa State Univ., Ames, IA (United States); Launey, K. D. [Louisiana State Univ., Baton Rouge, LA (United States); Draayer, J. P. [Louisiana State Univ., Baton Rouge, LA (United States); Vary, James [Iowa State Univ., Ames, IA (United States); Langr, D. [Czech Technical Univ., Prague (Czech Republic); Aerospace Research and Test Establishment, Prague (Czech Republic); Saule, E. [Univ. of North Carolina, Charlotte, NC (United States); Caprio, M. A. [Univ. of Notre Dame, IN (United States); Catalyurek, U. [The Ohio State Univ., Columbus, OH (United States). Dept. of Electrical and Computer Engineering; Sosonkina, M. [Old Dominion Univ., Norfolk, VA (United States)

    2016-06-09

    We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, dubbed LSU3shell, by analyzing ab initio results for 6Li and 12C in large harmonic oscillator model spaces and SU(3)-selected subspaces. We demonstrate LSU3shell's strong-scaling properties achieved with highly-parallel methods for computing the many-body matrix elements. Results compare favorably with complete model space calculations and signi cant memory savings are achieved in physically important applications. In particular, a well-chosen symmetry-adapted basis a ords memory savings in calculations of states with a fixed total angular momentum in large model spaces while exactly preserving translational invariance.

  3. Dispersion and Solvation Effects on the Structure and Dynamics of N719 Adsorbed to Anatase Titania (101) Surfaces in Room-Temperature Ionic Liquids: An ab Initio Molecular Simulation Study

    KAUST Repository

    Byrne, Aaron; English, Niall J.; Schwingenschlö gl, Udo; Coker, David F.

    2015-01-01

    Ab initio, density functional theory (DFT)-based molecular dynamics (MD) has been carried out to investigate the effect of explicit solvation on the dynamical and structural properties of a [bmim][NTf2] room-temperature ionic liquid (RTIL

  4. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    International Nuclear Information System (INIS)

    Han, Huixian; Li, Anyang; Guo, Hua

    2014-01-01

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S 0 ) electronic state has been constructed by fitting ∼37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm −1 . The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm −1 above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction

  5. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    Science.gov (United States)

    Han, Huixian; Li, Anyang; Guo, Hua

    2014-12-01

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S0) electronic state has been constructed by fitting ˜37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm-1. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm-1 above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.

  6. Ab initio calculations of mechanical properties: Methods and applications

    Czech Academy of Sciences Publication Activity Database

    Pokluda, J.; Černý, Miroslav; Šob, Mojmír; Umeno, Y.

    2015-01-01

    Roč. 73, AUG (2015), s. 127-158 ISSN 0079-6425 R&D Projects: GA ČR(CZ) GAP108/12/0311 Institutional support: RVO:68081723 Keywords : Ab initio methods * Elastic moduli * Intrinsic hardness * Stability analysis * Theoretical strength * Intrinsic brittleness/ductility Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 31.083, year: 2015

  7. Ab initio study of the compound-energy modeling of multisublattice structures: The (hP6) Ni2In-type intermetallics of the Ni–In–Sn system

    International Nuclear Information System (INIS)

    Ramos de Debiaggi, S.; González Lemus, N.V.; Deluque Toro, C.; Fernández Guillermet, A.

    2015-01-01

    Highlights: • A DFT study of the compounds involved in CALPHAD modeling of the Ni–In–Sn (hP6) phase. • Several three-sublattice compounds of Ni, In, Sn and vacancies are studied ab initio. • Structural, cohesive and thermodynamic properties and the electronic DOS are reported. • Trends in calculated properties are correlated with changes in electronic structure. • A picture of the chemical bonding trends for these s-p/d type compounds is discussed. - Abstract: The thermodynamic modeling of non-stoichiometric, multisublattice intermetallic phases using the Compound-Energy Formalism (CEF) involves the determination of parameters representing the Gibbs energy (G m ) of binary compounds, the so-called “end-member compounds” (EMCs), which are often metastable or hypothetical. In current CALPHAD (i.e., “Calculation of Phase Diagrams”) work, these quantities are treated as free parameters to be determined by searching for the best fit to the available information in the optimization procedure. The general purpose of this paper is to propose a theoretical approach to the study of the EMCs which makes use of density-functional-theory (DFT) ab initio calculations. The present method is applied to the EMCs involved in the CEF modeling of the non-stoichiometric (hP6) Ni 2 In-structure type phase of the Ni–In and Ni–In–Sn systems using the three-sublattice models (Ni) 1 (Ni,Va) 1 (In,Ni) 1 and (Ni,Va) 1 (Ni,Va) 1 (In,Ni,Sn) 1 , respectively. By means of systematic ab initio projected augmented waves (PAW) calculations using the VASP code we study the EMCs involved in the CEF formulations of the G m for this phase in the binary and the ternary systems. Specifically, we study the twelve EMCs corresponding to the following sublattice occupations: (Ni) 1 (Ni) 1 (In) 1 , which is usually described as Ni:Ni:In (i.e., a compound with formula “Ni 2 In”), Ni:Ni:Ni (i.e., “Ni 3 ”), Ni:Ni:Sn (“Ni 2 Sn”), Ni:Va:In (i.e., “NiIn”), Ni:Va:Ni (i

  8. Early stage precipitation in aluminum alloys : An ab initio study

    NARCIS (Netherlands)

    Zhang, X.

    2017-01-01

    Multiscale computational materials science has reached a stage where many complicated phenomena or properties that are of great importance to manufacturing can be predicted or explained. The word “ab initio study” becomes commonplace as the development of density functional theory has enabled the

  9. Synthesis, FTIR, FT-Raman, UV-visible, ab initio and DFT studies on benzohydrazide.

    Science.gov (United States)

    Arjunan, V; Rani, T; Mythili, C V; Mohan, S

    2011-08-01

    A systematic vibrational spectroscopic assignment and analysis of benzohydrazide (BH) has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis were aided by electronic structure calculations--ab initio (RHF) and hybrid density functional methods (B3LYP and B3PW91) performed with 6-31G(d,p) and 6-311++G(d,p) basis sets. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λ(max) were determined by time-dependent DFT (TD-DFT) method. The geometrical, thermodynamical parameters and absorption wavelengths were compared with the experimental data. The interactions of carbonyl and hydrazide groups on the benzene ring skeletal modes were investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Graph Theory Meets Ab Initio Molecular Dynamics: Atomic Structures and Transformations at the Nanoscale

    Science.gov (United States)

    Pietrucci, Fabio; Andreoni, Wanda

    2011-08-01

    Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.

  11. In-medium no-core shell model for ab initio nuclear structure calculations

    International Nuclear Information System (INIS)

    Gebrerufael, Eskendr

    2017-01-01

    In this work, we merge two successful ab initio nuclear-structure methods, the no-core shell model (NCSM) and the multi-reference in-medium similarity renormalization group (IM-SRG), to define a novel many-body approach for the comprehensive description of ground and excited states of closed- and open-shell medium-mass nuclei. Building on the key advantages of the two methods - the decoupling of excitations at the many-body level in the IM-SRG, and the exact diagonalization in the NCSM applicable up to medium-light nuclei - their combination enables fully converged no-core calculations for an unprecedented range of nuclei and observables at moderate computational cost. The efficiency and rapid model-space convergence of the new approach make it ideally suited for ab initio studies of ground and low-lying excited states of nuclei up to the medium-mass regime. Interactions constructed within the framework of chiral effective field theory provide an excellent opportunity to describe properties of nuclei from first principles, i.e., rooted in quantum chromodynamics, they overcome the lack of predictive power of phenomenological potentials. The hard core of these interactions causes strong short-range correlations, which we soften by using the similarity-renormalization-group transformation that accelerates the model-space convergence of many-body calculations. Three-nucleon effects, which are mandatory for the correct description of bulk properties of nuclei, are included in our calculations by using the normal-ordered two-body approximation, which has been shown to be sufficient to capture the main effects of the three-nucleon interaction. Using these interactions, we analyze energies of ground and excited states in the carbon and oxygen isotopic chains, where conventional NCSM calculations are still feasible and provide an important benchmark. Furthermore, we study the Hoyle state in 12 C - a three-alpha cluster state that cannot be converged in standard NCSM

  12. Substrate Screening Effects in ab initio Many-body Green's Function Calculations of Doped Graphene on SiC

    Science.gov (United States)

    Vigil-Fowler, Derek; Lischner, Johannes; Louie, Steven

    2013-03-01

    Understanding many-electron interaction effects and the influence of the substrate in graphene-on-substrate systems is of great theoretical and practical interest. Thus far, both model Hamiltonian and ab initio GW calculations for the quasiparticle properties of such systems have employed crude models for the effect of the substrate, often approximating the complicated substrate dielectric matrix by a single constant. We develop a method in which the spatially-dependent dielectric matrix of the substrate (e.g., SiC) is incorporated into that of doped graphene to obtain an accurate total dielectric matrix. We present ab initio GW + cumulant expansion calculations, showing that both the cumulant expansion (to include higher-order electron correlations) and a proper account of the substrate screening are needed to achieve agreement with features seen in ARPES. We discuss how this methodology could be used in other systems. This work was supported by NSF Grant No. DMR10-1006184 and U.S. DOE Contract No. DE-AC02-05CH11231. Computational resources have been provided by the NERSC and NICS. D.V-F. acknowledges funding from the DOD's NDSEG fellowship.

  13. An Ab Initio Description of the Excitonic Properties of LH2 and Their Temperature Dependence.

    Science.gov (United States)

    Cupellini, Lorenzo; Jurinovich, Sandro; Campetella, Marco; Caprasecca, Stefano; Guido, Ciro A; Kelly, Sharon M; Gardiner, Alastair T; Cogdell, Richard; Mennucci, Benedetta

    2016-11-10

    The spectroscopic properties of light-harvesting (LH) antennae in photosyntehtic organisms represent a fingerprint that is unique for each specific pigment-protein complex. Because of that, spectroscopic observations are generally combined with structural data from X-ray crystallography to obtain an indirect representation of the excitonic properties of the system. Here, an alternative strategy is presented which goes beyond this empirical approach and introduces an ab initio computational description of both structural and electronic properties and their dependence on the temperature. The strategy is applied to the peripheral light-harvesting antenna complex (LH2) present in purple bacteria. By comparing this model with the one based on the crystal structure, a detailed, molecular level explanation of the absorption and circular dichroism (CD) spectra and their temperature dependence is achieved. The agreement obtained with the experiments at both low and room temperature lays the groundwork for an atomistic understanding of the excitation dynamics in the LH2 system.

  14. Ab initio structure determination and refinement of a scorpion protein toxin.

    Science.gov (United States)

    Smith, G D; Blessing, R H; Ealick, S E; Fontecilla-Camps, J C; Hauptman, H A; Housset, D; Langs, D A; Miller, R

    1997-09-01

    The structure of toxin II from the scorpion Androctonus australis Hector has been determined ab initio by direct methods using SnB at 0.96 A resolution. For the purpose of this structure redetermination, undertaken as a test of the minimal function and the SnB program, the identity and sequence of the protein was withheld from part of the research team. A single solution obtained from 1 619 random atom trials was clearly revealed by the bimodal distribution of the final value of the minimal function associated with each individual trial. Five peptide fragments were identified from a conservative analysis of the initial E-map, and following several refinement cycles with X-PLOR, a model was built of the complete structure. At the end of the X-PLOR refinement, the sequence was compared with the published sequence and 57 of the 64 residues had been correctly identified. Two errors in sequence resulted from side chains with similar size while the rest of the errors were a result of severe disorder or high thermal motion in the side chains. Given the amino-acid sequence, it is estimated that the initial E-map could have produced a model containing 99% of all main-chain and 81% of side-chain atoms. The structure refinement was completed with PROFFT, including the contributions of protein H atoms, and converged at a residual of 0.158 for 30 609 data with F >or= 2sigma(F) in the resolution range 8.0-0.964 A. The final model consisted of 518 non-H protein atoms (36 disordered), 407 H atoms, and 129 water molecules (43 with occupancies less than unity). This total of 647 non-H atoms represents the largest light-atom structure solved to date.

  15. Ab-initio vibrational properties of transition metal chalcopyrite alloys determined as high-efficiency intermediate-band photovoltaic materials

    International Nuclear Information System (INIS)

    Palacios, P.; Aguilera, I.; Wahnon, P.

    2008-01-01

    In this work, we present frozen phonon and linear response ab-initio research into the vibrational properties of the CuGaS 2 chalcopyrite and transition metal substituted (CuGaS 2 )M alloys. These systems are potential candidates for developing a novel solar-cell material with enhanced optoelectronic properties based in the implementation of the intermediate-band concept. We have previously carried out ab-initio calculations of the electronic properties of these kinds of chalcopyrite metal alloys showing a narrow transition metal band isolated in the semiconductor band gap. The substitutes used in the present work are the 3d metal elements, Titanium and Chromium. For the theoretical calculations we use standard density functional theory at local density and generalized gradient approximation levels. We found that the optical phonon branches of the transition metal chalcopyrite, are very sensitive to the specific bonding geometry and small changes in the transition metal environment

  16. Electronic structure of point defects in semiconductors

    International Nuclear Information System (INIS)

    Bruneval, Fabien

    2014-01-01

    This 'Habilitation a diriger des Recherches' memoir presents most of my scientific activities during the past 7 years, in the field of electronic structure calculations of defects in solids. Point defects (vacancies, interstitials, impurities) in functional materials are a key parameter to determine if these materials will actually fill the role they have been assigned or not. Indeed, the presence of defects cannot be avoided when the temperature is increased or when the material is subjected to external stresses, such as irradiation in the nuclear reactors and in artificial satellites with solar radiations. However, in many cases, defects are introduced in the materials on purpose to tune the electronic transport, optical or even magnetic properties. This procedure is called the doping of semiconductors, which is the foundation technique for transistors, diodes, or photovoltaic cells. However, doping is not always straightforward and unexpected features may occur, such as doping asymmetry or Fermi level pinning, which can only be explained by complex phenomena involving different types of defects or complexes of defects. In this context, the calculations of electronic structure ab initio is an ideal tool to complement the experimental observations, to gain the understanding of phenomena at the atomic level, and even to predict the properties of defects. The power of the ab initio calculations comes from their ability to describe any system of electrons and nuclei without any specific adjustment. But although there is a strong need for numerical simulations in this field, the ab initio calculations for defects are still under development as of today. The work presented in this memoir summarizes my contributions to methodological developments on this subject. These developments have followed two main tracks. The first topic is the better understanding of the unavoidable finite size effects. Indeed, defects in semiconductors or insulators are generally present in

  17. Origin of the reverse optical-contrast change of Ga-Sb phase-change materials—An ab initio molecular-dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, J. A.; Elliott, S. R., E-mail: sre1@cam.ac.uk [Department of Chemistry, University of Cambridge, Cambridge CB2 1EW (United Kingdom)

    2014-04-07

    A large number of phase-change materials (PCMs) have been developed experimentally; however, only Ge{sub 2}Sb{sub 2}Te{sub 5}-based PCMs have been significantly explored using ab initio molecular-dynamics (AIMD) simulations. We present an AIMD study of the full melt/quench/anneal PC cycle for Ga-Sb materials, namely, the stoichiometric composition, GaSb, and the near-eutectic alloy, Ga{sub 16}Sb{sub 84}. The calculated electronic densities of states and optical reflectivities are compared between the amorphous and crystalline phases for both compositions, and it is shown that the contrasting opto-electronic properties of each crystalline material can be attributed to different structural transformations of Ga and Sb on crystallization from the amorphous state.

  18. Ab initio calculation of scattering length and cross sections at very low energies for electron-helium scattering

    International Nuclear Information System (INIS)

    Saha, H.P.

    1993-01-01

    The multiconfiguration Hartree-Fock method for continuum wave functions has been used to calculate the scattering length and phase shifts over extremely low energies ranging from 0 to 1 eV very accurately for electron-helium scattering. The scattering length is calculated very accurately with wave functions computed exactly at zero energy, resulting in an upper bound of 1.1784. The electron correlation and polarization of the target by the scattering electron, which are very important in these calculations, have been taken into account in an accurate ab initio manner through the configuration-interaction procedure by optimizing both bound and continuum orbitals simultaneously at each kinetic energy of the scattered electron. Detailed results for scattering length, differential, total, and momentum-transfer cross sections obtained from the phase shifts are presented. The present scattering length is found to be in excellent agreement with the experimental result of Andrick and Bitsch [J. Phys. B 8, 402 (1975)] and the theoretical result of O'Malley, Burke, and Berrington [J. Phys. B 12, 953 (1979)]. There is excellent agreement between the present total cross sections and the corresponding experimental measurements of Buckman and Lohmann [J. Phys. B 19, 2547 (1986)]. The present momentum-transfer cross sections also show remarkable agreement with the experimental results of Crompton, Elford, and Robertson [Aust. J. Phys. 23, 667 (1970)

  19. Ab initio interaction potentials for X and B excited states of He-I2 for studying dynamics

    International Nuclear Information System (INIS)

    Prosmiti, Rita; Garcia-Gutierrez, Leonor; Delgado-Tellez, Laura; Valdes, Alvaro; Villarreal, Pablo; Delgado-Barrio, Gerardo

    2009-01-01

    Ab initio CCSD(T) and MRCI approaches were employed to construct potential energy surfaces of the ground and the B electronic excited states of He-I 2 complex, while full quantum mechanical methods were applied to study its spectroscopy and dynamics. A description of the approach adopted, together with the results obtained and their comparison with recent experimental data, as well as further improvements are presented.

  20. Ab initio I-V characteristics of short C-20 chains

    DEFF Research Database (Denmark)

    Roland, C.; Larade, B.; Taylor, Jeremy Philip

    2002-01-01

    We have calculated the I-V characteristics of short chains of C-20 molecular cages between Al and Au leads with an ab initio formalism. The results indicate that a linear chain of such molecules acts primarily as metallic nanowires. The transmission, however, depends sensitively both...

  1. Electronic structure and optical properties of solid C60

    International Nuclear Information System (INIS)

    Mattesini, M.; Ahuja, R.; Sa, L.; Hugosson, H.W.; Johansson, B.; Eriksson, O.

    2009-01-01

    The electronic structure and the optical properties of face-centered-cubic C 60 have been investigated by using an all-electron full-potential method. Our ab initio results show that the imaginary dielectric function for high-energy values looks very similar to that of graphite, revealing close electronic structure similarities between the two systems. We have also identified the origin of different peaks in the dielectric function of fullerene by means of the calculated electronic density of states. The computed optical spectrum compares fairly well with the available experimental data for the Vis-UV absorption spectrum of solid C 60 .

  2. Investigation of 3C-SiC/SiO2 interfacial point defects from ab initio g-tensor calculations and electron paramagnetic resonance measurements

    Science.gov (United States)

    Nugraha, T. A.; Rohrmueller, M.; Gerstmann, U.; Greulich-Weber, S.; Stellhorn, A.; Cantin, J. L.; von Bardeleben, J.; Schmidt, W. G.; Wippermann, S.

    SiC is widely used in high-power, high-frequency electronic devices. Recently, it has also been employed as a building block in nanocomposites used as light absorbers in solar energy conversion devices. Analogous to Si, SiC features SiO2 as native oxide that can be used for passivation and insulating layers. However, a significant number of defect states are reported to form at SiC/SiO2 interfaces, limiting mobility and increasing recombination of free charge carriers. We investigated the growth of oxide on different 3C-SiC surfaces from first principles. Carbon antisite Csi defects are found to be strongly stabilized in particular at the interface, because carbon changes its hybridization from sp3 in the SiC-bulk to sp2 at the interface, creating a dangling bond inside a porous region of the SiO2 passivating layer. Combining ab initio g-tensor calculations and electron paramagnetic resonance (EPR) measurements, we show that Csi defects explain the measured EPR signatures, while the hyperfine structure allows to obtain local structural information of the oxide layer. Financial support from BMBF NanoMatFutur Grant 13N12972 and DFG priority program SPP-1601 is gratefully acknowledged.

  3. Experimental and ab initio study of Ta-doped ZnO semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, E. L., E-mail: munoz@fisica.unlp.edu.ar; Richard, D., E-mail: richard@fisica.unlp.edu.ar [UNLP, Departamento de Fisica and Instituto de Fisica La Plata (IFLP, CCT La Plata, CONICET), Fac. de Ciencias Exactas (Argentina); Eversheim, P. D. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen-und Kernphysik (H-ISKP) (Germany); Renteria, M., E-mail: renteria@fisica.unlp.edu.ar [UNLP, Departamento de Fisica and Instituto de Fisica La Plata (IFLP, CCT La Plata, CONICET), Fac. de Ciencias Exactas (Argentina)

    2010-04-15

    In this work, we present {gamma}-{gamma} Perturbed-Angular-Correlation results in polycrystalline ZnO semiconductor implanted with {sup 181}Hf({yields}{sup 181}Ta) probes. Calculations in Ta-doped ZnO were carried out using the Full-Potential Augmented Plane Wave plus local orbital method in a supercell and varying self-consistently the charge state of the impurity. Ta is a triple donor impurity with respect to Zn{sup 2 + } in ZnO and thus it can loose 1, 2 or 3 donor electrons under certain circumstances. As expected, the comparison between the experimental Electric-Field-Gradient tensor results and our ab initio predictions shows that the Ta impurity is in an ionized charge state at room temperature.

  4. Experimental and ab initio study of Ta-doped ZnO semiconductor

    International Nuclear Information System (INIS)

    Muñoz, E. L.; Richard, D.; Eversheim, P. D.; Rentería, M.

    2010-01-01

    In this work, we present γ–γ Perturbed-Angular-Correlation results in polycrystalline ZnO semiconductor implanted with 181 Hf(→ 181 Ta) probes. Calculations in Ta-doped ZnO were carried out using the Full-Potential Augmented Plane Wave plus local orbital method in a supercell and varying self-consistently the charge state of the impurity. Ta is a triple donor impurity with respect to Zn 2 +  in ZnO and thus it can loose 1, 2 or 3 donor electrons under certain circumstances. As expected, the comparison between the experimental Electric-Field-Gradient tensor results and our ab initio predictions shows that the Ta impurity is in an ionized charge state at room temperature.

  5. Ab initio quantum chemistry in parallel-portable tools and applications

    International Nuclear Information System (INIS)

    Harrison, R.J.; Shepard, R.; Kendall, R.A.

    1991-01-01

    In common with many of the computational sciences, ab initio chemistry faces computational constraints to which a partial solution is offered by the prospect of highly parallel computers. Ab initio codes are large and complex (O(10 5 ) lines of FORTRAN), representing a significant investment of communal effort. The often conflicting requirements of portability and efficiency have been successfully resolved on vector computers by reliance on matrix oriented kernels. This proves inadequate even upon closely-coupled shared-memory parallel machines. We examine the algorithms employed during a typical sequence of calculations. Then we investigate how efficient portable parallel implementations may be derived, including the complex multi-reference singles and doubles configuration interaction algorithm. A portable toolkit, modeled after the Intel iPSC and the ANL-ACRF PARMACS, is developed, using shared memory and TCP/IP sockets. The toolkit is used as an initial platform for programs portable between LANS, Crays and true distributed-memory MIMD machines. Timings are presented. 53 refs., 4 tabs

  6. Electronic structure of the misfit layer compound (SnS)(1.20)TiS2 : Band structure calculations and photoelectron spectra

    NARCIS (Netherlands)

    Fang, CM; deGroot, RA; Wiegers, GA; Haas, C

    1996-01-01

    In order to understand the electronic structure of the incommensurate misfit layer compound (SnS)(1.20)TiS2 we carried out an ab initio band structure calculation in the supercell approximation. The band structure is compared with that of the components 1T-TiS2 and hypothetical SnS with a similar

  7. Electronic structure of the misfit layer compound (SnS)1.20TiS2 : band structure calculations and photoelectron spectra

    NARCIS (Netherlands)

    Fang, C.M.; Groot, R.A. de; Wiegers, G.A.; Haas, C.

    1996-01-01

    In order to understand the electronic structure of the incommensurate misfit layer compound (SnS)1.20TiS2 we carried out an ab initio band structure calculation in the supercell approximation. The band structure is compared with that of the components 1T-TiS2 and hypothetical SnS with a similar

  8. Ab initio studies on the reaction of O2 with Ban (n=2,5) clusters

    International Nuclear Information System (INIS)

    Li, S.F.; Xue Xinlian; Chen, G.; Yuan, D.W.; Jia Yu; Gong, X.G.

    2006-01-01

    Ab initio theoretical calculations have been performed to study the reaction of O 2 with Ba n (n=2,5) clusters. Our results show that O 2 can easily chemisorb and dissociate on small Ba n clusters and there is no obvious energy barrier in the process of the dissociation. The local magnetic moment contributed by oxygen must vanish during the intermediate states before the O 2 dissociation. Correspondingly, local magnetic moment only decreases from 2μ B to about 1μ B if O 2 molecularly adsorbs onto Ba 5 cluster. The electronic structure analysis indicates that the charge transfer from Ba n cluster to O 2 as well as the orbital hybridization between the cluster and the oxygen molecule may play a key role in O 2 dissociation

  9. Electronic, magnetic properties and phase diagrams of system with Fe4N compound: An ab initio calculations and Monte Carlo study

    Science.gov (United States)

    Masrour, R.; Jabar, A.; Hlil, E. K.

    2018-05-01

    Self-consistent ab initio calculations, based on Density Functional Theory (DFT) approach and using Full potential Linear Augmented Plane Wave (FLAPW) method, are performed to investigate the electronic and magnetic properties of the Fe4N compound. Polarized spin and spin-orbit coupling are included in calculations within the framework of the ferromagnetic state between Fe(I) and Fe(II) in Fe4N compound. We have used the obtained data from abinitio calculations as an input in Monte Carlo simulation to calculate the magnetic properties of this compounds such as the ground state phase diagrams, total and partial magnetization of Fe(I) and Fe(II) as well as the transition temperatures are computed. The variation of magnetization with the crystal field are also studied. The magnetic hysteresis cycle of the same Fe4N compound are determined for different values of temperatures and crystal field values. The two-step hysteresis loop are evidenced, which is typical for Fe4N structure. The ferromagnetic and superparamagnetic phase is observed as well.

  10. Exploring proton transfer in 1,2,3-triazole-triazolium dimer with ab initio method

    Science.gov (United States)

    Li, Ailin; Yan, Tianying; Shen, Panwen

    Ab initio calculations are utilized to search for transition state structures for proton transfer in the 1,2,3-triazole-triazolium complexes on the basis of optimized dimers. The result suggests six transition state structures for single proton transfer in the complexes, most of which are coplanar. The energy barriers, between different stable and transition states structures with zero point energy (ZPE) corrections, show that proton transfer occurs at room temperature with coplanar configuration that has the lowest energy. The results clearly support that reorientation gives triazole flexibility for proton transfer.

  11. Exploring proton transfer in 1,2,3-triazole-triazolium dimer with ab initio method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ailin; Yan, Tianying; Shen, Panwen [Department of Material Chemistry, Institute of New Energy Material Chemistry, Nankai University, Tianjin, 300071 (China)

    2011-02-01

    Ab initio calculations are utilized to search for transition state structures for proton transfer in the 1,2,3-triazole-triazolium complexes on the basis of optimized dimers. The result suggests six transition state structures for single proton transfer in the complexes, most of which are coplanar. The energy barriers, between different stable and transition states structures with zero point energy (ZPE) corrections, show that proton transfer occurs at room temperature with coplanar configuration that has the lowest energy. The results clearly support that reorientation gives triazole flexibility for proton transfer. (author)

  12. Ab initio study of perovskite type oxide materials for solid oxide fuel cells

    Science.gov (United States)

    Lee, Yueh-Lin

    2011-12-01

    Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen

  13. Isomerism of OBe3F3+ cation: an ab initio study

    International Nuclear Information System (INIS)

    Klimenko, N.M.; Rykova, E.A.; MakKi, M.L.; Senchenya, I.N.

    1999-01-01

    Ab initio MP2/6-31G*/HF/6-31G*+ZPE(HF/6-31G*) calculations of the potential energy surface in the vicinity of stationary points and the pathways of intramolecular rearrangements between low-lying structures of the OBe 3 F 3 + cation detected in the mass spectra of μ 4 -Be 4 O(CF 3 COO) 6 were carried out. Ten stable isomers with di- and tricoordinate oxygen atoms were localized. The relative energies of six structures lie in the range 0-8 kcal mol -1 and those of the rest four structures lie in the range 20-40 kcal mol -1 . two most favorable isomers are a planar C 2 , isomer and a pyramidal C 3 isomer [ru

  14. Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations

    DEFF Research Database (Denmark)

    Abild-Pedersen, Frank; Nørskov, Jens Kehlet; Rostrup-Nielsen, Jens

    2006-01-01

    Mechanisms and energetics of graphene growth catalyzed by nickel nanoclusters were studied using ab initio density functional theory calculations. It is demonstrated that nickel step-edge sites act as the preferential growth centers for graphene layers on the nickel surface. Carbon is transported......, and it is argued how these processes may lead to different nanofiber structures. The proposed growth model is found to be in good agreement with previous findings....

  15. Ab Initio Study of the Dynamical Si–O Bond Breaking Event in α-Quartz

    International Nuclear Information System (INIS)

    Su Rui; Zhang Hong; Han Wei; Chen Jun

    2015-01-01

    The Si–O bond breaking event in the α-quartz at the first triplet (T_1) excitation state is studied by using ab initio molecular dynamics (AIMD) and nudged elastic band calculations. A meta-stable non-bridging oxygen hole center and E′ center (NBOHC-E′) is observed in the AIMD which consists of a broken Si–O bond with a Si–O distance of 2.54 Å. By disallowing the re-bonding of the Si and O atoms, another defect configuration (III-Si/V-Si) is obtained and validated to be stable at both ground and excitation states. The NBOHC-E′ is found to present on the minimal energy pathway of the initial to III-Si/V-Si transition, showing that the generating of the NBOHC-E′ is an important step of the excitation induced structure defect. The energy barriers to produce the NBOHC-E′ and III-Si/V-Si defects are calculated to be 1.19 and 1.28 eV, respectively. The electronic structures of the two defects are calculated by the self-consistent GW calculations and the results show a clear electron transition from the bonding orbital to the non-bonding orbital. (paper)

  16. Studies of urea geometry by means of ab initio methods and computer simulations of liquids

    OpenAIRE

    Cirino, José Jair Vianna; Bertran, Celso Aparecido

    2002-01-01

    A study was carried out on the urea geometries using ab initio calculation and Monte Carlo computational simulation of liquids. The ab initio calculated results showed that urea has a non-planar conformation in the gas phase in which the hydrogen atoms are out of the plane formed by the heavy atoms. Free energies associated to the rotation of the amino groups of urea in water were obtained using the Monte Carlo method in which the thermodynamic perturbation theory is implemented. The magnitud...

  17. Atomic and electronic structure of the CdTe(111)B–(2√3 × 4) orthogonal surface

    Energy Technology Data Exchange (ETDEWEB)

    Bekenev, V. L., E-mail: bekenev@ipms.kiev.ua; Zubkova, S. M. [National Academy of Sciences of Ukraine, Frantsevych Institute for Problems of Materials Science (Ukraine)

    2017-01-15

    The atomic and electronic structure of four variants of Te-terminated CdTe(111)B–(2√3 × 4) orthogonal polar surface (ideal, relaxed, reconstructed, and reconstructed with subsequent relaxation) are calculated ab initio for the first time. The surface is modeled by a film composed of 12 atomic layers with a vacuum gap of ~16 Å in the layered superlattice approximation. To close Cd dangling bonds on the opposite side of the film, 24 fictitious hydrogen atoms with a charge of 1.5 electrons each are added. Ab initio calculations are performed using the Quantum Espresso program based on density functional theory. It is demonstrated that relaxation leads to splitting of the four upper layers. The band energy structures and total and layer-by-layer densities of electronic states for the four surface variants are calculated and analyzed.

  18. Cyanogen Azide. Ionization Potentials and Ab Initio SCF MO Calculation

    DEFF Research Database (Denmark)

    Bak, Börge; Jansen, Peter; Stafast, Herbert

    1975-01-01

    The Ne(I) and He(I) photoelectron(PE) spectra of cyanogen azide, NCN3, have been recorded at high resolution. Their interpretation is achieved by comparison with the PE spectrum of HN3 and an ab initio LCGO SCF MO calculation. Deviations from Koopmans' theorem of quite different magnitudes...

  19. Young Modulus of Crystalline Polyethylene from ab Initio Molecular Dynamics

    NARCIS (Netherlands)

    Hageman, J.C.L.; Meier, Robert J.; Heinemann, M.; Groot, R.A. de

    1997-01-01

    The Young modulus for crystalline polyethylene is calculated using ab initio molecular dynamics based on density functional theory in the local density approximation (DFT-LDA). This modulus, which can be seen as the ultimate value for the Young modulus of polyethylene fibers, is found to be 334 GPa.

  20. Ab initio and kinetic modeling studies of formic acid oxidation

    DEFF Research Database (Denmark)

    Marshall, Paul; Glarborg, Peter

    2015-01-01

    A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism...

  1. Spectroscopic study of uracil, 1-methyluracil and 1-methyl-4-thiouracil: Hydrogen bond interactions in crystals and ab-initio molecular dynamics

    Science.gov (United States)

    Brela, Mateusz Z.; Boczar, Marek; Malec, Leszek M.; Wójcik, Marek J.; Nakajima, Takahito

    2018-05-01

    Hydrogen bond networks in uracil, 1-methyluracil and 1-methyl-4-thiouracil were studied by ab initio molecular dynamics as well as analysis of the orbital interactions. The power spectra calculated by ab initio molecular dynamics for atoms involved in hydrogen bonds were analyzed. We calculated spectra by using anharmonic approximation based on the autocorrelation function of the atom positions obtained from the Born-Oppenheimer simulations. Our results show the differences between hydrogen bond networks in uracil and its methylated derivatives. The studied methylated derivatives, 1-methyluracil as well as 1-methyl-4-thiouracil, form dimeric structures in the crystal phase, while uracil does not form that kind of structures. The presence of sulfur atom instead oxygen atom reflects weakness of the hydrogen bonds that build dimers.

  2. Ab initio study of MgH2 formation

    International Nuclear Information System (INIS)

    Novakovic, Nikola; Matovic, Ljiljana; Novakovic, Jasmina Grbovic; Manasijevic, Miodrag; Ivanovic, Nenad

    2009-01-01

    Even if there is considerable literature dealing with structure and properties of MgH 2 compound there are still some uncertain details about nature of bonding governing its formation and decomposition. In order to better understand the processes essential for absorption and desorption of MgH 2 , ab initio DFT based calculations of rutile MgH 2 compound, elemental hcp-Mg, and three different hypothetical hcp-Mg-derived hydrides are performed. Our findings show that all structures are unstable, and that MgH (Wurtzite) is a closest possible candidate for intermediate phase between the hcp-Mg and MgH 2 at 1:1 stoichiometry. An alternative hydration pathway is suggested, including promotion of hcp-Mg to bcc-Mg and consecutive transformation to rutile MgH 2 by means of hydrogen incorporation into Mg matrix. Rutile MgH 2 calculations with various hydrogen vacancies concentration are performed. Calculation shows that at high hydrogen concentration close to 1:2, stable substoichiometric hydride is possible. Calculation also shows that high vacancy (low hydrogen) concentration favors bcc-Mg 2 H over rutile Mg 2 H structure.

  3. Structure and dynamics of solvated Ba(II) in dilute aqueous solution - an ab initio QM/MM MD approach

    International Nuclear Information System (INIS)

    Hofer, Thomas S.; Rode, Bernd M.; Randolf, Bernhard R.

    2005-01-01

    Structural properties of the hydrated Ba(II) ion have been investigated by ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations at double zeta HF quantum mechanical level. The first shell coordination number was found to be 9.3, and several other structural parameters such as angular distribution functions, radial distribution functions and tilt- and θ-angle distributions allowed the full characterization of the hydration structure of the Ba(II) ion in dilute aqueous solution. Velocity autocorrelation functions were used to calculate librational and vibrational motions, ion-ligand motions as well as reorientation times. Different dynamical parameters such as water reorientation, mean ligand residence time, the number of ligand exchange processes and rate constants were also analyzed and the ligand exchange rate constant for the first shell was determined as k = 5.3 x 10 10 s -1

  4. Ab initio study of M2AlN (M = Ti,V,Cr)

    International Nuclear Information System (INIS)

    Sun, Zhimei; Music, Denis; Ahuja, Rajeev; Schneider, Jochen M

    2005-01-01

    We have studied M 2 AlN phases, where M = Ti, V, and Cr, by means of ab initio total energy calculations. The bulk modulus of M 2 AlN increases as Ti is replaced with V and Cr by 19.0% and 26.5%, respectively, which can be understood on the basis of the increased number of valence electrons filling the p-d hybridized bonding states. The bulk modulus of M 2 AlN is generally higher than that of the corresponding M 2 AlC phase, which may be explained by an extra electron in the former phases contributing to stronger chemical bonding. This work is important for fundamental understanding of elastic properties of these ternary nitrides and may inspire future experimental research. (letter to the editor)

  5. Revisiting Wiedemann-Franz law through Boltzmann transport equations and ab-initio density functional theory

    Science.gov (United States)

    Nag, Abhinav; Kumari, Anuja; Kumar, Jagdish

    2018-05-01

    We have investigated structural, electronic and transport properties of the alkali metals using ab-initio density functional theory. The electron energy dispersions are found parabolic free electron like which is expected for alkali metals. The lattice constants for all the studied metals are also in good agreement within 98% with experiments. We have further computed their transport properties using semi-classical Boltzmann transport equations with special focus on electrical and thermal conductivity. Our objective was to obtain Wiedemann-Franz law and hence Lorenz number. The motivation to do these calculations is to see that how the incorporation of different interactions such as electron-lattice, electron-electron interaction affect the Wiedeman-Franz law. By solving Boltzmann transport equations, we have obtained electrical conductivity (σ/τ) and thermal conductivity (κ0 /τ) at different temperatures and then calculated Lorenz number using L = κ0 /(σT). The obtained value of Lorenz number has been found to match with value derived for free electron Fermi gas 2.44× 10-8 WΩK-2. Our results prove that the Wiedemann-Franz law as derived for free electron gas does not change much for alkali metals, even when one incorporates interaction of electrons with atomic nuclei and other electrons. However, at lower temperatures, the Lorenz number, was found to be deviating from its theoretical value.

  6. Materials Screening for the Discovery of New Half-Heuslers: Machine Learning versus ab Initio Methods.

    Science.gov (United States)

    Legrain, Fleur; Carrete, Jesús; van Roekeghem, Ambroise; Madsen, Georg K H; Mingo, Natalio

    2018-01-18

    Machine learning (ML) is increasingly becoming a helpful tool in the search for novel functional compounds. Here we use classification via random forests to predict the stability of half-Heusler (HH) compounds, using only experimentally reported compounds as a training set. Cross-validation yields an excellent agreement between the fraction of compounds classified as stable and the actual fraction of truly stable compounds in the ICSD. The ML model is then employed to screen 71 178 different 1:1:1 compositions, yielding 481 likely stable candidates. The predicted stability of HH compounds from three previous high-throughput ab initio studies is critically analyzed from the perspective of the alternative ML approach. The incomplete consistency among the three separate ab initio studies and between them and the ML predictions suggests that additional factors beyond those considered by ab initio phase stability calculations might be determinant to the stability of the compounds. Such factors can include configurational entropies and quasiharmonic contributions.

  7. ELECTRONIC-STRUCTURE OF THE MISFIT-LAYER COMPOUND (SNS)(1.17)NBS2 DEDUCED FROM BAND-STRUCTURE CALCULATIONS AND PHOTOELECTRON-SPECTRA

    NARCIS (Netherlands)

    FANG, CM; ETTEMA, ARHF; HAAS, C; WIEGERS, GA; VANLEUKEN, H; DEGROOT, RA

    1995-01-01

    In order to understand the electronic structure of the misfit-layer compound (SnS)(1.17)NbS2 we carried out an ab initio band-structure calculation of the closely related commensurate compound (SnS)(1.20)NbS2. The band structure is compared with calculations for NbS2 and for hypothetical SnS with

  8. Ab initio study of the compound-energy modeling of multisublattice structures: The (hP6) Ni{sub 2}In-type intermetallics of the Ni–In–Sn system

    Energy Technology Data Exchange (ETDEWEB)

    Ramos de Debiaggi, S., E-mail: susana.ramos@fain.uncoma.edu.ar [Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas – CONICET-UNCo (Argentina); González Lemus, N.V. [Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Deluque Toro, C. [Grupo de Nuevos Materiales, Universidad de la Guajira, Riohacha (Colombia); Fernández Guillermet, A. [CONICET - Instituto Balseiro, Centro Atómico Bariloche, Avda. Bustillo 9500, 8400 Bariloche (Argentina)

    2015-01-15

    Highlights: • A DFT study of the compounds involved in CALPHAD modeling of the Ni–In–Sn (hP6) phase. • Several three-sublattice compounds of Ni, In, Sn and vacancies are studied ab initio. • Structural, cohesive and thermodynamic properties and the electronic DOS are reported. • Trends in calculated properties are correlated with changes in electronic structure. • A picture of the chemical bonding trends for these s-p/d type compounds is discussed. - Abstract: The thermodynamic modeling of non-stoichiometric, multisublattice intermetallic phases using the Compound-Energy Formalism (CEF) involves the determination of parameters representing the Gibbs energy (G{sub m}) of binary compounds, the so-called “end-member compounds” (EMCs), which are often metastable or hypothetical. In current CALPHAD (i.e., “Calculation of Phase Diagrams”) work, these quantities are treated as free parameters to be determined by searching for the best fit to the available information in the optimization procedure. The general purpose of this paper is to propose a theoretical approach to the study of the EMCs which makes use of density-functional-theory (DFT) ab initio calculations. The present method is applied to the EMCs involved in the CEF modeling of the non-stoichiometric (hP6) Ni{sub 2}In-structure type phase of the Ni–In and Ni–In–Sn systems using the three-sublattice models (Ni){sub 1}(Ni,Va){sub 1}(In,Ni){sub 1} and (Ni,Va){sub 1}(Ni,Va){sub 1}(In,Ni,Sn){sub 1}, respectively. By means of systematic ab initio projected augmented waves (PAW) calculations using the VASP code we study the EMCs involved in the CEF formulations of the G{sub m} for this phase in the binary and the ternary systems. Specifically, we study the twelve EMCs corresponding to the following sublattice occupations: (Ni){sub 1}(Ni){sub 1}(In){sub 1}, which is usually described as Ni:Ni:In (i.e., a compound with formula “Ni{sub 2}In”), Ni:Ni:Ni (i.e., “Ni{sub 3}”), Ni:Ni:Sn (

  9. Mechanical properties of carbynes investigated by ab initio total-energy calculations

    DEFF Research Database (Denmark)

    Castelli, Ivano E.; Salvestrini, Paolo; Manini, Nicola

    2012-01-01

    As sp carbon chains (carbynes) are relatively rigid molecular objects, can we exploit them as construction elements in nanomechanics? To answer this question, we investigate their remarkable mechanical properties by ab initio total-energy simulations. In particular, we evaluate their linear...

  10. Electronic structures of ReS2, ReSe2 and TcS2 in the real and the hypothetical undistorted structures

    NARCIS (Netherlands)

    Fang, CM; Wiegers, GA; Haas, C; deGroot, RA

    1997-01-01

    The transition-metal dichalcogenides ReX2 (X = Sor Se) and TcS2 with a d(3) electron configuration have distorted; CdCl2 and Cd(OH)(2) structures, respectively, with the Re(Tc) atoms in each layer forming parallelogram-shaped connected clusters (diamond chain). Ab-initio band-structure calculations

  11. Input vector optimization of feed-forward neural networks for fitting ab initio potential-energy databases

    Science.gov (United States)

    Malshe, M.; Raff, L. M.; Hagan, M.; Bukkapatnam, S.; Komanduri, R.

    2010-05-01

    The variation in the fitting accuracy of neural networks (NNs) when used to fit databases comprising potential energies obtained from ab initio electronic structure calculations is investigated as a function of the number and nature of the elements employed in the input vector to the NN. Ab initio databases for H2O2, HONO, Si5, and H2CCHBr were employed in the investigations. These systems were chosen so as to include four-, five-, and six-body systems containing first, second, third, and fourth row elements with a wide variety of chemical bonding and whose conformations cover a wide range of structures that occur under high-energy machining conditions and in chemical reactions involving cis-trans isomerizations, six different types of two-center bond ruptures, and two different three-center dissociation reactions. The ab initio databases for these systems were obtained using density functional theory/B3LYP, MP2, and MP4 methods with extended basis sets. A total of 31 input vectors were investigated. In each case, the elements of the input vector were chosen from interatomic distances, inverse powers of the interatomic distance, three-body angles, and dihedral angles. Both redundant and nonredundant input vectors were investigated. The results show that among all the input vectors investigated, the set employed in the Z-matrix specification of the molecular configurations in the electronic structure calculations gave the lowest NN fitting accuracy for both Si5 and vinyl bromide. The underlying reason for this result appears to be the discontinuity present in the dihedral angle for planar geometries. The use of trigometric functions of the angles as input elements produced significantly improved fitting accuracy as this choice eliminates the discontinuity. The most accurate fitting was obtained when the elements of the input vector were taken to have the form Rij-n, where the Rij are the interatomic distances. When the Levenberg-Marquardt procedure was modified

  12. Magneto-electronic properties and spin-resolved I-V curves of a Co/GeSe heterojunction diode: an ab initio study

    Science.gov (United States)

    Makinistian, Leonardo; Albanesi, Eduardo A.

    2013-06-01

    We present ab initio calculations of magnetoelectronic and transport properties of the interface of hcp Cobalt (001) and the intrinsic narrow-gap semiconductor germanium selenide (GeSe). Using a norm-conserving pseudopotentials scheme within DFT, we first model the interface with a supercell approach and focus on the spin-resolved densities of states and the magnetic moment (spin and orbital components) at the different atomic layers that form the device. We also report a series of cuts (perpendicular to the plane of the heterojunction) of the electronic and spin densities showing a slight magnetization of the first layers of the semiconductor. Finally, we model the device with a different scheme: using semiinfinite electrodes connected to the heterojunction. These latter calculations are based upon a nonequilibrium Green's function approach that allows us to explore the spin-resolved electronic transport under a bias voltage (spin-resolved I-V curves), revealing features of potential applicability in spintronics.

  13. Electronic structure and formation energy of a vacancy in aluminum

    International Nuclear Information System (INIS)

    Chakraborty, B.; Siegel, R.W.

    1981-11-01

    The electronic structure of a vacancy in Al was calculated self-consistently using norm-conserving ionic pseudopotentials obtained from ab initio atomic calculations. A 27-atom-site supercell containing 1 vacancy and 26 atoms was used to simulate the environment of the vacancy. A vacancy formation energy of 1.5 eV was also calculated (cf. the experimental value of 0.66 eV). The effects of the supercell and the nature of the ionic potential on the resulting electronic structure and formation energy are discussed. Results for the electronic structure of a divacancy are also presented. 3 figures

  14. Ab initio calculation of intermolecular potentials for dimer Cl_2-Cl_2 and prediction of second virial coefficients

    International Nuclear Information System (INIS)

    Nguyen Thanh Duoc; Nguyen Thi Ai Nhung; Tran Duong; Pham Van Tat

    2015-01-01

    The results presented in this paper are the ab initio intermolecular potentials and the second virial coefficient, B_2 (T) of the dimer Cl_2-Cl_2. These ab initio potentials were proposed by the quantum chemical calculations at high level of theory CCSD(T) with basis sets of Dunning valence correlation-consistent aug-cc-pVmZ (m = 2, 3); these results were extrapolated to complete basis set limit aug-cc-pV23Z. The ab initio energies of complete basis set limit aug-cc-pV23Z resulted from the exponential extrapolation were used to construct the 5-site pair potential functions. The second virial coefficients for this dimer were predicted from those with four-dimensional integration. The second virial coefficients were also corrected to first-order quantum effects. The results turn out to be in good agreement with experimental data, if available, or with those from empirical correlation. The quality of ab initio 5-site potentials proved the reliability for prediction of molecular thermodynamic properties. (author)

  15. Pair potentials for alumina from ab initio results on the Al2O3 molecule

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Cicek, Z.; Tosi, M.P.

    2000-08-01

    We use results from an ab initio investigation by Chang et al. on energetically low-lying stationary points of the Al 2 O 3 molecule to determine interionic potentials for the Al-O, O-O and Al-Al pairs. Our results are discussed in the perspective of previous studies of the condensed phases of alumina, with special regard to the structure of its molten state. (author)

  16. Hexamethylcyclopentadiene: time-resolved photoelectron spectroscopy and ab initio multiple spawning simulations

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.

    2014-01-01

    comparing time-resolved photoelectron spectroscopy (TRPES) with ab initio multiple spawning (AIMS) simulations on the MS-MR-CASPT2 level of theory. We disentangle the relationship between two phenomena that dominate the immediate molecular response upon light absorption: a spectrally dependent delay...

  17. Precise Ab-initio prediction of terahertz vibrational modes in crystalline systems

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Clark, Stewart J.

    2007-01-01

    We use a combination of experimental THz time-domain spectroscopy and ab-initio density functional perturbative theory to accurately predict the terahertz vibrational spectrum of molecules in the crystalline phase. Our calculations show that distinct vibrational modes found in solid-state materials...

  18. Serious Gaming for Test & Evaluation of Clean-Slate (Ab Initio) National Airspace System (NAS) Designs

    Science.gov (United States)

    Allen, B. Danette; Alexandrov, Natalia

    2016-01-01

    Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that

  19. Fully Ab-Initio Determination of the Thermoelectric Properties of Half-Heusler NiTiSn: Crucial Role of Interstitial Ni Defects.

    Science.gov (United States)

    Berche, Alexandre; Jund, Philippe

    2018-05-23

    For thermoelectric applications, ab initio methods generally fail to predict the transport properties of the materials because of their inability to predict properly the carrier concentrations that control the electronic properties. In this work, a methodology to fill in this gap is applied on the NiTiSn half Heusler phase. For that, we show that the main defects act as donor of electrons and are responsible of the electronic properties of the material. Indeed, the presence of Ni i interstitial defects explains the experimental valence band spectrum and its associated band gap reported in the literature. Moreover, combining the DOS of the solid solutions with the determination of the energy of formation of charged defects, we show that Ni i defects are also responsible of the measured carrier concentration in experimentally supposed "pure" NiTiSn compounds. Subsequently the thermoelectric properties of NiTiSn can be calculated using a fully ab initio description and an overall correct agreement with experiments is obtained. This methodology can be extended to predict the result of extrinsic doping and thus to select the most efficient dopant for specific thermoelectric applications.

  20. Band structure and unconventional electronic topology of CoSi

    Science.gov (United States)

    Pshenay-Severin, D. A.; Ivanov, Y. V.; Burkov, A. A.; Burkov, A. T.

    2018-04-01

    Semimetals with certain crystal symmetries may possess unusual electronic structure topology, distinct from that of the conventional Weyl and Dirac semimetals. Characteristic property of these materials is the existence of band-touching points with multiple (higher than two-fold) degeneracy and nonzero Chern number. CoSi is a representative of this group of materials exhibiting the so-called ‘new fermions’. We report on an ab initio calculation of the electronic structure of CoSi using density functional methods, taking into account the spin-orbit interactions. The linearized \

  1. The electronic states of 1,2,3-triazole studied by vacuum ultraviolet photoabsorption and ultraviolet photoelectron spectroscopy, and a comparison with ab initio configuration interaction methods

    DEFF Research Database (Denmark)

    Palmer, Michael H.; Hoffmann, Søren Vrønning; Jones, Nykola C.

    2011-01-01

    The Rydberg states in the vacuum ultraviolet photoabsorption spectrum of 1,2,3-triazole have been measured and analyzed with the aid of comparison to the UV valence photoelectron ionizations and the results of ab initio configuration interaction (CI) calculations. Calculated electronic ionization...... and excitation energies for singlet, triplet valence, and Rydberg states were obtained using multireference multiroot CI procedures with an aug-cc-pVTZ [5s3p3d1f] basis set and a set of Rydberg [4s3p3d3f] functions. Adiabatic excitation energies obtained for several electronic states using coupled...... are the excitations consistent with an f-series....

  2. Raman Spectroscopy and Ab-Initio Model Calculations on Ionic Liquids

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    2007-01-01

    spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT-Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methylimidazolium ([C4mim][X]) salts. The rotational isomerism of the [C4mim]þ cation is described: the presence of anti...

  3. Prediction of high-temperature point defect formation in TiO2 from combined ab initio and thermodynamic calculations

    International Nuclear Information System (INIS)

    He, J.; Behera, R.K.; Finnis, M.W.; Li, X.; Dickey, E.C.; Phillpot, S.R.; Sinnott, S.B.

    2007-01-01

    A computational approach that integrates ab initio electronic structure and thermodynamic calculations is used to determine point defect stability in rutile TiO 2 over a range of temperatures, oxygen partial pressures and stoichiometries. Both donors (titanium interstitials and oxygen vacancies) and acceptors (titanium vacancies) are predicted to have shallow defect transition levels in the electronic-structure calculations. The resulting defect formation energies for all possible charge states are then used in thermodynamic calculations to predict the influence of temperature and oxygen partial pressure on the relative stabilities of the point defects. Their ordering is found to be the same as temperature increases and oxygen partial pressure decreases: titanium vacancy → oxygen vacancy → titanium interstitial. The charges on these defects, however, are quite sensitive to the Fermi level. Finally, the combined formation energies of point defect complexes, including Schottky, Frenkel and anti-Frenkel defects, are predicted to limit the further formation of point defects

  4. Phase constitution and interface structure of nano-sized Ag-Cu/AlN multilayers: Experiment and ab initio modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pigozzi, Giancarlo; Janczak-Rusch, Jolanta; Passerone, Daniele; Antonio Pignedoli, Carlo; Patscheider, Joerg; Jeurgens, Lars P. H. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Antusek, Andrej [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Faculty of Materials Science and Technology, Slovak University of Technology in Bratislava, Paulinska 16, 917 24 Trnava (Slovakia); Parlinska-Wojtan, Magdalena [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); University of Rzeszow, Institute of Physics, ul. Rejtana 16a, 35-959 Rzeszow (Poland); Bissig, Vinzenz [Kirsten Soldering AG, Hinterbergstrasse 32, CH-6330 Cham (Switzerland)

    2012-10-29

    Nano-sized Ag-Cu{sub 8nm}/AlN{sub 10nm} multilayers were deposited by reactive DC sputtering on {alpha}-Al{sub 2}O{sub 3}(0001) substrates. Investigation of the phase constitution and interface structure of the multilayers evidences a phase separation of the alloy sublayers into nanosized grains of Ag and Cu. The interfaces between the Ag grains and the quasi-single-crystalline AlN sublayers are semi-coherent, whereas the corresponding Cu/AlN interfaces are incoherent. The orientation relationship between Ag and AlN is constant throughout the entire multilayer stack. These observations are consistent with atomistic models of the interfaces as obtained by ab initio calculations.

  5. Studies Of Urea Geometry By Means Of Ab Initio Methods And Computer Simulations Of Liquids [estudo Da Geometria Da Uréia Por Métodos Ab Initio E Simulaição Computacional De Líquidos

    OpenAIRE

    Cirino J.J.V.; Bertran C.A.

    2002-01-01

    A study was carried out on the urea geometries using ab initio calculation and Monte Carlo computational simulation of liquids. The ab initio calculated results showed that urea has a non-planar conformation in the gas phase in which the hydrogen atoms are out of the plane formed by the heavy atoms. Free energies associated to the rotation of the amino groups of urea in water were obtained using the Monte Carlo method in which the thermodynamic perturbation theory is implemented. The magnitud...

  6. GAUSSIAN 76: an ab initio molecular orbital program

    International Nuclear Information System (INIS)

    Binkley, J.S.; Whiteside, R.; Hariharan, P.C.; Seeger, R.; Hehre, W.J.; Lathan, W.A.; Newton, M.D.; Ditchfield, R.; Pople, J.A.

    Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans

  7. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

    International Nuclear Information System (INIS)

    Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Sorella, Sandro; Guidoni, Leonardo

    2015-01-01

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems

  8. An ab initio study of the structure and dynamics of bulk liquid Cd and its liquid-vapor interface

    International Nuclear Information System (INIS)

    Calderín, L; González, L E; González, D J

    2013-01-01

    Several static and dynamic properties of bulk liquid Cd at a thermodynamic state near its triple point have been calculated by means of ab initio molecular dynamics simulations. The calculated static structure shows a very good agreement with the available experimental data. The dynamical structure reveals collective density excitations with an associated dispersion relation which points to a small positive dispersion. Results are also reported for several transport coefficients. Additional simulations have also been performed at a slightly higher temperature in order to study the structure of the free liquid surface. The ionic density profile shows an oscillatory behavior with two different wavelengths, as the spacing between the outer and first inner layer is different from that between the other inner layers. The calculated reflectivity shows a marked maximum whose origin is related to the surface layering, along with a shoulder located at a much smaller wavevector transfer.

  9. Electronic structure investigations of 4-aminophthal hydrazide by UV-visible, NMR spectral studies and HOMO-LUMO analysis by ab initio and DFT calculations.

    Science.gov (United States)

    Sambathkumar, K; Jeyavijayan, S; Arivazhagan, M

    2015-08-05

    Combined experimental and theoretical studies were conducted on the molecular structure and vibrational spectra of 4-AminoPhthalhydrazide (APH). The FT-IR and FT-Raman spectra of APH were recorded in the solid phase. The molecular geometry and vibrational frequencies of APH in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking 6-311+G(d,p) basis set. The optimized geometric bond lengths and bond angles obtained by HF and B3LYP method show best agreement with the experimental values. Comparison of the observed fundamental vibrational frequencies of APH with calculated results by HF and density functional methods indicates that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems. The difference between the observed and scaled wave number values of most of the fundamentals is very small. A detailed interpretation of the NMR spectra of APH was also reported. The theoretical spectrograms for infrared and Raman spectra of the title molecule have been constructed. UV-vis spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, were performed by time dependent density functional theory (TD-DFT) approach. Finally the calculations results were applied to simulated infrared and Raman spectra of the title compound which show good agreement with observed spectra. And the temperature dependence of the thermodynamic properties of constant pressure (Cp), entropy (S) and enthalpy change (ΔH0→T) for APH were also determined. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Mirnacle: machine learning with SMOTE and random forest for improving selectivity in pre-miRNA ab initio prediction.

    Science.gov (United States)

    Marques, Yuri Bento; de Paiva Oliveira, Alcione; Ribeiro Vasconcelos, Ana Tereza; Cerqueira, Fabio Ribeiro

    2016-12-15

    MicroRNAs (miRNAs) are key gene expression regulators in plants and animals. Therefore, miRNAs are involved in several biological processes, making the study of these molecules one of the most relevant topics of molecular biology nowadays. However, characterizing miRNAs in vivo is still a complex task. As a consequence, in silico methods have been developed to predict miRNA loci. A common ab initio strategy to find miRNAs in genomic data is to search for sequences that can fold into the typical hairpin structure of miRNA precursors (pre-miRNAs). The current ab initio approaches, however, have selectivity issues, i.e., a high number of false positives is reported, which can lead to laborious and costly attempts to provide biological validation. This study presents an extension of the ab initio method miRNAFold, with the aim of improving selectivity through machine learning techniques, namely, random forest combined with the SMOTE procedure that copes with imbalance datasets. By comparing our method, termed Mirnacle, with other important approaches in the literature, we demonstrate that Mirnacle substantially improves selectivity without compromising sensitivity. For the three datasets used in our experiments, our method achieved at least 97% of sensitivity and could deliver a two-fold, 20-fold, and 6-fold increase in selectivity, respectively, compared with the best results of current computational tools. The extension of miRNAFold by the introduction of machine learning techniques, significantly increases selectivity in pre-miRNA ab initio prediction, which optimally contributes to advanced studies on miRNAs, as the need of biological validations is diminished. Hopefully, new research, such as studies of severe diseases caused by miRNA malfunction, will benefit from the proposed computational tool.

  11. A fragment-based approach towards ab-initio treatment of polymeric ...

    Indian Academy of Sciences (India)

    Reshma S Pingale

    2017-06-20

    Jun 20, 2017 ... Keywords. π-Conjugated polymer; divide and conquer; ab-initio; fragmentation. PACS Nos 31.15.A−; 36.20. ... cut the parent system into a set of overlapping small fragments and .... some oligomers, we approached the problem by increas- ..... Financial support of DST, Govt. of India, New Delhi, in the form of ...

  12. Ab initio study of the bcc-hcp transformation in iron

    Czech Academy of Sciences Publication Activity Database

    Friák, Martin; Šob, Mojmír

    2008-01-01

    Roč. 77, č. 17 (2008), 174117/1-174117/7 ISSN 1098-0121 R&D Projects: GA MŠk OC 147; GA AV ČR IAA1041302 Institutional research plan: CEZ:AV0Z20410507 Keywords : ab initio calculations * phase transformations * iron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008

  13. Structural Characterization of MAO and Related Aluminum Complexes. 1. Solid-State 27 Al NMR with Comparison to EFG Tensors from ab Initio Molecular Orbital Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Pamela L.; Harwell, Chris; Mrse, Anthony A.; Emery, Earl F.; Gan, Zhedong; Caldwell, Tod; Reyes, Arneil P.; Kuhns, Philip; Hoyt, David W.; Simeral, Larry S.; Hall, Randall W.; Butler, Leslie G.

    2001-11-07

    Aminato and propanolato aluminum clusters with 3-, 4-, and 6-coordinate aluminum sites are studied with three 27Al NMR techniques optimized for large 27Al Quadrupole coupling constants: field-swept, frequency-stepped, and high-field MAS NMR. The 27Al quadrupole coupling constants and asymmetry parameters of molecular species, both experimental and derived from ab initio molecular orbital calculations, are correlated with structure.

  14. Ab Initio Molecular-Dynamics Simulation of Neuromorphic Computing in Phase-Change Memory Materials.

    Science.gov (United States)

    Skelton, Jonathan M; Loke, Desmond; Lee, Taehoon; Elliott, Stephen R

    2015-07-08

    We present an in silico study of the neuromorphic-computing behavior of the prototypical phase-change material, Ge2Sb2Te5, using ab initio molecular-dynamics simulations. Stepwise changes in structural order in response to temperature pulses of varying length and duration are observed, and a good reproduction of the spike-timing-dependent plasticity observed in nanoelectronic synapses is demonstrated. Short above-melting pulses lead to instantaneous loss of structural and chemical order, followed by delayed partial recovery upon structural relaxation. We also investigate the link between structural order and electrical and optical properties. These results pave the way toward a first-principles understanding of phase-change physics beyond binary switching.

  15. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M. [Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States)

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  16. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    International Nuclear Information System (INIS)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-01-01

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H 2 O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm −1 is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band

  17. Electronic structure of divacancy-hydrogen complexes in silicon

    International Nuclear Information System (INIS)

    Coutinho, J; Torres, V J B; Jones, R; Oeberg, S; Briddon, P R

    2003-01-01

    Divacancy-hydrogen complexes (V 2 H and V 2 H 2 ) in Si are studied by ab initio modelling using large supercells. Here we pay special attention to their electronic structure, showing that these defects produce deep carrier traps. Calculated electrical gap levels indicate that V 2 H 2 is an acceptor, whereas V 2 H is amphoteric, with levels close to those of the well known divacancy. Finally our results are compared with the available data from deep level transient spectroscopy and electron paramagnetic resonance experiments

  18. Electronic structure of the misfit-layer compound (SnS)1.17NbS2 deduced from band-structure calculations and photoelectron spectra

    NARCIS (Netherlands)

    Fang, C.M.; Ettema, A.R.H.F.; Haas, C.; Wiegers, G.A.; Leuken, H. van; Groot, R.A. de

    1995-01-01

    In order to understand the electronic structure of the misfit-layer compound (SnS)1.17NbS2 we carried out an ab initio band-structure calculation of the closely related commensurate compound (SnS)1.20NbS2. The band structure is compared with calculations for NbS2 and for hypothetical SnS with

  19. Force fields for silicas and aluminophosphates based on ab initio calculations

    NARCIS (Netherlands)

    Beest, van B.W.H.; Kramer, G.J.; Santen, van R.A.

    1990-01-01

    Authors address the problem of finding interat. force fields for silicas from ab initio calcns. on small clusters. The force field cannot be detd. from cluster data alone; incorporation of bulk-system information into the force field remains essential. Bearing this in mind, authors derive a force

  20. Using Ab-Initio Calculations to Appraise Stm-Based - and Kink-Formation Energies

    Science.gov (United States)

    Feibelman, Peter J.

    2001-03-01

    Ab-initio total energies can and should be used to test the typically model-dependent results of interpreting STM morphologies. The benefits of such tests are illustrated here by ab-initio energies of step- and kink-formation on Pb and Pt(111) which show that the STM-based values of the kink energies must be revised. On Pt(111), the computed kink-energies for (100)- and (111)-microfacet steps are about 0.25 and 0.18 eV. These results imply a specific ratio of formation energies for the two step types, namely 1.14, in excellent agreement with experiment. If kink-formation actually cost the same energy on the two step types, an inference drawn from scanning probe observations of step wandering,(M. Giesen et al., Surf. Sci. 366, 229(1996).) this ratio ought to be 1. In the case of Pb(111), though computed energies to form (100)- and (111)-microfacet steps agree with measurement, the ab-initio kink-formation energies for the two step types, 41 and 60 meV, are 40-50% below experimental values drawn from STM images.(K. Arenhold et al., Surf. Sci. 424, 271(1999).) The discrepancy results from interpreting the images with a step-stiffness vs. kink-energy relation appropriate to (100) but not (111) surfaces. Good agreement is found when proper account of the trigonal symmetry of Pb(111) is taken in reinterpreting the step-stiffness data.