Emergence of rotational bands in ab initio no-core configuration interaction calculations
Caprio, M A; Vary, J P; Smith, R
2015-01-01
Rotational bands have been observed to emerge in ab initio no-core configuration interaction (NCCI) calculations for p-shell nuclei, as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. We investigate the ab initio emergence of nuclear rotation in the Be isotopes, focusing on 9Be for illustration, and make use of basis extrapolation methods to obtain ab initio predictions of rotational band parameters for comparison with experiment. We find robust signatures for rotational motion, which reproduce both qualitative and quantitative features of the experimentally observed bands.
Large-scale ab initio configuration interaction calculations for light nuclei
Maris, Pieter; Metin Aktulga, H.; Caprio, Mark A.; Çatalyürek, Ümit V.; Ng, Esmond G.; Oryspayev, Dossay; Potter, Hugh; Saule, Erik; Sosonkina, Masha; Vary, James P.; Yang, Chao; Zhou, Zheng
2012-12-01
In ab-initio Configuration Interaction calculations, the nuclear wavefunction is expanded in Slater determinants of single-nucleon wavefunctions and the many-body Schrodinger equation becomes a large sparse matrix problem. The challenge is to reach numerical convergence to within quantified numerical uncertainties for physical observables using finite truncations of the infinite-dimensional basis space. We discuss strategies for constructing and solving the resulting large sparse matrix eigenvalue problems on current multicore computer architectures. Several of these strategies have been implemented in the code MFDn, a hybrid MPI/OpenMP Fortran code for ab-initio nuclear structure calculations that can scale to 100,000 cores and more. Finally, we will conclude with some recent results for 12C including emerging collective phenomena such as rotational band structures using SRG evolved chiral N3LO interactions.
Heuvel, Willem Van den; Soncini, Alessandro
2015-01-01
We present an ab initio methodology dedicated to the determination of the electronic structure and magnetic properties of ground and low-lying excited states, i.e., the crystal field levels, in lanthanide(III) complexes. Currently, the most popular and successful ab initio approach is the CASSCF/RASSI-SO method, consisting of the optimization of multiple complete active space self-consistent field (CASSCF) spin eigenfunctions, followed by full diagonalization of the spin--orbit coupling (SOC) Hamiltonian in the basis of the CASSCF spin states featuring spin-dependent orbitals. Based on two simple observations valid for Ln(III) complexes, namely: (i) CASSCF 4f atomic orbitals are expected to change very little when optimized for different multiconfigurational states belonging to the 4f-electronic configuration, (ii) due to strong SOC the total spin is not a good quantum number, we propose here an efficient ab initio strategy which completely avoids any multiconfigurational calculation, by optimizing a unique s...
Collective rotation from ab initio theory
Caprio, M A; Vary, J P; Smith, R
2015-01-01
Through ab initio approaches in nuclear theory, we may now seek to quantitatively understand the wealth of nuclear collective phenomena starting from the underlying internucleon interactions. No-core configuration interaction (NCCI) calculations for p-shell nuclei give rise to rotational bands, as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. In this review, NCCI calculations of 7-9Be are used to illustrate and explore ab initio rotational structure, and the resulting predictions for rotational band properties are compared with experiment. We highlight the robustness of ab initio rotational predictions across different choices for the internucleon interaction.
Chen, Hung-Cheng; Hsu, Chao-Ping
2005-12-29
To calculate electronic couplings for photoinduced electron transfer (ET) reactions, we propose and test the use of ab initio quantum chemistry calculation for excited states with the generalized Mulliken-Hush (GMH) method. Configuration-interaction singles (CIS) is proposed to model the locally excited (LE) and charge-transfer (CT) states. When the CT state couples with other high lying LE states, affecting coupling values, the image charge approximation (ICA), as a simple solvent model, can lower the energy of the CT state and decouple the undesired high-lying local excitations. We found that coupling strength is weakly dependent on many details of the solvent model, indicating the validity of the Condon approximation. Therefore, a trustworthy value can be obtained via this CIS-GMH scheme, with ICA used as a tool to improve and monitor the quality of the results. Systems we tested included a series of rigid, sigma-linked donor-bridge-acceptor compounds where "through-bond" coupling has been previously investigated, and a pair of molecules where "through-space" coupling was experimentally demonstrated. The calculated results agree well with experimentally inferred values in the coupling magnitudes (for both systems studied) and in the exponential distance dependence (for the through-bond series). Our results indicate that this new scheme can properly account for ET coupling arising from both through-bond and through-space mechanisms.
Ginges, J. S. M.; Dzuba, V. A.
2015-01-01
We apply a version of the recently developed approach combining the correlation potential, linearized singles-doubles coupled-cluster, and the configuration interaction methods to the spectra of the heavy alkaline earths barium, radium, and element 120. Quantum electrodynamics radiative corrections are included. We have found unprecedented agreement between ab initio theory and experiment for the spectra of barium and radium, and we make accurate predictions for missing and unreliable data fo...
Ginges, J S M
2015-01-01
We apply a version of the recently developed approach combining the correlation potential, linearized singles-doubles coupled-cluster, and the configuration interaction methods to the spectra of the heavy alkaline earths barium, radium, and element 120. Quantum electrodynamics radiative corrections are included. We have found unprecedented agreement between ab initio theory and experiment for the spectra of barium and radium, and we make accurate predictions for missing and unreliable data for all three atoms.
International Nuclear Information System (INIS)
New valence electron photoelectron spectra of iodobenzene obtained using synchrotron radiation have been recorded. Ionization energies (IEs) determined using multi-configuration SCF calculation (MCSCF) procedures confirmed the adiabatic IE order as: X2B1
Energy Technology Data Exchange (ETDEWEB)
Palmer, Michael H., E-mail: m.h.palmer@ed.ac.uk, E-mail: tr01@staffmail.ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it; Ridley, Trevor [School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland (United Kingdom); Hoffmann, Søren Vrønning; Jones, Nykola C. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Coreno, Marcello [CNR-IMIP, Montelibretti, c/o Laboratorio Elettra, Trieste (Italy); Simone, Monica de [CNR-IOM Laboratorio TASC, Trieste (Italy); Grazioli, Cesare [CNR-IOM Laboratorio TASC, Trieste (Italy); Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste (Italy); Biczysko, Malgorzata [National Research Council ICCOM-CNR, UOS di Pisa, Via G. Moruzzi 1, I-56124 Pisa (Italy); Scuola Normale Superiore, Piazza Cavalieri 7, 56126 Pisa (Italy); Baiardi, Alberto [Scuola Normale Superiore, Piazza Cavalieri 7, 56126 Pisa (Italy)
2015-04-07
New valence electron photoelectron spectra of iodobenzene obtained using synchrotron radiation have been recorded. Ionization energies (IEs) determined using multi-configuration SCF calculation (MCSCF) procedures confirmed the adiabatic IE order as: X{sup 2}B{sub 1}
Palmer, Michael H.; Ridley, Trevor; Hoffmann, Søren Vrønning; Jones, Nykola C.; Coreno, Marcello; de Simone, Monica; Grazioli, Cesare; Zhang, Teng; Biczysko, Malgorzata; Baiardi, Alberto; Peterson, Kirk
2015-10-01
New photoelectron, ultraviolet (UV), and vacuum UV (VUV) spectra have been obtained for bromobenzene by synchrotron study with higher sensitivity and resolution than previous work. This, together with use of ab initio calculations with both configuration interaction and time dependent density functional theoretical methods, has led to major advances in interpretation. The VUV spectrum has led to identification of a considerable number of Rydberg states for the first time. The Franck-Condon (FC) analyses including both hot and cold bands lead to identification of the vibrational structure of both ionic and electronically excited states including two Rydberg states. The UV onset has been interpreted in some detail, and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. In a similar way, the 6 eV absorption band which is poorly resolved is analysed in terms of the presence of two ππ* states of 1A1 (higher oscillator strength) and 1B2 (lower oscillator strength) symmetries, respectively. The detailed analysis of the vibrational structure of the 22B1 ionic state is particularly challenging, and the best interpretation is based on equation-of-motion-coupled cluster with singles and doubles computations. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene. The equilibrium structures of the 3b13s and 6b23s (valence shell numbering) Rydberg states have been obtained and compared with the corresponding ionic limit structures.
Energy Technology Data Exchange (ETDEWEB)
Palmer, Michael H., E-mail: m.h.palmer@ed.ac.uk; Ridley, Trevor, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu [School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland (United Kingdom); Hoffmann, Søren Vrønning, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu; Jones, Nykola C., E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Coreno, Marcello, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu [CNR-IMIP, Montelibretti, c/o Laboratorio Elettra, Trieste (Italy); Simone, Monica de, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu [CNR-IOM Laboratorio TASC, Trieste (Italy); Grazioli, Cesare [CNR-IOM Laboratorio TASC, Trieste (Italy); Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste (Italy); Zhang, Teng [Department of Physics and Astronomy, University of Uppsala, Uppsala (Sweden); and others
2015-10-28
New photoelectron, ultraviolet (UV), and vacuum UV (VUV) spectra have been obtained for bromobenzene by synchrotron study with higher sensitivity and resolution than previous work. This, together with use of ab initio calculations with both configuration interaction and time dependent density functional theoretical methods, has led to major advances in interpretation. The VUV spectrum has led to identification of a considerable number of Rydberg states for the first time. The Franck-Condon (FC) analyses including both hot and cold bands lead to identification of the vibrational structure of both ionic and electronically excited states including two Rydberg states. The UV onset has been interpreted in some detail, and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. In a similar way, the 6 eV absorption band which is poorly resolved is analysed in terms of the presence of two ππ* states of {sup 1}A{sub 1} (higher oscillator strength) and {sup 1}B{sub 2} (lower oscillator strength) symmetries, respectively. The detailed analysis of the vibrational structure of the 2{sup 2}B{sub 1} ionic state is particularly challenging, and the best interpretation is based on equation-of-motion-coupled cluster with singles and doubles computations. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene. The equilibrium structures of the 3b{sub 1}3s and 6b{sub 2}3s (valence shell numbering) Rydberg states have been obtained and compared with the corresponding ionic limit structures.
International Nuclear Information System (INIS)
In this work, ab-initio, relativistic state dependent multi-configuration Dirac-Fock (MCDF) calculations have been done for determining the charge density at the nucleus of 7Be using MCDF program of Grant et al. and observed variations in electron density with the configurations considered which reflect different electronic environmental condition in a medium
Kühne, Thomas D
2012-01-01
Computer simulations and molecular dynamics in particular, is a very powerful method to provide detailed and essentially exact informations of classical many-body problems. With the advent of \\textit{ab-initio} molecular dynamics, where the forces are computed on-the-fly by accurate electronic structure calculations, the scope of either method has been greatly extended. This new approach, which unifies Newton's and Schr\\"odinger's equations, allows for complex simulations without relying on any adjustable parameter. This review is intended to outline the basic principles as well as a survey of the field. Beginning with the derivation of Born-Oppenheimer molecular dynamics, the Car-Parrinello method as well as novel hybrid scheme that unifies best of either approach are discussed. The predictive power is demonstrated by a series of applications ranging from insulators to semiconductors and even metals in condensed phases.
Dahmoune, C.; Lounis, S.; Talanana, M.; Benakki, M.; Bouarab, S.; Demangeat, C.
2002-01-01
Ab initio calculations of the local spin polarization at the (0 0 1) surfaces performed on the binary FePd and FeRh alloys are presented. For Rh-terminated FeRh (0 0 1) surface, the calculations indicate a possible magnetic reconstruction leading to a ferromagnetic order in the surface region, in co
Maris, P; Vary, J P
2014-01-01
The emergence of rotational bands is observed in no-core configuration interaction (NCCI) calculations for the Be isotopes (7<=A<=12), as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. Yrast and low-lying excited bands are found. The results indicate well-developed rotational structure in NCCI calculations, using the JISP16 realistic nucleon-nucleon interaction within finite, computationally-accessible configuration spaces.
Chen, K X; Wu, J A; Ji, R Y
1987-09-01
We investigated the cis- and trans-isomers of Pt(NH3)2Cl2 and [Pt(NH3)2]2+ using a quantum chemical non-empirical calculation method, the pseudopotential valence electron-only ab initio method. The electronic structure and electrostatic potential counter maps were in turn determined through the wave functions so obtained. There was a sharp difference between the dipole moments of the cis- and trans-isomers. The electrostatic counter maps of the isomers also had remarkably different features. Based on the interaction between the platinum (II) coordination compound and the base pairs of nucleic acid, the difference in antitumour activity of the isomeric compounds was discussed. It is pointed out that the key factor for antitumour activity is that the platinum (II) coordination compound must be mutually complementary with the target acceptor in both configuration and bonding activity. This mutual-complementary requirement includes a bonding ability of the platinum complex with two negative centers in DNA, so as to form an intrastrand crosslink with two neighbouring guanines.
Ab initio multi-reference configuration interaction of the low-lying states of the AsP molecule
Institute of Scientific and Technical Information of China (English)
Ling Zhang; Chuanlu Yang; Tingqi Ren; Meishan Wang
2008-01-01
Nine low-lying electronic states of the AsP molecule, including Σ+, Ⅱ, and △ symmetries with singlet, triplet, and quintet spin multiplicities, are studied using multi-reference configuration interaction method.The potential energy curves and the spectroscopic constants of these nine states are determined, and compared with the experimental observed data as well as other theoretical works available at present.Three quintet states are reported for the first time.Furthermore, the analytical potential energy functions of these states are fitted using Murrell-Sorbie function and least square fitting method.
Ab initio valence calculations in chemistry
Cook, D B
1974-01-01
Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schrödinger equation and the orbital approximation to atomic orbitals; molecular orbital and valence bond methods; practical molecular wave functions; and molecular integrals. Open shell systems, molecular symmetry, and localized descriptions of electronic structure are also discussed. This book is comprised of 13 chapters and begins by introducing the reader to the use of the Schrödinge
Mauney, Christopher; Lazzati, Davide
2014-01-01
The binding energies of n < 100 carbon clusters are calculated using the ab-initio density functional theory code Quantum Espresso. Carbon cluster geometries are determined using several levels of classical techniques and further refined using density functional theory. The resulting energies are used to compute the work of cluster formation and the nucleation rate in a saturated, hydrogen-poor carbon gas. Compared to classical calculations that adopt the capillary approximation, we find that nucleation of carbon clusters is enhanced at low temperatures and depressed at high temperatures. This difference is ascribed to the different behavior of the critical cluster size. We find that the critical cluster size is at n = 27 or n = 8 for a broad range of temperatures and saturations, instead of being a smooth function of such parameters. The results of our calculations can be used to follow carbonaceous cluster/grain formation, stability, and growth in hydrogen poor environments, such as the inner layers of c...
Ab initio mass tensor molecular dynamics
Tsuchida, Eiji
2010-01-01
Mass tensor molecular dynamics was first introduced by Bennett [J. Comput. Phys. 19, 267 (1975)] for efficient sampling of phase space through the use of generalized atomic masses. Here, we show how to apply this method to ab initio molecular dynamics simulations with minimal computational overhead. Test calculations on liquid water show a threefold reduction in computational effort without making the fixed geometry approximation. We also present a simple recipe for estimating the optimal ato...
Reciprocity Theorems for Ab Initio Force Calculations
Wei, C; Mele, E J; Rappe, A M; Lewis, Steven P.; Rappe, Andrew M.
1996-01-01
We present a method for calculating ab initio interatomic forces which scales quadratically with the size of the system and provides a physically transparent representation of the force in terms of the spatial variation of the electronic charge density. The method is based on a reciprocity theorem for evaluating an effective potential acting on a charged ion in the core of each atom. We illustrate the method with calculations for diatomic molecules.
Highly scalable Ab initio genomic motif identification
Marchand, Benoît
2011-01-01
We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.
DEFF Research Database (Denmark)
Palmer, Michael H.; Camp, Philip J.; Hoffmann, Søren Vrønning;
2012-01-01
The first vacuum ultraviolet absorption spectrum of a 1,2,4-triazole has been obtained and analyzed in detail, with assistance from both an enhanced UV photoelectron spectroscopic study and ab initio multi-reference multi-root configuration interaction procedures. For both 1H- and 1-methyl-1...... in terms of the near degeneracy of the first two ionization energies, leading to a pseudo Jahn-Teller effect. The “fingerprint” of the ionization spectrum yields band origins for several Rydberg states. The configuration interaction study shows that although the equilibrium structure for the first cation...... is effectively planar, the second cation shows significant twisting of the ring system. Some calculated singlet electronic states also show skeletal twisting in which the ring C–H is substantially out of plane....
The density matrix renormalization group for ab initio quantum chemistry
Wouters, Sebastian
2014-01-01
During the past 15 years, the density matrix renormalization group (DMRG) has become increasingly important for ab initio quantum chemistry. Its underlying wavefunction ansatz, the matrix product state (MPS), is a low-rank decomposition of the full configuration interaction tensor. The virtual dimension of the MPS, the rank of the decomposition, controls the size of the corner of the many-body Hilbert space that can be reached with the ansatz. This parameter can be systematically increased until numerical convergence is reached. The MPS ansatz naturally captures exponentially decaying correlation functions. Therefore DMRG works extremely well for noncritical one-dimensional systems. The active orbital spaces in quantum chemistry are however often far from one-dimensional, and relatively large virtual dimensions are required to use DMRG for ab initio quantum chemistry (QC-DMRG). The QC-DMRG algorithm, its computational cost, and its properties are discussed. Two important aspects to reduce the computational co...
Ab Initio Calculations of Oxosulfatovanadates
DEFF Research Database (Denmark)
Frøberg, Torben; Johansen, Helge
1996-01-01
Restricted Hartree-Fock and multi-configurational self-consistent-field calculations together with secondorder perturbation theory have been used to study the geometry, the electron density, and the electronicspectrum of (VO2SO4)-. A bidentate sulphate attachment to vanadium was found to be stable...... with anO-V-O angle of 72.5 degrees . The calculated spectrum shows bands in reasonable agreement with anexperimental spectrum which has been attributed to (VO2SO4)-. The geometry and the electron density fortwo binuclear vanadium complexes proposed as intermediates in the vanadium catalyzed SO2...
Accurate ab initio spin densities
Boguslawski, Katharina; Legeza, Örs; Reiher, Markus
2012-01-01
We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys. 2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CA...
Ab initio nuclear structure - the large sparse matrix eigenvalue problem
International Nuclear Information System (INIS)
The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several ab initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab initio no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds 1010 and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving this large sparse matrix eigenvalue problem. We also outline the challenges that lie ahead for achieving further breakthroughs in fundamental nuclear theory using these ab initio approaches.
Ab Initio Molecular Dynamics: A Virtual Laboratory
Hobbi Mobarhan, Milad
2014-01-01
In this thesis, we perform ab initio molecular dynamics (MD) simulations at the Hartree-Fock level, where the forces are computed on-the-fly using the Born-Oppenheimer approximation. The theory behind the Hartree-Fock method is discussed in detail and an implementation of this method based on Gaussian basis functions is explained. We also demonstrate how to calculate the analytic energy derivatives needed for obtaining the forces acting on the nuclei. Hartree-Fock calculations on the ground s...
Ab Initio Study on Hypothetical Silver Nitride
Institute of Scientific and Technical Information of China (English)
DELIGOZ Engin; COLAKOGLU Kemal; CIFTCI Yasemin Oztekin
2008-01-01
We perform the ab initio calculations based on norm-conserving pseudopotentials and density functional theory to investigate the structural, elastic, and thermodynamical properties for silver nitride (AgN) compound that is a member of the 4d transition metal group and has not been synthesized yet. The obtained results are compared with the other available theoretical data, and the agreement is, generally, quite good. We also present the pressure-dependent behaviour of some mechanical and thermodynamical properties for the same compounds.
Ab initio study of phase equilibria in TiCx
DEFF Research Database (Denmark)
Korzhavyi, P.A.; Pourovskii, L.V.; Hugosson, H.W.;
2002-01-01
The phase diagram for the vacancy-ordered structures in the substoichiometric TiCx (x = 0.5-1.0) has been established from Monte Carlo simulations with the long-range pair and multisite effective interactions obtained from ab initio calculations. Three ordered superstructures of vacancies (Ti2C, Ti......3C2, and Ti6C5) are found to be ground state configurations. Their stability has been verified by full-potential total energy calculations of the fully relaxed structures....
Kopplung von Dichtefunktional- und ab-initio-Methoden
Goll, Erich
2008-01-01
Im Rahmen der Doktorarbeit wurde untersucht, inwieweit die Kopplung von Dichtefunktionalmethoden und ab-initio-Korrelationsmethoden der Quantenchemie eine Verbesserung bezüglich beider Grenzmethoden erbringt. Die Kopplung erfolgt durch eine Aufspaltung des interelektronischen Hamiltonoperators (abstoßende Coulombwechselwirkung). Die kurzreichweitige Wechselwirkung wird mit Dichtefunktionaltheorie behandelt, die langreichweitige mit Hilfe von ab-initio-Methoden. Diese Aufteilung soll dazu dien...
Ab initio alpha-alpha scattering
Elhatisari, Serdar; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G
2015-01-01
Processes involving alpha particles and alpha-like nuclei comprise a major part of stellar nucleosynthesis and hypothesized mechanisms for thermonuclear supernovae. In an effort towards understanding alpha processes from first principles, we describe in this letter the first ab initio calculation of alpha-alpha scattering. We use lattice effective field theory to describe the low-energy interactions of nucleons and apply a technique called the adiabatic projection method to reduce the eight-body system to an effective two-cluster system. We find good agreement between lattice results and experimental phase shifts for S-wave and D-wave scattering. The computational scaling with particle number suggests that alpha processes involving heavier nuclei are also within reach in the near future.
Ab initio molar volumes and Gaussian radii.
Parsons, Drew F; Ninham, Barry W
2009-02-12
Ab initio molar volumes are calculated and used to derive radii for ions and neutral molecules using a spatially diffuse model of the electron distribution with Gaussian spread. The Gaussian radii obtained can be used for computation of nonelectrostatic ion-ion dispersion forces that underlie Hofmeister specific ion effects. Equivalent hard-sphere radii are also derived, and these are in reasonable agreement with crystalline ionic radii. The Born electrostatic self-energy is derived for a Gaussian model of the electronic charge distribution. It is shown that the ionic volumes used in electrostatic calculations of strongly hydrated cosmotropic ions ought best to include the first hydration shell. Ionic volumes for weakly hydrated chaotropic metal cations should exclude electron overlap (in electrostatic calculations). Spherical radii are calculated as well as nonisotropic ellipsoidal radii for nonspherical ions, via their nonisotropic static polarizability tensors. PMID:19140766
Ab Initio Path to Heavy Nuclei
Binder, Sven; Calci, Angelo; Roth, Robert
2014-01-01
We present the first ab initio calculations of nuclear ground states up into the domain of heavy nuclei, spanning the range from 16-O to 132-Sn based on two- plus three-nucleon interactions derived within chiral effective field theory. We employ the similarity renormalization group for preparing the Hamiltonian and use coupled-cluster theory to solve the many-body problem for nuclei with closed sub-shells. Through an analysis of theoretical uncertainties resulting from various truncations in this framework, we identify and eliminate the technical hurdles that previously inhibited the step beyond medium-mass nuclei, allowing for reliable validations of nuclear Hamiltonians in the heavy regime. Following this path we show that chiral Hamiltonians qualitatively reproduce the systematics of nuclear ground-state energies up to the neutron-rich Sn isotopes.
Ab initio alpha-alpha scattering
Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Luu, Thomas; Meißner, Ulf-G.
2015-12-01
Processes such as the scattering of alpha particles (4He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei—nuclei with even and equal numbers of protons and neutrons—is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the ‘adiabatic projection method’ to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of
Ab initio alpha-alpha scattering.
Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G
2015-12-01
Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of
On the hierarchical parallelization of ab initio simulations
Ruiz-Barragan, Sergi; Shiga, Motoyuki
2016-01-01
A hierarchical parallelization has been implemented in a new unified code PIMD-SMASH for ab initio simulation where the replicas and the Born-Oppenheimer forces are parallelized. It is demonstrated that ab initio path integral molecular dynamics simulations can be carried out very efficiently for systems up to a few tens of water molecules. The code was then used to study a Diels-Alder reaction of cyclopentadiene and butenone by ab initio string method. A reduction in the reaction energy barrier is found in the presence of hydrogen-bonded water, in accordance with experiment.
Ab initio derivation of model energy density functionals
Dobaczewski, Jacek
2016-08-01
I propose a simple and manageable method that allows for deriving coupling constants of model energy density functionals (EDFs) directly from ab initio calculations performed for finite fermion systems. A proof-of-principle application allows for linking properties of finite nuclei, determined by using the nuclear nonlocal Gogny functional, to the coupling constants of the quasilocal Skyrme functional. The method does not rely on properties of infinite fermion systems but on the ab initio calculations in finite systems. It also allows for quantifying merits of different model EDFs in describing the ab initio results.
DEFF Research Database (Denmark)
Shim, Irene; Kingcade, Joseph E.; Gingerich, Karl A.
1988-01-01
All electron ab initio Hartree–Fock (HF) and configuration interaction (CI) calculations have been applied to investigate the low-lying electronic states of the NiGe molecule. The ground state of the NiGe molecule is predicted to be 1Sigma+. The chemical bond in the 1Sigma+ ground state is a double...... bond composed of one sigma and one pi bond. The sigma bond is due to a delocalized molecular orbital formed by combining the Ni 4s and the Ge 4psigma orbitals. The pi bond is a partly delocalized valence bond, originating from the coupling of the 3dpi hole on Ni with the 4ppi electron on Ge. The low......-lying electronic states of the NiGe molecule have all been characterized by the symmetry of the hole in the 3d shell of Ni. The dissociation energy of the NiGe molecule has been determined from our high temperature mass spectrometric equilibrium data in combination with the theoretical results as D [open circle] 0...
Ab initio calculation of the Hoyle state
Epelbaum, Evgeny; Lee, Dean; Meißner, Ulf-G
2011-01-01
The Hoyle state plays a crucial role in the hydrogen burning of stars heavier than our sun and in the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle^{1} as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago^{2,3}, nuclear theorists have not yet uncovered the nature of this state from first principles. In this letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at -85(3) MeV with all of properties of the Hoyle state and in agreement with the experimentally observed energy. These lattice simulations provide insight into the structure of this unique state and new clues as to the amount of fine...
Young Modulus of Crystalline Polyethylene from ab Initio Molecular Dynamics
Hageman, J.C.L.; Meier, Robert J.; M. Heinemann; de Groot, R. A.
1997-01-01
The Young modulus for crystalline polyethylene is calculated using ab initio molecular dynamics based on density functional theory in the local density approximation (DFT-LDA). This modulus, which can be seen as the ultimate value for the Young modulus of polyethylene fibers, is found to be 334 GPa. For the first time the modulus is evaluated ab initio (no bias from experimental data) with demonstrated basis set convergence.
Molecular ion LiHe+: ab initio study
International Nuclear Information System (INIS)
Highlights: ► Excited electronic states of LiHe+ are studied. ► Potential energy curves of thirteen states are calculated. ► Dipole moment and transition dipole moment functions are determined. ► Basic spectroscopic properties of the electronic states are derived. - Abstract: High level ab initio calculations are performed on the molecular ion LiHe+. Potential energy curves for the low-lying singlet and triplet electronic states are calculated using the multi-reference configuration interaction and single-reference coupled cluster methods with large basis sets. The corresponding dipole moments and transition dipole moments functions are also determined. The basic spectroscopic properties and excitation energies of the electronic states are derived from rovibrational bound state calculations.
An Efficient Approach to Ab Initio Monte Carlo Simulation
Leiding, Jeff
2013-01-01
We present a Nested Markov Chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, is used to substantially decorrelate configurations at which the potential of interest is evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure is maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature \\beta^0), which is otherwise unconstrained. Local density approximation (LDA) results are presented for shocked states in argon at pressures from 4 to 60 GPa. Depending on the quality of the reference potential, the acceptance probability is enhanced by factors of 1.2-28 relative to unoptimized NMC sampling, and the procedure's efficiency is found to be competitive with that of standard ab initio...
Interatomic Coulombic decay widths of helium trimer: Ab initio calculations
Energy Technology Data Exchange (ETDEWEB)
Kolorenč, Přemysl, E-mail: kolorenc@mbox.troja.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Institute of Theoretical Physics, V Holešovičkách 2, 180 00 Prague (Czech Republic); Sisourat, Nicolas [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France)
2015-12-14
We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.
A Review on Ab Initio Approaches for Multielectron Dynamics
Ishikawa, Kenichi L
2015-01-01
In parallel with the evolution of femtosecond and attosecond laser as well as free-electron laser technology, a variety of theoretical methods have been developed to describe the behavior of atoms, molecules, clusters, and solids under the action of those laser pulses. Here we review major ab initio wave-function-based numerical approaches to simulate multielectron dynamics in atoms and molecules driven by intense long-wavelength and/or ultrashort short-wavelength laser pulses. Direct solution of the time-dependent Schr\\"odinger equation (TDSE), though its applicability is limited to He, ${\\rm H}_2$, and Li, can provide an exact description and has been greatly contributing to the understanding of dynamical electron-electron correlation. Multiconfiguration self-consistent-field (MCSCF) approach offers a flexible framework from which a variety of methods can be derived to treat both atoms and molecules, with possibility to systematically control the accuracy. The equations of motion of configuration interactio...
Ab initio quantum dynamics using coupled-cluster.
Kvaal, Simen
2012-05-21
The curse of dimensionality (COD) limits the current state-of-the-art ab initio propagation methods for non-relativistic quantum mechanics to relatively few particles. For stationary structure calculations, the coupled-cluster (CC) method overcomes the COD in the sense that the method scales polynomially with the number of particles while still being size-consistent and extensive. We generalize the CC method to the time domain while allowing the single-particle functions to vary in an adaptive fashion as well, thereby creating a highly flexible, polynomially scaling approximation to the time-dependent Schrödinger equation. The method inherits size-consistency and extensivity from the CC method. The method is dubbed orbital-adaptive time-dependent coupled-cluster, and is a hierarchy of approximations to the now standard multi-configurational time-dependent Hartree method for fermions. A numerical experiment is also given. PMID:22612082
All-electron ab initio investigations of the electronic states of the NiC molecule
DEFF Research Database (Denmark)
Shim, Irene; Gingerich, Karl. A.
1999-01-01
The low-lying electronic states of NiC are investigated by all-electron ab initio multi-configuration self-consistent-field (CASSCF) calculations including relativistic corrections. The electronic structure of NiC is interpreted as perturbed antiferromagnetic couplings of the localized angular...
Ab Initio Calculation on Self-Assembled Base-Functionalized Single-Walled Carbon Nanotubes
Institute of Scientific and Technical Information of China (English)
SONG Chen; XIA Yue-Yuan; ZHAO Ming-Wen; LIU Xiang-Dong; LI Ji-Ling; LI Li-Juan; LI Feng; HUANG Bo-Da
2006-01-01
@@ We perform ab initio calculations on the self-assembled base-functionalized single-walled carbon nanotubes (SWNTs) which exhibit the quasi-1D ‘ladder’ structure. The optimized configuration in the ab initio calculation is very similar to that obtainedfrom molecular dynamics simulation. We also calculate the electronic structures of the self-assembled base-functionalized SWNTs that exhibit distinct difference from the single-branch base-functionalized SWNT with a localized state lying just below the Fermi level, which may result from the coupling interaction between the bases accompanied by the self-assembly behaviour.
International Nuclear Information System (INIS)
The development of fusion reactors has generated a demand for improved knowledge of the atomic properties of tungsten. Using a multi-configuration Dirac-Fock (MCDF) method with a restricted active space treatment, the wavelengths and transition probabilities of the M1 and E2 transitions in the visible light region are calculated for the ground state multiplets of W26+ ions. The theoretical wavelength (388.43 nm) for the 3H5 → 3H4 magnetic dipole transition agrees quite well with the experimental value (389.41 nm). Other transitions theoretically predicted at longer wavelengths are also in good agreement with new experimental observations. The results also indicate that the core-core correlation contributions from the 4d shell are essential to determine the transition properties accurately.
Carmichael, Ian
1987-09-01
The structures, characteristic vibrations and magnetic properties of two isoelectronic series of radicals and radical ions derived from group 13-15 trihydrides have been investigated by post-Hartree-Fock theoretical techniques. Møller-Plesset perturbation theory based on an unrestricted Hartree-Fock determinant has been employed to determine the structures and vibrational frequencies in the 9-electron series, BH -3, CH 3, and NH +3. These species are found to be planar. Spin density distributions and ionization energetics have been estimated using a variational configuration interaction procedure. A positive electron affinity for BH 3 has not been demonstrated. The effect of out-of-plane vibrations on the hyperfine coupling constants is determined at a similar level of theory. In the 17-electron series AlH -3, SiH 3, and PH +3, pyramidal structures are found by using and extended split-valence basis at the SCF level. The computed harmonic force field suggests that a tentative assignment of a matrix isolated infrared spectrum to SiH 3 is incorrect. This conclusion is reinforced by calculation of the vibrational intensity patterns. Hyperfine interaction tensors computed at the optimized geometries from the UHF wavefunction with a more complete polarized double-zeta basis set are in accord with experiment. Vibrational effects are estimated by averaging the UHF spin density over an energy surface determined by second-order perturbation theory. Corrections due to vibrations are smaller than in the carbon series and single-point configuration interaction calculations confirm the reliability of the UHF spin densities.
Energy Technology Data Exchange (ETDEWEB)
Barrett, B R; Navratil, P; Vary, J P
2011-04-11
A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory ({chi}EFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The
International Nuclear Information System (INIS)
A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory (χEFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The resulting NN
Ab Initio Studies of Stratospheric Ozone Depletion Chemistry
Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.
Ab initio simulation of transport phenomena in rarefied gases.
Sharipov, Felix; Strapasson, José L
2012-09-01
Ab initio potentials are implemented into the direct simulation Monte Carlo (DSMC) method. Such an implementation allows us to model transport phenomena in rarefied gases without any fitting parameter of intermolecular collisions usually extracted from experimental data. Applying the method proposed by Sharipov and Strapasson [Phys. Fluids 24, 011703 (2012)], the use of ab initio potentials in the DSMC requires the same computational efforts as the widely used potentials such as hard spheres, variable hard sphere, variable soft spheres, etc. At the same time, the ab initio potentials provide more reliable results than any other one. As an example, the transport coefficients of a binary mixture He-Ar, viz., viscosity, thermal conductivity, and thermal diffusion factor, have been calculated for several values of the mole fraction. PMID:23030889
Sakane, Shinichi; Yezdimer, Eric M.; Liu, Wenbin; Barriocanal, Jose A.; Doren, Douglas J.; Wood, Robert H.
2000-08-01
The ab initio/classical free energy perturbation (ABC-FEP) method proposed previously by Wood et al. [J. Chem. Phys. 110, 1329 (1999)] uses classical simulations to calculate solvation free energies within an empirical potential model, then applies free energy perturbation theory to determine the effect of changing the empirical solute-solvent interactions to corresponding interactions calculated from ab initio methods. This approach allows accurate calculation of solvation free energies using an atomistic description of the solvent and solute, with interactions calculated from first principles. Results can be obtained at a feasible computational cost without making use of approximations such as a continuum solvent or an empirical cavity formation energy. As such, the method can be used far from ambient conditions, where the empirical parameters needed for approximate theories of solvation may not be available. The sources of error in the ABC-FEP method are the approximations in the ab initio method, the finite sample of configurations, and the classical solvent model. This article explores the accuracy of various approximations used in the ABC-FEP method by comparing to the experimentally well-known free energy of hydration of water at two state points (ambient conditions, and 973.15 K and 600 kg/m3). The TIP4P-FQ model [J. Chem. Phys. 101, 6141 (1994)] is found to be a reliable solvent model for use with this method, even at supercritical conditions. Results depend strongly on the ab initio method used: a gradient-corrected density functional theory is not adequate, but a localized MP2 method yields excellent agreement with experiment. Computational costs are reduced by using a cluster approximation, in which ab initio pair interaction energies are calculated between the solute and up to 60 solvent molecules, while multi-body interactions are calculated with only a small cluster (5 to 12 solvent molecules). Sampling errors for the ab initio contribution to
P-V Relation for Mercuric Calcogenides: Ab Initio Method
Directory of Open Access Journals (Sweden)
G. Misra
2011-01-01
Full Text Available Mercuric Calcogenides found many applications in electronic and optical devices as semiconducting materials. An equation of state provides useful information about the relationship between pressure (P, volume (V and temperature (T that helps to understand the behaviour of materials under the effect of high pressure and high temperature. The present paper sheds light on the electronic structure of Mercuric Calcogenides by simulating its electronic properties through ab initio method. This ab initio method is extended to derive the equation of state for Mercuric Calcogenides. The present equation of state has also been tested for the prediction of End Point. The computed results compare well with Quantum statistical data.
Towards new horizons in ab initio nuclear structure theory
International Nuclear Information System (INIS)
We review recent advances in ab initio nuclear structure theory, which have changed the horizons of this field. Starting from chiral effective field theory to construct the nuclear Hamiltonian and the similarity renormalization group to further soften it, we address several many-body approaches that have seen major developments over the past few years. We show that the domain of ab initio nuclear structure theory has been pushed well beyond the p-shell and that quantitative QCD-based predictions are becoming possible all the way from the proton to the neutron drip line up into the medium-mass regime. (authors)
Recent achievements in ab initio modelling of liquid water
Khaliullin, Rustam Z
2013-01-01
The application of newly developed first-principle modeling techniques to liquid water deepens our understanding of the microscopic origins of its unusual macroscopic properties and behaviour. Here, we review two novel ab initio computational methods: second-generation Car-Parrinello molecular dynamics and decomposition analysis based on absolutely localized molecular orbitals. We show that these two methods in combination not only enable ab initio molecular dynamics simulations on previously inaccessible time and length scales, but also provide unprecedented insights into the nature of hydrogen bonding between water molecules. We discuss recent applications of these methods to water clusters and bulk water.
Use of ab initio quantum chemical methods in battery technology
Energy Technology Data Exchange (ETDEWEB)
Deiss, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-06-01
Ab initio quantum chemistry can nowadays predict physical and chemical properties of molecules and solids. An attempt should be made to use this tool more widely for predicting technologically favourable materials. To demonstrate the use of ab initio quantum chemistry in battery technology, the theoretical energy density (energy per volume of active electrode material) and specific energy (energy per mass of active electrode material) of a rechargeable lithium-ion battery consisting of a graphite electrode and a nickel oxide electrode has been calculated with this method. (author) 1 fig., 1 tab., 7 refs.
Exploring the free energy surface using ab initio molecular dynamics.
Samanta, Amit; Morales, Miguel A; Schwegler, Eric
2016-04-28
Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti. PMID:27131525
Ab initio no-core solutions for $^6$Li
Shin, Ik Jae; Maris, Pieter; Vary, James P; Forssén, Christian; Rotureau, Jimmy; Michel, Nicolas
2016-01-01
We solve for properties of $^6$Li in the ab initio No-Core Full Configuration approach and we separately solve for its ground state and $J^{\\pi}=2_{2}^{+}$ resonance with the Gamow Shell Model in the Berggren basis. We employ both the JISP16 and chiral NNLO$_{opt}$ realistic nucleon-nucleon interactions and investigate the ground state energy, excitation energies, point proton root-mean-square radius and a suite of electroweak observables. We also extend and test methods to extrapolate the ground state energy, point proton root-mean-square radius, and electric quadrupole moment. We attain improved estimates of these observables in the No-Core Full Configuration approach by using basis spaces up through N$_{max}$=18 that enable more definitive comparisons with experiment. Using the Density Matrix Renormalization Group approach with the JISP16 interaction, we find that we can significantly improve the convergence of the Gamow Shell Model treatment of the $^6$Li ground state and $J^{\\pi}=2_{2}^{+}$ resonance by ...
Ab initio molecular dynamics simulation of laser melting of silicon
Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.
1996-01-01
The method of ab initio molecular dynamics, based on finite temperature density functional theory, is used to simulate laser heating of crystal silicon. We have found that a high concentration of excited electrons dramatically weakens the covalent bond. As a result, the system undergoes a melting tr
Cyanogen Azide. Ionization Potentials and Ab Initio SCF MO Calculation
DEFF Research Database (Denmark)
Bak, Börge; Jansen, Peter; Stafast, Herbert
1975-01-01
The Ne(I) and He(I) photoelectron(PE) spectra of cyanogen azide, NCN3, have been recorded at high resolution. Their interpretation is achieved by comparison with the PE spectrum of HN3 and an ab initio LCGO SCF MO calculation. Deviations from Koopmans' theorem of quite different magnitudes are fo...
Relaxation of Small Molecules: an ab initio Study
Institute of Scientific and Technical Information of China (English)
CAO Yi-Gang; JIAO Zheng-Kuan; A. Antons; K. Schroeder; S. Blügel2
2002-01-01
Using an ab initio total energy and force method, we have relaxed several group IV and group V elementalclusters, in detail the arsenic and antimony dimers, silicon, phosphorus, arsenic and antimony tetramers. The obtainedbond lengths and cohesive energies are more accurate than other calculating methods, and in excellent agreement withthe experimental results.
Young Modulus of Crystalline Polyethylene from ab Initio Molecular Dynamics
Hageman, J.C.L.; Meier, Robert J.; Heinemann, M.; Groot, R.A. de
1997-01-01
The Young modulus for crystalline polyethylene is calculated using ab initio molecular dynamics based on density functional theory in the local density approximation (DFT-LDA). This modulus, which can be seen as the ultimate value for the Young modulus of polyethylene fibers, is found to be 334 GPa.
Ab initio evaluations of the He solubility in liquid Li
Energy Technology Data Exchange (ETDEWEB)
Sedano, Luis A. [EURATOM-CIEMAT Assoc., Materials for Fusion Program, Bd. 43 P0.04, Avda. Complutense 22, 28040 Madrid (Spain)]. E-mail: luis.sedano@ciemat.es; Hassanein, Ahmed [Argonne Nat. Lab, 9700 South Class Av., Argonne, IL (United States)]. E-mail: hassanein@anl.gov; Sanz, Javier [ETSII-UNED, c/Juan del Rosal, 12, 28040 Madrid (E) (Spain)]. E-mail: jsanz@ind.UNED.es
2005-11-15
Modified embedding atom methods (MEAM) are developed to have predictions of the partial molar heat of solution (-H{sub s}) by direct simulation of metal cohesion, He-metal and He-He interaction. Transitions from crystalline Li to configurations, having the liquid Li structure's factors (h-bar (q)), are simulated ab initio. Once h-bar (q) reproduced, He atoms are added, one by one, to the Li system. Parallel lines for each case, with slopes clearly independent on the number of He atoms in the system, are obtained for energy versus pressure at given temperatures. Average differences between two adjacent parallels at zero pressure, once kinetic energy of the system discounted, represents the energy gained by an He atom when added to the Li system, related to the solution energy -H{sub s}. The molar excess entropy of gas in solution (S-bar {sub l}{sup ex}) is previously evaluated following diverse fundamental approaches: a 'thermodynamic liquid-hole' (TL-H) model for alkali liquids and a statistical-mechanics (Neff and McQuarrie's) model (SMM). Between 600 and 900 deg. C, a typical range of interest for the use of Li in fusion technology, the computed values for the (He) Henry's constant in Li range from 8x10{sup -14} to 10{sup -13} at. fr. Pa{sup -1}.
Ab initio calculation of double ionization of atoms
Energy Technology Data Exchange (ETDEWEB)
Serov, V. V., E-mail: vladislav.serov@mail.ru [Saratov State University, Department of Theoretical Physics (Russian Federation)
2013-02-15
The Solov'ev-Vinitsky method was used to perform an ab initio calculation of the triple-differential cross section for the double single-photon photoionization of helium for the case of equal emitted-electron energies. A Gaussian width {gamma} describing angular electron-electron correlations at the total electron energy E taking values in range between 0.1 and 100 eV was obtained for this cross section. The results agree with available experimental data, but they raise a doubt as to whether the well-known Wannier law {gamma} {proportional_to} E{sup 1/4} is applicable at experimentally accessible energies. The Gaussian width {gamma} was investigated as a function of the total emitted-electron energy for targets that have a strongly asymmetric configuration of the initial state-specifically, a negative atomic-hydrogen ion H{sup -} and heliumin the 1s2s{sup 1}S and 1s3s{sup 1}S excited states. It was found that this function, {gamma}(E), had a maximum at low energies. It was also shown that, at low energies, the dependence of the double-differential cross section on the angle between the emitted-electron momenta for the targets indicated above differed substantially from the Gaussian dependence, featuring maxima whose number was equal to the number of radial nodes in the initial state. This opens new possibilities for a qualitative analysis of the electron structure of targets.
Ab initio potential energy surface for the highly nonlinear dynamics of the KCN molecule
Energy Technology Data Exchange (ETDEWEB)
Párraga, H.; Arranz, F. J., E-mail: fj.arranz@upm.es; Benito, R. M., E-mail: rosamaria.benito@upm.es [Grupo de Sistemas Complejos, ETSI Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid (Spain); Borondo, F., E-mail: f.borondo@uam.es [Departamento de Química and Instituto de Ciencias Matemáticas (ICMAT), Universidad Autónoma de Madrid, Cantoblanco, 28049-Madrid (Spain)
2013-11-21
An accurate ab initio quantum chemistry study at level of quadratic configuration interaction method of the electronic ground state of the KCN molecule is presented. A fitting of the results to an analytical series expansion was performed to obtain a global potential energy surface suitable for the study of the associated vibrational dynamics. Additionally, classical Poincaré surfaces of section for different energies and quantum eigenstates were calculated, showing the highly nonlinear behavior of this system.
Augmented wave ab initio EFG calculations: some methodological warnings
Energy Technology Data Exchange (ETDEWEB)
Errico, Leonardo A. [Departamento de Fisica-IFLP (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC67 (1900) La Plata (Argentina); Renteria, Mario [Departamento de Fisica-IFLP (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC67 (1900) La Plata (Argentina); Petrilli, Helena M. [Instituto de Fisica-DFMT, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil)]. E-mail: hmpetril@macbeth.if.usp.br
2007-02-01
We discuss some accuracy aspects inherent to ab initio electronic structure calculations in the understanding of nuclear quadrupole interactions. We use the projector augmented wave method to study the electric-field gradient (EFG) at both Sn and O sites in the prototype cases SnO and SnO{sub 2}. The term ab initio is used in the standard context of the also called first principles methods in the framework of the Density Functional Theory. As the main contributions of EFG calculations to problems in condensed matter physics are related to structural characterizations on the atomic scale, we discuss the 'state of the art' on theoretical EFG calculations and make a brief critical review on the subject, calling attention to some fundamental theoretical aspects.
Understanding phonon transport in thermoelectric materials using ab initio approaches
Broido, David
Good thermoelectric materials have low phonon thermal conductivity, kph. Accurate theories to describe kph are important components in developing predictive models of thermoelectric efficiency that can help guide synthesis and measurement efforts. We have developed ab initio approaches to calculate kph, in which phonon modes and phonon scattering rates are computed using interatomic force constants determined from density functional theory, and a full solution of the Boltzmann transport equation for phonons is implemented. A recent approach to calculate interatomic force constants using ab initio molecular dynamics has yielded a good description of the thermal properties of Bi2Te3. But, the complexity of new promising candidate thermoelectric materials introduces computational challenges in assessing their thermal properties. An example is germanane, a germanium based hydrogen-terminated layered semiconductor, which we will discuss in this talk.
Toward the Ab-initio Description of Medium Mass Nuclei
Barbieri, C; Soma, V; Duguet, T; Navratil, P
2012-01-01
As ab-initio calculations of atomic nuclei enter the A=40-100 mass range, a great challenge is how to approach the vast majority of open-shell (degenerate) isotopes. We add realistic three-nucleon interactions to the state of the art many-body Green's function theory of closed-shells, and find that physics of neutron driplines is reproduced with very good quality. Further, we introduce the Gorkov formalism to extend ab-initio theory to semi-magic, fully open-shell, isotopes. Proof-of-principle calculations for Ca-44 and Ni-74 confirm that this approach is indeed feasible. Combining these two advances (open-shells and three-nucleon interactions) requires longer, technical, work but it is otherwise within reach.
Ab-initio calculations on melting of thorium
Mukherjee, D.; Sahoo, B. D.; Joshi, K. D.; Kaushik, T. C.; Gupta, Satish C.
2016-05-01
Ab-initio molecular dynamics study has been performed on face centered cubic structured thorium to determine its melting temperature at room pressure. The ion-electron interaction potential energy calculated as a function of temperature for three volumes (a0)3 and (1.02a0)3 and (1.04a0)3 increases gradually with temperature and undergoes a sharp jump at ~2200 K, ~2100 K and ~1800 K, respectively. Here, a0 = 5.043 Å is the equilibrium lattice parameter at 0 K obtained from ab-initio calculations. These jumps in interaction energy are treated as due to the onset of melting and corresponding temperatures as melting point. The melting point of 2100 K is close to the experimental value of 2023K. Further, the same has been verified by plotting the atomic arrangement evolved at various temperatures and corresponding pair correlation functions.
Serine Proteases an Ab Initio Molecular Dynamics Study
De Santis, L
1999-01-01
In serine proteases (SP's), the H-bond between His-57 and Asp-102, and that between Gly-193 and the transition state intermediate play a crucial role for enzymatic function. To shed light on the nature of these interactions, we have carried out ab initio molecular dynamics simulations on complexes representing adducts between the reaction intermediate and elastase (one protein belonging to the SP family). Our calculations indicate the presence of a low--barrier H-bond between His-57 and Asp-102, in complete agreement with NMR experiments on enzyme--transition state analog complexes. Comparison with an ab initio molecular dynamics simulation on a model of the substrate--enzyme adduct indicates that the Gly-193--induced strong stabilization of the intermediate is accomplished by charge/dipole interactions and not by H-bonding as previously suggested. Inclusion of the protein electric field in the calculations does not affect significantly the charge distribution.
The density matrix renormalization group for ab initio quantum chemistry
Wouters, Sebastian
2015-01-01
During the past 15 years, the density matrix renormalization group (DMRG) has become increasingly important for ab initio quantum chemistry. It is used as a numerically exact solver for highly correlated regions in molecules. While the method works extremely well for one-dimensional systems, the correlated regions of interest are often far from one-dimensional. In this introductory talk, I will discuss the DMRG algorithm from a quantum information perspective, how quantum information theory h...
Molexpl: a tool for ab initio data exploration and visualization
Wang, Xueying; Onofrio, Nicolas,; Strachan, Alejandro
2015-01-01
Density functional theory (DFT) based on ab initio theory, is a powerful method to resolve the electronic structure of atoms, molecules and solids. However, in practical, DFT is limited to few hundreds of atoms. To overcome this limitation, researchers have developed empirical interatomic potentials implemented in molecular dynamics (MD) simulations. MD ignores the movements of electrons and describes bonding and non-bonding interaction as a function of the distance between atoms called force...
Ab initio calculation of tight-binding parameters
Energy Technology Data Exchange (ETDEWEB)
McMahan, A.K.; Klepeis, J.E.
1997-12-01
We calculate ab initio values of tight-binding parameters for the f- electron metal Ce and various phases of Si, from local-density functional one-electron Hamiltonian and overlap matrix elements. Our approach allows us to unambiguously test the validity of the common minimal basis and two-center approximations as well as to determine the degree of transferability of both nonorthogonal and orthogonal hopping parameters in the cases considered.
GAUSSIAN 76: an ab initio molecular orbital program
Energy Technology Data Exchange (ETDEWEB)
Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.
1978-06-01
Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.
P-V Relation for Mercuric Calcogenides: Ab Initio Method
G. Misra; S. Tenguria; Gautam, M.
2011-01-01
Mercuric Calcogenides found many applications in electronic and optical devices as semiconducting materials. An equation of state provides useful information about the relationship between pressure (P), volume (V) and temperature (T) that helps to understand the behaviour of materials under the effect of high pressure and high temperature. The present paper sheds light on the electronic structure of Mercuric Calcogenides by simulating its electronic properties through ab initio method. This a...
Ab-initio calculations for dilute magnetic semiconductors
Belhadji, Brahim
2008-01-01
This thesis focusses on ab-initio calculations for the electronic structure and the magnetic properties of dilute magnetic semiconductors (DMS). In particular we aim at the understanding of the complex exchange interactions in these systems. Our calculations are based on density functional theory, being ideally suited for a description of the material specific properties of the considered DMS. Moreover we use the KKR Green function method in connection with the coherent potential approximatio...
Thermochemical data for CVD modeling from ab initio calculations
Energy Technology Data Exchange (ETDEWEB)
Ho, P. [Sandia National Labs., Albuquerque, NM (United States); Melius, C.F. [Sandia National Labs., Livermore, CA (United States)
1993-12-31
Ab initio electronic-structure calculations are combined with empirical bond-additivity corrections to yield thermochemical properties of gas-phase molecules. A self-consistent set of heats of formation for molecules in the Si-H, Si-H-Cl, Si-H-F, Si-N-H and Si-N-H-F systems is presented, along with preliminary values for some Si-O-C-H species.
Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes
Energy Technology Data Exchange (ETDEWEB)
Draayer, Jerry P. [Louisiana State Univ., Baton Rouge, LA (United States)
2014-09-28
We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).
A highly accurate ab initio potential energy surface for methane
Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2016-09-01
A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of 12CH4 reproduced with a root-mean-square error of 0.70 cm-1. The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.
Acceleration of the Convergence in ab initio Atomic Relaxations
Zhao, Zhengji; Wang, Lin-Wang; Meza, Juan
2006-03-01
Atomic relaxations is often required to accurately describe the properties of nanosystems. In ab initio calculations, a common practice is to use a standard search algorithm, such as BFGS (Broyden-Fletcher-Goldfarb-Shanno) or CG (conjugate gradient) method, which starts the atomic relaxations without any knowledge of the Hessian matrix of the system. For example, the initial Hessian in BFGS method is often set to identity, and there is no preconditioning to CG method. One way to accelerate the convergence of the atomic relaxations is to estimate an approximate Hessian matrix of the system and then use it as the initial Hessian in BFGS method or a preconditioner in CG method. Previous attempts to obtain the approximated Hessian were focused on the use of classical force field models which rely on the existence of good parameters. Here, we present an alternative method to estimate the Hessian matrix of a nanosystem. First, we decompose the system into motifs which consist of a few atoms, then calculate the Hessian matrix elements on different motif types from ab initio calculations for small prototype systems. Then we generate the Hessian Matrix of the whole system by putting together these motif Hessians. We have applied our motif-based Hessian matrix in ab initio atomic relaxations in several bulk (with/without impurity) and quantum dot systems, and have found a speed up factor of 2 to 4 depending on the system size.
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics
Makhov, Dmitry V.; Glover, William J.; Martinez, Todd J.; Shalashilin, Dmitrii V.
2014-08-01
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Makhov, Dmitry V.; Shalashilin, Dmitrii V. [Department of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom); Glover, William J.; Martinez, Todd J. [Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)
2014-08-07
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.
A Complete and Accurate Ab Initio Repeat Finding Algorithm.
Lian, Shuaibin; Chen, Xinwu; Wang, Peng; Zhang, Xiaoli; Dai, Xianhua
2016-03-01
It has become clear that repetitive sequences have played multiple roles in eukaryotic genome evolution including increasing genetic diversity through mutation, changes in gene expression and facilitating generation of novel genes. However, identification of repetitive elements can be difficult in the ab initio manner. Currently, some classical ab initio tools of finding repeats have already presented and compared. The completeness and accuracy of detecting repeats of them are little pool. To this end, we proposed a new ab initio repeat finding tool, named HashRepeatFinder, which is based on hash index and word counting. Furthermore, we assessed the performances of HashRepeatFinder with other two famous tools, such as RepeatScout and Repeatfinder, in human genome data hg19. The results indicated the following three conclusions: (1) The completeness of HashRepeatFinder is the best one among these three compared tools in almost all chromosomes, especially in chr9 (8 times of RepeatScout, 10 times of Repeatfinder); (2) in terms of detecting large repeats, HashRepeatFinder also performed best in all chromosomes, especially in chr3 (24 times of RepeatScout and 250 times of Repeatfinder) and chr19 (12 times of RepeatScout and 60 times of Repeatfinder); (3) in terms of accuracy, HashRepeatFinder can merge the abundant repeats with high accuracy. PMID:26272474
Structures of 13-atom clusters of fcc transition metals by ab initio and semiempirical calculations
Longo, R. C.; Gallego, L. J.
2006-11-01
We report the results of ab initio calculations of the structures and magnetic moments of Ni13 , Pd13 , Pt13 , Cu13 , Ag13 , and Au13 that were performed using a density-functional method that employs linear combinations of pseudoatomic orbitals as basis sets (SIESTA). Our structural results for Pt13 , Cu13 , Ag13 , and Au13 show that a buckled biplanar structure (BBP) is more stable than the icosahedral configuration, in keeping with results obtained recently by Chang and Chou [Phys. Rev. Lett. 93, 133401 (2004)] using the Vienna ab initio simulation package with a plane-wave basis. However, for Ni13 and Pd13 we found that the icosahedral structure is more stable than BBP. For all these clusters, two semiempirical methods based on spherically symmetric potentials both found the icosahedral structure to be the more stable, while the modified embedded atom model method, which uses a direction-dependent potential, found BBP to be the more stable structure. When low-energy structures found in recent ab initio studies of Pt13 , Cu13 , and Au13 other than Chang and Chou were optimized with SIESTA, those reported for Pt13 and Cu13 were found to be less stable than BBP, but the two-dimensional planar configuration reported for Au13 proved to be more stable than BBP.
A fully ab initio potential energy surface for ClH2 reactive system
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
An ab initio analytical potential energy surface called BW3 for the ClH2 reactive system is presented. The fit of this surface is based on about 1 200 ab initio energy points, computed with multi-reference configuration interaction(MRCI) and scaling external correlation (SEC) method and a very large basis set. The precision in the fit is very high. The BW3 surface could reproduce correctly the dissociation energy of H2 and HCl, and the endothermicity of the Cl + H2 abstraction reaction. For the Cl + H2 abstraction reaction, the saddle point of BW3 lies in collinear geometries, and the barrier height is 32.84 kJ/mol; for the H + ClH exchange reaction, the barrier of BW3 is also linear, with a height of 77.40 kJ/mol.
A fully ab initio potential energy surface for C1H2 reactive system
Institute of Scientific and Technical Information of China (English)
边文生; 刘成卜; H.J.Werner
2000-01-01
An ab initio analytical potential energy surface called BW3 for the CIH2 reactive system is presented. The fit of this surface is based on about 1 200 ab initio energy points, computed with multi-reference configuration interaction(MRCI) and scaling external correlation (SEC) method and a very large basis set. The precision in the fit is very high. The BW3 surface could reproduce correctly the dissociation energy of H2 and HCI, and the endothermicity of the Cl + H2 abstraction reaction. For the Cl + H2 abstraction reaction, the saddle point of BW3 lies in collinear geometries, and the barrier height is 32.84 kJ/mol; for the H + CIH exchange reaction, the barrier of BW3 is also linear, with a height of 77.40 kJ/mol.
Ab initio calculations on twisted graphene/hBN: Electronic structure and STM image simulation
Correa, J. D.; Cisternas, E.
2016-09-01
By performing ab initio calculations we obtained theoretical scanning tunneling microscopy (STM) images and studied the electronic properties of graphene on a hexagonal boron-nitrite (hBN) layer. Three different stack configurations and four twisted angles were considered. All calculations were performed using density functional theory, including van der Waals interactions as implemented in the SIESTA ab initio package. Our results show that the electronic structure of graphene is preserved, although some small changes are induced by the interaction with the hBN layer, particularly in the total density of states at 1.5 eV under the Fermi level. When layers present a twisted angle, the density of states shows several van Hove singularities under the Fermi level, which are associated to moiré patterns observed in theoretical STM images.
{\\it Ab initio} nuclear structure - the large sparse matrix eigenvalue problem
Vary, James P; Ng, Esmond; Yang, Chao; Sosonkina, Masha
2009-01-01
The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several {\\it ab initio} methods have now emerged that provide nearly exact solutions for some nuclear properties. The {\\it ab initio} no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds $10^{10}$ and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving t...
McKemmish, Laura K; Tennyson, Jonathan
2016-01-01
Accurate knowledge of the rovibronic near-infrared and visible spectra of vanadium monoxide (VO) is very important for studies of cool stellar and hot planetary atmospheres. Here, the required ab initio dipole moment and spin-orbit coupling curves for VO are produced. This data forms the basis of a new VO line list considering 13 different electronic states and containing over 277 million transitions. Open shell transition, metal diatomics are challenging species to model through ab initio quantum mechanics due to the large number of low-lying electronic states, significant spin-orbit coupling and strong static and dynamic electron correlation. Multi-reference configuration interaction methodologies using orbitals from a complete active space self-consistent-field (CASSCF) calculation are the standard technique for these systems. We use different state-specific or minimal-state CASSCF orbitals for each electronic state to maximise the calculation accuracy. The off-diagonal dipole moment controls the intensity...
Ab initio modeling of plasticity in HCP metals: pure zirconium and titanium and effect of oxygen
International Nuclear Information System (INIS)
We performed atomistic simulations to determine screw dislocations properties in pure zirconium and titanium and to explain the hardening effect attributed to oxygen alloying in both hexagonal close-packed transition metals. We used two energetic models: ab initio calculations based on the density functional theory and calculations with an empirical potential. The complete energetic profile of the screw dislocation when gliding in the different slip planes is obtained in pure Zr. Our calculations reveal the existence of a metastable configuration of the screw dislocation partially spread in the first order pyramidal plane. This configuration is responsible for the cross slip of screw dislocations from prismatic planes, the easiest glide planes, to pyramidal or basal planes. This energy profile is affected by oxygen addition. Ab initio calculations reveal two main effects: oxygen enhances pyramidal cross slip by modifying the dislocation core structure, and pins the dislocation in its metastable sessile configuration. The same modeling approach is applied to titanium. In pure Ti, the same configurations of the screw dislocation in Zr are obtained, but with different energy levels. This leads to a different gliding mechanism. The same way as in Zr, oxygen enhances pyramidal glide in Ti by modifying the dislocation core structure. Besides, oxygen atom lowers the energy of the metastable configuration but not enough to pin the dislocation in this sessile configuration. (author)
Energy Technology Data Exchange (ETDEWEB)
Bernard, St
1998-12-31
The quest for metallic hydrogen is a major goal for both theoretical and experimental condensed matter physics. Hydrogen and deuterium have been compressed up to 200 GPa in diamond anvil cells, without any clear evidence for a metallic behaviour. Loubeyere has recently suggested that hydrogen could metallize, at pressures within experimental range, in a new Van der Waals compound: Ar(H{sub 2}){sub 2} which is characterized at ambient pressure by an open and anisotropic sublattice of hydrogen molecules, stabilized by an argon skeleton. This thesis deals with a detailed ab initio investigation, by Car-Parrinello molecular dynamics methods, of the evolution under pressure of this compound. In a last chapter, we go to much higher pressures and temperatures, in order to compare orbital and orbital free ab initio methods for the dense hydrogen plasma. (author) 109 refs.
Ab initio calculation of the spectrum and structure of $^{16}$O
Epelbaum, Evgeny; Lähde, Timo A; Lee, Dean; Meißner, Ulf-G; Rupak, Gautam
2013-01-01
We present ab initio lattice calculations of the low-energy even-parity states of $^{16}$O using chiral nuclear effective field theory. We find good agreement with the empirical energy spectrum, and with the electromagnetic properties and transition rates. For the ground state, we find that the nucleons are arranged in a tetrahedral configuration of alpha clusters. For the first excited spin-0 state, we find that the predominant structure is a square configuration of alpha clusters, with rotational excitations that include the first spin-2 state.
Ab initio studies of ionization potentials of hydrated hydroxide and hydronium
Swartz, Charles W
2013-01-01
The ionization potential distributions of hydrated hydroxide and hydronium are computed with many-body approach for electron excitations with configurations generated by {\\it ab initio} molecular dynamics. The experimental features are well reproduced and found to be closely related to the molecular excitations. In the stable configurations, the ionization potential is mainly perturbed by water molecules within the first solvation shell. On the other hand, electron excitation is delocalized on both proton receiving and donating complex during proton transfer, which shifts the excitation energies and broadens the spectra for both hydrated ions.
All electron ab initio investigations of the electronic states of the FeC molecule
DEFF Research Database (Denmark)
Shim, Irene; Gingerich, Karl A.
1999-01-01
The low lying electronic states of the molecule FeC have been investigated by performing all electron ab initio multi-configuration self-consistent-field (CASSCF) and multi reference configuration interaction (MRCI) calculations. The relativistic corrections for the one electron Darwin contact term...... and the relativistic mass-velocity correction have been determined in perturbation calculations. The electronic structure of the FeC molecule is interpreted as antiferromagnetic couplings of the localized angular momenta of the ions Fe+ and C resulting in a triple bond in the valence bond sense. The electronic ground...
Challenges for ab initio defect modeling
Energy Technology Data Exchange (ETDEWEB)
Deak, Peter [U. Bremen, Bremen Center for Computational Materials Science, POB 330440, D-28334 Bremen (Germany)], E-mail: deak@bccms.uni-bremen.de; Aradi, Balint; Frauenheim, Thomas [U. Bremen, Bremen Center for Computational Materials Science, POB 330440, D-28334 Bremen (Germany); Gali, Adam [Budapest University of Technology and Economics, Dept. Atomic Physics, H-1521 Budapest (Hungary)
2008-12-05
Supercell calculations using density functional theory with local or semi-local exchange functionals have proved to be a very successful tool in defect engineering, apparently leading to some degree of overconfidence lately. With a case study on selected defects, we demonstrate that the approximations involved in these functionals lead not only to an underestimation of the gap but also to related errors in the total energy difference of two defect configurations (be these in the same or different charge states). Sometimes the error is so serious, that even the common expectation: 'DFT provides the correct ground state' is refuted. We also demonstrate, that semi-empirical hybrid exchange functionals, which reproduce the correct band gap, give good total energy differences even in these cases. In such calculations, the position of Kohn-Sham gap levels with respect to the band edges gives a good estimation of the vertical ionization energy. Based on that, we propose a simple correction scheme for checking the necessity of extended total energy calculations with a hybrid functional.
George, D. X. F.; Kumar, Sanjay
2010-08-01
Ab initio global adiabatic as well as quasidiabatic potential energy surfaces for the ground and the first excited electronic states of the H + + CO system have been computed as a function of the Jacobi coordinates ( R, r, γ) using Dunning's cc-pVTZ basis set at the internally contracted multi-reference (single and double) configuration interaction level of accuracy. In addition, nonadiabatic coupling matrix elements arising from radial motion, mixing angle and coupling potential have been computed using the ab initio procedure [Simah et al. (1999) [66
Symmetry-Adapted Ab Initio Shell Model for Nuclear Structure Calculations
Draayer, J. P.; Dytrych, T.; Launey, K. D.; Langr, D.
2012-05-01
An innovative concept, the symmetry-adapted ab initio shell model, that capitalizes on partial as well as exact symmetries that underpin the structure of nuclei, is discussed. This framework is expected to inform the leading features of nuclear structure and reaction data for light and medium mass nuclei, which are currently inaccessible by theory and experiment and for which predictions of modern phenomenological models often diverge. We use powerful computational and group-theoretical algorithms to perform ab initio CI (configuration-interaction) calculations in a model space spanned by SU(3) symmetry-adapted many-body configurations with the JISP16 nucleon-nucleon interaction. We demonstrate that the results for the ground states of light nuclei up through A = 16 exhibit a strong dominance of low-spin and high-deformation configurations together with an evident symplectic structure. This, in turn, points to the importance of using a symmetry-adapted framework, one based on an LS coupling scheme with the associated spatial configurations organized according to deformation.
Ab initio structure determination via powder X-ray diffraction
Indian Academy of Sciences (India)
Digamber G Porob; T N Guru Row
2001-10-01
Structure determination by powder X-ray diffraction data has gone through a recent surge since it has become important to get to the structural information of materials which do not yield good quality single crystals. Although the method of structure completion when once the starting model is provided is facile through the Rietveld refinement technique, the structure solution ab initio os still not push-button technology. In this article a survey of the recent development in this area is provided with an illustration of the structure determination of -NaBi3V2O10.
Electrostriction coefficient of ferroelectric materials from ab initio computation
Directory of Open Access Journals (Sweden)
Z. Jiang
2016-06-01
Full Text Available Electrostriction is an important material property that characterizes how strain changes with the development of polarization inside a material. We show that ab initio techniques developed in recent years can be exploited to compute and understand electrostriction of ferroelectric materials. Here, electrostriction coefficients of ferroelectric BaTiO3, PbTiO3, as well as dielectric BaZrO3, are obtained and analyzed. Possible causes of the difference between experimental and numerical results are discussed. We also identified that relative displacements between certain ions at a given polarization could be a good indicator of a material’s electrostriction property.
Tailoring magnetoresistance at the atomic level: An ab initio study
Tao, Kun
2012-01-05
The possibility of manipulating the tunneling magnetoresistance (TMR) of antiferromagnetic nanostructures is predicted in the framework of ab initio calculations. By the example of a junction composed of an antiferromagnetic dimer and a spin-polarized scanning tunneling microscopy tip we show that the TMR can be tuned and even reversed in sign by lateral and vertical movements of the tip. Moreover, our finite-bias calculations demonstrate that the magnitude and the sign of the TMR can also be tuned by an external voltage. © 2012 American Physical Society.
Ab initio study of neutron drops with chiral Hamiltonians
Directory of Open Access Journals (Sweden)
H.D. Potter
2014-12-01
Full Text Available We report ab initio calculations for neutron drops in a 10 MeV external harmonic-oscillator trap using chiral nucleon–nucleon plus three-nucleon interactions. We present total binding energies, internal energies, radii and odd–even energy differences for neutron numbers N=2–18 using the no-core shell model with and without importance truncation. Furthermore, we present total binding energies for N=8,16,20,28,40,50 obtained in a coupled-cluster approach. Comparisons with quantum Monte Carlo results, where available, using Argonne v8′ with three-nucleon interactions reveal important dependences on the chosen Hamiltonian.
Accelerating ab initio molecular dynamics simulations by linear prediction methods
Herr, Jonathan D.; Steele, Ryan P.
2016-09-01
Acceleration of ab initio molecular dynamics (AIMD) simulations can be reliably achieved by extrapolation of electronic data from previous timesteps. Existing techniques utilize polynomial least-squares regression to fit previous steps' Fock or density matrix elements. In this work, the recursive Burg 'linear prediction' technique is shown to be a viable alternative to polynomial regression, and the extrapolation-predicted Fock matrix elements were three orders of magnitude closer to converged elements. Accelerations of 1.8-3.4× were observed in test systems, and in all cases, linear prediction outperformed polynomial extrapolation. Importantly, these accelerations were achieved without reducing the MD integration timestep.
Equations of state of heavy metals: ab initio approaches
International Nuclear Information System (INIS)
The determination of equations of states of heavy metals through ab initio calculation, i.e. without any adjustable parameter, allows to access to pressure and temperature thermodynamic conditions sometimes inaccessible to experiment. To perform such calculations, density functional theory (DFT) is a good starting point: when electronic densities are homogeneous enough, the local density approximation (LDA) remarkably accounts for thermodynamic properties of heavy metals, such as tantalum, or the light actinides, as well for static properties - equilibrium volume, elastic constants - as for dynamical quantities like phonon spectra. For heavier elements, like neptunium or plutonium, relativistic effects and strong electronic interactions must be taken into account, which requires more sophisticated theoretical approaches. (authors)
Ab initio calculations and modelling of atomic cluster structure
DEFF Research Database (Denmark)
Solov'yov, Ilia; Lyalin, Andrey G.; Solov'yov, Andrey V.;
2004-01-01
The optimized structure and electronic properties of small sodium and magnesium clusters have been investigated using it ab initio theoretical methods based on density-functional theory and post-Hartree-Fock many-body perturbation theory accounting for all electrons in the system. A new theoretical...... framework for modelling the fusion process of noble gas clusters is presented. We report the striking correspondence of the peaks in the experimentally measured abundance mass spectra with the peaks in the size-dependence of the second derivative of the binding energy per atom calculated for the chain...... of the noble gas clusters up to 150 atoms....
Ab initio Study of He Stability in hcp-Ti
Institute of Scientific and Technical Information of China (English)
DAI Yun-Ya; YANG Li; PENG Shu-Ming; LONG Xing-Gui; GAO Fei; ZU Xiao-Tao
2010-01-01
@@ The stability of He in hcp-Ti is studied using the ab initio method based on the density functional theory.The results indicate that a single He atom prefers to occupy the tetrahedral site rather than the octahedral site.The interaction of He defects with Ti atoms is employed to explain the relative stabilities of He point defects in hcp-Ti.The relative stability of He defects in hcp-Ti is useful for He clustering and bubble nucleation in metal tritides,which provides the basis for development of improved atomistic models.
Polymeric nitrogen in a graphene matrix: An ab initio study
Timoshevskii, V.; Ji, Wei; Abou-Rachid, Hakima; Lussier, Louis-Simon; Guo, H.
2009-09-01
A hybrid material where polymeric nitrogen chains are sandwiched between graphene sheets in the form of a three-dimensional crystal, is predicted by means of ab initio simulations. It is demonstrated that chainlike polymeric nitrogen phase becomes stable at ambient pressure when intercalated in a multilayer graphene matrix. The physical origin of this stabilization is identified by studying the electronic properties of the system. This approach of stabilizing polymeric nitrogen by means of external three-dimensional matrix constitutes a path toward synthesizing different types of nitrogen-based high-energy materials.
Ab-initio study of transition metal hydrides
Energy Technology Data Exchange (ETDEWEB)
Sharma, Ramesh [Dept. of Physics, Feroze Gandhi Insititute of Engineering and Technology, Raebareli-229001 (India); Shukla, Seema, E-mail: sharma.yamini62@gmail.com; Dwivedi, Shalini, E-mail: sharma.yamini62@gmail.com; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com [Theoretical Condensed Matter Physics Laboratory, Dept. of Physics Feroze Gandhi College, Raebareli-229001 (India)
2014-04-24
We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.
Accelerating Ab Initio Nuclear Physics Calculations with GPUs
Potter, Hugh; Maris, Pieter; Sosonkina, Masha; Vary, James; Binder, Sven; Calci, Angelo; Langhammer, Joachim; Roth, Robert; Çatalyürek, Ümit; Saule, Erik
2014-01-01
This paper describes some applications of GPU acceleration in ab initio nuclear structure calculations. Specifically, we discuss GPU acceleration of the software package MFDn, a parallel nuclear structure eigensolver. We modify the matrix construction stage to run partly on the GPU. On the Titan supercomputer at the Oak Ridge Leadership Computing Facility, this produces a speedup of approximately 2.2x - 2.7x for the matrix construction stage and 1.2x - 1.4x for the entire run.
Ab initio adiabatic and quasidiabatic potential energy surfaces of H++ CN system
Indian Academy of Sciences (India)
Bhargava Anusuri; Sanjay Kumar
2016-02-01
We present restricted geometry (collinear and perpendicular approaches of proton) ab initio three dimensional potential energy surfaces for H++ CN system. The calculations were performed at the internally contracted multi-reference configuration interaction level of theory using Dunning’s correlation consistent polarized valence triple zeta basis set. Adiabatic and quasidiabatic surfaces have been computed for the ground and the first excited electronic states. Nonadiabatic effects arising from radial coupling have been analyzed in terms of nonadiabatic coupling matrix elements and coupling potentials.
Ab Initio Protein Structure Prediction Using Pathway Models
Directory of Open Access Journals (Sweden)
Christopher Bystroff
2006-04-01
Full Text Available Ab initio prediction is the challenging attempt to predict protein structures based only on sequence information and without using templates. It is often divided into two distinct sub-problems: (a the scoring function that can distinguish native, or native-like structures, from non-native ones; and (b the method of searching the conformational space. Currently, there is no reliable scoring function that can always drive a search to the native fold, and there is no general search method that can guarantee a significant sampling of near-natives. Pathway models combine the scoring function and the search. In this short review, we explore some of the ways pathway models are used in folding, in published works since 2001, and present a new pathway model, HMMSTR-CM, that uses a fragment library and a set of nucleation/propagation-based rules. The new method was used for ab initio predictions as part of CASP5. This work was presented at the Winter School in Bioinformatics, Bologna, Italy, 10Ã¢Â€Â“14 February 2003.
Ab initio dynamics of the cytochrome P450 hydroxylation reaction
Energy Technology Data Exchange (ETDEWEB)
Elenewski, Justin E.; Hackett, John C, E-mail: jchackett@vcu.edu [Department of Physiology and Biophysics and The Massey Cancer Center, School of Medicine, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23219-1540 (United States)
2015-02-14
The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.
Unified ab initio approaches to nuclear structure and reactions
Navrátil, Petr; Quaglioni, Sofia; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo
2016-05-01
The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Be {({{p}},γ )}8{{B}} radiative capture. Finally, we highlight our efforts to describe transfer reactions including the 3H{({{d}},{{n}})}4He fusion.
Three-cluster dynamics within an ab initio framework
Quaglioni, S; Navrátil, P
2013-01-01
We introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method (NCSM/RGM). Energy-independent non-local interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schr\\"odinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to an $^4$He+$n+n$ description of $^6$He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the NCSM. Differences between the two calculations provide a measure of core ($^4$He) pola...
AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT
International Nuclear Information System (INIS)
We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grüneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.
Ab initio and kinetic modeling studies of formic acid oxidation
DEFF Research Database (Denmark)
Marshall, Paul; Glarborg, Peter
2015-01-01
A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism ...... as the fate of HOCO, determines the oxidation rate of formic acid. At lower temperatures HO2, formed from HOCO + O2, is an important chain carrier and modeling predictions become sensitive to the HOCHO + HO2 reaction. © 2014 The Combustion Institute.......A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism...... on calculations with the kinetic model. Formic acid is consumed mainly by reaction with OH, yielding OCHO, which dissociates rapidly to CO2 + H, and HOCO, which may dissociate to CO + OH or CO2 + H, or react with H, OH, or O2 to form more stable products. The branching fraction of the HOCHO + OH reaction, as well...
Unified ab initio approaches to nuclear structure and reactions
Navratil, Petr; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo
2016-01-01
The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in {\\em ab initio} nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches - built upon the No-Core Shell Model - that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the $^6$He halo nucleus, of five- and six...
Structural and electronic properties of lead nanowires: Ab-initio study
International Nuclear Information System (INIS)
Highlights: → In the present revised manuscript entitled 'Structural and Electronic Properties of Lead Nanowires: Ab-initio study', we have analyzed the stability, electronic properties as well as ground state properties of various atomic configurations of Lead nanowires. → The two-atom zigzag shaped lead nanowire with highest binding energy and lowest total energy has been confirmed as the most stable structure out of the six atomic configurations taken into consideration. → The electronic band structure and density of states have been described in detail with a remarkable observation in case of three-atom triangular lead nanowire having a very small band gap while other atomic configurations are found to be metallic. → The bulk modulus and pressure derivatives for all the stable geometries have also been computed and discussed in the manuscript. The mechanical strength of nanowires has also been discussed in terms of its bulk modulus. → The two-atom ladder shaped nanowire with highest bulk modulus, defends this structure as mechanically stronger than the other tested structure. - Abstract: Ab-initio self-consistent study has been performed to analyze the stability of lead nanowires in its six stable configurations like linear, zigzag, triangular, ladder, square and dumbbell. In the present study, the lowest energy structures have been analyzed under the revised Perdew-Burke-Ernzerhof (revPBE) parameterization of generalized gradient approximation (GGA) potential. The two-atom zigzag shaped atomic configuration with highest binding energy and lowest total energy has been confirmed as the most stable structure out of the six atomic configurations. The electronic band structure and density of states have been discussed in detail with a remarkable observation in case of three-atom triangular lead nanowire having a very small band gap while other configurations are found to be metallic. Bulk modulus, pressure derivatives and lattice parameters for different
Energy Technology Data Exchange (ETDEWEB)
Liu, Hanchao; Wang, Yimin; Bowman, Joel M. [Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States)
2015-05-21
The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.
All Electron ab initio Investigations of the Electronic States of the MoN Molecule
DEFF Research Database (Denmark)
Shim, Irene; Gingerich, Karl A.
1999-01-01
The low lying electronic states of the molecule MoN have been investigated by performing all electron ab initio multi-configuration self-consistent-field (CASSCF) calculations. The relativistic corrections for the one electron Darwin contact term and the relativistic mass-velocity correction have...... been determined in perturbation calculations. The electronic ground state is confirmed as being 4 . The chemical bond of MoN has triple bond character due to the approximately fully occupied delocalized bonding and orbitals. The spectroscopic constants for the ground state and ten excited states have...... been derived. The excited doublet states, 2 , 2 , 2 , and 2 + are found to be lower lying than the 4 state that has been investigated experimentally. Elaborate multi configuration configuration interaction (MRCI) calculations have been carried out for the states 4 and 4 using various basis sets...
The ab-initio density matrix renormalization group in practice
Energy Technology Data Exchange (ETDEWEB)
Olivares-Amaya, Roberto; Hu, Weifeng; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Nakatani, Naoki [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Catalysis Research Center, Hokkaido University, Kita 21 Nishi 10, Sapporo, Hokkaido 001-0021 (Japan)
2015-01-21
The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.
Ab initio study of the transition-metal carbene cations
Institute of Scientific and Technical Information of China (English)
李吉海; 冯大诚; 冯圣玉
1999-01-01
The geometries and bonding characteristics of the first-row transition-metal carbene cations MCH2+ were investigated by ab initio molecular orbital theory （HF/LANL2DZ）. All of MCH2+ are coplanar. In the closed shell structures the C bonds to M with double bonds; while in the open shell structures the partial double bonds are formed, because one of the σ and π orbitals is singly occupied. It is mainly the π-type overlap between the 2px orbital of C and 4px, 3dxz, orbitals of M+ that forms the π orbitals. The dissociation energies of C—M bond appear in periodic trend from Sc to Cu. Most of the calculated bond dissociation energies are close to the experimental ones.
High-throughput ab-initio dilute solute diffusion database.
Wu, Henry; Mayeshiba, Tam; Morgan, Dane
2016-01-01
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308
Transport coefficients in diamond from ab-initio calculations
Löfâs, Henrik; Grigoriev, Anton; Isberg, Jan; Ahuja, Rajeev
2013-03-01
By combining the Boltzmann transport equation with ab-initio electronic structure calculations, we obtain transport coefficients for boron-doped diamond. We find the temperature dependence of the resistivity and the hall coefficients in good agreement with experimental measurements. Doping in the samples is treated via the rigid band approximation and scattering is treated in the relaxation time approximation. In contrast to previous results, the acoustic phonon scattering is the dominating scattering mechanism for the considered doping range. At room temperature, we find the thermopower, S, in the range 1-1.6 mV/K and the power factor, S2σ, in the range 0.004-0.16 μW /cm K2.
Efficient Ab initio Modeling of Random Multicomponent Alloys.
Jiang, Chao; Uberuaga, Blas P
2016-03-11
We present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multicomponent alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high-entropy alloy chemistries. The SSOS method developed here can be broadly useful for the rapid computational design of multicomponent materials, especially those with a large number of alloying elements, a challenging problem for other approaches. PMID:27015491
Efficient Ab initio Modeling of Random Multicomponent Alloys
Jiang, Chao; Uberuaga, Blas P.
2016-03-01
We present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multicomponent alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high-entropy alloy chemistries. The SSOS method developed here can be broadly useful for the rapid computational design of multicomponent materials, especially those with a large number of alloying elements, a challenging problem for other approaches.
Ab initio electronic structure and optical conductivity of bismuth tellurohalides
Schwalbe, Sebastian; Starke, Ronald; Schober, Giulio A H; Kortus, Jens
2016-01-01
We investigate the electronic structure, dielectric and optical properties of bismuth tellurohalides BiTeX (X = I, Cl, Br) by means of all-electron density functional theory. In particular, we present the ab initio conductivities and dielectric tensors calculated over a wide frequency range, and compare our results with the recent measurements by Akrap et al. , Makhnev et al. , and Rusinov et al. . We show how the low-frequency branch of the optical conductivity can be used to identify characteristic intra- and interband transitions between the Rashba spin-split bands in all three bismuth tellurohalides. We further calculate the refractive indices and dielectric constants, which in turn are systematically compared to previous predictions and measurements. We expect that our quantitative analysis will contribute to the general assessment of bulk Rashba materials for their potential use in spintronics devices.
Ab initio H2O in realistic hydrophilic confinement.
Allolio, Christoph; Klameth, Felix; Vogel, Michael; Sebastiani, Daniel
2014-12-15
A protocol for the ab initio construction of a realistic cylindrical pore in amorphous silica, serving as a geometric nanoscale confinement for liquids and solutions, is presented. Upon filling the pore with liquid water at different densities, the structure and dynamics of the liquid inside the confinement can be characterized. At high density, the pore introduces long-range oscillations into the water density profile, which makes the water structure unlike that of the bulk across the entire pore. The tetrahedral structure of water is also affected up to the second solvation shell of the pore wall. Furthermore, the effects of the confinement on hydrogen bonding and diffusion, resulting in a weakening and distortion of the water structure at the pore walls and a slowdown in diffusion, are characterized. PMID:25208765
Quantum plasmonics: from jellium models to ab initio calculations
Directory of Open Access Journals (Sweden)
Varas Alejandro
2016-08-01
Full Text Available Light-matter interaction in plasmonic nanostructures is often treated within the realm of classical optics. However, recent experimental findings show the need to go beyond the classical models to explain and predict the plasmonic response at the nanoscale. A prototypical system is a nanoparticle dimer, extensively studied using both classical and quantum prescriptions. However, only very recently, fully ab initio time-dependent density functional theory (TDDFT calculations of the optical response of these dimers have been carried out. Here, we review the recent work on the impact of the atomic structure on the optical properties of such systems. We show that TDDFT can be an invaluable tool to simulate the time evolution of plasmonic modes, providing fundamental understanding into the underlying microscopical mechanisms.
Highly anisotropic thermal conductivity of arsenene: An ab initio study
Zeraati, Majid; Vaez Allaei, S. Mehdi; Abdolhosseini Sarsari, I.; Pourfath, Mahdi; Donadio, Davide
2016-02-01
Elemental two-dimensional (2D) materials exhibit intriguing heat transport and phononic properties. Here we have investigated the lattice thermal conductivity of newly proposed arsenene, the 2D honeycomb structure of arsenic, using ab initio calculations. Solving the Boltzmann transport equation for phonons, we predict a highly anisotropic thermal conductivity of 30.4 and 7.8 W/mK along the zigzag and armchair directions, respectively, at room temperature. Our calculations reveal that phonons with mean free paths between 20 nm and 1 μ m provide the main contribution to the large thermal conductivity in the zigzag direction; mean free paths of phonons contributing to heat transport in the armchair directions range between 20 and 100 nm. The obtained anisotropic thermal conductivity and feasibility of synthesis, in addition to high electron mobility reported elsewhere, make arsenene a promising material for nanoelectronic applications and thermal management.
Ab initio methods for electron-molecule collisions
International Nuclear Information System (INIS)
This review concentrates on the recent advances in treating the electronic aspect of the electron-molecule interaction and leaves to other articles the description of the rotational and vibrational motions. Those methods which give the most complete treatment of the direct, exchange, and correlation effects are focused on. Such full treatments are generally necessary at energies below a few Rydbergs (≅ 60 eV). This choice unfortunately necessitates omission of those active and vital areas devoted to the development of model potentials and approximate scattering formulations. The ab initio and model approaches complement each other and are both extremely important to the full explication of the electron-scattering process. Due to the rapid developments of recent years, the approaches that provide the fullest treatment are concentrated on. 81 refs
Ab-initio melting curve and principal Hugoniot of tantalum
International Nuclear Information System (INIS)
We report first principles calculations of the melting curve and principal Hugoniot (P - V curve) of body centered cubic (bcc) tantalum in the pressure range 0-300 GPa. A description of lattice dynamics and thermal properties of bcc Ta using finite temperature density functional theory (DFT) is presented. The approach works within the projector augmented wave (PAW) implementation of DFT and explicitly treats in valence the 5p, 6s and 5d electrons. The principal Hugoniot (P - V curve), obtained using the Rankine-Hugoniot equation, is investigated using the generalized gradient approximations (GGA). Very good agreement with the shock experiments is obtained with GGA in all the range of pressure. We also report the temperature-pressure relation on the shock Hugoniot and the full ab-initio melting curve of Ta
Ab Initio Study of KCl and NaCl Clusters
Brownrigg, Clifton; Hira, Ajit; Pacheco, Jose; Salazar, Justin
2013-03-01
We continue our interest in the theoretical study of molecular clusters to examine the chemical properties of small KnCln and NanCln clusters (n = 2 - 15). The potentially important role of these molecular species in biochemical and medicinal processes is well known. This work applies the hybrid ab initio methods of quantum chemistry to derive the different alkali-halide (MnHn) geometries. Of particular interest is the competition between hexagonal ring geometries and rock salt structures. Electronic energies, rotational constants, dipole moments, and vibrational frequencies for these geometries are calculated. Magic numbers for cluster stability are identified and are related to the property of cluster compactness. Mapping of the singlet, triplet, and quintet, potential energy surfaces is performed. Calculations have been performed to examine the interactions of these clusters with some atoms and molecules of biological interest, including O, O2, and Fe. The potential for design of new medicinal drugs is explored.
Ab initio electronic stopping power of protons in bulk materials
Shukri, Abdullah Atef; Bruneval, Fabien; Reining, Lucia
2016-01-01
The electronic stopping power is a crucial quantity for ion irradiation: it governs the deposited heat, the damage profile, and the implantation depth. Whereas experimental data are readily available for elemental solids, the data are much more scarce for compounds. Here we develop a fully ab initio computational scheme based on linear response time-dependent density-functional theory to predict the random electronic stopping power (RESP) of materials without any empirical fitting. We show that the calculated RESP compares well with experimental data, when at full convergence, with the inclusion of the core states and of the exchange correlation. We evaluate the unexpectedly limited magnitude of the nonlinear terms in the RESP by comparing with other approaches based on the time propagation of time-dependent density-functional theory. Finally, we check the validity of a few empirical rules of thumbs that are commonly used to estimate the electronic stopping power.
Ab initio study of II-(VI){sub 2} dichalcogenides
Energy Technology Data Exchange (ETDEWEB)
Olsson, P; Vidal, J; Lincot, D, E-mail: polsson@kth.se [Institut de R and D sur l' energie photovoltaique (IRDEP), UMR 7174-EDF-CNRS-ENSCP, 6 quai Watier, 78401 Chatou Cedex (France)
2011-10-12
The structural stabilities of the (Zn,Cd)(S,Se,Te){sub 2} dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe{sub 2} pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications. (paper)
Ab initio Potential Energy Surface for H-H2
Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene
1993-01-01
Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.
Ab initio investigation of the mechanical properties of copper
Institute of Scientific and Technical Information of China (English)
Liu Yue-Lin; Gui Li-Jiang; Jin Shuo
2012-01-01
Employing the ab initio total energy method based on the density functional theory with the generalized gradient approximation,we have systematically investigated the theoretical mechanical properties of copper (Cu).The theoretical tensile strengths are calculated to be 25.3 GPa,5.9 GPa,and 37.6 GPa for the fcc Cu single crystal in the [001],[110],and [111] directions,respectively.Among the three directions,the [110] direction is the weakest one due to the occurrence of structure transition at the lower strain and the weakest interaction of atoms between the (110) planes,while the [111] direction is the strongest direction because of the strongest interaction of atoms between the (111) planes.In terms of the elastic constants of Cu single crystal,we also estimate some mechanical quantities of polycrystalline Cu,including bulk modulus B,shear modulus G,Young's modulus Ep,and Poisson's ratio v.
Ab Initio Prediction of 29Si-NMR Chemical Shifts
Institute of Scientific and Technical Information of China (English)
CHU Shidong; LI Yingxia; SONG Ni; GUAN Huashi
2002-01-01
The ability of several ab initio models to predict experimental 29Si-NMR chemical shift is examined. The shielding values of trimethylsilyl chloride (A), t-butyldimethylsilyl chloride (B) and allyltrimethylsilane (C) are calculated by GIAO, CSGT and IGAIM methods, using HF/6-31G*, B3LYP/6-31G*, HF/6-311+G**, B3LYP/6-311+G** and MPWlPW91/6-311+G** models respectively. The 29Si chemical shifts calculated by GIAO method using HF/6-311+G**model are highly in agreement with those obtained experimentally. All of the models above reproduce the trends of chemical shifts in all cases studied, suggesting that the models are of practical value.
Ab initio engineering of materials with stacked hexagonal tin frameworks
Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.
2016-01-01
The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator. PMID:27387140
Ab initio Molecular Dynamics Study on Small Carbon Nanotubes
Institute of Scientific and Technical Information of China (English)
叶林晖; 刘邦贵; 王鼎盛
2001-01-01
Ab initio molecular dynamics simulations are performed on small single wall nanotubes. By structural relaxation,the equilibrium C-C bond lengths and bond angles are determined. Our result shows that for both zigzag and armchair nanotubes there are two nonequivalent bond lengths. One bond stretches from that of the graphene sheet, while the other shrinks. Small variations on bond angles are also shown. Energy bands are calculated for the optimized structures. It is found that the intrinsic curvature of the very small nanotube greatly modifies the energy band which can no longer be well described in the tight-binding zone-folding picture. In our calculation very small nanotubes are metallic. The energy per atom fits quite well with the relation of E(R) = E0 + f/R2 even for the extreme small radius. The implications of the results on the properties of small nanotubes are discussed.
Ab Initio Potential Curve for ArH＋%ArH＋势能曲线的从头计算
Institute of Scientific and Technical Information of China (English)
王胜龙; 屈军艳; 郭锐; 赵新生
2001-01-01
The molecular parameters of ArH＋ have been calculated with different quantum chemistry methods and basis sets.Based on the data from QCISD/Aug cc pVTZ ab initio calculation for different configurations of ArH＋ and the experimental data,an accurate potential curve for ArH＋ has been constructed.The molecular properties,such as dissociation energy,equilibrium bond length,and vibrational energy levels,can be accurately reproduced.
Ab initio study of the low-lying electronic states of the CaO molecule
International Nuclear Information System (INIS)
Graphical abstract: Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure of the low-lying electronic states of the CaO molecule. The computations are done using the aug-cc-pV5Z basis set for O and the cc-pCV5Z for Ca. The potential energy curves for the molecular states correlating to the lowest three asymptotes are calculated at the CASSCF level. The potential curves of the lowest five molecular states, X1Σ+, a3Π, A'1Π, b3Σ+ and A1Σ+, and the corresponding dipole moment functions have been determined using internally contracted multi-reference configuration interaction approaches. The spectroscopic constants associated with these electronic states are compared to experimental values. The corresponding electronic wavefunctions have also been analyzed using the dipole moment functions. Display Omitted Highlights: → The five lowest electronic states of Cao have been determined ab initio at a high level of accuracy. → Large active space, core-valence correlation and configuration interaction are required. → The multi-configurational nature of the electronic ground state is confirmed as well as its monovalent and divalent ionic nature using dipole moment analysis. → These interacting potentials will serve for future obtention of spin-rovibronic levels. - Abstract: Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure of the low-lying electronic states of the CaO molecule. The computations are done using the aug-cc-pV5Z basis set for O and the cc-pCV5Z for Ca. The potential energy curves for the molecular states correlating to the lowest three asymptotes are calculated at the CASSCF level. The potential curves of the lowest five molecular states, X1Σ+, a3Π, A'1Π, b3Σ+ and A1Σ+, and the corresponding dipole moment functions have been determined using internally contracted multi-reference configuration interaction approaches
Ab initio study of the low-lying electronic states of the CaO molecule
Energy Technology Data Exchange (ETDEWEB)
Khalil, Hossain; Brites, Vincent; Quere, Frederic Le [Universite Paris-Est, Laboratoire de Modelisation et Simulation Multi Echelle, UMR 8208 CNRS, Batiment Lavoisier, 5 boulevard Descartes, Champs sur Marne, 77454 Marne-la-Vallee, Cedex 2 (France); Leonard, Celine, E-mail: celine.leonard@univ-paris-est.fr [Universite Paris-Est, Laboratoire de Modelisation et Simulation Multi Echelle, UMR 8208 CNRS, Batiment Lavoisier, 5 boulevard Descartes, Champs sur Marne, 77454 Marne-la-Vallee, Cedex 2 (France)
2011-07-28
Graphical abstract: Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure of the low-lying electronic states of the CaO molecule. The computations are done using the aug-cc-pV5Z basis set for O and the cc-pCV5Z for Ca. The potential energy curves for the molecular states correlating to the lowest three asymptotes are calculated at the CASSCF level. The potential curves of the lowest five molecular states, X{sup 1}{Sigma}{sup +}, a{sup 3}{Pi}, A'{sup 1{Pi}}, b{sup 3}{Sigma}{sup +} and A{sup 1}{Sigma}{sup +}, and the corresponding dipole moment functions have been determined using internally contracted multi-reference configuration interaction approaches. The spectroscopic constants associated with these electronic states are compared to experimental values. The corresponding electronic wavefunctions have also been analyzed using the dipole moment functions. Display Omitted Highlights: {yields} The five lowest electronic states of Cao have been determined ab initio at a high level of accuracy. {yields} Large active space, core-valence correlation and configuration interaction are required. {yields} The multi-configurational nature of the electronic ground state is confirmed as well as its monovalent and divalent ionic nature using dipole moment analysis. {yields} These interacting potentials will serve for future obtention of spin-rovibronic levels. - Abstract: Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure of the low-lying electronic states of the CaO molecule. The computations are done using the aug-cc-pV5Z basis set for O and the cc-pCV5Z for Ca. The potential energy curves for the molecular states correlating to the lowest three asymptotes are calculated at the CASSCF level. The potential curves of the lowest five molecular states, X{sup 1}{Sigma}{sup +}, a{sup 3}{Pi}, A'{sup 1}{Pi}, b{sup 3}{Sigma}{sup +} and A{sup 1
Ab initio quantum chemistry in parallel-portable tools and applications
International Nuclear Information System (INIS)
In common with many of the computational sciences, ab initio chemistry faces computational constraints to which a partial solution is offered by the prospect of highly parallel computers. Ab initio codes are large and complex (O(105) lines of FORTRAN), representing a significant investment of communal effort. The often conflicting requirements of portability and efficiency have been successfully resolved on vector computers by reliance on matrix oriented kernels. This proves inadequate even upon closely-coupled shared-memory parallel machines. We examine the algorithms employed during a typical sequence of calculations. Then we investigate how efficient portable parallel implementations may be derived, including the complex multi-reference singles and doubles configuration interaction algorithm. A portable toolkit, modeled after the Intel iPSC and the ANL-ACRF PARMACS, is developed, using shared memory and TCP/IP sockets. The toolkit is used as an initial platform for programs portable between LANS, Crays and true distributed-memory MIMD machines. Timings are presented. 53 refs., 4 tabs
Ab initio quantum chemistry in parallel-portable tools and applications
Energy Technology Data Exchange (ETDEWEB)
Harrison, R.J.; Shepard, R. (Argonne National Lab., IL (United States)); Kendall, R.A. (Battelle Pacific Northwest Lab., Richland, WA (United States))
1991-01-01
In common with many of the computational sciences, ab initio chemistry faces computational constraints to which a partial solution is offered by the prospect of highly parallel computers. Ab initio codes are large and complex (O(10{sup 5}) lines of FORTRAN), representing a significant investment of communal effort. The often conflicting requirements of portability and efficiency have been successfully resolved on vector computers by reliance on matrix oriented kernels. This proves inadequate even upon closely-coupled shared-memory parallel machines. We examine the algorithms employed during a typical sequence of calculations. Then we investigate how efficient portable parallel implementations may be derived, including the complex multi-reference singles and doubles configuration interaction algorithm. A portable toolkit, modeled after the Intel iPSC and the ANL-ACRF PARMACS, is developed, using shared memory and TCP/IP sockets. The toolkit is used as an initial platform for programs portable between LANS, Crays and true distributed-memory MIMD machines. Timings are presented. 53 refs., 4 tabs.
Hydrogen adsorption on boron doped graphene: an {\\it ab initio} study
Miwa, R. H.; Martins, T B; Fazzio, A.
2007-01-01
The electronic and structural properties of (i) boron doped graphene sheets, and (ii) the chemisorption processes of hydrogen adatoms on the boron doped graphene sheets have been examined by {\\it ab initio} total energy calculations.
DEFF Research Database (Denmark)
Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.;
2014-01-01
Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom....
Ab initio simulations of pseudomorphic silicene and germanene bidimensional heterostructures
Debernardi, Alberto; Marchetti, Luigi
2016-06-01
Among the novel two-dimensional (2D) materials, silicene and germanene, which are two honeycomb crystal structures composed of a monolayer of Si and Ge, respectively, have attracted the attention of material scientists because they combine the advantages of the new 2D ultimate-scaled electronics with their compatibility with industrial processes presently based on Si and Ge. We envisage pseudomorphic lateral heterostructures based on ribbons of silicene and germanene, which are the 2D analogs of conventional 3D Si/Ge superlattices and quantum wells. In spite of the considerable lattice mismatch (˜4 % ) between free-standing silicene and germanene, our ab initio simulations predict that, considering striped 2D lateral heterostructures made by alternating silicene and germanene ribbons of constant width, the silicene/germanene junction remains pseudomorphic—i.e., it maintains lattice-matched edges—up to critical ribbon widths that can reach some tens of nanometers. Such critical widths are one order of magnitude larger than the critical thickness measured in 3D pseudomorphic Si/Ge heterostructures and the resolution of state-of-the-art lithography, thus enabling the possibility of lithography patterned silicene/germanene junctions. We computed how the strain produced by the pseudomorphic growth modifies the crystal structure and electronic bands of the ribbons, providing a mechanism for band-structure engineering. Our results pave the way for lithography patterned lateral heterostructures that can serve as the building blocks of novel 2D electronics.
Ab initio studies of phoshorene island single electron transistor.
Ray, S J; Venkata Kamalakar, M; Chowdhury, R
2016-05-18
Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications. PMID:27093536
Ab initio studies of phosphorene island single electron transistor
Ray, S. J.; Venkata Kamalakar, M.; Chowdhury, R.
2016-05-01
Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications.
Accurate ab initio vibrational energies of methyl chloride
Energy Technology Data Exchange (ETDEWEB)
Owens, Alec, E-mail: owens@mpi-muelheim.mpg.de [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany); Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London (United Kingdom); Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan [Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London (United Kingdom); Thiel, Walter [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)
2015-06-28
Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup HL}, and CBS-37{sup HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup HL} and CBS-37{sup HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.
Rational design of electrolyte components by ab initio calculations
Energy Technology Data Exchange (ETDEWEB)
Johansson, Patrik; Jacobsson, Per [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)
2006-02-28
This paper is a small review of the use of computer simulations and especially the use of standard quantum-mechanical ab initio electronic structure calculations to rationally design and investigate different choices of chemicals/systems for lithium battery electrolytes. Covered systems and strategies to enhance the performance of electrolytes will range from assisting the interpretation of vibrational spectroscopy experiments over development of potentials for molecular dynamics simulations, to the design of new lithium salts and the lithium ion coordination in liquid, polymer, and gel polymer electrolytes. Examples of studied properties include the vibrational spectra of anions and ion pairs to characterize the nature and extent of the interactions present, the lithium ion affinities of anions, important for the salt solvation and the ability to provide a high concentration of charge carriers, the HOMO energies of the anions to estimate the stability versus oxidation, the anion volumes that correlate to the anion mobility, the lithium ion coordination and dynamics to reveal the limiting steps of lithium ion transport, etc. (author)
Volumic omit maps in ab initio dual-space phasing.
Oszlányi, Gábor; Sütő, András
2016-07-01
Alternating-projection-type dual-space algorithms have a clear construction, but are susceptible to stagnation and, thus, inefficient for solving the phase problem ab initio. To improve this behaviour new omit maps are introduced, which are real-space perturbations applied periodically during the iteration process. The omit maps are called volumic, because they delete some predetermined subvolume of the unit cell without searching for atomic regions or analysing the electron density in any other way. The basic algorithms of positivity, histogram matching and low-density elimination are tested by their solution statistics. It is concluded that, while all these algorithms based on weak constraints are practically useless in their pure forms, appropriate volumic omit maps can transform them to practically useful methods. In addition, the efficiency of the already useful reflector-type charge-flipping algorithm can be further improved. It is important that these results are obtained by using non-sharpened structure factors and without any weighting scheme or reciprocal-space perturbation. The mathematical background of volumic omit maps and their expected applications are also discussed. PMID:27357850
Ab-initio calculations for dilute magnetic semiconductors
Energy Technology Data Exchange (ETDEWEB)
Belhadji, Brahim
2008-03-03
This thesis focusses on ab-initio calculations for the electronic structure and the magnetic properties of dilute magnetic semiconductors (DMS). In particular we aim at the understanding of the complex exchange interactions in these systems. Our calculations are based on density functional theory, being ideally suited for a description of the material specific properties of the considered DMS. Moreover we use the KKR Green function method in connection with the coherent potential approximation (CPA), which allows to include the random substitutional disorder in a mean field-like approximation for the electronic structure. Finally we calculate the exchange coupling constants J{sub ij} between two impurities in a CPA medium by using the Lichtenstein formula and from this calculate the Curie temperature by a numerically exact Monte Carlo method. Based on this analysis we found and investigated four different exchange mechanisms being of importance in DMS systems: Double exchange, p-d exchange, antiferromagnetic superexchanges, and ferromagnetic superexchange. A second topic we have investigated in this thesis is the pressure dependence of the exchange interactions and the Curie temperatures in (Ga,Mn)As and (In,Mn)As, using the LDA and the LDA+U approximations. Exact calculations of T{sub C} by Monte Carlo simulations show a somehow different behavior. (orig.)
Ab initio transport across bismuth selenide surface barriers
Narayan, Awadhesh
2014-11-24
© 2014 American Physical Society. We investigate the effect of potential barriers in the form of step edges on the scattering properties of Bi2Se3(111) topological surface states by means of large-scale ab initio transport simulations. Our results demonstrate the suppression of perfect backscattering, while all other scattering processes, which do not entail a complete spin and momentum reversal, are allowed. Furthermore, we find that the spin of the surface state develops an out-of-plane component as it traverses the barrier. Our calculations reveal the existence of quasibound states in the vicinity of the surface barriers, which appear in the form of an enhanced density of states in the energy window corresponding to the topological state. For double barriers we demonstrate the formation of quantum well states. To complement our first-principles results we construct a two-dimensional low-energy effective model and illustrate its shortcomings. Our findings are discussed in the context of a number of recent experimental works.
Engineering Room-temperature Superconductors Via ab-initio Calculations
Gulian, Mamikon; Melkonyan, Gurgen; Gulian, Armen
The BCS, or bosonic model of superconductivity, as Little and Ginzburg have first argued, can bring in superconductivity at room temperatures in the case of high-enough frequency of bosonic mode. It was further elucidated by Kirzhnitset al., that the condition for existence of high-temperature superconductivity is closely related to negative values of the real part of the dielectric function at finite values of the reciprocal lattice vectors. In view of these findings, the task is to calculate the dielectric function for real materials. Then the poles of this function will indicate the existence of bosonic excitations which can serve as a "glue" for Cooper pairing, and if the frequency is high enough, and the dielectric matrix is simultaneously negative, this material is a good candidate for very high-Tc superconductivity. Thus, our approach is to elaborate a methodology of ab-initio calculation of the dielectric function of various materials, and then point out appropriate candidates. We used the powerful codes (TDDF with the DP package in conjunction with ABINIT) for computing dielectric responses at finite values of the wave vectors in the reciprocal lattice space. Though our report is concerned with the particular problem of superconductivity, the application range of the data processing methodology is much wider. The ability to compute the dielectric function of existing and still non-existing (though being predicted!) materials will have many more repercussions not only in fundamental sciences but also in technology and industry.
The Hydration Structure of Carbon Monoxide by Ab Initio Methods
Awoonor-Williams, Ernest
2016-01-01
The solvation of carbon monoxide (CO) in liquid water is important for understanding its toxicological effects and biochemical roles. In this paper, we use ab initio molecular dynamics (AIMD) and CCSD(T)-F12 calculations to assess the accuracy of the Straub and Karplus molecular mechanical (MM) model for CO(aq). The CCSD(T)-F12 CO--H2O potential energy surfaces show that the most stable structure corresponds to water donating a hydrogen bond to the C center. The MM-calculated surface it incorrectly predicts that the O atom is a stronger hydrogen bond acceptor than the C atom. The AIMD simulations indicate that CO is solvated like a hydrophobic solute, with very limited hydrogen bonding with water. The MM model tends to overestimate the degree of hydrogen bonding and overestimates the atomic radius of the C atom. The calculated Gibbs energy of hydration is in good agreement with experiment (9.3 kJ/mol calc. vs 10.7 kJ/mol exptl.). The calculated diffusivity of CO(aq) in TIP3P-model water was 5.19 x 10-5 cm2/s ...
Ab-initio study of germanium di-interstitial using a hybrid functional (HSE)
Igumbor, E.; Ouma, C. N. M.; Webb, G.; Meyer, W. E.
2016-01-01
In this work, we present ab-initio calculation results of Ge di-interstitials (I2(Ge)) in the framework of the density functional theory (DFT) using the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional. The formation energy, transition levels and minimum energy configurations were obtained for I2(Ge) -2, -1, 0, +1 and +2 charge states. The calculated formation energies show that for all charge states of I2(Ge), the double tetrahedral (T) configuration formed the most stable defect with a binding energy of 1.24 eV in the neutral state. We found the (+2/+1) charge state transition level for the T lying below the conduction band minimum and (+2/+1) for the split[110]-tetrahedral configuration lying deep at 0.41 eV above the valence band maximum. The di-interstitials in Ge exhibited the properties of both shallow and deep donor levels at (+2/+1) within the band gap and depending on the configurations. I2(Ge) gave rise to negative-U, with effective-U values of -0.61 and -1.6 eV in different configurations. We have compared our results with calculations of di-interstitials in silicon and available experimental data.
An ab initio Non-Equilibrium Green Function Approach to Charge Transport: Dithiolethine
Institute of Scientific and Technical Information of China (English)
Alexander Schnurpfeil; SONG Bo; Martin Albrecht
2006-01-01
@@ We present a novel ab initio non-equilibrium approach to calculate the current across a molecular junction. The method rests on a wavefunction-based full ab initio description of the central region of the junction combined with a tight binding approximation for the electrodes in the frame of the Keldysh Green function formalism. Our procedure is demonstrated for a dithiolethine molecule located between silver electrodes. The main conducting channel is identified and the full current-voltage characteristic is calculated.
Ab initio no-core properties of 7Li and 7Be with JISP16 and NNLO_opt interactions
Heng, Taihua; Maris, Pieter
2016-01-01
We investigate the properties of 7Li with the JISP16 and chiral NNLO_opt nucleon-nucleon interactions and 7Be with the JISP16 interaction in the ab initio no-core full configuration (NCFC) approach. We calculate selected observables that include energy spectra, point proton root-mean-square radii, electromagnetic moments and transitions. We compare our results with experimental results, where available, as well as with results obtained using nucleon-nucleon plus three-nucleon interactions. We obtain reasonable agreement between theory and experiment for low-lying states that are dominated by p-shell configurations.
DEFF Research Database (Denmark)
Shim, Irene; Gingerich, K. A.
2000-01-01
The three lowest-lying electronic states of RuC, (1)Sigma(+), (3)Delta, and (1)Delta, have been investigated by performing all-electron ab initio multi-configuration self-consistent-field (CASSCF) and multi-reference configuration interaction (MRCI) calculations including relativistic corrections....... The electronic ground state is derived as (1)Sigma(+) with the spectroscopic constants r(e) = 1.616 Angstrom and omega(e) = 1085 cm(-1). The lowest-lying excited state, (3)Delta, has r(e) = 1.632 Angstrom, omega(e) = 1063 cm(-1), and T-e = 912 cm(-1). These results are consistent with recent spectroscopic values...
Ab initio intermolecular potential energy surface and thermophysical properties of nitrous oxide
International Nuclear Information System (INIS)
We present an analytical intermolecular potential energy surface (PES) for two rigid nitrous oxide (N2O) molecules derived from high-level quantum-chemical ab initio calculations. Interaction energies for 2018 N2O–N2O configurations were computed utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. A site-site potential function with seven sites per N2O molecule was fitted to the pair interaction energies. We validated our PES by computing the second virial coefficient as well as shear viscosity and thermal conductivity in the dilute-gas limit. The values of these properties are substantiated by the best experimental data
Energy Technology Data Exchange (ETDEWEB)
Lister, C.J. [Department of Physics, University of Massachusetts, Lowell, Lowell MA 01854 (United States); McCutchan, E.A. [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)
2014-06-15
A new generation of ab-initio calculations, based on realistic two- and three-body forces, is having a profound impact on our view of how nuclei work. To improve the numerical methods, and the parameterization of 3-body forces, new precise data are needed. Electromagnetic transitions are very sensitive to the dynamics which drive mixing between configurations. We have made a series of precise (< 3%) measurements of electromagnetic transitions in the A=10 nuclei {sup 10}C and {sup 10}Be by using the Doppler Shift Attenuation method carefully. Many interesting features can be reproduced including the strong α clustering. New measurements on {sup 8}Be and {sup 12}Be highlight the interplay between the alpha clusters and their valence neutrons.
Makhov, Dmitry V; Saita, Kenichiro; Martinez, Todd J; Shalashilin, Dmitrii V
2015-02-01
We report a detailed computational simulation of the photodissociation of pyrrole using the ab initio Multiple Cloning (AIMC) method implemented within MOLPRO. The efficiency of the AIMC implementation, employing train basis sets, linear approximation for matrix elements, and Ehrenfest configuration cloning, allows us to accumulate significant statistics. We calculate and analyze the total kinetic energy release (TKER) spectrum and Velocity Map Imaging (VMI) of pyrrole and compare the results directly with experimental measurements. Both the TKER spectrum and the structure of the velocity map image (VMI) are well reproduced. Previously, it has been assumed that the isotropic component of the VMI arises from long time statistical dissociation. Instead, our simulations suggest that ultrafast dynamics contributes significantly to both low and high energy portions of the TKER spectrum. PMID:25523235
Casolo, S; Tantardini, G F; Martinazzo, R
2016-07-14
We studied Eley-Rideal molecular hydrogen formation on graphite using ab initio molecular dynamics, in the energy range relevant for the chemistry of the interstellar medium and for terrestrial experiments employing cold plasma (0.02-1 eV). We found substantial projectile steering effects that prevent dimer formation at low energies, thereby ruling out any catalytic synthetic pathways that form hydrogen molecules. Ortho and para dimers do form efficiently thanks to preferential sticking, but only at energies that are too high to be relevant for the chemistry of the interstellar medium. Computed reaction cross sections and ro-vibrational product populations are in good agreement with available experimental data and capable of generating adsorbate configurations similar to those observed with scanning tunneling microscopy techniques. PMID:26905385
Gao, Haiyuan; Li, Meijiao; Guo, Zhendong; Chen, Hongshen; Jin, Zhonghe; Yu, Bin
2011-01-01
Electronic transport properties of monolayer graphene with extreme physical bending up to 90o angle are studied using ab Initio first-principle calculations. The importance of key structural parameters including step height, curvature radius and bending angle are discussed how they modify the transport properties of the deformed graphene sheet comparing to the corresponding flat ones. The local density of state reveals that energy state modification caused by the physical bending is highly localized. It is observed that the transport properties of bent graphene with a wide range of geometrical configurations are insensitive to the structural deformation in the low-energy transmission spectra, even in the extreme case of bending. The results support that graphene, with its superb electromechanical robustness, could serve as a viable material platform in a spectrum of applications such as photovoltaics, flexible electronics, OLED, and 3D electronic chips.
An Ab-Initio Calculation of Raman Spectra of Binary Sodium Silicates
Institute of Scientific and Technical Information of China (English)
尤静林; 蒋国昌; 侯怀宇; 陈辉; 吴永全; 徐匡迪
2004-01-01
Raman spectra of binary sodium silicates are calculated by self-consistent field (SCF) molecular orbital ab initio calculation of the quantum chemical method with several poly silicon-oxygen tetrahedral model clusters when both the basis sets of 6-31 G and 6-31 G(d) are applied. The symmetric stretching vibrational frequency of non-bridging oxygen in a high frequency range and its Raman optical activity and scattering cross section are deduced and analysed. The correlation between this vibrational Raman shift and its microscopic environment of the silicon-oxygen tetrahedron is found based on interior stress of configuration, which depends on the connecting topology of adjacent silicon-oxygen tetrahedra (SiOT). A newly established empirical stress index of tetrahedron is introduced to elucidate the above relationship.
An ab initio potential energy surface and vibrational energy levels of HXeBr
Institute of Scientific and Technical Information of China (English)
Zheng Guo Huang; En Cui Yang; Dai Qian Xie
2008-01-01
A three-dimensional global potential energy surface for the electronic ground state of HXeBr molecule is constructed from morethan 4200 ab initio points. These points are generated using an internally contracted multi-reference configuration interactionmethod with the Davidson correction (icMRCI + Q) and large basis sets. The stabilities and dissociation barriers are identified fromthe potential energy surfaces. The three-body dissociation channel is found to be the dominate dissociation channel for HXeBr.Based on the obtained potentials, low-lying vibrational energy levels of HXeBr calculated using the Lanczos algorithm is found tobe in good agreement with the available experimental band origins.2008 Zheng Guo Huang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
Ab initio theory for current-induced molecular switching: Melamine on Cu(001)
Ohto, Tatsuhiko
2013-05-28
Melamine on Cu(001) is mechanically unstable under the current of a scanning tunneling microscope tip and can switch among configurations. However, these are not equally accessible, and the switching critical current depends on the bias polarity. In order to explain such rich phenomenology, we have developed a scheme to evaluate the evolution of the reaction paths and activation barriers as a function of bias, which is rooted in the nonequilibrium Green\\'s function method implemented within density functional theory. This, combined with the calculation of the inelastic electron tunneling spectroscopy signal, allows us to identify the vibrational modes promoting the observed molecular conformational changes. Finally, once our ab initio results are used within a resonance model, we are able to explain the details of the switching behavior, such as its dependence on the bias polarity, and the noninteger power relation between the reaction rate constants and both the bias voltage and the electric current. © 2013 American Physical Society.
DEFF Research Database (Denmark)
Shim, Irene; Kingcade, Joseph E. , Jr.; Gingerich, Karl A.
1986-01-01
In the present work we present all-electron ab initio Hartree–Fock (HF) and configuration interaction (CI) calculations of six electronic states of the PdGe molecule. The molecule is predicted to have a 3Pi ground state and two low-lying excited states 3Sigma− and 1Sigma+. The electronic structure...
Ab initio no-core shell model with continuum
Navratil, Petr
2008-04-01
The ab initio no-core shell model (NCSM) is a many-body approach to nuclear structure of light nuclei. The NCSM adopts an effective interaction theory to transform fundamental inter-nucleon interactions into effective interactions for a specified nucleus in a selected harmonic oscillator basis space [1]. The method is capable of predicting nuclear structure from inter-nucleon forces derived from quantum chromodynamics by means of chiral effective field theory [2]. NCSM extensions to the microscopic description of nuclear reactions are now under development. In my talk, I will first discuss our recent calculations of the ^4He total photo-absorption cross section using two- and three-nucleon interactions from chiral effective field theory [3]. I will then outline our effort to augment the NCSM by the resonating group method (RGM) technique to develop a new method capable of describing simultaneously both bound states and nuclear reactions on light nuclei [4]. This approach, which preserves translational symmetry and the Pauli principle, will allow us to calculate cross sections of reactions important for astrophysics and describe weakly-bound systems from first principles. I will present our first phase shift results for neutron scattering off ^3H, ^4He and ^7Li and proton scattering off ^3He, ^4He and ^7Be using realistic nucleon-nucleon potentials. 3mm [1] P. Navr'atil, J. P. Vary and B. R. Barrett, Phys. Rev. C 62, 054311 (2000). [2] P. Navr'atil and V. G. Gueorguiev and J. P. Vary, W. E. Ormand and A. Nogga, Phys. Rev. Lett. 99, 042501 (2007). [3] S. Quaglioni and P. Navr'atil, Phys. Lett. B 652, 370 (2007). [4] S. Quaglioni and P. Navr'atil, arXiv:0712.0855.
Lithium Insertion In Silicon Nanowires: An ab Initio Study
Zhang, Qianfan
2010-09-08
The ultrahigh specific lithium ion storage capacity of Si nanowires (SiNWs) has been demonstrated recently and has opened up exciting opportunities for energy storage. However, a systematic theoretical study on lithium insertion in SiNWs remains a challenge, and as a result, understanding of the fundamental interaction and microscopic dynamics during lithium insertion is still lacking. This paper focuses on the study of single Li atom insertion into SiNWs with different sizes and axis orientations by using full ab initio calculations. We show that the binding energy of interstitial Li increases as the SiNW diameter grows. The binding energies at different insertion sites, which can be classified as surface, intermediate, and core sites, are quite different. We find that surface sites are energetically the most favorable insertion positions and that intermediate sites are the most unfavorable insertion positions. Compared with the other growth directions, the [110] SiNWs with different diameters always present the highest binding energies on various insertion locations, which indicates that [110] SiNWs are more favorable by Li doping. Furthermore, we study Li diffusion inside SiNWs. The results show that the Li surface diffusion has a much higher chance to occur than the surface to core diffusion, which is consistent with the experimental observation that the Li insertion in SiNWs is layer by layer from surface to inner region. After overcoming a large barrier crossing surface-to-intermediate region, the diffusion toward center has a higher possibility to occur than the inverse process. © 2010 American Chemical Society.
An investigation of ab initio shell-model interactions derived by no-core shell model
Wang, XiaoBao; Dong, GuoXiang; Li, QingFeng; Shen, CaiWan; Yu, ShaoYing
2016-09-01
The microscopic shell-model effective interactions are mainly based on the many-body perturbation theory (MBPT), the first work of which can be traced to Brown and Kuo's first attempt in 1966, derived from the Hamada-Johnston nucleon-nucleon potential. However, the convergence of the MBPT is still unclear. On the other hand, ab initio theories, such as Green's function Monte Carlo (GFMC), no-core shell model (NCSM), and coupled-cluster theory with single and double excitations (CCSD), have made many progress in recent years. However, due to the increasing demanding of computing resources, these ab initio applications are usually limited to nuclei with mass up to A = 16. Recently, people have realized the ab initio construction of valence-space effective interactions, which is obtained through a second-time renormalization, or to be more exactly, projecting the full-manybody Hamiltonian into core, one-body, and two-body cluster parts. In this paper, we present the investigation of such ab initio shell-model interactions, by the recent derived sd-shell effective interactions based on effective J-matrix Inverse Scattering Potential (JISP) and chiral effective-field theory (EFT) through NCSM. In this work, we have seen the similarity between the ab initio shellmodel interactions and the interactions obtained by MBPT or by empirical fitting. Without the inclusion of three-body (3-bd) force, the ab initio shell-model interactions still share similar defects with the microscopic interactions by MBPT, i.e., T = 1 channel is more attractive while T = 0 channel is more repulsive than empirical interactions. The progress to include more many-body correlations and 3-bd force is still badly needed, to see whether such efforts of ab initio shell-model interactions can reach similar precision as the interactions fitted to experimental data.
Polyansky, Oleg L.; Ovsyannikov, Roman I.; Kyuberis, Aleksandra A.; Lodi, Lorenzo; Tennyson, Jonathan; Yachmenev, Andrey; Yurchenko, Sergei N.; Zobov, Nikolai F.
2016-09-01
An ab initio potential energy surface (PES) for gas-phase ammonia NH3 has been computed using the methodology pioneered for water (Polyansky et al., 2013). Multireference configuration interaction calculations are performed at about 50 000 points using the aug-cc-pCVQZ and aug-cc-pCV5Z basis sets and basis set extrapolation. Relativistic and adiabatic surfaces are also computed. The points are fitted to a suitable analytical form, producing the most accurate ab initio PES for this molecule available. The rotation-vibration energy levels are computed using nuclear motion program TROVE in both linearised and curvilinear coordinates. Better convergence is obtained using curvilinear coordinates. Our results are used to assign the visible spectrum of 14NH3 recorded by Coy and Lehmann (1986). Rotation-vibration energy levels for the isotopologues NH2D, NHD2, ND3 and 15NH3 are also given. An ab initio value for the dissociation energy D0 of 14NH3 is also presented.
An ab initio study of plutonium oxides surfaces; Etude ab initio des surfaces d'oxydes de Pu
Energy Technology Data Exchange (ETDEWEB)
Jomard, G.; Bottin, F.; Amadon, B
2007-07-01
By means of first-principles calculations, we have studied the atomic structure as well as the thermodynamic stability of various plutonium dioxide surfaces in function of their environment (in terms of oxygen partial pressure and temperature). All these simulations have been performed with the ABINIT code. It is well known that DFT fails to describe correctly plutonium-based materials since 5f electrons in such systems are strongly correlated. In order to go beyond DFT, we have treated PuO{sub 2} and {beta}-Pu{sub 2}O{sub 3} in a DFT+U framework. We show that the couple of parameters (U,J) that works well for pure Pu is also well designed for describing ground state (GS) properties of these two oxides. The major improvement with respect with DFT is that we are able to predict an insulating GS in agreement with experiments. The presence of a gap in the DOS (Density of States) of plutonium oxides should play a significant role in the predicted surface reactivity. However, performing DFT+U calculations on surfaces of plutonium oxide from scratch was too ambitious. That is why we decided, as a first step, to study the stability of the (100), (110) and (111) surfaces of PuO{sub 2} in a DFT-GGA framework. For each of these orientations, we considered various terminations. These ab initio results have been introduced in a thermodynamic model which allows us to predict the relative stability of the different terminations as a function of temperature and oxygen partial pressure (p{sub O{sub 2}}). We conclude that at room temperature and for p{sub O{sub 2}}{approx}10 atm., the polar O{sub 2}-(100) termination is favoured. The stabilization of such a polar stoichiometric surface is surprising and should be confirmed by DFT+U calculations before any final conclusion. (authors)
Knyazev, D. V.; Levashov, P. R.
2014-01-01
This work is devoted to the investigation of transport and optical properties of liquid aluminum in the two-temperature case. At first optical properties, static electrical and thermal conductivities were obtained in the \\textit{ab initio} calculation. The \\textit{ab initio} calculation is based on the quantum molecular dynamics, density functional theory and the Kubo-Greenwood formula. The semiempirical approximation was constructed based on the results of the \\textit{ab initio} caculation. ...
Ab initio calculation of the electronic absorption spectrum of liquid water
International Nuclear Information System (INIS)
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase
Ab initio lattice stability of fcc and hcp Fe-Mn random alloys.
Gebhardt, T; Music, D; Hallstedt, B; Ekholm, M; Abrikosov, I A; Vitos, L; Schneider, J M
2010-07-28
We have studied the lattice stability of face centred cubic (fcc) versus hexagonal close packed (hcp) Fe-Mn random alloys using ab initio calculations. In the calculations we considered the antiferromagnetic order of local moments, which for fcc alloys models the magnetic configuration of this phase at room temperature (below its Néel temperature) as well as their complete disorder, corresponding to paramagnetic fcc and hcp alloys. For both cases, the results are consistent with our thermodynamic calculations, obtained within the Calphad approach. For the room temperature magnetic configuration, the cross-over of the total energies of the hcp phase and the fcc phase of Fe-Mn alloys is at the expected Mn content, whereas for the magnetic configuration above the fcc Néel temperature, the hcp lattice is more stable within the whole composition range studied. The increase of the total energy difference between hcp and antiferromagnetic fcc due to additions of Mn as well as the stabilizing effect of antiferromagnetic ordering on the fcc phase are well displayed. These results are of relevance for understanding the deformation mechanisms of these random alloys.
Large basis ab initio shell model investigation of 9Be and 11Be
Energy Technology Data Exchange (ETDEWEB)
Forssen, C; Navratil, P; Ormand, W E; Caurier, E
2004-11-19
We are presenting the first ab initio structure investigation of the loosely bound {sup 11}Be nucleus, together with a study of the lighter isotope {sup 9}Be. The nuclear structure of these isotopes is particularly interesting due to the appearance of a parity-inverted ground state in {sup 11}Be. Our study is performed in the framework of the ab initio no-core shell model. Results obtained using four different, high-precision two-nucleon interactions, in model spaces up to 9{h_bar}{Omega}, are shown. For both nuclei, and all potentials, we reach convergence in the level ordering of positive- and negative-parity spectra separately. Concerning their relative position, the positive-parity states are always too high in excitation energy, but a fast drop with respect to the negative-parity spectrum is observed when the model space is increased. This behavior is most dramatic for {sup 11}Be. In the largest model space we were able to reach, the 1/2{sup +} level has dropped down to become either the first or the second excited state, depending on which interaction we use. We also observe a contrasting behavior in the convergence patterns for different two-nucleon potentials, and argue that a three-nucleon interaction is needed to explain the parity inversion. Furthermore, large-basis calculations of {sup 13}C and {sup 11}B are performed. This allows us to study the systematics of the position of the first unnatural-parity state in the N = 7 isotone and the A = 11 isobar. The {sup 11}B run in the 9{h_bar}{Omega} model space involves a matrix with dimension exceeding 1.1 x 10{sup 9}, and is our largest calculation so far. We present results on binding energies, excitation spectra, level configurations, radii, electromagnetic observables, and {sup 10}Be + n overlap functions.
Ab initio simulations of doped single-walled carbon nanotube sensors
International Nuclear Information System (INIS)
Graphical abstract: Ab initio calculations used to study O-doped and N-doped SWNT within the framework of the DFT. We introduced new type of gas sensor that can detect the presence of H2, Cl2, NO, and CO molecules. Band-gap narrowing occurs when the nanotube is doped with oxygen or nitrogen atoms. We proposed a new methodology of designing reliable, sensitive, and selective nanotube sensors. Highlights: ►Ab initio calculations used to study O-doped and N-doped SWNT within the framework of the DFT. ► We introduced new type of gas sensor that can detect the presence of H2, Cl2, NO, and CO molecules. ►Band-gap narrowing occurs when the nanotube is doped with oxygen or nitrogen atoms. ► We proposed a new methodology of designing reliable, sensitive, and selective nanotube sensors. - Abstract: The interactions between oxygen and nitrogen atoms with single-walled carbon nanotubes were investigated for nanotubes with two different geometrical configurations using first-principle calculations within the framework of the density functional theory. We introduced a new type of toxic gas sensor that can detect the presence of H2, Cl2, CO, and NO molecules. We also demonstrated that the sensitivity of this device can be controlled by the concentration of the dopants on the surface of the nanotube. In addition, the transport properties of the doped nanotube were studied for different concentrations of oxygen or nitrogen atoms that were randomly distributed on the surface of the single-walled carbon nanotube. We observed that small amounts of dopants can modify the electronic and transport properties of the nanotube and can lend metallic properties to the nanotube. Band-gap narrowing occurs when the nanotube is doped with either oxygen or nitrogen atoms.
Electrical resistivity of NaPb compound-forming liquid alloy using ab initio pseudopotentials
Indian Academy of Sciences (India)
Anil Thakur; N S Negi; P K Ahluwalla
2005-08-01
The study of electrical resistivity of compound-forming liquid alloy, NaPb, is presented as a function of concentration. Hard sphere diameters of Na and Pb are obtained through the interionic pair potentials evaluated using Troullier and Martins ab initio pseudopotential, which have been used to calculate the partial structure factors (). Considering the liquid alloy to be a ternary mixture, Ziman formula, modified for complex formation has been used for calculating resistivity of binary liquid alloys. Form factors are calculated using ab initio pseudopotentials. The results suggest that Ziman formalism, when used with ab initio pseudopotentials, are quite successful in explaining the electrical resistivity data of compound-forming binary liquid alloys.
Energy Technology Data Exchange (ETDEWEB)
Sahli, Beat [Integrated Systems Laboratory, ETH Zurich, Gloriastrasse 35, 8092 Zurich (Switzerland)], E-mail: sahli@iis.ee.ethz.ch; Vollenweider, Kilian [Integrated Systems Laboratory, ETH Zurich, Gloriastrasse 35, 8092 Zurich (Switzerland); Zographos, Nikolas; Zechner, Christoph [Synopsys Switzerland LLC, Affolternstrasse 52, 8050 Zurich (Switzerland)
2008-12-05
We present the results of extensive ab initio simulations for phosphorus clusters, arsenic clusters and mixed phosphorus/arsenic clusters in silicon. The specific defects and the parameters that are investigated are selected according to the needs of state-of-the-art diffusion and activation models, taking into account the availability of experimental data, the capabilities of current ab initio methods and the requirements for advanced technology development. The calculated binding energies are used to determine a good starting point for the calibration of a new clustering model implemented in an atomistic process simulator. The defect species V, I, P, PV, PI, As, AsV, AsI and clusters containing up to four dopant atoms and up to one V or I are considered in all relevant charge states. The ab initio results are discussed as well as the challenges arising in the transfer of this information into the process simulation model.
An Efficient Time-Stepping Scheme for Ab Initio Molecular Dynamics Simulations
Tsuchida, Eiji
2016-08-01
In ab initio molecular dynamics simulations of real-world problems, the simple Verlet method is still widely used for integrating the equations of motion, while more efficient algorithms are routinely used in classical molecular dynamics. We show that if the Verlet method is used in conjunction with pre- and postprocessing, the accuracy of the time integration is significantly improved with only a small computational overhead. We also propose several extensions of the algorithm required for use in ab initio molecular dynamics. The validity of the processed Verlet method is demonstrated in several examples including ab initio molecular dynamics simulations of liquid water. The structural properties obtained from the processed Verlet method are found to be sufficiently accurate even for large time steps close to the stability limit. This approach results in a 2× performance gain over the standard Verlet method for a given accuracy. We also show how to generate a canonical ensemble within this approach.
Energy Technology Data Exchange (ETDEWEB)
Keegan, Ronan M. [STFC Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom); Bibby, Jaclyn; Thomas, Jens [University of Liverpool, Liverpool L69 7ZB (United Kingdom); Xu, Dong [Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 (United States); Zhang, Yang [University of Michigan, Ann Arbor, MI 48109 (United States); Mayans, Olga [University of Liverpool, Liverpool L69 7ZB (United Kingdom); Winn, Martyn D. [Science and Technology Facilities Council Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Rigden, Daniel J., E-mail: drigden@liv.ac.uk [University of Liverpool, Liverpool L69 7ZB (United Kingdom); STFC Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom)
2015-02-01
Two ab initio modelling programs solve complementary sets of targets, enhancing the success of AMPLE with small proteins. AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.
Chan, Garnet Kin-Lic; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-01-01
Current descriptions of the ab initio DMRG algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab-initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational par...
Ab initio study of vibronic transitions between x2π and 12Σ+ electronic states of HCP+ ion
Directory of Open Access Journals (Sweden)
Stojanović Ljiljana
2013-01-01
Full Text Available The ground and low-lying excited doublet electronic states of the HCP+ ion were studied by means of multireference configuration interaction method. Vibronic energy levels of the X2Π state of Σ, Π, Δ, and Φ symmetry, up to the 2500 cm-1, have been calculated variationally, employing previously developed ab initio methods which take into account vibronic and spin-orbit interactions. Obtained vibronic wave functions were used to estimate transition moments between vibronic energy levels of the X2Π and 12Σ+ electronic states. Results were compared to available experimental and theoretical data. [Projekat Ministarstva nauke Republike Srbije, br. 172040
Ab initio calculations versus polarized neutron diffraction for the spin density of free radicals
International Nuclear Information System (INIS)
The determination of the magnetization distribution using polarized neutron diffraction has played a key role during the last twenty years in the field of molecular magnetism. This distribution can also be obtained by first principle ab initio calculations. Such calculations always rely on approximations and the question that arises is to know whether the obtained results are reliable enough to represent accurately the properties of these molecules. The comparison between polarized neutron experimental results and ab initio calculations has turned to provide stringent tests for these methods. In the resent article a comparison between experimental and theoretical results is made and is illustrated by examples based on magnetic free radicals. (author)
Keegan, Ronan M; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D; Rigden, Daniel J
2015-02-01
AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.
An ab initio study on single electron transfer between ClO2 and phenol
Institute of Scientific and Technical Information of China (English)
崔崇威; 黄君礼
2004-01-01
The SET mechanism between chlorine dioxide (ClO2 ) and phenol was studied by using ab initio method at 4-31G* level. Geometries of the reactants, intermediate and products of the reaction were optimized and the single point energy calculations of the species were performed. The relative structure data of the reactants, intermediate and products are given. The SET mechanism between ClO2 and phenol was confirmed by ab initio calculations. The reaction is exothermic about 200. 88 k J/mol.
Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines
DEFF Research Database (Denmark)
Ullah, Saif; Ishimoto, Takayoshi; Williamson, Mike P.;
2011-01-01
Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation. This me......Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation...
Ab initio study of C14 laves phases in Fe-based systems
Directory of Open Access Journals (Sweden)
Pavlu J.
2012-01-01
Full Text Available Structural properties and energetics of Fe-based C14 Laves phases at various compositions (i.e. Fe2Fe, Fe2X, X2Fe, X2X, where X stands for Si, Cr, Mo, W, Ta were investigated using the pseudopotential VASP (Vienna Ab initio Simulation Package code employing the PAW-PBE (Projector Augmented Wave - Perdew Burke-Ernzerhof pseudopotentials. Full relaxation was performed for all structures studied including the reference states of elemental constituents and the equilibrium structure parameters as well as bulk moduli were found. The structure parameters of experimentally found structures were very well reproduced by our calculations. It was also found that the lattice parameters and volumes of the unit cell decrease with increasing molar fraction of iron. Thermodynamic analysis shows that the Fe2X configurations of Laves phases are more stable than the X2Fe ones. Some of the X2Fe configurations are even unstable with respect to the weighted average of the Laves phases of elemental constituents. Our calculations predict the stability of Fe2Ta. On the other hand, Fe2Mo and Fe2W are slightly unstable (3.19 and 0.68 kJ.mol-1, respectively and hypothetical structures Fe2Cr and Fe2Si are found unstable as well.
Energy Technology Data Exchange (ETDEWEB)
Ganster, P
2004-10-15
A calcium aluminosilicate glass of molar composition 67 % SiO{sub 2} - 12 % Al{sub 2}O{sub 3} - 21 % CaO was modelled by classical and ab initio molecular dynamics. The size effect study in classical MD shows that the systems of 100 atoms are more ordered than the larger ones. These effects are mainly due to the 3-body terms in the empirical potentials. Nevertheless, these effects are small and the structures generated are in agreement with experimental data. In such kind of glass, we denote an aluminium avoidance and an excess of non bridging oxygens which can be compensated by tri coordinated oxygens. When the dynamics of systems of 100 and 200 atoms is followed by ab initio MD, some local arrangements occurs (bond length, angular distributions). Thus, more realistic vibrational properties are obtained in ab initio MD. The modelling of thin films shows that aluminium atoms extend to the most external part of the surface and they are all tri-coordinated. Calcium atoms are set in the sub layer part of the surface and they produce a depolymerization of the network. In classical MD, tri-coordinated aluminium atoms produce an important electric field above the surface. With non bridging oxygens, they constitute attractive sites for single water molecules. (author)
Ab-initio modeling of an anion $C_{60}^-$ pseudopotential for fullerene-based compounds
Vrubel, I I; Ivanov, V K
2015-01-01
A pseudopotential of $C_{60}^-$ has been constructed from ab-initio quantum-mechanical calculations. Since the obtained pseudopotential can be easily fitted by rather simple analytical approximation it can be effectively used both in classical and quantum molecular dynamics of fullerene-based compounds.
Mechanical properties of carbynes investigated by ab initio total-energy calculations
DEFF Research Database (Denmark)
Castelli, Ivano E.; Salvestrini, Paolo; Manini, Nicola
2012-01-01
As sp carbon chains (carbynes) are relatively rigid molecular objects, can we exploit them as construction elements in nanomechanics? To answer this question, we investigate their remarkable mechanical properties by ab initio total-energy simulations. In particular, we evaluate their linear respo...
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms. PMID:27394094
Ab Initio Investigations of the C2F4S Isomers and of Their Interconversions
DEFF Research Database (Denmark)
Shim, Irene; Vallano-Lorenzo, Sandra; Lisbona-Martin, Pilar;
2003-01-01
The transition states and the activation energies for the unobserved isomerization reactions between the three possible C2F4S isomers with divalent sulfur, trifluorothioacetyl fluoride 1, tetrafluorothiirane 2, and trifluoroethenesulfenyl fluoride 3, have been determined by ab initio Hartree-Fock...
Ab initio prediction of vacancy properties in concentrated alloys: The case of fcc Cu-Ni
Zhang, X.; Sluiter, M.H.F.
2015-01-01
Vacancy properties in concentrated alloys continue to be of great interest because nowadays ab initio supercell simulations reach a scale where even defect properties in disordered alloys appear to be within reach. We show that vacancy properties cannot generally be extracted from supercell total en
New approaches for molecular conformer force field analysis in combination with ab initio results
Kuramshina, G. M.; Pentin, Yu. A.; Yagola, A. G.
1999-10-01
Ab initio and DFT results on harmonic force constants for trans- and gauche-conformers of CH 3CH 2CH 2Cl, CF 3CH 2CH 2Cl and CCl 3CH 2CH 2Cl are used for formulating constraints in molecular force field models described compounds with hindered internal rotation around the C-C bond.
Ab initio and work function and surface energy anisotropy of LaB6
Uijttewaal, M. A.; de Wijs, G. A.; de Groot, R. A.
2006-01-01
Lanthanum hexaboride is one of the cathode materials most used in high-power electronics technology, but the many experimental results do not provide a consistent picture of the surface properties. Therefore, we report the first ab initio calculations of the work functions and surface energies of th
Ab initio I-V characteristics of short C-20 chains
DEFF Research Database (Denmark)
Roland, C.; Larade, B.; Taylor, Jeremy Philip;
2002-01-01
We have calculated the I-V characteristics of short chains of C-20 molecular cages between Al and Au leads with an ab initio formalism. The results indicate that a linear chain of such molecules acts primarily as metallic nanowires. The transmission, however, depends sensitively both on the...
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Stabilization of Ab Initio Molecular Dynamics Simulations at Large Time Steps
Tsuchida, Eiji
2014-01-01
The Verlet method is still widely used to integrate the equations of motion in ab initio molecular dynamics simulations. We show that the stability limit of the Verlet method may be significantly increased by setting an upper limit on the kinetic energy of each atom with only a small loss in accuracy. The validity of this approach is demonstrated for molten lithium fluoride.
Computer simulation of acetonitrile and methanol with ab initio-based pair potentials
Hloucha, M.; Sum, A. K.; Sandler, S. I.
2000-10-01
This study address the adequacy of ab initio pair interaction energy potentials for the prediction of macroscopic properties. Recently, Bukowski et al. [J. Phys. Chem. A 103, 7322 (1999)] performed a comprehensive study of the potential energy surfaces for several pairs of molecules using symmetry-adapted perturbation theory. These ab initio energies were then fit to an appropriate site-site potential form. In an attempt to bridge the gap between ab initio interaction energy information and macroscopic properties prediction, we performed Gibbs ensemble Monte Carlo (GEMC) simulations using their developed pair potentials for acetonitrile and methanol. The simulations results show that the phase behavior of acetonitrile is well described by just the pair interaction potential. For methanol, on the other hand, pair interactions are insufficient to properly predict its vapor-liquid phase behavior, and its saturated liquid density. We also explored simplified forms for representing the ab initio interaction energies by refitting a selected range of the data to a site-site Lennard-Jones and to a modified Buckingham (exponential-6) potentials plus Coulombic interactions. These were also used in GEMC simulations in order to evaluate the quality and computational efficiency of these different potential forms. It was found that the phase behavior prediction for acetonitrile and methanol are highly dependent on the details of the interaction potentials developed.
New ab initio based pair potential for accurate simulation of phase transitions in ZnO
Wang, Shuaiwei; Fan, Zhaochuan; Koster, Rik S.; Fang, Changming; Van Huis, Marijn A.; Yalcin, Anil O.; Tichelaar, Frans D.; Zandbergen, Henny W.; Vlugt, Thijs J H
2014-01-01
A set of interatomic pair potentials is developed for ZnO based on the partially charged rigid ion model (PCRIM). The derivation of the potentials combines lattice inversion, empirical fitting, and ab initio energy surface fitting. We show that, despite the low number of parameters in this model (8)
Relativistic ab initio spectroscopy study of forbidden lines of singly ionized zinc
Dixit, Gopal; Sahoo, Bijaya K.; Chaudhuri, Rajat K.; Majumder, Sonjoy
2009-01-01
The ab initio calculation has been carried out to study the astrophysically important forbidden electromagnetic transition rates of singly ionized zinc (Zn II). Electron correlations are considered to all orders using coupled-cluster theory in the relativistic framework. Calculated excitation energi
Ab initio Defect Energetics in LaBO3 Perovskite Solid Oxide Fuel Cell Materials
DEFF Research Database (Denmark)
Lee, Yueh-Lin; Morgan, Dane; Kleis, Jesper;
2009-01-01
Perovskite materials of the form ABO3 are a promising family of compounds for use in solid oxide fuel cell (SOFC) cathodes. Study of the physics of these compounds under SOFC conditions with ab initio methods is particularly challenging due to high temperatures, exchange of oxygen with O2 gas, and...
Raman and ab initio studies of simple and binary 1-alkyl-3-methylimidazolium ionic liquids
DEFF Research Database (Denmark)
Berg, R.W.; Deetlefs, M.; Seddon, K.R.;
2005-01-01
Raman spectra of the ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF6]), 1-hexyl-3-methylimidazolium chloride ([C(6)mim]Cl), and 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)mim][PF6]), and binary mixtures thereof, have been assigned using ab initio MP2...
Ab initio charge-carrier mobility model for amorphous molecular semiconductors
Massé, Andrea; Friederich, Pascal; Symalla, Franz; Liu, Feilong; Nitsche, Robert; Coehoorn, Reinder; Wenzel, Wolfgang; Bobbert, Peter A.
2016-05-01
Accurate charge-carrier mobility models of amorphous organic molecular semiconductors are essential to describe the electrical properties of devices based on these materials. The disordered nature of these semiconductors leads to percolative charge transport with a large characteristic length scale, posing a challenge to the development of such models from ab initio simulations. Here, we develop an ab initio mobility model using a four-step procedure. First, the amorphous morphology together with its energy disorder and intermolecular charge-transfer integrals are obtained from ab initio simulations in a small box. Next, the ab initio information is used to set up a stochastic model for the morphology and transfer integrals. This stochastic model is then employed to generate a large simulation box with modeled morphology and transfer integrals, which can fully capture the percolative charge transport. Finally, the charge-carrier mobility in this simulation box is calculated by solving a master equation, yielding a mobility function depending on temperature, carrier concentration, and electric field. We demonstrate the procedure for hole transport in two important molecular semiconductors, α -NPD and TCTA. In contrast to a previous study, we conclude that spatial correlations in the energy disorder are unimportant for α -NPD. We apply our mobility model to two types of hole-only α -NPD devices and find that the experimental temperature-dependent current density-voltage characteristics of all devices can be well described by only slightly decreasing the simulated energy disorder strength.
DEFF Research Database (Denmark)
Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.;
2014-01-01
comparing time-resolved photoelectron spectroscopy (TRPES) with ab initio multiple spawning (AIMS) simulations on the MS-MR-CASPT2 level of theory. We disentangle the relationship between two phenomena that dominate the immediate molecular response upon light absorption: a spectrally dependent delay of the...
Ab initio study of energy-level alignments in polymer-dye blends
Pasveer, W.F.; Bobbert, P.A.; Michels, M.A.J.; Langeveld-Voss, B.M.W.; Schoo, H.F.M.; Bastiaansen, J.J.A.M.
2003-01-01
Polymers with a small amount of dye blended in offer an attractive possibility to change the color of the emitted light by changing the dye. We present ab initio calculations within density-functional theory of the HOMO/ LUMO energies for dipyrrolomethane dyes, polyphenylenevinylene and polyfluorene
The Pu–U–Am system: An ab initio informed CALPHAD thermodynamic study
Energy Technology Data Exchange (ETDEWEB)
Perron, A., E-mail: perron1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Turchi, P.E.A.; Landa, A.; Söderlind, P. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Ravat, B.; Oudot, B.; Delaunay, F. [CEA-Centre de Valduc, 21120 Is sur Tille (France)
2015-03-15
Highlights: • The ab initio informed CALPHAD assessment of the Am–U system has been realized. • A strong tendency toward phase separation across the whole composition range is predicted. • The ab initio informed Pu–U–Am thermodynamic database has been developed. • The solubility of Am and U in the liquid phase is improved by adding Pu. • The δ-Pu (fcc) phase is strongly stabilized by Am, on the contrary to the bcc phase. - Abstract: Phase diagram and thermodynamic properties of the Am–U system, that are experimentally unknown, are calculated using the CALPHAD method with input from ab initio electronic-structure calculations for the fcc and bcc phases. A strong tendency toward phase separation across the whole composition range is predicted. In addition, ab initio informed Pu–U and Am–Pu thermodynamic assessments are combined to build a Pu–U–Am thermodynamic database. Regarding the Pu-rich corner of the ternary system, predictions indicate that Am acts as a powerful δ-Pu (fcc) stabilizer. In the U-rich corner, similar predictions are made but to a lesser extent. In both cases, the bcc phase is destabilized and the fcc phase is enhanced. Finally, results and methodology are discussed and compared with previous assessments and guidelines are provided for further experimental studies.
Ab initio electronic properties of dual phosphorus monolayers in silicon
DEFF Research Database (Denmark)
Drumm, Daniel W.; Per, Manolo C.; Budi, Akin;
2014-01-01
In the midst of the epitaxial circuitry revolution in silicon technology, we look ahead to the next paradigm shift: effective use of the third dimension - in particular, its combination with epitaxial technology. We perform ab initio calculations of atomically thin epitaxial bilayers in silicon, ...
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Study on the surface hydroxyl group on solid breeding materials by ab-initio calculations
Energy Technology Data Exchange (ETDEWEB)
Tanaka, Satoru; Taniguchi, Masaki [Tokyo Univ. (Japan). Faculty of Engineering
1996-10-01
The nature of -OH on the surface of Li{sub 2}O was analyzed with the ab-initio quantum chemical calculation technique. Calculation results showed that the stretching vibration of O-H is affected by the chemical species around the -OH. (author)
Timko, Jeff; Kuyucak, Serdar
2012-11-01
Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K+ ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K+ ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K+ ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K+ ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.
Timko, Jeff; Kuyucak, Serdar
2012-11-28
Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K(+) ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K(+) ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K(+) ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K(+) ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.
Energy Technology Data Exchange (ETDEWEB)
Zhai, Huanchen; Lin, Shi Ying, E-mail: sylin@sdu.edu.cn
2015-07-09
Highlights: • A hybrid scheme to construct potential energy surfaces (PESs) is proposed. • The hybrid scheme shows enhanced stability and accuracy. • The hybrid scheme is shown to be able to construct high quality PESs. • A new analytic ab initio PES for N({sup 2}D) + H{sub 2} reactive system is constructed. - Abstract: A hybrid fitting scheme is proposed for the construction of global analytic ab initio potential energy surfaces (PESs) by means of applying reproducing kernel Hilbert space (RKHS) interpolation and cubic spline interpolation onto different dimensions of the molecular configuration space. In addition to inheriting most advantages of the pure RKHS method, this scheme offers the following extra benefits: short initiation time and enhanced stability and accuracy. We also propose a fast algorithm for the scheme allowing the PES computation time to be independent of the number of ab initio points. We have constructed an adiabatic PES of N({sup 2}D) + H{sub 2}→NH + H reactive system from more than twenty thousand ab initio points using this scheme. The accurate quantum dynamics results calculated on the constructed PES demonstrate high accuracy and efficiency of this new scheme.
Ab initio calculations of many-body interactions for compressed solid argon.
Tian, Chunling; Liu, Fusheng; Cai, Lingcang; Yuan, Hongkuan; Chen, Hong; Zhong, Mingmin
2015-11-01
An investigation on many-body effects of solid argon at high pressure was conducted based on a many-body expansion of interaction energy. The three- and four-body terms in the expansion were calculated using the coupled-cluster method with single, double, and noniterative triple theory and incremental method, in which the configurations of argon trimers and tetramers were chosen as the same as those in the actual lattice. The four-body interactions in compressed solid argon were estimated for the first time, and the three-body interaction ab initio calculations were extended to a small distance. It shows that the four-body contribution is repulsive at high densities and effectively cancels the three-body lattice energy. The dimer potential plus three-body interaction can well reproduce the measurements of equation of state at pressure approximately lower than ∼60 GPa, when including the four-body effects extends the agreement up to the maximum experimental pressure of 114 GPa. PMID:26547175
Communication: Towards ab initio self-energy embedding theory in quantum chemistry
Energy Technology Data Exchange (ETDEWEB)
Lan, Tran Nguyen, E-mail: latran@umich.edu [Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States); Kananenka, Alexei A.; Zgid, Dominika [Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 (United States)
2015-12-28
The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green’s function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to n-electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces.
Towards ab initio self-energy embedding theory in quantum chemistry
Lan, Tran Nguyen; Zgid, Dominika
2015-01-01
The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green's function (GF2) method is used to describe the non-local correlations, while the full configuration interaction (FCI) method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to $n-$electron valence state second-order perturbation theory (NEVPT2) with the same active...
Ab initio thermodynamic evaluation of Pd atom interaction with CeO(2) surfaces.
Mayernick, Adam D; Janik, Michael J
2009-08-28
Palladium supported on ceria is an effective catalytic material for three-way automotive catalysis, catalytic combustion, and solid-oxide fuel cell (SOFC) anodes. The morphology, oxidation state, and particle size of Pd on ceria affect catalytic activity and are a function of experimental conditions. This work utilizes ab initio thermodynamics using density functional theory (DFT) (DFT+U) methods to evaluate the stability of Pd atoms, PdO(x) species, and small Pd particles in varying configurations on CeO(2) (111), (110), and (100) single crystal surfaces. Over specific oxygen partial pressure and temperature ranges, palladium incorporation to form a mixed surface oxide is thermodynamically favorable versus other single Pd atom states on each ceria surface. For example, Pd atoms may incorporate into Ce fluorite lattice positions in a Pd(4+) oxidation state on the CeO(2) (111) surface. The ceria support shifts the transition between formal Pd oxidation states (Pd(0), Pd(2+), Pd(4+)) relative to bulk palladium and stabilizes certain oxidized palladium species on each surface. We show that temperature, oxygen pressure, and cell potential in a SOFC can influence the stable states of palladium supported on ceria surfaces, providing insight into structural stability during catalytic operation. PMID:19725615
Communication: Towards ab initio self-energy embedding theory in quantum chemistry
International Nuclear Information System (INIS)
The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green’s function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to n-electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces
A nonlocal, ab initio model of dissociative electron attachment and vibrational excitation of NO
Energy Technology Data Exchange (ETDEWEB)
Trevisan, Cynthia S.; Houfek, Karel; Zhang, Zhiyong; Orel, Ann E.; McCurdy, C. William; Rescigno, Thomas N.
2005-02-01
We present the results of an ab initio study of elastic scattering and vibrational excitation of NO by electron impact in the low-energy (0-2 eV) region where the cross sections are dominated by resonance contributions. The 3Sigma-, 1Delta and 1Sigma+ NO- resonance lifetimes are taken from our earlier study [Phys. Rev. A 69, 062711 (2004)], but the resonance energies used here are obtained from new configuration-interaction studies. Here we employ a more elaborate nonlocal treatment of the nuclear dynamics, which is found to remedy the principal deficiencies of the local complex potential model we employed in our earlier study, and gives cross sections in better agreement with the most recent experiments. We also present cross sections for dissociative electron attachment to NO leading to groundstate products. The calculations show that, while the peak cross sections starting from NO in its ground vibrational state are very small, the cross sections are extremely sensitive to vibrational excitation of the target and should be readily observable for target NO molecules excited to v = 10 and above.
PSI3: an open-source Ab Initio electronic structure package.
Crawford, T Daniel; Sherrill, C David; Valeev, Edward F; Fermann, Justin T; King, Rollin A; Leininger, Matthew L; Brown, Shawn T; Janssen, Curtis L; Seidl, Edward T; Kenny, Joseph P; Allen, Wesley D
2007-07-15
PSI3 is a program system and development platform for ab initio molecular electronic structure computations. The package includes mature programming interfaces for parsing user input, accessing commonly used data such as basis-set information or molecular orbital coefficients, and retrieving and storing binary data (with no software limitations on file sizes or file-system-sizes), especially multi-index quantities such as electron repulsion integrals. This platform is useful for the rapid implementation of both standard quantum chemical methods, as well as the development of new models. Features that have already been implemented include Hartree-Fock, multiconfigurational self-consistent-field, second-order Møller-Plesset perturbation theory, coupled cluster, and configuration interaction wave functions. Distinctive capabilities include the ability to employ Gaussian basis functions with arbitrary angular momentum levels; linear R12 second-order perturbation theory; coupled cluster frequency-dependent response properties, including dipole polarizabilities and optical rotation; and diagonal Born-Oppenheimer corrections with correlated wave functions. This article describes the programming infrastructure and main features of the package. PSI3 is available free of charge through the open-source, GNU General Public License. PMID:17420978
Ab initio study of Cr interactions with point defects in bcc Fe
International Nuclear Information System (INIS)
Full text of publication follows. Ferritic martensitic steels are candidate structural materials for fast neutron reactors, and in particular high-Cr reduced-activation steels. In Fe-Cr alloys, Cr plays a major role in the radiation-induced evolution of the mechanical properties. Using ab initio calculations based on density functional theory, the properties of Cr in α-Fe have been investigated. The intrinsic point defect formation energies were found to be larger in model bcc Cr as compared to those in ferromagnetic bcc Fe. The interactions of Cr with point defects (vacancy and self interstitials) have been characterised. Single Cr atoms interact weakly with vacancies but significantly with self-interstitial atoms. Mixed interstitials of any interstitial symmetry are bound. Configurations where two Cr atoms are in nearest neighbour position are generally unfavourable in bcc Fe except when they are a part of a interstitial complex. Mixed interstitials do not have as strong directional stability as pure Fe interstitials have. The effects on the results using the atom description scheme of either the ultrasoft pseudo-potential (USPP) or the projector augmented wave (PAW) formalisms are connected to the differences in local magnetic moments that the two methods predict. As expected for the Fe-Cr system, the results obtained using the PAW method are more reliable than the ones obtained with USPP. (authors)
Patil, Amol Baliram; Bhanage, Bhalchandra Mahadeo
2016-06-21
The nature of bonding interactions between the cation and the anion of an ionic liquid is at the heart of understanding ionic liquid properties. A particularly interesting case is a special class of ionic liquids known as protic ionic liquids. The extent of proton transfer in protic ionic liquids has been observed to vary according to the interacting species. Back proton transfer renders protic ionic liquids volatile and to be considered as inferior ionic liquids. We try to address this issue by employing modern ab initio valence bond theory calculations. The results indicate that the bonding in the cation and the anion of a prototypical ionic liquid, ethylammonium nitrate, is fundamentally different. It is neither characteristic of covalent/polar covalent bonding nor ionic bonding but rather charge shift bonding as a resonance hybrid of two competing ionic molecular electronic structure configurations. An investigation of other analogous protic ionic liquids reveals that this charge shift bonding seems to be a typical characteristic of protic ionic liquids while the ionic solid analogue compound ammonium nitrate has less charge shift bonding character as compared to protic ionic liquids. Further the extent of charge shift bonding character has been found to be congruent with the trends in many physicochemical properties such as melting point, conductivity, viscosity, and ionicity of the studied ionic liquids indicating that percentage charge shift character may serve as a key descriptor for large scale computational screening of ionic liquids with desired properties.
High-level ab initio computations of the absorption spectra of organic iridium complexes.
Plasser, Felix; Dreuw, Andreas
2015-02-12
The excited states of fac-tris(phenylpyridinato)iridium [Ir(ppy)3] and the smaller model complex Ir(C3H4N)3 are computed using a number of high-level ab initio methods, including the recently implemented algebraic diagrammatic construction method to third-order ADC(3). A detailed description of the states is provided through advanced analysis methods, which allow a quantification of different charge transfer and orbital relaxation effects and give extended insight into the many-body wave functions. Compared to the ADC(3) benchmark an unexpected striking difference of ADC(2) is found for Ir(C3H4N)3, which derives from an overstabilization of charge transfer effects. Time-dependent density functional theory (TDDFT) using the B3LYP functional shows an analogous but less severe error for charge transfer states, whereas the ωB97 results are in good agreement with ADC(3). Multireference configuration interaction computations, which are in reasonable agreement with ADC(3), reveal that static correlation does not play a significant role. In the case of the larger Ir(ppy)3 complex, results at the TDDFT/B3LYP and TDDFT/ωB97 levels of theory are presented. Strong discrepancies between the two functionals, which are found with respect to the energies, characters, as well as the density of the low lying states, are discussed in detail and compared to experiment. PMID:25584785
Ab initio potential energy surface and bound states for the Kr-OCS complex.
Feng, Eryin; Sun, Chunyan; Yu, Chunhua; Shao, Xi; Huang, Wuying
2011-09-28
The first ab initio potential energy surface of the Kr-OCS complex is developed using the coupled-cluster singles and doubles with noniterative inclusion of connected triples [CCSD(T)]. The mixed basis sets, aug-cc-pVTZ for the O, C, and S atom, and aug-cc-pVQZ-PP for the Kr atom, with an additional (3s3p2d1f) set of midbond functions are used. A potential model is represented by an analytical function whose parameters are fitted numerically to the single point energies computed at 228 configurations. The potential has a T-shaped global minimum and a local linear minimum. The global minimum occurs at R = 7.146 a(0), θ = 105.0° with energy of -270.73 cm(-1). Bound state energies up to J = 9 are calculated for three isotopomers (82)Kr-OCS, (84)Kr-OCS, and (86)Kr-OCS. Analysis of the vibrational wavefunctions and energies suggests the complex can exist in two isomeric forms: T-shaped and quasi-linear. The calculated transition frequencies and spectroscopic constants of the three isotopomers are in good agreement with the experimental values.
Jackels, C. F.; Phillips, D. H.
1986-01-01
Ab initio quantum chemical techniques have been used to investigate covalently-bonded and hydrogen-bonded species that may be important intermediates in the reaction of hydroxyl and hydroperoxyl radicals. Stable structures of both types were identified. Basic sets of polarized double-zeta quality and large scale configuration interaction wave functions have been utilized. Based upon electronic energies, the covalently-bonded HOOOH species is found to be 26.4 kcal/mol more stable than the OH and HO2 radicals. Similarly, the hydrogen-bonded HO-HO2 species is found to have an electronic energy 4.7 kcal/mol below that of the component radicals, after correction is made for the basis set superposition error. The hydrogen-bonded form is found to be planar, to possess one relatively 'normal' hydrogen bond, and to have lowest energy 3A-prime and 1A-prime states that are essentially degenerate. The 1A-double prime and 3A-double prime excited states produced by rotation of the unpaired OH electron into the molecular plane are found to be very slightly bound.
Communication: Towards ab initio self-energy embedding theory in quantum chemistry.
Lan, Tran Nguyen; Kananenka, Alexei A; Zgid, Dominika
2015-12-28
The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green's function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to n-electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces.
An ab initio quantum chemical investigation of the structure and stability of ozone-water complexes
Energy Technology Data Exchange (ETDEWEB)
Kumar, Pradeep [Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Sathyamurthy, N., E-mail: nsath@iitk.ac.in [Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli 140306 (India)
2013-03-29
Highlights: ► Eclipse geometry most stable for the 1:1 ozone-water complex. ► Cyclic structure most stable for the 1:2 complex. ► Shift in the vertical electronic excitation energy of ozone due to hydration. - Abstract: Ab initio quantum chemical calculations have been carried out to investigate the structure and stability of 1:1 and 1:2 ozone-water complexes. All the geometries have been optimized at the CCSD level of theory using aug-cc-pVDZ and aug-cc-pVTZ basis sets. The importance of correlation-consistent basis sets in deciding the nature of critical points on these complexes is emphasized. An analysis based on the dipole moment of the complexes and the charge distribution on atoms follows. The effect of ozone molecule on the structure and properties of water dimer is also investigated. Values of the vertical electronic excitation energy and the corresponding transition dipole moment have been calculated for the ozone-water complexes using the multi-reference-configuration-interaction method and the aug-cc-pVTZ basis set. The calculated shift in vibrational frequencies due to complex formation is compared with the earlier reported experimental and theoretical values.
Nonlocal torque operators in ab initio theory of the Gilbert damping in random ferromagnetic alloys
Turek, I.; Kudrnovský, J.; Drchal, V.
2015-12-01
We present an ab initio theory of the Gilbert damping in substitutionally disordered ferromagnetic alloys. The theory rests on introduced nonlocal torques which replace traditional local torque operators in the well-known torque-correlation formula and which can be formulated within the atomic-sphere approximation. The formalism is sketched in a simple tight-binding model and worked out in detail in the relativistic tight-binding linear muffin-tin orbital method and the coherent potential approximation (CPA). The resulting nonlocal torques are represented by nonrandom, non-site-diagonal, and spin-independent matrices, which simplifies the configuration averaging. The CPA-vertex corrections play a crucial role for the internal consistency of the theory and for its exact equivalence to other first-principles approaches based on the random local torques. This equivalence is also illustrated by the calculated Gilbert damping parameters for binary NiFe and FeCo random alloys, for pure iron with a model atomic-level disorder, and for stoichiometric FePt alloys with a varying degree of L 10 atomic long-range order.
Ab initio parameterization of YFF1, a universal force field for drug-design applications.
Yakovenko, Olexandr Ya; Li, Yvonne Y; Oliferenko, Alexander A; Vashchenko, Ganna M; Bdzhola, Volodymyr G; Jones, Steven J M
2012-02-01
The YFF1 is a new universal molecular mechanic force field designed for drug discovery purposes. The electrostatic part of YFF1 has already been parameterized to reproduce ab initio calculated dipole and quadrupole moments. Now we report a parameterization of the van der Waals interactions (vdW) for the same atom types that were previously defined. The 6-12 Lennard-Jones potential terms were parameterized against homodimerization energies calculated at the MP2/6-31 G level of theory. The Boys-Bernardi counterpoise correction was employed to account for the basis-set superposition error. As a source of structural information we used about 2,400 neutral compounds from the ZINC2007 database. About 6,600 homodimeric configurations were generated from this dataset. A special "closure" procedure was designed to accelerate the parameters fitting. As a result, dimerization energies of small organic compounds are reproduced with an average unsigned error of 1.1 kcal mol(-1). Although the primary goal of this work was to parameterize nonbonded interactions, bonded parameters were also derived, by fitting to PM6 semiempirically optimized geometries of approximately 20,000 compounds. PMID:21562826
Periodic Trends in Lanthanide Compounds through the Eyes of Multireference ab Initio Theory.
Aravena, Daniel; Atanasov, Mihail; Neese, Frank
2016-05-01
Regularities among electronic configurations for common oxidation states in lanthanide complexes and the low involvement of f orbitals in bonding result in the appearance of several periodic trends along the lanthanide series. These trends can be observed on relatively different properties, such as bonding distances or ionization potentials. Well-known concepts like the lanthanide contraction, the double-double (tetrad) effect, and the similar chemistry along the lanthanide series stem from these regularities. Periodic trends on structural and spectroscopic properties are examined through complete active space self-consistent field (CASSCF) followed by second-order N-electron valence perturbation theory (NEVPT2) including both scalar relativistic and spin-orbit coupling effects. Energies and wave functions from electronic structure calculations are further analyzed in terms of ab initio ligand field theory (AILFT), which allows one to rigorously extract angular overlap model ligand field, Racah, and spin-orbit coupling parameters directly from high-level ab initio calculations. We investigated the elpasolite Cs2NaLn(III)Cl6 (Ln(III) = Ce-Nd, Sm-Eu, Tb-Yb) crystals because these compounds have been synthesized for most Ln(III) ions. Cs2NaLn(III)Cl6 elpasolites have been also thoroughly characterized with respect to their spectroscopic properties, providing an exceptionally vast and systematic experimental database allowing one to analyze the periodic trends across the lanthanide series. Particular attention was devoted to the apparent discrepancy in metal-ligand covalency trends between theory and spectroscopy described in the literature. Consistent with earlier studies, natural population analysis indicates an increase in covalency along the series, while a decrease in both the nephelauxetic (Racah) and relativistic nephelauxetic (spin-orbit coupling) reduction with increasing atomic number is calculated. These apparently conflicting results are discussed on the
Ab initio STM and STS simulations on magnetic and nonmagnetic metallic surfaces
Energy Technology Data Exchange (ETDEWEB)
Dick, Alexey
2008-04-14
The aim of this work was to provide an in-depth understanding of a new generation of scan- ning tunneling microscopy experiments, performed employing different regimes of the STM: the spectroscopy-mode (the so-called Fourier Transformed STM, FT-STM), and the spin-sensitive mode (the so-called spin-polarized STM, SP-STM). In the present thesis ab initio tools are proposed that are based on DFT calculations to theoretically predict and analyze such types of the STM. The first part of this thesis focusses on the simulation of FT-STM, the mode that allows to probe local dispersion properties of the electrons at the surface. In order to provide the theoretical counterpart of the experimental FT-STM spectra we have introduced a new implicit approach that is derived from Tersoff-Hamann theory of the STM. The importance of an accurate description of surface wavefunctions at 5-15 A above the surface as well as the spurious quantum- size effects have been discussed in detail together with approaches to obtain converged FT-STM images. We applied our method to FT-STM experiments performed on Ag(110) surfaces. In the second part of the thesis we discuss the modeling of the spin-resolved STM, the mode that allows to characterize the magnetic structure of a surface. As a case system we studied here the magnetically-ordered transition-metal nitride surface Mn{sub 3}N{sub 2}(010). Because SP-STM experiments did not allow a conclusive understanding of the surface structure, we have first employed ab initio thermodynamics to figure out the most stable magnetic and atomic configuration of the surface that are consistent with experiments. To simulate SP-STM images on the most stable Mn{sub 3}N{sub 2}(010) surface we have employed the spin-generalized transfer-Hamiltonian formalism, assuming that the tip wavefunctions have dominant radial symmetry (s-like tip). (orig.)
Relaxation of Small Molecules：an ab initio Study
Institute of Scientific and Technical Information of China (English)
CAOYi－Gang; A.Antons; 等
2002-01-01
Using an ab inito total energy and force method,we have relaxed several group IV and group V elemental clusters,in detail the arsenic and antimony dimers,silicon,phosphorus,arsenic and antimony tetraners,The obtained bond lengths and cohesive energies are more accurate than other calculating methods,and in excellent agreement with the experimental results.
Allen, B. Danette; Alexandrov, Natalia
2016-01-01
Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that
Plašienka, Dušan; Martoňák, Roman
2014-01-01
We present results of \\textit{ab initio} molecular dynamics study of a structural transformation occurring in hot liquid sulfur under high pressure, which corresponds to the chain-breakage phenomenon recently observed experimentally by Liu \\textit{et al.} [1] and to the electronic transition reported by Brazhkin \\textit{et al.} [2,3]. We performed an extensive \\textit{ab initio} study and confirmed the existence of one transformation separating two distinct liquid polymeric phases: one composed of short chain-like fragments and another one with very long chains. We have not observed additional transformations reported in Refs. [2,3] and in the recent theoretical study by Zhao and Mu [4] and our findings are in agreement with the most recent experiment [1]. We offer a structural description of this liquid-liquid transformation in terms of chain lengths, cross-linking and geometry and investigate several physical properties. We conclude that the transformation is accompanied by changes in configurational energy...
Xavier, F. George D.; Kumar, Sanjay
2010-10-01
Ab initio global adiabatic and quasidiabatic potential energy surfaces of lowest four electronic (1-4 A3″) states of the H++O2 system have been computed in the Jacobi coordinates (R,r,γ) using Dunning's cc-pVTZ basis set at the internally contracted multireference (single and double) configuration interaction level of accuracy, which are relevant to the dynamics studies of inelastic vibrational and charge transfer processes observed in the scattering experiments. The computed equilibrium geometry parameters of the bound [HO2]+ ion in the ground electronic state and other parameters for the transition state for the isomerization process, HOO+⇌OOH+ are in good quantitative agreement with those available from the high level ab initio calculations, thus lending credence to the accuracy of the potential energy surfaces. The nonadiabatic couplings between the electronic states have been analyzed in both the adiabatic and quasidiabatic frameworks by computing the nonadiabatic coupling matrix elements and the coupling potentials, respectively. It is inferred that the dynamics of energy transfer processes in the scattering experiments carried out in the range of 9.5-23 eV would involve all the four electronic states.
Monte Carlo Shell Model for ab initio nuclear structure
Directory of Open Access Journals (Sweden)
Abe T.
2014-03-01
Full Text Available We report on our recent application of the Monte Carlo Shell Model to no-core calculations. At the initial stage of the application, we have performed benchmark calculations in the p-shell region. Results are compared with those in the Full Configuration Interaction and No-Core Full Configuration methods. These are found to be consistent with each other within quoted uncertainties when they could be quantified. The preliminary results in Nshell = 5 reveal the onset of systematic convergence pattern.
Ab initio calculations on the magnetic properties of transition metal complexes
International Nuclear Information System (INIS)
We present a protocol for the ab initio determination of the magnetic properties of mono- and polynuclear transition metal compounds. First, we obtain the low lying electronic states by multireference methods. Then, we include spin-orbit coupling and an external magnetic field for the determination of zero-field splitting and g-tensors. For the polynuclear complexes the magnetic exchange coupling constants are determined by a modified complete active space self consistent field method. Based on the results of the ab initio calculations, magnetic data such as magnetic susceptibility or magnetization are simulated and compared to experimental data. The results obtained for the polynuclear complexes are further analysed by calculations on model complexes where part of the magnetic centers are substituted by diamagnetic ions. The methods are applied to different Co and Ni containing transition metal complexes
Pierce, Levi C. T.; Markwick, Phineus R. L.; McCammon, J. Andrew; Doltsinis, Nikos L.
2011-01-01
A biased potential molecular dynamics simulation approach, accelerated molecular dynamics (AMD), has been implemented in the framework of ab initio molecular dynamics for the study of chemical reactions. Using two examples, the double proton transfer reaction in formic acid dimer and the hypothetical adiabatic ring opening and subsequent rearrangement reactions in methylenecyclopropane, it is demonstrated that ab initio AMD can be readily employed to efficiently explore the reactive potential energy surface, allowing the prediction of chemical reactions and the identification of metastable states. An adaptive variant of the AMD method is developed, which additionally affords an accurate representation of both the free-energy surface and the mechanism associated with the chemical reaction of interest and can also provide an estimate of the reaction rate. PMID:21548673
B28: the smallest all-boron cage from an ab initio global search
Zhao, Jijun; Huang, Xiaoming; Shi, Ruili; Liu, Hongsheng; Su, Yan; King, R. Bruce
2015-09-01
Our ab initio global searches reveal the lowest-energy cage for B28, which is built from two B12 units and prevails over the competing structural isomers such as planar, bowl, and tube. This smallest boron cage extends the scope of all-boron fullerene and provides a new structural motif of boron clusters and nanostructures.Our ab initio global searches reveal the lowest-energy cage for B28, which is built from two B12 units and prevails over the competing structural isomers such as planar, bowl, and tube. This smallest boron cage extends the scope of all-boron fullerene and provides a new structural motif of boron clusters and nanostructures. Electronic supplementary information (ESI) available: Planar isomer structures of B28 and spatial distributions of front molecular orbitals. See DOI: 10.1039/c5nr04034e
A highly accurate {\\it ab initio} potential energy surface for methane
Owens, Alec; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2016-01-01
A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art \\textit{ab initio} theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include: core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of $^{12}$CH$_4$ reproduced with a root-mean-square error of $0.70{\\,}$cm$^{-1}$. The computed \\textit{ab initio} equilibrium C{--}H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as $J$ (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the e...
Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2016-05-01
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg10In90, Hg30In70,. Hg50In50, Hg70In30, and Hg90Pb10) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.
Knoop, S.; Żuchowski, P. S.; KÈ©dziera, D.; Mentel, Ł.; Puchalski, M.; Mishra, H. P.; Flores, A. S.; Vassen, W.
2014-08-01
We have investigated the ultracold interspecies scattering properties of metastable triplet He and Rb. We performed state-of-the-art ab initio calculations of the relevant interaction potential, and measured the interspecies elastic cross section for an ultracold mixture of metastable triplet He4 and Rb87 in a quadrupole magnetic trap at a temperature of 0.5 mK. Our combined theoretical and experimental study gives an interspecies scattering length a4+87=+17-4+1a0, which prior to this work was unknown. More general, our work shows the possibility of obtaining accurate scattering lengths using ab initio calculations for a system containing a heavy, many-electron atom, such as Rb.
Ab initio study of AlxMoNbTiV high-entropy alloys.
Cao, Peiyu; Ni, Xiaodong; Tian, Fuyang; Varga, Lajos K; Vitos, Levente
2015-02-25
The Al(x)MoNbTiV (x = 0-1.5) high-entropy alloys (HEAs) adopt a single solid-solution phase, having the body centered cubic (bcc) crystal structure. Here we employ the ab initio exact muffin-tin orbitals method in combination with the coherent potential approximation to investigate the equilibrium volume, elastic constants, and polycrystalline elastic moduli of Al(x)MoNbTiV HEAs. A comparison between the ab initio and experimental equilibrium volumes demonstrates the validity and accuracy of the present approach. Our results indicate that Al addition decreases the thermodynamic stability of the bcc structure with respect to face-centered cubic and hexagonal close packed lattices. For the elastically isotropic Al(0.4)MoNbTiV HEAs, the valence electron concentration (VEC) is about 4.82, which is slightly different from VEC ∼ 4.72 obtained for the isotropic Gum metals and refractory--HEAs. PMID:25640032
Ab Initio Calculations for the BaTiO3 (001) Surface Structure
Institute of Scientific and Technical Information of China (English)
XUE Xu-Yan; WANG Chun-Lei; ZHONG Wei-Lie
2004-01-01
@@ The ab initio method within the local density approximation is applied to calculate cubic BaTiO3 (001) surface relaxation and rumpling for two different terminations (BaO and TiO2). Our calculations demonstrate that cubic perovskite BaTiO3 crystals possess surface polarization, accompanied by the presence of the relevant electric field.We analyse their electronic structures (band structure, density of states and the electronic density redistribution with emphasis on the covalency effects). The results are also compared with that of the previous ab initio calculations. Considerable increases of Ti-O chemical bond covalency nearby the surface have been observed.The band gap reduces especially for the TiO2 termination.
Liquid Be, Ca and Ba. An orbital-free ab-initio molecular dynamics study
Energy Technology Data Exchange (ETDEWEB)
Rio, B. G. del; González, L. E. [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid (Spain)
2015-08-17
Several static and dynamic properties of liquid beryllium (l-Be), liquid calcium (l-Ca) and liquid barium (l-Ba) near their triple point have been evaluated by the orbital-free ab initio molecular dynamics method (OF-AIMD), where the interaction between valence electrons and ions is described by means of local pseudopotentials. These local pseudopotentials used were constructed through a force-matching process with those obtained from a Kohn-Sham ab initio molecular dynamics study (KS-AIMD) of a reduced system with non-local pseudopotentials. The calculated static structures show good agreement with the available experimental data, including an asymmetric second peak in the structure factor which has been linked to the existence of a marked icosahedral short-range order in the liquid. As for the dynamic properties, we obtain collective density excitations whose associated dispersion relations exhibit a positive dispersion.
Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Sharma, Nalini; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University, Shimla(HP)-171005 (India); Thakur, Anil [Department of Physics, Govt. P. G. College Solan (HP)-173212 (India)
2015-05-15
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.
Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics
International Nuclear Information System (INIS)
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg10In90, Hg30In70, Hg50In50, Hg70In30 and Hg90In10) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys
Interatomic potentials for Al and Ni from experimental data and ab initio calculations
Energy Technology Data Exchange (ETDEWEB)
Mishin, Y.; Farkas, D.; Miehl, M.J.; Papaconstantopoulos, D.A.
1999-07-01
New embedded-atom potentials for Al and Ni have been developed by fitting to both experimental data and the results of ab initio calculations. The ab initio data were obtained in the form of energies of different alternative computer-generated crystalline structures of these metals. The potentials accurately reproduce basic equilibrium properties of Al and Ni such as the elastic constants, phonon dispersion curves, vacancy formation and migration energies, stacking fault energies, and surface energies. The equilibrium energies of various alternative structures not included in the fitting database are calculated with these potentials. The results are compared with predictions of total-energy tight-binding calculations for the same structures. The embedded-atom potentials correctly reproduce the structural stability trends, which suggests that they are transferable to different local environments encountered in atomistic simulations of lattice defects.
Melting of sodium under high pressure. An ab-initio study
Energy Technology Data Exchange (ETDEWEB)
González, D. J.; González, L. E. [Departamento de Física Teórica, Atómica y Optica, Universidad de Valladolid, 47011 Valladolid (Spain)
2015-08-17
We report ab-initio molecular dynamics simulations of dense liquid/solid sodium for a pressure range from 0 to 100 GPa. The simulations have been performed with the orbital free ab-initio molecular dynamics method which, by using the electron density as the basic variable, allows to perform simulations with large samples and for long runs. The calculated melting curve shows a maximum at a pressure ≈ 30 GPa and it is followed by a long, steep decrease. These features are in good agreement with the experimental data. For various pressures along the melting curve, we have calculated several liquid static properties (pair distribution functions, static structure factors and short-range order parameters) in order to analyze the structural effects of pressure.
An efficient time-stepping scheme for ab initio molecular dynamics simulations
Tsuchida, Eiji
2015-01-01
In ab initio molecular dynamics simulations of real-world problems, the simple Verlet method is still widely used for integrating the equations of motion, while more efficient algorithms are routinely used in classical molecular dynamics. We show that if the Verlet method is used in conjunction with pre- and postprocessing, the accuracy of the time integration is significantly improved with only a small computational overhead. The validity of the processed Verlet method is demonstrated in several examples including ab initio molecular dynamics simulations of liquid water. The structural properties obtained from the processed Verlet method are found to be sufficiently accurate even for large time steps close to the stability limit. This approach results in a 2x performance gain over the standard Verlet method for a given accuracy.
An ab initio potential function for the ν13 vibrational mode of 1,3-butadiene
Senent, M. L.
1995-06-01
The restricted potential of the ν13 torsional mode of 1,3-butadiene has been determined from ab initio calculations. The relative energy and geometry of the second rotamer were calculated with the optimized couple cluster method with double substitutions. This ab initio level provides that the second stable structure attaches to a gauche form situated at 140.8°. The potential energy function was obtained by fitting to a symmetry-adapted Fourier series the total electronic energies of several selected conformations. These energies were calculated by the Möller-Plesset perturbation theory up to the second order (MP2) with full and partial optimization of the geometry. Torsional Raman band positions and fundamental frequencies were determined from the periodic potentials with a good agreement with experimental data. The convenience of performing fully optimized calculations to determine the restricted function is also refuted.
Ab-initio molecular dynamics simulation of liquid water by Quantum Monte Carlo
Zen, Andrea; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro
2014-01-01
Despite liquid water is ubiquitous in chemical reactions at roots of life and climate on earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in excellent agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous Density Functional Theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab-initio simulations of complex chemical systems.
Ab Initio Calculations and Raman and SERS Spectral Analyses of Amphetamine Species
DEFF Research Database (Denmark)
Berg, Rolf W.; Nørbygaard, Thomas; White, Peter C.;
2011-01-01
For the first time, the differences between the spectra of amphetamine and amphetamine-H+ and between different conformers are thoroughly studied by ab initio model calculations, and Raman and surface-enhanced Raman spectroscopy (SERS) spectra are measured for different species of amphetamine....... The spectra of amphetamine and amphetamine-H+ sampleswere obtained and assigned according to a comparison of the experimental spectra and the ab initio MO calculations, performed using the Gaussian 03W program (Gaussian, Inc., Pittsburgh, PA). The analyses were based on complete geometry minimization...... of the conformational energy of the S-plus-amphetamine molecule and the S-plus-amphetamine-H+ ion. The harmonic frequency calculations provide information about the characteristic features of the Raman spectra and the nature of the bonding in the molecule. It is concluded that vibrational bands from salt anions...
Electrical Resistivity of Na-K Binary Liquid Alloy Using Ab-Initio Pseudopotentials
Institute of Scientific and Technical Information of China (English)
Anil Thakur; P. K. Ahluwalia
2005-01-01
@@ The study of electrical resistivity of simple binary liquid alloy Na-K is presented as a function of concentration.Hard sphere diameters of sodium (Na) and potassium (K) are obtained through the inter ionic pair potentials evaluated using Troullier and Martins ab-initio pseudopotentials, which have been used to calculate partial structure factors S(q). The Ziman formula for calculating resistivity of binary liquid alloys has been used. Form factors are calculated using ab-initio pseudopotentials. The results suggest that the first principle approach for calculating pseudopotentials with in the frame work of Ziman formalism is quite successful in explaining the electrical resistivity data of compound forming binary liquid alloys.
Ab-initio Gorkov-Green's function calculations of open-shell nuclei
Soma, V; Duguet, T
2012-01-01
We present results from a new ab-initio method that uses the self-consistent Gorkov Green's function theory to address truly open-shell systems. The formalism has been recently worked out up to second order and is implemented here in nuclei for the first time on the basis of realistic nuclear forces. We find good convergence of the results with respect to the basis size in Ca44 and Ni74 and discuss quantities of experimental interest including ground-state energies, pairing gaps and particle addition/removal spectroscopy. These results demonstrate that the Gorkov method is a valid alternative to multireference approaches for tackling degenerate or near degenerate quantum systems. In particular, it increases the number of mid-mass nuclei accessible in an ab-initio fashion from a few tens to a few hundreds.
Ab initio studies of equations of state and chemical reactions of reactive structural materials
Zaharieva, Roussislava
subject of studies of the shock or thermally induced chemical reactions of the two solids comprising these reactive materials, from first principles, is a relatively new field of study. The published literature on ab initio techniques or quantum mechanics based approaches consists of the ab initio or ab initio-molecular dynamics studies in related fields that contain a solid and a gas. One such study in the literature involves a gas and a solid. This is an investigation of the adsorption of gasses such as carbon monoxide (CO) on Tungsten. The motivation for these studies is to synthesize alternate or synthetic fuel technology by Fischer-Tropsch process. In this thesis these studies are first to establish the procedure for solid-solid reaction and then to extend that to consider the effects of mechanical strain and temperature on the binding energy and chemisorptions of CO on tungsten. Then in this thesis, similar studies are also conducted on the effect of mechanical strain and temperature on the binding energies of Titanium and hydrogen. The motivations are again to understand the method and extend the method to such solid-solid reactions. A second motivation is to seek strained conditions that favor hydrogen storage and strain conditions that release hydrogen easily when needed. Following the establishment of ab initio and ab initio studies of chemical reactions between a solid and a gas, the next step of research is to study thermally induced chemical reaction between two solids (Ni+Al). Thus, specific new studies of the thesis are as follows: (1) Ab initio Studies of Binding energies associated with chemisorption of (a) CO on W surfaces (111, and 100) at elevated temperatures and strains and (b) adsorption of hydrogen in titanium base. (2) Equations of state of mixtures of reactive material structures from ab initio methods. (3) Ab initio studies of the reaction initiation, transition states and reaction products of intermetallic mixtures of (Ni+Al) at elevated
Properties of metals during the heating by intense laser irradiation using ab initio simulations
Holst, Bastian; Recoules, Vanina; Torrent, Marc; Mazevet, Stephane
2011-10-01
Ultrashort laser pulses irradiating a target heat the electrons to very high temperatures. In contrast, the ionic lattice is unaffected on the time scale of the laser pulse since the heat capacity of electrons is much smaller than that of the lattice. This non-equilibrium system can be described as a composition of two subsystems: one consisting of hot electrons and the other of an ionic lattice at low temperature. We studied the effect of this intense electronic excitations on the optical properties of gold using ab initio simulations. We additionally use ab initio linear response to compute the phonon spectrum and the electron-phonon coupling constant within Density Functional Theory for several electronic temperatures of few eV. LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France.
Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon.
Drumm, Daniel W; Budi, Akin; Per, Manolo C; Russo, Salvy P; L Hollenberg, Lloyd C
2013-02-27
: The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%.
Ab initio modelling of the behaviour of point defects and fission products in nuclear fuel
International Nuclear Information System (INIS)
The aim of this work is to determine precisely the mechanisms of formation and migration of defects and fission products as well as the associated energies. Examples on uranium dioxide UO2 (standard nuclear fuel) and on uranium carbide UC (potential fuel for new generation reactors) are given. The obtained results are discussed and compared with the experimental results carried out. The ab initio method used is the Projector Augmented-Wave (PAW) method based on the density functional theory. The particular electronic properties of actinides are especially studied because, on account of their 5f orbitals more or less localized around the nucleus, it is difficult to model the actinide compounds by the DFT method. In particular, the modelling of the exchange-correlation interaction of the 5f electrons of UO2 requires approximations (as GGA+U) beyond those more currently used in ab initio calculations (LDA or GGA). (O.M.)
Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Zen, Andrea, E-mail: a.zen@ucl.ac.uk [Dipartimento di Fisica, “La Sapienza” - Università di Roma, piazzale Aldo Moro 5, 00185 Rome (Italy); London Centre for Nanotechnology, University College London, London WC1E 6BT (United Kingdom); Luo, Ye, E-mail: xw111luoye@gmail.com; Mazzola, Guglielmo, E-mail: gmazzola@phys.ethz.ch; Sorella, Sandro, E-mail: sorella@sissa.it [SISSA–International School for Advanced Studies, Via Bonomea 26, 34136 Trieste (Italy); Democritos Simulation Center CNR–IOM Istituto Officina dei Materiali, 34151 Trieste (Italy); Guidoni, Leonardo, E-mail: leonardo.guidoni@univaq.it [Dipartimento di Fisica, “La Sapienza” - Università di Roma, piazzale Aldo Moro 5, 00185 Rome (Italy); Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’ Aquila, via Vetoio, 67100 L’ Aquila (Italy)
2015-04-14
Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.
Experimental studies and ab initio calculations on characteristics of the C state of SF2 radical
International Nuclear Information System (INIS)
SF2 radicals were generated by a pulsed dc discharge in the mixture gas beam of SF2 and Ar. The (2+1) resonance-enhanced multiphoton ionization (REMPI) excitation spectroscopy of SF2 radical was obtained between 325 and 365 nm. The SF+ ion signals were also observed in the same wavelength range. The analysis shows that the spectrum can be assigned as the two-photon resonant excitation of SF2 radical (B-tilde1 B1 and (C-tilde1 A1 states). And also, ab initio calculations suggest that the C-tilde state is a bonding state with Rydberg characteristic. The potential energy surfaces (PESs) of SF2 and SF2+ by ab initio calculations suggest that SF+ ions originate from dissociation processes of excited SF2+ ions. (author)
Emergent properties of nuclei from ab initio coupled-cluster calculations
Hagen, G; Hjorth-Jensen, M; Papenbrock, T
2016-01-01
Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. This endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. This paper reviews some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO$_{\\rm sat}$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to $^{56}$Ni. We derive an efficient scheme for including continuum effects in coupled-clust...
Marsalek, Ondrej
2015-01-01
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ab initio ring polymer contraction (AI-RPC) scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive pro...
A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
Spencer, Matt; Eickholt, Jesse; Cheng, Jianlin
2014-01-01
Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80% and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in atte...
Ab Initio Study on the Anti-HIV Activities of Hydroxyflavones
Institute of Scientific and Technical Information of China (English)
ZHANG Yu
2005-01-01
Flavone and 95 hydroxyflavones have been studied with ab initio method, and their total energies, atomic charges, dipole moments, multipole moments, molecular orbital compositions, orbital energies etc. were obtained. Among them the relationship between total atomic charges and activities against HIV is basically in accordance with the experimental results. The beneficial references are provided for the extraction and synthesis of strong active anti-HIV medicines.
Ab-initio simulation and experimental validation of beta-titanium alloys
Raabe, D.; Sander, B.; Friák, M.; Ma, D.; Neugebauer, J.
2008-01-01
In this progress report we present a new approach to the ab-initio guided bottom up design of beta-Ti alloys for biomedical applications using a quantum mechanical simulation method in conjunction with experiments. Parameter-free density functional theory calculations are used to provide theoretical guidance in selecting and optimizing Ti-based alloys with respect to three constraints: (i) the use of non-toxic alloy elements; (ii) the stabilization of the body centered cubic beta phase at roo...
Ab Initio Studies on Hematite Surface and the Adsorption of Phosphate
Swati Chaudhury; Chandrika Varadachari; Kunal Ghosh
2014-01-01
This investigation explores the ab initio DFT method for understanding surface structure of hematite and the nature and energetics of phosphate adsorption. Using the full potential linearized plane wave method (FP-LAPW), we derived the structure and energies of various magnetic forms of hematite. The antiferromagnetic (AFM) form was observed to be the most stable. Hematite surfaces with Fe-termination, O-termination, or OH-termination were studied. The OH-terminated surface was the most stabl...
Ab initio molecular dynamics simulation of hydrogen fluoride at several thermodynamic states
DEFF Research Database (Denmark)
Kreitmeir, M.; Bertagnolli, H.; Mortensen, Jens Jørgen;
2003-01-01
Liquid hydrogen fluoride is a simple but interesting system for studies of the influence of hydrogen bonds on physical properties. We have performed ab initio molecular dynamics simulations of HF at several thermodynamic states, where we examine the microscopic structure of the liquid as well...... as its static and dynamic properties. The results obtained show good agreement with well established data, and, moreover, we were able to show significant changes within the structure depending on the system's temperature and density....
Surface Tension of Ab Initio Liquid Water at the Water-Air Interface
Nagata, Yuki; Ohto, Tatsuhiko; Bonn, Mischa; Kühne, Thomas D.
2016-01-01
We report calculations of the surface tension of the water-air interface using ab initio molecular dynamics (AIMD) simulations. We investigate the simulation cell size dependence of the surface tension of water from force field molecular dynamics (MD) simulations, which show that the calculated surface tension increases with increasing simulation cell size, thereby illustrating that a correction for finite size effects is required for the small system used in the AIMD simulation. The AIMD sim...
First fully ab initio potential energy surface of methane with a spectroscopic accuracy
Nikitin, A. V.; Rey, M.; Tyuterev, Vl. G.
2016-09-01
Full 9-dimensional ab initio potential energy surfaces for the methane molecule are constructed using extended electronic structure coupled-cluster calculations with various series of basis sets following increasing X cardinal numbers: cc-pVXZ (X = 3, 4, 5, 6), aug-cc-ACVXZ (X = 3, 4, 5), and cc-pCVXZ-F12 (X = 3, 4). High-order dynamic electron correlations including triple and quadrupole excitations as well as relativistic and diagonal Born-Oppenheimer breakdown corrections were accounted for. Analytical potential functions are parametrized as non-polynomial expansions in internal coordinates in irreducible tensor representation. Vibrational energy levels are reported using global variational nuclear motion calculations with exact kinetic energy operator and a full account of the tetrahedral symmetry of CH4. Our best ab initio surface including above-mentioned contributions provides the rms (obs.-calc.) errors of less than 0.11 cm-1 for vibrational band centers below 4700 cm-1, and ˜0.3 cm-1 for all 229 assigned experimentally determined vibrational levels up to the Icosad range <7900 cm-1 without empirically adjusted parameters. These results improve the accuracy of ab initio methane vibrational predictions by more than an order of magnitude with respect to previous works. This is an unprecedented accuracy of first-principles calculations of a five-atomic molecule for such a large data set. New ab initio potential results in significantly better band center predictions even in comparison with best available empirically corrected potential energy surfaces. The issues related to the basis set extrapolation and an additivity of various corrections at this level of accuracy are discussed.
Ab initio calculation of positron distribution, ACAR and lifetime in TTF-TCNQ
International Nuclear Information System (INIS)
We have performed ab initio calculations of positron distribution, ACAR and lifetime in the quasi-one-dimensional organic conductor TTF-TCNQ. The electronic structure is obtained within the LDA, while the positron state is calculated either with the LDA or with the GGA. Except the positron lifetime, differences between the LDA and GGA results are rather small. The obtained results are compared with our previous experiments and calculations.
Ab initio calculation of positron distribution, ACAR and lifetime in TTF-TCNQ
Ishibashi, Shoji; Kohyama, Masanori
2000-06-01
We have performed ab initio calculations of positron distribution, ACAR and lifetime in the quasi-one-dimensional organic conductor TTF-TCNQ. The electronic structure is obtained within the LDA, while the positron state is calculated either with the LDA or with the GGA. Except the positron lifetime, differences between the LDA and GGA results are rather small. The obtained results are compared with our previous experiments and calculations.
Knyazev, D. V.; Levashov, P. R.
2013-01-01
This work is devoted to the \\textit{ab initio} calculation of transport and optical properties of aluminum. The calculation is based on the quantum molecular dynamics simulation, density functional theory and the Kubo-Greenwood formula. Mainly the calculations are performed for liquid aluminum at near-normal densities for the temperatures from melting up to 20000 K. The results on dynamic electrical conductivity, static electrical conductivity and thermal conductivity are obtained and compare...
Large scale ab initio calculations based on three levels of parallelization
Bottin, François; Leroux, Stéphane; Knyazev, Andrew; Zérah, Gilles
2007-01-01
We suggest and implement a parallelization scheme based on an efficient multiband eigenvalue solver, called the locally optimal block preconditioned conjugate gradient LOBPCG method, and using an optimized three-dimensional (3D) fast Fourier transform (FFT) in the ab initio}plane-wave code ABINIT. In addition to the standard data partitioning over processors corresponding to different k-points, we introduce data partitioning with respect to blocks of bands as well as spatial partitioning in t...
Ab initio study on the magnetostructural properties of MnAs
Sanvito, Stefano; RUNGGER, IVAN
2006-01-01
The magnetic and structural properties of MnAs are studied with ab initio methods, and by mapping total energies onto a Heisenberg model. The stability of the different phases is found to depend mainly on the volume and on the amount of magnetic order, confirming previous experimental findings and phenomenological models. It is generally found that for large lattice constants the ferromagnetic state is favored, whereas for small lattice constants different antiferromagnetic states can be stab...
On limits of ab initio calculations of pairing gap in nuclei
Saperstein, E. E.; Baldo, M.; Lombardo, U.; Pankratov, S. S.; Zverev, M. V.
2010-01-01
A brief review of recent microscopic calculations of nuclear pairing gap is given. A semi-microscopic model is suggested in which the ab-initio effective pairing interaction is supplemented with a small phenomenological addendum. It involves a parameter which is universal for all medium and heavy nuclei. Calculations for several isotopic and isotonic chains of semi-magic nuclei confirm the relevance of the model.
Projector augmented wave method: ab initio molecular dynamics with full wave functions
Indian Academy of Sciences (India)
Peter E Blöchl; Clemens J Först; Johannes Schimpl
2003-01-01
A brief introduction to the projector augmented wave method is given and recent developments are reviewed. The projector augmented wave method is an all-electron method for efficient ab initio molecular dynamics simulations with full wave functions. It extends and combines the traditions of existing augmented wave methods and the pseudopotential approach. Without sacrificing efficiency, the PAW method avoids transferability problems of the pseudopotential approach and it has been valuable to predict properties that depend on the full wave functions.
Simulation of Ab Initio Molecular Dynamics of Shock Wave on Copper
Institute of Scientific and Technical Information of China (English)
张林; 蔡灵仓; 向士凯; 经福谦; 陈栋泉
2003-01-01
The relation between particle velocity Up, up to 4 km/s, and shock wave velocity Us in copper has been simulated with ab initio molecular dynamics. The simulated relationship without considering the correction of zero-point and finite temperature effects is Us = 4.23 + 1.53Up. After considering the correction the relation becomes Us = 4.08 + 1.53Up, which is consistent with the experimental result.
Ab initio theory of galvanomagnetic phenomena in ferromagnetic metals and disordered alloys
Turek, Ilja; Kudrnovsky, Josef; Drchal, Vaclav
2011-01-01
We present an ab initio theory of transport quantities of metallic ferromagnets developed in the framework of the fully relativistic tight-binding linear muffin-tin orbital method. The approach is based on the Kubo-Streda formula for the conductivity tensor, on the coherent potential approximation for random alloys, and on the concept of interatomic electron transport. The developed formalism is applied to pure 3d transition metals (Fe, Co, Ni) and to random Ni-based ferromagnetic alloys (Ni-...
Ab initio simulations of liquid NaSn alloys: Zintl anions and network formation
Schoene, M.; Kaschner, R.; Seifert, G
1994-01-01
Using the Car-Parrinello technique, ab initio molecular dynamics simulations are performed for liquid NaSn alloys in five different compositions (20, 40, 50, 57 and 80 % sodium). The obtained structure factors agree well with the data from neutron scattering experiments. The measured prepeak in the structure factor is reproduced qualitatively for most compositions. The calculated and measured positions of all peaks show the same trend as function of the composition.\\\\ The dynamic simulations ...
Belousov, Roman; Prencipe, Mauro
2014-01-01
The isothermal compression of magnesium perovskite and postperovskite is examined through the F-f plot and the diagnostic plot of Vinet universal model theoretically from the ab initio quantum-mechanical calculations at the hybrid Hartree-Fock / Density Functional Theory level. A purely numerical approach, first time applied in this paper, shows that the discrepancies largely observed between studies on the perovskite and criticized in geophysical applications are due to the inadequate choice...
Ab initio molecular dynamics study of liquid sodium and cesium up to critical point
Energy Technology Data Exchange (ETDEWEB)
Yuryev, Anatoly A. [Institute of Metallurgy of Ural Branch of the Russian Academy of Sciences, Amundsen st. 101,620016, Yekaterinburg (Russian Federation); Ural Federal University, Vira st. 19, 620002, Yekaterinburg (Russian Federation); Gelchinski, Boris R. [Institute of Metallurgy of Ural Branch of the Russian Academy of Sciences, Amundsen st. 101,620016, Yekaterinburg (Russian Federation)
2015-08-17
Ab initio modeling of liquid metals Na and K is carried out using the program SIESTA. We have determined the parameters of the model (the optimal step, the number of particles, the initial state etc) and calculated a wide range of properties: the total energy, pair correlation function, coefficient of self-diffusion, heat capacity, statistics of Voronoi polyhedra, the density of electronic states up to the critical temperature.
Hyperfine tensors of nitrogen-vacancy center in diamond from \\emph{ab initio} calculations
Gali, Adam
2009-01-01
We determine and analyze the charge and spin density distributions of nitrogen-vacancy (N-V) center in diamond for both the ground and excited states by \\emph{ab initio} supercell calculations. We show that the hyperfine tensor of $^{15}$N nuclear spin is negative and strongly anisotropic in the excited state, in contrast to previous models used extensively to explain electron spin resonance measurements. In addition, we detect a significant redistribution of the spin density due to excitatio...
International Nuclear Information System (INIS)
We have used atomistic simulations to identify and characterize interstitial defect cluster configurations candidate for W and X photoluminescence centers in crystalline Si. The configurational landscape of small self-interstitial defect clusters has been explored through nanosecond annealing and implantation recoil simulations using classical molecular dynamics. Among the large collection of defect configurations obtained, we have selected those defects with the trigonal symmetry of the W center, and the tetrahedral and tetragonal symmetry of the X center. These defect configurations have been characterized using ab initio simulations in terms of their donor levels, their local vibrational modes, the defect induced modifications of the electronic band structure, and the transition amplitudes at band edges. We have found that the so-called I 3-V is the most likely candidate for the W PL center. It has a donor level and local vibrational modes in better agreement with experiments, a lower formation energy, and stronger transition amplitudes than the so-called I 3-I, which was previously proposed as the W center. With respect to defect candidates for the X PL center, our calculations have shown that none of the analyzed defect candidates match all of the experimental characteristics of the X center. Although the Arai tetra-interstitial configuration previously proposed as the X center cannot be excluded, the other defect candidates for the X center found, I 3-C and I 3-X, cannot be discarded either. (paper)
In pursuit of the ab initio limit for conformational energy prototypes
Császár, Attila G.; Allen, Wesley D.; Schaefer, Henry F.
1998-06-01
The convergence of ab initio predictions to the one- and n-particle limits has been systematically explored for several conformational energy prototypes: the inversion barriers of ammonia, water, and isocyanic acid, the torsional barrier of ethane, the E/Z rotamer separation of formic acid, and the barrier to linearity of silicon dicarbide. Explicit ab initio results were obtained with atomic-orbital basis sets as large as [7s6p5d4f3g2h1i/6s5p4d3f2g1h] and electron correlation treatments as extensive as fifth-order Møller-Plesset perturbation theory (MP5), the full coupled-cluster method through triple excitations (CCSDT), and Brueckner doubles theory including perturbational corrections for both triple and quadruple excitations [BD(TQ)]. Subsequently, basis set and electron correlation extrapolation schemes were invoked to gauge any further variations in arriving at the ab initio limit. Physical effects which are tacitly neglected in most theoretical work have also been quantified by computations of non-Born-Oppenheimer (BODC), relativistic, and core correlation shifts of relative energies. Instructive conclusions are drawn for the pursuit of spectroscopic accuracy in theoretical conformational analyses, and precise predictions for the key energetic quantities of the molecular prototypes are advanced.
Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions.
Changlani, Hitesh J; Zheng, Huihuo; Wagner, Lucas K
2015-09-14
We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U(∗)/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models. PMID:26374007
Geng, Hua Y
2014-01-01
A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model, the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4 fold for a two-level implementation, and can be increased to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibration...
Energy Technology Data Exchange (ETDEWEB)
Ventelon, L
2008-11-15
The various methods appropriate for the simulation of dislocations within first-principles calculations have been set up, improved and compared between them. They have been applied to study screw dislocations in body-centered cubic iron using the SIESTA code. A non-degenerate core structure is obtained; its detailed analysis reveals a dilatation effect. Taking it into account in an anisotropic elasticity model, allows explaining the cell-size dependence of the energetics, obtained within the dipole approach. The Peierls potential obtained in ab initio suggests that the metastable core configuration at halfway position in the Peierls barrier, predicted by empirical potential, does not exist. We show how to construct tri-periodic cells optimized to study kinked dislocations. Using empirical potential, we demonstrate the feasibility of ab initio calculations of Peierls stress and kink formation. (author)
Energy Technology Data Exchange (ETDEWEB)
Li, Jun, E-mail: jli15@cqu.edu.cn, E-mail: zhangdh@dicp.ac.cn [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H., E-mail: jli15@cqu.edu.cn, E-mail: zhangdh@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Xie, Daiqian [Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Guo, Hua [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)
2015-05-28
We report a permutationally invariant global potential energy surface (PES) for the H + CH{sub 4} system based on ∼63 000 data points calculated at a high ab initio level (UCCSD(T)-F12a/AVTZ) using the recently proposed permutation invariant polynomial-neural network method. The small fitting error (5.1 meV) indicates a faithful representation of the ab initio points over a large configuration space. The rate coefficients calculated on the PES using tunneling corrected transition-state theory and quasi-classical trajectory are found to agree well with the available experimental and previous quantum dynamical results. The calculated total reaction probabilities (J{sub tot} = 0) including the abstraction and exchange channels using the new potential by a reduced dimensional quantum dynamic method are essentially the same as those on the Xu-Chen-Zhang PES [Chin. J. Chem. Phys. 27, 373 (2014)].
Ab initio studies on the spin-forbidden cooling transitions of the LiRb molecule.
You, Yang; Yang, Chuan-Lu; Zhang, Qing-Qing; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang
2016-07-20
The spin-forbidden cooling of the LiRb molecule is investigated based on ab initio quantum chemistry calculations. The multireference configuration interaction method is used to generate the potential energy curves (PECs) of the ground state X(1)Σ(+) and the low-lying excited states a(3)Σ(+), B(1)Π, and b(3)Π. The spin-orbit coupling effects for the PECs and the transition dipole moments (TDMs) between the X(1)Σ(+), b(3)Π and a(3)Σ(+) states are also calculated. The analytical functions for the PECs are deduced. The rovibrational energy levels, the spectroscopic parameters and the Franck-Condon factors (FCF) are determined by solving the Schrödinger equation of nuclear movement with the obtained analytical functions. The b(3)Π0 ↔ X(1)Σ(+) and b(3)Π1 ↔ X(1)Σ(+) transitions have highly diagonal distributed FCFs and non-zero TDMs, demonstrating that the LiRb molecule could be a very promising candidate for laser cooling. Therefore, a three-cycle laser cooling scheme for the molecule has been proposed based on these two spin-forbidden transitions. Using the radiative lifetime and linewidth calculated from the obtained TDM functions, we present further analysis of the cooling of LiRb and the corresponding KRb molecule. The transition b(3)Π0 ↔ X(1)Σ(+) is found to be a practical transition to cool the LiRb molecule, and a sub-microkelvin cool temperature could be reached for the KRb molecule using a similar laser cooling scheme. PMID:27388722
Ab initio studies on the spin-forbidden cooling transitions of the LiRb molecule.
You, Yang; Yang, Chuan-Lu; Zhang, Qing-Qing; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang
2016-07-20
The spin-forbidden cooling of the LiRb molecule is investigated based on ab initio quantum chemistry calculations. The multireference configuration interaction method is used to generate the potential energy curves (PECs) of the ground state X(1)Σ(+) and the low-lying excited states a(3)Σ(+), B(1)Π, and b(3)Π. The spin-orbit coupling effects for the PECs and the transition dipole moments (TDMs) between the X(1)Σ(+), b(3)Π and a(3)Σ(+) states are also calculated. The analytical functions for the PECs are deduced. The rovibrational energy levels, the spectroscopic parameters and the Franck-Condon factors (FCF) are determined by solving the Schrödinger equation of nuclear movement with the obtained analytical functions. The b(3)Π0 ↔ X(1)Σ(+) and b(3)Π1 ↔ X(1)Σ(+) transitions have highly diagonal distributed FCFs and non-zero TDMs, demonstrating that the LiRb molecule could be a very promising candidate for laser cooling. Therefore, a three-cycle laser cooling scheme for the molecule has been proposed based on these two spin-forbidden transitions. Using the radiative lifetime and linewidth calculated from the obtained TDM functions, we present further analysis of the cooling of LiRb and the corresponding KRb molecule. The transition b(3)Π0 ↔ X(1)Σ(+) is found to be a practical transition to cool the LiRb molecule, and a sub-microkelvin cool temperature could be reached for the KRb molecule using a similar laser cooling scheme.
International Nuclear Information System (INIS)
We describe classical-trajectory calculations of sputtering yields for Ar+-ion collisions with a Si(001) surface. The Ar+-Si and short-ranged Si-Si interaction potentials were calculated using the ab initio Hartree-Fock and configuration-interaction methods. The low-energy potential describing the silicon solid is the two- and three-body form due to Stillinger and Weber. We compare the calculated sputtering yields with experiment. The potential-energy surface strongly influences the calculated sputtering yields, and it is found that the most reasonable agreement is obtained from our potentials using the (2 x 1) Si(001) reconstructed surface rather than the bulk-terminated surface. Analysis of the kinetic energy and angular distributions of the sputtered silicon atoms and of cluster yields has provided a mechanism of ejection
Institute of Scientific and Technical Information of China (English)
WU Yong; YAN Bing; LIU Ling; WANG Jian-Guo
2007-01-01
The single charge transfer process in 3 He2+ + 4He collisions is investigated using the quantum-mechanical molecularorbital close-coupling method, in which the adiabatic potentials and radial couplings are calculated by using the ab initio multireference single- and double-excitation configuration interaction methods. The differential cross sections for the single charge transfer are presented at the laboratorial energies E = 6kev and 10keV for the projectile 3He2+. Comparison with the existing data shows that the present results are better in agreement with the experimental measurements than other calculations in the dominant small angle scattering, which is attributed to the accurate calculations of the adiabatic potentials and the radial couplings.
Grassi, A; Angilella, G G N; March, N H; Pucci, R
2012-01-01
Fingerprints of antiaromaticity in the negative ion (Li_3Al_4)^-, this species being realizable via a laser vaporization technique, are revealed by means of an ab initio quantum-chemical investigation. First, the ground-state equilibrium geometry of this ion is predicted. Also, the characteristics of the HOMO are studied, both for the square and the rectangular Al_4 geometry in two low-lying isomers of the negative ion. There is no particular sensitivity to the change in geometry of the Al_4 configuration. Therefore, we have calculated theoretically chemical shifts, which contain remarkable fingerprints of antiaromaticity. As to future directions, some comments are added in relation to the Shannon entropy.
Electronic states and nature of bonding in the molecule MoC by all electron ab initio calculations
DEFF Research Database (Denmark)
Shim, Irene; Gingerich, Karl A.
1997-01-01
In the present work all electron ab initio multiconfiguration self-consistent-held (CASSCF) and multireference configuration interaction (MRCI) calculations have been carried out to determine the low-lying electronic states of the molecule MoC. The relativistic corrections for the one electron...... Darwin contact term and the relativistic mass-velocity correction have been determined in perturbation calculations. The electronic ground state is predicted as (3) Sigma(-). The spectroscopic constants for the (3) Sigma(-) electronic ground state and eight low-lying excited states have been derived......, and the vibrational frequency as 997 cm(-1). The chemical bond in the (3) Sigma(-) electronic ground state has triple bond character due to the formation of delocalized bonding rr and a orbitals. The chemical bond in the MoC molecule is polar with charge transfer from Mo to C, giving rise to a dipole moment of 6.15 D...
Iron -chromium alloys and free surfaces: from ab initio calculations to thermodynamic modeling
International Nuclear Information System (INIS)
Ferritic steels possibly strengthened by oxide dispersion are candidates as structural materials for generation IV and fusion nuclear reactors. Their use is limited by incomplete knowledge of the iron-chromium phase diagram at low temperatures and of the phenomena inducing preferential segregation of one element at grain boundaries or at surfaces. In this context, this work contributes to the multi-scale study of the model iron-chromium alloy and their free surfaces by numerical simulations. This study begins with ab initio calculations of properties related to the mixture of atoms of iron and chromium. We highlight complex dependency of the magnetic moments of the chromium atoms on their local chemical environment. Surface properties are also proving sensitive to magnetism. This is the case of impurity segregation of chromium in iron and of their interactions near the surface. In a second step, we construct a simple energy model for high numerical efficiency. It is based on pair interactions on a rigid lattice to which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that we compare to Monte Carlo simulations. The last step of our work is to introduce free surfaces in our model. We then study the effect of ab initio calculated bulk and surface properties on surface segregation.Finally, we calculate segregation isotherms. We therefore propose an evolution model of surface composition of iron-chromium alloys as a function of bulk composition. which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that
Ab initio studies of isolated hydrogen vacancies in graphane
Mapasha, R. E.; Molepo, M. P.; Chetty, N.
2016-05-01
We present a density functional study of various hydrogen vacancies located on a single hexagonal ring of graphane (fully hydrogenated graphene) considering the effects of charge states and the position of the Fermi level. We find that uncharged vacancies that lead to a carbon sublattice balance are energetically favorable and are wide band gap systems just like pristine graphane. Vacancies that do create a sublattice imbalance introduce spin polarized states into the band gap, and exhibit a half-metallic behavior with a magnetic moment of 1.00 μB per vacancy. The results show the possibility of using vacancies in graphane for novel spin-based applications. When charging such vacancy configurations, the deep donor (+1/0) and deep acceptor (0/-1) transition levels within the band gap are noted. We also note a half-metallic to metallic transition and a significant reduction of the induced magnetic moment due to both negative and positive charge doping.
Ab initio Calculations of Optical Properties of Clusters
Shinde, Ravindra
2016-01-01
We have performed systematic large-scale all-electron correlated calculations on boron Bn, aluminum Aln and magnesium Mgn clusters (n=2--5), to study their linear optical absorption spectra. Several possible isomers of each cluster were considered, and their geometries were optimized at the coupled-cluster singles doubles (CCSD) level of theory. Using the optimized ground-state geometries, excited states of different clusters were computed using the multi-reference singles-doubles configuration interaction (MRSDCI) approach, which includes electron correlation effects at a sophisticated level. These CI wavefunctions were used to compute the transition dipole matrix elements connecting the ground and various excited states of different clusters, eventually leading to their linear absorption spectra. The convergence of our results with respect to the basis sets, and the size of the CI expansion was carefully examined. Isomers of a given cluster show a distinct signature spectrum, indicating a strong structure p...
Monte Carlo shell model for ab initio nuclear structure
International Nuclear Information System (INIS)
The Monte Carlo Shell Model (MCSM) has been developed mainly for conventional shell-model calculations with an assumed inert core. Recently the algorithm and code itself have been heavily revised and rewritten so as to accommodate massively parallel computing environments. Now we can apply the MCSM not only to conventional shell-model calculations but also to no-core calculations. The MCSM approach proceeds through a sequence of diagonalization steps within the Hilbert subspace spanned by the deformed Slater determinants in the HO single-particle basis. Importance truncated bases are stochastically sampled so as to minimize the energy variationally. By increasing the number of importance-truncated basis, the computed energy converges from above to the exact value and gives the variational upper bound. In benchmark calculations, there is a good agreement in p-shell nuclei between the results of the MCSM and of the FCI (Full Configuration Interaction) method. The N(shell)=5 results reveal the onset of systematic convergence pattern. Further work is needed to investigate the extrapolation to the infinite basis space in the N(shell) truncation
Roy, Soumendra K.; Jian, Tian; Lopez, Gary V.; Li, Wei-Li; Su, Jing; Bross, David H.; Peterson, Kirk A.; Wang, Lai-Sheng; Li, Jun
2016-02-01
The observation of the gaseous UFO- anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO- is linear with an O-U-F structure and a 3H4 spectral term derived from a U 7sσ25fφ15fδ1 electron configuration, whereas the ground state of neutral UFO has a 4H7/2 spectral term with a U 7sσ15fφ15fδ1 electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.
CL-20 photodecomposition: Ab initio foundations for identification of products
Kholod, Yana; Kosenkov, Dmytro; Okovytyy, Sergiy; Gorb, Leonid; Qasim, Mohammad; Leszczynski, Jerzy
2008-11-01
1,5-Dihydrodiimidazo[4,5-b:4'5'e]pyrazine, 1H-imidazo[4,5-b]pyrazine, and 1H-imidazole were considered as possible products of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) photodecomposition. Since we took as a reference the product obtained after CL-20 irradiation in methanol solution, the nature of intermolecular bonds between heterocycles under study and methanol molecules was analyzed in detail. Existing hydrogen bonds were found to be quite strong, so dependence of calculations results on an influence of solvent was taken into account using both the polarizable continuum model (PCM) and the supermolecular approach. Electronic spectra of 1,5-dihydrodiimidazo[4,5-b:4'5'e]pyrazine, 1H-imidazo[4,5-b]pyrazine and 1H-imidazole were simulated using time dependent density functional theory (TD-DFT) and single-excitation configuration interaction (CIS) method. We observed that TD-DFT excitation energies are lower if compared to corresponding values obtained by the CIS method. Results of calculations with PCM and the supermolecular approach are very close. It was found that differences between calculated gas phase excitation energies and those values obtained by applying solvent models increases when the number of conjugated bonds in a molecule increases. Oscillator strengths of UV bands of the considered molecules are higher in the gas phase than in modeled methanol solutions. We found that the predicted spectrum of 1H-imidazole is in close agreement with the experimental UV spectrum of the CL-20 photolysis product.
An experimental and ab initio study on the abiotic reduction of uranyl by ferrous iron
Taylor, S. D.; Marcano, M. C.; Rosso, K. M.; Becker, U.
2015-05-01
It is important to understand the mechanisms controlling the removal of uranyl from solution from an environmental standpoint, particularly whether soluble Fe(II) is capable of reducing soluble U(VI) to insoluble U(IV). Experiments were performed to shed light into discrepancies of recent studies about precipitation of U-containing solids without changing oxidation states versus precipitation/reduction reactions, especially with respect to the kinetics of these reactions. To understand the atomistic mechanisms, thermodynamics, and kinetics of these redox processes, ab initio electron transfer (ET) calculations, using Marcus theory, were applied to study the reduction of U(VI)aq to U(V)aq by Fe(II)aq (the first rate-limiting ET-step). Outer-sphere (OS) and inner-sphere (IS) Fe-U complexes were modeled to represent simple species within a homogeneous environment through which ET could occur. Experiments on the chemical reduction were performed by reacting 1 mM Fe(II)aq at pH 7.2 with high (i.e., 0.16 mM) and lower (i.e., 0.02 mM) concentrations of U(VI)aq. At higher U concentration, a rapid decrease in U(VI)aq was observed within the first hour of reaction. XRD and XPS analyses of the precipitates confirmed the presence of (meta)schoepite phases, where up to ∼25% of the original U was reduced to U4+ and/or U5+-containing phases. In contrast, at 0.02 mM U, the U(VI)aq concentration remained fairly constant for the first 3 h of reaction and only then began to decrease due to slower precipitation kinetics. XPS spectra confirm the partial chemical reduction U associated with the precipitate (up to ∼30%). Thermodynamic calculations support that the reduction of U(VI)aq to U(IV)aq by Fe(II)aq is energetically unfavorable. The batch experiments in this study show U(VI) is removed from solution by precipitation and that transitioning to a heterogeneous system in turn enables the solid U phase to be partially reduced. Ab initio ET calculations revealed that OS ET is
Castro-Palacios, Juan Carlos; Rubayo-Soneira, Jesús; Ishii, Keisaku; Yamashita, Koichi
2007-04-01
The intermolecular potentials for the NO(X 2Pi)-Kr and NO(A 2Sigma+)-Kr systems have been calculated using highly accurate ab initio calculations. The spin-restricted coupled cluster method for the ground 1 2A' state [NO(X 2Pi)-Kr] and the multireference singles and doubles configuration interaction method for the excited 2 2A' state [NO(A 2Sigma+)-Kr], respectively, were used. The potential energy surfaces (PESs) show two linear wells and one that is almost in the perpendicular position. An analytical representation of the PESs has been constructed for the triatomic systems and used to carry out molecular dynamics (MD) simulations of the NO-doped krypton matrix response after excitation of NO. MD results are shown comparatively for three sets of potentials: (1) anisotropic ab initio potentials [NO molecule direction fixed during the dynamics and considered as a point (its center of mass)], (2) isotropic ab initio potentials (isotropic part in a Legendre polynomial expansion of the PESs), and (3) fitted Kr-NO potentials to the spectroscopic data. An important finding of this work is that the anisotropic and isotropic ab initio potentials calculated for the Kr-NO triatomic system are not suitable for describing the dynamics of structural relaxation upon Rydberg excitation of a NO impurity in the crystal. However, the isotropic ab initio potential in the ground state almost overlaps the published experimental potential, being almost independent of the angle asymmetry. This fact is also manifested in the radial distribution function around NO. However, in the case of the excited state the isotropic ab initio potential differs from the fitted potentials, which indicates that the Kr-NO interaction in the matrix is quite different because of the presence of the surrounding Kr atoms acting on the NO molecule. MD simulations for isotropic potentials reasonably reproduce the experimental observables for the femtosecond response and the bubble size but do not match
Stavretis, Shelby E; Atanasov, Mihail; Podlesnyak, Andrey A; Hunter, Seth C; Neese, Frank; Xue, Zi-Ling
2015-10-19
Zero-field splitting (ZFS) parameters of nondeuterated metalloporphyrins [Fe(TPP)X] (X = F, Br, I; H₂TPP = tetraphenylporphyrin) have been directly determined by inelastic neutron scattering (INS). The ZFS values are D = 4.49(9) cm⁻¹ for tetragonal polycrystalline [Fe(TPP)F], and D = 8.8(2) cm⁻¹, E = 0.1(2) cm⁻¹ and D = 13.4(6) cm⁻¹, E = 0.3(6) cm⁻¹ for monoclinic polycrystalline [Fe(TPP)Br] and [Fe(TPP)I], respectively. Along with our recent report of the ZFS value of D = 6.33(8) cm⁻¹ for tetragonal polycrystalline [Fe(TPP)Cl], these data provide a rare, complete determination of ZFS parameters in a metalloporphyrin halide series. The electronic structure of [Fe(TPP)X] (X = F, Cl, Br, I) has been studied by multireference ab initio methods: the complete active space self-consistent field (CASSCF) and the N-electron valence perturbation theory (NEVPT2) with the aim of exploring the origin of the large and positive zero-field splitting D of the ⁶A₁ ground state. D was calculated from wave functions of the electronic multiplets spanned by the d⁵ configuration of Fe(III) along with spin–orbit coupling accounted for by quasi degenerate perturbation theory. Results reproduce trends of D from inelastic neutron scattering data increasing in the order from F, Cl, Br, to I. A mapping of energy eigenvalues and eigenfunctions of the S = 3/2 excited states on ligand field theory was used to characterize the σ- and π-antibonding effects decreasing from F to I. This is in agreement with similar results deduced from ab initio calculations on CrX₆³⁻ complexes and also with the spectrochemical series showing a decrease of the ligand field in the same directions. A correlation is found between the increase of D and decrease of the π- and σ-antibonding energies e(λ)(X) (λ = σ, π) in the series from X = F to I. Analysis of this correlation using second-order perturbation theory expressions in terms of angular overlap parameters rationalizes the
DEFF Research Database (Denmark)
Bork, Nicolai Christian; Du, Lin; Reiman, Heidi;
2014-01-01
Gibbs free binding energies in molecular complexes and clusters based on gas phase FTIR spectroscopy. The acetonitrile-HCl molecular complex is identified via its redshifted H-Cl stretching vibrational mode. We determine the Gibbs free binding energy, ΔG°295 K, to between 4.8 and 7.9 kJ mol(-1) and......Models of formation and growth of atmospheric aerosols are highly dependent on accurate cluster binding energies. These are most often calculated by ab initio electronic structure methods but remain associated with significant uncertainties. We present a computational benchmarking study of the...
Ab initio molecular orbital calculations on ion pair-water complexes of metal halides and oxides
Mohandas, P; Singh, S.; Chandrasekhar, J
1994-01-01
Ab initio MO calculations are performed on a series of ion-molecular and ion pair-molecular complexes of H2O + MX (MX = LiF, LiCl, NaCl, BeO and MgO) systems. BSSE-corrected stabilization energies, optimized geometrical parameters, internal force constants and harmonic vibrational frequencies have been evaluated for all the structures of interest. The trends observed in the geometrical parameters and other properties calculated for the mono-hydrated contact ion pair complexes parallel those c...
Monte Carlo methods in AB initio quantum chemistry quantum Monte Carlo for molecules
Lester, William A; Reynolds, PJ
1994-01-01
This book presents the basic theory and application of the Monte Carlo method to the electronic structure of atoms and molecules. It assumes no previous knowledge of the subject, only a knowledge of molecular quantum mechanics at the first-year graduate level. A working knowledge of traditional ab initio quantum chemistry is helpful, but not essential.Some distinguishing features of this book are: Clear exposition of the basic theory at a level to facilitate independent study. Discussion of the various versions of the theory: diffusion Monte Carlo, Green's function Monte Carlo, and release n
Improved Ab Initio Molecular Dynamics by Minimal Biasing with Experimental Data
White, Andrew D; Hocky, Glen M; Voth, Gregory A
2016-01-01
Accounting for electrons and nuclei simultaneously is a key goal of computer simulation via ab initio molecular dynamics (AIMD). However, AIMD is often unable to accurately reproduce the properties of systems such as water due to inaccuracies in the underlying electronic density functionals, shortcomings that are often addressed by added empirical corrections and/or increasing the simulation temperature. We present here a maximum-entropy-based approach to directly incorporate limited experimental data via a minimal bias. The biased AIMD simulations of both water and of an excess proton in water are shown to give significantly improved properties for both the biased and unbiased observables.
Transport coefficients of helium-argon mixture based on ab initio potential.
Sharipov, Felix; Benites, Victor J
2015-10-21
The viscosity, thermal conductivity, diffusion coefficient, and thermal diffusion factor of helium-argon mixtures are calculated for a wide range of temperature and for various mole fractions up to the 12th order of the Sonine polynomial expansion with an ab initio intermolecular potential. The calculated values for these transport coefficients are compared with other data available in the open literature. The comparison shows that the obtained transport coefficients of helium-argon mixture have the best accuracy for the moment. PMID:26493894
Ab initio description of second-harmonic generation from crystal surfaces
Tancogne-Dejean, Nicolas; Giorgetti, Christine; Véniard, Valérie
2016-09-01
We propose an ab initio framework to derive the dielectric and the second-order susceptibility tensors for crystal surfaces. The single-surface response is extracted from a supercell scheme. We evaluate macroscopic quantities, taking into account the local fields. The first- and second-order susceptibilities are evaluated within time-dependent density functional theory, in the long-wavelength limit. We apply our formalism to the calculation of the second-harmonic generation for clean and hydrogenated silicon surfaces. The agreement with measured second-order susceptibility components is significantly better, illustrating the importance of local-field effects.
Structure and lattice dynamics of PrFe3(BO3)4: Ab initio calculation
Chernyshev, V. A.; Nikiforov, A. E.; Petrov, V. P.
2016-06-01
The crystal structure and phonon spectrum of PrFe3(BO3)4 are ab initio calculated in the context of the density functional theory. The ion coordinates in the unit cell of a crystal and the lattice parameters are evaluated from the calculations. The types and frequencies of the fundamental vibrations, as well as the line intensities of the IR spectrum, are determined. The elastic constants of the crystal are calculated. A "seed" frequency of the vibration strongly interacting with the electron excitation on the praseodymium ion is obtained for low-frequency A 2 mode. The calculated results are in agreement with the known experimental data.
Ab-initio GMR and current-induced torques in Au/Cr multilayers
Haney, P. M.; Waldron, D; Duine, R. A.; Nunez, A. S.; Guo, H; MacDonald, A.H.
2006-01-01
We report on an {\\em ab-initio} study of giant magnetoresistance (GMR) and current-induced-torques (CITs) in Cr/Au multilayers that is based on non-equilibrium Green's functions and spin density functional theory. We find substantial GMR due primarily to a spin-dependent resonance centered at the Cr/Au interface and predict that the CITs are strong enough to switch the antiferromagnetic order parameter at current-densities $\\sim 100$ times smaller than typical ferromagnetic metal circuit swit...
Ab initio no core calculations of light nuclei and preludes to Hamiltonian quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Vary, J.P.; Maris, P.; /Iowa State U.; Shirokov, A.M.; /Iowa State U. /SINP, Moscow; Honkanen, H.; li, J.; /Iowa State U.; Brodsky, S.J.; /SLAC; Harindranath, A.; /Saha Inst.; Teramond, G.F.de; /Costa Rica U.
2009-08-03
Recent advances in ab initio quantum many-body methods and growth in computer power now enable highly precise calculations of nuclear structure. The precision has attained a level sufficient to make clear statements on the nature of 3-body forces in nuclear physics. Total binding energies, spin-dependent structure effects, and electroweak properties of light nuclei play major roles in pinpointing properties of the underlying strong interaction. Eventually,we anticipate a theory bridge with immense predictive power from QCD through nuclear forces to nuclear structure and nuclear reactions. Light front Hamiltonian quantum field theory offers an attractive pathway and we outline key elements.
Precise Ab-initio prediction of terahertz vibrational modes in crystalline systems
DEFF Research Database (Denmark)
Jepsen, Peter Uhd; Clark, Stewart J.
2007-01-01
We use a combination of experimental THz time-domain spectroscopy and ab-initio density functional perturbative theory to accurately predict the terahertz vibrational spectrum of molecules in the crystalline phase. Our calculations show that distinct vibrational modes found in solid-state materials...... are best described as phonon modes with strong coupling to the intramolecular degrees of freedom. Hence a computational method taking the periodicity of the crystal lattice as well as intramolecular motion into account is a prerequisite for the correct prediction of vibrational modes in such materials....
Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides
Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki
2012-09-01
Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.
Temperature-Dependent Diffusion Coefficients from ab initio Computations: Hydrogen in Nickel
Energy Technology Data Exchange (ETDEWEB)
E Wimmer; W Wolf; J Sticht; P Saxe; C Geller; R Najafabadi; G Young
2006-03-16
The temperature-dependent mass diffusion coefficient is computed using transition state theory. Ab initio supercell phonon calculations of the entire system provide the attempt frequency, the activation enthalpy, and the activation entropy as a function of temperature. Effects due to thermal lattice expansion are included and found to be significant. Numerical results for the case of hydrogen in nickel demonstrate a strong temperature dependence of the migration enthalpy and entropy. Trapping in local minima along the diffusion path has a pronounced effect especially at low temperatures. The computed diffusion coefficients with and without trapping bracket the available experimental values over the entire temperature range between 0 and 1400 K.
An accurate potential energy curve for helium based on ab initio calculations
Janzen, A. R.; Aziz, R. A.
1997-07-01
Korona, Williams, Bukowski, Jeziorski, and Szalewicz [J. Chem. Phys. 106, 1 (1997)] constructed a completely ab initio potential for He2 by fitting their calculations using infinite order symmetry adapted perturbation theory at intermediate range, existing Green's function Monte Carlo calculations at short range and accurate dispersion coefficients at long range to a modified Tang-Toennies potential form. The potential with retardation added to the dipole-dipole dispersion is found to predict accurately a large set of microscopic and macroscopic experimental data. The potential with a significantly larger well depth than other recent potentials is judged to be the most accurate characterization of the helium interaction yet proposed.
Ab initio study of beryllium-decorated fullerenes for hydrogen storage
Lee, Hoonkyung; Huang, Bing; Duan, Wenhui; Ihm, Jisoon
2010-01-01
We have found that a beryllium (Be) atom on nanostructured materials with H2 molecules generates a Kubas-like dihydrogen complex [H. Lee et al. arXiv:1002.2247v1 (2010)]. Here, we investigate the feasibility of Be-decorated fullerenes for hydrogen storage using ab initio calculations. We find that the aggregation of Be atoms on pristine fullerenes is energetically preferred, resulting in the dissociation of the dihydrogen. In contrast, for boron (B)-doped fullerenes, Be atoms prefer to be ind...
Ab initio studies on the mechanic and magnetic properties of PdHx
Institute of Scientific and Technical Information of China (English)
Cui Xin; Liang Xi-Xia; Wang Jian-Tao; Zhao Guo-Zhong
2011-01-01
Based on ab initio total energy calculations, the structural, electronic, mechanic, and magnetic properties of PdHx are investigated. It is found that bulk modulus of PdHx is larger than the metal Pd with the hydrogen storage except Pd4H2. The calculated results for the magnetic moments show that the hydrogen addition weakens the magnetic properties of the PdHx systems. A strong magneto-volume effect is found in PdHx structures as well as Pd. The transition from paramagnetism to ferromagnetism is discussed. The corresponding densities of states for both structures are also shown to understand the magnetic behaviour.
An ab initio molecular dynamics study of the roaming mechanism of the H2+HOC+ reaction
Yu, Hua-Gen
2011-08-01
We report here a direct ab initio molecular dynamics study of the p-/o-H2+HOC+ reaction on the basis of the accurate SAC-MP2 potential energy surface. The quasi-classical trajectory method was employed. This work largely focuses on the study of reaction mechanisms. A roaming mechanism was identified for this molecular ion-molecule reaction. The driving forces behind the roaming mechanism were thoroughly investigated by using a trajectory dynamics approach. In addition, the thermal rate coefficients of the H2+HOC+ reaction were calculated in the temperature range [25, 300] K and are in good agreement with experiments.
Curchod, Basile F. E.; Rauer, Clemens; Marquetand, Philipp; González, Leticia; Martínez, Todd J.
2016-03-01
Full multiple spawning is a formally exact method to describe the excited-state dynamics of molecular systems beyond the Born-Oppenheimer approximation. However, it has been limited until now to the description of radiationless transitions taking place between electronic states with the same spin multiplicity. This Communication presents a generalization of the full and ab initio multiple spawning methods to both internal conversion (mediated by nonadiabatic coupling terms) and intersystem crossing events (triggered by spin-orbit coupling matrix elements) based on a spin-diabatic representation. The results of two numerical applications, a model system and the deactivation of thioformaldehyde, validate the presented formalism and its implementation.
Quantum chemistry the development of ab initio methods in molecular electronic structure theory
Schaefer III, Henry F
2004-01-01
This guide is guaranteed to prove of keen interest to the broad spectrum of experimental chemists who use electronic structure theory to assist in the interpretation of their laboratory findings. A list of 150 landmark papers in ab initio molecular electronic structure methods, it features the first page of each paper (which usually encompasses the abstract and introduction). Its primary focus is methodology, rather than the examination of particular chemical problems, and the selected papers either present new and important methods or illustrate the effectiveness of existing methods in predi
DEFF Research Database (Denmark)
Abild-Pedersen, Frank; Nørskov, Jens Kehlet; Rostrup-Nielsen, Jens;
2006-01-01
Mechanisms and energetics of graphene growth catalyzed by nickel nanoclusters were studied using ab initio density functional theory calculations. It is demonstrated that nickel step-edge sites act as the preferential growth centers for graphene layers on the nickel surface. Carbon is transported...... from the deposition site at the free nickel surface to the perimeter of the growing graphene layer via surface or subsurface diffusion. Three different processes are identified to govern the growth of graphene layers, depending on the termination of the graphene perimeter at the nickel surface...
Ab initio study of spin-dependent transport in carbon nanotubes with iron and vanadium adatoms
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka;
2008-01-01
We present an ab initio study of spin-dependent transport in armchair carbon nanotubes with transition metal adsorbates: iron or vanadium. The method based on density functional theory and nonequilibrium Green's functions is used to compute the electronic structure and zero-bias conductance...... (majority or minority) being scattered depends on the adsorbate and is explained in terms of d-state filling. We contrast the single-walled carbon nanotube results to the simpler case of the adsorbate on a flat graphene sheet with periodic boundary conditions and corresponding width in the zigzag direction...
Paired-permanent approach for VB theory (II) -An ab initio spin-free VB program
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Paired-permanent approach for VB theory is extensively developed. Canonical expan sion of a paired-permanent is deduced. Furthermore, it is shown that a paired-permanent may be expressed in terms of the products of sub-paired-permanents of any given order and their corre sponding minors. An ab initio spin-free valence bond program, called Xiamen, is implemented by using paired-permanent approach. Test calculation shows that Xiamen package is more efficient than some other programs based on the traditional VB algorithm, and it provides a new practical tool for quantum chemistry.
A transferable ab-initio based force field for aqueous ions
Tazi, Sami; Rotenberg, Benjamin; Turq, Pierre; Vuilleumier, Rodolphe; Salanne, Mathieu; 10.1063/1.3692965
2012-01-01
We present a new polarizable force field for aqueous ions (Li+, Na+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+ and Cl-) derived from condensed phase ab-initio calculations. We use Maximally Localized Wannier Functions together with a generalized force and dipole-matching procedure to determine the whole set of parameters. Experimental data is then used only for validation purposes and a good agreement is obtained for structural, dynamic and thermodynamic properties. The same procedure applied to crystalline phases allows to parametrize the interaction between cations and the chloride anion. Finally, we illustrate the good transferability of the force field to other thermodynamic conditions by investigating concentrated solutions.
Ab-initio density functional theory study of a WO3 NH3-sensing mechanism
Institute of Scientific and Technical Information of China (English)
Hu Ming; Zhang Jie; Wang Wei-Dan; Qin Yu-Xiang
2011-01-01
WO3 bulk and various surfaces are studied by an ab-initio density functional theory technique.The band structures and electronic density states of WO3 bulk are investigated.The surface energies of different WO3 surfaces are compared and then the(002)surface with minimum energy is computed for its NH3 sensing mechanism which explains the results in the experiments.Three adsorption sites are considered.According to the comparisons of the energy and the charge change between before and after adsorption in the optimal adsorption site O1c,the NH3 sensing mechanism is obtained.
Ishimura, Hiromi; Kadoya, Ryushi; Suzuki, Tomoya; Murakawa, Takeru; Shulga, Sergiy; Kurita, Noriyuki
2015-07-01
Alzheimer's disease is caused by accumulation of amyloid-β (Aβ) peptides in a brain. To suppress the production of Aβ peptides, it is effective to inhibit the cleavage of amyloid precursor protein (APP) by secretases. However, because the secretases also play important roles to produce vital proteins for human body, inhibitors for the secretases may have side effects. To propose new agents for protecting the cleavage site of APP from the attacking of the γ-secretase, we have investigated here the specific interactions between a short APP peptide and curcumin derivatives, using protein-ligand docking as well as ab initio molecular simulations.
Sinteza, spektroskopska karakterizacija i ab initio istraživanje tioanaloga spirohidantoina
Marin MARINOV; Minchev, Stoyan; Stoyanov, Neyko; Ivanova, Galya; Spassova, Milena; Enchev, Venelin
2005-01-01
Ditioanalozi cikloalkan-spiro-5-hidantoina pripravljeni su reakcijama odgovarajućih spirohidantoina i Lawesson-ovoga reagensa ili P4S10. Sintetizirani su i cikloalkan-spiro-5-(2-tiohidantoini) i cikloalkan-spiro-5- -(4-tiohidantoini), uporabom različitih reakcijskih putova. Strukture dobivenih spojeva potvrđene su 1H, 13C NMR i IR spektroskopijom. Nelinearne molekularne karakteristike predviđene su kvantno-kemijskim računima na ab initio razini. U svim proučavanim strukturama, s povećanjem za...
Steady state Ab-initio Theory of Lasers with Injected Signals
Cerjan, Alexander; Stone, A. Douglas
2013-01-01
We present an ab-initio treatment of the steady-state of lasers with injected signals that describes a regime, valid for micro lasers, in which the locking transition is dominated by cross-saturation and spatial hole-burning. The theory goes beyond standard approaches and treats multimode lasing with injected signals and finds the possibility of partially locked states and as well as repulsion of the free-running frequencies from the injected signal. The theory agrees well with exact integrat...
Ab initio MO study of reaction mechanism for carbonyl migration of Co complex
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Ab initio method under the effective core potential (ECP) approximation is employed to study the reaction mechanism of carbonyl migration of the cycle of olefin hydroformylation catalyzed by a carbonyl cobalt HCo(CO)3 at Hartree-Fock (HF) level. The structures of the reactant, transition state and product for the reaction are determined. The energy of each stationary point is corrected at MP2/LAN2DZ//LANL2DZ+ZPE (zero-point energy) level. The calculated activation barrier is 28.89 kJ/mol.
Ab initio based force field and molecular dynamics simulations of crystalline TATB.
Gee, Richard H; Roszak, Szczepan; Balasubramanian, Krishnan; Fried, Laurence E
2004-04-15
An all-atom force field for 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is presented. The classical intermolecular interaction potential for TATB is based on single-point energies determined from high-level ab initio calculations of TATB dimers. The newly developed potential function is used to examine bulk crystalline TATB via molecular dynamics simulations. The isobaric thermal expansion and isothermal compression under hydrostatic pressures obtained from the molecular dynamics simulations are in good agreement with experiment. The calculated volume-temperature expansion is almost one dimensional along the c crystallographic axis, whereas under compression, all three unit cell axes participate, albeit unequally. PMID:15267608
Ab Initio Calculations of Elastic Constants of Li2O under Pressure
Institute of Scientific and Technical Information of China (English)
LI Xiao-Feng; CHEN Xiang-Rong; JI Guang-Fu; MENG Chuan-Min
2006-01-01
@@ We investigate the equilibrium lattice constant, bulk modulus, elastic constants and Debye temperature of Li2 O under pressure by using ab initio unrestricted Hartree-Fock (HF) linear combination of atomic orbital (LCAO) periodic approach. The obtained results at zero pressure are well consistent with the available experimental data and other theoretical results. It is found that the elastic constants C11, C12 and C44 and bulk modulus B increase monotonously as pressure increases. Also, the anisotropy will weaken and the Debye temperature will rise with pressure increasing.
An Ab initio Theoretical Study on the Nonadiabatic Coupling for Na＋I2 Collision System
Institute of Scientific and Technical Information of China (English)
孙孝敏; 蔡政亭; 冯大诚
2003-01-01
The ionic and neutral state potential energy surfaces (PESs) of Na+I2 collision system have been calculated on QCISD(T) level by using ab initio method.The location and depth of the potential well,the collision radius and their fine structures have been analyzed at the equilibrium geometry of I2 molecule.The electronic transfer probabilities are also calculated in terms of Landau-Zener model.The lifetime of scattering resonance state is evaluated by the uncertainty principle.All the results have been compared with those obtained according to the Aten-Lanting-Los PES and Feng's PES.
Structural Features of Boron-Doped Si(113) Surfaces Simulated by ab initio Calculations
Institute of Scientific and Technical Information of China (English)
LIAO Long-Zhong; LIU Zheng-Hui; ZHANG Zhao-Hui
2008-01-01
Based on ab initio calculations, boron-doped Si(113) surfaces have been simulated and atomic structures of the surfaces have been proposed. It has been determined that surface features of empty and filled states that are separately localized at pentamers and adatoms indicates a low surface density of B atoms, while it is attributed to heavy doping of B atoms at the second layer that pentamers and adatoms are both present in an image of scanning tunnelling microscopy. B doping at the second layer should be balanced by adsorbed B or Si atoms beside the adatoms and inserted B interstitials below the adatoms.
Institute of Scientific and Technical Information of China (English)
2008-01-01
Computational prediction of adsorption of small molecules in porous materials has great impact on the basic and applied research in chemical engineering and material sciences. In this work,we report an approach based on grand canonical ensemble Monte Carlo(GCMC) simulations and ab initio force fields. We calculated the adsorption curves of ammonia in ZSM-5 zeolite and hydrogen in MOF-5(a metal-organic-framework material). The predictions agree well with experimental data. Because the predictions are based on the first principle force fields,this approach can be used for the adsorption prediction of new molecules or materials without experimental data as guidance.
Putungan, Darwin Barayang; Lin, Shi-Hsin; Kuo, Jer-Lai
2016-07-27
We systematically investigated the potential of single-layer VS2 polytypes as Na-battery anode materials via density functional theory calculations. We found that sodiation tends to inhibit the 1H-to-1T structural phase transition, in contrast to lithiation-induced transition on monolayer MoS2. Thus, VS2 can have better structural stability in the cycles of charging and discharging. Diffussion of Na atom was found to be very fast on both polytypes, with very small diffusion barriers of 0.085 eV (1H) and 0.088 eV (1T). Ab initio random structure searching was performed in order to explore stable configurations of Na on VS2. Our search found that both the V top and the hexagonal center sites are preferred adsorption sites for Na, with the 1H phase showing a relatively stronger binding. Notably, our random structures search revealed that Na clusters can form as a stacked second layer at full Na concentration, which is not reported in earlier works wherein uniform, single-layer Na adsorption phases were assumed. With reasonably high specific energy capacity (232.91 and 116.45 mAh/g for 1H and 1T phases, respectively) and open-circuit voltage (1.30 and 1.42 V for 1H and 1T phases, respectively), VS2 is a promising alternative material for Na-ion battery anodes with great structural sturdiness. Finally, we have shown the capability of the ab initio random structure searching in the assessment of potential materials for energy storage applications. PMID:27373121
Alexander, R.; Marinica, M.-C.; Proville, L.; Willaime, F.; Arakawa, K.; Gilbert, M. R.; Dudarev, S. L.
2016-07-01
The size limitation of ab initio calculations impedes first-principles simulations of crystal defects at nanometer sizes. Considering clusters of self-interstitial atoms as a paradigm for such crystal defects, we have developed an ab initio-accuracy model to predict formation energies of defect clusters with various geometries and sizes. Our discrete-continuum model combines the discrete nature of energetics of interstitial clusters and continuum elasticity for a crystalline solid matrix. The model is then applied to interstitial dislocation loops with and 1 /2 Burgers vectors, and to C15 clusters in body-centered-cubic crystals Fe, W, and V, to determine their relative stabilities as a function of size. We find that in Fe the C15 clusters were more stable than dislocation loops if the number of self-interstitial atoms involved was fewer than 51, which corresponds to a C15 cluster with a diameter of 1.5 nm. In V and W, the 1 /2 loops represent the most stable configurations for all defect sizes, which is at odds with predictions derived from simulations performed using some empirical interatomic potentials. Further, the formation energies predicted by the discrete-continuum model are reparametrized by a simple analytical expression giving the formation energy of self-interstitial clusters as a function of their size. The analytical scaling laws are valid over a very broad range of defect sizes, and they can be used in multiscale techniques including kinetic Monte Carlo simulations and cluster dynamics or dislocation dynamics studies.
Ab initio intermolecular potential energy surface of He-LiH
Institute of Scientific and Technical Information of China (English)
鄢国森; 杨明晖; 谢代前
1997-01-01
The intermolecular potential energy surface of He-LiH complex was studied using the full-electronic complete forth-order Miller-Plesset perturbation (MPPT) method.In ab initio calculations,the bond length of LiH was fixed at 0 159 5 nm.The potential has two local minima of Vm=-179.93 cm for the linear He LiH geormetrv at Rm=0.227 nm and Vm=-10.44 cm-1 for the linear He-HL1 geometry at Rm=0.516 nm The potemal exhibits strong anisotropy The analytic potential function with 31 parameters was determined by fitting to the calculated ab,mtio potentials The influence of variation of LiH bond length on the potential energy surface was also studied
Ab Initio Investigations of the Excited Electronic States of CaOCa
Fawzy, Wafaa M.; Heaven, Michael
2016-06-01
Chemical bonding in alkaline earth hypermetalic oxides is of fundamental interest. Previous Ab initio studies of CaOCa predicted a centrosymmetric linear geometry for both the 1Σg^+ ground state and the low lying triplet 3Σu^+ state. However, there have been no reports concerning the higher energy singlet and triplet states. The present work is focused on characterization of the potential energy surface (PES) of the excited 1Σu^+ state (assuming a centrosymmetric linear geometry) and obtaining predictions for the 1Σu^+←1Σg^+ vibronic transitions. We employed the multireference configuration interaction (MRCISD) method with state-averaged, full-valence complete active space self-consistent field (SA-FV-CASSCF) wavefunctions. In these calculations, the active space consisted of ten valence electrons in twelve orbitals, where all the valence electrons were correlated. Contributions of higher excitation and relativistic effects were taken into account using the Davidson correction and the Douglas-Kroll (DK) Hamiltonian, respectively. The correlation-consistent polarized weighed core-valence quadruple zeta basis set (cc-pwCVQZ-DK) was used for all three atoms. The full level of theory is abbreviated as SA-FV-CASSCF (10,12)-MRCISD-Q/cc-pwCVQZ-DK. The calculations were carried out using the MOLPRO2012 suite of programs. For the centrosymmetric linear geometry in all states, initial investigations of one-dimensional radial cuts provided equilibrium bond distances of 2.034 {Å}, 2.034 {Å}, and 1.999 {Å} for the 1Σg^+ , 3Σu^+ , and 1Σu^+ states, respectively. The vertical excitation frequency of the 1Σu^+←1Σg^+ optical transition was calculated to occur at 14801 wn. These predictions were followed by spectroscopic searches by Heaven et al. Indeed, rotationally resolved vibronic progressions were recorded in the vicinity of the predicted electronic band origin. Calculation of the three-dimensional PES showed that the potential minimum in the 1Σu^+ corresponds
Hu, Hao; Yang, Weitao
2008-05-01
Combined quantum mechanics/molecular mechanics (QM/MM) methods provide an accurate and efficient energetic description of complex chemical and biological systems, leading to significant advances in the understanding of chemical reactions in solution and in enzymes. Here we review progress in QM/MM methodology and applications, focusing on ab initio QM-based approaches. Ab initio QM/MM methods capitalize on the accuracy and reliability of the associated quantum-mechanical approaches, however, at a much higher computational cost compared with semiempirical quantum-mechanical approaches. Thus reaction-path and activation free-energy calculations based on ab initio QM/MM methods encounter unique challenges in simulation timescales and phase-space sampling. This review features recent developments overcoming these challenges and enabling accurate free-energy determination for reaction processes in solution and in enzymes, along with applications.
Kalemos, Apostolos; Valdés, Álvaro; Prosmiti, Rita
2012-01-01
We present a theoretical study on the potential energy surface and vibrational bound states of the E electronic excited state of the HeI 2 van der Waals system. The interaction energies are computed using accurate ab initio methods and large basis sets. Relativistic small-core effective core potentials in conjunction with a quintuple-zeta quality basis set are employed for the heavy iodine atoms in multireference configuration interaction calculations for the 3A ′ and 3A ″ states. For the rep...
Zhang, Xilin(Department of Physics, University of Washington, Seattle, WA, USA); Nollett, Kenneth M.; D. R. Phillips
2013-01-01
We report a leading-order calculation of radiative ${}^{7}\\mathrm{Li}$ neutron captures to both the ground and first excited state of ${}^{8}\\mathrm{Li}$ in the framework of a low-energy effective field theory (Halo-EFT). Each of the possible final states is treated as a shallow bound state composed of both $n+{}^{7}\\mathrm{Li}$ and $n+{}^{7}\\mathrm{Li}^{*}$ (core excitation) configurations. The {\\it ab initio} variational Monte Carlo method is used to compute the asymptotic normalization coe...
Renison, C Alicia; Fernandes, Kyle D; Naidoo, Kevin J
2015-07-01
This article describes an extension of the quantum supercharger library (QSL) to perform quantum mechanical (QM) gradient and optimization calculations as well as hybrid QM and molecular mechanical (QM/MM) molecular dynamics simulations. The integral derivatives are, after the two-electron integrals, the most computationally expensive part of the aforementioned calculations/simulations. Algorithms are presented for accelerating the one- and two-electron integral derivatives on a graphical processing unit (GPU). It is shown that a Hartree-Fock ab initio gradient calculation is up to 9.3X faster on a single GPU compared with a single central processing unit running an optimized serial version of GAMESS-UK, which uses the efficient Schlegel method for s- and l-orbitals. Benchmark QM and QM/MM molecular dynamics simulations are performed on cellobiose in vacuo and in a 39 Å water sphere (45 QM atoms and 24843 point charges, respectively) using the 6-31G basis set. The QSL can perform 9.7 ps/day of ab initio QM dynamics and 6.4 ps/day of QM/MM dynamics on a single GPU in full double precision. © 2015 Wiley Periodicals, Inc. PMID:25975864
Higher-order elastic constants and megabar pressure effects of bcc tungsten: Ab initio calculations
Vekilov, Yu. Kh.; Krasilnikov, O. M.; Lugovskoy, A. V.; Lozovik, Yu. E.
2016-09-01
The general method for the calculation of n th (n ≥2 ) order elastic constants of the loaded crystal is given in the framework of the nonlinear elasticity theory. For the crystals of cubic symmetry under hydrostatic compression, the two schemes of calculation of the elastic constants of second, third, and fourth order from energy-finite strain relations and stress-finite strain relations are implemented. Both techniques are applied for the calculation of elastic constants of orders from second to fourth to the bcc phase of tungsten at a 0-600 GPa pressure range. The energy and stress at the various pressures and deformations are obtained ab initio in the framework of projector augmented wave+generalized gradient approximation (PAW+GGA) method, as implemented in Vienna Ab initio Simulation Package (VASP) code. Using the obtained results, we found the pressure dependence of Grüneisen parameters for long-wave acoustic modes in this interval. The Lamé constants of second and third order were estimated for polycrystalline tungsten. The proposed method is applicable for crystals with arbitrary symmetry.
Estudio ab initio del mecanismo de la reacción HSO + O3
Nebot Gil, I.
La reacción entre el radical HSO y el ozono ha sido ampliamente estudiada desde el punto de vista experimental debido a la importancia que tiene el radical HSO en la oxidación de los compuestos de azufre reductores y a que puede contribuir a la producción de H2SO4 [1-4]. Se realizaron diversos estudios teóricos sobre la cinética de la reacción entre el radical HSO y el ozono. La reacción del HSO con el ozono presenta tres canales diferentes : HSO + O3 &rightarrow &HSO2 + O2 &rightarrow &HS + 2 O2 &rightarrow &SO + OH + O2 La controversia existente entre los grupos experimentales sobre cuál de las tres vías es la predominante, se ha resuelto mediante un estudio teórico de todas ellas utilizando métodos ab initio. La estructura de todos los reactivos, productos, intermedios y estados de transición ha sido optimizada a nivel ab initio utilizando los métodos UMP2 /6-31G** y QCISD/6-31G**.
Accelerating Ab Initio Path Integral Simulations via Imaginary Multiple-Timestepping.
Cheng, Xiaolu; Herr, Jonathan D; Steele, Ryan P
2016-04-12
This work investigates the use of multiple-timestep schemes in imaginary time for computationally efficient ab initio equilibrium path integral simulations of quantum molecular motion. In the simplest formulation, only every n(th) path integral replica is computed at the target level of electronic structure theory, whereas the remaining low-level replicas still account for nuclear motion quantum effects with a more computationally economical theory. Motivated by recent developments for multiple-timestep techniques in real-time classical molecular dynamics, both 1-electron (atomic-orbital basis set) and 2-electron (electron correlation) truncations are shown to be effective. Structural distributions and thermodynamic averages are tested for representative analytic potentials and ab initio molecular examples. Target quantum chemistry methods include density functional theory and second-order Møller-Plesset perturbation theory, although any level of theory is formally amenable to this framework. For a standard two-level splitting, computational speedups of 1.6-4.0x are observed when using a 4-fold reduction in time slices; an 8-fold reduction is feasible in some cases. Multitiered options further reduce computational requirements and suggest that quantum mechanical motion could potentially be obtained at a cost not significantly different from the cost of classical simulations. PMID:26966920
Novel high-pressure phase of ZrO2: An ab initio prediction
International Nuclear Information System (INIS)
The high-pressure behavior of the orthorhombic cotunnite type ZrO2 is explored using an ab initio constant pressure technique. For the first time, a novel hexagonal phase (Ni2In type) within P63/mmc symmetry is predicted through the simulation. The Ni2In type crystal is the densest high-pressure phase of ZrO2 proposed so far and has not been observed in other metal dioxides at high pressure before. The phase transformation is accompanied by a small volume drop and likely to occur around 380 GPa in experiment. - Graphical abstract: Post-cotunnite Ni2In type hexagonal phase forms in zirconia at high pressure. - Highlights: • A post-cotunnite phase is predicted for ZrO2 through an ab initio simulation. • Cotunnite ZrO2 adopts the Ni2In type structure at high pressure. • The Ni2In type structure is the densest high-pressure phase of ZrO2 proposed so far. • The preferred mechanism in ZrO2 differs from the other metal dioxides
Large basis ab initio shell model investigation of 9-Be and 11-Be
Forssén, C; Ormand, W E; Caurier, E
2004-01-01
We are presenting the first ab initio structure investigation of the loosely bound 11-Be nucleus, together with a study of the lighter isotope 9-Be. The nuclear structure of these isotopes is particularly interesting due to the appearance of a parity-inverted ground state in 11-Be. Our study is performed in the framework of the ab initio no-core shell model. Results obtained using four different, high-precision two-nucleon interactions, in model spaces up to 9\\hbar\\Omega, are shown. For both nuclei, and all potentials, we reach convergence in the level ordering of positive- and negative-parity spectra separately. Concerning their relative position, the positive-parity states are always too high in excitation energy, but a fast drop with respect to the negative-parity spectrum is observed when the model space is increased. This behavior is most dramatic for 11-Be. In the largest model space we were able to reach, the 1/2+ level has dropped down to become either the first or the second excited state, depending ...
Ab initio many-body calculations of nucleon-nucleus scattering
Quaglioni, Sofia
2009-01-01
We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We outline technical details and present phase shift results for neutron scattering on 3H, 4He and 10Be and proton scattering on 3He and 4He, using realistic nucleon-nucleon (NN) potentials. Our A=4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-4He S-wave phase shifts. On the contrary, the experimental nucleon-4He P-wave phase shifts are not well reproduced by any NN potential we use. We demonstrate that a proper treatment of the coupling to the n-10Be continuum is successful in explaining the parity-inverted ground state in 11Be.
Thermodynamic assessment of the Ho–Te system supported by ab initio calculations
Energy Technology Data Exchange (ETDEWEB)
Ghamri, H.; Belgacem-Bouzida, A. [Laboratoire d’étude Physico-Chimique des Matériaux, Département de Physique, Faculté des Sciences, Université de Batna, Rue Chahid Boukhlouf, 05000 Batna (Algeria); Djaballah, Y., E-mail: ydjaballah@yahoo.fr [Laboratoire d’étude Physico-Chimique des Matériaux, Département de Physique, Faculté des Sciences, Université de Batna, Rue Chahid Boukhlouf, 05000 Batna (Algeria); Hidoussi, A. [Laboratoire d’étude Physico-Chimique des Matériaux, Département de Physique, Faculté des Sciences, Université de Batna, Rue Chahid Boukhlouf, 05000 Batna (Algeria)
2013-03-05
Highlights: ► We calculated enthalpies of formation of the HoTe and Ho{sub 2}Te{sub 5} compounds by using ab initio method. ► We modeled the Gibbs energy of the HoTe intermediate phase for the first time. ► The thermodynamic parameters of the all phases existing in the system were determined. ► The complete phase diagram of the system (Ho–Te) is calculated. -- Abstract: The phase diagram of the Ho–Te binary system has been assessed by using the CALPHAD (Calculation of Phase Diagrams) method on the basis of the experimental data of the phase equilibria and enthalpies of formation from ab initio electronic-structure calculations within the framework of density-functional theory. Reasonable models were constructed for all the phases of the system. The liquid phase was described as the substitutional solution model with excess energy expressed by Redlich–Kister polynomial. The compounds Ho{sub 2}Te{sub 5} and HoTe{sub 3} were expressed as stoichiometric phases. The (HoTe) phase was modeled by two-sublattices; (Ho,Va){sub 1}(Te){sub 1}. A consistent set of thermodynamic parameters has been derived, and calculated phase diagram was compared with the experimental data. A good agreement between the calculated results and experimental data was obtained.
Embedding parameters in ab initio theory to develop approximations based on molecular similarity
Tanha, Matteus; Kaul, Shiva; Cappiello, Alexander; Gordon, Geoffrey J; Yaron, David J
2015-01-01
A means to take advantage of molecular similarity to lower the computational cost of electronic structure theory is explored, in which parameters are embedded into a low-cost, low-level (LL) ab initio model and adjusted to obtain agreement with results from a higher-level (HL) ab initio model. A parametrized LL (pLL) model is created by multiplying selected matrix elements of the Hamiltonian operators by scaling factors that depend on element types. Various schemes for applying the scaling factors are compared, along with the impact of making the scaling factors linear functions of variables related to bond lengths, atomic charges, and bond orders. The models are trained on ethane and ethylene, substituted with -NH2, -OH and -F, and tested on substituted propane, propylene and t-butane. Training and test datasets are created by distorting the molecular geometries and applying uniform electric fields. The fitted properties include changes in total energy arising from geometric distortions or applied fields, an...
Emergent properties of nuclei from ab initio coupled-cluster calculations
Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.; Papenbrock, T.
2016-06-01
Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. This endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. This paper reviews some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO{}{{sat}} is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon–nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. The coupling to the continuum impacts the energies of the {J}π =1/{2}-,3/{2}-,7/{2}-,3/{2}+ states in {}{17,23,25}O, and—contrary to naive shell-model expectations—the level ordering of the {J}π =3/{2}+,5/{2}+,9/{2}+ states in {}{53,55,61}Ca. ).
Energy Technology Data Exchange (ETDEWEB)
Yamacli, Serhan, E-mail: syamacli@nny.edu.tr
2014-07-01
This paper presents electrical parameter extraction for metallic graphene nanoribbon (GNR) interconnects utilizing ab initio approach. Unlike the studies taking the kinetic inductance, quantum capacitance and Fermi velocity as constant values, voltage-dependencies of these parameters are obtained for GNR transmission line model. The variations of the kinetic energy and the current by the applied voltage are taken as bases for voltage-dependent kinetic inductance calculation. Quantum capacitance and the Fermi velocity are also computed from the kinetic inductance variation. It is concluded that voltage-dependencies of the kinetic inductance and the quantum capacitance have to be taken into account for accurate GNR modelling in nanoelectronic design. - Highlights: • Metallic graphene nanoribbon interconnects are studied using ab initio approach. • Variations of the kinetic inductance (L{sub K}) and the current are obtained. • Voltage-dependency of the kinetic inductance is extracted. • The variations of quantum capacitance (C{sub Q}) and Fermi velocity are calculated. • L{sub K} and C{sub Q} change by 34% in the voltage range of 0–1 V.
Arjunan, V.; Mohan, S.; Ravindran, P.; Mythili, C. V.
2009-05-01
The Fourier transform infrared (FTIR) and FT-Raman spectra of 7-bromo-5-chloro-8-hydroxyquinoline (BCHQ) have been measured in the range 4000-400 and 4000-100 cm -1, respectively. Complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the observed FTIR and FT-Raman data. The geometry was optimised without any symmetry constrains using the DFT/B3LYP and HF methods with 6-31G** basis set. The vibrational frequencies which were determined experimentally are compared with those obtained theoretically from ab initio HF and density functional theory (DFT) gradient calculations employing the HF/6-31G** and B3LYP/6-31G** methods for the optimised geometry of the compound. The structural parameters and normal modes of vibration obtained from HF and DFT methods are in good agreement with the experimental data. Normal coordinate analysis was also carried out with ab initio force fields utilising Wilson's FG matrix method.
Ab initio, density functional theory and structural studies of 4-amino-2-methylquinoline
Arjunan, V.; Saravanan, I.; Ravindran, P.; Mohan, S.
2009-10-01
The Fourier transform infrared (FTIR) and FT-Raman spectra of 4-amino-2-methylquinoline (AMQ) have been recorded in the range 4000-400 and 4000-100 cm -1, respectively. The experimental vibrational frequency was compared with the wavenumbers obtained theoretically by ab initio HF and DFT-B3LYP gradient calculations employing the standard 6-31G** and high level 6-311++G** basis sets for optimised geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compounds were carried out using the experimental FTIR and FT-Raman data, and quantum mechanical studies. The geometry and normal modes of vibration obtained from the HF and DFT methods are in good agreement with the experimental data. The potential energy distribution of the fundamental modes was calculated with ab initio force fields utilising Wilson's FG matrix method. The NH -π interactions and the influence of amino and methyl groups on the skeletal modes are investigated.
Ground state analytical ab initio intermolecular potential for the Cl{sub 2}-water system
Energy Technology Data Exchange (ETDEWEB)
Hormain, Laureline; Monnerville, Maurice, E-mail: maurice.monnerville@univ-lille1.fr; Toubin, Céline; Duflot, Denis; Pouilly, Brigitte; Briquez, Stéphane [Laboratoire de Physique des Lasers Atomes et Molécules, Unité Mixte de Recherche (UMR) 8523, Université Lille I, Bât. P5, 59655 Villeneuve d’Ascq Cedex (France); Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón [Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, México (Mexico)
2015-04-14
The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl{sub 2} molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl{sub 2} − H{sub 2}O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by the comparison of ab initio results of Cl{sub 2} interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl{sub 2} on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results.
Novel high-pressure phase of ZrO{sub 2}: An ab initio prediction
Energy Technology Data Exchange (ETDEWEB)
Durandurdu, Murat, E-mail: murat.durandurdu@agu.edu.tr
2015-10-15
The high-pressure behavior of the orthorhombic cotunnite type ZrO{sub 2} is explored using an ab initio constant pressure technique. For the first time, a novel hexagonal phase (Ni{sub 2}In type) within P6{sub 3}/mmc symmetry is predicted through the simulation. The Ni{sub 2}In type crystal is the densest high-pressure phase of ZrO{sub 2} proposed so far and has not been observed in other metal dioxides at high pressure before. The phase transformation is accompanied by a small volume drop and likely to occur around 380 GPa in experiment. - Graphical abstract: Post-cotunnite Ni{sub 2}In type hexagonal phase forms in zirconia at high pressure. - Highlights: • A post-cotunnite phase is predicted for ZrO{sub 2} through an ab initio simulation. • Cotunnite ZrO{sub 2} adopts the Ni{sub 2}In type structure at high pressure. • The Ni{sub 2}In type structure is the densest high-pressure phase of ZrO{sub 2} proposed so far. • The preferred mechanism in ZrO{sub 2} differs from the other metal dioxides.
Ab initio calculation of oxygen self-diffusion coefficient in uranium dioxide UO2
Dorado, Boris; Garcia, Philippe; Torrent, Marc
Uranium dioxide UO2 is the most widely used nuclear fuel worldwide and its atomic transport properties are relevant to practically all engineering aspects of the material. Although transport properties have already been studied in UO2 by means of first-principles calculations, the ab initio determination of self-diffusion coefficients has up to now remained unreachable because the relevant computational tools were neither available or adapted. The present work reports our results related to the ab initio calculation of the oxygen self-diffusion coefficient in UO2. We first determine the Gibbs free energies of formation of oxygen charged defects by calculating both the electronic and vibrational (hence entropic) contributions. Then, we use the transition state theory in order to compute the effective jump frequency of the defects, which in turn provides us with the value of the pre-exponential factor. The results are compared to self-diffusion data obtained experimentally with a careful monitoring of the relevant thermodynamic conditions (oxygen partial pressure, temperature, impurity content).
Atomic carbon chains as spin-transmitters: An ab initio transport study
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka
2010-01-01
An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin-polarization of the transmi......An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin......-polarization of the transmission in large energy ranges. The effect is due to the spin-polarized zig-zag edge terminating each graphene flake causing a spin-splitting of the graphene pi(z) bands, and the chain states. Transmission occurs when the graphene p-states resonate with similar states in the strongly hybridized edges...... and chain. This effect should in general hold for any p-conjugated molecules bridging the zig-zag edges of graphene electrodes. The polarization of the transmission can be controlled by chemically or mechanically modifying the molecule, or by applying an electrical gate....
Ab initio determination of an extended Heisenberg Hamiltonian in CuO{sub 2} layers
Energy Technology Data Exchange (ETDEWEB)
Calzado, C.J.; Malrieu, J.P. [Lab. de Physique Quantique, IRSAMC, Univ. Paul Sabatier, Toulouse (France)
2001-06-01
Accurate ab initio calculations on embedded Cu{sub 4}O{sub 12} square clusters, fragments of the La{sub 2}CuO{sub 4} lattice, confirm a value of the nearest neighbor antiferromagnetic coupling (J = 124 meV) previously obtained from ab initio calculations on bicentric clusters and in good agreement with experiment. These calculations predict non negligible antiferromagnetic second-neighbor interaction (J' = 6.5 meV) and four-spin cyclic exchange (K = 14 meV), which may affect the thermodynamic and spectroscopic properties of these materials. The dependence of the magnetic coupling on local lattice distortions has also been investigated. Among them the best candidate to induce a spin-phonon effect seems to be the movement of the Cu atoms, changing the Cu-Cu distance, for which the variation of the nearest neighbor magnetic coupling with the Cu-O distance is {delta}J/{delta}d{sub Cu} {sub -} {sub O} {proportional_to} 1700 cm {sup -1} A {sup -1}. (orig.)
Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces
Herron, Jeffrey A.; Morikawa, Yoshitada; Mavrikakis, Manos
2016-08-01
Using ab initio molecular dynamics as implemented in periodic, self-consistent (generalized gradient approximation Perdew-Burke-Ernzerhof) density functional theory, we investigated the mechanism of methanol electrooxidation on Pt(111). We investigated the role of water solvation and electrode potential on the energetics of the first proton transfer step, methanol electrooxidation to methoxy (CH3O) or hydroxymethyl (CH2OH). The results show that solvation weakens the adsorption of methoxy to uncharged Pt(111), whereas the binding energies of methanol and hydroxymethyl are not significantly affected. The free energies of activation for breaking the C-H and O-H bonds in methanol were calculated through a Blue Moon Ensemble using constrained ab initio molecular dynamics. Calculated barriers for these elementary steps on unsolvated, uncharged Pt(111) are similar to results for climbing-image nudged elastic band calculations from the literature. Water solvation reduces the barriers for both C-H and O-H bond activation steps with respect to their vapor-phase values, although the effect is more pronounced for C-H bond activation, due to less disruption of the hydrogen bond network. The calculated activation energy barriers show that breaking the C-H bond of methanol is more facile than the O-H bond on solvated negatively biased or uncharged Pt(111). However, with positive bias, O-H bond activation is enhanced, becoming slightly more facile than C-H bond activation.
Experimental and ab initio investigations on textured Li–Mn–O spinel thin film cathodes
Energy Technology Data Exchange (ETDEWEB)
Fischer, J., E-mail: Julian.Fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Music, D. [RWTH Aachen University, Materials Chemistry, Kopernikusstrasse 10, 52074 Aachen (Germany); Bergfeldt, T.; Ziebert, C.; Ulrich, S.; Seifert, H.J. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)
2014-12-01
This paper describes the tailored preparation of nearly identical lithium–manganese–oxide thin film cathodes with different global grain orientations. The thin films were synthesized by rf magnetron sputtering from a LiMn{sub 2}O{sub 4}-target in a pure argon plasma. Under appropriate processing conditions, thin films with a cubic spinel structure and a nearly similar density and surface topography but different grain orientation, i.e. (111)- and (440)-textured films, were achieved. The chemical composition was determined by inductively coupled plasma optical emission spectroscopy and carrier gas hot extraction. The constitution- and microstructure were evaluated by X-ray diffraction and Raman spectroscopy. The surface morphology and roughness were investigated by scanning electron and atomic force microscopy. The differently textured films represent an ideal model system for studying potential effects of grain orientation on the lithium ion diffusion and electrochemical behavior in LiMn{sub 2}O{sub 4}-based thin films. They are nearly identical in their chemical composition, atomic bonding behavior, surface-roughness, morphology and thickness. Our initial ab initio molecular dynamics data indicate that Li ion transport is faster in (111)-textured structure than in (440)-textured one. - Highlights: • Thin film model system of differently textured cubic Li–Mn–O spinels. • Investigation of the Li–Mn–O thin film mass density by X-ray reflectivity. • Ab initio molecular dynamics simulation on Li ion diffusion in LiMn{sub 2}O{sub 4}.
International Nuclear Information System (INIS)
We have calculated the intermolecular interaction energies of the chloroform dimer in 12 orientations using the second-order Møller-Plesset perturbation theory. Single point energies of important geometries were calibrated by the coupled cluster with single and double and perturbative triple excitation method. Dunning's correlation consistent basis sets up to aug-cc-pVQZ have been employed in extrapolating the interaction energies to the complete basis set limit values. With the ab initio potential data we constructed a 5-site force field model for molecular dynamics simulations. We compared the simulation results with recent experiments and obtained quantitative agreements for the detailed atomwise radial distribution functions. Our results were also consistent with previous results using empirical force fields with polarization effects. Moreover, the calculated diffusion coefficients reproduced the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with existing empirical force fields for liquid chloroform
Energy Technology Data Exchange (ETDEWEB)
Kimberg, Victor, E-mail: victor.kimberg@pks.mpi.de [Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden (Germany); Miron, Catalin, E-mail: miron@synchrotron-soleil.fr [Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin, BP 48, FR-91192 Gif-sur-Yvette Cedex (France)
2014-08-15
Highlights: • Some studies related to the vibrational wave functions mapping phenomenon are reviewed. • The core-excited vibrational wave functions were mapped using dissociative and bound final states. • High-resolution experimental data is accompanied by ab initio calculations. • The mapping phenomenon allows one to extract constants of the molecular potentials. • The mapping techniques are general and can be applied for the study of many systems. - Abstract: The recent development of high brightness 3{sup rd} generation soft X-ray sources and high energy resolution electron spectrometers made it possible to accurately trace quantum phenomena associated to the vibrational dynamics in core-excited molecules. The present paper reviews the recent results on mapping of vibrational wave functions and molecular potentials based on electron spectroscopy. We discuss and compare the mapping phenomena in various systems, stressing the advantages of the resonant X-ray scattering for studying of the nuclear dynamics and spectroscopic constants of small molecules. The experimental results discussed in the paper are most often accompanied by state-of-the-art ab initio calculations allowing for a deeper understanding of the quantum effects. Besides its fundamental interest, the vibrational wave function mapping is shown to be useful for the analysis of core- and valence-excited molecular states based on the reflection principle.
Experimental and ab initio investigations on textured Li–Mn–O spinel thin film cathodes
International Nuclear Information System (INIS)
This paper describes the tailored preparation of nearly identical lithium–manganese–oxide thin film cathodes with different global grain orientations. The thin films were synthesized by rf magnetron sputtering from a LiMn2O4-target in a pure argon plasma. Under appropriate processing conditions, thin films with a cubic spinel structure and a nearly similar density and surface topography but different grain orientation, i.e. (111)- and (440)-textured films, were achieved. The chemical composition was determined by inductively coupled plasma optical emission spectroscopy and carrier gas hot extraction. The constitution- and microstructure were evaluated by X-ray diffraction and Raman spectroscopy. The surface morphology and roughness were investigated by scanning electron and atomic force microscopy. The differently textured films represent an ideal model system for studying potential effects of grain orientation on the lithium ion diffusion and electrochemical behavior in LiMn2O4-based thin films. They are nearly identical in their chemical composition, atomic bonding behavior, surface-roughness, morphology and thickness. Our initial ab initio molecular dynamics data indicate that Li ion transport is faster in (111)-textured structure than in (440)-textured one. - Highlights: • Thin film model system of differently textured cubic Li–Mn–O spinels. • Investigation of the Li–Mn–O thin film mass density by X-ray reflectivity. • Ab initio molecular dynamics simulation on Li ion diffusion in LiMn2O4
Boese, A D; Martin, J M L; Marx, D; Chandra, Amalendu; Martin, Jan M.L.; Marx, Dominik
2003-01-01
The ammonia dimer (NH3)2 has been investigated using high--level ab initio quantum chemistry methods and density functional theory (DFT). The structure and energetics of important isomers is obtained to unprecedented accuracy without resorting to experiment. The global minimum of eclipsed C_s symmetry is characterized by a significantly bent hydrogen bond which deviates from linearity by about 20 degrees. In addition, the so-called cyclic C_{2h} structure is extremely close in energy on an overall flat potential energy surface. It is demonstrated that none of the currently available (GGA, meta--GGA, and hybrid) density functionals satisfactorily describe the structure and relative energies of this nonlinear hydrogen bond. We present a novel density functional, HCTH/407+, designed to describe this sort of hydrogen bond quantitatively on the level of the dimer, contrary to e.g. the widely used BLYP functional. This improved functional is employed in Car-Parrinello ab initio molecular dynamics simulations of liq...
Evolved chiral NN +3N Hamiltonians for ab initio nuclear structure calculations
Roth, Robert; Calci, Angelo; Langhammer, Joachim; Binder, Sven
2014-08-01
We discuss the building blocks for a consistent inclusion of chiral three-nucleon (3N) interactions into ab initio nuclear structure calculations beyond the lower p shell. We highlight important technical developments, such as the similarity renormalization group (SRG) evolution in the 3N sector, a JT-coupled storage scheme for 3N matrix elements with efficient on-the-fly decoupling, and the importance-truncated no-core shell model with 3N interactions. Together, these developments make converged ab initio calculations with explicit 3N interactions possible also beyond the lower p shell. We analyze in detail the impact of various truncations of the SRG-evolved Hamiltonian, in particular the truncation of the harmonic-oscillator model space used for solving the SRG flow equations and the omission of the induced beyond-3N contributions of the evolved Hamiltonian. Both truncations lead to sizable effects in the upper p shell and beyond and we present options to remedy these truncation effects. The analysis of the different truncations is a first step towards a systematic uncertainty quantification of all stages of the calculation.
Evolved Chiral NN+3N Hamiltonians for Ab Initio Nuclear Structure Calculations
Roth, Robert; Langhammer, Joachim; Binder, Sven
2013-01-01
We discuss the building blocks for a consistent inclusion of chiral three-nucleon (3N) interactions into ab initio nuclear structure calculations beyond the lower p-shell. We highlight important technical developments, such as the similarity renormalization group (SRG) evolution in the 3N sector, a JT-coupled storage scheme for 3N matrix elements with efficient on-the-fly decoupling, and the importance truncated no-core shell model with 3N interactions. Together, these developments make converged ab initio calculations with explicit 3N interactions possible also beyond the lower p-shell. We analyze in detail the impact of various truncations of the SRG-evolved Hamiltonian, in particular the truncation of the harmonic-oscillator model space used for solving the SRG flow equations and the omission of the induced beyond-3N contributions of the evolved Hamiltonian. Both truncations lead to sizable effects in the upper p-shell and beyond and we present options to remedy these truncation effects. The analysis of th...
Galler, Anna; Gunacker, Patrik; Tomczak, Jan; Thunström, Patrik; Held, Karsten
Recently, approaches such as the dynamical vertex approximation (D ΓA) or the dual-fermion method have been developed. These diagrammatic approaches are going beyond dynamical mean field theory (DMFT) by including nonlocal electronic correlations on all length scales as well as the local DMFT correlations. Here we present our efforts to extend the D ΓA methodology to ab-initio materials calculations (ab-initio D ΓA). Our approach is a unifying framework which includes both GW and DMFT-type of diagrams, but also important nonlocal correlations beyond, e.g. nonlocal spin fluctuations. In our multi-band implementation we are using a worm sampling technique within continuous-time quantum Monte Carlo in the hybridization expansion to obtain the DMFT vertex, from which we construct the reducible vertex function using the two particle-hole ladders. As a first application we show results for transition metal oxides. Support by the ERC project AbinitioDGA (306447) is acknowledged.
Kedziera, Dariusz; Mentel, Łukasz; Żuchowski, Piotr S.; Knoop, Steven
2015-06-01
We have obtained accurate ab initio +4Σ quartet potentials for the diatomic metastable triplet helium+alkali-metal (Li, Na, K, Rb) systems, using all-electron restricted open-shell coupled cluster singles and doubles with noniterative triples corrections CCSD(T) calculations and accurate calculations of the long-range C6 coefficients. These potentials provide accurate ab initio quartet scattering lengths, which for these many-electron systems is possible, because of the small reduced masses and shallow potentials that result in a small amount of bound states. Our results are relevant for ultracold metastable triplet helium+alkali-metal mixture experiments.
Ji, Pengfei
2016-01-01
By combining ab initio quantum mechanics calculation and Drude model, electron temperature and lattice temperature dependent electron thermal conductivity is calculated and implemented into a multiscale model of laser material interaction, which couples the classical molecular dynamics and two-temperature model. The results indicated that the electron thermal conductivity obtained from ab initio calculation leads to faster thermal diffusion than that using the electron thermal conductivity from empirical determination, which further induces deeper melting region, larger number of density waves travelling inside the copper film and more various speeds of atomic clusters ablated from the irradiated film surface.
A theoretical-spectroscopy, ab-initio-based study of the electronic ground state of 121SbH3
Yurchenko, Sergei N.; Carvajal Zaera, Miguel; Yachmenev, Andrey; Thiel, Walter; Jensen, Per
2010-01-01
For the stibine isotopologue (SbH3)-Sb-121, we report improved theoretical calculations of the vibrational energies below 8000 cm- and simulations of the rovibrational spectrum in the 0-8000 cm(-1) region. The calculations are based on a refined ab initio potential energy surface and on a new dipole moment surface obtained at the coupled cluster CCSD(T) level. The theoretical results are compared with the available experimental data in order to validate the ab initio surfaces and the TROVE co...
Indian Academy of Sciences (India)
A NASSOUR
2016-09-01
In the present paper, an empirical embedded atom method (EAM) potential for gold–silicon (Au–Si) is developed by fitting to ab initio force (the ‘force matching’ method) and experimental data. The force database is generated within ab initio molecular dynamics (AIMD). The database includes liquid phase at various temperatures. Classical molecular dynamics simulations are performed to examine structural, coordination numbers, structure factors and dynamic properties of Au$_{81}$Si$_{19}$ alloy, with the interaction described via EAM model. The results are in good agreement with AIMD simulations and experimental data.
Lee, Jeehye
2010-01-01
We present the first systematic {\\em ab initio} study of anti-ferrodistortive (AFD) order in Ruddlesden-Popper (RP) phases of strontium titanate, Sr$_{1+n}$Ti$_n$O$_{3n+1}$, as a function of both compressive epitaxial strain and phase number $n$. We find all RP phases to exhibit AFD order under a significant range of strains, recovering the bulk AFD order as $\\sim 1/n^2$. A Ginzburg-Landau Hamiltonian generalized to include inter-octahedral interactions reproduces our {\\em ab initio} results well, opening a pathway to understanding other nanostructured perovskite systems.
Energy Technology Data Exchange (ETDEWEB)
Willaime, F. [Division de l' energie nucleaire, CEA Centre de Saclay, 91191 Gif-sur-Yvette (France); Deutsch, T.; Pochet, P. [INAC, Direction des sciences de la matiere, CEA Centre de Grenoble, 38054 Grenoble Cedex 9 (France)
2010-07-01
Ab-initio calculation methods, for the purposes of computing electronic structures, have made it possible, since the early nineties, to simulate the properties of perfect crystalline materials (materials free of any defect). By improving such methods, and with the increasing power of supercomputers, it has now become feasible to simulate the properties of elementary defects, which may seldom be accessed directly through experiments. This has opened up a vast, fruitful field of multi-scale simulations, where such data yield the basis for realistic simulations of the kinetics of materials evolution. The kinetic Monte-Carlo method thus provides the means to model phenomena acting at the scale of a second, or even of a year. In the issue of self-diffusion in silicon, multi-scale simulation has been successful in predicting an asymmetrical behaviour: a speeding up of vacancy diffusion under compression and a tailing off under tension, and conversely, a speeding up of interstitial diffusion under tension and a falling off under compression. Multi-scale modeling has also been successful in simulating irradiation defects in iron. (A.C.)
Roy, Soumendra K; Jian, Tian; Lopez, Gary V; Li, Wei-Li; Su, Jing; Bross, David H; Peterson, Kirk A; Wang, Lai-Sheng; Li, Jun
2016-02-28
The observation of the gaseous UFO(-) anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO(-) is linear with an O-U-F structure and a (3)H4 spectral term derived from a U 7sσ(2)5fφ(1)5fδ(1) electron configuration, whereas the ground state of neutral UFO has a (4)H(7/2) spectral term with a U 7sσ(1)5fφ(1)5fδ(1) electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations. PMID:26931704
Roy, Soumendra K; Jian, Tian; Lopez, Gary V; Li, Wei-Li; Su, Jing; Bross, David H; Peterson, Kirk A; Wang, Lai-Sheng; Li, Jun
2016-02-28
The observation of the gaseous UFO(-) anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO(-) is linear with an O-U-F structure and a (3)H4 spectral term derived from a U 7sσ(2)5fφ(1)5fδ(1) electron configuration, whereas the ground state of neutral UFO has a (4)H(7/2) spectral term with a U 7sσ(1)5fφ(1)5fδ(1) electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.
Improved parametric fits for the HeH2 ab initio energy surface
International Nuclear Information System (INIS)
A brief history of the development of ab initio calculations for the HeH2 quasi-molecule energy surface, and the parametric fits to these ab initio calculations, is presented. The concept of 'physical reasonableness' of the parametric fit is discussed. Several new improved parametric fits for the energy surface, meeting these requirements, are then proposed. One fit extends the Russek-Garcia parametric fit for the deep repulsion region to include r-dependent parameters, resulting in a more physically reasonable fit with smaller average error. This improved surface fit is applied to quasi-elastic collisions of He on H2 in the impulse approximation. Previous classical calculations of the scaled inelastic vibrorotational excitation energy distributions are improved with this more accurate parametric fit of the energy surface and with the incorporation of quantum effects in vibrational excitation. It is shown that Sigmund's approach in developing his scaling law is incomplete in the contribution of the three-body interactions to vibrational excitation of the H2 molecule is concerned. The Sigmund theory is extended to take into account for r-dependency of three-body interactions. A parametric fit for the entire energy surface from essentially 0 ≤R≤∞ and 1.2≤r≤1.6 a.u., where R is the intermolecular spacing and r is the hydrogen bonding length, is also presented. This fit is physically reasonable in all asymptotic limits. This first, full surface parametric fit is based primarily upon a composite of ab initio studies by Russek and Garcia and Meyer, Hariharan and Kutzelnigg. Parametric fits for the H2(1sσg)2, H2+(1sσg), H2+(2pσu) and (LiH2)+ energy surfaces are also presented. The new parametric fits for H2, H2+(1sσg) are shown to be improvements over the well-known Morse potentials for these surfaces
Comparative studies of the spectroscopy of CuCl2: DFT versus standard ab initio approaches.
Ramírez-Solís, A; Poteau, R; Vela, A; Daudey, J P
2005-04-22
The X2Pi g-2Sigma g+, X2Pi g-2Delta g, X2Pi g-2Sigma u+, X2Pi g-2Pi u transitions on CuCl2 have been studied using several exchange-correlation functionals from the various types of density functional theory (DFT) approaches like local density approximation (LDA), generalized gradient approximation (GGA), hybrid and meta-GGA. The results are compared with the experience and with those coming from the most sophisticated nondynamic and dynamic electronic correlation treatments using the same relativistic effective core potentials and especially developed basis sets to study the electronic structure of the five lowest states and the corresponding vertical and adiabatic transition energies. The calculated transition energies for three of the hybrid functionals (B3LYP, B97-2, and PBE0) are in very good agreement with the benchmark ab initio results and experimental figures. All of the other functionals largely overestimate the X2Pi g-2Sigma g+ and X2Pi g-2Delta g transition energies, many of them even placing the 2Delta g ligand field state above the charge transfer 2Pi u and 2Sigma u+ states. The relative weight of the Hartree-Fock exchange in the definition of the functional used appears to play a key role in the accurate description of the LambdaSSigma density defined by the orientation of the 3d hole (sigma, pi, or delta) on Cu in the field of both chlorine atoms, but no simple connection of this weight with the quality of the spectra has been found. Mulliken charges and spin densities are carefully analyzed; a possible link between the extent of spin density on the metal for the X2Pi g state and the performance of the various functionals was observed, suggesting that those that lead to the largest values (close to 0.65) are the ones that best reproduce these four transitions. Most functionals lead to a remarkably low ionicity for the three ligand field states even for the best performing functionals, compared to the complete active space (SCF) (21, 14) ab initio
Realization of prediction of materials properties by ab initio computer simulation
Indian Academy of Sciences (India)
Yoshiyuki Kawazoe
2003-01-01
Ab initio treatment is becoming realistic to predict physical, chemical, and even mechanical properties of academically and industrially interesting materials. There is, however, some limitation in size and time of the system up to the order of several hundred atoms and ∼ 1 pico second, even if we use the fastest supercomputer efficiently. Therefore, it is very difficult to simulate realistic materials with grain boundaries and important reactions like diffusion in materials. To improve this situation, two ways have been invented. One way is to upgrade approximations to match the necessary levels according to inhomogeneous electron gas theory beyond the present day standard, i.e. local density approximation (LDA). The reason is simply that the system we are interested in is composed of many particles interacting with Coulomb forces governed by quantum mechanics. (Complete knowledge is available, and only what we should do is to make better approximations to explain the phenomena!). Another is to extract the necessary parameters from the ab initio calculations on systems with limited number of atoms, and apply these results into cluster variation, direct, or any other sophisticated methods based on classical concepts such as statistical mechanics. In this paper, several typical examples recently worked out by our research group are introduced to indicate that these methodologies are actually possible to be successfully used to predict materials properties before experiments based on the present day state-of-art supercomputing systems. It includes scientific visualization of the results of ab initio molecular dynamics simulation on atom insertion process to C60 and to carbon nanotube, tight-binding calculation of single electron conductance properties in nanotube to create nano-scale diode virtually by computer, which will be a base of future nanoscale electric device in nanometer size, Li + H reaction without Born–Oppenheimer approximation, structural phase
i-PI: A Python interface for ab initio path integral molecular dynamics simulations
Ceriotti, Michele; More, Joshua; Manolopoulos, David E.
2014-03-01
Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these developments requires a considerable programming effort, which has hindered their adoption. Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program. While it is best suited to first principles calculations and path integral molecular dynamics, i-PI can also be used to perform classical molecular dynamics simulations, and can just as easily be interfaced with an empirical forcefield code. To give just one example of the many potential applications of the interface, we use it in conjunction with the CP2K electronic structure package to showcase the importance of nuclear quantum effects in high-pressure water. Catalogue identifier: AERN_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 138626 No. of bytes in distributed program, including test data, etc.: 3128618 Distribution format: tar.gz Programming language: Python. Computer: Multiple architectures. Operating system: Linux, Mac OSX, Windows. RAM: Less than 256 Mb Classification: 7.7. External routines: NumPy Nature of problem: Bringing the latest developments in the modelling of nuclear quantum effects with path integral molecular dynamics to ab initio electronic structure programs with minimal implementational effort. Solution method: State-of-the-art path integral molecular dynamics techniques are implemented in a Python interface. Any electronic structure code can be patched to receive the atomic
Meisel, David D.; Szasz, Csilla; Kero, Johan
2008-06-01
The Arecibo UHF radar is able to detect the head-echos of micron-sized meteoroids up to velocities of 75 km/s over a height range of 80 140 km. Because of their small size there are many uncertainties involved in calculating their above atmosphere properties as needed for orbit determination. An ab initio model of meteor ablation has been devised that should work over the mass range 10-16 kg to 10-7 kg, but the faint end of this range cannot be observed by any other method and so direct verification is not possible. On the other hand, the EISCAT UHF radar system detects micrometeors in the high mass part of this range and its observations can be fit to a “standard” ablation model and calibrated to optical observations (Szasz et al. 2007). In this paper, we present a preliminary comparison of the two models, one observationally confirmable. Among the features of the ab initio model that are different from the “standard” model are: (1) uses the experimentally based low pressure vaporization theory of O’Hanlon (A users’s guide to vacuum technology, 2003) for ablation, (2) uses velocity dependent functions fit from experimental data on heat transfer, luminosity and ionization efficiencies measured by Friichtenicht and Becker (NASA Special Publication 319: 53, 1973) for micron sized particles, (3) assumes a density and temperature dependence of the micrometeoroids and ablation product specific heats, (4) assumes a density and size dependent value for the thermal emissivity and (5) uses a unified synthesis of experimental data for the most important meteoroid elements and their oxides through least square fits (as functions of temperature, density, and/or melting point) of the tables of thermodynamic parameters given in Weast (CRC Handbook of Physics and Chemistry, 1984), Gray (American Institute of Physics Handbook, 1972), and Cox (Allen’s Astrophysical Quantities 2000). This utilization of mostly experimentally determined data is the main reason for
Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.
1997-01-01
The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to simulate laser heating of crystalline silicon. We found that a high concentration of excited electrons dramatically weakens the covalent bonding. As a result the system undergoes a melting t
Zhang, Yang
2014-02-01
We develop and test a new pipeline in CASP10 to predict protein structures based on an interplay of I-TASSER and QUARK for both free-modeling (FM) and template-based modeling (TBM) targets. The most noteworthy observation is that sorting through the threading template pool using the QUARK-based ab initio models as probes allows the detection of distant-homology templates which might be ignored by the traditional sequence profile-based threading alignment algorithms. Further template assembly refinement by I-TASSER resulted in successful folding of two medium-sized FM targets with >150 residues. For TBM, the multiple threading alignments from LOMETS are, for the first time, incorporated into the ab initio QUARK simulations, which were further refined by I-TASSER assembly refinement. Compared with the traditional threading assembly refinement procedures, the inclusion of the threading-constrained ab initio folding models can consistently improve the quality of the full-length models as assessed by the GDT-HA and hydrogen-bonding scores. Despite the success, significant challenges still exist in domain boundary prediction and consistent folding of medium-size proteins (especially beta-proteins) for nonhomologous targets. Further developments of sensitive fold-recognition and ab initio folding methods are critical for solving these problems.
Giovannetti, Gianluca; Brocks, Geert; Brink, van den Jeroen
2008-01-01
We investigate the effect that potassium intercalation has on the electronic structure of copper phthalocyanine (CuPc) molecular crystals by means of ab initio density functional calculations. Pristine CuPc (in its alpha and beta structures) is found to be an insulator containing local magnetic mome
An ab initio study of the structural and physical properties of a novel rigid-rod polymer : PIPD
Hageman, J.C.L.; Horst, J.W. van der; Groot, R.A. de
1999-01-01
In this article, we present the first ab initio calculations on the novel rigid-rod polymer PIPD using density functional techniques. The behaviour of the molecular chain under strain is studied and the chain modulus agrees excellently with experiment. Two crystal structures are considered and hydro
Fishchuk, A.V.; Groenenboom, G.C.; Avoird, A. van der
2006-01-01
Bound energy levels and properties of the Cl((2)p)-HF complex were obtained from full three-dimensional (3D) calculations, with the use of the ab initio computed diabatic potential surfaces from the preceding paper and the inclusion of spin-orbit coupling. For a better understanding of the dynamics
Ab-initio study of magnetic properties and phase transitions in Ga (Mn) N with Monte Carlo approach
Energy Technology Data Exchange (ETDEWEB)
Sbai, Y.; Ait Raiss, A.; Salmani, E. [LMPHE (URAC 12), Faculty of Science, Mohammed V University, Av. Ibn Batouta, Rabat (Morocco); Bahmad, L., E-mail: Bahmad@fsr.ac.ma [LMPHE (URAC 12), Faculty of Science, Mohammed V University, Av. Ibn Batouta, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculty of Science, Mohammed V University, Av. Ibn Batouta, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco)
2015-12-15
On the basis of ab-initio calculations and Monte Carlo simulations the magnetic and electronic properties of Gallium nitride (GaN) doped with the transition metal Manganese (Mn) were studied. The ab initio calculations were done using the AKAI–KKR–CPA method within the Local Density Approximation (LDA) approximation. We doped our Diluted Magnetic Semiconductor (DMS), with different concentrations of magnetic impurities Mn and plotted the density of state (DOS) for each one. Showing a half-metallic behavior and ferromagnetic state especially for Ga{sub 0.95}Mn{sub 0.05}N making this DMS a strong candidate for spintronic applications. Moreover, the magnetization and susceptibility of our system as a function of the temperature has been calculated and give for various system size L to study the size effect. In addition, the transition temperature was deduced from the peak of the susceptibility. The Ab initio results are in good agreement with literature especially for (x=0.05) of Mn which gives the most interesting results. - Highlights: • The AKAI–KKR–CPA method has been applied to study the doped compound GaN:Mn. • The local density approximation (LDA) has been applied. • The ab-initio calculations have been performed. • The density of states (DOS) have been plotted for differents doping concentrations, using Monte Carlo simulations.
A Photoelectron Spectroscopy and ab initio Study of B3- and B4- Anions and Their Neutrals
Energy Technology Data Exchange (ETDEWEB)
Zhai, Hua-Jin; Wang, Lai S.; Alexandrova, A N.; Boldyrev, Alexander I.; Zakrzewski, V G.
2003-11-06
The two smallest boron clusters (B3 and B4) in their neutral and anionic forms were studied by photoelectron spectroscopy and ab initio calculations. Vibrationally resolved photoelectron spectra were observed for B3- at three photon energies (355, 266, and 193 nm) and the electron affinity of B3 was measured to be+0.02 eV.
Directory of Open Access Journals (Sweden)
A. V. Gulay
2014-01-01
Full Text Available Ab-Initio simulation of electronic features of sensoring nanomaterials based on rare earth oxides has been made by the example of yttrium oxide. The simulation method for thin films of nanometer scale consisted in the simulation of the material layer of the thickness equal to unit crystal cell size has been proposed within the VASP simulation package. The atomic bond breakdown in the crystal along one of the coordinate axes is simulated by the increase of a distance between the atomic layers along this axis up to values at which the value of free energy is stabilized. It has been found that the valence and conductivity bands are not revealed explicitly and the band gap is not formed in the hyperfine rare earth oxide film (at the film thickness close to 1 nm. In fact the hyperfine rare earth oxide film loses dielectric properties which were exhibited clear enough in continuum.
The {\\it ab initio} calculation of spectra of open shell diatomic molecules
Tennyson, Jonathan; McKemmish, Laura K; Yurchenko, Sergei N
2016-01-01
The spectra (rotational, rotation-vibrational or electronic) of diatomic molecules due to transitions involving only closed-shell ($^1\\Sigma$) electronic states follow very regular, simple patterns and their theoretical analysis is usually straightforward. On the other hand, open-shell electronic states lead to more complicated spectral patterns and, moreover, often appear as a manifold of closely lying electronic states, leading to perturbations with even larger complexity. This is especially true when at least one of the atoms is a transition metal. Traditionally these complex cases have been analysed using approaches based on perturbation theory, with semi-empirical parameters determined by fitting to spectral data. Recently the needs of two rather diverse scientific areas have driven the demand for improved theoretical models of open-shell diatomic systems based on an \\emph{ab initio} approach, these areas are ultracold chemistry and the astrophysics of "cool" stars, brown dwarfs and most recently extraso...
AB INITIO STUDY ON VALENCE INDICES AND REACTIVITIES OF SOME BORAENS
Institute of Scientific and Technical Information of China (English)
曹阳; 王友良
1991-01-01
In the pressnt paper, 3-21G ab initio molecular orbital calculations arc performed on diborane B2H6 and the substituted bridged-atom species H4B2X2(X=F, C1, OH, NH2, CH3),and these geometries are optimized with the energy gradient technique. According to the quantum chemical definition of atomic valence, the valences of the bridged-atoms are calculated to studtd the characteristion of the bridging bond B-X-B. Some larger boranes B4H10, B5H9, and B5H11 are also calculated to discuss the valence indices and analyze the reactiveities of the bridged-atoms.
Ab initio theory for ultrafast magnetization dynamics with a dynamic band structure
Mueller, B. Y.; Haag, M.; Fähnle, M.
2016-09-01
Laser-induced modifications of magnetic materials on very small spatial dimensions and ultrashort timescales are a promising field for novel storage and spintronic devices. Therefore, the contribution of electron-electron spin-flip scattering to the ultrafast demagnetization of ferromagnets after an ultrashort laser excitation is investigated. In this work, the dynamical change of the band structure resulting from the change of the magnetization in time is taken into account on an ab initio level. We find a large influence of the dynamical band structure on the magnetization dynamics and we illustrate the thermalization and relaxation process after laser irradiation. Treating the dynamical band structure yields a demagnetization comparable to the experimental one.
Ab Initio Calculation of Vacancies and Interstitials in NiSi2
Institute of Scientific and Technical Information of China (English)
WANG Tao; DAI Yong-Bing; OUYANG Si-Ke; WU Jian-Sheng; SHEN He-Sheng
2004-01-01
@@ An ab initio plane-wave ultrasoft pseudopotential method based on the generalized gradient approximations has been utilized to investigate the electronic structure, atomic geometry, formation energy to provide a better understanding of properties of Ni disilicide. The vacancy and interstitial formation energies largely depend on the atomic chemical potentials. The formation energies of vacancies Vsi and VNi are in the range of 0.04-0.56 eV and 1.25-2.3 eV, respectively and the formation energies of Si and Ni interstitials are 3.89-4.42 eV and 0.67-1.71 eV,respectively. The smaller Ni interstitial formation energy is in agreement with the experimental result that Ni interstitial atom is dominant diffusion species in NiSi2.
ESTUDIO TEÓRICO DE LA MOLÉCULA DE HIDROGENO CALCULO AB-INITIO
Quitián, N.
2010-01-01
Utilizando la técnica LCGO-SCF-MO (Combinación Lineal de los Orbitales Moleculares en Orbitales Gausianos, en el método del Campo Auto-Coherente), se determinaron las energías de orbital, la energía electrónica total, la energía de repulsión nuclear y la energía de Hartree-Fock de la molécula de hidrógeno en su estado fundamental, mediante un cálculo ab initio y utilizando una base de funciones gausianas. Los orbitales moleculares fueron desarrollados en términos de una función Is contraída p...
High-pressure elastic properties of cubic Ir2P from ab initio calculations
Sun, Xiao-Wei; Bioud, Nadhira; Fu, Zhi-Jian; Wei, Xiao-Ping; Song, Ting; Li, Zheng-Wei
2016-10-01
A study of the high-pressure elastic properties of new synthetic Ir2P in the anti-fluorite structure is conducted using ab initio calculations based on density functional theory. The elastic constants C11, C12 and C44 for the cubic Ir2P are obtained by the stress-strain method and the elastic stability calculations under pressure indicate that it is stable at least 100 GPa. Additionally, the electronic density of states, the aggregate elastic moduli, that is bulk modulus, shear modulus, and Young's modulus along with the Debye temperature, Poisson's ratio, and elastic anisotropy factor are all successfully obtained. Moreover, the pressure dependence of the longitudinal and shear wave velocities in three different directions [100], [110], and [111] for Ir2P are also predicted for the first time.
reaxFF Reactive Force Field for Disulfide Mechanochemistry, Fitted to Multireference ab Initio Data.
Müller, Julian; Hartke, Bernd
2016-08-01
Mechanochemistry, in particular in the form of single-molecule atomic force microscopy experiments, is difficult to model theoretically, for two reasons: Covalent bond breaking is not captured accurately by single-determinant, single-reference quantum chemistry methods, and experimental times of milliseconds or longer are hard to simulate with any approach. Reactive force fields have the potential to alleviate both problems, as demonstrated in this work: Using nondeterministic global parameter optimization by evolutionary algorithms, we have fitted a reaxFF force field to high-level multireference ab initio data for disulfides. The resulting force field can be used to reliably model large, multifunctional mechanochemistry units with disulfide bonds as designed breaking points. Explorative calculations show that a significant part of the time scale gap between AFM experiments and dynamical simulations can be bridged with this approach. PMID:27415976
Ab Initio Studies on Hematite Surface and the Adsorption of Phosphate
Directory of Open Access Journals (Sweden)
Swati Chaudhury
2014-01-01
Full Text Available This investigation explores the ab initio DFT method for understanding surface structure of hematite and the nature and energetics of phosphate adsorption. Using the full potential linearized plane wave method (FP-LAPW, we derived the structure and energies of various magnetic forms of hematite. The antiferromagnetic (AFM form was observed to be the most stable. Hematite surfaces with Fe-termination, O-termination, or OH-termination were studied. The OH-terminated surface was the most stable. Stability of hematite surfaces follows the order OH-termination > Fe-termination > O-termination. Thus, surface reaction with hematite would occur with the OH at the surface and not with Fe atoms. The structure of phosphate adsorbed on hematite was derived. Bonding is through the H atom of the OH at the surface. An alternative mechanism of phosphate adsorption on hematite has been derived. Adsorption energy is high and suggests chemisorption rather than physisorption of phosphate on hematite.
Femtosecond Laser Processing of Germanium: An Ab Initio Molecular Dynamics Study
Ji, Pengfei
2016-01-01
An ab initio molecular dynamics study of femtosecond laser processing of germanium is presented in this paper. The method based on the finite temperature density functional theory is adopted to probe the structural change, thermal motion of the atoms, dynamic property of the velocity autocorrelation, and the vibrational density of states. Starting from a cubic system at room temperature (300 K) containing 64 germanium atoms with an ordered arrangement of 1.132 nm in each dimension, the femtosecond laser processing is simulated by imposing the Nose Hoover thermostat to the electronic subsystem lasting for ~100 fs and continuing with microcanonical ensemble simulation of ~200 fs. The simulation results show solid, liquid and gas phases of germanium under adjusted intensities of the femtosecond laser irradiation. We find the irradiated germanium distinguishes from the usual germanium crystal by analyzing their melting and dynamic properties.
Ab initio calculation of structure and thermodynamic properties of Zintl aluminide SrAl{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Fu, Zhi-Jian [Chongqing Key Laboratory of Micro/Nano Materials Engineering and Technology, Chongqing (China); Chongqing Univ. of Arts and Sciences (China). School of Electrical and Electronic Engineering; China Academy of Engineering Physics (CAEP), Mianyang, Sichuan (China). National Key Lab. of Shock Wave and Detonation Physics; Jia, Li-Jun [Chongqing Univ. of Arts and Sciences Library (China); Xia, Ji-Hong; Tang, Ke; Li, Zhao-Hong [Chongqing Univ. of Arts and Sciences (China). School of Electrical and Electronic Engineering; Sun, Xiao-Wei [Lanzhou Jiaotong Univ. (China). School of Mathematics and Physics; Chen, Qi-Feng [China Academy of Engineering Physics (CAEP), Mianyang, Sichuan (China). National Key Lab. of Shock Wave and Detonation Physics
2015-07-01
The structural and thermodynamic properties of the orthorhombic and cubic structure SrAl{sub 2} at pressure and temperature are investigated by using the ab initio plane-wave pseudopotential density functional theory method within the generalised gradient approximation (GGA). The calculated lattice parameters are in agreement with the available experimental data and other theoretical results. The phase transition predicted takes place at 0.5 GPa from the orthorhombic to the cubic structure at zero temperature. The thermodynamic properties of the zinc-blende structure SrAl{sub 2} are calculated by the quasi-harmonic Debye model. The pressure-volume relationship and the variations in the thermal expansion a are obtained systematically in the pressure and temperature ranges of 0-5 GPa and 0-500 K, respectively.
Ab-initio Hartree-Fock study of tritium desorption from Li{sub 2}O
Energy Technology Data Exchange (ETDEWEB)
Taniguchi, Masaki; Tanaka, Satoru [Tokyo Univ. (Japan). Faculty of Engineering
1998-03-01
Dissociative adsorption of hydrogen on Li{sub 2}O (110) surface has been investigated with ab-initio Hartree-Fock quantum chemical calculation technique. Heat of adsorption and potential energy surface for H{sub 2} dissociative adsorption was evaluated by calculating the total energy of the system. Calculation results on adsorption heat indicated that H{sub 2} adsorption is endothermic. However, when oxygen vacancy exists adjacent to the adsorption sites, heat of adsorption energy became less endothermic and the activation energy required to dissociate the H-H bonding was smaller than that for the terrace site. This is considered to be caused by the excess charge localized near the defect. (author)
Iftimie, R; Schofield, J P; Iftimie, Radu; Salahub, Dennis; Schofield, Jeremy
2003-01-01
In this article, we propose an efficient method for sampling the relevant state space in condensed phase reactions. In the present method, the reaction is described by solving the electronic Schr\\"{o}dinger equation for the solute atoms in the presence of explicit solvent molecules. The sampling algorithm uses a molecular mechanics guiding potential in combination with simulated tempering ideas and allows thorough exploration of the solvent state space in the context of an ab initio calculation even when the dielectric relaxation time of the solvent is long. The method is applied to the study of the double proton transfer reaction that takes place between a molecule of acetic acid and a molecule of methanol in tetrahydrofuran. It is demonstrated that calculations of rates of chemical transformations occurring in solvents of medium polarity can be performed with an increase in the cpu time of factors ranging from 4 to 15 with respect to gas-phase calculations.
A room temperature CO$_2$ line list with ab initio computed intensities
Zak, Emil; Polyansky, Oleg L; Lodi, Lorenzo; Zobov, Nikolay F; Tashkun, Sergey A; Perevalov, Valery I
2016-01-01
Atmospheric carbon dioxide concentrations are being closely monitored by remote sensing experiments which rely on knowing line intensities with an uncertainty of 0.5% or better. We report a theoretical study providing rotation-vibration line intensities substantially within the required accuracy based on the use of a highly accurate {\\it ab initio} dipole moment surface (DMS). The theoretical model developed is used to compute CO$_2$ intensities with uncertainty estimates informed by cross comparing line lists calculated using pairs of potential energy surfaces (PES) and DMS's of similar high quality. This yields lines sensitivities which are utilized in reliability analysis of our results. The final outcome is compared to recent accurate measurements as well as the HITRAN2012 database. Transition frequencies are obtained from effective Hamiltonian calculations to produce a comprehensive line list covering all $^{12}$C$^{16}$O$_2$ transitions below 8000 cm$^{-1}$ and stronger than 10$^{-30}$ cm / molecule at ...
Electronic and optical properties of K-doped ZnO: Ab initio study
Aimouch, D. E.; Meskine, S.; Hayn, R.; Zaoui, A.; Boukortt, A.
2016-08-01
We present the results of ab initio calculations of K-doped ZnO in the wurtzite structure using a supercell of 32 atoms and density functional theory. A complete analysis of its electronic, optical and magnetic properties is provided. The local spin density approximation (LSDA) has been used to analyze the density of states and to understand the K influence at different concentration values. The material is revealed to become a p-type doped semiconductor. The optical constant or refractive index, the dielectric function, and the absorption coefficient were determined and show a good agreement with available experimental data. Potassium doping leads to an absorption peak at about 380 nm. That peak might improve the absorption characteristics of ZnO for solar cell or optical applications.
Atomic and Electronic Structures of C_60+BN Nanopeapods from ab initio Pseudopotential Calculations
Trave, Andrea; Ribeiro, Filipe; Louie, Steven G.; Cohen, Marvin L.
2004-03-01
Nanopeapods are structures of nanometric size consisting of an external carbon nanotube encapsulating a chain or complex array of fullerenes. Recent calculations and experiments have proven that nanopeapods can be obtained assembling fullerenes within boron nitride nanotubes, creating novel materials of possible interest for electronic transport applications. To improve the understanding of the properties of these composite systems, as compared to empty nanotubes and carbon nanopeapods, ab-initio total energy calculations have been performed within the pseudopotential Density Functional Theory in local density approximation. Results of these calculations on the energetics and geometrical deformations involved in the encapsulation will be presented, followed by a discussion of the consequences on the electronic structures of these systems, with particular focus on aspects relevant to electronic transport phenomena. This work is supported by NFS (Grant DMR00-87088) and DOE (Contract DE-AC03-76SF00098), using computational resources at NERSC and NPACI.
Lattice thermal conductivity of UO2 using ab-initio and classical molecular dynamics
International Nuclear Information System (INIS)
We applied the non-equilibrium ab-initio molecular dynamics and predict the lattice thermal conductivity of the pristine uranium dioxide for up to 2000 K. We also use the equilibrium classical molecular dynamics and heat-current autocorrelation decay theory to decompose the lattice thermal conductivity into acoustic and optical components. The predicted optical phonon transport is temperature independent and small, while the acoustic component follows the Slack relation and is in good agreement with the limited single-crystal experimental results. Considering the phonon grain-boundary and pore scatterings, the effective lattice thermal conductivity is reduced, and we show it is in general agreement with the sintered-powder experimental results. The charge and photon thermal conductivities are also addressed, and we find small roles for electron, surface polaron, and photon in the defect-free structures and for temperatures below 1500 K
A set of molecular models based on quantum mechanical ab initio calculations and thermodynamic data
Eckl, Bernhard; Hasse, Hans
2009-01-01
A parameterization strategy for molecular models on the basis of force fields is proposed, which allows a rapid development of models for small molecules by using results from quantum mechanical (QM) ab initio calculations and thermodynamic data. The geometry of the molecular models is specified according to the atom positions determined by QM energy minimization. The electrostatic interactions are modeled by reducing the electron density distribution to point dipoles and point quadrupoles located in the center of mass of the molecules. Dispersive and repulsive interactions are described by Lennard-Jones sites, for which the parameters are iteratively optimized to experimental vapor-liquid equilibrium (VLE) data, i.e. vapor pressure, saturated liquid density, and enthalpy of vaporization of the considered substance. The proposed modeling strategy was applied to a sample set of ten molecules from different substance classes. New molecular models are presented for iso-butane, cyclohexane, formaldehyde, dimethyl...
Ab Initio Calculations on Halogen Bond Between N-Br and Electron-donating Groups
Institute of Scientific and Technical Information of China (English)
WANG Yan-hua; CHEN Xue-song; ZOU Jian-wei; YU Qing-sen
2007-01-01
Ab initio calculations of complexes formed between N-bromosuccinimide and a series of electron-donating groups were performed at the level of MP2/Lanl2DZ* to gain a deeper insight into the nature of the N-Br halogen stronger halogen-bonding complex than the C-Br. A comparison of neutral hydrogen bond complex series reveals that the electron-donating capacities of the atoms decrease in the order, N＞O＞S; O(sp3)＞O(sp2), which is adequate for the C-Br halogen bonding. Interaction energies, in conjunction with the geometrical parameters show that the affinitive capacity of trihalide anions X-3 with N-bromosuccinimide are markedly lower than that of the corresponding X- with N-bromosuccinimide, even lower than those of neutral molecules with N-bromosuccinimide. AIM analyses further confirmed the above results.
Design of two-photon molecular tandem architectures for solar cells by ab initio theory
DEFF Research Database (Denmark)
Ørnsø, Kristian Baruël; García Lastra, Juan Maria; De La Torre, Gema;
2015-01-01
An extensive database of spectroscopic properties of molecules from ab initio calculations is used to design molecular complexes for use in tandem solar cells that convert two photons into a single electron–hole pair, thereby increasing the output voltage while covering a wider spectral range...... of the structural and energetic properties of several thousand porphyrin dyes. The third design is a molecular analogy of the intermediate band solar cell, and involves a single dye molecule with strong intersystem crossing to ensure a long lifetime of the intermediate state. Based on the calculated energy levels...... and molecular orbitals, energy diagrams are presented for the individual steps in the operation of such tandem solar cells. We find that theoretical open circuit voltages of up to 1.8 V can be achieved using these tandem designs. Questions about the practical implementation of prototypical devices...
i-PI: A Python interface for ab initio path integral molecular dynamics simulations
Ceriotti, Michele; Manolopoulos, David E
2014-01-01
Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these developments requires a considerable programming effort, which has hindered their adoption. Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program. While it is best suited to first principles calculations and path integral molecular dynamics, i-PI can also be used to perform classical molecular dynamics simulations, and can just as easily be interfaced with an empirical forcefield code. To give just one example of the many potential applications of the interface, we use it in conjunction with the CP2K electronic structure package to showcase the importance of nuclear quantum effects in high pressure water.
Steinmann, Casper; Jensen, Jan H
2012-01-01
We extend the Effective Fragment Molecular Orbital (EFMO) method to the frozen domain approach where only the geometry of an active part is optimized, while the many-body polarization effects are considered for the whole system. The new approach efficiently mapped out the entire reaction path of chorismate mutase in less than four days using 80 cores on 20 nodes, where the whole system containing 2398 atoms is treated in the ab initio fashion without using any force fields. The reaction path is constructed automatically with the only assumption of defining the reaction coordinate a priori. We determine the reaction barrier of chorismate mutase to be $18.3\\pm 3.6$ kcal mol$^{-1}$ using ONIOM with MP2/cc-pVDZ and EFMO/6-31G(d) for the high and low layers, respectively.
Probing defects and correlations in the hydrogen-bond network of ab initio water
Gasparotto, Piero; Ceriotti, Michele
2016-01-01
The hydrogen-bond network of water is characterized by the presence of coordination defects relative to the ideal tetrahedral network of ice, whose fluctuations determine the static and time-dependent properties of the liquid. Because of topological constraints, such defects do not come alone, but are highly correlated coming in a plethora of different pairs. Here we discuss in detail such correlations in the case of ab initio water models and show that they have interesting similarities to regular and defective solid phases of water. Although defect correlations involve deviations from idealized tetrahedrality, they can still be regarded as weaker hydrogen bonds that retain a high degree of directionality. We also investigate how the structure and population of coordination defects is affected by approximations to the inter-atomic potential, finding that in most cases, the qualitative features of the hydrogen bond network are remarkably robust.
Ab initio and DFT studies on vibrational spectra of some halides of group IIIB elements
Zhang, Yu; Zhao, Jianying; Tang, Guodong; Zhu, Longgen
2005-11-01
The vibrational spectra of some group IIIB elements halides MX 3 and their dimmers, M 2X 6 (M = Sc(III), Y(III), La(III); X = F, Cl, Br, I), have been systematically investigated by ab initio restricted Hartree-Fock (RHF) and density functional B3LYP methods with LanL2DZ and SDD basis sets. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational frequencies, calculated by two methods with different basis sets, are compared to each other. The effect of the methods and the basis sets used on the calculated vibrational frequencies are discussed. Some vibrational frequencies of these complexes are also predicted.
Ab initio and phenomenological studies of the static response of neutron matter
Buraczynski, Mateusz
2016-01-01
We investigate the problem of periodically modulated strongly interacting neutron matter. We carry out ab initio non-perturbative auxiliary-field diffusion Monte Carlo calculations using an external sinusoidal potential in addition to phenomenological two- and three-nucleon interactions. Several choices for the wave function ansatz are explored and special care is taken to extrapolate finite-sized results to the thermodynamic limit. We perform calculations at various densities as well as at different strengths and periodicities of the one-body potential. Our microscopic results are then used to constrain the isovector term from energy-density functional theories of nuclei at many different densities, while making sure to separate isovector contributions from bulk properties. Lastly, we use our results to extract the static density-density linear response function of neutron matter at different densities. Our findings provide insights into inhomogeneous neutron matter and are related to the physics of neutron-...
Hydrogen bond dynamics in liquid water: Ab initio molecular dynamics simulation
Energy Technology Data Exchange (ETDEWEB)
Kim, Cheolhee; Kim, Eunae [College of Pharmacy, Chosun University, Gwangju (Korea, Republic of); Yeom, Min Sun [Korea Institute of Science and Technology Information, Daejeon (Korea, Republic of)
2016-01-15
The effect of intermolecular interaction on the distribution of the harmonic vibrational frequencies of water molecules was investigated through ab initio molecular dynamics simulations based on the Born-Oppenheimer approach. For single water, the effect of the dynamics of the oxygen atom in single water and the simulation time step on the frequency distribution were examined. The distributions of the OH stretching and HOH bending vibrational frequencies of liquid water were compared to those of single water. The probability distributions of the change in OH bond length and the lifetime of the dangling OH bond were also obtained. The distribution of the frequencies was strongly affected by the long lifetime of the dangling OH bond, resulting in the formation of hydrogen bonds between water molecules.
Stress reduction of Cu-doped diamond-like carbon films from ab initio calculations
Directory of Open Access Journals (Sweden)
Xiaowei Li
2015-01-01
Full Text Available Structure and properties of Cu-doped diamond-like carbon films (DLC were investigated using ab initio calculations. The effect of Cu concentrations (1.56∼7.81 at.% on atomic bond structure was mainly analyzed to clarify the residual stress reduction mechanism. Results showed that with introducing Cu into DLC films, the residual compressive stress decreased firstly and then increased for each case with the obvious deterioration of mechanical properties, which was in agreement with the experimental results. Structural analysis revealed that the weak Cu-C bond and the relaxation of both the distorted bond angles and bond lengths accounted for the significant reduction of residual compressive stress, while at the higher Cu concentration the increase of residual stress attributed to the existence of distorted Cu-C structures and the increased fraction of distorted C-C bond lengths.
Relaxation of the excited -(2-hydroxy benzylidene) aniline molecule: An ab initio and TD DFT study
Indian Academy of Sciences (India)
Biswajit Chowdhury; Rina De; Pinaky Sett; Joydeep Chowdhury
2010-11-01
The photophysical behaviour of N-(2-hydroxy benzylidene) aniline or most commonly known as salicylideneaniline (SA) has been investigated using the ab initio and DFT levels of theory. The quantum chemical calculations show that the optimized non planar enol (1) form of the SA molecule is the most stable conformer in the ground state and is marked by the twisting of the phenolic and anilino rings of the molecule. The geometry optimizations and the subsequent frequency calculations of the excited singlet electronic states of the various tautomeric forms of SA molecule were performed with the CIS level of theory. A detail theoretical investigation on the relaxation dynamics of the SA molecule has been presented. Possible explanation on the excitation wavelength dependence of the photochromic yield of the molecule is also reported.
Ab-initio calculations on two-electron ions in strongly coupled plasma environment
Bhattacharyya, S; Mukherjee, T K
2015-01-01
In this work, the controversy between the interpretations of recent measurements on dense aluminum plasma created with Linac coherent light sources (LCLS) X-ray free electron laser (FEL) and Orion laser has been addressed. In both kind of experiments, helium-like and hydrogen-like spectral lines are used for plasma diagnostics . However, there exist no precise theoretical calculations for He-like ions within dense plasma environment. The strong need for an accurate theoretical estimates for spectral properties of He-like ions in strongly coupled plasma environment leads us to perform ab initio calculations in the framework of Rayleigh-Ritz variation principle in Hylleraas coordinates where ion-sphere potential is used. An approach to resolve the long-drawn problem of numerical instability for evaluating two-electron integrals with extended basis inside a finite domain is presented here. The present values of electron densities corresponding to disappearance of different spectral lines obtained within the fram...
Structure and lattice dynamics of rare-earth ferroborate crystals: Ab initio calculation
Chernyshev, V. A.; Nikiforov, A. E.; Petrov, V. P.; Serdtsev, A. V.; Kashchenko, M. A.; Klimin, S. A.
2016-08-01
The ab initio calculation of the crystal structure and the phonon spectrum of crystals RFe3(BO3)4 ( R = Pr, Nd, Sm) has been performed in the framework of the density functional theory. The ion coordinates in the unit cell, the lattice parameters, the frequencies and the types of fundamental vibrations, and also the intensities of lines in the Raman spectrum and infrared reflection spectra have been found. The elastic constants of the crystals have been calculated. For low-frequency A 2 mode in PrFe3(BO3)4, a "seed" vibration frequency that strongly interacts with the electronic excitation on a praseodymium ion was found. The calculation results satisfactory agree with the experimental data.
Ab initio phonon coupling and optical response of hot electrons in plasmonic metals
Brown, Ana M; Narang, Prineha; Goddard, William A; Atwater, Harry A
2016-01-01
Ultrafast laser measurements probe the non-equilibrium dynamics of excited electrons in metals with increasing temporal resolution. Electronic structure calculations can provide a detailed microscopic understanding of hot electron dynamics, but a parameter-free description of pump-probe measurements has not yet been possible, despite intensive research, because of the phenomenological treatment of electron-phonon interactions. We present ab initio predictions of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We find substantial differences from free-electron and semi-empirical estimates, especially in noble metals above transient electron temperatures of 2000 K, because of the previously-neglected strong dependence of electron-phonon matrix elements on electron energy. We also present first-principles calculations of the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phon...
Palummo, Maurizia; Hogan, Conor; Sottile, Francesco; Bagalá, Paolo; Rubio, Angel
2009-08-28
We present a theoretical investigation of electronic and optical properties of free-base porphyrins based on density functional theory and many-body perturbation theory. The electronic levels of free-base porphine (H(2)P) and its phenyl derivative, free-base tetraphenylporphyrin (H(2)TPP) are calculated using the ab initio GW approximation for the self-energy. The approach is found to yield results that compare favorably with the available photoemission spectra. The excitonic nature of the optical peaks is revealed by solving the Bethe-Salpeter equation, which provides an accurate description of the experimental absorption spectra. The lowest triplet transition energies are in good agreement with the measured values. PMID:19725603
International Nuclear Information System (INIS)
The atomistic mechanism of dissociative adsorption of ethylene molecules on a Ni cluster is investigated by ab initio molecular-dynamics simulations. The activation free energy to dehydrogenate an ethylene molecule on the Ni cluster and the corresponding reaction rate is estimated. A remarkable finding is that the adsorption energy of ethylene molecules on the Ni cluster is considerably larger than the activation free energy, which explains why the actual reaction rate is faster than the value estimated based on only the activation free energy. It is also found from the dynamic simulations that hydrogen molecules and an ethane molecule are formed from the dissociated hydrogen atoms, whereas some exist as single atoms on the surface or in the interior of the Ni cluster. On the other hand, the dissociation of the C-C bonds of ethylene molecules is not observed. On the basis of these simulation results, the nature of the initial stage of carbon nanotube growth is discussed. (paper)
Isomerism of OBe3F3+ cation: an ab initio study
International Nuclear Information System (INIS)
Ab initio MP2/6-31G*/HF/6-31G*+ZPE(HF/6-31G*) calculations of the potential energy surface in the vicinity of stationary points and the pathways of intramolecular rearrangements between low-lying structures of the OBe3F3+ cation detected in the mass spectra of μ4-Be4O(CF3COO)6 were carried out. Ten stable isomers with di- and tricoordinate oxygen atoms were localized. The relative energies of six structures lie in the range 0-8 kcal mol-1 and those of the rest four structures lie in the range 20-40 kcal mol-1. two most favorable isomers are a planar C2, isomer and a pyramidal C3 isomer
Ab initio electron scattering cross-sections and transport in liquid xenon
Boyle, G. J.; McEachran, R. P.; Cocks, D. G.; Brunger, M. J.; Buckman, S. J.; Dujko, S.; White, R. D.
2016-09-01
Ab initio fully differential cross-sections for electron scattering in liquid xenon are developed from a solution of the Dirac-Fock scattering equations, using a recently developed framework (Boyle et al 2015 J. Chem. Phys. 142 154507) which considers multipole polarizabilities, a non-local treatment of exchange, and screening and coherent scattering effects. A multi-term solution of Boltzmann’s equation accounting for the full anisotropic nature of the differential cross-section is used to calculate transport properties of excess electrons in liquid xenon. The results were found to agree to within 25% of the measured mobilities and characteristic energies over the reduced field range of 10-4-1 Td. The accuracies are comparable to those achieved in the gas phase. A simple model, informed by highly accurate gas-phase cross-sections, is presented to improve the liquid cross-sections, which was found to enhance the accuracy of the transport coefficient calculations.
Ab initio structure determination of new compound Ba 3(BO 3)(PO 4)
Ma, H. W.; Liang, J. K.; Wu, L.; Liu, G. Y.; Rao, G. H.; Chen, X. L.
2004-10-01
The crystal structure of new compound Ba3BPO7 was determined by ab initio method from high-resolution conventional X-ray powder diffraction data. The Rietveld refinement converged to Rp=5.92%, Rwp=8.87%, Rexp=5.00% with the following details: Hexagonal, space group P63mc, a=5.4898 (1) Å, c=14.7551(1) Å, Z=2. The basic unit of the structure is the [BaO10]-[BO3]-[PO4] polar polyhedra-chain composed of Ba1-B-P-O cluster. These chains, running along c-axis, stack in a HCP mode to build the whole structure with triangular prism channels. The channels are parallel to c-axis too, in which Ba2 and Ba3 are located.
Directory of Open Access Journals (Sweden)
Karl-Heinz Böhm
2014-04-01
Full Text Available We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2Hethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.
Ab initio study of beryllium-decorated fullerenes for hydrogen storage
Lee, Hoonkyung; Huang, Bing; Duan, Wenhui; Ihm, Jisoon
2010-04-01
We have found that a beryllium (Be) atom on nanostructured materials with H2 molecules generates a Kubas-like dihydrogen complex [Lee, Huang, Duan, and Ihm, Appl. Phys. Lett. 96, 143120 (2010)]. Here, we investigate the feasibility of Be-decorated fullerenes for hydrogen storage using ab initio calculations. We find that the aggregation of Be atoms on pristine fullerenes is energetically preferred, resulting in the dissociation of the dihydrogen. In contrast, for boron (B)-doped fullerenes, Be atoms prefer to be individually attached to B sites of the fullerenes, and a maximum of one H2 molecule binds to each Be atom in a form of dihydrogen with a binding energy of ˜0.3 eV. Our results show that individual dispersed Be-decorated B-doped fullerenes can serve as a room-temperature hydrogen storage medium.
A-dependence of the Spectra of the F Isotopes from ab initio Calculations
Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Vary, James P.; Shirokov, Andrey M.
2016-03-01
Using a succession of Okubo-Lee-Suzuki transformations within the No Core Shell Model (NCSM) formalism, we derive an ab initio, non-perturbative procedure for calculating the input for standard shell-model (SSM) calculations within one major shell. We have used this approach for calculating the spectra of the F isotopes from A=18 to A=25, so as to study the A-dependence of the results. In particular, we are interested in seeing if the theoretical input is weak enough, so that a single set of two-body effective interactions can be used for all of the F isotopes investigated. We will present results from SSM calculations based on input obtained with the JISP16 nucleon-nucleon interaction in an initial 4 ℏΩ NCSM basis space. This work supported in part by TUBITAK-BIDEB, the US DOE, the US NSF, NERSC, and the Russian Ministry of Education and Science.
Chaban, Vitaly V; Prezhdo, Oleg V
2016-07-01
The Haber-Bosch process is the main industrial method for producing ammonia from diatomic nitrogen and hydrogen. We use a combination of ab initio thermochemical analysis and reactive molecular dynamics to demonstrate that a significant increase in the ammonia production yield can be achieved using hydroxylated graphene and related species. Exploiting the polarity difference between N2/H2 and NH3, as well as the universal proton acceptor behavior of NH3, we demonstrate a strong shift of the equilibrium of the Haber-Bosch process toward ammonia (ca. 50 kJ mol(-1) enthalpy gain and ca. 60-70 kJ mol(-1) free energy gain). The modified process is of significant importance to the chemical industry.
Ab initio/DFT calculations of butyl ammonium salt of O,O‧-dibornyl dithiophosphate
Kart, H. H.; Özdemir Kart, S.; Karakuş, M.; Kurt, M.
2014-08-01
O,O‧-dibornyl dithiophosphete has been synthesized by the reaction of P2S5 and borneol in toluene. Fourier Transform Infrared spectra (FT-IR) of the title compound are measured. The molecular geometry, vibrational frequencies, infrared intensities and NMR spectrum of the title compound in the ground state have been calculated by using the density functional theory (DFT) and ab initio Hartree-Fock (HF) methods with the basis set of 6-31G(d). The computed bond lengths and bond angles show the good agreement with the experimental data. Moreover, the vibrational frequencies are calculated and the scaled values have been compared with experimental FT-IR spectra. Assignments of the vibrational modes are made on the basis of total energy distribution (TED) calculated with scaled quantum mechanical (SQM) method. The observed and calculated FT-IR and NMR spectra are in good agreement with each other.
Ab initio/DFT calculations of butyl ammonium salt of O,O'-dibornyl dithiophosphate.
Kart, H H; Ozdemir Kart, S; Karakuş, M; Kurt, M
2014-08-14
O,O'-dibornyl dithiophosphete has been synthesized by the reaction of P2S5 and borneol in toluene. Fourier Transform Infrared spectra (FT-IR) of the title compound are measured. The molecular geometry, vibrational frequencies, infrared intensities and NMR spectrum of the title compound in the ground state have been calculated by using the density functional theory (DFT) and ab initio Hartree-Fock (HF) methods with the basis set of 6-31G(d). The computed bond lengths and bond angles show the good agreement with the experimental data. Moreover, the vibrational frequencies are calculated and the scaled values have been compared with experimental FT-IR spectra. Assignments of the vibrational modes are made on the basis of total energy distribution (TED) calculated with scaled quantum mechanical (SQM) method. The observed and calculated FT-IR and NMR spectra are in good agreement with each other. PMID:24747929
Hydrogen-Water Mixtures in Giant Planet Interiors Studied with Ab Initio Simulations
Soubiran, Francois
2015-01-01
We study water-hydrogen mixtures under planetary interior conditions using ab initio molecular dynamics simulations. We determine the thermodynamic properties of various water-hydrogen mixing ratios at temperatures of 2000 and 6000 K for pressures of a few tens of GPa. These conditions are relevant for ice giant planets and for the outer envelope of the gas giants. We find that at 2000 K the mixture is in a molecular regime, while at 6000 K the dissociation of hydrogen and water is important and affects the thermodynamic properties. We study the structure of the liquid and analyze the radial distribution function. We provide estimates for the transport properties, diffusion and viscosity, based on autocorrelation functions. We obtained viscosity estimates of the order of a few tenths of mPa.s for the conditions under consideration. These results are relevant for dynamo simulations of ice giant planets.
Ab initio determination of effective electron-phonon coupling factor in copper
Ji, Pengfei
2016-01-01
The electron temperature T_e dependent electron density of states g({\\epsilon}), Fermi-Dirac distribution f({\\epsilon}), and electron-phonon spectral function {\\alpha}^2 F({\\Omega}) are computed as prerequisites before achieving effective electron-phonon coupling factor. The obtained is implemented into a molecular dynamics (MD) and two-temperature model (TTM) coupled simulation of femtosecond laser heating. By monitoring temperature evolutions of electron and lattice subsystems, the result utilizing G_(e-ph) from ab initio calculation, shows a faster decrease of T_e and increase of T_l than those using G_(e-ph) from phenomenological treatment. The approach of calculating G_(e-ph) and its implementation into MD-TTM simulation is applicable to other metals.
Ab initio molecular dynamics study of hydrogen removal by ion-surface interactions
Energy Technology Data Exchange (ETDEWEB)
Rosen, Johanna [Materials Chemistry, RWTH-Aachen, D-52056 Aachen (Germany); Larsson, Karin [Department of Materials Chemistry, Angstroem Laboratory, Uppsala University, Box 538, 751 21 Uppsala (Sweden); Schneider, Jochen M [Materials Chemistry, RWTH-Aachen, D-52056 Aachen (Germany)
2005-04-20
The energy dependence of surface reactions has been investigated through ab initio MD simulations for collisions between Al{sup 1+} and a gibbsite surface. No change in surface composition was observed for 0 eV initial kinetic energy of Al{sup 1+}. An increase in energy to 3.5 eV resulted in extended surface migration of hydrogen, subsequent H{sub 2} formation and desorption from the surface. These results may be understood based on thermodynamics and an increase in entropy upon H{sub 2} formation. They are of fundamental importance for an increased understanding of thin film growth through the correlation between ion energy and film composition. They may also indicate a pathway to affect impurity incorporation during film growth. (letter to the editor)
Modern Ab Initio Approaches and Applications in Few-Nucleon Physics with A \\ge 4
Leidemann, Winfried
2012-01-01
We present an overview of the evolution of ab initio methods for few-nucleon systems with A \\ge 4, tracing the progress made that today allows precision calculations for these systems. First a succinct description of the diverse approaches is given. In order to identify analogies and differences the methods are grouped according to different formulations of the quantum mechanical many-body problem. Various significant applications from the past and present are described. We discuss the results with emphasis on the developments following the original implementations of the approaches. In particular we highlight benchmark results which represent important milestones towards setting an ever growing standard for theoretical calculations. This is relevant for meaningful comparisons with experimental data. Such comparisons may reveal whether a specific force model is appropriate for the description of nuclear dynamics.
Ab Initio Calculation of Structure and Thermodynamic Properties of Zintl Aluminide SrAl2
Fu, Zhi-Jian; Jia, Li-Jun; Xia, Ji-Hong; Tang, Ke; Li, Zhao-Hong; Sun, Xiao-Wei; Chen, Qi-Feng
2015-12-01
The structural and thermodynamic properties of the orthorhombic and cubic structure SrAl2 at pressure and temperature are investigated by using the ab initio plane-wave pseudopotential density functional theory methodwithin the generalised gradient approximation (GGA). The calculated lattice parameters are in agreement with the available experimental data and other theoretical results. The phase transition predicted takes place at 0.5 GPa from the orthorhombic to the cubic structure at zero temperature. The thermodynamic properties of the zinc-blende structure SrAl2 are calculated by the quasi-harmonic Debye model. The pressure-volume relationship and the variations inthe thermal expansion α are obtained systematically in the pressure and temperature ranges of 0-5 GPa and 0-500 K, respectively.
Structural phase transition of CdTe: an ab initio study.
Alptekin, Sebahaddin
2013-01-01
A constant pressure ab initio MD technique and density functional theory with a generalized gradient approximation (GGA) was used to study the pressure-induced phase transition in zinc-blende CdTe. We found that CdTe undergoes a structural first-order phase transition to [Formula: see text] (binary β-tin) tetragonal structure in the constant pressure molecular dynamics simulation at 20 GPa. When the pressure was increased to 50 GPa, the phase of tetragonal structure converted to a new Imm2 orthorhombic structure. These phase transformations were also calculated by using the enthalpy calculations. Transition phases, lattice parameters and bulk properties we attained are comparable with experimental and theoretical data.
Pressure-induced phase transition in wurtzite ZnTe: an ab initio study.
Alptekin, Sebahaddin
2012-03-01
A constant pressure ab initio MD technique and density functional theory with a generalized gradient approximation (GGA) was used to study the pressure-induced phase transition in wurtzite ZnTe. A first-order phase transition from the wurtzite structure to a Cmcm structure was successfully observed in a constant-pressure molecular dynamics simulation. This phase transformation was also analyzed using enthalpy calculations. We also investigated the stability of wurtzite (WZ) and zinc-blende (ZB) phases from energy-volume calculations, and found that both structures show quite similar equations of state and transform into a Cmcm structure at 16 GPa using enthalpy calculations, in agreement with experimental observations. The transition phase, lattice parameters and bulk properties we obtained are comparable with experimental and theoretical data.
Ab initio study of pressure induced structural and electronic properties in TmPo
Energy Technology Data Exchange (ETDEWEB)
Makode, Chandrabhan, E-mail: cbmakode@gmail.com; Pataiya, Jagdish; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal-462026 (India); Panwar, Y. S.; Aynyas, Mahendra [Department of Physics, C.S.A. Govt. P.G. College, Sehore-466001 (India)
2015-06-24
We report an ab initio calculation of pressure induced structural phase transition and electronic properties of Thulium Polonide (TmPo).The total energy as a function of volume is obtained by means of self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). It is found that TmPo is stable in NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-phase) structure of this compound in the pressure range of 7.0 GPa. We also calculate the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure and density of states. From energy diagram it is observed that TmPo exhibit metallic behavior. The calculated values of equilibrium lattice parameter and bulk modulus are in general good agreement.
Ab Initio Investigation of the Structures of Fe-Doped Carbon Clusters
Lovato, Christella; Brownrigg, Clifton; Hira, Ajit
2012-02-01
We continue our interest in the theoretical study of carbon clusters to examine the effects of the doping of small carbon clusters (Cn, n = 2 - 15) with iron atoms. This work applies the hybrid ab initio methods of quantum chemistry to derive the different FemCn (m = 1-3) geometries. Of particular interest are linear, fan, and cyclic geometries. Electronic energies, rotational constants, dipole moments, and vibrational frequencies for these geometries are calculated. Exploration of the singlet, triplet, quintet, and septet potential energy surfaces is performed. The type of bonding in terms of competition between sp^2 and sp^3 hybridization is examined, with a view to addressing the possibility of the stabilization of the doped carbon nano-particles in a diamond type structure. The potential for the existence of new pathways to the fabrication of nanotubes is explored.
Knyazev, D V
2013-01-01
This work is devoted to the \\textit{ab initio} calculation of transport and optical properties of aluminum. The calculation is based on the quantum molecular dynamics simulation, density functional theory and the Kubo-Greenwood formula. Mainly the calculations are performed for liquid aluminum at near-normal densities for the temperatures from melting up to 20000 K. The results on dynamic electrical conductivity, static electrical conductivity and thermal conductivity are obtained and compared with available reference and experimental data and the calculations of other authors. The influence of the technical parameters on the results is investigated in detail. The error of static electrical conductivity calculation is estimated to be about 20%; more accurate results require bigger number of atoms.
Wood, Brandon; Choi, Woon Ih; Schwegler, Eric; Ogitsu, Tadashi
2013-03-01
Photoelectrodes made of III-V semiconductors are known to exhibit very high solar-to-hydrogen conversion efficiency (from solar energy to chemical energy as H2 bond); however, photocorrosion of the electrode in electrolyte solution remains an issue. Based on ab-initio molecular dynamics simulations, we study the structure, stability, and chemical activity of GaP/InP(001) semiconductor electrodes in contact with water. We will show how surface oxygen and hydroxyl change the electronic and chemical properties of water at the interface, leading to the formation of a strong hydrogen-bond network where fast surface hydrogen transport seems to be realized. Implications from our findings will be discussed in detail at the presentation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344.
Trends in magnetism of free Rh clusters via relativistic ab-initio calculations.
Šipr, O; Ebert, H; Minár, J
2015-02-11
A fully relativistic ab-initio study on free Rh clusters of 13-135 atoms is performed to identify general trends concerning their magnetism and to check whether concepts which proved to be useful in interpreting magnetism of 3d metals are applicable to magnetism of 4d systems. We found that there is no systematic relation between local magnetic moments and coordination numbers. On the other hand, the Stoner model appears well-suited both as a criterion for the onset of magnetism and as a guide for the dependence of local magnetic moments on the site-resolved density of states at the Fermi level. Large orbital magnetic moments antiparallel to spin magnetic moments were found for some sites. The intra-atomic magnetic dipole Tz term can be quite large at certain sites but as a whole it is unlikely to affect the interpretation of x-ray magnetic circular dichroism experiments based on the sum rules.
Minimal parameter implicit solvent model for ab initio electronic structure calculations
Dziedzic, Jacek; Skylaris, Chris-Kriton; Mostofi, Arash A; Payne, Mike C
2011-01-01
We present an implicit solvent model for ab initio electronic structure calculations which is fully self-consistent and is based on direct solution of the nonhomogeneous Poisson equation. The solute cavity is naturally defined in terms of an isosurface of the electronic density according to the formula of Fattebert and Gygi (J. Comp. Chem. 23, 6 (2002)). While this model depends on only two parameters, we demonstrate that by using appropriate boundary conditions and dispersion-repulsion contributions, solvation energies obtained for an extensive test set including neutral and charged molecules show dramatic improvement compared to existing models. Our approach is implemented in, but not restricted to, a linear-scaling density functional theory (DFT) framework, opening the path for self-consistent implicit solvent DFT calculations on systems of unprecedented size, which we demonstrate with calculations on a 2615-atom protein-ligand complex.
Impact of oxygen on the 300-K isotherm of Laser Megajoule ablator using ab initio simulation
Colin-Lalu, P.; Recoules, V.; Salin, G.; Huser, G.
2015-11-01
The ablator material for inertial confinement fusion (ICF) capsules on the Laser Mégajoule is a glow-discharge polymer (GDP) plastic. Its equation of state (EOS) is of primary importance for the design of such capsules, since it has direct consequences on shock timing and is essential to mitigate hydrodynamic instabilities. Using ab initio molecular dynamics (AIMD), we have investigated the 300-K isotherm of amorphous CH1.37O0.08 plastic, whose structure is close to GDP plastic. The 300-K isotherm, which is often used as a cold curve within tabular EOS, is an important contribution of the EOS in the multimegabar pressure range. AIMD results are compared to analytic models within tabular EOS, pointing out large discrepancies. In addition, we show that the effect of oxygen decreases 300-K isotherm pressure by 10%-15%. The implication of these observations is the ability to improve ICF target performance, which is essential to achieve fusion ignition.
Yu, Kuang; Carter, Emily A.
2014-03-01
The density functional theory (DFT)+U method is an efficient and effective way to calculate the ground-state properties of strongly correlated transition metal compounds, with the effective U parameters typically determined empirically. Two ab initio methods have been developed to compute the U parameter based on either constrained DFT (CDFT) or unrestricted Hartree-Fock (UHF) theory. Previous studies have demonstrated the success of both methods in typical open-shell materials such as FeO and NiO. In this Communication we report numerical instability issues that arise for the CDFT method when applied to closed-shell transition metals, by using ZnO and Cu2O as examples. By contrast, the UHF method behaves much more robustly for both closed- and open-shell materials, making it more suitable for treating closed-shell transition metals, as well as main group elements.
AB INITIO Modeling of Thermomechanical Properties of Mo-Based Alloys for Fossil Energy Conversion
Energy Technology Data Exchange (ETDEWEB)
Ching, Wai-Yim
2013-12-31
In this final scientific/technical report covering the period of 3.5 years started on July 1, 2011, we report the accomplishments on the study of thermo-mechanical properties of Mo-based intermetallic compounds under NETL support. These include computational method development, physical properties investigation of Mo-based compounds and alloys. The main focus is on the mechanical and thermo mechanical properties at high temperature since these are the most crucial properties for their potential applications. In particular, recent development of applying ab initio molecular dynamic (AIMD) simulations to the T1 (Mo{sub 5}Si{sub 3}) and T2 (Mo{sub 5}SiB{sub 2}) phases are highlighted for alloy design in further improving their properties.
An ab initio variationally computed room-temperature line list for SO3
Underwood, Daniel S; Yurchenko, Sergei N
2013-01-01
{\\it Ab initio} potential energy and dipole moment surfaces are computed for sulfur trioxide (SO$_3$) at the CCSD(T)-F12b level of theory and appropriate triple-zeta basis sets. These surfaces are fitted and used, with a slight correction for the equilibrium S--O distance, to compute pure rotational and rotation-vibraton spectra of \\sothree\\ using the variational nuclear motion program TROVE. The calculations considered transitions in the region 0--4000 \\cm\\ with rotational states up to J=85. The resulting line list of 349~348~513 transitions is appropriate for modelling room temperature SO3 spectra. Good agreement is found with the observed infrared absorption spectra and the calculations are used to place the measured relative intensities on an absolute scale. A list of 10~878 experimental transitions is provided in a form suitable for inclusion in standard atmospheric and planetary spectroscopic databases.
An ab initio variationally computed room-temperature line list for (32)S(16)O3.
Underwood, Daniel S; Tennyson, Jonathan; Yurchenko, Sergei N
2013-07-01
Ab initio potential energy and dipole moment surfaces are computed for sulfur trioxide (SO3) at the CCSD(T)-F12b level of theory with appropriate triple-zeta basis sets. The analytical representations of these surfaces are used, with a slight correction, to compute pure rotational and rotation-vibration spectra of (32)S(16)O3 using the variational nuclear motion program TROVE. The calculations considered transitions in the region 0-4000 cm(-1) with rotational states up to J = 85. The resulting line list of 174,674,257 transitions is appropriate for modelling room temperature (32)S(16)O3 spectra. Good agreement is found with the observed infrared absorption spectra and the calculations are used to place the measured relative intensities on an absolute scale. A list of 10,878 experimental transitions is provided in a form suitable for inclusion in standard atmospheric and planetary spectroscopic databases. PMID:23579443
Raman Spectroscopy and Ab-Initio Model Calculations on Ionic Liquids
DEFF Research Database (Denmark)
Berg, Rolf W.
2007-01-01
A review of the recent developments in the study and understanding of room temperature ionic liquids are given. An intimate picture of how and why these liquids are not crystals at ambient conditions is attempted, based on evidence from crystallographical results combined with vibrational...... spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT-Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methylimidazolium ([C4mim][X]) salts. The rotational isomerism of the [C4mim]þ cation is described: the presence of anti...... and gauche conformers that has been elucidated in remarkable papers by Hamaguchi et al. Such presence of a conformational equilibrium seems to be a general feature of the room temperature liquids. Then the ‘‘localized structure features’’ that apparently exist in ionic liquids are described. It is hoped...
Ab initio study of heterojunction discontinuities in the ZnO/Cu2O system
Zemzemi, M.; Alaya, S.; Ben Ayadi, Z.
2014-06-01
Solar cells based on transparent conductive oxides such as ZnO/Cu2O constitute a very advanced way to build high-performance cells. In this work, we are interested in the characterization of the interface through nanoscale modeling based on ab initio approaches (density functional theory, local density approximation, and pseudopotential). This work aims to build a supercell containing a heterojunction ZnO/Cu2O and study the structural properties and the discontinuity of the valence band (band offset) from a semiconducting to another phase. We build a zinc oxide in the wurtzite structure along [0001] on which we place the copper oxide in the hexagonal (CdI2-type) structure. We choose the method of Van de Walle and Martin to calculate the energy offset. This approach fits well the density functional theory. Our calculation of the band offset gives a value that corresponds to other experimental and theoretical values.
An ab initio study of three (ethane-1,2 diol/water) complexes
Manivet, Philippe; Masella, Michel
1998-05-01
Three (ethane-1,2 diol/water) complexes have been studied using ab initio calculations at the MP2 level. In two complexes, the ethane-1,2 diol structure is close to its gas phase experimental structure (presence of an intramolecular hydrogen bond HB and the O-C-C-O dihedral angle is gauche) while the intramolecular HB is disrupted by the presence of a water molecule in the third ( tGg'a). Computations have shown that most of the experimental observations regarding the solvation of ethane-1,2 diol in water may be reproduced only by considering the tGg'a complex (absence of intramolecular HB, O-C-C-O dihedral angle of 72-74°), which is also more stable than the other two by 2 kcal mol -1.
Ab initio spectroscopic characterization of borane, BH, in its X1Σ+ electronic state.
Koput, Jacek
2015-11-15
The accurate potential energy and electric dipole moment functions of borane, BH, in its X1Σ+ electronic state have been determined from ab initio calculations using the multireference averaged coupled-pair functional method in conjunction with the correlation-consistent core-valence basis sets up to septuple-zeta quality. The higher-order electron correlation, scalar relativistic, adiabatic, and nonadiabatic effects were discussed. Vibration-rotation energy levels of the (11)BH, (11)BD, (10)BH, and (10)BD isotopologues were predicted to near "spectroscopic" accuracy. For the main isotopologue (11)BH, the adiabatic dissociation energy D0 and the effective equilibrium internuclear distance r(e) were predicted to be 28,469 ± 10 cm(-1) and 1.23214 ± 0.0001 Å, respectively. PMID:26444679
1\\/2,1\\/2 Representation space An ab initio construct
Ahluwalia, D V
2001-01-01
A careful ab initio construction of the finite-mass (1/2,1/2) representation space of the Lorentz group reveals it to be a spin-parity multiplet. In general, it does not lend itself to a single-spin interpretation. We find that (1/2,1/2) representation space for massive particles naturally bifurcates into a triplet and a singlet of opposite relative intrinsic parties. The text-book separation into spin one and spin zero states occurs only for certain limited kinematical settings. We construct a wave equation for the (1/2,1/2) multiplet, and show that the particles and antiparticles in this representation space do not carry a definite spin but only a definite relative intrinsic parity. In general, both spin one and spin zero are covariantly inseparable inhabitants of massive vector fields. This last observation suggests that scalar particles, such as the Higgs, may be intrinsic part of massive vector gauge fields.
International Nuclear Information System (INIS)
C and N atoms are the most frequent foreign interstitial atoms (FIAs), and often incorporated into the surface layers of steels to enhance their properties by thermochemical treatments. Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Nb and Mo are the most common alloying elements in steels, also can be called foreign substitutional atoms (FSAs). The FIA and FSA interactions play an important role in the diffusion of C and N atoms, and the microstructures and mechanical properties of surface modified layers. Ab initio calculations based on the density functional theory are carried out to investigate FIA interactions with FSA in ferromagnetic bcc iron. The FIA–FSA interactions are analyzed systematically from five aspects, including interaction energies, density of states (DOS), bond populations, electron density difference maps and local magnetic moments
High-pressure physical properties of magnesium silicate post-perovskite from ab initio calculations
Indian Academy of Sciences (India)
Zi-Jiang Liu; Xiao-Wei Sun; Cai-Rong Zhang; Jian-Bu Hu; Ling-Cang Cai; Qi-Feng Chen
2012-08-01
The structure, thermodynamic and elastic properties of magnesium silicate (MgSiO3) post-perovskite at high pressure are investigated with quasi-harmonic Debye model and ab initio method based on the density functional theory (DFT). The calculated structural parameters of MgSiO3 post-perovskite are consistent with the available experimental results and the recent theoretical results. The Debye temperature, heat capacity and thermal expansion coefficient at high pressures and temperatures are predicted using the quasi-harmonic Debye model. The elastic constants are calculated using stress–strain relations. A complete elastic tensor of MgSiO3 post-perovskite is determined in the wide pressure range. The calculated elastic anisotropic factors and directional bulk modulus show that MgSiO3 post-perovskite possesses high elastic anisotropy.
Binding of TNT to amplifying fluorescent polymers: an ab initio and molecular dynamics study.
Enlow, Mark A
2012-03-01
Molecular modeling techniques were employed to study the interaction of trinitrotoluene with an amplifying fluorescent polymer used in explosive sensor devices. The pentiptycene moiety present in these polymers appears to be the most energetically favorable binding site for trinitrotoluene. Surface features of the polymer suggest that the small cavity feature of the pentiptycene moiety may be more available for binding to analyte compounds due to steric crowding about the large cavity. Binding energies between model binding sites of the polymer and various analyte compounds were more rigorously estimated by semiempirical and ab initio techniques. Binding energies were found to be largest with trinitrotoluene and other nitroaromatic compounds. Electrostatic and π-stacking interactions between trinitrotoluene and the model host were investigated by studying a series of modified host compounds.
Institute of Scientific and Technical Information of China (English)
ZHANG Zhi-jie; LIU Yu-hua; L(U) Zhong-yuan; LI Ze-sheng
2009-01-01
The rotational isomeric state(RIS) model was constructed for poly(vinylidene chloride)(PVDC) based on quantum chemistry calculations. The statistical weighted parameters were obtained from RIS representations and ab initio energies of conformers for model molecules 2,2,4,4-tetrachloropentane(TCP) and 2,2,4,4,6, 6-hexachlorohep-tane(HCH). By employing the RIS method, the characteristic ratio C∞ was calculated for PVDC. The calculated cha-racteristic ratio for PVDC is in good agreement with experiment result. Additionally, we studied the influence of the statistical weighted parameters on C∞ by calculating δC∞/δlnw. According to the values of δC∞/δlnw, the effects of second-order Cl-CH2 pentane type interaction and Cl-Cl long range interaction on C∞ were found to be important. In contrast, first-order interaction is unimportant.
Ab initio simulations for the ion-ion structure factor of warm dense aluminum.
Rüter, Hannes R; Redmer, Ronald
2014-04-11
We perform ab initio simulations based on finite-temperature density functional theory in order to determine the static and dynamic ion-ion structure factor in aluminum. We calculate the dynamic structure factor via the intermediate scattering function and extract the dispersion relation for the collective excitations. The results are compared with available experimental x-ray scattering data. Very good agreement is obtained for the liquid metal domain. In addition we perform simulations for warm dense aluminum in order to obtain the ion dynamics in this strongly correlated quantum regime. We determine the sound velocity for both liquid and warm dense aluminum which can be checked experimentally using narrow-bandwidth free electron laser radiation. PMID:24765982
Ab-initio study of magnetism behavior in TiO2 semiconductor with structural defects
Zarhri, Z.; Houmad, M.; Ziat, Y.; El Rhazouani, O.; Slassi, A.; Benyoussef, A.; El Kenz, A.
2016-05-01
Magnetic, electronic and structural properties of titanium dioxide material with different structural defects are studied using the first-principles ab-initio calculations and the Korringa-Kohn-Rostoker method (KKR) combined with the coherent potential approximation (CPA) method in connection with the local density approximation (LDA). We investigated all structural defects in rutile TiO2 such as Titanium interstitial (Tii), Titanium anti-sites (Tio), Titanium vacancies (VTi), Oxygen interstitial (Oi), Oxygen anti-sites (OTi) and oxygen vacancies (Vo). Mechanisms of hybridization and interaction between magnetic atoms are investigated. The transition temperature is computed using the Mean Field Approximation (MFA).Magnetic stability energy of ferromagnetic and disordered local moment states is calculated to determine the most stable state. Titanium anti-sites have a half-metallic aspect. We also studied the change type caused by structural defects in this material.
Steady-state ab initio theory of lasers with injected signals
Cerjan, Alexander; Stone, A. Douglas
2014-07-01
We present an ab initio treatment of the steady-state of lasers with injected signals that describes a regime, valid for microlasers, in which the locking transition is dominated by cross saturation and spatial hole burning. The theory goes beyond standard approaches and treats multimode lasing with injected signals and finds the possibility of partially locked states and as well as repulsion of the free-running frequencies from the injected signal. The theory agrees well with exact integration of the full wave and matter equations for the system. It can also describe accurately complex modern lasers structures and is applied to the example of deformed disk lasers. We show that in the case of a one-dimensional cavity in the locked or regenerative amplifier regime the theory reduces to an improved version of the Adler equations in the appropriate limit.
Ab initio study on the dynamics of furfural at the liquid-solid interfaces
Dang, Hongli; Xue, Wenhua; Shields, Darwin; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu
2013-03-01
Catalytic biomass conversion sometimes occurs at the liquid-solid interfaces. We report ab initio molecular dynamics simulations at finite temperatures for the catalytic reactions involving furfural at the water-Pd and water-Cu interfaces. We found that, during the dynamic process, the furan ring of furfural prefers to be parallel to the Pd surface and the aldehyde group tends to be away from the Pd surface. On the other hand, at the water-Cu(111) interface, furfural prefers to be tilted to the Cu surface while the aldehyde group is bonded to the surface. In both cases, interaction of liquid water and furfural is identified. The difference of dynamic process of furfural at the two interfaces suggests different catalytic reaction mechanisms for the conversion of furfural, consistent with the experimental investigations. Supported by DOE (DE-SC0004600). Simulations and calculations were performed on XSED's and NERSC's supercomputers
Decarboxylation of furfural on Pd(111): Ab initio molecular dynamics simulations
Xue, Wenhua; Dang, Hongli; Shields, Darwin; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu
2013-03-01
Furfural conversion over metal catalysts plays an important role in the studies of biomass-derived feedstocks. We report ab initio molecular dynamics simulations for the decarboxylation process of furfural on the palladium surface at finite temperatures. We observed and analyzed the atomic-scale dynamics of furfural on the Pd(111) surface and the fluctuations of the bondlengths between the atoms in furfural. We found that the dominant bonding structure is the parallel structure in which the furfural plane, while slightly distorted, is parallel to the Pd surface. Analysis of the bondlength fluctuations indicates that the C-H bond is the aldehyde group of a furfural molecule is likely to be broken first, while the C =O bond has a tendency to be isolated as CO. Our results show that the reaction of decarbonylation dominates, consistent with the experimental measurements. Supported by DOE (DE-SC0004600). Simulations and calculations were performed on XSEDE's and NERSC's supercomputers.
Barbosa, Marcelo
A review about the nuclear properties, namely the nuclear moments (magnetic dipole moment and electric quadrupole moment) and their interaction with electromagnetic fields external to the nucleus (hyperfine interactions), as well as the angular distribution of radiation produced by $\\gamma$-decay, is presented. A detailed description about the theory of Perturbed Angular Correlations was done, including the comparison between $\\gamma-\\gamma$- correlations and $e^{-}- \\gamma$ correlations. For dynamic nuclear interactions, an introduction to the theory of stochastic states in PAC was performed. We focused on ab-initio implementation of observables for analyzing fluctuating quadrupole hyperfine interactions on time dependent perturbed angular correlations experiments. The development of computacional codes solving the full problem, adapted to fit data obtained on single crystals or polycrystals for two-state transient fields with any axial symmetry and orientation was the main purpose of this work. The final pa...
Tunneling of electrons via rotor-stator molecular interfaces: combined ab initio and model study
Petreska, Irina; Pejov, Ljupco; Kocarev, Ljupco
2015-01-01
Tunneling of electrons through rotor-stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons' formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that confirmation dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previ...
Ab initio study of the electronic properties of the planar Ga5N5 cluster
Institute of Scientific and Technical Information of China (English)
Zheng Hao-Ping; Hao Jing-An
2005-01-01
The first-principles, all electron, ab initio calculations have been performed for an the amazing stable planar structure of Ga5N5 cluster based on the density functional theory. Electronic structure, Electron affinity, ionization potential, and binding energy are obtained. No spin magnetic moment is found. The results show that the planar structure of the Ga5N5 cluster is stable. It is found that for the planar structure of Ga5N5 cluster, three nitrogen atoms in the N3 subunit bind together with large electon transfer although no free N3 can exist. This may be important to the stability of the planar structure of the Ga5N5 cluster which has the lowest ground-state energy.
AB INITIO CALCULATION OF THE ELASTIC AND OPTICAL PROPERTIES OF AL3SC COMPOUND
Institute of Scientific and Technical Information of China (English)
M. Song; D.H. Xiao
2007-01-01
The ab initio method has been performed to explore the elastic and optical properties of Al3Sccompound, based on a plane wave pseudopotential method. It can be seen that the calculatedequilibrium lattice parameter and elastic constants are in reasonable agreement with the previousexperimental data. The elastic constants satisfy the requirement for mechanical stability in the cubicstructure of the Al3Sc compound. The optical property calculations show that a strong absorptivepeak exists from 0-15eV and a relative small absorptive peak exists around 30eV. The form iscaused by the optical transitions between high s, p, and d bands, and the latter results from theoptical transitions from high s, p, and d bands to the low 2p band.
Ab initio study of one-dimensional disorder on III-V semiconductor surfaces
Energy Technology Data Exchange (ETDEWEB)
Romanyuk, O. [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 00 Prague 6 (Czech Republic); Grosse, F.; Braun, W. [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)
2010-02-15
Atomic disorder on GaSb(001) and GaAs(001) surfaces is studied by ab initio calculations within density functional theory (DFT). Surface energies are computed for GaSb(001) {beta} (4 x 3), {beta} (4 x 3)A{sub 1}, (4 x 6), and GaAs(001) {beta} 2(2 x 4), c (4 x 4) reconstructions. The computed energy differences do not exceed 1 meV / (1 x 1) which is in agreement with observed one-dimensional disorder on GaSb(001) and GaAs(001) surfaces at elevated temperatures for {beta} and {beta} 2 stoichiometries, respectively. Deviations in bond lengths due to disorder with respect to the ordered ground state phases are calculated (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Ab-initio calculations of charge symmetry breaking in the A=4 hypernuclei
Gazda, Daniel
2015-01-01
We report on ab-initio NCSM calculations of the A=4 mirror Lambda hypernuclei Lambda-4H and Lambda-4He, using the Bonn-Juelich LO chiral EFT YN potentials plus a CSB Lambda0--Sigma0 mixing vertex. In addition to reproducing rather well the 0+ (g.s.) and 1+ (exc.) binding energies, these four-body calculations demonstrate for the first time that the observed CSB splitting of mirror levels, reaching hundreds of keV for 0+ (g.s.), can be reproduced using realistic theoretical interaction models, although with a non-negligible momentum cutoff dependence. Our results are discussed in relation to recent measurements of the Lambda-4H (0+ g.s.) binding energy [MAMI A1 Collaboration, Phys. Rev. Lett. 114, 232501 (2015)] and the Lambda-4He (1+ exc.) excitation energy [J-PARC E13 Collaboration, Phys. Rev. Lett. 115, 222501 (2015)].
A New Generation of Cool White Dwarf Atmosphere Models Using Ab Initio Calculations
Blouin, Simon; Kowalski, Piotr M
2016-01-01
Due to their high photospheric density, cool helium-rich white dwarfs (particularly DZ, DQpec and ultracool) are often poorly described by current atmosphere models. As part of our ongoing efforts to design atmosphere models suitable for all cool white dwarfs, we investigate how the ionization ratio of heavy elements and the H$_2$-He collision-induced absorption (CIA) spectrum are altered under fluid-like densities. For the conditions encountered at the photosphere of cool helium-rich white dwarfs, our ab initio calculations show that the ionization of most metals is inhibited and that the H$_2$-He CIA spectrum is significantly distorted for densities higher than 0.1 g/cm$^3$.
Surface Tension of Ab Initio Liquid Water at the Water-Air Interface
Nagata, Yuki; Bonn, Mischa; Kühne, Thomas D
2016-01-01
We report calculations of the surface tension of the water-air interface using ab initio molecular dynamics (AIMD) simulations. We investigate the simulation cell size dependence of the surface tension of water from force field molecular dynamics (MD) simulations, which show that the calculated surface tension increases with increasing simulation cell size, thereby illustrating that a correction for finite size effects is required for the small system used in the AIMD simulation. The AIMD simulations reveal that the double-{\\xi} basis set overestimates the experimentally measured surface tension due to the Pulay stress, while the triple and quadruple-{\\xi} basis sets give similar results. We further demonstrate that the van der Waals corrections critically affect the surface tension. AIMD simulations without the van der Waals correction substantially underestimate the surface tension, while van der Waals correction with the Grimme's D2 technique results in the value for the surface tension that is too high. T...
Molecular orbital ab initio and density functional theoretical study on reaction between PH2 and NO
Institute of Scientific and Technical Information of China (English)
胡正发; 王振亚; 李海洋; 周士康
2002-01-01
The theoretical study of reaction between PH2 and NO on the ground state potential energy surface is reported by using molecular orbital ab initio calculation and density function theory (DFT). Equilibrium structural parameters, harmonic vibrational frequencies, total energies and zero point energies of all species during reaction are computed by HF, MP2 (full) and B3LYP theory levels with the medium basis set 6-31G*. Theoretical results indicate that intermediate IM1(H2PNO) is firstly formed by overcoming a small energy barrier TS1, and then two four-membered ring transient states TS2 and TS5, with energy barriers 103.3 and 102.6 kJ/mol respectively,then H-migration and isomerization are completed and the products PN and H2O are formed. The reaction is exothermic one with -189.6 k J/mol released.
The CH3OH+Cl Hydrogen Abstraction Reactions: An ab initio Study
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The two channels of the CH3OH+Cl hydrogen abstraction reaction, leading to the final products CH2OH+HCl (i) and CH3O+HCl (ii), have been studied by performing ab initio MP2 calculations with the triplet split-valence polarization basis sets. For each of the two channels the following simple reaction path is predicted: reactants → transition state → intermediate → products. The previously reported complicated paths2 calculated without using the IRC technique are criticized. Our calculations indicate that channel (i) is exothermic and has a negligible energy barrier while channel (ii) is endothermic and has a substantial energy barrier. These results imply that channel (i) is favorable, which is in line with experiment.
Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the Thermodynamic Limit
Dornheim, Tobias; Groth, Simon; Sjostrom, Travis; Malone, Fionn D.; Foulkes, W. M. C.; Bonitz, Michael
2016-10-01
We perform ab initio quantum Monte Carlo (QMC) simulations of the warm dense uniform electron gas in the thermodynamic limit. By combining QMC data with the linear response theory, we are able to remove finite-size errors from the potential energy over the substantial parts of the warm dense regime, overcoming the deficiencies of the existing finite-size corrections by Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)]. Extensive new QMC results for up to N =1000 electrons enable us to compute the potential energy V and the exchange-correlation free energy Fxc of the macroscopic electron gas with an unprecedented accuracy of |Δ V |/|V |,|Δ Fxc|/|F |xc˜10-3 . A comparison of our new data to the recent parametrization of Fxc by Karasiev et al. [Phys. Rev. Lett. 112, 076403 (2014)] reveals significant deviations to the latter.
Mundy, Christopher J; Curioni, Alessandro; Goldman, Nir; Will Kuo, I-F; Reed, Evan J; Fried, Laurence E; Ianuzzi, Marcella
2008-05-14
We report herein ab initio molecular dynamics simulations of graphite under shock compression in conjunction with the multiscale shock technique. Our simulations reveal that a novel short-lived layered diamond intermediate is formed within a few hundred of femtoseconds upon shock loading at a shock velocity of 12 kms (longitudinal stress>130 GPa), followed by formation of cubic diamond. The layered diamond state differs from the experimentally observed hexagonal diamond intermediate found at lower pressures and previous hydrostatic calculations in that a rapid buckling of the graphitic planes produces a mixture of hexagonal and cubic diamond (layered diamond). Direct calculation of the x-ray absorption spectra in our simulations reveals that the electronic structure of the final state closely resembles that of compressed cubic diamond.
Ionescu, Andrei R; Whitfield, Dennis M; Zgierski, Marek Z; Nukada, Tomoo
2006-12-29
We present a constrained ab initio molecular dynamics method that allows the modeling of the conformational interconversions of glycopyranosyl oxacarbenium ions. The model was successfully tested by estimating the barriers to ring inversion for two 4-substituted tetrahydropyranosyl oxacarbenium ions. The model was further extended to predict the pathways that connect the (4)H(3) half-chair conformation of 2,3,4,6-tetra-O-methyl-d-glucopyranosyl cation to its inverted (5)S(1) conformation and the (4)H(3) half-chair conformation of 2,3,4,6-tetra-O-methyl-d-mannopyranosyl cation to its inverted (3)E conformation. The modeled interconversion pathways reconcile a large body of experimental work on the acid-catalyzed hydrolysis of glycosides and the mechanisms of a number of glucosidases and mannosidases.
Structural properties of iron nitride on Cu(100): An ab-initio molecular dynamics study
Heryadi, Dodi
2011-01-01
Due to their potential applications in magnetic storage devices, iron nitrides have been a subject of numerous experimental and theoretical investigations. Thin films of iron nitride have been successfully grown on different substrates. To study the structural properties of a single monolayer film of FeN we have performed an ab-initio molecular dynamics simulation of its formation on a Cu(100) substrate. The iron nitride layer formed in our simulation shows a p4gm(2x2) reconstructed surface, in agreement with experimental results. In addition to its structural properties, we are also able to determine the magnetization of this thin film. Our results show that one monolayer of iron nitride on Cu(100) is ferromagnetic with a magnetic moment of 1.67 μ B. © 2011 Materials Research Society.
Ab initio calculation of the growth of Te nanorods and Bi2Te3 nanoplatelets
Institute of Scientific and Technical Information of China (English)
Tian Xiao-Qing; Du Shi-Xuan; Gao Hong-Jun
2008-01-01
In this paper the growth mechanism of a Te/Bi2Te3 novel structure is studied by ab-initio calculations.The results show that the growth of Te nanorods is determined by the adsorption energy of Te atoms on different crystalline Te surfaces.The adsorption energy of Te on the Te (001) surface is 3.29 eV,which is about 0.25 eV higher than that of Te on the Te (110).This energy difference makes the preferential growth direction along the ＜ 001＞ direction.In addition,the higher surface energy of Bi2Te3 (110) and the lattice misfit between crystalline Bi2Te3 and Te along ＜ 001＞ direction are considered to explain the growth of the Bi2Te3 nanoplatelets,in which Volmer-Weber model is used.The theoretical results axe in agreement with experimental observation.
Ab initio study of transport properties in defected carbon nanotubes: an O(N) approach
Energy Technology Data Exchange (ETDEWEB)
Biel, Blanca; GarcIa-Vidal, F J; Flores, Fernando [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Rubio, Angel [European Theoretical Spectroscopy Facility (ETSF), Departamento de Fisica de Materiales, Universidad PaIs Vasco, Edificio Korta, Avenida Tolosa 72, 20018 San Sebastian (Spain)], E-mail: blanca.biel@cea.fr
2008-07-23
A combination of ab initio simulations and linear-scaling Green's functions techniques is used to analyze the transport properties of long (up to 1 {mu}m) carbon nanotubes with realistic disorder. The energetics and the influence of single defects (monovacancies and divacancies) on the electronic and transport properties of single-walled armchair carbon nanotubes are analyzed as a function of the tube diameter by means of the local orbital first-principles Fireball code. Efficient O(N) Green's functions techniques framed within the Landauer-Buettiker formalism allow a statistical study of the nanotube conductance averaged over a large sample of defected tubes and thus extraction of the nanotube localization length. The cases of zero and room temperature are both addressed.
Rosenow, Phil
2016-01-01
The extent of hydrogen coverage of the Si(001)c(4x2) surface in the presence of hydrogen gas has been studied with dispersion corrected density functional theory. Electronic energy contributions are well described using a hybrid functional. The temperature dependence of the coverage in thermodynamic equilibrium was studied computing the phonon spectrum in a supercell approach. As an approximation to these demanding computations, an interpolated phonon approach was found to give comparable accuracy. The simpler ab initio thermodynamic approach is not accurate enough for the system studied, even if corrections by the Einstein model for surface vibrations are considered. The on-set of H2 desorption from the fully hydrogenated surface is predicted to occur at temperatures around 750 K. Strong changes in hydrogen coverage are found between 1000 and 1200 K in good agreement with previous reflectance anisotropy spectroscopy experiments. These findings allow a rational choice for the surface state in the computationa...
Pressure-induced semimetallic behavior of calcium from ab initio calculations
International Nuclear Information System (INIS)
A loss of metallic properties in fcc calcium under high pressure is studied ab initio using the density functional theory (DFT) and GW approximation. It is found that a more correct description of many-electron effects given by GW method does not provide significant changes in the behavior of electronic spectrum in comparison with DFT approach. We note that the obtained width of (pseudo)gap is highly sensitive to the k-point sampling used for density of states calculation. The analysis of fcc calcium's band structure at p ∼ 20 GPa shows that the crossing of bands at the Fermi level is removed if the spin-orbit coupling is taken into account.
Ab initio based investigation of interstitial interactions and Snoek relaxation in Nb-O
Dmitriev, V. V.; Blanter, M. S.; Ruban, A. V.; Johansson, B.
2012-02-01
Chemical and strain-induced effective pair interactions of interstitial oxygen atoms in bcc Nb have been determined in supercell first-principles calculations using Vienna ab initio simulation package (VASP). The strain-induced interactions are in reasonable agreement with those obtained earlier within a phenomenological microscopic Krivoglaz-Kanzaki-Khachaturyan model (KKKM). At the same time, the chemical interactions, which have been considered to be small in earlier theoretical considerations, turned out to be dominating at the first several coordination shells. The obtained interactions have been used in calculations of the concentration- and temperature-dependence of the internal friction Snoek peak. The theoretical results are found to be in good agreement with the existing experimental data.
Sorella, Sandro
2016-01-01
We propose an ab-initio molecular dynamics method, capable to reduce dramatically the autocorrelation time required for the simulation of classical and quantum particles at finite temperature. The method is based on an efficient implementation of a first order Langevin dynamics modified by means of a suitable, position dependent acceleration matrix $S$. Here we apply this technique, within a Quantum Monte Carlo (QMC) based wavefuntion approach and within the Born-Oppheneimer approximation, for determining the phase diagram of high-pressure Hydrogen with simulations much longer than the autocorrelation time. With the proposed method, we are able to equilibrate in few hundreds steps even close to the liquid-liquid phase transition (LLT). Within our approach we find that the LLT transition is consistent with recent density functionals predicting a much larger transition pressures when the long range dispersive forces are taken into account.
Ionization dynamics of the water trimer: A direct ab initio MD study
Energy Technology Data Exchange (ETDEWEB)
Tachikawa, Hiroto, E-mail: hiroto@eng.hokudai.ac.jp [Division of Materials Chemistry, Graduate School of Engineering, Hokkaido University, Kita-ku, Sapporo 060-8628 (Japan); Takada, Tomoya [Department of Material Chemistry, Asahikawa National College of Technology, Syunkodai, Asahikawa 071-8142 (Japan)
2013-03-29
Highlights: ► We calculated ionization dynamics of water trimer. ► Direct ab initio molecular dynamics (MD) method is applied. ► Proton transfer dynamics were discussed. ► The proton transfer process calculated are well reproduced in recent experiments. - Abstract: Ionization dynamics of the cyclic water trimer (H{sub 2}O){sub 3} have been investigated by means of direct ab initio molecular dynamics (AIMD) method. Two reaction channels, complex formation and OH dissociation, were found following the ionization of (H{sub 2}O){sub 3}. In both channels, first, a proton was rapidly transferred from H{sub 2}O{sup +} to H{sub 2}O (time scale is ∼15 fs after the ionization). In complex channel, an ion–radical contact pair (H{sub 3}O{sup +}–OH) solvated by the third water molecule was formed as a long-lived H{sub 3}O{sup +}(OH)H{sub 2}O complex. In OH dissociation channel, the second proton transfer further takes place from H{sub 3}O{sup +}(OH) to H{sub 2}O (time scale is 50–100 fs) and the OH radical is separated from the H{sub 3}O{sup +}. At the same time, the OH dissociation takes place when the excess energy is efficiently transferred into the kinetic energy of OH radical. The OH dissociation channel is significantly minor, and almost all product channels were the complex formation. The reaction mechanism was discussed on the basis of theoretical results.
Integration of QUARK and I-TASSER for Ab Initio Protein Structure Prediction in CASP11.
Zhang, Wenxuan; Yang, Jianyi; He, Baoji; Walker, Sara Elizabeth; Zhang, Hongjiu; Govindarajoo, Brandon; Virtanen, Jouko; Xue, Zhidong; Shen, Hong-Bin; Zhang, Yang
2016-09-01
We tested two pipelines developed for template-free protein structure prediction in the CASP11 experiment. First, the QUARK pipeline constructs structure models by reassembling fragments of continuously distributed lengths excised from unrelated proteins. Five free-modeling (FM) targets have the model successfully constructed by QUARK with a TM-score above 0.4, including the first model of T0837-D1, which has a TM-score = 0.736 and RMSD = 2.9 Å to the native. Detailed analysis showed that the success is partly attributed to the high-resolution contact map prediction derived from fragment-based distance-profiles, which are mainly located between regular secondary structure elements and loops/turns and help guide the orientation of secondary structure assembly. In the Zhang-Server pipeline, weakly scoring threading templates are re-ordered by the structural similarity to the ab initio folding models, which are then reassembled by I-TASSER based structure assembly simulations; 60% more domains with length up to 204 residues, compared to the QUARK pipeline, were successfully modeled by the I-TASSER pipeline with a TM-score above 0.4. The robustness of the I-TASSER pipeline can stem from the composite fragment-assembly simulations that combine structures from both ab initio folding and threading template refinements. Despite the promising cases, challenges still exist in long-range beta-strand folding, domain parsing, and the uncertainty of secondary structure prediction; the latter of which was found to affect nearly all aspects of FM structure predictions, from fragment identification, target classification, structure assembly, to final model selection. Significant efforts are needed to solve these problems before real progress on FM could be made. Proteins 2016; 84(Suppl 1):76-86. © 2015 Wiley Periodicals, Inc.
High pressure behaviour of uranium dicarbide (UC2): Ab-initio study
Sahoo, B. D.; Mukherjee, D.; Joshi, K. D.; Kaushik, T. C.
2016-08-01
The structural stability of uranium dicarbide has been examined under hydrostatic compression employing evolutionary structure search algorithm implemented in the universal structure predictor: evolutionary Xtallography (USPEX) code in conjunction with ab-initio electronic band structure calculation method. The ab-initio total energy calculations involved for this purpose have been carried out within both generalized gradient approximations (GGA) and GGA + U approximations. Our calculations under GGA approximation predict the high pressure structural sequence of tetragonal → monoclinic → orthorhombic for this material with transition pressures of ˜8 GPa and 42 GPa, respectively. The same transition sequence is predicted by calculations within GGA + U also with transition pressures placed at ˜24 GPa and ˜50 GPa, respectively. Further, on the basis of comparison of zero pressure equilibrium volume and equation of state with available experimental data, we find that GGA + U approximation with U = 2.5 eV describes this material better than the simple GGA approximation. The theoretically predicted high pressure structural phase transitions are in disagreement with the only high experimental study by Dancausse et al. [J. Alloys. Compd. 191, 309 (1993)] on this compound which reports a tetragonal to hexagonal phase transition at a pressure of ˜17.6 GPa. Interestingly, during lowest enthalpy structure search using USPEX, we do not see any hexagonal phase to be closer to the predicted monoclinic phase even within 0.2 eV/f. unit. More experiments with varying carbon contents in UC2 sample are required to resolve this discrepancy. The existence of these high pressure phases predicted by static lattice calculations has been further substantiated by analyzing the elastic and lattice dynamic stability of these structures in the pressure regimes of their structural stability. Additionally, various thermo-physical quantities such as equilibrium volume, bulk modulus, Debye
NestedMICA as an ab initio protein motif discovery tool
Directory of Open Access Journals (Sweden)
Down Thomas A
2008-01-01
Full Text Available Abstract Background Discovering overrepresented patterns in amino acid sequences is an important step in protein functional element identification. We adapted and extended NestedMICA, an ab initio motif finder originally developed for finding transcription binding site motifs, to find short protein signals, and compared its performance with another popular protein motif finder, MEME. NestedMICA, an open source protein motif discovery tool written in Java, is driven by a Monte Carlo technique called Nested Sampling. It uses multi-class sequence background models to represent different "uninteresting" parts of sequences that do not contain motifs of interest. In order to assess NestedMICA as a protein motif finder, we have tested it on synthetic datasets produced by spiking instances of known motifs into a randomly selected set of protein sequences. NestedMICA was also tested using a biologically-authentic test set, where we evaluated its performance with respect to varying sequence length. Results Generally NestedMICA recovered most of the short (3–9 amino acid long test protein motifs spiked into a test set of sequences at different frequencies. We showed that it can be used to find multiple motifs at the same time, too. In all the assessment experiments we carried out, its overall motif discovery performance was better than that of MEME. Conclusion NestedMICA proved itself to be a robust and sensitive ab initio protein motif finder, even for relatively short motifs that exist in only a small fraction of sequences. Availability NestedMICA is available under the Lesser GPL open-source license from: http://www.sanger.ac.uk/Software/analysis/nmica/
Ab initio energetics for modeling phase stability of the Np-U system
Xie, Wei; Chang, Y. Austin; Morgan, Dane
2016-10-01
The Np-U system has been rarely studied despite this alloy being a key binary subsystem of metallic nuclear fuels. This study aims to further the understanding of the phase stability of the Np-U system through ab initio calculations. We first examined an existing CALPHAD model based on available experimental phase boundary data. We then focused on phases of which the CALPHAD model reproduces reasonably the experimental data and examined if values of the effective Hubbard U (i.e., Ueff) parameter for Np and U fitted previously in the Np-Zr and U-Zr systems are also applicable to the Np-U system, using CALPHAD predicted enthalpies as references. We found that in general DFT + U predicts improved or at least similarly accurate enthalpies compared to standard DFT when the Ueff's used are within the ranges of single-structure optimized Ueff's (0.65-0.9 eV for Np and 1-1.5 eV for U)-for example, the multi-structure optimized Ueff's (0.9 eV for Np and 1.24 eV for U)-determined in our previous U-Zr and Np-Zr studies. Finally, we focused on the intermediate phase ζ(Np,U), which at present is poorly characterized by experiments and unsatisfactorily described in the CALPHAD model. Based on ab initio calculated formation enthalpies for ordered end members and the compound energy formalism, we predicted its site occupations as functions of composition and temperature. Our study demonstrated that Ueff's fitted for U and Np determined in the U-Zr and Np-Zr systems may be transferable to the Np-U system and also provided new prediction of the site occupations for ζ(Np,U), which may serve as reference for future experimental and modeling study of the Np-U system.
Marsalek, Ondrej; Markland, Thomas E
2016-02-01
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost. PMID:26851913
International Nuclear Information System (INIS)
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost
Energy Technology Data Exchange (ETDEWEB)
Marsalek, Ondrej; Markland, Thomas E., E-mail: tmarkland@stanford.edu [Department of Chemistry, Stanford University, Stanford, California 94305 (United States)
2016-02-07
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.
Structure electronique de nanorubans de graphene avec des contacts metalliques: Une etude ab initio
Archambault, Chloe
Graphene, a graphite monolayer presenting novel exciting properties, has attracted much attention recently in the scientific community as well as in the high-technology industry. In electronics, nanoribbons -- narrow strips of graphene which happen to be semiconducting-- could possibly allow further miniaturization of electronic devices such as transistors because of their atomic thickness. On the other hand, once making devices, the problem of metallic contacts, which can have critical impact at the nanoscopic scale, cannot be evaded. For example, metal induced gap states may short-circuit very short devices. With this in mind, the interaction of gold, palladium and titanium contacts with finite size graphene nanoribbons has been studied using ab initio density functional theory calculations. This theoretical approach made it possible to study separately and then conjugate four important aspects of the metal-ribbon interaction: bonding, charge transfer, electrostatics and metal induced gap states. Another goal of this project was to study size effects related to the ribbons' dimensions and to estimate the minimal channel length necessary for a device to operate as expected without the unwanted effect of induced gap states. Aside from the high precision achieved, these calculations stand out from earlier studies because they take into account finite size effects which often prevail in small ribbons. Using this model for the metal-nanoribbon junction, it was shown that, as for two-dimensional graphene, the bonding between a ribbon and a metal can be of two types depending on the electronic configuration of the metal. In the first case, physisorption, weak bonding resulting in a large separation distance between ribbon and electrode, is illustrated by the gold contact. On the other hand, titanium, because of its high density of states at the Fermi level, binds more strongly with graphene nanoribbons. This chemisorption is characterized by strong hybridization between
Ab initio potential energy surface and vibration-rotation energy levels of silicon dicarbide, SiC2.
Koput, Jacek
2016-10-01
The accurate ground-state potential energy surface of silicon dicarbide, SiC2 , has been determined from ab initio calculations using the coupled-cluster approach. Results obtained with the conventional and explicitly correlated coupled-cluster methods were compared. The core-electron correlation, higher-order valence-electron correlation, and scalar relativistic effects were taken into account. The potential energy barrier to the linear SiCC configuration was predicted to be 1782 cm(-1) . The vibration-rotation energy levels of the SiC2 , (29) SiC2 , (30) SiC2 , and SiC(13) C isotopologues were calculated using a variational method. The experimental vibration-rotation energy levels of the main isotopologue were reproduced to high accuracy. In particular, the experimental energy levels of the highly anharmonic vibrational ν3 mode of SiC2 were reproduced to within 6.7 cm(-1) , up to as high as the v3 = 16 state.