Emergence of rotational bands in ab initio no-core configuration interaction calculations
Caprio, M A; Vary, J P; Smith, R
2015-01-01
Rotational bands have been observed to emerge in ab initio no-core configuration interaction (NCCI) calculations for p-shell nuclei, as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. We investigate the ab initio emergence of nuclear rotation in the Be isotopes, focusing on 9Be for illustration, and make use of basis extrapolation methods to obtain ab initio predictions of rotational band parameters for comparison with experiment. We find robust signatures for rotational motion, which reproduce both qualitative and quantitative features of the experimentally observed bands.
Ab initio calculations in the symplectic no-core configuration interaction framework
McCoy, Anna; Caprio, Mark; Dytrych, Tomas
2016-09-01
A major challenge in quantitatively predicting nuclear structure directly from realistic nucleon-nucleon interactions, i.e., ab initio, arises due to an explosion in the dimension of the traditional Slater determinant basis as the number of nucleons and included shells increases. The need for including highly excited configurations arises, in large part, because the kinetic energy induces strong coupling across shells. However, the kinetic energy conserves symplectic symmetry. By combining this symplectic symmetry with the no-core configuration interaction (NCCI) framework, we reduce the size of basis necessary to obtain accurate results for p-shell nuclei. Supported by the US DOE under Grants DE-AC05-06OR23100 and DE-FG02-95ER-40934, and the Czech Science Foundation under Grant No. 16-16772S.
Heuvel, Willem Van den; Soncini, Alessandro
2015-01-01
We present an ab initio methodology dedicated to the determination of the electronic structure and magnetic properties of ground and low-lying excited states, i.e., the crystal field levels, in lanthanide(III) complexes. Currently, the most popular and successful ab initio approach is the CASSCF/RASSI-SO method, consisting of the optimization of multiple complete active space self-consistent field (CASSCF) spin eigenfunctions, followed by full diagonalization of the spin--orbit coupling (SOC) Hamiltonian in the basis of the CASSCF spin states featuring spin-dependent orbitals. Based on two simple observations valid for Ln(III) complexes, namely: (i) CASSCF 4f atomic orbitals are expected to change very little when optimized for different multiconfigurational states belonging to the 4f-electronic configuration, (ii) due to strong SOC the total spin is not a good quantum number, we propose here an efficient ab initio strategy which completely avoids any multiconfigurational calculation, by optimizing a unique s...
Chen, Hung-Cheng; Hsu, Chao-Ping
2005-12-29
To calculate electronic couplings for photoinduced electron transfer (ET) reactions, we propose and test the use of ab initio quantum chemistry calculation for excited states with the generalized Mulliken-Hush (GMH) method. Configuration-interaction singles (CIS) is proposed to model the locally excited (LE) and charge-transfer (CT) states. When the CT state couples with other high lying LE states, affecting coupling values, the image charge approximation (ICA), as a simple solvent model, can lower the energy of the CT state and decouple the undesired high-lying local excitations. We found that coupling strength is weakly dependent on many details of the solvent model, indicating the validity of the Condon approximation. Therefore, a trustworthy value can be obtained via this CIS-GMH scheme, with ICA used as a tool to improve and monitor the quality of the results. Systems we tested included a series of rigid, sigma-linked donor-bridge-acceptor compounds where "through-bond" coupling has been previously investigated, and a pair of molecules where "through-space" coupling was experimentally demonstrated. The calculated results agree well with experimentally inferred values in the coupling magnitudes (for both systems studied) and in the exponential distance dependence (for the through-bond series). Our results indicate that this new scheme can properly account for ET coupling arising from both through-bond and through-space mechanisms.
Palmer, Michael H., E-mail: m.h.palmer@ed.ac.uk, E-mail: tr01@staffmail.ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it; Ridley, Trevor [School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland (United Kingdom); Hoffmann, Søren Vrønning; Jones, Nykola C. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Coreno, Marcello [CNR-IMIP, Montelibretti, c/o Laboratorio Elettra, Trieste (Italy); Simone, Monica de [CNR-IOM Laboratorio TASC, Trieste (Italy); Grazioli, Cesare [CNR-IOM Laboratorio TASC, Trieste (Italy); Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste (Italy); Biczysko, Malgorzata [National Research Council ICCOM-CNR, UOS di Pisa, Via G. Moruzzi 1, I-56124 Pisa (Italy); Scuola Normale Superiore, Piazza Cavalieri 7, 56126 Pisa (Italy); Baiardi, Alberto [Scuola Normale Superiore, Piazza Cavalieri 7, 56126 Pisa (Italy)
2015-04-07
New valence electron photoelectron spectra of iodobenzene obtained using synchrotron radiation have been recorded. Ionization energies (IEs) determined using multi-configuration SCF calculation (MCSCF) procedures confirmed the adiabatic IE order as: X{sup 2}B{sub 1}
Palmer, Michael H.; Biczysko, Malgorzata; Baiardi, Alberto; Coreno, Marcello; de Simone, Monica; Grazioli, Cesare; Hoffmann, Søren Vrønning; Jones, Nykola C.; Peterson, Kirk A.
2017-08-01
A new synchrotron-based study of the photoelectron spectrum (PES) of difluoromethane is interpreted by an ab initio analysis of the ionic states, which includes Franck-Condon (FC) factors. Double differentiation of the spectrum leads to significant spectral sharpening; the vibrational structure observed is now measured with greater accuracy than in previous studies. Several electronic structure methods are used, including equation of motion coupled cluster calculations with single and double excitations (EOM-CCSD), its ionization potential variant EOM-IP-CCSD, 4th order Møller-Plesset perturbation theory (MP4SDQ) configuration interaction (CI), and complete active space self-consistent-field (CASSCF) methods. The adiabatic ionization energies (AIEs) confirm the assignments as band I, one state 12B1 (12.671 eV); band II, three states, 12B2 (14.259) overlap. The apparent lack of a vibrational structure attributable to both the 12A1 and 22A1 states in the PES arises from line broadening with the preceding states 12B2 and 22B2, respectively. Although these 2A1 states clearly overlap with their adjacent higher IE, some vibrational structure is observed on the higher IE. The effects of vibronic coupling are evident since the observed structure does not fit closely with the calculated Born-Oppenheimer FC profiles. Correlation of the lowest group of four AIEs in the PES of other members of the CH2X2 group, where X = F, Cl, Br, and I, clearly indicate these effects are more general.
Palmer, Michael H., E-mail: m.h.palmer@ed.ac.uk; Ridley, Trevor, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu [School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland (United Kingdom); Hoffmann, Søren Vrønning, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu; Jones, Nykola C., E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Coreno, Marcello, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu [CNR-IMIP, Montelibretti, c/o Laboratorio Elettra, Trieste (Italy); Simone, Monica de, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu [CNR-IOM Laboratorio TASC, Trieste (Italy); Grazioli, Cesare [CNR-IOM Laboratorio TASC, Trieste (Italy); Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste (Italy); Zhang, Teng [Department of Physics and Astronomy, University of Uppsala, Uppsala (Sweden); and others
2015-10-28
New photoelectron, ultraviolet (UV), and vacuum UV (VUV) spectra have been obtained for bromobenzene by synchrotron study with higher sensitivity and resolution than previous work. This, together with use of ab initio calculations with both configuration interaction and time dependent density functional theoretical methods, has led to major advances in interpretation. The VUV spectrum has led to identification of a considerable number of Rydberg states for the first time. The Franck-Condon (FC) analyses including both hot and cold bands lead to identification of the vibrational structure of both ionic and electronically excited states including two Rydberg states. The UV onset has been interpreted in some detail, and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. In a similar way, the 6 eV absorption band which is poorly resolved is analysed in terms of the presence of two ππ* states of {sup 1}A{sub 1} (higher oscillator strength) and {sup 1}B{sub 2} (lower oscillator strength) symmetries, respectively. The detailed analysis of the vibrational structure of the 2{sup 2}B{sub 1} ionic state is particularly challenging, and the best interpretation is based on equation-of-motion-coupled cluster with singles and doubles computations. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene. The equilibrium structures of the 3b{sub 1}3s and 6b{sub 2}3s (valence shell numbering) Rydberg states have been obtained and compared with the corresponding ionic limit structures.
Chen, K X; Wu, J A; Ji, R Y
1987-09-01
We investigated the cis- and trans-isomers of Pt(NH3)2Cl2 and [Pt(NH3)2]2+ using a quantum chemical non-empirical calculation method, the pseudopotential valence electron-only ab initio method. The electronic structure and electrostatic potential counter maps were in turn determined through the wave functions so obtained. There was a sharp difference between the dipole moments of the cis- and trans-isomers. The electrostatic counter maps of the isomers also had remarkably different features. Based on the interaction between the platinum (II) coordination compound and the base pairs of nucleic acid, the difference in antitumour activity of the isomeric compounds was discussed. It is pointed out that the key factor for antitumour activity is that the platinum (II) coordination compound must be mutually complementary with the target acceptor in both configuration and bonding activity. This mutual-complementary requirement includes a bonding ability of the platinum complex with two negative centers in DNA, so as to form an intrastrand crosslink with two neighbouring guanines.
Ab initio multi-reference configuration interaction of the low-lying states of the AsP molecule
Ling Zhang; Chuanlu Yang; Tingqi Ren; Meishan Wang
2008-01-01
Nine low-lying electronic states of the AsP molecule, including Σ+, Ⅱ, and △ symmetries with singlet, triplet, and quintet spin multiplicities, are studied using multi-reference configuration interaction method.The potential energy curves and the spectroscopic constants of these nine states are determined, and compared with the experimental observed data as well as other theoretical works available at present.Three quintet states are reported for the first time.Furthermore, the analytical potential energy functions of these states are fitted using Murrell-Sorbie function and least square fitting method.
Nenov, Artur; Rivalta, Ivan; Cerullo, Giulio; Mukamel, Shaul; Garavelli, Marco
2014-02-20
Two-dimensional (2D) optical spectroscopy techniques based on ultrashort laser pulses have been recently extended to the optical domain in the ultraviolet (UV) spectral region. UV-active aromatic side chains can thus be used as local highly specific markers for tracking dynamics and structural rearrangements of proteins. Here we demonstrate that 2D electronic spectra of a model proteic system, a tetrapeptide with two aromatic side chains, contain enough structural information to distinguish between two different configurations with distant and vicinal side chains. For accurate simulations of the 2DUV spectra in solution, we combine a quantum mechanics/molecular mechanics approach based on wave function methods, accounting for interchromophores coupling and environmental effects, with nonlinear response theory. The proposed methodology reveals effects, such as charge transfer between vicinal aromatic residues that remain concealed in conventional exciton Hamiltonian approaches. Possible experimental setups are discussed, including multicolor experiments and signal manipulation techniques for limiting undesired background contributions and enhancing 2DUV signatures of specific electronic couplings.
Ab initio valence calculations in chemistry
Cook, D B
1974-01-01
Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schrödinger equation and the orbital approximation to atomic orbitals; molecular orbital and valence bond methods; practical molecular wave functions; and molecular integrals. Open shell systems, molecular symmetry, and localized descriptions of electronic structure are also discussed. This book is comprised of 13 chapters and begins by introducing the reader to the use of the Schrödinge
Mauney, Christopher; Lazzati, Davide
2014-01-01
The binding energies of n < 100 carbon clusters are calculated using the ab-initio density functional theory code Quantum Espresso. Carbon cluster geometries are determined using several levels of classical techniques and further refined using density functional theory. The resulting energies are used to compute the work of cluster formation and the nucleation rate in a saturated, hydrogen-poor carbon gas. Compared to classical calculations that adopt the capillary approximation, we find that nucleation of carbon clusters is enhanced at low temperatures and depressed at high temperatures. This difference is ascribed to the different behavior of the critical cluster size. We find that the critical cluster size is at n = 27 or n = 8 for a broad range of temperatures and saturations, instead of being a smooth function of such parameters. The results of our calculations can be used to follow carbonaceous cluster/grain formation, stability, and growth in hydrogen poor environments, such as the inner layers of c...
Study of Nuclear Clustering from an Ab Initio Perspective
Kravvaris, Konstantinos; Volya, Alexander
2017-08-01
We put forward a new ab initio approach that seamlessly bridges the structure, clustering, and reactions aspects of the nuclear quantum many-body problem. The configuration interaction technique combined with the resonating group method based on a harmonic oscillator basis allows us to treat the reaction and multiclustering dynamics in a translationally invariant way and preserve the Pauli principle. Our presentation includes studies of Be,108 and an exploration of 3 α clustering in 12C.
Ab Initio Calculations of Oxosulfatovanadates
Frøberg, Torben; Johansen, Helge
1996-01-01
Restricted Hartree-Fock and multi-configurational self-consistent-field calculations together with secondorder perturbation theory have been used to study the geometry, the electron density, and the electronicspectrum of (VO2SO4)-. A bidentate sulphate attachment to vanadium was found to be stable...
Reciprocity Theorems for Ab Initio Force Calculations
Wei, C; Mele, E J; Rappe, A M; Lewis, Steven P.; Rappe, Andrew M.
1996-01-01
We present a method for calculating ab initio interatomic forces which scales quadratically with the size of the system and provides a physically transparent representation of the force in terms of the spatial variation of the electronic charge density. The method is based on a reciprocity theorem for evaluating an effective potential acting on a charged ion in the core of each atom. We illustrate the method with calculations for diatomic molecules.
Discovering chemistry with an ab initio nanoreactor
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.
2014-01-01
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerat...
The density matrix renormalization group for ab initio quantum chemistry
Wouters, Sebastian
2014-01-01
During the past 15 years, the density matrix renormalization group (DMRG) has become increasingly important for ab initio quantum chemistry. Its underlying wavefunction ansatz, the matrix product state (MPS), is a low-rank decomposition of the full configuration interaction tensor. The virtual dimension of the MPS, the rank of the decomposition, controls the size of the corner of the many-body Hilbert space that can be reached with the ansatz. This parameter can be systematically increased until numerical convergence is reached. The MPS ansatz naturally captures exponentially decaying correlation functions. Therefore DMRG works extremely well for noncritical one-dimensional systems. The active orbital spaces in quantum chemistry are however often far from one-dimensional, and relatively large virtual dimensions are required to use DMRG for ab initio quantum chemistry (QC-DMRG). The QC-DMRG algorithm, its computational cost, and its properties are discussed. Two important aspects to reduce the computational co...
Highly scalable Ab initio genomic motif identification
Marchand, Benoit
2011-01-01
We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.
Ab initio Bogoliubov coupled cluster theory
Signoracci, Angelo; Hagen, Gaute; Duguet, Thomas
2014-09-01
Coupled cluster (CC) theory has become a standard method in nuclear theory for realistic ab initio calculations of medium mass nuclei, but remains limited by its requirement of a Slater determinant reference state which reasonably approximates the nuclear system of interest. Extensions of the method, such as equation-of-motion CC, permit the calculation of nuclei with one or two nucleons added or removed from a doubly magic core, yet still only a few dozen nuclei are accessible with modern computational restrictions. In order to extend the applicability of ab initio methods to open-shell systems, the superfluid nature of nuclei must be taken into account. By utilizing Bogoliubov algebra and employing spontaneous symmetry breaking with respect to particle number conservation, superfluid systems can be treated by a single reference state. An ab initio theory to include correlations on top of a Bogoliubov reference state has been developed in the guise of standard CC theory. The formalism and first results of this Bogoliubov coupled cluster theory will be presented to demonstrate the applicability of the method.
Benchmarks of the ab initio FCI, MCSM and NCFC methods
Abe, T; Otsuka, T; Shimizu, N; Utsuno, Y; Vary, J P
2012-01-01
We report ab initio no-core solutions for properties of light nuclei with three different approaches in order to assess the accuracy and convergence rates of each method. Full Configuration Interaction (FCI), Monte Carlo Shell Model (MCSM) and No Core Full Configuration (NCFC) approaches are solved separately for the ground state energy and other properties of seven light nuclei using the realistic JISP16 nucleon-nucleon interaction. The results are consistent among the different approaches. The methods differ significantly in how the required computational resources scale with increasing particle number for a given accuracy.
Accurate ab initio spin densities
Boguslawski, Katharina; Legeza, Örs; Reiher, Markus
2012-01-01
We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys. 2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CA...
Ab initio study of phase equilibria in TiCx
Korzhavyi, P.A.; Pourovskii, L.V.; Hugosson, H.W.
2002-01-01
The phase diagram for the vacancy-ordered structures in the substoichiometric TiCx (x = 0.5-1.0) has been established from Monte Carlo simulations with the long-range pair and multisite effective interactions obtained from ab initio calculations. Three ordered superstructures of vacancies (Ti2C, Ti......3C2, and Ti6C5) are found to be ground state configurations. Their stability has been verified by full-potential total energy calculations of the fully relaxed structures....
Operator evolution for ab initio nuclear theory
Schuster, Micah D; Johnson, Calvin W; Jurgenson, Eric D; Navratil, Petr
2014-01-01
The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency, however, one ought to apply the same transformation to other operators when calculating transitions and mean values from the eigenstates of the renormalized Hamiltonian. Working in a translationally-invariant harmonic oscillator basis for the two- and three-nucleon systems, we evolve the Hamiltonian, square-radius and total dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body matrix elements in the 4He nucleus all but completely restores the invariance of the expectation values under the transformation. We also consider a Gaussian operator with adjustable range and find at short ranges an increased contribution from such ind...
Discovering chemistry with an ab initio nanoreactor
Martinez, Todd
Traditional approaches for modeling chemical reaction networks such as those involved in combustion have focused on identifying individual reactions and using theoretical approaches to explore the underlying mechanisms. Recent advances involving graphical processing units (GPUs), commodity products developed for the videogaming industry, have made it possible to consider a distinct approach wherein one attempts to discover chemical reactions and mechanisms. We provide a brief summary of these developments and then discuss the concept behind the ``ab initio nanoreactor'' which explores the space of possible chemical reactions and molecular species for a given stoichiometry. The nanoreactor concept is exemplified with an example to the Urey-Miller reaction network which has been previously advanced as a potential model for prebiotic chemistry. We briefly discuss some of the future directions envisioned for the development of this nanoreactor concept.
Ab initio alpha-alpha scattering
Elhatisari, Serdar; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G
2015-01-01
Processes involving alpha particles and alpha-like nuclei comprise a major part of stellar nucleosynthesis and hypothesized mechanisms for thermonuclear supernovae. In an effort towards understanding alpha processes from first principles, we describe in this letter the first ab initio calculation of alpha-alpha scattering. We use lattice effective field theory to describe the low-energy interactions of nucleons and apply a technique called the adiabatic projection method to reduce the eight-body system to an effective two-cluster system. We find good agreement between lattice results and experimental phase shifts for S-wave and D-wave scattering. The computational scaling with particle number suggests that alpha processes involving heavier nuclei are also within reach in the near future.
An ab initio study of hydroxylated graphane
Buonocore, Francesco; Capasso, Andrea; Lisi, Nicola
2017-09-01
Graphene-based derivatives with covalent functionalization and well-defined stoichiometry are highly desirable in view of their application as functional surfaces. Here, we have evaluated by ab initio calculations the energy of formation and the phase diagram of hydroxylated graphane structures, i.e., fully functionalized graphene derivatives coordinated with -H and -OH groups. We compared these structures to different hydrogenated and non-hydrogenated graphene oxide derivatives, with high level of epoxide and hydroxyl groups functionalization. Based on our calculations, stable phases of hydroxylated graphane with low and high contents of hydrogen are demonstrated for high oxygen and hydrogen partial pressure, respectively. Stable phases of graphene oxide with a mixed carbon hybridization are also found. Notably, the synthesis of hydroxylated graphane has been recently reported in the literature.
Giant magnetoresistance An ab-initio description
Binder, J
2000-01-01
A new theoretical concept to study the microscopic origin of Giant Magnetoresistance (GMR) from first principles is presented. The method is based on ab-initio electronic structure calculations within the spin density functional theory using a Screened KORRINGA-KOHNROSTOKER method. Scattering at impurity atoms in the multilayers is described by means of a GREEN's-function method. The scattering potentials are calculated self-consistently. The transport properties are treated quasi-classically solving the BOLTZMANN equation including the electronic structure of the layered system and the anisotropic scattering. The solution of the BOLTZMANN equation is performed iteratively taking into account both scattering out and scattering in terms (vertex corrections). The method is applied to Co/Cu and Fe/Cr multilayers. Trends of scattering cross sections, residual resistivities and GMR ratios are discussed for various transition metal impurities at different positions in the Co/Cu or Fe/Cr multilayers. Furthermore the...
Discovering chemistry with an ab initio nanoreactor
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.
2014-12-01
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provide detailed physical insight. Although theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor—a highly accelerated first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor, we show new pathways for glycine synthesis from primitive compounds proposed to exist on the early Earth, which provide new insight into the classic Urey-Miller experiment. These results highlight the emergence of theoretical and computational chemistry as a tool for discovery, in addition to its traditional role of interpreting experimental findings.
On the hierarchical parallelization of ab initio simulations
Ruiz-Barragan, Sergi; Shiga, Motoyuki
2016-01-01
A hierarchical parallelization has been implemented in a new unified code PIMD-SMASH for ab initio simulation where the replicas and the Born-Oppenheimer forces are parallelized. It is demonstrated that ab initio path integral molecular dynamics simulations can be carried out very efficiently for systems up to a few tens of water molecules. The code was then used to study a Diels-Alder reaction of cyclopentadiene and butenone by ab initio string method. A reduction in the reaction energy barrier is found in the presence of hydrogen-bonded water, in accordance with experiment.
Ab initio calculation of the Hoyle state
Epelbaum, Evgeny; Lee, Dean; Meißner, Ulf-G
2011-01-01
The Hoyle state plays a crucial role in the hydrogen burning of stars heavier than our sun and in the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle^{1} as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago^{2,3}, nuclear theorists have not yet uncovered the nature of this state from first principles. In this letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at -85(3) MeV with all of properties of the Hoyle state and in agreement with the experimentally observed energy. These lattice simulations provide insight into the structure of this unique state and new clues as to the amount of fine...
Ab initio phase diagram of iridium
Burakovsky, L.; Burakovsky, N.; Cawkwell, M. J.; Preston, D. L.; Errandonea, D.; Simak, S. I.
2016-09-01
The phase diagram of iridium is investigated using the Z methodology. The Z methodology is a technique for phase diagram studies that combines the direct Z method for the computation of melting curves and the inverse Z method for the calculation of solid-solid phase boundaries. In the direct Z method, the solid phases along the melting curve are determined by comparing the solid-liquid equilibrium boundaries of candidate crystal structures. The inverse Z method involves quenching the liquid into the most stable solid phase at various temperatures and pressures to locate a solid-solid boundary. Although excellent agreement with the available experimental data (to ≲65 GPa) is found for the equation of state (EOS) of Ir, it is the third-order Birch-Murnaghan EOS with B0'=5 rather than the more widely accepted B0'=4 that describes our ab initio data to higher pressure (P ) . Our results suggest the existence of a random-stacking hexagonal close-packed structure of iridium at high P . We offer an explanation for the 14-layer hexagonal structure observed in experiments by Cerenius and Dubrovinsky.
Phonocatalysis. An ab initio simulation experiment
Kwangnam Kim
2016-06-01
Full Text Available Using simulations, we postulate and show that heterocatalysis on large-bandgap semiconductors can be controlled by substrate phonons, i.e., phonocatalysis. With ab initio calculations, including molecular dynamic simulations, the chemisorbed dissociation of XeF6 on h-BN surface leads to formation of XeF4 and two surface F/h-BN bonds. The reaction pathway and energies are evaluated, and the sorption and reaction emitted/absorbed phonons are identified through spectral analysis of the surface atomic motion. Due to large bandgap, the atomic vibration (phonon energy transfer channels dominate and among them is the match between the F/h-BN covalent bond stretching and the optical phonons. We show that the chemisorbed dissociation (the pathway activation ascent requires absorption of large-energy optical phonons. Then using progressively heavier isotopes of B and N atoms, we show that limiting these high-energy optical phonons inhibits the chemisorbed dissociation, i.e., controllable phonocatalysis.
Ab initio phonon scattering by dislocations
Wang, Tao; Carrete, Jesús; van Roekeghem, Ambroise; Mingo, Natalio; Madsen, Georg K. H.
2017-06-01
Heat management in thermoelectric and power devices as well as in random access memories poses a grand challenge and can make the difference between a working and an abandoned device design. Despite the prevalence of dislocations in all these technologies, the modeling of their thermal resistance is based on 50-year-old analytical approximations, whose simplicity was driven by practical limitations rather than physical insight. We introduce an efficient ab initio approach based on Green's functions computed by two-dimensional reciprocal space integration. By combining elasticity theory and density functional theory, we calculate the scattering strength of a 90∘ misfit edge dislocation in Si. Because of the breakdown of the Born approximation, earlier literature models fail, even qualitatively. We find that a dislocation density larger than 109cm-2 is necessary to substantially influence thermal conductivity at room temperature and above. We quantify how much of the reduction of thermal conductivity measured in nanograined samples can be explained by realistic dislocation concentrations.
Ab initio materials physics and microscopic electrodynamics of media
2016-01-01
We argue that the amazing progress of first-principles materials physics necessitates a revision of the Standard Approach to electrodynamics of media. We hence subject this Standard Approach to a thorough critique, which shows both its inherent conceptual problems and its practical inapplicability to modern ab initio calculations. We then go on to show that the common practice in ab initio materials physics has overcome these difficulties by taking a different, microscopic approach to electro...
Thomas, Robert E; Booth, George H; Alavi, Ali
2015-01-23
Accurate ionization potentials of the first-row transition-metal atoms are obtained via the initiator full configuration quantum Monte Carlo technique, performing a stochastic integration of the electronic Schrödinger equation in exponentially large Hilbert spaces, with a mean absolute error of 0.13 kcal/mol (5 meV). This accuracy requires correlation of the 3p semicore electrons and in some cases the 3s manifold, along with extrapolation of the correlation energies to the complete-basis-set limit, and provides a new theoretical benchmark for the ionization potentials of these systems.
A Review on Ab Initio Approaches for Multielectron Dynamics
Ishikawa, Kenichi L
2015-01-01
In parallel with the evolution of femtosecond and attosecond laser as well as free-electron laser technology, a variety of theoretical methods have been developed to describe the behavior of atoms, molecules, clusters, and solids under the action of those laser pulses. Here we review major ab initio wave-function-based numerical approaches to simulate multielectron dynamics in atoms and molecules driven by intense long-wavelength and/or ultrashort short-wavelength laser pulses. Direct solution of the time-dependent Schr\\"odinger equation (TDSE), though its applicability is limited to He, ${\\rm H}_2$, and Li, can provide an exact description and has been greatly contributing to the understanding of dynamical electron-electron correlation. Multiconfiguration self-consistent-field (MCSCF) approach offers a flexible framework from which a variety of methods can be derived to treat both atoms and molecules, with possibility to systematically control the accuracy. The equations of motion of configuration interactio...
An Efficient Approach to Ab Initio Monte Carlo Simulation
Leiding, Jeff
2013-01-01
We present a Nested Markov Chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, is used to substantially decorrelate configurations at which the potential of interest is evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure is maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature \\beta^0), which is otherwise unconstrained. Local density approximation (LDA) results are presented for shocked states in argon at pressures from 4 to 60 GPa. Depending on the quality of the reference potential, the acceptance probability is enhanced by factors of 1.2-28 relative to unoptimized NMC sampling, and the procedure's efficiency is found to be competitive with that of standard ab initio...
Ab initio quantum dynamics using coupled-cluster.
Kvaal, Simen
2012-05-21
The curse of dimensionality (COD) limits the current state-of-the-art ab initio propagation methods for non-relativistic quantum mechanics to relatively few particles. For stationary structure calculations, the coupled-cluster (CC) method overcomes the COD in the sense that the method scales polynomially with the number of particles while still being size-consistent and extensive. We generalize the CC method to the time domain while allowing the single-particle functions to vary in an adaptive fashion as well, thereby creating a highly flexible, polynomially scaling approximation to the time-dependent Schrödinger equation. The method inherits size-consistency and extensivity from the CC method. The method is dubbed orbital-adaptive time-dependent coupled-cluster, and is a hierarchy of approximations to the now standard multi-configurational time-dependent Hartree method for fermions. A numerical experiment is also given.
Interatomic Coulombic decay widths of helium trimer: Ab initio calculations
Kolorenč, Přemysl, E-mail: kolorenc@mbox.troja.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Institute of Theoretical Physics, V Holešovičkách 2, 180 00 Prague (Czech Republic); Sisourat, Nicolas [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France)
2015-12-14
We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.
Ab initio quantum dynamics using coupled-cluster
Kvaal, Simen
2012-01-01
The curse of dimensionality (COD) limits the current state-of-the-art {\\it ab initio} propagation methods for non-relativistic quantum mechanics to relatively few particles. For stationary structure calculations, the coupled-cluster (CC) method overcomes the COD in the sense that the method scales polynomially with the number of particles while still being size-consistent and extensive. We generalize the CC method to the time domain while allowing the single-particle functions to vary in an adaptive fashion as well, thereby creating a highly flexible, polynomially scaling approximation to the time-dependent Schr\\"odinger equation. The method inherits size-consistency and extensivity from the CC method. The method is dubbed orbital-adaptive time-dependent coupled-cluster (OATDCC), and is a hierarchy of approximations to the now standard multi-configurational time-dependent Hartree method for fermions. A numerical experiment is also given.
Ab Initio Calculation on Self-Assembled Base-Functionalized Single-Walled Carbon Nanotubes
SONG Chen; XIA Yue-Yuan; ZHAO Ming-Wen; LIU Xiang-Dong; LI Ji-Ling; LI Li-Juan; LI Feng; HUANG Bo-Da
2006-01-01
@@ We perform ab initio calculations on the self-assembled base-functionalized single-walled carbon nanotubes (SWNTs) which exhibit the quasi-1D ‘ladder’ structure. The optimized configuration in the ab initio calculation is very similar to that obtainedfrom molecular dynamics simulation. We also calculate the electronic structures of the self-assembled base-functionalized SWNTs that exhibit distinct difference from the single-branch base-functionalized SWNT with a localized state lying just below the Fermi level, which may result from the coupling interaction between the bases accompanied by the self-assembly behaviour.
Virtual synthesis of crystals using ab initio MD: Case study on LiFePO4
Mishra, S. B.; Nanda, B. R. K.
2017-05-01
Molecular dynamics simulation technique is fairly successful in studying the structural aspects and dynamics of fluids. Here we study the ability of ab initio molecular dynamics (ab initio MD) to carry out virtual experiments to synthesize new crystalline materials and to predict their structures. For this purpose the olivine phosphate LiFePO4 (LFPO) is used as an example. As transition metal oxides in general are stabilized with layered geometry, we carried out ab initio MD simulations over a hypothetical layered configuration consisting of alternate LiPO2 and FeO2 layers. With intermittent steps of electron minimization, the resulted equilibrium lattice consist of PO4 tetrahedra and distorted Fe-O complexes similar to the one observed in the experimental lattice.
Ab Initio Studies of Stratospheric Ozone Depletion Chemistry
Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.
Exploring the free energy surface using ab initio molecular dynamics
Samanta, Amit; Morales, Miguel A.; Schwegler, Eric
2016-04-01
Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti.
Recent achievements in ab initio modelling of liquid water
Khaliullin, Rustam Z
2013-01-01
The application of newly developed first-principle modeling techniques to liquid water deepens our understanding of the microscopic origins of its unusual macroscopic properties and behaviour. Here, we review two novel ab initio computational methods: second-generation Car-Parrinello molecular dynamics and decomposition analysis based on absolutely localized molecular orbitals. We show that these two methods in combination not only enable ab initio molecular dynamics simulations on previously inaccessible time and length scales, but also provide unprecedented insights into the nature of hydrogen bonding between water molecules. We discuss recent applications of these methods to water clusters and bulk water.
Use of ab initio quantum chemical methods in battery technology
Deiss, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-06-01
Ab initio quantum chemistry can nowadays predict physical and chemical properties of molecules and solids. An attempt should be made to use this tool more widely for predicting technologically favourable materials. To demonstrate the use of ab initio quantum chemistry in battery technology, the theoretical energy density (energy per volume of active electrode material) and specific energy (energy per mass of active electrode material) of a rechargeable lithium-ion battery consisting of a graphite electrode and a nickel oxide electrode has been calculated with this method. (author) 1 fig., 1 tab., 7 refs.
P-V Relation for Mercuric Calcogenides: Ab Initio Method
G. Misra
2011-01-01
Full Text Available Mercuric Calcogenides found many applications in electronic and optical devices as semiconducting materials. An equation of state provides useful information about the relationship between pressure (P, volume (V and temperature (T that helps to understand the behaviour of materials under the effect of high pressure and high temperature. The present paper sheds light on the electronic structure of Mercuric Calcogenides by simulating its electronic properties through ab initio method. This ab initio method is extended to derive the equation of state for Mercuric Calcogenides. The present equation of state has also been tested for the prediction of End Point. The computed results compare well with Quantum statistical data.
Trivacancy in silicon: A combined DLTS and ab-initio modeling study
Markevich, V. P.; Peaker, A. R.; Lastovskii, S. B.; Murin, L. I.; Coutinho, J.; Markevich, A. V.; Torres, V. J. B.; Briddon, P. R.; Dobaczewski, L.; Monakhov, E. V.; Svensson, B. G.
2009-12-01
Deep level transient spectroscopy and ab-initio modeling have been used for identification of energy levels and structure of trivacancy (V3) in Si. It is found that in the neutral charge state the V3 is bistable, with the "fourfold" configuration being lower in energy than the (1 1 0) planar configuration. V3 in the (1 1 0) planar configuration gives rise to two acceptor levels at Ec-0.36 eV and Ec-0.46 eV in the gap, while in the "fourfold" configuration the defect has trigonal symmetry and an acceptor level at Ec-0.075 eV.
Gas phase ion chemistry of coumarins: ab initio calculations used to ...
Gas phase ion chemistry of coumarins: ab initio calculations used to justify ... and quadrupole mass spectrometer (qMS) coupled to a gas chromatograph is ... Ab Initio calculations, Electron ionization, Positive chemical ionization, Negative ...
Ab initio molecular dynamics simulation of laser melting of silicon
Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.
1996-01-01
The method of ab initio molecular dynamics, based on finite temperature density functional theory, is used to simulate laser heating of crystal silicon. We have found that a high concentration of excited electrons dramatically weakens the covalent bond. As a result, the system undergoes a melting tr
Resonance and Aromaticity : An Ab Initio Valence Bond Approach
Rashid, Zahid; van Lenthe, Joop H.; Havenith, Remco W. A.
2012-01-01
Resonance energy is one of the criteria to measure aromaticity. The effect of the use of different orbital models is investigated in the calculated resonance energies of cyclic conjugated hydrocarbons within the framework of the ab initio Valence Bond Self-Consistent Field (VBSCF) method. The VB wav
Ab initio calculations and modelling of atomic cluster structure
Solov'yov, Ilia; Lyalin, Andrey G.; Greiner, Walter
2004-01-01
The optimized structure and electronic properties of small sodium and magnesium clusters have been investigated using it ab initio theoretical methods based on density-functional theory and post-Hartree-Fock many-body perturbation theory accounting for all electrons in the system. A new theoretical...
Ab initio study of alanine polypeptide chain twisting
Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.
2006-01-01
chains. These particular degrees of freedom are essential for the characterization of the proteins folding process. Calculations have been carried out within the ab initio theoretical framework based on the density functional theory and accounting for all the electrons in the system. We have determined...
Relaxation of Small Molecules: an ab initio Study
CAO Yi-Gang; JIAO Zheng-Kuan; A. Antons; K. Schroeder; S. Blügel2
2002-01-01
Using an ab initio total energy and force method, we have relaxed several group IV and group V elementalclusters, in detail the arsenic and antimony dimers, silicon, phosphorus, arsenic and antimony tetramers. The obtainedbond lengths and cohesive energies are more accurate than other calculating methods, and in excellent agreement withthe experimental results.
Ab initio interatomic potentials and the thermodynamic properties of fluids
Vlasiuk, Maryna; Sadus, Richard J.
2017-07-01
Monte Carlo simulations with accurate ab initio interatomic potentials are used to investigate the key thermodynamic properties of argon and krypton in both vapor and liquid phases. Data are reported for the isochoric and isobaric heat capacities, the Joule-Thomson coefficient, and the speed of sound calculated using various two-body interatomic potentials and different combinations of two-body plus three-body terms. The results are compared to either experimental or reference data at state points between the triple and critical points. Using accurate two-body ab initio potentials, combined with three-body interaction terms such as the Axilrod-Teller-Muto and Marcelli-Wang-Sadus potentials, yields systematic improvements to the accuracy of thermodynamic predictions. The effect of three-body interactions is to lower the isochoric and isobaric heat capacities and increase both the Joule-Thomson coefficient and speed of sound. The Marcelli-Wang-Sadus potential is a computationally inexpensive way to utilize accurate two-body ab initio potentials for the prediction of thermodynamic properties. In particular, it provides a very effective way of extending two-body ab initio potentials to liquid phase properties.
Bicanonical ab Initio Molecular Dynamics for Open Systems.
Frenzel, Johannes; Meyer, Bernd; Marx, Dominik
2017-08-08
Performing ab initio molecular dynamics simulations of open systems, where the chemical potential rather than the number of both nuclei and electrons is fixed, still is a challenge. Here, drawing on bicanonical sampling ideas introduced two decades ago by Swope and Andersen [ J. Chem. Phys. 1995 , 102 , 2851 - 2863 ] to calculate chemical potentials of liquids and solids, an ab initio simulation technique is devised, which introduces a fictitious dynamics of two superimposed but otherwise independent periodic systems including full electronic structure, such that either the chemical potential or the average fractional particle number of a specific chemical species can be kept constant. As proof of concept, we demonstrate that solvation free energies can be computed from these bicanonical ab initio simulations upon directly superimposing pure bulk water and the respective aqueous solution being the two limiting systems. The method is useful in many circumstances, for instance for studying heterogeneous catalytic processes taking place on surfaces where the chemical potential of reactants rather than their number is controlled and opens a pathway toward ab initio simulations at constant electrochemical potential.
Ab-Initio Theory of Charge Transport in Organic Crystals
Hannewald, K.; Bobbert, P. A.
2005-06-01
A theory of charge transport in organic crystals is presented. Using a Holstein-Peierls model, an explicit expression for the charge-carrier mobilities as a function of temperature is obtained. Calculating all material parameters from ab initio calculations, the theory is applied to oligo-acene crystals and a brief comparison to experiment is given.
Structural flexibility of DABCO. Ab initio and DFT benchmark study
Nizovtsev, Anton S.; Ryzhikov, Maxim R.; Kozlova, Svetlana G.
2017-01-01
The energy and structural parameters of 1,4-diazabicyclo[2.2.2]octane (DABCO) obtained by various DFT methods are examined versus ab initio and experimental data. The features of twisting potentials of DABCO and closely-related species (1-azabicyclo[2.2.2]octane and bicyclo[2.2.2]octane) are discussed in light of computational schemes applied.
Ab initio studies of niobium defects in uranium
Xiang, S; Huang, H; Hsiung, L
2007-06-01
Uranium (U), with the addition of small amount of niobium (Nb), is stainless. The Nb is fully miscible with the high temperature phase of U and tends to segregate upon cooling below 647 C. The starting point of segregation is the configuration of Nb substitutional or interstitial defects. Using density-functional-theory based ab initio calculations, the authors find that the formation energy of a single vacancy is 1.08 eV, that of Nb substitution is 0.59 eV, that of Nb interstitial at octahedral site is 1.58 eV, and that of Nb interstitial at tetrahedral site is 2.35 eV; all with reference to a reservoir of {gamma} phase U and pure Nb. The formation energy of Nb defects correlates with the local perturbation of electron distribution; higher formation energy to larger perturbation. Based on this study, Nb atoms thermodynamically prefer to occupy substitutional sites in {gamma} phase U, and they prefer to be in individual substitutional defects than clusters.
An efficient approach to ab initio Monte Carlo simulation.
Leiding, Jeff; Coe, Joshua D
2014-01-21
We present a Nested Markov chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, was used to substantially decorrelate configurations at which the potential of interest was evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure was maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature β(0)), which was otherwise unconstrained. Local density approximation results are presented for shocked states of argon at pressures from 4 to 60 GPa, where-depending on the quality of the reference system potential-acceptance probabilities were enhanced by factors of 1.2-28 relative to unoptimized NMC. The optimization procedure compensated strongly for reference potential shortcomings, as evidenced by significantly higher speedups when using a reference potential of lower quality. The efficiency of optimized NMC is shown to be competitive with that of standard ab initio molecular dynamics in the canonical ensemble.
Ab initio modelling of boron related defects in amorphous silicon
Oliveira, Tiago A.; Torres, Vitor J.B. [Department of Physics, University of Aveiro, Campus Santiago, 3810-193 Aveiro (Portugal)
2012-10-15
We have modeled boron related point defects in amorphous silicon, using an ab initio method, the Density functional theory-pseudopotential code Aimpro. The boron atoms were embedded in 64 atom amorphous silicon cubic supercells. The calculations were performed using boron defects in 15 different supercells. These supercells were developed using a modified Wooten-Winer-Weaire bond switching mechanism. In average, the properties of the 15 supercells agree with the observed radial and bond angle distributions, as well the electronic and vibrational density of states and Raman spectra. In amorphous silicon it has been very hard to find real self-interstitials, since for almost all the tested configurations, the amorphous lattice relaxes overall. We found that substitutional boron prefers to be 4-fold coordinated. We find also an intrinsic hole-trap in the non-doped amorphous lattice, which may explain the low efficiency of boron doping. The local vibrational modes are, in average, higher than the correspondent crystalline values (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Ab initio evaluations of the He solubility in liquid Li
Sedano, Luis A. [EURATOM-CIEMAT Assoc., Materials for Fusion Program, Bd. 43 P0.04, Avda. Complutense 22, 28040 Madrid (Spain)]. E-mail: luis.sedano@ciemat.es; Hassanein, Ahmed [Argonne Nat. Lab, 9700 South Class Av., Argonne, IL (United States)]. E-mail: hassanein@anl.gov; Sanz, Javier [ETSII-UNED, c/Juan del Rosal, 12, 28040 Madrid (E) (Spain)]. E-mail: jsanz@ind.UNED.es
2005-11-15
Modified embedding atom methods (MEAM) are developed to have predictions of the partial molar heat of solution (-H{sub s}) by direct simulation of metal cohesion, He-metal and He-He interaction. Transitions from crystalline Li to configurations, having the liquid Li structure's factors (h-bar (q)), are simulated ab initio. Once h-bar (q) reproduced, He atoms are added, one by one, to the Li system. Parallel lines for each case, with slopes clearly independent on the number of He atoms in the system, are obtained for energy versus pressure at given temperatures. Average differences between two adjacent parallels at zero pressure, once kinetic energy of the system discounted, represents the energy gained by an He atom when added to the Li system, related to the solution energy -H{sub s}. The molar excess entropy of gas in solution (S-bar {sub l}{sup ex}) is previously evaluated following diverse fundamental approaches: a 'thermodynamic liquid-hole' (TL-H) model for alkali liquids and a statistical-mechanics (Neff and McQuarrie's) model (SMM). Between 600 and 900 deg. C, a typical range of interest for the use of Li in fusion technology, the computed values for the (He) Henry's constant in Li range from 8x10{sup -14} to 10{sup -13} at. fr. Pa{sup -1}.
Ab initio modeling of decomposition in iron based alloys
Gorbatov, O. I.; Gornostyrev, Yu. N.; Korzhavyi, P. A.; Ruban, A. V.
2016-12-01
This paper reviews recent progress in the field of ab initio based simulations of structure and properties of Fe-based alloys. We focus on thermodynamics of these alloys, their decomposition kinetics, and microstructure formation taking into account disorder of magnetic moments with temperature. We review modern theoretical tools which allow a consistent description of the electronic structure and energetics of random alloys with local magnetic moments that become totally or partially disordered when temperature increases. This approach gives a basis for an accurate finite-temperature description of alloys by calculating all the relevant contributions to the Gibbs energy from first-principles, including a configurational part as well as terms due to electronic, vibrational, and magnetic excitations. Applications of these theoretical approaches to the calculations of thermodynamics parameters at elevated temperatures (solution energies and effective interatomic interactions) are discussed including atomistic modeling of decomposition/clustering in Fe-based alloys. It provides a solid basis for understanding experimental data and for developing new steels for modern applications. The precipitation in Fe-Cu based alloys, the decomposition in Fe-Cr, and the short-range order formation in iron alloys with s-p elements are considered as examples.
Ab initio thermodynamic results for warm dense matter
Bonitz, Michael
2016-10-01
Warm dense matter (WDM) - an exotic state where electrons are quantum degenerate and ions may be strongly correlated - is ubiquitous in dense astrophysical plasmas and highly compressed laboratory systems including inertial fusion. Accurate theoretical predictions require precision thermodynamic data for the electron gas at high density and finite temperature around the Fermi temperature. First such data have been obtained by restricted path integral Monte Carlo (restricted PIMC) simulations and transformed into analytical fits for the free energy. Such results are also key input for novel finite temperature density functional theory. However, the RPIMC data of Ref. 1 are limited to moderate densities, and even there turned out to be surprisingly inaccurate, which is a consequence of the fermion sign problem. These problems were recently overcome by the development of alternative QMC approaches in Kiel (configuration PIMC and permutation blocking PIMC) and Imperial College (Density matrix QMC). The three methods have their strengths and limitations in complementary parameter regions and provide highly accurate thermodynamic data for the electronic contributions in WDM. While the original results were obtained for small particle numbers, recently accurate finite size corrections were derived allowing to compute ab initio thermodynamic data with an unprecedented accuracy of better than 0.3 percent. This provides the final step for the use as benchmark data for experiments and models of Warm dense matter. Co-authors: T. Schoof, S. Groth, T. Dornheim, F. D. Malone, M. Foulkes, and T. Sjostroem, Funded by: DFG via SFB-TR24 and project BO1366-10.
Ventelon, L. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DANS/DMN/SRMP), 91 - Gif-sur-Yvette (France)
2008-07-01
In the framework of the multi scale simulation of metals and alloys plasticity, the aim of this study is to develop a methodology of ab initio dislocations study and to apply it to the [111] screw dislocation in the bc iron. (A.L.B.)
Serine Proteases an Ab Initio Molecular Dynamics Study
De Santis, L
1999-01-01
In serine proteases (SP's), the H-bond between His-57 and Asp-102, and that between Gly-193 and the transition state intermediate play a crucial role for enzymatic function. To shed light on the nature of these interactions, we have carried out ab initio molecular dynamics simulations on complexes representing adducts between the reaction intermediate and elastase (one protein belonging to the SP family). Our calculations indicate the presence of a low--barrier H-bond between His-57 and Asp-102, in complete agreement with NMR experiments on enzyme--transition state analog complexes. Comparison with an ab initio molecular dynamics simulation on a model of the substrate--enzyme adduct indicates that the Gly-193--induced strong stabilization of the intermediate is accomplished by charge/dipole interactions and not by H-bonding as previously suggested. Inclusion of the protein electric field in the calculations does not affect significantly the charge distribution.
Spin-orbit decomposition of ab initio wavefunctions
Johnson, Calvin W
2014-01-01
Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum $j$, leading to $j$-$j$ coupling, phenomenological models suggested decades ago that for $0p$-shell nuclides a simpler picture can be realized via coupling of total spin $S$ and total orbital angular momentum $L$. I revisit this idea with large-basis, no-core shell model (NCSM) calculations using modern \\textit{ab initio} two-body interactions, and dissect the resulting wavefunctions into their component $L$- and $S$-components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly fifty years and six orders of magnitude in basis dimensions. I suggest $L$-$S$ may be a useful tool for analyzing \\textit{ab initio} wavefunctions of light nuclei, for example in the case of rotational bands.
Spin-orbit decomposition of ab initio nuclear wave functions
Johnson, Calvin W.
2015-03-01
Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum j , leading to j -j coupling, decades ago phenomenological models suggested that a simpler picture for 0 p -shell nuclides can be realized via coupling of the total spin S and total orbital angular momentum L . I revisit this idea with large-basis, no-core shell-model calculations using modern ab initio two-body interactions and dissect the resulting wave functions into their component L - and S -components. Remarkably, there is broad agreement with calculations using the phenomenological Cohen-Kurath forces, despite a gap of nearly 50 years and six orders of magnitude in basis dimensions. I suggest that L -S decomposition may be a useful tool for analyzing ab initio wave functions of light nuclei, for example, in the case of rotational bands.
High Level Ab Initio Kinetics as a Tool for Astrochemistry
Klippenstein, Stephen
2015-05-01
We will survey the application of ab initio theoretical kinetics to reactions of importance to astrochemistry. Illustrative examples will be taken from our calculations for (i) interstellar chemistry, (ii) Titan's atmospheric chemistry, and (iii) the chemistry of extrasolar giant planets. The accuracy of various aspects of the calculations will be summarized including (i) the underlying ab initio electronic structure calculations, (ii) the treatment of the high pressure recombination process, and (iii) the treatment of the pressure dependence of the kinetics. The applications will consider the chemistry of phosphorous on giant planets, the kinetics of water dimerization, the chemistry of nitrogen on Titan's atmosphere, as well as various reactions of interstellar chemistry interest such as the recombination of OH with H, and O(3P) reacting with C2H5, CH2, and CCS. Chemical Sciences and Engineering Division.
Toward the Ab-initio Description of Medium Mass Nuclei
Barbieri, C; Soma, V; Duguet, T; Navratil, P
2012-01-01
As ab-initio calculations of atomic nuclei enter the A=40-100 mass range, a great challenge is how to approach the vast majority of open-shell (degenerate) isotopes. We add realistic three-nucleon interactions to the state of the art many-body Green's function theory of closed-shells, and find that physics of neutron driplines is reproduced with very good quality. Further, we introduce the Gorkov formalism to extend ab-initio theory to semi-magic, fully open-shell, isotopes. Proof-of-principle calculations for Ca-44 and Ni-74 confirm that this approach is indeed feasible. Combining these two advances (open-shells and three-nucleon interactions) requires longer, technical, work but it is otherwise within reach.
Ab initio theories for light nuclei and neutron stars
Gezerlis, Alexandros
2016-09-01
In this talk I will touch upon several features of modern ab initio low-energy nuclear theory. I will start by discussing what ``ab initio'' means in this context. Specifically, I will spend some time going over nucleon-nucleon and three-nucleon interactions and their connections with the underlying theory of Quantum Chromodynamics. I will then show how these interactions are used to describe light nuclei using essentially exact few-body methods. I will then discuss heavier systems, especially those of astrophysical relevance, as well as the methods used to tackle them. This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Foundation for Innovation (CFI).
Ab initio calculation of tight-binding parameters
McMahan, A.K.; Klepeis, J.E.
1997-12-01
We calculate ab initio values of tight-binding parameters for the f- electron metal Ce and various phases of Si, from local-density functional one-electron Hamiltonian and overlap matrix elements. Our approach allows us to unambiguously test the validity of the common minimal basis and two-center approximations as well as to determine the degree of transferability of both nonorthogonal and orthogonal hopping parameters in the cases considered.
Uniaxial Phase Transition in Si : Ab initio Calculations
Cheng, C.
2002-01-01
Based on a previously proposed thermodynamic analysis, we study the relative stabilities of five Si phases under uniaxial compression using ab initio methods. The five phases are diamond, beta-tin, sh, sc, and hcp structures. The possible phase-transition patterns were investigated by considering the phase transitions between any two chosen phases of the five phases. By analyzing the different conributions to the relative pahse stability, we identified the most important factors in reducing t...
Ab Initio-Based Predictions of Hydrocarbon Combustion Chemistry
2015-07-15
144306 (2010)] and the cubic -‐ spline -‐fitted PES reported by Xu, Xie, Zhang, Lin, and Guo...SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 15. SUBJECT TERMS b ...accurate global PESs and for direct dynamics simulations using interpolating moving least squares (IMLS) that guarantee high fidelity to ab initio data. A
GAUSSIAN 76: An ab initio Molecular Orbital Program
Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.
1978-01-01
Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.
Nuclear forces and ab initio calculations of atomic nuclei
Meißner, Ulf-G.
2014-01-01
Nuclear forces and the nuclear many-body problem have been some of Gerry Brown's main topics in his so productive life as a theoretical physicist. In this talk, I outline how Gerry's work laid the foundations of the modern theory of nuclear forces and ab initio calculations of atomic nuclei. I also present some recent developments obtained in the framework of nuclear lattice simulations.
Thermochemical data for CVD modeling from ab initio calculations
Ho, P. [Sandia National Labs., Albuquerque, NM (United States); Melius, C.F. [Sandia National Labs., Livermore, CA (United States)
1993-12-31
Ab initio electronic-structure calculations are combined with empirical bond-additivity corrections to yield thermochemical properties of gas-phase molecules. A self-consistent set of heats of formation for molecules in the Si-H, Si-H-Cl, Si-H-F, Si-N-H and Si-N-H-F systems is presented, along with preliminary values for some Si-O-C-H species.
{\\it Ab initio} nuclear structure - the large sparse matrix eigenvalue problem
Vary, James P; Ng, Esmond; Yang, Chao; Sosonkina, Masha
2009-01-01
The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several {\\it ab initio} methods have now emerged that provide nearly exact solutions for some nuclear properties. The {\\it ab initio} no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds $10^{10}$ and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving t...
Ab initio calculations on twisted graphene/hBN: Electronic structure and STM image simulation
Correa, J. D.; Cisternas, E.
2016-09-01
By performing ab initio calculations we obtained theoretical scanning tunneling microscopy (STM) images and studied the electronic properties of graphene on a hexagonal boron-nitrite (hBN) layer. Three different stack configurations and four twisted angles were considered. All calculations were performed using density functional theory, including van der Waals interactions as implemented in the SIESTA ab initio package. Our results show that the electronic structure of graphene is preserved, although some small changes are induced by the interaction with the hBN layer, particularly in the total density of states at 1.5 eV under the Fermi level. When layers present a twisted angle, the density of states shows several van Hove singularities under the Fermi level, which are associated to moiré patterns observed in theoretical STM images.
McKemmish, Laura K; Tennyson, Jonathan
2016-01-01
Accurate knowledge of the rovibronic near-infrared and visible spectra of vanadium monoxide (VO) is very important for studies of cool stellar and hot planetary atmospheres. Here, the required ab initio dipole moment and spin-orbit coupling curves for VO are produced. This data forms the basis of a new VO line list considering 13 different electronic states and containing over 277 million transitions. Open shell transition, metal diatomics are challenging species to model through ab initio quantum mechanics due to the large number of low-lying electronic states, significant spin-orbit coupling and strong static and dynamic electron correlation. Multi-reference configuration interaction methodologies using orbitals from a complete active space self-consistent-field (CASSCF) calculation are the standard technique for these systems. We use different state-specific or minimal-state CASSCF orbitals for each electronic state to maximise the calculation accuracy. The off-diagonal dipole moment controls the intensity...
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics.
Makhov, Dmitry V; Glover, William J; Martinez, Todd J; Shalashilin, Dmitrii V
2014-08-07
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.
Ab initio molecular dynamics using hybrid density functionals
Guidon, Manuel; Schiffmann, Florian; Hutter, Jürg; Vandevondele, Joost
2008-06-01
Ab initio molecular dynamics simulations with hybrid density functionals have so far found little application due to their computational cost. In this work, an implementation of the Hartree-Fock exchange is presented that is specifically targeted at ab initio molecular dynamics simulations of medium sized systems. We demonstrate that our implementation, which is available as part of the CP2K/Quickstep program, is robust and efficient. Several prescreening techniques lead to a linear scaling cost for integral evaluation and storage. Integral compression techniques allow for in-core calculations on systems containing several thousand basis functions. The massively parallel implementation respects integral symmetry and scales up to hundreds of CPUs using a dynamic load balancing scheme. A time-reversible multiple time step scheme, exploiting the difference in computational efficiency between hybrid and local functionals, brings further time savings. With extensive simulations of liquid water, we demonstrate the ability to perform, for several tens of picoseconds, ab initio molecular dynamics based on hybrid functionals of systems in the condensed phase containing a few thousand Gaussian basis functions.
Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes
Draayer, Jerry P. [Louisiana State Univ., Baton Rouge, LA (United States)
2014-09-28
We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics
Makhov, Dmitry V.; Shalashilin, Dmitrii V. [Department of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom); Glover, William J.; Martinez, Todd J. [Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)
2014-08-07
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.
Ab initio calculation of the spectrum and structure of $^{16}$O
Epelbaum, Evgeny; Lähde, Timo A; Lee, Dean; Meißner, Ulf-G; Rupak, Gautam
2013-01-01
We present ab initio lattice calculations of the low-energy even-parity states of $^{16}$O using chiral nuclear effective field theory. We find good agreement with the empirical energy spectrum, and with the electromagnetic properties and transition rates. For the ground state, we find that the nucleons are arranged in a tetrahedral configuration of alpha clusters. For the first excited spin-0 state, we find that the predominant structure is a square configuration of alpha clusters, with rotational excitations that include the first spin-2 state.
All-electron ab initio investigations of the electronic states of the NiC molecule
Shim, Irene; Gingerich, Karl. A.
1999-01-01
momenta of F-4(g) Ni+ and S-4(u) C-. The predicted ground state, (1)Sigma(+), is well separated from the dense manifold of excited states by an energy gap of 6465 cm(-1). Multi-reference configuration-interaction (MRCI) calculations result in r(e) = 1.621 Angstrom and omega(e) = 874 cm(-1) agreeing well......The low-lying electronic states of NiC are investigated by all-electron ab initio multi-configuration self-consistent-field (CASSCF) calculations including relativistic corrections. The electronic structure of NiC is interpreted as perturbed antiferromagnetic couplings of the localized angular...
Ab initio studies of ionization potentials of hydrated hydroxide and hydronium
Swartz, Charles W
2013-01-01
The ionization potential distributions of hydrated hydroxide and hydronium are computed with many-body approach for electron excitations with configurations generated by {\\it ab initio} molecular dynamics. The experimental features are well reproduced and found to be closely related to the molecular excitations. In the stable configurations, the ionization potential is mainly perturbed by water molecules within the first solvation shell. On the other hand, electron excitation is delocalized on both proton receiving and donating complex during proton transfer, which shifts the excitation energies and broadens the spectra for both hydrated ions.
Pham, Thi Nu; Ono, Shota; Ohno, Kaoru
2016-04-01
Doing ab initio molecular dynamics simulations, we demonstrate a possibility of hydrogenation of carbon monoxide producing methanol step by step. At first, the hydrogen atom reacts with the carbon monoxide molecule at the excited state forming the formyl radical. Formaldehyde was formed after adding one more hydrogen atom to the system. Finally, absorption of two hydrogen atoms to formaldehyde produces methanol molecule. This study is performed by using the all-electron mixed basis approach based on the time dependent density functional theory within the adiabatic local density approximation for an electronic ground-state configuration and the one-shot GW approximation for an electronic excited state configuration.
Bernard, St
1998-12-31
The quest for metallic hydrogen is a major goal for both theoretical and experimental condensed matter physics. Hydrogen and deuterium have been compressed up to 200 GPa in diamond anvil cells, without any clear evidence for a metallic behaviour. Loubeyere has recently suggested that hydrogen could metallize, at pressures within experimental range, in a new Van der Waals compound: Ar(H{sub 2}){sub 2} which is characterized at ambient pressure by an open and anisotropic sublattice of hydrogen molecules, stabilized by an argon skeleton. This thesis deals with a detailed ab initio investigation, by Car-Parrinello molecular dynamics methods, of the evolution under pressure of this compound. In a last chapter, we go to much higher pressures and temperatures, in order to compare orbital and orbital free ab initio methods for the dense hydrogen plasma. (author) 109 refs.
AB initio calculations of the structure and stability of the non-rigid LiBF 4 molecule
Zakzhevzskii, V. G.; Boldyrev, A. I.; Charkin, O. P.
1980-07-01
Ab initio calculations of the potential energy surface, equilibrium geometry and energetic stability of the non-rigid LiBF4 molecule have been performed using the basis sets of Roos and Siegbahn, and Huzinaga and Dunning in a doublezeta contraction. The results are compared with similar ab initio data for LiBH 4, LiAlH 4, LiBeH -4, LiCH +4, Li 2 F 2, and LiBeF 3 ‡The geometry of the most disadvantageous configuration (m) was not optimized completely
Trivacancy in silicon: A combined DLTS and ab-initio modeling study
Markevich, V.P., E-mail: V.Markevich@manchester.ac.u [University of Manchester, Manchester M60 1QD (United Kingdom); Peaker, A.R. [University of Manchester, Manchester M60 1QD (United Kingdom); Lastovskii, S.B.; Murin, L.I. [Scientific-Practical Materials Research Center of NAS of Belarus, Minsk 220072 (Belarus); Coutinho, J.; Markevich, A.V.; Torres, V.J.B. [Department of Physics and I3N, University of Aveiro, 3810-193 Aveiro (Portugal); Briddon, P.R. [University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU (United Kingdom); Dobaczewski, L. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Monakhov, E.V.; Svensson, B.G. [Department of Physics, Oslo University, 0316 Oslo (Norway)
2009-12-15
Deep level transient spectroscopy and ab-initio modeling have been used for identification of energy levels and structure of trivacancy (V{sub 3}) in Si. It is found that in the neutral charge state the V{sub 3} is bistable, with the 'fourfold' configuration being lower in energy than the (1 1 0) planar configuration. V{sub 3} in the (1 1 0) planar configuration gives rise to two acceptor levels at E{sub c}-0.36 eV and E{sub c}-0.46 eV in the gap, while in the 'fourfold' configuration the defect has trigonal symmetry and an acceptor level at E{sub c}-0.075 eV.
Ab initio modeling of small proteins by iterative TASSER simulations
Zhang Yang
2007-05-01
Full Text Available Abstract Background Predicting 3-dimensional protein structures from amino-acid sequences is an important unsolved problem in computational structural biology. The problem becomes relatively easier if close homologous proteins have been solved, as high-resolution models can be built by aligning target sequences to the solved homologous structures. However, for sequences without similar folds in the Protein Data Bank (PDB library, the models have to be predicted from scratch. Progress in the ab initio structure modeling is slow. The aim of this study was to extend the TASSER (threading/assembly/refinement method for the ab initio modeling and examine systemically its ability to fold small single-domain proteins. Results We developed I-TASSER by iteratively implementing the TASSER method, which is used in the folding test of three benchmarks of small proteins. First, data on 16 small proteins (α-root mean square deviation (RMSD of 3.8Å, with 6 of them having a Cα-RMSD α-RMSD α-RMSD of the I-TASSER models was 3.9Å, whereas it was 5.9Å using TOUCHSTONE-II software. Finally, 20 non-homologous small proteins (α-RMSD of 3.9Å was obtained for the third benchmark, with seven cases having a Cα-RMSD Conclusion Our simulation results show that I-TASSER can consistently predict the correct folds and sometimes high-resolution models for small single-domain proteins. Compared with other ab initio modeling methods such as ROSETTA and TOUCHSTONE II, the average performance of I-TASSER is either much better or is similar within a lower computational time. These data, together with the significant performance of automated I-TASSER server (the Zhang-Server in the 'free modeling' section of the recent Critical Assessment of Structure Prediction (CASP7 experiment, demonstrate new progresses in automated ab initio model generation. The I-TASSER server is freely available for academic users http://zhang.bioinformatics.ku.edu/I-TASSER.
Accelerating Ab Initio Nuclear Physics Calculations with GPUs
Potter, Hugh; Maris, Pieter; Sosonkina, Masha; Vary, James; Binder, Sven; Calci, Angelo; Langhammer, Joachim; Roth, Robert; Çatalyürek, Ümit; Saule, Erik
2014-01-01
This paper describes some applications of GPU acceleration in ab initio nuclear structure calculations. Specifically, we discuss GPU acceleration of the software package MFDn, a parallel nuclear structure eigensolver. We modify the matrix construction stage to run partly on the GPU. On the Titan supercomputer at the Oak Ridge Leadership Computing Facility, this produces a speedup of approximately 2.2x - 2.7x for the matrix construction stage and 1.2x - 1.4x for the entire run.
Ab initio electronic properties of dual phosphorus monolayers in silicon
Drumm, Daniel W.; Per, Manolo C.; Budi, Akin
2014-01-01
In the midst of the epitaxial circuitry revolution in silicon technology, we look ahead to the next paradigm shift: effective use of the third dimension - in particular, its combination with epitaxial technology. We perform ab initio calculations of atomically thin epitaxial bilayers in silicon......, investigating the fundamental electronic properties of monolayer pairs. Quantitative band splittings and the electronic density are presented, along with effects of the layers’ relative alignment and comments on disordered systems, and for the first time, the effective electronic widths of such device...
Spin-orbit decomposition of ab initio wavefunctions
Johnson, Calvin W.
2014-01-01
Although the modern shell-model picture of atomic nuclei is built from single-particle orbits with good total angular momentum $j$, leading to $j$-$j$ coupling, phenomenological models suggested decades ago that for $0p$-shell nuclides a simpler picture can be realized via coupling of total spin $S$ and total orbital angular momentum $L$. I revisit this idea with large-basis, no-core shell model (NCSM) calculations using modern \\textit{ab initio} two-body interactions, and dissect the resulti...
Tailoring magnetoresistance at the atomic level: An ab initio study
Tao, Kun
2012-01-05
The possibility of manipulating the tunneling magnetoresistance (TMR) of antiferromagnetic nanostructures is predicted in the framework of ab initio calculations. By the example of a junction composed of an antiferromagnetic dimer and a spin-polarized scanning tunneling microscopy tip we show that the TMR can be tuned and even reversed in sign by lateral and vertical movements of the tip. Moreover, our finite-bias calculations demonstrate that the magnitude and the sign of the TMR can also be tuned by an external voltage. © 2012 American Physical Society.
Ab initio structure determination via powder X-ray diffraction
Digamber G Porob; T N Guru Row
2001-10-01
Structure determination by powder X-ray diffraction data has gone through a recent surge since it has become important to get to the structural information of materials which do not yield good quality single crystals. Although the method of structure completion when once the starting model is provided is facile through the Rietveld refinement technique, the structure solution ab initio os still not push-button technology. In this article a survey of the recent development in this area is provided with an illustration of the structure determination of -NaBi3V2O10.
Hydrogen Desorption from Mg Hydride: An Ab Initio Study
Simone Giusepponi
2012-07-01
Full Text Available Hydrogen desorption from hydride matrix is still an open field of research. By means of accurate first-principle molecular dynamics (MD simulations an Mg–MgH2 interface is selected, studied and characterized. Electronic structure calculations are used to determine the equilibrium properties and the behavior of the surfaces in terms of structural deformations and total energy considerations. Furthermore, extensive ab-initio molecular dynamics simulations are performed at several temperatures to characterize the desorption process at the interface. The numerical model successfully reproduces the experimental desorption temperature for the hydride.
Ab-initio study of transition metal hydrides
Sharma, Ramesh [Dept. of Physics, Feroze Gandhi Insititute of Engineering and Technology, Raebareli-229001 (India); Shukla, Seema, E-mail: sharma.yamini62@gmail.com; Dwivedi, Shalini, E-mail: sharma.yamini62@gmail.com; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com [Theoretical Condensed Matter Physics Laboratory, Dept. of Physics Feroze Gandhi College, Raebareli-229001 (India)
2014-04-24
We have performed ab initio self consistent calculations based on Full potential linearized augmented plane wave (FP-LAPW) method to investigate the optical and thermal properties of yttrium hydrides. From the band structure and density of states, the optical absorption spectra and specific heats have been calculated. The band structure of Yttrium metal changes dramatically due to hybridization of Y sp orbitals with H s orbitals and there is a net charge transfer from metal to hydrogen site. The electrical resistivity and specific heats of yttrium hydrides are lowered but the thermal conductivity is slightly enhanced due to increase in scattering from hydrogen sites.
Morphing ab initio potential energy curve of beryllium monohydride
Špirko, Vladimír
2016-12-01
Effective (mass-dependent) potential energy curves of the ground electronic states of 9BeH, 9BeD, and 9BeT are constructed by morphing a very accurate MR-ACPF ab initio potential of Koput (2011) within the framework of the reduced potential energy curve approach of Jenč (1983). The morphing is performed by fitting the RPC parameters to available experimental ro-vibrational data. The resulting potential energy curves provide a fairly quantitative reproduction of the fitted data. This allows for a reliable prediction of the so-far unobserved molecular states in terms of only a small number of fitting parameters.
Ab initio adiabatic and quasidiabatic potential energy surfaces of H++ CN system
Bhargava Anusuri; Sanjay Kumar
2016-02-01
We present restricted geometry (collinear and perpendicular approaches of proton) ab initio three dimensional potential energy surfaces for H++ CN system. The calculations were performed at the internally contracted multi-reference configuration interaction level of theory using Dunning’s correlation consistent polarized valence triple zeta basis set. Adiabatic and quasidiabatic surfaces have been computed for the ground and the first excited electronic states. Nonadiabatic effects arising from radial coupling have been analyzed in terms of nonadiabatic coupling matrix elements and coupling potentials.
Simple synthesis, structure and ab initio study of 1,4-benzodiazepine-2,5-diones
Jadidi, Khosrow; Aryan, Reza; Mehrdad, Morteza; Lügger, Thomas; Ekkehardt Hahn, F.; Ng, Seik Weng
2004-04-01
A simple procedure for the synthesis of pyrido[2,1-c][1,4] benzodiazepine-6,12-dione ( 1) and 1,4-benzodiazepine-2,5-diones ( 2a- 2d), using microwave irradiation and/or conventional heating is reported. The configuration of 1 was determined by single-crystal X-ray diffraction. A detailed ab initio B3LYP/6-31G* calculation of structural parameters and substituent effects on ring inversion barriers (Δ G#) and also free energy differences (Δ G0) for benzodiazepines are reported.
Exploring proton transfer in 1,2,3-triazole-triazolium dimer with ab initio method
Li, Ailin; Yan, Tianying; Shen, Panwen [Department of Material Chemistry, Institute of New Energy Material Chemistry, Nankai University, Tianjin, 300071 (China)
2011-02-01
Ab initio calculations are utilized to search for transition state structures for proton transfer in the 1,2,3-triazole-triazolium complexes on the basis of optimized dimers. The result suggests six transition state structures for single proton transfer in the complexes, most of which are coplanar. The energy barriers, between different stable and transition states structures with zero point energy (ZPE) corrections, show that proton transfer occurs at room temperature with coplanar configuration that has the lowest energy. The results clearly support that reorientation gives triazole flexibility for proton transfer. (author)
Bernard, S.; Jollet, F.; Jomard, G.; Siberchicot, B.; Torrent, M.; Zerah, G.; Amadon, B.; Bouchet, J.; Richard, N.; Robert, G. [CEA Bruyeres-le-Chatel, 91 (France)
2005-07-01
The determination of equations of states of heavy metals through ab initio calculation, i.e. without any adjustable parameter, allows to access to pressure and temperature thermodynamic conditions sometimes inaccessible to experiment. To perform such calculations, density functional theory (DFT) is a good starting point: when electronic densities are homogeneous enough, the local density approximation (LDA) remarkably accounts for thermodynamic properties of heavy metals, such as tantalum, or the light actinides, as well for static properties - equilibrium volume, elastic constants - as for dynamical quantities like phonon spectra. For heavier elements, like neptunium or plutonium, relativistic effects and strong electronic interactions must be taken into account, which requires more sophisticated theoretical approaches. (authors)
Ab initio dynamics of the cytochrome P450 hydroxylation reaction
Elenewski, Justin E.; Hackett, John C, E-mail: jchackett@vcu.edu [Department of Physiology and Biophysics and The Massey Cancer Center, School of Medicine, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23219-1540 (United States)
2015-02-14
The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.
Unified ab initio approaches to nuclear structure and reactions
Navratil, Petr; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo
2016-01-01
The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in {\\em ab initio} nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches - built upon the No-Core Shell Model - that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the $^6$He halo nucleus, of five- and six...
Finite Elements in Ab Initio Electronic-Structure Calulations
Pask, J. E.; Sterne, P. A.
Over the course of the past two decades, the density functional theory (DFT) (see e.g., [1]) of Hohenberg, Kohn, and Sham has proven to be an accurate and reliable basis for the understanding and prediction of a wide range of materials properties from first principles (ab initio), with no experimental input or empirical parameters. However, the solution of the Kohn-Sham equations of DFT is a formidable task and this has limited the range of physical systems which can be investigated by such rigorous, quantum mechanical means. In order to extend the interpretive and predictive power of such quantum mechanical theories further into the domain of "real materials", involving nonstoichiometric deviations, defects, grain boundaries, surfaces, interfaces, and the like; robust and efficient methods for the solution of the associated quantum mechanical equations are critical. The finite-element (FE) method (see e.g., [2]) is a general method for the solution of partial differential and integral equations which has found wide application in diverse fields ranging from particle physics to civil engineering. Here, we discuss its application to large-scale ab initio electronic-structure calculations.
Ab initio calculations of reactions of light nuclei
Hupin, Guillaume; Quaglioni, Sofia; Navrátil, Petr
2017-09-01
An ab initio (i.e., from first principles) theoretical framework capable of providing a unified description of the structure and low-energy reaction properties of light nuclei is desirable as a support tool for accurate evaluations of crucial reaction data for nuclear astrophysics, fusion-energy research, and other applications. We present an efficient many-body approach to nuclear bound and scattering states alike, known as the ab initio no-core shell model with continuum. In this approach, square-integrable energy eigenstates of the A-nucleon system are coupled to (A-A)+A target-plus-projectile wave functions in the spirit of the resonating group method to obtain an efficient description of the many-body nuclear dynamics both at short and medium distances and at long ranges. We show that predictive results for nucleon and deuterium scattering on 4He nuclei can be obtained from the direct solution of the Schröedinger equation with modern nuclear potentials.
Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates
Chaka, Anne M.; Felmy, Andrew R.
2014-03-28
An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.
Ab initio thermodynamic model for magnesium carbonates and hydrates.
Chaka, Anne M; Felmy, Andrew R
2014-09-04
An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.
Liu, Hanchao; Wang, Yimin; Bowman, Joel M. [Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States)
2015-05-21
The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.
Liu, Hanchao; Wang, Yimin; Bowman, Joel M
2015-05-21
The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm(-1) is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.
Ohta, Yasuhito; Ohta, Koji; Kinugawa, Kenichi
2004-01-01
An ab initio centroid molecular dynamics (CMD) method is developed by combining the CMD method with the ab initio molecular orbital method. The ab initio CMD method is applied to vibrational dynamics of diatomic molecules, H2 and HF. For the H2 molecule, the temperature dependence of the peak frequency of the vibrational spectral density is investigated. The results are compared with those obtained by the ab initio classical molecular dynamics method and exact quantum mechanical treatment. It is shown that the vibrational frequency obtained from the ab initio CMD approaches the exact first excitation frequency as the temperature lowers. For the HF molecule, the position autocorrelation function is also analyzed in detail. The present CMD method is shown to well reproduce the exact quantum result for the information on the vibrational properties of the system.
Ab initio study of alanine polypeptide chains twisting
Solovyov, I A; Solovyov, A V; Yakubovitch, A V; Greiner, Walter; Solov'yov, Andrey V.; Solov'yov, Ilia A.; Yakubovitch, Alexander V.
2005-01-01
We have investigated the potential energy surfaces for alanine chains consisting of three and six amino acids. For these molecules we have calculated potential energy surfaces as a function of the Ramachandran angles Phi and Psi, which are widely used for the characterization of the polypeptide chains. These particular degrees of freedom are essential for the characterization of proteins folding process. Calculations have been carried out within ab initio theoretical framework based on the density functional theory and accounting for all the electrons in the system. We have determined stable conformations and calculated the energy barriers for transitions between them. Using a thermodynamic approach, we have estimated the times of characteristic transitions between these conformations. The results of our calculations have been compared with those obtained by other theoretical methods and with the available experimental data extracted from the Protein Data Base. This comparison demonstrates a reasonable corres...
Ab initio Molecular Dynamics Study on Small Carbon Nanotubes
叶林晖; 刘邦贵; 王鼎盛
2001-01-01
Ab initio molecular dynamics simulations are performed on small single wall nanotubes. By structural relaxation,the equilibrium C-C bond lengths and bond angles are determined. Our result shows that for both zigzag and armchair nanotubes there are two nonequivalent bond lengths. One bond stretches from that of the graphene sheet, while the other shrinks. Small variations on bond angles are also shown. Energy bands are calculated for the optimized structures. It is found that the intrinsic curvature of the very small nanotube greatly modifies the energy band which can no longer be well described in the tight-binding zone-folding picture. In our calculation very small nanotubes are metallic. The energy per atom fits quite well with the relation of E(R) = E0 + f/R2 even for the extreme small radius. The implications of the results on the properties of small nanotubes are discussed.
High-throughput ab-initio dilute solute diffusion database
Wu, Henry; Mayeshiba, Tam; Morgan, Dane
2016-07-01
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.
Ab initio dynamical exchange interactions in frustrated antiferromagnets
Simoni, Jacopo; Stamenova, Maria; Sanvito, Stefano
2017-08-01
The ultrafast response to an optical pulse excitation of the spin-spin exchange interaction in transition metal antiferromagnets is studied within the framework of the time-dependent spin-density functional theory. We propose a formulation for the full dynamical exchange interaction, which is nonlocal in space, and it is derived starting from ab initio arguments. Then, we investigate the effect of the laser pulse on the onset of the dynamical process. It is found that we can distinguish two types of excitations, both activated immediately after the action of the laser pulse. While the first one can be associated to a Stoner-like excitation and involves the transfer of spin from one site to another, the second one is related to the ultrafast modification of a Heisenberg-like exchange interaction and can trigger the formation of spin waves in the first few hundred femtoseconds of the time evolution.
Ab initio investigation of the mechanical properties of copper
Liu Yue-Lin; Gui Li-Jiang; Jin Shuo
2012-01-01
Employing the ab initio total energy method based on the density functional theory with the generalized gradient approximation,we have systematically investigated the theoretical mechanical properties of copper (Cu).The theoretical tensile strengths are calculated to be 25.3 GPa,5.9 GPa,and 37.6 GPa for the fcc Cu single crystal in the [001],[110],and [111] directions,respectively.Among the three directions,the [110] direction is the weakest one due to the occurrence of structure transition at the lower strain and the weakest interaction of atoms between the (110) planes,while the [111] direction is the strongest direction because of the strongest interaction of atoms between the (111) planes.In terms of the elastic constants of Cu single crystal,we also estimate some mechanical quantities of polycrystalline Cu,including bulk modulus B,shear modulus G,Young's modulus Ep,and Poisson's ratio v.
Ab initio and kinetic modeling studies of formic acid oxidation
Marshall, Paul; Glarborg, Peter
2015-01-01
A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism...... as the fate of HOCO, determines the oxidation rate of formic acid. At lower temperatures HO2, formed from HOCO + O2, is an important chain carrier and modeling predictions become sensitive to the HOCHO + HO2 reaction. © 2014 The Combustion Institute....... on calculations with the kinetic model. Formic acid is consumed mainly by reaction with OH, yielding OCHO, which dissociates rapidly to CO2 + H, and HOCO, which may dissociate to CO + OH or CO2 + H, or react with H, OH, or O2 to form more stable products. The branching fraction of the HOCHO + OH reaction, as well...
Ab initio study of II-(VI){sub 2} dichalcogenides
Olsson, P; Vidal, J; Lincot, D, E-mail: polsson@kth.se [Institut de R and D sur l' energie photovoltaique (IRDEP), UMR 7174-EDF-CNRS-ENSCP, 6 quai Watier, 78401 Chatou Cedex (France)
2011-10-12
The structural stabilities of the (Zn,Cd)(S,Se,Te){sub 2} dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe{sub 2} pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications. (paper)
Quantum plasmonics: from jellium models to ab initio calculations
Varas Alejandro
2016-08-01
Full Text Available Light-matter interaction in plasmonic nanostructures is often treated within the realm of classical optics. However, recent experimental findings show the need to go beyond the classical models to explain and predict the plasmonic response at the nanoscale. A prototypical system is a nanoparticle dimer, extensively studied using both classical and quantum prescriptions. However, only very recently, fully ab initio time-dependent density functional theory (TDDFT calculations of the optical response of these dimers have been carried out. Here, we review the recent work on the impact of the atomic structure on the optical properties of such systems. We show that TDDFT can be an invaluable tool to simulate the time evolution of plasmonic modes, providing fundamental understanding into the underlying microscopical mechanisms.
The ab-initio density matrix renormalization group in practice.
Olivares-Amaya, Roberto; Hu, Weifeng; Nakatani, Naoki; Sharma, Sandeep; Yang, Jun; Chan, Garnet Kin-Lic
2015-01-21
The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormalization group from the vantage point of the quantum chemistry user. What kinds of problems is the DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort of accuracies can be obtained, and how do we reason about the computational difficulty in different molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic compounds, we provide some answers to these questions, and show how the density matrix renormalization group is used in practice.
Ab initio study of the transition-metal carbene cations
李吉海; 冯大诚; 冯圣玉
1999-01-01
The geometries and bonding characteristics of the first-row transition-metal carbene cations MCH2+ were investigated by ab initio molecular orbital theory （HF/LANL2DZ）. All of MCH2+ are coplanar. In the closed shell structures the C bonds to M with double bonds; while in the open shell structures the partial double bonds are formed, because one of the σ and π orbitals is singly occupied. It is mainly the π-type overlap between the 2px orbital of C and 4px, 3dxz, orbitals of M+ that forms the π orbitals. The dissociation energies of C—M bond appear in periodic trend from Sc to Cu. Most of the calculated bond dissociation energies are close to the experimental ones.
Ab initio electronic structure and optical conductivity of bismuth tellurohalides
Schwalbe, Sebastian; Starke, Ronald; Schober, Giulio A H; Kortus, Jens
2016-01-01
We investigate the electronic structure, dielectric and optical properties of bismuth tellurohalides BiTeX (X = I, Cl, Br) by means of all-electron density functional theory. In particular, we present the ab initio conductivities and dielectric tensors calculated over a wide frequency range, and compare our results with the recent measurements by Akrap et al. , Makhnev et al. , and Rusinov et al. . We show how the low-frequency branch of the optical conductivity can be used to identify characteristic intra- and interband transitions between the Rashba spin-split bands in all three bismuth tellurohalides. We further calculate the refractive indices and dielectric constants, which in turn are systematically compared to previous predictions and measurements. We expect that our quantitative analysis will contribute to the general assessment of bulk Rashba materials for their potential use in spintronics devices.
A unified scheme for ab initio molecular orbital theory and path integral molecular dynamics
Shiga, Motoyuki; Tachikawa, Masanori; Miura, Shinichi
2001-11-01
We present a general approach for accurate calculation of chemical substances which treats both nuclei and electrons quantum mechanically, adopting ab initio molecular orbital theory for the electronic structure and path integral molecular dynamics for the nuclei. The present approach enables the evaluation of physical quantities dependent on the nuclear configuration as well as the electronic structure, within the framework of Born-Oppenheimer adiabatic approximation. As an application, we give the path integral formulation of electric response properties—dipole moment and polarizability, which characterize the changes both in electronic structure and nuclear configuration at a given temperature when uniform electrostatic field is present. We also demonstrate the calculation of a water molecule using the present approach and the result of temperature and isotope effects is discussed.
Ab initio study of the low-lying electronic states of the CaO molecule
Khalil, Hossain; Brites, Vincent; Quere, Frederic Le [Universite Paris-Est, Laboratoire de Modelisation et Simulation Multi Echelle, UMR 8208 CNRS, Batiment Lavoisier, 5 boulevard Descartes, Champs sur Marne, 77454 Marne-la-Vallee, Cedex 2 (France); Leonard, Celine, E-mail: celine.leonard@univ-paris-est.fr [Universite Paris-Est, Laboratoire de Modelisation et Simulation Multi Echelle, UMR 8208 CNRS, Batiment Lavoisier, 5 boulevard Descartes, Champs sur Marne, 77454 Marne-la-Vallee, Cedex 2 (France)
2011-07-28
Graphical abstract: Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure of the low-lying electronic states of the CaO molecule. The computations are done using the aug-cc-pV5Z basis set for O and the cc-pCV5Z for Ca. The potential energy curves for the molecular states correlating to the lowest three asymptotes are calculated at the CASSCF level. The potential curves of the lowest five molecular states, X{sup 1}{Sigma}{sup +}, a{sup 3}{Pi}, A'{sup 1{Pi}}, b{sup 3}{Sigma}{sup +} and A{sup 1}{Sigma}{sup +}, and the corresponding dipole moment functions have been determined using internally contracted multi-reference configuration interaction approaches. The spectroscopic constants associated with these electronic states are compared to experimental values. The corresponding electronic wavefunctions have also been analyzed using the dipole moment functions. Display Omitted Highlights: {yields} The five lowest electronic states of Cao have been determined ab initio at a high level of accuracy. {yields} Large active space, core-valence correlation and configuration interaction are required. {yields} The multi-configurational nature of the electronic ground state is confirmed as well as its monovalent and divalent ionic nature using dipole moment analysis. {yields} These interacting potentials will serve for future obtention of spin-rovibronic levels. - Abstract: Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure of the low-lying electronic states of the CaO molecule. The computations are done using the aug-cc-pV5Z basis set for O and the cc-pCV5Z for Ca. The potential energy curves for the molecular states correlating to the lowest three asymptotes are calculated at the CASSCF level. The potential curves of the lowest five molecular states, X{sup 1}{Sigma}{sup +}, a{sup 3}{Pi}, A'{sup 1}{Pi}, b{sup 3}{Sigma}{sup +} and A{sup 1
Ab initio path integral ring polymer molecular dynamics: Vibrational spectra of molecules
Shiga, Motoyuki; Nakayama, Akira
2008-01-01
The path integral ring polymer molecular dynamics method is combined with 'on-the-fly' ab initio electronic structure calculations and applied to vibrational spectra of small molecules, LiH and H 2O, at the room temperature. The results are compared with those of the numerically exact solution and ab initio path integral centroid molecular dynamics calculation. The peak positions in the calculated spectra are found to be reasonable, showing the red-shift due to potential anharmonicity. This unification enables the investigation of real-time quantum dynamics of chemically complex molecular systems on the ab initio Born-Oppenheimer potential energy surface.
Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations
Good, Brian S.
2004-01-01
We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.
Ab initio calculation of the potential bubble nucleus 34Si
Duguet, T.; Somà, V.; Lecluse, S.; Barbieri, C.; Navrátil, P.
2017-03-01
Background: The possibility that an unconventional depletion (referred to as a "bubble") occurs in the center of the charge density distribution of certain nuclei due to a purely quantum mechanical effect has attracted theoretical and experimental attention in recent years. Based on a mean-field rationale, a correlation between the occurrence of such a semibubble and an anomalously weak splitting between low angular-momentum spin-orbit partners has been further conjectured. Energy density functional and valence-space shell model calculations have been performed to identify and characterize the best candidates, among which 34Si appears as a particularly interesting case. While the experimental determination of the charge density distribution of the unstable 34Si is currently out of reach, (d ,p ) experiments on this nucleus have been performed recently to test the correlation between the presence of a bubble and an anomalously weak 1 /2--3 /2- splitting in the spectrum of 35Si as compared to 37S. Purpose: We study the potential bubble structure of 34Si on the basis of the state-of-the-art ab initio self-consistent Green's function many-body method. Methods: We perform the first ab initio calculations of 34Si and 36S. In addition to binding energies, the first observables of interest are the charge density distribution and the charge root-mean-square radius for which experimental data exist in 36S. The next observable of interest is the low-lying spectroscopy of 35Si and 37S obtained from (d ,p ) experiments along with the spectroscopy of 33Al and 35P obtained from knock-out experiments. The interpretation in terms of the evolution of the underlying shell structure is also provided. The study is repeated using several chiral effective field theory Hamiltonians as a way to test the robustness of the results with respect to input internucleon interactions. The convergence of the results with respect to the truncation of the many-body expansion, i.e., with respect to
Ab initio molecular crystal structures, spectra, and phase diagrams.
Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni
2014-09-16
Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling
Ab-initio study of germanium di-interstitial using a hybrid functional (HSE)
Igumbor, E.; Ouma, C. N. M.; Webb, G.; Meyer, W. E.
2016-01-01
In this work, we present ab-initio calculation results of Ge di-interstitials (I2(Ge)) in the framework of the density functional theory (DFT) using the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional. The formation energy, transition levels and minimum energy configurations were obtained for I2(Ge) -2, -1, 0, +1 and +2 charge states. The calculated formation energies show that for all charge states of I2(Ge), the double tetrahedral (T) configuration formed the most stable defect with a binding energy of 1.24 eV in the neutral state. We found the (+2/+1) charge state transition level for the T lying below the conduction band minimum and (+2/+1) for the split[110]-tetrahedral configuration lying deep at 0.41 eV above the valence band maximum. The di-interstitials in Ge exhibited the properties of both shallow and deep donor levels at (+2/+1) within the band gap and depending on the configurations. I2(Ge) gave rise to negative-U, with effective-U values of -0.61 and -1.6 eV in different configurations. We have compared our results with calculations of di-interstitials in silicon and available experimental data.
Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.
2014-01-01
Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom....
Hydrogen adsorption on boron doped graphene: an {\\it ab initio} study
Miwa, R. H.; Martins, T B; Fazzio, A.
2007-01-01
The electronic and structural properties of (i) boron doped graphene sheets, and (ii) the chemisorption processes of hydrogen adatoms on the boron doped graphene sheets have been examined by {\\it ab initio} total energy calculations.
Ab initio simulations of pseudomorphic silicene and germanene bidimensional heterostructures
Debernardi, Alberto; Marchetti, Luigi
2016-06-01
Among the novel two-dimensional (2D) materials, silicene and germanene, which are two honeycomb crystal structures composed of a monolayer of Si and Ge, respectively, have attracted the attention of material scientists because they combine the advantages of the new 2D ultimate-scaled electronics with their compatibility with industrial processes presently based on Si and Ge. We envisage pseudomorphic lateral heterostructures based on ribbons of silicene and germanene, which are the 2D analogs of conventional 3D Si/Ge superlattices and quantum wells. In spite of the considerable lattice mismatch (˜4 % ) between free-standing silicene and germanene, our ab initio simulations predict that, considering striped 2D lateral heterostructures made by alternating silicene and germanene ribbons of constant width, the silicene/germanene junction remains pseudomorphic—i.e., it maintains lattice-matched edges—up to critical ribbon widths that can reach some tens of nanometers. Such critical widths are one order of magnitude larger than the critical thickness measured in 3D pseudomorphic Si/Ge heterostructures and the resolution of state-of-the-art lithography, thus enabling the possibility of lithography patterned silicene/germanene junctions. We computed how the strain produced by the pseudomorphic growth modifies the crystal structure and electronic bands of the ribbons, providing a mechanism for band-structure engineering. Our results pave the way for lithography patterned lateral heterostructures that can serve as the building blocks of novel 2D electronics.
Engineering Room-temperature Superconductors Via ab-initio Calculations
Gulian, Mamikon; Melkonyan, Gurgen; Gulian, Armen
The BCS, or bosonic model of superconductivity, as Little and Ginzburg have first argued, can bring in superconductivity at room temperatures in the case of high-enough frequency of bosonic mode. It was further elucidated by Kirzhnitset al., that the condition for existence of high-temperature superconductivity is closely related to negative values of the real part of the dielectric function at finite values of the reciprocal lattice vectors. In view of these findings, the task is to calculate the dielectric function for real materials. Then the poles of this function will indicate the existence of bosonic excitations which can serve as a "glue" for Cooper pairing, and if the frequency is high enough, and the dielectric matrix is simultaneously negative, this material is a good candidate for very high-Tc superconductivity. Thus, our approach is to elaborate a methodology of ab-initio calculation of the dielectric function of various materials, and then point out appropriate candidates. We used the powerful codes (TDDF with the DP package in conjunction with ABINIT) for computing dielectric responses at finite values of the wave vectors in the reciprocal lattice space. Though our report is concerned with the particular problem of superconductivity, the application range of the data processing methodology is much wider. The ability to compute the dielectric function of existing and still non-existing (though being predicted!) materials will have many more repercussions not only in fundamental sciences but also in technology and industry.
Melting curves of metals by ab initio calculations
Minakov, Dmitry; Levashov, Pavel
2015-06-01
In this work we used several ab initio approaches to reproduce melting curves and discussed their abilities, advantages and drawbacks. We used quasiharmonic appoximation and Lindemann criterion to build melting curves in wide region of pressures. This approach allows to calculate the total free energy of electrons and phonons, so it is possible to obtain all thermodynamic properties in the crystalline state. We also used quantum molecular dynamics simulations to investigate melting at various pressures. We explored the size-effect of the heat until it melts (HUM) method in detail. Special attention was paid to resolve the boundaries of the melting region on density. All calculations were performed for aluminum, copper and gold. Results were in good agreement with available experimental data. Also we studied the influence of electronic temperature on melting curves. It turned out that the melting temperature increased with the rise of electron temperature at normal density and had non-monotonic behavior at higher densities. This work is supported by the Ministry of Education and Science of the Russian Federation (Project No. 3.522.2014/K).
Ab-initio calculations for dilute magnetic semiconductors
Belhadji, Brahim
2008-03-03
This thesis focusses on ab-initio calculations for the electronic structure and the magnetic properties of dilute magnetic semiconductors (DMS). In particular we aim at the understanding of the complex exchange interactions in these systems. Our calculations are based on density functional theory, being ideally suited for a description of the material specific properties of the considered DMS. Moreover we use the KKR Green function method in connection with the coherent potential approximation (CPA), which allows to include the random substitutional disorder in a mean field-like approximation for the electronic structure. Finally we calculate the exchange coupling constants J{sub ij} between two impurities in a CPA medium by using the Lichtenstein formula and from this calculate the Curie temperature by a numerically exact Monte Carlo method. Based on this analysis we found and investigated four different exchange mechanisms being of importance in DMS systems: Double exchange, p-d exchange, antiferromagnetic superexchanges, and ferromagnetic superexchange. A second topic we have investigated in this thesis is the pressure dependence of the exchange interactions and the Curie temperatures in (Ga,Mn)As and (In,Mn)As, using the LDA and the LDA+U approximations. Exact calculations of T{sub C} by Monte Carlo simulations show a somehow different behavior. (orig.)
Ab initio calculation of the potential bubble nucleus $^{34}$Si
Duguet, T; Lecluse, S; Barbieri, C; Navrátil, P
2016-01-01
The possibility that an unconventional depletion in the center of the charge density distribution of certain nuclei occurs due to a purely quantum mechanical effect has attracted theoretical and experimental attention in recent years. We report on ab initio self-consistent Green's function calculations of one of such candidates, $^{34}$Si, together with its Z+2 neighbour $^{36}$S. Binding energies, rms radii and density distributions of the two nuclei as well as low-lying spectroscopy of $^{35}$Si, $^{37}$S, $^{33}$Al and $^{35}$P are discussed. The interpretation of one-nucleon removal and addition spectra in terms of the evolution of the underlying shell structure is also provided. The study is repeated using several chiral effective field theory Hamiltonians as a way to test the robustness of the results with respect to input inter-nucleon interactions. The prediction regarding the (non-)existence of the bubble structure in $^{34}$Si varies significantly with the nuclear Hamiltonian used. However, demandin...
Rational design of electrolyte components by ab initio calculations
Johansson, Patrik; Jacobsson, Per [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)
2006-02-28
This paper is a small review of the use of computer simulations and especially the use of standard quantum-mechanical ab initio electronic structure calculations to rationally design and investigate different choices of chemicals/systems for lithium battery electrolytes. Covered systems and strategies to enhance the performance of electrolytes will range from assisting the interpretation of vibrational spectroscopy experiments over development of potentials for molecular dynamics simulations, to the design of new lithium salts and the lithium ion coordination in liquid, polymer, and gel polymer electrolytes. Examples of studied properties include the vibrational spectra of anions and ion pairs to characterize the nature and extent of the interactions present, the lithium ion affinities of anions, important for the salt solvation and the ability to provide a high concentration of charge carriers, the HOMO energies of the anions to estimate the stability versus oxidation, the anion volumes that correlate to the anion mobility, the lithium ion coordination and dynamics to reveal the limiting steps of lithium ion transport, etc. (author)
Ab initio predictions of the symmetry energy and recent constraints
Sammarruca, Francesca
2017-01-01
The symmetry energy plays a crucial role in the structure and the dynamics of neutron-rich systems, including the formation of neutron skins, the location of neutron drip lines, as well as intriguing correlations with the structure of compact stars. With experimental efforts in progress or being planned to shed light on the less known aspects of the nuclear chart, microscopic predictions based on ab initio approaches are very important. In recent years, chiral effective field theory has become popular because of its firm connection with quantum chromodynamics and its systematic approach to the development of nuclear forces. Predictions of the symmetry energy obtained from modern chiral interactions will be discussed in the light of recent empirical constraints extracted from heavy ion collisions at 400 MeV per nucleon at GSI. Applications of our equations of state to neutron-rich systems will also be discussed, with particular emphasis on neutron skins, which are sensitive to the density dependence of the symmetry energy.
Ab initio transport across bismuth selenide surface barriers
Narayan, Awadhesh
2014-11-24
© 2014 American Physical Society. We investigate the effect of potential barriers in the form of step edges on the scattering properties of Bi2Se3(111) topological surface states by means of large-scale ab initio transport simulations. Our results demonstrate the suppression of perfect backscattering, while all other scattering processes, which do not entail a complete spin and momentum reversal, are allowed. Furthermore, we find that the spin of the surface state develops an out-of-plane component as it traverses the barrier. Our calculations reveal the existence of quasibound states in the vicinity of the surface barriers, which appear in the form of an enhanced density of states in the energy window corresponding to the topological state. For double barriers we demonstrate the formation of quantum well states. To complement our first-principles results we construct a two-dimensional low-energy effective model and illustrate its shortcomings. Our findings are discussed in the context of a number of recent experimental works.
The Hydration Structure of Carbon Monoxide by Ab Initio Methods
Awoonor-Williams, Ernest
2016-01-01
The solvation of carbon monoxide (CO) in liquid water is important for understanding its toxicological effects and biochemical roles. In this paper, we use ab initio molecular dynamics (AIMD) and CCSD(T)-F12 calculations to assess the accuracy of the Straub and Karplus molecular mechanical (MM) model for CO(aq). The CCSD(T)-F12 CO--H2O potential energy surfaces show that the most stable structure corresponds to water donating a hydrogen bond to the C center. The MM-calculated surface it incorrectly predicts that the O atom is a stronger hydrogen bond acceptor than the C atom. The AIMD simulations indicate that CO is solvated like a hydrophobic solute, with very limited hydrogen bonding with water. The MM model tends to overestimate the degree of hydrogen bonding and overestimates the atomic radius of the C atom. The calculated Gibbs energy of hydration is in good agreement with experiment (9.3 kJ/mol calc. vs 10.7 kJ/mol exptl.). The calculated diffusivity of CO(aq) in TIP3P-model water was 5.19 x 10-5 cm2/s ...
Ab initio calculations of the absorption spectrum of chalcone
Oumi, Manabu; Maurice, David; Head-Gordon, Martin
1999-03-01
The excitation energies and excited states of trans-chalcone ( trans-( s-cis)-1,3-diphenylpropenone), and several related molecules ( trans-( s-cis)-3-phenylpropenal, s-cis-1-phenylpropenone, propenal, trans-( s-cis)-1-(4-hydroxyphenyl)-3-phenylpropenone, trans-( s-cis)3-(4-hydroxyphenyl)-1-phenylpropenone) have been calculated using single reference ab initio molecular orbital methods, and characterized by attachment-detachment density analysis. The results suggest assignments for the lowest three electronic transitions observed experimentally for trans-( s-cis)-chalcone in solution. The extent of localization of the electronic transitions is established by calculations on the excited states of trans-( s-cis)-3-phenylpropenal, s-cis-1-phenylpropenone and propenal, as well as analysis of the chalcone calculations. Contrary to some previous work, none of these excitations are strongly delocalized over the entire molecule. Calculated substituent shifts for the hydroxy chalcones are in qualitative agreement with experimental data, and support the localized interpretation of the main π→ π* transition.
Local structure analysis in ab initio liquid water
Santra, Biswajit; DiStasio, Robert A., Jr.; Martelli, Fausto; Car, Roberto
2015-09-01
Within the framework of density functional theory, the inclusion of exact exchange and non-local van der Waals/dispersion (vdW) interactions is crucial for predicting a microscopic structure of ambient liquid water that quantitatively agrees with experiment. In this work, we have used the local structure index (LSI) order parameter to analyse the local structure in such highly accurate ab initio liquid water. At ambient conditions, the LSI probability distribution, P(I ), was unimodal with most water molecules characterised by more disordered high-density-like local environments. With thermal excitations removed, the resultant bimodal P(I ) in the inherent potential energy surface (IPES) exhibited a 3:1 ratio between high-density- and low-density-like molecules, with the latter forming small connected clusters amid the predominant population. By considering the spatial correlations and hydrogen bond network topologies among water molecules with the same LSI identities, we demonstrate that the signatures of the experimentally observed low- and high-density amorphous phases of ice are present in the IPES of ambient liquid water. Analysis of the LSI autocorrelation function uncovered a persistence time of ∼ 4 ps - a finding consistent with the fact that natural thermal fluctuations are responsible for transitions between these distinct yet transient local aqueous environments in ambient liquid water.
Local Environment Distribution in Ab Initio Liquid Water
Santra, Biswajit; Distasio, Robert A., Jr.; Car, Roberto
2013-03-01
We have analyzed the distribution of local environments in liquid water at ambient conditions and its inherent potential energy surface (IPES) based on state-of-the-art ab initio molecular dynamics simulations performed on 128 molecules implementing hybrid PBE0 exchange [PRB 79, 085102 (2009)] and van der Waals (vdW) interactions [PRL 102, 073005 (2009)]. The local environments of molecules are characterized in terms of the local structure index (LSI) [JCP 104, 7671 (1996)] which is able to distinguish high- and low-density molecular environments. In agreement with simulations based on model potentials, we find that the distribution of LSI is unimodal at ambient conditions and bimodal in the IPES, consistent with the existence of polymorphism in amorphous phases of water. At ambient conditions spatial LSI fluctuations extend up to ~7 Å and their dynamical correlation decays on a time scale of ~3 ps, as found for density fluctuations in a recent study [PRL 106, 037801 (2011)]. DOE: DE-SC0008626, DOE: DE-SC0005180, NSF: CHE-0956500
Balan, Etienne; Lazzeri, M.; Mauri, F.; Calas, G.
2007-01-01
We review here some recent applications of ab initio calculations to the modelling of spectroscopic and energetic properties of minerals, which are key components of lateritic soils or govern their geochemical properties. Quantum mechanical ab initio calculations are based on density functional theory and density functional perturbation theory. Among the minerals investigated, zircon is a typical resistant primary mineral. Its resistance to weathering is at the origin of the peculiar geochemi...
An ab initio Non-Equilibrium Green Function Approach to Charge Transport: Dithiolethine
Alexander Schnurpfeil; SONG Bo; Martin Albrecht
2006-01-01
@@ We present a novel ab initio non-equilibrium approach to calculate the current across a molecular junction. The method rests on a wavefunction-based full ab initio description of the central region of the junction combined with a tight binding approximation for the electrodes in the frame of the Keldysh Green function formalism. Our procedure is demonstrated for a dithiolethine molecule located between silver electrodes. The main conducting channel is identified and the full current-voltage characteristic is calculated.
HN2(2A') electronic manifold. I. A global ab initio study of first two states.
Mota, Vinícius C; Varandas, António J C
2007-10-18
A detailed ab initio multireference configuration interaction calculation with a standard aug-cc-pVTZ basis set is reported for the 1(2)A' and 2(2)A' states of the title system. The aim is to establish the dissociation scheme of all channels, while revealing the 2(2)A'/3(2)A' seam of conical intersections consistent with the crossings in the diatomic fragments. An ab initio mapping of linear NNH and T-shaped and linear NHN loci of conical intersections is also reported, jointly with a discussion of the topological features associated to a newly reported 2(2)A'/3(2)A' crossing seam.
Closser, Kristina D; Gessner, Oliver; Head-Gordon, Martin
2014-04-07
The dynamics resulting from electronic excitations of helium clusters were explored using ab initio molecular dynamics. The simulations were performed with configuration interaction singles and adiabatic classical dynamics coupled to a state-following algorithm. 100 different configurations of He7 were excited into the 2s and 2p manifold for a total of 2800 trajectories. While the most common outcome (90%) was complete fragmentation to 6 ground state atoms and 1 excited state atom, 3% of trajectories yielded bound, He2(*), and <0.5% yielded an excited helium trimer. The nature of the dynamics, kinetic energy release, and connections to experiments are discussed.
Huynh, Tri H V; Shim, Irene; Bohr, Henrik; Abrahamsen, Bjarke; Nielsen, Birgitte; Jensen, Anders A; Bunch, Lennart
2012-06-14
The excitatory amino acid transporters (EAATs) play essential roles in regulating the synaptic concentration of the neurotransmitter glutamate in the mammalian central nervous system. To date, five subtypes have been identified, named EAAT1-5 in humans, and GLAST, GLT-1, EAAC1, EAAT4, and EAAT5 in rodents, respectively. In this paper, we present the design, synthesis, and pharmacological evaluation of seven 7-N-substituted analogues of UCPH-101/102. Analogue 9 inhibited EAAT1 in the micromolar range (IC(50) value 20 μM), whereas analogues 8 and 10 were inactive (IC(50) values >100 μM). The diastereomeric pairs 11a/11b and 12a/12b were separated by HPLC and the absolute configuration assigned by VCD technique in combination with ab initio Hartree-Fock calculations. Analogues 11a (RS-isomer) and 12b (RR-isomer) inhibited EAAT1 (IC(50) values 5.5 and 3.8 μM, respectively), whereas analogues 11b (SS-isomer) and 12a (SR-isomer) failed to inhibit EAAT1 uptake (IC(50) values >300 μM).
Convergence from cluster to surface:ab initio calculations of Pd_n clusters
徐昕; 王南钦; 吕鑫; 陈明旦; 张乾二
1995-01-01
The"Metallic State Principle"and a way to constitute the metallic basis set are proposed,the latter is a modification of atomic basis set based on the free electron theory in solid state physics.Pd_n dusters have been carefully studied by means of ab initio calculations with atomic and metallic basis sets.Three rules,namely the"Ground State Principle",the"Lowest-Spin State Principle"and the"Metallic StatePrinciple"have been investigated and the calculation results based on these three rules are compared with eachother in terms of metallic configuration of bulk Pd,d-band width,Fermi level,etc.The calculation resultsdemonstrate that the characteristic properties of bulk Pd may be reproduced to some extent even with a smallduster if the"Metallic State Principle"is adopted.
Makhov, Dmitry V; Saita, Kenichiro; Martinez, Todd J; Shalashilin, Dmitrii V
2015-02-07
We report a detailed computational simulation of the photodissociation of pyrrole using the ab initio Multiple Cloning (AIMC) method implemented within MOLPRO. The efficiency of the AIMC implementation, employing train basis sets, linear approximation for matrix elements, and Ehrenfest configuration cloning, allows us to accumulate significant statistics. We calculate and analyze the total kinetic energy release (TKER) spectrum and Velocity Map Imaging (VMI) of pyrrole and compare the results directly with experimental measurements. Both the TKER spectrum and the structure of the velocity map image (VMI) are well reproduced. Previously, it has been assumed that the isotropic component of the VMI arises from long time statistical dissociation. Instead, our simulations suggest that ultrafast dynamics contributes significantly to both low and high energy portions of the TKER spectrum.
Ab initio intermolecular potential energy surface and thermophysical properties of nitrous oxide
Crusius, Johann-Philipp, E-mail: johann-philipp.crusius@uni-rostock.de; Hassel, Egon [Lehrstuhl für Technische Thermodynamik, Universität Rostock, 18059 Rostock (Germany); Hellmann, Robert, E-mail: robert.hellmann@uni-rostock.de; Bich, Eckard [Institut für Chemie, Universität Rostock, 18059 Rostock (Germany)
2015-06-28
We present an analytical intermolecular potential energy surface (PES) for two rigid nitrous oxide (N{sub 2}O) molecules derived from high-level quantum-chemical ab initio calculations. Interaction energies for 2018 N{sub 2}O–N{sub 2}O configurations were computed utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. A site-site potential function with seven sites per N{sub 2}O molecule was fitted to the pair interaction energies. We validated our PES by computing the second virial coefficient as well as shear viscosity and thermal conductivity in the dilute-gas limit. The values of these properties are substantiated by the best experimental data.
Ab initio determination of coarse-grained interactions in double stranded DNA
Hsu, Chia Wei; Fyta, Maria; Lakatos, Greg; Melchionna, Simone; Kaxiras, Efthimios
2012-02-01
We derive the coarse-grained interactions between DNA nucleotides from ab initio calculations using density functional theory (DFT). The interactions take into account the base and sequence specificity, and are decomposed into physically distinct contributions. The interactions energies calculated from DFT for a wide range of configurations are fitted to simple analytical expressions for use in the coarse-grained model, which reduces each nucleotide into two sites. This non-empirical model accurately yields structural properties of B-DNA even in extreme conditions, and predicts persistence length in excellent agreement with experiments. The model enables quantitative an efficient investigations of the dynamics of long DNA strands in various environments, making it possible to reach microsecond time scales and beyond.
Ab initio determination of coarse-grained interactions in double-stranded DNA
Hsu, Chia Wei; Fyta, Maria; Lakatos, Greg; Melchionna, Simone; Kaxiras, Efthimios
2012-09-01
We derive the coarse-grained interactions between DNA nucleotides from ab initio total-energy calculations based on density functional theory (DFT). The interactions take into account base and sequence specificity, and are decomposed into physically distinct contributions that include hydrogen bonding, stacking interactions, backbone, and backbone-base interactions. The interaction energies of each contribution are calculated from DFT for a wide range of configurations and are fitted by simple analytical expressions for use in the coarse-grained model, which reduces each nucleotide into two sites. This model is not derived from experimental data, yet it successfully reproduces the stable B-DNA structure and gives good predictions for the persistence length. It may be used to realistically probe dynamics of DNA strands in various environments at the μs time scale and the μm length scale.
Ab-initio Study of the Diffusion Mechanisms of Gallium in a Silicon Matrix
Levasseur-Smith, Kevin; Mousseau, Normand
2007-03-01
We present the results of a study into the diffusion mechanisms of Ga defects in crystalline Si. The dominant neutral configurations for single and multi-atom defects are established by ab-initio calculations using the density functional theory in the LDA approximation, with a LCAO basis as implemented in the SIESTA package. We find formation energies of 0.7 eV and 2.9 eV, respectively, for the substitutional and tetrahedral interstitial defects, while the diatomic substitutional-tetrahedral complex has a formation energy of 2.2 eV. Subsequent calculations using this same DFT package in conjunction with the activation relaxation technique (ART nouveau) allow us to determine possible diffusion pathways as well as their corresponding saddle points and energy barriers.
Ab initio potential energy and dipole moment surfaces of the F(-)(H2O) complex.
Kamarchik, Eugene; Toffoli, Daniele; Christiansen, Ove; Bowman, Joel M
2014-02-05
We present full-dimensional, ab initio potential energy and dipole moment surfaces for the F(-)(H2O) complex. The potential surface is a permutationally invariant fit to 16,114 coupled-cluster single double (triple)/aVTZ energies, while the dipole surface is a covariant fit to 11,395 CCSD(T)/aVTZ dipole moments. Vibrational self-consistent field/vibrational configuration interaction (VSCF/VCI) calculations of energies and the IR-spectrum are presented both for F(-)(H2O) and for the deuterated analog, F(-)(D2O). A one-dimensional calculation of the splitting of the ground state, due to equivalent double-well global minima, is also reported.
Density functional and ab initio investigation of S2N2 and (SN)2
Moon, Jiwon; Chae, Myoungju; Kim, Joonghan
2017-03-01
Quantum chemical calculations were performed to calculate the molecular properties of the 1Ag state of disulfur dinitride, S2N2, and the 1A1 state of the SN dimer, (SN)2, using density functional theory (DFT) and ab initio methods. The molecular structure of (SN)2 is a trapezoid instead of a rectangle. Because the multireference character of (SN)2 is considerable, most hybrid DFTs poorly describe its molecular properties. In contrast, old generalized gradient approximations give qualitatively correct descriptions of the molecular properties of (SN)2. Multi-state second-order multiconfigurational perturbation theory gives results that are close to those from multireference configuration interaction with the Davidson correction. The multireference character should be considered when calculating the molecular properties of poly sulfur nitride systems.
Gao, Haiyuan; Li, Meijiao; Guo, Zhendong; Chen, Hongshen; Jin, Zhonghe; Yu, Bin
2011-01-01
Electronic transport properties of monolayer graphene with extreme physical bending up to 90o angle are studied using ab Initio first-principle calculations. The importance of key structural parameters including step height, curvature radius and bending angle are discussed how they modify the transport properties of the deformed graphene sheet comparing to the corresponding flat ones. The local density of state reveals that energy state modification caused by the physical bending is highly localized. It is observed that the transport properties of bent graphene with a wide range of geometrical configurations are insensitive to the structural deformation in the low-energy transmission spectra, even in the extreme case of bending. The results support that graphene, with its superb electromechanical robustness, could serve as a viable material platform in a spectrum of applications such as photovoltaics, flexible electronics, OLED, and 3D electronic chips.
Ab initio study of adsorption of molecular hydrogen on microporous metal-organic frameworks.
Hamel, Sébastien; Côté, Michel
2004-03-01
In the ongoing search for promising compounds for hydrogen storage, novel porous metal-organic frameworks (MOF) have been discovered recently [1]. Well defined binding sites were deduced from inelastic neutron scattering (INS) spectroscopy of the rotational transitions of the adsorbed molecular hydrogen. In light of this discovery we performed ab initio density functional theory (DFT) calculations of the adsorption of molecular hydrogen on this class of microporous MOF to compare different adsorption sites. Different approximations for the exchange-correlation potentials were accessed for a set of relevant properties such as binding energy, energetically favored configuration and distance between the adsorbents and adsorbates. In particular, theoretical rotational spectra of the adsorbed H2 were obtained that could be compared to the experimental INS spectra. [1] Rosi et al., Science Vol. 300, 1127 (2003)
An ab initio potential energy surface and vibrational energy levels of HXeBr
Zheng Guo Huang; En Cui Yang; Dai Qian Xie
2008-01-01
A three-dimensional global potential energy surface for the electronic ground state of HXeBr molecule is constructed from morethan 4200 ab initio points. These points are generated using an internally contracted multi-reference configuration interactionmethod with the Davidson correction (icMRCI + Q) and large basis sets. The stabilities and dissociation barriers are identified fromthe potential energy surfaces. The three-body dissociation channel is found to be the dominate dissociation channel for HXeBr.Based on the obtained potentials, low-lying vibrational energy levels of HXeBr calculated using the Lanczos algorithm is found tobe in good agreement with the available experimental band origins.2008 Zheng Guo Huang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
Lister, C.J. [Department of Physics, University of Massachusetts, Lowell, Lowell MA 01854 (United States); McCutchan, E.A. [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)
2014-06-15
A new generation of ab-initio calculations, based on realistic two- and three-body forces, is having a profound impact on our view of how nuclei work. To improve the numerical methods, and the parameterization of 3-body forces, new precise data are needed. Electromagnetic transitions are very sensitive to the dynamics which drive mixing between configurations. We have made a series of precise (< 3%) measurements of electromagnetic transitions in the A=10 nuclei {sup 10}C and {sup 10}Be by using the Doppler Shift Attenuation method carefully. Many interesting features can be reproduced including the strong α clustering. New measurements on {sup 8}Be and {sup 12}Be highlight the interplay between the alpha clusters and their valence neutrons.
Ab initio theory for current-induced molecular switching: Melamine on Cu(001)
Ohto, Tatsuhiko
2013-05-28
Melamine on Cu(001) is mechanically unstable under the current of a scanning tunneling microscope tip and can switch among configurations. However, these are not equally accessible, and the switching critical current depends on the bias polarity. In order to explain such rich phenomenology, we have developed a scheme to evaluate the evolution of the reaction paths and activation barriers as a function of bias, which is rooted in the nonequilibrium Green\\'s function method implemented within density functional theory. This, combined with the calculation of the inelastic electron tunneling spectroscopy signal, allows us to identify the vibrational modes promoting the observed molecular conformational changes. Finally, once our ab initio results are used within a resonance model, we are able to explain the details of the switching behavior, such as its dependence on the bias polarity, and the noninteger power relation between the reaction rate constants and both the bias voltage and the electric current. © 2013 American Physical Society.
An Ab-Initio Calculation of Raman Spectra of Binary Sodium Silicates
尤静林; 蒋国昌; 侯怀宇; 陈辉; 吴永全; 徐匡迪
2004-01-01
Raman spectra of binary sodium silicates are calculated by self-consistent field (SCF) molecular orbital ab initio calculation of the quantum chemical method with several poly silicon-oxygen tetrahedral model clusters when both the basis sets of 6-31 G and 6-31 G(d) are applied. The symmetric stretching vibrational frequency of non-bridging oxygen in a high frequency range and its Raman optical activity and scattering cross section are deduced and analysed. The correlation between this vibrational Raman shift and its microscopic environment of the silicon-oxygen tetrahedron is found based on interior stress of configuration, which depends on the connecting topology of adjacent silicon-oxygen tetrahedra (SiOT). A newly established empirical stress index of tetrahedron is introduced to elucidate the above relationship.
Ab initio studies of O2-(H2O)n and O3-(H2O)n anionic molecular clusters, n≤12
Bork, Nicolai Christian; Kurtén, T.; Enghoff, Martin Andreas Bødker
2011-01-01
An ab initio study of gaseous clusters of O2− and O2− with water is presented. Based on thorough scans of configurational space, we determine the thermodynamics of cluster growth. The results are in good agreement with benchmark computational methods and existing experimental data. We find...
Shim, Irene; Kingcade, Joseph E. , Jr.; Gingerich, Karl A.
1986-01-01
In the present work we present all-electron ab initio Hartree–Fock (HF) and configuration interaction (CI) calculations of six electronic states of the PdGe molecule. The molecule is predicted to have a 3Pi ground state and two low-lying excited states 3Sigma− and 1Sigma+. The electronic structure...
Cosmic-Ray Modulation: an Ab Initio Approach
Engelbrecht, N. E.; Burger, R. A.
2014-10-01
A better understanding of cosmic-ray modulation in the heliosphere can only be gained through a proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays. We present an ab initio model for cosmic-ray modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for periods of minimum solar activity, utilizing boundary values chosen so that model results are in fair to good agreement with spacecraft observations of turbulence quantities, not only in the solar ecliptic plane but also along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modelled slab and 2D turbulence energy spectra. The latter spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers commencing at the 2D outerscale. There currently exist no models or observations for this quantity, and it is the only free parameter in this study. The modelled turbulence spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on cosmic-ray drifts are modelled in a self-consistent way, employing a recently developed model for drift along the wavy current sheet. The resulting diffusion coefficients and drift expressions are applied to the study of galactic cosmic-ray protons and antiprotons using a three-dimensional, steady-state cosmic-ray modulation code, and sample solutions in fair agreement with multiple spacecraft observations are presented.
Lithium Insertion In Silicon Nanowires: An ab Initio Study
Zhang, Qianfan
2010-09-08
The ultrahigh specific lithium ion storage capacity of Si nanowires (SiNWs) has been demonstrated recently and has opened up exciting opportunities for energy storage. However, a systematic theoretical study on lithium insertion in SiNWs remains a challenge, and as a result, understanding of the fundamental interaction and microscopic dynamics during lithium insertion is still lacking. This paper focuses on the study of single Li atom insertion into SiNWs with different sizes and axis orientations by using full ab initio calculations. We show that the binding energy of interstitial Li increases as the SiNW diameter grows. The binding energies at different insertion sites, which can be classified as surface, intermediate, and core sites, are quite different. We find that surface sites are energetically the most favorable insertion positions and that intermediate sites are the most unfavorable insertion positions. Compared with the other growth directions, the [110] SiNWs with different diameters always present the highest binding energies on various insertion locations, which indicates that [110] SiNWs are more favorable by Li doping. Furthermore, we study Li diffusion inside SiNWs. The results show that the Li surface diffusion has a much higher chance to occur than the surface to core diffusion, which is consistent with the experimental observation that the Li insertion in SiNWs is layer by layer from surface to inner region. After overcoming a large barrier crossing surface-to-intermediate region, the diffusion toward center has a higher possibility to occur than the inverse process. © 2010 American Chemical Society.
Efficient conformational space exploration in ab initio protein folding simulation.
Ullah, Ahammed; Ahmed, Nasif; Pappu, Subrata Dey; Shatabda, Swakkhar; Ullah, A Z M Dayem; Rahman, M Sohel
2015-08-01
Ab initio protein folding simulation largely depends on knowledge-based energy functions that are derived from known protein structures using statistical methods. These knowledge-based energy functions provide us with a good approximation of real protein energetics. However, these energy functions are not very informative for search algorithms and fail to distinguish the types of amino acid interactions that contribute largely to the energy function from those that do not. As a result, search algorithms frequently get trapped into the local minima. On the other hand, the hydrophobic-polar (HP) model considers hydrophobic interactions only. The simplified nature of HP energy function makes it limited only to a low-resolution model. In this paper, we present a strategy to derive a non-uniform scaled version of the real 20×20 pairwise energy function. The non-uniform scaling helps tackle the difficulty faced by a real energy function, whereas the integration of 20×20 pairwise information overcomes the limitations faced by the HP energy function. Here, we have applied a derived energy function with a genetic algorithm on discrete lattices. On a standard set of benchmark protein sequences, our approach significantly outperforms the state-of-the-art methods for similar models. Our approach has been able to explore regions of the conformational space which all the previous methods have failed to explore. Effectiveness of the derived energy function is presented by showing qualitative differences and similarities of the sampled structures to the native structures. Number of objective function evaluation in a single run of the algorithm is used as a comparison metric to demonstrate efficiency.
Resonance and aromaticity: an ab initio valence bond approach.
Rashid, Zahid; van Lenthe, Joop H; Havenith, Remco W A
2012-05-17
Resonance energy is one of the criteria to measure aromaticity. The effect of the use of different orbital models is investigated in the calculated resonance energies of cyclic conjugated hydrocarbons within the framework of the ab initio Valence Bond Self-Consistent Field (VBSCF) method. The VB wave function for each system was constructed using a linear combination of the VB structures (spin functions), which closely resemble the Kekulé valence structures, and two types of orbitals, that is, strictly atomic (local) and delocalized atomic (delocal) p-orbitals, were used to describe the π-system. It is found that the Pauling-Wheland's resonance energy with nonorthogonal structures decreases, while the same with orthogonalized structures and the total mean resonance energy (the sum of the weighted off-diagonal contributions in the Hamiltonian matrix of orthogonalized structures) increase when delocal orbitals are used as compared to local p-orbitals. Analysis of the interactions between the different structures of a system shows that the resonance in the 6π electrons conjugated circuits have the largest contributions to the resonance energy. The VBSCF calculations also show that the extra stability of phenanthrene, a kinked benzenoid, as compared to its linear counterpart, anthracene, is a consequence of the resonance in the π-system rather than the H-H interaction in the bay region as suggested previously. Finally, the empirical parameters for the resonance interactions between different 4n+2 or 4n π electrons conjugated circuits, used in Randić's conjugated circuits theory or Herdon's semi-emprical VB approach, are quantified. These parameters have to be scaled by the structure coefficients (weights) of the contributing structures.
Ab initio calculations of ^12C and neutron drops
Pieper, Steven C.
2009-10-01
Ab initio calculations of nuclei, which treat a nucleus as a system of A nucleons interacting by realistic two- and three-nucleon forces, have made tremendous progress in the last 15 years. This is a result of better Hamiltonians, rapidly increasing computer power, and new or improved many-body methods. Three methods are principally being used: Green's function Monte Carlo (GFMC), no-core shell model, and coupled cluster. In the limit of large computer resources, all three methods produce exact eigenvalues of a given nuclear Hamiltonian. With DOE SciDAC and INCITE support, all three methods are using the largest computers available today. Under the UNEDF SciDAC grant, the Argonne GFMC program was modified to efficiently use more than 2000 processors. E. Lusk (Argonne), R.M. Butler (Middle Tennessee State U.) and I have developed an Asynchronous Dynamic Load-Balancing (ADLB) library. In addition all the cores in a node are used via OpenMP as one ADLB/MPI client. In this way we obtain very good scalability up to 30,000 processors on Argonne's IBM Blue Gene/P. Two systems of particular interest that require this computer power are ^12C and neutron drops. V.R. Pandharipande (UIUC, deceased), J. Carlson (LANL), R.B. Wiringa (Argonne), and I have developed new trial wave functions that explicitly contain the three-alpha particle structure of ^12C. These are being used with the Argonne V18 and Illinois-7 potentials which reproduce the energies of 51 states in 3energy-density functionals.
An investigation of ab initio shell-model interactions derived by no-core shell model
Wang, XiaoBao; Dong, GuoXiang; Li, QingFeng; Shen, CaiWan; Yu, ShaoYing
2016-09-01
The microscopic shell-model effective interactions are mainly based on the many-body perturbation theory (MBPT), the first work of which can be traced to Brown and Kuo's first attempt in 1966, derived from the Hamada-Johnston nucleon-nucleon potential. However, the convergence of the MBPT is still unclear. On the other hand, ab initio theories, such as Green's function Monte Carlo (GFMC), no-core shell model (NCSM), and coupled-cluster theory with single and double excitations (CCSD), have made many progress in recent years. However, due to the increasing demanding of computing resources, these ab initio applications are usually limited to nuclei with mass up to A = 16. Recently, people have realized the ab initio construction of valence-space effective interactions, which is obtained through a second-time renormalization, or to be more exactly, projecting the full-manybody Hamiltonian into core, one-body, and two-body cluster parts. In this paper, we present the investigation of such ab initio shell-model interactions, by the recent derived sd-shell effective interactions based on effective J-matrix Inverse Scattering Potential (JISP) and chiral effective-field theory (EFT) through NCSM. In this work, we have seen the similarity between the ab initio shellmodel interactions and the interactions obtained by MBPT or by empirical fitting. Without the inclusion of three-body (3-bd) force, the ab initio shell-model interactions still share similar defects with the microscopic interactions by MBPT, i.e., T = 1 channel is more attractive while T = 0 channel is more repulsive than empirical interactions. The progress to include more many-body correlations and 3-bd force is still badly needed, to see whether such efforts of ab initio shell-model interactions can reach similar precision as the interactions fitted to experimental data.
Palmer, Michael H.; McNab, Hamish; Reed, David; Pollacchi, Anne; Walker, Isobel C.; Guest, Martyn F.; Siggel, Michele R. F.
1997-01-01
The VUV electronic absorption spectrum of 1,2,4,5-tetrazine has been re-investigated, and together with electron energy-loss spectra has led to identification of a number of new excited states. The valence and Rydberg excited states have been studied by multi-reference multi-root configuration interaction studies using MRDCI techniques. Initial studies with the RPA and TDA methods gave almost identical results for the excitation energies, but there is a substantial energy-lowering in the MRDCI calculations, which improves agreement with experiment substantially; these differences are a result of the double, triple and quadruple excited reference configurations included in the reference set of the latter method. The 1ππ ∗ excitations are calculated rather higher than experiment, except for the lowest-lying (weak) 1B 2u state at 5.0 eV. The calculated order for the next three ππ ∗ states is 1B 1u (weak) followed by 1B 2u (strong) and 1B 1u (strong), the last two bands being responsible for the dominant absorption near 7.5 and 8.5 eV. All of this group of four bands involve excitations from the pair of MOs 1b 2g and 1b 1g into the 1a u∗ and 4b 3u∗ VMOs. The sequence of nπ ∗ stakes are in a similar order to the ππ ∗ excitations, with respect to the upper state, and the two lowest singlet states, 1B 3u and 1A u are reasonably well determined. The triplet states follow a similar order to the singlets, and again the dominance of the effect of the two lowest VMOs is demonstrated, but considerable differences between the weighting of leading configurations occurs between singlet and triplet manifolds. The non-diagonal TDA method has been used to reconsider the UV-photoelectron spectrum. The ionisation potentials for tetrazine are reinterpreted with the first three bands being regrouped into 1, 2, 2 ionisations respectively. The ground state properties of tetrazine suggest that the NQR spectrum will show a principal axis 14N quadrupole coupling constant
An ab initio study of plutonium oxides surfaces; Etude ab initio des surfaces d'oxydes de Pu
Jomard, G.; Bottin, F.; Amadon, B
2007-07-01
By means of first-principles calculations, we have studied the atomic structure as well as the thermodynamic stability of various plutonium dioxide surfaces in function of their environment (in terms of oxygen partial pressure and temperature). All these simulations have been performed with the ABINIT code. It is well known that DFT fails to describe correctly plutonium-based materials since 5f electrons in such systems are strongly correlated. In order to go beyond DFT, we have treated PuO{sub 2} and {beta}-Pu{sub 2}O{sub 3} in a DFT+U framework. We show that the couple of parameters (U,J) that works well for pure Pu is also well designed for describing ground state (GS) properties of these two oxides. The major improvement with respect with DFT is that we are able to predict an insulating GS in agreement with experiments. The presence of a gap in the DOS (Density of States) of plutonium oxides should play a significant role in the predicted surface reactivity. However, performing DFT+U calculations on surfaces of plutonium oxide from scratch was too ambitious. That is why we decided, as a first step, to study the stability of the (100), (110) and (111) surfaces of PuO{sub 2} in a DFT-GGA framework. For each of these orientations, we considered various terminations. These ab initio results have been introduced in a thermodynamic model which allows us to predict the relative stability of the different terminations as a function of temperature and oxygen partial pressure (p{sub O{sub 2}}). We conclude that at room temperature and for p{sub O{sub 2}}{approx}10 atm., the polar O{sub 2}-(100) termination is favoured. The stabilization of such a polar stoichiometric surface is surprising and should be confirmed by DFT+U calculations before any final conclusion. (authors)
Ab initio calculation of the electronic absorption spectrum of liquid water
Martiniano, Hugo F. M. C.; Galamba, Nuno [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP (Brazil)
2014-04-28
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.
Ab initio lattice stability of fcc and hcp Fe-Mn random alloys.
Gebhardt, T; Music, D; Hallstedt, B; Ekholm, M; Abrikosov, I A; Vitos, L; Schneider, J M
2010-07-28
We have studied the lattice stability of face centred cubic (fcc) versus hexagonal close packed (hcp) Fe-Mn random alloys using ab initio calculations. In the calculations we considered the antiferromagnetic order of local moments, which for fcc alloys models the magnetic configuration of this phase at room temperature (below its Néel temperature) as well as their complete disorder, corresponding to paramagnetic fcc and hcp alloys. For both cases, the results are consistent with our thermodynamic calculations, obtained within the Calphad approach. For the room temperature magnetic configuration, the cross-over of the total energies of the hcp phase and the fcc phase of Fe-Mn alloys is at the expected Mn content, whereas for the magnetic configuration above the fcc Néel temperature, the hcp lattice is more stable within the whole composition range studied. The increase of the total energy difference between hcp and antiferromagnetic fcc due to additions of Mn as well as the stabilizing effect of antiferromagnetic ordering on the fcc phase are well displayed. These results are of relevance for understanding the deformation mechanisms of these random alloys.
SIMPLE: Software for ab initio reconstruction of heterogeneous single-particles.
Elmlund, Dominika; Elmlund, Hans
2012-12-01
The open source software suite SIMPLE: Single-particle IMage Processing Linux Engine provides data analysis methods for single-particle cryo-electron microscopy (cryo-EM). SIMPLE addresses the problem of obtaining 3D reconstructions from 2D projections only, without using an input reference volume for approximating orientations. The SIMPLE reconstruction algorithm is tailored to asymmetrical and structurally heterogeneous single-particles. Its basis is global optimization with the use of Fourier common lines. The advance that enables ab initio reconstruction and heterogeneity analysis is the separation of the tasks of in-plane alignment and projection direction determination via bijective orientation search - a new concept in common lines-based strategies. Bijective orientation search divides the configuration space into two groups of paired parameters that are optimized separately. The first group consists of the rotations and shifts in the plane of the projection; the second group consists of the projection directions and state assignments. In SIMPLE, ab initio reconstruction is feasible because the 3D in-plane alignment is approximated using reference-free 2D rotational alignment. The subsequent common lines-based search hence searches projection directions and states only. Thousands of class averages are analyzed simultaneously in a matter of hours. Novice SIMPLE users get a head start via the well documented front-end. The structured, object-oriented back-end invites advanced users to develop new alignment and reconstruction algorithms. An overview of the package is presented together with benchmarks on simulated data. Executable binaries, source code, and documentation are available at http://simple.stanford.edu. Copyright © 2012 Elsevier Inc. All rights reserved.
Electron Transport through Polyene Junctions in between Carbon Nanotubes: an Ab Initio Realization
Chen, Yiing-Rei; Chen, Kai-Yu; Dou, Kun-Peng; Tai, Jung-Shen; Lee, Hsin-Han; Kaun, Chao-Cheng
With both ab initio and tight-binding model calculations, we study a system of polyene bridged armchair carbon nanotube electrodes, considering one-polyene and two-polyene cases, to address aspects of quantum transport through junctions with multiple conjugated molecules. The ab initio results of the two-polyene cases not only show the interference effect in transmission, but also the sensitive dependence of such effect on the combination of relative contact sites, which agrees nicely with the tight-binding model. Moreover, we show that the discrepancy mainly brought by ab initio relaxation provides an insight into the influence upon transmission spectra, from the junction's geometry, bonding and effective potential. This work was supported by the Ministry of Science and Technology of the Republic of China under Grant Nos. 99-2112-M-003-012-MY2 and 103-2622-E-002-031, and the National Center for Theoretical Sciences of Taiwan.
Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions.
Changlani, Hitesh J; Zheng, Huihuo; Wagner, Lucas K
2015-09-14
We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U(∗)/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.
Chan, Garnet Kin-Lic; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-01-01
Current descriptions of the ab initio DMRG algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab-initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational par...
Keegan, Ronan M. [STFC Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom); Bibby, Jaclyn; Thomas, Jens [University of Liverpool, Liverpool L69 7ZB (United Kingdom); Xu, Dong [Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 (United States); Zhang, Yang [University of Michigan, Ann Arbor, MI 48109 (United States); Mayans, Olga [University of Liverpool, Liverpool L69 7ZB (United Kingdom); Winn, Martyn D. [Science and Technology Facilities Council Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Rigden, Daniel J., E-mail: drigden@liv.ac.uk [University of Liverpool, Liverpool L69 7ZB (United Kingdom); STFC Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom)
2015-02-01
Two ab initio modelling programs solve complementary sets of targets, enhancing the success of AMPLE with small proteins. AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.
Electrical resistivity of NaPb compound-forming liquid alloy using ab initio pseudopotentials
Anil Thakur; N S Negi; P K Ahluwalla
2005-08-01
The study of electrical resistivity of compound-forming liquid alloy, NaPb, is presented as a function of concentration. Hard sphere diameters of Na and Pb are obtained through the interionic pair potentials evaluated using Troullier and Martins ab initio pseudopotential, which have been used to calculate the partial structure factors (). Considering the liquid alloy to be a ternary mixture, Ziman formula, modified for complex formation has been used for calculating resistivity of binary liquid alloys. Form factors are calculated using ab initio pseudopotentials. The results suggest that Ziman formalism, when used with ab initio pseudopotentials, are quite successful in explaining the electrical resistivity data of compound-forming binary liquid alloys.
Formation and properties of defects and small vacancy clusters in SiC: Ab initio calculations
Gao, Fei; Weber, William J.; Xiao, H. Y.; Zu, Xiaotao T.
2009-09-11
Large-scale ab initio simulation methods have been employed to investigate the configurations and properties of defects in SiC. Atomic structures, formation energies and binding energies of small vacancy clusters have also been studied as a function of cluster size, and their relative stabilities are determined. The calculated formation energies of point defects are in good agreement with previously theoretical calculations. The results show that the most stable configuration of a di-vacancy cluster consists of two C vacancies located at second nearest neighbor sites, while a di-vacancy with two Si vacancies is not stable and may dissociate at room temperature. In general, the formation energies of small vacancy clusters increase with size, but the formation energies for clusters with a Si vacancy and n C vacancies (VSi-nVC) are much smaller than those with a C vacancy and n Si vacancies (VC-nVSi). These results demonstrate that the VSi-nVC clusters are more stable than the VC-nVSi clusters in SiC, and provide possible nucleation sites for larger vacancy clusters or voids to grow. For these small vacancy clusters, the binding energy decreases with increasing cluster size, and ranges from 2.5 to 4.6 eV. These results indicate that the small vacancy clusters in SiC are stable at temperatures up to 1900 K, which is consistent with experimental observations.
SGO: A fast engine for ab initio atomic structure global optimization by differential evolution
Chen, Zhanghui; Jia, Weile; Jiang, Xiangwei; Li, Shu-Shen; Wang, Lin-Wang
2017-10-01
As the high throughout calculations and material genome approaches become more and more popular in material science, the search for optimal ways to predict atomic global minimum structure is a high research priority. This paper presents a fast method for global search of atomic structures at ab initio level. The structures global optimization (SGO) engine consists of a high-efficiency differential evolution algorithm, accelerated local relaxation methods and a plane-wave density functional theory code running on GPU machines. The purpose is to show what can be achieved by combining the superior algorithms at the different levels of the searching scheme. SGO can search the global-minimum configurations of crystals, two-dimensional materials and quantum clusters without prior symmetry restriction in a relatively short time (half or several hours for systems with less than 25 atoms), thus making such a task a routine calculation. Comparisons with other existing methods such as minima hopping and genetic algorithm are provided. One motivation of our study is to investigate the properties of magnetic systems in different phases. The SGO engine is capable of surveying the local minima surrounding the global minimum, which provides the information for the overall energy landscape of a given system. Using this capability we have found several new configurations for testing systems, explored their energy landscape, and demonstrated that the magnetic moment of metal clusters fluctuates strongly in different local minima.
Ab initio study of C14 laves phases in Fe-based systems
Pavlu J.
2012-01-01
Full Text Available Structural properties and energetics of Fe-based C14 Laves phases at various compositions (i.e. Fe2Fe, Fe2X, X2Fe, X2X, where X stands for Si, Cr, Mo, W, Ta were investigated using the pseudopotential VASP (Vienna Ab initio Simulation Package code employing the PAW-PBE (Projector Augmented Wave - Perdew Burke-Ernzerhof pseudopotentials. Full relaxation was performed for all structures studied including the reference states of elemental constituents and the equilibrium structure parameters as well as bulk moduli were found. The structure parameters of experimentally found structures were very well reproduced by our calculations. It was also found that the lattice parameters and volumes of the unit cell decrease with increasing molar fraction of iron. Thermodynamic analysis shows that the Fe2X configurations of Laves phases are more stable than the X2Fe ones. Some of the X2Fe configurations are even unstable with respect to the weighted average of the Laves phases of elemental constituents. Our calculations predict the stability of Fe2Ta. On the other hand, Fe2Mo and Fe2W are slightly unstable (3.19 and 0.68 kJ.mol-1, respectively and hypothetical structures Fe2Cr and Fe2Si are found unstable as well.
Ab Initio study of the diffusion mechanisms of gallium in a silicon matrix
Levasseur-Smith, K.; Mousseau, N.
2008-07-01
We present the results of a study into the diffusion mechanisms of Ga defects in crystalline Si using ab initio techniques. Five stable neutral configurations for single and multi-atom defects are identified by density-functional theory (DFT) calculations within the local density approximation and using a localized basis set as implemented in the SIESTA package. Formation energy (E_F) calculations on these stable structures show the most likely neutral single-atom defect to be the Ga substitutional, with an EF of 0.7 eV in good agreement with previous work. Charge state studies show the Ga tetrahedral interstitial defect to be in a +1 state for most doping conditions. They also indicate the possibility for a gallium substitutional-tetrahedral interstitial complex to act as a deactivating center for the Ga dopants except in n-doped regime, where the complex adopts a -1 charge state. Migration pathway calculations using SIESTA coupled with the activation relaxation technique (ART nouveau) allow us to determine possible migration paths from the stable configurations found, under various charge states. In general, diffusion barriers decrease as the charge state becomes more negative, suggesting that the presence of Si self-interstitials can enhance diffusion through the kicking out of substitutional Si and by adding negative charge carriers to the system. An overall picture of a possible Ga diffusion and complex formation mechanism is presented based on these results.
X-ray absorption Debye-Waller factors from ab initio molecular dynamics
Vila, F. D.; Lindahl, V. E.; Rehr, J. J.
2012-01-01
An ab initio equation of motion method is introduced to calculate the temperature-dependent mean-square vibrational amplitudes σ2 which appear in the Debye-Waller factors in x-ray absorption, x-ray scattering, and related spectra. The approach avoids explicit calculations of phonon modes, and is based instead on calculations of the displacement-displacement time correlation function from ab initio density functional theory molecular dynamics simulations. The method also yields the vibrational density of states and thermal quantities such as the lattice free energy. Illustrations of the method are presented for a number of systems and compared with other methods and experiment.
Keegan, Ronan M; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D; Rigden, Daniel J
2015-02-01
AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.
Atomic carbon chains as spin-transmitters: An ab initio transport study
Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka
2010-01-01
An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin-polarization of the transmi......An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin...
Ab initio quantum-enhanced optical phase estimation using real-time feedback control
Berni, Adriano; Gehring, Tobias; Nielsen, Bo Melholt
2015-01-01
as demonstrated in a variety of different optical systems(3-8). Most of these accounts, however, deal with the measurement of a very small shift of an already known phase, which is in stark contrast to ab initio phase estimation where the initial phase is unknown(9-12). Here, we report on the realization...... of a quantum-enhanced and fully deterministic ab initio phase estimation protocol based on real-time feedback control. Using robust squeezed states of light combined with a real-time Bayesian adaptive estimation algorithm, we demonstrate deterministic phase estimation with a precision beyond the quantum shot...
Ab initio I-V characteristics of short C-20 chains
Roland, C.; Larade, B.; Taylor, Jeremy Philip
2002-01-01
We have calculated the I-V characteristics of short chains of C-20 molecular cages between Al and Au leads with an ab initio formalism. The results indicate that a linear chain of such molecules acts primarily as metallic nanowires. The transmission, however, depends sensitively both on the orien......We have calculated the I-V characteristics of short chains of C-20 molecular cages between Al and Au leads with an ab initio formalism. The results indicate that a linear chain of such molecules acts primarily as metallic nanowires. The transmission, however, depends sensitively both...
Lopuszynski, Michal; Majewski, Jacek A.
2007-01-01
We present theoretical studies for the third-order elastic constants $C_{ijk}$ in zinc-blende nitrides AlN, GaN, and InN. Our predictions for these compounds are based on detailed ab initio calculations of strain-energy and strain-stress relations in the framework of the density functional theory. To judge the computational accuracy, we compare the ab initio calculated results for $C_{ijk}$ with experimental data available for Si and GaAs. We also underline the relation of the third-order ela...
An ab initio study on single electron transfer between ClO2 and phenol
崔崇威; 黄君礼
2004-01-01
The SET mechanism between chlorine dioxide (ClO2 ) and phenol was studied by using ab initio method at 4-31G* level. Geometries of the reactants, intermediate and products of the reaction were optimized and the single point energy calculations of the species were performed. The relative structure data of the reactants, intermediate and products are given. The SET mechanism between ClO2 and phenol was confirmed by ab initio calculations. The reaction is exothermic about 200. 88 k J/mol.
Ab initio theory of charge-carrier conduction in ultrapure organic crystals
Hannewald, K.; Bobbert, P. A.
2004-08-01
We present an ab initio description of charge-carrier mobilities in organic molecular crystals of high purity. Our approach is based on Holstein's original concept of small-polaron bands but generalized with respect to the inclusion of nonlocal electron-phonon coupling. By means of an explicit expression for the mobilities as a function of temperature in combination with ab initio calculations of the material parameters, we demonstrate the predictive power of our theory by applying it to naphthalene. The results show a good qualitative agreement with experiment and provide insight into the difference between electron and hole mobilities as well as their peculiar algebraic and anisotropic temperature dependencies.
Ganster, P
2004-10-15
A calcium aluminosilicate glass of molar composition 67 % SiO{sub 2} - 12 % Al{sub 2}O{sub 3} - 21 % CaO was modelled by classical and ab initio molecular dynamics. The size effect study in classical MD shows that the systems of 100 atoms are more ordered than the larger ones. These effects are mainly due to the 3-body terms in the empirical potentials. Nevertheless, these effects are small and the structures generated are in agreement with experimental data. In such kind of glass, we denote an aluminium avoidance and an excess of non bridging oxygens which can be compensated by tri coordinated oxygens. When the dynamics of systems of 100 and 200 atoms is followed by ab initio MD, some local arrangements occurs (bond length, angular distributions). Thus, more realistic vibrational properties are obtained in ab initio MD. The modelling of thin films shows that aluminium atoms extend to the most external part of the surface and they are all tri-coordinated. Calcium atoms are set in the sub layer part of the surface and they produce a depolymerization of the network. In classical MD, tri-coordinated aluminium atoms produce an important electric field above the surface. With non bridging oxygens, they constitute attractive sites for single water molecules. (author)
Ab initio Defect Energetics in LaBO3 Perovskite Solid Oxide Fuel Cell Materials
Lee, Yueh-Lin; Morgan, Dane; Kleis, Jesper;
2009-01-01
Perovskite materials of the form ABO3 are a promising family of compounds for use in solid oxide fuel cell (SOFC) cathodes. Study of the physics of these compounds under SOFC conditions with ab initio methods is particularly challenging due to high temperatures, exchange of oxygen with O2 gas...
Ab initio and work function and surface energy anisotropy of LaB6
Uijttewaal, M. A.; de Wijs, G. A.; de Groot, R. A.
2006-01-01
Lanthanum hexaboride is one of the cathode materials most used in high-power electronics technology, but the many experimental results do not provide a consistent picture of the surface properties. Therefore, we report the first ab initio calculations of the work functions and surface energies of
van Setten, M.J.; de Wijs, G.A.; Popa, V.A.; Popa, V.A.; Brocks, G.
2005-01-01
Magnesium alanate Mg(AlH4)2 has recently raised interest as a potential material for hydrogen storage. We apply ab initio calculations to characterize structural, electronic and energetic properties of Mg(AlH4)2. Density functional theory calculations within the generalized gradient approximation
Abild-Pedersen, Frank; Nørskov, Jens Kehlet; Rostrup-Nielsen, Jens;
2006-01-01
Mechanisms and energetics of graphene growth catalyzed by nickel nanoclusters were studied using ab initio density functional theory calculations. It is demonstrated that nickel step-edge sites act as the preferential growth centers for graphene layers on the nickel surface. Carbon is transported...
Ab initio study of energy-level alignments in polymer-dye blends
Pasveer, W.F.; Bobbert, P.A.; Michels, M.A.J.; Langeveld-Voss, B.M.W.; Schoo, H.F.M.; Bastiaansen, J.J.A.M.
2003-01-01
Polymers with a small amount of dye blended in offer an attractive possibility to change the color of the emitted light by changing the dye. We present ab initio calculations within density-functional theory of the HOMO/ LUMO energies for dipyrrolomethane dyes, polyphenylenevinylene and polyfluorene
Cybulski, Hubert; Fernandez, Berta; Henriksen, Christian
2012-01-01
We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set ...
Ab Initio Investigations of the C2F4S Isomers and of Their Interconversions
Shim, Irene; Vallano-Lorenzo, Sandra; Lisbona-Martin, Pilar
2003-01-01
The transition states and the activation energies for the unobserved isomerization reactions between the three possible C2F4S isomers with divalent sulfur, trifluorothioacetyl fluoride 1, tetrafluorothiirane 2, and trifluoroethenesulfenyl fluoride 3, have been determined by ab initio Hartree-Fock...
Ab initio electronic-structure calculations on the Nb/Zr multilayer system
Leuken, H. v.; Czyżyk, M.T.; Springelkamp, F.; Groot, R.A. de
1990-01-01
Ab initio electronic-structure calculations are performed for the Nb/Zr metallic multilayer system in the coherent bcc structure and in the incoherent bcc/hcp structure, observed for small and larger modulation wavelengths, respectively. A new calculational scheme, the localized-spherical-wave
Dispersion Interactions between Rare Gas Atoms: Testing the London Equation Using ab Initio Methods
Halpern, Arthur M.
2011-01-01
A computational chemistry experiment is described in which students can use advanced ab initio quantum mechanical methods to test the ability of the London equation to account quantitatively for the attractive (dispersion) interactions between rare gas atoms. Using readily available electronic structure applications, students can calculate the…
An ab initio Valence Bond Study on Cyclopenta-Fused Naphthalenes and Fluoranthenes
Havenith, R.W.A.; van Lenthe, J.H.; Jenneskens, L.W.
2005-01-01
To probe the effect of external cyclopenta-fusion on a naphthalene core, ab initio valence bond (VB) calculations have been performed, using strictly atomic benzene p-orbitals and p-orbitals that are allowed to delocalize, on naphthalene (1), acenaphthylene (2), pyracylene (3), cyclopenta[b,c]-acena
Ab initio study of energy-level alignments in polymer-dye blends
Pasveer, W.F.; Bobbert, P.A.; Michels, M.A.J.; Langeveld-Voss, B.M.W.; Schoo, H.F.M.; Bastiaansen, J.J.A.M.
2003-01-01
Polymers with a small amount of dye blended in offer an attractive possibility to change the color of the emitted light by changing the dye. We present ab initio calculations within density-functional theory of the HOMO/ LUMO energies for dipyrrolomethane dyes, polyphenylenevinylene and
POLY-ANIONS IN LIQUID CSPB - AN AB-INITIO MOLECULAR-DYNAMICS SIMULATION
DEWIJS, GA; PASTORE, G; SELLONI, A; VANDERLUGT, W
1994-01-01
Most alkali-group-IV liquid alloys exhibit strong chemical effects leading to well-defined equiatomic compounds. This is generally explained by the survival of particular clusters of lead-''Zintl'' ions-in the liquid state. We report on an ab initio simulation of liquid CsPb, for which the chemical
The Pu–U–Am system: An ab initio informed CALPHAD thermodynamic study
Perron, A., E-mail: perron1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Turchi, P.E.A.; Landa, A.; Söderlind, P. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Ravat, B.; Oudot, B.; Delaunay, F. [CEA-Centre de Valduc, 21120 Is sur Tille (France)
2015-03-15
Highlights: • The ab initio informed CALPHAD assessment of the Am–U system has been realized. • A strong tendency toward phase separation across the whole composition range is predicted. • The ab initio informed Pu–U–Am thermodynamic database has been developed. • The solubility of Am and U in the liquid phase is improved by adding Pu. • The δ-Pu (fcc) phase is strongly stabilized by Am, on the contrary to the bcc phase. - Abstract: Phase diagram and thermodynamic properties of the Am–U system, that are experimentally unknown, are calculated using the CALPHAD method with input from ab initio electronic-structure calculations for the fcc and bcc phases. A strong tendency toward phase separation across the whole composition range is predicted. In addition, ab initio informed Pu–U and Am–Pu thermodynamic assessments are combined to build a Pu–U–Am thermodynamic database. Regarding the Pu-rich corner of the ternary system, predictions indicate that Am acts as a powerful δ-Pu (fcc) stabilizer. In the U-rich corner, similar predictions are made but to a lesser extent. In both cases, the bcc phase is destabilized and the fcc phase is enhanced. Finally, results and methodology are discussed and compared with previous assessments and guidelines are provided for further experimental studies.
Ab initio calculations on the inclusion complexation of cyclobis(paraquat- p-phenylene)
Zhang, Ke-Chun; Liu, Lei; Mu, Ting-Wei; Guo, Qing-Xiang
2001-01-01
Semiempirical PM3, ab initio HF/3-21g ∗, and DFT B3LYP/6-31g ∗ calculations in vacuum and in solution were performed on the inclusion complexation of cyclobis(paraquat- p-phenylene) with nine symmetric aromatic substrates. A good correlation was found between the theoretical stabilization energies and experimental free energy changes upon complexation.
Ab initio study of long-period superstructures in close-packed A3B compounds
Rosengaard, N. M.; Skriver, Hans Lomholt
1994-01-01
We have performed ab initio calculations of the stability of one-dimensional long-period superstructures in Cu3Pd, Cu3Al, and Ag3Mg by means of an interface Green's function technique based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The ene...
Precise Ab-initio prediction of terahertz vibrational modes in crystalline systems
Jepsen, Peter Uhd; Clark, Stewart J.
2007-01-01
We use a combination of experimental THz time-domain spectroscopy and ab-initio density functional perturbative theory to accurately predict the terahertz vibrational spectrum of molecules in the crystalline phase. Our calculations show that distinct vibrational modes found in solid-state materials...
Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules
Zhang, Hao; Lund, Ole; Nielsen, Morten
2010-01-01
potentials derived from the analysis of known protein structures; energetic evaluation of different peptide snapshots in a molecular dynamics simulation; and direct analysis of contacts made in known 3D structures of peptide:MHC complexes. These methods are ab initio in that they require structural data...
Relativistic ab initio spectroscopy study of forbidden lines of singly ionized zinc
Dixit, Gopal; Sahoo, Bijaya K.; Chaudhuri, Rajat K.; Majumder, Sonjoy
2009-01-01
The ab initio calculation has been carried out to study the astrophysically important forbidden electromagnetic transition rates of singly ionized zinc (Zn II). Electron correlations are considered to all orders using coupled-cluster theory in the relativistic framework. Calculated excitation energi
Relativistic ab initio spectroscopy study of forbidden lines of singly ionized zinc
Dixit, Gopal; Sahoo, Bijaya K.; Chaudhuri, Rajat K.; Majumder, Sonjoy
2009-01-01
The ab initio calculation has been carried out to study the astrophysically important forbidden electromagnetic transition rates of singly ionized zinc (Zn II). Electron correlations are considered to all orders using coupled-cluster theory in the relativistic framework. Calculated excitation
Setten, van M.J.; Wijs, de G.A.; Popa, V.A.; Brocks, G.
2005-01-01
Magnesium alanate Mg(AlH4)2 has recently raised interest as a potential material for hydrogen storage. We apply ab initio calculations to characterize structural, electronic and energetic properties of Mg(AlH4)2. Density functional theory calculations within the generalized gradient approximation (G
Mechanical properties of carbynes investigated by ab initio total-energy calculations
Castelli, Ivano E.; Salvestrini, Paolo; Manini, Nicola
2012-01-01
As sp carbon chains (carbynes) are relatively rigid molecular objects, can we exploit them as construction elements in nanomechanics? To answer this question, we investigate their remarkable mechanical properties by ab initio total-energy simulations. In particular, we evaluate their linear...
Ab-initio modeling of an anion $C_{60}^-$ pseudopotential for fullerene-based compounds
Vrubel, I I; Ivanov, V K
2015-01-01
A pseudopotential of $C_{60}^-$ has been constructed from ab-initio quantum-mechanical calculations. Since the obtained pseudopotential can be easily fitted by rather simple analytical approximation it can be effectively used both in classical and quantum molecular dynamics of fullerene-based compounds.
Ab initio calculations on the structure of pyridine in its lowest triplet state
Buma, W.J.; Groenen, E.J.J.; Schmidt, J.
1990-01-01
Recently we have experimentally shown that pyridine-d5, as a guest in a single crystal of benzene-d6, adopts a boatlike structure upon excitation into the lowest triplet state T0. Here MRDCI ab initio calculations are presented that reveal that the observed nonplanarity of the molecule is not caused
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Ab initio charge-carrier mobility model for amorphous molecular semiconductors
Massé, Andrea; Friederich, Pascal; Symalla, Franz; Liu, Feilong; Nitsche, Robert; Coehoorn, Reinder; Wenzel, Wolfgang; Bobbert, Peter A.
2016-05-01
Accurate charge-carrier mobility models of amorphous organic molecular semiconductors are essential to describe the electrical properties of devices based on these materials. The disordered nature of these semiconductors leads to percolative charge transport with a large characteristic length scale, posing a challenge to the development of such models from ab initio simulations. Here, we develop an ab initio mobility model using a four-step procedure. First, the amorphous morphology together with its energy disorder and intermolecular charge-transfer integrals are obtained from ab initio simulations in a small box. Next, the ab initio information is used to set up a stochastic model for the morphology and transfer integrals. This stochastic model is then employed to generate a large simulation box with modeled morphology and transfer integrals, which can fully capture the percolative charge transport. Finally, the charge-carrier mobility in this simulation box is calculated by solving a master equation, yielding a mobility function depending on temperature, carrier concentration, and electric field. We demonstrate the procedure for hole transport in two important molecular semiconductors, α -NPD and TCTA. In contrast to a previous study, we conclude that spatial correlations in the energy disorder are unimportant for α -NPD. We apply our mobility model to two types of hole-only α -NPD devices and find that the experimental temperature-dependent current density-voltage characteristics of all devices can be well described by only slightly decreasing the simulated energy disorder strength.
Computer simulation of acetonitrile and methanol with ab initio-based pair potentials
Hloucha, M.; Sum, A. K.; Sandler, S. I.
2000-10-01
This study address the adequacy of ab initio pair interaction energy potentials for the prediction of macroscopic properties. Recently, Bukowski et al. [J. Phys. Chem. A 103, 7322 (1999)] performed a comprehensive study of the potential energy surfaces for several pairs of molecules using symmetry-adapted perturbation theory. These ab initio energies were then fit to an appropriate site-site potential form. In an attempt to bridge the gap between ab initio interaction energy information and macroscopic properties prediction, we performed Gibbs ensemble Monte Carlo (GEMC) simulations using their developed pair potentials for acetonitrile and methanol. The simulations results show that the phase behavior of acetonitrile is well described by just the pair interaction potential. For methanol, on the other hand, pair interactions are insufficient to properly predict its vapor-liquid phase behavior, and its saturated liquid density. We also explored simplified forms for representing the ab initio interaction energies by refitting a selected range of the data to a site-site Lennard-Jones and to a modified Buckingham (exponential-6) potentials plus Coulombic interactions. These were also used in GEMC simulations in order to evaluate the quality and computational efficiency of these different potential forms. It was found that the phase behavior prediction for acetonitrile and methanol are highly dependent on the details of the interaction potentials developed.
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
New ab initio based pair potential for accurate simulation of phase transitions in ZnO
Wang, Shuaiwei; Fan, Zhaochuan; Koster, Rik S.; Fang, Changming; Van Huis, Marijn A.; Yalcin, Anil O.; Tichelaar, Frans D.; Zandbergen, Henny W.; Vlugt, Thijs J H
2014-01-01
A set of interatomic pair potentials is developed for ZnO based on the partially charged rigid ion model (PCRIM). The derivation of the potentials combines lattice inversion, empirical fitting, and ab initio energy surface fitting. We show that, despite the low number of parameters in this model (8)
Ab Initio Calculations and Raman and SERS Spectral Analyses of Amphetamine Species
Berg, Rolf W.; Nørbygaard, Thomas; White, Peter C.
2011-01-01
. The spectra of amphetamine and amphetamine-H+ sampleswere obtained and assigned according to a comparison of the experimental spectra and the ab initio MO calculations, performed using the Gaussian 03W program (Gaussian, Inc., Pittsburgh, PA). The analyses were based on complete geometry minimization...
Ab initio and work function and surface energy anisotropy of LaB6
Uijttewaal, M. A.; de Wijs, G. A.; de Groot, R. A.
2006-01-01
Lanthanum hexaboride is one of the cathode materials most used in high-power electronics technology, but the many experimental results do not provide a consistent picture of the surface properties. Therefore, we report the first ab initio calculations of the work functions and surface energies of th
Ab initio based Monte Carlo studies of Cu-depleted CIS phases for solar cells
Ludwig, Christian; Gruhn, Thomas; Felser, Claudia [Institut fuer Anorganische and Analytische Chemie, Johannes Gutenberg-Universitaet Mainz (Germany); Windeln, Johannes [IBM Mainz (Germany)
2011-07-01
Thin film solar cells with a CuInSe{sub 2} (CIS) absorber layer have an increasing share of the solar cell market because of their low production costs and the high efficiency. One interesting aspect of CIS is the inherent resilience to defects and composition fluctuations. Beside the stable CuInSe{sub 2} phase, there are various Cu-poor phases along the Cu{sub 2}Se-In{sub 2}Se{sub 3} tie line, including the CuIn{sub 3}Se{sub 5} and the CuIn{sub 5}Se{sub 8} phase. We have used ab initio calculations of Cu-poor CIS configurations to make a cluster expansion of the configurational energy. In the configurations, Cu atoms, In atoms, and vacancies are distributed over the Cu and In sites of a CIS cell with fixed Se atoms. With the resulting energy expression, CuIn{sub 3}Se{sub 5} and CuIn{sub 5}Se{sub 8} systems have been studied in the canonical ensemble. By analyzing the free energy landscape the transition temperature between a low-temperature ordered and a high-temperature disordered CuIn{sub 5}Se{sub 8} phase has been determined. Furthermore, grandcanonical ensemble simulations have been carried out, which provide the equilibrium Cu and In concentrations as a function of the chemical potentials {mu}{sub Cu} and {mu}{sub In}. Plateau regions for the CuInSe{sub 2} and the CuIn{sub 5}Se{sub 8} phases have been found and analyzed for different temperatures.
Timko, Jeff; Kuyucak, Serdar
2012-11-28
Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K(+) ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K(+) ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K(+) ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K(+) ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.
Systematic ab initio study of half-Heusler materials for optoelectronic applications
Gruhn, Thomas; Felser, Claudia [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University, Mainz (Germany)
2010-07-01
The development of new, optimized optoelectronic devices depends crucially on the availability of semiconductors with taylored electronic and structural properties. At the moment, the majority of applications is based on a rather small set of semiconducting materials, while many more semiconductors exist in the huge class of ternary compounds. Especially, the class of 8-electron half-Heusler materials comprises a large number semiconducters with various properties. With the help of ab initio density functional theory we have studied essentially all 8-electron half-Heusler compounds that are of technological relevance. For more than 650 compounds we have determined the optimum configuration by varying the lattice constant and permuting the elements over the sublattices. Within this exceptionally large data set we have studied the band structure and the lattice constants as a function of the electronegativities of the elements, the arrangement of the atoms, and the atomic radii. The results are used to select suitable materials for the buffer layer in thin-film solar cells with a Cu(In,Ga)Se{sub 2} (CIGS) absorber layer. Considering the bandgap and the geometrical matching with the CIGS film, we have obtained a set of 29 compounds that are promissing materials for cadmium-free CIGS buffer layer.
An ab initio quantum chemical investigation of the structure and stability of ozone-water complexes
Kumar, Pradeep [Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Sathyamurthy, N., E-mail: nsath@iitk.ac.in [Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli 140306 (India)
2013-03-29
Highlights: ► Eclipse geometry most stable for the 1:1 ozone-water complex. ► Cyclic structure most stable for the 1:2 complex. ► Shift in the vertical electronic excitation energy of ozone due to hydration. - Abstract: Ab initio quantum chemical calculations have been carried out to investigate the structure and stability of 1:1 and 1:2 ozone-water complexes. All the geometries have been optimized at the CCSD level of theory using aug-cc-pVDZ and aug-cc-pVTZ basis sets. The importance of correlation-consistent basis sets in deciding the nature of critical points on these complexes is emphasized. An analysis based on the dipole moment of the complexes and the charge distribution on atoms follows. The effect of ozone molecule on the structure and properties of water dimer is also investigated. Values of the vertical electronic excitation energy and the corresponding transition dipole moment have been calculated for the ozone-water complexes using the multi-reference-configuration-interaction method and the aug-cc-pVTZ basis set. The calculated shift in vibrational frequencies due to complex formation is compared with the earlier reported experimental and theoretical values.
Formation and properties of defects and small vacancy clusters in SiC: Ab initio calculations
Gao, F.; Weber, W. J.; Xiao, H. Y.; Zu, X. T.
2009-09-01
Large-scale ab initio simulation methods have been employed to investigate the configurations and properties of defects in SiC. Atomic structures, formation energies and binding energies of small vacancy clusters have also been studied as a function of cluster size, and their relative stabilities are determined. The calculated formation energies of point defects are in good agreement with previously theoretical calculations. The results show that the di-vacancy cluster consists of two C vacancies located at the second nearest neighbor sites is stable up to 1300 K, while a di-vacancy with two Si vacancies is not stable and may dissociate at room temperature. In general, the formation energies of small vacancy clusters increase with size, but the formation energies for clusters with a Si vacancy and nC vacancies (VSi-nVC) are much smaller than those with a C vacancy and nSi vacancies (VC-nVSi). These results demonstrate that the VSi-nVC clusters are more stable than the VC-nVSi clusters in SiC, and provide possible nucleation sites for larger vacancy clusters or voids to grow. For these small vacancy clusters, the binding energy decreases with increasing cluster size, and ranges from 2.5 to 4.6 eV. These results indicate that the small vacancy clusters in SiC are stable at temperatures up to 1900 K, which is consistent with experimental observations.
Towards ab initio self-energy embedding theory in quantum chemistry
Lan, Tran Nguyen; Zgid, Dominika
2015-01-01
The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green's function (GF2) method is used to describe the non-local correlations, while the full configuration interaction (FCI) method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to $n-$electron valence state second-order perturbation theory (NEVPT2) with the same active...
Ab initio derivation of multi-orbital extended Hubbard model for molecular crystals
Tsuchiizu, Masahisa; Omori, Yukiko; Suzumura, Yoshikazu; Bonnet, Marie-Laure; Robert, Vincent
2012-01-01
From configuration interaction (CI) ab initio calculations, we derive an effective two-orbital extended Hubbard model based on the gerade (g) and ungerade (u) molecular orbitals (MOs) of the charge-transfer molecular conductor (TTM-TTP)I3 and the single-component molecular conductor [Au(tmdt)2]. First, by focusing on the isolated molecule, we determine the parameters for the model Hamiltonian so as to reproduce the CI Hamiltonian matrix. Next, we extend the analysis to two neighboring molecule pairs in the crystal and we perform similar calculations to evaluate the inter-molecular interactions. From the resulting tight-binding parameters, we analyze the band structure to confirm that two bands overlap and mix in together, supporting the multi-band feature. Furthermore, using a fragment decomposition, we derive the effective model based on the fragment MOs and show that the staking TTM-TTP molecules can be described by the zig-zag two-leg ladder with the inter-molecular transfer integral being larger than the intra-fragment transfer integral within the molecule. The inter-site interactions between the fragments follow a Coulomb law, supporting the fragment decomposition strategy.
Communication: Towards ab initio self-energy embedding theory in quantum chemistry
Lan, Tran Nguyen, E-mail: latran@umich.edu [Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States); Kananenka, Alexei A.; Zgid, Dominika [Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 (United States)
2015-12-28
The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green’s function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to n-electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces.
Communication: Towards ab initio self-energy embedding theory in quantum chemistry.
Lan, Tran Nguyen; Kananenka, Alexei A; Zgid, Dominika
2015-12-28
The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green's function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to n-electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces.
Mechanism of GeSbTe phase change materials: an ab initio molecular dynamics study
Raty, Jean-Yves; Otjacques, Céline; Gaspard, Jean-Pierre; Bichara, Christophe
2008-03-01
Among phase change materials, Ge2Sb2Te5 (225) is one of the most successfully used in applications. Accepted models are based on EXAFS spectra and suppose a complete reorganization of bonds during amorphization, with Ge changing from sixfold to tetrahedral coordination. We perform ab initio MD simulations of the (225), (124) and (415) liquid alloys. We show that the crystalline, liquid and amorphous structure of these systems are similar, with very little sp3 hybridization around Ge atoms and a majority of p-sigma bonds. Using a set of quenched liquid configurations we reproduce the EXAFS measurements on the (225) composition and explain how the static Debye Waller factor due to the vacancies in the crystal phase leads to a cancellation of individual neighbors contribution to the EXAFS signal while in the amorphous, a larger coherence occurs, enhancing the EXAFS signal. The computed electrical conductivities of the three phases (cubic solid, liquid and amorphous) prove to be very different, accordingly with the experiment.
Ab initio potential energy surface and bound states for the Kr-OCS complex.
Feng, Eryin; Sun, Chunyan; Yu, Chunhua; Shao, Xi; Huang, Wuying
2011-09-28
The first ab initio potential energy surface of the Kr-OCS complex is developed using the coupled-cluster singles and doubles with noniterative inclusion of connected triples [CCSD(T)]. The mixed basis sets, aug-cc-pVTZ for the O, C, and S atom, and aug-cc-pVQZ-PP for the Kr atom, with an additional (3s3p2d1f) set of midbond functions are used. A potential model is represented by an analytical function whose parameters are fitted numerically to the single point energies computed at 228 configurations. The potential has a T-shaped global minimum and a local linear minimum. The global minimum occurs at R = 7.146 a(0), θ = 105.0° with energy of -270.73 cm(-1). Bound state energies up to J = 9 are calculated for three isotopomers (82)Kr-OCS, (84)Kr-OCS, and (86)Kr-OCS. Analysis of the vibrational wavefunctions and energies suggests the complex can exist in two isomeric forms: T-shaped and quasi-linear. The calculated transition frequencies and spectroscopic constants of the three isotopomers are in good agreement with the experimental values.
Patil, Amol Baliram; Bhanage, Bhalchandra Mahadeo
2016-06-21
The nature of bonding interactions between the cation and the anion of an ionic liquid is at the heart of understanding ionic liquid properties. A particularly interesting case is a special class of ionic liquids known as protic ionic liquids. The extent of proton transfer in protic ionic liquids has been observed to vary according to the interacting species. Back proton transfer renders protic ionic liquids volatile and to be considered as inferior ionic liquids. We try to address this issue by employing modern ab initio valence bond theory calculations. The results indicate that the bonding in the cation and the anion of a prototypical ionic liquid, ethylammonium nitrate, is fundamentally different. It is neither characteristic of covalent/polar covalent bonding nor ionic bonding but rather charge shift bonding as a resonance hybrid of two competing ionic molecular electronic structure configurations. An investigation of other analogous protic ionic liquids reveals that this charge shift bonding seems to be a typical characteristic of protic ionic liquids while the ionic solid analogue compound ammonium nitrate has less charge shift bonding character as compared to protic ionic liquids. Further the extent of charge shift bonding character has been found to be congruent with the trends in many physicochemical properties such as melting point, conductivity, viscosity, and ionicity of the studied ionic liquids indicating that percentage charge shift character may serve as a key descriptor for large scale computational screening of ionic liquids with desired properties.
Ab Initio Potential Energy Surface and Internal Torsional-Wagging States of Hydroxylamine
Makarewicz; Kreglewski; Senent
1997-11-01
The two-dimensional potential energy surface describing the interaction of the large-amplitude torsional and wagging motions in hydroxylamine has been determined from ab initio calculations. This surface has been sampled by a large set of grid points from a two-dimensional configuration space spanned by the torsional and wagging coordinates. At each grid point, the geometry optimization has been performed using the second-order Moller-Plesset perturbation theory with the basis set 6-311 + G(2d, p). At the optimized geometry, the single-point calculation of the electronic energy has been carried out using a larger basis set 6-311 + G(3df, 2p). This method was verified to yield the results comparable to those obtained by a direct optimization of the geometry with the basis set 6-311 + G(3df, 2p) which had been used by A. Chung-Phillips and K. A. Jebber (1995. J. Chem. Phys. 102, 7080-7087) to calculate the energies of only three points in the potential energy surface of hydroxylamine. The trans and cis local minima have been found on the determined potential energy surface. The localization features of the torsional-wagging states have been studied by solving the two-dimensional Schrodinger equation for the coupled torsional and wagging motions. Copyright 1997 Academic Press. Copyright 1997Academic Press
Catalytic reaction mechanism of L-lactate dehydrogenase: an ab initio study
侯若冰; 陈志达; 义祥辉; 卞江; 徐光宪
2000-01-01
Studies on the catalytic reaction mechanism of L-lactate dehydrogenase have been carried out by using quantum chemical ab initio calculation at HF/6-31G* level. It is found that the interconversion reaction of pyruvate to L-lactate is dominated by the hydride ion HR- transfer, and the transfers of the hydride ion HR and proton HR+ are a quasi-coupled process, in which the energy barrier of the transition state is about 168.37 kJ/mol. It is shown that the reactant complex is 87.61 kJ/mol lower, in energy, than the product complex. The most striking features in our calculated results are that pyridine ring of the model cofactor is a quasi-boat-like configuration in the transited state, which differs from a planar conformation in some previous semiempirical quantum chemical studies. On the other hand, the similarity in the structure and charge between the HR transfer process and the hydrogen bonding with lower barrier indicates that the HR transfer process occurs by means of an unusual manner. In addition,
High-level ab initio computations of the absorption spectra of organic iridium complexes.
Plasser, Felix; Dreuw, Andreas
2015-02-12
The excited states of fac-tris(phenylpyridinato)iridium [Ir(ppy)3] and the smaller model complex Ir(C3H4N)3 are computed using a number of high-level ab initio methods, including the recently implemented algebraic diagrammatic construction method to third-order ADC(3). A detailed description of the states is provided through advanced analysis methods, which allow a quantification of different charge transfer and orbital relaxation effects and give extended insight into the many-body wave functions. Compared to the ADC(3) benchmark an unexpected striking difference of ADC(2) is found for Ir(C3H4N)3, which derives from an overstabilization of charge transfer effects. Time-dependent density functional theory (TDDFT) using the B3LYP functional shows an analogous but less severe error for charge transfer states, whereas the ωB97 results are in good agreement with ADC(3). Multireference configuration interaction computations, which are in reasonable agreement with ADC(3), reveal that static correlation does not play a significant role. In the case of the larger Ir(ppy)3 complex, results at the TDDFT/B3LYP and TDDFT/ωB97 levels of theory are presented. Strong discrepancies between the two functionals, which are found with respect to the energies, characters, as well as the density of the low lying states, are discussed in detail and compared to experiment.
The ab initio study of laser cooling of BBr and BCl.
Yang, Rong; Gao, Yufeng; Tang, Bin; Gao, Tao
2015-01-21
We investigate the feasibility of laser cooling BBr and BCl using ab initio quantum chemistry. The multi-reference configuration interaction method (MRCI) is used to calculate the ground state X(1)Σ(+) and the low-lying excited state A(1)Π, where Davidson modification with the Douglas-Kroll scalar relativistic correction is also taken into account. The calculated spectroscopic constants are in good agreement with available experimental values. The potential energy curves, permanent dipole moments (PDMs), transition dipole moments (TDMs) followed by Franck-Condon factors and radiative times for the transitions from the A(1)Π state to the ground state X(1)Σ(+) are obtained as well. The determined Franck-Condon factors are highly diagonally distributed and the evaluated radiative lifetimes are of the order of nanoseconds. Furthermore, the a(3)Π→ X(1)Σ(+) transitions of BBr and BCl are also strongly diagonal and the X(1)Σ(+)→ A(1)Π transitions perhaps can be followed by the X(1)Σ(+)→ a(3)Π transitions to attain a lower Doppler temperature. Long-range behavior of BBr and BCl has also been studied, and a double well is found in the A(1)Π state of BBr. The shallow long-range well might open up even more channels for laser cooling of BBr. The results demonstrate the possibility of laser cooling BBr and BCl, and provide a promising theoretical reference for further research on BBr and BCl.
Xie, Daiqian; Guo, Hua; Peterson, Kirk A.
2001-12-01
Accurate ab initio potential-energy surfaces of the 3A2 and 3B1 states of ozone and their nonadiabatic coupling are reported near the ground-state equilibrium geometry using an internally contracted multireference configuration interaction method. These coupled three-dimensional potential-energy surfaces enable the first theoretical characterization of all three vibrational modes in the Wulf band. Reasonably good agreement with recent experimental observations is obtained.
Shim, Irene; Gingerich, K. A.
2000-01-01
The three lowest-lying electronic states of RuC, (1)Sigma(+), (3)Delta, and (1)Delta, have been investigated by performing all-electron ab initio multi-configuration self-consistent-field (CASSCF) and multi-reference configuration interaction (MRCI) calculations including relativistic corrections....... The electronic ground state is derived as (1)Sigma(+) with the spectroscopic constants r(e) = 1.616 Angstrom and omega(e) = 1085 cm(-1). The lowest-lying excited state, (3)Delta, has r(e) = 1.632 Angstrom, omega(e) = 1063 cm(-1), and T-e = 912 cm(-1). These results are consistent with recent spectroscopic values....... The chemical bonds in all three lowest-lying states are triple bonds composed of one sigma and two pi bonds. (C) 2000 Elsevier Science B.V. All rights reserved....
Ab initio STM and STS simulations on magnetic and nonmagnetic metallic surfaces
Dick, Alexey
2008-04-14
The aim of this work was to provide an in-depth understanding of a new generation of scan- ning tunneling microscopy experiments, performed employing different regimes of the STM: the spectroscopy-mode (the so-called Fourier Transformed STM, FT-STM), and the spin-sensitive mode (the so-called spin-polarized STM, SP-STM). In the present thesis ab initio tools are proposed that are based on DFT calculations to theoretically predict and analyze such types of the STM. The first part of this thesis focusses on the simulation of FT-STM, the mode that allows to probe local dispersion properties of the electrons at the surface. In order to provide the theoretical counterpart of the experimental FT-STM spectra we have introduced a new implicit approach that is derived from Tersoff-Hamann theory of the STM. The importance of an accurate description of surface wavefunctions at 5-15 A above the surface as well as the spurious quantum- size effects have been discussed in detail together with approaches to obtain converged FT-STM images. We applied our method to FT-STM experiments performed on Ag(110) surfaces. In the second part of the thesis we discuss the modeling of the spin-resolved STM, the mode that allows to characterize the magnetic structure of a surface. As a case system we studied here the magnetically-ordered transition-metal nitride surface Mn{sub 3}N{sub 2}(010). Because SP-STM experiments did not allow a conclusive understanding of the surface structure, we have first employed ab initio thermodynamics to figure out the most stable magnetic and atomic configuration of the surface that are consistent with experiments. To simulate SP-STM images on the most stable Mn{sub 3}N{sub 2}(010) surface we have employed the spin-generalized transfer-Hamiltonian formalism, assuming that the tip wavefunctions have dominant radial symmetry (s-like tip). (orig.)
Periodic Trends in Lanthanide Compounds through the Eyes of Multireference ab Initio Theory.
Aravena, Daniel; Atanasov, Mihail; Neese, Frank
2016-05-01
Regularities among electronic configurations for common oxidation states in lanthanide complexes and the low involvement of f orbitals in bonding result in the appearance of several periodic trends along the lanthanide series. These trends can be observed on relatively different properties, such as bonding distances or ionization potentials. Well-known concepts like the lanthanide contraction, the double-double (tetrad) effect, and the similar chemistry along the lanthanide series stem from these regularities. Periodic trends on structural and spectroscopic properties are examined through complete active space self-consistent field (CASSCF) followed by second-order N-electron valence perturbation theory (NEVPT2) including both scalar relativistic and spin-orbit coupling effects. Energies and wave functions from electronic structure calculations are further analyzed in terms of ab initio ligand field theory (AILFT), which allows one to rigorously extract angular overlap model ligand field, Racah, and spin-orbit coupling parameters directly from high-level ab initio calculations. We investigated the elpasolite Cs2NaLn(III)Cl6 (Ln(III) = Ce-Nd, Sm-Eu, Tb-Yb) crystals because these compounds have been synthesized for most Ln(III) ions. Cs2NaLn(III)Cl6 elpasolites have been also thoroughly characterized with respect to their spectroscopic properties, providing an exceptionally vast and systematic experimental database allowing one to analyze the periodic trends across the lanthanide series. Particular attention was devoted to the apparent discrepancy in metal-ligand covalency trends between theory and spectroscopy described in the literature. Consistent with earlier studies, natural population analysis indicates an increase in covalency along the series, while a decrease in both the nephelauxetic (Racah) and relativistic nephelauxetic (spin-orbit coupling) reduction with increasing atomic number is calculated. These apparently conflicting results are discussed on the
Relaxation of Small Molecules：an ab initio Study
CAOYi－Gang; A.Antons; 等
2002-01-01
Using an ab inito total energy and force method,we have relaxed several group IV and group V elemental clusters,in detail the arsenic and antimony dimers,silicon,phosphorus,arsenic and antimony tetraners,The obtained bond lengths and cohesive energies are more accurate than other calculating methods,and in excellent agreement with the experimental results.
Douberly, G E; Ricks, A M; Ticknor, B W; Duncan, M A
2008-02-07
The infrared photodissociation spectra (IRPD) in the 700 to 4000 cm(-1) region are reported for H+ (CO2)n clusters (n = 1-4) and their complexes with argon. Weakly bound Ar atoms are attached to each complex upon cluster formation in a pulsed electric discharge/supersonic expansion cluster source. An expanded IRPD spectrum of the H+ (CO2)Ar complex, previously reported in the 2600-3000 cm(-1) range [Dopfer, O.; Olkhov, R.V.; Roth, D.; Maier, J.P. Chem. Phys. Lett. 1998, 296, 585-591] reveals new vibrational resonances. For n = 2 to 4, the vibrational resonances involving the motion of the proton are observed in the 750 to 1500 cm(-1) region of the spectrum, and by comparison to the predictions of theory, the structure of the small clusters are revealed. The monomer species has a nonlinear structure, with the proton binding to the lone pair of an oxygen. In the dimer, this nonlinear configuration is preserved, with the two CO2 units in a trans configuration about the central proton. Upon formation of the trimer, the core CO2 dimer ion undergoes a rearrangement, producing a structure with near C2v symmetry, which is preserved upon successive CO2 solvation. While the higher frequency asymmetric CO2 stretch vibrations are unaffected by the presence of the weakly attached Ar atom, the dynamics of the shared proton motions are substantially altered, largely due to the reduction in symmetry of each complex. For n = 2 to 4, the perturbation due to Ar leads to blue shifts of proton stretching vibrations that involve motion of the proton mostly parallel to the O-H+-O axis of the core ion. Moreover, proton stretching motions perpendicular to this axis exhibit smaller shifts, largely to the red. Ab initio (MP2) calculations of the structures, complexation energies, and harmonic vibrational frequencies are also presented, which support the assignments of the experimental spectra.
Tyuterev, Vladimir G.; Kochanov, Roman V.; Tashkun, Sergey A.
2017-02-01
Ab initio dipole moment surfaces (DMSs) of the ozone molecule are computed using the MRCI-SD method with AVQZ, AV5Z, and VQZ-F12 basis sets on a dense grid of about 1950 geometrical configurations. The analytical DMS representation used for the fit of ab initio points provides better behavior for large nuclear displacements than that of previous studies. Various DMS models were derived and tested. Vibration-rotation line intensities of 16O3 were calculated from these ab initio surfaces by the variational method using two different potential functions determined in our previous works. For the first time, a very good agreement of first principle calculations with the experiment was obtained for the line-by-line intensities in rotationally resolved ozone spectra in a large far- and mid-infrared range. This includes high overtone and combination bands up to Δ V = 6. A particular challenge was a correct description of the B-type bands (even Δ V3 values) that represented major difficulties for the previous ab initio investigations and for the empirical spectroscopic models. The major patterns of various B-type bands were correctly described without empirically adjusted dipole moment parameters. For the 10 μ m range, which is of key importance for the atmospheric ozone retrievals, our ab initio intensity results are within the experimental error margins. The theoretical values for the strongest lines of the ν3 band lie in general between two successive versions of HITRAN (HIgh-resolution molecular TRANsmission) empirical database that corresponded to most extended available sets of observations. The overall qualitative agreement in a large wavenumber range for rotationally resolved cold and hot ozone bands up to about 6000 cm-1 is achieved here for the first time. These calculations reveal that several weak bands are yet missing from available spectroscopic databases.
Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A
2017-02-14
Ab initio dipole moment surfaces (DMSs) of the ozone molecule are computed using the MRCI-SD method with AVQZ, AV5Z, and VQZ-F12 basis sets on a dense grid of about 1950 geometrical configurations. The analytical DMS representation used for the fit of ab initio points provides better behavior for large nuclear displacements than that of previous studies. Various DMS models were derived and tested. Vibration-rotation line intensities of (16)O3 were calculated from these ab initio surfaces by the variational method using two different potential functions determined in our previous works. For the first time, a very good agreement of first principle calculations with the experiment was obtained for the line-by-line intensities in rotationally resolved ozone spectra in a large far- and mid-infrared range. This includes high overtone and combination bands up to ΔV = 6. A particular challenge was a correct description of the B-type bands (even ΔV3 values) that represented major difficulties for the previous ab initio investigations and for the empirical spectroscopic models. The major patterns of various B-type bands were correctly described without empirically adjusted dipole moment parameters. For the 10 μm range, which is of key importance for the atmospheric ozone retrievals, our ab initio intensity results are within the experimental error margins. The theoretical values for the strongest lines of the ν3 band lie in general between two successive versions of HITRAN (HIgh-resolution molecular TRANsmission) empirical database that corresponded to most extended available sets of observations. The overall qualitative agreement in a large wavenumber range for rotationally resolved cold and hot ozone bands up to about 6000 cm(-1) is achieved here for the first time. These calculations reveal that several weak bands are yet missing from available spectroscopic databases.
Allen, B. Danette; Alexandrov, Natalia
2016-01-01
Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that
Plašienka, Dušan; Martoňák, Roman
2014-01-01
We present results of \\textit{ab initio} molecular dynamics study of a structural transformation occurring in hot liquid sulfur under high pressure, which corresponds to the chain-breakage phenomenon recently observed experimentally by Liu \\textit{et al.} [1] and to the electronic transition reported by Brazhkin \\textit{et al.} [2,3]. We performed an extensive \\textit{ab initio} study and confirmed the existence of one transformation separating two distinct liquid polymeric phases: one composed of short chain-like fragments and another one with very long chains. We have not observed additional transformations reported in Refs. [2,3] and in the recent theoretical study by Zhao and Mu [4] and our findings are in agreement with the most recent experiment [1]. We offer a structural description of this liquid-liquid transformation in terms of chain lengths, cross-linking and geometry and investigate several physical properties. We conclude that the transformation is accompanied by changes in configurational energy...
Monte Carlo Shell Model for ab initio nuclear structure
Abe T.
2014-03-01
Full Text Available We report on our recent application of the Monte Carlo Shell Model to no-core calculations. At the initial stage of the application, we have performed benchmark calculations in the p-shell region. Results are compared with those in the Full Configuration Interaction and No-Core Full Configuration methods. These are found to be consistent with each other within quoted uncertainties when they could be quantified. The preliminary results in Nshell = 5 reveal the onset of systematic convergence pattern.
Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics
Sharma, Nalini; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University, Shimla(HP)-171005 (India); Thakur, Anil [Department of Physics, Govt. P. G. College Solan (HP)-173212 (India)
2015-05-15
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.
Conformational space of clindamycin studied by ab initio and full-atom molecular dynamics.
Kulczycka-Mierzejewska, Katarzyna; Trylska, Joanna; Sadlej, Joanna
2016-01-01
Molecular dynamics (MD) simulations allow determining internal flexibility of molecules at atomic level. Using ab initio Born-Oppenheimer molecular dynamics (BOMD), one can simulate in a reasonable time frame small systems with hundreds of atoms, usually in vacuum. With quantum mechanics/molecular mechanics (QM/MM) or full-atom molecular dynamics (FAMD), the influence of the environment can also be simulated. Here, we compare three types of MD calculations: ab initio BOMD, hybrid QM/MM, and classical FAMD. As a model system, we use a small antibiotic molecule, clindamycin, which is one of the lincosamide antibiotics. Clindamycin acquires two energetically stable forms and we investigated the transition between these two experimentally known conformers. We performed 60-ps BOMD simulations in vacuum, 50-ps QM/MM, and 100-ns FAMD in explicit water. The transition between two antibiotic conformers was observed using both BOMD and FAMD methods but was not noted in the QM/MM simulations.
[Photoelectron Spectra of CCl2-: Ab Initio Calculation and Franck-Condon Analysis].
Wu, Jun
2015-12-01
Geometry optimization and harmonic vibrational frequency calculations were performed on the X¹A₁ state of CCl₂ and X²B₁ state of CCl₂⁻ at the B3LYP, MP2, CCSD levels. Franck-Condon analysis and spectral simulations were carried out on the photoelectron band of CCl₂⁻ including Duschinsky effects. The simulated spectra obtained are in excellent agreement with the experiment. Note that Duschinsky effect between bending vibration and the symmetric stretch modes should be considered in the CCl₂ (X¹A₁)-CCl₂⁻ (X²B₁) photodetachment process. By combining ab initio calculations with Franck-Condon analyses, the assignment of spectrum observed is firmly established to the X¹A₁-X²B₁ photodetachment process of the CCl₂⁻ radical, and the recommended geometric parameters of which in the literature are confirmed again base on ab initio theory and IFCA process.
A highly accurate {\\it ab initio} potential energy surface for methane
Owens, Alec; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2016-01-01
A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art \\textit{ab initio} theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include: core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of $^{12}$CH$_4$ reproduced with a root-mean-square error of $0.70{\\,}$cm$^{-1}$. The computed \\textit{ab initio} equilibrium C{--}H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as $J$ (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the e...
Ab Initio No-Core Shell Model Calculations Using Realistic Two- and Three-Body Interactions
Navratil, P; Ormand, W E; Forssen, C; Caurier, E
2004-11-30
There has been significant progress in the ab initio approaches to the structure of light nuclei. One such method is the ab initio no-core shell model (NCSM). Starting from realistic two- and three-nucleon interactions this method can predict low-lying levels in p-shell nuclei. In this contribution, we present a brief overview of the NCSM with examples of recent applications. We highlight our study of the parity inversion in {sup 11}Be, for which calculations were performed in basis spaces up to 9{Dirac_h}{Omega} (dimensions reaching 7 x 10{sup 8}). We also present our latest results for the p-shell nuclei using the Tucson-Melbourne TM three-nucleon interaction with several proposed parameter sets.
Matsushita, Y., E-mail: kurita@cs.tut.ac.jp; Murakawa, T., E-mail: kurita@cs.tut.ac.jp; Shimamura, K., E-mail: kurita@cs.tut.ac.jp; Oishi, M., E-mail: kurita@cs.tut.ac.jp; Ohyama, T., E-mail: kurita@cs.tut.ac.jp; Kurita, N., E-mail: kurita@cs.tut.ac.jp [Department of Computer Science and Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi, 441-8580 (Japan)
2015-02-27
The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.
Ab initio calculations on the magnetic properties of transition metal complexes
Bodenstein, Tilmann; Fink, Karin [Karlsruhe Institute of Technology, Institute of Nanotechnology, POB 3640, 76021 Karlsruhe (Germany)
2015-12-31
We present a protocol for the ab initio determination of the magnetic properties of mono- and polynuclear transition metal compounds. First, we obtain the low lying electronic states by multireference methods. Then, we include spin-orbit coupling and an external magnetic field for the determination of zero-field splitting and g-tensors. For the polynuclear complexes the magnetic exchange coupling constants are determined by a modified complete active space self consistent field method. Based on the results of the ab initio calculations, magnetic data such as magnetic susceptibility or magnetization are simulated and compared to experimental data. The results obtained for the polynuclear complexes are further analysed by calculations on model complexes where part of the magnetic centers are substituted by diamagnetic ions. The methods are applied to different Co and Ni containing transition metal complexes.
Bridging a gap between continuum-QCD and ab initio predictions of hadron observables
Daniele Binosi
2015-03-01
Full Text Available Within contemporary hadron physics there are two common methods for determining the momentum-dependence of the interaction between quarks: the top-down approach, which works toward an ab initio computation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of those equations in the matter sector that are relevant to bound-state properties. We unite these two approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by contemporary analyses of QCD's gauge sector coincides with that required in order to describe ground-state hadron observables using a nonperturbative truncation of QCD's Dyson–Schwinger equations in the matter sector. This bridges a gap that had lain between nonperturbative continuum-QCD and the ab initio prediction of bound-state properties.
Whitfield, T. W.; Crain, J.; Martyna, G. J.
2006-03-01
In order to better understand the physical interactions that stabilize protein secondary structure, the neat liquid state of a peptidic fragment, N-methylacetamide (NMA), was studied using computer simulation. Three different descriptions of the molecular liquid were examined: an empirical force field treatment with classical nuclei, an empirical force field treatment with quantum mechanical nuclei, and an ab initio density functional theory (DFT) treatment. The DFT electronic structure was evaluated using the BLYP approximate functional and a plane wave basis set. The different physical effects probed by the three models, such as quantum dispersion, many-body polarization, and nontrivial charge distributions on the liquid properties, were compared. Much of the structural ordering in the liquid is characterized by hydrogen bonded chains of NMA molecules. Modest structural differences are present among the three models of liquid NMA. The average molecular dipole in the liquid under the ab initio treatment, however, is enhanced by 60% over the gas phase value.
Low-temperature metallic liquid hydrogen: an ab-initio path-integral molecular dynamics perspective
Chen, Ji; Li, Xin-Zheng; Zhang, Qianfan; Probert, Matthew; Pickard, Chris; Needs, Richard; Michaelides, Angelos; Wang, Enge
2013-03-01
Experiments and computer simulations have shown that the melting temperature of solid hydrogen drops with pressure above about 65 GPa, suggesting that a low temperature liquid state might exist. It has also been suggested that this liquid state might be non-molecular and metallic, although evidence for such behaviour is lacking. Using a combination of ab initio path-integral molecular dynamics and the two-phase methods, we have simulated the melting of solid hydrogen under finite temperatures. We found an atomic solid phase from 500 to 800 GPa which melts at < 200 K. Beyond this and up to pressures of 1,200 GPa a metallic atomic liquid is stable at temperatures as low as 50 K. The quantum motion of the protons is critical to the low melting temperature in this system as ab initio simulations with classical nuclei lead to a considerably higher melting temperature of ~300 K across the entire pressure range considered.
Ab Initio Calculations for the BaTiO3 (001) Surface Structure
XUE Xu-Yan; WANG Chun-Lei; ZHONG Wei-Lie
2004-01-01
@@ The ab initio method within the local density approximation is applied to calculate cubic BaTiO3 (001) surface relaxation and rumpling for two different terminations (BaO and TiO2). Our calculations demonstrate that cubic perovskite BaTiO3 crystals possess surface polarization, accompanied by the presence of the relevant electric field.We analyse their electronic structures (band structure, density of states and the electronic density redistribution with emphasis on the covalency effects). The results are also compared with that of the previous ab initio calculations. Considerable increases of Ti-O chemical bond covalency nearby the surface have been observed.The band gap reduces especially for the TiO2 termination.
Liquid Be, Ca and Ba. An orbital-free ab-initio molecular dynamics study
Rio, B. G. del; González, L. E. [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid (Spain)
2015-08-17
Several static and dynamic properties of liquid beryllium (l-Be), liquid calcium (l-Ca) and liquid barium (l-Ba) near their triple point have been evaluated by the orbital-free ab initio molecular dynamics method (OF-AIMD), where the interaction between valence electrons and ions is described by means of local pseudopotentials. These local pseudopotentials used were constructed through a force-matching process with those obtained from a Kohn-Sham ab initio molecular dynamics study (KS-AIMD) of a reduced system with non-local pseudopotentials. The calculated static structures show good agreement with the available experimental data, including an asymmetric second peak in the structure factor which has been linked to the existence of a marked icosahedral short-range order in the liquid. As for the dynamic properties, we obtain collective density excitations whose associated dispersion relations exhibit a positive dispersion.
Ab initio simulations and neutron scattering studies of structure and dynamics in PdH
Totolici, I E
2001-01-01
The work presented in this PhD thesis is concerned with the interpretation of the neutron scattering measurements from the palladium hydrogen system by means of ab initio electronic structure calculations. The motivation of performing such calculations was due to recent neutron scattering studies on this system that showed a strong directional dependence to the dynamical structure factor together with a complex dependence on energy. Here we attempt to describe the origin of these features by ab initio simulations of the dynamical structure factor. The method assumes an adiabatic separation of the motion of the proton and palladium atoms. The proton wave functions are calculated by a direct solution of the associated single-particle Schroedinger equation using a plane wave basis set method and a mapping of the adiabatic surface. The Fourier components of the adiabatic potential are obtained from LDA pseudopotential calculations. Using Fermi's golden rule within the Born approximation we were then able to calcu...
Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo
Zen, Andrea, E-mail: a.zen@ucl.ac.uk [Dipartimento di Fisica, “La Sapienza” - Università di Roma, piazzale Aldo Moro 5, 00185 Rome (Italy); London Centre for Nanotechnology, University College London, London WC1E 6BT (United Kingdom); Luo, Ye, E-mail: xw111luoye@gmail.com; Mazzola, Guglielmo, E-mail: gmazzola@phys.ethz.ch; Sorella, Sandro, E-mail: sorella@sissa.it [SISSA–International School for Advanced Studies, Via Bonomea 26, 34136 Trieste (Italy); Democritos Simulation Center CNR–IOM Istituto Officina dei Materiali, 34151 Trieste (Italy); Guidoni, Leonardo, E-mail: leonardo.guidoni@univaq.it [Dipartimento di Fisica, “La Sapienza” - Università di Roma, piazzale Aldo Moro 5, 00185 Rome (Italy); Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’ Aquila, via Vetoio, 67100 L’ Aquila (Italy)
2015-04-14
Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.
Melting of sodium under high pressure. An ab-initio study
González, D. J.; González, L. E. [Departamento de Física Teórica, Atómica y Optica, Universidad de Valladolid, 47011 Valladolid (Spain)
2015-08-17
We report ab-initio molecular dynamics simulations of dense liquid/solid sodium for a pressure range from 0 to 100 GPa. The simulations have been performed with the orbital free ab-initio molecular dynamics method which, by using the electron density as the basic variable, allows to perform simulations with large samples and for long runs. The calculated melting curve shows a maximum at a pressure ≈ 30 GPa and it is followed by a long, steep decrease. These features are in good agreement with the experimental data. For various pressures along the melting curve, we have calculated several liquid static properties (pair distribution functions, static structure factors and short-range order parameters) in order to analyze the structural effects of pressure.
An ab initio potential function for the ν13 vibrational mode of 1,3-butadiene
Senent, M. L.
1995-06-01
The restricted potential of the ν13 torsional mode of 1,3-butadiene has been determined from ab initio calculations. The relative energy and geometry of the second rotamer were calculated with the optimized couple cluster method with double substitutions. This ab initio level provides that the second stable structure attaches to a gauche form situated at 140.8°. The potential energy function was obtained by fitting to a symmetry-adapted Fourier series the total electronic energies of several selected conformations. These energies were calculated by the Möller-Plesset perturbation theory up to the second order (MP2) with full and partial optimization of the geometry. Torsional Raman band positions and fundamental frequencies were determined from the periodic potentials with a good agreement with experimental data. The convenience of performing fully optimized calculations to determine the restricted function is also refuted.
Raman spectroscopy, ab-initio model calculations, and conformational, equilibria in ionic liquids
Berg, Rolf W.
2009-01-01
spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT- Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methyl-imidazolium ([C4C1Im]+X-) salts. The rotational isomerism of the [C4C1Im]+ cation is described: the presence of anti...... systems in the future. A few examples will be discussed. Contents 12.1 Introduction...........307 12.2 Brief introduction to Raman spectroscopy ..............309 12.2.1 Basics .....................309 12.2.2 Experimental, fluorescence and fouriertransform- Raman spectroscopy instrumentation ...... 311 12.......3 Brief introduction to ab-initio model calculations .... 312 12.4 Case study on Raman spectroscopy and structure of imidazolium-based ionic liquids ..... 312 12.5 Raman spectra and structure of [C4C1Im]+ liquids ..... 315 12.6 Normal mode analysis and rotational isomerism of the [C4C1Im]+ cation...
Interatomic potentials for Al and Ni from experimental data and ab initio calculations
Mishin, Y.; Farkas, D.; Miehl, M.J.; Papaconstantopoulos, D.A.
1999-07-01
New embedded-atom potentials for Al and Ni have been developed by fitting to both experimental data and the results of ab initio calculations. The ab initio data were obtained in the form of energies of different alternative computer-generated crystalline structures of these metals. The potentials accurately reproduce basic equilibrium properties of Al and Ni such as the elastic constants, phonon dispersion curves, vacancy formation and migration energies, stacking fault energies, and surface energies. The equilibrium energies of various alternative structures not included in the fitting database are calculated with these potentials. The results are compared with predictions of total-energy tight-binding calculations for the same structures. The embedded-atom potentials correctly reproduce the structural stability trends, which suggests that they are transferable to different local environments encountered in atomistic simulations of lattice defects.
Ab-initio molecular dynamics simulation of liquid water by Quantum Monte Carlo
Zen, Andrea; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro
2014-01-01
Despite liquid water is ubiquitous in chemical reactions at roots of life and climate on earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in excellent agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous Density Functional Theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab-initio simulations of complex chemical systems.
Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon
Drumm, Daniel W.; Budi, Akin; Per, Manolo C.; Russo, Salvy P.; L Hollenberg, Lloyd C.
2013-02-01
The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%.
Li ion diffusion mechanisms in LiFePO4: an ab initio molecular dynamics study.
Yang, Jianjun; Tse, John S
2011-11-17
The mechanisms for thermal (self) diffusion of Li ions in fully lithiated LiFePO(4) have been investigated with spin polarized ab initio molecular dynamics calculations. The effect of electron correlation is taken into account with the GGA+U formalism. It was found that Li ion diffusion is not a continuous process but through a series of jumps from one site to another. A dominant process is the hopping between neighboring Li sites around the PO(4) groups, which results in a zigzag pathway along the crystallographic b-axis. This observation is in agreement with a recent neutron diffraction experiment. A second process involves the collaborative movements of the Fe ions leading to the formation of antisite defects and promotes Li diffusion across the Li ion channels. The finding of the second mechanism demonstrates the benefit of ab initio molecular dynamics simulation in sampling diffusion pathways that may not be anticipated.
Emergent properties of nuclei from ab initio coupled-cluster calculations
Hagen, G; Hjorth-Jensen, M; Papenbrock, T
2016-01-01
Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. This endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. This paper reviews some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO$_{\\rm sat}$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to $^{56}$Ni. We derive an efficient scheme for including continuum effects in coupled-clust...
Electrical Resistivity of Na-K Binary Liquid Alloy Using Ab-Initio Pseudopotentials
Anil Thakur; P. K. Ahluwalia
2005-01-01
@@ The study of electrical resistivity of simple binary liquid alloy Na-K is presented as a function of concentration.Hard sphere diameters of sodium (Na) and potassium (K) are obtained through the inter ionic pair potentials evaluated using Troullier and Martins ab-initio pseudopotentials, which have been used to calculate partial structure factors S(q). The Ziman formula for calculating resistivity of binary liquid alloys has been used. Form factors are calculated using ab-initio pseudopotentials. The results suggest that the first principle approach for calculating pseudopotentials with in the frame work of Ziman formalism is quite successful in explaining the electrical resistivity data of compound forming binary liquid alloys.
Properties of metals during the heating by intense laser irradiation using ab initio simulations
Holst, Bastian; Recoules, Vanina; Torrent, Marc; Mazevet, Stephane
2011-10-01
Ultrashort laser pulses irradiating a target heat the electrons to very high temperatures. In contrast, the ionic lattice is unaffected on the time scale of the laser pulse since the heat capacity of electrons is much smaller than that of the lattice. This non-equilibrium system can be described as a composition of two subsystems: one consisting of hot electrons and the other of an ionic lattice at low temperature. We studied the effect of this intense electronic excitations on the optical properties of gold using ab initio simulations. We additionally use ab initio linear response to compute the phonon spectrum and the electron-phonon coupling constant within Density Functional Theory for several electronic temperatures of few eV. LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France.
Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon.
Drumm, Daniel W; Budi, Akin; Per, Manolo C; Russo, Salvy P; L Hollenberg, Lloyd C
2013-02-27
: The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%.
Halasyamani, Shiv [Univ. of Houston, TX (United States); Fennie, Craig [Cornell Univ., Ithaca, NY (United States)
2016-11-03
We have focused on the synthesis, characterization, and ab initio theory on multi-functional mixed-metal fluorides. With funding from the DOE, we have successfully synthesized and characterized a variety of mixed metal fluoride materials.
Marsalek, Ondrej
2015-01-01
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ab initio ring polymer contraction (AI-RPC) scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive pro...
First fully ab initio potential energy surface of methane with a spectroscopic accuracy
Nikitin, A. V.; Rey, M.; Tyuterev, Vl. G.
2016-09-01
Full 9-dimensional ab initio potential energy surfaces for the methane molecule are constructed using extended electronic structure coupled-cluster calculations with various series of basis sets following increasing X cardinal numbers: cc-pVXZ (X = 3, 4, 5, 6), aug-cc-ACVXZ (X = 3, 4, 5), and cc-pCVXZ-F12 (X = 3, 4). High-order dynamic electron correlations including triple and quadrupole excitations as well as relativistic and diagonal Born-Oppenheimer breakdown corrections were accounted for. Analytical potential functions are parametrized as non-polynomial expansions in internal coordinates in irreducible tensor representation. Vibrational energy levels are reported using global variational nuclear motion calculations with exact kinetic energy operator and a full account of the tetrahedral symmetry of CH4. Our best ab initio surface including above-mentioned contributions provides the rms (obs.-calc.) errors of less than 0.11 cm-1 for vibrational band centers below 4700 cm-1, and ˜0.3 cm-1 for all 229 assigned experimentally determined vibrational levels up to the Icosad range <7900 cm-1 without empirically adjusted parameters. These results improve the accuracy of ab initio methane vibrational predictions by more than an order of magnitude with respect to previous works. This is an unprecedented accuracy of first-principles calculations of a five-atomic molecule for such a large data set. New ab initio potential results in significantly better band center predictions even in comparison with best available empirically corrected potential energy surfaces. The issues related to the basis set extrapolation and an additivity of various corrections at this level of accuracy are discussed.
Optical and other material properties of SiO2 from ab initio studies
Warmbier, Robert; Mohammed, Faris; Quandt, Alexander
2014-07-01
The optical properties of photonic devices largely depend on the dielectric properties of the underlying materials. We apply modern ab initio methods to study crystalline SiO2 phases, which serve as toy models for amorphous glass. We discuss the dielectric response from the infrared to the VIS/UV, which is crucial for glass based photonic applications. Low density silica, like cristobalite, may provide a good basis for high transmission optical devices.
Ab initio molecular dynamics simulation of hydrogen fluoride at several thermodynamic states
Kreitmeir, M.; Bertagnolli, H.; Mortensen, Jens Jørgen;
2003-01-01
Liquid hydrogen fluoride is a simple but interesting system for studies of the influence of hydrogen bonds on physical properties. We have performed ab initio molecular dynamics simulations of HF at several thermodynamic states, where we examine the microscopic structure of the liquid as well...... as its static and dynamic properties. The results obtained show good agreement with well established data, and, moreover, we were able to show significant changes within the structure depending on the system's temperature and density....
Projector augmented wave method: ab initio molecular dynamics with full wave functions
Peter E Blöchl; Clemens J Först; Johannes Schimpl
2003-01-01
A brief introduction to the projector augmented wave method is given and recent developments are reviewed. The projector augmented wave method is an all-electron method for efficient ab initio molecular dynamics simulations with full wave functions. It extends and combines the traditions of existing augmented wave methods and the pseudopotential approach. Without sacrificing efficiency, the PAW method avoids transferability problems of the pseudopotential approach and it has been valuable to predict properties that depend on the full wave functions.
Simulation of Ab Initio Molecular Dynamics of Shock Wave on Copper
张林; 蔡灵仓; 向士凯; 经福谦; 陈栋泉
2003-01-01
The relation between particle velocity Up, up to 4 km/s, and shock wave velocity Us in copper has been simulated with ab initio molecular dynamics. The simulated relationship without considering the correction of zero-point and finite temperature effects is Us = 4.23 + 1.53Up. After considering the correction the relation becomes Us = 4.08 + 1.53Up, which is consistent with the experimental result.
Raman and ab initio studies of simple and binary 1-alkyl-3-methylimidazolium ionic liquids
Berg, R.W.; Deetlefs, M.; Seddon, K.R.
2005-01-01
Raman spectra of the ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF6]), 1-hexyl-3-methylimidazolium chloride ([C(6)mim]Cl), and 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)mim][PF6]), and binary mixtures thereof, have been assigned using ab initio MP2...... bonding between the imidazolium headgroup and the anions, and the invariance of the essentially 50:50 mixture of the predominant conformers informs on the nature of glass formation in these systems....
Raman Spectroscopy and Ab-Initio Model Calculations on Ionic Liquids
Berg, Rolf W.
2007-01-01
spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT-Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methylimidazolium ([C4mim][X]) salts. The rotational isomerism of the [C4mim]þ cation is described: the presence of anti...... will be applied to many more systems in the future. A few examples will be discussed....
Ab Initio Study on the Anti-HIV Activities of Hydroxyflavones
ZHANG Yu
2005-01-01
Flavone and 95 hydroxyflavones have been studied with ab initio method, and their total energies, atomic charges, dipole moments, multipole moments, molecular orbital compositions, orbital energies etc. were obtained. Among them the relationship between total atomic charges and activities against HIV is basically in accordance with the experimental results. The beneficial references are provided for the extraction and synthesis of strong active anti-HIV medicines.
Ab initio study of antiphase boundaries and stacking faults in L12 and DO22 compounds
Rosengaard, N. M.; Skriver, Hans Lomholt
1994-01-01
We have performed ab initio calculations of the energies of antiphase boundaries as well as complex and superlattice intrinsic stacking faults in nine intermetallic compounds observed in the face-centered-cubic L1(2) and DO22 structures. The calculations were performed by means of a Green's funct......'s function technique based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations....
Herbig, Alexander
2016-02-12
An ab-initio electronic structure method for substitutionally disordered real materials is developed within a pseudopotential density functional theory approach. The method is validated against exact diagonalization and for simple disordered CuZn alloys. The developed method is applied to iron-based superconductors. In particular, band renormalization effects due to various chemical substitutions in BaFe{sub 2}As{sub 2} are investigated and their Cooper pair breaking effects are compared.
Influence of the ab-initio nd cross sections in the critical heavy-water benchmarks
Morillon, B; Carbonell, J
2013-01-01
The n-d elastic and breakup cross sections are computed by solving the three-body Faddeev equations for realistic and semi-realistic Nucleon-Nucleon potentials. These cross sections are inserted in the Monte Carlo simulation of the nuclear processes considered in the International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP). The results obtained using thes ab initio n-d cross sections are compared with those provided by the most renown international libraries.
Ab initio verification of the analytical R-matrix theory for strong field ionization
Torlina, Lisa; Morales, Felipe; Muller, H. G.; Smirnova, Olga
2014-10-01
We summarize the key aspects of the recently developed analytical R-matrix (ARM) theory for strong field ionization (Torlina and Smirnova 2012 Phys. Rev. A 86 043408; Kaushal and Smirnova 2013 Phys. Rev. A 88 013421), and present tests of this theory using ab initio numerical simulations for hydrogen and helium atoms in long circularly polarized laser pulses. We find excellent agreement between the predictions of ARM and the numerical calculations.
Lattice dynamics of wurtzite CdS: Neutron scattering and ab-initio calculations
Debernardi, A.; Pyka, N. M.; Göbel, A.; Ruf, T.; Lauck, R.; Kramp, S.; Cardona, M.
1997-08-01
We have measured the phonon dispersion of wurtzite CdS by inelastic neutron scattering in a single crystal made from the nonabsorbing isotope 114Cd. One of the two silent B 1-modes occurs at 3.96 THz ( k = 0 ). It is significantly lower and less dispersive than so far assumed. Previous semiempirical lattice dynamical models need to be reanalyzed. However, the observed dispersion branches compare favorably with an ab-initio calculation.
Steady state Ab-initio Theory of Lasers with Injected Signals
Cerjan, Alexander
2013-01-01
We present an ab-initio treatment of steady-state lasing with injected signals that treats both multimode lasing and spatial hole burning, and describes the transition to injection locking or partial locking in the multimode case. The theory shows that spatial hole burning causes a shift in the frequency of free-running laser modes away from the injection frequency, in contrast to standard approaches.
Ab initio molecular dynamics simulations of the Li4F4 cluster
Heidenreich, A.; Sauer, J.
1995-12-01
Molecular dynamics simulations have been performed directly on the ab initio potential energy surface of Li4F4, which was generated within the Hartree-Fock approximation using a Gaussian basis set (split valence contraction). Trajectories at different temperatures yield the temperature dependence of the infrared spectra and the photoelectron spectra. For the infrared spectra comparison is made with MD results using a shell model ion pair potential function.
Yamaji, Youhei [Quantum-Phase Electronics Center, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8656 (Japan)
2015-12-31
Recently, condensed-matter ab initio approaches to strongly correlated electrons confined in crystalline solids have been developed and applied to transition-metal oxides and molecular conductors. In this paper, an ab initio scheme based on constrained random phase approximations and localized Wannier orbitals is applied to a spin liquid candidate Na{sub 2}IrO{sub 3} and is shown to reproduce experimentally observed specific heat.
Ventelon, L
2008-11-15
The various methods appropriate for the simulation of dislocations within first-principles calculations have been set up, improved and compared between them. They have been applied to study screw dislocations in body-centered cubic iron using the SIESTA code. A non-degenerate core structure is obtained; its detailed analysis reveals a dilatation effect. Taking it into account in an anisotropic elasticity model, allows explaining the cell-size dependence of the energetics, obtained within the dipole approach. The Peierls potential obtained in ab initio suggests that the metastable core configuration at halfway position in the Peierls barrier, predicted by empirical potential, does not exist. We show how to construct tri-periodic cells optimized to study kinked dislocations. Using empirical potential, we demonstrate the feasibility of ab initio calculations of Peierls stress and kink formation. (author)
Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions
Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green St., Urbana, Illinois 61801 (United States)
2015-09-14
We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.
Geng, Hua Y
2014-01-01
A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model, the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4 fold for a two-level implementation, and can be increased to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibration...
Geng, Hua Y., E-mail: huay.geng@gmail.com [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, P.O. Box 919-102, Mianyang, Sichuan, 621900 (China); Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY 14853 (United States)
2015-02-15
A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.
Geng, Hua Y.
2015-02-01
A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model-the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of rs = 0.912.
Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.
Yang, Lina; Minnich, Austin J
2017-03-14
Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.
Ab initio nuclear structure and reactions with chiral three-body forces
Langhammer, Joachim; Roth, Robert; Calci, Angelo [Institut fuer Kernphysik - Theoriezentrum, TU Darmstadt (Germany); Navratil, Petr [TRIUMF, Vancouver (Canada)
2014-07-01
One major ambition of ab initio nuclear theory is the description of nuclear-structure and reaction observables on equal footing. This is accomplished by combining the no-core shell model (NCSM) with the resonating-group method (RGM) to a unified ab initio approach to bound and continuum states, which is developed further to the no-core shell model with continuum (NCSMC). We present the formal developments to include three-nucleon interactions in both the NCSM/RGM and NCSMC formalism. This provides the possibility to assess the predictive power of chiral two- and three-nucleon forces in the variety of scattering observables. We study three-nucleon force effects on phase-shifts, cross sections and analyzing powers in first ab-initio studies of nucleon-{sup 4}He scattering with chiral two- and three-nucleon forces. Finally, we focus on heavier target nuclei using the NCSMC, e.g., in neutron-{sup 8}Be scattering and study the impact of the continuum on the spectrum of {sup 9}Be.
Ab Initio Calculations for the Polarizabilities of Small Sulfur Clusters
BAI Yu-Lin; CHEN Xiang-Rong; CHENG Xiao-Hong; YANG Xiang-Dong
2005-01-01
@@ Polarizabilities of small Sn (n = 2-8) clusters are calculated by using the higher-order finite-difference pseudopotential density functional method in real space. We find that the polarizabilities of the clusters are considered to be higher than the value estimated from the "hard sphere" model using the bulk static dielectric constant.The computed polarizabilities per atom tend to decrease with the increasing cluster size. The polarizabilities are closely related to the HOMO-LUMO gaps and the geometrical configurations.
Hydration of potassium iodide dimer studied by photoelectron spectroscopy and ab initio calculations
Li, Ren-Zhong; Zeng, Zhen; Hou, Gao-Lei; Xu, Hong-Guang; Zhao, Xiang; Gao, Yi Qin; Zheng, Wei-Jun
2016-11-01
We measured the photoelectron spectra of (KI)2-(H2O)n (n = 0-3) and conducted ab initio calculations on (KI)2-(H2O)n anions and their corresponding neutrals up to n = 6. Two types of spectral features are observed in the experimental spectra of (KI)2-(H2O) and (KI)2-(H2O)2, indicating that two types of isomers coexist, in which the high EBE feature corresponds to the hydrated chain-like (KI)2- while the low EBE feature corresponds to the hydrated pyramidal (KI)2-. In (KI)2-(H2O)3, the (KI)2- unit prefers a pyramidal configuration, and one of the K-I distances is elongated significantly, thus a K atom is firstly separated out from the (KI)2- unit. As for the neutrals, the bare (KI)2 has a rhombus structure, and the structures of (KI)2(H2O)n are evolved from the rhombus (KI)2 unit by the addition of H2O. When the number of water molecules reaches 4, the K-I distances have significant increment and one of the I atoms prefers to leave the (KI)2 unit. The comparison of (KI)2(H2O)n and (NaI)2(H2O)n indicates that it is slightly more difficult to pry apart (KI)2 than (NaI)2 via hydration, which is in agreement with the lower solubility of KI compared to that of NaI.
Ab initio studies on the spin-forbidden cooling transitions of the LiRb molecule.
You, Yang; Yang, Chuan-Lu; Zhang, Qing-Qing; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang
2016-07-20
The spin-forbidden cooling of the LiRb molecule is investigated based on ab initio quantum chemistry calculations. The multireference configuration interaction method is used to generate the potential energy curves (PECs) of the ground state X(1)Σ(+) and the low-lying excited states a(3)Σ(+), B(1)Π, and b(3)Π. The spin-orbit coupling effects for the PECs and the transition dipole moments (TDMs) between the X(1)Σ(+), b(3)Π and a(3)Σ(+) states are also calculated. The analytical functions for the PECs are deduced. The rovibrational energy levels, the spectroscopic parameters and the Franck-Condon factors (FCF) are determined by solving the Schrödinger equation of nuclear movement with the obtained analytical functions. The b(3)Π0 ↔ X(1)Σ(+) and b(3)Π1 ↔ X(1)Σ(+) transitions have highly diagonal distributed FCFs and non-zero TDMs, demonstrating that the LiRb molecule could be a very promising candidate for laser cooling. Therefore, a three-cycle laser cooling scheme for the molecule has been proposed based on these two spin-forbidden transitions. Using the radiative lifetime and linewidth calculated from the obtained TDM functions, we present further analysis of the cooling of LiRb and the corresponding KRb molecule. The transition b(3)Π0 ↔ X(1)Σ(+) is found to be a practical transition to cool the LiRb molecule, and a sub-microkelvin cool temperature could be reached for the KRb molecule using a similar laser cooling scheme.
Laser cooling of BeCl and BeBr molecules in an ab initio method.
Wan, Ming-jie; Shao, Ju-xiang; Huang, Duo-hui; Jin, Cheng-guo; Yu, You; Wang, Fan-hou
2015-10-28
In this study, the feasibility of laser-cooling of BeCl and BeBr molecules is studied using ab initio quantum chemistry. The potential energy curves for the X(2)Σ(+), A(2)Π, and 2(2)Π electronic states of BeCl and BeBr are plotted based on multi-reference configuration interaction plus Davidson corrections (MRCI + Q), and the spin-orbit coupling (SOC) effects are considered at the MRCI + Q level. The calculated spectroscopic parameters agree with the experimental data. Highly diagonally distributed Franck-Condon factors are determined for the A(2)Π(ν' = 0) ← X(2)Σ(+)(ν'' = 0) transition: f00(BeCl) = 0.947 and f00(BeBr) = 0.966. Moreover, the suitable radiative lifetimes τ of the A(2)Π(ν' = 0) state are determined for rapid laser cooling: τ(BeCl) = 18.38 ns and τ(BeBr) = 27.09 ns. The proposed cooling wavelengths of both BeCl and BeBr are within the ultraviolet region at λ00(BeCl) = 358.51 nm and λ00(BeBr) = 379.38 nm. Laser cooling schemes for BeCl and BeBr molecules are also developed in consideration of the SOC effects. These results indicate that the inclusion of SOC effects does not affect the judgment of the feasibility of laser cooling of BeCl and BeBr molecules, even for the given BeBr molecules in which the SOC effect is significant.
Laser cooling of BH and GaF: insights from an ab initio study.
Gao, Yu-feng; Gao, Tao
2015-04-28
The feasibility of laser cooling BH and GaF is investigated using ab initio quantum chemistry. The ground state X (1)Σ(+) and first two excited states (3)Π and (1)Π of BH and GaF are calculated using the multireference configuration interaction (MRCI) level of theory. For GaF, the spin-orbit coupling effect is also taken into account in the electronic structure calculations at the MRCI level. Calculated spectroscopic constants for BH and GaF show good agreement with available theoretical and experimental results. The highly diagonal Franck-Condon factors (BH: f00 = 0.9992, f11 = 0.9908, f22 = 0.9235; GaF: f00 = 0.997, f11 = 0.989, f22 = 0.958) for the (1)Π (v' = 0-2) → X (1)Σ(+) (v = 0-2) transitions in BH and GaF are determined, which are found to be in good agreement with the theoretical and experimental data. Radiative lifetime calculations of the (1)Π (v' = 0-2) state (BH: 131, 151, and 187 ns; GaF: 2.26, 2.36, and 2.48 ns) are found to be short enough for rapid laser cooling. The proposed laser cooling schemes that drive the (1)Π (v' = 0) → X (1)Σ(+) (v = 0) transition use just one laser wavelength λ00 (BH: 436 nm, GaF: 209 nm). Though the cooling wavelength of GaF is deep in the UVC, a frequency quadrupled Ti:sapphire laser (189-235 nm) could be capable of generating useful quantities of light at this wavelength. The present results indicate that BH and GaF are two good choices of molecules for laser cooling.
Shayesteh, Alireza; Alavi, S. Fatemeh; Rahman, Moloud; Gharib-Nezhad, Ehsan
2017-01-01
Ab initio potential energy curves have been calculated for the X2Σ+, A2Π, B2Σ+, 12Δ, E2Π and D2Σ+ states of CaH using the multi-reference configuration interaction method with large active space and basis sets. Transition dipole moments were calculated at Ca-H distances from 2.0 a0 to 14.0 a0, and excited state lifetimes were obtained. Our theoretical transition dipole moments can be combined with the available experimental data on the X2Σ+, A2Π and B2Σ+ states to calculate Einstein A coefficients for all rovibronic transitions of CaH appearing in solar and stellar spectra.
Grassi, A; Angilella, G G N; March, N H; Pucci, R
2012-01-01
Fingerprints of antiaromaticity in the negative ion (Li_3Al_4)^-, this species being realizable via a laser vaporization technique, are revealed by means of an ab initio quantum-chemical investigation. First, the ground-state equilibrium geometry of this ion is predicted. Also, the characteristics of the HOMO are studied, both for the square and the rectangular Al_4 geometry in two low-lying isomers of the negative ion. There is no particular sensitivity to the change in geometry of the Al_4 configuration. Therefore, we have calculated theoretically chemical shifts, which contain remarkable fingerprints of antiaromaticity. As to future directions, some comments are added in relation to the Shannon entropy.
An ab initio potential energy surface and vibrational states of MgH2(1(1)A').
Li, Hui; Xie, Daiqian; Guo, Hua
2004-09-01
A three-dimensional global potential energy surface for the ground electronic state of MgH(2) is constructed from more than 3000 ab initio points calculated using the internally contracted multireference configuration interaction method with the Davidson correction at the complete basis set limit. Low-lying vibrational energy levels of MgH(2) and MgD(2) are calculated using the Lanczos algorithm, and found to be in good agreement with known experimental band origins. The majority of the vibrational energy levels up to 8000 cm(-1) are assigned with normal mode quantum numbers. However, our results indicate a gradual transition from a normal mode regime for the stretching vibrations at low energies to a local mode regime near 7400 cm(-1), as evidenced by a decreasing energy gap between the (n(1),0,0) and (n(1)-1,0,1) vibrational states and bifurcation of the corresponding wave functions.
Ab initio and DFT Studies of Be(BH42
J. S. Al-Otaibi
2016-03-01
Full Text Available In this study, the Ab inito and DFT calculations of optimized geometries, energy and vibrational spectra for the Beryllium borohydride Be(BH42 at different levels are achieved by Hartre – Fock (HF, perturbation theory (MP2 and density functional theory (B3LYP methods. They utilize the 6-31G(d, 6-311G(d,p, 6-311+G(d,p and 6-311++G(d,p basis sets. The theoretical results showed that Beryllium borohydride with the D2d structure which contains two identical groups of double bridging hydrogen has the lowest energy at all levels. Consequently, this compound is considered as the most stable one and the results of IR and Raman Spectra at all levels support that. We found that both structures Cs, C3v have the structure of D2d kind at all levels. The values of bond lengths for these two structures are identical for the bond lengths to the structure D2d kind which confirms this theory.
Agrawal, P M; Malshe, M; Narulkar, R; Raff, L M; Hagan, M; Bukkapatnum, S; Komanduri, R
2009-02-05
Previous methods proposed for obtaining analytic potential-energy surfaces (PES) from ab initio electronic structure calculations are not self-starting. They generally require that the sampling of configuration space important in the reaction dynamics of the process being investigated be initiated by using chemical intuition or a previously developed semiempirical potential-energy surface. When the system under investigation contains four or more atoms undergoing three- and four-center reactions in addition to bond scission processes, obtaining a sufficiently converged initial sampling can be very difficult due to the extremely large volume of configuration space that is important in the reaction dynamics. It is shown that by combining direct dynamics (DD) with previously reported molecular dynamics (MD), novelty sampling (NS), and neural network (NN) methods, an analytical surface suitable for MD computations for large systems may be obtained. Application of the method to the investigation of N-O bond scission and cis-trans isomerization reactions of HONO followed by comparison of the resulting neural network potential-energy surface to one obtained by using a semiempirical potential to initiate the sampling shows that the two potential surfaces are the same within the fitting accuracy of the surfaces. It is concluded that the combination of direct dynamics, molecular dynamics, novelty sampling, and neural network fitting provides a self-starting, robust, and accurate DD/MD/NS/NN method for the execution of first-principles, ab initio, molecular dynamics studies in systems containing four or more atoms which are undergoing simultaneous two-, three-, and four-center reactions.
Polymerization of Silicon-Doped Heterofullerenes: an Ab Initio Study
LI Ji-Ling; XIA Yue-Yuan; ZHAO Ming-Wen; LIU Xiang-Dong; SONG Chen; LI Li-Juan; LI Feng; HUANG Bo-Da
2008-01-01
We perform the calculations on geometric and electronic structures of Si-doped heterofullerene C50Si10 and its derivatives,a 640Si20-CaoSi20 dimer and a C40Si20-based nanowire by using density-functional theory.The optimized configuration of the C40Si20-based nanowire exhibits a regular dumbbell-shaped chain nanostructure.The electronic structure calculations indicate that the HOMO-LUMO gaps of the heterofullerene-based materials can be greatly modified by substitutionally doping with Si atoms and show a decreasing trend with increase cluster size.Unlike the band structures of the conventional wide band gap silicon carbide nanomaterials,the C40Si20-based nanowire has a very narrow direct band gap of 0.087eV.
Ab initio Calculations of Optical Properties of Clusters
Shinde, Ravindra
2016-01-01
We have performed systematic large-scale all-electron correlated calculations on boron Bn, aluminum Aln and magnesium Mgn clusters (n=2--5), to study their linear optical absorption spectra. Several possible isomers of each cluster were considered, and their geometries were optimized at the coupled-cluster singles doubles (CCSD) level of theory. Using the optimized ground-state geometries, excited states of different clusters were computed using the multi-reference singles-doubles configuration interaction (MRSDCI) approach, which includes electron correlation effects at a sophisticated level. These CI wavefunctions were used to compute the transition dipole matrix elements connecting the ground and various excited states of different clusters, eventually leading to their linear absorption spectra. The convergence of our results with respect to the basis sets, and the size of the CI expansion was carefully examined. Isomers of a given cluster show a distinct signature spectrum, indicating a strong structure p...
Roy, Soumendra K.; Jian, Tian; Lopez, Gary V.; Li, Wei-Li; Su, Jing; Bross, David H.; Peterson, Kirk A.; Wang, Lai-Sheng; Li, Jun
2016-02-01
The observation of the gaseous UFO- anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO- is linear with an O-U-F structure and a 3H4 spectral term derived from a U 7sσ25fφ15fδ1 electron configuration, whereas the ground state of neutral UFO has a 4H7/2 spectral term with a U 7sσ15fφ15fδ1 electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.
Castro-Palacios, Juan Carlos; Rubayo-Soneira, Jesús; Ishii, Keisaku; Yamashita, Koichi
2007-04-01
The intermolecular potentials for the NO(X 2Pi)-Kr and NO(A 2Sigma+)-Kr systems have been calculated using highly accurate ab initio calculations. The spin-restricted coupled cluster method for the ground 1 2A' state [NO(X 2Pi)-Kr] and the multireference singles and doubles configuration interaction method for the excited 2 2A' state [NO(A 2Sigma+)-Kr], respectively, were used. The potential energy surfaces (PESs) show two linear wells and one that is almost in the perpendicular position. An analytical representation of the PESs has been constructed for the triatomic systems and used to carry out molecular dynamics (MD) simulations of the NO-doped krypton matrix response after excitation of NO. MD results are shown comparatively for three sets of potentials: (1) anisotropic ab initio potentials [NO molecule direction fixed during the dynamics and considered as a point (its center of mass)], (2) isotropic ab initio potentials (isotropic part in a Legendre polynomial expansion of the PESs), and (3) fitted Kr-NO potentials to the spectroscopic data. An important finding of this work is that the anisotropic and isotropic ab initio potentials calculated for the Kr-NO triatomic system are not suitable for describing the dynamics of structural relaxation upon Rydberg excitation of a NO impurity in the crystal. However, the isotropic ab initio potential in the ground state almost overlaps the published experimental potential, being almost independent of the angle asymmetry. This fact is also manifested in the radial distribution function around NO. However, in the case of the excited state the isotropic ab initio potential differs from the fitted potentials, which indicates that the Kr-NO interaction in the matrix is quite different because of the presence of the surrounding Kr atoms acting on the NO molecule. MD simulations for isotropic potentials reasonably reproduce the experimental observables for the femtosecond response and the bubble size but do not match
An experimental and ab initio study on the abiotic reduction of uranyl by ferrous iron
Taylor, S. D.; Marcano, M. C.; Rosso, K. M.; Becker, U.
2015-05-01
It is important to understand the mechanisms controlling the removal of uranyl from solution from an environmental standpoint, particularly whether soluble Fe(II) is capable of reducing soluble U(VI) to insoluble U(IV). Experiments were performed to shed light into discrepancies of recent studies about precipitation of U-containing solids without changing oxidation states versus precipitation/reduction reactions, especially with respect to the kinetics of these reactions. To understand the atomistic mechanisms, thermodynamics, and kinetics of these redox processes, ab initio electron transfer (ET) calculations, using Marcus theory, were applied to study the reduction of U(VI)aq to U(V)aq by Fe(II)aq (the first rate-limiting ET-step). Outer-sphere (OS) and inner-sphere (IS) Fe-U complexes were modeled to represent simple species within a homogeneous environment through which ET could occur. Experiments on the chemical reduction were performed by reacting 1 mM Fe(II)aq at pH 7.2 with high (i.e., 0.16 mM) and lower (i.e., 0.02 mM) concentrations of U(VI)aq. At higher U concentration, a rapid decrease in U(VI)aq was observed within the first hour of reaction. XRD and XPS analyses of the precipitates confirmed the presence of (meta)schoepite phases, where up to ∼25% of the original U was reduced to U4+ and/or U5+-containing phases. In contrast, at 0.02 mM U, the U(VI)aq concentration remained fairly constant for the first 3 h of reaction and only then began to decrease due to slower precipitation kinetics. XPS spectra confirm the partial chemical reduction U associated with the precipitate (up to ∼30%). Thermodynamic calculations support that the reduction of U(VI)aq to U(IV)aq by Fe(II)aq is energetically unfavorable. The batch experiments in this study show U(VI) is removed from solution by precipitation and that transitioning to a heterogeneous system in turn enables the solid U phase to be partially reduced. Ab initio ET calculations revealed that OS ET is
2014-12-01
Poly(aryl-ether-ether-ketone) as a Possible Metalized Film Capacitor Dielectric: Accurate Description of the Band Gap Through Ab Initio...Possible Metalized Film Capacitor Dielectric: Accurate Description of the Band Gap Through Ab Initio Calculation Janet Ho and Marco Olguin Sensors...a Possible Metalized Film Capacitor Dielectric: Accurate Description of the Band Gap Through Ab Initio Calculation 5a. CONTRACT NUMBER 5b. GRANT
Stavretis, Shelby E; Atanasov, Mihail; Podlesnyak, Andrey A; Hunter, Seth C; Neese, Frank; Xue, Zi-Ling
2015-10-19
Zero-field splitting (ZFS) parameters of nondeuterated metalloporphyrins [Fe(TPP)X] (X = F, Br, I; H₂TPP = tetraphenylporphyrin) have been directly determined by inelastic neutron scattering (INS). The ZFS values are D = 4.49(9) cm⁻¹ for tetragonal polycrystalline [Fe(TPP)F], and D = 8.8(2) cm⁻¹, E = 0.1(2) cm⁻¹ and D = 13.4(6) cm⁻¹, E = 0.3(6) cm⁻¹ for monoclinic polycrystalline [Fe(TPP)Br] and [Fe(TPP)I], respectively. Along with our recent report of the ZFS value of D = 6.33(8) cm⁻¹ for tetragonal polycrystalline [Fe(TPP)Cl], these data provide a rare, complete determination of ZFS parameters in a metalloporphyrin halide series. The electronic structure of [Fe(TPP)X] (X = F, Cl, Br, I) has been studied by multireference ab initio methods: the complete active space self-consistent field (CASSCF) and the N-electron valence perturbation theory (NEVPT2) with the aim of exploring the origin of the large and positive zero-field splitting D of the ⁶A₁ ground state. D was calculated from wave functions of the electronic multiplets spanned by the d⁵ configuration of Fe(III) along with spin–orbit coupling accounted for by quasi degenerate perturbation theory. Results reproduce trends of D from inelastic neutron scattering data increasing in the order from F, Cl, Br, to I. A mapping of energy eigenvalues and eigenfunctions of the S = 3/2 excited states on ligand field theory was used to characterize the σ- and π-antibonding effects decreasing from F to I. This is in agreement with similar results deduced from ab initio calculations on CrX₆³⁻ complexes and also with the spectrochemical series showing a decrease of the ligand field in the same directions. A correlation is found between the increase of D and decrease of the π- and σ-antibonding energies e(λ)(X) (λ = σ, π) in the series from X = F to I. Analysis of this correlation using second-order perturbation theory expressions in terms of angular overlap parameters rationalizes the
Ab initio study of the thermopower of biphenyl-based single-molecule junctions
Bürkle, M.; Zotti, L. A.; Viljas, J. K.; Vonlanthen, D.; Mishchenko, A.; Wandlowski, T.; Mayor, M.; Schön, G.; Pauly, F.
2012-09-01
By employing ab initio electronic-structure calculations combined with the nonequilibrium Green's function technique, we study the dependence of the thermopower Q on the conformation in biphenyl-based single-molecule junctions. For the series of experimentally available biphenyl molecules, alkyl side chains allow us to gradually adjust the torsion angle ϕ between the two phenyl rings from 0∘ to 90∘ and to control in this way the degree of π-electron conjugation. Studying different anchoring groups and binding positions, our theory predicts that the absolute values of the thermopower decrease slightly towards larger torsion angles, following an a+bcos2ϕ dependence. The anchoring group determines the sign of Q and a,b simultaneously. Sulfur and amine groups give rise to Q,a,b>0, while for cyano, Q,a,bbinding positions can lead to substantial variations of the thermopower mostly due to changes in the alignment of the frontier molecular orbital levels and the Fermi energy. We explain our ab initio results in terms of a π-orbital tight-binding model and a minimal two-level model, which describes the pair of hybridizing frontier orbital states on the two phenyl rings. The variations of the thermopower with ϕ seem to be within experimental resolution.
Wang, Yimin; Bowman, Joel M; Kamarchik, Eugene
2016-03-21
We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na(+)H2O, F(-)H2O, and Cl(-)H2O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H2O potentials are permutationally invariant fits to roughly 20,000 coupled cluster CCSD(T) energies (awCVTZ basis for Na(+) and aVTZ basis for Cl(-) and F(-)), over a large range of distances and H2O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.
Ashcraft, Robert W; Raman, Sumathy; Green, William H
2007-10-18
Ab initio molecular orbital calculations were performed and thermochemical parameters estimated for 46 species involved in the oxidation of hydroxylamine in aqueous nitric acid solution. Solution-phase properties were estimated using the several levels of theory in Gaussian03 and using COSMOtherm. The use of computational chemistry calculations for the estimation of physical properties and constants in solution is addressed. The connection between the pseudochemical potential of Ben-Naim and the traditional standard state-based thermochemistry is shown, and the connection of these ideas to computational chemistry results is established. This theoretical framework provides a basis for the practical use of the solution-phase computational chemistry estimates for real systems, without the implicit assumptions that often hide the nuances of solution-phase thermochemistry. The effect of nonidealities and a method to account for them is also discussed. A method is presented for estimating the solvation enthalpy and entropy for dilute aqueous solutions based on the solvation free energy from the ab initio calculations. The accuracy of the estimated thermochemical parameters was determined through comparison with (i) enthalpies of formation in the gas phase and in solution, (ii) Henry's law data for aqueous solutions, and (iii) various reaction equilibria in aqueous solution. Typical mean absolute deviations (MAD) for the solvation free energy in room-temperature water appear to be ~1.5 kcal/mol for most methods investigated. The MAD for computed enthalpies of formation in solution was 1.5-3 kcal/mol, depending on the methodology employed and the type of species (ion, radical, closed-shell) being computed. This work provides a relatively simple and unambiguous approach that can be used to estimate the thermochemical parameters needed to build detailed ab initio kinetic models of systems in aqueous solution. Technical challenges that limit the accuracy of the estimates are
Messina, Luca; Castin, Nicolas; Domain, Christophe; Olsson, Pär
2017-02-01
The quality of kinetic Monte Carlo (KMC) simulations of microstructure evolution in alloys relies on the parametrization of point-defect migration rates, which are complex functions of the local chemical composition and can be calculated accurately with ab initio methods. However, constructing reliable models that ensure the best possible transfer of physical information from ab initio to KMC is a challenging task. This work presents an innovative approach, where the transition rates are predicted by artificial neural networks trained on a database of 2000 migration barriers, obtained with density functional theory (DFT) in place of interatomic potentials. The method is tested on copper precipitation in thermally aged iron alloys, by means of a hybrid atomistic-object KMC model. For the object part of the model, the stability and mobility properties of copper-vacancy clusters are analyzed by means of independent atomistic KMC simulations, driven by the same neural networks. The cluster diffusion coefficients and mean free paths are found to increase with size, confirming the dominant role of coarsening of medium- and large-sized clusters in the precipitation kinetics. The evolution under thermal aging is in better agreement with experiments with respect to a previous interatomic-potential model, especially concerning the experiment time scales. However, the model underestimates the solubility of copper in iron due to the excessively high solution energy predicted by the chosen DFT method. Nevertheless, this work proves the capability of neural networks to transfer complex ab initio physical properties to higher-scale models, and facilitates the extension to systems with increasing chemical complexity, setting the ground for reliable microstructure evolution simulations in a wide range of alloys and applications.
Majumder, Moumita; Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker; Li, Jun; Guo, Hua; Manzhos, Sergei
2014-06-01
New potential energy surfaces for methane were constructed, represented as analytic fits to about 100,000 individual high-level ab initio data. Explicitly-correlated multireference data (MRCI-F12(AE)/CVQZ-F12) were computed using Molpro [1] and fit using multiple strategies. Fits with small to negligible errors were obtained using adaptations of the permutation-invariant-polynomials (PIP) approach [2,3] based on neural-networks (PIP-NN) [4,5] and the interpolative moving least squares (IMLS) fitting method [6] (PIP-IMLS). The PESs were used in full-dimensional vibrational calculations with an exact kinetic energy operator by representing the Hamiltonian in a basis of products of contracted bend and stretch functions and using a symmetry adapted Lanczos method to obtain eigenvalues and eigenvectors. Very close agreement with experiment was produced from the purely ab initio PESs. References 1- H.-J. Werner, P. J. Knowles, G. Knizia, 2012.1 ed. 2012, MOLPRO, a package of ab initio programs. see http://www.molpro.net. 2- Z. Xie and J. M. Bowman, J. Chem. Theory Comput 6, 26, 2010. 3- B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577, 2009. 4- J. Li, B. Jiang and Hua Guo, J. Chem. Phys. 139, 204103 (2013). 5- S Manzhos, X Wang, R Dawes and T Carrington, JPC A 110, 5295 (2006). 6- R. Dawes, X-G Wang, A.W. Jasper and T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010).
Putungan, Darwin Barayang; Lin, Shi-Hsin; Kuo, Jer-Lai
2016-07-27
We systematically investigated the potential of single-layer VS2 polytypes as Na-battery anode materials via density functional theory calculations. We found that sodiation tends to inhibit the 1H-to-1T structural phase transition, in contrast to lithiation-induced transition on monolayer MoS2. Thus, VS2 can have better structural stability in the cycles of charging and discharging. Diffussion of Na atom was found to be very fast on both polytypes, with very small diffusion barriers of 0.085 eV (1H) and 0.088 eV (1T). Ab initio random structure searching was performed in order to explore stable configurations of Na on VS2. Our search found that both the V top and the hexagonal center sites are preferred adsorption sites for Na, with the 1H phase showing a relatively stronger binding. Notably, our random structures search revealed that Na clusters can form as a stacked second layer at full Na concentration, which is not reported in earlier works wherein uniform, single-layer Na adsorption phases were assumed. With reasonably high specific energy capacity (232.91 and 116.45 mAh/g for 1H and 1T phases, respectively) and open-circuit voltage (1.30 and 1.42 V for 1H and 1T phases, respectively), VS2 is a promising alternative material for Na-ion battery anodes with great structural sturdiness. Finally, we have shown the capability of the ab initio random structure searching in the assessment of potential materials for energy storage applications.
Razee, S.S.A.; Staunton, J.B. [Department of Physics, University of Warwick, Coventry (United Kingdom); Ginatempo, B.; Bruno, E. [Dipartimento di Fisica and Unita INFM, Universita di Messina, Messina (Italy); Pinski, F.J. [Department of Physics, University of Cincinnati, OH (United States)
2001-09-24
A theory is presented for describing the effects of annealing magnetic alloys in magnetic fields. It has an ab initio spin-polarized relativistic Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) electronic structure basis and uses the framework of concentration waves. Alloys which would otherwise be soft magnets are found experimentally to develop directional chemical order and significant uniaxial anisotropy when annealed in magnetic fields. Our approach is able to provide a quantitative description of these effects together with the underlying electronic mechanisms. We describe applications to the soft magnetic alloys permalloy and FeCo. (author)
Accurate calculation of the p Ka of trifluoroacetic acid using high-level ab initio calculations
Namazian, Mansoor; Zakery, Maryam; Noorbala, Mohammad R.; Coote, Michelle L.
2008-01-01
The p Ka value of trifluoroacetic acid has been successfully calculated using high-level ab initio methods such as G3 and CBS-QB3. Solvation energies have been calculated using CPCM continuum model of solvation at the HF and B3-LYP levels of theory with various basis sets. Excellent agreement with experiment (to within 0.4 p Ka units) was obtained using CPCM solvation energies at the B3-LYP/6-31+G(d) level (or larger) in conjunction with CBS-QB3 or G3 gas-phase energies of trifluoroacetic acid and its anion.
Kubota, Yoshiyuki; Ohnuma, Toshiharu; Bučko, Tomáš
2017-03-01
The reaction of carbon dioxide (CO2) with aqueous 2-aminoethanol (MEA) has been investigated using both blue moon ensemble and metadynamics approaches combined with ab initio molecular dynamics (AIMD) simulations. The AIMD simulations predicted the spontaneous deprotonation of the intermediate compound, MEA zwitterion, and they were used to study two possible routes for subsequent proton transfer reactions: the formation of the protonated MEA and the formation of MEA carbamic acid. The free-energy curve depicted by blue moon ensemble technique supported the favorable deprotonation of MEA zwitterion. The overall free-energy profile showed the favorable formation of the ionic products of MEA carbamate ion and protonated MEA.
Heat capacities of xenotime-type ceramics: An accurate ab initio prediction
Ji, Yaqi; Beridze, George; Bosbach, Dirk; Kowalski, Piotr M.
2017-10-01
Because of ability to incorporate actinides into their structure, the lanthanide phosphate ceramics (LnPO4) are considered as potential matrices for the disposal of nuclear waste. Here we present highly reliable ab initio prediction of the variation of heat capacities and the standard entropies of these compounds in zircon structure along lanthanide series (Ln = Dy, …,Lu) and validate them against the existing experimental data. These data are helpful for assessment of thermodynamic parameters of these materials in the context of using them as matrices for immobilization of radionuclides for the purpose of nuclear waste management.
Improved Ab Initio Molecular Dynamics by Minimal Biasing with Experimental Data
White, Andrew D; Hocky, Glen M; Voth, Gregory A
2016-01-01
Accounting for electrons and nuclei simultaneously is a key goal of computer simulation via ab initio molecular dynamics (AIMD). However, AIMD is often unable to accurately reproduce the properties of systems such as water due to inaccuracies in the underlying electronic density functionals, shortcomings that are often addressed by added empirical corrections and/or increasing the simulation temperature. We present here a maximum-entropy-based approach to directly incorporate limited experimental data via a minimal bias. The biased AIMD simulations of both water and of an excess proton in water are shown to give significantly improved properties for both the biased and unbiased observables.
2008-01-01
Computational prediction of adsorption of small molecules in porous materials has great impact on the basic and applied research in chemical engineering and material sciences. In this work,we report an approach based on grand canonical ensemble Monte Carlo(GCMC) simulations and ab initio force fields. We calculated the adsorption curves of ammonia in ZSM-5 zeolite and hydrogen in MOF-5(a metal-organic-framework material). The predictions agree well with experimental data. Because the predictions are based on the first principle force fields,this approach can be used for the adsorption prediction of new molecules or materials without experimental data as guidance.
Structural Features of Boron-Doped Si(113) Surfaces Simulated by ab initio Calculations
LIAO Long-Zhong; LIU Zheng-Hui; ZHANG Zhao-Hui
2008-01-01
Based on ab initio calculations, boron-doped Si(113) surfaces have been simulated and atomic structures of the surfaces have been proposed. It has been determined that surface features of empty and filled states that are separately localized at pentamers and adatoms indicates a low surface density of B atoms, while it is attributed to heavy doping of B atoms at the second layer that pentamers and adatoms are both present in an image of scanning tunnelling microscopy. B doping at the second layer should be balanced by adsorbed B or Si atoms beside the adatoms and inserted B interstitials below the adatoms.
Wang, Shidong; Wang, Zhao; Setyawan, Wahyu; Mingo, Natalio; Curtarolo, Stefano
2011-10-01
Several thousand compounds from the Inorganic Crystal Structure Database have been considered as nanograined, sintered-powder thermoelectrics with the high-throughput ab-initio AFLOW framework. Regression analysis unveils that the power factor is positively correlated with both the electronic band gap and the carrier effective mass, and that the probability of having large thermoelectric power factors increases with the increasing number of atoms per primitive cell. Avenues for further investigation are revealed by this work. These avenues include the role of experimental and theoretical databases in the development of novel materials.
无
2000-01-01
Ab initio method, under the effective core potential(ECP) approximation at HF/LANL2DZ level, has been employed to study the reaction mechanism of the carbonyl insertion of olefin hydroformylation catalyzed by a carbonyl cobalt HCo(CO)3. The two reaction paths have been discussed. The calculated potential energy barriers for the carbonyl migration and the ethyl group migration are 105.0 kJ/mol and 39.17 kJ/mol, respectively. The results indicate that the reaction path via ethyl migration is more energetically favorable than that via carbonyl insertion.
Ab initio many-body calculations of the 4He photo-absorption cross section
Schuster, Micah D; Johnson, Calvin W; Jurgenson, Eric D; Navratil, Petr
2013-01-01
A major goal of nuclear theory is to make quantitative calculations of low-energy nuclear observables starting from microscopic internucleon forces. Computationally, this is complicated by the large model spaces needed to reach convergence in many-body approaches, such as the no-core shell model (NCSM). In recent years, the similarity renormalization group (SRG) has provided a powerful and versatile means to soften interactions for ab initio structure calculations, thus leading to convergence within smaller model spaces. Here we compute the 4He total photo absorption cross section and study, for the first time, the consistency of the SRG approach in a continuum observable.
Monte Carlo methods in AB initio quantum chemistry quantum Monte Carlo for molecules
Lester, William A; Reynolds, PJ
1994-01-01
This book presents the basic theory and application of the Monte Carlo method to the electronic structure of atoms and molecules. It assumes no previous knowledge of the subject, only a knowledge of molecular quantum mechanics at the first-year graduate level. A working knowledge of traditional ab initio quantum chemistry is helpful, but not essential.Some distinguishing features of this book are: Clear exposition of the basic theory at a level to facilitate independent study. Discussion of the various versions of the theory: diffusion Monte Carlo, Green's function Monte Carlo, and release n
Ab initio Path Integral Molecular Dynamics Based on Fragment Molecular Orbital Method
Fujita, Takatoshi; Watanabe, Hirofumi; Tanaka, Shigenori
2009-10-01
We have developed an ab initio path integral molecular dynamics method based on the fragment molecular orbital method. This “FMO-PIMD” method can treat both nuclei and electrons quantum mechanically, and is useful to simulate large hydrogen-bonded systems with high accuracy. After a benchmark calculation for water monomer, water trimer and glycine pentamer have been studied using the FMO-PIMD method to investigate nuclear quantum effects on structure and molecular interactions. The applicability of the present approach is demonstrated through a number of test calculations.
S. Tolosa
2013-01-01
Full Text Available A procedure for the theoretical study of chemical reactions in solution by means of molecular dynamics simulations of aqueous solution at infinite dilution is described using ab initio solute-solvent potentials and TIP3P water model to describe the interactions. The procedure is applied to the study of neutral hydrolysis of various molecules (HCONH2, HNCO, HCNHNH2, and HCOOCH3 via concerted and water-assisted mechanisms. We used the solvent as a reaction coordinate and the free energy curves for the calculation of the properties related with the reaction mechanism, namely, reaction and activation energies.
Raman and ab initio studies of simple and binary 1-alkyl-3-methylimidazolium ionic liquids
Berg, R.W.; Deetlefs, M.; Seddon, K.R.
2005-01-01
Raman spectra of the ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF6]), 1-hexyl-3-methylimidazolium chloride ([C(6)mim]Cl), and 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)mim][PF6]), and binary mixtures thereof, have been assigned using ab initio MP2...... calculations. The previously reported anti and gauche forms of the [C(4)mim](+) cation have been observed, and this study reveals this to be a general feature of the long-chain I-alkyl derivatives. Analysis of mixtures Of [C(6)mim]Cl and [C(6)mim][PF6] has provided information on the nature of the hydrogen...
Charge carrier motion in disordered conjugated polymers: a multiscale ab-initio study
Vukmirovic, Nenad; Wang, Lin-Wang
2009-11-10
We developed an ab-initio multiscale method for simulation of carrier transport in large disordered systems, based on direct calculation of electronic states and electron-phonon coupling constants. It enabled us to obtain the never seen before rich microscopic details of carrier motion in conjugated polymers, which led us to question several assumptions of phenomenological models, widely used in such systems. The macroscopic mobility of disordered poly(3- hexylthiophene) (P3HT) polymer, extracted from our simulation, is in agreement with experimental results from the literature.
Ab-initio simulation of photoinduced transformation of small rings in amorphous silica
Bernasconi, D. Donadio M.
2004-01-01
We have studied the photoinduced transformation of small rings (3-membered) in amorphous silica by Car-Parrinello simulations. The process of ring opening leading to the formation of a couple of paramagnetic centers, namely an E' and a non-bridging-oxygen hole center (NBOHC), has been proposed experimentally to occur in silica exposed to F2 laser irradiation (at 7.9 eV). By using a new scheme for the simulation of rare events in ab-initio molecular dynamics (Iannuzzi, Laio and Parrinello, Phy...
Fürst, Joachim Alexander; Hashemi, J.; Markussen, Troels
2009-01-01
techniques and tight-binding calculations to illustrate these materials' transmission properties and give physical arguments to interpret the numerical results. Specifically, above the Fermi energy we find a strong reduction in electron transmission due to localized states in certain regions of the structure......Fullerene functionalized carbon nanotubes-NanoBuds-form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab initio...
Xiao, H. Y.; Weber, W. J.; Zhang, Y.; Zu, X. T.; Li, S.
2015-01-01
The response of titanate pyrochlores (A2Ti2O7, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O2-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser, electron and ion irradiations. PMID:25660219
Atomic ionization of germanium by neutrinos from an ab initio approach
Chen, Jiunn-Wei [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); National Center for Theoretical Sciences and Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China); Chi, Hsin-Chang [Department of Physics, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan (China); Huang, Keh-Ning [Department of Physics, Sichuan University, Chengdu, Sichuan (China); Department of Physics, Fuzhou University, Fuzhou, Fujian (China); Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Liu, C.-P. [Department of Physics, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan (China); Shiao, Hao-Tse [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Singh, Lakhwinder [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Wong, Henry T. [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Wu, Chih-Liang; Wu, Chih-Pan [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China)
2014-04-04
An ab initio calculation of atomic ionization of germanium by neutrinos was carried out in the framework of multiconfiguration relativistic random phase approximation and benchmarked by related atomic structure and photoabsorption data. This improves over the conventional approach based on scattering off free electrons whose validity at sub-keV energy transfer is questionable. Limits on neutrino magnetic moments are derived using reactor neutrino data taken with low threshold germanium detectors. Future applications of these atomic techniques will greatly reduce the atomic uncertainties in low-energy neutrino and dark matter detections.
Temperature-Dependent Diffusion Coefficients from ab initio Computations: Hydrogen in Nickel
E Wimmer; W Wolf; J Sticht; P Saxe; C Geller; R Najafabadi; G Young
2006-03-16
The temperature-dependent mass diffusion coefficient is computed using transition state theory. Ab initio supercell phonon calculations of the entire system provide the attempt frequency, the activation enthalpy, and the activation entropy as a function of temperature. Effects due to thermal lattice expansion are included and found to be significant. Numerical results for the case of hydrogen in nickel demonstrate a strong temperature dependence of the migration enthalpy and entropy. Trapping in local minima along the diffusion path has a pronounced effect especially at low temperatures. The computed diffusion coefficients with and without trapping bracket the available experimental values over the entire temperature range between 0 and 1400 K.
Superconductivity in an expanded phase of ZnO: an ab initio study
Hapiuk, D.; Marques, M. A. L.; Mélinon, P.; Botti, S.; Masenelli, B.; Flores-Livas, J. A.
2015-04-01
It is known that covalent semiconductors become superconducting if conveniently doped with large concentration of impurities. In this article we investigate, using ab initio methods, if the same situation is possible for an ionic, large-band gap semiconductor such as ZnO. We concentrate on the cage-like sodalite phase, with very similar electronic and phononic properties as wurtzite ZnO, but allow for endohedral doping of the cages. We find that sodalite ZnO becomes superconducting for a variety of dopants, reaching a maximum critical temperature of 7 K. This value is comparable to the transition temperatures of doped silicon clathrates, cubic silicon, and diamond.
Novel silicon allotropes for photovoltaic applications from ab initio structure prediction
Amsler, Maximilian; Goedecker, Stefan; Botti, Silvana; Marques, Miguel A. L.
2015-03-01
Sophisticated structure prediction methods have been developed and become essential tools when theoretically designing new materials with desired properties. Their successful applications to many systems at various conditions and increasing computational power have strongly contributed to their popularity. However, an accurate prediction from ab initio calculations still remains an extremely challenging task. The Minima Hopping Method is a powerful tool to find low energy structures given only the chemical composition of a system and allows the prediction of structures at any boundary condition. I will present the results of our studies on low density silicon phases with potential use in photovoltaic applications.
Curchod, Basile F. E.; Rauer, Clemens; Marquetand, Philipp; González, Leticia; Martínez, Todd J.
2016-03-01
Full multiple spawning is a formally exact method to describe the excited-state dynamics of molecular systems beyond the Born-Oppenheimer approximation. However, it has been limited until now to the description of radiationless transitions taking place between electronic states with the same spin multiplicity. This Communication presents a generalization of the full and ab initio multiple spawning methods to both internal conversion (mediated by nonadiabatic coupling terms) and intersystem crossing events (triggered by spin-orbit coupling matrix elements) based on a spin-diabatic representation. The results of two numerical applications, a model system and the deactivation of thioformaldehyde, validate the presented formalism and its implementation.
Ab initio molecular simulations on specific interactions between amyloid beta and monosaccharides
Nomura, Kazuya; Okamoto, Akisumi; Yano, Atsushi; Higai, Shin'ichi; Kondo, Takashi; Kamba, Seiji; Kurita, Noriyuki
2012-09-01
Aggregation of amyloid β (Aβ) peptides, which is a key pathogenetic event in Alzheimer's disease, can be caused by cell-surface saccharides. We here investigated stable structures of the solvated complexes of Aβ with some types of monosaccharides using molecular simulations based on protein-ligand docking and classical molecular mechanics methods. Moreover, the specific interactions between Aβ and the monosaccharides were elucidated at an electronic level by ab initio fragment molecular orbital calculations. Based on the results, we proposed which type of monosaccharide prefers to have large binding affinity to Aβ and inhibit the Aβ aggregation.
Ab-initio density functional theory study of a WO3 NH3-sensing mechanism
Hu Ming; Zhang Jie; Wang Wei-Dan; Qin Yu-Xiang
2011-01-01
WO3 bulk and various surfaces are studied by an ab-initio density functional theory technique.The band structures and electronic density states of WO3 bulk are investigated.The surface energies of different WO3 surfaces are compared and then the(002)surface with minimum energy is computed for its NH3 sensing mechanism which explains the results in the experiments.Three adsorption sites are considered.According to the comparisons of the energy and the charge change between before and after adsorption in the optimal adsorption site O1c,the NH3 sensing mechanism is obtained.
Pietrucci, Fabio; Andreoni, Wanda
2011-08-19
Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.
Arntsen, Christopher; Chen, Chen; Voth, Gregory A.
2017-09-01
We present two new multiscale molecular dynamics (MS-RMD) models for the hydrated excess proton in water developed directly from ab initio molecular dynamics (AIMD) simulation data of the same system. The potential of mean force along the proton transfer reaction coordinate and radial distribution functions for the MS-RMD models are shown to faithfully reproduce those of AIMD. The models are developed using an algorithm based on relative entropy minimization, thus demonstrating the ability of the method to rapidly generate accurate and highly efficient reactive MD force fields.
Paired-permanent approach for VB theory (II) -An ab initio spin-free VB program
无
2001-01-01
Paired-permanent approach for VB theory is extensively developed. Canonical expan sion of a paired-permanent is deduced. Furthermore, it is shown that a paired-permanent may be expressed in terms of the products of sub-paired-permanents of any given order and their corre sponding minors. An ab initio spin-free valence bond program, called Xiamen, is implemented by using paired-permanent approach. Test calculation shows that Xiamen package is more efficient than some other programs based on the traditional VB algorithm, and it provides a new practical tool for quantum chemistry.
Ab initio studies on the mechanic and magnetic properties of PdHx
Cui Xin; Liang Xi-Xia; Wang Jian-Tao; Zhao Guo-Zhong
2011-01-01
Based on ab initio total energy calculations, the structural, electronic, mechanic, and magnetic properties of PdHx are investigated. It is found that bulk modulus of PdHx is larger than the metal Pd with the hydrogen storage except Pd4H2. The calculated results for the magnetic moments show that the hydrogen addition weakens the magnetic properties of the PdHx systems. A strong magneto-volume effect is found in PdHx structures as well as Pd. The transition from paramagnetism to ferromagnetism is discussed. The corresponding densities of states for both structures are also shown to understand the magnetic behaviour.
Ab initio study of the EFG at the N sites in imidazole
Brown Goncalves, Marcos, E-mail: browngon@if.usp.br [Universidade de Sao Paulo, Instituto de Fisica (Brazil); Di Felice, R. [National Center on Nanostructures and Biosystems at Surfaces (S3) of INFM-CNR (Italy); Poleshchuk, O. Kh. [Tomsk State Pedagogical University (Russian Federation); Petrilli, H. M. [Universidade de Sao Paulo, Instituto de Fisica (Brazil)
2008-01-15
We study the nuclear quadrupole interaction at the nitrogen sites in the molecular and crystalline phases of the imidazole compound. We use PAW which is a state-of-the-art method to calculate the electronic structure and electric field gradient at the nucleus in the framework of the density functional theory. The quadrupole frequencies at both imino and amino N sites are in excellent agreement with measurements. This is the first time that the electric field gradient at crystalline imidazole is correctly treated by an ab initio theoretical approach.
Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.
2014-01-01
comparing time-resolved photoelectron spectroscopy (TRPES) with ab initio multiple spawning (AIMS) simulations on the MS-MR-CASPT2 level of theory. We disentangle the relationship between two phenomena that dominate the immediate molecular response upon light absorption: a spectrally dependent delay...... replaced by ‘‘hydrogen atoms’’ having mass 15 and TRPES spectra were calculated. These showed an induction time of (108 10) fs which could directly be assigned to progress along a torsional mode leading to the intersection seam with the molecular ground state. In a stepladder-type approach, the close...
Ab-initio study of several static and dynamic properties of liquid palladium and platinum
González L. E.
2017-01-01
Full Text Available We report a study on several static and dynamic properties of liquid Pd and Pt metals at thermodynamic conditions near their respective triple points. The calculations have been carried out by an ab initio molecular dynamics simulation technique. Results are reported for several static structural magnitudes which are compared with the available X-ray diffraction. As for the dynamic properties, results have been obtained for both single and collective dynamical magnitudes as well as for some transport coeffcients which are compared with the corresponding experimental data.
Orbital free ab initio study of static and dynamic properties of some liquid transition metals
Bhuiyan G. M.
2017-01-01
Full Text Available Several static and dynamic properties of liquid transition metals Cr, Mn and Co are studied for the first time using the orbital free ab-initio molecular dynamics simulation (OF-AIMD. This method is based on the density functional theory (DFT which accounts for the electronic energy of the system whereas the interionic forces are derived from the electronic energy via the Hellman-Feynman theorem. The external energy functional is treated with a local pseudopotential. Results are reported for static structure factors, isothermal compressibility, diffusion coeffcients, sound velocity and viscosity and comparison is performed with the available experimental data and other theoretical calculations.
Ab-initio Study of Known and Hypothetical Metal-Organic Frameworks
Fuentes-Cabrera, Miguel; Nicholson, Don M.
2004-03-01
Rosi et al. [1] have found that microporous Metal-Organic Frameworks (MOF) materials are candidates for hydrogen storage applications. In particular, MOF-5 was found to adsorb hydrogen up to 4.5 weight percent at 78 kelvin and 1.0 weight percent at room temperature and pressure of 20 bar. We use ab-initio techniques to investigate hydrogen adsorption, stability, and the electronic properties of known and hypothetical Metal-Organic Frameworks. [1] N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'Keeffe, and O.M. Yaghi
Krisilov, A. V.; Lantsuzskaya, E. V.; Levina, A. M.
2017-01-01
Reduced ion mobility and scattering cross sections are calculated from experimentally obtained spectra of the ion mobility of linear aliphatic alcohols with carbon atom numbers from 2 to 9. A linear increase in the scattering cross sections as the molecular weight grows is found. According to the results from experiments and quantum chemical calculations, alcohol cluster ions do not form a compact structure. Neither are dipole moments compensated for during dimerization, in contrast to the aldehydes and ketones described earlier. It was concluded from ab initio calculations that charge delocalization in monomeric and dimeric ions of alcohols increases the dipole moment many times over.
Nechaev, I. A.; Krasovskii, E. E.
2016-11-01
We present a method to microscopically derive a small-size k .p Hamiltonian in a Hilbert space spanned by physically chosen ab initio spinor wave functions. Without imposing any complementary symmetry constraints, our formalism equally treats three- and two-dimensional systems and simultaneously yields the Hamiltonian parameters and the true Z2 topological invariant. We consider bulk crystals and thin films of Bi2Se3 , Bi2Te3 , and Sb2Te3 . It turns out that the effective continuous k .p models with open boundary conditions often incorrectly predict the topological character of thin films.
Ab initio quasiparticle energies in 2H, 4H, and 6H SiC
Ummels, R. T. M.; Bobbert, P. A.; van Haeringen, W.
1998-09-01
Ab initio quasiparticle energies are calculated for the 2H, 4H, and 6H polytypes of SiC within the GW approximation for the self-energy. The starting point is a calculation within the pseudopotential local-density approximation framework. The calculated fundamental gaps of 3.15, 3.35, and 3.24 eV for 2H, 4H, and 6H SiC, respectively, show very good agreement with experimental data. The energy dependence of the screened interaction is modeled by a plasmon pole model from which the plasmon band structures are obtained.
Ab initio study of energy-level alignments in polymer-dye blends
Pasveer, W. F.; Bobbert, P. A.; Michels, M. A. J.; Langeveld-Voss, B. M. W.; Schoo, H. F. M.; Bastiaansen, J. J. A. M.
2003-11-01
Polymers with a small amount of dye blended in offer an attractive possibility to change the color of the emitted light by changing the dye. We present ab initio calculations within density-functional theory of the HOMO/LUMO energies for dipyrrolomethane dyes, polyphenylenevinylene and polyfluorene. Special attention is paid to the trends in these energies with variation of the sidegroups of the dyes as observed in cyclic-voltammetry measurements. From the energy-level alignments between dye and polymer we can understand and predict electron and hole trapping, crucial processes for the functioning of light-emitting devices based on these blends.
Ab initio MO study of reaction mechanism for carbonyl migration of Co complex
无
2000-01-01
Ab initio method under the effective core potential (ECP) approximation is employed to study the reaction mechanism of carbonyl migration of the cycle of olefin hydroformylation catalyzed by a carbonyl cobalt HCo(CO)3 at Hartree-Fock (HF) level. The structures of the reactant, transition state and product for the reaction are determined. The energy of each stationary point is corrected at MP2/LAN2DZ//LANL2DZ+ZPE (zero-point energy) level. The calculated activation barrier is 28.89 kJ/mol.
Ab initio study of the epitaxial growth of Ge on Si(100) surface
Milman, V.; Pennycook, S.J.; Jesson, D.E. [Oak Ridge National Lab., TN (United States); Payne, M.C.; Stich, I. [Cambridge Univ. (United Kingdom). Dept. of Physics
1993-11-01
We identify the binding sites for adsorption of a single Ge atom on the Si(100) surface using ab initio total energy calculations. The calculated diffusion barriers are in excellent agreement with experimental estimates. Using a large supercell we resolve the controversy regarding the binding geometry and migration path for the adatom, and investigate the influence of the adatom on the buckling of Si dimers. The adatom induces a buckling defect that is frequently observed using scanning tunneling microscopy (STM); therefore the study of single adatoms may be experimentally accessible.
An accurate potential energy curve for helium based on ab initio calculations
Janzen, A. R.; Aziz, R. A.
1997-07-01
Korona, Williams, Bukowski, Jeziorski, and Szalewicz [J. Chem. Phys. 106, 1 (1997)] constructed a completely ab initio potential for He2 by fitting their calculations using infinite order symmetry adapted perturbation theory at intermediate range, existing Green's function Monte Carlo calculations at short range and accurate dispersion coefficients at long range to a modified Tang-Toennies potential form. The potential with retardation added to the dipole-dipole dispersion is found to predict accurately a large set of microscopic and macroscopic experimental data. The potential with a significantly larger well depth than other recent potentials is judged to be the most accurate characterization of the helium interaction yet proposed.
Ab initio research on DNA base alkylation by the β-position metabolite of methylethylnitrosamine
ZHAO Lijiao; ZHONG Rugang; YUAN Xiaolong; CUI Yasong; DAI Qianhuan
2004-01-01
Ab initio calculation is carried out to study the different supposed mechanisms of DNA base alkylation by β-sulphate-nitrosamines at RHF/6-31G(d) and MP2/6-31G(d)levels. Full geometric structure optimization is done for all reactants, intermediates, products and transition states. The activation energy and IRC are obtained. The results show that the anchimeric assistant effect promotes the alkylation of DNA base by β-sulphate-nitrosamines. Solvent calculation is carried out with Onsager model of SCRF method at the same level. The results indicate that the activation energy is decreased obviously in water.
Bogdanchikov, Georgii A.; Baklanov, Alexey V.
2017-01-01
Ab initio calculations have been carried out to investigate interaction of titanium dioxide TiO2 with oxygen O2 in ground triplet and excited singlet states. On a singlet potential energy surface (PES) formation of a stable compound of titanium peroxide TiO4 is revealed which should appear in reaction of TiO2 with singlet oxygen without activation barrier. This peroxide is lower in energy than the ground state of two individual molecules TiO2 + 3O2 by 34.6 kcal/mol. Location of conical intersection between triplet and singlet PESs of TiO2sbnd O2 is also investigated.
Ramsdellite-structured LiTiO 2: A new phase predicted from ab initio calculations
Koudriachova, M. V.
2008-06-01
A new phase of highly lithiated titania with potential application as an anode in Li-rechargeable batteries is predicted on the basis of ab initio calculations. This phase has a composition LiTiO2 and may be accessed through electrochemical lithiation of ramsdellite-structured TiO2 at the lowest potential reported for titanium dioxide based materials. The potential remains constant over a wide range of Li-concentrations. The new phase is metastable with respect to a tetragonally distorted rock salt structure, which hitherto has been the only known polymorph of LiTiO2.
Ab Initio Calculations of Elastic Constants of Li2O under Pressure
LI Xiao-Feng; CHEN Xiang-Rong; JI Guang-Fu; MENG Chuan-Min
2006-01-01
@@ We investigate the equilibrium lattice constant, bulk modulus, elastic constants and Debye temperature of Li2 O under pressure by using ab initio unrestricted Hartree-Fock (HF) linear combination of atomic orbital (LCAO) periodic approach. The obtained results at zero pressure are well consistent with the available experimental data and other theoretical results. It is found that the elastic constants C11, C12 and C44 and bulk modulus B increase monotonously as pressure increases. Also, the anisotropy will weaken and the Debye temperature will rise with pressure increasing.
Ab initio study of spin-dependent transport in carbon nanotubes with iron and vanadium adatoms
Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka
2008-01-01
We present an ab initio study of spin-dependent transport in armchair carbon nanotubes with transition metal adsorbates: iron or vanadium. The method based on density functional theory and nonequilibrium Green's functions is used to compute the electronic structure and zero-bias conductance...... (majority or minority) being scattered depends on the adsorbate and is explained in terms of d-state filling. We contrast the single-walled carbon nanotube results to the simpler case of the adsorbate on a flat graphene sheet with periodic boundary conditions and corresponding width in the zigzag direction...
Gao, Yi; Huang, Wei; Woodford, Jeffrey; Wang, Lai-Sheng; Zeng, Xiao Cheng
2009-07-15
We show that anion photoelectron spectroscopy can be a very sensitive probe for weak intermolecular interactions between gold anion and a noble-gas atom or other nonreactive molecule. High-level ab initio calculations support the measured trend of relatively weak intermolecular interactions among various gold anion-atom complexes. The interaction between Au(-) and H(2)O is much stronger, comparable to a strong hydrogen bond. The interaction between Au(-) and O(2) is weaker than that between Au(-) and a noble-gas atom (Ar, Kr, or Xe).
Quantum chemistry the development of ab initio methods in molecular electronic structure theory
Schaefer III, Henry F
2004-01-01
This guide is guaranteed to prove of keen interest to the broad spectrum of experimental chemists who use electronic structure theory to assist in the interpretation of their laboratory findings. A list of 150 landmark papers in ab initio molecular electronic structure methods, it features the first page of each paper (which usually encompasses the abstract and introduction). Its primary focus is methodology, rather than the examination of particular chemical problems, and the selected papers either present new and important methods or illustrate the effectiveness of existing methods in predi
Ab initio intermolecular potential energy surface of He-LiH
鄢国森; 杨明晖; 谢代前
1997-01-01
The intermolecular potential energy surface of He-LiH complex was studied using the full-electronic complete forth-order Miller-Plesset perturbation (MPPT) method.In ab initio calculations,the bond length of LiH was fixed at 0 159 5 nm.The potential has two local minima of Vm=-179.93 cm for the linear He LiH geormetrv at Rm=0.227 nm and Vm=-10.44 cm-1 for the linear He-HL1 geometry at Rm=0.516 nm The potemal exhibits strong anisotropy The analytic potential function with 31 parameters was determined by fitting to the calculated ab,mtio potentials The influence of variation of LiH bond length on the potential energy surface was also studied
Ab Initio Investigations of the Excited Electronic States of CaOCa
Fawzy, Wafaa M.; Heaven, Michael
2016-06-01
Chemical bonding in alkaline earth hypermetalic oxides is of fundamental interest. Previous Ab initio studies of CaOCa predicted a centrosymmetric linear geometry for both the 1Σg^+ ground state and the low lying triplet 3Σu^+ state. However, there have been no reports concerning the higher energy singlet and triplet states. The present work is focused on characterization of the potential energy surface (PES) of the excited 1Σu^+ state (assuming a centrosymmetric linear geometry) and obtaining predictions for the 1Σu^+←1Σg^+ vibronic transitions. We employed the multireference configuration interaction (MRCISD) method with state-averaged, full-valence complete active space self-consistent field (SA-FV-CASSCF) wavefunctions. In these calculations, the active space consisted of ten valence electrons in twelve orbitals, where all the valence electrons were correlated. Contributions of higher excitation and relativistic effects were taken into account using the Davidson correction and the Douglas-Kroll (DK) Hamiltonian, respectively. The correlation-consistent polarized weighed core-valence quadruple zeta basis set (cc-pwCVQZ-DK) was used for all three atoms. The full level of theory is abbreviated as SA-FV-CASSCF (10,12)-MRCISD-Q/cc-pwCVQZ-DK. The calculations were carried out using the MOLPRO2012 suite of programs. For the centrosymmetric linear geometry in all states, initial investigations of one-dimensional radial cuts provided equilibrium bond distances of 2.034 {Å}, 2.034 {Å}, and 1.999 {Å} for the 1Σg^+ , 3Σu^+ , and 1Σu^+ states, respectively. The vertical excitation frequency of the 1Σu^+←1Σg^+ optical transition was calculated to occur at 14801 wn. These predictions were followed by spectroscopic searches by Heaven et al. Indeed, rotationally resolved vibronic progressions were recorded in the vicinity of the predicted electronic band origin. Calculation of the three-dimensional PES showed that the potential minimum in the 1Σu^+ corresponds
Xiong, L H; Yoo, H; Lou, H B; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z; Xie, H L; Xiao, T Q; Jeon, S; Lee, G W
2015-01-28
X-ray diffraction and electrostatic levitation measurements, together with the ab initio molecular dynamics simulation of liquid Al(75)Cu(25) alloy have been performed from 800 to 1600 K. Experimental and ab initio molecular dynamics simulation results match well with each other. No abnormal changes were experimentally detected in the specific heat capacity over total hemispheric emissivity and density curves in the studied temperature range for a bulk liquid Al(75)Cu(25) alloy measured by the electrostatic levitation technique. The structure factors gained by the ab initio molecular dynamics simulation precisely coincide with the experimental data. The atomic structure analyzed by the Honeycutt-Andersen index and Voronoi tessellation methods shows that icosahedral-like atomic clusters prevail in the liquid Al(75)Cu(25) alloy and the atomic clusters evolve continuously. All results obtained here suggest that no liquid-liquid transition appears in the bulk liquid Al(75)Cu(25) alloy in the studied temperature range.
Renison, C Alicia; Fernandes, Kyle D; Naidoo, Kevin J
2015-07-05
This article describes an extension of the quantum supercharger library (QSL) to perform quantum mechanical (QM) gradient and optimization calculations as well as hybrid QM and molecular mechanical (QM/MM) molecular dynamics simulations. The integral derivatives are, after the two-electron integrals, the most computationally expensive part of the aforementioned calculations/simulations. Algorithms are presented for accelerating the one- and two-electron integral derivatives on a graphical processing unit (GPU). It is shown that a Hartree-Fock ab initio gradient calculation is up to 9.3X faster on a single GPU compared with a single central processing unit running an optimized serial version of GAMESS-UK, which uses the efficient Schlegel method for s- and l-orbitals. Benchmark QM and QM/MM molecular dynamics simulations are performed on cellobiose in vacuo and in a 39 Å water sphere (45 QM atoms and 24843 point charges, respectively) using the 6-31G basis set. The QSL can perform 9.7 ps/day of ab initio QM dynamics and 6.4 ps/day of QM/MM dynamics on a single GPU in full double precision. © 2015 Wiley Periodicals, Inc.
Kimberg, Victor, E-mail: victor.kimberg@pks.mpi.de [Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden (Germany); Miron, Catalin, E-mail: miron@synchrotron-soleil.fr [Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin, BP 48, FR-91192 Gif-sur-Yvette Cedex (France)
2014-08-15
Highlights: • Some studies related to the vibrational wave functions mapping phenomenon are reviewed. • The core-excited vibrational wave functions were mapped using dissociative and bound final states. • High-resolution experimental data is accompanied by ab initio calculations. • The mapping phenomenon allows one to extract constants of the molecular potentials. • The mapping techniques are general and can be applied for the study of many systems. - Abstract: The recent development of high brightness 3{sup rd} generation soft X-ray sources and high energy resolution electron spectrometers made it possible to accurately trace quantum phenomena associated to the vibrational dynamics in core-excited molecules. The present paper reviews the recent results on mapping of vibrational wave functions and molecular potentials based on electron spectroscopy. We discuss and compare the mapping phenomena in various systems, stressing the advantages of the resonant X-ray scattering for studying of the nuclear dynamics and spectroscopic constants of small molecules. The experimental results discussed in the paper are most often accompanied by state-of-the-art ab initio calculations allowing for a deeper understanding of the quantum effects. Besides its fundamental interest, the vibrational wave function mapping is shown to be useful for the analysis of core- and valence-excited molecular states based on the reflection principle.
Boese, A D; Martin, J M L; Marx, D; Chandra, Amalendu; Martin, Jan M.L.; Marx, Dominik
2003-01-01
The ammonia dimer (NH3)2 has been investigated using high--level ab initio quantum chemistry methods and density functional theory (DFT). The structure and energetics of important isomers is obtained to unprecedented accuracy without resorting to experiment. The global minimum of eclipsed C_s symmetry is characterized by a significantly bent hydrogen bond which deviates from linearity by about 20 degrees. In addition, the so-called cyclic C_{2h} structure is extremely close in energy on an overall flat potential energy surface. It is demonstrated that none of the currently available (GGA, meta--GGA, and hybrid) density functionals satisfactorily describe the structure and relative energies of this nonlinear hydrogen bond. We present a novel density functional, HCTH/407+, designed to describe this sort of hydrogen bond quantitatively on the level of the dimer, contrary to e.g. the widely used BLYP functional. This improved functional is employed in Car-Parrinello ab initio molecular dynamics simulations of liq...
Galler, Anna; Gunacker, Patrik; Tomczak, Jan; Thunström, Patrik; Held, Karsten
Recently, approaches such as the dynamical vertex approximation (D ΓA) or the dual-fermion method have been developed. These diagrammatic approaches are going beyond dynamical mean field theory (DMFT) by including nonlocal electronic correlations on all length scales as well as the local DMFT correlations. Here we present our efforts to extend the D ΓA methodology to ab-initio materials calculations (ab-initio D ΓA). Our approach is a unifying framework which includes both GW and DMFT-type of diagrams, but also important nonlocal correlations beyond, e.g. nonlocal spin fluctuations. In our multi-band implementation we are using a worm sampling technique within continuous-time quantum Monte Carlo in the hybridization expansion to obtain the DMFT vertex, from which we construct the reducible vertex function using the two particle-hole ladders. As a first application we show results for transition metal oxides. Support by the ERC project AbinitioDGA (306447) is acknowledged.
Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides
Sharma, Vinit; Krogel, Jaron T.; Kent, P. R. C.; Reboredo, Fernando A.
One of the critical scientific challenges of contemporary research is to obtain an accurate theoretical description of the electronic properties of strongly correlated systems such as transition metal oxides and rare-earth compounds, since state-of-art ab-initio methods based on approximate density functionals are not always sufficiently accurate. Quantum Monte Carlo (QMC) methods, which use statistical sampling to evaluate many-body wave functions, have the potential to answer this challenge. Owing to the few fundamental approximations made and the direct treatment of electron correlation, QMC methods are among the most accurate electronic structure methods available to date. We assess the accuracy of the diffusion Monte Carlo method in the case of rocksalt manganese oxide (MnO). We study the electronic properties of this strongly-correlated oxide, which has been identified as a suitable candidate for many applications ranging from catalysts to electronic devices. ``This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.'' Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides.
Kihara, D; Lu, H; Kolinski, A; Skolnick, J
2001-08-28
The successful prediction of protein structure from amino acid sequence requires two features: an efficient conformational search algorithm and an energy function with a global minimum in the native state. As a step toward addressing both issues, a threading-based method of secondary and tertiary restraint prediction has been developed and applied to ab initio folding. Such restraints are derived by extracting consensus contacts and local secondary structure from at least weakly scoring structures that, in some cases, can lack any global similarity to the sequence of interest. Furthermore, to generate representative protein structures, a reduced lattice-based protein model is used with replica exchange Monte Carlo to explore conformational space. We report results on the application of this methodology, termed TOUCHSTONE, to 65 proteins whose lengths range from 39 to 146 residues. For 47 (40) proteins, a cluster centroid whose rms deviation from native is below 6.5 (5) A is found in one of the five lowest energy centroids. The number of correctly predicted proteins increases to 50 when atomic detail is added and a knowledge-based atomic potential is combined with clustered and nonclustered structures for candidate selection. The combination of the ratio of the relative number of contacts to the protein length and the number of clusters generated by the folding algorithm is a reliable indicator of the likelihood of successful fold prediction, thereby opening the way for genome-scale ab initio folding.
smyRNA: a novel Ab initio ncRNA gene finder.
Raheleh Salari
Full Text Available BACKGROUND: Non-coding RNAs (ncRNAs have important functional roles in the cell: for example, they regulate gene expression by means of establishing stable joint structures with target mRNAs via complementary sequence motifs. Sequence motifs are also important determinants of the structure of ncRNAs. Although ncRNAs are abundant, discovering novel ncRNAs on genome sequences has proven to be a hard task; in particular past attempts for ab initio ncRNA search mostly failed with the exception of tools that can identify micro RNAs. METHODOLOGY/PRINCIPAL FINDINGS: We present a very general ab initio ncRNA gene finder that exploits differential distributions of sequence motifs between ncRNAs and background genome sequences. CONCLUSIONS/SIGNIFICANCE: Our method, once trained on a set of ncRNAs from a given species, can be applied to a genome sequences of other organisms to find not only ncRNAs homologous to those in the training set but also others that potentially belong to novel (and perhaps unknown ncRNA families. AVAILABILITY: (http://compbio.cs.sfu.ca/taverna/smyrna.
Ab initio study of the structural properties of acetonitrile-water mixtures
Chen, Jinfan; Sit, Patrick H.-L.
2015-08-01
Structural properties of acetonitrile and acetonitrile-water mixtures are studied using Density Functional Theory (DFT) and ab initio molecular dynamics simulations. Stable molecular clusters consisted of several water and acetonitrile molecules are identified to provide microscopic understanding of the interaction among water and acetonitrile molecules. Ab initio molecular dynamics simulations are performed to study the liquid structure at the finite temperature. Three mixing compositions in which the mole fraction of acetonitrile equals 0.109, 0.5 and 0.891 are studied. These compositions correspond to three distinct structural regimes. At the 0.109 and 0.891 mole fraction of acetonitrile, the majority species are mostly connected among themselves and the minority species are either isolated or forming small clusters without disrupting the network of the majority species. At the 0.5 mole fraction of acetonitrile, large water and acetonitrile clusters persist throughout the simulation, exhibiting the microheterogeneous behavior in acetonitrile-water mixtures in the mid-range mixing ratio.
Embedding parameters in ab initio theory to develop approximations based on molecular similarity
Tanha, Matteus; Kaul, Shiva; Cappiello, Alexander; Gordon, Geoffrey J; Yaron, David J
2015-01-01
A means to take advantage of molecular similarity to lower the computational cost of electronic structure theory is explored, in which parameters are embedded into a low-cost, low-level (LL) ab initio model and adjusted to obtain agreement with results from a higher-level (HL) ab initio model. A parametrized LL (pLL) model is created by multiplying selected matrix elements of the Hamiltonian operators by scaling factors that depend on element types. Various schemes for applying the scaling factors are compared, along with the impact of making the scaling factors linear functions of variables related to bond lengths, atomic charges, and bond orders. The models are trained on ethane and ethylene, substituted with -NH2, -OH and -F, and tested on substituted propane, propylene and t-butane. Training and test datasets are created by distorting the molecular geometries and applying uniform electric fields. The fitted properties include changes in total energy arising from geometric distortions or applied fields, an...
Ab initio study of structural, electronic, and thermal properties of Ir1-xRhx alloys
Sh. Ahmed
2015-06-01
Full Text Available The structural, electronic, mechanical and thermal properties of Ir1-xRhx alloys was studied systematically using ab initio density functional theory at different concentration (x = 0.00, 0.25, 0.50, 0.75, 1.00. The Special Quasirandom Structure method was used to make the alloys with FCC structure with four atoms per unit cell. The ground state properties such as lattice constant and bulk modulus were calculated to find the equilibrium atomic position for stable alloys. The calculated ground state properties are in good agreement with the experimental and previously presented other theoretical data. The electronic band structure and density of states were calculated to study the electronic properties for these alloys at different concentration. The electronic properties substantiate metallic behavior of alloys. The first principle density functional perturbation theory as implemented in quasiharmonic approximation was used for the calculation of thermal properties. We have calculated the thermal properties such the Debye temperatures, vibration energy, entropy, constant-volume specific heat and internal energy. The ab initio linear-response method was used for phonon densities of states calculations.
Thermodynamic modeling of the Fe–Mo system coupled with experiments and ab initio calculations
Rajkumar, V.B.; Hari Kumar, K.C., E-mail: kchkumar@iitm.ac.in
2014-10-25
Highlights: • Gibbs energy functions for all stable phases in the Fe–Mo system obtained using Calphad method. • Ab initio calculation results are employed to improve Gibbs energy functions. • New experimental data have been incorporated in the optimization. • Thermochemical properties: energy of formation, cohesive energy. • Calculated values are compared with experimental results. - Abstract: In this paper we report the Gibbs energy functions for all stable phases in the Fe–Mo system obtained using Calphad method. Newly measured enthalpy increment data, tie-line data and liquidus data for selected compositions are used as input for the Gibbs energy modeling, along with carefully selected thermochemical and phase diagram data from literature. Further, ab initio generated energy of formation at 0 K for the intermetallic phases and end-members of the sublattice model for the μ phase and the σ phase are also used in the optimization of model parameters of the Gibbs energy functions. Calculated phase diagram and the thermochemical properties show good agreement with the experimental data.
Strubbe, David A.; Grossman, Jeffrey C.
Classical inter-atomic potentials can be successful at predicting the vibrations of materials at system sizes intractable by quantum methods. However, to predict Raman spectra, electrons must be re-introduced, for example via a bond-polarizability model which attributes the polarizability to cylindrically symmetrical inter-atomic bonds. Parameters in assumed functional forms are fit to experimental spectra, and then a Raman intensity can be computed for each mode. In the case of amorphous silicon, the existing models do not show satisfactory agreement with experimental spectra. To generate a more accurate and transferable bond-polarizability model, we have instead begun with ab initio calculated Raman tensors for a set of a-Si:H structures [DA Strubbe et al., arXiv:1511.01139]. This atomistic data set al.lows us to obtain parameters and functional forms for a general model, without confounding errors from the potentials. This Raman model can be used to study large structural models with relevance for photovoltaics, such as medium- and long-range order in a-Si:H, nanocrystalline Si, amorphous/crystalline interfaces, or a-Si:H nanowires, at sizes that would be inaccessible for ab initio calculations. We analyze the applicability of this approach to other materials systems.
Novel high-pressure phase of ZrO{sub 2}: An ab initio prediction
Durandurdu, Murat, E-mail: murat.durandurdu@agu.edu.tr
2015-10-15
The high-pressure behavior of the orthorhombic cotunnite type ZrO{sub 2} is explored using an ab initio constant pressure technique. For the first time, a novel hexagonal phase (Ni{sub 2}In type) within P6{sub 3}/mmc symmetry is predicted through the simulation. The Ni{sub 2}In type crystal is the densest high-pressure phase of ZrO{sub 2} proposed so far and has not been observed in other metal dioxides at high pressure before. The phase transformation is accompanied by a small volume drop and likely to occur around 380 GPa in experiment. - Graphical abstract: Post-cotunnite Ni{sub 2}In type hexagonal phase forms in zirconia at high pressure. - Highlights: • A post-cotunnite phase is predicted for ZrO{sub 2} through an ab initio simulation. • Cotunnite ZrO{sub 2} adopts the Ni{sub 2}In type structure at high pressure. • The Ni{sub 2}In type structure is the densest high-pressure phase of ZrO{sub 2} proposed so far. • The preferred mechanism in ZrO{sub 2} differs from the other metal dioxides.
Ab initio simulations of phase stability and martensitic transitions in NiTi
Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.
2016-12-01
For NiTi-based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. We show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing phase transformation temperatures is discussed.
Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi
Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.
2016-01-01
For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.
Ab initio many-body calculations of nucleon-nucleus scattering
Quaglioni, Sofia; Navrátil, Petr
2009-04-01
We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and the Pauli principle. We outline technical details and present phase-shift results for neutron scattering on H3, He4, and Be10 and proton scattering on He3,4, using realistic nucleon-nucleon (NN) potentials. Our A=4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-He4S-wave phase shifts. In contrast, the experimental nucleon-He4P-wave phase shifts are not well reproduced by any NN potential we use. We demonstrate that a proper treatment of the coupling to the n-Be10 continuum is successful in explaining the parity-inverted ground state in Be11.
Ab initio many-body calculations of nucleon-nucleus scattering
Quaglioni, Sofia
2009-01-01
We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We outline technical details and present phase shift results for neutron scattering on 3H, 4He and 10Be and proton scattering on 3He and 4He, using realistic nucleon-nucleon (NN) potentials. Our A=4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-4He S-wave phase shifts. On the contrary, the experimental nucleon-4He P-wave phase shifts are not well reproduced by any NN potential we use. We demonstrate that a proper treatment of the coupling to the n-10Be continuum is successful in explaining the parity-inverted ground state in 11Be.
Higher-order elastic constants and megabar pressure effects of bcc tungsten: Ab initio calculations
Vekilov, Yu. Kh.; Krasilnikov, O. M.; Lugovskoy, A. V.; Lozovik, Yu. E.
2016-09-01
The general method for the calculation of n th (n ≥2 ) order elastic constants of the loaded crystal is given in the framework of the nonlinear elasticity theory. For the crystals of cubic symmetry under hydrostatic compression, the two schemes of calculation of the elastic constants of second, third, and fourth order from energy-finite strain relations and stress-finite strain relations are implemented. Both techniques are applied for the calculation of elastic constants of orders from second to fourth to the bcc phase of tungsten at a 0-600 GPa pressure range. The energy and stress at the various pressures and deformations are obtained ab initio in the framework of projector augmented wave+generalized gradient approximation (PAW+GGA) method, as implemented in Vienna Ab initio Simulation Package (VASP) code. Using the obtained results, we found the pressure dependence of Grüneisen parameters for long-wave acoustic modes in this interval. The Lamé constants of second and third order were estimated for polycrystalline tungsten. The proposed method is applicable for crystals with arbitrary symmetry.
Ab initio molecular dynamics study of collective dynamics in liquid Tl: Thermo-viscoelastic analysis
Bryk, Taras; Demchuk, Taras
2017-08-01
We studied collective dynamics of pure liquid metal Tl using a combination of ab initio molecular dynamics (AIMD) simulations and a thermoviscoelastic model applied to calculations of dynamic eigenmodes and dispersion of collective excitations in particular. We found that for liquid Tl at ambient pressure the transverse current spectral functions obtained directly in ab initio simulations for wave numbers larger than first pseudo-Brillouin-zone boundary contain two low-and high-frequency peaks that is an evidence of emergence of the unusually high-frequency transverse modes as it was observed before in liquid Li at very high pressures. The thermo-viscoelastic dynamic model shows perfect reproduction of the simulation-derived longitudinal current autocorrelation functions, and the acoustic eigenmodes are in nice agreement with the peaks of the longitudinal current spectral functions up to the first pseudo-Brillouin-zone boundary. The deviation of the dynamic eigenmodes from peak positions at higher wave numbers gives evidence of L-T coupling effects.
Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces
Herron, Jeffrey A.; Morikawa, Yoshitada; Mavrikakis, Manos
2016-08-01
Using ab initio molecular dynamics as implemented in periodic, self-consistent (generalized gradient approximation Perdew-Burke-Ernzerhof) density functional theory, we investigated the mechanism of methanol electrooxidation on Pt(111). We investigated the role of water solvation and electrode potential on the energetics of the first proton transfer step, methanol electrooxidation to methoxy (CH3O) or hydroxymethyl (CH2OH). The results show that solvation weakens the adsorption of methoxy to uncharged Pt(111), whereas the binding energies of methanol and hydroxymethyl are not significantly affected. The free energies of activation for breaking the C-H and O-H bonds in methanol were calculated through a Blue Moon Ensemble using constrained ab initio molecular dynamics. Calculated barriers for these elementary steps on unsolvated, uncharged Pt(111) are similar to results for climbing-image nudged elastic band calculations from the literature. Water solvation reduces the barriers for both C-H and O-H bond activation steps with respect to their vapor-phase values, although the effect is more pronounced for C-H bond activation, due to less disruption of the hydrogen bond network. The calculated activation energy barriers show that breaking the C-H bond of methanol is more facile than the O-H bond on solvated negatively biased or uncharged Pt(111). However, with positive bias, O-H bond activation is enhanced, becoming slightly more facile than C-H bond activation.
Experimental and ab initio investigations on textured Li–Mn–O spinel thin film cathodes
Fischer, J., E-mail: Julian.Fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Music, D. [RWTH Aachen University, Materials Chemistry, Kopernikusstrasse 10, 52074 Aachen (Germany); Bergfeldt, T.; Ziebert, C.; Ulrich, S.; Seifert, H.J. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)
2014-12-01
This paper describes the tailored preparation of nearly identical lithium–manganese–oxide thin film cathodes with different global grain orientations. The thin films were synthesized by rf magnetron sputtering from a LiMn{sub 2}O{sub 4}-target in a pure argon plasma. Under appropriate processing conditions, thin films with a cubic spinel structure and a nearly similar density and surface topography but different grain orientation, i.e. (111)- and (440)-textured films, were achieved. The chemical composition was determined by inductively coupled plasma optical emission spectroscopy and carrier gas hot extraction. The constitution- and microstructure were evaluated by X-ray diffraction and Raman spectroscopy. The surface morphology and roughness were investigated by scanning electron and atomic force microscopy. The differently textured films represent an ideal model system for studying potential effects of grain orientation on the lithium ion diffusion and electrochemical behavior in LiMn{sub 2}O{sub 4}-based thin films. They are nearly identical in their chemical composition, atomic bonding behavior, surface-roughness, morphology and thickness. Our initial ab initio molecular dynamics data indicate that Li ion transport is faster in (111)-textured structure than in (440)-textured one. - Highlights: • Thin film model system of differently textured cubic Li–Mn–O spinels. • Investigation of the Li–Mn–O thin film mass density by X-ray reflectivity. • Ab initio molecular dynamics simulation on Li ion diffusion in LiMn{sub 2}O{sub 4}.
Thermodynamic assessment of the Ho–Te system supported by ab initio calculations
Ghamri, H.; Belgacem-Bouzida, A. [Laboratoire d’étude Physico-Chimique des Matériaux, Département de Physique, Faculté des Sciences, Université de Batna, Rue Chahid Boukhlouf, 05000 Batna (Algeria); Djaballah, Y., E-mail: ydjaballah@yahoo.fr [Laboratoire d’étude Physico-Chimique des Matériaux, Département de Physique, Faculté des Sciences, Université de Batna, Rue Chahid Boukhlouf, 05000 Batna (Algeria); Hidoussi, A. [Laboratoire d’étude Physico-Chimique des Matériaux, Département de Physique, Faculté des Sciences, Université de Batna, Rue Chahid Boukhlouf, 05000 Batna (Algeria)
2013-03-05
Highlights: ► We calculated enthalpies of formation of the HoTe and Ho{sub 2}Te{sub 5} compounds by using ab initio method. ► We modeled the Gibbs energy of the HoTe intermediate phase for the first time. ► The thermodynamic parameters of the all phases existing in the system were determined. ► The complete phase diagram of the system (Ho–Te) is calculated. -- Abstract: The phase diagram of the Ho–Te binary system has been assessed by using the CALPHAD (Calculation of Phase Diagrams) method on the basis of the experimental data of the phase equilibria and enthalpies of formation from ab initio electronic-structure calculations within the framework of density-functional theory. Reasonable models were constructed for all the phases of the system. The liquid phase was described as the substitutional solution model with excess energy expressed by Redlich–Kister polynomial. The compounds Ho{sub 2}Te{sub 5} and HoTe{sub 3} were expressed as stoichiometric phases. The (HoTe) phase was modeled by two-sublattices; (Ho,Va){sub 1}(Te){sub 1}. A consistent set of thermodynamic parameters has been derived, and calculated phase diagram was compared with the experimental data. A good agreement between the calculated results and experimental data was obtained.
Ab initio determination of an extended Heisenberg Hamiltonian in CuO{sub 2} layers
Calzado, C.J.; Malrieu, J.P. [Lab. de Physique Quantique, IRSAMC, Univ. Paul Sabatier, Toulouse (France)
2001-06-01
Accurate ab initio calculations on embedded Cu{sub 4}O{sub 12} square clusters, fragments of the La{sub 2}CuO{sub 4} lattice, confirm a value of the nearest neighbor antiferromagnetic coupling (J = 124 meV) previously obtained from ab initio calculations on bicentric clusters and in good agreement with experiment. These calculations predict non negligible antiferromagnetic second-neighbor interaction (J' = 6.5 meV) and four-spin cyclic exchange (K = 14 meV), which may affect the thermodynamic and spectroscopic properties of these materials. The dependence of the magnetic coupling on local lattice distortions has also been investigated. Among them the best candidate to induce a spin-phonon effect seems to be the movement of the Cu atoms, changing the Cu-Cu distance, for which the variation of the nearest neighbor magnetic coupling with the Cu-O distance is {delta}J/{delta}d{sub Cu} {sub -} {sub O} {proportional_to} 1700 cm {sup -1} A {sup -1}. (orig.)
Tanha, Matteus; Cappiello, Alex; Gordon, Geoffrey J; Yaron, David J
2013-01-01
A means to take advantage of molecular similarity to lower the computational cost of electronic structure theory is proposed, in which parameters are embedded into a low-cost, low-level (LL) ab initio theory and adjusted to obtain agreement with a higher level (HL) ab initio theory. This approach is explored by training such a model on data for ethane and testing the resulting model on methane, propane and butane. The electronic distribution of the molecules is varied by placing them in strong electrostatic environments consisting of random charges placed on the corners of a cube. The results find that parameters embedded in HF/STO-3G theory can be adjusted to obtain agreement, to within about 2 kcal/mol, with results of HF/6-31G theory. Obtaining this level of agreement requires the use of parameters that are functions of the bond lengths, atomic charges, and bond orders within the molecules. The argument is made that this approach provides a well-controlled means to take advantage of molecular similarity in...
Ab initio calculations of the optical properties of crystalline and liquid InSb
Sano, Haruyuki, E-mail: h-sano@ishikawa-nct.ac.jp [National Institute of Technology, Ishikawa College, Kitacyujo, Tsubata, Ishikawa 929-0392 (Japan); Mizutani, Goro [School of Materials Science, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-1292 (Japan)
2015-11-15
Ab initio calculations of the electronic and optical properties of InSb were performed for both the crystalline and liquid states. Two sets of atomic structure models for liquid InSb at 900 K were obtained by ab initio molecular dynamics simulations. To reduce the effect of structural peculiarities in the liquid models, an averaging of the two sets of the calculated electronic and optical properties corresponding to the two liquid models was performed. The calculated results indicate that, owing to the phase transition from crystal to liquid, the density of states around the Fermi level increases. As a result, the energy band gap opening near the Fermi level disappears. Consequently, the optical properties change from semiconductor to metallic behavior. Namely, owing to the melting of InSb, the interband transition peaks disappear and a Drude-like dispersion is observed in the optical dielectric functions. The optical absorption at a photon energy of 3.06 eV, which is used in Blu-ray Disc systems, increases owing to the melting of InSb. This increase in optical absorption is proposed to result from the increased optical transitions below 2 eV.
Ab initio calculation of oxygen self-diffusion coefficient in uranium dioxide UO2
Dorado, Boris; Garcia, Philippe; Torrent, Marc
Uranium dioxide UO2 is the most widely used nuclear fuel worldwide and its atomic transport properties are relevant to practically all engineering aspects of the material. Although transport properties have already been studied in UO2 by means of first-principles calculations, the ab initio determination of self-diffusion coefficients has up to now remained unreachable because the relevant computational tools were neither available or adapted. The present work reports our results related to the ab initio calculation of the oxygen self-diffusion coefficient in UO2. We first determine the Gibbs free energies of formation of oxygen charged defects by calculating both the electronic and vibrational (hence entropic) contributions. Then, we use the transition state theory in order to compute the effective jump frequency of the defects, which in turn provides us with the value of the pre-exponential factor. The results are compared to self-diffusion data obtained experimentally with a careful monitoring of the relevant thermodynamic conditions (oxygen partial pressure, temperature, impurity content).
Duffy, Daniel J.; Quenneville, Jason; Baumbaugh, T. M.; Kitchener, S. A.; McCormick, R. K.; Dormady, C. N.; Croce, T. A.; Navabi, A.; Stidham, Howard D.; Hsu, Shaw L.; Guirgis, Gamil A.; Deng, Shiping; Durig, James R.
2004-02-01
Ab initio calculations are reported for three of four possible conformers of 1,3-dichloropropane. The fourth conformer, with C s symmetry, has a predicted enthalpy difference of more than 1500 cm -1 from the most stable conformer from each calculation regardless of the basis set used, so there is little chance of observing it. Thus, there is no evidence in the infrared or Raman spectrum of the presence of a fourth conformer. The order of stability given by the ab initio calculations is C 2(GG)>C 1(AG)>C 2v(AA)>C s(GG'), where A indicates the anti form for one of the CH 2Cl groups and G indicates the gauche conformation for the other CH 2Cl group relative to the plane of the carbon atoms. Almost every band observed can be confidently assigned to one or another of the conformers. Many observed bands proved to be of a composite nature, with several nearly coincident vibrations of different conformers contributing to the band contour. Nonetheless, a complete assignment of fundamentals is possible for the most stable C 2 conformer, and 5 of the fundamentals of the C 2v conformer and 13 those of the C 1 conformer can be confidently assigned.
Abe, K.; Ito, K.; Suezawa, H.; Hirota, M.; Nishio, M.
1986-10-01
Conformations of a series of acyclic alcohols (CH/sub 3/CH(R)CH(OH)CH/sub 3/, CH/sub 3/CH(R)CH(OH)CH(R')CH/sub 3/, and CH/sub 3/CH(R)CH(OH)Bu/sup t/) were studied (1) by measuring vicinal H-H coupling constants (/sup 3/JH-H), (2) by lanthanoid-induced shift (LIS) analysis, (3) by molecular mechanics calculations (MM2), and (4) by ab initio (STO-3G, 4-31G geometry optimization) calculations. In the case of conformationally flexible alcohols as exemplified by 2-butanol and 3-pentanol, population of conformers determined by the LIS method do not agree with those determined by the /sup 3/JH-H, MM2, and ab initio methods. The discrepancy comes from the fact that the LIS measurement gives the most stable conformation of the alcohol in the LSR-alcohol complex and not of the free alcohol. In some flexible molecules, the most stable conformer in the complex can be different from that of the free molecule. In general, the conformational equilibrium is shifted by coordination of the shift reagent to the conformer whose alkyl chain stretches opposite to the direction of the coordination site of the shift reagent. 21 references, 1 figure, 6 tables.
Ground state analytical ab initio intermolecular potential for the Cl{sub 2}-water system
Hormain, Laureline; Monnerville, Maurice, E-mail: maurice.monnerville@univ-lille1.fr; Toubin, Céline; Duflot, Denis; Pouilly, Brigitte; Briquez, Stéphane [Laboratoire de Physique des Lasers Atomes et Molécules, Unité Mixte de Recherche (UMR) 8523, Université Lille I, Bât. P5, 59655 Villeneuve d’Ascq Cedex (France); Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón [Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, México (Mexico)
2015-04-14
The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl{sub 2} molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl{sub 2} − H{sub 2}O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by the comparison of ab initio results of Cl{sub 2} interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl{sub 2} on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results.
Ehlers, F. J. H.; Seydou, M.; Tingaud, D.; Maurel, F.; Charles, Y.; Queyreau, S.
2016-12-01
We have performed a uniaxial tensile test on the Σ5 [1 0 0] 36.87° twist grain boundary (GB) in face-centred cubic Al within the framework of density functional theory in order to derive an atomistic cohesive traction-separation law. Addressing the importance of kinetics to GB breakage, we accompanied our energy-separation curve calculations by two additional studies. Firstly, using the nudged elastic band method, we determined for a series of GB separations the heights of the zero temperature barriers separating intact and broken GB configurations. Secondly, a representative subset of these transition paths was examined at finite temperature with ab initio molecular dynamics. Contrasting prevalent conclusions on GB breakage behaviour, our results suggest that the GB likely stays intact at room temperature well into the range of separations where a broken GB represents the thermodynamically favourable configuration. Given the non-negligible resulting influence on critical tensile stress and work of separation, our findings may be viewed as stressing the need for a kinetic analysis in a general first principles based uniaxial tensile test.
A NASSOUR
2016-09-01
In the present paper, an empirical embedded atom method (EAM) potential for gold–silicon (Au–Si) is developed by fitting to ab initio force (the ‘force matching’ method) and experimental data. The force database is generated within ab initio molecular dynamics (AIMD). The database includes liquid phase at various temperatures. Classical molecular dynamics simulations are performed to examine structural, coordination numbers, structure factors and dynamic properties of Au$_{81}$Si$_{19}$ alloy, with the interaction described via EAM model. The results are in good agreement with AIMD simulations and experimental data.
Kawashima, Yukio; Tachikawa, Masanori
2013-05-01
Ab initio path integral molecular dynamics simulation was performed to understand the nuclear quantum effect on the hydrogen bond of hydrogen malonate anion. Static calculation predicted the proton transfer barrier as 0.12 kcal/mol. Conventional ab initio molecular dynamics simulation at 300 K found proton distribution with a double peak on the proton transfer coordinate. Inclusion of thermal effect alone elongates the hydrogen bond length, which increases the barrier height. Inclusion of nuclear quantum effect washes out this barrier, and distributes a single broad peak in the center. H/D isotope effect on the proton transfer is also discussed.
The Crystal Structure of Impurity Centers Tm^{2+} and Eu^{2+} in SrCl2: Ab Initio Calculations
Chernyshev, V. A.; Serdcev, A. V.; Petrov, V. P.; Nikiforov, A. E.
2016-12-01
Ab initio calculations of the impurity centers Tm^{2+} thulium and europium Eu^{2+} in SrCl2 and MeF2 (Me = Ca, Sr, Ba) were carried out at low (zero) temperature. The crystal structure of impurity centers was investigated. Charge density maps show that the bonds formed by the rare-earth ions have an ionic character. The crystal structures, lattice dynamics, and band structures of MeF2 and SrCl2 were calculated at low temperature. Ab initio calculations were performed in periodic CRYSTAL code within the framework of the MO LCAO approach by using hybrid DFT functionals.
Lee, Jeehye
2010-01-01
We present the first systematic {\\em ab initio} study of anti-ferrodistortive (AFD) order in Ruddlesden-Popper (RP) phases of strontium titanate, Sr$_{1+n}$Ti$_n$O$_{3n+1}$, as a function of both compressive epitaxial strain and phase number $n$. We find all RP phases to exhibit AFD order under a significant range of strains, recovering the bulk AFD order as $\\sim 1/n^2$. A Ginzburg-Landau Hamiltonian generalized to include inter-octahedral interactions reproduces our {\\em ab initio} results well, opening a pathway to understanding other nanostructured perovskite systems.
Kedziera, Dariusz; Mentel, Łukasz; Żuchowski, Piotr S.; Knoop, Steven
2015-06-01
We have obtained accurate ab initio +4Σ quartet potentials for the diatomic metastable triplet helium+alkali-metal (Li, Na, K, Rb) systems, using all-electron restricted open-shell coupled cluster singles and doubles with noniterative triples corrections CCSD(T) calculations and accurate calculations of the long-range C6 coefficients. These potentials provide accurate ab initio quartet scattering lengths, which for these many-electron systems is possible, because of the small reduced masses and shallow potentials that result in a small amount of bound states. Our results are relevant for ultracold metastable triplet helium+alkali-metal mixture experiments.
Ji, Pengfei
2016-01-01
By combining ab initio quantum mechanics calculation and Drude model, electron temperature and lattice temperature dependent electron thermal conductivity is calculated and implemented into a multiscale model of laser material interaction, which couples the classical molecular dynamics and two-temperature model. The results indicated that the electron thermal conductivity obtained from ab initio calculation leads to faster thermal diffusion than that using the electron thermal conductivity from empirical determination, which further induces deeper melting region, larger number of density waves travelling inside the copper film and more various speeds of atomic clusters ablated from the irradiated film surface.
Roy, Soumendra K; Jian, Tian; Lopez, Gary V; Li, Wei-Li; Su, Jing; Bross, David H; Peterson, Kirk A; Wang, Lai-Sheng; Li, Jun
2016-02-28
The observation of the gaseous UFO(-) anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO(-) is linear with an O-U-F structure and a (3)H4 spectral term derived from a U 7sσ(2)5fφ(1)5fδ(1) electron configuration, whereas the ground state of neutral UFO has a (4)H(7/2) spectral term with a U 7sσ(1)5fφ(1)5fδ(1) electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.
Willaime, F. [Division de l' energie nucleaire, CEA Centre de Saclay, 91191 Gif-sur-Yvette (France); Deutsch, T.; Pochet, P. [INAC, Direction des sciences de la matiere, CEA Centre de Grenoble, 38054 Grenoble Cedex 9 (France)
2010-07-01
Ab-initio calculation methods, for the purposes of computing electronic structures, have made it possible, since the early nineties, to simulate the properties of perfect crystalline materials (materials free of any defect). By improving such methods, and with the increasing power of supercomputers, it has now become feasible to simulate the properties of elementary defects, which may seldom be accessed directly through experiments. This has opened up a vast, fruitful field of multi-scale simulations, where such data yield the basis for realistic simulations of the kinetics of materials evolution. The kinetic Monte-Carlo method thus provides the means to model phenomena acting at the scale of a second, or even of a year. In the issue of self-diffusion in silicon, multi-scale simulation has been successful in predicting an asymmetrical behaviour: a speeding up of vacancy diffusion under compression and a tailing off under tension, and conversely, a speeding up of interstitial diffusion under tension and a falling off under compression. Multi-scale modeling has also been successful in simulating irradiation defects in iron. (A.C.)
Realization of prediction of materials properties by ab initio computer simulation
Yoshiyuki Kawazoe
2003-01-01
Ab initio treatment is becoming realistic to predict physical, chemical, and even mechanical properties of academically and industrially interesting materials. There is, however, some limitation in size and time of the system up to the order of several hundred atoms and ∼ 1 pico second, even if we use the fastest supercomputer efficiently. Therefore, it is very difficult to simulate realistic materials with grain boundaries and important reactions like diffusion in materials. To improve this situation, two ways have been invented. One way is to upgrade approximations to match the necessary levels according to inhomogeneous electron gas theory beyond the present day standard, i.e. local density approximation (LDA). The reason is simply that the system we are interested in is composed of many particles interacting with Coulomb forces governed by quantum mechanics. (Complete knowledge is available, and only what we should do is to make better approximations to explain the phenomena!). Another is to extract the necessary parameters from the ab initio calculations on systems with limited number of atoms, and apply these results into cluster variation, direct, or any other sophisticated methods based on classical concepts such as statistical mechanics. In this paper, several typical examples recently worked out by our research group are introduced to indicate that these methodologies are actually possible to be successfully used to predict materials properties before experiments based on the present day state-of-art supercomputing systems. It includes scientific visualization of the results of ab initio molecular dynamics simulation on atom insertion process to C60 and to carbon nanotube, tight-binding calculation of single electron conductance properties in nanotube to create nano-scale diode virtually by computer, which will be a base of future nanoscale electric device in nanometer size, Li + H reaction without Born–Oppenheimer approximation, structural phase
i-PI: A Python interface for ab initio path integral molecular dynamics simulations
Ceriotti, Michele; More, Joshua; Manolopoulos, David E.
2014-03-01
Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these developments requires a considerable programming effort, which has hindered their adoption. Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program. While it is best suited to first principles calculations and path integral molecular dynamics, i-PI can also be used to perform classical molecular dynamics simulations, and can just as easily be interfaced with an empirical forcefield code. To give just one example of the many potential applications of the interface, we use it in conjunction with the CP2K electronic structure package to showcase the importance of nuclear quantum effects in high-pressure water. Catalogue identifier: AERN_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 138626 No. of bytes in distributed program, including test data, etc.: 3128618 Distribution format: tar.gz Programming language: Python. Computer: Multiple architectures. Operating system: Linux, Mac OSX, Windows. RAM: Less than 256 Mb Classification: 7.7. External routines: NumPy Nature of problem: Bringing the latest developments in the modelling of nuclear quantum effects with path integral molecular dynamics to ab initio electronic structure programs with minimal implementational effort. Solution method: State-of-the-art path integral molecular dynamics techniques are implemented in a Python interface. Any electronic structure code can be patched to receive the atomic
Ab Initio and Analytic Intermolecular Potentials for Ar–CH3OH
Tasic, Uros; Alexeev, Yuri; Vayner, Grigoriy; Crawford, T Daniel; Windus, Theresa L.; Hase, William L.
2006-09-20
Ab initio calculations at the CCSD(T)/aug-cc-pVTZ level of theory were used to characterize the Ar–CH₃y6tOH intermolecular potential energy surface (PES). Potential energy curves were calculated for four different Ar + CH₃OH orientations and used to derive an analytic function for the intermolecular PES. A sum of Ar–C, Ar–O, Ar–H(C), and Ar–H(O) two-body potentials gives an excellent fit to these potential energy curves up to 100 kcal mol¯¹, and adding an additional r¯¹n term to the Buckingham two-body potential results in only a minor improvement in the fit. Three Ar–CH₃OH van der Waals minima were found from the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ calculations. The structure of the global minimum is in overall good agreement with experiment (X.-C. Tan, L. Sun and R. L. Kuczkowski, J. Mol. Spectrosc., 1995, 171, 248). It is T-shaped with the hydroxyl H-atom syn with respect to Ar. Extrapolated to the complete basis set (CBS) limit, the global minimum has a well depth of 0.72 kcal mol¯¹ with basis set superposition error (BSSE) correction. The aug-cc-pVTZ basis set gives a well depth only 0.10 kcal mol¯¹ smaller than this value. The well depths of the other two minima are within 0.16 kcal mol¯¹ of the global minimum. The analytic Ar–CH₃OH intermolecular potential also identifies these three minima as the only van der Waals minima and the structures predicted by the analytic potential are similar to the ab initio structures. The analytic potential identifies the same global minimum and the predicted well depths for the minima are within 0.05 kcal mol¯1 of the ab initio values. Combining this Ar–CH₃OH intermolecular potential with a potential for a OH-terminated alkylthiolate self-assembled monolayer surface (i.e., HO-SAM) provides a potential to model Ar + HO-SAM collisions.
Ab initio study of perovskite type oxide materials for solid oxide fuel cells
Lee, Yueh-Lin
2011-12-01
Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen
Gorelik, Tatiana E; van de Streek, Jacco; Kilbinger, Andreas F M
2012-01-01
Ab-initio crystal structure analysis of organic materials from electron diffraction data is presented. The data were collected using the automated electron diffraction tomography (ADT) technique. The structure solution and refinement route is first validated on the basis of the known crystal stru...
Bruning, W.; Feil, D.
1992-01-01
An algorithm for calculating the scattering factors of atomic fragments in molecules as defined by the Stockholder recipe is presented. This method allows the calculation, from ab initio molecular wave functions, of structure factors including individual anisotropic atomic temperature factors. These
Zhang, Yang
2014-02-01
We develop and test a new pipeline in CASP10 to predict protein structures based on an interplay of I-TASSER and QUARK for both free-modeling (FM) and template-based modeling (TBM) targets. The most noteworthy observation is that sorting through the threading template pool using the QUARK-based ab initio models as probes allows the detection of distant-homology templates which might be ignored by the traditional sequence profile-based threading alignment algorithms. Further template assembly refinement by I-TASSER resulted in successful folding of two medium-sized FM targets with >150 residues. For TBM, the multiple threading alignments from LOMETS are, for the first time, incorporated into the ab initio QUARK simulations, which were further refined by I-TASSER assembly refinement. Compared with the traditional threading assembly refinement procedures, the inclusion of the threading-constrained ab initio folding models can consistently improve the quality of the full-length models as assessed by the GDT-HA and hydrogen-bonding scores. Despite the success, significant challenges still exist in domain boundary prediction and consistent folding of medium-size proteins (especially beta-proteins) for nonhomologous targets. Further developments of sensitive fold-recognition and ab initio folding methods are critical for solving these problems. Copyright © 2013 Wiley Periodicals, Inc.
Giovannetti, Gianluca; Brocks, Geert; Brink, van den Jeroen
2008-01-01
We investigate the effect that potassium intercalation has on the electronic structure of copper phthalocyanine (CuPc) molecular crystals by means of ab initio density functional calculations. Pristine CuPc (in its alpha and beta structures) is found to be an insulator containing local magnetic mome
Shiga, Motoyuki; Tachikawa, Masanori; Miura, Shinichi
2000-12-01
We present an accurate calculational scheme for many-body systems composed of electrons and nuclei, by path integral molecular dynamics technique combined with the ab initio molecular orbital theory. Based upon the scheme, the simulation of a water molecule at room temperature is demonstrated, applying all-electron calculation at the Hartree-Fock level of theory.
Berg, Rolf W.
-H-Br] [ref 2] and (3) the 1-methylimidazolium ethano-ate, [mim-H-O2CCH3] found [ref 3] to have a less likely existence in the vapor of the corresponding liquid in ampouls at ~200°C (Fig. 2). Experimental Raman results will be compared to ab initio calculated spectra. Fig. 1. Likely gaseous ion pair molecule...
Sumner, Isaiah; Iyengar, Srinivasan S
2007-10-18
We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.
Fishchuk, A.V.; Groenenboom, G.C.; Avoird, A. van der
2006-01-01
Bound energy levels and properties of the Cl((2)p)-HF complex were obtained from full three-dimensional (3D) calculations, with the use of the ab initio computed diabatic potential surfaces from the preceding paper and the inclusion of spin-orbit coupling. For a better understanding of the dynamics
Åstrand, P.-O.; Bak, K.L.; Sauer, S.P.A.
2001-01-01
The two lowest singlet excitation energies of 26 2-imidazolyl-2-thiazolylazo compounds have been investigated by ab initio methods within the second-order polarization propagator approximation (SOPPA). Various combinations of 4- and 5-substituents at both the imidazole and thiazole units have bee...
Giovannetti, G.; Brocks, G.; van den Brink, J.
2008-01-01
We investigate the effect that potassium intercalation has on the electronic structure of copper phthalocyanine (CuPc) molecular crystals by means of ab initio density functional calculations. Pristine CuPc (in its alpha and beta structures) is found to be an insulator containing local magnetic
2011-01-01
The geometric, electronic structure, effect of the substitution, and structure physical-chemistry relationship for oxazoles derivatives have been studied by ab initio and DFT theory. In the present work, the calculated values, namely, net charges, bond lengths, dipole moments, electron affinities, heats of formation, and QSAR properties are reported and discussed in terms of the reactivity of oxazole derivatives.
Giovannetti, G.; Brocks, G.; van den Brink, J.
2008-01-01
We investigate the effect that potassium intercalation has on the electronic structure of copper phthalocyanine (CuPc) molecular crystals by means of ab initio density functional calculations. Pristine CuPc (in its alpha and beta structures) is found to be an insulator containing local magnetic mome
Ab-initio study of magnetic properties and phase transitions in Ga (Mn) N with Monte Carlo approach
Sbai, Y.; Ait Raiss, A.; Salmani, E. [LMPHE (URAC 12), Faculty of Science, Mohammed V University, Av. Ibn Batouta, Rabat (Morocco); Bahmad, L., E-mail: Bahmad@fsr.ac.ma [LMPHE (URAC 12), Faculty of Science, Mohammed V University, Av. Ibn Batouta, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculty of Science, Mohammed V University, Av. Ibn Batouta, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco)
2015-12-15
On the basis of ab-initio calculations and Monte Carlo simulations the magnetic and electronic properties of Gallium nitride (GaN) doped with the transition metal Manganese (Mn) were studied. The ab initio calculations were done using the AKAI–KKR–CPA method within the Local Density Approximation (LDA) approximation. We doped our Diluted Magnetic Semiconductor (DMS), with different concentrations of magnetic impurities Mn and plotted the density of state (DOS) for each one. Showing a half-metallic behavior and ferromagnetic state especially for Ga{sub 0.95}Mn{sub 0.05}N making this DMS a strong candidate for spintronic applications. Moreover, the magnetization and susceptibility of our system as a function of the temperature has been calculated and give for various system size L to study the size effect. In addition, the transition temperature was deduced from the peak of the susceptibility. The Ab initio results are in good agreement with literature especially for (x=0.05) of Mn which gives the most interesting results. - Highlights: • The AKAI–KKR–CPA method has been applied to study the doped compound GaN:Mn. • The local density approximation (LDA) has been applied. • The ab-initio calculations have been performed. • The density of states (DOS) have been plotted for differents doping concentrations, using Monte Carlo simulations.
Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.
1997-01-01
The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to simulate laser heating of crystalline silicon. We found that a high concentration of excited electrons dramatically weakens the covalent bonding. As a result the system undergoes a melting t
Salah Belaidi
2011-01-01
Full Text Available The geometric, electronic structure, effect of the substitution, and structure physical-chemistry relationship for oxazoles derivatives have been studied by ab initio and DFT theory. In the present work, the calculated values, namely, net charges, bond lengths, dipole moments, electron affinities, heats of formation, and QSAR properties are reported and discussed in terms of the reactivity of oxazole derivatives.
Iftimie, R; Schofield, J P; Iftimie, Radu; Salahub, Dennis; Schofield, Jeremy
2003-01-01
In this article, we propose an efficient method for sampling the relevant state space in condensed phase reactions. In the present method, the reaction is described by solving the electronic Schr\\"{o}dinger equation for the solute atoms in the presence of explicit solvent molecules. The sampling algorithm uses a molecular mechanics guiding potential in combination with simulated tempering ideas and allows thorough exploration of the solvent state space in the context of an ab initio calculation even when the dielectric relaxation time of the solvent is long. The method is applied to the study of the double proton transfer reaction that takes place between a molecule of acetic acid and a molecule of methanol in tetrahydrofuran. It is demonstrated that calculations of rates of chemical transformations occurring in solvents of medium polarity can be performed with an increase in the cpu time of factors ranging from 4 to 15 with respect to gas-phase calculations.
Ab Initio No Core Shell Model - Recent Results and Further Prospects
Vary, James P; Potter, Hugh; Caprio, Mark A; Smith, Robin; Binder, Sven; Calci, Angelo; Fischer, Sebastian; Langhammer, Joachim; Roth, Robert; Aktulga, Hasan Metin; Ng, Esmond; Yang, Chao; Oryspayev, Dossay; Sosonkina, Masha; Saule, Erik; Çatalyürek, Ümit
2015-01-01
There has been significant recent progress in solving the long-standing problems of how nuclear shell structure and collective motion emerge from underlying microscopic inter-nucleon interactions. We review a selection of recent significant results within the ab initio No Core Shell Model (NCSM) closely tied to three major factors enabling this progress: (1) improved nuclear interactions that accurately describe the experimental two-nucleon and three-nucleon interaction data; (2) advances in algorithms to simulate the quantum many-body problem with strong interactions; and (3) continued rapid development of high-performance computers now capable of performing $20 \\times 10^{15}$ floating point operations per second. We also comment on prospects for further developments.
Barbosa, Marcelo
A review about the nuclear properties, namely the nuclear moments (magnetic dipole moment and electric quadrupole moment) and their interaction with electromagnetic fields external to the nucleus (hyperfine interactions), as well as the angular distribution of radiation produced by $\\gamma$-decay, is presented. A detailed description about the theory of Perturbed Angular Correlations was done, including the comparison between $\\gamma-\\gamma$- correlations and $e^{-}- \\gamma$ correlations. For dynamic nuclear interactions, an introduction to the theory of stochastic states in PAC was performed. We focused on ab-initio implementation of observables for analyzing fluctuating quadrupole hyperfine interactions on time dependent perturbed angular correlations experiments. The development of computacional codes solving the full problem, adapted to fit data obtained on single crystals or polycrystals for two-state transient fields with any axial symmetry and orientation was the main purpose of this work. The final pa...
Probing defects and correlations in the hydrogen-bond network of ab initio water
Gasparotto, Piero; Ceriotti, Michele
2016-01-01
The hydrogen-bond network of water is characterized by the presence of coordination defects relative to the ideal tetrahedral network of ice, whose fluctuations determine the static and time-dependent properties of the liquid. Because of topological constraints, such defects do not come alone, but are highly correlated coming in a plethora of different pairs. Here we discuss in detail such correlations in the case of ab initio water models and show that they have interesting similarities to regular and defective solid phases of water. Although defect correlations involve deviations from idealized tetrahedrality, they can still be regarded as weaker hydrogen bonds that retain a high degree of directionality. We also investigate how the structure and population of coordination defects is affected by approximations to the inter-atomic potential, finding that in most cases, the qualitative features of the hydrogen bond network are remarkably robust.
Ab initio study of pressure induced structural and electronic properties in TmPo
Makode, Chandrabhan, E-mail: cbmakode@gmail.com; Pataiya, Jagdish; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal-462026 (India); Panwar, Y. S.; Aynyas, Mahendra [Department of Physics, C.S.A. Govt. P.G. College, Sehore-466001 (India)
2015-06-24
We report an ab initio calculation of pressure induced structural phase transition and electronic properties of Thulium Polonide (TmPo).The total energy as a function of volume is obtained by means of self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). It is found that TmPo is stable in NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-phase) structure of this compound in the pressure range of 7.0 GPa. We also calculate the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure and density of states. From energy diagram it is observed that TmPo exhibit metallic behavior. The calculated values of equilibrium lattice parameter and bulk modulus are in general good agreement.
Structure and dynamics of liquid Zn: an analysis of ab-initio simulations
del Rio B. G.
2017-01-01
Full Text Available The static and dynamic properties of liquid Zn have been studied using an ab initio molecular dynamics method. Results are reported for the thermodynamic states at 723K near which inelastic neutron and x-ray scattering data are available. The calculated static structure shows very good agreement with experimental measurements, including an asymmetric main peak. The dynamic structure reveals the existence of propagating density fluctuations, and the associated dispersion relation has also been calculated. The possible coupling between longitudinal and transverse excitation modes has been investigated by looking at specific signatures in two wavevector regions: the first one is located around the position of the main peak of the structure factor, qp, as suggested by the recently reported appearance of high frequency transverse waves in several liquid metals under high pressures; the second region is around qp/2, as suggested by inelastic scattering experiments for liquid Zn and other metals.
Structural properties of iron nitride on Cu(100): An ab-initio molecular dynamics study
Heryadi, Dodi
2011-01-01
Due to their potential applications in magnetic storage devices, iron nitrides have been a subject of numerous experimental and theoretical investigations. Thin films of iron nitride have been successfully grown on different substrates. To study the structural properties of a single monolayer film of FeN we have performed an ab-initio molecular dynamics simulation of its formation on a Cu(100) substrate. The iron nitride layer formed in our simulation shows a p4gm(2x2) reconstructed surface, in agreement with experimental results. In addition to its structural properties, we are also able to determine the magnetization of this thin film. Our results show that one monolayer of iron nitride on Cu(100) is ferromagnetic with a magnetic moment of 1.67 μ B. © 2011 Materials Research Society.
Many-body ab initio study of antiferromagnetic {Cr7M } molecular rings
Chiesa, A.; Carretta, S.; Santini, P.; Amoretti, G.; Pavarini, E.
2016-12-01
Antiferromagnetic molecular rings are widely studied both for fundamental quantum-mechanical issues and for technological applications, particularly in the field of quantum information processing. Here we present a detailed first-principles study of two families—purple and green—of {Cr7M } antiferromagnetic rings, where M is a divalent transition metal ion (M =Ni2 + , Mn2 +, and Zn2 +). We employ a recently developed flexible and efficient scheme to build ab initio system-specific Hubbard models. From such many-body models we systematically derive the low-energy effective spin Hamiltonian for the rings. Our approach allows us to calculate isotropic as well as anisotropic terms of the spin Hamiltonian, without any a priori assumption on its form. For each compound we calculate magnetic exchange couplings, zero-field splitting tensors, and gyromagnetic tensors, finding good agreement with experimental results.
Ionescu, Andrei R; Whitfield, Dennis M; Zgierski, Marek Z; Nukada, Tomoo
2006-12-29
We present a constrained ab initio molecular dynamics method that allows the modeling of the conformational interconversions of glycopyranosyl oxacarbenium ions. The model was successfully tested by estimating the barriers to ring inversion for two 4-substituted tetrahydropyranosyl oxacarbenium ions. The model was further extended to predict the pathways that connect the (4)H(3) half-chair conformation of 2,3,4,6-tetra-O-methyl-d-glucopyranosyl cation to its inverted (5)S(1) conformation and the (4)H(3) half-chair conformation of 2,3,4,6-tetra-O-methyl-d-mannopyranosyl cation to its inverted (3)E conformation. The modeled interconversion pathways reconcile a large body of experimental work on the acid-catalyzed hydrolysis of glycosides and the mechanisms of a number of glucosidases and mannosidases.
Molecular orbital ab initio and density functional theoretical study on reaction between PH2 and NO
HU; Zhengfa(胡正发); WANG; Zhenya(王振亚); LI; Haiyang(李海洋); ZHOU; Shikang(周士康)
2002-01-01
The theoretical study of reaction between PH2 and NO on the ground state potential energy surface is reported by using molecular orbital ab initio calculation and density function theory (DFT). Equilibrium structural parameters, harmonic vibrational frequencies, total energies and zero point energies of all species during reaction are computed by HF, MP2 (full) and B3LYP theory levels with the medium basis set 6-31G*. Theoretical results indicate that intermediate IM1(H2PNO) is firstly formed by overcoming a small energy barrier TS1, and then two four-membered ring transient states TS2 and TS5, with energy barriers 103.3 and 102.6 kJ/mol respectively,then H-migration and isomerization are completed and the products PN and H2O are formed. The reaction is exothermic one with -189.6 k J/mol released.
Structural phase transition of CdTe: an ab initio study.
Alptekin, Sebahaddin
2013-01-01
A constant pressure ab initio MD technique and density functional theory with a generalized gradient approximation (GGA) was used to study the pressure-induced phase transition in zinc-blende CdTe. We found that CdTe undergoes a structural first-order phase transition to [Formula: see text] (binary β-tin) tetragonal structure in the constant pressure molecular dynamics simulation at 20 GPa. When the pressure was increased to 50 GPa, the phase of tetragonal structure converted to a new Imm2 orthorhombic structure. These phase transformations were also calculated by using the enthalpy calculations. Transition phases, lattice parameters and bulk properties we attained are comparable with experimental and theoretical data.
Pressure-induced phase transition in wurtzite ZnTe: an ab initio study.
Alptekin, Sebahaddin
2012-03-01
A constant pressure ab initio MD technique and density functional theory with a generalized gradient approximation (GGA) was used to study the pressure-induced phase transition in wurtzite ZnTe. A first-order phase transition from the wurtzite structure to a Cmcm structure was successfully observed in a constant-pressure molecular dynamics simulation. This phase transformation was also analyzed using enthalpy calculations. We also investigated the stability of wurtzite (WZ) and zinc-blende (ZB) phases from energy-volume calculations, and found that both structures show quite similar equations of state and transform into a Cmcm structure at 16 GPa using enthalpy calculations, in agreement with experimental observations. The transition phase, lattice parameters and bulk properties we obtained are comparable with experimental and theoretical data.
Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines
Ullah, Saif; Ishimoto, Takayoshi; Williamson, Mike P.;
2011-01-01
Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation....... This method enables the determination of both the electronic and the protonic (deuteronic) wave functions simultaneously and can directly calculate the geometrical difference induced by H/D isotope effects. The calculations show that the one-bond deuterium isotope effects on 15N nuclear shielding, 1Δ15N......(D), in ammonium and amines decrease as a counterion or water molecule moves closer to the nitrogen. 1Δ15N(D) and 2Δ1H(D) of the NH3+ groups of lysine residues in the B1 domain of protein G have been calculated using truncated side chains and also determined experimentally by NMR. Comparisons show...
Comparison between phenomenological and ab-initio reaction and relaxation models in DSMC
Sebastião, Israel B.; Kulakhmetov, Marat; Alexeenko, Alina
2016-11-01
New state-specific vibrational-translational energy exchange and dissociation models, based on ab-initio data, are implemented in direct simulation Monte Carlo (DSMC) method and compared to the established Larsen-Borgnakke (LB) and total collision energy (TCE) phenomenological models. For consistency, both the LB and TCE models are calibrated with QCT-calculated O2+O data. The model comparison test cases include 0-D thermochemical relaxation under adiabatic conditions and 1-D normal shockwave calculations. The results show that both the ME-QCT-VT and LB models can reproduce vibrational relaxation accurately but the TCE model is unable to reproduce nonequilibrium rates even when it is calibrated to accurate equilibrium rates. The new reaction model does capture QCT-calculated nonequilibrium rates. For all investigated cases, we discuss the prediction differences based on the new model features.
Quantifying statistical uncertainties in ab initio nuclear physics using Lagrange multipliers
Carlsson, B D
2016-01-01
Theoretical predictions need quantified uncertainties for a meaningful comparison to experimental results. This is an idea which presently permeates the field of theoretical nuclear physics. In light of the recent progress in estimating theoretical uncertainties in ab initio nuclear physics, we here present and compare methods for evaluating the statistical part of the uncertainties. A special focus is put on the (for the field) novel method of Lagrange multipliers (LM). Uncertainties from the fit of the nuclear interaction to experimental data are propagated to a few observables in light-mass nuclei to highlight any differences between the presented methods. The main conclusion is that the LM method is more robust, while covariance based methods are less demanding in their evaluation.
Ab initio electronic structure, magnetism, and magnetocrystalline anisotropy of UGa2
Diviš, Martin; Richter, Manuel; Eschrig, Helmut; Steinbeck, Lutz
1996-04-01
Ab initio electronic structure calculations for the intermetallic compound UGa2 were performed using an optimized linear combination of atomic orbitals method based on the local spin density approximation. Three separate calculations were done treating the uranium 5f states as band states and as localized states with occupation two and three, respectively. In the itinerant approach, spin and orbital moments, magnetocrystalline anisotropy, and the Sommerfeld constant were calculated and found to deviate significantly from the related experimental data. In the localized approach, crystal field parameters were obtained for the 5f states, which have been treated by self-interaction corrected local-density theory. This approach with 5f2 occupation is shown to provide reasonable results for the anisotropy of the susceptibility, for the field dependence of the magnetic moments, and for the Sommerfeld constant.
{ital Ab initio} electronic structure, magnetism, and magnetocrystalline anisotropy of UGa{sub 2}
Divis, M. [Department of Metal Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic)]|[Max-Planck-Gesellschaft, Research Group ``Electron Systems,`` University of Technology, D-01062 Dresden (Germany); Richter, M.; Eschrig, H.; Steinbeck, L. [Max-Planck-Gesellschaft, Research Group ``Electron Systems,`` University of Technology, D-01062 Dresden (Germany)
1996-04-01
{ital Ab} {ital initio} electronic structure calculations for the intermetallic compound UGa{sub 2} were performed using an optimized linear combination of atomic orbitals method based on the local spin density approximation. Three separate calculations were done treating the uranium 5{ital f} states as band states and as localized states with occupation two and three, respectively. In the itinerant approach, spin and orbital moments, magnetocrystalline anisotropy, and the Sommerfeld constant were calculated and found to deviate significantly from the related experimental data. In the localized approach, crystal field parameters were obtained for the 5{ital f} states, which have been treated by self-interaction corrected local-density theory. This approach with 5{ital f}{sup 2} occupation is shown to provide reasonable results for the anisotropy of the susceptibility, for the field dependence of the magnetic moments, and for the Sommerfeld constant. {copyright} {ital 1996 The American Physical Society.}
Ab initio calculation of the growth of Te nanorods and Bi2Te3 nanoplatelets
Tian Xiao-Qing; Du Shi-Xuan; Gao Hong-Jun
2008-01-01
In this paper the growth mechanism of a Te/Bi2Te3 novel structure is studied by ab-initio calculations.The results show that the growth of Te nanorods is determined by the adsorption energy of Te atoms on different crystalline Te surfaces.The adsorption energy of Te on the Te (001) surface is 3.29 eV,which is about 0.25 eV higher than that of Te on the Te (110).This energy difference makes the preferential growth direction along the ＜ 001＞ direction.In addition,the higher surface energy of Bi2Te3 (110) and the lattice misfit between crystalline Bi2Te3 and Te along ＜ 001＞ direction are considered to explain the growth of the Bi2Te3 nanoplatelets,in which Volmer-Weber model is used.The theoretical results axe in agreement with experimental observation.
Mundy, Christopher J; Curioni, Alessandro; Goldman, Nir; Will Kuo, I-F; Reed, Evan J; Fried, Laurence E; Ianuzzi, Marcella
2008-05-14
We report herein ab initio molecular dynamics simulations of graphite under shock compression in conjunction with the multiscale shock technique. Our simulations reveal that a novel short-lived layered diamond intermediate is formed within a few hundred of femtoseconds upon shock loading at a shock velocity of 12 kms (longitudinal stress>130 GPa), followed by formation of cubic diamond. The layered diamond state differs from the experimentally observed hexagonal diamond intermediate found at lower pressures and previous hydrostatic calculations in that a rapid buckling of the graphitic planes produces a mixture of hexagonal and cubic diamond (layered diamond). Direct calculation of the x-ray absorption spectra in our simulations reveals that the electronic structure of the final state closely resembles that of compressed cubic diamond.
Ab initio study of transport properties in defected carbon nanotubes: an O(N) approach
Biel, Blanca; GarcIa-Vidal, F J; Flores, Fernando [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Rubio, Angel [European Theoretical Spectroscopy Facility (ETSF), Departamento de Fisica de Materiales, Universidad PaIs Vasco, Edificio Korta, Avenida Tolosa 72, 20018 San Sebastian (Spain)], E-mail: blanca.biel@cea.fr
2008-07-23
A combination of ab initio simulations and linear-scaling Green's functions techniques is used to analyze the transport properties of long (up to 1 {mu}m) carbon nanotubes with realistic disorder. The energetics and the influence of single defects (monovacancies and divacancies) on the electronic and transport properties of single-walled armchair carbon nanotubes are analyzed as a function of the tube diameter by means of the local orbital first-principles Fireball code. Efficient O(N) Green's functions techniques framed within the Landauer-Buettiker formalism allow a statistical study of the nanotube conductance averaged over a large sample of defected tubes and thus extraction of the nanotube localization length. The cases of zero and room temperature are both addressed.
Moradian, Rostam [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Science and Technology Research Center, Razi University, Kermanshah (Iran, Islamic Republic of); Department of Nano Science, Computational Physical Science Research Laboratory, Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: moradian.rostam@gmail.com; Behzad, Somayeh; Chegel, Raad [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)
2008-10-01
By using ab initio density functional theory the structural and electronic properties of isolated and bundled (8,0) and (6,6) silicon carbide nanotubes (SiCNTs) are investigated. Our results show that for such small diameter nanotubes the inter-tube interaction causes a very small radial deformation, while band splitting and reduction of the semiconducting energy band gap are significant. We compared the equilibrium interaction energy and inter-tube separation distance of (8,0) SiCNT bundle with (10,0) carbon nanotube (CNT) bundle where they have the same radius. We found that there is a larger inter-tube separation and weaker inter-tube interaction in the (8,0) SiCNT bundle with respect to (10,0) CNT bundle, although they have the same radius.
Moradian, Rostam [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Science and Technology Research Center, Razi University, Kermanshah (Iran, Islamic Republic of); Computational Physical Science Research Laboratory, Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: moradian.rostam@gmail.com; Behzad, Somayeh; Chegel, Raad [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)
2009-06-15
We present the results of ab initio density functional theory calculations on the energetic, and geometric and electronic structure of Li-intercalated (6,6) silicon carbide nanotube (SiCNT) bundles. Our results show that intercalation of lithium leads to the significant changes in the geometrical structure. The most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the SiCNTs. All the Li-intercalated (6,6) SiCNT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial space are susceptible for intercalation. The present calculations suggest that the SiCNT bundle is a promising candidate for the anode material in battery applications.
Relaxation of the excited -(2-hydroxy benzylidene) aniline molecule: An ab initio and TD DFT study
Biswajit Chowdhury; Rina De; Pinaky Sett; Joydeep Chowdhury
2010-11-01
The photophysical behaviour of N-(2-hydroxy benzylidene) aniline or most commonly known as salicylideneaniline (SA) has been investigated using the ab initio and DFT levels of theory. The quantum chemical calculations show that the optimized non planar enol (1) form of the SA molecule is the most stable conformer in the ground state and is marked by the twisting of the phenolic and anilino rings of the molecule. The geometry optimizations and the subsequent frequency calculations of the excited singlet electronic states of the various tautomeric forms of SA molecule were performed with the CIS level of theory. A detail theoretical investigation on the relaxation dynamics of the SA molecule has been presented. Possible explanation on the excitation wavelength dependence of the photochromic yield of the molecule is also reported.
High-pressure physical properties of magnesium silicate post-perovskite from ab initio calculations
Zi-Jiang Liu; Xiao-Wei Sun; Cai-Rong Zhang; Jian-Bu Hu; Ling-Cang Cai; Qi-Feng Chen
2012-08-01
The structure, thermodynamic and elastic properties of magnesium silicate (MgSiO3) post-perovskite at high pressure are investigated with quasi-harmonic Debye model and ab initio method based on the density functional theory (DFT). The calculated structural parameters of MgSiO3 post-perovskite are consistent with the available experimental results and the recent theoretical results. The Debye temperature, heat capacity and thermal expansion coefficient at high pressures and temperatures are predicted using the quasi-harmonic Debye model. The elastic constants are calculated using stress–strain relations. A complete elastic tensor of MgSiO3 post-perovskite is determined in the wide pressure range. The calculated elastic anisotropic factors and directional bulk modulus show that MgSiO3 post-perovskite possesses high elastic anisotropy.
i-PI: A Python interface for ab initio path integral molecular dynamics simulations
Ceriotti, Michele; Manolopoulos, David E
2014-01-01
Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these developments requires a considerable programming effort, which has hindered their adoption. Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program. While it is best suited to first principles calculations and path integral molecular dynamics, i-PI can also be used to perform classical molecular dynamics simulations, and can just as easily be interfaced with an empirical forcefield code. To give just one example of the many potential applications of the interface, we use it in conjunction with the CP2K electronic structure package to showcase the importance of nuclear quantum effects in high pressure water.
Voltage and capacity control of polyaniline based organic cathodes: An ab initio study
Chen, Yingqian; Manzhos, Sergei
2016-12-01
Polyaniline (PANI) is a promising organic cathode material for electrochemical batteries. Its specific capacity is limited by irreversible formation of pernigraniline base, and its energy density is limited by the voltage which could be improved. We present an ab initio study of PANI and PANI functionalized with functional groups which lead to increased voltage and stabilization of the pernigraniline salt. Specifically, the oxidation potential achieved by functionalization with CN on the nitrogen is computed to be 1.3 V higher than that of pristine PANI oligomer, leading to a higher voltage, and the formation of the pernigraniline base is predicted to be simultaneously suppressed, leading to a higher reversible capacity. Therefore, functionalized PANI could be a promising candidate organic cathode for Li-ion batteries.
Ab initio calculation of structure and thermodynamic properties of Zintl aluminide SrAl{sub 2}
Fu, Zhi-Jian [Chongqing Key Laboratory of Micro/Nano Materials Engineering and Technology, Chongqing (China); Chongqing Univ. of Arts and Sciences (China). School of Electrical and Electronic Engineering; China Academy of Engineering Physics (CAEP), Mianyang, Sichuan (China). National Key Lab. of Shock Wave and Detonation Physics; Jia, Li-Jun [Chongqing Univ. of Arts and Sciences Library (China); Xia, Ji-Hong; Tang, Ke; Li, Zhao-Hong [Chongqing Univ. of Arts and Sciences (China). School of Electrical and Electronic Engineering; Sun, Xiao-Wei [Lanzhou Jiaotong Univ. (China). School of Mathematics and Physics; Chen, Qi-Feng [China Academy of Engineering Physics (CAEP), Mianyang, Sichuan (China). National Key Lab. of Shock Wave and Detonation Physics
2015-07-01
The structural and thermodynamic properties of the orthorhombic and cubic structure SrAl{sub 2} at pressure and temperature are investigated by using the ab initio plane-wave pseudopotential density functional theory method within the generalised gradient approximation (GGA). The calculated lattice parameters are in agreement with the available experimental data and other theoretical results. The phase transition predicted takes place at 0.5 GPa from the orthorhombic to the cubic structure at zero temperature. The thermodynamic properties of the zinc-blende structure SrAl{sub 2} are calculated by the quasi-harmonic Debye model. The pressure-volume relationship and the variations in the thermal expansion a are obtained systematically in the pressure and temperature ranges of 0-5 GPa and 0-500 K, respectively.
A-dependence of the Spectra of the F Isotopes from ab initio Calculations
Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Vary, James P.; Shirokov, Andrey M.
2016-03-01
Using a succession of Okubo-Lee-Suzuki transformations within the No Core Shell Model (NCSM) formalism, we derive an ab initio, non-perturbative procedure for calculating the input for standard shell-model (SSM) calculations within one major shell. We have used this approach for calculating the spectra of the F isotopes from A=18 to A=25, so as to study the A-dependence of the results. In particular, we are interested in seeing if the theoretical input is weak enough, so that a single set of two-body effective interactions can be used for all of the F isotopes investigated. We will present results from SSM calculations based on input obtained with the JISP16 nucleon-nucleon interaction in an initial 4 ℏΩ NCSM basis space. This work supported in part by TUBITAK-BIDEB, the US DOE, the US NSF, NERSC, and the Russian Ministry of Education and Science.
The Ab Initio Studies of NO Chemisorption on TiO2(110) Surface
无
1999-01-01
The studies of NO chemisorption on TiO2(110) surface are the base of research to NO decomposed to N2O on TiO2 surface. In this paper, 12 kinds of possible models of NO adsorbed on TiO2 perfect and defect surface were calculated by use of ab initio cluster method. We carried out optimization of the geometry, calculation of the chemisorption energy and analysis of the Mulliken population to those adsorption models. According to the calculation results, it can be got that the adsorbed decomposition of NO on defect surface is more advantageous and M6 and M12 are the important models to NO chemisorption and decomposition on TiO2 surface.
High-pressure elastic properties of cubic Ir2P from ab initio calculations
Sun, Xiao-Wei; Bioud, Nadhira; Fu, Zhi-Jian; Wei, Xiao-Ping; Song, Ting; Li, Zheng-Wei
2016-10-01
A study of the high-pressure elastic properties of new synthetic Ir2P in the anti-fluorite structure is conducted using ab initio calculations based on density functional theory. The elastic constants C11, C12 and C44 for the cubic Ir2P are obtained by the stress-strain method and the elastic stability calculations under pressure indicate that it is stable at least 100 GPa. Additionally, the electronic density of states, the aggregate elastic moduli, that is bulk modulus, shear modulus, and Young's modulus along with the Debye temperature, Poisson's ratio, and elastic anisotropy factor are all successfully obtained. Moreover, the pressure dependence of the longitudinal and shear wave velocities in three different directions [100], [110], and [111] for Ir2P are also predicted for the first time.
A set of molecular models based on quantum mechanical ab initio calculations and thermodynamic data
Eckl, Bernhard; Hasse, Hans
2009-01-01
A parameterization strategy for molecular models on the basis of force fields is proposed, which allows a rapid development of models for small molecules by using results from quantum mechanical (QM) ab initio calculations and thermodynamic data. The geometry of the molecular models is specified according to the atom positions determined by QM energy minimization. The electrostatic interactions are modeled by reducing the electron density distribution to point dipoles and point quadrupoles located in the center of mass of the molecules. Dispersive and repulsive interactions are described by Lennard-Jones sites, for which the parameters are iteratively optimized to experimental vapor-liquid equilibrium (VLE) data, i.e. vapor pressure, saturated liquid density, and enthalpy of vaporization of the considered substance. The proposed modeling strategy was applied to a sample set of ten molecules from different substance classes. New molecular models are presented for iso-butane, cyclohexane, formaldehyde, dimethyl...
Ab initio multiple spawning dynamics using multi-state second-order perturbation theory.
Tao, Hongli; Levine, Benjamin G; Martínez, Todd J
2009-12-10
We have implemented multi-state second-order perturbation theory (MS-CASPT2) in the ab initio multiple spawning (AIMS) method for first-principles molecular dynamics including nonadiabatic effects. The nonadiabatic couplings between states are calculated numerically using an efficient method which requires only two extra energy calculations per time step. As a representative example, we carry out AIMS-MSPT2 calculations of the excited state dynamics of ethylene. Two distinct types of conical intersections, previously denoted as the twisted-pyramidalized and ethylidene intersections, are responsible for ultrafast population transfer from the excited state to the ground state. Although these two pathways have been observed in prior dynamics simulations, we show here that the branching ratio is affected by dynamic correlation with the twisted-pyramidalized intersection overweighting the ethylidene-like intersection during the decay process at the AIMS-MSPT2 level of description.
The {\\it ab initio} calculation of spectra of open shell diatomic molecules
Tennyson, Jonathan; McKemmish, Laura K; Yurchenko, Sergei N
2016-01-01
The spectra (rotational, rotation-vibrational or electronic) of diatomic molecules due to transitions involving only closed-shell ($^1\\Sigma$) electronic states follow very regular, simple patterns and their theoretical analysis is usually straightforward. On the other hand, open-shell electronic states lead to more complicated spectral patterns and, moreover, often appear as a manifold of closely lying electronic states, leading to perturbations with even larger complexity. This is especially true when at least one of the atoms is a transition metal. Traditionally these complex cases have been analysed using approaches based on perturbation theory, with semi-empirical parameters determined by fitting to spectral data. Recently the needs of two rather diverse scientific areas have driven the demand for improved theoretical models of open-shell diatomic systems based on an \\emph{ab initio} approach, these areas are ultracold chemistry and the astrophysics of "cool" stars, brown dwarfs and most recently extraso...
Trends in magnetism of free Rh clusters via relativistic ab-initio calculations.
Šipr, O; Ebert, H; Minár, J
2015-02-11
A fully relativistic ab-initio study on free Rh clusters of 13-135 atoms is performed to identify general trends concerning their magnetism and to check whether concepts which proved to be useful in interpreting magnetism of 3d metals are applicable to magnetism of 4d systems. We found that there is no systematic relation between local magnetic moments and coordination numbers. On the other hand, the Stoner model appears well-suited both as a criterion for the onset of magnetism and as a guide for the dependence of local magnetic moments on the site-resolved density of states at the Fermi level. Large orbital magnetic moments antiparallel to spin magnetic moments were found for some sites. The intra-atomic magnetic dipole Tz term can be quite large at certain sites but as a whole it is unlikely to affect the interpretation of x-ray magnetic circular dichroism experiments based on the sum rules.
Ab initio phonon coupling and optical response of hot electrons in plasmonic metals
Brown, Ana M; Narang, Prineha; Goddard, William A; Atwater, Harry A
2016-01-01
Ultrafast laser measurements probe the non-equilibrium dynamics of excited electrons in metals with increasing temporal resolution. Electronic structure calculations can provide a detailed microscopic understanding of hot electron dynamics, but a parameter-free description of pump-probe measurements has not yet been possible, despite intensive research, because of the phenomenological treatment of electron-phonon interactions. We present ab initio predictions of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We find substantial differences from free-electron and semi-empirical estimates, especially in noble metals above transient electron temperatures of 2000 K, because of the previously-neglected strong dependence of electron-phonon matrix elements on electron energy. We also present first-principles calculations of the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phon...
Ab initio research of stopping power for energetic ions in solids
He, Bin, E-mail: hebin-rc@163.com; Meng, Xu-Jun; Wang, Jian-Guo
2017-03-01
A new physical scenario is suggested to estimate the stopping power of energetic α particles in solid-density Be, Na, and Al at room temperature in an ab initio way based on the average atom model. In the scenario the stopping power is caused by the transition of free electrons to higher energy states and the ionization of bound electrons of the atom. Our results are found generally in good agreement with the recommended data in Al, Be and Na as well as the experimental data in Al. A comparison of energy loss with the recent experiment of protons in Be indicates that the scenario is more reasonable than the local density approximation in this case.
Ab initio research of stopping power for energetic ions in solids
He, Bin; Meng, Xu-Jun; Wang, Jian-Guo
2017-03-01
A new physical scenario is suggested to estimate the stopping power of energetic α particles in solid-density Be, Na, and Al at room temperature in an ab initio way based on the average atom model. In the scenario the stopping power is caused by the transition of free electrons to higher energy states and the ionization of bound electrons of the atom. Our results are found generally in good agreement with the recommended data in Al, Be and Na as well as the experimental data in Al. A comparison of energy loss with the recent experiment of protons in Be indicates that the scenario is more reasonable than the local density approximation in this case.
Ab initio theory for ultrafast magnetization dynamics with a dynamic band structure
Mueller, B. Y.; Haag, M.; Fähnle, M.
2016-09-01
Laser-induced modifications of magnetic materials on very small spatial dimensions and ultrashort timescales are a promising field for novel storage and spintronic devices. Therefore, the contribution of electron-electron spin-flip scattering to the ultrafast demagnetization of ferromagnets after an ultrashort laser excitation is investigated. In this work, the dynamical change of the band structure resulting from the change of the magnetization in time is taken into account on an ab initio level. We find a large influence of the dynamical band structure on the magnetization dynamics and we illustrate the thermalization and relaxation process after laser irradiation. Treating the dynamical band structure yields a demagnetization comparable to the experimental one.
Ab initio STUDIES ON MAGNETISM OF 3d TRANSITION METAL DIMERS
无
2007-01-01
Ab initio calculations with the self-consistent full-potential linearized augmented-plane-wave method (FLAPW), under generalized gradient approximation, have been carried out to describe the electronic and magnetic properties of 3d transition metal dimers. It predicted the antiferromagneticity of Cr2 and ferromagneticity of other species. The Mn2 dimer was shown to be ferromagnetic coupling with a local magnetic moment of 5μB. Retaining the value of its free atom state. The V2 and Ni2 exhibited low spin-polarization with local magnetic moment of only 1μB per atom. On the other hand, Fe2 and Co2 were highly spin-polarized with local magnetic moments of 3 and 2μB.
Andersen, Vinca Bonde; Berg, Rolf W.; Shim, Irene
2017-01-01
The iminodisulfonate, [N(SO3)2]3–, and phosphinodisulfonate, [P(SO3)2]3–, ions have been investigated by performing ab initio MP2/6-311+G**calculations. The nitrogen and phosphorus atoms as part of the ions are shown to be divalent with a negative charge and two lone pairs on the nitrogen...... and phosphorus atoms. The experimentally known calcium sodium iminodisulfonate trihydrate and the analogous unknown compound calcium sodium phosphinodisulfonate trihydrate have also been investigated using the MP2/6-311+G** calculations. For the nitrogen compound, only minor changes occur in the iminodisulfonate...... phosphinodisulfonate trihydrate are quite different from those of the phosphinodisulfonate ion. For calcium sodium iminodisulfonate trihydrate, the Raman spectrum has been measured, and it compares well with the spectrum derived using HF/6-311+G** calculations....
Ab-initio study of magnetism behavior in TiO2 semiconductor with structural defects
Zarhri, Z.; Houmad, M.; Ziat, Y.; El Rhazouani, O.; Slassi, A.; Benyoussef, A.; El Kenz, A.
2016-05-01
Magnetic, electronic and structural properties of titanium dioxide material with different structural defects are studied using the first-principles ab-initio calculations and the Korringa-Kohn-Rostoker method (KKR) combined with the coherent potential approximation (CPA) method in connection with the local density approximation (LDA). We investigated all structural defects in rutile TiO2 such as Titanium interstitial (Tii), Titanium anti-sites (Tio), Titanium vacancies (VTi), Oxygen interstitial (Oi), Oxygen anti-sites (OTi) and oxygen vacancies (Vo). Mechanisms of hybridization and interaction between magnetic atoms are investigated. The transition temperature is computed using the Mean Field Approximation (MFA).Magnetic stability energy of ferromagnetic and disordered local moment states is calculated to determine the most stable state. Titanium anti-sites have a half-metallic aspect. We also studied the change type caused by structural defects in this material.
Ab initio and DFT studies on vibrational spectra of some halides of group IIIB elements
Zhang, Yu; Zhao, Jianying; Tang, Guodong; Zhu, Longgen
2005-11-01
The vibrational spectra of some group IIIB elements halides MX 3 and their dimmers, M 2X 6 (M = Sc(III), Y(III), La(III); X = F, Cl, Br, I), have been systematically investigated by ab initio restricted Hartree-Fock (RHF) and density functional B3LYP methods with LanL2DZ and SDD basis sets. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. The vibrational frequencies, calculated by two methods with different basis sets, are compared to each other. The effect of the methods and the basis sets used on the calculated vibrational frequencies are discussed. Some vibrational frequencies of these complexes are also predicted.
Design of two-photon molecular tandem architectures for solar cells by ab initio theory
Ørnsø, Kristian Baruël; García Lastra, Juan Maria; De La Torre, Gema
2015-01-01
An extensive database of spectroscopic properties of molecules from ab initio calculations is used to design molecular complexes for use in tandem solar cells that convert two photons into a single electron–hole pair, thereby increasing the output voltage while covering a wider spectral range...... of the structural and energetic properties of several thousand porphyrin dyes. The third design is a molecular analogy of the intermediate band solar cell, and involves a single dye molecule with strong intersystem crossing to ensure a long lifetime of the intermediate state. Based on the calculated energy levels...... and molecular orbitals, energy diagrams are presented for the individual steps in the operation of such tandem solar cells. We find that theoretical open circuit voltages of up to 1.8 V can be achieved using these tandem designs. Questions about the practical implementation of prototypical devices...
Michel, K. H.; ćakır, D.; Sevik, C.; Peeters, F. M.
2017-03-01
The elastic constant C11 and piezoelectric stress constant e1 ,11 of two-dimensional (2D) dielectric materials comprising h-BN, 2 H -MoS2 , and other transition-metal dichalcogenides and dioxides are calculated using lattice dynamical theory. The results are compared with corresponding quantities obtained with ab initio calculations. We identify the difference between clamped-ion and relaxed-ion contributions with the dependence on inner strains which are due to the relative displacements of the ions in the unit cell. Lattice dynamics allows us to express the inner-strain contributions in terms of microscopic quantities such as effective ionic charges and optoacoustical couplings, which allows us to clarify differences in the piezoelectric behavior between h-BN and MoS2. Trends in the different microscopic quantities as functions of atomic composition are discussed.
Stress reduction of Cu-doped diamond-like carbon films from ab initio calculations
Xiaowei Li
2015-01-01
Full Text Available Structure and properties of Cu-doped diamond-like carbon films (DLC were investigated using ab initio calculations. The effect of Cu concentrations (1.56∼7.81 at.% on atomic bond structure was mainly analyzed to clarify the residual stress reduction mechanism. Results showed that with introducing Cu into DLC films, the residual compressive stress decreased firstly and then increased for each case with the obvious deterioration of mechanical properties, which was in agreement with the experimental results. Structural analysis revealed that the weak Cu-C bond and the relaxation of both the distorted bond angles and bond lengths accounted for the significant reduction of residual compressive stress, while at the higher Cu concentration the increase of residual stress attributed to the existence of distorted Cu-C structures and the increased fraction of distorted C-C bond lengths.
Stress reduction of Cu-doped diamond-like carbon films from ab initio calculations
Li, Xiaowei; Ke, Peiling; Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)
2015-01-15
Structure and properties of Cu-doped diamond-like carbon films (DLC) were investigated using ab initio calculations. The effect of Cu concentrations (1.56∼7.81 at.%) on atomic bond structure was mainly analyzed to clarify the residual stress reduction mechanism. Results showed that with introducing Cu into DLC films, the residual compressive stress decreased firstly and then increased for each case with the obvious deterioration of mechanical properties, which was in agreement with the experimental results. Structural analysis revealed that the weak Cu-C bond and the relaxation of both the distorted bond angles and bond lengths accounted for the significant reduction of residual compressive stress, while at the higher Cu concentration the increase of residual stress attributed to the existence of distorted Cu-C structures and the increased fraction of distorted C-C bond lengths.
Ab initio electron scattering cross-sections and transport in liquid xenon
Boyle, G. J.; McEachran, R. P.; Cocks, D. G.; Brunger, M. J.; Buckman, S. J.; Dujko, S.; White, R. D.
2016-09-01
Ab initio fully differential cross-sections for electron scattering in liquid xenon are developed from a solution of the Dirac-Fock scattering equations, using a recently developed framework (Boyle et al 2015 J. Chem. Phys. 142 154507) which considers multipole polarizabilities, a non-local treatment of exchange, and screening and coherent scattering effects. A multi-term solution of Boltzmann’s equation accounting for the full anisotropic nature of the differential cross-section is used to calculate transport properties of excess electrons in liquid xenon. The results were found to agree to within 25% of the measured mobilities and characteristic energies over the reduced field range of 10-4-1 Td. The accuracies are comparable to those achieved in the gas phase. A simple model, informed by highly accurate gas-phase cross-sections, is presented to improve the liquid cross-sections, which was found to enhance the accuracy of the transport coefficient calculations.
A room temperature CO$_2$ line list with ab initio computed intensities
Zak, Emil; Polyansky, Oleg L; Lodi, Lorenzo; Zobov, Nikolay F; Tashkun, Sergey A; Perevalov, Valery I
2016-01-01
Atmospheric carbon dioxide concentrations are being closely monitored by remote sensing experiments which rely on knowing line intensities with an uncertainty of 0.5% or better. We report a theoretical study providing rotation-vibration line intensities substantially within the required accuracy based on the use of a highly accurate {\\it ab initio} dipole moment surface (DMS). The theoretical model developed is used to compute CO$_2$ intensities with uncertainty estimates informed by cross comparing line lists calculated using pairs of potential energy surfaces (PES) and DMS's of similar high quality. This yields lines sensitivities which are utilized in reliability analysis of our results. The final outcome is compared to recent accurate measurements as well as the HITRAN2012 database. Transition frequencies are obtained from effective Hamiltonian calculations to produce a comprehensive line list covering all $^{12}$C$^{16}$O$_2$ transitions below 8000 cm$^{-1}$ and stronger than 10$^{-30}$ cm / molecule at ...
Brandt, Erik G; Agosta, Lorenzo; Lyubartsev, Alexander P
2016-07-21
Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity.
Caillabet, L.; Canaud, B.; Salin, G.; Mazevet, S.; Loubeyre, P.
2011-09-01
Improving the description of the equation of state (EOS) of deuterium-tritium (DT) has recently been shown to change significantly the gain of an inertial confinement fusion target [S. X. Hu , Phys. Rev. Lett. 104, 235003 (2010)PRLTAO0031-900710.1103/PhysRevLett.104.235003]. Here we use an advanced multiphase EOS, based on ab initio calculations, to perform a full optimization of the laser pulse shape with hydrodynamic simulations starting from 19 K in DT ice. The thermonuclear gain is shown to be a robust estimate over possible uncertainties of the EOS. Two different target designs are discussed, for shock ignition and self-ignition. In the first case, the areal density and thermonuclear energy can be recovered by slightly increasing the laser energy. In the second case, a lower in-flight adiabat is needed, leading to a significant delay (3 ns) in the shock timing of the implosion.
Ab initio study of the electronic structure andelastic properties of Al5C3N
Xu Xue-Wen; Hu Long; Yu Xiao; Lu Zun-Ming; Fan Ying; Li Yang-xian; Tang Cheng-Chun
2011-01-01
We investigate the electronic structure,chemical bonding and elastic properties of the hexagonal aluminum carbonitride,Al5C3N,by ab initio calculations.Al5C3N is a semiconductor with a narrow indirect gap of 0.81 eV.The valence bands below the Fermi level (EF) originate from the hybridized Al p-C p and Al p-N p states.The calculated bulk and Young's moduli are 201 GPa and 292 GPa,which are slightly lower than those of Ti3SiC2.The values of the bulk-to-shear-modulus and bulk-modulus-to-c44 are 1.73 and 1.97,respectively,which axe higher than those of Ti2AlCand Ti2AlN,indicating that Al5C3N is a ductile ceramic.
EFFECT OF SCANDIUM ON HIDROGEN DISSOCIATION ENERGY AT MAGNESIUM SURFACE: AB INITIO DFT STUDY
I Wayan Sutapa
2010-07-01
Full Text Available The dissociative chemisorption of hydrogen on both pure and Sc-incorporated Mg(0001 surfaces have been studied by ab initio density functional theory (DFT calculation. The calculated dissociation energy of hydrogen molecule on a pure Mg(0001 surface (1.200 eV is in good agreement with comparable theoretical studies. For the Sc-incorporated Mg(0001 surface, the activated barrier decreases to 0.780 eV due to the strong interaction between the molecular orbital of hydrogen and the d metal state of Sc. This could explain the experimentally observed improvement in absorption kinetics of hydrogen when transition metals have been introduced into the magnesium materials. Keywords: Dissociation, Adsorption, Chemisorptions, DFT, Magnesium
Ab initio molecular dynamics study of hydrogen removal by ion-surface interactions
Rosen, Johanna [Materials Chemistry, RWTH-Aachen, D-52056 Aachen (Germany); Larsson, Karin [Department of Materials Chemistry, Angstroem Laboratory, Uppsala University, Box 538, 751 21 Uppsala (Sweden); Schneider, Jochen M [Materials Chemistry, RWTH-Aachen, D-52056 Aachen (Germany)
2005-04-20
The energy dependence of surface reactions has been investigated through ab initio MD simulations for collisions between Al{sup 1+} and a gibbsite surface. No change in surface composition was observed for 0 eV initial kinetic energy of Al{sup 1+}. An increase in energy to 3.5 eV resulted in extended surface migration of hydrogen, subsequent H{sub 2} formation and desorption from the surface. These results may be understood based on thermodynamics and an increase in entropy upon H{sub 2} formation. They are of fundamental importance for an increased understanding of thin film growth through the correlation between ion energy and film composition. They may also indicate a pathway to affect impurity incorporation during film growth. (letter to the editor)
Hydrogen bond dynamics in liquid water: Ab initio molecular dynamics simulation
Kim, Cheolhee; Kim, Eunae [College of Pharmacy, Chosun University, Gwangju (Korea, Republic of); Yeom, Min Sun [Korea Institute of Science and Technology Information, Daejeon (Korea, Republic of)
2016-01-15
The effect of intermolecular interaction on the distribution of the harmonic vibrational frequencies of water molecules was investigated through ab initio molecular dynamics simulations based on the Born-Oppenheimer approach. For single water, the effect of the dynamics of the oxygen atom in single water and the simulation time step on the frequency distribution were examined. The distributions of the OH stretching and HOH bending vibrational frequencies of liquid water were compared to those of single water. The probability distributions of the change in OH bond length and the lifetime of the dangling OH bond were also obtained. The distribution of the frequencies was strongly affected by the long lifetime of the dangling OH bond, resulting in the formation of hydrogen bonds between water molecules.
Estudo ab-initio da a-alanina em meio aquoso
Sambrano Júlio Ricardo
1999-01-01
Full Text Available Ab initio Hartree-Fock (HF, Density Functional (B3LYP and electron correlation (MP2 methods have been used to caracterize the aqueous medium intramolecular hydrogen bond in a-alanine. The 6-31G* and 6-31++G** were taken from Gaussian94 library. We were concerned on the structure of three conformers of a-alanine, in their neutral form plus on the structure of the zwitterionic form (Z. The Z structure is a stationary point at the HF/6-31G* level but it is not when diffuse functions and electron correlation are included. This results shows that the Z form does not exist in the gas phase. The inclusion of solvent effects changed significantly the results obtained in gas phase, therefore this inclusion make the Z form a stationary point within all level of theory, and the relative energy depends dramatically on the level of calculation.
Tailoring oxygen vacancies at ZnO( 1 1 ¯ 00 ) surface: An ab initio study
Korir, K. K.; Catellani, A.; Cicero, G.
2016-09-01
Oxygen vacancies in ZnO crystals have significant impacts on its properties and applications. On the basis of ab initio results, we describe the oxygen vacancy distribution and diffusion paths away from the ZnO( 1 1 ¯ 00 ) surface, aiming to elucidate thermodynamics and kinetic stability of the vacancies and a possible control mechanism. In view of defect engineering and sensor applications, we propose efficient routes to chemically control the equilibrium concentration of the oxygen vacancies at ZnO surfaces by exposure to specific reactive gases: we show that the oxygen vacancy concentration can be increased using sulfur oxide as post-growth treatment, while under exposure to ozone, no significant amount of oxygen vacancies can be sustained on the surface.
Ab initio structure determination of new compound Ba 3(BO 3)(PO 4)
Ma, H. W.; Liang, J. K.; Wu, L.; Liu, G. Y.; Rao, G. H.; Chen, X. L.
2004-10-01
The crystal structure of new compound Ba3BPO7 was determined by ab initio method from high-resolution conventional X-ray powder diffraction data. The Rietveld refinement converged to Rp=5.92%, Rwp=8.87%, Rexp=5.00% with the following details: Hexagonal, space group P63mc, a=5.4898 (1) Å, c=14.7551(1) Å, Z=2. The basic unit of the structure is the [BaO10]-[BO3]-[PO4] polar polyhedra-chain composed of Ba1-B-P-O cluster. These chains, running along c-axis, stack in a HCP mode to build the whole structure with triangular prism channels. The channels are parallel to c-axis too, in which Ba2 and Ba3 are located.
Ab initio approach to the ion stopping power at the plasma-solid interface
Bonitz, Michael; Schlünzen, Niclas; Wulff, Lasse; Joost, Jan-Philip; Balzer, Karsten
2016-10-01
The energy loss of ions in solids is of key relevance for many applications of plasmas, ranging from plasma technology to fusion. Standard approaches are based on density functional theory or SRIM simulations, however, the applicability range and accuracy of these results are difficult to assess, in particular, for low energies. Here we present an independent approach that is based on ab initio nonequilibrium Green functions theory, e.g. that allows to incorporate electronic correlations effects of the solid. We present the first application of this method to low-temperature plasmas, concentrating on proton and alpha-particle stopping in a graphene layer. In addition to the stopping power we present time-dependent results for the local electron density, the spectral function and the photoemission spectrum that is directly accessible in optical, UV or x-ray diagnostics. http://www.itap.uni-kiel.de/theo-physik/bonitz/.
Nomura, Yusuke; Arita, Ryotaro
2015-12-01
We formulate an ab initio downfolding scheme for electron-phonon-coupled systems. In this scheme, we calculate partially renormalized phonon frequencies and electron-phonon coupling, which include the screening effects of high-energy electrons, to construct a realistic Hamiltonian consisting of low-energy electron and phonon degrees of freedom. We show that our scheme can be implemented by slightly modifying the density functional-perturbation theory (DFPT), which is one of the standard methods for calculating phonon properties from first principles. Our scheme, which we call the constrained DFPT, can be applied to various phonon-related problems, such as superconductivity, electron and thermal transport, thermoelectricity, piezoelectricity, dielectricity, and multiferroicity. We believe that the constrained DFPT provides a firm basis for the understanding of the role of phonons in strongly correlated materials. Here, we apply the scheme to fullerene superconductors and discuss how the realistic low-energy Hamiltonian is constructed.
Ab initio contribution to the study of complexes formed during dilute FeCu alloys radiation
Becquart, C S
2003-01-01
Cu plays an important role in the embrittlement of pressure vessel steels under radiation and entities containing both Cu atoms and vacancies seem to appear as a consequence of displacement cascades. The characterisation of the stability as well as the migration of small Cu-vacancy complexes is thus necessary to understand and simulate the formation of these entities. For instance, cascade ageing studied by kinetic Monte Carlo or by rate theory models requires a good characterisation of such complexes which are parameters for these methods. We have investigated, by ab initio calculations based on the density functional theory, point defects and small defects in dilute FeCu alloys. The structure of small Cu clusters and Cu-vacancy complexes has been determined, as well as their formation and binding energies. Their relative stability is discussed. Vacancy migration energies in the presence of Cu atoms have been calculated and analysed. All the results are compared to the figures obtained with empirical interat...
Ab-initio simulations of self-diffusion mechanisms in semiconductors
El-Mellouhi, Fedwa [Departement de physique and Regroupement quebecois sur les materiaux de pointe, Universite de Montreal, C.P. 6128, succ. Centre-ville, Montreal, Que., H3C 3J7 (Canada)], E-mail: f.el.mellouhi@umontreal.ca; Mousseau, Normand [Departement de physique and Regroupement quebecois sur les materiaux de pointe, Universite de Montreal, C.P. 6128, succ. Centre-ville, Montreal, Que., H3C 3J7 (Canada)], E-mail: normand.mousseau@umontreal.ca
2007-12-15
We present an application of SIEST-A-RT that combines the activation relaxation technique, ART nouveau, and the local-basis ab-initio code SIESTA, to study self-defect migration pathways in semiconductors. SIESTA provides reliable descriptions of defect properties in semiconductors directly comparable to experiment as well as, once combined with ART nouveau, a detailed description of their possible migration mechanisms. We use this package to characterize the properties of vacancies in silicon and GaAs, such as relaxation geometries, formation energies at low and high temperature, diffusion mechanisms and migration barriers. We show here that diffusion in bulk semiconductors is a rich and complex phenomenon that depends not only on the geometry of the defect and the surrounding lattice but also on its charge.
Ab-initio simulations of self-diffusion mechanisms in semiconductors
El-Mellouhi, Fedwa; Mousseau, Normand
2007-12-01
We present an application of SIEST-A-RT that combines the activation relaxation technique, ART nouveau, and the local-basis ab-initio code SIESTA, to study self-defect migration pathways in semiconductors. SIESTA provides reliable descriptions of defect properties in semiconductors directly comparable to experiment as well as, once combined with ART nouveau, a detailed description of their possible migration mechanisms. We use this package to characterize the properties of vacancies in silicon and GaAs, such as relaxation geometries, formation energies at low and high temperature, diffusion mechanisms and migration barriers. We show here that diffusion in bulk semiconductors is a rich and complex phenomenon that depends not only on the geometry of the defect and the surrounding lattice but also on its charge.
Pernot, Pascal
2009-01-01
Bayesian Model Calibration is used to revisit the problem of scaling factor calibration for semi-empirical correction of ab initio calculations. A particular attention is devoted to uncertainty evaluation for scaling factors, and to their effect on prediction of observables involving scaled properties. We argue that linear models used for calibration of scaling factors are generally not statistically valid, in the sense that they are not able to fit calibration data within their uncertainty limits. Uncertainty evaluation and uncertainty propagation by statistical methods from such invalid models are doomed to failure. To relieve this problem, a stochastic function is included in the model to account for model inadequacy, according to the Bayesian Model Calibration approach. In this framework, we demonstrate that standard calibration summary statistics, as optimal scaling factor and root mean square, can be safely used for uncertainty propagation only when large calibration sets of precise data are used. For s...
Ab initio study of Ni2MnGa under shear deformation
Zelený Martin
2015-01-01
Full Text Available The effect of shear deformation on Ni2MnGa magnetic shape memory alloy has been investigated using ab initio electronic structure calculations. We used the projector-augmented wave method for the calculations of total energies and stresses as functions of applied affine shear deformation. The studied nonmodulated martensite (NM phase exhibits a tetragonally distorted L21 structure with c/a > 1. A large strain corresponding to simple shears in {001}, {100} and {100} systems was applied to describe a full path between two equivalent NM lattices. We also studied {101} shear which is related to twining of NM phase. Twin reorientation in this system is possible, because applied positive shear results in path with significantly smaller energetic barrier than for negative shear and for shears in other studied systems. When the full relaxation of lattice parameters is allowed, the barriers further strongly decrease and the structures along the twinning path can be considered as orthorhombic.
Tunneling of electrons via rotor-stator molecular interfaces: combined ab initio and model study
Petreska, Irina; Pejov, Ljupco; Kocarev, Ljupco
2015-01-01
Tunneling of electrons through rotor-stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons' formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that confirmation dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previ...
Ab initio determination of effective electron-phonon coupling factor in copper
Ji, Pengfei; Zhang, Yuwen
2016-04-01
The electron temperature Te dependent electron density of states g (ε), Fermi-Dirac distribution f (ε), and electron-phonon spectral function α2 F (Ω) are computed as prerequisites before achieving effective electron-phonon coupling factor Ge-ph. The obtained Ge-ph is implemented into a molecular dynamics (MD) and two-temperature model (TTM) coupled simulation of femtosecond laser heating. By monitoring temperature evolutions of electron and lattice subsystems, the result utilizing Ge-ph from ab initio calculation shows a faster decrease of Te and increase of Tl than those using Ge-ph from phenomenological treatment. The approach of calculating Ge-ph and its implementation into MD-TTM simulation is applicable to other metals.
Ab initio determination of effective electron-phonon coupling factor in copper
Ji, Pengfei
2016-01-01
The electron temperature T_e dependent electron density of states g({\\epsilon}), Fermi-Dirac distribution f({\\epsilon}), and electron-phonon spectral function {\\alpha}^2 F({\\Omega}) are computed as prerequisites before achieving effective electron-phonon coupling factor. The obtained is implemented into a molecular dynamics (MD) and two-temperature model (TTM) coupled simulation of femtosecond laser heating. By monitoring temperature evolutions of electron and lattice subsystems, the result utilizing G_(e-ph) from ab initio calculation, shows a faster decrease of T_e and increase of T_l than those using G_(e-ph) from phenomenological treatment. The approach of calculating G_(e-ph) and its implementation into MD-TTM simulation is applicable to other metals.