WorldWideScience

Sample records for aav-mediated intramuscular delivery

  1. AAV2-mediated in vivo immune gene therapy of solid tumours

    LENUS (Irish Health Repository)

    Collins, Sara A

    2010-12-20

    Abstract Background Many strategies have been adopted to unleash the potential of gene therapy for cancer, involving a wide range of therapeutic genes delivered by various methods. Immune therapy has become one of the major strategies adopted for cancer gene therapy and seeks to stimulate the immune system to target tumour antigens. In this study, the feasibility of AAV2 mediated immunotherapy of growing tumours was examined, in isolation and combined with anti-angiogenic therapy. Methods Immune-competent Balb\\/C or C57 mice bearing subcutaneous JBS fibrosarcoma or Lewis Lung Carcinoma (LLC) tumour xenografts respectively were treated by intra-tumoural administration of AAV2 vector encoding the immune up-regulating cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) and the co-stimulatory molecule B7-1 to subcutaneous tumours, either alone or in combination with intra-muscular (IM) delivery of AAV2 vector encoding Nk4 14 days prior to tumour induction. Tumour growth and survival was monitored for all animals. Cured animals were re-challenged with tumourigenic doses of the original tumour type. In vivo cytotoxicity assays were used to investigate establishment of cell-mediated responses in treated animals. Results AAV2-mediated GM-CSF, B7-1 treatment resulted in a significant reduction in tumour growth and an increase in survival in both tumour models. Cured animals were resistant to re-challenge, and induction of T cell mediated anti-tumour responses were demonstrated. Adoptive transfer of splenocytes to naïve animals prevented tumour establishment. Systemic production of Nk4 induced by intra-muscular (IM) delivery of Nk4 significantly reduced subcutaneous tumour growth. However, combination of Nk4 treatment with GM-CSF, B7-1 therapy reduced the efficacy of the immune therapy. Conclusions Overall, this study demonstrates the potential for in vivo AAV2 mediated immune gene therapy, and provides data on the inter-relationship between tumour

  2. Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs

    Directory of Open Access Journals (Sweden)

    Atsushi Miyanohara

    2016-01-01

    Full Text Available Effective in vivo use of adeno-associated virus (AAV-based vectors to achieve gene-specific silencing or upregulation in the central nervous system has been limited by the inability to provide more than limited deep parenchymal expression in adult animals using delivery routes with the most clinical relevance (intravenous or intrathecal. Here, we demonstrate that the spinal pia membrane represents the primary barrier limiting effective AAV9 penetration into the spinal parenchyma after intrathecal AAV9 delivery. We develop a novel subpial AAV9 delivery technique and AAV9-dextran formulation. We use these in adult rats and pigs to show (i potent spinal parenchymal transgene expression in white and gray matter including neurons, glial and endothelial cells after single bolus subpial AAV9 delivery; (ii delivery to almost all apparent descending motor axons throughout the length of the spinal cord after cervical or thoracic subpial AAV9 injection; (iii potent retrograde transgene expression in brain motor centers (motor cortex and brain stem; and (iv the relative safety of this approach by defining normal neurological function for up to 6 months after AAV9 delivery. Thus, subpial delivery of AAV9 enables gene-based therapies with a wide range of potential experimental and clinical utilizations in adult animals and human patients.

  3. Safety and Efficacy of AAV Retrograde Pancreatic Ductal Gene Delivery in Normal and Pancreatic Cancer Mice.

    Science.gov (United States)

    Quirin, Kayla A; Kwon, Jason J; Alioufi, Arafat; Factora, Tricia; Temm, Constance J; Jacobsen, Max; Sandusky, George E; Shontz, Kim; Chicoine, Louis G; Clark, K Reed; Mendell, Joshua T; Korc, Murray; Kota, Janaiah

    2018-03-16

    Recombinant adeno-associated virus (rAAV)-mediated gene delivery shows promise to transduce the pancreas, but safety/efficacy in a neoplastic context is not well established. To identify an ideal AAV serotype, route, and vector dose and assess safety, we have investigated the use of three AAV serotypes (6, 8, and 9) expressing GFP in a self-complementary (sc) AAV vector under an EF1α promoter (scAAV.GFP) following systemic or retrograde pancreatic intraductal delivery. Systemic delivery of scAAV9.GFP transduced the pancreas with high efficiency, but gene expression did not exceed >45% with the highest dose, 5 × 10 12 viral genomes (vg). Intraductal delivery of 1 × 10 11 vg scAAV6.GFP transduced acini, ductal cells, and islet cells with >50%, ∼48%, and >80% efficiency, respectively, and >80% pancreatic transduction was achieved with 5 × 10 11 vg. In a Kras G12D -driven pancreatic cancer mouse model, intraductal delivery of scAAV6.GFP targeted acini, epithelial, and stromal cells and exhibited persistent gene expression 5 months post-delivery. In normal mice, intraductal delivery induced a transient increase in serum amylase/lipase that resolved within a day of infusion with no sustained pancreatic inflammation or fibrosis. Similarly, in PDAC mice, intraductal delivery did not increase pancreatic intraepithelial neoplasia progression/fibrosis. Our study demonstrates that scAAV6 targets the pancreas/neoplasm efficiently and safely via retrograde pancreatic intraductal delivery.

  4. Safety and Efficacy of AAV Retrograde Pancreatic Ductal Gene Delivery in Normal and Pancreatic Cancer Mice

    Directory of Open Access Journals (Sweden)

    Kayla A. Quirin

    2018-03-01

    Full Text Available Recombinant adeno-associated virus (rAAV-mediated gene delivery shows promise to transduce the pancreas, but safety/efficacy in a neoplastic context is not well established. To identify an ideal AAV serotype, route, and vector dose and assess safety, we have investigated the use of three AAV serotypes (6, 8, and 9 expressing GFP in a self-complementary (sc AAV vector under an EF1α promoter (scAAV.GFP following systemic or retrograde pancreatic intraductal delivery. Systemic delivery of scAAV9.GFP transduced the pancreas with high efficiency, but gene expression did not exceed >45% with the highest dose, 5 × 1012 viral genomes (vg. Intraductal delivery of 1 × 1011 vg scAAV6.GFP transduced acini, ductal cells, and islet cells with >50%, ∼48%, and >80% efficiency, respectively, and >80% pancreatic transduction was achieved with 5 × 1011 vg. In a KrasG12D-driven pancreatic cancer mouse model, intraductal delivery of scAAV6.GFP targeted acini, epithelial, and stromal cells and exhibited persistent gene expression 5 months post-delivery. In normal mice, intraductal delivery induced a transient increase in serum amylase/lipase that resolved within a day of infusion with no sustained pancreatic inflammation or fibrosis. Similarly, in PDAC mice, intraductal delivery did not increase pancreatic intraepithelial neoplasia progression/fibrosis. Our study demonstrates that scAAV6 targets the pancreas/neoplasm efficiently and safely via retrograde pancreatic intraductal delivery.

  5. Transgene regulation using the tetracycline-inducible TetR-KRAB system after AAV-mediated gene transfer in rodents and nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Caroline Le Guiner

    Full Text Available Numerous studies have demonstrated the efficacy of the Adeno-Associated Virus (AAV-based gene delivery platform in vivo. The control of transgene expression in many protocols is highly desirable for therapeutic applications and/or safety reasons. To date, the tetracycline and the rapamycin dependent regulatory systems have been the most widely evaluated. While the long-term regulation of the transgene has been obtained in rodent models, the translation of these studies to larger animals, especially to nonhuman primates (NHP, has often resulted in an immune response against the recombinant regulator protein involved in transgene expression regulation. These immune responses were dependent on the target tissue and vector delivery route. Here, using AAV vectors, we evaluated a doxycyclin-inducible system in rodents and macaques in which the TetR protein is fused to the human Krüppel associated box (KRAB protein. We demonstrated long term gene regulation efficiency in rodents after subretinal and intramuscular administration of AAV5 and AAV1 vectors, respectively. However, as previously described for other chimeric transactivators, the TetR-KRAB-based system failed to achieve long term regulation in the macaque after intramuscular vector delivery because of the development of an immune response. Thus, immunity against the chimeric transactivator TetR-KRAB emerged as the primary limitation for the clinical translation of the system when targeting the skeletal muscle, as previously described for other regulatory proteins. New developments in the field of chimeric drug-sensitive transactivators with the potential to not trigger the host immune system are still needed.

  6. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein.

    Science.gov (United States)

    Kessler, P D; Podsakoff, G M; Chen, X; McQuiston, S A; Colosi, P C; Matelis, L A; Kurtzman, G J; Byrne, B J

    1996-11-26

    Somatic gene therapy has been proposed as a means to achieve systemic delivery of therapeutic proteins. However, there is limited evidence that current methods of gene delivery can practically achieve this goal. In this study, we demonstrate that, following a single intramuscular administration of a recombinant adeno-associated virus (rAAV) vector containing the beta-galactosidase (AAV-lacZ) gene into adult BALB/c mice, protein expression was detected in myofibers for at least 32 weeks. A single intramuscular administration of an AAV vector containing a gene for human erythropoietin (AAV-Epo) into mice resulted in dose-dependent secretion of erythropoietin and corresponding increases in red blood cell production that persisted for up to 40 weeks. Primary human myotubes transduced in vitro with the AAV-Epo vector also showed dose-dependent production of Epo. These results demonstrate that rAAV vectors are able to transduce skeletal muscle and are capable of achieving sustained expression and systemic delivery of a therapeutic protein following a single intramuscular administration. Gene therapy using AAV vectors may provide a practical strategy for the treatment of inherited and acquired protein deficiencies.

  7. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein

    Science.gov (United States)

    Kessler, Paul D.; Podsakoff, Gregory M.; Chen, Xiaojuan; McQuiston, Susan A.; Colosi, Peter C.; Matelis, Laura A.; Kurtzman, Gary J.; Byrne, Barry J.

    1996-01-01

    Somatic gene therapy has been proposed as a means to achieve systemic delivery of therapeutic proteins. However, there is limited evidence that current methods of gene delivery can practically achieve this goal. In this study, we demonstrate that, following a single intramuscular administration of a recombinant adeno-associated virus (rAAV) vector containing the β-galactosidase (AAV-lacZ) gene into adult BALB/c mice, protein expression was detected in myofibers for at least 32 weeks. A single intramuscular administration of an AAV vector containing a gene for human erythropoietin (AAV-Epo) into mice resulted in dose-dependent secretion of erythropoietin and corresponding increases in red blood cell production that persisted for up to 40 weeks. Primary human myotubes transduced in vitro with the AAV-Epo vector also showed dose-dependent production of Epo. These results demonstrate that rAAV vectors are able to transduce skeletal muscle and are capable of achieving sustained expression and systemic delivery of a therapeutic protein following a single intramuscular administration. Gene therapy using AAV vectors may provide a practical strategy for the treatment of inherited and acquired protein deficiencies. PMID:8943064

  8. AAV Vectorization of DSB-mediated Gene Editing Technologies.

    Science.gov (United States)

    Moser, Rachel J; Hirsch, Matthew L

    2016-01-01

    Recent work both at the bench and the bedside demonstrate zinc-finger nucleases (ZFNs), CRISPR/Cas9, and other programmable site-specific endonuclease technologies are being successfully utilized within and alongside AAV vectors to induce therapeutically relevant levels of directed gene editing within the human chromosome. Studies from past decades acknowledge that AAV vector genomes are enhanced substrates for homology-directed repair in the presence or absence of targeted DNA damage within the host genome. Additionally, AAV vectors are currently the most efficient format for in vivo gene delivery with no vector related complications in >100 clinical trials for diverse diseases. At the same time, advancements in the design of custom-engineered site-specific endonucleases and the utilization of elucidated endonuclease formats have resulted in efficient and facile genetic engineering for basic science and for clinical therapies. AAV vectors and gene editing technologies are an obvious marriage, using AAV for the delivery of repair substrate and/or a gene encoding a designer endonuclease; however, while efficient delivery and enhanced gene targeting by vector genomes are advantageous, other attributes of AAV vectors are less desirable for gene editing technologies. This review summarizes the various roles that AAV vectors play in gene editing technologies and provides insight into its trending applications for the treatment of genetic diseases.

  9. AAV9-mediated central nervous system–targeted gene delivery via cisterna magna route in mice

    Directory of Open Access Journals (Sweden)

    Vera Lukashchuk

    2016-01-01

    Full Text Available Current barriers to the use of adeno-associated virus serotype 9 (AAV9 in clinical trials for treating neurological disorders are its high expression in many off-target tissues such as liver and heart, and lack of cell specificity within the central nervous system (CNS when using ubiquitous promoters such as human cytomegalovirus (CMV or chicken-β-actin hybrid (CAG. To enhance targeting the transgene expression in CNS cells, self-complementary (sc AAV9 vectors, scAAV9-GFP vectors carrying neuronal Hb9 and synapsin 1, and nonspecific CMV and CAG promoters were constructed. We demonstrate that synapsin 1 and Hb9 promoters exclusively targeted neurons in vitro, although their strengths were up to 10-fold lower than that of CMV. In vivo analyses of mouse tissue after scAAV9-GFP vector delivery via the cisterna magna revealed a significant advantage of synapsin 1 promoter over both Hb9 variants in targeting neurons throughout the brain, since Hb9 promoters were driving gene expression mainly within the motor-related areas of the brain stem. In summary, this study demonstrates that cisterna magna administration is a safe alternative to intracranial or intracerebroventricular vector delivery route using scAAV9, and introduces a novel utility of the Hb9 promoter for the targeted gene expression for both in vivo and in vitro applications.

  10. (AAV)-mediated expression of small interfering RNA

    African Journals Online (AJOL)

    Effective inhibition of specific gene by adenoassociated virus (AAV)-mediated expression of small interfering RNA. ... To perform functional tests on siRNA, which was expressed by the viral vector, recombinant AAVs, coding for siRNA against exogenous gene, EGFP, and endogenous gene, p53, were established and ...

  11. Myocardial gene delivery using molecular cardiac surgery with recombinant adeno-associated virus vectors in vivo

    Science.gov (United States)

    White, JD; Thesier, DM; Swain, JBD; Katz, MG; Tomasulo, C; Henderson, A; Wang, L; Yarnall, C; Fargnoli, A; Sumaroka, M; Isidro, A; Petrov, M; Holt, D; Nolen-Walston, R; Koch, WJ; Stedman, HH; Rabinowitz, J; Bridges, CR

    2013-01-01

    We use a novel technique that allows for closed recirculation of vector genomes in the cardiac circulation using cardiopulmonary bypass, referred to here as molecular cardiac surgery with recirculating delivery (MCARD). We demonstrate that this platform technology is highly efficient in isolating the heart from the systemic circulation in vivo. Using MCARD, we compare the relative efficacy of single-stranded (ss) adeno-associated virus (AAV)6, ssAAV9 and self-complimentary (sc)AAV6-encoding enhanced green fluorescent protein, driven by the constitutive cytomegalovirus promoter to transduce the ovine myocardium in situ. MCARD allows for the unprecedented delivery of up to 48 green fluorescent protein genome copies per cell globally in the sheep left ventricular (LV) myocardium. We demonstrate that scAAV6-mediated MCARD delivery results in global, cardiac-specific LV gene expression in the ovine heart and provides for considerably more robust and cardiac-specific gene delivery than other available delivery techniques such as intramuscular injection or intracoronary injection; thus, representing a potential, clinically translatable platform for heart failure gene therapy. PMID:21228882

  12. Homologous recombination mediates functional recovery of dysferlin deficiency following AAV5 gene transfer.

    Directory of Open Access Journals (Sweden)

    William E Grose

    Full Text Available The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9. Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes.

  13. Distribution of AAV-TK following intracranial convection-enhanced delivery into rats.

    Science.gov (United States)

    Cunningham, J; Oiwa, Y; Nagy, D; Podsakoff, G; Colosi, P; Bankiewicz, K S

    2000-01-01

    Adeno-associated virus (AAV)-based vectors are being tested in animal models as viable treatments for glioma and neurodegenerative disease and could potentially be employed to target a variety of central nervous system disorders. The relationship between dose of injected vector and its resulting distribution in brain tissue has not been previously reported nor has the most efficient method of delivery been determined. Here we report that convection-enhanced delivery (CED) of 2.5 x 10(8), 2.5 x 10(9), or 2.5 x 10(10) particles of AAV-thymidine kinase (AAV-TK) into rat brain revealed a clear dose response. In the high-dose group, a volume of 300 mm3 of brain tissue was partially transduced. Results showed that infusion pump and subcutaneous osmotic pumps were both capable of delivering vector via CED and that total particle number was the most important determining factor in obtaining efficient expression. Results further showed differences in histopathology between the delivery groups. While administration of vector using infusion pump had relatively benign effects, the use of osmotic pumps resulted in notable toxicity to the surrounding brain tissue. To determine tissue distribution of vector following intracranial delivery, PCR analysis was performed on tissues from rats that received high doses of AAV-TK. Three weeks following CED, vector could be detected in both hemispheres of the brain, spinal cord, spleen, and kidney.

  14. Comparative analysis of DNA nanoparticles and AAVs for ocular gene delivery.

    Directory of Open Access Journals (Sweden)

    Zongchao Han

    Full Text Available Gene therapy is a critical tool for the treatment of monogenic retinal diseases. However, the limited vector capacity of the current benchmark delivery strategy, adeno-associated virus (AAV, makes development of larger capacity alternatives, such as compacted DNA nanoparticles (NPs, critical. Here we conduct a side-by-side comparison of self-complementary AAV and CK30PEG NPs using matched ITR plasmids. We report that although AAVs are more efficient per vector genome (vg than NPs, NPs can drive gene expression on a comparable scale and longevity to AAV. We show that subretinally injected NPs do not leave the eye while some of the AAV-injected animals exhibited vector DNA and GFP expression in the visual pathways of the brain from PI-60 onward. As a result, these NPs have the potential to become a successful alternative for ocular gene therapy, especially for the multitude of genes too large for AAV vectors.

  15. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication.

    Directory of Open Access Journals (Sweden)

    Nicholas D Weber

    Full Text Available Despite an existing effective vaccine, hepatitis B virus (HBV remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB, imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy.

  16. AAV vectors as gene delivery vehicles in the central nervous system

    NARCIS (Netherlands)

    Broekman, M.L.D.

    2006-01-01

    Recombinant gene delivery vehicles based on the replication-defective AAV have gained a preeminent position in the field of gene delivery to the brain. Efficient global gene delivery to the CNS is beneficial for the study of gene products is the entire CNS as well as for introducing and expressing

  17. Widespread gene transfer in the central nervous system of cynomolgus macaques following delivery of AAV9 into the cisterna magna

    Directory of Open Access Journals (Sweden)

    Christian Hinderer

    2014-01-01

    Full Text Available Adeno-associated virus serotype 9 (AAV9 vectors have recently been shown to transduce cells throughout the central nervous system of nonhuman primates when injected into the cerebrospinal fluid (CSF, a finding which could lead to a minimally invasive approach to treat genetic and acquired diseases affecting the entire CNS. We characterized the transduction efficiency of two routes of vector administration into the CSF of cynomolgus macaques—lumbar puncture, which is typically used in clinical practice, and suboccipital puncture, which is more commonly used in veterinary medicine. We found that delivery of vector into the cisterna magna via suboccipital puncture is up to 100-fold more efficient for achieving gene transfer to the brain. In addition, we evaluated the inflammatory response to AAV9-mediated GFP expression in the nonhuman primate CNS. We found that while CSF lymphocyte counts increased following gene transfer, there were no clinical or histological signs of immune toxicity. Together these data indicate that delivery of AAV9 into the cisterna magna is an effective method for achieving gene transfer in the CNS, and suggest that adapting this uncommon injection method for human trials could vastly increase the efficiency of gene delivery.

  18. Efficient in vivo gene transfer to xenotransplanted human skin by lentivirus-mediated, but not by AAV-directed, gene delivery

    DEFF Research Database (Denmark)

    Jakobsen, Maria Vad; Askou, Anne Louise; Dokkedahl, Karin Stenderup

    skin graft, and firefly luciferase expression was observed primarily in neighboring tissue beneath or surrounding the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin...... graft only. The study demonstrates limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo....

  19. AAV-mediated pancreatic overexpression of Igf1 counteracts progression to autoimmune diabetes in mice.

    Science.gov (United States)

    Mallol, Cristina; Casana, Estefania; Jimenez, Veronica; Casellas, Alba; Haurigot, Virginia; Jambrina, Claudia; Sacristan, Victor; Morró, Meritxell; Agudo, Judith; Vilà, Laia; Bosch, Fatima

    2017-07-01

    Type 1 diabetes is characterized by autoimmune destruction of β-cells leading to severe insulin deficiency. Although many improvements have been made in recent years, exogenous insulin therapy is still imperfect; new therapeutic approaches, focusing on preserving/expanding β-cell mass and/or blocking the autoimmune process that destroys islets, should be developed. The main objective of this work was to test in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes, the effects of local expression of Insulin-like growth factor 1 (IGF1), a potent mitogenic and pro-survival factor for β-cells with immunomodulatory properties. Transgenic NOD mice overexpressing IGF1 specifically in β-cells (NOD-IGF1) were generated and phenotyped. In addition, miRT-containing, IGF1-encoding adeno-associated viruses (AAV) of serotype 8 (AAV8-IGF1-dmiRT) were produced and administered to 4- or 11-week-old non-transgenic NOD females through intraductal delivery. Several histological, immunological, and metabolic parameters were measured to monitor disease over a period of 28-30 weeks. In transgenic mice, local IGF1 expression led to long-term suppression of diabetes onset and robust protection of β-cell mass from the autoimmune insult. AAV-mediated pancreatic-specific overexpression of IGF1 in adult animals also dramatically reduced diabetes incidence, both when vectors were delivered before pathology onset or once insulitis was established. Transgenic NOD-IGF1 and AAV8-IGF1-dmiRT-treated NOD animals had much less islet infiltration than controls, preserved β-cell mass, and normal insulinemia. Transgenic and AAV-treated islets showed less expression of antigen-presenting molecules, inflammatory cytokines, and chemokines important for tissue-specific homing of effector T cells, suggesting IGF1 modulated islet autoimmunity in NOD mice. Local expression of Igf1 by AAV-mediated gene transfer counteracts progression to diabetes in NOD mice. This study suggests a

  20. Sustained correction of FVII deficiency in dogs using AAV-mediated expression of zymogen FVII

    Science.gov (United States)

    Marcos-Contreras, Oscar A.; Smith, Shannon M.; Bellinger, Dwight A.; Raymer, Robin A.; Merricks, Elizabeth; Faella, Armida; Pavani, Giulia; Zhou, Shangzhen; Nichols, Timothy C.; High, Katherine A.

    2016-01-01

    Factor VII (FVII) deficiency is a rare autosomal recessive bleeding disorder treated by infusion of fresh-frozen plasma, plasma-derived FVII concentrates and low-dose recombinant activated FVII. Clinical data suggest that a mild elevation of plasma FVII levels (>10% normal) results in improved hemostasis. Research dogs with a G96E missense FVII mutation (FVII-G96E) have dogs, we determine the feasibility of a gene therapy approach using liver-directed, adeno-associated viral (AAV) serotype 8 vector delivery of a canine FVII (cFVII) zymogen transgene. FVII-G96E dogs received escalating AAV doses (2E11 to 4.95E13 vector genomes [vg] per kg). Clinically therapeutic expression (15% normal) was attained with as low as 6E11 vg/kg of AAV and has been stable for >1 year (ongoing) without antibody formation to the cFVII transgene. Sustained and supraphysiological expression of 770% normal was observed using 4.95E13 vg/kg of AAV (2.6 years, ongoing). No evidence of pathological activation of coagulation or detrimental animal physiology was observed as platelet counts, d-dimer, fibrinogen levels, and serum chemistries remained normal in all dogs (cumulative 6.4 years). We observed a transient and noninhibitory immunoglobulin G class 2 response against cFVII only in the dog receiving the highest AAV dose. In conclusion, in the only large-animal model representing the majority of FVII mutation types, our data are first to demonstrate the feasibility, safety, and long-term duration of AAV-mediated correction of FVII deficiency. PMID:26702064

  1. Longevity of rAAV vector and plasmid DNA in blood after intramuscular injection in nonhuman primates: implications for gene doping.

    Science.gov (United States)

    Ni, W; Le Guiner, C; Gernoux, G; Penaud-Budloo, M; Moullier, P; Snyder, R O

    2011-07-01

    Legitimate uses of gene transfer technology can benefit from sensitive detection methods to determine vector biodistribution in pre-clinical studies and in human clinical trials, and similar methods can detect illegitimate gene transfer to provide sports-governing bodies with the ability to maintain fairness. Real-time PCR assays were developed to detect a performance-enhancing transgene (erythropoietin, EPO) and backbone sequences in the presence of endogenous cellular sequences. In addition to developing real-time PCR assays, the steps involved in DNA extraction, storage and transport were investigated. By real-time PCR, the vector transgene is distinguishable from the genomic DNA sequence because of the absence of introns, and the vector backbone can be identified by heterologous gene expression control elements. After performance of the assays was optimized, cynomolgus macaques received a single dose by intramuscular (IM) injection of plasmid DNA, a recombinant adeno-associated viral vector serotype 1 (rAAV1) or a rAAV8 vector expressing cynomolgus macaque EPO. Macaques received a high plasmid dose intended to achieve a significant, but not life-threatening, increase in hematocrit. rAAV vectors were used at low doses to achieve a small increase in hematocrit and to determine the limit of sensitivity for detecting rAAV sequences by single-step PCR. DNA extracted from white blood cells (WBCs) was tested to determine whether WBCs can be collaterally transfected by plasmid or transduced by rAAV vectors in this context, and can be used as a surrogate marker for gene doping. We demonstrate that IM injection of a conventional plasmid and rAAV vectors results in the presence of DNA that can be detected at high levels in blood before rapid elimination, and that rAAV genomes can persist for several months in WBCs.

  2. AAV serotype 2/1-mediated gene delivery of anti-inflammatory interleukin-10 enhances neurogenesis and cognitive function in APP+PS1 mice.

    Science.gov (United States)

    Kiyota, T; Ingraham, K L; Swan, R J; Jacobsen, M T; Andrews, S J; Ikezu, T

    2012-07-01

    Brain inflammation is a double-edged sword. It is required for brain repair in acute damage, whereas chronic inflammation and autoimmune disorders are neuropathogenic. Certain proinflammatory cytokines and chemokines are closely related to cognitive dysfunction and neurodegeneration. Representative anti-inflammatory cytokines, such as interleukin (IL)-10, can suppress neuroinflammation and have significant therapeutic potentials in ameliorating neurodegenerative disorders such as Alzheimer's disease (AD). Here, we show that adeno-associated virus (AAV) serotype 2/1 hybrid-mediated neuronal expression of the mouse IL-10 gene ameliorates cognitive dysfunction in amyloid precursor protein+ presenilin-1 bigenic mice. AAV2/1 infection of hippocampal neurons resulted in sustained expression of IL-10 without its leakage into the blood, reduced astro/microgliosis, enhanced plasma amyloid-β peptide (Aβ) levels and enhanced neurogenesis. Moreover, increased levels of IL-10 improved spatial learning, as determined by the radial arm water maze. Finally, IL-10-stimulated microglia enhanced proliferation but not differentiation of primary neural stem cells in the co-culture system, whereas IL-10 itself had no effect. Our data suggest that IL-10 gene delivery has a therapeutic potential for a non-Aβ-targeted treatment of AD.

  3. Muscle function recovery in golden retriever muscular dystrophy after AAV1-U7 exon skipping.

    Science.gov (United States)

    Vulin, Adeline; Barthélémy, Inès; Goyenvalle, Aurélie; Thibaud, Jean-Laurent; Beley, Cyriaque; Griffith, Graziella; Benchaouir, Rachid; le Hir, Maëva; Unterfinger, Yves; Lorain, Stéphanie; Dreyfus, Patrick; Voit, Thomas; Carlier, Pierre; Blot, Stéphane; Garcia, Luis

    2012-11-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder resulting from lesions of the gene encoding dystrophin. These usually consist of large genomic deletions, the extents of which are not correlated with the severity of the phenotype. Out-of-frame deletions give rise to dystrophin deficiency and severe DMD phenotypes, while internal deletions that produce in-frame mRNAs encoding truncated proteins can lead to a milder myopathy known as Becker muscular dystrophy (BMD). Widespread restoration of dystrophin expression via adeno-associated virus (AAV)-mediated exon skipping has been successfully demonstrated in the mdx mouse model and in cardiac muscle after percutaneous transendocardial delivery in the golden retriever muscular dystrophy dog (GRMD) model. Here, a set of optimized U7snRNAs carrying antisense sequences designed to rescue dystrophin were delivered into GRMD skeletal muscles by AAV1 gene transfer using intramuscular injection or forelimb perfusion. We show sustained correction of the dystrophic phenotype in extended muscle areas and partial recovery of muscle strength. Muscle architecture was improved and fibers displayed the hallmarks of mature and functional units. A 5-year follow-up ruled out immune rejection drawbacks but showed a progressive decline in the number of corrected muscle fibers, likely due to the persistence of a mild dystrophic process such as occurs in BMD phenotypes. Although AAV-mediated exon skipping was shown safe and efficient to rescue a truncated dystrophin, it appears that recurrent treatments would be required to maintain therapeutic benefit ahead of the progression of the disease.

  4. Humoral immune response to AAV

    Directory of Open Access Journals (Sweden)

    Roberto eCalcedo

    2013-10-01

    Full Text Available Adeno-associated virus (AAV is a member of the family parvoviridae that has been widely used as a vector for gene therapy because of its safety profile, its ability to transduce both dividing and non-dividing cells, and its low immunogenicity. AAV has been detected in many different tissues of several animal species but has not been associated with any disease. As a result of natural infections, antibodies to AAV can be found in many animals including humans. It has been shown that pre-existing AAV antibodies can modulate the safety and efficacy of AAV vector-mediated gene therapy by blocking vector transduction or by redirecting distribution of AAV vectors to tissues other than the target organ. This review will summarize antibody responses against natural AAV infections, as well as AAV gene therapy vectors and their impact in the clinical development of AAV vectors for gene therapy. We will also review and discuss the various methods used for AAV antibody detection and strategies to overcome neutralizing antibodies in AAV-mediated gene therapy.

  5. Reversal of blindness in animal models of leber congenital amaurosis using optimized AAV2-mediated gene transfer.

    Science.gov (United States)

    Bennicelli, Jeannette; Wright, John Fraser; Komaromy, Andras; Jacobs, Jonathan B; Hauck, Bernd; Zelenaia, Olga; Mingozzi, Federico; Hui, Daniel; Chung, Daniel; Rex, Tonia S; Wei, Zhangyong; Qu, Guang; Zhou, Shangzhen; Zeiss, Caroline; Arruda, Valder R; Acland, Gregory M; Dell'Osso, Lou F; High, Katherine A; Maguire, Albert M; Bennett, Jean

    2008-03-01

    We evaluated the safety and efficacy of an optimized adeno-associated virus (AAV; AAV2.RPE65) in animal models of the RPE65 form of Leber congenital amaurosis (LCA). Protein expression was optimized by addition of a modified Kozak sequence at the translational start site of hRPE65. Modifications in AAV production and delivery included use of a long stuffer sequence to prevent reverse packaging from the AAV inverted-terminal repeats, and co-injection with a surfactant. The latter allows consistent and predictable delivery of a given dose of vector. We observed improved electroretinograms (ERGs) and visual acuity in Rpe65 mutant mice. This has not been reported previously using AAV2 vectors. Subretinal delivery of 8.25 x 10(10) vector genomes in affected dogs was well tolerated both locally and systemically, and treated animals showed improved visual behavior and pupillary responses, and reduced nystagmus within 2 weeks of injection. ERG responses confirmed the reversal of visual deficit. Immunohistochemistry confirmed transduction of retinal pigment epithelium cells and there was minimal toxicity to the retina as judged by histopathologic analysis. The data demonstrate that AAV2.RPE65 delivers the RPE65 transgene efficiently and quickly to the appropriate target cells in vivo in animal models. This vector holds great promise for treatment of LCA due to RPE65 mutations.

  6. Anti-metastatic effects of viral and non-viral mediated Nk4 delivery to tumours.

    Science.gov (United States)

    Buhles, Alexandra; Collins, Sara A; van Pijkeren, Jan P; Rajendran, Simon; Miles, Michelle; O'Sullivan, Gerald C; O'Hanlon, Deirdre M; Tangney, Mark

    2009-03-09

    The most common cause of death of cancer sufferers is through the occurrence of metastases. The metastatic behaviour of tumour cells is regulated by extracellular growth factors such as hepatocyte growth factor (HGF), a ligand for the c-Met receptor tyrosine kinase, and aberrant expression/activation of the c-Met receptor is closely associated with metastatic progression. Nk4 (also known as Interleukin (IL)32b) is a competitive antagonist of the HGF c-Met system and inhibits c-Met signalling and tumour metastasis. Nk4 has an additional anti-angiogenic activity independent of its HGF-antagonist function. Angiogenesis-inhibitory as well as cancer-specific apoptosis inducing effects make the Nk4 sequence an attractive candidate for gene therapy of cancer. This study investigates the inhibition of tumour metastasis by gene therapy mediated production of Nk4 by the primary tumour. Optimal delivery of anti-cancer genes is vital in order to achieve the highest therapeutic responses. Non-viral plasmid delivery methods have the advantage of safety and ease of production, providing immediate transgene expression, albeit short-lived in most tumours. Sustained presence of anti-angiogenic molecules is preferable with anti-angiogenic therapies, and the long-term expression mediated by Adeno-associated Virus (AAV) might represent a more appropriate delivery in this respect. However, the incubation time required by AAV vectors to reach appropriate gene expression levels hampers efficacy in many fast-growing murine tumour models. Here, we describe murine trials assessing the effects of Nk4 on the spontaneously metastatic Lewis Lung Carcinoma (LLC) model when delivered to primary tumour via plasmid lipofection or AAV2 vector. Intratumoural AAV-Nk4 administration produced the highest therapeutic response with significant reduction in both primary tumour growth and incidence of lung metastases. Plasmid-mediated therapy also significantly reduced metastatic growth, but with moderate

  7. CRISPR-Mediated Integration of Large Gene Cassettes Using AAV Donor Vectors

    Directory of Open Access Journals (Sweden)

    Rasmus O. Bak

    2017-07-01

    Full Text Available The CRISPR/Cas9 system has recently been shown to facilitate high levels of precise genome editing using adeno-associated viral (AAV vectors to serve as donor template DNA during homologous recombination (HR. However, the maximum AAV packaging capacity of ∼4.5 kb limits the donor size. Here, we overcome this constraint by showing that two co-transduced AAV vectors can serve as donors during consecutive HR events for the integration of large transgenes. Importantly, the method involves a single-step procedure applicable to primary cells with relevance to therapeutic genome editing. We use the methodology in primary human T cells and CD34+ hematopoietic stem and progenitor cells to site-specifically integrate an expression cassette that, as a single donor vector, would otherwise amount to a total of 6.5 kb. This approach now provides an efficient way to integrate large transgene cassettes into the genomes of primary human cells using HR-mediated genome editing with AAV vectors.

  8. Reversal of Blindness in Animal Models of Leber Congenital Amaurosis Using Optimized AAV2-mediated Gene Transfer

    OpenAIRE

    Bennicelli, Jeannette; Wright, John Fraser; Komaromy, Andras; Jacobs, Jonathan B; Hauck, Bernd; Zelenaia, Olga; Mingozzi, Federico; Hui, Daniel; Chung, Daniel; Rex, Tonia S; Wei, Zhangyong; Qu, Guang; Zhou, Shangzhen; Zeiss, Caroline; Arruda, Valder R

    2008-01-01

    We evaluated the safety and efficacy of an optimized adeno-associated virus (AAV; AAV2.RPE65) in animal models of the RPE65 form of Leber congenital amaurosis (LCA). Protein expression was optimized by addition of a modified Kozak sequence at the translational start site of hRPE65. Modifications in AAV production and delivery included use of a long stuffer sequence to prevent reverse packaging from the AAV inverted-terminal repeats, and co-injection with a surfactant. The latter allows consis...

  9. CRISPR/Cas9-AAV Mediated Knock-in at NRL Locus in Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Xianglian Ge

    2016-01-01

    Full Text Available Clustered interspaced short palindromic repeats (CRISPR/CRISPR-associated protein 9 (Cas9-mediated genome engineering technologies are sparking a new revolution in biological research. This technology efficiently induces DNA double strand breaks at the targeted genomic sequence and results in indel mutations by the error-prone process of nonhomologous end joining DNA repair or homologous recombination with a DNA repair template. The efficiency of genome editing with CRISPR/Cas9 alone in human embryonic stem cells is still low. Gene targeting with adeno-associated virus (AAV vectors has been demonstrated in multiple human cell types with maximal targeting frequencies without engineered nucleases. However, whether CRISPR/Cas9-mediated double strand breaks and AAV based donor DNA mediated homologous recombination approaches could be combined to create a novel CRISPR/Cas9-AAV genetic tool for highly specific gene editing is not clear. Here we demonstrate that using CRISPR/Cas9-AAV, we could successfully knock-in a DsRed reporter gene at the basic motifleucine zipper transcription factor (NRL locus in human embryonic stem cells. For the first time, this study provides the proof of principle that these two technologies can be used together. CRISPR/Cas9-AAV, a new genome editing tool, offers a platform for the manipulation of human genome.

  10. Recombinant AAV-mediated BEST1 transfer to the retinal pigment epithelium: analysis of serotype-dependent retinal effects.

    Directory of Open Access Journals (Sweden)

    Karina E Guziewicz

    Full Text Available Mutations in the BEST1 gene constitute an underlying cause of juvenile macular dystrophies, a group of retinal disorders commonly referred to as bestrophinopathies and usually diagnosed in early childhood or adolescence. The disease primarily affects macular and paramacular regions of the eye leading to major declines in central vision later in life. Currently, there is no cure or surgical management for BEST1-associated disorders. The recently characterized human disease counterpart, canine multifocal retinopathy (cmr, recapitulates a full spectrum of clinical and molecular features observed in human bestrophinopathies and offers a valuable model system for development and testing of therapeutic strategies. In this study, the specificity, efficiency and safety of rAAV-mediated transgene expression driven by the human VMD2 promoter were assessed in wild-type canine retinae. While the subretinal delivery of rAAV2/1 vector serotype was associated with cone damage in the retina when BEST1 and GFP were co-expressed, the rAAV2/2 vector serotype carrying either GFP reporter or BEST1 transgene under control of human VMD2 promoter was safe, and enabled specific transduction of the RPE cell monolayer that was stable for up to 6 months post injection. These encouraging studies with the rAAV2/2 vector lay the groundwork for development of gene augmentation therapy for human bestrophinopathies.

  11. An efficient rHSV-based complementation system for the production of multiple rAAV vector serotypes.

    Science.gov (United States)

    Kang, W; Wang, L; Harrell, H; Liu, J; Thomas, D L; Mayfield, T L; Scotti, M M; Ye, G J; Veres, G; Knop, D R

    2009-02-01

    Recombinant herpes simplex virus type 1 (rHSV)-assisted recombinant adeno-associated virus (rAAV) vector production provides a highly efficient and scalable method for manufacture of clinical grade rAAV vectors. Here, we present an rHSV co-infection system for rAAV production, which uses two ICP27-deficient rHSV constructs, one bearing the rep2 and cap (1, 2 or 9) genes of rAAV, and the second bearing an AAV2 ITR-gene of interest (GOI) cassette. The optimum rAAV production parameters were defined by producing rAAV2/GFP in HEK293 cells, yielding greater than 9000 infectious particles per cell with a 14:1 DNase resistance particle to infectious particle (DRP/ip) ratio. The optimized co-infection parameters were then used to generate large-scale stocks of rAAV1/AAT, which encode the human alpha-1-antitrypsin (hAAT) protein, and purified by column chromatography. The purified vector was extensively characterized by rAAV- and rHSV-specific assays and compared to transfection-made vector for in vivo efficacy in mice through intramuscular injection. The co-infection method was also used to produce rAAV9/AAT for comparison to rAAV1/AAT in vivo. Intramuscular administration of 1 x 10(11) DRP per animal of rHSV-produced rAAV1/AAT and rAAV9/AAT resulted in hAAT protein expression of 5.4 x 10(4) and 9.4 x 10(5) ng ml(-1) serum respectively, the latter being clinically relevant.

  12. Tyrosine Mutation in AAV9 Capsid Improves Gene Transfer to the Mouse Lung.

    Science.gov (United States)

    Martini, Sabrina V; Silva, Adriana L; Ferreira, Debora; Rabelo, Rafael; Ornellas, Felipe M; Gomes, Karina; Rocco, Patricia R M; Petrs-Silva, Hilda; Morales, Marcelo M

    2016-01-01

    Adeno-associated virus (AAV) vectors are being increasingly used as the vector of choice for in vivo gene delivery and gene therapy for many pulmonary diseases. Recently, it was shown that phosphorylation of surface-exposed tyrosine residues from AAV capsid targets the viral particles for ubiquitination and proteasome-mediated degradation, and mutations of these tyrosine residues lead to highly efficient vector transduction in vitro and in vivo in different organs. In this study, we evaluated the pulmonary transgene expression efficacy of AAV9 vectors containing point mutations in surface-exposed capsid tyrosine residues. Eighteen C57BL/6 mice were randomly assigned into three groups: (1) a control group (CTRL) animals underwent intratracheal (i.t.) instillation of saline, (2) the wild-type AAV9 group (WT-AAV9, 1010 vg), and (3) the tyrosine-mutant Y731F AAV9 group (M-AAV9, 1010 vg), which received (i.t.) self-complementary AAV9 vectors containing the DNA sequence of enhanced green fluorescence protein (eGFP). Four weeks after instillation, lung mechanics, morphometry, tissue cellularity, gene expression, inflammatory cytokines, and growth factor expression were analyzed. No significant differences were observed in lung mechanics and morphometry among the experimental groups. However, the number of polymorphonuclear cells was higher in the WT-AAV9 group than in the CTRL and M-AAV9 groups, suggesting that the administration of tyrosine-mutant AAV9 vectors was better tolerated. Tyrosine-mutant AAV9 vectors significantly improved transgene delivery to the lung (30%) compared with their wild-type counterparts, without eliciting an inflammatory response. Our results provide the impetus for further studies to exploit the use of AAV9 vectors as a tool for pulmonary gene therapy. © 2016 The Author(s) Published by S. Karger AG, Basel.

  13. Recombinant Adeno-Associated Virus-Mediated microRNA Delivery into the Postnatal Mouse Brain Reveals a Role for miR-134 in Dendritogenesis in Vivo

    DEFF Research Database (Denmark)

    Christensen, Mette; Larsen, Lars A; Kauppinen, Sakari

    2010-01-01

    delivery of microRNAs in vivo by use of recombinant adeno-associated virus (rAAV). rAAV-mediated overexpression of miR-134 in neurons of the postnatal mouse brain provided evidence for a negative role of miR-134 in dendritic arborization of cortical layer V pyramidal neurons in vivo, thereby confirming...

  14. Dual AAV Vectors for Stargardt Disease.

    Science.gov (United States)

    Trapani, Ivana

    2018-01-01

    Stargardt disease (STGD1), due to mutations in the large ABCA4 gene, is the most common inherited macular degeneration in humans. Attempts at developing gene therapy approaches for treatment of STGD1 are currently ongoing. Among all the vectors available for gene therapy of inherited retinal diseases, those based on adeno-associated viruses (AAV) are the most promising given the efficacy shown in various animal models and their excellent safety profile in humans, as confirmed in many ongoing clinical trials. However, one of the main obstacles for the use of AAV is their limited effective packaging capacity of about 5 kb. Taking advantage of the AAV genome's ability to concatemerize , others and we have recently developed dual AAV vectors to overcome this limit. We tested dual AAV vectors for ABCA4 delivery, and found that they transduce efficiently both mouse and pig photoreceptors , and rescue the Abca4-/- mouse retinal phenotype, indicating their potential for gene therapy of STGD1. This chapter details how we designed dual AAV vectors for the delivery of the ABCA4 gene and describes the techniques that can be explored to evaluate dual AAV transduction efficiency in vitro and in the retina, and their efficacy in the mouse model of STGD1.

  15. Inhalable delivery of AAV-based MRP4/ABCC4 silencing RNA prevents monocrotaline-induced pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    Caroline Claude

    Full Text Available The ATP-binding cassette transporter MRP4 (encoded by ABCC4 regulates membrane cyclic nucleotides concentrations in arterial cells including smooth muscle cells. MRP4/ABCC4 deficient mice display a reduction in smooth muscle cells proliferation and a prevention of pulmonary hypertension in response to hypoxia. We aimed to study gene transfer of a MRP4/ABCC4 silencing RNA via intratracheal delivery of aerosolized adeno-associated virus 1 (AAV1.shMRP4 or AAV1.control in a monocrotaline-induced model of pulmonary hypertension in rats. Gene transfer was performed at the time of monocrotaline administration and the effect on the development of pulmonary vascular remodeling was assessed 35 days later. AAV1.shMRP4 dose-dependently reduced right ventricular systolic pressure and hypertrophy with a significant reduction with the higher doses (i.e., >1011 DRP/animal as compared to AAV1.control. The higher dose of AAV1.shMRP4 was also associated with a significant reduction in distal pulmonary arteries remodeling. AAV1.shMRP4 was finally associated with a reduction in the expression of ANF, a marker of cardiac hypertrophy. Collectively, these results support a therapeutic potential for downregulation of MRP4 for the treatment of pulmonary artery hypertension.

  16. Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery

    Science.gov (United States)

    Best, Simon R.; Peng, Shiwen; Juang, Chi-Mou; Hung, Chien-Fu; Hannaman, Drew; Saunders, John R.; Wu, T.-C.; Pai, Sara I.

    2009-01-01

    DNA vaccines are an attractive approach to eliciting antigen-specific immunity. Intracellular targeting of tumor antigens through its linkage to immunostimulatory molecules such as calreticulin (CRT) can improve antigen processing and presentation through the MHC Class I pathway and increase cytotoxic CD8+ T cell production. However, even with these enhancements, the efficacy of such immunotherapeutic strategies is dependent on the identification of an effective route and method of DNA administration. Electroporation and gene gun-mediated particle delivery are leading methods of DNA vaccine delivery that can generate protective and therapeutic levels of immune responses in experimental models. In this study, we perform a head-to-head comparison of three methods of vaccination – conventional intramuscular injection, electroporation mediated intramuscular delivery, and epidermal gene gun-mediated particle delivery - in the ability to generate antigen specific cytotoxic CD8+ T cell responses as well as anti-tumor immune responses against an HPV-16 E7 expressing tumor cell line using the pNGVL4a-CRT/E7(detox) DNA vaccine. Vaccination via electroporation generated the highest number of E7-specific cytotoxic CD8+ T cells, which correlated to improved outcomes in the treatment of growing tumors. In addition, we demonstrate that electroporation results in significantly higher levels of circulating protein compared to gene gun or intramuscular vaccination, which likely enhances calreticulin’s role as a local tumor anti-angiogenesis agent. We conclude that electroporation is a promising method for delivery of HPV DNA vaccines and should be considered for DNA vaccine delivery in human clinical trials. PMID:19622402

  17. High-Throughput Dissection of AAV-Host Interactions: The Fast and the Curious.

    Science.gov (United States)

    Herrmann, Anne-Kathrin; Grimm, Dirk

    2018-05-18

    Over fifty years after its initial description, Adeno-associated virus (AAV) remains a most exciting but also most elusive study object in basic or applied virology. On the one hand, its simple structure not only facilitates investigations into virus biology, but combined with the availability of numerous natural AAV variants with distinct infection efficiency and specificity also makes AAV a preferred substrate for engineering of gene delivery vectors. On the other hand, it is striking to witness a recent flurry of reports that highlight and partially close persistent gaps in our understanding of AAV virus and vector biology. This is all the more perplexing considering that recombinant AAVs have already been used in >160 clinical trials and recently been commercialized as gene therapeutics. Here, we discuss a reason for these advances in AAV research, namely, the advent and application of powerful high-throughput technology for dissection of AAV-host interactions and optimization of AAV gene therapy vectors. As relevant examples, we focus on the discovery of (i) a "new" cellular AAV receptor, AAVR, (ii) host restriction factors for AAV entry, and (iii) AAV capsid determinants that mediate trafficking through the blood-brain barrier. While (i)/(ii) are prototypes of extra- or intracellular AAV host factors that were identified via high-throughput screenings, (iii) exemplifies the power of molecular evolution to investigate the virus itself. In the future, we anticipate that these and other key technologies will continue to accelerate the dissection of AAV biology and will yield a wealth of new designer viruses for clinical use. Copyright © 2018. Published by Elsevier Ltd.

  18. Intramuscular Adeno-Associated Virus-Mediated Expression of Monoclonal Antibodies Provides 100% Protection Against Ebola Virus Infection in Mice.

    Science.gov (United States)

    van Lieshout, Laura P; Soule, Geoff; Sorensen, Debra; Frost, Kathy L; He, Shihua; Tierney, Kevin; Safronetz, David; Booth, Stephanie A; Kobinger, Gary P; Qiu, Xiangguo; Wootton, Sarah K

    2018-03-05

    The 2013-2016 West Africa outbreak demonstrated the epidemic potential of Ebola virus and highlighted the need for counter strategies. Monoclonal antibody (mAb)-based therapies hold promise as treatment options for Ebola virus infections. However, production of clinical-grade mAbs is labor intensive, and immunity is short lived. Conversely, adeno-associated virus (AAV)-mediated mAb gene transfer provides the host with a genetic blueprint to manufacture mAbs in vivo, leading to steady release of antibody over many months. Here we demonstrate that AAV-mediated expression of nonneutralizing mAb 5D2 or 7C9 confers 100% protection against mouse-adapted Ebola virus infection, while neutralizing mAb 2G4 was 83% protective. A 2-component cocktail, AAV-2G4/AAV-5D2, provided complete protection when administered 7 days prior to challenge and was partially protective with a 3-day lead time. Finally, AAV-mAb therapies provided sustained protection from challenge 5 months following AAV administration. AAV-mAb may be a viable alternative strategy for vaccination against emerging infectious diseases.

  19. Virus vector-mediated genetic modification of brain tumor stromal cells after intravenous delivery.

    Science.gov (United States)

    Volak, Adrienn; LeRoy, Stanley G; Natasan, Jeya Shree; Park, David J; Cheah, Pike See; Maus, Andreas; Fitzpatrick, Zachary; Hudry, Eloise; Pinkham, Kelsey; Gandhi, Sheetal; Hyman, Bradley T; Mu, Dakai; GuhaSarkar, Dwijit; Stemmer-Rachamimov, Anat O; Sena-Esteves, Miguel; Badr, Christian E; Maguire, Casey A

    2018-05-16

    The malignant primary brain tumor, glioblastoma (GBM) is generally incurable. New approaches are desperately needed. Adeno-associated virus (AAV) vector-mediated delivery of anti-tumor transgenes is a promising strategy, however direct injection leads to focal transgene spread in tumor and rapid tumor division dilutes out the extra-chromosomal AAV genome, limiting duration of transgene expression. Intravenous (IV) injection gives widespread distribution of AAV in normal brain, however poor transgene expression in tumor, and high expression in non-target cells which may lead to ineffective therapy and high toxicity, respectively. Delivery of transgenes encoding secreted, anti-tumor proteins to tumor stromal cells may provide a more stable and localized reservoir of therapy as they are more differentiated than fast-dividing tumor cells. Reactive astrocytes and tumor-associated macrophage/microglia (TAMs) are stromal cells that comprise a large portion of the tumor mass and are associated with tumorigenesis. In mouse models of GBM, we used IV delivery of exosome-associated AAV vectors driving green fluorescent protein expression by specific promoters (NF-κB-responsive promoter and a truncated glial fibrillary acidic protein promoter), to obtain targeted transduction of TAMs and reactive astrocytes, respectively, while avoiding transgene expression in the periphery. We used our approach to express the potent, yet toxic anti-tumor cytokine, interferon beta, in tumor stroma of a mouse model of GBM, and achieved a modest, yet significant enhancement in survival compared to controls. Noninvasive genetic modification of tumor microenvironment represents a promising approach for therapy against cancers. Additionally, the vectors described here may facilitate basic research in the study of tumor stromal cells in situ.

  20. Prolonged expression of an anti-HIV-1 gp120 minibody to the female rhesus macaque lower genital tract by AAV gene transfer.

    Science.gov (United States)

    Abdel-Motal, U M; Harbison, C; Han, T; Pudney, J; Anderson, D J; Zhu, Q; Westmoreland, S; Marasco, W A

    2014-09-01

    Topical microbicides are a leading strategy for prevention of HIV mucosal infection to women; however, numerous pharmacokinetic limitations associated with coitally related dosing strategy have contributed to their limited success. Here we test the hypothesis that adeno-associated virus (AAV) mediated delivery of the b12 human anti-HIV-1 gp120 minibody gene to the lower genital tract of female rhesus macaques (Rh) can provide prolonged expression of b12 minibodies in the cervical-vaginal secretions. Gene transfer studies demonstrated that, of various green fluorescent protein (GFP)-expressing AAV serotypes, AAV-6 most efficiently transduced freshly immortalized and primary genital epithelial cells (PGECs) of female Rh in vitro. In addition, AAV-6-b12 minibody transduction of Rh PGECs led to inhibition of SHIV162p4 transmigration and virus infectivity in vitro. AAV-6-GFP could also successfully transduce vaginal epithelial cells of Rh when applied intravaginally, including p63+ epithelial stem cells. Moreover, intravaginal application of AAV-6-b12 to female Rh resulted in prolonged minibody detection in their vaginal secretions throughout the 79-day study period. These data provide proof of principle that AAV-6-mediated delivery of anti-HIV broadly neutralizing antibody (BnAb) genes to the lower genital tract of female Rh results in persistent minibody detection for several months. This strategy offers promise that an anti-HIV-1 genetic microbicide strategy may be possible in which topical application of AAV vector, with periodic reapplication as needed, may provide sustained local BnAb expression and protection.

  1. Ultrasound Targeted Microbubble Destruction Stimulates Cellular Endocytosis in Facilitation of Adeno-Associated Virus Delivery

    Directory of Open Access Journals (Sweden)

    Lian-Fang Du

    2013-05-01

    Full Text Available The generally accepted mechanism for ultrasound targeted microbubble destruction (UTMD to enhance drug and gene delivery is through sonoporation. However, passive uptake of adeno-associated virus (AAV into cells following sonoporation does not adequately explain observations of enhanced transduction by UTMD. This study investigated alternative mechanisms of UTMD enhancement in AAV delivery. UTMD significantly enhanced transduction efficiency of AAV in a dose-dependent manner. UTMD stimulated a persistent uptake of AAV into the cytoplasm and nucleus. This phenomenon occurred over several hours, suggesting that some viral particles are endocytosed by cells rather than exclusively passing through pores created by sonoporation. Additionally, UTMD enhanced clathrin expression and accumulation at the plasma membrane suggesting greater clathrin-mediated endocytosis following UTMD. Transmission electron microscopy (TEM revealed that UTMD stimulated formation of clathrin-coated pits (CPs and uncoated pits (nCPs. Furthermore, inhibition of clathrin-mediated endocytosis partially blocked the enhancement of AAV uptake following UTMD. The results of this study implicate endocytosis as a mechanism that contributes to UTMD-enhanced AAV delivery.

  2. AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy.

    Science.gov (United States)

    Dinculescu, Astra; Stupay, Rachel M; Deng, Wen-Tao; Dyka, Frank M; Min, Seok-Hong; Boye, Sanford L; Chiodo, Vince A; Abrahan, Carolina E; Zhu, Ping; Li, Qiuhong; Strettoi, Enrica; Novelli, Elena; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe; Smith, W Clay; Hauswirth, William W

    2016-01-01

    Usher syndrome type III (USH3A) is an autosomal recessive disorder caused by mutations in clarin-1 (CLRN1) gene, leading to progressive retinal degeneration and sensorineural deafness. Efforts to develop therapies for preventing photoreceptor cell loss are hampered by the lack of a retinal phenotype in the existing USH3 mouse models and by conflicting reports regarding the endogenous retinal localization of clarin-1, a transmembrane protein of unknown function. In this study, we used an AAV-based approach to express CLRN1 in the mouse retina in order to determine the pattern of its subcellular localization in different cell types. We found that all major classes of retinal cells express AAV-delivered CLRN1 driven by the ubiquitous, constitutive small chicken β-actin promoter, which has important implications for the design of future USH3 gene therapy studies. Within photoreceptor cells, AAV-expressed CLRN1 is mainly localized at the inner segment region and outer plexiform layer, similar to the endogenous expression of other usher proteins. Subretinal delivery using a full strength viral titer led to significant loss of retinal function as evidenced by ERG analysis, suggesting that there is a critical limit for CLRN1 expression in photoreceptor cells. Taken together, these results suggest that CLRN1 expression is potentially supported by a variety of retinal cells, and the right combination of AAV vector dose, promoter, and delivery method needs to be selected to develop safe therapies for USH3 disorder.

  3. Novel rat Alzheimer's disease models based on AAV-mediated gene transfer to selectively increase hippocampal Aβ levels

    Directory of Open Access Journals (Sweden)

    Dicker Bridget L

    2007-06-01

    Full Text Available Abstract Background Alzheimer's disease (AD is characterized by a decline in cognitive function and accumulation of amyloid-β peptide (Aβ in extracellular plaques. Mutations in amyloid precursor protein (APP and presenilins alter APP metabolism resulting in accumulation of Aβ42, a peptide essential for the formation of amyloid deposits and proposed to initiate the cascade leading to AD. However, the role of Aβ40, the more prevalent Aβ peptide secreted by cells and a major component of cerebral Aβ deposits, is less clear. In this study, virally-mediated gene transfer was used to selectively increase hippocampal levels of human Aβ42 and Aβ40 in adult Wistar rats, allowing examination of the contribution of each to the cognitive deficits and pathology seen in AD. Results Adeno-associated viral (AAV vectors encoding BRI-Aβ cDNAs were generated resulting in high-level hippocampal expression and secretion of the specific encoded Aβ peptide. As a comparison the effect of AAV-mediated overexpression of APPsw was also examined. Animals were tested for development of learning and memory deficits (open field, Morris water maze, passive avoidance, novel object recognition three months after infusion of AAV. A range of impairments was found, with the most pronounced deficits observed in animals co-injected with both AAV-BRI-Aβ40 and AAV-BRI-Aβ42. Brain tissue was analyzed by ELISA and immunohistochemistry to quantify levels of detergent soluble and insoluble Aβ peptides. BRI-Aβ42 and the combination of BRI-Aβ40+42 overexpression resulted in elevated levels of detergent-insoluble Aβ. No significant increase in detergent-insoluble Aβ was seen in the rats expressing APPsw or BRI-Aβ40. No pathological features were noted in any rats, except the AAV-BRI-Aβ42 rats which showed focal, amorphous, Thioflavin-negative Aβ42 deposits. Conclusion The results show that AAV-mediated gene transfer is a valuable tool to model aspects of AD pathology in

  4. Growth Inhibition of Breast Cancer in Rat by AAV Mediated Angiostatin Gene

    Institute of Scientific and Technical Information of China (English)

    LI Ran; CHEN Hong; REN Chang-shan

    2007-01-01

    Objective: To observe growth inhibition effect of adeno-associated viral vectors (AAV) mediated angiostatin (ANG) gene on implanted breast cancer in rat and its mechanism. Methods: Gene transfer technique was used to transfer AAV-ANG to the tumor. Growth curves were drawn to observe the growth of breast cancer implanted in rat, and immunohistochemical method was used to detect the effects of angiostatin on microvesel density (MVD) of breast cancer implanted in rat. Results: Angiostatin inhibited the growth of breast cancer implanted in rat and decreased the microvessel density of tumor. Conclusion: Expression of an angiostatin transgene can suppress the growth of breast cancer implanted in rat through the inhibition of the growth of microvessels, surggesting that angiostatin gene transfer technique may be effective against breast cancer.

  5. Intracellular generation of single-strand template increases the knock-in efficiency by combining CRISPR/Cas9 with AAV.

    Science.gov (United States)

    Xiao, Qing; Min, Taishan; Ma, Shuangping; Hu, Lingna; Chen, Hongyan; Lu, Daru

    2018-04-18

    Targeted integration of transgenes facilitates functional genomic research and holds prospect for gene therapy. The established microhomology-mediated end-joining (MMEJ)-based strategy leads to the precise gene knock-in with easily constructed donor, yet the limited efficiency remains to be further improved. Here, we show that single-strand DNA (ssDNA) donor contributes to efficient increase of knock-in efficiency and establishes a method to achieve the intracellular linearization of long ssDNA donor. We identified that the CRISPR/Cas9 system is responsible for breaking double-strand DNA (dsDNA) of palindromic structure in inverted terminal repeats (ITRs) region of recombinant adeno-associated virus (AAV), leading to the inhibition of viral second-strand DNA synthesis. Combing Cas9 plasmids targeting genome and ITR with AAV donor delivery, the precise knock-in of gene cassette was achieved, with 13-14% of the donor insertion events being mediated by MMEJ in HEK 293T cells. This study describes a novel method to integrate large single-strand transgene cassettes into the genomes, increasing knock-in efficiency by 13.6-19.5-fold relative to conventional AAV-mediated method. It also provides a comprehensive solution to the challenges of complicated production and difficult delivery with large exogenous fragments.

  6. AAV delivery of GRP78/BiP promotes adaptation of human RPE cell to ER stress.

    Science.gov (United States)

    Ghaderi, Shima; Ahmadian, Shahin; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Samiei, Shahram; Kheitan, Samira; Pirmardan, Ehsan R

    2018-02-01

    Adeno associated virus (AAV)-mediated gene delivery of GRP78 (78 kDa glucose-regulated protein) attenuates the condition of endoplasmic reticulum (ER) stress and prevents apoptotic loss of photoreceptors in Retinitis pigmentosa (RP) rats. In the current study we overexpressed Grp78 with the help of AAV-2 in primary human retinal pigmented epithelium (hRPE) cell cultures and examined its effect on cell response to ER stress. The purpose of this work was studying potential stimulating effect of GRP78 on adaptation/pro-survival of hRPE cells under ER stress, as an in vitro model for RPE degeneration. To investigate the effect of Grp78 overexpression on unfolded protein response (UPR) markers under ER stress, hRPE primary cultures were transduced by recombinant virus rAAV/Grp78, and treated with ER stressor drug, tunicamycin. Expression changes of four UPR markers including GRP78, PERK, ATF6α, and GADD153/CHOP, were assessed by real-time PCR and western blotting. We found that GRP78 has a great contribution in modulation of UPR markers to favor adaptive response in ER-stressed hRPE cells. In fact, GRP78 overexpression affected adaptation and apoptotic phases of early UPR, through enhancement of two master regulators/ER stress sensors (PERK and ATF6α) and down-regulation of a key pro-apoptotic cascade activator (GADD153/CHOP). Together these findings demonstrate the promoting effect of GRP78 on adaptation/pro-survival of hRPE cells under ER stress. This protein with anti-apoptotic actions in the early UPR and important role in cell fate regulation, can be recruited as a useful candidate for future investigations of RPE degenerative diseases. © 2017 Wiley Periodicals, Inc.

  7. AAV-mediated knock-down of HRC exacerbates transverse aorta constriction-induced heart failure.

    Directory of Open Access Journals (Sweden)

    Chang Sik Park

    Full Text Available Histidine-rich calcium binding protein (HRC is located in the lumen of sarcoplasmic reticulum (SR that binds to both triadin (TRN and SERCA affecting Ca(2+ cycling in the SR. Chronic overexpression of HRC that may disrupt intracellular Ca(2+ homeostasis is implicated in pathogenesis of cardiac hypertrophy. Ablation of HRC showed relatively normal phenotypes under basal condition, but exhibited a significantly increased susceptibility to isoproterenol-induced cardiac hypertrophy. In the present study, we characterized the functions of HRC related to Ca(2+ cycling and pathogenesis of cardiac hypertrophy using the in vitro siRNA- and the in vivo adeno-associated virus (AAV-mediated HRC knock-down (KD systems, respectively.AAV-mediated HRC-KD system was used with or without C57BL/6 mouse model of transverse aortic constriction-induced failing heart (TAC-FH to examine whether HRC-KD could enhance cardiac function in failing heart (FH. Initially we expected that HRC-KD could elicit cardiac functional recovery in failing heart (FH, since predesigned siRNA-mediated HRC-KD enhanced Ca(2+ cycling and increased activities of RyR2 and SERCA2 without change in SR Ca(2+ load in neonatal rat ventricular cells (NRVCs and HL-1 cells. However, AAV9-mediated HRC-KD in TAC-FH was associated with decreased fractional shortening and increased cardiac fibrosis compared with control. We found that phospho-RyR2, phospho-CaMKII, phospho-p38 MAPK, and phospho-PLB were significantly upregulated by HRC-KD in TAC-FH. A significantly increased level of cleaved caspase-3, a cardiac cell death marker was also found, consistent with the result of TUNEL assay.Increased Ca(2+ leak and cytosolic Ca(2+ concentration due to a partial KD of HRC could enhance activity of CaMKII and phosphorylation of p38 MAPK, causing the mitochondrial death pathway observed in TAC-FH. Our results present evidence that down-regulation of HRC could deteriorate cardiac function in TAC-FH through

  8. AAV-based shRNA silencing of NF-κB ameliorates muscle pathologies in mdx mice.

    Science.gov (United States)

    Yang, Q; Tang, Y; Imbrogno, K; Lu, A; Proto, J D; Chen, A; Guo, F; Fu, F H; Huard, J; Wang, B

    2012-12-01

    Chronic inflammation, promoted by an upregulated NF-kappa B (NF-κB) pathway, has a key role in Duchenne muscular dystrophy (DMD) patients' pathogenesis. Blocking the NF-κB pathway has been shown to be a viable approach to diminish chronic inflammation and necrosis in the dystrophin-defective mdx mouse, a murine DMD model. In this study, we used the recombinant adeno-associated virus serotype 9 (AAV9) carrying an short hairpin RNA (shRNA) specifically targeting the messenger RNA of NF-κB/p65 (p65-shRNA), the major subunit of NF-κB associated with chronic inflammation in mdx mice. We examined whether i.m. AAV9-mediated delivery of p65-shRNA could decrease NF-κB activation, allowing for amelioration of muscle pathologies in 1- and 4-month-old mdx mice. At 1 month after treatment, NF-κB/p65 levels were significantly decreased by AAV gene transfer of p65-shRNA in the two ages of treatment groups, with necrosis significantly decreased compared with controls. Quantitative analysis revealed that central nucleation (CN) of the myofibers of p65-shRNA-treated 1-month-old mdx muscles was reduced from 67 to 34%, but the level of CN was not significantly decreased in treated 4-month-old mdx mice. Moreover, delivery of the p65-shRNA enhanced the capacity of myofiber regeneration in old mdx mice treated at 4 months of age when the dystrophic myofibers were most exhausted; however, such p65 silencing diminished the myofiber regeneration in young mdx mice treated at 1 month of age. Taken together, these findings demonstrate that the AAV-mediated delivery of p65-shRNA has the capacity to ameliorate muscle pathologies in mdx mice by selectively reducing NF-κB/p65 activity.

  9. Immune responses to rAAV6: The influence of canine parvovirus vaccination and neonatal administration of viral vector

    Directory of Open Access Journals (Sweden)

    Andrea L H Arnett

    2011-11-01

    Full Text Available Recombinant adeno-associated viral (rAAV vectors promote long-term gene transfer in many animal species. Significant effort has focused on the evaluation of rAAV delivery and the immune response in both murine and canine models of neuromuscular disease. However, canines provided for research purposes are routinely vaccinated against canine parvovirus (CPV. rAAV and CPV possess significant homology and are both parvoviruses. Thus, any immune response generated to CPV vaccination has the potential to cross-react with rAAV vectors. In this study, we investigated the immune response to rAAV6 delivery in a cohort of CPV-vaccinated canines and evaluated multiple vaccination regimens in a mouse model of CPV-vaccination. We show that CPV-vaccination stimulates production of neutralizing antibodies with minimal cross-reactivity to rAAV6. In addition, no significant differences were observed in the magnitude of the rAAV6-directed immune response between CPV-vaccinated animals and controls. Moreover, CPV-vaccination did not inhibit rAAV6-mediated transduction. We also evaluated the immune response to early rAAV6-vaccination in neonatal mice. The influence of maternal hormones and cytokines leads to a relatively permissive state in the neonate. We hypothesized that immaturity of the immune system would permit induction of tolerance to rAAV6 when delivered during the neonatal period. Mice were vaccinated with rAAV6 at 1 or 5 days of age, and subsequently challenged with rAAV6 exposure during adulthood via two sequential IM injections, one month apart. All vaccinated animals generated a significant neutralizing antibody response to rAAV6-vaccination that was enhanced following IM injection in adulthood. Taken together, these data demonstrate that the immune response raised against rAAV6 is distinct from that which is elicited by the standard parvoviral vaccines and is sufficient to prevent stable tolerization in neonatal mice.

  10. AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy.

    Directory of Open Access Journals (Sweden)

    Astra Dinculescu

    Full Text Available Usher syndrome type III (USH3A is an autosomal recessive disorder caused by mutations in clarin-1 (CLRN1 gene, leading to progressive retinal degeneration and sensorineural deafness. Efforts to develop therapies for preventing photoreceptor cell loss are hampered by the lack of a retinal phenotype in the existing USH3 mouse models and by conflicting reports regarding the endogenous retinal localization of clarin-1, a transmembrane protein of unknown function. In this study, we used an AAV-based approach to express CLRN1 in the mouse retina in order to determine the pattern of its subcellular localization in different cell types. We found that all major classes of retinal cells express AAV-delivered CLRN1 driven by the ubiquitous, constitutive small chicken β-actin promoter, which has important implications for the design of future USH3 gene therapy studies. Within photoreceptor cells, AAV-expressed CLRN1 is mainly localized at the inner segment region and outer plexiform layer, similar to the endogenous expression of other usher proteins. Subretinal delivery using a full strength viral titer led to significant loss of retinal function as evidenced by ERG analysis, suggesting that there is a critical limit for CLRN1 expression in photoreceptor cells. Taken together, these results suggest that CLRN1 expression is potentially supported by a variety of retinal cells, and the right combination of AAV vector dose, promoter, and delivery method needs to be selected to develop safe therapies for USH3 disorder.

  11. AAV-Mediated Administration of Myostatin Pro-Peptide Mutant in Adult Ldlr Null Mice Reduces Diet-Induced Hepatosteatosis and Arteriosclerosis

    Science.gov (United States)

    Guo, Wen; Wong, Siu; Bhasin, Shalender

    2013-01-01

    Genetic disruption of myostatin or its related signaling is known to cause strong protection against diet-induced metabolic disorders. The translational value of these prior findings, however, is dependent on whether such metabolically favorable phenotype can be reproduced when myostatin blockade begins at an adult age. Here, we reported that AAV-mediated delivery of a myostatin pro-peptide D76A mutant in adult mice attenuates the development of hepatic steatosis and arteriosclerosis, two common diet-induced metabolic diseases. A single dose of AAV-D76A in adult Ldlr null mice resulted in sustained expression of myostatin pro-peptide in the liver. Compared to vehicle-treated mice, D76A-treated mice gained similar amount of lean and fat mass when fed a high fat diet. However, D76A-treated mice displayed significantly reduced aortic lesions and liver fat, in association with a reduction in hepatic expression of lipogenic genes and improvement in liver insulin sensitivity. This suggests that muscle and fat may not be the primary targets of treatment under our experimental condition. In support to this argument, we show that myostatin directly up-regulated lipogenic genes and increased fat accumulation in cultured liver cells. We also show that both myostatin and its receptor were abundantly expressed in mouse aorta. Cultured aortic endothelial cells responded to myostatin with a reduction in eNOS phosphorylation and an increase in ICAM-1 and VCAM-1 expression. Conclusions: AAV-mediated expression of myostatin pro-peptide D76A mutant in adult Ldlr null mice sustained metabolic protection without remarkable impacts on body lean and fat mass. Further investigations are needed to determine whether direct impact of myostatin on liver and aortic endothelium may contribute to the related metabolic phenotypes. PMID:23936482

  12. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    International Nuclear Information System (INIS)

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M.

    2014-01-01

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8

  13. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    Energy Technology Data Exchange (ETDEWEB)

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M., E-mail: wilsonjm@mail.med.upenn.edu

    2014-04-15

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8.

  14. Widespread AAV1- and AAV2-mediated transgene expression in the nonhuman primate brain: implications for Huntington's disease

    Directory of Open Access Journals (Sweden)

    Piotr Hadaczek

    2016-01-01

    Full Text Available Huntington's disease (HD is caused by a toxic gain-of-function associated with the expression of the mutant huntingtin (htt protein. Therefore, the use of RNA interference to inhibit Htt expression could represent a disease-modifying therapy. The potential of two recombinant adeno-associated viral vectors (AAV, AAV1 and AAV2, to transduce the cortico-striatal tissues that are predominantly affected in HD was explored. Green fluorescent protein was used as a reporter in each vector to show that both serotypes were broadly distributed in medium spiny neurons in the striatum and cortico-striatal neurons after infusion into the putamen and caudate nucleus of nonhuman primates (NHP, with AAV1-directed expression being slightly more robust than AAV2-driven expression. This study suggests that both serotypes are capable of targeting neurons that degenerate in HD, and it sets the stage for the advanced preclinical evaluation of an RNAi-based therapy for this disease.

  15. Gene Transfer Properties and Structural Modeling of Human Stem Cell-derived AAV

    OpenAIRE

    Smith, Laura J; Ul-Hasan, Taihra; Carvaines, Sarah K; Van Vliet, Kim; Yang, Ethel; Wong, Kamehameha K; Agbandje-McKenna, Mavis; Chatterjee, Saswati

    2014-01-01

    Adeno-associated virus (AAV) vectors are proving to be remarkably successful for in vivo gene delivery. Based upon reports of abundant AAV in the human marrow, we tested CD34+ hematopoietic stem cells for the presence of natural AAV. Here, we report for the first time, the presence of novel AAV variants in healthy CD34+ human peripheral blood stem cells. The majority of healthy peripheral blood stem cell donors were found to harbor AAV in their CD34+ cells. Every AAV isolated from CD34+ cells...

  16. Noninvasive gene delivery to foveal cones for vision restoration

    Science.gov (United States)

    Khabou, Hanen; Garita-Hernandez, Marcela; Jaillard, Céline; Brazhnikova, Elena; Bertin, Stéphane; Forster, Valérie; Desrosiers, Mélissa; Winckler, Céline; Goureau, Olivier; Duebel, Jens; Sahel, José-Alain

    2018-01-01

    Intraocular injection of adeno-associated viral (AAV) vectors has been an evident route for delivering gene drugs into the retina. However, gaps in our understanding of AAV transduction patterns within the anatomically unique environments of the subretinal and intravitreal space of the primate eye impeded the establishment of noninvasive and efficient gene delivery to foveal cones in the clinic. Here, we establish new vector-promoter combinations to overcome the limitations associated with AAV-mediated cone transduction in the fovea with supporting studies in mouse models, human induced pluripotent stem cell–derived organoids, postmortem human retinal explants, and living macaques. We show that an AAV9 variant provides efficient foveal cone transduction when injected into the subretinal space several millimeters away from the fovea, without detaching this delicate region. An engineered AAV2 variant provides gene delivery to foveal cones with a well-tolerated dose administered intravitreally. Both delivery modalities rely on a cone-specific promoter and result in high-level transgene expression compatible with optogenetic vision restoration. The model systems described here provide insight into the behavior of AAV vectors across species to obtain safety and efficacy needed for gene therapy in neurodegenerative disorders. PMID:29367457

  17. Delayed intramuscular human neurotrophin-3 improves recovery in adult and elderly rats after stroke.

    Science.gov (United States)

    Duricki, Denise A; Hutson, Thomas H; Kathe, Claudia; Soleman, Sara; Gonzalez-Carter, Daniel; Petruska, Jeffrey C; Shine, H David; Chen, Qin; Wood, Tobias C; Bernanos, Michel; Cash, Diana; Williams, Steven C R; Gage, Fred H; Moon, Lawrence D F

    2016-01-01

    There is an urgent need for a therapy that reverses disability after stroke when initiated in a time frame suitable for the majority of new victims. We show here that intramuscular delivery of neurotrophin-3 (NT3, encoded by NTF3) can induce sensorimotor recovery when treatment is initiated 24 h after stroke. Specifically, in two randomized, blinded preclinical trials, we show improved sensory and locomotor function in adult (6 months) and elderly (18 months) rats treated 24 h following cortical ischaemic stroke with human NT3 delivered using a clinically approved serotype of adeno-associated viral vector (AAV1). Importantly, AAV1-hNT3 was given in a clinically-feasible timeframe using a straightforward, targeted route (injections into disabled forelimb muscles). Magnetic resonance imaging and histology showed that recovery was not due to neuroprotection, as expected given the delayed treatment. Rather, treatment caused corticospinal axons from the less affected hemisphere to sprout in the spinal cord. This treatment is the first gene therapy that reverses disability after stroke when administered intramuscularly in an elderly body. Importantly, phase I and II clinical trials by others show that repeated, peripherally administered high doses of recombinant NT3 are safe and well tolerated in humans with other conditions. This paves the way for NT3 as a therapy for stroke. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Evaluating Efficiencies of Dual AAV Approaches for Retinal Targeting

    Directory of Open Access Journals (Sweden)

    Livia S. Carvalho

    2017-09-01

    Full Text Available Retinal gene therapy has come a long way in the last few decades and the development and improvement of new gene delivery technologies has been exponential. The recent promising results from the first clinical trials for inherited retinal degeneration due to mutations in RPE65 have provided a major breakthrough in the field and have helped cement the use of recombinant adeno-associated viruses (AAV as the major tool for retinal gene supplementation. One of the key problems of AAV however, is its limited capacity for packaging genomic information to a maximum of around 4.8 kb. Previous studies have demonstrated that homologous recombination and/or inverted terminal repeat (ITR mediated concatemerization of two overlapping AAV vectors can partially overcome the size limitation and help deliver larger transgenes. The aim of this study was to investigate and compare the use of different AAV dual-vector approaches in the mouse retina using a systematic approach comparing efficiencies in vitro and in vivo using a unique oversized reporter construct. We show that the hybrid approach relying on vector genome concatemerization by highly recombinogenic sequences and ITRs sequence overlap offers the best levels of reconstitution both in vitro and in vivo compared to trans-splicing and overlap strategies. Our data also demonstrate that dose and vector serotype do not affect reconstitution efficiency but a discrepancy between mRNA and protein expression data suggests a bottleneck affecting translation.

  19. BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury

    OpenAIRE

    Lopes, CDF; Gonçalves, NP; Gomes, CP; Saraiva, MJ; Pêgo, AP

    2017-01-01

    Neuron-targeted gene delivery is a promising strategy to treat peripheral neuropathies. Here we propose the use of polymeric nanoparticles based on thiolated trimethyl chitosan (TMCSH) to mediate targeted gene delivery to peripheral neurons upon a peripheral and minimally invasive intramuscular administration. Nanoparticles were grafted with the non-toxic carboxylic fragment of the tetanus neurotoxin (HC) to allow neuron targeting and were explored to deliver a plasmid DNA encoding for the br...

  20. Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs

    Czech Academy of Sciences Publication Activity Database

    Miyanohara, A.; Kamizato, K.; Juhás, Štefan; Juhásová, Jana; Navarro, M.; Maršala, S.; Lukáčová, N.; Hruška-Plocháň, M.; Curtis, E.; Gabel, B.; Ciacci, J. D.; Ahrens, E. T.; Kaspar, B. K.; Cleveland, D.; Maršala, M.

    2016-01-01

    Roč. 3, č. 1 (2016), č. článku 16046. ISSN 2329-0501 R&D Projects: GA MŠk(CZ) LO1609 Institutional support: RVO:67985904 Keywords : AAV9 * rat * pig Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.610, year: 2016

  1. Adeno-Associated Virus-Mediated Correction of a Canine Model of Glycogen Storage Disease Type Ia

    OpenAIRE

    Weinstein, David A.; Correia, Catherine E.; Conlon, Thomas; Specht, Andrew; Verstegen, John; Onclin-Verstegen, Karine; Campbell-Thompson, Martha; Dhaliwal, Gurmeet; Mirian, Layla; Cossette, Holly; Falk, Darin J.; Germain, Sean; Clement, Nathalie; Porvasnik, Stacy; Fiske, Laurie

    2010-01-01

    This study by the groups of Drs. Barry Byrne and Cathryn Mah at the University of Florida examines the safety and efficacy of AAV-mediated gene delivery in a canine model of glycogen storage disease type Ia (GSDIa). The authors find that intraportal delivery of AAV8 encoding glucose-6-phosphatase-α (G6Pase) followed 20 weeks later by intraportal administration of AAV1 encoding G6Pase led to significant correction of the GSDIa phenotype.

  2. A novel artificial microRNA expressing AAV vector for phospholamban silencing in cardiomyocytes improves Ca2+ uptake into the sarcoplasmic reticulum.

    Directory of Open Access Journals (Sweden)

    Tobias Gröβl

    Full Text Available In failing rat hearts, post-transcriptonal inhibition of phospholamban (PLB expression by AAV9 vector-mediated cardiac delivery of short hairpin RNAs directed against PLB (shPLBr improves both impaired SERCA2a controlled Ca2+ cycling and contractile dysfunction. Cardiac delivery of shPLB, however, was reported to cause cardiac toxicity in canines. Thus we developed a new AAV vector, scAAV6-amiR155-PLBr, expressing a novel engineered artificial microRNA (amiR155-PLBr directed against PLB under control of a heart-specific hybrid promoter. Its PLB silencing efficiency and safety were compared with those of an AAV vector expressing shPLBr (scAAV6-shPLBr from an ubiquitously active U6 promoter. Investigations were carried out in cultured neonatal rat cardiomyocytes (CM over a period of 14 days. Compared to shPLBr, amiR155-PLBr was expressed at a significantly lower level, resulting in delayed and less pronounced PLB silencing. Despite decreased knockdown efficiency of scAAV6-amiR155-PLBr, a similar increase of the SERCA2a-catalyzed Ca2+ uptake into sarcoplasmic reticulum (SR vesicles was observed for both the shPLBr and amiR155-PLBr vectors. Proteomic analysis confirmed PLB silencing of both therapeutic vectors and revealed that shPLBr, but not the amiR155-PLBr vector, increased the proinflammatory proteins STAT3, STAT1 and activated STAT1 phosphorylation at the key amino acid residue Tyr701. Quantitative RT-PCR analysis detected alterations in the expression of several cardiac microRNAs after treatment of CM with scAAV6-shPLBr and scAAV6-amiR155-PLBr, as well as after treatment with its related amiR155- and shRNAs-expressing control AAV vectors. The results demonstrate that scAAV6-amiR155-PLBr is capable of enhancing the Ca2+ transport function of the cardiac SR PLB/SERCA2a system as efficiently as scAAV6-shPLBr while offering a superior safety profile.

  3. Comparison of Serum rAAV Serotype-Specific Antibodies in Patients with Duchenne Muscular Dystrophy, Becker Muscular Dystrophy, Inclusion Body Myositis, or GNE Myopathy.

    Science.gov (United States)

    Zygmunt, Deborah A; Crowe, Kelly E; Flanigan, Kevin M; Martin, Paul T

    2017-09-01

    Recombinant adeno-associated virus (rAAV) is a commonly used gene therapy vector for the delivery of therapeutic transgenes in a variety of human diseases, but pre-existing serum antibodies to viral capsid proteins can greatly inhibit rAAV transduction of tissues. Serum was assayed from patients with Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), inclusion body myositis (IBM), and GNE myopathy (GNE). These were compared to serum from otherwise normal human subjects to determine the extent of pre-existing serum antibodies to rAAVrh74, rAAV1, rAAV2, rAAV6, rAAV8, and rAAV9. In almost all cases, patients with measurable titers to one rAAV serotype showed titers to all other serotypes tested, with average titers to rAAV2 being highest in all instances. Twenty-six percent of all young normal subjects (18 years old). Fifty percent of all IBM and GNE patients also had antibody titers to all rAAV serotypes, while only 18% of DMD and 0% of BMD patients did. In addition, serum-naïve macaques treated systemically with rAAVrh74 could develop cross-reactive antibodies to all other serotypes tested at 24 weeks post treatment. These data demonstrate that most DMD and BMD patients should be amenable to vascular rAAV-mediated treatment without the concern of treatment blockage by pre-existing serum rAAV antibodies, and that serum antibodies to rAAVrh74 are no more common than those for rAAV6, rAAV8, or rAAV9.

  4. AAVS1-Targeted Plasmid Integration in AAV Producer Cell Lines.

    Science.gov (United States)

    Luo, Yuxia; Frederick, Amy; Martin, John M; Scaria, Abraham; Cheng, Seng H; Armentano, Donna; Wadsworth, Samuel C; Vincent, Karen A

    2017-06-01

    Adeno-associated virus (AAV) producer cell lines are created via transfection of HeLaS3 cells with a single plasmid containing three components (the vector sequence, the AAV rep and cap genes, and a selectable marker gene). As this plasmid contains both the cis (Rep binding sites) and trans (Rep protein encoded by the rep gene) elements required for site-specific integration, it was predicted that plasmid integration might occur within the AAVS1 locus on human chromosome 19 (chr19). The objective of this study was to investigate whether integration in AAVS1 might be correlated with vector yield. Plasmid integration sites within several independent cell lines were assessed via Southern, fluorescence in situ hybridization (FISH) and PCR analyses. In the Southern analyses, the presence of fragments detected by both rep- and AAVS1-specific probes suggested that for several mid- and high-producing lines, plasmid DNA had integrated into the AAVS1 locus. Analysis with puroR and AAVS1-specific probes suggested that integration in AAVS1 was a more widespread phenomenon. High-producing AAV2-secreted alkaline phosphatase (SEAP) lines (masterwell 82 [MW82] and MW278) were evaluated via FISH using probes specific for the plasmid, AAVS1, and a chr19 marker. FISH analysis detected two plasmid integration sites in MW278 (neither in AAVS1), while a total of three sites were identified in MW82 (two in AAVS1). An inverse PCR assay confirmed integration within AAVS1 for several mid- and high-producing lines. In summary, the FISH, Southern, and PCR data provide evidence of site-specific integration of the plasmid within AAVS1 in several AAV producer cell lines. The data also suggest that integration in AAVS1 is a general phenomenon that is not necessarily restricted to high producers. The results also suggest that plasmid integration within the AAVS1 locus is not an absolute requirement for a high vector yield.

  5. Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals.

    Science.gov (United States)

    Byrne, M J; Power, J M; Preovolos, A; Mariani, J A; Hajjar, R J; Kaye, D M

    2008-12-01

    Abnormal excitation-contraction coupling is a key pathophysiologic component of heart failure (HF), and at a molecular level reduced expression of the sarcoplasmic reticulum (SR) Ca(2+) ATPase (SERCA2a) is a major contributor. Previous studies in small animals have suggested that restoration of SERCA function is beneficial in HF. Despite this promise, the means by which this information might be translated into potential clinical application remains uncertain. Using a recently established cardiac-directed recirculating method of gene delivery, we administered adeno-associated virus 2 (AAV2)/1SERCA2a to sheep with pacing-induced HF. We explored the effects of differing doses of AAV2/1SERCA2a (low 1 x 10(10) d.r.p.; medium 1 x 10(12) d.r.p. and high 1 x 10(13) d.r.p.) in conjunction with an intra-coronary delivery group (2.5 x 10(13) d.r.p.). At the end of the study, haemodynamic, echocardiographic, histopathologic and molecular biologic assessments were performed. Cardiac recirculation delivery of AAV2/1SERCA2a elicited a dose-dependent improvement in cardiac performance determined by left ventricular pressure analysis, (+d P/d t(max); low dose -220+/-70, P>0.05; medium dose 125+/-53, P0.05; medium dose 1+/-2, P>0.05; high dose 6.5+/-3.9, Preversal of the HF molecular phenotype. In contrast, direct intra-coronary infusion did not elicit any effect on ventricular function. As such, AAV2/1SERCA2a elicits favourable functional and molecular actions when delivered in a mechanically targeted manner in an experimental model of HF. These observations lay a platform for potential clinical translation.

  6. rAAV Vectors as Safe and Efficient Tools for the Stable Delivery of Genes to Primary Human Chondrosarcoma Cells In Vitro and In Situ

    Directory of Open Access Journals (Sweden)

    Henning Madry

    2012-01-01

    Full Text Available Treatment of chondrosarcoma remains a major challenge in orthopaedic oncology. Gene transfer strategies based on recombinant adenoassociated viral (rAAV vectors may provide powerful tools to develop new, efficient therapeutic options against these tumors. In the present study, we tested the hypothesis that rAAV is adapted for a stable and safe delivery of foreign sequences in human chondrosarcoma tissue by transducing primary human chondrosarcoma cells in vitro and in situ with different reporter genes (E. coli lacZ, firefly luc, Discosoma sp. RFP. The effects of rAAV administration upon cell survival and metabolic activities were also evaluated to monitor possibly detrimental effects of the gene transfer method. Remarkably, we provide evidence that efficient and prolonged expression of transgene sequences via rAAV can be safely achieved in all the systems investigated, demonstrating the potential of the approach of direct application of therapeutic gene vectors as a means to treat chondrosarcoma.

  7. Delivery of AAV2/9-microdystrophin genes incorporating helix 1 of the coiled-coil motif in the C-terminal domain of dystrophin improves muscle pathology and restores the level of α1-syntrophin and α-dystrobrevin in skeletal muscles of mdx mice.

    Science.gov (United States)

    Koo, Taeyoung; Malerba, Alberto; Athanasopoulos, Takis; Trollet, Capucine; Boldrin, Luisa; Ferry, Arnaud; Popplewell, Linda; Foster, Helen; Foster, Keith; Dickson, George

    2011-11-01

    Duchenne muscular dystrophy is a severe X-linked inherited muscle wasting disorder caused by mutations in the dystrophin gene. Adeno-associated virus (AAV) vectors have been extensively used to deliver genes efficiently for dystrophin expression in skeletal muscles. To overcome limited packaging capacity of AAV vectors (pathology of dystrophic mdx mice. However, the CT domain of dystrophin is thought to recruit part of the dystrophin-associated protein complex, which acts as a mediator of signaling between extracellular matrix and cytoskeleton in muscle fibers. In this study, we extended the ΔR4-23/ΔCT microdystrophin by incorporating helix 1 of the coiled-coil motif in the CT domain of dystrophin (MD2), which contains the α1-syntrophin and α-dystrobrevin binding sites. Intramuscular injection of AAV2/9 expressing CT domain-extended microdystrophin showed efficient dystrophin expression in tibialis anterior muscles of mdx mice. The presence of the CT domain of dystrophin in MD2 increased the recruitment of α1-syntrophin and α-dystrobrevin at the sarcolemma and significantly improved the muscle resistance to lengthening contraction-induced muscle damage in the mdx mice compared with MD1. These results suggest that the incorporation of helix 1 of the coiled-coil motif in the CT domain of dystrophin to the microdystrophins will substantially improve their efficiency in restoring muscle function in patients with Duchenne muscular dystrophy.

  8. Tyrosine phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

    Science.gov (United States)

    Zhong, Li; Li, Baozheng; Jayandharan, Giridhararao; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Herzog, Roland W.; Weigel-Van Aken, Kirsten A.; Hobbs, Jacqueline A.; Zolotukhin, Sergei; Muzyczka, Nicholas; Srivastava, Arun

    2008-01-01

    We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, their transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by ~68% and ~74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which leads to ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy. PMID:18834608

  9. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

    International Nuclear Information System (INIS)

    Zhong Li; Li Baozheng; Jayandharan, Giridhararao; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Herzog, Roland W.

    2008-01-01

    We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, their transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by ∼ 68% and ∼ 74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which results from ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy

  10. In vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease

    Science.gov (United States)

    Lau, Cia-Hin; Suh, Yousin

    2017-01-01

    Adeno-associated virus (AAV) has shown promising therapeutic efficacy with a good safety profile in a wide range of animal models and human clinical trials. With the advent of clustered regulatory interspaced short palindromic repeat (CRISPR)-based genome-editing technologies, AAV provides one of the most suitable viral vectors to package, deliver, and express CRISPR components for targeted gene editing. Recent discoveries of smaller Cas9 orthologues have enabled the packaging of Cas9 nuclease and its chimeric guide RNA into a single AAV delivery vehicle for robust in vivo genome editing. Here, we discuss how the combined use of small Cas9 orthologues, tissue-specific minimal promoters, AAV serotypes, and different routes of administration has advanced the development of efficient and precise in vivo genome editing and comprehensively review the various AAV-CRISPR systems that have been effectively used in animals. We then discuss the clinical implications and potential strategies to overcome off-target effects, immunogenicity, and toxicity associated with CRISPR components and AAV delivery vehicles. Finally, we discuss ongoing non-viral-based ex vivo gene therapy clinical trials to underscore the current challenges and future prospects of CRISPR/Cas9 delivery for human therapeutics. PMID:29333255

  11. Systemic gene delivery to the central nervous system using Adeno-associated virus

    Directory of Open Access Journals (Sweden)

    Mathieu eBOURDENX

    2014-06-01

    Full Text Available Adeno-associated virus (AAV-mediated gene delivery has emerged as an effective and safe tool for both preclinical and clinical studies of neurological disorders. The recent discovery that several serotypes are able to cross the blood-brain-barrier when administered systemically has been a real breakthrough in the field of neurodegenerative diseases. Widespread transgene expression after systemic injection could spark interest as a therapeutic approach. Such strategy will avoid invasive brain surgery and allow non-focal gene therapy promising for CNS diseases affecting large portion of the brain. Here, we will review the recent results achieved through different systemic routes of injection generated in the last decade using systemic AAV-mediated delivery and propose a brief assessment of their values. In particular, we emphasize how the methods used for virus engineering could improve brain transduction after peripheral delivery.

  12. CNS-restricted Transduction and CRISPR/Cas9-mediated Gene Deletion with an Engineered AAV Vector

    Directory of Open Access Journals (Sweden)

    Giridhar Murlidharan

    2016-01-01

    Full Text Available Gene therapy using recombinant adeno-associated viral (AAV vectors is emerging as a promising approach to treat central nervous system disorders such as Spinal muscular atrophy, Batten, Parkinson and Alzheimer disease amongst others. A critical remaining challenge for central nervous system-targeted gene therapy, silencing or gene editing is to limit potential vector dose-related toxicity in off-target cells and organs. Here, we characterize a lab-derived AAV chimeric (AAV2g9, which displays favorable central nervous system attributes derived from both parental counterparts, AAV2 and AAV9. This synthetic AAV strain displays preferential, robust, and widespread neuronal transduction within the brain and decreased glial tropism. Importantly, we observed minimal systemic leakage, decreased sequestration and gene transfer in off-target organs with AAV2g9, when administered into the cerebrospinal fluid. A single intracranial injection of AAV2g9 vectors encoding guide RNAs targeting the schizophrenia risk gene MIR137 (encoding MIR137 in CRISPR/Cas9 knockin mice resulted in brain-specific gene deletion with no detectable events in the liver. This engineered AAV vector is a promising platform for treating neurological disorders through gene therapy, silencing or editing modalities.

  13. Elimination of contaminating cap genes in AAV vector virions reduces immune responses and improves transgene expression in a canine gene therapy model.

    Science.gov (United States)

    Wang, Z; Halbert, C L; Lee, D; Butts, T; Tapscott, S J; Storb, R; Miller, A D

    2014-04-01

    Animal and human gene therapy studies utilizing AAV vectors have shown that immune responses to AAV capsid proteins can severely limit transgene expression. The main source of capsid antigen is that associated with the AAV vectors, which can be reduced by stringent vector purification. A second source of AAV capsid proteins is that expressed from cap genes aberrantly packaged into AAV virions during vector production. This antigen source can be eliminated by the use of a cap gene that is too large to be incorporated into an AAV capsid, such as a cap gene containing a large intron (captron gene). Here, we investigated the effects of elimination of cap gene transfer and of vector purification by CsCl gradient centrifugation on AAV vector immunogenicity and expression following intramuscular injection in dogs. We found that both approaches reduced vector immunogenicity and that combining the two produced the lowest immune responses and highest transgene expression. This combined approach enabled the use of a relatively mild immunosuppressive regimen to promote robust micro-dystrophin gene expression in Duchenne muscular dystrophy-affected dogs. Our study shows the importance of minimizing AAV cap gene impurities and indicates that this improvement in AAV vector production may benefit human applications.

  14. Tolerance induction to cytoplasmic beta-galactosidase by hepatic AAV gene transfer: implications for antigen presentation and immunotoxicity.

    Directory of Open Access Journals (Sweden)

    Ashley T Martino

    2009-08-01

    Full Text Available Hepatic gene transfer, in particular using adeno-associated viral (AAV vectors, has been shown to induce immune tolerance to several protein antigens. This approach has been exploited in animal models of inherited protein deficiency for systemic delivery of therapeutic proteins. Adequate levels of transgene expression in hepatocytes induce a suppressive T cell response, thereby promoting immune tolerance. This study addresses the question of whether AAV gene transfer can induce tolerance to a cytoplasmic protein.AAV-2 vector-mediated hepatic gene transfer for expression of cytoplasmic beta-galactosidase (beta-gal was performed in immune competent mice, followed by a secondary beta-gal gene transfer with E1/E3-deleted adenoviral Ad-LacZ vector to provoke a severe immunotoxic response. Transgene expression from the AAV-2 vector in approximately 2% of hepatocytes almost completely protected from inflammatory T cell responses against beta-gal, eliminated antibody formation, and significantly reduced adenovirus-induced hepatotoxicity. Consequently, approximately 10% of hepatocytes continued to express beta-gal 45 days after secondary Ad-LacZ gene transfer, a time point when control mice had lost all Ad-LacZ derived expression. Suppression of inflammatory T cell infiltration in the liver and liver damage was linked to specific transgene expression and was not seen for secondary gene transfer with Ad-GFP. A combination of adoptive transfer studies and flow cytometric analyses demonstrated induction of Treg that actively suppressed CD8(+ T cell responses to beta-gal and that was amplified in liver and spleen upon secondary Ad-LacZ gene transfer.These data demonstrate that tolerance induction by hepatic AAV gene transfer does not require systemic delivery of the transgene product and that expression of a cytoplasmic neo-antigen in few hepatocytes can induce Treg and provide long-term suppression of inflammatory responses and immunotoxicity.

  15. Recombinant AAV-mediated HSVtk gene transfer with direct intratumoral injections and Tet-On regulation for implanted human breast cancer

    International Nuclear Information System (INIS)

    Zi-Bo, LI; Zhao-Jun, ZENG; Qian, CHEN; Sai-Qun, LUO; Wei-Xin, HU

    2006-01-01

    HSVtk/ganciclovir (GCV) gene therapy has been extensively studied in tumors and relies largely on the gene expression of HSVtk. Most studies, however, have failed to demonstrate any significant benefit of a controlled gene expression strategy in cancer treatment. The Tet-On system is commonly used to regulate gene expression following Dox induction. We have evaluated the antitumor effect of HSVtk/ganciclovir gene therapy under Tet-On regulation by means of adeno-associated virus-2 (AAV-2)-mediated HSVtk gene transfer with direct intratumoral injections in mice bearing breast cancer tumors. Recombinant adeno-associated virus-2 (rAAV) was constructed and transduced into MCF-7 cell line. GCV treatment to the rAAV infected MCF-7 cells was performed by MTT assay under the doxycycline (Dox) induction or without Dox induction at a vp (viral particle) number of ≥10 4 /cell. The virus was administered intratumorally to nude mice that had also received GCV intraperitoneally. The antitumor effects were evaluated by measuring tumor regression and histological analysis. We have demonstrated that GCV treatment to the infected MCF-7 cells under the Dox induction was of more inhibited effects than those without Dox induction at ≥10 4 vp/cell. In ex vivo experiments, tumor growth of BALB/C nude mice breast cancer was retarded after rAAV-2/HSVtk/Tet-On was injected into the tumors under the Dox induction. Infiltrating cells were also observed in tumors after Dox induction followed by GCV treatment and cells were profoundly damaged. The expression of HSVtk gene in MCF-7 cells and BALB/C nude mice tumors was up-regulated by Tet-On under Dox induction with reverse transcription-PCR (RT-PCR) analysis. The antitumor effect of rAAV-mediated HSVtk/GCV gene therapy under the Dox induction with direct intratumoral injections may be a useful treatment for breast cancer and other solid tumors

  16. Overcoming preexisting humoral immunity to AAV using capsid decoys.

    Science.gov (United States)

    Mingozzi, Federico; Anguela, Xavier M; Pavani, Giulia; Chen, Yifeng; Davidson, Robert J; Hui, Daniel J; Yazicioglu, Mustafa; Elkouby, Liron; Hinderer, Christian J; Faella, Armida; Howard, Carolann; Tai, Alex; Podsakoff, Gregory M; Zhou, Shangzhen; Basner-Tschakarjan, Etiena; Wright, John Fraser; High, Katherine A

    2013-07-17

    Adeno-associated virus (AAV) vectors delivered through the systemic circulation successfully transduce various target tissues in animal models. However, similar attempts in humans have been hampered by the high prevalence of neutralizing antibodies to AAV, which completely block vector transduction. We show in both mouse and nonhuman primate models that addition of empty capsid to the final vector formulation can, in a dose-dependent manner, adsorb these antibodies, even at high titers, thus overcoming their inhibitory effect. To further enhance the safety of the approach, we mutated the receptor binding site of AAV2 to generate an empty capsid mutant that can adsorb antibodies but cannot enter a target cell. Our work suggests that optimizing the ratio of full/empty capsids in the final formulation of vector, based on a patient's anti-AAV titers, will maximize the efficacy of gene transfer after systemic vector delivery.

  17. Efficient Recombinase-Mediated Cassette Exchange in hPSCs to Study the Hepatocyte Lineage Reveals AAVS1 Locus-Mediated Transgene Inhibition

    Directory of Open Access Journals (Sweden)

    Laura Ordovás

    2015-11-01

    Full Text Available Tools for rapid and efficient transgenesis in “safe harbor” loci in an isogenic context remain important to exploit the possibilities of human pluripotent stem cells (hPSCs. We created hPSC master cell lines suitable for FLPe recombinase-mediated cassette exchange (RMCE in the AAVS1 locus that allow generation of transgenic lines within 15 days with 100% efficiency and without random integrations. Using RMCE, we successfully incorporated several transgenes useful for lineage identification, cell toxicity studies, and gene overexpression to study the hepatocyte lineage. However, we observed unexpected and variable transgene expression inhibition in vitro, due to DNA methylation and other unknown mechanisms, both in undifferentiated hESC and differentiating hepatocytes. Therefore, the AAVS1 locus cannot be considered a universally safe harbor locus for reliable transgene expression in vitro, and using it for transgenesis in hPSC will require careful assessment of the function of individual transgenes.

  18. Humoral Immunity to AAV-6, 8, and 9 in Normal and Dystrophic Dogs

    Science.gov (United States)

    Shin, Jin-Hong; Yue, Yongping; Smith, Bruce

    2012-01-01

    Abstract Adeno-associated virus (AAV)-6, 8, and 9 are promising gene-delivery vectors for testing novel Duchenne muscular dystrophy gene therapy in the canine model. Humoral immunity greatly influences in vivo AAV transduction. However, neutralizing antibodies to AAV-6, 8, and 9 have not been systemically examined in normal and dystrophic dogs. To gain information on the seroprevalence of antibodies to AAV-6, 8, and 9, we measured neutralizing antibody titers using an in vitro transduction inhibition assay. We examined 72 naive serum samples and 26 serum samples obtained from dogs that had received AAV gene transfer. Our data demonstrated that AAV-6 neutralizing antibody was the most prevalent antibody in dogs irrespective of age, gender, disease status (dystrophic or not), and prior parvovirus vaccination history. Surprisingly, high-level anti-AAV-6 antibody was detected at birth in newborn puppies. Further, a robust antibody response was induced in affected, but not normal newborn dogs following systemic AAV gene transfer. Taken together, our data have provided an important baseline on the seroprevalence of AAV-6, 8, and 9 neutralizing antibodies in normal and Duchenne muscular dystrophy dogs. These results will help guide translational AAV gene-therapy studies in dog models of muscular dystrophy. PMID:22040468

  19. Systemic gene delivery transduces the enteric nervous system of guinea pigs and cynomolgus macaques.

    Science.gov (United States)

    Gombash, S E; Cowley, C J; Fitzgerald, J A; Lepak, C A; Neides, M G; Hook, K; Todd, L J; Wang, G-D; Mueller, C; Kaspar, B K; Bielefeld, E C; Fischer, A J; Wood, J D; Foust, K D

    2017-10-01

    Characterization of adeno-associated viral vector (AAV) mediated gene delivery to the enteric nervous system (ENS) was recently described in mice and rats. In these proof-of-concept experiments, we show that intravenous injections of clinically relevant AAVs can transduce the ENS in guinea pigs and non-human primates. Neonatal guinea pigs were given intravenous injections of either AAV8 or AAV9 vectors that contained a green fluorescent protein (GFP) expression cassette or phosphate-buffered saline. Piglets were euthanized three weeks post injection and tissues were harvested for immunofluorescent analysis. GFP expression was detected in myenteric and submucosal neurons along the length of the gastrointestinal tract in AAV8 injected guinea pigs. GFP-positive neurons were found in dorsal motor nucleus of the vagus and dorsal root ganglia. Less transduction occurred in AAV9-treated tissues. Gastrointestinal tissues were analyzed from young cynomolgus macaques that received systemic injection of AAV9 GFP. GFP expression was detected in myenteric neurons of the stomach, small and large intestine. These data demonstrate that ENS gene delivery translates to larger species. This work develops tools for the field of neurogastroenterology to explore gut physiology and anatomy using emerging technologies such as optogenetics and gene editing. It also provides a basis to develop novel therapies for chronic gut disorders.

  20. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

    OpenAIRE

    Zhong, Li; Li, Baozheng; Jayandharan, Giridhararao; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Herzog, Roland W.; Weigel-Van Aken, Kirsten A.; Hobbs, Jacqueline A.; Zolotukhin, Sergei; Muzyczka, Nicholas; Srivastava, Arun

    2008-01-01

    We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV cap...

  1. Systemic Correction of Murine Glycogen Storage Disease Type IV by an AAV-Mediated Gene Therapy.

    Science.gov (United States)

    Yi, Haiqing; Zhang, Quan; Brooks, Elizabeth D; Yang, Chunyu; Thurberg, Beth L; Kishnani, Priya S; Sun, Baodong

    2017-03-01

    Deficiency of glycogen branching enzyme (GBE) causes glycogen storage disease type IV (GSD IV), which is characterized by the accumulation of a less branched, poorly soluble form of glycogen called polyglucosan (PG) in multiple tissues. This study evaluates the efficacy of gene therapy with an adeno-associated viral (AAV) vector in a mouse model of adult form of GSD IV (Gbe1 ys/ys ). An AAV serotype 9 (AAV9) vector containing a human GBE expression cassette (AAV-GBE) was intravenously injected into 14-day-old Gbe1 ys/ys mice at a dose of 5 × 10 11 vector genomes per mouse. Mice were euthanized at 3 and 9 months of age. In the AAV-treated mice at 3 months of age, GBE enzyme activity was highly elevated in heart, which is consistent with the high copy number of the viral vector genome detected. GBE activity also increased significantly in skeletal muscles and the brain, but not in the liver. The glycogen content was reduced to wild-type levels in muscles and significantly reduced in the liver and brain. At 9 months of age, though GBE activity was only significantly elevated in the heart, glycogen levels were significantly reduced in the liver, brain, and skeletal muscles of the AAV-treated mice. In addition, the AAV treatment resulted in an overall decrease in plasma activities of alanine transaminase, aspartate transaminase, and creatine kinase, and a significant increase in fasting plasma glucose concentration at 9 months of age. This suggests an alleviation of damage and improvement of function in the liver and muscles by the AAV treatment. This study demonstrated a long-term benefit of a systemic injection of an AAV-GBE vector in Gbe1 ys/ys mice.

  2. AAV8-mediated expression of glucocerebrosidase ameliorates the storage pathology in the visceral organs of a mouse model of Gaucher disease.

    Science.gov (United States)

    McEachern, Kerry Anne; Nietupski, Jennifer B; Chuang, Wei-Lien; Armentano, Donna; Johnson, Jennifer; Hutto, Elizabeth; Grabowski, Gregory A; Cheng, Seng H; Marshall, John

    2006-06-01

    Gaucher disease is the most common of the lysosomal storage disorders. The primary manifestation is the accumulation of glucosylceramide (GL-1) in the macrophages of liver and spleen (Gaucher cells), due to a deficiency in the lysosomal hydrolase glucocerebrosidase (GC). A Gaucher mouse model (D409V/null) exhibiting reduced GC activity and accumulation of GL-1 was used to evaluate adeno-associated viral (AAV)-mediated gene therapy. A recombinant AAV8 serotype vector bearing human GC (hGC) was administered intravenously to the mice. The levels of hGC in blood and tissues were determined, as were the effects of gene transfer on the levels of GL-1. Histopathological evaluation was performed on liver, spleen and lungs. Vector administration to pre-symptomatic Gaucher mice resulted in sustained hepatic secretion of hGC at levels that prevented GL-1 accumulation and the appearance of Gaucher cells in the liver, spleen and lungs. AAV administration to older mice with established disease resulted in normalization of GL-1 levels in the spleen and liver and partially reduced that in the lung. Analysis of the bronchoalveolar lavage fluid (BALF) from treated mice showed significant correction of the abnormal cellularity and cell differentials. No antibodies to the expressed hGC were detected following a challenge with recombinant enzyme suggesting the animals were tolerized to human enzyme. These data demonstrate the effectiveness of AAV-mediated gene therapy at preventing and correcting the biochemical and pathological abnormalities in a Gaucher mouse model, and thus support the continued consideration of this vector as an alternative approach to treating Gaucher disease. Copyright 2006 John Wiley & Sons, Ltd.

  3. Next-generation AAV vectors for clinical use: an ever-accelerating race.

    Science.gov (United States)

    Weinmann, Jonas; Grimm, Dirk

    2017-10-01

    During the past five decades, it has become evident that Adeno-associated virus (AAV) represents one of the most potent, most versatile, and thus most auspicious platforms available for gene delivery into cells, animals and, ultimately, humans. Particularly attractive is the ease with which the viral capsid-the major determinant of virus-host interaction including cell specificity and antibody recognition-can be modified and optimized at will. This has motivated countless researchers to develop high-throughput technologies in which genetically engineered AAV capsid libraries are subjected to a vastly hastened emulation of natural evolution, with the aim to enrich novel synthetic AAV capsids displaying superior features for clinical application. While the power and potential of these forward genetics approaches is undisputed, they are also inherently challenging as success depends on a combination of library quality, fidelity, and complexity. Here, we will describe and discuss two original, very exciting strategies that have emerged over the last three years and that promise to alleviate at least some of these concerns, namely, (i) a reverse genetics approach termed "ancestral AAV sequence reconstruction," and (ii) AAV genome barcoding as a technology that can advance both, forward and reverse genetics stratagems. Notably, despite the conceptual differences of these two technologies, they pursue the same goal which is tailored acceleration of AAV evolution and thus winning the race for the next-generation AAV vectors for clinical use.

  4. Assessment of tropism and effectiveness of new primate-derived hybrid recombinant AAV serotypes in the mouse and primate retina.

    Directory of Open Access Journals (Sweden)

    Peter Charbel Issa

    Full Text Available Adeno-associated viral vectors (AAV have been shown to be safe in the treatment of retinal degenerations in clinical trials. Thus, improving the efficiency of viral gene delivery has become increasingly important to increase the success of clinical trials. In this study, structural domains of different rAAV serotypes isolated from primate brain were combined to create novel hybrid recombinant AAV serotypes, rAAV2/rec2 and rAAV2/rec3. The efficacy of these novel serotypes were assessed in wild type mice and in two models of retinal degeneration (the Abca4(-/- mouse which is a model for Stargardt disease and in the Pde6b(rd1/rd1 mouse in vivo, in primate tissue ex-vivo, and in the human-derived SH-SY5Y cell line, using an identical AAV2 expression cassette. We show that these novel hybrid serotypes can transduce retinal tissue in mice and primates efficiently, although no more than AAV2/2 and rAAV2/5 serotypes. Transduction efficiency appeared lower in the Abca4(-/- mouse compared to wild type with all vectors tested, suggesting an effect of specific retinal diseases on the efficiency of gene delivery. Shuffling of AAV capsid domains may have clinical applications for patients who develop T-cell immune responses following AAV gene therapy, as specific peptide antigen sequences could be substituted using this technique prior to vector re-treatments.

  5. Assessment of tropism and effectiveness of new primate-derived hybrid recombinant AAV serotypes in the mouse and primate retina.

    Science.gov (United States)

    Charbel Issa, Peter; De Silva, Samantha R; Lipinski, Daniel M; Singh, Mandeep S; Mouravlev, Alexandre; You, Qisheng; Barnard, Alun R; Hankins, Mark W; During, Matthew J; Maclaren, Robert E

    2013-01-01

    Adeno-associated viral vectors (AAV) have been shown to be safe in the treatment of retinal degenerations in clinical trials. Thus, improving the efficiency of viral gene delivery has become increasingly important to increase the success of clinical trials. In this study, structural domains of different rAAV serotypes isolated from primate brain were combined to create novel hybrid recombinant AAV serotypes, rAAV2/rec2 and rAAV2/rec3. The efficacy of these novel serotypes were assessed in wild type mice and in two models of retinal degeneration (the Abca4(-/-) mouse which is a model for Stargardt disease and in the Pde6b(rd1/rd1) mouse) in vivo, in primate tissue ex-vivo, and in the human-derived SH-SY5Y cell line, using an identical AAV2 expression cassette. We show that these novel hybrid serotypes can transduce retinal tissue in mice and primates efficiently, although no more than AAV2/2 and rAAV2/5 serotypes. Transduction efficiency appeared lower in the Abca4(-/-) mouse compared to wild type with all vectors tested, suggesting an effect of specific retinal diseases on the efficiency of gene delivery. Shuffling of AAV capsid domains may have clinical applications for patients who develop T-cell immune responses following AAV gene therapy, as specific peptide antigen sequences could be substituted using this technique prior to vector re-treatments.

  6. associated virus (AAV)-mediated expression of small interfering RNA

    African Journals Online (AJOL)

    user

    2011-04-11

    Apr 11, 2011 ... disadvantages. In this study, a siRNA expression recombinant adeno-associated virus (AAV) was .... cleotides were designed, which contained a sense strand of p53 or ..... During MJ, Kaplitt MG, Stem MB, Eidelberg D (2001).

  7. AAV Gene Therapy for MPS1-associated Corneal Blindness.

    Science.gov (United States)

    Vance, Melisa; Llanga, Telmo; Bennett, Will; Woodard, Kenton; Murlidharan, Giridhar; Chungfat, Neil; Asokan, Aravind; Gilger, Brian; Kurtzberg, Joanne; Samulski, R Jude; Hirsch, Matthew L

    2016-02-22

    Although cord blood transplantation has significantly extended the lifespan of mucopolysaccharidosis type 1 (MPS1) patients, over 95% manifest cornea clouding with about 50% progressing to blindness. As corneal transplants are met with high rejection rates in MPS1 children, there remains no treatment to prevent blindness or restore vision in MPS1 children. Since MPS1 is caused by mutations in idua, which encodes alpha-L-iduronidase, a gene addition strategy to prevent, and potentially reverse, MPS1-associated corneal blindness was investigated. Initially, a codon optimized idua cDNA expression cassette (opt-IDUA) was validated for IDUA production and function following adeno-associated virus (AAV) vector transduction of MPS1 patient fibroblasts. Then, an AAV serotype evaluation in human cornea explants identified an AAV8 and 9 chimeric capsid (8G9) as most efficient for transduction. AAV8G9-opt-IDUA administered to human corneas via intrastromal injection demonstrated widespread transduction, which included cells that naturally produce IDUA, and resulted in a >10-fold supraphysiological increase in IDUA activity. No significant apoptosis related to AAV vectors or IDUA was observed under any conditions in both human corneas and MPS1 patient fibroblasts. The collective preclinical data demonstrate safe and efficient IDUA delivery to human corneas, which may prevent and potentially reverse MPS1-associated cornea blindness.

  8. Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene.

    Science.gov (United States)

    Melo, Luis G; Agrawal, Reitu; Zhang, Lunan; Rezvani, Mojgan; Mangi, Abeel A; Ehsan, Afshin; Griese, Daniel P; Dell'Acqua, Giorgio; Mann, Michael J; Oyama, Junichi; Yet, Shaw-Fang; Layne, Matthew D; Perrella, Mark A; Dzau, Victor J

    2002-02-05

    Ischemia and oxidative stress are the leading mechanisms for tissue injury. An ideal strategy for preventive/protective therapy would be to develop an approach that could confer long-term transgene expression and, consequently, tissue protection from repeated ischemia/reperfusion injury with a single administration of a therapeutic gene. In the present study, we used recombinant adeno-associated virus (rAAV) as a vector for direct delivery of the cytoprotective gene heme oxygenase-1 (HO-1) into the rat myocardium, with the purpose of evaluating this strategy as a therapeutic approach for long-term protection from ischemia-induced myocardial injury. Human HO-1 gene (hHO-1) was delivered to normal rat hearts by intramyocardial injection. AAV-mediated transfer of the hHO-1 gene 8 weeks before acute coronary artery ligation and release led to a dramatic reduction (>75%) in left ventricular myocardial infarction. The reduction in infarct size was accompanied by decreases in myocardial lipid peroxidation and in proapoptotic Bax and proinflammatory interleukin-1beta protein abundance, concomitant with an increase in antiapoptotic Bcl-2 protein level. This suggested that the transgene exerts its cardioprotective effects in part by reducing oxidative stress and associated inflammation and apoptotic cell death. This study documents the beneficial therapeutic effect of rAAV-mediated transfer, before myocardial injury, of a cytoprotective gene that confers long-term myocardial protection from ischemia/reperfusion injury. Our data suggest that this novel "pre-event" gene transfer approach may provide sustained tissue protection from future repeated episodes of injury and may be beneficial as preventive therapy for patients with or at risk of developing coronary ischemic events.

  9. [Effects of cell-mediated immunity induced by intramuscular chitosan-pJME/ GM-CSF nano-DNA vaccine in BAlb/c mice].

    Science.gov (United States)

    Zhai, Yong-Zhen; Zhou, Yan; Ma, Li; Feng, Guo-He

    2014-07-01

    This study aimed to investigate the immune adjuvant effect and mechanism induced by chitosan nanoparticles carrying pJME/GM-CSF. In this study, plasmid DNA (pJME/GM-CSF) was encapsulated in chitosan to prepare chitosan-pJME/GM-CSF nanoparticles using a complex coacervation process. Immunohistochemistry was used to detect the type of infiltrating cells at the site of intramuscular injection. The phenotype and functional changes of splenic DCs were measured by flow cytometry after different immunogens were injected intramuscularly. The killing activity of CTLs was assessed using the lactate dehydrogenase (LDH) release assay. The preparation of chitosan-pJME/GM-CSF nanoparticles matched the expected theoretical results. Our results also found that, after pJME/GM-CSF injection, the incoming cells were a mixture of macrophages, neutrophils, and immature DCs. Meanwhile, pJME/GM-CSF increased the expression of MHC class II molecules on splenic DCs, and enhanced their Ag capture and presentation functions. Cell-mediated immunity was induced by the vaccine. Furthermore, chitosan-pJME/GM-CSF nanoparticles outperformed the administration of standard pJME/GM-CSF in terms of DC recruitment, antigen processing and presentation, and vaccine enhancement. These findings reveal that chitosan could be used as delivery vector for DNA vaccine intramuscular immunizations, and enhance pJME/GM-CSF-induced cellular immune responses.

  10. Hepatitis virus protein X-Phenylalanine Hydroxylase fusion proteins identified in PKU mice treated with AAV-WPRE vectors

    Science.gov (United States)

    Utilizing the Pahenu2 mouse model for phenylketonuria (PKU), we developed an improved expression vector containing the Woodchuck Hepatitis Virus post-transcriptional regulatory element inserted into a rAAV-mPAH construct (rAAV-mPAH-WPRE) for treatment of PKU. Following portal vein delivery of these ...

  11. Adeno-associated virus (AAV-mediated suppression of Ca2+/calmodulin kinase IV activity in the nucleus accumbens modulates emotional behaviour in mice

    Directory of Open Access Journals (Sweden)

    Bading Hilmar

    2007-12-01

    Full Text Available Abstract Background Calcium/calmodulin-dependent protein kinase IV (CaMKIV controls activity-dependent gene transcription by regulating the activity of the cyclic AMP response element binding protein (CREB. This signaling pathway is involved in gating emotional responses in the CNS but previous studies did not address the potential roles of CaMKIV in discrete brain regions. In the present study, we aimed at specifically dissecting the role of CaMKIV in the nucleus accumbens of adult mice. Results We used recombinant adeno-associated virus (rAAV-mediated gene transfer of a dominant-negative CaMKIV variant (rAAV-dnCaMKIV to inhibit endogenous CaMKIV in the nucleus accumbens. rAAV-dnCaMKIV treated animals were subjected to a battery of tests including, prepulse inhibition of the acoustic startle response, open field, social interaction and anxiety-related behaviour. We found that basal locomotor activity in the open field, and prepulse inhibition or startle performance were unaltered in mice infected with rAAV-dnCaMKIV in the nucleus accumbens. However, anxiogenic effects were revealed in social interaction testing and the light/dark emergence test. Conclusion Our findings suggest a modulatory role of CaMKIV in the nucleus accumbens in anxiety-like behaviour but not sensorimotor gating.

  12. Intramuscular versus intravenous prophylactic oxytocin for postpartum hemorrhage after vaginal delivery: a randomized controlled study.

    Science.gov (United States)

    Dagdeviren, Hediye; Cengiz, Huseyin; Heydarova, Ulkar; Caypinar, Sema Suzen; Kanawati, Ammar; Guven, Ender; Ekin, Murat

    2016-11-01

    Prevention of postpartum haemorrhage (PPH) is essential in the pursuit of improved health care for women. Oxytocin, the most commonly used uterotonic agent to prevent PPH, has no established the route of administration. In this study we aimed to compare whether the mode of oxytocin administration, i.e., intravenous and intramuscular administration, has an effect on the potential benefits and side effects. A total of 256 women were randomised into two groups: intramuscular group (128) or intravenous group (128). Estimated blood loss during the third stage of labour was similar between the two groups (p = 0.572). Further there were no statistically significant difference was noted between the two groups in terms of the mean duration of labor, duration of the third stage of labor, manual removal of the placenta, need for instrumental delivery, need for blood transfusion, PPH ≥500 mL, PPH ≥1000 mL, or length of hospital stay. Using oxytocin by intravenous and intramuscular route has a similar efficacy and adverse effects.

  13. AAV-PHP.B-Mediated Global-Scale Expression in the Mouse Nervous System Enables GBA1 Gene Therapy for Wide Protection from Synucleinopathy.

    Science.gov (United States)

    Morabito, Giuseppe; Giannelli, Serena G; Ordazzo, Gabriele; Bido, Simone; Castoldi, Valerio; Indrigo, Marzia; Cabassi, Tommaso; Cattaneo, Stefano; Luoni, Mirko; Cancellieri, Cinzia; Sessa, Alessandro; Bacigaluppi, Marco; Taverna, Stefano; Leocani, Letizia; Lanciego, José L; Broccoli, Vania

    2017-12-06

    The lack of technology for direct global-scale targeting of the adult mouse nervous system has hindered research on brain processing and dysfunctions. Currently, gene transfer is normally achieved by intraparenchymal viral injections, but these injections target a restricted brain area. Herein, we demonstrated that intravenous delivery of adeno-associated virus (AAV)-PHP.B viral particles permeated and diffused throughout the neural parenchyma, targeting both the central and the peripheral nervous system in a global pattern. We then established multiple procedures of viral transduction to control gene expression or inactivate gene function exclusively in the adult nervous system and assessed the underlying behavioral effects. Building on these results, we established an effective gene therapy strategy to counteract the widespread accumulation of α-synuclein deposits throughout the forebrain in a mouse model of synucleinopathy. Transduction of A53T-SCNA transgenic mice with AAV-PHP.B-GBA1 restored physiological levels of the enzyme, reduced α-synuclein pathology, and produced significant behavioral recovery. Finally, we provided evidence that AAV-PHP.B brain penetration does not lead to evident dysfunctions in blood-brain barrier integrity or permeability. Altogether, the AAV-PHP.B viral platform enables non-invasive, widespread, and long-lasting global neural expression of therapeutic genes, such as GBA1, providing an invaluable approach to treat neurodegenerative diseases with diffuse brain pathology such as synucleinopathies. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  14. Suppression of cancer growth in mice by adeno-associated virus vector-mediated IFN-beta expression driven by hTERT promoter.

    Science.gov (United States)

    He, Ling Feng; Wang, Yi Gang; Xiao, Tian; Zhang, Kang Jiang; Li, Gong Chu; Gu, Jin Fa; Chu, Liang; Tang, Wen Hao; Tan, Wen-Song; Liu, Xin Yuan

    2009-12-28

    Adeno-associated virus (AAV) has rapidly become a promising gene delivery vehicle for its excellent advantages of non-immunogenic, low pathogenicity and long-term gene expression in vivo. However, a major obstacle in development of effective AAV vector is the lack of tissue specificity, which caused low efficiency of AAV transfer to target cells. The application of human telomerase reverse transcriptase (hTERT) promoter is a prior targeting strategy for AAV in cancer gene therapy as hTERT activity is transcriptionally upregulated in most cancer cells. In the present work, we investigated whether AAV-mediated human interferon beta (IFN-beta) gene driven by hTERT promoter could specifically express in tumor cells and suppress tumor cell growth. Our data demonstrated that hTERT promoter-driven IFN-beta expression was the tumor-specific, decreased the cell viability of tumor cells but not normal cells, and induced tumor cell apoptosis via activation of caspase pathway and release of cytochrome c. AAV-mediated IFN-beta expression driven by hTERT promoter significantly suppressed the growth of colorectal cancer and lung cancer xenograft in mice and resulted in tumor cells death in vivo. These data suggested that AAVs in combination with hTERT-mediated IFN-beta expression could exert potential antitumor activity and provide a novel targeting approach to clinical gene therapy of varieties of cancers.

  15. Adeno-Associated Virus-Mediated Correction of a Canine Model of Glycogen Storage Disease Type Ia

    Science.gov (United States)

    Weinstein, David A.; Correia, Catherine E.; Conlon, Thomas; Specht, Andrew; Verstegen, John; Onclin-Verstegen, Karine; Campbell-Thompson, Martha; Dhaliwal, Gurmeet; Mirian, Layla; Cossette, Holly; Falk, Darin J.; Germain, Sean; Clement, Nathalie; Porvasnik, Stacy; Fiske, Laurie; Struck, Maggie; Ramirez, Harvey E.; Jordan, Juan; Andrutis, Karl; Chou, Janice Y.; Byrne, Barry J.

    2010-01-01

    Abstract Glycogen storage disease type Ia (GSDIa; von Gierke disease; MIM 232200) is caused by a deficiency in glucose-6-phosphatase-α. Patients with GSDIa are unable to maintain glucose homeostasis and suffer from severe hypoglycemia, hepatomegaly, hyperlipidemia, hyperuricemia, and lactic acidosis. The canine model of GSDIa is naturally occurring and recapitulates almost all aspects of the human form of disease. We investigated the potential of recombinant adeno-associated virus (rAAV) vector-based therapy to treat the canine model of GSDIa. After delivery of a therapeutic rAAV2/8 vector to a 1-day-old GSDIa dog, improvement was noted as early as 2 weeks posttreatment. Correction was transient, however, and by 2 months posttreatment the rAAV2/8-treated dog could no longer sustain normal blood glucose levels after 1 hr of fasting. The same animal was then dosed with a therapeutic rAAV2/1 vector delivered via the portal vein. Two months after rAAV2/1 dosing, both blood glucose and lactate levels were normal at 4 hr postfasting. With more prolonged fasting, the dog still maintained near-normal glucose concentrations, but lactate levels were elevated by 9 hr, indicating that partial correction was achieved. Dietary glucose supplementation was discontinued starting 1 month after rAAV2/1 delivery and the dog continues to thrive with minimal laboratory abnormalities at 23 months of age (18 months after rAAV2/1 treatment). These results demonstrate that delivery of rAAV vectors can mediate significant correction of the GSDIa phenotype and that gene transfer may be a promising alternative therapy for this disease and other genetic diseases of the liver. PMID:20163245

  16. Production of recombinant AAV vectors encoding insulin-like growth factor I is enhanced by interaction among AAV rep regulatory sequences

    Directory of Open Access Journals (Sweden)

    Dilley Robert

    2009-01-01

    Full Text Available Abstract Background Adeno-associated virus (AAV vectors are promising tools for gene therapy. Currently, their potential is limited by difficulties in producing high vector yields with which to generate transgene protein product. AAV vector production depends in part upon the replication (Rep proteins required for viral replication. We tested the hypothesis that mutations in the start codon and upstream regulatory elements of Rep78/68 in AAV helper plasmids can regulate recombinant AAV (rAAV vector production. We further tested whether the resulting rAAV vector preparation augments the production of the potentially therapeutic transgene, insulin-like growth factor I (IGF-I. Results We constructed a series of AAV helper plasmids containing different Rep78/68 start codon in combination with different gene regulatory sequences. rAAV vectors carrying the human IGF-I gene were prepared with these vectors and the vector preparations used to transduce HT1080 target cells. We found that the substitution of ATG by ACG in the Rep78/68 start codon in an AAV helper plasmid (pAAV-RC eliminated Rep78/68 translation, rAAV and IGF-I production. Replacement of the heterologous sequence upstream of Rep78/68 in pAAV-RC with the AAV2 endogenous p5 promoter restored translational activity to the ACG mutant, and restored rAAV and IGF-I production. Insertion of the AAV2 p19 promoter sequence into pAAV-RC in front of the heterologous sequence also enabled ACG to function as a start codon for Rep78/68 translation. The data further indicate that the function of the AAV helper construct (pAAV-RC, that is in current widespread use for rAAV production, may be improved by replacement of its AAV2 unrelated heterologous sequence with the native AAV2 p5 promoter. Conclusion Taken together, the data demonstrate an interplay between the start codon and upstream regulatory sequences in the regulation of Rep78/68 and indicate that selective mutations in Rep78/68 regulatory elements

  17. Synthetic AAV/CRISPR vectors for blocking HIV-1 expression in persistently infected astrocytes.

    Science.gov (United States)

    Kunze, Christine; Börner, Kathleen; Kienle, Eike; Orschmann, Tanja; Rusha, Ejona; Schneider, Martha; Radivojkov-Blagojevic, Milena; Drukker, Micha; Desbordes, Sabrina; Grimm, Dirk; Brack-Werner, Ruth

    2018-02-01

    Astrocytes, the most abundant cells in the mammalian brain, perform key functions and are involved in several neurodegenerative diseases. The human immunodeficiency virus (HIV) can persist in astrocytes, contributing to the HIV burden and neurological dysfunctions in infected individuals. While a comprehensive approach to HIV cure must include the targeting of HIV-1 in astrocytes, dedicated tools for this purpose are still lacking. Here we report a novel Adeno-associated virus-based vector (AAV9P1) with a synthetic surface peptide for transduction of astrocytes. Analysis of AAV9P1 transduction efficiencies with single brain cell populations, including primary human brain cells, as well as human brain organoids demonstrated that AAV9P1 targeted terminally differentiated human astrocytes much more efficiently than neurons. We then investigated whether AAV9P1 can be used to deliver HIV-inhibitory genes to astrocytes. To this end we generated AAV9P1 vectors containing genes for HIV-1 proviral editing by CRISPR/Cas9. Latently HIV-1 infected astrocytes transduced with these vectors showed significantly diminished reactivation of proviruses, compared with untransduced cultures. Sequence analysis identified mutations/deletions in key HIV-1 transcriptional control regions. We conclude that AAV9P1 is a promising tool for gene delivery to astrocytes and may facilitate inactivation/destruction of persisting HIV-1 proviruses in astrocyte reservoirs. © 2017 Wiley Periodicals, Inc.

  18. Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain

    Science.gov (United States)

    Murlidharan, Giridhar; Crowther, Andrew; Reardon, Rebecca A.; Song, Juan

    2016-01-01

    Adeno-associated viruses (AAV) are currently being evaluated in clinical trials for gene therapy of CNS disorders. However, host factors that influence the spread, clearance, and transduction efficiency of AAV vectors in the brain are not well understood. Recent studies have demonstrated that fluid flow mediated by aquaporin-4 (AQP4) channels located on astroglial end feet is essential for exchange of solutes between interstitial and cerebrospinal fluid. This phenomenon, which is essential for interstitial clearance of solutes from the CNS, has been termed glial-associated lymphatic transport or glymphatic transport. In the current study, we demonstrate that glymphatic transport profoundly affects various aspects of AAV gene transfer in the CNS. Altered localization of AQP4 in aged mouse brains correlated with significantly increased retention of AAV vectors in the parenchyma and reduced systemic leakage following ventricular administration. We observed a similar increase in AAV retention and transgene expression upon i.c.v. administration in AQP4–/– mice. Consistent with this observation, fluorophore-labeled AAV vectors showed markedly reduced flux from the ventricles of AQP4–/– mice compared with WT mice. These results were further corroborated by reduced AAV clearance from the AQP4-null brain, as demonstrated by reduced transgene expression and vector genome accumulation in systemic organs. We postulate that deregulation of glymphatic transport in aged and diseased brains could markedly affect the parenchymal spread, clearance, and gene transfer efficiency of AAV vectors. Assessment of biomarkers that report the kinetics of CSF flux in prospective gene therapy patients might inform variable treatment outcomes and guide future clinical trial design. PMID:27699236

  19. Supramolecular polypseudorotaxane gels for controlled delivery of rAAV vectors in human mesenchymal stem cells for regenerative medicine.

    Science.gov (United States)

    Rey-Rico, Ana; Babicz, Heiko; Madry, Henning; Concheiro, Angel; Alvarez-Lorenzo, Carmen; Cucchiarini, Magali

    2017-10-15

    The aim of this work was to investigate, for the first time, the possibility of using supramolecular polypseudorotaxane gels as scaffolds that can durably deliver rAAV vectors for applications in cartilage regeneration. Dispersions of Pluronic ® F68 (PF68) or Tetronic ® 908 (T908) containing either hyaluronic acid (HA) or chondroitin sulfate (CS) were prepared in PBS. Then, alpha-cyclodextrin (αCD) was added to some dispersions to form polypseudorotaxane gels. Polysaccharides and αCD reinforced the viscoelasticity of the gels, which could withstand autoclaving without changes. In vitro release of rAAV vectors and subsequent transduction of human mesenchymal stem cells (hMSCs) by rAAV vectors from the release medium and from gels in direct contact with the cells were investigated. Compared with free vectors, the gels provided higher levels of transgene expression. CS (or HA)/PF68/αCD gels rapidly released rAAV vectors while CS (or HA)/T908/αCD gels provided sustained release probably due to different interactions with the viral vectors. Incorporation of αCD into CS (or HA)/PF68 gels resulted on higher rAAV concentrations and sustained levels of transgene expression over time. HA increased the bioactivity and cytocompatibility of the gels, especially those based on T908. Overall, combining rAAV gene transfer with polypseudorotaxane gels may provide new, promising tools for human tissue engineering and regenerative medicine strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. An AAV promoter-driven neuropeptide Y gene delivery system using Sendai virosomes for neurons and rat brain.

    Science.gov (United States)

    Wu, P; de Fiebre, C M; Millard, W J; King, M A; Wang, S; Bryant, S O; Gao, Y P; Martin, E J; Meyer, E M

    1996-03-01

    An adeno-associated virus (AAV)-derived construct (pJDT95npy) containing rat neuropeptide Y (NPY) cDNA inserted downstream of endogenous AAV promoters was used to investigate AAV-driven NPY expression in postmitotic neurons in vitro and in the brain. NPY mRNA was expressed in NT2/N and rat brain primary neuronal cultures after transfection. There was a corresponding increase in the number of neurons staining for NPY-like immunoreactivity and an increase in NPY release during depolarization in the primary cultures. Injections of Sendai-virosome encapsulated pJDT95npy into neocortex increased NPY-like immunoreactivity in neurons but not glia indicating that the latter cell type did not have the translational, post-translational or storage capacity to accumulate the peptide. Injections into the rat hypothalamic para-ventricular nucleus increased body weight and food intake for 21 days, though NPY-like immunoreactivity remained elevated for at least 50 days. These studies demonstrate that AAV-derived constructs may be useful for delivering genes into post-mitotic neurons, and that Sendai virosomes are effective for delivering these constructs in vivo.

  1. AAV-mediated delivery of the transcription factor XBP1s into the striatum reduces mutant Huntingtin aggregation in a mouse model of Huntington’s disease

    International Nuclear Information System (INIS)

    Zuleta, Amparo; Vidal, Rene L.; Armentano, Donna; Parsons, Geoffrey; Hetz, Claudio

    2012-01-01

    Highlights: ► The contribution of ER stress to HD has not been directly addressed. ► Expression of XBP1s using AAVs decreases Huntingtin aggregation in vivo. ► We describe a new in vivo model of HD based on the expression of a large fragment of mHtt-RFP. -- Abstract: Huntington’s disease (HD) is caused by mutations that expand a polyglutamine region in the amino-terminal domain of Huntingtin (Htt), leading to the accumulation of intracellular inclusions and progressive neurodegeneration. Recent reports indicate the engagement of endoplasmic reticulum (ER) stress responses in human HD post mortem samples and animal models of the disease. Adaptation to ER stress is mediated by the activation of the unfolded protein response (UPR), an integrated signal transduction pathway that attenuates protein folding stress by controlling the expression of distinct transcription factors including X-Box binding protein 1 (XBP1). Here we targeted the expression of XBP1 on a novel viral-based model of HD. We delivered an active form of XBP1 locally into the striatum of adult mice using adeno-associated vectors (AAVs) and co-expressed this factor with a large fragment of mutant Htt as a fusion protein with RFP (Htt588 Q95 -mRFP) to directly visualize the accumulation of Htt inclusions in the brain. Using this approach, we observed a significant reduction in the accumulation of Htt588 Q95 -mRFP intracellular inclusion when XBP1 was co-expressed in the striatum. These results contrast with recent findings indicating a protective effect of XBP1 deficiency in neurodegeneration using knockout mice, and suggest a potential use of gene therapy strategies to manipulate the UPR in the context of HD.

  2. Nanoparticle-mediated delivery of pioglitazone enhances therapeutic neovascularization in a murine model of hindlimb ischemia.

    Science.gov (United States)

    Nagahama, Ryoji; Matoba, Tetsuya; Nakano, Kaku; Kim-Mitsuyama, Shokei; Sunagawa, Kenji; Egashira, Kensuke

    2012-10-01

    Critical limb ischemia is a severe form of peripheral artery disease (PAD) for which neither surgical revascularization nor endovascular therapy nor current medicinal therapy has sufficient therapeutic effects. Peroxisome proliferator activated receptor-γ agonists present angiogenic activity in vitro; however, systemic administration of peroxisome proliferator-activated receptor-γ agonists is hampered by its side effects, including heart failure. Here, we demonstrate that the nanoparticle (NP)-mediated delivery of the peroxisome proliferator activated receptor-γ agonist pioglitazone enhances its therapeutic efficacy on ischemia-induced neovascularization in a murine model. In a nondiabetic murine model of hindlimb ischemia, a single intramuscular injection of pioglitazone-incorporated NP (1 µg/kg) into ischemic muscles significantly improved the blood flow recovery in the ischemic limbs, significantly increasing the number of CD31-positive capillaries and α-smooth muscle actin-positive arterioles. The therapeutic effects of pioglitazone-incorporated NP were diminished by the peroxisome proliferator activated receptor-γ antagonist GW9662 and were not observed in endothelial NO synthase-deficient mice. Pioglitazone-incorporated NP induced endothelial NO synthase phosphorylation, as demonstrated by Western blot analysis, as well as expression of multiple angiogenic growth factors in vivo, including vascular endothelial growth factor-A, vascular endothelial growth factor-B, and fibroblast growth factor-1, as demonstrated by real-time polymerase chain reaction. Intramuscular injection of pioglitazone (1 µg/kg) was ineffective, and oral administration necessitated a >500 μg/kg per day dose to produce therapeutic effects equivalent to those of pioglitazone-incorporated NP. NP-mediated drug delivery is a novel modality that may enhance the effectiveness of therapeutic neovascularization, surpassing the effectiveness of current treatments for peripheral artery

  3. Widespread transduction of astrocytes and neurons in the mouse central nervous system after systemic delivery of a self-complementary AAV-PHP.B vector.

    Science.gov (United States)

    Rincon, Melvin Y; de Vin, Filip; Duqué, Sandra I; Fripont, Shelly; Castaldo, Stephanie A; Bouhuijzen-Wenger, Jessica; Holt, Matthew G

    2018-04-01

    Until recently, adeno-associated virus 9 (AAV9) was considered the AAV serotype most effective in crossing the blood-brain barrier (BBB) and transducing cells of the central nervous system (CNS), following systemic injection. However, a newly engineered capsid, AAV-PHP.B, is reported to cross the BBB at even higher efficiency. We investigated how much we could boost CNS transgene expression by using AAV-PHP.B carrying a self-complementary (sc) genome. To allow comparison, 6 weeks old C57BL/6 mice received intravenous injections of scAAV2/9-GFP or scAAV2/PHP.B-GFP at equivalent doses. Three weeks postinjection, transgene expression was assessed in brain and spinal cord. We consistently observed more widespread CNS transduction and higher levels of transgene expression when using the scAAV2/PHP.B-GFP vector. In particular, we observed an unprecedented level of astrocyte transduction in the cortex, when using a ubiquitous CBA promoter. In comparison, neuronal transduction was much lower than previously reported. However, strong neuronal expression (including spinal motor neurons) was observed when the human synapsin promoter was used. These findings constitute the first reported use of an AAV-PHP.B capsid, encapsulating a scAAV genome, for gene transfer in adult mice. Our results underscore the potential of this AAV construct as a platform for safer and more efficacious gene therapy vectors for the CNS.

  4. Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear.

    Science.gov (United States)

    Kilpatrick, L A; Li, Q; Yang, J; Goddard, J C; Fekete, D M; Lang, H

    2011-06-01

    Murine models are ideal for studying cochlear gene transfer, as many hearing loss-related mutations have been discovered and mapped within the mouse genome. However, because of the small size and delicate nature, the membranous labyrinth of the mouse is a challenging target for the delivery of viral vectors. To minimize injection trauma, we developed a procedure for the controlled release of adeno-associated viruses (AAVs) into the scala media of adult mice. This procedure poses minimal risk of injury to structures of the cochlea and middle ear, and allows for near-complete preservation of low and middle frequency hearing. In this study, transduction efficiency and cellular specificity of AAV vectors (serotypes 1, 2, 5, 6 and 8) were investigated in normal and drug-deafened ears. Using the cytomegalovirus promoter to drive gene expression, a variety of cell types were transduced successfully, including sensory hair cells and supporting cells, as well as cells in the auditory nerve and spiral ligament. Among all five serotypes, inner hair cells were the most effectively transduced cochlear cell type. All five serotypes of AAV vectors transduced cells of the auditory nerve, though serotype 8 was the most efficient vector for transduction. Our findings indicate that efficient AAV inoculation (via the scala media) can be performed in adult mouse ears, with hearing preservation a realistic goal. The procedure we describe may also have applications for intra-endolymphatic drug delivery in many mouse models of human deafness.

  5. Systemically administered AAV9-sTRAIL combats invasive glioblastoma in a patient-derived orthotopic xenograft model

    Directory of Open Access Journals (Sweden)

    Matheus HW Crommentuijn

    2016-01-01

    Full Text Available Adeno-associated virus (AAV vectors expressing tumoricidal genes injected directly into brain tumors have shown some promise, however, invasive tumor cells are relatively unaffected. Systemic injection of AAV9 vectors provides widespread delivery to the brain and potentially the tumor/microenvironment. Here we assessed AAV9 for potential glioblastoma therapy using two different promoters driving the expression of the secreted anti-cancer agent sTRAIL as a transgene model; the ubiquitously active chicken β-actin (CBA promoter and the neuron-specific enolase (NSE promoter to restrict expression in brain. Intravenous injection of AAV9 vectors encoding a bioluminescent reporter showed similar distribution patterns, although the NSE promoter yielded 100-fold lower expression in the abdomen (liver, with the brain-to-liver expression ratio remaining the same. The main cell types targeted by the CBA promoter were astrocytes, neurons and endothelial cells, while expression by NSE promoter mostly occurred in neurons. Intravenous administration of either AAV9-CBA-sTRAIL or AAV9-NSE-sTRAIL vectors to mice bearing intracranial patient-derived glioblastoma xenografts led to a slower tumor growth and significantly increased survival, with the CBA promoter having higher efficacy. To our knowledge, this is the first report showing the potential of systemic injection of AAV9 vector encoding a therapeutic gene for the treatment of brain tumors.

  6. High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV-2 Rep and Cap.

    Science.gov (United States)

    Conway, J E; Rhys, C M; Zolotukhin, I; Zolotukhin, S; Muzyczka, N; Hayward, G S; Byrne, B J

    1999-06-01

    Recombinant adeno-associated virus type 2 (rAAV) vectors have recently been used to achieve long-term, high level transduction in vivo. Further development of rAAV vectors for clinical use requires significant technological improvements in large-scale vector production. In order to facilitate the production of rAAV vectors, a recombinant herpes simplex virus type I vector (rHSV-1) which does not produce ICP27, has been engineered to express the AAV-2 rep and cap genes. The optimal dose of this vector, d27.1-rc, for AAV production has been determined and results in a yield of 380 expression units (EU) of AAV-GFP produced from 293 cells following transfection with AAV-GFP plasmid DNA. In addition, d27.1-rc was also efficient at producing rAAV from cell lines that have an integrated AAV-GFP provirus. Up to 480 EU/cell of AAV-GFP could be produced from the cell line GFP-92, a proviral, 293 derived cell line. Effective amplification of rAAV vectors introduced into 293 cells by infection was also demonstrated. Passage of rAAV with d27. 1-rc results in up to 200-fold amplification of AAV-GFP with each passage after coinfection of the vectors. Efficient, large-scale production (>109 cells) of AAV-GFP from a proviral cell line was also achieved and these stocks were free of replication-competent AAV. The described rHSV-1 vector provides a novel, simple and flexible way to introduce the AAV-2 rep and cap genes and helper virus functions required to produce high-titer rAAV preparations from any rAAV proviral construct. The efficiency and potential for scalable delivery of d27.1-rc to producer cell cultures should facilitate the production of sufficient quantities of rAAV vectors for clinical application.

  7. Functional correction of neurological and somatic disorders at later stages of disease in MPS IIIA mice by systemic scAAV9-hSGSH gene delivery

    Directory of Open Access Journals (Sweden)

    Haiyan Fu

    2016-01-01

    Full Text Available The reversibility of neuropathic lysosomal storage diseases, including MPS IIIA, is a major goal in therapeutic development, due to typically late diagnoses and a large population of untreated patients. We used self-complementary adeno-associated virus (scAAV serotype 9 vector expressing human N-sulfoglucosamine sulfohydrolase (SGSH to test the efficacy of treatment at later stages of the disease. We treated MPS IIIA mice at 1, 2, 3, 6, and 9 months of age with an intravenous injection of scAAV9-U1a-hSGSH vector, leading to restoration of SGSH activity and reduction of glycosaminoglycans (GAG throughout the central nervous system (CNS and somatic tissues at a dose of 5E12 vg/kg. Treatment up to 3 months age improved learning ability in the Morris water maze at 7.5 months, and lifespan was normalized. In mice treated at 6 months age, behavioral performance was impaired at 7.5 months, but did not decline further when retested at 12 months, and lifespan was increased, but not normalized. Treatment at 9 months did not increase life-span, though the GAG storage pathology in the CNS was improved. The study suggests that there is potential for gene therapy intervention in MPS IIIA at intermediate stages of the disease, and extends the clinical relevance of our systemic scAAV9-hSGSH gene delivery approach.

  8. A Translational Pathway Toward a Clinical Trial Using the Second-Generation AAV Micro-Dystrophin Vector

    Science.gov (United States)

    2016-09-01

    mune system a few weeks later. It is now clear that the gene delivery vehicle (AAV virus capsid), cargo (transgene), or the protein produced from the...Ideally, delivery of a full-length dystrophin cDNA will yield the production of a full- length dystrophin protein and the maximum pro- tection of...investigational new drug (IND) application can be filed for a gene therapy trial with systemic delivery of dystrophin? Dr. Duan: A number of IND

  9. Search and Neutralize Factors (Cspgs) that Induce Decline in Transmission to Motoneurons from Spared Fibers after Chronic Spinal Cord Injury

    Science.gov (United States)

    2014-04-01

    conducted experiments using intraspinal injections of AAV10-NG2Ab combined with AAV10 vector expressing neurotrophin 3 (AAV10-NT3-gfp) in adult rat...mediated delivery of NG2-Ab and neurotrophin NT3 expressing units significantly improved locomotor function following SCI. These behavioral improvements...mediated delivery of NG2-Ab combined with neurotrophin NT3 in rats that received either hemisection or contusion SCI. We found that rats that

  10. Subpial Adeno-associated Virus 9 (AAV9) Vector Delivery in Adult Mice

    Czech Academy of Sciences Publication Activity Database

    Tadokoro, T.; Miyanohara, A.; Navarro, M.; Kamizato, K.; Juhás, Štefan; Juhásová, Jana; Maršala, S.; Platoshyn, O.; Curtis, E.; Gabel, B.; Ciacci, J. D.; Lukáčová, N.; Bimbová, K.; Maršala, M.

    2017-01-01

    Roč. 125, č. 13 (2017), č. článku e55770. ISSN 1940-087X R&D Projects: GA MŠk(CZ) LO1609 Institutional support: RVO:67985904 Keywords : AAV9 * adult mouse Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Technologies involving the manipulation of cells, tissues, organs or the whole organism (assisted reproduction) Impact factor: 1.232, year: 2016

  11. Comparative impact of AAV and enzyme replacement therapy on respiratory and cardiac function in adult Pompe mice

    Directory of Open Access Journals (Sweden)

    Darin J Falk

    Full Text Available Pompe disease is an autosomal recessive genetic disorder characterized by a deficiency of the enzyme responsible for degradation of lysosomal glycogen (acid α-glucosidase (GAA. Cardiac dysfunction and respiratory muscle weakness are primary features of this disorder. To attenuate the progressive and rapid accumulation of glycogen resulting in cardiorespiratory dysfunction, adult Gaa−/− mice were administered a single systemic injection of rAAV2/9-DES-hGAA (AAV9-DES or bimonthly injections of recombinant human GAA (enzyme replacement therapy (ERT. Assessment of cardiac function and morphology was measured 1 and 3 months after initiation of treatment while whole-body plethysmography and diaphragmatic contractile function was evaluated at 3 months post-treatment in all groups. Gaa−/− animals receiving either AAV9-DES or ERT demonstrated a significant improvement in cardiac function and diaphragmatic contractile function as compared to control animals. AAV9-DES treatment resulted in a significant reduction in cardiac dimension (end diastolic left ventricular mass/gram wet weight; EDMc at 3 months postinjection. Neither AAV nor ERT therapy altered minute ventilation during quiet breathing (eupnea. However, breathing frequency and expiratory time were significantly improved in AAV9-DES animals. These results indicate systemic delivery of either strategy improves cardiac function but AAV9-DES alone improves respiratory parameters at 3 months post-treatment in a murine model of Pompe disease.

  12. Single residue AAV capsid mutation improves transduction of photoreceptors in the Abca4-/- mouse and bipolar cells in the rd1 mouse and human retina ex vivo.

    Science.gov (United States)

    De Silva, Samantha R; Charbel Issa, Peter; Singh, Mandeep S; Lipinski, Daniel M; Barnea-Cramer, Alona O; Walker, Nathan J; Barnard, Alun R; Hankins, Mark W; MacLaren, Robert E

    2016-11-01

    Gene therapy using adeno-associated viral (AAV) vectors for the treatment of retinal degenerations has shown safety and efficacy in clinical trials. However, very high levels of vector expression may be necessary for the treatment of conditions such as Stargardt disease where a dual vector approach is potentially needed, or in optogenetic strategies for end-stage degeneration in order to achieve maximal light sensitivity. In this study, we assessed two vectors with single capsid mutations, rAAV2/2(Y444F) and rAAV2/8(Y733F) in their ability to transduce retina in the Abca4 -/- and rd1 mouse models of retinal degeneration. We noted significantly increased photoreceptor transduction using rAAV2/8(Y733F) in the Abca4 -/- mouse, in contrast to previous work where vectors tested in this model have shown low levels of photoreceptor transduction. Bipolar cell transduction was achieved following subretinal delivery of both vectors in the rd1 mouse, and via intravitreal delivery of rAAV2/2(Y444F). The successful use of rAAV2/8(Y733F) to target bipolar cells was further validated on human tissue using an ex vivo culture system of retinal explants. Capsid mutant AAV vectors transduce human retinal cells and may be particularly suited to treat retinal degenerations in which high levels of transgene expression are required.

  13. AAV-mediated gene transfer of the obesity-associated gene Etv5 in rat midbrain does not affect energy balance or motivated behavior.

    Directory of Open Access Journals (Sweden)

    Arjen J Boender

    Full Text Available Several genome-wide association studies have implicated the transcription factor E-twenty- six version 5 (Etv5 in the regulation of body mass index. Further substantiating the role of Etv5 in feeding behavior are the findings that targeted disruption of Etv5 in mice leads to decreased body weight gain and that expression of Etv5 is decreased in the ventral tegmental area and substantia nigra pars compacta (VTA/SNpc after food restriction. As Etv5 has been suggested to influence dopaminergic neurotransmission by driving the expression of genes that are responsible for the synthesis and release of dopamine, we investigated if expression levels of Etv5 are dependent on nutritional state and subsequently influence the expression levels of tyrosine hydroxylase. While it was shown that Etv5 expression in the VTA/SNpc increases after central administration of leptin and that Etv5 was able to drive expression of tyrosine hydroxylase in vitro, AAV-mediated gene transfer of Etv5 into the VTA/SNpc of rats did not alter expression of tyrosine hydroxylase in vivo. Moreover, AAV-mediated gene transfer of Etv5 in the VTA/SNpc did not affect measures of energy balance or performances in a progressive ratio schedule. Thus, these data do not support a role for increased expression of Etv5 in the VTA/SNpc in the regulation of feeding behavior.

  14. Catalytic immunoglobulin gene delivery in a mouse model of Alzheimer's disease: prophylactic and therapeutic applications.

    Science.gov (United States)

    Kou, Jinghong; Yang, Junling; Lim, Jeong-Eun; Pattanayak, Abhinandan; Song, Min; Planque, Stephanie; Paul, Sudhir; Fukuchi, Ken-Ichiro

    2015-02-01

    Accumulation of amyloid beta-peptide (Aβ) in the brain is hypothesized to be a causal event leading to dementia in Alzheimer's disease (AD). Aβ vaccination removes Aβ deposits from the brain. Aβ immunotherapy, however, may cause T cell- and/or Fc-receptor-mediated brain inflammation and relocate parenchymal Aβ deposits to blood vessels leading to cerebral hemorrhages. Because catalytic antibodies do not form stable immune complexes and Aβ fragments produced by catalytic antibodies are less likely to form aggregates, Aβ-specific catalytic antibodies may have safer therapeutic profiles than reversibly-binding anti-Aβ antibodies. Additionally, catalytic antibodies may remove Aβ more efficiently than binding antibodies because a single catalytic antibody can hydrolyze thousands of Aβ molecules. We previously isolated Aβ-specific catalytic antibody, IgVL5D3, with strong Aβ-hydrolyzing activity. Here, we evaluated the prophylactic and therapeutic efficacy of brain-targeted IgVL5D3 gene delivery via recombinant adeno-associated virus serotype 9 (rAAV9) in an AD mouse model. One single injection of rAAV9-IgVL5D3 into the right ventricle of AD model mice yielded widespread, high expression of IgVL5D3 in the unilateral hemisphere. IgVL5D3 expression was readily detectable in the contralateral hemisphere but to a much lesser extent. IgVL5D3 expression was also confirmed in the cerebrospinal fluid. Prophylactic and therapeutic injection of rAAV9-IgVL5D3 reduced Aβ load in the ipsilateral hippocampus of AD model mice. No evidence of hemorrhages, increased vascular amyloid deposits, increased proinflammatory cytokines, or infiltrating T-cells in the brains was found in the experimental animals. AAV9-mediated anti-Aβ catalytic antibody brain delivery can be prophylactic and therapeutic options for AD.

  15. Freeze-dried allograft-mediated gene or protein delivery of growth and differentiation factor 5 reduces reconstructed murine flexor tendon adhesions

    DEFF Research Database (Denmark)

    Svensson, Sys Hasslund; Dadali, Tulin; Ulrich-Vinther, Michael

    2014-01-01

    reverse transcription polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and in vivo bioluminescent imaging. We then reconstructed flexor digitorum longus (FDL) tendons of the mouse hindlimb with allografts loaded with low and high doses of recombinant GDF-5 protein and r......Advances in allograft processing have opened new horizons for clinical adaptation of flexor tendon allografts as delivery scaffolds for antifibrotic therapeutics. Recombinant adeno-associated-virus (rAAV) gene delivery of the growth and differentiation factor 5 (GDF-5) has been previously...... associated with antifibrotic effects in a mouse model of flexor tendoplasty. In this study, we compared the effects of loading freeze-dried allografts with different doses of GDF-5 protein or rAAV-Gdf5 on flexor tendon healing and adhesions. We first optimized the protein and viral loading parameters using...

  16. Smart and Controllable rAAV Gene Delivery Carriers in Progenitor Cells for Human Musculoskeletal Regenerative Medicine with a Focus on the Articular Cartilage.

    Science.gov (United States)

    Rey-Rico, Ana; Cucchiarini, Magali

    2017-01-01

    Cell therapy using mesenchymal stem cells (MSCs) is a powerful tool for the treatment of various diseases and injuries. Still, important limitations including the large amounts of cells required for application in vivo and the age-related decline in lifespan, proliferation, and potency may hinder the use of MSCs in patients. In this regard, gene therapy may offer strong approaches to optimize the use of MSCs for regenerative medicine. Diverse nonviral and viral gene vehicles have been manipulated to genetically modify MSCs, among which the highly effective and relatively safe recombinant adeno-associated viral (rAAV) vectors that emerged as the preferred gene delivery system to treat human disorders. Yet, clinical adaptation of such gene vehicles may be limited by several hurdles, including the possibility of dissemination to nontarget sites and the presence of immune and toxic responses in the host organism that may impair their therapeutic actions. The use of smart biomaterials acting as interfaces to enhance the temporal and spatial presentation of therapeutic agents in the target place and/or acting as scaffolding for MSC growth is an innovative, valuable approach to overcome these shortcomings that else restrain the efficacy of such potent cell populations. Here, we provide an overview on the most recent tissue engineering approaches based on the use of biomaterials acting as vehicles for rAAV vectors to target MSCs directly in the recipient (in vivo strategy) or as supportive matrices for rAAV-modified MSCs for indirect cell reimplantation (ex vivo strategy) as means to activate the reparative processes in tissues of the musculoskeletal system. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. The Neurotropic Properties of AAV-PHP.B Are Limited to C57BL/6J Mice.

    Science.gov (United States)

    Hordeaux, Juliette; Wang, Qiang; Katz, Nathan; Buza, Elizabeth L; Bell, Peter; Wilson, James M

    2018-03-07

    Improved delivery of adeno-associated virus (AAV) vectors to the CNS will greatly enhance their clinical utility. Selection of AAV9 variants in a mouse model led to the isolation of a capsid called PHP.B, which resulted in remarkable transduction of the CNS following intravenous infusion. However, we now show here that this enhanced CNS tropism is restricted to the model in which it was selected, i.e., a Cre transgenic mouse in a C57BL/6J background, and was not found in nonhuman primates or the other commonly used mouse strain BALB/cJ. We also report the potential for serious acute toxicity in NHP after systemic administration of high dose of AAV. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  18. Effect of late-stage therapy on disease progression in AAV-mediated rescue of photoreceptor cells in the retinoschisin-deficient mouse.

    Science.gov (United States)

    Janssen, Andreas; Min, Seok H; Molday, Laurie L; Tanimoto, Naoyuki; Seeliger, Mathias W; Hauswirth, William W; Molday, Robert S; Weber, Bernhard H F

    2008-06-01

    Proof-of-concept for a successful adeno-associated virus serotype 5 (AAV5)-mediated gene therapy in X-linked juvenile retinoschisis (XLRS) has been demonstrated in an established mouse model for this condition. The initial studies concentrated on early time-points of treatment. In this study, we aimed to explore the consequences of single subretinal injections administered at various stages of more advanced disease. By electroretinogram (ERG), functional improvement in treated versus untreated eyes is found to be significant in retinoschisin-deficient mice injected at the time-points of 15 days (P15), 1 month (PM1), and 2 months (PM2) after birth. In mice treated at 7 months after birth (PM7), an age previously shown to exhibit advanced retinal disease, ERG responses reveal no beneficial effects of vector treatment. Generally, functional rescue is paralleled by sustained retinoschisin expression and significant photoreceptor survival relative to untreated eyes. Quantitative measures of photoreceptors and peanut agglutinin-labeled ribbon synapses demonstrate rescue effects even in mice injected as late as PM7. Taken together, AAV5-mediated gene replacement is beneficial in slowing disease progression in murine XLRS. In addition, we show the effectiveness of rescue efforts even if treatment is delayed until advanced signs of disease have developed. Human XLRS patients might benefit from these findings, which suggest that the effectiveness of treatment appears not to be restricted to the early stages of the disease, and that treatment may prove to be valuable even when administered at more advanced stages.

  19. AAV-Mediated Gene Targeting Is Significantly Enhanced by Transient Inhibition of Nonhomologous End Joining or the Proteasome In Vivo

    Science.gov (United States)

    Paulk, Nicole K.; Loza, Laura Marquez; Finegold, Milton J.

    2012-01-01

    Abstract Recombinant adeno-associated virus (rAAV) vectors have clear potential for use in gene targeting but low correction efficiencies remain the primary drawback. One approach to enhancing efficiency is a block of undesired repair pathways like nonhomologous end joining (NHEJ) to promote the use of homologous recombination. The natural product vanillin acts as a potent inhibitor of NHEJ by inhibiting DNA-dependent protein kinase (DNA-PK). Using a homology containing rAAV vector, we previously demonstrated in vivo gene repair frequencies of up to 0.1% in a model of liver disease hereditary tyrosinemia type I. To increase targeting frequencies, we administered vanillin in combination with rAAV. Gene targeting frequencies increased up to 10-fold over AAV alone, approaching 1%. Fah−/−Ku70−/− double knockout mice also had increased gene repair frequencies, genetically confirming the beneficial effects of blocking NHEJ. A second strategy, transient proteasomal inhibition, also increased gene-targeting frequencies but was not additive to NHEJ inhibition. This study establishes the benefit of transient NHEJ inhibition with vanillin, or proteasome blockage with bortezomib, for increasing hepatic gene targeting with rAAV. Functional metabolic correction of a clinically relevant disease model was demonstrated and provided evidence for the feasibility of gene targeting as a therapeutic strategy. PMID:22486314

  20. Vaccinia virus as a subhelper for AAV replication and packaging

    Directory of Open Access Journals (Sweden)

    Andrea R Moore

    Full Text Available Adeno-associated virus (AAV has been widely used as a gene therapy vector to treat a variety of disorders. While these vectors are increasingly popular and successful in the clinic, there is still much to learn about the viruses. Understanding the biology of these viruses is essential in engineering better vectors and generating vectors more efficiently for large-scale use. AAV requires a helper for production and replication making this aspect of the viral life cycle crucial. Vaccinia virus (VV has been widely cited as a helper virus for AAV. However, to date, there are no detailed analyses of its helper function. Here, the helper role of VV was studied in detail. In contrast to common belief, we demonstrated that VV was not a sufficient helper virus for AAV replication. Vaccinia failed to produce rAAV and activate AAV promoters. While this virus could not support rAAV production, Vaccinia could initiate AAV replication and packaging when AAV promoter activation is not necessary. This activity is due to the ability of Vaccinia-driven Rep78 to transcribe in the cytoplasm and subsequently translate in the nucleus and undergo typical functions in the AAV life cycle. As such, VV is subhelper for AAV compared to complete helper functions of adenovirus.

  1. Biological effects of rAAV-caAlk2 coating on structural allograft healing

    DEFF Research Database (Denmark)

    Koefoed, Mette; Ito, Hiromu; Gromov, Kirill

    2005-01-01

    Structural bone allografts often fracture due to their lack of osteogenic and remodeling potential. To overcome these limitations, we utilized allografts coated with recombinant adeno-associated virus (rAAV) that mediate in vivo gene transfer. Using beta-galactosidase as a reporter gene, we show...

  2. Adeno-associated virus-mediated expression of myostatin propeptide improves the growth of skeletal muscle and attenuates hyperglycemia in db/db mice.

    Science.gov (United States)

    Jiang, J G; Shen, G F; Li, J; Qiao, C; Xiao, B; Yan, H; Wang, D W; Xiao, X

    2017-03-01

    Inhibition of myostatin, a negative growth modulator for muscle, can functionally enhance muscle mass and improve glucose and fat metabolism in myostatin propeptide (MPRO) transgenic mice. This study was to investigate whether myostatin inhibition by adeno-associated virus (AAV)-mediated gene delivery of MPRO could improve muscle mass and achieve therapeutic effects on glucose regulation and lipid metabolism in the db/db mice and the mechanisms involved in that process. Eight-week-old male db/db mice were administered saline, AAV-GFP and AAV-MPRO/Fc vectors and monitored random blood glucose levels and body weight for 36 weeks. Body weight gain was not different during follow-up among the groups, but AAV-MPRO/Fc vectors resulted high level of MPRO in the blood companied by an increase in skeletal muscle mass and muscle hypertrophy. In addition, AAV-MPRO/Fc-treated db/db mice showed significantly lower blood glucose and insulin levels and significantly increased glucose tolerance and insulin sensitivity compared with the control groups (P<0.05). Moreover, these mice exhibited lower triglyceride (TG) and free fatty acid (FFA) content in the skeletal muscle, although no difference was observed in fat pad weights and serum TG and FFA levels. Finally, AAV-MPRO/Fc-treated mice had enhanced insulin signaling in the skeletal muscle. These data suggest that AAV-mediated MPRO therapy may provide an important clue for potential clinical applications to prevent type II diabetes, and these studies confirm that MPRO is a therapeutic target for type II diabetes.

  3. Long-term safety and efficacy of AAV gene therapy in the canine model of glycogen storage disease type Ia.

    Science.gov (United States)

    Lee, Young Mok; Conlon, Thomas J; Specht, Andrew; Coleman, Kirsten E; Brown, Laurie M; Estrella, Ana M; Dambska, Monika; Dahlberg, Kathryn R; Weinstein, David A

    2018-05-25

    Viral mediated gene therapy has progressed after overcoming early failures, and gene therapy has now been approved for several conditions in Europe and the USA. Glycogen storage disease (GSD) type Ia, caused by a deficiency of glucose-6-phosphatase-α, has been viewed as an outstanding candidate for gene therapy. This follow-up report describes the long-term outcome for the naturally occurring GSD-Ia dogs treated with rAAV-GPE-hG6PC-mediated gene therapy. A total of seven dogs were treated with rAAV-GPE-hG6PC-mediated gene therapy. The first four dogs were treated at birth, and three dogs were treated between 2 and 6 months of age to assess the efficacy and safety in animals with mature livers. Blood and urine samples, radiographic studies, histological evaluation, and biodistribution were assessed. Gene therapy improved survival in the GSD-Ia dogs. With treatment, the biochemical studies normalized for the duration of the study (up to 7 years). None of the rAAV-GPE-hG6PC-treated dogs had focal hepatic lesions or renal abnormalities. Dogs treated at birth required a second dose of rAAV after 2-4 months; gene therapy after hepatic maturation resulted in improved efficacy after a single dose. rAAV-GPE-hG6PC treatment in GSD-Ia dogs was found to be safe and efficacious. GSD-Ia is an attractive target for human gene therapy since it is a monogenic disorder with limited tissue involvement. Blood glucose and lactate monitoring can be used to assess effectiveness and as a biomarker of success. GSD-Ia can also serve as a model for other hepatic monogenic disorders.

  4. A reliable and feasible qPCR strategy for titrating AAV vectors.

    Science.gov (United States)

    Wang, Feng; Cui, Xiuling; Wang, Mingxi; Xiao, Weidong; Xu, Ruian

    2013-07-05

    Previous studies have revealed that traditional real-time quantitative PCR (qPCR) underestimates adeno-associated virus (AAV) titer. Because the inverted terminal repeat (ITR) exists in all AAV vectors, the only remaining element from the wild genome could form special configurations to interfere with qPCR titration. To solve this problem, a modified and universal qPCR method was tested and established. In this work, there was a great variation in titration of ssAAV2-EGFP (Enhanced Green Fluorescence Protein) and scAAV2-EGFP genome by traditional qPCR. For ssAAV2-EGFP, the highest titer was found by using the targeting EGFP primers and the lowest titer was measured by those targeting bovine growth hormone polyA element (pBGH) primers. Experimental data were reverse for ssAAV2-EGFP and scAAV2-EGFP. Here we report an improved and universal SmaI qPCR method, based on cleaving all ITRs in AAV2 genome by SmaI with several advantages: (1) impact of all ITRs in ssAAV2 and scAAV2 was dismissed; (2) titers increased remarkably, up to 7-fold, especially for scAAV2; (3) the variation of titers was reduced when different primers were applied. A similar phenomenon was also observed in other ssAAV2 and scAAV2 products when the range of titration was at 3×107 to 7×109 V.G/µl in this study. This modified qPCR strategy can increase rAAV' titer and reduce titration variance, possibly become a universal method for titrating AAV vectors.

  5. Long-term correction of obesity and diabetes in genetically obese mice by a single intramuscular injection of recombinant adeno-associated virus encoding mouse leptin

    Science.gov (United States)

    Murphy, John E.; Zhou, Shangzhen; Giese, Klaus; Williams, Lewis T.; Escobedo, Jaime A.; Dwarki, Varavani J.

    1997-01-01

    The ob/ob mouse is genetically deficient in leptin and exhibits a phenotype that includes obesity and non-insulin-dependent diabetes melitus. This phenotype closely resembles the morbid obesity seen in humans. In this study, we demonstrate that a single intramuscular injection of a recombinant adeno-associated virus (AAV) vector encoding mouse leptin (rAAV-leptin) in ob/ob mice leads to prevention of obesity and diabetes. The treated animals show normalization of metabolic abnormalities including hyperglycemia, insulin resistance, impaired glucose tolerance, and lethargy. The effects of a single injection have lasted through the 6-month course of the study. At all time points measured the circulating levels of leptin in the serum were similar to age-matched control C57 mice. These results demonstrate that maintenance of normal levels of leptin (2–5 ng/ml) in the circulation can prevent both the onset of obesity and associated non-insulin-dependent diabetes. Thus a single injection of a rAAV vector expressing a therapeutic gene can lead to complete and long-term correction of a genetic disorder. Our study demonstrates the long-term correction of a disease caused by a genetic defect and proves the feasibility of using rAAV-based vectors for the treatment of chronic disorders like obesity. PMID:9391128

  6. Dual AAV/IL-10 Plus STAT3 Anti-Inflammatory Gene Delivery Lowers Atherosclerosis in LDLR KO Mice, but without Increased Benefit

    Directory of Open Access Journals (Sweden)

    Maohua Cao

    2012-01-01

    Full Text Available Both IL-10 and STAT3 are in the same signal transduction pathway, with IL-10-bound IL10 receptor (R acting through STAT3 for anti-inflammatory effect. To investigate possible therapeutic synergism, we delivered both full-length wild-type human (h STAT3 and hIL-10 genes by separate adenoassociated virus type 8 (AAV8 tail vein injection into LDLR KO on HCD. Compared to control Neo gene-treated animals, individual hSTAT3 and hIL-10 delivery resulted in significant reduction in atherogenesis, as determined by larger aortic lumen size, thinner aortic wall thickness, and lower blood velocity (all statistically significant. However, dual hSTAT3/hIL-10 delivery offered no improvement in therapeutic effect. Plasma cholesterol levels in dual hSTAT3/hIL-10-treated animals were statistically higher compared to hIL-10 alone. While no advantage was seen in this case, we consider that the dual gene approach has intrinsic merit, but properly chosen partnered genes must be used.

  7. The next step in gene delivery: molecular engineering of adeno-associated virus serotypes.

    Science.gov (United States)

    Wang, Jinhui; Faust, Susan M; Rabinowitz, Joseph E

    2011-05-01

    Delivery is at the heart of gene therapy. Viral DNA delivery systems are asked to avoid the immune system, transduce specific target cell types while avoiding other cell types, infect dividing and non-dividing cells, insert their cargo within the host genome without mutagenesis or to remain episomal, and efficiently express transgenes for a substantial portion of a lifespan. These sought-after features cannot be associated with a single delivery system, or can they? The Adeno-associated virus family of gene delivery vehicles has proven to be highly malleable. Pseudotyping, using AAV serotype 2 terminal repeats to generate designer shells capable of transducing selected cell types, enables the packaging of common genomes into multiple serotypes virions to directly compare gene expression and tropism. In this review the ability to manipulate this virus will be examined from the inside out. The influence of host cell factors and organism biology including the immune response on the molecular fate of the viral genome will be discussed as well as differences in cellular trafficking patterns and uncoating properties that influence serotype transduction. Re-engineering the prototype vector AAV2 using epitope insertion, chemical modification, and molecular evolution not only demonstrated the flexibility of the best-studied serotype, but now also expanded the tool kit for molecular modification of all AAV serotypes. Current AAV research has changed its focus from examination of wild-type AAV biology to the feedback of host cell/organism on the design and development of a new generation of recombinant AAV delivery vehicles. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy". Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Strategies to generate high-titer, high-potency recombinant AAV3 serotype vectors

    Directory of Open Access Journals (Sweden)

    Chen Ling

    2016-01-01

    Full Text Available Although recombinant adeno-associated virus serotype 3 (AAV3 vectors were largely ignored previously, owing to their poor transduction efficiency in most cells and tissues examined, our initial observation of the selective tropism of AAV3 serotype vectors for human liver cancer cell lines and primary human hepatocytes has led to renewed interest in this serotype. AAV3 vectors and their variants have recently proven to be extremely efficient in targeting human and nonhuman primate hepatocytes in vitro as well as in vivo. In the present studies, we wished to evaluate the relative contributions of the cis-acting inverted terminal repeats (ITRs from AAV3 (ITR3, as well as the trans-acting Rep proteins from AAV3 (Rep3 in the AAV3 vector production and transduction. To this end, we utilized two helper plasmids: pAAVr2c3, which carries rep2 and cap3 genes, and pAAVr3c3, which carries rep3 and cap3 genes. The combined use of AAV3 ITRs, AAV3 Rep proteins, and AAV3 capsids led to the production of recombinant vectors, AAV3-Rep3/ITR3, with up to approximately two to fourfold higher titers than AAV3-Rep2/ITR2 vectors produced using AAV2 ITRs, AAV2 Rep proteins, and AAV3 capsids. We also observed that the transduction efficiency of Rep3/ITR3 AAV3 vectors was approximately fourfold higher than that of Rep2/ITR2 AAV3 vectors in human hepatocellular carcinoma cell lines in vitro. The transduction efficiency of Rep3/ITR3 vectors was increased by ∼10-fold, when AAV3 capsids containing mutations in two surface-exposed residues (serine 663 and threonine 492 were used to generate a S663V+T492V double-mutant AAV3 vector. The Rep3/ITR3 AAV3 vectors also transduced human liver tumors in vivo approximately twofold more efficiently than those generated with Rep2/ITR2. Our data suggest that the transduction efficiency of AAV3 vectors can be significantly improved both using homologous Rep proteins and ITRs as well as by capsid optimization. Thus, the combined use of

  9. AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes.

    Science.gov (United States)

    Hui, Daniel J; Edmonson, Shyrie C; Podsakoff, Gregory M; Pien, Gary C; Ivanciu, Lacramioara; Camire, Rodney M; Ertl, Hildegund; Mingozzi, Federico; High, Katherine A; Basner-Tschakarjan, Etiena

    2015-01-01

    Adeno-associated virus (AAV) has become one of the most promising vectors in gene transfer in the last 10 years with successful translation to clinical trials in humans and even market approval for a first gene therapy product in Europe. Administration to humans, however, revealed that adaptive immune responses against the vector capsid can present an obstacle to sustained transgene expression due to the activation and expansion of capsid-specific T cells. The limited number of peripheral blood mononuclear cells (PBMCs) obtained from samples within clinical trials allows for little more than monitoring of T-cell responses. We were able to identify immunodominant major histocompatibility complex (MHC) class I epitopes for common human leukocyte antigen (HLA) types by using spleens isolated from subjects undergoing splenectomy for non-malignant indications as a source of large numbers of lymphocytes and restimulating them with single AAV capsid peptides in vitro. Further experiments confirmed that these epitopes are naturally processed and functionally relevant. The design of more effective and less immunogenic AAV vectors, and precise immune monitoring of vector-infused subjects, are facilitated by these findings.

  10. Convection Enhanced Delivery of Recombinant Adeno-associated Virus into the Mouse Brain.

    Science.gov (United States)

    Nash, Kevin R; Gordon, Marcia N

    2016-01-01

    Recombinant adeno-associated virus (rAAV) has become an extremely useful tool for the study of gene over expression or knockdown in the central nervous system of experimental animals. One disadvantage of intracranial injections of rAAV vectors into the brain parenchyma has been restricted distribution to relatively small volumes of the brain. Convection enhanced delivery (CED) is a method for delivery of clinically relevant amounts of therapeutic agents to large areas of the brain in a direct intracranial injection procedure. CED uses bulk flow to increase the hydrostatic pressure and thus improve volume distribution. The CED method has shown robust gene transfer and increased distribution within the CNS and can be successfully used for different serotypes of rAAV for increased transduction of the mouse CNS. This chapter details the surgical injection of rAAV by CED into a mouse brain.

  11. Development and validation of novel AAV2 random libraries displaying peptides of diverse lengths and at diverse capsid positions.

    Science.gov (United States)

    Naumer, Matthias; Ying, Ying; Michelfelder, Stefan; Reuter, Antje; Trepel, Martin; Müller, Oliver J; Kleinschmidt, Jürgen A

    2012-05-01

    Libraries based on the insertion of random peptide ligands into the capsid of adeno-associated virus type 2 (AAV2) have been widely used to improve the efficiency and selectivity of the AAV vector system. However, so far only libraries of 7-mer peptide ligands have been inserted at one well-characterized capsid position. Here, we expanded the combinatorial AAV2 display system to a panel of novel AAV libraries, displaying peptides of 5, 7, 12, 19, or 26 amino acids in length at capsid position 588 or displaying 7-mer peptides at position 453, the most prominently exposed region of the viral capsid. Library selections on two unrelated cell types-human coronary artery endothelial cells and rat cardiomyoblasts-revealed the isolation of cell type-characteristic peptides of different lengths mediating strongly improved target-cell transduction, except for the 26-mer peptide ligands. Characterization of vector selectivity by transduction of nontarget cells and comparative gene-transduction analysis using a panel of 44 human tumor cell lines revealed that insertion of different-length peptides allows targeting of distinct cellular receptors for cell entry with similar efficiency, but with different selectivity. The application of such novel AAV2 libraries broadens the spectrum of targetable receptors by capsid-modified AAV vectors and provides the opportunity to choose the best suited targeting ligand for a certain application from a number of different candidates.

  12. AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes

    Directory of Open Access Journals (Sweden)

    Daniel J Hui

    Full Text Available Adeno-associated virus (AAV has become one of the most promising vectors in gene transfer in the last 10 years with successful translation to clinical trials in humans and even market approval for a first gene therapy product in Europe. Administration to humans, however, revealed that adaptive immune responses against the vector capsid can present an obstacle to sustained transgene expression due to the activation and expansion of capsid-specific T cells. The limited number of peripheral blood mononuclear cells (PBMCs obtained from samples within clinical trials allows for little more than monitoring of T-cell responses. We were able to identify immunodominant major histocompatibility complex (MHC class I epitopes for common human leukocyte antigen (HLA types by using spleens isolated from subjects undergoing splenectomy for non-malignant indications as a source of large numbers of lymphocytes and restimulating them with single AAV capsid peptides in vitro. Further experiments confirmed that these epitopes are naturally processed and functionally relevant. The design of more effective and less immunogenic AAV vectors, and precise immune monitoring of vector-infused subjects, are facilitated by these findings.

  13. Biomarkers for disease progression and AAV therapeutic efficacy in feline Sandhoff disease

    Science.gov (United States)

    Bradbury, Allison M; Gray-Edwards, Heather L; Shirley, Jamie L; McCurdy, Victoria J; Colaco, Alexandria N; Randle, Ashley N; Christopherson, Pete W; Bird, Allison C; Johnson, Aime K; Wilson, Diane U; Hudson, Judith A; De Pompa, Nicholas L; Sorjonen, Donald C; Brunson, Brandon L; Jeyakumar, Mylvaganam; Platt, Frances M; Baker, Henry J; Cox, Nancy R; Sena-Esteves, Miguel; Martin, Douglas R

    2014-01-01

    The GM2 gangliosidoses, Tay-Sachs disease (TSD) and Sandhoff disease (SD), are progressive neurodegenerative disorders that are caused by a mutation in the enzyme β-N-acetylhexosaminidase (Hex). Due to the recent emergence of novel experimental treatments, biomarker development has become particularly relevant in GM2 gangliosidosis as an objective means to measure therapeutic efficacy. Here we describe blood, cerebrospinal fluid (CSF), magnetic resonance imaging (MRI), and electrodiagnostic methods for evaluating disease progression in the feline SD model and application of these approaches to assess AAV-mediated gene therapy. SD cats were treated by intracranial injections of the thalami combined with either the deep cerebellar nuclei or a single lateral ventricle using AAVrh8 vectors encoding feline Hex. Significantly altered in untreated SD cats, blood and CSF based biomarkers were normalized after AAV gene therapy. Also reduced after treatment were expansion of the lysosomal compartment in peripheral blood mononuclear cells and elevated activity of secondary lysosomal enzymes. MRI changes characteristic of the gangliosidoses were documented in SD cats and normalized after AAV gene therapy. The minimally invasive biomarkers reported herein should be useful to assess disease progression of untreated GM2 patients and those in future clinical trials. PMID:25284324

  14. Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer.

    Science.gov (United States)

    Buchlis, George; Podsakoff, Gregory M; Radu, Antonetta; Hawk, Sarah M; Flake, Alan W; Mingozzi, Federico; High, Katherine A

    2012-03-29

    In previous work we transferred a human factor IX-encoding adeno-associated viral vector (AAV) into skeletal muscle of men with severe hemophilia B. Biopsy of injected muscle up to 1 year after vector injection showed evidence of gene transfer by Southern blot and of protein expression by IHC and immunofluorescent staining. Although the procedure appeared safe, circulating F.IX levels remained subtherapeutic (< 1%). Recently, we obtained muscle tissue from a subject injected 10 years earlier who died of causes unrelated to gene transfer. Using Western blot, IHC, and immunofluorescent staining, we show persistent factor IX expression in injected muscle tissue. F.IX transcripts were detected in injected skeletal muscle using RT-PCR, and isolated whole genomic DNA tested positive for the presence of the transferred AAV vector sequence. This is the longest reported transgene expression to date from a parenterally administered AAV vector, with broad implications for the future of muscle-directed gene transfer.

  15. The IDvIP trial: a two-centre randomised double-blind controlled trial comparing intramuscular diamorphine and intramuscular pethidine for labour analgesia.

    Science.gov (United States)

    Wee, Michael Y K; Tuckey, Jenny P; Thomas, Peter; Burnard, Sara

    2011-07-08

    Intramuscular pethidine is routinely used throughout the UK for labour analgesia. Studies have suggested that pethidine provides little pain relief in labour and has a number of side effects affecting mother and neonate. It can cause nausea, vomiting and dysphoria in mothers and can cause reduced fetal heart rate variability and accelerations. Neonatal effects include respiratory depression and impaired feeding. There are few large studies comparing the relative side effects and efficacy of different opioids in labour. A small trial comparing intramuscular pethidine with diamorphine, showed diamorphine to have some benefits over pethidine when used for labour analgesia but the study did not investigate the adverse effects of either opioid. The Intramuscular Diamorphine versus Intramuscular Pethidine (IDvIP) trial is a randomised double-blind two centre controlled trial comparing intramuscular diamorphine and pethidine regarding their analgesic efficacy in labour and their side effects in mother, fetus and neonate. Information about the trial will be provided to women in the antenatal period or in early labour. Consent and recruitment to the trial will be obtained when the mother requests opioid analgesia. The sample size requirement is 406 women with data on primary outcomes. The maternal primary outcomes are pain relief during the first 3 hours after trial analgesia and specifically pain relief after 60 minutes. The neonatal primary outcomes are need for resuscitation and Apgar Score analgesia, whether method of analgesia would be used again, use of Entonox, umbilical arterial and venous pH, fetal heart rate, meconium staining, time from delivery to first breath, Apgar scores at 5 mins, naloxone requirement, transfer to neonatal intensive care unit, neonatal haemoglobin oxygen saturation at 30, 60, 90, and 120 mins after delivery, and neonatal sedation and feeding behaviour during first 2 hours. If the trial demonstrates that diamorphine provides better analgesia

  16. Intracranial AAV-sTRAIL combined with lanatoside C prolongs survival in an orthotopic xenograft mouse model of invasive glioblastoma

    NARCIS (Netherlands)

    Crommentuijn, Matheus H. W.; Maguire, Casey A.; Niers, Johanna M.; Vandertop, W. Peter; Badr, Christian E.; Würdinger, Thomas; Tannous, Bakhos A.

    2016-01-01

    Glioblastoma (GBM) is the most common malignant brain tumor in adults. We designed an adeno-associated virus (AAV) vector for intracranial delivery of secreted, soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) to GBM tumors in mice and combined it with the TRAIL-sensitizing

  17. Restoration of central nervous system alpha-N-acetylglucosaminidase activity and therapeutic benefits in mucopolysaccharidosis IIIB mice by a single intracisternal recombinant adeno-associated viral type 2 vector delivery.

    Science.gov (United States)

    Fu, Haiyan; DiRosario, Julianne; Kang, Lu; Muenzer, Joseph; McCarty, Douglas M

    2010-07-01

    Finding efficient central nervous system (CNS) delivery approaches has been the major challenge facing therapeutic development for treating diseases with global neurological manifestation, such as mucopolysaccharidosis (MPS) IIIB, a lysosomal storage disease, caused by autosomal recessive defect of alpha-N-acetylglucosaminidase (NaGlu). Previously, we developed an approach, intracisternal (i.c.) injection, to deliver recombinant adeno-associated viral (rAAV) vector to the CNS of mice, leading to a widespread periventricular distribution of transduction. In the present study, we delivered rAAV2 vector expressing human NaGlu into the CNS of MPS IIIB mice by an i.c. injection approach, to test its therapeutic efficacy and feasibility for treating the neurological manifestation of the disease. We demonstrated significant functional neurological benefits of a single i.c. vector infusion in adult MPS IIIB mice. The treatment slowed the disease progression by mediating widespread recombinant NaGlu expression in the CNS, resulting in the reduction of brain lysosomal storage pathology, significantly improved cognitive function and prolonged survival. However, persisting motor function deficits suggested that pathology in areas outside the CNS contributes to the MPS IIIB behavioral phenotype. The therapeutic benefit of i.c. rAAV2 delivery was dose-dependent and could be attribute solely to the CNS transduction because the procedure did not lead to detectable transduction in somatic tissues. A single IC rAAV2 gene delivery is functionally beneficial for treating the CNS disease of MPS IIIB in mice. It is immediately clinically translatable, with the potential of improving the quality of life for patients with MPS IIIB.

  18. Intravenous paracetamol versus intramuscular pethidine in relief of ...

    African Journals Online (AJOL)

    Background: Intramuscular pethidine is one of most common opioids used for labour analgesia. There are a number of concerns in the literature regarding the use of pethidine. The aim of this study is to compare analgesic efficacy of paracetamol with pethidine for labour pain in normal vaginal delivery. Materials and ...

  19. Molecular design for recombinant adeno-associated virus (rAAV) vector production.

    Science.gov (United States)

    Aponte-Ubillus, Juan Jose; Barajas, Daniel; Peltier, Joseph; Bardliving, Cameron; Shamlou, Parviz; Gold, Daniel

    2018-02-01

    Recombinant adeno-associated virus (rAAV) vectors are increasingly popular tools for gene therapy applications. Their non-pathogenic status, low inflammatory potential, availability of viral serotypes with different tissue tropisms, and prospective long-lasting gene expression are important attributes that make rAAVs safe and efficient therapeutic options. Over the last three decades, several groups have engineered recombinant AAV-producing platforms, yielding high titers of transducing vector particles. Current specific productivity yields from different platforms range from 10 3 to 10 5 vector genomes (vg) per cell, and there is an ongoing effort to improve vector yields in order to satisfy high product demands required for clinical trials and future commercialization.Crucial aspects of vector production include the molecular design of the rAAV-producing host cell line along with the design of AAV genes, promoters, and regulatory elements. Appropriately, configuring and balancing the expression of these elements not only contributes toward high productivity, it also improves process robustness and product quality. In this mini-review, the rational design of rAAV-producing expression systems is discussed, with special attention to molecular strategies that contribute to high-yielding, biomanufacturing-amenable rAAV production processes. Details on molecular optimization from four rAAV expression systems are covered: adenovirus, herpesvirus, and baculovirus complementation systems, as well as a recently explored yeast expression system.

  20. Enhancing gene delivery of adeno-associated viruses by cell-permeable peptides

    Directory of Open Access Journals (Sweden)

    Yarong Liu

    2014-01-01

    Full Text Available Adeno-associated virus type 2 (AAV2 is considered a promising gene delivery vector and has been extensively applied in several disease models; however, inefficient transduction in various cells and tissues has limited its widespread application in many areas of gene therapy. In this study, we have developed a general, but efficient, strategy to enhance viral transduction, both in vitro and in vivo, by incubating viral particles with cell-permeable peptides (CPPs. We show that CPPs increase internalization of viral particles into cells by facilitating both energy-independent and energy-dependent endocytosis. Moreover, CPPs can significantly enhance the endosomal escape process of viral particles, thus enhancing viral transduction to those cells that have exhibited very low permissiveness to AAV2 infection as a result of impaired intracellular viral processing. We also demonstrated that this approach could be applicable to other AAV serotypes. Thus, the membrane-penetrating ability of CPPs enables us to generate an efficient method for enhanced gene delivery of AAV vectors, potentially facilitating its applicability to human gene therapy.

  1. Stable producer cell lines for adeno-associated virus (AAV) assembly.

    Science.gov (United States)

    Chadeuf, Gilliane; Salvetti, Anna

    2010-10-01

    Stable producer cell lines containing both the rep and cap genes and recombinant adeno-associated virus (rAAV) vectors can be infected with a helper virus to provide reliable and efficient production of rAAV stocks. However, the development of these cell lines is time-consuming. The procedure described here is therefore recommended only for studies requiring the production of high amounts of rAAV, such as preclinical studies performed in large animals.

  2. Assessment of toxicity and biodistribution of recombinant AAV8 vector–mediated immunomodulatory gene therapy in mice with Pompe disease

    Directory of Open Access Journals (Sweden)

    Gensheng Wang

    2014-01-01

    Full Text Available A preclinical safety study was conducted to evaluate the short- and long-term toxicity of a recombinant adeno-associated virus serotype 8 (AAV2/8 vector that has been developed as an immune-modulatory adjunctive therapy to recombinant human acid α-glucosidase (rhGAA, Myozyme enzyme replacement treatment (ERT for patients with Pompe disease (AAV2/8-LSPhGAApA. The AAV2/8-LSPhGAApA vector at 1.6 × 1013 vector particles/kg, after intravenous injection, did not cause significant short- or long-term toxicity. Recruitment of CD4+ (but not CD8+ lymphocytes to the liver was elevated in the vector-dosed male animals at study day (SD 15, and in group 8 animals at SD 113, in comparison to their respective control animals. Administration of the vector, either prior to or after the one ERT injection, uniformly prevented the hypersensitivity induced by subsequent ERT in males, but not always in female animals. The vector genome was sustained in all tissues through 16-week postdosing, except for in blood with a similar tissue tropism between males and females. Administration of the vector alone, or combined with the ERT, was effective in producing significantly increased GAA activity and consequently decreased glycogen accumulation in multiple tissues, and the urine biomarker, Glc4, was significantly reduced. The efficacy of the vector (or with ERT was better in males than in females, as demonstrated both by the number of tissues showing significantly effective responses and the extent of response in a given tissue. Given the lack of toxicity for AAV2/8LSPhGAApA, further consideration of clinical translation is warranted in Pompe disease.

  3. Robust Lentiviral Gene Delivery But Limited Transduction Capacity of Commonly Used Adeno-Associated Viral Serotypes in Xenotransplanted Human Skin.

    Science.gov (United States)

    Jakobsen, Maria; Askou, Anne Louise; Stenderup, Karin; Rosada, Cecilia; Dagnæs-Hansen, Frederik; Jensen, Thomas G; Corydon, Thomas J; Mikkelsen, Jacob Giehm; Aagaard, Lars

    2015-08-01

    Skin is an easily accessible organ, and therapeutic gene transfer to skin remains an attractive alternative for the treatment of skin diseases. Although we have previously documented potent lentiviral gene delivery to human skin, vectors based on adeno-associated virus (AAV) rank among the most promising gene delivery tools for in vivo purposes. Thus, we compared the potential usefulness of various serotypes of recombinant AAV vectors and lentiviral vectors for gene transfer to human skin in a xenotransplanted mouse model. Vector constructs encoding firefly luciferase were packaged in AAV capsids of serotype 1, 2, 5, 6, 8, and 9 and separately administered by intradermal injection in human skin transplants. For all serotypes, live bioimaging demonstrated low levels of transgene expression in the human skin graft, and firefly luciferase expression was observed primarily in neighboring tissue outside of the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin graft only. The study demonstrates the limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo.

  4. Intramuscular oxytocin versus intravenous oxytocin to prevent postpartum haemorrhage at vaginal delivery (LabOR trial): study protocol for a randomised controlled trial.

    Science.gov (United States)

    Adnan, Nita; Boland, Fiona; Murphy, Deirdre J

    2017-11-15

    Primary postpartum haemorrhage (PPH) is one of the leading causes of maternal morbidity and mortality worldwide. The most common cause of primary PPH is uterine atony. Atonic PPH rates are increasing in developed countries despite routine active management of the third stage of labour. In less-developed countries, primary PPH remains the leading cause of maternal death. Although the value of routine oxytocics in the third stage of labour has been well established, there is inconsistent practice in the choice of agent and route of administration. Oxytocin is the preferred agent because it has fewer side effects than other uterotonics with similar efficacy. It can be given intravenously or intramuscularly; however, to date, the most effective route of administering oxytocin has not been established. A double-blind randomised controlled trial is planned. The aim of the study is to compare the effects of an intramuscular bolus of oxytocin (10 IU in 1 mL) and placebo intravenous injection (1 mL 0.9% saline given slowly) with an intravenous bolus of oxytocin (10 IU in 1 mL given slowly over 1 min) and placebo intramuscular injection (1 mL 0.9% saline) at vaginal delivery. The study will recruit 1000 women at term (>36 weeks) with singleton pregnancies who are aiming for a vaginal delivery. The primary outcome will be PPH (measured blood loss ≥ 500 mL). A study involving 1000 women will have 80% power at the 5% two-sided alpha level, to detect differences in the proportion of patients with measured blood loss > 500 ml of 10% vs 5%. Given the increasing trends of atonic PPH it is both important and timely that we evaluate the most effective route of oxytocin administration for the management of the third stage of labour. To date, there has been limited research comparing the efficacy of intramuscular oxytocin vs intravenous oxytocin for the third stage of labour. ISRCTN Registry, ISRCTN14718882 . Registered on 4 January 2016. Pilot commenced 12

  5. Safety and tolerability of MRI-guided infusion of AAV2-hAADC into the mid-brain of nonhuman primate

    Directory of Open Access Journals (Sweden)

    Waldy San Sebastian

    2014-01-01

    Full Text Available Aromatic L-amino acid decarboxylase (AADC deficiency is a rare, autosomal-recessive neurological disorder caused by mutations in the DDC gene that leads to an inability to synthesize catecholamines and serotonin. As a result, patients suffer compromised development, particularly in motor function. A recent gene replacement clinical trial explored putaminal delivery of recombinant adeno-associated virus serotype 2 vector encoding human AADC (AAV2-hAADC in AADC-deficient children. Unfortunately, patients presented only modest amelioration of motor symptoms, which authors acknowledged could be due to insufficient transduction of putamen. We hypothesize that, with the development of a highly accurate MRI-guided cannula placement technology, a more effective approach might be to target the affected mid-brain neurons directly. Transduction of AADC-deficient dopaminergic neurons in the substantia nigra and ventral tegmental area with locally infused AAV2-hAADC would be expected to lead to restoration of normal dopamine levels in affected children. The objective of this study was to assess the long-term safety and tolerability of bilateral AAV2-hAADC MRI-guided pressurized infusion into the mid-brain of nonhuman primates. Animals received either vehicle, low or high AAV2-hAADC vector dose and were euthanized 1, 3, or 9 months after surgery. Our data indicate that effective mid-brain transduction was achieved without untoward effects.

  6. Electroporation driven delivery of both an IL-12 expressing plasmid and cisplatin synergizes to inhibit B16 melanoma tumor growth through an NK cell mediated tumor killing mechanism.

    Science.gov (United States)

    Kim, Ha; Sin, Jeong-Im

    2012-11-01

    Combined therapy using chemotherapeutic drugs and immunotherapeutics offers some promise for treating patients with cancer. In this study, we evaluated whether cisplatin delivered by intratumoral (IT)-electroporation (EP) might enhance antitumor activity against established B16 melanoma and whether further addition of intramuscular (IM)-EP of IL-12 cDNA to IT-EP of cisplatin might augment antitumor therapeutic activity, with a focus on the underlining antitumor mechanism(s). When tumor (7 mm)-bearing animals were treated locally with cisplatin by IT-EP, they showed tumor growth inhibition significantly more than those without IT-EP. Moreover, IL-12 cDNA delivered by IM-EP was also able to inhibit tumor growth significantly more than control vector delivery. This tumor growth inhibition was mediated by NK cells, but not CD4+ T or CD8+ T cells, as determined by immune cell subset depletion and IFN-γ induction. Moreover, concurrent therapy using IT-EP of cisplatin plus IM-EP of IL-12 cDNA displayed antitumor therapeutic synergy. This therapeutic synergy appeared to be mediated by increased sensitivity of cisplatin-treated tumors to NK cell-mediated tumor killing. Taken together, these data support that cisplatin delivery by IT-EP plus IL-12 gene delivery by IM-EP are more effective at inducing antitumor therapeutic responses through increased sensitivity of cisplatin-treated tumors to NK cell-mediated tumor killing. This combined approach might have some implication for treating melanoma in patients.

  7. Construction of adeno-associated virus packaging plasmids and cells that directly select for AAV helper functions.

    Science.gov (United States)

    Whiteway, Alistair; Deru, Wale; Prentice, H Grant; Anderson, Robert

    2003-12-01

    Recombinant adeno-associated virus type 2 (rAAV) has promise for use as a gene therapy vector. Potential problems in the production of rAAV stocks are both the limited amount of recombinant virus that is produced by traditional methods and the possibility of wild-type replication competent adeno-associated virus (wtAAV) contamination. The presence of these contaminants is largely dependent upon the helper plasmid used. Whilst wtAAV is not a pathogen, the presence of these contaminants is undesirable as they may affect experiments concerning the biology of rAAV. Additionally as protocols using rAAV with altered tropism are becoming more prevalent, it is important that no recombination be permitted that may cause the creation of a replication competent AAV with modified (targeting) capsids. Many experimental protocols require the generation of large amounts of high titre rAAV stocks. We describe the production of several AAV helper plasmids and cell lines designed to achieve this goal. These plasmids possess split AAV rep and cap genes to eliminate the production of wtAAV and they possess a selection mechanism which is operatively linked to expression from the AAV cap gene. This allows positive selection of those cells expressing the highest level of the structural capsid proteins and therefore those cells which yield the highest amount of rAAV.

  8. Recombinant AAV-mediated in vivo long-term expression and antitumour activity of an anti-ganglioside GM3(Neu5Gc) antibody.

    Science.gov (United States)

    Piperno, G M; López-Requena, A; Predonzani, A; Dorvignit, D; Labrada, M; Zentilin, L; Burrone, O R; Cesco-Gaspere, M

    2015-12-01

    The ganglioside GM3(Neu5Gc) has gained increasing attention as therapeutic target because of its selective expression in various human tumours, such as melanoma, breast and lung cancer. 14F7 is a mouse IgG1 with specific reactivity to GM3(Neu5Gc)-positive tumours. The therapeutic activity of 14F7 has also been demonstrated in vivo, through its repetitive passive administration in tumour-bearing animals. In this work we used an alternative strategy to deliver recombinant 14F7 in vivo and analysed the therapeutic efficacy of this approach. We engineered a recombinant adeno-associated vector to direct the expression of secretable recombinant 14F7 in BALB/c animals. A single administration of the rAAV induced efficient production and secretion of the antibody in the bloodstream, with an expression level reaching plateau at ∼3 weeks after injection and persisting for almost a year. Strikingly, upon challenge with GM3(Neu5Gc)-positive X63-AG8.653 myeloma cells, tumour development was significantly delayed in animals treated with rAAV-14F7 with respect to animals treated with a control rAAV codifying for an irrelevant antibody. Finally, no significant differences in survival proportion were detected in animals injected with rAAV-14F7 or treated by standard administration of repetitive doses of purified monoclonal antibody 14F7.

  9. A translational approach for limb vascular delivery of the micro-dystrophin gene without high volume or high pressure for treatment of Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Chicoine Louis G

    2007-09-01

    Full Text Available Abstract Background Duchenne muscular dystrophy (DMD is an X-linked recessive disorder with monogenic mutations setting the stage for successful gene therapy treatment. We have completed a study that directly deals with the following key issues that can be directly adapted to a gene therapy clinical trial using rAAV considering the following criteria: 1 A regional vascular delivery approach that will protect the patient from widespread dissemination of virus; 2 an approach to potentially facilitate safe passage of the virus for efficient skeletal muscle transduction; 3 the use of viral doses to accommodate current limitations imposed by vector production methods; 4 and at the same time, achieve a clinically meaningful outcome by transducing multiple muscles in the lower limb to prolong ambulation. Methods The capacity of AAV1, AAV6 or AAV8 to cross the vascular endothelial barrier carrying a micro-dystrophin cDNA was compared under identical conditions with delivery through a catheter placed in the femoral artery of the mdx mouse. Transduction efficiency was assessed by immuno-staining using an antibody (Manex1a that recognizes the N-terminus of micro-dystrophin. The degree of physiologic correction was assessed by measuring tetanic force and protection from eccentric contraction in the extensor digitorum longus muscle (EDL. The vascular delivery paradigm found successful in the mouse was carried to the non-human primate to test its potential translation to boys with DMD. Results Regional vascular delivery resulted in transduction by rAAV8.micro-dystrophin reaching 94.5 ± 0.9 (1 month, 91.3 ± 3.1 (2 months, and 89.6 ± 1.6% (3 months. rAAV6.micro-dystrophin treated animals demonstrated 87.7 ± 6.8 (1 month, 78.9 ± 7.4 (2 months, and 81.2 ± 6.2% (3 months transduction. In striking contrast, rAAV1 demonstrated very low transduction efficiency [0.9 ± 0.3 (1 month, 2.1 ± 0.8 (2 months, and 2.1 ± 0.7% (3 months] by vascular delivery. Micro

  10. B-cell depletion is protective against anti-AAV capsid immune response: a human subject case study

    Directory of Open Access Journals (Sweden)

    M Corti

    2014-01-01

    Full Text Available Gene therapy strategies for congenital myopathies may require repeat administration of adeno-associated viral (AAV vectors due to aspects of the clinical application, such as: (i administration of doses below therapeutic efficacy in patients enrolled in early phase clinical trials; (ii progressive reduction of the therapeutic gene expression over time as a result of increasing muscle mass in patients treated at a young age; and (iii a possibly faster depletion of pathogenic myofibers in this patient population. Immune response triggered by the first vector administration, and to subsequent doses, represents a major obstacle for successful gene transfer in young patients. Anti-capsid and anti-transgene product related humoral and cell-mediated responses have been previously observed in all preclinical models and human subjects who received gene therapy or enzyme replacement therapy (ERT for congenital myopathies. Immune responses may result in reduced efficacy of the gene transfer over time and/or may preclude for the possibility of re-administration of the same vector. In this study, we evaluated the immune response of a Pompe patient dosed with an AAV1-GAA vector after receiving Rituximab and Sirolimus to modulate reactions against ERT. A key finding of this single subject case report is the observation that B-cell ablation with rituximab prior to AAV vector exposure results in non-responsiveness to both capsid and transgene, therefore allowing the possibility of repeat administration in the future. This observation is significant for future gene therapy studies and establishes a clinically relevant approach to blocking immune responses to AAV vectors.

  11. Intramuscular temperature changes during and after 2 different cryotherapy interventions in healthy individuals.

    Science.gov (United States)

    Rupp, Kimberly A; Herman, Daniel C; Hertel, Jay; Saliba, Susan A

    2012-08-01

    Crossover. To compare the time required to decrease intramuscular temperature 8°C below baseline temperature, and to compare intramuscular temperature 90 minutes posttreatment, between 2 cryotherapy modalities. Cryotherapy is used to treat pain from muscle injuries. Cooler intramuscular temperatures may reduce cellular metabolism and secondary hypoxic injury to attenuate acute injury response, specifically the rate of chemical mediator activity. Modalities that decrease intramuscular temperature quickly may be beneficial in the treatment of muscle injuries. Eighteen healthy subjects received 2 cryotherapy conditions, crushed-ice bag (CIB) and cold-water immersion (CWI), in a randomly allocated order, separated by 72 hours. Each condition was applied until intramuscular temperature decreased 8°C below baseline. Intramuscular temperature was monitored in the gastrocnemius, 1 cm below subcutaneous adipose tissue. The primary outcome was time to decrease intramuscular temperature 8°C below baseline. A secondary outcome was intramuscular temperature at the end of a 90-minute rewarming period. Paired t tests were used to examine outcomes. Time to reach an 8°C reduction in intramuscular temperature was not significantly different between CIB and CWI (mean difference, 2.6 minutes; 95% confidence interval: -3.10, 8.30). Intramuscular temperature remained significantly colder 90 minutes post-CWI compared to CIB (mean difference, 2.8°C; 95% confidence interval: 2.07°C, 3.52°C). There was no difference in time required to reduce intramuscular temperature 8°C 1 cm below adipose tissue using CIB and CWI. However, intramuscular temperature remained significantly colder 90 minutes following CWI. These results provide clinicians with information that may guide treatment-modality decisions.

  12. BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury.

    Science.gov (United States)

    Lopes, Cátia D F; Gonçalves, Nádia P; Gomes, Carla P; Saraiva, Maria J; Pêgo, Ana P

    2017-03-01

    Neuron-targeted gene delivery is a promising strategy to treat peripheral neuropathies. Here we propose the use of polymeric nanoparticles based on thiolated trimethyl chitosan (TMCSH) to mediate targeted gene delivery to peripheral neurons upon a peripheral and minimally invasive intramuscular administration. Nanoparticles were grafted with the non-toxic carboxylic fragment of the tetanus neurotoxin (HC) to allow neuron targeting and were explored to deliver a plasmid DNA encoding for the brain-derived neurotrophic factor (BDNF) in a peripheral nerve injury model. The TMCSH-HC/BDNF nanoparticle treatment promoted the release and significant expression of BDNF in neural tissues, which resulted in an enhanced functional recovery after injury as compared to control treatments (vehicle and non-targeted nanoparticles), associated with an improvement in key pro-regenerative events, namely, the increased expression of neurofilament and growth-associated protein GAP-43 in the injured nerves. Moreover, the targeted nanoparticle treatment was correlated with a significantly higher density of myelinated axons in the distal stump of injured nerves, as well as with preservation of unmyelinated axon density as compared with controls and a protective role in injury-denervated muscles, preventing them from denervation. These results highlight the potential of TMCSH-HC nanoparticles as non-viral gene carriers to deliver therapeutic genes into the peripheral neurons and thus, pave the way for their use as an effective therapeutic intervention for peripheral neuropathies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Peripheral blood aspirates overexpressing IGF-I via rAAV gene transfer undergo enhanced chondrogenic differentiation processes.

    Science.gov (United States)

    Frisch, Janina; Orth, Patrick; Rey-Rico, Ana; Venkatesan, Jagadeesh Kumar; Schmitt, Gertrud; Madry, Henning; Kohn, Dieter; Cucchiarini, Magali

    2017-11-01

    Implantation of peripheral blood aspirates induced towards chondrogenic differentiation upon genetic modification in sites of articular cartilage injury may represent a powerful strategy to enhance cartilage repair. Such a single-step approach may be less invasive than procedures based on the use of isolated or concentrated MSCs, simplifying translational protocols in patients. In this study, we provide evidence showing the feasibility of overexpressing the mitogenic and pro-anabolic insulin-like growth factor I (IGF-I) in human peripheral blood aspirates via rAAV-mediated gene transfer, leading to enhanced proliferative and chondrogenic differentiation (proteoglycans, type-II collagen, SOX9) activities in the samples relative to control (reporter rAAV-lacZ) treatment over extended periods of time (at least 21 days, the longest time-point evaluated). Interestingly, IGF-I gene transfer also triggered hypertrophic, osteo- and adipogenic differentiation processes in the aspirates, suggesting that careful regulation of IGF-I expression may be necessary to contain these events in vivo. Still, the current results demonstrate the potential of targeting human peripheral blood aspirates via therapeutic rAAV transduction as a novel, convenient tool to treat articular cartilage injuries. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  14. The ANCA Vasculitis Questionnaire (AAV-PRO©)

    Science.gov (United States)

    2017-05-01

    Eosinophilic Granulomatosis With Polyangiitis (Churg-Strauss) (EGPA); Churg-Strauss Syndrome (CSS); Granulomatosis With Polyangiitis (Wegener's) (GPA); Wegener Granulomatosis (WG); Microscopic Polyangiitis (MPA); ANCA-Associated Vasculitis (AAV); Vasculitis

  15. Microneedle-mediated vaccine delivery

    NARCIS (Netherlands)

    Maaden, Koen van der

    2014-01-01

    Conventional vaccines are administered intramuscularly or subcutaneously via hypodermic needles, causing pain and stress. Since the skin is a powerful immune organ, it is not surprising that intradermal injections result in potent immune responses. However, they are relatively difficult to perform

  16. Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery.

    Science.gov (United States)

    Giannelli, Serena G; Luoni, Mirko; Castoldi, Valerio; Massimino, Luca; Cabassi, Tommaso; Angeloni, Debora; Demontis, Gian Carlo; Leocani, Letizia; Andreazzoli, Massimiliano; Broccoli, Vania

    2018-03-01

    P23H is the most common mutation in the RHODOPSIN (RHO) gene leading to a dominant form of retinitis pigmentosa (RP), a rod photoreceptor degeneration that invariably causes vision loss. Specific disruption of the disease P23H RHO mutant while preserving the wild-type (WT) functional allele would be an invaluable therapy for this disease. However, various technologies tested in the past failed to achieve effective changes and consequently therapeutic benefits. We validated a CRISPR/Cas9 strategy to specifically inactivate the P23H RHO mutant, while preserving the WT allele in vitro. We, then, translated this approach in vivo by delivering the CRISPR/Cas9 components in murine Rho+/P23H mutant retinae. Targeted retinae presented a high rate of cleavage in the P23H but not WT Rho allele. This gene manipulation was sufficient to slow photoreceptor degeneration and improve retinal functions. To improve the translational potential of our approach, we tested intravitreal delivery of this system by means of adeno-associated viruses (AAVs). To this purpose, the employment of the AAV9-PHP.B resulted the most effective in disrupting the P23H Rho mutant. Finally, this approach was translated successfully in human cells engineered with the homozygous P23H RHO gene mutation. Overall, this is a significant proof-of-concept that gene allele specific targeting by CRISPR/Cas9 technology is specific and efficient and represents an unprecedented tool for treating RP and more broadly dominant genetic human disorders affecting the eye, as well as other tissues.

  17. Recent Trends of Polymer Mediated Liposomal Gene Delivery System

    Directory of Open Access Journals (Sweden)

    Shyamal Kumar Kundu

    2014-01-01

    Full Text Available Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole.

  18. Comparative assessment of plasmid DNA delivery by encapsulation ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research January 2018; 17 (1): 1-10 ... Purpose: To compare the gene delivery effectiveness of plasmid DNA (pDNA) ..... Intramuscular delivery of DNA ... copolymeric system for gene delivery in complete.

  19. Newborn Analgesia Mediated by Oxytocin during Delivery

    Science.gov (United States)

    Mazzuca, Michel; Minlebaev, Marat; Shakirzyanova, Anastasia; Tyzio, Roman; Taccola, Giuliano; Janackova, Sona; Gataullina, Svetlana; Ben-Ari, Yehezkel; Giniatullin, Rashid; Khazipov, Rustem

    2011-01-01

    The mechanisms controlling pain in newborns during delivery are poorly understood. We explored the hypothesis that oxytocin, an essential hormone for labor and a powerful neuromodulator, exerts analgesic actions on newborns during delivery. Using a thermal tail-flick assay, we report that pain sensitivity is two-fold lower in rat pups immediately after birth than 2 days later. Oxytocin receptor antagonists strongly enhanced pain sensitivity in newborn, but not in 2-day-old rats, whereas oxytocin reduced pain at both ages suggesting an endogenous analgesia by oxytocin during delivery. Similar analgesic effects of oxytocin, measured as attenuation of pain-vocalization induced by electrical whisker pad stimulation, were also observed in decerebrated newborns. Oxytocin reduced GABA-evoked calcium responses and depolarizing GABA driving force in isolated neonatal trigeminal neurons suggesting that oxytocin effects are mediated by alterations of intracellular chloride. Unlike GABA signaling, oxytocin did not affect responses mediated by P2X3 and TRPV1 receptors. In keeping with a GABAergic mechanism, reduction of intracellular chloride by the diuretic NKCC1 chloride co-transporter antagonist bumetanide mimicked the analgesic actions of oxytocin and its effects on GABA responses in nociceptive neurons. Therefore, endogenous oxytocin exerts an analgesic action in newborn pups that involves a reduction of the depolarizing action of GABA on nociceptive neurons. Therefore, the same hormone that triggers delivery also acts as a natural pain killer revealing a novel facet of the protective actions of oxytocin in the fetus at birth. PMID:21519396

  20. Therapeutic Efficacy of Vectored PGT121 Gene Delivery in HIV-1-Infected Humanized Mice.

    Science.gov (United States)

    Badamchi-Zadeh, Alexander; Tartaglia, Lawrence J; Abbink, Peter; Bricault, Christine A; Liu, Po-Ting; Boyd, Michael; Kirilova, Marinela; Mercado, Noe B; Nanayakkara, Ovini S; Vrbanac, Vladimir D; Tager, Andrew M; Larocca, Rafael A; Seaman, Michael S; Barouch, Dan H

    2018-04-01

    Broadly neutralizing antibodies (bNAbs) are being explored for HIV-1 prevention and cure strategies. However, administration of purified bNAbs poses challenges in resource-poor settings, where the HIV-1 disease burden is greatest. In vivo vector-based production of bNAbs represents an alternative strategy. We investigated adenovirus serotype 5 (Ad5) and adeno-associated virus serotype 1 (AAV1) vectors to deliver the HIV-1-specific bNAb PGT121 in wild-type and immunocompromised C57BL/6 mice as well as in HIV-1-infected bone marrow-liver-thymus (BLT) humanized mice. Ad5.PGT121 and AAV1.PGT121 produced functional antibody in vivo Ad5.PGT121 produced PGT121 rapidly within 6 h, whereas AAV1.PGT121 produced detectable PGT121 in serum by 72 h. Serum PGT121 levels were rapidly reduced by the generation of anti-PGT121 antibodies in immunocompetent mice but were durably maintained in immunocompromised mice. In HIV-1-infected BLT humanized mice, Ad5.PGT121 resulted in a greater reduction of viral loads than did AAV1.PGT121. Ad5.PGT121 also led to more-sustained virologic control than purified PGT121 IgG. Ad5.PGT121 afforded more rapid, robust, and durable antiviral efficacy than AAV1.PGT121 and purified PGT121 IgG in HIV-1-infected humanized mice. Further evaluation of vector delivery of HIV-1 bNAbs is warranted, although approaches to prevent the generation of antiantibody responses may also be required. IMPORTANCE Broadly neutralizing antibodies (bNAbs) are being explored for HIV-1 prevention and cure strategies, but delivery of purified antibodies may prove challenging. We investigated adenovirus serotype 5 (Ad5) and adeno-associated virus serotype 1 (AAV1) vectors to deliver the HIV-1-specific bNAb PGT121. Ad5.PGT121 afforded more rapid, robust, and durable antiviral efficacy than AAV1.PGT121 and purified PGT121 IgG in HIV-1-infected humanized mice. Copyright © 2018 Badamchi-Zadeh et al.

  1. AAV exploits subcellular stress associated with inflammation, endoplasmic reticulum expansion, and misfolded proteins in models of cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Jarrod S Johnson

    2011-05-01

    , we surmised that factors enlisted to process misfolded proteins such as ΔF508-CFTR in the secretory pathway also act to restrict viral infection. In line with this hypothesis, we found that AAV trafficked to the microtubule organizing center and localized near Golgi/ER transport proteins. Moreover, AAV infection efficiency could be modulated with siRNA-mediated knockdown of proteins involved in processing ΔF508-CFTR or sorting retrograde cargo from the Golgi and ER (calnexin, KDEL-R, β-COP, and PSMB3. In summary, our data support a model where AAV exploits a compromised secretory system and, importantly, underscore the gravity with which a stressed subcellular environment, under internal or external insults, can impact infection efficiency.

  2. Better Targeting, Better Efficiency for Wide-scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B

    Directory of Open Access Journals (Sweden)

    Kasey L Jackson

    2016-11-01

    Full Text Available Widespread genetic modification of cells in the central nervous system (CNS with a viral vector has become possible and increasingly more efficient. We previously applied an AAV9 vector with the cytomegalovirus/chicken beta-actin hybrid (CBA promoter and achieved wide-scale CNS transduction in neonatal and adult rats. However, this method transduces a variety of tissues in addition to the CNS. Thus we studied intravenous AAV9 gene transfer with a synapsin promoter to better target the neurons. We noted in systematic comparisons that the synapsin promoter drives lower level expression than does the CBA promoter. The engineered AAV-PHP.B serotype was compared with AAV9, and AAV-PHP.B did enhance the efficiency of expression. Combining the synapsin promoter with AAV-PHP.B could therefore be advantageous in terms of combining two refinements of targeting and efficiency. Wide-scale expression was used to model a disease with widespread pathology. Vectors encoding the amyotrophic lateral sclerosis (ALS-related protein TDP-43 with the synapsin promoter and AAV-PHP.B were used for efficient CNS-targeted TDP-43 expression. Intracerebroventricular injections were also explored to limit TDP-43 expression to the CNS. The neuron-selective promoter and the AAV-PHP.B enhanced gene transfer and ALS disease modeling in adult rats.

  3. Amelioration of Muscle and Nerve Pathology in LAMA2 Muscular Dystrophy by AAV9-Mini-Agrin

    Directory of Open Access Journals (Sweden)

    Chunping Qiao

    2018-06-01

    Full Text Available LAMA2-related muscular dystrophy (LAMA2 MD is the most common and fatal form of early-onset congenital muscular dystrophies. Due to the large size of the laminin α2 cDNA and heterotrimeric structure of the protein, it is challenging to develop a gene-replacement therapy. Our group has developed a novel adeno-associated viral (AAV vector carrying the mini-agrin, which is a non-homologous functional substitute for the mutated laminin α2. A significant therapeutic effect in skeletal muscle was observed in our previous study using AAV serotype 1 (AAV1. In this investigation, we examined AAV9 vector, which has more widespread transduction than AAV1, to determine if the therapeutic effects could be further improved. As expected, AAV9-mini-agrin treatment offered enhanced therapeutic effects over the previously used AAV1-mini-agrin in extending mouse lifespan and improvement of muscle pathology. Additionally, overexpression of mini-agrin in peripheral nerves of dyw/dyw mice partially amended nerve pathology as evidenced by improved motor function and sensorimotor processing, partial restoration of myelination, partial restoration of basement membrane via EM examination, as well as decreased regeneration of Schwann cells. In conclusion, our studies indicate that overexpression of mini-agrin into dyw/dyw mice offers profound therapeutic effects in both skeletal muscle and nervous system. Keywords: LAMA2, mini-agrin, muscular dystrophy, CMD, AAV, gene therapy

  4. Deletion of the B-B' and C-C' regions of inverted terminal repeats reduces rAAV productivity but increases transgene expression.

    Science.gov (United States)

    Zhou, Qingzhang; Tian, Wenhong; Liu, Chunguo; Lian, Zhonghui; Dong, Xiaoyan; Wu, Xiaobing

    2017-07-14

    Inverted terminal repeats (ITRs) of the adeno-associated virus (AAV) are essential for rescue, replication, packaging, and integration of the viral genome. While ITR mutations have been identified in previous reports, we designed a new truncated ITR lacking the B-B' and C-C' regions named as ITRΔBC and investigated its effects on viral genome replication, packaging, and expression of recombinant AAV (rAAV). The packaging ability was compared between ITRΔBC rAAV and wild-type (wt) ITR rAAV. Our results showed the productivity of ITRΔBC rAAV was reduced 4-fold, which is consistent with the 8-fold decrease in the replication of viral genomic DNA of ITRΔBC rAAV compared with wt ITR rAAV. Surprisingly, transgene expression was significantly higher for ITRΔBC rAAV. A preliminary exploration of the underlying mechanisms was carried out by inhibiting and degrading the ataxia telangiectasia mutated (ATM) protein and the Mre11 complex (MRN), respectively, since the rAAV expression was inhibited by the ATM and/or MRN through cis interaction or binding with wt ITRs. We demonstrated that the inhibitory effects were weakened on ITRΔBC rAAV expression. This study suggests deletion in ITR can affect the transgene expression of AAV, which provides a new way to improve the AAV expression through ITRs modification.

  5. Transcriptome Profiling of Neovascularized Corneas Reveals miR-204 as a Multi-target Biotherapy Deliverable by rAAVs

    Directory of Open Access Journals (Sweden)

    Yi Lu

    2018-03-01

    Full Text Available Corneal neovascularization (NV is the major sight-threatening pathology caused by angiogenic stimuli. Current drugs that directly target pro-angiogenic factors to inhibit or reverse the disease require multiple rounds of administration and have limited efficacies. Here, we identify potential anti-angiogenic corneal microRNAs (miRNAs and demonstrate a framework that employs discovered miRNAs as biotherapies deliverable by recombinant adeno-associated viruses (rAAVs. By querying differentially expressed miRNAs in neovascularized mouse corneas induced by alkali burn, we have revealed 39 miRNAs that are predicted to target more than 5,500 differentially expressed corneal mRNAs. Among these, we selected miR-204 and assessed its efficacy and therapeutic benefit for treating injured corneas. Our results show that delivery of miR-204 by rAAV normalizes multiple novel target genes and biological pathways to attenuate vascularization of injured mouse cornea. Importantly, this gene therapy treatment alternative is efficacious and safe for mitigating corneal NV. Overall, our work demonstrates the discovery of potential therapeutic miRNAs in corneal disorders and their translation into viable treatment alternatives.

  6. Better Targeting, Better Efficiency for Wide-Scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B.

    Science.gov (United States)

    Jackson, Kasey L; Dayton, Robert D; Deverman, Benjamin E; Klein, Ronald L

    2016-01-01

    Widespread genetic modification of cells in the central nervous system (CNS) with a viral vector has become possible and increasingly more efficient. We previously applied an AAV9 vector with the cytomegalovirus/chicken beta-actin (CBA) hybrid promoter and achieved wide-scale CNS transduction in neonatal and adult rats. However, this method transduces a variety of tissues in addition to the CNS. Thus we studied intravenous AAV9 gene transfer with a synapsin promoter to better target the neurons. We noted in systematic comparisons that the synapsin promoter drives lower level expression than does the CBA promoter. The engineered adeno-associated virus (AAV)-PHP.B serotype was compared with AAV9, and AAV-PHP.B did enhance the efficiency of expression. Combining the synapsin promoter with AAV-PHP.B could therefore be advantageous in terms of combining two refinements of targeting and efficiency. Wide-scale expression was used to model a disease with widespread pathology. Vectors encoding the amyotrophic lateral sclerosis (ALS)-related protein transactive response DNA-binding protein, 43 kDa (TDP-43) with the synapsin promoter and AAV-PHP.B were used for efficient CNS-targeted TDP-43 expression. Intracerebroventricular injections were also explored to limit TDP-43 expression to the CNS. The neuron-selective promoter and the AAV-PHP.B enhanced gene transfer and ALS disease modeling in adult rats.

  7. Microneedle-mediated delivery of viral vectored vaccines.

    Science.gov (United States)

    Zaric, Marija; Ibarzo Yus, Bárbara; Kalcheva, Petya Petrova; Klavinskis, Linda Sylvia

    2017-10-01

    Microneedle array platforms are a promising technology for vaccine delivery, due to their ease of administration with no sharp waste generated, small size, possibility of targeted delivery to the specified skin depth and efficacious delivery of different vaccine formulations, including viral vectors. Areas covered: Attributes and challenges of the most promising viral vector candidates that have advanced to the clinic and that have been leveraged for skin delivery by microneedles; The importance of understanding the immunobiology of antigen-presenting cells in the skin, in particular dendritic cells, in order to generate further improved skin vaccination strategies; recent studies where viral vectors expressing various antigens have been coupled with microneedle technology to examine their potential for improved vaccination. Expert opinion: Simple, economic and efficacious vaccine delivery methods are needed to improve health outcomes and manage possible outbreaks of new emerging viruses. Understanding what innate/inflammatory signals are required to induce both immediate and long-term responses remains a major hurdle in the development of the effective vaccines. One approach to meet these needs is microneedle-mediated viral vector vaccination. In order for this technology to fulfil this potential the industry must invest significantly to further develop its design, production, biosafety, delivery and large-scale manufacturing.

  8. The influence of rAAV2-mediated SOX2 delivery into neonatal and adult human RPE cells; a comparative study.

    Science.gov (United States)

    Ezati, Razie; Etemadzadeh, Azadeh; Soheili, Zahra-Soheila; Samiei, Shahram; Ranaei Pirmardan, Ehsan; Davari, Malihe; Najafabadi, Hoda Shams

    2018-02-01

    Cell replacement is a promising therapy for degenerative diseases like age-related macular degeneration (AMD). Since the human retina lacks regeneration capacity, much attention has been directed toward persuading for cells that can differentiate into retinal neurons. In this report, we have investigated reprogramming of the human RPE cells and concerned the effect of donor age on the cellular fate as a critical determinant in reprogramming competence. We evaluated the effect of SOX2 over-expression in human neonatal and adult RPE cells in cultures. The coding region of human SOX2 gene was cloned into adeno-associated virus (AAV2) and primary culture of human neonatal/adult RPE cells were infected by recombinant virus. De-differentiation of RPE to neural/retinal progenitor cells was investigated by quantitative real-time PCR and ICC for neural/retinal progenitor cells' markers. Gene expression analysis showed 80-fold and 12-fold over-expression for SOX2 gene in infected neonatal and adult hRPE cells, respectively. The fold of increase for Nestin in neonatal and adult hRPE cells was 3.8-fold and 2.5-fold, respectively. PAX6 expression was increased threefold and 2.5-fold in neonatal/adult treated cultures. Howbeit, we could not detect rhodopsin, and CHX10 expression in neonatal hRPE cultures and expression of rhodopsin in adult hRPE cells. Results showed SOX2 induced human neonatal/adult RPE cells to de-differentiate toward retinal progenitor cells. However, the increased number of PAX6, CHX10, Thy1, and rhodopsin positive cells in adult hRPE treated cultures clearly indicated the considerable generation of neuro-retinal terminally differentiated cells. © 2017 Wiley Periodicals, Inc.

  9. Construction of PR39 recombinant AAV under control of the HRE promoter and the effect of recombinant AAV on gene therapy of ischemic heart disease.

    Science.gov (United States)

    Sun, Lijun; Hao, Yuewen; Nie, Xiaowei; Zhang, Xuexin; Yang, Guangxiao; Wang, Quanying

    2012-11-01

    The objective of this study was to investigate the effect of the PR39 recombinant adeno-associated virus (AAV) controlled by the hypoxia-responsive element (HRE) on gene therapy of ischemic heart disease. The minimal HRE was artificially synthesized and the AAV vector controlled by HRE was introduced with NT4-TAT-His-PR39 to investigate the expression of AAV-PR39 in hypoxic vascular endothelial cells (VEC) of human umbilical vein (CRL-1730 cell line) and the angiogenesis-promoting effect in pigs with acute myocardial infraction (AMI). The minimal HRE/CMV was designed and artificially synthesized using the PCR method and cloned with the T vector cloning method. The pSS-HRE-CMV-NT4-6His-PR39-PolyA-AAV plasmid was constructed. Using the calcium phosphate precipitation method, HEK-293 cells were co-transfected with three plasmids to produce the recombinant virus. An equal volume of pSS-HRE-CMV-NT4-6His-PR39-PolyAAAV and enterovirus (EV, blank virus) was transfected into CRL-1730 cell lines, respectively. The immunohistochemical method was used to assay the expression of 6xHis in CRL-1730 cell lines and the expression of PR39 under hypoxia. Eighteen AMI miniature pigs were randomized into the experimental group (HRE-AAV-PR39 group), control group 1 (physical saline group) and control group 2 (EV group). The area of ischemia was assessed with conventional MRI and myocardium perfusion MRI. Pigs were sacrificed at preset time-points to obtain samples of ischemic myocardium. Morphological and pathological data were collected. According to data in the literature and databases, the minimal HRE was designed and synthesized with the PCR method. A large number of HREs were connected to modified pSSHGAAV (pSSV9int-/XbaI) vector followed by insertion of the NT4-6His-PR39 gene segment and, thus, the recombinant plasmid pSS-HRE-CMV-NT4-6His-PR39-PolyA-AAV was successfully constructed. The expression of 6xHis in CRL-1730 cells under the regulation of HRE was assayed using the

  10. Novel AAV-based rat model of forebrain synucleinopathy shows extensive pathologies and progressive loss of cholinergic interneurons.

    Directory of Open Access Journals (Sweden)

    Patrick Aldrin-Kirk

    Full Text Available Synucleinopathies, characterized by intracellular aggregation of α-synuclein protein, share a number of features in pathology and disease progression. However, the vulnerable cell population differs significantly between the disorders, despite being caused by the same protein. While the vulnerability of dopamine cells in the substantia nigra to α-synuclein over-expression, and its link to Parkinson's disease, is well studied, animal models recapitulating the cortical degeneration in dementia with Lewy-bodies (DLB are much less mature. The aim of this study was to develop a first rat model of widespread progressive synucleinopathy throughout the forebrain using adeno-associated viral (AAV vector mediated gene delivery. Through bilateral injection of an AAV6 vector expressing human wild-type α-synuclein into the forebrain of neonatal rats, we were able to achieve widespread, robust α-synuclein expression with preferential expression in the frontal cortex. These animals displayed a progressive emergence of hyper-locomotion and dysregulated response to the dopaminergic agonist apomorphine. The animals receiving the α-synuclein vector displayed significant α-synuclein pathology including intra-cellular inclusion bodies, axonal pathology and elevated levels of phosphorylated α-synuclein, accompanied by significant loss of cortical neurons and a progressive reduction in both cortical and striatal ChAT positive interneurons. Furthermore, we found evidence of α-synuclein sequestered by IBA-1 positive microglia, which was coupled with a distinct change in morphology. In areas of most prominent pathology, the total α-synuclein levels were increased to, on average, two-fold, which is similar to the levels observed in patients with SNCA gene triplication, associated with cortical Lewy body pathology. This study provides a novel rat model of progressive cortical synucleinopathy, showing for the first time that cholinergic interneurons are vulnerable

  11. Terapia génica para la diabetes tipo I basada en la administración intramuscular de AAV1 insulina-glucoquinasa

    OpenAIRE

    Jaén Sitges, Maria Luisa

    2017-01-01

    La diabetes tipo 1 es una enfermedad metabólica compleja para la cual actualmente no hay cura y está asociada con complicaciones secundarias graves, causadas en gran parte por un control glucémico deficiente. El logro de la normoglucemia con el tratamiento exógeno con insulina requiere el uso de altas dosis de la hormona, lo que aumenta el riesgo de episodios hipoglucémicos potencialmente mortales. En nuestro laboratorio se ha demostrado previamente que una única administración intramuscular ...

  12. The Effect of the Timing of Intramuscular Oxytocin Injection on Maternal Bleeding during the Third Stage of Labour

    Directory of Open Access Journals (Sweden)

    Sakine Mohamadian

    2013-12-01

    Full Text Available Background and aim: The third stage of labour is one of the most troublesome stages of child delivery. The basic principle of the third stage management is administrating prophylactic uterotonics. However, the time of its administration varies in different hospitals. This study aimed to determine the effect of intramuscular oxytocin injection after emergence of the fetal anterior shoulder or placental expulsion on bleeding in the third stage of labour. Methodology: This clinical trial was conducted on 100 pregnant women with gestational age of 38-42 weeks, and singleton pregnancies. Subjects were selected using convenience sampling and were then randomly assigned to intervention (injection of 10 IU intramuscular oxytocin after emergence of the fetal anterior shoulder and control (injection of 10 IU intramuscular oxytocin after placental expulsion groups. Blood was collected in containers and weighed with a weighing scale.  A checklist was used to record labor and delivery related data. Data were analyzed by SPSS version 11.5, using Chi-square and t-test. Findings: The mean amount of bleeding during the third stage of labour was 183.4 ± 145.8 and 202.2 ±208.8 ml in intervention and control group, respectively. No significant difference was found between two groups in terms of maternal bleeding. Conclusion: Injection of intramuscular oxytocin either after emergence of the fetal anterior shoulder or placental expulsion does not affect the amount of maternal bleeding during the third stage of labour.

  13. Delivery of proteins to mammalian cells via gold nanoparticle mediated laser transfection

    International Nuclear Information System (INIS)

    Heinemann, D; Kalies, S; Schomaker, M; Ertmer, W; Meyer, H; Ripken, T; Murua Escobar, H

    2014-01-01

    Nanoparticle laser interactions are in widespread use in cell manipulation. In particular, molecular medicine needs techniques for the directed delivery of molecules into mammalian cells. Proteins are the final mediator of most cellular cascades. However, despite several methodical approaches, the efficient delivery of proteins to cells remains challenging. This paper presents a new protein transfection technique via laser scanning of cells previously incubated with gold nanoparticles. The laser-induced plasmonic effects on the gold nanoparticles cause a transient permeabilization of the cellular membrane, allowing proteins to enter the cell. Applying this technique, it was possible to deliver green fluorescent protein into mammalian cells with an efficiency of 43%, maintaining a high level of cell viability. Furthermore, a functional delivery of Caspase 3, an apoptosis mediating protein, was demonstrated and evaluated in several cellular assays. Compared to conventional protein transfection techniques such as microinjection, the methodical approach presented here enables high-throughput transfection of about 10 000 cells per second. Moreover, a well-defined point in time of delivery is guaranteed by gold nanoparticle mediated laser transfection, allowing the detailed temporal analysis of cellular pathways and protein trafficking. (papers)

  14. Intracranial AAV-sTRAIL combined with lanatoside C prolongs survival in an orthotopic xenograft mouse model of invasive glioblastoma.

    Science.gov (United States)

    Crommentuijn, Matheus H W; Maguire, Casey A; Niers, Johanna M; Vandertop, W Peter; Badr, Christian E; Würdinger, Thomas; Tannous, Bakhos A

    2016-04-01

    Glioblastoma (GBM) is the most common malignant brain tumor in adults. We designed an adeno-associated virus (AAV) vector for intracranial delivery of secreted, soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) to GBM tumors in mice and combined it with the TRAIL-sensitizing cardiac glycoside, lanatoside C (lan C). We applied this combined therapy to two different GBM models using human U87 glioma cells and primary patient-derived GBM neural spheres in culture and in orthotopic GBM xenograft models in mice. In U87 cells, conditioned medium from AAV2-sTRAIL expressing cells combined with lan C induced 80% cell death. Similarly, lan C sensitized primary GBM spheres to sTRAIL causing over 90% cell death. In mice bearing intracranial U87 tumors treated with AAVrh.8-sTRAIL, administration of lan C caused a decrease in tumor-associated Fluc signal, while tumor size increased within days of stopping the treatment. Another round of lan C treatment re-sensitized GBM tumor to sTRAIL-induced cell death. AAVrh.8-sTRAIL treatment alone and combined with lanatoside C resulted in a significant decrease in tumor growth and longer survival of mice bearing orthotopic invasive GBM brain tumors. In summary, AAV-sTRAIL combined with lanatoside C induced cell death in U87 glioma cells and patient-derived GBM neural spheres in culture and in vivo leading to an increased in overall mice survival. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Immunogenicity and safety of low dose virosomal adjuvanted influenza vaccine administered intradermally compared to intramuscular full dose administration

    NARCIS (Netherlands)

    Künzi, Valérie; Klap, Jaco M.; Seiberling, Michael K.; Herzog, Christian; Hartmann, Katharina; Kürsteiner, Oliver; Kompier, Ronald; Grimaldi, Roberto; Goudsmit, Jaap

    2009-01-01

    BACKGROUND: Despite the established benefit of intramuscular (i.m.) influenza vaccination, new adjuvants and delivery methods for comparable or improved immunogenicity are being explored. Intradermal (i.d.) antigen administration is hypothesized to initiate an efficient immune response at reduced

  16. Field distribution and DNA transport in solid tumors during electric field-mediated gene delivery.

    Science.gov (United States)

    Henshaw, Joshua W; Yuan, Fan

    2008-02-01

    Gene therapy has a great potential in cancer treatment. However, the efficacy of cancer gene therapy is currently limited by the lack of a safe and efficient means to deliver therapeutic genes into the nucleus of tumor cells. One method under investigation for improving local gene delivery is based on the use of pulsed electric field. Despite repeated demonstration of its effectiveness in vivo, the underlying mechanisms behind electric field-mediated gene delivery remain largely unknown. Without a thorough understanding of these mechanisms, it will be difficult to further advance the gene delivery. In this review, the electric field-mediated gene delivery in solid tumors will be examined by following individual transport processes that must occur in vivo for a successful gene transfer. The topics of examination include: (i) major barriers for gene delivery in the body, (ii) distribution of electric fields at both cell and tissue levels during the application of external fields, and (iii) electric field-induced transport of genes across each of the barriers. Through this approach, the review summarizes what is known about the mechanisms behind electric field-mediated gene delivery and what require further investigations in future studies.

  17. Intracranial AAV-IFN-β gene therapy eliminates invasive xenograft glioblastoma and improves survival in orthotopic syngeneic murine model.

    Science.gov (United States)

    GuhaSarkar, Dwijit; Neiswender, James; Su, Qin; Gao, Guangping; Sena-Esteves, Miguel

    2017-02-01

    The highly invasive property of glioblastoma (GBM) cells and genetic heterogeneity are largely responsible for tumor recurrence after the current standard-of-care treatment and thus a direct cause of death. Previously, we have shown that intracranial interferon-beta (IFN-β) gene therapy by locally administered adeno-associated viral vectors (AAV) successfully treats noninvasive orthotopic glioblastoma models. Here, we extend these findings by testing this approach in invasive human GBM xenograft and syngeneic mouse models. First, we show that a single intracranial injection of AAV encoding human IFN-β eliminates invasive human GBM8 tumors and promotes long-term survival. Next, we screened five AAV-IFN-β vectors with different promoters to drive safe expression of mouse IFN-β in the brain in the context of syngeneic GL261 tumors. Two AAV-IFN-β vectors were excluded due to safety concerns, but therapeutic studies with the other three vectors showed extensive tumor cell death, activation of microglia surrounding the tumors, and a 56% increase in median survival of the animals treated with AAV/P2-Int-mIFN-β vector. We also assessed the therapeutic effect of combining AAV-IFN-β therapy with temozolomide (TMZ). As TMZ affects DNA replication, an event that is crucial for second-strand DNA synthesis of single-stranded AAV vectors before active transcription, we tested two TMZ treatment regimens. Treatment with TMZ prior to AAV-IFN-β abrogated any benefit from the latter, while the reverse order of treatment doubled the median survival compared to controls. These studies demonstrate the therapeutic potential of intracranial AAV-IFN-β therapy in a highly migratory GBM model as well as in a syngeneic mouse model and that combination with TMZ is likely to enhance its antitumor potency. © 2016 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  18. Adeno-associated virus Rep-mediated targeting of integrase-defective retroviral vector DNA circles into human chromosome 19

    International Nuclear Information System (INIS)

    Huang, Shuohao; Kawabe, Yoshinori; Ito, Akira; Kamihira, Masamichi

    2012-01-01

    Highlights: ► Adeno-associated virus (AAV) is capable of targeted integration in human cells. ► Integrase-defective retroviral vector (IDRV) enables a circular DNA delivery. ► A targeted integration system of IDRV DNA using the AAV integration mechanism. ► Targeted IDRV integration ameliorates the safety concerns for retroviral vectors. -- Abstract: Retroviral vectors have been employed in clinical trials for gene therapy owing to their relative large packaging capacity, alterable cell tropism, and chromosomal integration for stable transgene expression. However, uncontrollable integrations of transgenes are likely to cause safety issues, such as insertional mutagenesis. A targeted transgene integration system for retroviral vectors, therefore, is a straightforward way to address the insertional mutagenesis issue. Adeno-associated virus (AAV) is the only known virus capable of targeted integration in human cells. In the presence of AAV Rep proteins, plasmids possessing the p5 integration efficiency element (p5IEE) can be integrated into the AAV integration site (AAVS1) in the human genome. In this report, we describe a system that can target the circular DNA derived from non-integrating retroviral vectors to the AAVS1 site by utilizing the Rep/p5IEE integration mechanism. Our results showed that after G418 selection 30% of collected clones had retroviral DNA targeted at the AAVS1 site.

  19. Recombinant AAV8-mediated intrastriatal gene delivery of CDNF protects rats against methamphetamine neurotoxicity

    Science.gov (United States)

    Wang, Lizheng; Wang, Zixuan; Xu, Xiaoyu; Zhu, Rui; Bi, Jinpeng; Liu, Wenmo; Feng, Xinyao; Wu, Hui; Zhang, Haihong; Wu, Jiaxin; Kong, Wei; Yu, Bin; Yu, Xianghui

    2017-01-01

    Methamphetamine (METH) exerts significant neurotoxicity in experimental animals and humans when taken at high doses or abused chronically. Long-term abusers have decreased dopamine levels, and they are more likely to develop Parkinson's disease (PD). To date, few medications are available to treat the METH-induced damage of neurons. Glial cell line-derived neurotrophic factor (GDNF) has been previously shown to reduce the dopamine-depleting effects of neurotoxic doses of METH. However, the effect of cerebral dopamine neurotrophic factor (CDNF), which has been reported to be more specific and efficient than GDNF in protecting dopaminergic neurons against 6-OHDA toxicity, in attenuating METH neurotoxicity has not been determined. Thus, the present study aimed to evaluate the neuroprotective effect of CDNF against METH-induced damage to the dopaminergic system in vitro and in vivo. In vitro, CDNF protein increased the survival rate and reduced the tyrosine hydroxylase (TH) loss of METH-treated PC12 cells. In vivo, METH was administered to rats following human CDNF overexpression mediated by the recombinant adeno-associated virus. Results demonstrated that CDNF overexpression in the brain could attenuate the METH-induced dopamine and TH loss in the striatum but could not lower METH-induced hyperthermia. PMID:28553166

  20. Empty virions in AAV8 vector preparations reduce transduction efficiency and may cause total viral particle dose-limiting side effects

    Directory of Open Access Journals (Sweden)

    Kai Gao

    2014-01-01

    Full Text Available Empty virions are inadvertent by-products of recombinant adeno-associated virus (rAAV packaging process, resulting in vector lots with mixtures of full and empty virions at variable ratios. Impact of empty virions on the efficiency and side effects of rAAV transduction has not been well characterized. Here, we generated partially and completely empty AAV8 virions, fully packaged rAAV8 lots, and mixtures of empty and fully packaged virions with variable ratios of empty virions. The aforementioned dosing formulations of rAAV8 expressing either cellular (EGFP (enhanced green fluorescent protein or nuclear-targeted (n LacZ or secreted (human α1-antitrypsin (hA1AT reporter genes were intravenously injected into two different mouse strains, followed by analyses of transgene expressions and serum alanine aminotransferase (ALT levels at different time points. We found that addition of empty particles to the fixed doses of rAAV8 preparations repressed liver transduction up to 64% (serum hA1AT and 44% (nLacZ in C57BL/6 mice, respectively. The similar trend in inhibiting EGFP expression together with concurrent elevations of serum ALT levels were observed in the BALB/c mice, indicating that empty particles may also exacerbate side effects of rAAV8 EGFP transduction. Our results suggest that removal of empty particles from rAAV preparations may improve efficacy and safety of AAV in clinical applications.

  1. Delivery of Human EV71 Receptors by Adeno-Associated Virus Increases EV71 Infection-Induced Local Inflammation in Adult Mice

    Directory of Open Access Journals (Sweden)

    Hung-Bo Hsiao

    2014-01-01

    Full Text Available Enterovirus71 (EV71 is now recognized as an emerging neurotropic virus in Asia and one major causative agent of hand-foot-mouth diseases (HFMD. However potential animal models for vaccine development are limited to young mice. In this study, we used an adeno-associated virus (AAV vector to introduce the human EV71 receptors P-selectin glycoprotein ligand-1 (hPSGL1 or a scavenger receptor class-B member-2 (hSCARB2 into adult ICR mice to change their susceptibility to EV71 infection. Mice were administered AAV-hSCARB2 or AAV-hPSGL1 through intravenous and oral routes. After three weeks, expression of human SCARB2 and PSGL1 was detected in various organs. After infection with EV71, we found that the EV71 viral load in AAV-hSCARB2- or AAV-hPSGL1-transduced mice was higher than that of the control mice in both the brain and intestines. The presence of EV71 viral particles in tissues was confirmed using immunohistochemistry analysis. Moreover, inflammatory cytokines were induced in the brain and intestines of AAV-hSCARB2- or AAV-hPSGL1-transduced mice after EV71 infection but not in wild-type mice. However, neurological disease was not observed in these animals. Taken together, we successfully infected adult mice with live EV71 and induced local inflammation using an AAV delivery system.

  2. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy.

    Science.gov (United States)

    Nance, Michael E; Duan, Dongsheng

    2015-12-01

    Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy.

  3. Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer

    OpenAIRE

    Buchlis, George; Podsakoff, Gregory M.; Radu, Antonetta; Hawk, Sarah M.; Flake, Alan W.; Mingozzi, Federico; High, Katherine A.

    2012-01-01

    In previous work we transferred a human factor IX–encoding adeno-associated viral vector (AAV) into skeletal muscle of men with severe hemophilia B. Biopsy of injected muscle up to 1 year after vector injection showed evidence of gene transfer by Southern blot and of protein expression by IHC and immunofluorescent staining. Although the procedure appeared safe, circulating F.IX levels remained subtherapeutic (< 1%). Recently, we obtained muscle tissue from a subject injected 10 years earlier ...

  4. Antibody-mediated delivery of interleukin 4 to the neo-vasculature reduces chronic skin inflammation

    OpenAIRE

    Hemmerle Teresa; Zgraggen Silvana; Matasci Mattia; Halin Cornelia; Detmar Michael; Neri Dario

    2014-01-01

    BACKGROUND: The antibody mediated delivery of cytokines (quot;immunocytokinesquot;) to sites of pathological angiogenesis represents an attractive strategy for the development of innovative biopharmaceuticals capable of modulating the activity of the immune system in cancer and in chronic inflammatory conditions. OBJECTIVE: Recombinant IL4 has previously been shown to be therapeutically active in patients with psoriasis. The antibody mediated delivery of this cytokine to sites of chronic skin...

  5. Myostatin inhibits porcine intramuscular preadipocyte differentiation in vitro.

    Science.gov (United States)

    Sun, W X; Dodson, M V; Jiang, Z H; Yu, S G; Chu, W W; Chen, J

    2016-04-01

    This study assessed the effect of myostatin on adipogenesis by porcine intramuscular preadipocytes. Intramuscular preadipocytes were isolated from the longissimus dorsi muscle of newborn pigs. Myostatin inhibited intramuscular preadipocyte differentiation in a dose-dependent manner. Myostatin treatment during preadipocyte differentiation significantly (P Myostatin also significantly (P myostatin acts as an extrinsic regulatory factor in regulating intramuscular adipogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Dual AAV Gene Therapy for Duchenne Muscular Dystrophy with a 7-kb Mini-Dystrophin Gene in the Canine Model.

    Science.gov (United States)

    Kodippili, Kasun; Hakim, Chady H; Pan, Xiufang; Yang, Hsiao T; Yue, Yongping; Zhang, Yadong; Shin, Jin-Hong; Yang, N Nora; Duan, Dongsheng

    2018-03-01

    Dual adeno-associated virus (AAV) technology was developed in 2000 to double the packaging capacity of the AAV vector. The proof of principle has been demonstrated in various mouse models. Yet, pivotal evidence is lacking in large animal models of human diseases. Here we report expression of a 7-kb canine ΔH2-R15 mini-dystrophin gene using a pair of dual AAV vectors in the canine model of Duchenne muscular dystrophy (DMD). The ΔH2-R15 minigene is by far the most potent synthetic dystrophin gene engineered for DMD gene therapy. We packaged minigene dual vectors in Y731F tyrosine-modified AAV-9 and delivered to the extensor carpi ulnaris muscle of a 12-month-old affected dog at the dose of 2 × 10 13 viral genome particles/vector/muscle. Widespread mini-dystrophin expression was observed 2 months after gene transfer. The missing dystrophin-associated glycoprotein complex was restored. Treatment also reduced muscle degeneration and fibrosis and improved myofiber size distribution. Importantly, dual AAV therapy greatly protected the muscle from eccentric contraction-induced force loss. Our data provide the first clear evidence that dual AAV therapy can be translated to a diseased large mammal. Further development of dual AAV technology may lead to effective therapies for DMD and many other diseases in human patients.

  7. Skeletal muscle-specific overexpression of IGFBP-2 promotes a slower muscle phenotype in healthy but not dystrophic mdx mice and does not affect the dystrophic pathology.

    Science.gov (United States)

    Swiderski, Kristy; Martins, Karen Janet Bernice; Chee, Annabel; Trieu, Jennifer; Naim, Timur; Gehrig, Stefan Martin; Baum, Dale Michael; Brenmoehl, Julia; Chau, Luong; Koopman, René; Gregorevic, Paul; Metzger, Friedrich; Hoeflich, Andreas; Lynch, Gordon Stuart

    The insulin-like growth factor binding proteins (IGFBPs) are thought to modulate cell size and homeostasis via IGF-I-dependent and -independent pathways. There is a considerable dearth of information regarding the function of IGFBPs in skeletal muscle, particularly their role in the pathophysiology of Duchenne muscular dystrophy (DMD). In this study we tested the hypothesis that intramuscular IGFBP-2 overexpression would ameliorate the pathology in mdx dystrophic mice. 4week old male C57Bl/10 and mdx mice received a single intramuscular injection of AAV6-empty or AAV6-IGFBP-2 vector into the tibialis anterior muscle. At 8weeks post-injection the effect of IGFBP-2 overexpression on the structure and function of the injected muscle was assessed. AAV6-mediated IGFBP-2 overexpression in the tibialis anterior (TA) muscles of 4-week-old C57BL/10 and mdx mice reduced the mass of injected muscle after 8weeks, inducing a slower muscle phenotype in C57BL/10 but not mdx mice. Analysis of inflammatory and fibrotic gene expression revealed no changes between control and IGFBP-2 injected muscles in dystrophic (mdx) mice. Together these results indicate that the IGFBP-2-induced promotion of a slower muscle phenotype is impaired in muscles of dystrophin-deficient mdx mice, which contributes to the inability of IGFBP-2 to ameliorate the dystrophic pathology. The findings implicate the dystrophin-glycoprotein complex (DGC) in the signaling required for this adaptation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. PLGA Nanoparticles for Ultrasound-Mediated Gene Delivery to Solid Tumors

    Directory of Open Access Journals (Sweden)

    Marxa Figueiredo

    2012-01-01

    Full Text Available This paper focuses on novel approaches in the field of nanotechnology-based carriers utilizing ultrasound stimuli as a means to spatially target gene delivery in vivo, using nanoparticles made with either poly(lactic-co-glycolic acid (PLGA or other polymers. We specifically discuss the potential for gene delivery by particles that are echogenic (amenable to destruction by ultrasound composed either of polymers (PLGA, polystyrene or other contrast agent materials (Optison, SonoVue microbubbles. The use of ultrasound is an efficient tool to further enhance gene delivery by PLGA or other echogenic particles in vivo. Echogenic PLGA nanoparticles are an attractive strategy for ultrasound-mediated gene delivery since this polymer is currently approved by the US Food and Drug Administration for drug delivery and diagnostics in cancer, cardiovascular disease, and also other applications such as vaccines and tissue engineering. This paper will review recent successes and the potential of applying PLGA nanoparticles for gene delivery, which include (a echogenic PLGA used with ultrasound to enhance local gene delivery in tumors or muscle and (b PLGA nanoparticles currently under development, which could benefit in the future from ultrasound-enhanced tumor targeted gene delivery.

  9. Nitric oxide nanoparticles: Pre-clinical utility as a therapeutic for intramuscular abscesses

    OpenAIRE

    Schairer, David O.; Martinez, Luis R.; Blecher, Karin; Chouake, Jason S.; Nacharaju, Parimala; Gialanella, Philip; Friedman, Joel M.; Nosanchuk, Joshua D.; Friedman, Adam J.

    2012-01-01

    Nitric oxide (NO) is a critical component of host defense against invading pathogens; however, its therapeutic utility is limited due to a lack of practical delivery systems. Recently, a NO-releasing nanoparticulate platform (NO-np) was shown to have in vitro broad-spectrum antimicrobial activity and in vivo pre-clinical efficacy in a dermal abscess model. To extend these findings, both topical (TP) and intralesional (IL) NO-np administration was evaluated in a MRSA intramuscular murine absce...

  10. Carbidopa-based modulation of the functional effect of the AAV2-hAADC gene therapy in 6-OHDA lesioned rats.

    Directory of Open Access Journals (Sweden)

    Agnieszka Ciesielska

    Full Text Available Progressively blunted response to L-DOPA in Parkinson's disease (PD is a critical factor that complicates long-term pharmacotherapy in view of the central importance of this drug in management of the PD-related motor disturbance. This phenomenon is likely due to progressive loss of one of the key enzymes involved in the biosynthetic pathway for dopamine in the basal ganglia: aromatic L-amino acid decarboxylase (AADC. We have developed a gene therapy based on an adeno-associated virus encoding human AADC (AAV2-hAADC infused into the Parkinsonian striatum. Although no adverse clinical effects of the AAV2-hAADC gene therapy have been observed so far, the ability to more precisely regulate transgene expression or transgene product activity could be an important long-term safety feature. The present study was designed to define pharmacological regulation of the functional activity of AAV2-hAADC transgene product by manipulating L-DOPA and carbidopa (AADC inhibitor administration in hemi-parkinsonian rats. Thirty days after unilateral striatal infusion of AAV2-hAADC, animals displayed circling behavior and acceleration of dopamine metabolism in the lesioned striatum after administration of a low dose of L-DOPA (5 mg/kg co-administered with 1.25 mg/kg of carbidopa. This phenomenon was not observed in control AAV2-GFP-treated rats. Withdrawal of carbidopa from a daily L-DOPA regimen decreased the peripheral L-DOPA pool, resulting in almost total loss of L-DOPA-induced behavioral response in AAV2-hAADC rats and a significant decline in striatal dopamine turnover. The serum L-DOPA level correlated with the magnitude of circling behavior in AAV2-hAADC rats. Additionally, AADC activity in homogenates of lesioned striata transduced by AAV2-AADC was 10-fold higher when compared with AAV2-GFP-treated control striata, confirming functional transduction. Our data suggests that the pharmacological regulation of circulating L-DOPA might be effective in the

  11. Protective CD8+ T-cell responses to cytomegalovirus driven by rAAV/GFP/IE1 loading of dendritic cells

    Directory of Open Access Journals (Sweden)

    Dalle-Donne Isabella

    2008-10-01

    Full Text Available Abstract Background Recent studies demonstrate that recombinant adeno-associated virus (rAAV-based antigen loading of dendritic cells (DCs generates in vitro, significant and rapid cytotoxic T-lymphocyte (CTL responses against viral antigens. Methods We used the rAAV system to induce specific CTLs against CVM antigens for the development of cytomegalovirus HCMV gene therapy. As an extension of the versatility of the rAAV system, we incorporated immediate-early 1 (IE1, expressed in HCMV. Our rAAV vector induced a strong stimulation of CTLs directed against the HCMV antigen IE1. We then investigated the efficiency of the CTLs in killing IE1 targeted cells. Results A significant MHC Class I-restricted, anti-IE1-specific CTL killing was demonstrated against IE1 positive peripheral blood mononuclear cells (PBMC after one, in vitro, stimulation. Conclusion In summary, single PBMC stimulation with rAAV/IE1 pulsed DCs induces strong antigen specific-CTL generation. CTLs were capable to lyse low doses of peptides pulsed into target cells. These data suggest that AAV-based antigen loading of DCs is highly effective for generating human CTL responses against HCMV antigens.

  12. Intramuscular plasmacytoma

    Energy Technology Data Exchange (ETDEWEB)

    Surov, Alexey [Martin-Luther-University of Halle-Wittenberg, Department of Radiology, Halle (Saale) (Germany); Tcherkes, Anatolij [Martin-Luther-University of Halle-Wittenberg, Department of Hematology/Oncology, Halle (Saale) (Germany); Meier, Frieder [Martin-Luther-University of Halle-Wittenberg, Department of Pathology, Halle (Saale) (Germany)

    2014-11-15

    In multiple myeloma, secondary infiltration of adjacent muscles from bone lesions is common. However, plasmacytoma directly arising within the skeletal musculature is rare. Imaging findings of this rare entity have been described only sporadically. The purpose of this study was to identify the clinical signs and radiological features of intramuscular plasmacytoma (IP). Eleven patients with IP were retrospectively identified in the pathological and radiological databases of our institution. Computed tomography (CT) was performed in nine patients and magnetic resonance imaging (MRI) in four cases. IP presented clinically with local pain in four patients. In one case with involvement of the rectus lateralis muscle of the eye, the patient showed a painless bulbus proptosis. In another patient, IP manifested as a massive bilateral forearm swelling with compartment syndrome. In four patients, IP was identified incidentally on computed tomography during staging examination. On imaging, two patterns of IP were found: intramuscular mass (n = 5) or diffuse muscle infiltration (n = 6). On CT with contrast, IP showed a moderate enhancement. With MRI on T1-weighted images, IP was isointense in comparison to the unaffected musculature, whereas on T2-weighted images, IP showed high signal intensity. After intravenous administration of contrast medium, a slight-to-moderate inhomogeneous enhancement was seen in all cases. IP should be considered in the differential diagnosis of muscle tumors. It manifests with two radiological patterns, either as intramuscular mass or as diffuse muscle infiltration. (orig.)

  13. Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing α1-antitrypsin: interim results.

    LENUS (Irish Health Repository)

    Flotte, Terence R

    2011-10-01

    Recombinant adeno-associated virus (rAAV) vectors offer promise for the gene therapy of α(1)-antitrypsin (AAT) deficiency. In our prior trial, an rAAV vector expressing human AAT (rAAV1-CB-hAAT) provided sustained, vector-derived AAT expression for >1 year. In the current phase 2 clinical trial, this same vector, produced by a herpes simplex virus complementation method, was administered to nine AAT-deficient individuals by intramuscular injection at doses of 6.0×10(11), 1.9×10(12), and 6.0×10(12) vector genomes\\/kg (n=3 subjects\\/dose). Vector-derived expression of normal (M-type) AAT in serum was dose dependent, peaked on day 30, and persisted for at least 90 days. Vector administration was well tolerated, with only mild injection site reactions and no serious adverse events. Serum creatine kinase was transiently elevated on day 30 in five of six subjects in the two higher dose groups and normalized by day 45. As expected, all subjects developed anti-AAV antibodies and interferon-γ enzyme-linked immunospot responses to AAV peptides, and no subjects developed antibodies to AAT. One subject in the mid-dose group developed T cell responses to a single AAT peptide unassociated with any clinical effects. Muscle biopsies obtained on day 90 showed strong immunostaining for AAT and moderate to marked inflammatory cell infiltrates composed primarily of CD3-reactive T lymphocytes that were primarily of the CD8(+) subtype. These results support the feasibility and safety of AAV gene therapy for AAT deficiency, and indicate that serum levels of vector-derived normal human AAT >20 μg\\/ml can be achieved. However, further improvements in the design or delivery of rAAV-AAT vectors will be required to achieve therapeutic target serum AAT concentrations.

  14. Ultrasound-mediated drug delivery by gas bubbles generated from a chemical reaction.

    Science.gov (United States)

    Lee, Sungmun; Al-Kaabi, Leena; Mawart, Aurélie; Khandoker, Ahsan; Alsafar, Habiba; Jelinek, Herbert F; Khalaf, Kinda; Park, Ji-Ho; Kim, Yeu-Chun

    2018-02-01

    Highly echogenic and ultrasound-responsive microbubbles such as nitrogen and perfluorocarbons have been exploited as ultrasound-mediated drug carriers. Here, we propose an innovative method for drug delivery using microbubbles generated from a chemical reaction. In a novel drug delivery system, luminol encapsulated in folate-conjugated bovine serum albumin nanoparticles (Fol-BSAN) can generate nitrogen gas (N 2 ) by chemical reaction when it reacts with hydrogen peroxide (H 2 O 2 ), one of reactive oxygen species (ROS). ROS plays an important role in the initiation and progression of cancer and elevated ROS have been observed in cancer cells both in vitro and in vivo. High-intensity focussed ultrasound (HIFU) is used to burst the N 2 microbubbles, causing site-specific delivery of anticancer drugs such as methotrexate. In this research, the drug delivery system was optimised by using water-soluble luminol and Mobil Composition of Matter-41 (MCM-41), a mesoporous material, so that the delivery system was sensitive to micromolar concentrations of H 2 O 2 . HIFU increased the drug release from Fol-BSAN by 52.9 ± 2.9% in 10 minutes. The cytotoxicity of methotrexate was enhanced when methotrexate is delivered to MDA-MB-231, a metastatic human breast cancer cell line, using Fol-BSAN with HIFU. We anticipate numerous applications of chemically generated microbubbles for ultrasound-mediated drug delivery.

  15. Ultrasound-Mediated Drug/Gene Delivery in Solid Tumor Treatment

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2013-01-01

    Full Text Available Ultrasound is an emerging modality for drug delivery in chemotherapy. This paper reviews this novel technology by first introducing the designs and characteristics of three classes of drug/gene vehicles, microbubble (including nanoemulsion, liposomes, and micelles. In comparison to conventional free drug, the targeted drug-release and delivery through vessel wall and interstitial space to cancerous cells can be activated and enhanced under certain sonication conditions. In the acoustic field, there are several reactions of these drug vehicles, including hyperthermia, bubble cavitation, sonoporation, and sonodynamics, whose physical properties are illustrated for better understanding of this approach. In vitro and in vivo results are summarized, and future directions are discussed. Altogether, ultrasound-mediated drug/gene delivery under imaging guidance provides a promising option in cancer treatment with enhanced agent release and site specificity and reduced toxicity.

  16. Lipidomic Evaluation of Feline Neurologic Disease after AAV Gene Therapy

    Directory of Open Access Journals (Sweden)

    Heather L. Gray-Edwards

    2017-09-01

    Full Text Available GM1 gangliosidosis is a fatal lysosomal disorder, for which there is no effective treatment. Adeno-associated virus (AAV gene therapy in GM1 cats has resulted in a greater than 6-fold increase in lifespan, with many cats remaining alive at >5.7 years of age, with minimal clinical signs. Glycolipids are the principal storage product in GM1 gangliosidosis whose pathogenic mechanism is not completely understood. Targeted lipidomics analysis was performed to better define disease mechanisms and identify markers of disease progression for upcoming clinical trials in humans. 36 sphingolipids and subspecies associated with ganglioside biosynthesis were tested in the cerebrospinal fluid of untreated GM1 cats at a humane endpoint (∼8 months, AAV-treated GM1 cats (∼5 years old, and normal adult controls. In untreated GM1 cats, significant alterations were noted in 16 sphingolipid species, including gangliosides (GM1 and GM3, lactosylceramides, ceramides, sphingomyelins, monohexosylceramides, and sulfatides. Variable degrees of correction in many lipid metabolites reflected the efficacy of AAV gene therapy. Sphingolipid levels were highly predictive of neurologic disease progression, with 11 metabolites having a coefficient of determination (R2 > 0.75. Also, a specific detergent additive significantly increased the recovery of certain lipid species in cerebrospinal fluid samples. This report demonstrates the methodology and utility of targeted lipidomics to examine the pathophysiology of lipid storage disorders.

  17. Site-specific integration of CAR gene into Jurkat T cells with a linear close-ended AAV-based DNA vector for CAR-T engineering.

    Science.gov (United States)

    Zhang, Yun; Liu, Xiaomei; Zhang, Jinju; Zhang, Chun

    2016-09-01

    To develop a site-specific integration strategy for CAR-T engineering by using a non-viral vector dependent on adeno-associated viral (AAV) genome, which tends to be integrated into AAVS1 site with the help of its Rep proteins. AAV-dependent vectors were produced in Sf9 cells. Structural analyses revealed the vector as covalently close-ended, linear duplex molecules, which was termed "CELiD" DNA. A plasmid CMV-Rep was constructed to express the integrases Rep78 and Rep68. Jurkat cells were co-electroporated with "CELiD" DNA and plasmid CMV-Rep in order to specifically integrate CAR gene into AAVS1 site. We examined 71 stably transfected Jurkat clones by nested PCR, sequencing and southern blotting, of which 30 clones bore CAR gene within AAVS1 site. The site-specific integration efficiency was nearly 42.2 %. The AAV-dependent vector preferentially integrated CAR into AAVS1 site, which could be further used in human T cell modification and enhance the security of CAR-T therapy.

  18. Efficient and fast functional screening of microdystrophin constructs in vivo and in vitro for therapy of duchenne muscular dystrophy

    DEFF Research Database (Denmark)

    Jørgensen, Louise Helskov; Larochelle, Nancy; Orlopp, Kristian

    2009-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked, lethal genetic disorder affecting the skeletal muscle compartment, and is caused by mutation(s) in the dystrophin gene. Gene delivery of microdystrophin constructs using adeno-associated virus (AAV) and antisense-mediated exon skipping restoring...

  19. Practical utilization of recombinant AAV vector reference standards: focus on vector genomes titration by free ITR qPCR

    Directory of Open Access Journals (Sweden)

    Susan D'Costa

    2016-01-01

    Full Text Available Clinical trials using recombinant adeno-associated virus (rAAV vectors have demonstrated efficacy and a good safety profile. Although the field is advancing quickly, vector analytics and harmonization of dosage units are still a limitation for commercialization. AAV reference standard materials (RSMs can help ensure product safety by controlling the consistency of assays used to characterize rAAV stocks. The most widely utilized unit of vector dosing is based on the encapsidated vector genome. Quantitative polymerase chain reaction (qPCR is now the most common method to titer vector genomes (vg; however, significant inter- and intralaboratory variations have been documented using this technique. Here, RSMs and rAAV stocks were titered on the basis of an inverted terminal repeats (ITRs sequence-specific qPCR and we found an artificial increase in vg titers using a widely utilized approach. The PCR error was introduced by using single-cut linearized plasmid as the standard curve. This bias was eliminated using plasmid standards linearized just outside the ITR region on each end to facilitate the melting of the palindromic ITR sequences during PCR. This new “Free-ITR” qPCR delivers vg titers that are consistent with titers obtained with transgene-specific qPCR and could be used to normalize in-house product-specific AAV vector standards and controls to the rAAV RSMs. The free-ITR method, including well-characterized controls, will help to calibrate doses to compare preclinical and clinical data in the field.

  20. Practical utilization of recombinant AAV vector reference standards: focus on vector genomes titration by free ITR qPCR.

    Science.gov (United States)

    D'Costa, Susan; Blouin, Veronique; Broucque, Frederic; Penaud-Budloo, Magalie; François, Achille; Perez, Irene C; Le Bec, Christine; Moullier, Philippe; Snyder, Richard O; Ayuso, Eduard

    2016-01-01

    Clinical trials using recombinant adeno-associated virus (rAAV) vectors have demonstrated efficacy and a good safety profile. Although the field is advancing quickly, vector analytics and harmonization of dosage units are still a limitation for commercialization. AAV reference standard materials (RSMs) can help ensure product safety by controlling the consistency of assays used to characterize rAAV stocks. The most widely utilized unit of vector dosing is based on the encapsidated vector genome. Quantitative polymerase chain reaction (qPCR) is now the most common method to titer vector genomes (vg); however, significant inter- and intralaboratory variations have been documented using this technique. Here, RSMs and rAAV stocks were titered on the basis of an inverted terminal repeats (ITRs) sequence-specific qPCR and we found an artificial increase in vg titers using a widely utilized approach. The PCR error was introduced by using single-cut linearized plasmid as the standard curve. This bias was eliminated using plasmid standards linearized just outside the ITR region on each end to facilitate the melting of the palindromic ITR sequences during PCR. This new "Free-ITR" qPCR delivers vg titers that are consistent with titers obtained with transgene-specific qPCR and could be used to normalize in-house product-specific AAV vector standards and controls to the rAAV RSMs. The free-ITR method, including well-characterized controls, will help to calibrate doses to compare preclinical and clinical data in the field.

  1. Distribution of AAV8 particles in cell lysates and culture media changes with time and is dependent on the recombinant vector

    Directory of Open Access Journals (Sweden)

    Bryan A Piras

    2016-01-01

    Full Text Available With clinical trials ongoing, efficient clinical production of adeno-associated virus (AAV to treat large numbers of patients remains a challenge. We compared distribution of AAV8 packaged with Factor VIII (FVIII in cell culture media and lysates on days 3, 5, 6, and 7 post-transfection and found increasing viral production through day 6, with the proportion of viral particles in the media increasing from 76% at day 3 to 94% by day 7. Compared to FVIII, AAV8 packaged with Factor IX and Protective Protein/Cathepsin A vectors demonstrated a greater shift from lysate towards media from day 3 to 6, implying that particle distribution is dependent on recombinant vector. Larger-scale productions showed that the ratio of full-to-empty AAV particles is similar in media and lysate, and that AAV harvested on day 6 post-transfection provides equivalent function in mice compared to AAV harvested on day 3. This demonstrates that AAV8 production can be optimized by prolonging the duration of culture post-transfection, and simplified by allowing harvest of media only, with disposal of cells that contain 10% or less of total vector yield. Additionally, the difference in particle distribution with different expression cassettes implies a recombinant vector-dependent processing mechanism which should be taken into account during process development.

  2. An AAV9 coding for frataxin clearly improved the symptoms and prolonged the life of Friedreich ataxia mouse models

    Directory of Open Access Journals (Sweden)

    Catherine Gérard

    2014-01-01

    Full Text Available Friedreich ataxia (FRDA is a genetic disease due to increased repeats of the GAA trinucleotide in intron 1 of the frataxin gene. This mutation leads to a reduced expression of frataxin. We have produced an adeno-associated virus (AAV9 coding for human frataxin (AAV9-hFXN. This AAV was delivered by intraperitoneal (IP injection to young conditionally knockout mice in which the frataxin gene had been knocked-out in some tissues during embryogenesis by breeding them with mice expressing the Cre recombinase gene under the muscle creatine kinase (MCK or the neuron-specific enolase (NSE promoter. In the first part of the study, different doses of virus were tested from 6 × 1011 v.p. to 6 × 109 v.p. in NSE-cre mice and all leading to an increase in life spent of the mice. The higher and the lower dose were also tested in MCK-cre mice. A single administration of the AAV9-hFXN at 6 × 1011 v.p. more than doubled the life of these mice. In fact the MCK-cre mice treated with the AAV9-hFXN were sacrificed for further molecular investigations at the age of 29 weeks without apparent symptoms. Echography analysis of the heart function clearly indicated that the cardiac systolic function was better preserved in the mice that received 6 × 1011 v.p. of AAV9-hFXN. The human frataxin protein was detected by ELISA in the heart, brain, muscles, kidney, and liver with the higher dose of virus in both mouse models. Thus, gene therapy with an AAV9-hFXN is a potential treatment of FRDA.

  3. Microneedles: quick and easy delivery methods of vaccines

    Science.gov (United States)

    2017-01-01

    Vaccination is the most efficient method for infectious disease prevention. Parenteral injections such as intramuscular, intradermal, and subcutaneous injections have several advantages in vaccine delivery, but there are many drawbacks. Thus, the development of a new vaccine delivery system has long been required. Recently, microneedles have been attracting attention as new vaccination tools. Microneedle is a highly effective transdermal vaccine delivery method due to its mechanism of action, painlessness, and ease of use. Here, we summarized the characteristics of microneedles and the possibilities as a new vaccine delivery route. PMID:28775980

  4. DNA vaccination for cervical cancer: Strategic optimisation of RALA mediated gene delivery from a biodegradable microneedle system.

    Science.gov (United States)

    Cole, Grace; Ali, Ahlam A; McCrudden, Cian M; McBride, John W; McCaffrey, Joanne; Robson, Tracy; Kett, Vicky L; Dunne, Nicholas J; Donnelly, Ryan F; McCarthy, Helen O

    2018-03-03

    Dissolvable microneedles can be employed to deliver DNA to antigen presenting cells within the skin. However, this technology faces two main challenges: the poor transfection efficacy of pDNA following release from the microneedle matrix, and the limited loading capacity of the micron-scale devices. Two-tier delivery systems combining microneedle platforms and DNA delivery vectors have increased efficacy but the challenge of increasing the loading capacity remains. This study utilised lyophilisation to increase the loading of RALA/pDNA nanoparticles within dissolvable PVA microneedles. As a result, delivery was significantly enhanced in vivo into an appropriate range for DNA vaccination (∼50 μg per array). Furthermore, modifying the manufacturing process was not detrimental to the microneedle mechanical properties or cargo functionality. It was demonstrated that arrays retained mechanical and functional stability over short term storage, and were able to elicit gene expression in vitro and in vivo. Finally, treatment with this novel formulation significantly retarded the growth of established tumours, and proved superior to standard intramuscular injection in a preclinical model of cervical cancer. Copyright © 2018. Published by Elsevier B.V.

  5. Ultrasound-Mediated Local Drug and Gene Delivery Using Nanocarriers

    Science.gov (United States)

    Zhou, Qiu-Lan; Chen, Zhi-Yi; Yang, Feng

    2014-01-01

    With the development of nanotechnology, nanocarriers have been increasingly used for curative drug/gene delivery. Various nanocarriers are being introduced and assessed, such as polymer nanoparticles, liposomes, and micelles. As a novel theranostic system, nanocarriers hold great promise for ultrasound molecular imaging, targeted drug/gene delivery, and therapy. Nanocarriers, with the properties of smaller particle size, and long circulation time, would be advantageous in diagnostic and therapeutic applications. Nanocarriers can pass through blood capillary walls and cell membrane walls to deliver drugs. The mechanisms of interaction between ultrasound and nanocarriers are not clearly understood, which may be related to cavitation, mechanical effects, thermal effects, and so forth. These effects may induce transient membrane permeabilization (sonoporation) on a single cell level, cell death, and disruption of tissue structure, ensuring noninvasive, targeted, and efficient drug/gene delivery and therapy. The system has been used in various tissues and organs (in vitro or in vivo), including tumor tissues, kidney, cardiac, skeletal muscle, and vascular smooth muscle. In this review, we explore the research progress and application of ultrasound-mediated local drug/gene delivery with nanocarriers. PMID:25202710

  6. Ultrasound-Mediated Local Drug and Gene Delivery Using Nanocarriers

    Directory of Open Access Journals (Sweden)

    Qiu-Lan Zhou

    2014-01-01

    Full Text Available With the development of nanotechnology, nanocarriers have been increasingly used for curative drug/gene delivery. Various nanocarriers are being introduced and assessed, such as polymer nanoparticles, liposomes, and micelles. As a novel theranostic system, nanocarriers hold great promise for ultrasound molecular imaging, targeted drug/gene delivery, and therapy. Nanocarriers, with the properties of smaller particle size, and long circulation time, would be advantageous in diagnostic and therapeutic applications. Nanocarriers can pass through blood capillary walls and cell membrane walls to deliver drugs. The mechanisms of interaction between ultrasound and nanocarriers are not clearly understood, which may be related to cavitation, mechanical effects, thermal effects, and so forth. These effects may induce transient membrane permeabilization (sonoporation on a single cell level, cell death, and disruption of tissue structure, ensuring noninvasive, targeted, and efficient drug/gene delivery and therapy. The system has been used in various tissues and organs (in vitro or in vivo, including tumor tissues, kidney, cardiac, skeletal muscle, and vascular smooth muscle. In this review, we explore the research progress and application of ultrasound-mediated local drug/gene delivery with nanocarriers.

  7. Nicolau Syndrome after Intramuscular Benzathine Penicillin Injection

    Directory of Open Access Journals (Sweden)

    Morteza Noaparast

    2014-11-01

    Full Text Available A 3-year-old boy was admitted to the emergency department with right lower limb pain, edema, and livedoid discoloration that occurred immediately after intramuscular injection of benzathine penicillin. The patient was diagnosed with Nicolau syndrome, a rare complication of intramuscular injection presumed to be related to the inadvertent intravascular injection. It was first reported following intramuscular injection of bismuth salt, but it can occur as a complication of various other drugs. Fasciotomy was carried out due to the resultant compartment syndrome and medical therapy with heparin, corticosteroid, and pentoxifyllin was initiated.

  8. Evaluation of carrier-mediated siRNA delivery

    DEFF Research Database (Denmark)

    Colombo, Stefano; Nielsen, Hanne Mørck; Foged, Camilla

    2013-01-01

    RNA delivery. An in vitro cell culture model system expressing enhanced green fluorescent protein (EGFP) was used to develop the assay, which was based on the intracellular quantification of a full-length double-stranded Dicer substrate siRNA by stem-loop RT qPCR. The result is a well-documented protocol......RNA delivered by use of carriers remains an analytical challenge. The purpose of the present study was to optimize and validate an analytical protocol based on stem-loop reverse transcription quantitative polymerase chain reaction (RT qPCR) to quantitatively monitor the carrier-mediated intracellular si...

  9. Improved MECP2 Gene Therapy Extends the Survival of MeCP2-Null Mice without Apparent Toxicity after Intracisternal Delivery

    Directory of Open Access Journals (Sweden)

    Sarah E. Sinnett

    2017-06-01

    Full Text Available Intravenous administration of adeno-associated virus serotype 9 (AAV9/hMECP2 has been shown to extend the lifespan of Mecp2−/y mice, but this delivery route induces liver toxicity in wild-type (WT mice. To reduce peripheral transgene expression, we explored the safety and efficacy of AAV9/hMECP2 injected into the cisterna magna (ICM. AAV9/hMECP2 (1 × 1012 viral genomes [vg]; ICM extended Mecp2−/y survival but aggravated hindlimb clasping and abnormal gait phenotypes. In WT mice, 1 × 1012 vg of AAV9/hMECP2 induced clasping and abnormal gait. A lower dose mitigated these adverse phenotypes but failed to extend survival of Mecp2−/y mice. Thus, ICM delivery of this vector is impractical as a treatment for Rett syndrome (RTT. To improve the safety of MeCP2 gene therapy, the gene expression cassette was modified to include more endogenous regulatory elements believed to modulate MeCP2 expression in vivo. In Mecp2−/y mice, ICM injection of the modified vector extended lifespan and was well tolerated by the liver but did not rescue RTT behavioral phenotypes. In WT mice, these same doses of the modified vector had no adverse effects on survival or neurological phenotypes. In summary, we identified limitations of the original vector and demonstrated that an improved vector design extends Mecp2−/y survival, without apparent toxicity.

  10. Rituals in nursing: intramuscular injections.

    Science.gov (United States)

    Greenway, Kathleen

    2014-12-01

    To consider to what extent intramuscular injection technique can be described to remain entrenched in ritualistic practice and how evidence-based practice should be considered and applied to the nursing practice of this essential skill. The notion of rituals within nursing and the value or futile impact they afford to this essential nursing skill will be critically reviewed. Discursive paper. Literature review from 2002-2013 to review the current position of intramuscular injection injections. Within the literature review, it became clear that there are several actions within the administration of an intramuscular injection that could be perceived as ritualistic and require consideration for contemporary nursing practice. The essential nursing skill of intramuscular injection often appears to fit into the description of a ritualised practice. By providing evidence-based care, nurses will find themselves empowered to make informed decisions based on clinical need and using their clinical judgement. For key learning, it will outline with rationale how site selection, needle selection, insertion technique and aspiration can be cited as examples of routinised or ritualistic practice and why these should be rejected in favour of an evidence-based approach. The effect on some student nurses of experiencing differing practices between what is taught at university and what is often seen in clinical practice will also be discussed. © 2014 John Wiley & Sons Ltd.

  11. Aptamer-Mediated Polymeric Vehicles for Enhanced Cell-Targeted Drug Delivery.

    Science.gov (United States)

    Tan, Kei X; Danquah, Michael K; Sidhu, Amandeep; Yon, Lau Sie; Ongkudon, Clarence M

    2018-02-08

    The search for smart delivery systems for enhanced pre-clinical and clinical pharmaceutical delivery and cell targeting continues to be a major biomedical research endeavor owing to differences in the physicochemical characteristics and physiological effects of drug molecules, and this affects the delivery mechanisms to elicit maximum therapeutic effects. Targeted drug delivery is a smart evolution essential to address major challenges associated with conventional drug delivery systems. These challenges mostly result in poor pharmacokinetics due to the inability of the active pharmaceutical ingredients to specifically act on malignant cells thus, causing poor therapeutic index and toxicity to surrounding normal cells. Aptamers are oligonucleotides with engineered affinities to bind specifically to their cognate targets. Aptamers have gained significant interests as effective targeting elements for enhanced therapeutic delivery as they can be generated to specifically bind to wide range of targets including proteins, peptides, ions, cells and tissues. Notwithstanding, effective delivery of aptamers as therapeutic vehicles is challenged by cell membrane electrostatic repulsion, endonuclease degradation, low pH cleavage, and binding conformation stability. The application of molecularly engineered biodegradable and biocompatible polymeric particles with tunable features such as surface area and chemistry, particulate size distribution and toxicity creates opportunities to develop smart aptamer-mediated delivery systems for controlled drug release. This article discusses opportunities for particulate aptamer-drug formulations to advance current drug delivery modalities by navigating active ingredients through cellular and biomolecular traffic to target sites for sustained and controlled release at effective therapeutic dosages while minimizing systemic cytotoxic effects. A proposal for a novel drug-polymer-aptamer-polymer (DPAP) design of aptamer-drug formulation with

  12. Extracellular Matrix and Growth Factors Improve the Efficacy of Intramuscular Islet Transplantation.

    Science.gov (United States)

    Tsuchiya, Haruyuki; Sakata, Naoaki; Yoshimatsu, Gumpei; Fukase, Masahiko; Aoki, Takeshi; Ishida, Masaharu; Katayose, Yu; Egawa, Shinichi; Unno, Michiaki

    2015-01-01

    The efficacy of intramuscular islet transplantation is poor despite being technically simple, safe, and associated with reduced rates of severe complications. We evaluated the efficacy of combined treatment with extracellular matrix (ECM) and growth factors in intramuscular islet transplantation. Male BALB/C mice were used for the in vitro and transplantation studies. The following three groups were evaluated: islets without treatment (islets-only group), islets embedded in ECM with growth factors (Matrigel group), and islets embedded in ECM without growth factors [growth factor-reduced (GFR) Matrigel group]. The viability and insulin-releasing function of islets cultured for 96 h were significantly improved in Matrigel and GFR Matrigel groups compared with the islets-only group. Blood glucose and serum insulin levels immediately following transplantation were significantly improved in the Matrigel and GFR Matrigel groups and remained significantly improved in the Matrigel group at postoperative day (POD) 28. On histological examination, significantly decreased numbers of TdT-mediated deoxyuridine triphosphate-biotin nick end labeling-positive islet cells and significantly increased numbers of Ki67-positive cells were observed in the Matrigel and GFR Matrigel groups at POD 3. Peri-islet revascularization was most prominent in the Matrigel group at POD 14. The efficacy of intramuscular islet transplantation was improved by combination treatment with ECM and growth factors through the inhibition of apoptosis, increased proliferation of islet cells, and promotion of revascularization.

  13. Progressive neurodegenerative and behavioural changes induced by AAV-mediated overexpression of α-synuclein in midbrain dopamine neurons

    DEFF Research Database (Denmark)

    Decressac, M; Mattsson, Bente; Lundblad, M

    2012-01-01

    -synuclein, we have now been able to achieve increased levels of α-synuclein in the transduced midbrain dopamine neurons sufficient to induce profound deficits in motor function, accompanied by reduced expression of proteins involved in dopamine neurotransmission and a time-dependent loss of nigral dopamine......Parkinson's disease (PD) is characterised by the progressive loss of nigral dopamine neurons and the presence of synucleinopathy. Overexpression of α-synuclein in vivo using viral vectors has opened interesting possibilities to model PD-like pathology in rodents. However, the attempts made so far...... have failed to show a consistent behavioural phenotype and pronounced dopamine neurodegeneration. Using a more efficient adeno-associated viral (AAV) vector construct, which includes a WPRE enhancer element and uses the neuron-specific synapsin-1 promoter to drive the expression of human wild-type α...

  14. A novel and highly efficient production system for recombinant adeno-associated virus vector.

    Science.gov (United States)

    Wu, Zhijian; Wu, Xiaobing; Cao, Hui; Dong, Xiaoyan; Wang, Hong; Hou, Yunde

    2002-02-01

    Recombinant adeno-associated virus (rAAV) has proven to be a promising gene delivery vector for human gene therapy. However, its application has been limited by difficulty in obtaining enough quantities of high-titer vector stocks. In this paper, a novel and highly efficient production system for rAAV is described. A recombinant herpes simplex virus type 1 (rHSV-1) designated HSV1-rc/DeltaUL2, which expressed adeno-associated virus type2 (AAV-2) Rep and Cap proteins, was constructed previously. The data confirmed that its functions were to support rAAV replication and packaging, and the generated rAAV was infectious. Meanwhile, an rAAV proviral cell line designated BHK/SG2, which carried the green fluorescent protein (GFP) gene expression cassette, was established by transfecting BHK-21 cells with rAAV vector plasmid pSNAV-2-GFP. Infecting BHK/SG2 with HSV1-rc/DeltaUL2 at an MOI of 0.1 resulted in the optimal yields of rAAV, reaching 250 transducing unit (TU) or 4.28x10(4) particles per cell. Therefore, compared with the conventional transfection method, the yield of rAAV using this "one proviral cell line, one helper virus" strategy was increased by two orders of magnitude. Large-scale production of rAAV can be easily achieved using this strategy and might meet the demands for clinical trials of rAAV-mediated gene therapy.

  15. Nose-to-brain delivery of macromolecules mediated by cell-penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tingting Lin

    2016-07-01

    Full Text Available Brain delivery of macromolecular therapeutics (e.g., proteins remains an unsolved problem because of the formidable blood–brain barrier (BBB. Although a direct pathway of nose-to-brain transfer provides an answer to circumventing the BBB and has already been intensively investigated for brain delivery of small drugs, new challenges arise for intranasal delivery of proteins because of their larger size and hydrophilicity. In order to overcome the barriers and take advantage of available pathways (e.g., epithelial tight junctions, uptake by olfactory neurons, transport into brain tissues, and intra-brain diffusion, a low molecular weight protamine (LMWP cell-penetrating peptide was utilized to facilitate nose-to-brain transport. Cell-penetrating peptides (CPP have been widely used to mediate macromolecular delivery through many kinds of biobarriers. Our results show that conjugates of LMWP–proteins are able to effectively penetrate into the brain after intranasal administration. The CPP-based intranasal method highlights a promising solution for protein therapy of brain diseases.

  16. Nose-to-brain delivery of macromolecules mediated by cell-penetrating peptides

    Institute of Scientific and Technical Information of China (English)

    Tingting Lin; Ergang Liu; Huining He; Meong Cheol Shin; Cheol Moon; Victor C.Yang; Yongzhuo Huang

    2016-01-01

    Brain delivery of macromolecular therapeutics(e.g., proteins) remains an unsolved problem because of the formidable blood–brain barrier(BBB). Although a direct pathway of nose-to-brain transfer provides an answer to circumventing the BBB and has already been intensively investigated for brain delivery of small drugs,new challenges arise for intranasal delivery of proteins because of their larger size and hydrophilicity. In order to overcome the barriers and take advantage of available pathways(e.g., epithelial tight junctions, uptake by olfactory neurons, transport into brain tissues, and intra-brain diffusion), a low molecular weight protamine(LMWP) cell-penetrating peptide was utilized to facilitate nose-to-brain transport. Cell-penetrating peptides(CPP)have been widely used to mediate macromolecular delivery through many kinds of biobarriers. Our results show that conjugates of LMWP–proteins are able to effectively penetrate into the brain after intranasal administration.The CPP-based intranasal method highlights a promising solution for protein therapy of brain diseases.

  17. A multimodal instrument for real-time in situ study of ultrasound and cavitation mediated drug delivery.

    Science.gov (United States)

    Bian, Shuning; Seth, Anjali; Daly, Dan; Carlisle, Robert; Stride, Eleanor

    2017-03-01

    The development of a multimodal instrument capable of real-time in situ measurements of cavitation activity and effect in tissue mimicking phantoms during ultrasound and cavitation mediated drug delivery experiments is described here. The instrument features an acoustic arm that can expose phantoms to high-intensity focused-ultrasound while measuring cavitation activity and an optical arm that monitors cavitation effect using confocal microscopy. This combination of modalities allows real-time in situ characterisation of drug delivery in tissue and tissue mimicking phantoms during ultrasound and cavitation mediated drug delivery experiments. A representative result, obtained with a tissue mimicking phantom and acoustically activated droplets, is presented here as a demonstration of the instrument's capabilities and potential applications.

  18. Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors

    Directory of Open Access Journals (Sweden)

    Sablitzky Fred

    2004-01-01

    Full Text Available Abstract Background Inactivating genes in vivo is an important technique for establishing their function in the adult nervous system. Unfortunately, conventional knockout mice may suffer from several limitations including embryonic or perinatal lethality and the compensatory regulation of other genes. One approach to producing conditional activation or inactivation of genes involves the use of Cre recombinase to remove loxP-flanked segments of DNA. We have studied the effects of delivering Cre to the hippocampus and neocortex of adult mice by injecting replication-deficient adeno-associated virus (AAV and lentiviral (LV vectors into discrete regions of the forebrain. Results Recombinant AAV-Cre, AAV-GFP (green fluorescent protein and LV-Cre-EGFP (enhanced GFP were made with the transgene controlled by the cytomegalovirus promoter. Infecting 293T cells in vitro with AAV-Cre and LV-Cre-EGFP resulted in transduction of most cells as shown by GFP fluorescence and Cre immunoreactivity. Injections of submicrolitre quantities of LV-Cre-EGFP and mixtures of AAV-Cre with AAV-GFP into the neocortex and hippocampus of adult Rosa26 reporter mice resulted in strong Cre and GFP expression in the dentate gyrus and moderate to strong labelling in specific regions of the hippocampus and in the neocortex, mainly in neurons. The pattern of expression of Cre and GFP obtained with AAV and LV vectors was very similar. X-gal staining showed that Cre-mediated recombination had occurred in neurons in the same regions of the brain, starting at 3 days post-injection. No obvious toxic effects of Cre expression were detected even after four weeks post-injection. Conclusion AAV and LV vectors are capable of delivering Cre to neurons in discrete regions of the adult mouse brain and producing recombination.

  19. CD45RC isoform expression identifies functionally distinct T cell subsets differentially distributed between healthy individuals and AAV patients.

    Directory of Open Access Journals (Sweden)

    Laurence Ordonez

    Full Text Available In animal models of anti-neutrophil cytoplasmic antibody (ANCA-associated vasculitis (AAV, the proportion of CD45RC T cell subsets is important for disease susceptibility. Their human counterparts are, however, functionally ill defined. In this report, we studied their distribution in healthy controls (HC, AAV patients and in Systemic lupus erythematous (SLE patients as disease controls. We showed that CD45RC expression level on human CD4 and CD8 T cells identifies subsets that are highly variable among individuals. Interestingly, AAV patients exhibit an increased proportion of CD45RC(low CD4 T cells as compared to HC and SLE patients. This increase is stable over time and independent of AAV subtype, ANCA specificity, disease duration, or number of relapses. We also analyzed the cytokine profile of purified CD4 and CD8 CD45RC T cell subsets from HC, after stimulation with anti-CD3 and anti-CD28 mAbs. The CD45RC subsets exhibit different cytokine profiles. Type-1 cytokines (IL-2, IFN-gamma and TNF-alpha were produced by all CD45RC T cell subsets, while the production of IL-17, type-2 (IL-4, IL-5 and regulatory (IL-10 cytokines was restricted to the CD45RC(low subset. In conclusion, we have shown that CD45RC expression divides human T cells in functionally distinct subsets that are imbalanced in AAV. Since this imbalance is stable over time and independent of several disease parameters, we hypothesize that this is a pre-existing immune abnormality involved in the etiology of AAV.

  20. Dual AAV therapy ameliorates exercise-induced muscle injury and functional ischemia in murine models of Duchenne muscular dystrophy.

    Science.gov (United States)

    Zhang, Yadong; Yue, Yongping; Li, Liang; Hakim, Chady H; Zhang, Keqing; Thomas, Gail D; Duan, Dongsheng

    2013-09-15

    Neuronal nitric oxide synthase (nNOS) membrane delocalization contributes to the pathogenesis of Duchenne muscular dystrophy (DMD) by promoting functional muscle ischemia and exacerbating muscle injury during exercise. We have previously shown that supra-physiological expression of nNOS-binding mini-dystrophin restores normal blood flow regulation and prevents functional ischemia in transgenic mdx mice, a DMD model. A critical next issue is whether systemic dual adeno-associated virus (AAV) gene therapy can restore nNOS-binding mini-dystrophin expression and mitigate muscle activity-related functional ischemia and injury. Here, we performed systemic gene transfer in mdx and mdx4cv mice using a pair of dual AAV vectors that expressed a 6 kb nNOS-binding mini-dystrophin gene. Vectors were packaged in tyrosine mutant AAV-9 and co-injected (5 × 10(12) viral genome particles/vector/mouse) via the tail vein to 1-month-old dystrophin-null mice. Four months later, we observed 30-50% mini-dystrophin positive myofibers in limb muscles. Treatment ameliorated histopathology, increased muscle force and protected against eccentric contraction-induced injury. Importantly, dual AAV therapy successfully prevented chronic exercise-induced muscle force drop. Doppler hemodynamic assay further showed that therapy attenuated adrenergic vasoconstriction in contracting muscle. Our results suggest that partial transduction can still ameliorate nNOS delocalization-associated functional deficiency. Further evaluation of nNOS binding mini-dystrophin dual AAV vectors is warranted in dystrophic dogs and eventually in human patients.

  1. Adeno-associated viral vectors as agents for gene delivery : application in disorders and trauma of the central nervous system

    NARCIS (Netherlands)

    Ruitenberg, Marc J; Eggers, Ruben; Boer, Gerard J; Verhaagen, J.

    2002-01-01

    The use of viral vectors as agents for gene delivery provides a direct approach to manipulate gene expression in the mammalian central nervous system (CNS). The present article describes in detail the methodology for the injection of viral vectors, in particular adeno-associated virus (AAV) vectors,

  2. Cellulitis Developing After Intramuscular Metamizole Injection

    Directory of Open Access Journals (Sweden)

    Onur Ozturk

    2016-12-01

    Full Text Available If the suitable technique is not used in intramuscular injection applications and the injection area is not detected correctly, complications may be observed. Our patient was given intramuscular Metamizole in his house and then he had cellulitis with necrosis area. Following an antibiotic treatment, tissue defect was primarily covered with gluteal muscle skin flap. Cellulitis development after metamizole injection is not common still potential side effects should be considered before prescription.

  3. Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Stott, Simon R W; Mattsson, Bengt

    2010-01-01

    . Our results show that striatal delivery of rAAV5 vectors in the neonatal brain represents a useful tool to express genes of interest both in the basal ganglia and the neocortex. Furthermore, we apply, for the first time, viral vector-mediated gene transfer to the pig brain providing the opportunity...

  4. Necrotizing Soft Tissue Fasciitis after Intramuscular Injection

    Directory of Open Access Journals (Sweden)

    Angelica Abbate

    2018-01-01

    Full Text Available Necrotizing soft tissue fasciitis (NSTIs or necrotizing fasciitis is an infrequent and serious infection. Herein, we describe the clinical course of a female patient who received a diagnosis of NSTIs after gluteus intramuscular injection. We also report the results of our review of published papers from 1997 to 2017. Since now, 19 cases of NSTIs following intramuscular injections have been described. We focus on the correlation between intramuscular injection and NSTIs onset, especially in immunosuppressed patients treated with corticosteroids, suffering from chronic diseases or drug addicted. Intramuscular injections can provoke severe tissue trauma, representing local portal of infection, even if correctly administrated. Otherwise, it is important not to inject drug in subcutaneous, which is a less vascularized area and therefore more susceptible to infections. Likewise, a proper injecting technique and aspiration prior to injection seem to be valid measure to prevent intra-arterial or para-arterial drug injection with the consequent massive inflammatory reaction. Necrosis at the infection site appears to be independent of the drug, and it is a strong additional risk factor for NSTIs.

  5. Repeated maternal intramuscular or intraamniotic erythromycin incompletely resolves intrauterine Ureaplasma parvum infection in a sheep model of pregnancy.

    Science.gov (United States)

    Kemp, Matthew W; Miura, Yuichiro; Payne, Matthew S; Watts, Rory; Megharaj, Smruthi; Jobe, Alan H; Kallapur, Suhas G; Saito, Masatoshi; Spiller, O Brad; Keelan, Jeffrey A; Newnham, John P

    2014-08-01

    Ureaplasma spp are the most commonly isolated microorganisms in association with preterm birth. Maternal erythromycin administration is a standard treatment for preterm prelabor rupture of membranes. There is little evidence of its effectiveness in eradicating Ureaplasma spp from the intrauterine cavity and fetus. We used a sheep model of intrauterine Ureaplasma spp infection to investigate the efficacy of repeated maternal intramuscular and intraamniotic erythromycin treatment to eradicate such an infection. Thirty ewes with singleton pregnancies received an intraamniotic injection of 10(7) color change units of erythromycin-sensitive Ureaplasma parvum serovar 3 at 55 days' gestation. At 116 days' gestation, 28 ewes with viable fetuses were randomized to receive (1) intraamniotic and maternal intramuscular saline solution treatment (n = 8), (2) single intraamniotic and repeated maternal intramuscular erythromycin treatment (n = 10), or (3) single maternal intramuscular and repeated intraamniotic erythromycin treatment (n = 10). Fetuses were surgically delivered at 125 days' gestation. Treatment efficacy was assessed by culture, quantitative polymerase chain reaction, and histopathologic evaluation. Animals treated with intraamniotic erythromycin had significantly less viable U parvum serovar 3 in the amniotic fluid at delivery. However, neither combination of maternal intramuscular and intraamniotic erythromycin treatment successfully cleared U parvum serovar 3 from the amniotic fluid or fetal tissues. Three de novo erythromycin-resistant U parvum isolates were identified in erythromycin-treated animals. Erythromycin treatment, given both to the ewe and into the amniotic cavity, fails to eradicate intrauterine and fetal U parvum serovar 3 infection and may lead to development of erythromycin resistant U parvum. Copyright © 2014 Mosby, Inc. All rights reserved.

  6. Investigation of the mediating effects of IT governance-value delivery on service quality and ERP performance

    Science.gov (United States)

    Tsai, Wen-Hsien; Chou, Yu-Wei; Leu, Jun-Der; Chao Chen, Der; Tsaur, Tsen-Shu

    2015-02-01

    This study aimed to explore the mediating effects of IT governance (ITG)-value delivery in the relationships among the quality of vendor service, the quality of consultant services, ITG-value delivery and enterprise resource planning (ERP) performance. The sampling of this research was acquired from a questionnaire survey concerning ERP implementations in Taiwan. In this survey, 4366 questionnaires were sent to manufacturing and service companies listed in the TOP 5000: The Largest Corporations in Taiwan 2009. The results showed that an ERP system will exhibit a decreased error rate and improved performance if ERP system vendors and consultants provide good service quality. The results also demonstrated that significant relationships exist among the quality of vendor service, the quality of consultant services and value delivery. The contribution of this article is twofold. First, it found that value delivery provides an effective measure of ERP performance under an ITG framework. Second, it provides evidence of the partial mediating effects of value delivery between service quality and ERP performance. In other words, if enterprises want to improve ERP performance, they need to consider factors such as value delivery and the quality of a vendor/consultant's service.

  7. Extracellular Matrix and Growth Factors Improve the Efficacy of Intramuscular Islet Transplantation.

    Directory of Open Access Journals (Sweden)

    Haruyuki Tsuchiya

    Full Text Available The efficacy of intramuscular islet transplantation is poor despite being technically simple, safe, and associated with reduced rates of severe complications. We evaluated the efficacy of combined treatment with extracellular matrix (ECM and growth factors in intramuscular islet transplantation.Male BALB/C mice were used for the in vitro and transplantation studies. The following three groups were evaluated: islets without treatment (islets-only group, islets embedded in ECM with growth factors (Matrigel group, and islets embedded in ECM without growth factors [growth factor-reduced (GFR Matrigel group]. The viability and insulin-releasing function of islets cultured for 96 h were significantly improved in Matrigel and GFR Matrigel groups compared with the islets-only group.Blood glucose and serum insulin levels immediately following transplantation were significantly improved in the Matrigel and GFR Matrigel groups and remained significantly improved in the Matrigel group at postoperative day (POD 28. On histological examination, significantly decreased numbers of TdT-mediated deoxyuridine triphosphate-biotin nick end labeling-positive islet cells and significantly increased numbers of Ki67-positive cells were observed in the Matrigel and GFR Matrigel groups at POD 3. Peri-islet revascularization was most prominent in the Matrigel group at POD 14.The efficacy of intramuscular islet transplantation was improved by combination treatment with ECM and growth factors through the inhibition of apoptosis, increased proliferation of islet cells, and promotion of revascularization.

  8. Gene expression in the muscle and central nervous system following intramuscular inoculation of encapsidated or naked poliovirus replicons

    International Nuclear Information System (INIS)

    Jackson, Cheryl A.; Messinger, Jeff; Palmer, Matthew T.; Peduzzi, Jean D.; Morrow, Casey D.

    2003-01-01

    The spread of intramuscularly inoculated poliovirus to the central nervous system (CNS) has been documented in humans, monkeys, and mice transgenic for the human poliovirus receptor. Poliovirus spread is thought to be due to infection of the peripheral nerve and retrograde transport of poliovirus through the axon to the neuron cell body, where final virus uncoating occurs and translation/replication ensues. In previous studies, we have shown that polio-based vectors (replicons) can be used for gene delivery to motor neurons of the CNS. Using a replicon that encodes green fluorescent protein (GFP), we found that following intrathecal inoculation, GFP expression was confined to motorneurons of the spinal cord. To further characterize the gene expression of poliovirus in the periphery and CNS, we have intramuscularly inoculated transgenic mice with poliovirus replicons encoding GFP. Expression of GFP was demonstrated in the muscle, sciatic nerve, dorsal root ganglion, and the ventral horn motorneurons following intramuscular inoculation. There was no evidence of paralysis or behavioral abnormalities in the mice following intramuscular inoculation of the replicon encoding GFP. Injection of replicon RNA alone (naked RNA) into the muscle of transgenic mice or rats, which do not express the poliovirus receptor, also resulted in expression of GFP in the muscle, sciatic nerve, dorsal root ganglion, and ventral horn motorneurons, indicating that transport of the replicon RNA from the periphery to CNS had occurred. GFP expression was found in the muscles and sciatic nerve as early as 6 h after injection of replicons or replicon RNA, even after sciatic nerve section. Analysis at longer times postinjection revealed GFP expression similar to 6 h levels in the cut sciatic nerves and robust expression in the nerves of uncut animals. The infection and expression of GFP in the CNS following intramuscular inoculation of encapsidated replicons encoding GFP occurred in juvenile or

  9. Unusual intramuscular lipoma of deltoid muscle.

    Science.gov (United States)

    Kapetanakis, Stylianos; Papathanasiou, Jiannis; Dermon, Antonios; Dimitrakopoulou, Alexandra; Ververidis, Athanasios; Chloropoulou, Pelagia; Kazakos, Konstantinos

    2010-01-01

    Lipomas are common soft tissue tumors usually located under the skin. Nevertheless, intramuscular lipomas of deltoid muscle are unusual tumors. We present a case of 74-year-old woman with an intramuscular like clepsydra lipoma of deltoid muscle. The lesion was a palpable soft mass at the lateral side of the humerus. The patient had no previous history of trauma. The main symptom was pain only in abduction and extension. Imaging, pathological findings and surgical excision are discussed.

  10. Intramuscular Immunisation with Chlamydial Proteins Induces Chlamydia trachomatis Specific Ocular Antibodies.

    Directory of Open Access Journals (Sweden)

    Alexander Badamchi-Zadeh

    Full Text Available Ocular infection with Chlamydia trachomatis can cause trachoma, which is the leading cause of blindness due to infection worldwide. Despite the large-scale implementation of trachoma control programmes in the majority of countries where trachoma is endemic, there remains a need for a vaccine. Since C. trachomatis infects the conjunctival epithelium and stimulates an immune response in the associated lymphoid tissue, vaccine regimens that enhance local antibody responses could be advantageous. In experimental infections of non-human primates (NHPs, antibody specificity to C. trachomatis antigens was found to change over the course of ocular infection. The appearance of major outer membrane protein (MOMP specific antibodies correlated with a reduction in ocular chlamydial burden, while subsequent generation of antibodies specific for PmpD and Pgp3 correlated with C. trachomatis eradication.We used a range of heterologous prime-boost vaccinations with DNA, Adenovirus, modified vaccinia Ankara (MVA and protein vaccines based on the major outer membrane protein (MOMP as an antigen, and investigated the effect of vaccine route, antigen and regimen on the induction of anti-chlamydial antibodies detectable in the ocular lavage fluid of mice.Three intramuscular vaccinations with recombinant protein adjuvanted with MF59 induced significantly greater levels of anti-MOMP ocular antibodies than the other regimens tested. Intranasal delivery of vaccines induced less IgG antibody in the eye than intramuscular delivery. The inclusion of the antigens PmpD and Pgp3, singly or in combination, induced ocular antigen-specific IgG antibodies, although the anti-PmpD antibody response was consistently lower and attenuated by combination with other antigens.If translatable to NHPs and/or humans, this investigation of the murine C. trachomatis specific ocular antibody response following vaccination provides a potential mouse model for the rapid and high throughput

  11. Comparison of intramuscular olanzapine, orally disintegrating olanzapine tablets, oral risperidone solution, and intramuscular haloperidol in the management of acute agitation in an acute care psychiatric ward in Taiwan.

    Science.gov (United States)

    Hsu, Wen-Yu; Huang, Si-Sheng; Lee, Bo-Shyan; Chiu, Nan-Ying

    2010-06-01

    The purpose of this study was to compare efficacy and safety among intramuscular olanzapine, intramuscular haloperidol, orally disintegrating olanzapine tablets, and oral risperidone solution for agitated patients with psychosis during the first 24 hours of treatment in an acute care psychiatric ward. Forty-two inpatients from an acute care psychiatric ward of a medical center in central Taiwan were enrolled. They were randomly assigned to 1 of the 4 treatment groups (10-mg intramuscular olanzapine, 10-mg olanzapine oral disintegrating tablet, 3-mg oral risperidone solution, or 7.5-mg intramuscular haloperidol). Agitation was measured by using the excited component of the Positive and Negative Syndrome Scale (PANSS-EC), the Agitation-Calmness Evaluation Scale, and the Clinical Global Impression--Severity Scale during the first 24 hours. There were significant differences in the PANSS-EC total scores for the 4 intervention groups at 15, 30, 45, 60, 75, and 90 minutes after the initiation of treatment. More significant differences were found early in the treatment. In the post hoc analysis, the patients who received intramuscular olanzapine or orally disintegrating olanzapine tablets showed significantly greater improvement in PANSS-EC scores than did patients who received intramuscular haloperidol at points 15, 30, 45, 60, 75, and 90 minutes after injection. These findings suggest that intramuscular olanzapine, orally disintegrating olanzapine tablets, and oral risperidone solution are as effective treatments as intramuscular haloperidol for patients with acute agitation. Intramuscular olanzapine and disintegrating olanzapine tablets are more effective than intramuscular haloperidol in the early phase of the intervention. There is no significant difference in effectiveness among intramuscular olanzapine, orally disintegrating olanzapine tablets, and oral risperidone solution.

  12. Selective Inhibition of Histone Deacetylation in Melanoma Increases Targeted Gene Delivery by a Bacteriophage Viral Vector

    Directory of Open Access Journals (Sweden)

    Samuel Campbell

    2018-04-01

    Full Text Available The previously developed adeno-associated virus/phage (AAVP vector, a hybrid between M13 bacteriophage (phage viruses that infect bacteria only and human Adeno-Associated Virus (AAV, is a promising tool in targeted gene therapy against cancer. AAVP can be administered systemically and made tissue specific through the use of ligand-directed targeting. Cancer cells and tumor-associated blood vessels overexpress the αν integrin receptors, which are involved in tumor angiogenesis and tumor invasion. AAVP is targeted to these integrins via a double cyclic RGD4C ligand displayed on the phage capsid. Nevertheless, there remain significant host-defense hurdles to the use of AAVP in targeted gene delivery and subsequently in gene therapy. We previously reported that histone deacetylation in cancer constitutes a barrier to AAVP. Herein, to improve AAVP-mediated gene delivery to cancer cells, we combined the vector with selective adjuvant chemicals that inhibit specific histone deacetylases (HDAC. We examined the effects of the HDAC inhibitor C1A that mainly targets HDAC6 and compared this to sodium butyrate, a pan-HDAC inhibitor with broad spectrum HDAC inhibition. We tested the effects on melanoma, known for HDAC6 up-regulation, and compared this side by side with a normal human kidney HEK293 cell line. Varying concentrations were tested to determine cytotoxic levels as well as effects on AAVP gene delivery. We report that the HDAC inhibitor C1A increased AAVP-mediated transgene expression by up to ~9-fold. These findings indicate that selective HDAC inhibition is a promising adjuvant treatment for increasing the therapeutic value of AAVP.

  13. Recombinant human parvovirus B19 vectors: erythroid cell-specific delivery and expression of transduced genes.

    Science.gov (United States)

    Ponnazhagan, S; Weigel, K A; Raikwar, S P; Mukherjee, P; Yoder, M C; Srivastava, A

    1998-06-01

    A novel packaging strategy combining the salient features of two human parvoviruses, namely the pathogenic parvovirus B19 and the nonpathogenic adeno-associated virus type 2 (AAV), was developed to achieve erythroid cell-specific delivery as well as expression of the transduced gene. The development of such a chimeric vector system was accomplished by packaging heterologous DNA sequences cloned within the inverted terminal repeats of AAV and subsequently packaging the DNA inside the capsid structure of B19 virus. Recombinant B19 virus particles were assembled, as evidenced by electron microscopy as well as DNA slot blot analyses. The hybrid vector failed to transduce nonerythroid human cells, such as 293 cells, as expected. However, MB-02 cells, a human megakaryocytic leukemia cell line which can be infected by B19 virus following erythroid differentiation with erythropoietin (N. C. Munshi, S. Z. Zhou, M. J. Woody, D. A. Morgan, and A. Srivastava, J. Virol. 67:562-566, 1993) but lacks the putative receptor for AAV (S. Ponnazhagan, X.-S. Wang, M. J. Woody, F. Luo, L. Y. Kang, M. L. Nallari, N. C. Munshi, S. Z. Zhou, and A. Srivastava, J. Gen. Virol. 77:1111-1122, 1996), were readily transduced by this vector. The hybrid vector was also found to specifically target the erythroid population in primary human bone marrow cells as well as more immature hematopoietic progenitor cells following erythroid differentiation, as evidenced by selective expression of the transduced gene in these target cells. Preincubation with anticapsid antibodies against B19 virus, but not anticapsid antibodies against AAV, inhibited transduction of primary human erythroid cells. The efficiency of transduction of primary human erythroid cells by the recombinant B19 virus vector was significantly higher than that by the recombinant AAV vector. Further development of the AAV-B19 virus hybrid vector system should prove beneficial in gene therapy protocols aimed at the correction of inherited and

  14. Recombinant Human Parvovirus B19 Vectors: Erythroid Cell-Specific Delivery and Expression of Transduced Genes

    Science.gov (United States)

    Ponnazhagan, Selvarangan; Weigel, Kirsten A.; Raikwar, Sudhanshu P.; Mukherjee, Pinku; Yoder, Mervin C.; Srivastava, Arun

    1998-01-01

    A novel packaging strategy combining the salient features of two human parvoviruses, namely the pathogenic parvovirus B19 and the nonpathogenic adeno-associated virus type 2 (AAV), was developed to achieve erythroid cell-specific delivery as well as expression of the transduced gene. The development of such a chimeric vector system was accomplished by packaging heterologous DNA sequences cloned within the inverted terminal repeats of AAV and subsequently packaging the DNA inside the capsid structure of B19 virus. Recombinant B19 virus particles were assembled, as evidenced by electron microscopy as well as DNA slot blot analyses. The hybrid vector failed to transduce nonerythroid human cells, such as 293 cells, as expected. However, MB-02 cells, a human megakaryocytic leukemia cell line which can be infected by B19 virus following erythroid differentiation with erythropoietin (N. C. Munshi, S. Z. Zhou, M. J. Woody, D. A. Morgan, and A. Srivastava, J. Virol. 67:562–566, 1993) but lacks the putative receptor for AAV (S. Ponnazhagan, X.-S. Wang, M. J. Woody, F. Luo, L. Y. Kang, M. L. Nallari, N. C. Munshi, S. Z. Zhou, and A. Srivastava, J. Gen. Virol. 77:1111–1122, 1996), were readily transduced by this vector. The hybrid vector was also found to specifically target the erythroid population in primary human bone marrow cells as well as more immature hematopoietic progenitor cells following erythroid differentiation, as evidenced by selective expression of the transduced gene in these target cells. Preincubation with anticapsid antibodies against B19 virus, but not anticapsid antibodies against AAV, inhibited transduction of primary human erythroid cells. The efficiency of transduction of primary human erythroid cells by the recombinant B19 virus vector was significantly higher than that by the recombinant AAV vector. Further development of the AAV-B19 virus hybrid vector system should prove beneficial in gene therapy protocols aimed at the correction of inherited

  15. Histological properties of intramuscular connective tissues in native ...

    African Journals Online (AJOL)

    The conventional histological study revealed that except the endomysium which was similar in both muscles, the other intramuscular connective tissues' layers varied between leg and breast muscles and were affected by sex. All the connective tissue fibers were observed in all the intramuscular connective tissues of both ...

  16. Dual peptide-mediated targeted delivery of bioactive siRNAs to oral cancer cells in vivo.

    Science.gov (United States)

    Alexander-Bryant, Angela A; Zhang, Haiwen; Attaway, Christopher C; Pugh, William; Eggart, Laurence; Sansevere, Robert M; Andino, Lourdes M; Dinh, Lu; Cantini, Liliana P; Jakymiw, Andrew

    2017-09-01

    Despite significant advances in cancer treatment, the prognosis for oral cancer remains poor in comparison to other cancer types, including breast, skin, and prostate. As a result, more effective therapeutic modalities are needed for the treatment of oral cancer. Consequently, in the present study, we examined the feasibility of using a dual peptide carrier approach, combining an epidermal growth factor receptor (EGFR)-targeting peptide with an endosome-disruptive peptide, to mediate targeted delivery of small interfering RNAs (siRNAs) into EGFR-overexpressing oral cancer cells and induce silencing of the targeted oncogene, cancerous inhibitor of protein phosphatase 2A (CIP2A). Fluorescence microscopy, real-time PCR, Western blot analysis, and in vivo bioimaging of mice containing orthotopic xenograft tumors were used to examine the ability of the dual peptide carrier to mediate specific delivery of bioactive siRNAs into EGFR-overexpressing oral cancer cells/tissues. Co-complexation of the EGFR-targeting peptide, GE11R9, with the endosome-disruptive 599 peptide facilitated the specific uptake of siRNAs into oral cancer cells overexpressing EGFR in vitro with optimal gene silencing observed at a 60:30:1 (GE11R9:599:siRNA) molar ratio. Furthermore, when administered systemically to mice bearing xenograft oral tumors, this dual peptide complex mediated increased targeted delivery of siRNAs into tumor tissues in comparison to the 599 peptide alone and significantly enhanced CIP2A silencing. Herein we provide the first report demonstrating the clinical potential of a dual peptide strategy for siRNA-based therapeutics by synergistically mediating the effective targeting and delivery of bioactive siRNAs into EGFR-overexpressing oral cancer cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Preventative vaccine-loaded mannosylated chitosan nanoparticles intended for nasal mucosal delivery enhance immune responses and potent tumor immunity.

    Science.gov (United States)

    Yao, Wenjun; Peng, Yixing; Du, Mingzhu; Luo, Juan; Zong, Li

    2013-08-05

    Chitosan (CS) has been extensively used as a protein drug and gene delivery carrier, but its delivery efficiency is unsatisfactory. In this study, a mannose ligand was used to modify CS, which could enhance the delivery efficiency of CS via mannose receptor-mediated endocytosis. A preventative anti-GRP DNA vaccine (pCR3.1-VS-HSP65-TP-GRP6-M2, pGRP) was condensed with mannosylated chitosan (MCS) to form MCS/pGRP nanoparticles. Nanoparticles were intranasally administered in a subcutaneous mice prostate carcinoma model to evaluate the efficacy on inhibition of the growth of tumor cells. The titers of anti-GRP IgG that lasted for 11 weeks were significantly higher than that for administration of CS/pGRP nanoparticles (p intramuscular administration of a pGRP solution (p nanoparticles could suppress the growth of tumor cells. The average tumor weight (0.79 ± 0.30 g) was significantly lower than that in the CS/pGRP nanoparticle group (1.69 ± 0.15 g) (p nanoparticles bound with C-type lectin receptors on macrophages. MCS was an efficient targeting gene delivery carrier and could be used in antitumor immunotherapy.

  18. Characterization of intravitreally delivered capsid mutant AAV2-Cre vector to induce tissue-specific mutations in murine retinal ganglion cells.

    Science.gov (United States)

    Langouet-Astrie, Christophe J; Yang, Zhiyong; Polisetti, Sraavya M; Welsbie, Derek S; Hauswirth, William W; Zack, Donald J; Merbs, Shannath L; Enke, Raymond A

    2016-10-01

    Targeted expression of Cre recombinase in murine retinal ganglion cells (RGCs) by viral vector is an effective strategy for creating tissue-specific gene knockouts for investigation of genetic contribution to RGC degeneration associated with optic neuropathies. Here we characterize dosage, efficacy and toxicity for sufficient intravitreal delivery of a capsid mutant Adeno-associated virus 2 (AAV2) vector encoding Cre recombinase. Wild type and Rosa26 (R26) LacZ mice were intravitreally injected with capsid mutant AAV2 viral vectors. Murine eyes were harvested at intervals ranging from 2 weeks to 15 weeks post-injection and were assayed for viral transduction, transgene expression and RGC survival. 10(9) vector genomes (vg) were sufficient for effective in vivo targeting of murine ganglion cell layer (GCL) retinal neurons. Transgene expression was observed as early as 2 weeks post-injection of viral vectors and persisted to 11 weeks. Early expression of Cre had no significant effect on RGC survival, while significant RGC loss was detected beginning 5 weeks post-injection. Early expression of viral Cre recombinase was robust, well-tolerated and predominantly found in GCL neurons suggesting this strategy can be effective in short-term RGC-specific mutation studies in experimental glaucoma models such as optic nerve crush and transection experiments. RGC degeneration with Cre expression for more than 4 weeks suggests that Cre toxicity is a limiting factor for targeted mutation strategies in RGCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Adeno-associated virus-mediated gene transfer.

    Science.gov (United States)

    Srivastava, Arun

    2008-09-01

    Although the remarkable versatility and efficacy of recombinant adeno-associated virus 2 (AAV2) vectors in transducing a wide variety of cells and tissues in vitro, and in numerous pre-clinical animal models of human diseases in vivo, have been well established, the published literature is replete with controversies with regard to the efficacy of AAV2 vectors in hematopoietic stem cell (HSC) transduction. A number of factors have contributed to these controversies, the molecular bases of which have begun to come to light in recent years. With the availability of several novel serotypes (AAV1 through AAV12), rational design of AAV capsid mutants, and strategies (self-complementary vector genomes, hematopoietic cell-specific promoters), it is indeed becoming feasible to achieve efficient transduction of HSC by AAV vectors. Using a murine serial bone marrow transplantation model in vivo, we have recently documented stable integration of the proviral AAV genome into mouse chromosomes, which does not lead to any overt hematological abnormalities. Thus, a better understanding of the AAV-HSC interactions, and the availability of a vast repertoire of novel serotype and capsid mutant vectors, are likely to have significant implications in the use of AAV vectors in high-efficiency transduction of HSCs as well as in gene therapy applications involving the hematopoietic system. (c) 2008 Wiley-Liss, Inc.

  20. Stabilization of influenza vaccine enhances protection by microneedle delivery in the mouse skin.

    Directory of Open Access Journals (Sweden)

    Fu-Shi Quan

    2009-09-01

    Full Text Available Simple and effective vaccine administration is particularly important for annually recommended influenza vaccination. We hypothesized that vaccine delivery to the skin using a patch containing vaccine-coated microneedles could be an attractive approach to improve influenza vaccination compliance and efficacy.Solid microneedle arrays coated with inactivated influenza vaccine were prepared for simple vaccine delivery to the skin. However, the stability of the influenza vaccine, as measured by hemagglutination activity, was found to be significantly damaged during microneedle coating. The addition of trehalose to the microneedle coating formulation retained hemagglutination activity, indicating stabilization of the coated influenza vaccine. For both intramuscular and microneedle skin immunization, delivery of un-stabilized vaccine yielded weaker protective immune responses including viral neutralizing antibodies, protective efficacies, and recall immune responses to influenza virus. Immunization using un-stabilized vaccine also shifted the pattern of antibody isotypes compared to the stabilized vaccine. Importantly, a single microneedle-based vaccination using stabilized influenza vaccine was found to be superior to intramuscular immunization in controlling virus replication as well as in inducing rapid recall immune responses post challenge.The functional integrity of hemagglutinin is associated with inducing improved protective immunity against influenza. Simple microneedle influenza vaccination in the skin produced superior protection compared to conventional intramuscular immunization. This approach is likely to be applicable to other vaccines too.

  1. DNA structure modulates the oligomerization properties of the AAV initiator protein Rep68.

    Directory of Open Access Journals (Sweden)

    Jorge Mansilla-Soto

    2009-07-01

    Full Text Available Rep68 is a multifunctional protein of the adeno-associated virus (AAV, a parvovirus that is mostly known for its promise as a gene therapy vector. In addition to its role as initiator in viral DNA replication, Rep68 is essential for site-specific integration of the AAV genome into human chromosome 19. Rep68 is a member of the superfamily 3 (SF3 helicases, along with the well-studied initiator proteins simian virus 40 large T antigen (SV40-LTag and bovine papillomavirus (BPV E1. Structurally, SF3 helicases share two domains, a DNA origin interaction domain (OID and an AAA(+ motor domain. The AAA(+ motor domain is also a structural feature of cellular initiators and it functions as a platform for initiator oligomerization. Here, we studied Rep68 oligomerization in vitro in the presence of different DNA substrates using a variety of biophysical techniques and cryo-EM. We found that a dsDNA region of the AAV origin promotes the formation of a complex containing five Rep68 subunits. Interestingly, non-specific ssDNA promotes the formation of a double-ring Rep68, a known structure formed by the LTag and E1 initiator proteins. The Rep68 ring symmetry is 8-fold, thus differing from the hexameric rings formed by the other SF3 helicases. However, similiar to LTag and E1, Rep68 rings are oriented head-to-head, suggesting that DNA unwinding by the complex proceeds bidirectionally. This novel Rep68 quaternary structure requires both the DNA binding and AAA(+ domains, indicating cooperativity between these regions during oligomerization in vitro. Our study clearly demonstrates that Rep68 can oligomerize through two distinct oligomerization pathways, which depend on both the DNA structure and cooperativity of Rep68 domains. These findings provide insight into the dynamics and oligomeric adaptability of Rep68 and serve as a step towards understanding the role of this multifunctional protein during AAV DNA replication and site-specific integration.

  2. Targeted Delivery of TrkB Receptor to Phrenic Motoneurons Enhances Functional Recovery of Rhythmic Phrenic Activity after Cervical Spinal Hemisection

    Science.gov (United States)

    Gransee, Heather M.; Zhan, Wen-Zhi; Sieck, Gary C.; Mantilla, Carlos B.

    2013-01-01

    Progressive recovery of rhythmic phrenic activity occurs over time after a spinal cord hemisection involving unilateral transection of anterolateral funiculi at C2 (SH). Brain-derived neurotrophic factor (BDNF) acting through its full-length tropomyosin related kinase receptor subtype B (TrkB.FL) contributes to neuroplasticity after spinal cord injury, but the specific cellular substrates remain unclear. We hypothesized that selectively targeting increased TrkB.FL expression to phrenic motoneurons would be sufficient to enhance recovery of rhythmic phrenic activity after SH. Several adeno-associated virus (AAV) serotypes expressing GFP were screened to determine specificity for phrenic motoneuron transduction via intrapleural injection in adult rats. GFP expression was present in the cervical spinal cord 3 weeks after treatment with AAV serotypes 7, 8, and 9, but not with AAV2, 6, or rhesus-10. Overall, AAV7 produced the most consistent GFP expression in phrenic motoneurons. SH was performed 3 weeks after intrapleural injection of AAV7 expressing human TrkB.FL-FLAG or saline. Delivery of TrkB.FL-FLAG to phrenic motoneurons was confirmed by FLAG protein expression in the phrenic motor nucleus and human TrkB.FL mRNA expression in microdissected phrenic motoneurons. In all SH rats, absence of ipsilateral diaphragm EMG activity was confirmed at 3 days post-SH, verifying complete interruption of ipsilateral descending drive to phrenic motoneurons. At 14 days post-SH, all AAV7-TrkB.FL treated rats (n = 11) displayed recovery of ipsilateral diaphragm EMG activity compared to 3 out of 8 untreated SH rats (pphrenic motoneurons is sufficient to enhance recovery of ipsilateral rhythmic phrenic activity after SH, indicating that selectively targeting gene expression in spared motoneurons below the level of spinal cord injury may promote functional recovery. PMID:23724091

  3. The IDvIP Trial: A two-centre randomised double-blind controlled trial comparing intramuscular diamorphine and intramuscular pethidine for labour analgesia

    Directory of Open Access Journals (Sweden)

    Thomas Peter

    2011-07-01

    Full Text Available Abstract Background Intramuscular pethidine is routinely used throughout the UK for labour analgesia. Studies have suggested that pethidine provides little pain relief in labour and has a number of side effects affecting mother and neonate. It can cause nausea, vomiting and dysphoria in mothers and can cause reduced fetal heart rate variability and accelerations. Neonatal effects include respiratory depression and impaired feeding. There are few large studies comparing the relative side effects and efficacy of different opioids in labour. A small trial comparing intramuscular pethidine with diamorphine, showed diamorphine to have some benefits over pethidine when used for labour analgesia but the study did not investigate the adverse effects of either opioid. Methods The Intramuscular Diamorphine versus Intramuscular Pethidine (IDvIP trial is a randomised double-blind two centre controlled trial comparing intramuscular diamorphine and pethidine regarding their analgesic efficacy in labour and their side effects in mother, fetus and neonate. Information about the trial will be provided to women in the antenatal period or in early labour. Consent and recruitment to the trial will be obtained when the mother requests opioid analgesia. The sample size requirement is 406 women with data on primary outcomes. The maternal primary outcomes are pain relief during the first 3 hours after trial analgesia and specifically pain relief after 60 minutes. The neonatal primary outcomes are need for resuscitation and Apgar Score Discussion If the trial demonstrates that diamorphine provides better analgesia with fewer side effects in mother and neonate this could lead to a change in national practice and result in diamorphine becoming the preferred intramuscular opioid for analgesia in labour. Trial Registration ISRCTN14898678 Eudra No: 2006-003250-18, REC Reference No: 06/Q1702/95, MHRA Authorisation No: 1443/0001/001-0001, NIHR UKCRN reference 6895, RfPB grant

  4. Cerebellomedullary Cistern Delivery for AAV-Based Gene Therapy: A Technical Note for Nonhuman Primates

    OpenAIRE

    Samaranch, Lluis; Bringas, John; Pivirotto, Philip; Sebastian, Waldy San; Forsayeth, John; Bankiewicz, Krystof

    2015-01-01

    Accessing cerebrospinal fluid (CSF) from the craniocervical junction through the posterior atlanto-occipital membrane via cerebellomedullary injection (also known as cisternal puncture or cisterna magna injection) has become a standard procedure in preclinical studies. Such delivery provides broader coverage to the central and peripheral nervous system unlike local parenchymal delivery alone. As a clinical application, this approach offers a more reliable method for neurological gene replacem...

  5. A Comparison of Intramuscular Anesthetic Techniques in Chickens

    Directory of Open Access Journals (Sweden)

    Shahin Hajighahramani

    2017-02-01

    Full Text Available Background & Objective: Administration of anesthetic substances to chickens requires careful consideration for the safe delivery of the agent to the bird. The research objective was to evaluate several drug combinations for intramuscular anesthesia in chickens for physiologic, nutritional, pharmacological and other investigations. Meterial & Methods: Sixty healthy chickens were randomly assigned in six treatment groups and received Ketamine in combination with Xylazine, Midazolam or Acepromazine. Heart and respiratory rate, induction time, duration of surgical anesthesia and light anesthesia were measured. Results: Induction of anesthesia was significantly longer following Acepromazine- Ketamine and Midazolam- Ketamine compared to other groups (P<0.05. Duration of surgical anesthesia was longest with Xylazine- Midazolam- Ketamine and shortest with Midazolam-Ketamine and Acepromazine- Ketamine (P<0.05. Conclusion: In conclusion, the most effective drug combinations resulting in longer duration of surgical anesthesia, were Xylazine- Acepromazine- Ketamine and Xylazine- Midazolam- Ketamine. Other combinations did not produce appropriate surgical anesthesia, but they make slight changes in physiological data.

  6. Intramuscular capillary-type hemangioma: radiologic-pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Sabri; Alomari, Ahmad I.; Chaudry, Gulraiz [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Division of Vascular and Interventional Radiology, Boston, MA (United States); Kozakewich, Harry P. [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Department of Pathology, Boston, MA (United States); Fishman, Steven J. [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Department of Surgery, Boston, MA (United States); Mulliken, John B. [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Department of Plastic and Oral Surgery, Boston, MA (United States)

    2014-05-15

    Infantile hemangiomas demonstrate a pattern of proliferative growth in infancy followed by a slow phase of involution. In contrast a rare type of vascular tumor, intramuscular capillary-type hemangioma, usually presents beyond the period of infancy with nonspecific symptoms and no evidence of involution. The purpose of this study was to characterize the clinical, imaging, histopathological characteristics and management of intramuscular capillary-type hemangioma. We performed a retrospective review of a 20-year period to identify children diagnosed with intramuscular capillary-type hemangioma. Patient demographics, imaging and histopathological findings were recorded. We included 18 children (10 boys, 8 girls) with histologically proven intramuscular capillary-type hemangioma - and adequate imaging. The mean age at presentation was 8.1 years (range 1 day to 19 years). Twelve lesions involved muscles of the extremities, 4 were located in the trunk and 2 were in the head and neck. MRI had been performed in all children and demonstrated a soft-tissue mass with flow voids, consistent with fast flow. The lesion was well-circumscribed in 16 children and intralesional fat was seen in 14. Doppler US demonstrated a heterogeneous lesion, predominantly isoechoic to surrounding muscle, with enlarged arterial feeders. Enlarged feeding arteries, inhomogeneous blush and lack of arteriovenous shunting were noted on angiography (n = 5). The most common histopathological findings were lobules of capillaries with plump endothelium and at least some adipose tissue. The lesions were excised in six children. Two children were lost to follow-up. In the remaining 10, follow-up MRI studies ranging from 3 months to 10 years showed that the lesion enlarged in proportion to the child (n = 7), demonstrated slow growth (n = 2) or remained stable (n = 1). There was no change in imaging characteristics on follow-up. Intramuscular capillary-type hemangioma is a rare benign vascular tumor of

  7. Adeno-Associated Viral Vector-Mediated mTOR Inhibition by Short Hairpin RNA Suppresses Laser-Induced Choroidal Neovascularization

    Directory of Open Access Journals (Sweden)

    Tae Kwann Park

    2017-09-01

    Full Text Available Choroidal neovascularization (CNV is the defining characteristic feature of the wet subtype of age-related macular degeneration (AMD and may result in irreversible blindness. Based on anti-vascular endothelial growth factor (anti-VEGF, the current therapeutic approaches to CNV are fraught with difficulties, and mammalian target of rapamycin (mTOR has recently been proposed as a possible therapeutic target, although few studies have been conducted. Here, we show that a recombinant adeno-associated virus-delivered mTOR-inhibiting short hairpin RNA (rAAV-mTOR shRNA, which blocks the activity of both mTOR complex 1 and 2, represents a promising therapeutic approach for the treatment of CNV. Eight-week-old male C57/B6 mice were treated with the short hairpin RNA (shRNA after generating CNV lesions in the eyes via laser photocoagulation. The recombinant adeno-associated virus (rAAV delivery vehicle was able to effectively transduce cells in the inner retina, and significantly fewer inflammatory cells and less extensive CNV were observed in the animals treated with rAAV-mTOR shRNA when compared with control- and rAAV-scrambled shRNA-treated groups. Presumably related to the reduction of CNV, increased autophagy was detected in CNV lesions treated with rAAV-mTOR shRNA, whereas significantly fewer apoptotic cells detected in the outer nuclear layer around the CNV indicate that mTOR inhibition may also have neuroprotective effects. Taken together, these results demonstrate the therapeutic potential of mTOR inhibition, resulting from rAAV-mTOR shRNA activity, in the treatment of AMD-related CNV. Keywords: retinal neovascularization, choroidal neovascularization, adeno-associated virus, mTOR, RNA interference, mTOR shRNA, autophagy

  8. Role of the Na(+)/K(+)-ATPase beta-subunit in peptide-mediated transdermal drug delivery.

    Science.gov (United States)

    Wang, Changli; Ruan, Renquan; Zhang, Li; Zhang, Yunjiao; Zhou, Wei; Lin, Jun; Ding, Weiping; Wen, Longping

    2015-04-06

    In this work, we discovered that the Na(+)/K(+)-ATPase beta-subunit (ATP1B1) on epidermal cells plays a key role in the peptide-mediated transdermal delivery of macromolecular drugs. First, using a yeast two-hybrid assay, we screened candidate proteins that have specific affinity for the short peptide TD1 (ACSSSPSKHCG) identified in our previous work. Then, we verified the specific binding of TD1 to ATP1B1 in yeast and mammalian cells by a pull-down ELISA and an immunoprecipitation assay. Finally, we confirmed that TD1 mainly interacted with the C-terminus of ATP1B1. Our results showed that the interaction between TD1 and ATP1B1 affected not only the expression and localization of ATP1B1, but also the epidermal structure. In addition, this interaction could be antagonized by the exogenous competitor ATP1B1 or be inhibited by ouabain, which results in the decreased delivery of macromolecular drugs across the skin. The discovery of a critical role of ATP1B1 in the peptide-mediated transdermal drug delivery is of great significance for the future development of new transdermal peptide enhancers.

  9. Intramuscular myxoma and fibrous dysplasia of bone - Mazabraud's syndrome

    International Nuclear Information System (INIS)

    Court-Payen, M.; Ingemann Jensen, L.; Bjerregaard, B.; Schwarz Lausten, G.; Skjoldbye, B.

    1997-01-01

    We present a case of Mazabroud's syndrome, a rare benign disease, with multiple intramuscular myxomas of the thoracic wall associated with fibrous dysplasia of bone. CT, MR imaging and ultrasonography (US) of the thorax showed 2 well circumscribed homogeneous intramuscular tumors. A US-guided needle biopsy with a large-core needle (2.0 mm) and a fine needle (0.8 mm) showed that the tumors were intramuscular myxomas with no sign of malignancy. 99m Tc bone scintigraphy showed a markedly increased uptake in the right lower skull, and multiple smaller foci. CT of the skull revealed a right-sided unilateral bone thickening of the orbit and the ethomoidal cells, and right-sided exophthalmia. This case history suggests that patients with multiple intramuscular myxomas should be preoperatively examined for osseous lesions. A postoperative follow-up should also be performed to detect other soft-tissue myxomas not as yet clinically detectable, or rare osseous complications. (orig.)

  10. Cellular toxicity following application of adeno-associated viral vector-mediated RNA interference in the nervous system

    Directory of Open Access Journals (Sweden)

    Verhaagen Joost

    2010-02-01

    Full Text Available Abstract Background After a spinal cord lesion, axon regeneration is inhibited by the presence of a diversity of inhibitory molecules in the lesion environment. At and around the lesion site myelin-associated inhibitors, chondroitin sulfate proteoglycans (CSPGs and several axon guidance molecules, including all members of the secreted (class 3 Semaphorins, are expressed. Interfering with multiple inhibitory signals could potentially enhance the previously reported beneficial effects of blocking single molecules. RNA interference (RNAi is a tool that can be used to simultaneously silence expression of multiple genes. In this study we aimed to employ adeno-associated virus (AAV mediated expression of short hairpin RNAs (shRNAs to target all Semaphorin class 3 signaling by knocking down its receptors, Neuropilin 1 (Npn-1 and Neuropilin 2 (Npn-2. Results We have successfully generated shRNAs that knock down Npn-1 and Npn-2 in a neuronal cell line. We detected substantial knockdown of Npn-2 mRNA when AAV5 viral vector particles expressing Npn-2 specific shRNAs were injected in dorsal root ganglia (DRG of the rat. Unexpectedly however, AAV1-mediated expression of Npn-2 shRNAs and a control shRNA in the red nucleus resulted in an adverse tissue response and neuronal degeneration. The observed toxicity was dose dependent and was not seen with control GFP expressing AAV vectors, implicating the shRNAs as the causative toxic agents. Conclusions RNAi is a powerful tool to knock down Semaphorin receptor expression in neuronal cells in vitro and in vivo. However, when shRNAs are expressed at high levels in CNS neurons, they trigger an adverse tissue response leading to neuronal degradation.

  11. Multifunctional pH-Responsive Folate Receptor Mediated Polymer Nanoparticles for Drug Delivery.

    Science.gov (United States)

    Cai, Xiaoqing; Yang, Xiaoye; Wang, Fang; Zhang, Chen; Sun, Deqing; Zhai, Guangxi

    2016-07-01

    Multifunctional pH-responsive folate receptor mediated targeted polymer nanoparticles (TPNps) were developed for docetaxel (DTX) delivery based on poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)poly (β-amino ester) (P123-PAE) and poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)-folate (P123-FA) copolymers. The DTX was loaded into the TPNps with a decent drug loading content of 15.02 ± 0.14 wt%. In vitro drug release results showed that the DTX was released from the TPNps at a pH-dependent manner. Tetrazolium dye (MTT) assay revealed that the bland polymer nanoparticles displayed almost nontoxicity at 200 μg/mL concentration. However, the DTX-loaded TPNps showed high anti-tumor activity at low IC50 (0.72 μg/mL) for MCF-7 cells following 48 h incubation. Cellular uptake experiments revealed that the TPNps had higher degree of cellular uptake than nontargeted polymer nanoparticles, indicating that the nanoparticles were internalized into the cells via FA receptor-mediated endocytosis. Moreover, the cellular uptake pathways for the FA grafted polymer were involved in energy-dependent, clathrin-mediated and caveolae-mediated endocytosis. The cell killing effect and cellular uptake of the DTX-TPNps by the MCF-7 cells were all enhanced by about two folds at pH 5.5 when compared with pH 7.4. The TPNps also significantly prolonged the in vivo retention time for the DTX. These results suggest that the biocompatible pH responsive folate-modified polymer nanoparticles present a promising safe nanosystem for intracellular targeted delivery of DTX.

  12. Differential transgene expression in brain cells in vivo and in vitro from AAV-2 vectors with small transcriptional control units

    International Nuclear Information System (INIS)

    Kuegler, S.; Lingor, P.; Schoell, U.; Zolotukhin, S.; Baehr, M.

    2003-01-01

    Adeno-associated- (AAV) based vectors are promising tools for gene therapy applications in several organs, including the brain, but are limited by their small genome size. Two short promoters, the human synapsin 1 gene promoter (hSYN) and the murine cytomegalovirus immediate early promoter (mCMV), were evaluated in bicistronic AAV-2 vectors for their expression profiles in cultured primary brain cells and in the rat brain. Whereas transgene expression from the hSYN promoter was exclusively neuronal, the murine CMV promoter targeted expression mainly to astrocytes in vitro and showed weak transgene expression in vivo in retinal and cortical neurons, but strong expression in thalamic neurons. We propose that neuron specific transgene expression in combination with enhanced transgene capacity will further substantially improve AAV based vector technology

  13. Receptor-Mediated Endocytosis and Brain Delivery of Therapeutic Biologics

    Directory of Open Access Journals (Sweden)

    Guangqing Xiao

    2013-01-01

    Full Text Available Transport of macromolecules across the blood-brain-barrier (BBB requires both specific and nonspecific interactions between macromolecules and proteins/receptors expressed on the luminal and/or the abluminal surfaces of the brain capillary endothelial cells. Endocytosis and transcytosis play important roles in the distribution of macromolecules. Due to the tight junction of BBB, brain delivery of traditional therapeutic proteins with large molecular weight is generally not possible. There are multiple pathways through which macromolecules can be taken up into cells through both specific and nonspecific interactions with proteins/receptors on the cell surface. This review is focused on the current knowledge of receptor-mediated endocytosis/transcytosis and brain delivery using the Angiopep-2-conjugated system and the molecular Trojan horses. In addition, the role of neonatal Fc receptor (FcRn in regulating the efflux of Immunoglobulin G (IgG from brain to blood, and approaches to improve the pharmacokinetics of therapeutic biologics by generating Fc fusion proteins, and increasing the pH dependent binding affinity between Fc and FcRn, are discussed.

  14. Safe and stable noninvasive focal gene delivery to the mammalian brain following focused ultrasound.

    Science.gov (United States)

    Stavarache, Mihaela A; Petersen, Nicholas; Jurgens, Eric M; Milstein, Elizabeth R; Rosenfeld, Zachary B; Ballon, Douglas J; Kaplitt, Michael G

    2018-04-27

    OBJECTIVE Surgical infusion of gene therapy vectors has provided opportunities for biological manipulation of specific brain circuits in both animal models and human patients. Transient focal opening of the blood-brain barrier (BBB) by MR-guided focused ultrasound (MRgFUS) raises the possibility of noninvasive CNS gene therapy to target precise brain regions. However, variable efficiency and short follow-up of studies to date, along with recent suggestions of the potential for immune reactions following MRgFUS BBB disruption, all raise questions regarding the viability of this approach for clinical translation. The objective of the current study was to evaluate the efficiency, safety, and long-term stability of MRgFUS-mediated noninvasive gene therapy in the mammalian brain. METHODS Focused ultrasound under the control of MRI, in combination with microbubbles consisting of albumin-coated gas microspheres, was applied to rat striatum, followed by intravenous infusion of an adeno-associated virus serotype 1/2 (AAV1/2) vector expressing green fluorescent protein (GFP) as a marker. Following recovery, animals were followed from several hours up to 15 months. Immunostaining for GFP quantified transduction efficiency and stability of expression. Quantification of neuronal markers was used to determine histological safety over time, while inflammatory markers were examined for evidence of immune responses. RESULTS Transitory disruption of the BBB by MRgFUS resulted in efficient delivery of the AAV1/2 vector to the targeted rodent striatum, with 50%-75% of striatal neurons transduced on average. GFP transgene expression appeared to be stable over extended periods of time, from 2 weeks to 6 months, with evidence of ongoing stable expression as long as 16 months in a smaller cohort of animals. No evidence of substantial toxicity, tissue injury, or neuronal loss was observed. While transient inflammation from BBB disruption alone was noted for the first few days, consistent

  15. Induction of immunity to antigens expressed by recombinant adeno-associated virus depends on the route of administration.

    Science.gov (United States)

    Brockstedt, D G; Podsakoff, G M; Fong, L; Kurtzman, G; Mueller-Ruchholtz, W; Engleman, E G

    1999-07-01

    Recombinant adeno-associated virus (rAAV) is a replication-defective parvovirus which is being explored as a vector for gene therapy because of its broad host range, excellent safety profile, and durable transgene expression in infected hosts. rAAV has also been reported by several groups to induce little or no immune response to its encoded transgene products. In this study we examined the immunogenicity of rAAV by studying the immune response of C57BL/6 mice to a single dose of rAAV-encoding ovalbumin (AAV-Ova) administered by a variety of routes. Mice injected with AAV-Ova intraperitoneally (ip), intravenously, or subcutaneously developed potent ovalbumin-specific cytotoxic T lymphocytes (CTL) as well as anti-ovalbumin antibodies and antibodies to AAV. In contrast, mice injected with AAV-Ova intramuscularly developed a humoral response to the virus and the transgene but minimal ovalbumin-specific CTLs. The induced CTL response after ip administration of AAV-Ova protected mice against a subsequent tumor challenge with an ovalbumin-transfected B16 melanoma cell line. Studies of the mechanism by which AAV-Ova induces CTL confirmed that the virus delivers the transgene product into the classical MHC class I pathway of antigen processing. Mice that previously had been exposed to rAAV vectors failed to develop ovalbumin-specific CTL following administration of AAV-Ova. Analysis of these mice revealed the presence of circulating anti-AAV antibodies that blocked rAAV transduction in vitro and inhibited CTL induction in vivo. These results suggest a possible role for rAAV in the immunotherapy of malignancies and viral infections, although induced antibody responses to AAV may limit its ability to be administered for repeated vaccinations. Copyright 1999 Academic Press.

  16. Intracellular localisation of proteins to specific cellular areas by nanocapsule mediated delivery.

    Science.gov (United States)

    Wang, Huabin; Chen, Ligang; Sun, Xianchao; Fu, Ailing

    2017-09-01

    Nanocapsules are promising carriers with great potential for intracellular protein transport. Although many studies have intended to improve cell uptake efficacy, there is an increasing interest in understanding of subcellular distribution of cargoes inside cells, which is essential for purposeful delivery of biomolecules into specific sites within cells. Herein, we interrogate the intracellular localisation of exogenous proteins, including fluorescein isothiocyanate (FITC)-labelled bovine serum albumin (BSA) and green fluorescent protein (GFP), mediated by specially designed nanocapsules. The results show that the designed nanocapsules can deliver the two types of fluorescent proteins into different cellular destinations (cytosol, nucleus or the whole cell), depending on the composition of nanocapsules. Meanwhile, several impact factors that influence the distribution of proteins in cells have also been investigated, and the results suggest that the localisation of capsule-mediated proteins in cells is strongly affected by the surface properties of nanocapsules, the types of stabilisers and proteins, and environmental temperatures. The rational control of intracellular localised delivery of exogenous proteins as we demonstrated in this study might open new avenues to obtain desired magnitude of drug effects for modulating cell activity.

  17. Adeno-associated virus-mediated doxycycline-regulatable TRAIL expression suppresses growth of human breast carcinoma in nude mice

    International Nuclear Information System (INIS)

    Zheng, Liu; Weilun, Zhang; Minghong, Jiang; Yaxi, Zhang; Shilian, Liu; Yanxin, Liu; Dexian, Zheng

    2012-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) functions as a cytokine to selectively kill various cancer cells without toxicity to most normal cells. Numerous studies have demonstrated the potential use of recombinant soluble TRAIL as a cancer therapeutic agent. We have showed previous administration of a recombinant adeno-associated virus (rAAV) vector expressing soluble TRAIL results in an efficient suppression of human tumor growth in nude mice. In the present study, we introduced Tet-On gene expression system into the rAAV vector to control the soluble TRAIL expression and evaluate the efficiency of the system in cancer gene therapy. Controllability of the Tet-On system was determined by luciferase activity assay, and Western blotting and enzyme-linked immunoabsorbent assay. Cell viability was determined by MTT assay. The breast cancer xenograft animal model was established and recombinant virus was administrated through tail vein injection to evaluate the tumoricidal activity. The expression of soluble TRAIL could be strictly controlled by the Tet-On system in both normal and cancer cells. Transduction of human cancer cell lines with rAAV-TRE-TRAIL&rAAV-Tet-On under the presence of inducer doxycycline resulted in a considerable cell death by apoptosis. Intravenous injection of the recombinant virus efficiently suppressed the growth of human breast carcinoma in nude mice when activated by doxycycline. These data suggest that rAAV-mediated soluble TRAIL expression under the control of the Tet-On system is a promising strategy for breast cancer therapy

  18. Reliability and agreement of intramuscular coherence in tibialis anterior muscle

    NARCIS (Netherlands)

    Asseldonk, E.H. van; Campfens, S.F.; Verwer, S.J.; Putten, M.J.A.M. van; Stegeman, D.F.

    2014-01-01

    BACKGROUND: Neuroplasticity drives recovery of walking after a lesion of the descending tract. Intramuscular coherence analysis provides a way to quantify corticomotor drive during a functional task, like walking and changes in coherence serve as a marker for neuroplasticity. Although intramuscular

  19. Reliability and Agreement of Intramuscular Coherence in Tibialis Anterior Muscle

    NARCIS (Netherlands)

    van Asseldonk, E.H.F.; Campfens, S.F.; Verwer, S.J.F.; van Putten, M.C.; Stegeman, D.F.

    2014-01-01

    Background: Neuroplasticity drives recovery of walking after a lesion of the descending tract. Intramuscular coherence analysis provides a way to quantify corticomotor drive during a functional task, like walking and changes in coherence serve as a marker for neuroplasticity. Although intramuscular

  20. Reliability and agreement of intramuscular coherence in tibialis anterior muscle

    NARCIS (Netherlands)

    van Asseldonk, Edwin H.F.; Campfens, S.F.; Verwer, S.J.F.; van Putten, Michel Johannes Antonius Maria; Stegeman, D.F.

    2014-01-01

    Background: Neuroplasticity drives recovery of walking after a lesion of the descending tract. Intramuscular coherence analysis provides a way to quantify corticomotor drive during a functional task, like walking and changes in coherence serve as a marker for neuroplasticity. Although intramuscular

  1. Perinatal systemic gene delivery using adeno-associated viral vectors

    Directory of Open Access Journals (Sweden)

    Rajvinder eKarda

    2014-11-01

    Full Text Available Neurodegenerative monogenic diseases can also affect a broad range of tissues and organs throughout the body. An effective treatment would require a systemic approach. The intravenous administration of novel therapies is ideal but is hampered by the inability of such drugs to cross the blood-brain barrier and precludes efficacy in the central nervous system. A number of these early lethal intractable diseases also present devastating irreversible pathology at birth or soon after. Therefore, any therapy would ideally be administered during the perinatal period to prevent, stop or ameliorate disease progression. The concept of perinatal gene therapy has moved a step further towards being a feasible approach to treating such disorders. This has primarily been driven by the recent discoveries that particular serotypes of adeno-associated virus (AAV gene delivery vectors have the ability to cross the blood-brain barrier following intravenous administration. Furthermore, this has been safely demonstrated in perinatal mice and non-human primates. This review focuses on the progress made in using AAV to achieve systemic transduction and what this means for developing perinatal gene therapy for early lethal neurodegenerative diseases.

  2. Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac.

    Science.gov (United States)

    Huang, Bin; Dong, Wei-Jiang; Yang, Gao-Yi; Wang, Wei; Ji, Cong-Hua; Zhou, Fei-Ni

    2015-01-01

    The purpose of the present study was to develop a novel transdermal drug-delivery system comprising a polyamidoamine dendrimer coupled with sonophoresis to enhance the permeation of diclofenac (DF) through the skin. The novel transdermal drug-delivery system was developed by using a statistical Plackett-Burman design. Hairless male Wistar rat skin was used for the DF-permeation study. Coupling media concentration, ultrasound-application time, duty cycle, distance from probe to skin, and a third-generation polyamidoamine-dendrimer concentration were selected as independent variables, while in vitro drug release was selected as a dependent variable. Independent variables were found to be statistically significant (Pdelivery, run 13) showed 56.69 µg/cm(2) cumulative drug permeated through the skin, while the DF-dendrimer gel without sonophoresis treatment (run 14) showed 257.3 µg/cm(2) cumulative drug permeated through the skin after 24 hours. However, when the same gel was applied to sonophoresis-treated skin, drastic permeation enhancement was observed. In the case of run 3, the cumulative drug that permeated through the skin was 935.21 µg/cm(2). It was concluded that dendrimer-coupled sonophoresis-mediated transdermal drug delivery system has the potential to enhance the permeation of DF through the skin.

  3. Intrathecal long-term gene expression by self-complementary adeno-associated virus type 1 suitable for chronic pain studies in rats

    Directory of Open Access Journals (Sweden)

    Janssen William GM

    2006-01-01

    Full Text Available Abstract Background Intrathecal (IT gene transfer is an attractive approach for targeting spinal mechanisms of nociception but the duration of gene expression achieved by reported methods is short (up to two weeks impairing their utility in the chronic pain setting. The overall goal of this study was to develop IT gene transfer yielding true long-term transgene expression defined as ≥ 3 mo following a single vector administration. We defined "IT" administration as atraumatic injection into the lumbar cerebrospinal fluid (CSF modeling a lumbar puncture. Our studies focused on recombinant adeno-associated virus (rAAV, one of the most promising vector types for clinical use. Results Conventional single stranded rAAV2 vectors performed poorly after IT delivery in rats. Pseudotyping of rAAV with capsids of serotypes 1, 3, and 5 was tested alone or in combination with a modification of the inverted terminal repeat. The former alters vector tropism and the latter allows packaging of self-complementary rAAV (sc-rAAV vectors. Combining both types of modification led to the identification of sc-rAAV2/l as a vector that performed superiorly in the IT space. IT delivery of 3 × 10e9 sc-rAAV2/l particles per animal led to stable expression of enhanced green fluorescent protein (EGFP for ≥ 3 mo detectable by Western blotting, quantitative PCR, and in a blinded study by confocal microscopy. Expression was strongest in the cauda equina and the lower sections of the spinal cord and only minimal in the forebrain. Microscopic examination of the SC fixed in situ with intact nerve roots and meninges revealed strong EGFP fluorescence in the nerve roots. Conclusion sc-rAAVl mediates stable IT transgene expression for ≥ 3 mo. Our findings support the underlying hypothesis that IT target cells for gene transfer lack the machinery for efficient conversion of the single-stranded rAAV genome into double-stranded DNA and favor uptake of serotype 1 vectors over 2

  4. Nicolau syndrome following intramuscular benzathine penicillin

    Directory of Open Access Journals (Sweden)

    De Sousa R

    2008-01-01

    Full Text Available Nicolau syndrome (NS is a rare complication of an intramuscular injection characterized by severe pain, skin discoloration, and varying levels of tissue necrosis. The case outcomes vary from atrophic ulcers and severe pain to sepsis and limb amputation. We describe a case of a seven-year-old boy with diagnosis of NS after intramuscular benzathine penicillin injection to the ventrolateral aspect of the left thigh. Characteristic violaceous discoloration of skin and immediate injection site pain identified it as a case of NS. The case was complicated by rapid progression of compartment syndrome of the lower limb, proceeding to acute renal failure and death. Associated compartment syndrome can be postulated as a poor prognostic factor for NS.

  5. Tissue distribution of enrofloxacin in African clawed frogs (Xenopus laevis) after intramuscular and subcutaneous administration.

    Science.gov (United States)

    Felt, Stephen; Papich, Mark G; Howard, Antwain; Long, Tyler; McKeon, Gabriel; Torreilles, Stéphanie; Green, Sherril

    2013-03-01

    As part of an enrofloxacin pharmacokinetic study, concentrations of enrofloxacin and ciprofloxacin (metabolite) were measured in various tissues (brain, heart, kidney, liver, lung, and spleen) collected from treated (subcutaneous delivery, n = 3; intramuscular delivery, n = 3; untreated controls, n = 2) adult female Xenopus laevis by using HPLC. Enrofloxacin was rapidly absorbed after administration by either route and readily diffused into all sampled tissues. Enrofloxacin and ciprofloxacin were present in the tissue samples collected at 8 h. The highest average tissue concentrations for enrofloxacin were found in kidney, with the lowest concentrations in liver. Ciprofloxacin tissue concentrations paralleled but were always lower than those of enrofloxacin for all time points and tissues except brain and kidney. These results, together with previously published pharmacokinetic data and known minimal inhibitory concentrations of common pathogenic bacteria, provide a strong evidence-based rationale for choosing enrofloxacin to treat infectious diseases in X. laevis.

  6. Challenges in the Management of Bleeding Disorders in Nigeria

    African Journals Online (AJOL)

    2018-04-04

    Apr 4, 2018 ... (which could be immune mediated, drug induced, or due to hematological ... or VWD to hemarthroses, hematuria, intramuscular, intracerebral, and ... adequate and skilled workforce, and service delivery in general.[10] Reding ...

  7. Intranasal and sublingual delivery of inactivated polio vaccine.

    Science.gov (United States)

    Kraan, Heleen; Soema, Peter; Amorij, Jean-Pierre; Kersten, Gideon

    2017-05-09

    Polio is on the brink of eradication. Improved inactivated polio vaccines (IPV) are needed towards complete eradication and for the use in the period thereafter. Vaccination via mucosal surfaces has important potential advantages over intramuscular injection using conventional needle and syringe, the currently used delivery method for IPV. One of them is the ability to induce both serum and mucosal immune responses: the latter may provide protection at the port of virus entry. The current study evaluated the possibilities of polio vaccination via mucosal surfaces using IPV based on attenuated Sabin strains. Mice received three immunizations with trivalent sIPV via intramuscular injection, or via the intranasal or sublingual route. The need of an adjuvant for the mucosal routes was investigated as well, by testing sIPV in combination with the mucosal adjuvant cholera toxin. Both intranasal and sublingual sIPV immunization induced systemic polio-specific serum IgG in mice that were functional as measured by poliovirus neutralization. Intranasal administration of sIPV plus adjuvant induced significant higher systemic poliovirus type 3 neutralizing antibody titers than sIPV delivered via the intramuscular route. Moreover, mucosal sIPV delivery elicited polio-specific IgA titers at different mucosal sites (IgA in saliva, fecal extracts and intestinal tissue) and IgA-producing B-cells in the spleen, where conventional intramuscular vaccination was unable to do so. However, it is likely that a mucosal adjuvant is required for sublingual vaccination. Further research on polio vaccination via sublingual mucosal route should include the search for safe and effective adjuvants, and the development of novel oral dosage forms that improve antigen uptake by oral mucosa, thereby increasing vaccine immunogenicity. This study indicates that both the intranasal and sublingual routes might be valuable approaches for use in routine vaccination or outbreak control in the period after

  8. Impact of intravenous infusion time on AAV8 vector pharmacokinetics, safety, and liver transduction in cynomolgus macaques

    Directory of Open Access Journals (Sweden)

    Jenny A Greig

    2016-01-01

    Full Text Available Systemically delivered adeno-associated viral (AAV vectors are now in early-phase clinical trials for a variety of diseases. While there is a general consensus on inclusion and exclusion criteria for each of these trials, the conditions under which vectors are infused vary significantly. In this study, we evaluated the impact of intravenous infusion rate of AAV8 vector in cynomolgus macaques on transgene expression, vector clearance from the circulation, and potential activation of the innate immune system. The dose of AAV8 vector in terms of genome copies per kilogram body weight and its concentration were fixed, while the rate of infusion varied to deliver the entire dose over different time periods, including 1, 10, or 90 minutes. Analyses during the in-life phase of the experiment included sequential evaluation of whole blood for vector genomes and appearance of proinflammatory cytokines. Liver tissues were analyzed at the time of necropsy for enhanced green fluorescent protein (eGFP expression and vector genomes. The data were remarkable with a relative absence of any statistically significant effect of infusion time on vector transduction, safety, and clearance. However, some interesting and unexpected trends did emerge.

  9. Intramuscular Lipoma-Induced Occipital Neuralgia on the Lesser Occipital Nerve.

    Science.gov (United States)

    Han, Hyun Ho; Kim, Hak Soo; Rhie, Jong Won; Moon, Suk Ho

    2016-06-01

    Occipital neuralgia (ON) is commonly characterized by a neuralgiform headache accompanied by a paroxysmal burning sensation in the dermatome area of the greater, lesser, or third occipital nerve. The authors report a rare case of ON caused by an intramuscular lipoma originating from the lesser occipital nerve.A 52-year-old man presented with sharp pain in the left postauricular area with a 3 × 2-cm palpable mass. Computed tomography revealed a mass suspiciously resembling an intramuscular lipoma within splenius muscle. In the operation field, a protruding mass causing stretching of the lesser occipital nerve was found. After complete resection, the neuralgiform headache symptom had resolved and the intramuscular lipoma was confirmed through histopathology.Previous studies on the causes of ON have reported that variation in normal anatomic structures results in nerve compression. Occipital neuralgia, however, caused by intramuscular lipomas in splenius muscles have not been previously reported, and the dramatic resolution following surgery makes it an interesting case worth reporting.

  10. Kinetics of lipid-nanoparticle-mediated intracellular mRNA delivery and function

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2017-10-01

    mRNA delivery into cells forms the basis for one of the new and promising ways to treat various diseases. Among suitable carriers, lipid nanoparticles (LNPs) with a size of about 100 nm are now often employed. Despite high current interest in this area, the understanding of the basic details of LNP-mediated mRNA delivery and function is limited. To clarify the kinetics of mRNA release from LNPs, the author uses three generic models implying (i) exponential, (ii) diffusion-controlled, and (iii) detachment-controlled kinetic regimes, respectively. Despite the distinct differences in these kinetics, the associated transient kinetics of mRNA translation to the corresponding protein and its degradation are shown to be not too sensitive to the details of the mRNA delivery by LNPs (or other nanocarriers). In addition, the author illustrates how this protein may temporarily influence the expression of one gene or a few equivalent genes. The analysis includes positive or negative regulation of the gene transcription via the attachment of the protein without or with positive or negative feedback in the gene expression. Stable, bistable, and oscillatory schemes have been scrutinized in this context.

  11. Induction of Immune Tolerance to Foreign Protein via Adeno-Associated Viral Vector Gene Transfer in Mid-Gestation Fetal Sheep

    Science.gov (United States)

    Davey, Marcus G.; Riley, John S.; Andrews, Abigail; Tyminski, Alec; Limberis, Maria; Pogoriler, Jennifer E.; Partridge, Emily; Olive, Aliza; Hedrick, Holly L.; Flake, Alan W.; Peranteau, William H.

    2017-01-01

    A major limitation to adeno-associated virus (AAV) gene therapy is the generation of host immune responses to viral vector antigens and the transgene product. The ability to induce immune tolerance to foreign protein has the potential to overcome this host immunity. Acquisition and maintenance of tolerance to viral vector antigens and transgene products may also permit repeat administration thereby enhancing therapeutic efficacy. In utero gene transfer (IUGT) takes advantage of the immunologic immaturity of the fetus to induce immune tolerance to foreign antigens. In this large animal study, in utero administration of AAV6.2, AAV8 and AAV9 expressing green fluorescent protein (GFP) to ~60 day fetal sheep (term: ~150 days) was performed. Transgene expression and postnatal immune tolerance to GFP and viral antigens were assessed. We demonstrate 1) hepatic expression of GFP 1 month following in utero administration of AAV6.2.GFP and AAV8.GFP, 2) in utero recipients of either AAV6.2.GFP or AAV8.GFP fail to mount an anti-GFP antibody response following postnatal GFP challenge and lack inflammatory cellular infiltrates at the intramuscular site of immunization, 3) a serotype specific anti-AAV neutralizing antibody response is elicited following postnatal challenge of in utero recipients of AAV6.2 or AAV8 with the corresponding AAV serotype, and 4) durable hepatic GFP expression was observed up to 6 months after birth in recipients of AAV8.GFP but expression was lost between 1 and 6 months of age in recipients of AAV6.2.GFP. The current study demonstrates, in a preclinical large animal model, the potential of IUGT to achieve host immune tolerance to the viral vector transgene product but also suggests that a single exposure to the vector capsid proteins at the time of IUGT is inadequate to induce tolerance to viral vector antigens. PMID:28141818

  12. Intramuscular vascular malformations of an extremity: findings on MR imaging and pathologic correlation

    International Nuclear Information System (INIS)

    Kim, E.Y.; Ahn, J.M.; Yoon, H.K.; Do, Y.S.; Kim, S.H.; Choo, S.W.; Choo, I.W.; Suh, Y.L.; Kim, S.M.; Kang, H.S.

    1999-01-01

    Objective. To analyze the findings of intramuscular vascular malformations of an extremity on MR imaging and to correlate these findings with histopathologic examination.Design and patients. The findings on MR imaging and the medical records of 14 patients with an intramuscular vascular malformation of the extremity were retrospectively studied. All patients underwent surgical excision. Diagnoses were based on the results of pathologic examination. Findings on MR imaging were noted and correlated with the histopathologic findings.Results. Intramuscular vascular malformations of an extremity showed multi-septate, honeycomb, or mixed appearance on MR imaging. Multi-septate areas correlated with dilated and communicating vascular spaces with flattened endothelium. Honeycomb areas corresponded to vascular spaces with inconspicuous small lumina and thickened vascular walls. Areas of increased signal intensity on T2-weighted images were found in all intramuscular vascular malformations. Infiltrative margins were more commonly seen in intramuscular lymphaticovenous malformations. Adherence to neurovascular structures and orientation of the lesion along the long axis of the affected muscle were more commonly seen in intramuscular venous malformations.Conclusions. Intramuscular vascular malformations showed either a multi-septate, honeycomb, or mixed appearance, reflecting the size of the vascular spaces and the thickness of the smooth muscles of the vessel walls. Prediction of the subtype of an intramuscular vascular malformation of an extremity on MR imaging seems to be difficult, although there are associated findings that may be helpful in the differential diagnosis of each subtype. (orig.)

  13. Immunological Monitoring to Rationally Guide AAV Gene Therapy

    Directory of Open Access Journals (Sweden)

    Cedrik Michael Britten

    2013-09-01

    Full Text Available Recent successes with adeno-associated virus (AAV-based gene therapies fuel the hope for new treatments for hereditary diseases. Pre-existing as well as therapy-induced immune responses against both AAV and the encoded transgenes have been described and may impact on safety and efficacy of gene-therapy approaches. Consequently, monitoring of vector- and transgene-specific immunity is mandated and may rationally guide clinical development. Next to the humoral immune response, the cellular response is central in our understanding of the host reaction in gene therapy. But in contrast to the monitoring of antibodies, which has matured over many decades, sensitive and robust monitoring of T cells is a relatively new development. To make cellular immune assessments fit for purpose, investigators need to know, control and report the critical assay variables that influence the results. In addition, the quality of immune assays needs to be continuously adjusted to allow for exploratory hypothesis generation in early stages and confirmatory hypothesis validation in later stages of clinical development. The concept of immune assay harmonization which includes use of field-wide benchmarks, harmonization guidelines, and external quality control can support the context-specific evolution of immune assays. Multi-center studies pose particular challenges to sample logistics and quality control of sample specimens. Cooperative groups need to define if immune assessments should be performed in one central facility, in peripheral labs or including a combination of both. Finally, engineered reference samples that contain a defined number of antigen-specific T cells may become broadly applicable tools to control assay performance over time or across institutions.

  14. PLGA-Chitosan nanoparticle-mediated gene delivery for oral cancer treatment: A brief review

    Science.gov (United States)

    Bakar, L. M.; Abdullah, M. Z.; Doolaanea, A. A.; Ichwan, S. J. A.

    2017-08-01

    Cancer becomes a serious issue on society with increasing of their growth and proliferation, either in well economic developed countries or not. Recent years, oral cancer is one of the most threatening diseases impairing the quality of life of the patient. Scientists have emphasised on application of gene therapy for oral cancer by using nanoparticle as transportation vectors as a new alternative platform in order to overcome the limitations of conventional approaches. In modern medicine, nanotechnologies’ application, such as nanoparticles-mediated gene delivery, is one of promising tool for therapeutic devices. The objective of this article is to present a brief review summarizes on the current progress of nanotechnology-based gene delivery treatment system targeted for oral cancer.

  15. Adeno-associated virus-mediated doxycycline-regulatable TRAIL expression suppresses growth of human breast carcinoma in nude mice

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    2012-04-01

    Full Text Available Abstract Background Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL functions as a cytokine to selectively kill various cancer cells without toxicity to most normal cells. Numerous studies have demonstrated the potential use of recombinant soluble TRAIL as a cancer therapeutic agent. We have showed previous administration of a recombinant adeno-associated virus (rAAV vector expressing soluble TRAIL results in an efficient suppression of human tumor growth in nude mice. In the present study, we introduced Tet-On gene expression system into the rAAV vector to control the soluble TRAIL expression and evaluate the efficiency of the system in cancer gene therapy. Methods Controllability of the Tet-On system was determined by luciferase activity assay, and Western blotting and enzyme-linked immunoabsorbent assay. Cell viability was determined by MTT assay. The breast cancer xenograft animal model was established and recombinant virus was administrated through tail vein injection to evaluate the tumoricidal activity. Results The expression of soluble TRAIL could be strictly controlled by the Tet-On system in both normal and cancer cells. Transduction of human cancer cell lines with rAAV-TRE-TRAIL&rAAV-Tet-On under the presence of inducer doxycycline resulted in a considerable cell death by apoptosis. Intravenous injection of the recombinant virus efficiently suppressed the growth of human breast carcinoma in nude mice when activated by doxycycline. Conclusion These data suggest that rAAV-mediated soluble TRAIL expression under the control of the Tet-On system is a promising strategy for breast cancer therapy.

  16. Nicolau Syndrome after Intramuscular Injection: 3 Cases

    Directory of Open Access Journals (Sweden)

    Seok-Kwun Kim

    2012-05-01

    Full Text Available Nicolau syndrome is a rare complication of intramuscular injection consisting of ischemic necrosis of skin, soft tissue, and muscular tissue that arises locoregionally. The characteristic pattern is pain around the injection site, developing into erythema, a livedoid dermatitis patch, and necrosis of the skin, subcutaneous fat, and muscle tissue. Three patients were injected with drugs (diclofenac sodium, ketoprofen, meperidine for pain relief. Three patients complained of pain, and a skin lesion was observed, after which necrosis developed on their buttocks. Each patient underwent debridement and coverage. The wound healed uneventfully. We report three cases of Nicolau syndrome in the buttocks following diclofenac intramuscular injection.

  17. Role of cellular FKBP52 protein in intracellular trafficking of recombinant adeno-associated virus 2 vectors

    International Nuclear Information System (INIS)

    Zhao Weihong; Zhong Li; Wu Jianqing; Chen Linyuan; Qing Keyun; Weigel-Kelley, Kirsten A.; Larsen, Steven H.; Shou Weinian; Warrington, Kenneth H.; Srivastava, Arun

    2006-01-01

    We have reported that tyrosine-phosphorylated forms of a cellular protein, FKBP52, inhibit the second-strand DNA synthesis of adeno-associated virus 2 (AAV), leading to inefficient transgene expression from recombinant AAV vectors. To further explore the role of FKBP52 in AAV-mediated transduction, we established murine embryo fibroblasts (MEFs) cultures from FKBP52 wild-type (WT), heterozygous (HE), and knockout (KO) mice. Conventional AAV vectors failed to transduce WT MEFs efficiently, and the transduction efficiency was not significantly increased in HE or KO MEFs. AAV vectors failed to traffic efficiently to the nucleus in these cells. Treatment with hydroxyurea (HU) increased the transduction efficiency of conventional AAV vectors by ∼25-fold in WT MEFs, but only by ∼4-fold in KO MEFs. The use of self-complementary AAV (scAAV) vectors, which bypass the requirement of viral second-strand DNA synthesis, revealed that HU treatment increased the transduction efficiency ∼23-fold in WT MEFs, but only ∼4-fold in KO MEFs, indicating that the lack of HU treatment-mediated increase in KO MEFs was not due to failure of AAV to undergo viral second-strand DNA synthesis. Following HU treatment, ∼59% of AAV genomes were present in the nuclear fraction from WT MEFs, but only ∼28% in KO MEFs, indicating that the pathway by which HU treatment mediates nuclear transport of AAV was impaired in KO MEFs. When KO MEFs were stably transfected with an FKBP52 expression plasmid, HU treatment-mediated increase in the transduction efficiency was restored in these cells, which correlated directly with improved intracellular trafficking. Intact AAV particles were also shown to interact with FKBP52 as well as with dynein, a known cellular protein involved in AAV trafficking. These studies suggest that FKBP52, being a cellular chaperone protein, facilitates intracellular trafficking of AAV, which has implications in the optimal use of recombinant AAV vectors in human gene

  18. Rats and rabbits as pharmacokinetic screening tools for long acting intramuscular depots: case study with paliperidone palmitate suspension.

    Science.gov (United States)

    Patel, Harilal; Patel, Prakash; Modi, Nirav; Patel, Pinakin; Wagh, Yogesh; George, Alex; Desai, Nirmal; Srinivas, Nuggehally R

    2018-05-08

    Development of prodrug of 9-hydroxyrisperidone (paliperidone) long-acting intramuscular injection has enabled delivery over four-week time period with improved compliance. The key aim of this work was to establish a reliable preclinical model which may potentially serve as a screening tool for judging the pharmacokinetics of paliperidone formulation(s) prior to human clinical work. Sparse sampling composite study was used in rats, (Wistar/Sprague-Dawley (SD; n = 10)) and a serial blood sampling study design was used in rabbits (n = 4). Animals received intramuscular injection of paliperidone palmitate in the thigh muscle at dose of 16 (rats) and 4.5 mg/kg (rabbits). Samples were drawn in rats (retro-orbital sinus) and rabbits (central ear artery) and were analysed for paliperidone using liquid chromatography-mass spectrometry/ mass spectrometry (LC-MS/MS) assay. The plasma data was subjected to pharmacokinetic analysis. Following intramuscular injection of depot formulation in Wistar/SD rats and rabbits, absorption of paliperidone was slow and gradual with median value of time to reach maximum concentration (T max ) occurring on day 7. The exposures (i.e. area under the curve (AUC; 0-28) days) were 18,597, 21,865 and 18,120 ng.h/mL, in Wistar, SD and rabbits, respectively. The clearance was slow and supported long half-life (8-10 days). Either one of the two models can serve as a research tool for establishing pharmacokinetics of paliperidone formulation(s).

  19. Treatment of lysosomal storage disease in MPS VII mice using a recombinant adeno-associated virus.

    Science.gov (United States)

    Watson, G L; Sayles, J N; Chen, C; Elliger, S S; Elliger, C A; Raju, N R; Kurtzman, G J; Podsakoff, G M

    1998-12-01

    Mucopolysaccharidosis type VII (MPS VII) is a lysosomal storage disease caused by a genetic deficiency of beta-glucuronidase (GUS). We used a recombinant adeno-associated virus vector (AAV-GUS) to deliver GUS cDNA to MPS VII mice. The route of vector administration had a dramatic effect on the extent and distribution of GUS activity. Intramuscular injection of AAV-GUS resulted in high, localized production of GUS, while intravenous administration produced low GUS activity in several tissues. This latter treatment of MPS VII mice reduced glycosaminoglycan levels in the liver to normal and reduced storage granules dramatically. We show that a single administration of AAV-GUS can provide sustained expression of GUS in a variety of cell types and is sufficient to reverse the disease phenotype at least in the liver.

  20. Effect and Mechanism of Mitomycin C Combined with Recombinant Adeno-Associated Virus Type II against Glioma

    Directory of Open Access Journals (Sweden)

    Hong Ma

    2013-12-01

    Full Text Available The effect of chemotherapy drug Mitomycin C (MMC in combination with recombinant adeno-associated virus II (rAAV2 in cancer therapy was investigated, and the mechanism of MMC affecting rAAV2’s bioactivity was also studied. The combination effect was evaluated by the level of GFP and TNF expression in a human glioma cell line, and the mechanism of MMC effects on rAAV mediated gene expression was investigated by AAV transduction related signal molecules. C57 and BALB/c nude mice were injected with rAAV-EGFP or rAAV-TNF alone, or mixed with MMC, to evaluate the effect of MMC on AAV-mediated gene expression and tumor suppression. MMC was shown to improve the infection activity of rAAV2 both in vitro and in vivo. Enhancement was found to be independent of initial rAAV2 receptor binding stage or subsequent second-strand synthesis of target DNA, but was related to cell cycle retardation followed by blocked genome degradation. In vivo injection of MMC combined with rAAV2 into the tumors of the animals resulted in significant suppression of tumor growth. It was thus demonstrated for the first time that MMC could enhance the expression level of the target gene mediated by rAAV2. The combination of rAAV2 and MMC may be a promising strategy in cancer therapy.

  1. Switches for multiple behavioral states and a viral-based approach to non-invasive whole-brain cargo delivery (Conference Presentation)

    Science.gov (United States)

    Gradinaru, Viviana

    2017-05-01

    Over the past years we have worked on: (1) Viral-based approaches to non-invasive whole-brain cargo delivery: Genetically-encoded tools that can be used to visualize, monitor, and modulate mammalian neurons are revolutionizing neuroscience. These tools are particularly powerful in rodents and invertebrate models where intersectional transgenic strategies are available to restrict their expression to defined cell populations. However, use of genetic tools in non-transgenic animals is often hindered by the lack of vectors capable of safe, efficient, and specific delivery to the desired cellular targets. To begin to address these challenges, we have developed an in vivo Cre-based selection platform (CREATE) for identifying adeno-associated viruses (AAVs) that more efficiently transduce genetically defined cell populations. Our platform's novelty and power arises from the additional selective pressure imparted by a recovery step that amplifies only those capsid variants that have functionally transduced a genetically-defined, Cre-expressing target cell population. The Cre-dependent capsid recovery works within heterogeneous tissue samples without the need for additional steps such as selective capsid recovery approaches that require cell sorting or secondary adenovirus infection. As a first test of the CREATE platform, we selected for viruses that transduced the brain after intravascular delivery and found a novel vector, AAV-PHP.B, that is 40- to 90-fold more efficient at transducing the brain than the current standard, AAV9. AAV-PHP.B transduces most neuronal types and glia across the brain. We also demonstrate here how whole-body tissue clearing can facilitate transduction maps of systemically delivered genes. Since CNS disorders are notoriously challenging due to the restrictive nature of the blood brain barrier our discovery that recombinant vectors can be engineered to overcome this barrier is enabling for the whole field. With the exciting advances in gene

  2. Body distributioin of RGD-mediated liposome in brain-targeting drug delivery.

    Science.gov (United States)

    Qin, Jing; Chen, DaWei; Hu, Haiyang; Qiao, MingXi; Zhao, XiuLi; Chen, Baoyu

    2007-09-01

    RGD conjugation liposomes (RGD-liposomes) were evaluated for brain-targeting drug delivery. The flow cytometric in vitro study demonstrated that RGD-liposomes could bind to monocytes and neutrophils effectively. Ferulic acid (4-hydroxy-3-methoxycinnamic, FA) was loaded into liposomes. Rats were subjected to intrastriatal microinjections of 100 units of human recombinant IL-1beta to produce brain inflammation and caudal vein injection of three formulations (FA solution, FA liposome and RGD-coated FA liposome). Animals were sacrificed 15, 30, 60 and 120 min after administration to study the body distribution of the FA in the three formulations. HPLC was used to determine the concentration of FA in vivo with salicylic acid as internal standard. The results of body distribution indicated that RGD-coated liposomes could be mediated into the brain with a 6-fold FA concentration compared to FA solution and 3-fold in comparison to uncoated liposome. Brain targeted delivery was achieved and a reduction in dosage might be allowed.

  3. IGF-1 delivery to CNS attenuates motor neuron cell death but does not improve motor function in type III SMA mice.

    Science.gov (United States)

    Tsai, Li-Kai; Chen, Yi-Chun; Cheng, Wei-Cheng; Ting, Chen-Hung; Dodge, James C; Hwu, Wuh-Liang; Cheng, Seng H; Passini, Marco A

    2012-01-01

    The efficacy of administering a recombinant adeno-associated virus (AAV) vector encoding human IGF-1 (AAV2/1-hIGF-1) into the deep cerebellar nucleus (DCN) of a type III SMA mouse model was evaluated. High levels of IGF-1 transcripts and protein were detected in the spinal cord at 2 months post-injection demonstrating that axonal connections between the cerebellum and spinal cord were able to act as conduits for the viral vector and protein to the spinal cord. Mice treated with AAV2/1-hIGF-1 and analyzed 8 months later showed changes in endogenous Bax and Bcl-xl levels in spinal cord motor neurons that were consistent with IGF-1-mediated anti-apoptotic effects on motor neurons. However, although AAV2/1-hIGF-1 treatment reduced the extent of motor neuron cell death, the majority of rescued motor neurons were non-functional, as they lacked axons that innervated the muscles. Furthermore, treated SMA mice exhibited abnormal muscle fibers, aberrant neuromuscular junction structure, and impaired performance on motor function tests. These data indicate that although CNS-directed expression of IGF-1 could reduce motor neuron cell death, this did not translate to improvements in motor function in an adult mouse model of type III SMA. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. 3D Porous Chitosan-Alginate Scaffolds as an In Vitro Model for Evaluating Nanoparticle-Mediated Tumor Targeting and Gene Delivery to Prostate Cancer.

    Science.gov (United States)

    Wang, Kui; Kievit, Forrest M; Florczyk, Stephen J; Stephen, Zachary R; Zhang, Miqin

    2015-10-12

    Cationic nanoparticles (NPs) for targeted gene delivery are conventionally evaluated using 2D in vitro cultures. However, this does not translate well to corresponding in vivo studies because of the marked difference in NP behavior in the presence of the tumor microenvironment. In this study, we investigated whether prostate cancer (PCa) cells cultured in three-dimensional (3D) chitosan-alginate (CA) porous scaffolds could model cationic NP-mediated gene targeted delivery to tumors in vitro. We assessed in vitro tumor cell proliferation, formation of tumor spheroids, and expression of marker genes that promote tumor malignancy in CA scaffolds. The efficacy of NP-targeted gene delivery was evaluated in PCa cells in 2D cultures, PCa tumor spheroids grown in CA scaffolds, and PCa tumors in a mouse TRAMP-C2 flank tumor model. PCa cells cultured in CA scaffolds grew into tumor spheroids and displayed characteristics of higher malignancy as compared to those in 2D cultures. Significantly, targeted gene delivery was only observed in cells cultured in CA scaffolds, whereas cells cultured on 2D plates showed no difference in gene delivery between targeted and nontarget control NPs. In vivo NP evaluation confirmed targeted gene delivery, indicating that only CA scaffolds correctly modeled NP-mediated targeted delivery in vivo. These findings suggest that CA scaffolds serve as a better in vitro platform than 2D cultures for evaluation of NP-mediated targeted gene delivery to PCa.

  5. Invited review: mesenchymal progenitor cells in intramuscular connective tissue development.

    Science.gov (United States)

    Miao, Z G; Zhang, L P; Fu, X; Yang, Q Y; Zhu, M J; Dodson, M V; Du, M

    2016-01-01

    The abundance and cross-linking of intramuscular connective tissue contributes to the background toughness of meat, and is thus undesirable. Connective tissue is mainly synthesized by intramuscular fibroblasts. Myocytes, adipocytes and fibroblasts are derived from a common pool of progenitor cells during the early embryonic development. It appears that multipotent mesenchymal stem cells first diverge into either myogenic or non-myogenic lineages; non-myogenic mesenchymal progenitors then develop into the stromal-vascular fraction of skeletal muscle wherein adipocytes, fibroblasts and derived mesenchymal progenitors reside. Because non-myogenic mesenchymal progenitors mainly undergo adipogenic or fibrogenic differentiation during muscle development, strengthening progenitor proliferation enhances the potential for both intramuscular adipogenesis and fibrogenesis, leading to the elevation of both marbling and connective tissue content in the resulting meat product. Furthermore, given the bipotent developmental potential of progenitor cells, enhancing their conversion to adipogenesis reduces fibrogenesis, which likely results in the overall improvement of marbling (more intramuscular adipocytes) and tenderness (less connective tissue) of meat. Fibrogenesis is mainly regulated by the transforming growth factor (TGF) β signaling pathway and its regulatory cascade. In addition, extracellular matrix, a part of the intramuscular connective tissue, provides a niche environment for regulating myogenic differentiation of satellite cells and muscle growth. Despite rapid progress, many questions remain in the role of extracellular matrix on muscle development, and factors determining the early differentiation of myogenic, adipogenic and fibrogenic cells, which warrant further studies.

  6. Delivery of human NKG2D-IL-15 fusion gene by chitosan nanoparticles to enhance antitumor immunity

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chen; Jie, Leng; Yongqi, Wang [Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009 (China); Weiming, Xiao [Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, 225009 (China); Juqun, Xi [Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225009 (China); Yanbing, Ding [Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, 225009 (China); Li, Qian [Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009 (China); Xingyuan, Pan [Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009 (China); Mingchun, Ji [Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009 (China); Weijuan, Gong, E-mail: wjgong@yzu.edu.cn [Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, 225009 (China); Department of Gastroenterology, The Second Clinical Medical College, Yangzhou University, Yangzhou, 225009 (China); Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225009 (China); Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009 (China); Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 (China)

    2015-07-31

    Nanoparticles are becoming promising carriers for gene delivery because of their high capacity in gene loading and low cell cytotoxicity. In this study, a chitosan-based nanoparticle encapsulated within a recombinant pcDNA3.1-dsNKG2D-IL-15 plasmid was generated. The fused dsNKG2D-IL-15 gene fragment consisted of double extracellular domains of NKG2D with IL-15 gene at downstream. The average diameter of the gene nanoparticles ranged from 200 nm to 400 nm, with mean zeta potential value of 53.8 ± 6.56 mV. The nanoparticles which were loaded with the dsNKG2D-IL-15 gene were uptaken by tumor cells with low cytotoxicity. Tumor cells pre-transfected by gene nanopartilces stimulated NK and T cells in vitro. Intramuscular injection of gene nanoparticles suppressed tumor growth and prolonged survival of tumor-bearing mice through activation of NK and CD8{sup +} T cells. Thus, chitosan-based nanoparticle delivery of dsNKG2D-IL-15 gene vaccine can be potentially used for tumor therapy. - Highlights: • Generation of a nanoparticle for delivery of dsNKG2D-IL-15 gene. • Characterization of the gene nanoparticle. • Antitumor activity mediated by the gene nanoparticle.

  7. Delivery of human NKG2D-IL-15 fusion gene by chitosan nanoparticles to enhance antitumor immunity

    International Nuclear Information System (INIS)

    Yan, Chen; Jie, Leng; Yongqi, Wang; Weiming, Xiao; Juqun, Xi; Yanbing, Ding; Li, Qian; Xingyuan, Pan; Mingchun, Ji; Weijuan, Gong

    2015-01-01

    Nanoparticles are becoming promising carriers for gene delivery because of their high capacity in gene loading and low cell cytotoxicity. In this study, a chitosan-based nanoparticle encapsulated within a recombinant pcDNA3.1-dsNKG2D-IL-15 plasmid was generated. The fused dsNKG2D-IL-15 gene fragment consisted of double extracellular domains of NKG2D with IL-15 gene at downstream. The average diameter of the gene nanoparticles ranged from 200 nm to 400 nm, with mean zeta potential value of 53.8 ± 6.56 mV. The nanoparticles which were loaded with the dsNKG2D-IL-15 gene were uptaken by tumor cells with low cytotoxicity. Tumor cells pre-transfected by gene nanopartilces stimulated NK and T cells in vitro. Intramuscular injection of gene nanoparticles suppressed tumor growth and prolonged survival of tumor-bearing mice through activation of NK and CD8 + T cells. Thus, chitosan-based nanoparticle delivery of dsNKG2D-IL-15 gene vaccine can be potentially used for tumor therapy. - Highlights: • Generation of a nanoparticle for delivery of dsNKG2D-IL-15 gene. • Characterization of the gene nanoparticle. • Antitumor activity mediated by the gene nanoparticle

  8. Receptor-Mediated Drug Delivery to Macrophages in Chemotherapy of Leishmaniasis

    Science.gov (United States)

    Mukhopadhyay, Amitabha; Chaudhuri, Gautam; Arora, Sunil K.; Sehgal, Shobha; Basu, Sandip K.

    1989-05-01

    Methotrexate coupled to maleylated bovine serum albumin was taken up efficiently through the ``scavenger'' receptors present on macrophages and led to selective killing of intracellular Leishmania mexicana amazonensis amastigotes in cultured hamster peritoneal macrophages. The drug conjugate was nearly 100 times as effective as free methotrexate in eliminating the intracellular parasites. Furthermore, in a model of experimental cutaneous leishmaniasis in hamsters, the drug conjugate brought about more than 90% reduction in the size of footpad lesions within 11 days. In contrast, the free drug at a similar concentration did not significantly affect lesion size. These studies demonstrate the potential of receptor-mediated drug delivery in the therapy of macrophage-associated diseases.

  9. Two Intramuscular Lipoma Case Reports: Radiological Findings

    Directory of Open Access Journals (Sweden)

    Ayse Umul

    2016-09-01

    Full Text Available Lipomas are common soft tissue tumors of mesenchymal origin.They contain mature adipose tissue. They are usually located in the subcutaneous tissue. They rarely ocur within the muscle and then are called intramuscular lipomas. Ultrasonography is the first diagnostic method to be selected. However, cross-sectional imaging methods are more useful in the diagnosis. On Magnetic resonance imaging (MRI, with the help of signal characteristics and fat suppression techniques,diagnosis is easily achieved. In addition, the relationship of lesion with the adjacent anatomical structures can be assessed better with MRI. Here, will be explained two different intramuscular lipoma cases and imaging findings will be reviewed. [J Contemp Med 2016; 6(3.000: 221-225

  10. AAV5-Factor VIII Gene Transfer in Severe Hemophilia A.

    Science.gov (United States)

    Rangarajan, Savita; Walsh, Liron; Lester, Will; Perry, David; Madan, Bella; Laffan, Michael; Yu, Hua; Vettermann, Christian; Pierce, Glenn F; Wong, Wing Y; Pasi, K John

    2017-12-28

    Patients with hemophilia A rely on exogenous factor VIII to prevent bleeding in joints, soft tissue, and the central nervous system. Although successful gene transfer has been reported in patients with hemophilia B, the large size of the factor VIII coding region has precluded improved outcomes with gene therapy in patients with hemophilia A. We infused a single intravenous dose of a codon-optimized adeno-associated virus serotype 5 (AAV5) vector encoding a B-domain-deleted human factor VIII (AAV5-hFVIII-SQ) in nine men with severe hemophilia A. Participants were enrolled sequentially into one of three dose cohorts (low dose [one participant], intermediate dose [one participant], and high dose [seven participants]) and were followed through 52 weeks. Factor VIII activity levels remained at 3 IU or less per deciliter in the recipients of the low or intermediate dose. In the high-dose cohort, the factor VIII activity level was more than 5 IU per deciliter between weeks 2 and 9 after gene transfer in all seven participants, and the level in six participants increased to a normal value (>50 IU per deciliter) that was maintained at 1 year after receipt of the dose. In the high-dose cohort, the median annualized bleeding rate among participants who had previously received prophylactic therapy decreased from 16 events before the study to 1 event after gene transfer, and factor VIII use for participant-reported bleeding ceased in all the participants in this cohort by week 22. The primary adverse event was an elevation in the serum alanine aminotransferase level to 1.5 times the upper limit of the normal range or less. Progression of preexisting chronic arthropathy in one participant was the only serious adverse event. No neutralizing antibodies to factor VIII were detected. The infusion of AAV5-hFVIII-SQ was associated with the sustained normalization of factor VIII activity level over a period of 1 year in six of seven participants who received a high dose, with

  11. Receptor-mediated oral delivery of a bioencapsulated green fluorescent protein expressed in transgenic chloroplasts into the mouse circulatory system.

    Science.gov (United States)

    Limaye, Arati; Koya, Vijay; Samsam, Mohtashem; Daniell, Henry

    2006-05-01

    Oral delivery of biopharmaceutical proteins expressed in plant cells should reduce their cost of production, purification, processing, cold storage, transportation, and delivery. However, poor intestinal absorption of intact proteins is a major challenge. To overcome this limitation, we investigate here the concept of receptor-mediated oral delivery of chloroplast-expressed foreign proteins. Therefore, the transmucosal carrier cholera toxin B-subunit and green fluorescent protein (CTB-GFP), separated by a furin cleavage site, was expressed via the tobacco chloroplast genome. Polymerase chain reaction (PCR) and Southern blot analyses confirmed site-specific transgene integration and homoplasmy. Immunoblot analysis and ELISA confirmed expression of monomeric and pentameric forms of CTB-GFP, up to 21.3% of total soluble proteins. An in vitro furin cleavage assay confirmed integrity of the engineered furin cleavage site, and a GM1 binding assay confirmed the functionality of CTB-GFP pentamers. Following oral administration of CTB-GFP expressing leaf material to mice, GFP was observed in the mice intestinal mucosa, liver, and spleen in fluorescence and immunohistochemical studies, while CTB remained in the intestinal cell. This report of receptor-mediated oral delivery of a foreign protein into the circulatory system opens the door for low-cost production and delivery of human therapeutic proteins.

  12. MAT2B promotes adipogenesis by modulating SAMe levels and activating AKT/ERK pathway during porcine intramuscular preadipocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Cunzhen; Chen, Xiaochang; Wu, Wenjing; Wang, Wusu; Pang, Weijun; Yang, Gongshe, E-mail: gsyang999@hotmail.com

    2016-05-15

    Intramuscular fat (IMF) has been demonstrated as one of the crucial factors of livestock meat quality. The MAT2B protein with MAT2α catalyzes the formation of methyl donor S- adenosylmethionine (SAMe) to mediate cell metabolism including proliferation and apoptosis. However, the regulatory effect of MAT2B on IMF deposition is still unclear. In this study, the effect of MAT2B on adipogenesis and its potential mechanism during porcine intramuscular preadipocyte differentiation was studied. The results showed that overexpression of MAT2B promoted adipogenesis and significantly up-regulated the mRNA and protein levels of adipogenic marker genes including FASN, PPARγ and aP2, consistently, knockdown of MAT2B inhibited lipid accumulation and down-regulated the mRNA and protein levels of the above genes. Furthermore, flow cytometry and EdU-labeling assay indicated that MAT2B regulate adipogenesis was partly due to influence intracellular SAMe levels and further affect cell clonal expansion. Also, increased expression of MAT2B activated the phosphorylations of AKT and ERK1/2, whereas knockdown of MAT2B blocked AKT signaling and repressed the phosphorylation of ERK1/2. Moreover, the inhibitory effect of LY294002 (a specific PI3K inhibitor) on the activities of AKT and ERK1/2 was partially recovered by overexpression of MAT2B in porcine intramuscular adipocytes. Finally, Co-IP experiments showed that MAT2B can directly interact with AKT. Taken together, our findings suggested that MAT2B acted as a positive regulator through modifying SAMe levels as well as activating AKT/ERK signaling pathway to promote porcine intramuscular adipocyte differentiation. - Highlights: • MAT2B up-regulates the expression of adipogenic marker genes and promotes porcine intramuscular preadipocyte differentiation. • MAT2B influences intracellular SAMe levels and further affects cell clonal expansion. • MAT2B interacts with AKT and activates AKT/ERK signaling pathway.

  13. Ultrasound-mediated gene delivery of naked plasmid DNA in skeletal muscles: a case for bolus injections.

    Science.gov (United States)

    Sanches, Pedro Gomes; Mühlmeister, Mareike; Seip, Ralf; Kaijzel, Eric; Löwik, Clemens; Böhmer, Marcel; Tiemann, Klaus; Grüll, Holger

    2014-12-10

    Localized gene delivery has many potential clinical applications. However, the nucleic acids (e.g. pDNA and siRNA) are incapable of passively crossing the endothelium, cell membranes and other biological barriers which must be crossed to reach their intracellular targets. A possible solution is the use of ultrasound to burst circulating microbubbles inducing transient permeabilization of surrounding tissues which mediates nucleic acid extravasation and cellular uptake. In this study we report on an optimization of the ultrasound gene delivery technique. Naked pDNA (200 μg) encoding luciferase and SonoVue® microbubbles were co-injected intravenously in mice. The hindlimb skeletal muscles were exposed to ultrasound from a non-focused transducer (1 MHz, 1.25 MPa, PRI 30s) and injection protocols and total amounts as well as ultrasound parameters were systemically varied. Gene expression was quantified relative to a control using a bioluminescence camera system at day 7 after sonication. Bioluminescence ratios in sonicated/control muscles of up to 101× were obtained. In conclusion, we were able to specifically deliver genetic material to the selected skeletal muscles and overall, the use of bolus injections and high microbubble numbers resulted in increased gene expression reflected by stronger bioluminescence signals. Based on our data, bolus injections seem to be required in order to achieve transient highly concentrated levels of nucleic acids and microbubbles at the tissue of interest which upon ultrasound exposure should lead to increased levels of gene delivery. Thus, ultrasound mediated gene delivery is a promising technique for the clinical translation of localized drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. [Gene therapy and cell transplantation for Parkinson's disease].

    Science.gov (United States)

    Muramatsu, Shin-ichi

    2005-11-01

    Increasing enthusiasm in the field of stem cell research is raising the hope of novel cell replacement therapies for Parkinson's disease (PD), but it also raises both scientific and ethical concerns. In most cases, dopaminergic cells are transplanted ectopically into the striatum instead of the substantia nigra. If the main mechanism underlying any observed functional recovery with these cell replacement therapies is restoration of dopaminergic neurotransmission, then viral vector-mediated gene delivery of dopamine-synthesizing enzymes is a more straight forward approach. The development of a recombinant adeno-associated viral (AAV) vector is making gene therapy for PD a feasible therapeutic option in the clinical arena. Efficient and long-term expression of genes for dopamine-synthesizing enzymes in the striatum restored local dopamine production and allowed behavioral recovery in animal models of PD. A clinical trial to evaluate the safety and efficacy of AAV vector-mediated gene transfer of aromatic L-amino acid decarboxylase, an enzyme that converts L-dopa to dopamine, is underway. With this strategy patients would still need to take L-dopa to control their PD symptoms, however, dopamine production could be regulated by altering the dose of L-dopa. Another AAV vector-based clinical trial is also ongoing in which the subthalamic nucleus is transduced to produce inhibitory transmitters.

  15. Development of a custom biological scaffold for investigating ultrasound-mediated intracellular delivery

    Energy Technology Data Exchange (ETDEWEB)

    Bui, Loan [Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010 (United States); Aleid, Adham [Department of Biomedical Technology, King Saud University, Riyadh 12372 (Saudi Arabia); Alassaf, Ahmad [Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146 (United States); Department of Medical Equipment Technology, Majmaah University, Majmaah City 11952 (Saudi Arabia); Wilson, Otto C.; Raub, Christopher B. [Department of Biomedical Engineering, Catholic University of America, Washington, DC 20064 (United States); Frenkel, Victor, E-mail: vfrenkel@som.umaryland.edu [Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2017-01-01

    In vitro investigations of ultrasound mediated, intracellular drug and gene delivery (i.e. sonoporation) are typically carried out in cells cultured in standard plastic well plates. This creates conditions that poorly resemble in vivo conditions, as well as generating unwanted ultrasound phenomena that may confound the interpretation of results. Here, we present our results in the development of a biological scaffold for sonoporation studies. The scaffolds were comprised of cellulose fibers coated with chitosan and gelatin. Scaffold formulation was optimized for adherence and proliferation of mouse fibroblasts in terms of the ratio and relative concentration of the two constituents. The scaffolds were also shown to significantly reduce ultrasound reflections compared to the plastic well plates. A custom treatment chamber was designed and built, and the occurrence of acoustic cavitation in the chamber during the ultrasound treatments was detected; a requirement for the process of sonoporation. Finally, experiments were carried out to optimize the ultrasound exposures to minimize cellular damage. Ultrasound exposure was then shown to enable the uptake of 100 nm fluorescently labeled polystyrene nanoparticles in suspension into the cells seeded on scaffolds, compared to incubation of cell-seeded scaffolds with nanoparticles alone. These preliminary results set the basis for further development of this platform. They also provide motivation for the development of similar platforms for the controlled investigation of other ultrasound mediated cell and tissue therapies. - Highlights: • A custom, biological scaffold was developed, comprised of chitosan and gelatin. • The scaffold formulation was optimized for adhesion and proliferation of fibroblasts. • Investigations showed the scaffolds to be less reflective to ultrasound than plastic well plates. • The scaffolds were found to be suitable for investigations of ultrasound mediated intracellular nanoparticle

  16. AAV Gene Therapy for Alcoholism: Inhibition of Mitochondrial Aldehyde Dehydrogenase Enzyme Expression in Hepatoma Cells.

    Science.gov (United States)

    Sanchez, Anamaria C; Li, Chengwen; Andrews, Barbara; Asenjo, Juan A; Samulski, R Jude

    2017-09-01

    Most ethanol is broken down in the liver in two steps by alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH2) enzymes, which metabolize down ethanol into acetaldehyde and then acetate. Some individuals from the Asian population who carry a mutation in the aldehyde dehydrogenase gene (ALDH2*2) cannot metabolize acetaldehyde as efficiently, producing strong effects, including facial flushing, dizziness, hypotension, and palpitations. This results in an aversion to alcohol intake and protection against alcoholism. The large prevalence of this mutation in the human population strongly suggests that modulation of ALDH2 expression by genetic technologies could result in a similar phenotype. scAAV2 vectors encoding ALDH2 small hairpin RNA (shRNA) were utilized to validate this hypothesis by silencing ALDH2 gene expression in human cell lines. Human cell lines HEK-293 and HepG2 were transduced with scAAV2/shRNA, showing a reduction in ALDH2 RNA and protein expression with the two viral concentration assayed (1 × 10 4 and 1 × 10 5 vg/cell) at two different time points. In both cell lines, ALDH2 RNA levels were reduced by 90% and protein expression was inhibited by 90% and 52%, respectively, 5 days post infection. Transduced HepG2 VL17A cells (ADH+) exposed to ethanol resulted in a 50% increase in acetaldehyde levels. These results suggest that gene therapy could be a useful tool for the treatment of alcoholism by knocking down ALDH2 expression using shRNA technology delivered by AAV vectors.

  17. Does insertion of intramuscular electromyographic electrodes alter motor behavior during locomotion?

    Science.gov (United States)

    Armour Smith, Jo; Kulig, Kornelia

    2015-06-01

    Intramuscular electromyography (EMG) is commonly used to quantify activity in the trunk musculature. However, it is unclear if the discomfort or fear of pain associated with insertion of intramuscular EMG electrodes results in altered motor behavior. This study examined whether intramuscular EMG affects locomotor speed and trunk motion, and examined the anticipated and actual pain associated with electrode insertion in healthy individuals and individuals with a history of low back pain (LBP). Before and after insertion of intramuscular electrodes into the lumbar and thoracic paraspinals, participants performed multiple repetitions of a walking turn at self-selected and controlled average speed. Low levels of anticipated and actual pain were reported in both groups. Self-selected locomotor speed was significantly increased following insertion of the electrodes. At the controlled speed, the amplitude of sagittal plane lumbo-pelvic motion decreased significantly post-insertion, but the extent of this change was the same in both groups. Lumbo-pelvic motion in the frontal and axial planes and thoraco-lumbar motion in all planes were not affected by the insertions. This study demonstrates that intramuscular EMG is an appropriate methodology to selectively quantify the activation patterns of the individual muscles in the paraspinal group, both in healthy individuals and individuals with a history of LBP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. AAV-mediated overexpression of the CB1 receptor in the mPFC of adult rats alters cognitive flexibility, social behavior and emotional reactivity

    Directory of Open Access Journals (Sweden)

    Matthias eKlugmann

    2011-07-01

    Full Text Available The endocannabinoid (ECB system is strongly involved in the regulation of cognitive processing and emotional behavior and evidence indicates that ECB signaling might affect these behavioral abilities by modulations of prefrontal cortical functions. The aim of the present study was to examine the role of the CB1 receptor in the medial prefrontal cortex (mPFC on cognitive flexibility and emotional behavior. Therefore, the CB1 receptor was overexpressed by adeno-associated virus (AAV vector-mediated gene transfer specifically in the mPFC of adult Wistar rats. Animals were then tested in different anxiety-related paradigms for emotional reactivity (e.g. elevated plus maze (EPM, light/dark emergence test (EMT, social interaction and the attentional set shift task (ASST - an adaptation of the human Wisconsin card sorting test - for cognitive abilities and behavioral flexibility. A subtle increase in exploratory behavior was found in CB1 receptor overexpressing animals (CB1-R compared to empty vector injected controls (Empty in the EMT and EPM, although general locomotor activity did not differ between the groups. During social interaction testing, social contact behavior towards the unknown conspecific was found to be decreased, whereas social withdrawal was increased in CB1-R animals and they showed an inadequate increase in exploratory behavior compared to control animals. In the ASST, impaired reversal learning abilities were detected in CB1-R animals compared to controls, indicating reduced behavioral flexibility. In conclusion, upregulation of the CB1 receptor specifically in the rat mPFC induces alterations in emotional reactivity, leads to inadequate social behavior and impairs cognitive flexibility. These findings might be relevant for neuropsychiatric disorders, since higher cortical CB1 receptor expression levels as well as similar behavioral impairments as observed in the present study have been described in schizophrenic patients.

  19. Discontinuing the Use of PRN Intramuscular Medication for Agitation in an Acute Psychiatric Hospital.

    Science.gov (United States)

    Hayes, Ariel; Russ, Mark J

    2016-03-01

    This study examined the impact of eliminating intramuscular PRN medication for agitation on patient and staff safety in an acute psychiatric inpatient setting. The current retrospective chart review investigated the use of PRN medications (oral and intramuscular) to treat acute agitation, including aggression, and related outcomes before and after a mandated change in PRN practice that required real time physician input before administration of intramuscular medications. The use of both oral and intramuscular PRN medications dramatically decreased following implementation of the mandated change in practice. In particular, the use of intramuscular PRNs for agitation decreased by about half. Despite this decrease, the assault rate in the hospital was unchanged, and the utilization of restraint and seclusion continued to decrease. It is possible to reduce the utilization of PRN medications for agitation without broadly compromising safety on acute care psychiatric inpatient units.

  20. E Pluribus Unum: 50 Years of Research, Millions of Viruses, and One Goal--Tailored Acceleration of AAV Evolution.

    Science.gov (United States)

    Grimm, Dirk; Zolotukhin, Sergei

    2015-12-01

    Fifty years ago, a Science paper by Atchison et al. reported a newly discovered virus that would soon become known as adeno-associated virus (AAV) and that would subsequently emerge as one of the most versatile and most auspicious vectors for human gene therapy. A large part of its attraction stems from the ease with which the viral capsid can be engineered for particle retargeting to cell types of choice, evasion from neutralizing antibodies or other desirable properties. Particularly powerful and in the focus of the current review are high-throughput methods aimed at expanding the repertoire of AAV vectors by means of directed molecular evolution, such as random mutagenesis, DNA family shuffling, in silico reconstruction of ancestral capsids, or peptide display. Here, unlike the wealth of prior reviews on this topic, we especially emphasize and critically discuss the practical aspects of the different procedures that affect the ultimate outcome, including diversification protocols, combinatorial library complexity, and selection strategies. Our overall aim is to provide general guidance that should help users at any level, from novice to expert, to safely navigate through the rugged space of directed AAV evolution while avoiding the pitfalls that are associated with these challenging but promising technologies.

  1. Ultrasound mediated nanoparticle drug delivery

    Science.gov (United States)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems

  2. FDG PET/CT and MR imaging of intramuscular myxoma in the gluteus maximus

    Directory of Open Access Journals (Sweden)

    Nishio Jun

    2012-06-01

    Full Text Available Abstract Intramuscular myxoma is a rare benign soft tissue tumor which may be mistaken for other benign and low-grade malignant myxoid neoplasms. We present the case of a 63-year-old woman with an asymptomatic intramuscular myxoma discovered incidentally on a whole-body F-18 fluorodeoxyglucose (FDG positron emission tomography (PET/computed tomography. PET images showed a mild FDG uptake (maximum standardized uptake value, 1.78 in the left gluteus maximus. Subsequent magnetic resonance (MR imaging revealed a well-defined ovoid mass with homogenous low signal intensity on T1-weighted sequences and markedly high signal intensity on T2-weighted sequences. Contrast-enhanced MR images showed heterogeneous enhancement throughout the mass. The diagnosis of intramuscular myxoma was confirmed on histopathology after surgical excision of the tumor. The patient had no local recurrence at one year follow-up. Our case suggests that intramuscular myxoma should be considered in the differential diagnosis of an oval-shaped intramuscular soft tissue mass with a mild FDG uptake.

  3. Infection by a Giant Virus (AaV Induces Widespread Physiological Reprogramming in Aureococcus anophagefferens CCMP1984 – A Harmful Bloom Algae

    Directory of Open Access Journals (Sweden)

    Mohammad Moniruzzaman

    2018-04-01

    Full Text Available While viruses with distinct phylogenetic origins and different nucleic acid types can infect and lyse eukaryotic phytoplankton, “giant” dsDNA viruses have been found to be associated with important ecological processes, including the collapse of algal blooms. However, the molecular aspects of giant virus–host interactions remain largely unknown. Aureococcus anophagefferens virus (AaV, a giant virus in the Mimiviridae clade, is known to play a critical role in regulating the fate of brown tide blooms caused by the pelagophyte Aureococcus anophagefferens. To understand the physiological response of A. anophagefferens CCMP1984 upon AaV infection, we studied the transcriptomic landscape of this host–virus pair over an entire infection cycle using a RNA-sequencing approach. A massive transcriptional response of the host was evident as early as 5 min post-infection, with modulation of specific processes likely related to both host defense mechanism(s and viral takeover of the cell. Infected Aureococcus showed a relative suppression of host-cell transcripts associated with photosynthesis, cytoskeleton formation, fatty acid, and carbohydrate biosynthesis. In contrast, host cell processes related to protein synthesis, polyamine biosynthesis, cellular respiration, transcription, and RNA processing were overrepresented compared to the healthy cultures at different stages of the infection cycle. A large number of redox active host-selenoproteins were overexpressed, which suggested that viral replication and assembly progresses in a highly oxidative environment. The majority (99.2% of annotated AaV genes were expressed at some point during the infection cycle and demonstrated a clear temporal–expression pattern and an increasing relative expression for the majority of the genes through the time course. We detected a putative early promoter motif for AaV, which was highly similar to the early promoter elements of two other Mimiviridae members

  4. Triacilglicerol intramuscular: um importante substrato energético para o exercício de endurance Triacilglicerol intramuscular: un importante substrato energético para el ejercicio de endurance Intramuscular triacylglycerol: an important energetic substrate for endurance exercise

    Directory of Open Access Journals (Sweden)

    Mônica Aparecida Belmonte

    2005-04-01

    Full Text Available Os ácidos graxos são uma importante fonte de energia para exercício de endurance. Os ácidos graxos plasmáticos encontram-se disponíveis para as fibras musculares sob a forma de ácidos graxos associados à albumina ou agregados à molécula de triacilglicerol (TAG encontrada nas lipoproteínas. Entretanto, além dessas fontes plasmáticas, a hidrólise do TAG encontrado no músculo também pode contribuir com a oferta de ácidos graxos durante o exercício de endurance. O objetivo do presente trabalho foi realizar uma extensa revisão da literatura sobre a importância do TAG intramuscular como substrato energético. A revisão da literatura sugere que a contribuição dos estoques endógenos de TAG durante a realização do exercício de endurance é bastante relevante. Além disso, pode-se concluir que uma adaptação induzida pelo treinamento de endurance é o aumento dos estoques intramusculares de TAG. Após o treinamento de endurance, também é observado aumento na capacidade de utilização desses estoques. Apesar de parecer importante, a contribuição do TAG intramuscular ainda é motivo de controvérsia na literatura. Essa discrepância de resultados está relacionada às metodologias empregadas para estimar a sua oxidação no exercício. A fim de esgotar este assunto de maneira apropriada, mais pesquisas, com novos métodos (ex.: utilização de isótopos, ressonância magnética nuclear e microscopia eletrônica, precisam ser conduzidas.Los ácidos grasos son una fuente importante de energía para el ejercicio de endurance. Los ácidos grasos plasmáticos se encuentran disponibles en las fibras musculares bajo la forma de ácido graso asociado a la albúmina o agregados a la molécula del triacilglicerol (TAG encontrados en las lipoproteínas. Sin embargo, además de estos fuentes plasmáticas, la hidrólisis de los TAG encontrados en el músculo pueden contribuir también con la oferta de ácidos grasos durante el ejercicio

  5. Antibody-mediated delivery of interleukin 4 to the neo-vasculature reduces chronic skin inflammation.

    Science.gov (United States)

    Hemmerle, Teresa; Zgraggen, Silvana; Matasci, Mattia; Halin, Cornelia; Detmar, Michael; Neri, Dario

    2014-11-01

    The antibody-mediated delivery of cytokines ("immunocytokines") to sites of pathological angiogenesis represents an attractive strategy for the development of innovative biopharmaceuticals, capable of modulating the activity of the immune system in cancer and in chronic inflammatory conditions. Recombinant IL4 has previously been shown to be therapeutically active in patients with psoriasis. The antibody-mediated delivery of this cytokine to sites of chronic skin inflammatory conditions should lead to an improved potency and selectivity, compared to non-targeted IL4. The therapeutic activity of F8-IL4, a fusion protein of the F8 antibody (specific to the alternatively-spliced EDA domain of fibronectin) with murine IL4, was investigated in three immunocompetent mouse models of skin inflammation: two induced by the TLR7/8 ligand imiquimod (in Balb/c and C57BL/6) and one mediated by the over-expression of VEGF-A. The EDA domain of fibronectin, a marker for angiogenesis, is expressed in the inflamed skin in all three models and F8-IL4 selectively localized to inflamed skin lesions following intravenous administration. The F8-IL4 fusion protein mediated a therapeutic benefit, which was superior to the one of a non-targeted version of IL4 and led to increased levels of key regulatory cytokines (including IL5, IL10, IL13, and IL27) in the inflamed skin, while IL2 levels were not affected in all treatment groups. A murine version of etanercept and a murine anti-IL17 antibody were used as positive control in the therapy experiments. Skin inflammatory lesions can be selectively targeted using anti-EDA antibody-cytokine fusion proteins and the pharmacodelivery of IL4 confers a therapeutic benefit by shifting the cytokine balance. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. An Unusual Location of Ossified Intramuscular Lipoma: A Case Report

    Directory of Open Access Journals (Sweden)

    Mehdi Ramezan Shirazi

    2011-09-01

    Full Text Available "nLipoma is the most common soft tissue tumor but the presence of osseous component within the tumor is quite rare. Some studies show that less than 1% of lipomas were ossified. We describe the histological, radiological and diagnostic features of an ossified intramuscular lipoma. To the best of the authors' knowledge, a symptomatic ossified intramuscular lipoma without any cortical erosion and hyperostosis has not been previously reported in the literature.

  7. Gene therapy in cystic fibrosis.

    Science.gov (United States)

    Flotte, T R; Laube, B L

    2001-09-01

    Theoretically, cystic fibrosis transmembrane conductance regulator (CFTR) gene replacement during the neonatal period can decrease morbidity and mortality from cystic fibrosis (CF). In vivo gene transfers have been accomplished in CF patients. Choice of vector, mode of delivery to airways, translocation of genetic information, and sufficient expression level of the normalized CFTR gene are issues that currently are being addressed in the field. The advantages and limitations of viral vectors are a function of the parent virus. Viral vectors used in this setting include adenovirus (Ad) and adeno-associated virus (AAV). Initial studies with Ad vectors resulted in a vector that was efficient for gene transfer with dose-limiting inflammatory effects due to the large amount of viral protein delivered. The next generation of Ad vectors, with more viral coding sequence deletions, has a longer duration of activity and elicits a lesser degree of cell-mediated immunity in mice. A more recent generation of Ad vectors has no viral genes remaining. Despite these changes, the problem of humoral immunity remains with Ad vectors. A variety of strategies such as vector systems requiring single, or widely spaced, administrations, pharmacologic immunosuppression at administration, creation of a stealth vector, modification of immunogenic epitopes, or tolerance induction are being considered to circumvent humoral immunity. AAV vectors have been studied in animal and human models. They do not appear to induce inflammatory changes over a wide range of doses. The level of CFTR messenger RNA expression is difficult to ascertain with AAV vectors since the small size of the vector relative to the CFTR gene leaves no space for vector-specific sequences on which to base assays to distinguish endogenous from vector-expressed messenger RNA. In general, AAV vectors appear to be safe and have superior duration profiles. Cationic liposomes are lipid-DNA complexes. These vectors generally have been

  8. Nanodiamonds-mediated doxorubicin nuclear delivery to inhibit lung metastasis of breast cancer.

    Science.gov (United States)

    Xiao, Jisheng; Duan, Xiaopin; Yin, Qi; Zhang, Zhiwen; Yu, Haijun; Li, Yaping

    2013-12-01

    Lung metastasis is one of the greatest challenges for breast cancer treatment. Here, a nanodiamonds (NDs)-mediated doxorubicin (DOX) delivery system was first designed to inhibit the lung metastasis of breast cancer effectively. DOX was non-covalently bound to NDs via physical adsorption in an aqueous solution, then DSPE-PEG 2K was coated to the NDs-DOX complex (NDX) to increase the dispersibility and prolong the circulation time. DSPE-PEG 2K coating NDX (DNX) displayed high drug loading and excellent ability to deliver DOX to the nucleus, thereby significantly enhancing cytotoxicity and inducing cell apoptosis. Furthermore, DNX showed good histocompatibility and could improve drug accumulation in lung, as a result, markedly inhibited the lung metastasis of breast cancer. The high anti-metastasis efficacy with the decreased systemic toxicity suggested that DNX could be a promising drug delivery system for the therapy of lung metastasis of breast cancer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Design and development of hyaluronan-functionalized polybenzofulvene nanoparticles as CD44 receptor mediated drug delivery system

    Science.gov (United States)

    Licciardi, Mariano; Scialabba, Cinzia; Giammona, Gaetano; Paolino, Marco; Razzano, Vincenzo; Grisci, Giorgio; Giuliani, Germano; Makovec, Francesco; Cappelli, Andrea

    2017-06-01

    A tri-component polymer brush (TCPB ), composed of a polybenzofulvene copolymer bearing low molecular weight hyaluronic acid (HA) on the surface of its cylindrical brush-like backbone and oligo-PEG fractions, was employed in the preparation of 350 nm nanostructured drug delivery systems capable of delivering the anticancer drug doxorubicin. The obtained drug delivery systems were characterized on the basis of drug loading and release, dimensions and zeta potential, morphology and in vitro cell activity, and uptake on three different human cell lines, namely the bronchial epithelial 16HBE, the breast adenocarcinoma MCF-7, and the colon cancer HCT116 cells. Finally, the ability of doxorubicin-loaded TCPB nanoparticles (DOXO-TCPB) to be internalized into cancer cells by CD44 receptor mediated uptake was assessed by means of uptake studies in HCT cells. These data were supported by anti-CD44-FITC staining assay. The proposed TCPB nanostructured drug delivery systems have many potential applications in nanomedicine, including cancer targeted drug delivery.

  10. Comparative Pharmacokinetics of Cefquinome (Cobactan 2.5% following Repeated Intramuscular Administrations in Sheep and Goats

    Directory of Open Access Journals (Sweden)

    Mohamed El-Hewaity

    2014-01-01

    Full Text Available The comparative pharmacokinetic profile of cefquinome was studied in sheep and goats following repeated intramuscular (IM administrations of 2 mg/kg body weight. Cefquinome concentrations in serum were determined by microbiological assay technique using Micrococcus luteus (ATCC 9341 as test organism. Following intramuscular injection of cefquinome in sheep and goats, the disposition curves were best described by two-compartment open model in both sheep and goats. The pharmacokinetics of cefquinome did not differ significantly between sheep and goats; similar intramuscular dose rate of cefquinome should therefore be applicable to both species. On comparing the data of serum levels of repeated intramuscular injections with first intramuscular injection, it was revealed that repeated intramuscular injections of cefquinome have cumulative effect in both species sheep and goats. The in vitro serum protein-binding tendency was 15.65% in sheep and 14.42% in goats. The serum concentrations of cefquinome along 24 h after injection in this study were exceeding the MICs of different susceptible microorganisms responsible for serious disease problems. These findings indicate successful use of cefquinome in sheep and goats.

  11. The RESPITE trial: remifentanil intravenously administered patient-controlled analgesia (PCA) versus pethidine intramuscular injection for pain relief in labour: study protocol for a randomised controlled trial.

    Science.gov (United States)

    Wilson, Matthew; MacArthur, Christine; Gao Smith, Fang; Homer, Leanne; Handley, Kelly; Daniels, Jane

    2016-12-12

    The commonest opioid used for pain relief in labour is pethidine (meperidine); however, its effectiveness has long been challenged and the drug has known side effects including maternal sedation, nausea and potential transfer across the placenta to the foetus. Over a third of women receiving pethidine require an epidural due to inadequate pain relief. Epidural analgesia increases the risk of an instrumental vaginal delivery and its associated effects. Therefore, there is a clear need for a safe, effective, alternative analgesic to pethidine. Evidence suggests that remifentanil patient-controlled analgesia (PCA) reduces epidural conversion rates compared to pethidine; however, no trial has yet investigated this as a primary endpoint. We are, therefore, comparing pethidine intramuscular injection to remifentanil PCA in a randomised controlled trial. Women in established labour, requesting systemic opioid pain relief, will be randomised to either intravenously administered remifentanil PCA (intervention) or pethidine intramuscular injection (control) in an unblinded, 1:1 individual randomised trial. Following informed consent, 400 women in established labour, who request systemic opioid pain relief, from NHS Trusts across England will undergo a minimised randomisation by a computer or automated telephone system to either pethidine or remifentanil. In order to balance the groups this minimisation is based on four parameters; parity (nulliparous versus multiparous), maternal age (Asian (Pakistani/Indian/Bangladeshi) versus Other) and induced versus spontaneous labour. The effectiveness of pain relief provided by each technique will be recorded every 30 min after time zero, until epidural placement, delivery or transfer to theatre, quantified by Visual Analogue Scale. Incidence of maternal side effects including sedation, delivery mode, foetal distress requiring delivery, neonatal status at delivery and rate of initiation of breastfeeding within the first hour of birth

  12. 75 FR 55808 - Prospective Grant of Exclusive License: Development of AAV5 Based Therapeutics To Treat Human...

    Science.gov (United States)

    2010-09-14

    ..., tissues and cell types of the central nervous system (CNS); as well as to cells of the lung, by using AAV5... of this published notice, the NIH receives written evidence and argument that establishes that the...

  13. A comparison of synthetic oligodeoxynucleotides, DNA fragments and AAV-1 for targeted episomal and chromosomal gene repair

    Directory of Open Access Journals (Sweden)

    Leclerc Xavier

    2009-04-01

    Full Text Available Abstract Background Current strategies for gene therapy of inherited diseases consist in adding functional copies of the gene that is defective. An attractive alternative to these approaches would be to correct the endogenous mutated gene in the affected individual. This study presents a quantitative comparison of the repair efficiency using different forms of donor nucleic acids, including synthetic DNA oligonucleotides, double stranded DNA fragments with sizes ranging from 200 to 2200 bp and sequences carried by a recombinant adeno-associated virus (rAAV-1. Evaluation of each gene repair strategy was carried out using two different reporter systems, a mutated eGFP gene or a dual construct with a functional eGFP and an inactive luciferase gene, in several different cell systems. Gene targeting events were scored either following transient co-transfection of reporter plasmids and donor DNAs, or in a system where a reporter construct was stably integrated into the chromosome. Results In both episomal and chromosomal assays, DNA fragments were more efficient at gene repair than oligonucleotides or rAAV-1. Furthermore, the gene targeting frequency could be significantly increased by using DNA repair stimulating drugs such as doxorubicin and phleomycin. Conclusion Our results show that it is possible to obtain repair frequencies of 1% of the transfected cell population under optimized transfection protocols when cells were pretreated with phleomycin using rAAV-1 and dsDNA fragments.

  14. Ultrasound-guided drug delivery in cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Sayan Mullick; Lee, Tae Hwa; Willmann, Jugen K. [Dept. of Radiology, Stanford University School of Medicine, Stanford (United States)

    2017-07-15

    Recent advancements in ultrasound and microbubble (USMB) mediated drug delivery technology has shown that this approach can improve spatially confined delivery of drugs and genes to target tissues while reducing systemic dose and toxicity. The mechanism behind enhanced delivery of therapeutics is sonoporation, the formation of openings in the vasculature, induced by ultrasound-triggered oscillations and destruction of microbubbles. In this review, progress and challenges of USMB mediated drug delivery are summarized, with special focus on cancer therapy.

  15. Initial observations of cell-mediated drug delivery to the deep lung.

    Science.gov (United States)

    Kumar, Arun; Glaum, Mark; El-Badri, Nagwa; Mohapatra, Shyam; Haller, Edward; Park, Seungjoo; Patrick, Leslie; Nattkemper, Leigh; Vo, Dawn; Cameron, Don F

    2011-01-01

    Using current methodologies, drug delivery to small airways, terminal bronchioles, and alveoli (deep lung) is inefficient, especially to the lower lungs. Urgent lung pathologies such as acute respiratory distress syndrome (ARDS) and post-lung transplantation complications are difficult to treat, in part due to the methodological limitations in targeting the deep lung with high efficiency drug distribution to the site of pathology. To overcome drug delivery limitations inhibiting the optimization of deep lung therapy, isolated rat Sertoli cells preloaded with chitosan nanoparticles were use to obtain a high-density distribution and concentration (92%) of the nanoparticles in the lungs of mice by way of the peripheral venous vasculature rather than the more commonly used pulmonary route. Additionally, Sertoli cells were preloaded with chitosan nanoparticles coupled with the anti-inflammatory compound curcumin and then injected intravenously into control or experimental mice with deep lung inflammation. By 24 h postinjection, most of the curcumin load (∼90%) delivered in the injected Sertoli cells was present and distributed throughout the lungs, including the perialveloar sac area in the lower lungs. This was based on the high-density, positive quantification of both nanoparticles and curcumin in the lungs. There was a marked positive therapeutic effect achieved 24 h following curcumin treatment delivered by this Sertoli cell nanoparticle protocol (SNAP). Results identify a novel and efficient protocol for targeted delivery of drugs to the deep lung mediated by extratesticular Sertoli cells. Utilization of SNAP delivery may optimize drug therapy for conditions such as ARDS, status asthmaticus, pulmonary hypertension, lung cancer, and complications following lung transplantation where the use of high concentrations of anti-inflammatory drugs is desirable, but often limited by risks of systemic drug toxicity.

  16. Zagreb regimen, an abbreviated intramuscular schedule for rabies vaccination.

    Science.gov (United States)

    Ren, Jiangping; Yao, Linong; Sun, Jimin; Gong, Zhenyu

    2015-01-01

    The Zagreb regimen, an abbreviated intramuscular schedule for rabies vaccination, was developed by I. Vodopija and colleagues of the Zagreb Institute of Public Health in Croatia in the 1980s. It was recommended by WHO as one of the intramuscular (IM) schedules for rabies vaccination in 2010. We reviewed the literature on the immunogenicity, safety, economic burden, and compliance of the Zagreb 2-1-1 regimen. Compared to Essen, another IM schedule recommended by WHO, Zagreb has higher compliance, lower medical cost, and better immunogenicity at an early stage. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. INFLUENCE OF GENETIC POLYMORPHISM IN FABP3 AND LEPR GENES ON INTRAMUSCULAR FAT CONTENT IN PIG CARCASSES

    Directory of Open Access Journals (Sweden)

    Kristina Budimir

    2014-06-01

    Full Text Available Intensive production conditions, selection directed to increase the percentage of muscle tissue in carcasses and consumer demand have led to a reduction of intramuscular fat content in pig carcasses. Intramuscular fat is a factor affecting the flavor, juiciness and tenderness of pork meat. FABP protein family causes the differences in the content of intramuscular fat in different pig breeds. FABP3 and LEPR gene are candidate genes for intramuscular fat content and their polymorphisms explain the variability that can occur in different pig breeds. The aim of this paper is to demonstrate the influence of genes on different intramuscular fat content in pig carcasses due to pigs genotype.

  18. Ultrasound-guided drug delivery in cancer

    Directory of Open Access Journals (Sweden)

    Sayan Mullick Chowdhury

    2017-07-01

    Full Text Available Recent advancements in ultrasound and microbubble (USMB mediated drug delivery technology has shown that this approach can improve spatially confined delivery of drugs and genes to target tissues while reducing systemic dose and toxicity. The mechanism behind enhanced delivery of therapeutics is sonoporation, the formation of openings in the vasculature, induced by ultrasound-triggered oscillations and destruction of microbubbles. In this review, progress and challenges of USMB mediated drug delivery are summarized, with special focus on cancer therapy.

  19. Tattoo Delivery of a Semliki Forest Virus-Based Vaccine Encoding Human Papillomavirus E6 and E7

    Directory of Open Access Journals (Sweden)

    Stephanie van de Wall

    2015-03-01

    Full Text Available The skin is an attractive organ for immunization because of the presence of antigen-presenting cells. Intradermal delivery via tattooing has demonstrated superior vaccine immunogenicity of DNA vaccines in comparison to conventional delivery methods. In this study, we explored the efficacy of tattoo injection of a tumor vaccine based on recombinant Semliki Forest virus replicon particles (rSFV targeting human papillomavirus (HPV. Tattoo injection of rSFV particles resulted in antigen expression in both the skin and draining lymph nodes. In comparison with intramuscular injection, the overall antigen expression determined at the site of administration and draining lymph nodes was 10-fold lower upon tattoo injection. Delivery of SFV particles encoding the E6 and E7 antigens of human papillomavirus type 16 (SFVeE6,7 via tattooing resulted in HPV-specific cytotoxic T cells and in vivo therapeutic antitumor response. Strikingly, despite the observed lower overall transgene expression, SFVeE6,7 delivered via tattoo injection resulted in higher or equal levels of immune responses as compared to intramuscular injection. The intrinsic immunogenic potential of tattooing provides a benefit for immunotherapy based on an alphavirus.

  20. Tattoo Delivery of a Semliki Forest Virus-Based Vaccine Encoding Human Papillomavirus E6 and E7

    Science.gov (United States)

    van de Wall, Stephanie; Walczak, Mateusz; van Rooij, Nienke; Hoogeboom, Baukje-Nynke; Meijerhof, Tjarko; Nijman, Hans W.; Daemen, Toos

    2015-01-01

    The skin is an attractive organ for immunization because of the presence of antigen-presenting cells. Intradermal delivery via tattooing has demonstrated superior vaccine immunogenicity of DNA vaccines in comparison to conventional delivery methods. In this study, we explored the efficacy of tattoo injection of a tumor vaccine based on recombinant Semliki Forest virus replicon particles (rSFV) targeting human papillomavirus (HPV). Tattoo injection of rSFV particles resulted in antigen expression in both the skin and draining lymph nodes. In comparison with intramuscular injection, the overall antigen expression determined at the site of administration and draining lymph nodes was 10-fold lower upon tattoo injection. Delivery of SFV particles encoding the E6 and E7 antigens of human papillomavirus type 16 (SFVeE6,7) via tattooing resulted in HPV-specific cytotoxic T cells and in vivo therapeutic antitumor response. Strikingly, despite the observed lower overall transgene expression, SFVeE6,7 delivered via tattoo injection resulted in higher or equal levels of immune responses as compared to intramuscular injection. The intrinsic immunogenic potential of tattooing provides a benefit for immunotherapy based on an alphavirus. PMID:26343186

  1. Is caesarean delivery associated with sensitization to food allergens and IgE-mediated food allergy: a systematic review.

    Science.gov (United States)

    Koplin, Jennifer; Allen, Katie; Gurrin, Lyle; Osborne, Nicholas; Tang, Mimi L K; Dharmage, Shyamali

    2008-12-01

    Several studies have shown differences in the composition of the gastrointestinal flora of children who develop sensitization to food allergens compared with non-allergic children. It has been hypothesized that changes in the gut microbiota resulting from caesarean section delivery could increase a child's risk of developing food allergy; however, studies examining the relationship between mode of delivery and food allergy have produced conflicting results. The objective of this review was to determine whether there is sufficient evidence to support an association between delivery by caesarean section and the development of sensitization to food allergens and immunoglobulin E (IgE) mediated food allergy. Using predefined inclusion and exclusion criteria, MEDLINE and PubMed were searched for studies investigating the relationship between caesarean section delivery and food allergy. The information on the quality of the studies and results were extracted and analysed systematically. The search identified four relevant studies as per our protocol. Symptomatic food allergy was used as the outcome in two studies and was found to occur more frequently in children born by caesarean section in one study while the second study found no association between food allergy diagnoses and mode of delivery. The other two studies measured levels of food antigen-specific IgE, with both studies showing an increase in sensitization to food allergens among children born by caesarean section. Overall, there is evidence that the risk of developing IgE-mediated sensitization to food allergens is increased among children delivered by caesarean section, however further studies using objectively diagnosed food allergy as the outcome are needed to verify whether this equates to an increase in confirmed food allergy. Future birth cohort studies should control for the effects of mode of delivery when investigating environmental modifiers of food allergy.

  2. Molecular design and nanoparticle-mediated intracellular delivery of functional proteins to target cellular pathways

    Science.gov (United States)

    Shah, Dhiral Ashwin

    Intracellular delivery of specific proteins and peptides represents a novel method to influence stem cells for gain-of-function and loss-of-function. Signaling control is vital in stem cells, wherein intricate control of and interplay among critical pathways directs the fate of these cells into either self-renewal or differentiation. The most common route to manipulate cellular function involves the introduction of genetic material such as full-length genes and shRNA into the cell to generate (or prevent formation of) the target protein, and thereby ultimately alter cell function. However, viral-mediated gene delivery may result in relatively slow expression of proteins and prevalence of oncogene insertion into the cell, which can alter cell function in an unpredictable fashion, and non-viral delivery may lead to low efficiency of genetic delivery. For example, the latter case plagues the generation of induced pluripotent stem cells (iPSCs) and hinders their use for in vivo applications. Alternatively, introducing proteins into cells that specifically recognize and influence target proteins, can result in immediate deactivation or activation of key signaling pathways within the cell. In this work, we demonstrate the cellular delivery of functional proteins attached to hydrophobically modified silica (SiNP) nanoparticles to manipulate specifically targeted cell signaling proteins. In the Wnt signaling pathway, we have targeted the phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta) by designing a chimeric protein and delivering it in neural stem cells. Confocal imaging indicates that the SiNP-chimeric protein conjugates were efficiently delivered to the cytosol of human embryonic kidney cells and rat neural stem cells, presumably via endocytosis. This uptake impacted the Wnt signaling cascade, indicated by the elevation of beta-catenin levels, and increased transcription of Wnt target genes, such as c-MYC. The results presented here suggest that

  3. Viral vector-mediated overexpression of estrogen receptor-alpha in striatum enhances the estradiol-induced motor activity in female rats and estradiol-modulated GABA release.

    Science.gov (United States)

    Schultz, Kristin N; von Esenwein, Silke A; Hu, Ming; Bennett, Amy L; Kennedy, Robert T; Musatov, Sergei; Toran-Allerand, C Dominique; Kaplitt, Michael G; Young, Larry J; Becker, Jill B

    2009-02-11

    Classical estrogen receptor-signaling mechanisms involve estradiol binding to intracellular nuclear receptors [estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta)] to promote changes in protein expression. Estradiol can also exert effects within seconds to minutes, however, a timescale incongruent with genomic signaling. In the brain, estradiol rapidly potentiates stimulated dopamine release in the striatum of female rats and enhances spontaneous rotational behavior. Furthermore, estradiol rapidly attenuates the K(+)-evoked increase of GABA in dialysate. We hypothesize that these rapid effects of estradiol in the striatum are mediated by ERalpha located on the membrane of medium spiny GABAergic neurons. This experiment examined whether overexpression of ERalpha in the striatum would enhance the effect of estradiol on rotational behavior and the K(+)-evoked increase in GABA in dialysate. Ovariectomized female rats were tested for rotational behavior or underwent microdialysis experiments after unilateral intrastriatal injections of a recombinant adeno-associated virus (AAV) containing the human ERalpha cDNA (AAV.ERalpha) into the striatum; controls received either the same vector into areas outside the striatum or an AAV containing the human alkaline phosphatase gene into the striatum (AAV.ALP). Animals that received AAV.ERalpha in the striatum exhibited significantly greater estradiol-induced contralateral rotations compared with controls and exhibited behavioral sensitization of contralateral rotations induced by a low-dose of amphetamine. ERalpha overexpression also enhanced the inhibitory effect of estradiol on K(+)-evoked GABA release suggesting that disinhibition of dopamine release from terminals in the striatum resulted in the enhanced rotational behavior.

  4. Polylysine-modified polyethylenimine (PEI-PLL) mediated VEGF gene delivery protects dopaminergic neurons in cell culture and in rat models of Parkinson's Disease (PD).

    Science.gov (United States)

    Sheikh, Muhammad Abid; Malik, Yousra Saeed; Xing, Zhenkai; Guo, Zhaopei; Tian, Huayu; Zhu, Xiaojuan; Chen, Xuesi

    2017-05-01

    Parkinson's Disease (PD) is a chronic neurodegenerative disorder characterized by motor deficits which result from the progressive loss of dopaminergic neurons. Gene therapy using growth factors such as VEGF seems to be a viable approach for potential therapeutic treatment of PD. In this study, we utilized a novel non-viral gene carrier designated as PEI-PLL synthesized by our laboratory to deliver VEGF gene to study its effect by using both cell culture as well as animal models of PD. For cell culture experiments, we utilized 6-hydroxydopamine (6-OHDA) mediated cell death model of MN9D cells following transfection with either a control plasmid or VEGF expressing plasmid. As compared to control transfected cells, PEI-PLL mediated VEGF gene delivery to MN9D cells resulted in increased cell viability, increase in the number of Tyrosine hydroxylase (TH) positive cells and decreased apoptosis following 6-OHDA insult. Next, we studied the therapeutic potential of PEI-PLL mediated VEGF gene delivery in SNPc by using unilateral 6-OHDA Medial forebrain bundle (MFB) lesion model of PD in rats. VEGF administration prevented the loss of motor functions induced by 6-OHDA as determined by behavior analysis. Similarly, VEGF inhibited the 6-OHDA mediated loss of DA neurons in Substantia Nigra Pars Compacta (SNPc) as well as DA nerve fibers in striatum as determined by TH immunostaining. In addition, PEI-PLL mediated VEGF gene delivery also prevented apoptosis and microglial activation in PD rat models. Together, these results clearly demonstrated the beneficial effects of PEI-PLL mediated VEGF gene delivery on dopaminergic system in both cell culture and animal models of PD. In this report, we exploited the potential of PEI-PLL to deliver VEGF gene for the potential therapeutic treatment of PD by using both cell culture and animal models of PD. To the best of our knowledge, this is the first report describing the use of novel polymeric gene carriers for the delivery of VEGF gene

  5. Nitric oxide nanoparticles: pre-clinical utility as a therapeutic for intramuscular abscesses.

    Science.gov (United States)

    Schairer, David; Martinez, Luis R; Blecher, Karin; Chouake, Jason; Nacharaju, Parimala; Gialanella, Philip; Friedman, Joel M; Nosanchuk, Joshua D; Friedman, Adam

    2012-01-01

    Nitric oxide (NO) is a critical component of host defense against invading pathogens; however, its therapeutic utility is limited due to a lack of practical delivery systems. Recently, a NO-releasing nanoparticulate platform (NO-np) was shown to have in vitro broad-spectrum antimicrobial activity and in vivo pre-clinical efficacy in a dermal abscess model. To extend these findings, both topical (TP) and intralesional (IL) NO-np administration was evaluated in a MRSA intramuscular murine abscess model and compared with vancomycin. All treatment arms accelerated abscess clearance clinically, histologically, and by microbiological assays on both days 4 and 7 following infection. However, abscesses treated with NO-np via either route demonstrated a more substantial, statistically significant decrease in bacterial survival based on colony forming unit assays and histologically revealed less inflammatory cell infiltration and preserved muscular architecture. These data suggest that the NO-np may be an effective addition to our armament for deep soft tissue infections.

  6. Cell mediated therapeutics for cancer treatment: Tumor homing cells as therapeutic delivery vehicles

    Science.gov (United States)

    Balivada, Sivasai

    Many cell types were known to have migratory properties towards tumors and different research groups have shown reliable results regarding cells as delivery vehicles of therapeutics for targeted cancer treatment. Present report discusses proof of concept for 1. Cell mediated delivery of Magnetic nanoparticles (MNPs) and targeted Magnetic hyperthermia (MHT) as a cancer treatment by using in vivo mouse cancer models, 2. Cells surface engineering with chimeric proteins for targeted cancer treatment by using in vitro models. 1. Tumor homing cells can carry MNPs specifically to the tumor site and tumor burden will decrease after alternating magnetic field (AMF) exposure. To test this hypothesis, first we loaded Fe/Fe3O4 bi-magnetic NPs into neural progenitor cells (NPCs), which were previously shown to migrate towards melanoma tumors. We observed that NPCs loaded with MNPs travel to subcutaneous melanoma tumors. After alternating magnetic field (AMF) exposure, the targeted delivery of MNPs by the NPCs resulted in a mild decrease in tumor size (Chapter-2). Monocytes/macrophages (Mo/Ma) are known to infiltrate tumor sites, and also have phagocytic activity which can increase their uptake of MNPs. To test Mo/Ma-mediated MHT we transplanted Mo/Ma loaded with MNPs into a mouse model of pancreatic peritoneal carcinomatosis. We observed that MNP-loaded Mo/Ma infiltrated pancreatic tumors and, after AMF treatment, significantly prolonged the lives of mice bearing disseminated intraperitoneal pancreatic tumors (Chapter-3). 2. Targeted cancer treatment could be achieved by engineering tumor homing cell surfaces with tumor proteases cleavable, cancer cell specific recombinant therapeutic proteins. To test this, Urokinase and Calpain (tumor specific proteases) cleavable; prostate cancer cell (CaP) specific (CaP1 targeting peptide); apoptosis inducible (Caspase3 V266ED3)- rCasp3V266ED3 chimeric protein was designed in silico. Hypothesized membrane anchored chimeric protein (rCasp3V

  7. Neck and Occipital Pain Caused by Deep Cervical Intramuscular Lipoma: A Surgical Case.

    Science.gov (United States)

    Kogure, Kazunari; Yamazaki, Michio; Tamaki, Tomonori; Node, Yoji; Morita, Akio

    2017-01-01

    A lipoma is a slow-growing, benign tumor and is usually asymptomatic; hence, surgical intervention can often be avoided in patients with these tumors in the cervical and cranial area. Lipomas arise most commonly in the subcutaneous fat, but occasionally in muscle tissue. Intramuscular lipomas in the cervico-cranial area have rarely been reported. We describe here a patient with a large intramuscular lipoma in the deep cervical tissue. The patient experienced troublesome pain in the neck and occipital area, and surgical treatment was therefore suggested. Particularly in the cervical area, intramuscular lipomas sometimes invade the surrounding muscles and tissue layers and develop into an irregular mass, despite being benign. In addition, the cervical area has one of the most complex muscle structures. Nevertheless, surgical management of intramuscular lipoma in the cervical and cranial area is sometimes indicated, for example, in patients with clinical symptoms or masses with a tendency to grow large.

  8. Intramuscular versus ultrasound-guided intratenosynovial glucocorticoid injection for tenosynovitis in patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Ammitzbøll-Danielsen, Mads; Østergaard, Mikkel; Fana, Viktoria

    2017-01-01

    and tenosynovitis were randomised into two double-blind groups: (A) 'intramuscular group', receiving intramuscular injection of betamethasone and US-guided intratenosynovial isotonic saline injection and (B) 'intratenosynovial group' receiving saline intramuscularly and US-guided intratenosynovial betamethasone......% (2/24) versus 44% (11/25), that is, difference of ?36pp (?58pp to ?13pp), p=0.003. Most US, clinical and patient-reported scores improved more in the 'intratenosynovial group' at all follow-up visits. Conclusions In this randomised double-blind clinical trial, patients with RA and tenosynovitis...

  9. Activation of the cellular unfolded protein response by recombinant adeno-associated virus vectors.

    Directory of Open Access Journals (Sweden)

    Balaji Balakrishnan

    Full Text Available The unfolded protein response (UPR is a stress-induced cyto-protective mechanism elicited towards an influx of large amount of proteins in the endoplasmic reticulum (ER. In the present study, we evaluated if AAV manipulates the UPR pathways during its infection. We first examined the role of the three major UPR axes, namely, endoribonuclease inositol-requiring enzyme-1 (IRE1α, activating transcription factor 6 (ATF6 and PKR-like ER kinase (PERK in AAV infected cells. Total RNA from mock or AAV infected HeLa cells were used to determine the levels of 8 different ER-stress responsive transcripts from these pathways. We observed a significant up-regulation of IRE1α (up to 11 fold and PERK (up to 8 fold genes 12-48 hours after infection with self-complementary (scAAV2 but less prominent with single-stranded (ssAAV2 vectors. Further studies demonstrated that scAAV1 and scAAV6 also induce cellular UPR in vitro, with AAV1 vectors activating the PERK pathway (3 fold while AAV6 vectors induced a significant increase on all the three major UPR pathways [6-16 fold]. These data suggest that the type and strength of UPR activation is dependent on the viral capsid. We then examined if transient inhibition of UPR pathways by RNA interference has an effect on AAV transduction. siRNA mediated silencing of PERK and IRE1α had a modest effect on AAV2 and AAV6 mediated gene expression (∼1.5-2 fold in vitro. Furthermore, hepatic gene transfer of scAAV2 vectors in vivo, strongly elevated IRE1α and PERK pathways (2 and 3.5 fold, respectively. However, when animals were pre-treated with a pharmacological UPR inhibitor (metformin during scAAV2 gene transfer, the UPR signalling and its subsequent inflammatory response was attenuated concomitant to a modest 2.8 fold increase in transgene expression. Collectively, these data suggest that AAV vectors activate the cellular UPR pathways and their selective inhibition may be beneficial during AAV mediated gene transfer.

  10. Viral Vector Mediated Over-Expression of Estrogen Receptor–α in Striatum Enhances the Estradiol-induced Motor Activity in Female Rats and Estradiol Modulated GABA Release

    Science.gov (United States)

    Schultz, Kristin N.; von Esenwein, Silke A.; Hu, Ming; Bennett, Amy L.; Kennedy, Robert T.; Musatov, Sergei; Toran-Allerand, C. Dominique; Kaplitt, Michael G.; Young, Larry J.; Becker, Jill B.

    2009-01-01

    Classical estrogen receptor signaling mechanisms involve estradiol binding to intracellular nuclear receptors (estrogen receptor-α (ERα) and estrogen receptor-β (ERβ)) to promote changes in protein expression. Estradiol can also exert effects within seconds to minutes, however, a timescale incongruent with genomic signaling. In the brain, estradiol rapidly potentiates stimulated dopamine release in the striatum of female rats and enhances spontaneous rotational behavior. Furthermore, estradiol rapidly attenuates the K+- evoked increase of GABA in dialysate. We hypothesize that these rapid effects of estradiol in the striatum are mediated by ERα located on the membrane of medium spiny GABAergic neurons. This experiment examined whether over-expression of ERα in the striatum would enhance the effect of estradiol on rotational behavior and the K+- evoked increase in GABA in dialysate. Ovariectomized female rats were tested for rotational behavior or underwent microdialysis experiments after unilateral intrastriatal injections of a recombinant adeno-associated virus (AAV) containing the human ERα cDNA (AAV.ERα) into the striatum; controls received either the same vector into areas outside the striatum or an AAV containing the human alkaline phosphatase gene into the striatum (AAV.ALP). Animals that received AAV.ERα in the striatum exhibited significantly greater estradiol-induced contralateral rotations compared to controls and exhibited behavioral sensitization of contralateral rotations induced by a low dose of amphetamine. ERα over-expression also enhanced the inhibitory effect of estradiol on K+- evoked GABA release suggesting that disinhibition of dopamine release from terminals in the striatum resulted in the enhanced rotational behavior. PMID:19211896

  11. Effects of the microbubble shell physicochemical properties on ultrasound-mediated drug delivery to the brain.

    Science.gov (United States)

    Wu, Shih-Ying; Chen, Cherry C; Tung, Yao-Sheng; Olumolade, Oluyemi O; Konofagou, Elisa E

    2015-08-28

    Lipid-shelled microbubbles have been used in ultrasound-mediated drug delivery. The physicochemical properties of the microbubble shell could affect the delivery efficiency since they determine the microbubble mechanical properties, circulation persistence, and dissolution behavior during cavitation. Therefore, the aim of this study was to investigate the shell effects on drug delivery efficiency in the brain via blood-brain barrier (BBB) opening in vivo using monodisperse microbubbles with different phospholipid shell components. The physicochemical properties of the monolayer were varied by using phospholipids with different hydrophobic chain lengths (C16, C18, and C24). The dependence on the molecular size and acoustic energy (both pressure and pulse length) were investigated. Our results showed that a relatively small increase in the microbubble shell rigidity resulted in a significant increase in the delivery of 40-kDa dextran, especially at higher pressures. Smaller (3kDa) dextran did not show significant difference in the delivery amount, suggesting that the observed shell effect was molecular size-dependent. In studying the impact of acoustic energy on the shell effects, it was found that they occurred most significantly at pressures causing microbubble destruction (450kPa and 600kPa); by increasing the pulse length to deliver the 40-kDa dextran, the difference between C16 and C18 disappeared while C24 still achieved the highest delivery efficiency. These indicated that the acoustic energy could be used to modulate the shell effects. The acoustic cavitation emission revealed the physical mechanisms associated with different shells. Overall, lipid-shelled microbubbles with long hydrophobic chain length could achieve high delivery efficiency for larger molecules especially with high acoustic energy. Our study, for the first time, offered evidence directly linking the microbubble monolayer shell with their efficacy for drug delivery in vivo. Copyright © 2015

  12. Solid lipid nanoparticles mediate non-viral delivery of plasmid DNA to dendritic cells

    Science.gov (United States)

    Penumarthi, Alekhya; Parashar, Deepti; Abraham, Amanda N.; Dekiwadia, Chaitali; Macreadie, Ian; Shukla, Ravi; Smooker, Peter M.

    2017-06-01

    There is an increasing demand for novel DNA vaccine delivery systems, mainly for the non-viral type as they are considered relatively safe. Therefore, solid lipid nanoparticles (SLNs) were investigated for their suitability as a non-viral DNA vaccine delivery system. SLNs were synthesised by a modified solvent-emulsification method in order to study their potential to conjugate with plasmid DNA and deliver them in vitro to dendritic cells using eGFP as the reporter plasmid. The DNA-SLN complexes were characterised by electron microscopy, gel retardation assays and dynamic light scattering. The cytotoxicity assay data supported their biocompatibility and was used to estimate safe threshold concentration resulting in high transfection rate. The transfection efficiency of these complexes in a dendritic cell line was shown to increase significantly compared to plasmid alone, and was comparable to that mediated by lipofectamine. Transmission electron microscopy studies delineated the pathway of cellular uptake. Endosomal escape was observed supporting the mechanism of transfection.

  13. Efficacy of Sublingual Misoprostol versus Intramuscular Methylergometrine in Prevention of Primary Postpartum Hemorrhage

    International Nuclear Information System (INIS)

    Anwar, R.; Ambreen, A.; Khuram, A.; Mushtaq, M.

    2013-01-01

    Post partum hemorrhage still remains a major cause of maternal morbidity and mortality in developing countries. Most of oxytocics like methylergometrine require parenteral administration, which requires special storage. Misoprostol is thermo stable, has a long shelf life and is widely recommended for prevention of postpartum hemorrhage. This can be a choice of oxytocic in developing countries like ours, where storage facilities and resources are limited. Objectives: To compare efficacy of sublingual Misoprostol versus intramuscular Methylergometrine in prevention of primary postpartum hemorrhage after delivery. Study Design: Quasi experimental study Place and Duration of Study: Department of Gynae/Obs, Military Hospital and Combined Military Hospital Rawalpindi cantt. December 2007 to July 2008. Material and Methods: One hundred and thirty six pregnant ladies were selected. On arrival each patient was examined thoroughly along with baseline investigations. Therapeutic option was allocated to the patients simply by using a table of random numbers and dividing them in two equal groups. Informed written consent was taken. Each patient was observed for blood loss estimation and hematocrit drop. All the data was analyzed using SPSS version 10.0. Mean +- SD for age, pre-delivery and post-delivery hematocrit, percentage of drop in hematocrit and blood loss during labour was calculated. Results: Mean drop of hematocrit and blood loss were compared among two groups. At the end, it was revealed that there was no significant difference among two groups in blood loss (p=0.49) and hematocrit drop (p=0.14). Conclusion: There is no significant better effect in preventing post partum hemorrhage among the two drugs. (author)

  14. Adeno-associated virus vector-mediated transduction in the cat brain.

    Science.gov (United States)

    Vite, Charles H; Passini, Marco A; Haskins, Mark E; Wolfe, John H

    2003-10-01

    Adeno-associated virus (AAV) vectors are capable of delivering a therapeutic gene to the mouse brain that can result in long-term and widespread protein production. However, the human infant brain is more than 1000 times larger than the mouse brain, which will make the treatment of global neurometabolic disorders in children more difficult. In this study, we evaluated the ability of three AAV serotypes (1,2, and 5) to transduce cells in the cat brain as a model of a large mammalian brain. The human lysosomal enzyme beta-glucuronidase (GUSB) was used as a reporter gene, because it can be distinguished from feline GUSB by heat stability. The vectors were injected into the cerebral cortex, caudate nucleus, thalamus, corona radiata, internal capsule, and centrum semiovale of 8-week-old cats. The brains were evaluated for gene expression using in situ hybridization and enzyme histochemistry 10 weeks after surgery. The AAV2 vector was capable of transducing cells in the gray matter, while the AAV1 vector resulted in greater transduction of the gray matter than AAV2 as well as transduction of the white matter. AAV5 did not result in detectable transduction in the cat brain.

  15. The study with 13N-NH3 PET and coronary angiography to investigate the effect of CD151 gene therapy on swines with experimental myocardial infarction

    International Nuclear Information System (INIS)

    Zuo Houjuan; Liu Zhengxiang; Liu Xiaochun; Ceng Hesong; Liu Tao; Wen Sha; Chen Jin; Wang Daowen

    2009-01-01

    Objective: Our previous studies showed that CD151 could promote neovascularization in a rat hind-limb ischemia model and in a rat myocardial ischemia model. This study was to determine the change of myocardial perfusion and coronary collateralization after intramyocardial administration CD151 in swines with experimental myocardial infarction. Methods: CD151 and antiCD151 were constructed into the recombinant adeno-associated virus vector (rAAV). Twenty swines received coronary artery ligation and intramuscular injection of rAAV-CD151 or rAAV-green fluorescent protein (GFP). Eight weeks after vector administration, the expression of CD151 protein and the capillary density were measured using immunohistochemistry. Regional myocardial perfusian was evaluated by 13 N-NH 3 PET. Coronary angiography was per-formed to assess collateral vessels reconstruction. The t-test or ANOVA with SPSS 11.0 was used for data analysis. Results: High levels of CD151 protein expression and capillary density were detected in the rAAV-CD151 group. 13 N-NH 3 PET imaging showed that myocardial perfusion was improved and the myocardial ischemia scores were significantly decreased in the rAAV-CD151 group when compared with rAAV-GFP group (10.82 ± 2.36 vs 19.33 ± 1.67, t=5.86, P=0.002).Coronary angiography confirmed better collateral circulation in the rAAV-CD151 group. Conclusions: rAAV-CD151 direct injection can transfect the myocardium and express the CD151 protein, thereby significantly improve the myocardial blood perfusion and coronary collateralization. 13 N-NH 3 PET and coronary angiography can be used directly to evaluate the col-lateral vessel reconstruction and perfusion status of swine myocardium. (authors)

  16. Virus-mediated shRNA knockdown of prodynorphin in the rat nucleus accumbens attenuates depression-like behavior and cocaine locomotor sensitization.

    Science.gov (United States)

    Cohen, Ami; Whitfield, Timothy W; Kreifeldt, Max; Koebel, Pascale; Kieffer, Brigitte L; Contet, Candice; George, Olivier; Koob, George F

    2014-01-01

    Dynorphins, endogenous opioid peptides that arise from the precursor protein prodynorphin (Pdyn), are hypothesized to be involved in the regulation of mood states and the neuroplasticity associated with addiction. The current study tested the hypothesis that dynorphin in the nucleus accumbens (NAcc) mediates such effects. More specifically, we examined whether knockdown of Pdyn within the NAcc in rats would alter the expression of depressive-like and anxiety-like behavior, as well as cocaine locomotor sensitization. Wistar rats were injected with adeno-associated viral (AAV) vectors encoding either a Pdyn-specific short hairpin RNA (AAV-shPdyn) or a scrambled shRNA (AAV-shScr) as control. Four weeks later, rats were tested for anxiety-like behavior in the elevated plus maze test and depressive-like behavior in the forced swim test (FST). Finally, rats received one daily injection of saline or cocaine (20 mg/kg, i.p.), followed by assessment of locomotion for 4 consecutive days. Following 3 days of abstinence, the rats completed 2 additional daily cocaine/saline locomotor trials. Pdyn knockdown in the NAcc led to a significant reduction in depressive-like behavior in the FST, but had no effect on anxiety-like behavior in the elevated plus maze. Pdyn knockdown did not alter baseline locomotor behavior, the locomotor response to acute cocaine, or the initial sensitization of the locomotor response to cocaine over the first 4 cocaine treatment days. However, following 3 days abstinence the locomotor response to the cocaine challenge returned to their original levels in the AAV-shPdyn rats while remaining heightened in the AAV-shScr rats. These results suggest that dynorphin in a very specific area of the nucleus accumbens contributes to depressive-like states and may be involved in neuroadaptations in the NAcc that contribute to the development of cocaine addiction as a persistent and lasting condition.

  17. Virus-mediated shRNA knockdown of prodynorphin in the rat nucleus accumbens attenuates depression-like behavior and cocaine locomotor sensitization.

    Directory of Open Access Journals (Sweden)

    Ami Cohen

    Full Text Available Dynorphins, endogenous opioid peptides that arise from the precursor protein prodynorphin (Pdyn, are hypothesized to be involved in the regulation of mood states and the neuroplasticity associated with addiction. The current study tested the hypothesis that dynorphin in the nucleus accumbens (NAcc mediates such effects. More specifically, we examined whether knockdown of Pdyn within the NAcc in rats would alter the expression of depressive-like and anxiety-like behavior, as well as cocaine locomotor sensitization. Wistar rats were injected with adeno-associated viral (AAV vectors encoding either a Pdyn-specific short hairpin RNA (AAV-shPdyn or a scrambled shRNA (AAV-shScr as control. Four weeks later, rats were tested for anxiety-like behavior in the elevated plus maze test and depressive-like behavior in the forced swim test (FST. Finally, rats received one daily injection of saline or cocaine (20 mg/kg, i.p., followed by assessment of locomotion for 4 consecutive days. Following 3 days of abstinence, the rats completed 2 additional daily cocaine/saline locomotor trials. Pdyn knockdown in the NAcc led to a significant reduction in depressive-like behavior in the FST, but had no effect on anxiety-like behavior in the elevated plus maze. Pdyn knockdown did not alter baseline locomotor behavior, the locomotor response to acute cocaine, or the initial sensitization of the locomotor response to cocaine over the first 4 cocaine treatment days. However, following 3 days abstinence the locomotor response to the cocaine challenge returned to their original levels in the AAV-shPdyn rats while remaining heightened in the AAV-shScr rats. These results suggest that dynorphin in a very specific area of the nucleus accumbens contributes to depressive-like states and may be involved in neuroadaptations in the NAcc that contribute to the development of cocaine addiction as a persistent and lasting condition.

  18. Intramuscular versus Subcutaneous Administration of Iron Dextran in Suckling Piglets

    Directory of Open Access Journals (Sweden)

    M. Svoboda

    2007-01-01

    Full Text Available The aim of the study was to compare the development of red blood cell indices after subcutaneous versus intramuscular administration of iron dextran to suckling piglets during early postnatal period. The piglets in group I (n = 17 were injected subcutaneously (into groin with 200 mg Fe3+ as iron dextran on day 3 of life. In group II (n = 16, the piglets received intramuscular injection (into gluteal muscles of 200 mg Fe3+ as iron dextran on day 3 of life. In group III (n = 10, the piglets did not receive any iron till the age of 3 days. The blood was taken and analyzed (Hb, PCV, RBC, MCV, MCH, MCHC, Fe on days 3, 7, 14, 21, 28 and 35. Haematological indices of piglets in group III were characteristic for hypochromic anaemia. Anaemia in group III had a detrimental effect on the growth rate of piglets. The development of red blood cell indices and iron concentration in blood plasma in subcutaneously treated piglets did not differ significantly from that of intramuscularly-treated group. Both treatments prevented development of anaemia.

  19. Nicolau Syndrome after Intramuscular Injection of Non-Steroidal Anti-Inflammatory Drugs (NSAID

    Directory of Open Access Journals (Sweden)

    Mehmet Dadaci

    2015-01-01

    Full Text Available Nicolau syndrome is a rare complication of intramuscular injection that leads to local ischemic necrosis of the skin and adipose tissue. In this paper, we discuss etiologies, risk factors, and treatment options for gluteal Nicolau syndrome referring to patients treated in our hospital. Our study includes 17 women who visited our clinic with symptoms of gluteal necrosis secondary to intramuscular injection. The following variables were taken into account: injection site, drug administered, frequency of injections, the person who administered the injections, needle size, and needle tip color. Magnetic resonance images obtained in the aftermath of intramuscular injection application were carefully analyzed for presence of necrosis, cyst formation and the thickness of the gluteal fat tissue layer. Drugs that had been received in intramuscular injection were exclusively non-steroidal anti-inflammatory drugs. Mean patient BMI was 41.8 (all patients were considered as obese, and mean gluteal fat thickness was 54 mm. Standard length of needles (3.8 cm had been used in procedures. The wounds were treated with primary closure in 11 patients and with local flap therapy in 6 patients. The observed necrosis was a consequence of misplaced gluteal injection, where drugs were injected into the adipose tissue instead of the muscle due to the extreme thickness of the fat layer, on one hand, and the inappropriate length of standard needles, on the other hand. Intramuscular injection should be avoided in obese patients whenever possible: if it is necessary, proper injection technique should be used.

  20. Intra-muscular hemangioma: A review

    Directory of Open Access Journals (Sweden)

    Shruti Nayak

    2014-01-01

    Full Text Available Intra-muscular hemangiomas (IMH are relatively uncommon benign vascular tumors, which account for less than 1% of all hemangiomas. IMH may be presented as a perceived sporting injury. Diagnosis of this lesion is important not only because of its rarity, but also due to dangers posed by misdiagnosis and mismanagement. They must be considered in the differential diagnosis of unexplained pain and swelling in muscles. IMH occurring in the oral cavity is reviewed below.

  1. Pre-clinical evaluation of AAV5-miHTT gene therapy of Huntington´s disease

    Czech Academy of Sciences Publication Activity Database

    Konstantinová, P.; Miniarikova, J.; Blits, B.; Zimmer, V.; Spoerl, A.; Southwell, A.; Hayden, M.; van Deventer, S.; Deglon, N.; Motlík, Jan; Juhás, Štefan; Juhásová, Jana; Richard, Ch.; Petry, H.

    2015-01-01

    Roč. 78, Supl 2 (2015), s. 8-8 ISSN 1210-7859. [Conference on Animal Models for neurodegenerative Diseases /3./. 08.11.2015-10.11.2015, Liblice] R&D Projects: GA MŠk ED2.1.00/03.0124 Institutional support: RVO:67985904 Keywords : Huntington ´s disease * gene therapy * AAV5-miHTT Subject RIV: EB - Genetics ; Molecular Biology

  2. Fabrication and characterization of an inorganic gold and silica nanoparticle mediated drug delivery system for nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Das, Amitava; Singla, Sumit K; Shah, Vijay H [Gastroenterology Research Unit, Department of Internal Medicine, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905 (United States); Mukherjee, Priyabrata; Mukhopadhyay, Debabrata; Patra, Chitta Ranjan [Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street S.W., Rochester, MN 55905 (United States); Guturu, Praveen [Department of Internal Medicine, UTMB, Galveston, TX 77555 (United States); Frost, Megan C, E-mail: patra.chittaranjan@mayo.edu, E-mail: patra.chitta@gmail.com [Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931 (United States)

    2010-07-30

    Nitric oxide (NO) plays an important role in inhibiting the development of hepatic fibrosis and its ensuing complication of portal hypertension by inhibiting human hepatic stellate cell (HSC) activation. Here we have developed a gold nanoparticle and silica nanoparticle mediated drug delivery system containing NO donors, which could be used for potential therapeutic application in chronic liver disease. The gold nanoconjugates were characterized using several physico-chemical techniques such as UV-visible spectroscopy and transmission electron microscopy. Silica nanoconjugates were synthesized and characterized as reported previously. NO released from gold and silica nanoconjugates was quantified under physiological conditions (pH = 7.4 at 37 deg. C) for a substantial period of time. HSC proliferation and the vascular tube formation ability, manifestations of their activation, were significantly attenuated by the NO released from these nanoconjugates. This study indicates that gold and silica nanoparticle mediated drug delivery systems for introducing NO could be used as a strategy for the treatment of hepatic fibrosis or chronic liver diseases, by limiting HSC activation.

  3. Fabrication and characterization of an inorganic gold and silica nanoparticle mediated drug delivery system for nitric oxide

    International Nuclear Information System (INIS)

    Das, Amitava; Singla, Sumit K; Shah, Vijay H; Mukherjee, Priyabrata; Mukhopadhyay, Debabrata; Patra, Chitta Ranjan; Guturu, Praveen; Frost, Megan C

    2010-01-01

    Nitric oxide (NO) plays an important role in inhibiting the development of hepatic fibrosis and its ensuing complication of portal hypertension by inhibiting human hepatic stellate cell (HSC) activation. Here we have developed a gold nanoparticle and silica nanoparticle mediated drug delivery system containing NO donors, which could be used for potential therapeutic application in chronic liver disease. The gold nanoconjugates were characterized using several physico-chemical techniques such as UV-visible spectroscopy and transmission electron microscopy. Silica nanoconjugates were synthesized and characterized as reported previously. NO released from gold and silica nanoconjugates was quantified under physiological conditions (pH = 7.4 at 37 deg. C) for a substantial period of time. HSC proliferation and the vascular tube formation ability, manifestations of their activation, were significantly attenuated by the NO released from these nanoconjugates. This study indicates that gold and silica nanoparticle mediated drug delivery systems for introducing NO could be used as a strategy for the treatment of hepatic fibrosis or chronic liver diseases, by limiting HSC activation.

  4. Substrate-mediated delivery of gene complex nanoparticles via polydopamine coating for enhancing competitiveness of endothelial cells.

    Science.gov (United States)

    Li, Bo-Chao; Chang, Hao; Ren, Ke-Feng; Ji, Jian

    2016-11-01

    Substrate-mediated delivery of functional plasmid DNA (pDNA) has been proven to be a promising strategy to promote competitiveness of endothelial cells (ECs) over smooth muscle cells (SMCs), which is beneficial to inducing fast endothelialization of implanted vascular devices. Thus, it is of great importance to develop universal approaches with simplicity and easiness to immobilize DNA complex nanoparticles on substrates. In this study, the bioinspired polydopamine (PDA) coating was employed in immobilization of DNA complex nanoparticles, which were composed of protamine (PrS) and plasmid DNA encoding with hepatocyte growth factor (HGF-pDNA) gene. We demonstrated that the DNA complex nanoparticles can be successfully immobilized onto the PDA surface. Consequently, the HGF expression of both ECs and SMCs were significantly improved when they cultured on the DNA complex nanoparticles-immobilized substrates. Furthermore, EC proliferation was specifically promoted due to bioactivity of HGF, leading to an enhancement of EC competitiveness over SMCs. Our findings demonstrated the substrate-mediated functional gene nanoparticle delivery through PDA coating as a simple and efficient approach. It may hold great potential in the field of interventional cardiovascular implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Venezuelan equine encephalitis virus replicon particle vaccine protects nonhuman primates from intramuscular and aerosol challenge with ebolavirus.

    Science.gov (United States)

    Herbert, Andrew S; Kuehne, Ana I; Barth, James F; Ortiz, Ramon A; Nichols, Donald K; Zak, Samantha E; Stonier, Spencer W; Muhammad, Majidat A; Bakken, Russell R; Prugar, Laura I; Olinger, Gene G; Groebner, Jennifer L; Lee, John S; Pratt, William D; Custer, Max; Kamrud, Kurt I; Smith, Jonathan F; Hart, Mary Kate; Dye, John M

    2013-05-01

    There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine.

  6. Supraspinatus Intramuscular Calcified Hematoma or Necrosis Associated with Tendon Tear

    Directory of Open Access Journals (Sweden)

    Alexandre Lädermann

    2015-01-01

    Full Text Available Introduction. Rotator cuff intramuscular calcification is a rare condition usually caused by heterotopic ossification and myositis ossificans. Case Presentation. We describe a patient with voluminous calcified mass entrapped in supraspinatus muscle associated with corresponding tendon tear. Histological examination corresponded to a calcified hematoma or necrosis. Patient was surgically managed with open excision of the calcified hematoma and rotator cuff arthroscopic repair. At 6 months, supraspinatus muscle was healed, and functional outcome was good. Discussion and Conclusion. We hypothesized that supraspinatus intramuscular calcified hematoma was responsible for mechanical stress on the tendon. This association has never been described.

  7. Correction of mutant Fanconi anemia gene by homologous recombination in human hematopoietic cells using adeno-associated virus vector.

    Science.gov (United States)

    Paiboonsukwong, Kittiphong; Ohbayashi, Fumi; Shiiba, Haruka; Aizawa, Emi; Yamashita, Takayuki; Mitani, Kohnosuke

    2009-11-01

    Adeno-associated virus (AAV) vectors have been shown to correct a variety of mutations in human cells by homologous recombination (HR) at high rates, which can overcome insertional mutagenesis and transgene silencing, two of the major hurdles in conventional gene addition therapy of inherited diseases. We examined an ability of AAV vectors to repair a mutation in human hematopoietic cells by HR. We infected a human B-lymphoblastoid cell line (BCL) derived from a normal subject with an AAV, which disrupts the hypoxanthine phosphoribosyl transferase1 (HPRT1) locus, to measure the frequency of AAV-mediated HR in BCL cells. We subsequently constructed an AAV vector encoding the normal sequences from the Fanconi anemia group A (FANCA) locus to correct a mutation in the gene in BCL derived from a FANCA patient. Under optimal conditions, approximately 50% of BCL cells were transduced with an AAV serotype 2 (AAV-2) vector. In FANCA BCL cells, up to 0.016% of infected cells were gene-corrected by HR. AAV-mediated restoration of normal genotypic and phenotypic characteristics in FANCA-mutant cells was confirmed at the DNA, protein and functional levels. The results obtained in the present study indicate that AAV vectors may be applicable for gene correction therapy of inherited hematopoietic disorders.

  8. Review of recent literature on microneedle vaccine delivery technologies

    Directory of Open Access Journals (Sweden)

    Vrdoljak A

    2013-08-01

    Full Text Available Anto Vrdoljak Development Laboratory, Genera, Rakov Potok, Croatia Abstract: Microneedles (MNs have been developed as medical devices for enhanced and painless transdermal drug and vaccine delivery. MN-based vaccine application, unlike conventional intramuscular or subcutaneous application using hypodermic needles, delivers vaccine directly into skin, which is known to be an immunologically much more relevant vaccination site than underlying tissue. Vaccination using MN devices targets the skin's rich immune system, leading to better utilization of the antigen and resulting in superior immune response, often achieved using a lower vaccine dose than required by conventional delivery routes. However, despite the number of advantages and nearly four decades of research, the number of licensed MN-based vaccines remains limited to date. Nevertheless, it is to be expected that on the back of a number of recently developed scalable and robust MN-fabrication methods, more intensive translation into clinical practice will follow. Here, we review the current status and trends in research of MN-related vaccine delivery platforms, focusing on the most promising approaches and clinically relevant applications. Keywords: microneedles, vaccine delivery, skin vaccination

  9. Efficacy of Doramectin Via Intramuscular Injection in Gastrointestinal Nematodes in Horses

    Directory of Open Access Journals (Sweden)

    Yonairo Manuel Herrera Benavides

    2015-05-01

    Full Text Available This research aimed to test the effectiveness of doramectin by intramuscular administration against nematodes of horses, as it is evacuated, observed in the reduction in egg counts per gram of feces (epg. To this end, six donkeys and ten mestizo horses of different sexes and ages were used, all naturally infected with gastrointestinal nematodes. Animals were randomly divided into two groups: 1 (control, three donkeys and four horses that didn’t receive anthelmintic treatment; and 2 (treated, three donkeys and six horses treated with doramectin at a dose of 0.2 mg/kg by intramuscular administration, single dose, applied on the neck. At days 5, 12, 16, 24, 34, 41, 47, 56, 60 and 140 post-treatment all animals were subjected to stool tests, allowing to define epg values by McMaster technique. The results determined that doramectin by intramuscular administration was highly effective in controlling nematodes in field conditions and in animals subjected to continual reinfestation.

  10. Progranulin Gene Therapy Improves Lysosomal Dysfunction and Microglial Pathology Associated with Frontotemporal Dementia and Neuronal Ceroid Lipofuscinosis.

    Science.gov (United States)

    Arrant, Andrew E; Onyilo, Vincent C; Unger, Daniel E; Roberson, Erik D

    2018-02-28

    ceroid lipofuscinosis (NCL). Here, we address several mechanistic questions about the potential of progranulin gene therapy for these disorders. GRN mutation carriers with NCL or FTD exhibit lipofuscinosis and Grn -/- mouse models develop a similar pathology. AAV-mediated progranulin delivery reduced lipofuscinosis in Grn -/- mice even after the onset of pathology. AAV delivered progranulin only to neurons, not microglia, but improved microgliosis in several brain regions, indicating cross talk between neuronal and microglial pathology. Its beneficial effects were sortilin independent. AAV-derived progranulin was delivered to lysosomes and corrected lysosomal abnormalities. These data provide in vivo support for the efficacy of progranulin-boosting therapies for FTD and NCL. Copyright © 2018 the authors 0270-6474/18/382342-18$15.00/0.

  11. Intramuscular Injection of “Site Enhancement Oil”

    DEFF Research Database (Denmark)

    Petersen, Maria Louise; Colville-Ebeling, Bonnie; Jensen, Thomas Hartvig Lindkær

    2015-01-01

    The use of intramuscular injection of foreign substances for aesthetic purposes is well known. Complications are usually local to the site of injection but can be potentially lethal. Here, we present a case of "site enhancement oil" use in a 42-year-old man who died from asphyxia due to hanging. ...

  12. RNAi-mediated Gene Silencing of Mutant Myotilin Improves Myopathy in LGMD1A Mice

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2014-01-01

    Full Text Available Recent progress suggests gene therapy may one day be an option for treating some forms of limb girdle muscular dystrophy (LGMD. Nevertheless, approaches targeting LGMD have so far focused on gene replacement strategies for recessive forms of the disease. In contrast, no attempts have been made to develop molecular therapies for any of the eight dominantly inherited forms of LGMD. Importantly, the emergence of RNA interference (RNAi therapeutics in the last decade provided new tools to combat dominantly inherited LGMDs with molecular therapy. In this study, we describe the first RNAi-based, preclinical gene therapy approach for silencing a gene associated with dominant LGMD. To do this, we developed adeno-associated viral vectors (AAV6 carrying designed therapeutic microRNAs targeting mutant myotilin (MYOT, which is the underlying cause of LGMD type 1A (LGMD1A. Our best MYOT-targeted microRNA vector (called miMYOT significantly reduced mutant myotilin mRNA and soluble protein expression in muscles of LGMD1A mice (the TgT57I model both 3 and 9 months after delivery, demonstrating short- and long-term silencing effects. This MYOT gene silencing subsequently decreased deposition of MYOT-seeded intramuscular protein aggregates, which is the hallmark feature of LGMD1A. Histological improvements were accompanied by significant functional correction, as miMYOT-treated animals showed increased muscle weight and improved specific force in the gastrocnemius, which is one of the most severely affected muscles in TgT57I mice and patients with dominant myotilin mutations. These promising results in a preclinical model of LGMD1A support the further development of RNAi-based molecular therapy as a prospective treatment for LGMD1A. Furthermore, this study sets a foundation that may be refined and adapted to treat other dominant LGMD and related disorders.

  13. Serial correlation between the ultrasonographic and pathologic findings of intramuscular hemorrhaging in an experimental rabbit

    International Nuclear Information System (INIS)

    Ko, Kyung Ran; Ryu, Kyung Nam; Park, Ji Seon; Jin, Wook; Sung, Dong Wook; Park, Yong Koo

    2008-01-01

    To evaluate the serial ultrasonographic findings of experimental intramuscular hemorrhaging to determine if there is a correlation with the pathologic findings. An ultrasonography (US) was performed before and immediately after an intramuscular blood injection in nine rabbits. In addition, follow-up US images were obtained at 1, 4, 7, 10, 14, 21, and 28 days after the intramuscular blood injections in seven of the rabbits. The pathologic specimens, compared to the US findings on each date, and consisted of samples of left thigh muscle. A US, performed immediately after a blood injection, showed two patterns; 6 cases of hyperechoic muscle thickening and 3 cases of hyperechoic muscle thickening with extravasation between the epimysium and muscle bundle or within muscle bundle. A follow-up US showed a marked decrease in intramuscular hemorrhaging and microcalcifications, which appeared on the 4th, 7th and 10th day after the blood injection. The pathologic findings revealed several short echogenic lines in the muscular bundles which were hemosiderin. Moreover, a 28 day follow-up US revealed that the normal findings are correlated with the normal gross pathologic findings. The US findings of the intramuscular hemorrhaging, for each of the follow-up dates, in comparison to the pathologic findings, revealed a high correlation with the pathologic specimens. Consequently, a US transducer with high resolution can be considered as a helpful technique in the diagnosing and evaluating the follow-up treatment of intramuscular hemorrhaging

  14. Serial correlation between the ultrasonographic and pathologic findings of intramuscular hemorrhaging in an experimental rabbit

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyung Ran [National Cancer Center, Seoul (Korea, Republic of); Ryu, Kyung Nam; Park, Ji Seon; Jin, Wook; Sung, Dong Wook; Park, Yong Koo [KyungHee University Medical Center, Seoul (Korea, Republic of)

    2008-05-15

    To evaluate the serial ultrasonographic findings of experimental intramuscular hemorrhaging to determine if there is a correlation with the pathologic findings. An ultrasonography (US) was performed before and immediately after an intramuscular blood injection in nine rabbits. In addition, follow-up US images were obtained at 1, 4, 7, 10, 14, 21, and 28 days after the intramuscular blood injections in seven of the rabbits. The pathologic specimens, compared to the US findings on each date, and consisted of samples of left thigh muscle. A US, performed immediately after a blood injection, showed two patterns; 6 cases of hyperechoic muscle thickening and 3 cases of hyperechoic muscle thickening with extravasation between the epimysium and muscle bundle or within muscle bundle. A follow-up US showed a marked decrease in intramuscular hemorrhaging and microcalcifications, which appeared on the 4th, 7th and 10th day after the blood injection. The pathologic findings revealed several short echogenic lines in the muscular bundles which were hemosiderin. Moreover, a 28 day follow-up US revealed that the normal findings are correlated with the normal gross pathologic findings. The US findings of the intramuscular hemorrhaging, for each of the follow-up dates, in comparison to the pathologic findings, revealed a high correlation with the pathologic specimens. Consequently, a US transducer with high resolution can be considered as a helpful technique in the diagnosing and evaluating the follow-up treatment of intramuscular hemorrhaging.

  15. A multimodal instrument for real-time in situ study of ultrasound and cavitation mediated drug delivery

    OpenAIRE

    Bian, S; Seth, A; Daly, D; Carlisle, R; Stride, E

    2017-01-01

    The development of a multimodal instrument capable of real-time in situ measurements of cavitation activity and effect in tissue mimicking phantoms during ultrasound and cavitation mediated drug delivery experiments is described here. The instrument features an acoustic arm that can expose phantoms to high-intensity focused-ultrasound while measuring cavitation activity and an optical arm that monitors cavitation effect using confocal microscopy. This combination of modalities allows real-tim...

  16. Determination of α-tocopherol in pork with high intramuscular fat content

    Directory of Open Access Journals (Sweden)

    Rey, A.

    1996-10-01

    Full Text Available Extraction of α-tocopherol from pork samples with low (3% (LF or high (9% (HF amount of intramuscular fat have been carried out by three different methods, two of them based in saponification plus extraction of α-tocopherol and the other one without saponification. All samples were spiked with five different amount of α-tocopherol prior to analysis. In LF samples, recovery was in the range 85-95% in all cases, with not significant differences between methods. Recovery was much lower in HF samples when using methods which involve prior saponification of muscle samples (50-60%. Changes in KOH concentration did not improve markedly the recovery. The method based on direct extraction provided much better recovery in HF samples (85- 92% and consequently is recommended for samples high in fat.

    Se han utilizado tres métodos de cuantificación de α-tocoferol en muestras de tejido muscular de cerdos con un contenido en grasa intramuscular del 3% (LF y del 9% (HF. Dos de los métodos saponifican la muestra antes de extraer el α-tocoferol, y el tercero utiliza una extracción directa con solventes. Antes del análisis se añadieron cinco cantidades de α-tocoferol en cada caso. La recuperación del α-tocoferol en las muestras de bajo contenido en grasa intramuscular fue en todos los casos alrededor del 85-95%, sin encontrarse diferencias según el método utilizado. En las muestras con alto contenido en grasa intramuscular la recuperación fue mucho menor cuando se utilizaron los métodos que saponifican la muestra (50-60%. Al añadir mayor concentración de KOH no se mejoró sustancialmente la recuperación. El método basado en extracción directa con solventes proporcionó una recuperación superior (85-92% y es por tanto el que se recomienda para muestras con alto contenido en grasa intramuscular.

  17. Intramuscular tendon involvement on MRI has limited value for predicting time to return to play following acute hamstring injury.

    Science.gov (United States)

    van der Made, Anne D; Almusa, Emad; Whiteley, Rod; Hamilton, Bruce; Eirale, Cristiano; van Hellemondt, Frank; Tol, Johannes L

    2018-01-01

    Hamstring injury with intramuscular tendon involvement is regarded as a serious injury with a delay in return to play (RTP) of more than 50 days and reinjury rates up to 63%. However, this reputation is based on retrospective case series with high risk of bias. Determine whether intramuscular tendon involvement is associated with delayed RTP and elevated rates of reinjury. MRI of male athletes with an acute hamstring injury was obtained within 5 days of injury. Evaluation included standardised MRI scoring and scoring of intramuscular tendon involvement. Time to RTP and reinjury rate were prospectively recorded. Out of 70 included participants, intramuscular tendon disruption was present in 29 (41.4%) injuries. Injuries without intramuscular tendon disruption had a mean time to RTP of 22.2±7.4 days. Injuries with Injuries with full-thickness disruption took longer to RTP compared with injuries without disruption (p=0.025). Longitudinal intramuscular tendon disruption was not significantly associated with time to RTP. Waviness was present in 17 (24.3%) injuries. Mean time to RTP for injuries without and with waviness was 22.6±7.5 and 30.2±10.8 days (p=0.014). There were 11 (15.7%) reinjuries within 12 months, five (17.2%) in the group with intramuscular tendon disruption and six (14.6%) in the group without intramuscular tendon disruption. Time to RTP for injuries with full-thickness disruption of the intramuscular tendon and waviness is significantly longer (by slightly more than 1 week) compared with injuries without intramuscular tendon involvement. However, due to the considerable overlap in time to RTP between groups with and without intramuscular tendon involvement, its clinical significance for the individual athlete is limited. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Gold Nanoantenna-Mediated Photothermal Drug Delivery from Thermosensitive Liposomes in Breast Cancer.

    Science.gov (United States)

    Ou, Yu-Chuan; Webb, Joseph A; Faley, Shannon; Shae, Daniel; Talbert, Eric M; Lin, Sharon; Cutright, Camden C; Wilson, John T; Bellan, Leon M; Bardhan, Rizia

    2016-08-31

    In this work, we demonstrate controlled drug delivery from low-temperature-sensitive liposomes (LTSLs) mediated by photothermal heating from multibranched gold nanoantennas (MGNs) in triple-negative breast cancer (TNBC) cells in vitro. The unique geometry of MGNs enables the generation of mild hyperthermia (∼42 °C) by converting near-infrared light to heat and effectively delivering doxorubicin (DOX) from the LTSLs in breast cancer cells. We confirmed the cellular uptake of MGNs by using both fluorescence confocal Z-stack imaging and transmission electron microscopy (TEM) imaging. We performed a cellular viability assay and live/dead cell fluorescence imaging of the combined therapeutic effects of MGNs with DOX-loaded LTSLs (DOX-LTSLs) and compared them with free DOX and DOX-loaded non-temperature-sensitive liposomes (DOX-NTSLs). Imaging of fluorescent live/dead cell indicators and MTT assay outcomes both demonstrated significant decreases in cellular viability when cells were treated with the combination therapy. Because of the high phase-transition temperature of NTSLs, no drug delivery was observed from the DOX-NTSLs. Notably, even at a low DOX concentration of 0.5 μg/mL, the combination treatment resulted in a higher (33%) cell death relative to free DOX (17% cell death). The results of our work demonstrate that the synergistic therapeutic effect of photothermal hyperthermia of MGNs with drug delivery from the LTSLs can successfully eradicate aggressive breast cancer cells with higher efficacy than free DOX by providing a controlled light-activated approach and minimizing off-target toxicity.

  19. Novel adeno-associated viral vector delivering the utrophin gene regulator jazz counteracts dystrophic pathology in mdx mice.

    Science.gov (United States)

    Strimpakos, Georgios; Corbi, Nicoletta; Pisani, Cinzia; Di Certo, Maria Grazia; Onori, Annalisa; Luvisetto, Siro; Severini, Cinzia; Gabanella, Francesca; Monaco, Lucia; Mattei, Elisabetta; Passananti, Claudio

    2014-09-01

    Over-expression of the dystrophin-related gene utrophin represents a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). The strategy is based on the ability of utrophin to functionally replace defective dystrophin. We developed the artificial zinc finger transcription factor "Jazz" that up-regulates both the human and mouse utrophin promoter. We observed a significant recovery of muscle strength in dystrophic Jazz-transgenic mdx mice. Here we demonstrate the efficacy of an experimental gene therapy based on the systemic delivery of Jazz gene in mdx mice by adeno-associated virus (AAV). AAV serotype 8 was chosen on the basis of its high affinity for skeletal muscle. Muscle-specific expression of the therapeutic Jazz gene was enhanced by adding the muscle α-actin promoter to the AAV vector (mAAV). Injection of mAAV8-Jazz viral preparations into mdx mice resulted in muscle-specific Jazz expression coupled with up-regulation of the utrophin gene. We show a significant recovery from the dystrophic phenotype in mAAV8-Jazz-treated mdx mice. Histological and physiological analysis revealed a reduction of fiber necrosis and inflammatory cell infiltration associated with functional recovery in muscle contractile force. The combination of ZF-ATF technology with the AAV delivery can open a new avenue to obtain a therapeutic strategy for treatment of DMD. © 2014 Wiley Periodicals, Inc.

  20. Comparative study of the Ar and He atmospheric pressure plasmas on E-cadherin protein regulation for plasma-mediated transdermal drug delivery

    Science.gov (United States)

    Lee, Hyun Young; Hae Choi, Jeong; Hong, Jin Woo; Kim, Gyoo Cheon; Lee, Hae June

    2018-05-01

    The effects of argon plasma (ArP) and helium plasma (HeP) jets on E-cadherin protein function have been tested in order to choose the working gas for a better plasma-mediated transdermal drug delivery. The plasma-mediated changes of the E-cadherin function and the skin penetration efficacies of epidermal growth factor (EGF) were monitored in vitro using HaCaT human keratinocytes and in vivo using hairless mice. The ArP showed higher efficacy for E-cadherin regulation and EGF absorption than HeP under the same applied voltage and the same gas flow rate. The ArP generates higher volume power density, higher discharge current peak, and more reactive species than HeP, especially for OH with the same operating parameters. Moreover, the effect of ArP on E-cadherin function was blocked by the use of a grounded metal mesh. Taken together, this study presents the possibility that the synergetic effect of negative charges with radicals plays an important role in plasma-mediated E-cadherin regulation, which leads to enhanced transdermal drug delivery.

  1. Kinesio® Tape Barrier Does Not Inhibit Intramuscular Cooling During Cryotherapy.

    Science.gov (United States)

    Lyman, Katie J; McCrone, Michael; Hanson, Thomas A; Mellinger, Christopher D; Gange, Kara

    2018-05-29

    Allied health care professionals commonly apply cryotherapy as treatment for acute musculoskeletal trauma and the associated symptoms. Understanding the impact of a tape barrier on intramuscular temperature can assist in determining treatment duration for effective cryotherapy. To determine whether Kinesio® Tape acts as a barrier that affects intramuscular temperature during cryotherapy application. A repeated-measures, counterbalanced design in which the independent variable was tape application and the dependent variable was muscle temperature as measured by thermocouples placed 1 cm beneath the adipose layer. Additional covariates for robustness were BMI and adipose thickness. University research laboratory. 19 male college students with no contraindications to cryotherapy, no known sensitivity to Kinesio® Tape, and no reported quadriceps injury within the past six months. Topical cryotherapy: crushed-ice bags of 1 kg and 0.5 kg. Intramuscular temperature. The tape barrier had no statistically significant effect on muscle temperature. The pattern of temperature change was indistinguishable between participants with and without tape application. Findings suggest health care professionals can combine cryotherapy with a Kinesio® Tape application without any need for adjustments to cryotherapy duration.

  2. Effectiveness of Per Rectal Misoprostol Versus Intramuscular Oxytocin for Prevention of Primary Postpartum Haemorrhage.

    Science.gov (United States)

    Asmat, Raheela; Ashraf, Tasneem; Asmat, Fazila; Asmat, Shakila; Asmat, Nagina

    2017-01-01

    To compare the effectiveness of per rectal misoprostol over oxytocin in primary postpartum haemorrhage (PPH). Randomised controlled trial study. Gynaecology and Obstetrics Department, Unit IV, Bolan Medical Complex Hospital, Quetta, from September 2013 to February 2014. Emergency obstetric patients receiving per rectal misoprostol (800 µgm) were named as group 'A' and those receiving 10 units oxytocin intramuscularly were labelled as group 'B'. The patients were followed within 24 hours of spontaneous vaginal deliveries. Pads soaked were used to assess the amount of blood loss. A total of 1,678 patients were included in the study. The mean age of patients in group-A was 29.11 years while the mean age of patients in group-B was 29.16 years. One hundred and twenty-three (14.66%) patients in group-A and 120 (14.31%) patients in group-B had PPH. Among the total 1,678 patients, 243 (14.49%) had postpartum haemorrhage among whom 24 (9.88%) had major haemorrhage with a blood loss ≥1000 mL. Among the sub-group (839 patients) administered misoprostol had 123 (14.66%) patients with blood loss greater than 500 mL and the rest 716 patients (85.34%) had blood loss less than 500 mL. The sub-group administered oxytocin have 120 (14.31%) out of 839 patients with postpartum haemorrhage while 719 (85.69%) had blood loss less than 500 mL. Active management of 3rd stage of labour with per rectal misoprostol administration was as effective as intramuscular oxytocin. Both were equally effective to reduce PPH and the subsequent need for surgical interventions.

  3. In vivo targeted gene delivery to peripheral neurons mediated by neurotropic poly(ethylene imine-based nanoparticles

    Directory of Open Access Journals (Sweden)

    Lopes CDF

    2016-06-01

    Full Text Available Cátia DF Lopes,1–3,* Hugo Oliveira,1,* Inês Estevão,1 Liliana Raquel Pires,1 Ana Paula Pêgo1,2,4,5 1INEB – Instituto de Engenharia Biomédica, Universidade do Porto (UPorto, Porto, Portugal; 2i3S – Instituto de Investigação e Inovação em Saúde, NanoBiomaterials for Targeted Therapies Group, UPorto, Porto, Portugal; 3FMUP – Faculdade de Medicina da Universidade do Porto, Porto, Portugal; 4ICBAS – Instituto de Ciências Biomédicas Abel Salazar, UPorto, Porto, Portugal; 5FEUP – Faculdade de Engenharia da Universidade do Porto, Porto, Portugal *These authors contributed equally to this work Abstract: A major challenge in neuronal gene therapy is to achieve safe, efficient, and minimally invasive transgene delivery to neurons. In this study, we report the use of a nonviral neurotropic poly(ethylene imine-based nanoparticle that is capable of mediating neuron-specific transfection upon a subcutaneous injection. Nanoparticles were targeted to peripheral neurons by using the nontoxic carboxylic fragment of tetanus toxin (HC, which, besides being neurotropic, is capable of being retrogradely transported from neuron terminals to the cell bodies. Nontargeted particles and naked plasmid DNA were used as control. Five days after treatment by subcutaneous injection in the footpad of Wistar rats, it was observed that 56% and 64% of L4 and L5 dorsal root ganglia neurons, respectively, were expressing the reporter protein. The delivery mediated by HC-functionalized nanoparticles spatially limited the transgene expression, in comparison with the controls. Histological examination revealed no significant adverse effects in the use of the proposed delivery system. These findings demonstrate the feasibility and safety of the developed neurotropic nanoparticles for the minimally invasive delivery of genes to the peripheral nervous system, opening new avenues for the application of gene therapy strategies in the treatment of peripheral

  4. Intramuscular dissection of a large ganglion cyst into the gastrocnemius muscle.

    Science.gov (United States)

    Nicholson, Luke T; Freedman, Harold L

    2012-07-01

    Ganglion cysts are lesions resulting from the myxoid degeneration of the connective tissue associated with joint capsules and tendon sheaths. Most common around the wrist joint, ganglion cysts may be found elsewhere in the body, including in and around the knee joint. Uncommonly, ganglion cysts can present intramuscularly. Previous reports document the existence of intramuscular ganglia, often without histologic confirmation. This article describes a case of an intramuscular ganglion cyst in the medial gastrocnemius muscle of a 53-year-old woman. The patient initially presented for discomfort associated with the lesion. Examination was consistent with intramuscular cystic lesion of unknown etiology. Ultrasound and magnetic resonance imaging revealed the origin of the mass at the semimembranosus-gastrocnemius bursa. Because of its location, the mass was initially suspected to be a dissecting Baker's cyst, an uncommon but previously reported diagnosis. The patient underwent surgical excision, and examination of the intact specimen revealed a thin, fibrous, walled cyst with no lining epithelium, which was consistent with a ganglion cyst. To the authors' knowledge, this is the first report in the orthopedic literature of a ganglion cyst dissecting into the gastrocnemius muscle. Because ganglion cysts commonly require excision for definitive treatment and do not respond well to treatment measures implemented for Baker's cysts, including resection of underlying meniscal tears, the authors believe it is important for orthopedic surgeons to be able to distinguish between Baker's and other cysts associated with the knee joint, including ganglion cysts, which may require more definitive treatment. Copyright 2012, SLACK Incorporated.

  5. An adeno-associated virus-based intracellular sensor of pathological nuclear factor-κB activation for disease-inducible gene transfer.

    Directory of Open Access Journals (Sweden)

    Abdelwahed Chtarto

    Full Text Available Stimulation of resident cells by NF-κB activating cytokines is a central element of inflammatory and degenerative disorders of the central nervous system (CNS. This disease-mediated NF-κB activation could be used to drive transgene expression selectively in affected cells, using adeno-associated virus (AAV-mediated gene transfer. We have constructed a series of AAV vectors expressing GFP under the control of different promoters including NF-κB -responsive elements. As an initial screen, the vectors were tested in vitro in HEK-293T cells treated with TNF-α. The best profile of GFP induction was obtained with a promoter containing two blocks of four NF-κB -responsive sequences from the human JCV neurotropic polyoma virus promoter, fused to a new tight minimal CMV promoter, optimally distant from each other. A therapeutical gene, glial cell line-derived neurotrophic factor (GDNF cDNA under the control of serotype 1-encapsidated NF-κB -responsive AAV vector (AAV-NF was protective in senescent cultures of mouse cortical neurons. AAV-NF was then evaluated in vivo in the kainic acid (KA-induced status epilepticus rat model for temporal lobe epilepsy, a major neurological disorder with a central pathophysiological role for NF-κB activation. We demonstrate that AAV-NF, injected in the hippocampus, responded to disease induction by mediating GFP expression, preferentially in CA1 and CA3 neurons and astrocytes, specifically in regions where inflammatory markers were also induced. Altogether, these data demonstrate the feasibility to use disease-activated transcription factor-responsive elements in order to drive transgene expression specifically in affected cells in inflammatory CNS disorders using AAV-mediated gene transfer.

  6. Sciatic nerve palsy associated with intramuscular quinine injections ...

    African Journals Online (AJOL)

    Sct?ior ikfeclical O[ficcr. Department of Orthopaeclics, Mulago Hospital, Makerere University, Kampala, Uganda. Key Words: Sciatic nerve palsy, intramuscular injections, children, quinine dil~ydrochloride. The purpose of this paper is to show that, in children, gluteal injection of quinine dihydrochloride (QDH) may result in ...

  7. Nitrocobinamide, a New Cyanide Antidote That Can Be Administered by Intramuscular Injection

    Science.gov (United States)

    Chan, Adriano; Jiang, Jingjing; Fridman, Alla; Guo, Ling T.; Shelton, G. Diane; Liu, Ming-Tao; Green, Carol; Haushalter, Kristofer J.; Patel, Hemal H.; Lee, Jangwoen; Yoon, David; Burney, Tanya; Mukai, David; Mahon, Sari B.; Brenner, Matthew; Pilz, Renate B.; Boss, Gerry R.

    2015-01-01

    Currently available cyanide antidotes must be given by intravenous injection over 5–10 min, making them illsuited for treating many people in the field, as could occur in a major fire, an industrial accident, or a terrorist attack. These scenarios call for a drug that can be given quickly, e.g., by intramuscular injection. We have shown that aquohydroxocobinamide is a potent cyanide antidote in animal models of cyanide poisoning, but it is unstable in solution and poorly absorbed after intramuscular injection. Here we show that adding sodium nitrite to cobinamide yields a stable derivative (referred to as nitrocobinamide) that rescues cyanide-poisoned mice and rabbits when given by intramuscular injection. We also show that the efficacy of nitrocobinamide is markedly enhanced by coadministering sodium thiosulfate (reducing the total injected volume), and we calculate that ∼1.4 mL each of nitrocobinamide and sodium thiosulfate should rescue a human from a lethal cyanide exposure. PMID:25650735

  8. Role of ultrasonography and magnetic resonance imaging in the diagnosis of intramuscular cysticercosis

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Sujit Kumar [Postgraduate Institute of Medical Education and Research, Department of Orthopedics, Chandigarh (India); Friarage Hospital, Department of Orthopedics, Northallerton (United Kingdom); Sen, Ramesh Kumar; Akkina, Narendranadh; Hampannavar, Aravind; Tahasildar, Naveen [Postgraduate Institute of Medical Education and Research, Department of Orthopedics, Chandigarh (India); Limaye, Rajiv [Friarage Hospital, Department of Orthopedics, Northallerton (United Kingdom)

    2012-09-15

    Nonspecific clinical presentations often lead to misdiagnosis of focal cysticercal myositis. This report emphasizes the role of ultrasonography and magnetic resonance imaging (MRI) in the diagnosis of solitary intramuscular cysticercosis. Six patients with persistent post-traumatic isolated muscular swelling were treated with analgesic and antibiotics, but the swelling did not subside. Radiographs showed soft tissue swelling with no bony abnormalities. Laboratory markers were inconclusive. Ultrasonographic and magnetic resonance images (MRI) showed typical features of intramuscular cysticercosis. Clinical, radiological, and fundoscopic evaluation of brain and eyes could not isolate any cysticercosis focus in these organs. Patients were treated with 3 weeks albendazole therapy. The identifying sonographic features of intramuscular cysticercosis, as evident from this case series, included an intramuscular elliptical or oval anechoic lesion with echogenic intralesional focus likely to be scolex. Magnetic resonance images showed orientation of the cyst along the direction of muscle fibers with T2W hyperintense signal and post-contrast perilesional enhancement. All patients responded to medical treatment. Cysticercosis may manifest as isolated muscular swelling without neurological or ocular involvement. Clinicians should be aware of this clinical condition to avoid misdiagnosis. Ultrasonography and magnetic resonance imaging are good diagnostic aids to establish soft tissue cysticercosis. (orig.)

  9. Role of ultrasonography and magnetic resonance imaging in the diagnosis of intramuscular cysticercosis

    International Nuclear Information System (INIS)

    Tripathy, Sujit Kumar; Sen, Ramesh Kumar; Akkina, Narendranadh; Hampannavar, Aravind; Tahasildar, Naveen; Limaye, Rajiv

    2012-01-01

    Nonspecific clinical presentations often lead to misdiagnosis of focal cysticercal myositis. This report emphasizes the role of ultrasonography and magnetic resonance imaging (MRI) in the diagnosis of solitary intramuscular cysticercosis. Six patients with persistent post-traumatic isolated muscular swelling were treated with analgesic and antibiotics, but the swelling did not subside. Radiographs showed soft tissue swelling with no bony abnormalities. Laboratory markers were inconclusive. Ultrasonographic and magnetic resonance images (MRI) showed typical features of intramuscular cysticercosis. Clinical, radiological, and fundoscopic evaluation of brain and eyes could not isolate any cysticercosis focus in these organs. Patients were treated with 3 weeks albendazole therapy. The identifying sonographic features of intramuscular cysticercosis, as evident from this case series, included an intramuscular elliptical or oval anechoic lesion with echogenic intralesional focus likely to be scolex. Magnetic resonance images showed orientation of the cyst along the direction of muscle fibers with T2W hyperintense signal and post-contrast perilesional enhancement. All patients responded to medical treatment. Cysticercosis may manifest as isolated muscular swelling without neurological or ocular involvement. Clinicians should be aware of this clinical condition to avoid misdiagnosis. Ultrasonography and magnetic resonance imaging are good diagnostic aids to establish soft tissue cysticercosis. (orig.)

  10. GLT1 overexpression reverses established neuropathic pain-related behavior and attenuates chronic dorsal horn neuron activation following cervical spinal cord injury.

    Science.gov (United States)

    Falnikar, Aditi; Hala, Tamara J; Poulsen, David J; Lepore, Angelo C

    2016-03-01

    Development of neuropathic pain occurs in a major portion of traumatic spinal cord injury (SCI) patients, resulting in debilitating and often long-term physical and psychological burdens. Following SCI, chronic dysregulation of extracellular glutamate homeostasis has been shown to play a key role in persistent central hyperexcitability of superficial dorsal horn neurons that mediate pain neurotransmission, leading to various forms of neuropathic pain. Astrocytes express the major CNS glutamate transporter, GLT1, which is responsible for the vast majority of functional glutamate uptake, particularly in the spinal cord. In our unilateral cervical contusion model of mouse SCI that is associated with ipsilateral forepaw heat hypersensitivity (a form of chronic at-level neuropathic pain-related behavior), we previously reported significant and long-lasting reductions in GLT1 expression and functional GLT1-mediated glutamate uptake in cervical spinal cord dorsal horn. To therapeutically address GLT1 dysfunction following cervical contusion SCI, we injected an adeno-associated virus type 8 (AAV8)-Gfa2 vector into the superficial dorsal horn to increase GLT1 expression selectively in astrocytes. Compared to both contusion-only animals and injured mice that received AAV8-eGFP control injection, AAV8-GLT1 delivery increased GLT1 protein expression in astrocytes of the injured cervical spinal cord dorsal horn, resulting in a significant and persistent reversal of already-established heat hypersensitivity. Furthermore, AAV8-GLT1 injection significantly reduced expression of the transcription factor and marker of persistently increased neuronal activation, ΔFosB, in superficial dorsal horn neurons. These results demonstrate that focal restoration of GLT1 expression in the superficial dorsal horn is a promising target for treating chronic neuropathic pain following SCI. © 2015 Wiley Periodicals, Inc.

  11. Targeted decorin gene therapy delivered with adeno-associated virus effectively retards corneal neovascularization in vivo.

    Directory of Open Access Journals (Sweden)

    Rajiv R Mohan

    Full Text Available Decorin, small leucine-rich proteoglycan, has been shown to modulate angiogenesis in nonocular tissues. This study tested a hypothesis that tissue-selective targeted decorin gene therapy delivered to the rabbit stroma with adeno-associated virus serotype 5 (AAV5 impedes corneal neovascularization (CNV in vivo without significant side effects. An established rabbit CNV model was used. Targeted decorin gene therapy in the rabbit stroma was delivered with a single topical AAV5 titer (100 µl; 5×10(12 vg/ml application onto the stroma for two minutes after removing corneal epithelium. The levels of CNV were examined with stereomicroscopy, H&E staining, lectin, collagen type IV, CD31 immunocytochemistry and CD31 immunoblotting. Real-time PCR quantified mRNA expression of pro- and anti-angiogenic genes. Corneal health in live animals was monitored with clinical, slit-lamp and optical coherence tomography biomicroscopic examinations. Selective decorin delivery into stroma showed significant 52% (p<0.05, 66% (p<0.001, and 63% (p<0.01 reduction at early (day 5, mid (day 10, and late (day 14 stages of CNV in decorin-delivered rabbit corneas compared to control (no decorin delivered corneas in morphometric analysis. The H&E staining, lectin, collagen type IV, CD31 immunostaining (57-65, p<0.5, and CD31 immunoblotting (62-67%, p<0.05 supported morphometric findings. Quantitative PCR studies demonstrated decorin gene therapy down-regulated expression of VEGF, MCP1 and angiopoietin (pro-angiogenic and up-regulated PEDF (anti-angiogenic genes. The clinical, biomicroscopy and transmission electron microscopy studies revealed that AAV5-mediated decorin gene therapy is safe for the cornea. Tissue-targeted AAV5-mediated decorin gene therapy decreases CNV with no major side effects, and could potentially be used for treating patients.

  12. Microneedle and mucosal delivery of influenza vaccines

    Science.gov (United States)

    Kang, Sang-Moo; Song, Jae-Min; Kim, Yeu-Chun

    2017-01-01

    In recent years with the threat of pandemic influenza and other public health needs, alternative vaccination methods other than intramuscular immunization have received great attention. The skin and mucosal surfaces are attractive sites probably because of both non-invasive access to the vaccine delivery and unique immunological responses. Intradermal vaccines using a microinjection system (BD Soluvia) and intranasal vaccines (FluMist) are licensed. As a new vaccination method, solid microneedles have been developed using a simple device that may be suitable for self-administration. Because coated micorneedle influenza vaccines are administered in the solid state, developing formulations maintaining the stability of influenza vaccines is an important issue to be considered. Marketable microneedle devices and clinical trials remain to be developed. Other alternative mucosal routes such as oral and intranasal delivery systems are also attractive for inducing cross protective mucosal immunity but effective non-live mucosal vaccines remain to be developed. PMID:22697052

  13. Transcription activator-like effector-mediated regulation of gene expression based on the inducible packaging and delivery via designed extracellular vesicles

    International Nuclear Information System (INIS)

    Lainšček, Duško; Lebar, Tina; Jerala, Roman

    2017-01-01

    Transcription activator-like effector (TALE) proteins present a powerful tool for genome editing and engineering, enabling introduction of site-specific mutations, gene knockouts or regulation of the transcription levels of selected genes. TALE nucleases or TALE-based transcription regulators are introduced into mammalian cells mainly via delivery of the coding genes. Here we report an extracellular vesicle-mediated delivery of TALE transcription regulators and their ability to upregulate the reporter gene in target cells. Designed transcriptional activator TALE-VP16 fused to the appropriate dimerization domain was enriched as a cargo protein within extracellular vesicles produced by mammalian HEK293 cells stimulated by Ca-ionophore and using blue light- or rapamycin-inducible dimerization systems. Blue light illumination or rapamycin increased the amount of the TALE-VP16 activator in extracellular vesicles and their addition to the target cells resulted in an increased expression of the reporter gene upon addition of extracellular vesicles to the target cells. This technology therefore represents an efficient delivery for the TALE-based transcriptional regulators. - Highlights: • Inducible dimerization enriched cargo proteins within extracellular vesicles (EV). • Farnesylation surpassed LAMP-1 fusion proteins for the EV packing. • Extracellular vesicles were able to deliver TALE regulators to mammalian cells. • TALE mediated transcriptional activation was achieved by designed EV.

  14. The silencing of cathepsin K used in gene therapy for periodontal disease reveals the role of cathepsin K in chronic infection and inflammation.

    Science.gov (United States)

    Chen, W; Gao, B; Hao, L; Zhu, G; Jules, J; MacDougall, M J; Wang, J; Han, X; Zhou, X; Li, Y-P

    2016-10-01

    Periodontitis is a severe chronic inflammatory disease and one of the most prevalent non-communicable chronic diseases that affects the majority of the world's adult population. While great efforts have been devoted toward understanding the pathogenesis of periodontitis, there remains a pressing need for developing potent therapeutic strategies for targeting this dreadful disease. In this study, we utilized adeno-associated virus (AAV) expressing cathepsin K (Ctsk) small hairpin (sh)RNA (AAV-sh-Ctsk) to silence Ctsk in vivo and subsequently evaluated its impact in periodontitis as a potential therapeutic strategy for this disease. We used a known mouse model of periodontitis, in which wild-type BALB/cJ mice were infected with Porphyromonas gingivalis W50 in the maxillary and mandibular periodontium to induce the disease. AAV-sh-Ctsk was then administrated locally into the periodontal tissues in vivo, followed by analyses to assess progression of the disease. AAV-mediated Ctsk silencing drastically protected mice (> 80%) from P. gingivalis-induced bone resorption by osteoclasts. In addition, AAV-sh-Ctsk administration drastically reduced inflammation by impacting the expression of many inflammatory cytokines as well as T-cell and dendritic cell numbers in periodontal lesions. AAV-mediated Ctsk silencing can simultaneously target both the inflammation and bone resorption associated with periodontitis through its inhibitory effect on immune cells and osteoclast function. Thereby, AAV-sh-Ctsk administration can efficiently protect against periodontal tissue damage and alveolar bone loss, establishing this AAV-mediated local silencing of Ctsk as an important therapeutic strategy for effectively treating periodontal disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Vascular anatomy of the medial sural artery perforator flap: a new classification system of intra-muscular branching patterns.

    Science.gov (United States)

    Dusseldorp, Joseph R; Pham, Quy J; Ngo, Quan; Gianoutsos, Mark; Moradi, Pouria

    2014-09-01

    The medial sural artery perforator (MSAP) flap is a versatile fasciocutaneous flap. The main difficulty encountered when raising the MSAP flap is in obtaining adequate pedicle length during intra-muscular dissection. The objective of this study was to determine the pattern of intra-muscular course of the MSAP flap pedicle. 14 cadaveric specimens were dissected and CT angiograms of 84 legs were examined. The intra-muscular branching pattern and depths of the medial sural artery branches were analyzed. The number of perforators, position of the dominant perforator and both intra-muscular and total pedicle length were also recorded and compared to existing anatomical data. Three types of arterial branching pattern were identified within the medial gastrocnemius, demonstrating one (31%), two (59%) or three or more (10%) main branches. A dominant perforator from the medial sural artery was present in 92% of anatomical specimens (13/14). Vertically, the location of the perforator from the popliteal crease was on average 13 cm (±2 cm). Transversely, the perforator originated 2.5 cm (±1 cm) from the posterior midline. Using CT angiography it was possible in 10 consecutive patients to identify a more superficial intra-muscular branch and determine the leg with the optimal branching pattern type for flap harvest. This study is the first to describe the variability of the intra-muscular arterial anatomy of the medial head of gastrocnemius muscle. Surgeons utilizing the MSAP flap option should be aware of the possible branching pattern types and consequently the differing perforator distribution and depths of intra-muscular branches. Routine use of pre-operative CT angiogram may help determine which leg has the most favorable branching pattern type and intra-muscular course for flap harvest. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Neuroprotection by biodegradable PAMAM ester (e-PAM-R)-mediated HMGB1 siRNA delivery in primary cortical cultures and in the postischemic brain.

    Science.gov (United States)

    Kim, Il-Doo; Lim, Chae-Moon; Kim, Jung-Bin; Nam, Hye Yeong; Nam, Kihoon; Kim, Seung-Woo; Park, Jong-Sang; Lee, Ja-Kyeong

    2010-03-19

    Although RNA interference (RNAi)-mediated gene silencing provides a powerful strategy for modulating specific gene functions, difficulties associated with siRNA delivery have impeded the development of efficient therapeutic applications. In particular, the efficacy of siRNA delivery into neurons has been limited by extremely low transfection efficiencies. e-PAM-R is a biodegradable arginine ester of PAMAM dendrimer, which is readily degradable under physiological conditions (pH 7.4, 37 degrees C). In the present study, we investigated the efficiency of siRNA delivery by e-PAM-R in primary cortical cultures and in rat brain. e-PAM-R/siRNA complexes showed high transfection efficiencies and low cytotoxicities in primary cortical cultures. Localization of fluorescence-tagged siRNA revealed that siRNA was delivered not only into the nucleus and cytoplasm, but also along the processes of the neuron. e-PAM-R/siRNA complex-mediated target gene reduction was observed in over 40% of cells and it was persistent for over 48 h. The potential use of e-PAM-R was demonstrated by gene knockdown after transfecting High mobility group box-1 (HMGB1, a novel cytokine-like molecule) siRNA into H(2)O(2)- or NMDA-treated primary cortical cultures. In these cells, HMGB1 siRNA delivery successfully reduced both basal and H(2)O(2)- or NMDA-induced HMGB1 levels, and as a result of that, neuronal cell death was significantly suppressed in both cases. Furthermore, we showed that e-PAM-R successfully delivered HMGB1 siRNA into the rat brain, wherein HMGB1 expression was depleted in over 40% of neurons and astrocytes of the normal brain. Moreover, e-PAM-R-mediated HMGB1 siRNA delivery notably reduced infarct volume in the postischemic rat brain, which is generated by occluding the middle cerebral artery for 60 min. These results indicate that e-PAM-R, a novel biodegradable nonviral gene carrier, offers an efficient means of transfecting siRNA into primary neuronal cells and in the brain and of

  17. Differences in intramuscular vascular connections of human and dog latissimus dorsi muscles.

    Science.gov (United States)

    Yang, D; Morris, S F

    1999-02-01

    Distal ischemia and necrosis of the dog latissimus dorsi muscle flap used in experimental cardiomyoplasty have been reported. However, little information on the intramuscular vascular anatomy of the dog latissimus dorsi is available. It is unclear whether there are any anatomic factors relating to the muscle flap ischemia and necrosis, and whether the dog latissimus dorsi is a suitable experimental model. To study the intramuscular vascular territories in the dog latissimus dorsi muscle, and to compare the intramuscular vasculature of the dog with that of the human, 5 fresh dog cadavers and 7 fresh human cadavers were injected with a mixture of lead oxide, gelatin, and water (200 mL/kg) through the carotid artery. Both the dog and the human latissimus dorsi muscles and neurovascular pedicles were dissected and radiographed. The intramuscular vascular anatomy of the latissimus dorsi muscles was compared. Radiographs demonstrate clearly that the pattern of latissimus dorsi intramuscular anastomoses between branches of the thoracodorsal artery and the perforators of posterior intercostal arteries in the proximal half of the muscle are different between the dog and the human. In the dog muscle, vascular connections between the thoracodorsal artery and the posterior intercostal arteries are formed by reduced-caliber choke arteries, whereas four to six true anastomoses without a change in caliber between them are found in the human muscle. The portion of the latissimus dorsi muscle supplied by the dominant thoracodorsal vascular territory was 25.9% +/- 0.3% in the dog and 23.9% +/- 0.5% in the human. For further comparison, an extended vascular territory in the latissimus dorsi muscle was demonstrated, including both the thoracodorsal territory and the posterior intercostal territories. The area of the extended vascular territory was 52% +/- 0.5% of the total muscle. The dog latissimus dorsi model may not be a perfect predictor of the behavior of the human latissimus

  18. Intramuscular Cobinamide Sulfite in a Rabbit Model of Sub-Lethal Cyanide Toxicity

    Science.gov (United States)

    Brenner, Matthew; Kim, Jae G.; Mahon, Sari B.; Lee, Jangwoen; Kreuter, Kelly A.; Blackledge, William; Mukai, David; Patterson, Steve; Mohammad, Othman; Sharma, Vijay S.; Boss, Gerry R.

    2009-01-01

    Objective To determine the ability of an intramuscular cobinamide sulfite injection to rapidly reverse the physiologic effects of cyanide toxicity. Background Exposure to cyanide in fires and industrial exposures and intentional cyanide poisoning by terrorists leading to mass casualties is an ongoing threat. Current treatments for cyanide poisoning must be administered intravenously, and no rapid treatment methods are available for mass casualty cyanide exposures. Cobinamide is a cobalamin (vitamin B12) analog with an extraordinarily high affinity for cyanide that is more water-soluble than cobalamin. We investigated the use of intramuscular cobinamide sulfite to reverse cyanide toxicity induced physiologic changes in a sublethal cyanide exposure animal model. Methods New Zealand white rabbits were given 10 mg sodium cyanide intravenously over 60 minutes. Quantitative diffuse optical spectroscopy and continuous wave near infrared spectroscopy monitoring of tissue oxy- and deoxyhemoglobin concentrations were performed concurrently with blood cyanide level measurements and cobinamide levels. Immediately after completion of the cyanide infusion, the rabbits were injected intramuscularly with cobinamide sulfite (n=6) or inactive vehicle (controls, n=5). Results Intramuscular administration led to rapid mobilization of cobinamide and was extremely effective at reversing the physiologic effects of cyanide on oxyhemoglobin and deoxyhemoglobin extraction. Recovery time to 63% of their baseline values in the central nervous system was in a mean of 1032 minutes in the control group and 9 minutes in the cobinamide group with a difference of 1023 minutes (95% confidence interval [CI] 116, 1874 minutes). In muscle tissue, recovery times were 76 and 24 minutes with a difference of 52 minutes (95% CI 7, 98min). Red blood cell cyanide levels returned towards normal significantly faster in cobinamide sulfite-treated animals than in control animals. Conclusions Intramuscular

  19. Intramuscular metastasis from malignant melanoma: MR findings

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Hirohi; Itai, Yuji; Niitsu, Mamoru [Dept. of Radiology, Institute of Clinical Medicine, University of Tsukuba, Ibaraki (Japan); Fujiwara, Masachika; Watanabe, Teruo [Department of Pathology, Institute of Clinical Medicine, University of Tsukuba, Tsukuba (Japan); Satomi, Hisae; Otsuka, Fujio [Department of Dermatology, Institute of Clinical Medicine, University of Tsukuba, Tsukuba (Japan)

    1999-12-01

    We present a rare case of intramuscular metastasis from malignant melanoma. The lesion showed intermediate to high signal intensity on T1-weighted magnetic resonance (MR) images and mixed signal intensities containing high and low signals on T2-weighted images. The signal intensity on T1-weighted images, which is due to the paramagnetic effect of melanin, is a characteristic MR finding of this entity. (orig.)

  20. Evaluation of an ompA-based phage-mediated DNA vaccine against Chlamydia abortus in piglets.

    Science.gov (United States)

    Ou, Changbo; Tian, Deyu; Ling, Yong; Pan, Qing; He, Qing; Eko, Francis O; He, Cheng

    2013-08-01

    Chlamydia abortus (C. abortus) is an obligate intracellular pathogen that causes abortion in pigs and poses a zoonotic risk in pregnant women. Although attenuated and inactivated vaccines are available, they do not provide complete protection in animals underlining the need to develop new vaccines. In this study, we tested the hypothesis that intramuscular immunization with an ompA-based phage-mediated DNA chlamydial vaccine candidate will induce significant antigen-specific cellular and humoral immune responses. Thus, groups of piglets (five per group) were immunized intramuscularly with the phage-MOMP vaccine (λ-MOMP) or a commercial live-attenuated vaccine (1B vaccine) or a GFP-expressing phage (λ-GFP) or phosphate buffered saline (PBS) (control) and antigen-specific cell-mediated and humoral immune responses were evaluated. By day 63 post-immunization, the λ-MOMP vaccine elicited significantly higher (Pabortus. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Recent advances in polymeric microspheres for parenteral drug delivery--part 1.

    Science.gov (United States)

    Mao, Shirui; Guo, Chunqiang; Shi, Yi; Li, Luk Chiu

    2012-09-01

    Polymeric microspheres have been established as a valuable parenteral drug delivery system for sustained release of therapeutic agents via subcutaneous or intramuscular injection. Biodegradable polymers which are either synthetic or from natural sources are reviewed with respect to recent advances in exploring their applications for microsphere fabrications. New information on the impact of formulation variables on the properties of microspheres formed by an emulsion method was also presented. The characterization of microspheres using advanced physical analytical techniques was also reviewed and the utilization of the information in assessing in vivo performance of the product was also highlighted. The broad clinical use of microspheres for delivery of therapeutic agents in particular biologics such as proteins has not been realized commercially. The limited availability of biodegradable polymers with a long history of regulatory approval and the challenges in gaining regulatory approval of a new polymer have hindered the development of microspheres for parenteral drug delivery.

  2. Gene delivery systems by the combination of lipid bubbles and ultrasound.

    Science.gov (United States)

    Negishi, Yoichi; Endo-Takahashi, Yoko; Maruyama, Kazuo

    2016-11-28

    Gene therapy is promising for the treatment of many diseases including cancers and genetic diseases. From the viewpoint of safety, ultrasound (US)-mediated gene delivery with nano/ microbubbles was recently developed as a novel non-viral vector system. US-mediated gene delivery using nano/microbubbles are able to produce transient changes in the permeability of the cell membrane after US-induced cavitation while reducing cellular damage and enables the tissue-specific or the site-specific intracellular delivery of gene both in vitro and in vivo. We have recently developed novel lipid nanobubbles (Lipid Bubbles). These nanobubbles can also be used to enhance the efficacy of the US-mediated genes (plasmid DNA, siRNA, and miRNA etc.) delivery. In this review, we describe US-mediated delivery systems combined with nano/microbubbles and discuss their feasibility as non-viral vector systems.

  3. Comparison of drug delivery with autoinjector versus manual prefilled syringe and between three different autoinjector devices administered in pig thigh

    Directory of Open Access Journals (Sweden)

    Hill RL

    2016-08-01

    Full Text Available Robert L Hill,1,* John G Wilmot,1,* Beth A Belluscio,1 Kevin Cleary,2 David Lindisch,3 Robin Tucker,4 Emmanuel Wilson,2 Rajesh B Shukla11Meridian Medical Technologies Inc., Columbia, MD, 2Children’s National Medical Center, 3Washington DC VA Medical Center, 4Georgetown University Medical Center, Washington, DC, USA *These authors have contributed equally to this work Abstract: Parenteral routes of drug administration are often selected to optimize actual dose of drug delivered, assure high bioavailability, bypass first-pass metabolism or harsh gastrointestinal environments, as well as maximize the speed of onset. Intramuscular (IM delivery can be preferred to intravenous delivery when initiating intravenous access is difficult or impossible. Drugs can be injected intramuscularly using a syringe or an automated delivery device (autoinjector. Investigation into the IM delivery dynamics of these methods may guide further improvements in the performance of injection technologies. Two porcine model studies were conducted to compare differences in dispersion of injectate volume for different methods of IM drug administration. The first study compared the differences in the degree of dispersion and uptake of injectate following the use of a manual syringe and an autoinjector. The second study compared the spatial spread of the injected formulation, or dispersion volume, and uptake of injectate following the use of five different autoinjectors (EpiPen® [0.3 mL], EpiPen® Jr [0.3 mL], Twinject® [0.15 mL, 0.3 mL], and Anapen® 300 [0.3 mL] with varying needle length, needle gauge, and force applied to the plunger. In the first study, the autoinjector provided higher peak volumes of injectate, indicating a greater degree of dispersion, compared with manual syringe delivery. In the second study, EpiPen autoinjectors resulted in larger dispersion volumes and higher initial dispersion ratios, which decreased rapidly over time, suggesting a greater

  4. Effect of weight, sex and hunting period on fatty acid composition of intramuscular and subcutaneous fat from wild boar

    Directory of Open Access Journals (Sweden)

    Artūras Šiukščius

    2012-04-01

    Full Text Available The study examined the influence of weight, sex and month of hunting on the fatty acid composition of intramuscular and subcutaneous fat from 49 free ranging wild boars hunted in Lithuania during the winter season. A total number of 27 and 25 fatty acids were identified in the intramuscular fat and subcutaneous tissue of wild boars, respectively. The weight of the wild boar had mainly affected only the levels of separate fatty acids both in the intramuscular and subcutaneous fat. Higher levels of saturated fatty acids (SFA were found in the intramuscular and subcutaneous fat of males compared with females. The effect of both weight and sex on the levels of fatty acids was higher in the subcutaneous fat than in the intramuscular fat. Weight, sex and hunting month had no effect on PUFA/SFA and n-6 PUFA/n-3 PUFA ratios in the intramuscular and subcutaneous fat. The atherogenic (AI and thrombogenic (TI indexes and hypocholesterolemic/hypercholesterolemic ratio in subcutaneous fat were more favorable in females compared with males and in the January hunting season than in November and December.

  5. Adeno-associated virus-mediated gene transfer

    OpenAIRE

    Srivastava, Arun

    2008-01-01

    Although the remarkable versatility and efficacy of recombinant adeno-associated virus 2 (AAV2) vectors in transducing a wide variety of cells and tissues in vitro, and in numerous pre-clinical animal models of human diseases in vivo, have been well established, the published literature is replete with controversies with regard to the efficacy of AAV2 vectors in hematopoietic stem cell (HSC) transduction. A number of factors have contributed to these controversies, the molecular bases of whic...

  6. Viral delivery of C9orf72 hexanucleotide repeat expansions in mice leads to repeat-length-dependent neuropathology and behavioural deficits

    Directory of Open Access Journals (Sweden)

    Saul Herranz-Martin

    2017-07-01

    Full Text Available Intronic GGGGCC repeat expansions in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD. Two major pathologies stemming from the hexanucleotide RNA expansions (HREs have been identified in postmortem tissue: intracellular RNA foci and repeat-associated non-ATG dependent (RAN dipeptides, although it is unclear how these and other hallmarks of disease contribute to the pathophysiology of neuronal injury. Here, we describe two novel lines of mice that overexpress either 10 pure or 102 interrupted GGGGCC repeats mediated by adeno-associated virus (AAV and recapitulate the relevant human pathology and disease-related behavioural phenotypes. Similar levels of intracellular RNA foci developed in both lines of mice, but only mice expressing 102 repeats generated C9orf72 RAN pathology, neuromuscular junction (NMJ abnormalities, dispersal of the hippocampal CA1, enhanced apoptosis, and deficits in gait and cognition. Neither line of mice, however, showed extensive TAR DNA-binding protein 43 (TDP-43 pathology or neurodegeneration. Our data suggest that RNA foci pathology is not a good predictor of C9orf72 RAN dipeptide formation, and that RAN dipeptides and NMJ dysfunction are drivers of C9orf72 disease pathogenesis. These AAV-mediated models of C9orf72-associated ALS/FTD will be useful tools for studying disease pathophysiology and developing new therapeutic approaches.

  7. Islet grafting and imaging in a bioengineered intramuscular space†

    Science.gov (United States)

    Witkowski, Piotr; Sondermeijer, Hugo; Hardy, Mark A.; Woodland, David C.; Lee, Keagan; Bhagat, Govind; Witkowski, Kajetan; See, Fiona; Rana, Abbas; Maffei, Antonella; Itescu, Silviu; Harris, Paul E.

    2011-01-01

    Background Since the hepatic portal system may not be the optimal site for islet transplantation, several extrahepatic sites have been studied. Here we examine an intramuscular transplantation site, bioengineered to better support islet neovascularization, engraftment, and survival, and demonstrate that at this novel site, grafted beta cell mass may be quantitated in a real time non-invasive manner by PET imaging. Methods Streptozotocin induced rats were pretreated intramuscularly with a biocompatible angiogenic scaffold received syngeneic islet transplants 2 weeks later. The recipients were monitored serially by blood glucose and glucose tolerance measurements and by PET imaging of the transplant site with [11C] dihydrotetrabenazine. Parallel histopathologic evaluation of the grafts was done using insulin staining and evaluation of microvasularity. Results Reversal of hyperglycemia by islet transplantation was most successful in recipients pretreated with bioscaffolds containing angiogenic factors as compared to those who received no bioscaffolds or bioscaffolds not treated with angiogenic factors. PET imaging with [11C] dihydrotetrabenazine, insulin staining and microvascular density patterns were consistent with islet survival, increased levels of angiogenesis, and with reversal of hyperglycemia. Conclusions Induction of increased neovascularization at an intramuscular site significantly improves islet transplant engraftment and survival compared to controls. The use of a non hepatic transplant site may avoid intrahepatic complications and permit the use of PET imaging to measure and follow transplanted beta-cell mass in real time. These findings have important implications for effective islet implantation outside of the liver, and offer promising possibilities for improving islet survival, monitoring, and even prevention of islet loss. PMID:19898201

  8. Islet grafting and imaging in a bioengineered intramuscular space.

    Science.gov (United States)

    Witkowski, Piotr; Sondermeijer, Hugo; Hardy, Mark A; Woodland, David C; Lee, Keagan; Bhagat, Govind; Witkowski, Kajetan; See, Fiona; Rana, Abbas; Maffei, Antonella; Itescu, Silviu; Harris, Paul E

    2009-11-15

    Because the hepatic portal system may not be the optimal site for islet transplantation, several extrahepatic sites have been studied. Here, we examine an intramuscular transplantation site, bioengineered to better support islet neovascularization, engraftment, and survival, and we demonstrate that at this novel site, grafted beta cell mass may be quantitated in a real-time noninvasive manner by positron emission tomography (PET) imaging. Streptozotocin-induced rats were pretreated intramuscularly with a biocompatible angiogenic scaffold received syngeneic islet transplants 2 weeks later. The recipients were monitored serially by blood glucose and glucose tolerance measurements and by PET imaging of the transplant site with [11C] dihydrotetrabenazine. Parallel histopathologic evaluation of the grafts was performed using insulin staining and evaluation of microvasularity. Reversal of hyperglycemia by islet transplantation was most successful in recipients pretreated with bioscaffolds containing angiogenic factors when compared with those who received no bioscaffolds or bioscaffolds not treated with angiogenic factors. PET imaging with [11C] dihydrotetrabenazine, insulin staining, and microvascular density patterns were consistent with islet survival, increased levels of angiogenesis, and with reversal of hyperglycemia. Induction of increased neovascularization at an intramuscular site significantly improves islet transplant engraftment and survival compared with controls. The use of a nonhepatic transplant site may avoid intrahepatic complications and permit the use of PET imaging to measure and follow transplanted beta cell mass in real time. These findings have important implications for effective islet implantation outside of the liver and offer promising possibilities for improving islet survival, monitoring, and even prevention of islet loss.

  9. Antisense pre-treatment increases gene therapy efficacy in dystrophic muscles.

    Science.gov (United States)

    Peccate, Cécile; Mollard, Amédée; Le Hir, Maëva; Julien, Laura; McClorey, Graham; Jarmin, Susan; Le Heron, Anita; Dickson, George; Benkhelifa-Ziyyat, Sofia; Piétri-Rouxel, France; Wood, Matthew J; Voit, Thomas; Lorain, Stéphanie

    2016-08-15

    In preclinical models for Duchenne muscular dystrophy, dystrophin restoration during adeno-associated virus (AAV)-U7-mediated exon-skipping therapy was shown to decrease drastically after six months in treated muscles. This decline in efficacy is strongly correlated with the loss of the therapeutic AAV genomes, probably due to alterations of the dystrophic myofiber membranes. To improve the membrane integrity of the dystrophic myofibers at the time of AAV-U7 injection, mdx muscles were pre-treated with a single dose of the peptide-phosphorodiamidate morpholino (PPMO) antisense oligonucleotides that induced temporary dystrophin expression at the sarcolemma. The PPMO pre-treatment allowed efficient maintenance of AAV genomes in mdx muscles and enhanced the AAV-U7 therapy effect with a ten-fold increase of the protein level after 6 months. PPMO pre-treatment was also beneficial to AAV-mediated gene therapy with transfer of micro-dystrophin cDNA into muscles. Therefore, avoiding vector genome loss after AAV injection by PPMO pre-treatment would allow efficient long-term restoration of dystrophin and the use of lower and thus safer vector doses for Duchenne patients. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Strategies for improving chemotherapeutic delivery to solid tumors mediated by vascular permeability modulation

    Science.gov (United States)

    Roy Chaudhuri, Tista

    An essential mode of distribution of blood-borne chemotherapeutic agents within a solid tumor is via the micro-circulation. Poor tumor perfusion, because of a lack of functional vasculature or a lack of microvessels, as well as low tumor vascular permeability, can prevent adequate deposition of even low molecular-weight agents into the tumor. The modulation of tumor vascular function and density can provides numerous strategies for improving intratumor deposition of chemotherapeutic agents. Here we investigated strategies to improve drug delivery to two tumor types that share in common poor drug delivery, but differ in the underlying cause. First, in an angiogenesis-driven brain tumor model of Glioblastoma, the vascular permeability barrier, along with poorly-functional vasculature, hinders drug delivery. A strategy of nanoparticle-based tumor 'priming' to attack the vascular permeability barrier, employing sterically stabilized liposomal doxorubicin (SSL-DXR), was investigated. Functional and histological evaluation of tumor vasculature revealed that after an initial period of depressed vascular permeability and vascular pruning 3--4 days after SSL-DXR administration, vascular permeability and perfusion were restored and then elevated after 5--7 days. As a result of tumor priming, deposition of subsequently-administered nanoparticles was enhanced, and the efficacy of temozolomide (TMZ), if administered during the window of elevated permeability, was increased. The sequenced regimen resulted in a persistent reduction of the tumor proliferative index and a 40% suppression of tumor volume, compared to animals that received both agents simultaneously. Second, in a hypovascular, pancreatic ductal adenocarcinoma model, disruption of tumor-stromal communication via sonic hedgehog (sHH) signaling pathway inhibition mediated an indirect vascular proliferation and a more than 2-fold increase in intratumor nanoparticle deposition. Enhanced delivery of SSL-DXR in tumors pre

  11. Effect of Salted Ice Bags on Surface and Intramuscular Tissue Cooling and Rewarming Rates.

    Science.gov (United States)

    Hunter, Eric J; Ostrowski, Jennifer; Donahue, Matthew; Crowley, Caitlyn; Herzog, Valerie

    2016-02-01

    Many researchers have investigated the effectiveness of different cryotherapy agents at decreasing intramuscular tissue temperatures. However, no one has looked at the effectiveness of adding salt to an ice bag. To compare the cooling effectiveness of different ice bags (wetted, salted cubed, and salted crushed) on cutaneous and intramuscular temperatures. Repeated-measures counterbalanced design. University research laboratory. 24 healthy participants (13 men, 11 women; age 22.46 ± 2.33 y, height 173.25 ± 9.78 cm, mass 74.51 ± 17.32 kg, subcutaneous thickness 0.63 ± 0.27 cm) with no lower-leg injuries, vascular diseases, sensitivity to cold, compromised circulation, or chronic use of NSAIDs. Ice bags made of wetted ice (2000 mL ice and 300 mL water), salted cubed ice (intervention A; 2000 mL of cubed ice and 1/2 tablespoon of salt), and salted crushed ice (intervention B; 2000 mL of crushed ice and 1/2 tablespoon of salt) were applied to the posterior gastrocnemius for 30 min. Each participant received all conditions with at least 4 d between treatments. Cutaneous and intramuscular (2 cm plus adipose thickness) temperatures of nondominant gastrocnemius were measured during a 10-min baseline period, a 30-min treatment period, and a 45-min rewarming period. Differences from baseline were observed for all treatments. The wetted-ice and salted-cubed-ice bags produced significantly lower intramuscular temperatures than the salted-crushed-ice bag. Wetted-ice bags produced the greatest temperature change for cutaneous tissues. Wetted- and salted-cubed-ice bags were equally effective at decreasing intramuscular temperature at 2 cm subadipose. Clinical practicality may favor salted-ice bags over wetted-ice bags.

  12. Weekly Intramuscular Injection of Levothyroxine following Myxoedema: A Practical Solution to an Old Crisis

    Directory of Open Access Journals (Sweden)

    Peter N. Taylor

    2015-01-01

    Full Text Available An 82-year-old female with known hypothyroidism was admitted to hospital after being found on the floor. On examination, she was unkempt, confused, bradycardic, hypothermic, and barely arousable. Initial biochemistry revealed a thyroid stimulating hormone (TSH of >100 mU/L and free thyroxine (FT4 level of 1.5 pmol/L which supported a diagnosis of myxoedema coma. She was resuscitated and commenced on liothyronine, levothyroxine, and hydrocortisone and some improvement was made. It became apparent that she was hiding and spitting out her oral levothyroxine including levothyroxine elixir. Given the need for prompt alternative control, we sought advice from international experts where intramuscular levothyroxine was recommended. She was managed from day 50 onwards with intramuscular levothyroxine 200 mcg once a week, which was subsequently increased to 500 mcg. Thyroid function normalized and she made continual cognitive and physical progress and was discharged to a rehabilitation hospital. Her intramuscular levothyroxine was stopped and she was subsequently restarted on oral levothyroxine, with a plan for on-going close monitoring of her thyroid function. This report highlights the potential to use intramuscular levothyroxine in individuals with severe hypothyroidism arising from poor compliance with levothyroxine treatment or other potential causes such as impaired absorption.

  13. Efeitos anestésicos da administração intranasal ou intramuscular de cetamina S+ e midazolam em pomba-rola (Streptotelia sp. Anesthetic effects of intranasal or intramuscular administration of S+ Ketamine and Midazolam in ring necked dove (Streptotelia sp.

    Directory of Open Access Journals (Sweden)

    Suzane L. Beier

    2013-04-01

    Full Text Available A via intranasal é uma boa alternativa por ser indolor e de fácil aplicação em aves. O objetivo deste estudo foi avaliar os efeitos anestésicos da associação de cetamina S+ e midazolam pela via intranasal (IN em comparação com a via intramuscular (IM em pombos. Foram utilizados 12 pombos alocados em dois grupos com 15 dias de intervalo, os quais receberam: grupo IM: 20 mg/kg de cetamina S+ associada a 3,5 mg/kg de midazolam pela via intramuscular (musculatura do peito; e grupo IN, mesmo protocolo, porém, pela via intranasal. Os parâmetros avaliados foram: período de latência, tempo de duração em decúbito dorsal, tempo total de anestesia, tempo de recuperação e efeitos adversos. Para a análise estatística, empregou-se o teste de Wilcoxon, com as diferenças consideradas significativas quando PThe intranasal route is a good alternative because is painless and easy to perform in birds. The objective of this study was to evaluate the anesthetic effects of S+ ketamine and midazolam administered by intranasal or intramuscular route in pigeons. Twelve animals were used in a randomized and crossover design. Animals received two treatments with 2-weeks interval. IM group: animals received 20mg/kg of S+ ketamine and 3.5mg/kg of midazolam by intramuscular route (pectoral muscles; IN group: animals received the same protocol by intranasal route. Parameters evaluated were: onset of action, time of duration in dorsal recumbency; total time of anesthesia and side effects. Statistical analysis was performed using Wilcoxon test and the differences were considered significant when P<0.05. Onset of action was 30 [30-47.5] and 40 [30-50] seconds for IM and IN respectively. Time of duration in dorsal recumbency was 59 [53.25-65] and 63 [37-71.25] minutes for IM and IN respectively, without significant differences between treatments. Total time of anesthesia was 88 [86.25-94.5] and 68 [53.5-93] minutes for IM and IN, respectively, with significant

  14. Hydrogel-PLGA delivery system prolongs 2-methoxyestradiol-mediated anti-tumor effects in osteosarcoma cells.

    Science.gov (United States)

    Maran, Avudaiappan; Dadsetan, Mahrokh; Buenz, Colleen M; Shogren, Kristen L; Lu, Lichun; Yaszemski, Michael J

    2013-09-01

    Osteosarcoma is a bone tumor that affects children and young adults. 2-Methoxyestradiol (2-ME), a naturally occurring estrogen metabolite, kills osteosarcoma cells, but does not affect normal osteoblasts. In order to effectively target osteosarcoma and improve the therapeutic index of the drug 2-ME, we have encapsulated 2-ME in a composite of oligo-(polyethylene glycol) fumarate (OPF) hydrogel and poly (lactic-co-glycolic acid) (PLGA) microspheres and investigated the effect of polymer composition on 2-ME release kinetics and osteosarcoma cell survival. The in vitro study shows that 2-ME can be released in a controlled manner over 21-days. The initial burst releases observed on day 1 were 50% and 32% for OPF and OPF/PLGA composites, respectively. The extended release kinetics show that 100% of the encapsulated 2-ME is released by day 12 from OPF, whereas the OPF/PLGA composites showed a release of 85% on day 21. 2-ME released from the polymers was biologically active and blocked osteosarcoma cell proliferation in vitro. Also, comparison of 2-ME delivery in osteosarcoma cells in culture, shows that direct treatment has no effect after 3 days, whereas polymer-mediated delivery produces anti-tumor effects that could be sustained for 21 days. These findings show that the OPF and PLGA polymeric system may prove to be useful in controlled and sustained delivery of 2-ME and could be further explored in the treatment of osteosarcoma. Copyright © 2012 Wiley Periodicals, Inc.

  15. Pharmacokinetic Studies of Intramuscular Midazolam in Guinea Pigs Challenged With Soman

    National Research Council Canada - National Science Library

    Capacio, Benedict R; Byers, C. E; Merk, K. A; Smith, J. R; McDonough, J. H

    2004-01-01

    ...) activity following intramuscular (im) injection to soman-exposed guinea pigs (Crl:(HA)BR). Prior to experiments, the animals were surgically implanted with EEG leads to monitor seizure activity...

  16. Florfenicol concentrations in milk of lactating cows postreated by intramuscular or intramammary routes

    Directory of Open Access Journals (Sweden)

    John Ruiz B

    2010-08-01

    Full Text Available intramammary administration to establish the optimum withdrawal time, therapeutic efficacy, and its influence on milk yield. Materials and method. Twelve healthy lactating Holstein cows were selected from the University of Antioquia’s teaching dairy herd (Colombia, were randomly assigned to a control (n=6 group or florfenicol (n=6 group that received 20 mg/kg of florfenicol by intramammary and intramuscular routes, with a 15 days washout period between treatments. Results. The Tmax and Cmax for the intramuscular route were 6 hoursand 2.86 mg/L respectively. The Tmax and Cmax for the intramammary route, were estimated at 0 hour and about 20000 mg/L respectively by extrapolated from regression line. The florfenicol elimination phase in milk had an average half-life of elimination (t½ of 19.8 hours and 4.9 hours for intramuscular and intramammary administration, respectively. The therapeutic efficacy only was reached by intramammary route, when minimal inhibitory concentration (M.I.C. of florfenicol by Stahphylococcus aureus, was used as reference value. There was no statistically significant difference in milk yield between treated and non-treated cows. Conclusions. According to these results, post-treatment milk withdrawal should be no less than 3 days for intramammary administration, and at least 7 days for intramuscular administration. The therapeutic efficacy only was reached by intramammary route. In addition, there was no statistically significant difference in milk yield between treated and nontreated cows.

  17. Ultrasound-mediated drug delivery using liposomes modified with a thermosensitive polymer.

    Science.gov (United States)

    Ninomiya, Kazuaki; Kawabata, Shinya; Tashita, Hiroyuki; Shimizu, Nobuaki

    2014-01-01

    Ultrasound-mediated drug delivery was established using liposomes that were modified with the thermosensitive polymer (TSP) poly(NIPMAM-co-NIPAM), which sensitized the liposomes to high temperatures. TSP-modified liposomes (TSP liposomes) released encapsulated calcein under 1 MHz ultrasound irradiation at 0.5 W/cm(2) for 120 s as well as the case under incubation at 42 °C for 15 min. In addition, uptake of the drug released from TSP liposomes by cancer cells was enhanced by ultrasound irradiation. In a cell injury assay using doxorubicin (DOX)-loaded TSP liposomes and ultrasound irradiation, cell viability of HepG2 cells at 6 h after ultrasound irradiation (1 MHz, 0.5 W/cm(2) for 30 s) with DOX-loaded TSP liposomes (TSP/lipid ratio=1) was 60%, which was significantly lower than that of the control conditions such as DOX-loaded TSP liposomes alone and DOX-loaded intact liposomes under ultrasound irradiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Peptide and protein delivery using new drug delivery systems.

    Science.gov (United States)

    Jain, Ashish; Jain, Aviral; Gulbake, Arvind; Shilpi, Satish; Hurkat, Pooja; Jain, Sanjay K

    2013-01-01

    Pharmaceutical and biotechnological research sorts protein drug delivery systems by importance based on their various therapeutic applications. The effective and potent action of the proteins/peptides makes them the drugs of choice for the treatment of numerous diseases. Major research issues in protein delivery include the stabilization of proteins in delivery devices and the design of appropriate target-specific protein carriers. Many efforts have been made for effective delivery of proteins/peptidal drugs through various routes of administrations for successful therapeutic effects. Nanoparticles made of biodegradable polymers such as poly lactic acid, polycaprolactone, poly(lactic-co-glycolic acid), the poly(fumaric-co-sebacic) anhydride chitosan, and modified chitosan, as well as solid lipids, have shown great potential in the delivery of proteins/peptidal drugs. Moreover, scientists also have used liposomes, PEGylated liposomes, niosomes, and aquasomes, among others, for peptidal drug delivery. They also have developed hydrogels and transdermal drug delivery systems for peptidal drug delivery. A receptor-mediated delivery system is another attractive strategy to overcome the limitation in drug absorption that enables the transcytosis of the protein across the epithelial barrier. Modification such as PEGnology is applied to various proteins and peptides of the desired protein and peptides also increases the circulating life, solubility and stability, pharmacokinetic properties, and antigenicity of protein. This review focuses on various approaches for effective protein/peptidal drug delivery, with special emphasis on insulin delivery.

  19. Associations of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs

    NARCIS (Netherlands)

    Gerbens, F.; Verburg, F.J.; Moerkerk, van H.T.; Engel, B.; Buist, W.; Veerkamp, J.H.; Pas, te M.F.

    2001-01-01

    Intramuscular fat content is a major determinant of meat quality in pigs. Previously, polymorphisms in the adipocyte and heart fatty acid-binding protein genes, A-FABP and H-FABP, have been significantly associated with genetic variation of intramuscular fat content in a Duroc pig population.

  20. Associations of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs.

    NARCIS (Netherlands)

    Gerbens, F.; Verburg, F.J.; Moerkerk, H.T.B. van; Engel, B.; Buist, W.; Veerkamp, J.H.; Pas, M.F. te

    2001-01-01

    Intramuscular fat content is a major determinant of meat quality in pigs. Previously, polymorphisms in the adipocyte and heart fatty acid-binding protein genes, A-FABP and H-FABP, have been significantly associated with genetic variation of intramuscular fat content in a Duroc pig population.

  1. Kinetics of sup(99m)Tc-EHDP administered by intramuscular injection in man and in experimental animals

    Energy Technology Data Exchange (ETDEWEB)

    Vattimo, A.; Lore, F.; Pisani, M.

    1981-06-01

    With the aim of assessing the kinetics of a diphosphonate administered by intramuscular injection, we have studied the behaviour of sup(99m)Tc-labelled 1-hydroxy-1, 1-diphosphonate in man and in experimental animals, after intramuscular injection. The curves of plasma and urine radioactivity were analyzed in a six-compartment kinetic model containing seven transition coefficients. The results show that the diphosphonate given by intramuscular injection is absorbed rapidly and completely. Therefore the possibility of using this way of administration should be considered in the pathological conditions in which diphosphonates are used as therapeutic agents.

  2. Systemic and local immune response in pigs intradermally and intramuscularly injected with inactivated Mycoplasma hyopneumoniae vaccines.

    Science.gov (United States)

    Martelli, P; Saleri, R; Cavalli, V; De Angelis, E; Ferrari, L; Benetti, M; Ferrarini, G; Merialdi, G; Borghetti, P

    2014-01-31

    The systemic and respiratory local immune response induced by the intradermal administration of a commercial inactivated Mycoplasma hyopneumoniae whole-cell vaccine (Porcilis(®) MHYO ID ONCE - MSD AH) in comparison with two commercial vaccines administered via the intramuscular route and a negative control (adjuvant only) was investigated. Forty conventional M. hyopneumoniae-free pigs were randomly assigned to four groups (ten animals each): Group A=intradermal administration of the test vaccine by using the needle-less IDAL(®) vaccinator at a dose of 0.2 ml; Group B=intramuscular administration of a commercially available vaccine (vaccine B); Group C=intramuscular administration of the adjuvant only (2 ml of X-solve adjuvant); Group D=intramuscular administration of a commercially available vaccine (vaccine D). Pigs were vaccinated at 28 days of age. Blood and bronchoalveolar lavage (BAL) fluid samples were collected at vaccination (blood only), 4 and 8 weeks post-vaccination. Serum and BAL fluid were tested for the presence of antibodies by ELISA test. Peripheral blood monomorphonuclear cells (PBMC) were isolated to quantify the number of IFN-γ secreting cells by ELISpot. Moreover, cytokine gene expression from the BAL fluid was performed. Total antibodies against M. hyopneumoniae and specific IgG were detected in serum of intradermally and intramuscularly (vaccine B only) vaccinated pigs at 4 and 8 weeks post-vaccination. M. hyopneumoniae specific IgA were detected in BAL fluid from vaccinated animals (Groups A and B) but not from controls and animals vaccinated with the bacterin D (padministration of an adjuvanted bacterin induces both systemic and mucosal immune responses. Moreover, the intramuscularly administered commercial vaccines each had a different ability to stimulate the immune response both systemically and locally. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Cell-type specific oxytocin gene expression from AAV delivered promoter deletion constructs into the rat supraoptic nucleus in vivo.

    Directory of Open Access Journals (Sweden)

    Raymond L Fields

    Full Text Available The magnocellular neurons (MCNs in the hypothalamus selectively express either oxytocin (OXT or vasopressin (AVP neuropeptide genes, a property that defines their phenotypes. Here we examine the molecular basis of this selectivity in the OXT MCNs by stereotaxic microinjections of adeno-associated virus (AAV vectors that contain various OXT gene promoter deletion constructs using EGFP as the reporter into the rat supraoptic nucleus (SON. Two weeks following injection of the AAVs, immunohistochemical assays of EGFP expression from these constructs were done to determine whether the EGFP reporter co-localizes with either the OXT- or AVP-immunoreactivity in the MCNs. The results show that the key elements in the OT gene promoter that regulate the cell-type specific expression the SON are located -216 to -100 bp upstream of the transcription start site. We hypothesize that within this 116 bp domain a repressor exists that inhibits expression specifically in AVP MCNs, thereby leading to the cell-type specific expression of the OXT gene only in the OXT MCNs.

  4. The neuroprotective effects of intramuscular insulin-like growth factor-I treatment in brain ischemic rats.

    Directory of Open Access Journals (Sweden)

    Heng-Chih Chang

    Full Text Available Brain ischemia leads to muscle inactivity-induced atrophy and may exacerbate motor function deficits. Intramuscular insulin-like growth factor I (IGF-I injection has been shown to alleviate the brain ischemia-induced muscle atrophy and thus improve the motor function. Motor function is normally gauged by the integrity and coordination of the central nervous system and peripheral muscles. Whether brain ischemic regions are adaptively changed by the intramuscular IGF-I injection is not well understood. In this study, the effect of intramuscular IGF-I injection was examined on the central nervous system of brain ischemic rats. Rats were divided into 4 groups: sham control, brain ischemia control, brain ischemia with IGF-I treatment, and brain ischemia with IGF-I plus IGF-I receptor inhibitor treatment. Brain ischemia was induced by right middle cerebral artery occlusion. IGF-I and an IGF-1 receptor inhibitor were injected into the affected calf and anterior tibialis muscles of the treated rats for 4 times. There was an interval of 2 days between each injection. Motor function was examined and measured at the 24 hours and 7 days following a brain ischemia. The affected hind-limb muscles, sciatic nerve, lumbar spinal cord, and motor cortex were collected for examination after euthanizing the rats. IGF-I expression in the central nervous system and affected muscles were significantly decreased after brain ischemia. Intramuscular IGF-I injection increased the IGF-I expression in the affected muscles, sciatic nerve, lumbar spinal cord, and motor cortex. It also increased the p-Akt expression in the affected motor cortex. Furthermore, intramuscular IGF-I injection decreased the neuronal apoptosis and improved the motor function. However, co-administration of the IGF-I receptor inhibitor eliminated these effects. Intramuscular IGF-I injection after brain ischemia attenuated or reversed the decrease of IGF-I in both central and peripheral tissues, and

  5. Efficacy and Tolerability of Intramuscular Dexketoprofen in Postoperative Pain Management following Hernia Repair Surgery

    OpenAIRE

    Jamdade, P. T.; Porwal, A.; Shinde, J. V.; Erram, S. S.; Kamat, V. V.; Karmarkar, P. S.; Bhagtani, K.; Dhorepatil, S.; Irpatgire, R.; Bhagat, H.; Kolte, S. S.; Shirure, P. A.

    2011-01-01

    Objective. To evaluate the safety and efficacy of intramuscular dexketoprofen for postoperative pain in patients undergoing hernia surgery. Methodology. Total 202 patients received single intramuscular injection of dexketoprofen 50 mg or diclofenac 50 mg postoperatively. The pain intensity (PI) was self-evaluated by patients on VAS at baseline 1, 2, 4, 6, and 8 hours. The efficacy parameters were number of responders, difference in PI (PID) at 8 hours, sum of analogue of pain intensity differ...

  6. DNA Minicircle Technology Improves Purity of Adeno-associated Viral Vector Preparations

    Directory of Open Access Journals (Sweden)

    Maria Schnödt

    2016-01-01

    Full Text Available Adeno-associated viral (AAV vectors are considered as one of the most promising delivery systems in human gene therapy. In addition, AAV vectors are frequently applied tools in preclinical and basic research. Despite this success, manufacturing pure AAV vector preparations remains a difficult task. While empty capsids can be removed from vector preparations owing to their lower density, state-of-the-art purification strategies as of yet failed to remove antibiotic resistance genes or other plasmid backbone sequences. Here, we report the development of minicircle (MC constructs to replace AAV vector and helper plasmids for production of both, single-stranded (ss and self-complementary (sc AAV vectors. As bacterial backbone sequences are removed during MC production, encapsidation of prokaryotic plasmid backbone sequences is avoided. This is of particular importance for scAAV vector preparations, which contained an unproportionally high amount of plasmid backbone sequences (up to 26.1% versus up to 2.9% (ssAAV. Replacing standard packaging plasmids by MC constructs not only allowed to reduce these contaminations below quantification limit, but in addition improved transduction efficiencies of scAAV preparations up to 30-fold. Thus, MC technology offers an easy to implement modification of standard AAV packaging protocols that significantly improves the quality of AAV vector preparations.

  7. Investigation of the mechanisms that influence the accretion of bovine intramuscular and subcutaneous adipose tissue

    International Nuclear Information System (INIS)

    Miller, M.F.

    1987-01-01

    The understanding of the mechanisms that differ between breeds of cattle and their ability to deposit intramuscular adipose tissue is imperative to profitable beef production. Thus, the interactions among breeds, metabolic substrates and specific hormones in bovine intramuscular and subcutaneous adipose tissue were investigated. Subcutaneous and intramuscular adipose tissues were obtained from 10 Angus and 9 Santa Gertrudis steers immediately postmortem. The adipose tissues were incubated for 2 h and 48 h with and without 1 mU/ml insulin and 30 mg/ml bovine serum albumin (BSA) to measure the incorporation of 14 C-labeled acetate and glucose into lipid fractions. At the same chronological age, Angus steers had a more youthful lean maturity score, higher USDA marbling scores and higher USDA quality grades than carcasses from Santa Gertrudis steers

  8. PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy.

    Science.gov (United States)

    Xie, Ying; Qiao, Hongzhi; Su, Zhigui; Chen, Minglei; Ping, Qineng; Sun, Minjie

    2014-09-01

    Lack of safe and effective delivery vehicle is the main obstacle for siRNA mediated cancer therapy. In this study, we synthesized a pH-sensitive polymer of PEG grafted carboxymethyl chitosan (PEG-CMCS) and developed anionic-charged hybrid nanoparticles of PEG-CMCS and calcium phosphate (CaP) for siRNA delivery through a single-step self-assembly method in aqueous condition. The formed nanoparticles with charge of around -8.25 mv and average diameter of 102.1 nm exhibited efficient siRNA encapsulation and enhanced colloidal and serum stability. The test in vitro indicated that the nanoparticles entered into HepG2 cells by endocytosis, and achieved endosomal escape of siRNA effectively due to the pH-responsive disassembly of nanoparticles and dissolution of CaP in the endosome. Reporter gene silencing assay showed that luciferase siRNA delivered by the anionic nanoparticles could achieve gene silencing efficacy comparable to that of conventional Lipofectamine 2000. Additionally, dramatic hTERT knockdown mediated by the anionic nanoparticles transfection induced significant apoptosis of HepG2 cells in vitro. After intravenous injection in tumor-bearing BALB/c nude mice, the nanoparticles specifically accumulated into tumor regions by EPR effect, leading to efficient and specific gene silencing sequentially. Most importantly, the nanoparticles carrying hTERT siRNA inhibited tumor growth significantly via silencing hTERT expression and inducing cells apoptosis in HepG2 tumor xenograft. Moreover, comprehensive safety studies of the nanoparticles confirmed their superior safety both in vitro and in vivo. We concluded that the PEG-CMCS/CaP hybrid anionic nanoparticles possessed potential as a safe and effective siRNA delivery system for anticancer therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Molecular Factors Underlying the Deposition of Intramuscular Fat and Collagen in Skeletal Muscle of Nellore and Angus Cattle.

    Science.gov (United States)

    Martins, Taiane S; Sanglard, Letícia M P; Silva, Walmir; Chizzotti, Mário L; Rennó, Luciana N; Serão, Nick V L; Silva, Fabyano F; Guimarães, Simone E F; Ladeira, Márcio M; Dodson, Michael V; Du, Min; Duarte, Marcio S

    2015-01-01

    Studies have shown that intramuscular adipogenesis and fibrogenesis may concomitantly occur in skeletal muscle of beef cattle. Thus, we hypothesized that the discrepancy of intramuscular fat content in beef from Nellore and Angus was associated with differences in intramuscular adipogenesis and fibrogenesis during the finishing phase. To test our hypothesis, longissimus muscle samples of Nellore (n = 6; BW = 372.5 ± 37.3 kg) and Angus (n = 6; BW = 382.8 ± 23.9 kg) cattle were collected for analysis of gene and protein expression, and quantification of intramuscular fat and collagen. Least-squares means were estimated for the effect of Breed and differences were considered at P ≤ 0.05. A greater intramuscular fat content was observed in skeletal muscle of Angus compared to Nellore cattle (P≤0.05). No differences were observed for mRNA expression of lipogenic and lipolytic markers ACC, FAS, FABP4, SERBP-1, CPT-2, LPL, and ACOX (P > 0.05) in skeletal muscle of Nellore and Angus cattle. Similarly, no differences were observed in mRNA expression of adipogenic markers Zfp423, PPARγ, and C/EBPα (P>0.05) However, a greater PPARγ protein content was observed in skeletal muscle of Angus compared to Nellore cattle (P≤0.05). A greater abundance of adipo/fibrogenic cells, evaluated by the PDGFRα content, was observed in skeletal muscle of Angus than Nellore cattle (P≤0.05). No differences in fibrogenesis were observed in skeletal muscle of Angus and Nellore cattle, which is in accordance with the lack of differences in intramuscular collagen content in beef from both breeds (P>0.05). These findings demonstrate that difference in intramuscular fat content is associated with a slightly enhanced adipogenesis in skeletal muscle of Angus compared to Nellore cattle, while no difference in fibrogenesis.

  10. Rational design and evaluation of HBsAg polymeric nanoparticles as antigen delivery carriers.

    Science.gov (United States)

    Dewangan, Hitesh Kumar; Pandey, Tarun; Maurya, Lakshmi; Singh, Sanjay

    2018-05-01

    The present work is focused on the development and evaluation of single dose sustained-release Hepatitis B surface antigen (HBsAg) loaded nanovaccine for Hepatitis B. The conventional treatment suffers from repeated administration and hence requires a booster dose. Therefore, polymeric nanovaccine of HBsAg was developed by double emulsion solvent evaporation technique, utilizing central composite design for formulation optimization. The effects of independent variables (like polymer amount, stabilizer concentration, aqueous/organic phase ratio and homogenizer speed) were also studied on critical quality attributes like particle size and entrapment efficiency. Nanovaccine was characterized in terms of physicochemical parameters, release, internalization and in vivo immunological evaluation in BALB/c mice after administration by different routes such as oral, sub-cutaneous, nasal and intramuscular. The designed nanovaccine demonstrated nanometric size with smooth surface, negative zeta potential, maximum entrapment, sustained release and better internalization in macrophage and MRC-5 cell line. The immune-stimulating activity of nanovaccine administered by different routes was evaluated by measuring anti-HBsAg titre like specific immunoglobulin IgG and IgA response and cytokine level (interleukin-2, interferon-Y) measurement. The results indicated that the nanovaccine administered by intramuscular route produced better humoral as well as cellular responses and potential carriers for antigen delivery at single dose administration via intramuscular route. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Fibrous Myopathy as a Complication of Repeated Intramuscular Injections for Chronic Headache

    Directory of Open Access Journals (Sweden)

    R Burnham

    2006-01-01

    Full Text Available Two cases of fibrous myopathy associated with repeated, long-term intramuscular injections for treatment of chronic temporomandibular joint pain and chronic headache, respectively, are described. Both patients developed severe, function-limiting contractures in upper and lower extremity muscles used as injection sites. In one of the cases, the contractures were painful. Electrophysiological testing, magnetic resonance imaging and muscle biopsy results were all consistent with myopathy and replacement of skeletal muscle with noncontractile fibrous tissue. These cases are presented to increase awareness of fibrous myopathy and to promote surveillance for this serious potential complication of long-term intramuscular injections in chronic headache and other pain patients.

  12. Gene Delivery of Activated Factor VII Using Alternative Adeno-Associated Virus Serotype Improves Hemostasis in Hemophiliac Mice with FVIII Inhibitors and Adeno-Associated Virus Neutralizing Antibodies.

    Science.gov (United States)

    Sun, Junjiang; Hua, Baolai; Chen, Xiaojing; Samulski, Richard J; Li, Chengwen

    2017-08-01

    While therapeutic expression of coagulation factors from adeno-associated virus (AAV) vectors has been successfully achieved in patients with hemophilia, neutralizing antibodies to the vector and inhibitory antibodies to the transgene severely limit efficacy. Indeed, approximately 40% of mice transduced with human factor VIII using the AAV8 serotype developed inhibitory antibodies to factor VIII (FVIII inhibitor), as well as extremely high titers (≥1:500) of neutralizing antibodies to AAV8. To correct hemophilia in these mice, AAV9, a serotype with low in vitro cross-reactivity (≤1:5) to anti-AAV8, was used to deliver mouse-activated factor VII (mFVIIa). It was found that within 6 weeks of systemic administration of 2 × 10 13 particles/kg of AAV9/mFVIIa, hemophiliac mice with FVIII inhibitors and neutralizing antibodies (NAb) to AAV8 achieved hemostasis comparable to that in wild-type mice, as measured by rotational thromboelastometry. A level of 737 ng/mL mFVIIa was achieved after AAV9/mFVIIa adminstration compared to around 150 ng/mL without vector treatment, and concomitantly prothrombin time was shortened. Tissues collected after intra-articular hemorrhage from FVIII-deficient mice and mice with FVIII inhibitors were scored 4.7 and 5.5, respectively, on a scale of 0-10, indicating significant pathological damage. However, transduction with AAV9/mFVIIa decreased pathology scores to 3.6 and eliminated hemosiderin iron deposition in the synovium in most mice. Collectively, these results suggest that application of alternative serotypes of AAV vector to deliver bypassing reagents has the potential to correct hemophilia and prevent hemoarthrosis, even in the presence of FVIII inhibitor and neutralizing antibodies to AAV.

  13. Lipofection of purified adeno-associated virus Rep68 protein: toward a chromosome-targeting nonviral particle.

    Science.gov (United States)

    Lamartina, S; Roscilli, G; Rinaudo, D; Delmastro, P; Toniatti, C

    1998-09-01

    Adeno-associated virus (AAV) integrates very efficiently into a specific site (AAVS1) of human chromosome 19. Two elements of the AAV genome are sufficient: the inverted terminal repeats (ITRs) and the Rep78 or Rep68 protein. The incorporation of the AAV integration machinery in nonviral delivery systems is of great interest for gene therapy. We demonstrate that purified recombinant Rep68 protein is functionally active when directly delivered into human cells by using the polycationic liposome Lipofectamine, promoting the rescue-replication of a codelivered ITR-flanked cassette in adenovirus-infected cells and its site-specific integration in noninfected cells. The sequencing of cloned virus-host DNA junctions confirmed that lipofected Rep68 protein triggers site-specific integration at the same sites in chromosome 19 already characterized in cells latently infected with AAV.

  14. Multi-parametric MRI at 14T for muscular dystrophy mice treated with AAV vector-mediated gene therapy.

    Directory of Open Access Journals (Sweden)

    Joshua Park

    Full Text Available The objective of this study was to investigate the efficacy of using quantitative magnetic resonance imaging (MRI as a non-invasive tool for the monitoring of gene therapy for muscular dystrophy. The clinical investigations for this family of diseases often involve surgical biopsy which limits the amount of information that can be obtained due to the invasive nature of the procedure. Thus, other non-invasive tools may provide more opportunities for disease assessment and treatment responses. In order to explore this, dystrophic mdx4cv mice were systemically treated with a recombinant adeno-associated viral (AAV vector containing a codon-optimized micro-dystrophin gene. Multi-parametric MRI of T2, magnetization transfer, and diffusion effects alongside 3-D volume measurements were then utilized to monitor disease/treatment progression. Mice were imaged at 10 weeks of age for pre-treatment, then again post-treatment at 8, 16, and 24 week time points. The efficacy of treatment was assessed by physiological assays for improvements in function and quantification of expression. Tissues from the hindlimbs were collected for histological analysis after the final time point for comparison with MRI results. We found that introduction of the micro-dystrophin gene restored some aspects of normal muscle histology and pathology such as decreased necrosis and resistance to contraction-induced injury. T2 relaxation values showed percentage decreases across all muscle types measured (tibialis anterior, gastrocnemius, and soleus when treated groups were compared to untreated groups. Additionally, the differences between groups were statistically significant for the tibialis anterior as well. The diffusion measurements showed a wider range of percentage changes and less statistical significance while the magnetization transfer effect measurements showed minimal change. MR images displayed hyper-intense regions of muscle that correlated with muscle pathology in

  15. Adeno-associated viral vector-mediated neurotrophin gene transfer in the injured adult rat spinal cord improves hind-limb function

    NARCIS (Netherlands)

    Blits, B; Oudega, M.; Boer, G J; Bartlett Bunge, M; Verhaagen, J

    2003-01-01

    To foster axonal growth from a Schwann cell bridge into the caudal spinal cord, spinal cells caudal to the implant were transduced with adeno-associated viral (AAV) vectors encoding for brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (AAV-NT-3). Control rats received AAV vectors encoding

  16. Efficacy and Tolerability of Intramuscular Dexketoprofen in Postoperative Pain Management following Hernia Repair Surgery.

    Science.gov (United States)

    Jamdade, P T; Porwal, A; Shinde, J V; Erram, S S; Kamat, V V; Karmarkar, P S; Bhagtani, K; Dhorepatil, S; Irpatgire, R; Bhagat, H; Kolte, S S; Shirure, P A

    2011-01-01

    Objective. To evaluate the safety and efficacy of intramuscular dexketoprofen for postoperative pain in patients undergoing hernia surgery. Methodology. Total 202 patients received single intramuscular injection of dexketoprofen 50 mg or diclofenac 50 mg postoperatively. The pain intensity (PI) was self-evaluated by patients on VAS at baseline 1, 2, 4, 6, and 8 hours. The efficacy parameters were number of responders, difference in PI (PID) at 8 hours, sum of analogue of pain intensity differences (SAPID), and onset and duration of analgesia. Tolerability assessment was done by global evaluation and adverse events in each group. Results. Dexketoprofen showed superior efficacy in terms of number of responders (P = .007), PID at 8 hours (P = .02), and SAPID( 0-8 hours ) (P dexketoprofen trometamol 50 mg given intramuscularly provided faster, better, and longer duration of analgesia in postoperative patients of hernia repair surgery than diclofenac 50 mg, with comparable safety.

  17. Capsid Mutated Adeno-Associated Virus Delivered to the Anterior Chamber Results in Efficient Transduction of Trabecular Meshwork in Mouse and Rat.

    Directory of Open Access Journals (Sweden)

    Barbara Bogner

    Full Text Available Adeno associated virus (AAV is well known for its ability to deliver transgenes to retina and to mediate improvements in animal models and patients with inherited retinal disease. Although the field is less advanced, there is growing interest in AAV's ability to target cells of the anterior segment. The purpose of our study was to fully articulate a reliable and reproducible method for injecting the anterior chamber (AC of mice and rats and to investigate the transduction profiles of AAV2- and AAV8-based capsid mutants containing self-complementary (sc genomes in the anterior segment of the eye.AC injections were performed in C57BL/6 mice and Sprague Dawley rats. The cornea was punctured anterior of the iridocorneal angle. To seal the puncture site and to prevent reflux an air bubble was created in the AC. scAAVs expressing GFP were injected and transduction was evaluated by immunohistochemistry. Both parent serotype and capsid modifications affected expression. scAAV2- based vectors mediated efficient GFP-signal in the corneal endothelium, ciliary non-pigmented epithelium (NPE, iris and chamber angle including trabecular meshwork, with scAAV2(Y444F and scAAV2(triple being the most efficient.This is the first study to semi quantitatively evaluate transduction of anterior segment tissues following injection of capsid-mutated AAV vectors. scAAV2- based vectors transduced corneal endothelium, ciliary NPE, iris and trabecular meshwork more effectively than scAAV8-based vectors. Mutagenesis of surface-exposed tyrosine residues greatly enhanced transduction efficiency of scAAV2 in these tissues. The number of Y-F mutations was not directly proportional to transduction efficiency, however, suggesting that proteosomal avoidance alone may not be sufficient. These results are applicable to the development of targeted, gene-based strategies to investigate pathological processes of the anterior segment and may be applied toward the development of gene

  18. Engineering adeno-associated viruses for clinical gene therapy.

    Science.gov (United States)

    Kotterman, Melissa A; Schaffer, David V

    2014-07-01

    Clinical gene therapy has been increasingly successful owing both to an enhanced molecular understanding of human disease and to progressively improving gene delivery technologies. Among these technologies, delivery vectors based on adeno-associated viruses (AAVs) have emerged as safe and effective and, in one recent case, have led to regulatory approval. Although shortcomings in viral vector properties will render extension of such successes to many other human diseases challenging, new approaches to engineer and improve AAV vectors and their genetic cargo are increasingly helping to overcome these barriers.

  19. Real-time simultaneous and proportional myoelectric control using intramuscular EMG

    Science.gov (United States)

    Smith, Lauren H.; Kuiken, Todd A.; Hargrove, Levi J.

    2014-12-01

    Objective. Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscular EMG signals could overcome this constraint. The objective of this study was to evaluate the real-time simultaneous control of three DOFs (wrist rotation, wrist flexion/extension, and hand open/close) using intramuscular EMG. Approach. We evaluated task performance of five able-bodied subjects in a virtual environment using two control strategies with fine-wire EMG: (i) parallel dual-site differential control, which enabled simultaneous control of three DOFs and (ii) pattern recognition control, which required sequential control of DOFs. Main results. Over the course of the experiment, subjects using parallel dual-site control demonstrated increased use of simultaneous control and improved performance in a Fitts’ Law test. By the end of the experiment, performance using parallel dual-site control was significantly better (up to a 25% increase in throughput) than when using sequential pattern recognition control for tasks requiring multiple DOFs. The learning trends with parallel dual-site control suggested that further improvements in performance metrics were possible. Subjects occasionally experienced difficulty in performing isolated single-DOF movements with parallel dual-site control but were able to accomplish related Fitts’ Law tasks with high levels of path efficiency. Significance. These results suggest that intramuscular EMG, used in a parallel dual-site configuration, can provide simultaneous control of a multi-DOF prosthetic wrist and hand and may outperform current methods that enforce sequential control.

  20. Evaluation of Linear Regression Simultaneous Myoelectric Control Using Intramuscular EMG.

    Science.gov (United States)

    Smith, Lauren H; Kuiken, Todd A; Hargrove, Levi J

    2016-04-01

    The objective of this study was to evaluate the ability of linear regression models to decode patterns of muscle coactivation from intramuscular electromyogram (EMG) and provide simultaneous myoelectric control of a virtual 3-DOF wrist/hand system. Performance was compared to the simultaneous control of conventional myoelectric prosthesis methods using intramuscular EMG (parallel dual-site control)-an approach that requires users to independently modulate individual muscles in the residual limb, which can be challenging for amputees. Linear regression control was evaluated in eight able-bodied subjects during a virtual Fitts' law task and was compared to performance of eight subjects using parallel dual-site control. An offline analysis also evaluated how different types of training data affected prediction accuracy of linear regression control. The two control systems demonstrated similar overall performance; however, the linear regression method demonstrated improved performance for targets requiring use of all three DOFs, whereas parallel dual-site control demonstrated improved performance for targets that required use of only one DOF. Subjects using linear regression control could more easily activate multiple DOFs simultaneously, but often experienced unintended movements when trying to isolate individual DOFs. Offline analyses also suggested that the method used to train linear regression systems may influence controllability. Linear regression myoelectric control using intramuscular EMG provided an alternative to parallel dual-site control for 3-DOF simultaneous control at the wrist and hand. The two methods demonstrated different strengths in controllability, highlighting the tradeoff between providing simultaneous control and the ability to isolate individual DOFs when desired.

  1. Biological functionalization of drug delivery carriers to bypass size restrictions of receptor-mediated endocytosis independently from receptor targeting.

    Science.gov (United States)

    Ansar, Maria; Serrano, Daniel; Papademetriou, Iason; Bhowmick, Tridib Kumar; Muro, Silvia

    2013-12-23

    Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolae-mediated pathways, allows uptake of nano- and microcarriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and microcarriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems.

  2. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons

    Science.gov (United States)

    Saunders, Arpiar; Johnson, Caroline A.; Sabatini, Bernardo L.

    2012-01-01

    Understanding the organization of the nervous system requires methods for dissecting the contributions of each component cell type to circuit function. One widely used approach combines genetic targeting of Cre recombinase to specific cell populations with infection of recombinant adeno-associated viruses (rAAVs) whose transgene expression is activated by Cre (“Cre-On”). Distinguishing how the Cre-expressing neurons differ functionally from neighboring Cre-negative neurons requires rAAVs that are inactivated by Cre (“Cre-Off”) and can be used in tandem with Cre-On viruses. Here we introduce two rAAV vectors that are inactivated by Cre and carry different fluorophore and optogenetic constructs. We demonstrate single and dual rAAV systems to achieve Cre-On and Cre-Off expression in spatially-intermingled cell populations of the striatum. Using these systems, we uncovered cryptic genomic interactions that occur between multiple Cre-sensitive rAAVs or between Cre-sensitive rAAVs and somatic Cre-conditional alleles and devised methods to avoid these interactions. Our data highlight both important experimental caveats associated with Cre-dependent rAAV use as well as opportunities for the development of improved rAAVs for gene delivery. PMID:22866029

  3. Novel strategy for generation and titration of recombinant adeno-associated virus vectors.

    Science.gov (United States)

    Shiau, Ai-Li; Liu, Pu-Ste; Wu, Chao-Liang

    2005-01-01

    Recombinant adeno-associated virus (rAAV) vectors have many advantages for gene therapeutic applications compared with other vector systems. Several methods that use plasmids or helper viruses have been reported for the generation of rAAV vectors. Unfortunately, the preparation of large-scale rAAV stocks is labor-intensive. Moreover, the biological titration of rAAV is still difficult, which may limit its preclinical and clinical applications. For this study, we developed a novel strategy to generate and biologically titrate rAAV vectors. A recombinant pseudorabies virus (PrV) with defects in its gD, gE, and thymidine kinase genes was engineered to express the AAV rep and cap genes, yielding PS virus, which served as a packaging and helper virus for the generation of rAAV vectors. PS virus was useful not only for generating high-titer rAAV vectors by cotransfection with an rAAV vector plasmid, but also for amplifying rAAV stocks. Notably, the biological titration of rAAV vectors was also feasible when cells were coinfected with rAAV and PS virus. Based on this strategy, we produced an rAAV that expresses prothymosin alpha (ProT). Expression of the ProT protein in vitro and in vivo mediated by rAAV/ProT gene transfer was detected by immunohistochemistry and a bioassay. Taken together, our results demonstrate that the PrV vector-based system is useful for generating rAAV vectors carrying various transgenes.

  4. Health worker and policy-maker perspectives on use of intramuscular artesunate for pre-referral and definitive treatment of severe malaria at health posts in Ethiopia

    Directory of Open Access Journals (Sweden)

    Takele Kefyalew

    2016-10-01

    Full Text Available Abstract Background The World Health Organization (WHO recommends injectable artesunate given either intravenously or by the intramuscular route for definitive treatment for severe malaria and recommends a single intramuscular dose of intramuscular artesunate or intramuscular artemether or intramuscular quinine, in that order of preference as pre-referral treatment when definitive treatment is not possible. Where intramuscular injections are not available, children under 6 years may be administered a single dose of rectal artesunate. Although the current malaria treatment guidelines in Ethiopia recommend intra-rectal artesunate or alternatively intramuscular artemether or intramuscular quinine as pre-referral treatment for severe malaria at the health posts, there are currently no WHO prequalified suppliers of intra-rectal artesunate and when available, its use is limited to children under 6 years of age leaving a gap for the older age groups. Intramuscular artesunate is not part of the drugs recommended for pre-referral treatment in Ethiopia. This study assessed the perspectives of health workers, and policy-makers on the use of intramuscular artesunate as a pre-referral and definitive treatment for severe malaria at the health post level. Methods In-depth interviews were held with 101 individuals including health workers, malaria focal persons, and Regional Health Bureaus from Oromia and southern nations, nationalities, and peoples’ region, as well as participants from the Federal Ministry of Health and development partners. An interview guide was used in the data collection and thematic content analysis was employed for analysis. Results Key findings from this study are: (1 provision of intramuscular artesunate as pre-referral and definitive treatment for severe malaria at health posts could be lifesaving; (2 with adequate training, and provision of facilities including beds, health posts can provide definitive treatment for severe

  5. Intravitreous injection of AAV2-sFLT01 in patients with advanced neovascular age-related macular degeneration: a phase 1, open-label trial.

    Science.gov (United States)

    Heier, Jeffrey S; Kherani, Saleema; Desai, Shilpa; Dugel, Pravin; Kaushal, Shalesh; Cheng, Seng H; Delacono, Cheryl; Purvis, Annie; Richards, Susan; Le-Halpere, Annaig; Connelly, John; Wadsworth, Samuel C; Varona, Rafael; Buggage, Ronald; Scaria, Abraham; Campochiaro, Peter A

    2017-07-01

    Long-term intraocular injections of vascular endothelial growth factor (VEGF)-neutralising proteins can preserve central vision in many patients with neovascular age-related macular degeneration. We tested the safety and tolerability of a single intravitreous injection of an AAV2 vector expressing the VEGF-neutralising protein sFLT01 in patients with advanced neovascular age-related macular degeneration. This was a phase 1, open-label, dose-escalating study done at four outpatient retina clinics in the USA. Patients were assigned to each cohort in order of enrolment, with the first three patients being assigned to and completing the first cohort before filling positions in the following treatment groups. Patients aged 50 years or older with neovascular age-related macular degeneration and a baseline best-corrected visual acuity score of 20/100 or less in the study eye were enrolled in four dose-ranging cohorts (cohort 1, 2 × 10 8 vector genomes (vg); cohort 2, 2 × 10 9 vg; cohort 3, 6 × 10 9 vg; and cohort 4, 2 × 10 10 vg, n=3 per cohort) and one maximum tolerated dose cohort (cohort 5, 2 × 10 10 vg, n=7) and followed up for 52 weeks. The primary objective of the study was to assess the safety and tolerability of a single intravitreous injection of AAV2-sFLT01, through the measurement of eye-related adverse events. This trial is registered with ClinicalTrials.gov, number NCT01024998. 19 patients with advanced neovascular age-related macular degeneration were enrolled in the study between May 18, 2010, and July 14, 2014. All patients completed the 52-week trial period. Two patients in cohort 4 (2 × 10 10 vg) experienced adverse events that were possibly study-drug related: pyrexia and intraocular inflammation that resolved with a topical steroid. Five of ten patients who received 2 × 10 10 vg had aqueous humour concentrations of sFLT01 that peaked at 32·7-112·0 ng/mL (mean 73·7 ng/mL, SD 30·5) by week 26 with a slight decrease to

  6. Methods of treating Parkinson's disease using viral vectors

    Energy Technology Data Exchange (ETDEWEB)

    Bankiewicz, Krystof; Cunningham, Janet

    2016-11-15

    Methods of delivering viral vectors, particularly recombinant adeno-associated virus (rAAV) virions, to the central nervous system (CNS) using convection enhanced delivery (CED) are provided. The rAAV virions include a nucleic acid sequence encoding a therapeutic polypeptide. The methods can be used for treating CNS disorders such as for treating Parkinson's Disease.

  7. Feasibility of baculovirus-mediated reporter gene delivery for efficient monitoring of islet transplantation in vivo

    International Nuclear Information System (INIS)

    Liu, Shuai; Pan, Yu; Lv, Jing; Wu, Haifei; Tian, Jingyan; Zhang, Yifan

    2014-01-01

    Objective: The objective of this study was to explore the feasibility of baculovirus vector-mediated sodium iodide symporter (NIS) gene delivery to monitor islet transplantation. Methods: Baculovirus vectors expressing green fluorescent protein (GFP) or NIS (Bac-GFP and Bac-NIS) were established using the Bac-to-Bac baculovirus expression system. The GFP expression of Bac-GFP-infected rat islets was observed in vitro by fluorescence microscopy. Iodine uptake and inhibition of iodine uptake by NaClO 4 in Bac-NIS-infected islets were dynamically monitored in vitro. Bac-GFP- or Bac-NIS-infected islets were implanted into the left axillary cavity of NOD-SCID mice, and fluorescence imaging and 125 I NanoSPECT/CT imaging were subsequently performed in vivo. Results: Bac-GFP efficiently infected rat islets (over 95% infected at MOI = 40), and the expression of GFP lasted approximately two weeks. NaClO 4 could inhibit iodine uptake by Bac-NIS-infected islets. In vivo imaging revealed that the fluorescence intensity of the transplant sites in Bac-GFP-infected groups was significantly higher than in the non-infected group. Grafts could be clearly observed by 125 I NanoSPECT/CT imaging for up to 8 h. Conclusion: Baculovirus vectors are powerful vehicles for studying rat islets in gene delivery. It is feasible to use a baculovirus vector to delivery an NIS gene for non-invasive monitoring transplanted islets in vivo by the expression of the target gene

  8. Side effects and potential risk factors of botulinum toxin type A intramuscular injections in knee flexion contractures of hemophiliacs.

    Science.gov (United States)

    Rodriguez-Merchan, E Carlos; De la Corte-Rodriguez, Hortensia

    2017-07-01

    Knee flexion contracture (KFC) is a common complication of recurrent hemarthrosis in children and young adults with hemophilia. If the KFC is not prevented (by means of primary prophylaxis) and treated properly and early (be means of physical medicine and rehabilitation), it will become fixed. Areas covered: The aim of this article is to review the potential role of botulinum toxin type A (BTX-A) intramuscular injections for the treatment of KFC in people with hemophilia (PWH). Expert commentary: Although two recent reports have mentioned the benefits of intramuscular injections of BTX-A in PWH with KFC, the data are still scant and too preliminary. The use of intramuscular injections of BTX-A in PWH today should not be recommended until more case studies/small series (ideally well-designed clinical trials) fully demonstrate that this is safe and effective. The risks of intramuscular injections to a hemophilia patient cannot be underestimated (iatrogenic muscle hematomas and pseudotumors). This paper calls the attention of hemophilia treaters on the potential risks of this apparently interesting technique. The current use of BTX-A intramuscular injections in KFC of PWH could make no sense. Raising false expectations in these patients should be avoided.

  9. Anti-human α-synuclein N-terminal peptide antibody protects against dopaminergic cell death and ameliorates behavioral deficits in an AAV-α-synuclein rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Md Shahaduzzaman

    Full Text Available The protein α-synuclein (α-Syn has a central role in the pathogenesis of Parkinson's disease (PD and immunotherapeutic approaches targeting this molecule have shown promising results. In this study, novel antibodies were generated against specific peptides from full length human α-Syn and evaluated for effectiveness in ameliorating α-Syn-induced cell death and behavioral deficits in an AAV-α-Syn expressing rat model of PD. Fisher 344 rats were injected with rAAV vector into the right substantia nigra (SN, while control rats received an AAV vector expressing green fluorescent protein (GFP. Beginning one week after injection of the AAV-α-Syn vectors, rats were treated intraperitoneally with either control IgG or antibodies against the N-terminal (AB1, or central region (AB2 of α-Syn. An unbiased stereological estimation of TH+, NeuN+, and OX6 (MHC-II immunostaining revealed that the α-Syn peptide antibodies (AB1 and AB2 significantly inhibited α-Syn-induced dopaminergic cell (DA and NeuN+ cell loss (one-way ANOVA (F (3, 30 = 5.8, p = 0.002 and (F (3, 29 = 7.92, p = 0.002 respectively, as well as decreasing the number of activated microglia in the ipsilateral SN (one-way ANOVA F = 14.09; p = 0.0003. Antibody treated animals also had lower levels of α-Syn in the ipsilateral SN (one-way ANOVA F (7, 37 = 9.786; p = 0.0001 and demonstrated a partial intermediate improvement of the behavioral deficits. Our data suggest that, in particular, an α-Syn peptide antibody against the N-terminal region of the protein can protect against DA neuron loss and, to some extent behavioral deficits. As such, these results may be a potential therapeutic strategy for halting the progression of PD.

  10. Anxiolytic-like effects after vector-mediated overexpression of neuropeptide Y in the amygdala and hippocampus of mice

    DEFF Research Database (Denmark)

    Christiansen, Søren Hofman Oliveira; Olesen, Mikkel Vestergaard; Gøtzsche, Casper René

    2014-01-01

    , injections of rAAV-NPY caused significant anxiolytic-like effect in the open field, elevated plus maze, and light-dark transition tests. In the hippocampus, rAAV-NPY treatment was associated with anxiolytic-like effect only in the elevated plus maze. No additive effect was observed after combined r....... Using a recombinant adeno-associated viral (rAAV) vector, we addressed this idea by testing effects on anxiolytic- and depression-like behaviours in adult mice after overexpression of NPY transgene in the amygdala and/or hippocampus, two brain regions implicated in emotional behaviours. In the amygdala......AAV-NPY injection into both the amygdala and hippocampus where anxiolytic-like effect was found in the elevated plus maze and light-dark transition tests. Antidepressant-like effects were not detected in any of the rAAV-NPY injected groups. Immobility was even increased in the tail suspension and forced swim tests...

  11. The clearance of liposomes administered by the intramuscular route

    International Nuclear Information System (INIS)

    Arrowsmith, M.; Mills, S.N.

    1982-01-01

    Iodine 131-labelled lecithin was used to label liposomes entrapping cortisone-21-palmitate. The lecithin was injected into the fascia latae muscles of rabbits and the percentage of the initial dose remaining at certain time intervals was calculated from gamma camera image data. Release from the intramuscular site occurs by diffusion from intact liposomes. (U.K.)

  12. Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering.

    Science.gov (United States)

    Yao, Qingqing; Liu, Yangxi; Selvaratnam, Balaranjan; Koodali, Ranjit T; Sun, Hongli

    2018-04-09

    Controlled delivery systems play a critical role in the success of bone morphogenetic proteins (i.e., BMP2 and BMP7) for challenged bone repair. Instead of single-drug release that is currently and commonly prevalent, dual-drug delivery strategies are highly desired to achieve effective bone regeneration because natural bone repair process is driven by multiple factors. Particularly, angiogenesis is essential for osteogenesis and requires more than just one factor (e.g., Vascular Endothelial Growth Factor, VEGF). Therefore, we developed a novel mesoporous silicate nanoparticles (MSNs) incorporated-3D nanofibrous gelatin (GF) scaffold for dual-delivery of BMP2 and deferoxamine (DFO). DFO is a hypoxia-mimetic drug that can activate hypoxia-inducible factor-1 alpha (HIF-1α), and trigger subsequent angiogenesis. Sustained BMP2 release system was achieved through encapsulation into large-pored MSNs, while the relative short-term release of DFO was engineered through covalent conjugation with chitosan to reduce its cytotoxicity and elongate its half-life. Both MSNs and DFO were incorporated onto a porous 3D GF scaffold to serve as a biomimetic osteogenic microenvironment. Our data indicated that DFO and BMP2 were released from a scaffold at different release rates (10 vs 28 days) yet maintained their angiogenic and osteogenic ability, respectively. Importantly, our data indicated that the released DFO significantly improved BMP2-induced osteogenic differentiation where the dose/duration was important for its effects in both mouse and human stem cell models. Thus, we developed a novel and tunable MSNs/GF 3D scaffold-mediated dual-drug delivery system and studied the potential application of the both FDA-approved DFO and BMP2 for bone tissue engineering. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Induction of sustained hypercholesterolemia by single adeno-associated virus-mediated gene transfer of mutant hPCSK9.

    Science.gov (United States)

    Roche-Molina, Marta; Sanz-Rosa, David; Cruz, Francisco M; García-Prieto, Jaime; López, Sergio; Abia, Rocío; Muriana, Francisco J G; Fuster, Valentín; Ibáñez, Borja; Bernal, Juan A

    2015-01-01

    Patients with mutations in the proprotein convertase subtilisin/kexin type 9 (PCSK9) gene have hypercholesterolemia and are at high risk of adverse cardiovascular events. We aimed to stably express the pathological human D374Y gain-of-function mutant form of PCSK9 (PCSK9(DY)) in adult wild-type mice to generate a hyperlipidemic and proatherogenic animal model, achieved with a single systemic injection with adeno-associated virus (AAV). We constructed an AAV-based vector to support targeted transfer of the PCSK9(DY) gene to liver. After injection with 3.5×10(10) viral particles, mice in the C57BL/6J, 129/SvPasCrlf, or FVB/NCrl backgrounds developed long-term hyperlipidemia with a strong increase in serum low-density lipoprotein. Macroscopic and histological analysis showed atherosclerotic lesions in the aortas of AAV-PCSK9(DY) mice fed a high-fat-diet. Advanced lesions in these high-fat-diet-fed mice also showed evidence of macrophage infiltration and fibrous cap formation. Hepatic AAV-PCSK9(DY) infection did not result in liver damage or signs of immunologic response. We further tested the use of AAV-PCSK9(DY) to study potential genetic interaction with the ApoE gene. Histological analysis of ApoE(-/-) AAV-PCSK9(DY) mice showed a synergistic response to ApoE deficiency, with aortic lesions twice as extensive in ApoE(-/-) AAV-PCSK9(DY)-transexpressing mice as in ApoE(-/-) AAV-Luc controls without altering serum cholesterol levels. Single intravenous AAV-PCSK9(DY) injection is a fast, easy, and cost-effective approach, resulting in rapid and long-term sustained hyperlipidemia and atherosclerosis. We demonstrate as a proof of concept the synergy between PCSK9(DY) gain-of-function and ApoE deficiency. This methodology could allow testing of the genetic interaction of several mutations without the need for complex and time-consuming backcrosses. © 2014 American Heart Association, Inc.

  14. Protamine-based nanoparticles as new antigen delivery systems.

    Science.gov (United States)

    González-Aramundiz, José Vicente; Peleteiro Olmedo, Mercedes; González-Fernández, África; Alonso Fernández, María José; Csaba, Noemi Stefánia

    2015-11-01

    The use of biodegradable nanoparticles as antigen delivery vehicles is an attractive approach to overcome the problems associated with the use of Alum-based classical adjuvants. Herein we report, the design and development of protamine-based nanoparticles as novel antigen delivery systems, using recombinant hepatitis B surface antigen as a model viral antigen. The nanoparticles, composed of protamine and a polysaccharide (hyaluronic acid or alginate), were obtained using a mild ionic cross-linking technique. The size and surface charge of the nanoparticles could be modulated by adjusting the ratio of the components. Prototypes with optimal physicochemical characteristics and satisfactory colloidal stability were selected for the assessment of their antigen loading capacity, antigen stability during storage and in vitro and in vivo proof-of-concept studies. In vitro studies showed that antigen-loaded nanoparticles induced the secretion of cytokines by macrophages more efficiently than the antigen in solution, thus indicating a potential adjuvant effect of the nanoparticles. Finally, in vivo studies showed the capacity of these systems to trigger efficient immune responses against the hepatitis B antigen following intramuscular administration, suggesting the potential interest of protamine-polysaccharide nanoparticles as antigen delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors.

    OpenAIRE

    Podsakoff, G; Wong, K K; Chatterjee, S

    1994-01-01

    Gene transfer vectors based on adeno-associated virus (AAV) are emerging as highly promising for use in human gene therapy by virtue of their characteristics of wide host range, high transduction efficiencies, and lack of cytopathogenicity. To better define the biology of AAV-mediated gene transfer, we tested the ability of an AAV vector to efficiently introduce transgenes into nonproliferating cell populations. Cells were induced into a nonproliferative state by treatment with the DNA synthe...

  16. A high-density lipoprotein-mediated drug delivery system.

    Science.gov (United States)

    Mo, Zhong-Cheng; Ren, Kun; Liu, Xing; Tang, Zhen-Li; Yi, Guang-Hui

    2016-11-15

    High-density lipoprotein (HDL) is a comparatively dense and small lipoprotein that can carry lipids as a multifunctional aggregate in plasma. Several studies have shown that increasing the levels or improving the functionality of HDL is a promising target for treating a wide variety of diseases. Among lipoproteins, HDL particles possess unique physicochemical properties, including naturally synthesized physiological components, amphipathic apolipoproteins, lipid-loading and hydrophobic agent-incorporating characteristics, specific protein-protein interactions, heterogeneity, nanoparticles, and smaller size. Recently, the feasibility and superiority of using HDL particles as drug delivery vehicles have been of great interest. In this review, we summarize the structure, constituents, biogenesis, remodeling, and reconstitution of HDL drug delivery systems, focusing on their delivery capability, characteristics, applications, manufacturing, and drug-loading and drug-targeting characteristics. Finally, the future prospects are presented regarding the clinical application and challenges of using HDL as a pharmacodelivery carrier. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Magnetic resonance imaging of intramuscular metastases

    International Nuclear Information System (INIS)

    Surov, Alexey; Spielmann, Rolf-Peter; Behrmann, Curd; Fiedler, Eckhard; Voigt, Wieland; Wienke, Andreas; Holzhausen, Hans-Juergen

    2011-01-01

    The aim of the present study was to analyse magnetic resonance findings of intramuscular metastases (IM) in a relatively large series. From January 2000 to January 2010, 28 patients (207 metastases) were retrospectively identified in the radiological database of the Martin-Luther-University. Several different scanning protocols were used depending on the localisation of IM. In 12 patients diffusion-weighted (DW) images were obtained with a multi-shot SE-EPI sequence. Apparent diffusion coefficient (ADC) maps were also calculated. Furthermore, fusion images were manually generated between the DW and half-Fourier acquisition single-shot turbo spin echo (HASTE) images. On T2-weighted images, 97% of the recognised IM were hyperintense in comparison to unaffected musculature, and 3% were mixed iso- to hyperintense. On T1-weighted images most IM (91%) were homogeneously isointense in comparison to muscle tissue, whereas 4% were hypointense, and 5% lightly hyperintense. ADC maps were calculated for 91 metastases ranging from 0.99 to 4.00 mm 2 s -1 (mean value 1.99 ± 0.66). ADC values of low ( 3.0) in 6%. Of the IM that were investigated with contrast medium, 88.5% showed marked enhancement. It was homogeneous in 88% and heterogenous in 6%. Rim enhancement with central low attenuation was seen in 6%. There was no difference in enhancement characteristics with respect to ADC values or fusion patterns. Peritumoral enhancement was identified in 2.4%. Magnetic resonance features of muscle metastases are relatively typical and consist of round or oval intramuscular masses with well-defined margins, marked enhancement, low or moderate ADC values, and moderate to high signal intensity on fusion images. (orig.)

  18. Recombinant adeno-associated virus-delivered hypoxia-inducible stanniocalcin-1 expression effectively inhibits hypoxia-induced cell apoptosis in cardiomyocytes.

    Science.gov (United States)

    Shi, Xin; Wang, Jianzhong; Qin, Yan

    2014-12-01

    Ischemia/hypoxia-induced oxidative stress is detrimental for the survival of cardiomyocytes and cardiac function. Stanniocalcin-1 (STC-1), a glycoprotein, has been found to play an inhibitory role in the production of reactive oxygen species (ROS). Here, we speculated that the overexpression of STC-1 might alleviate oxidative damage in cardiomyocytes under conditions of hypoxia. To control the expression of STC-1 in hypoxia, we constructed a recombinant adeno-associated virus (AAV) carrying the hypoxia-responsive element (HRE) to mediate hypoxia induction. Cardiomyocytes were infected with AAV-HRE-STC-1 and cultured in normoxic or hypoxic conditions, and STC-1 overexpression was only detected in hypoxic cultured cardiomyocytes by using quantitative real-time polymerase chain reaction and Western blot analysis. Using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, AAV-HRE-STC-1 infection was shown to significantly enhance cell survival under hypoxia. Hypoxia-induced cell apoptosis was inhibited by AAV-HRE-STC-1 infection by using the Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide apoptosis assay. Moreover, the proapoptotic protein Caspase-3 and anti-apoptotic protein Bcl-2, which were dysregulated by hypoxia, were reversed by AAV-HRE-STC-1 infection. AAV-HRE-STC-1-mediated STC-1 overexpression markedly inhibited ROS production in cardiomyocytes cultured under hypoxic conditions. AAV-HRE-STC-1 infection significantly upregulated uncoupled protein 3 (UCP3), whereas silencing of UCP3 blocked the inhibitory effect of AAV-HRE-STC-1 on ROS production. In contrast, AAV-HRE-STC-1 infection had no effect on UCP2, and knockdown of UCP2 did not block the inhibitory effect of AAV-HRE-STC-1 on ROS production in the cardiomyocytes cultured under hypoxic conditions. Taken together, STC1 activates antioxidant pathway in cardiomyocytes through the induction of UCP3, implying that AAV-HRE-STC-1 has potential in the treatment of ischemic

  19. Leg amputation following intramuscular injection of iron dextran in a 32 year old woman

    Directory of Open Access Journals (Sweden)

    Gloria Shalviri

    2015-10-01

    Full Text Available To inform healthcare professionals of a rare serious reaction leading to leg amputation following intramuscular injection of iron dextran and report comments for preventing such reactions.A case of leg amputation following intramuscular injection of iron dextran reported to Iranian Pharmacovigilance Center was reviewed. Patient and reaction data was collected by assessing the reported yellow card, patient chart review and interviewing with patient and physicians. World Health Organization definition for serious reactions was used to determine the seriousness of the reaction. Naranjo algorithm was used to determine probability scale. The probability of the reaction was determined based on questionnaire of Schumock et al. The studied case is classified as a rare and serious but preventable reaction induced by intramuscular injection of iron dextran in a 32 year old woman. The probability of the reaction is appeared to be “probable” based on Naranjo algorithm. It seems that Iron dextran could cause serious and life threatening adverse effects. It is necessary for healthcare professionals to be informed of such rare but serious reaction in order to apply preventive actions.

  20. Induction of CD8(+) T cell responses and protective efficacy following microneedle-mediated delivery of a live adenovirus-vectored malaria vaccine.

    Science.gov (United States)

    Pearson, Frances E; O'Mahony, Conor; Moore, Anne C; Hill, Adrian V S

    2015-06-22

    There is an urgent need for improvements in vaccine delivery technologies. This is particularly pertinent for vaccination programmes within regions of limited resources, such as those required for adequate provision for disposal of used needles. Microneedles are micron-sized structures that penetrate the stratum corneum of the skin, creating temporary conduits for the needle-free delivery of drugs or vaccines. Here, we aimed to investigate immunity induced by the recombinant simian adenovirus-vectored vaccine ChAd63.ME-TRAP; currently undergoing clinical assessment as a candidate malaria vaccine, when delivered percutaneously by silicon microneedle arrays. In mice, we demonstrate that microneedle-mediated delivery of ChAd63.ME-TRAP induced similar numbers of transgene-specific CD8(+) T cells compared to intradermal (ID) administration with needle-and-syringe, following a single immunisation and after a ChAd63/MVA heterologous prime-boost schedule. When mice immunised with ChAd63/MVA were challenged with live Plasmodium berghei sporozoites, microneedle-mediated ChAd63.ME-TRAP priming demonstrated equivalent protective efficacy as did ID immunisation. Furthermore, responses following ChAd63/MVA immunisation correlated with a specific design parameter of the array used ('total array volume'). The level of transgene expression at the immunisation site and skin-draining lymph node (dLN) was also linked to total array volume. These findings have implications for defining silicon microneedle array design for use with live, vectored vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Polyostotic fibrous dysplasia associated with intramuscular myxomas: Mazabraud's syndrome

    International Nuclear Information System (INIS)

    Lassance Cabral, C.E.; Guedes, P.; Celso Cruz, L. Jr.; Smith, J.; Rezende, J.F.

    1998-01-01

    Mazabraud's syndrome, though uncommon, is reported increasingly frequently. It represents an entity readily recognisable radiologically on MR imaging. Awareness of the syndrome, particularly when the myxoma is solitary, can prevent misdiagnosis of intramuscular myxomas (especially when large) as malignant mesenchymal tumors containing myxoid tissue. We review the 34 cases previously reported in the literature and include a recent case from our center. (orig.)

  2. Nanopolymers improve delivery of exon skipping oligonucleotides and concomitant dystrophin expression in skeletal muscle of mdx mice

    Directory of Open Access Journals (Sweden)

    Sirsi Shashank R

    2008-04-01

    Full Text Available Abstract Background Exon skipping oligonucleotides (ESOs of 2'O-Methyl (2'OMe and morpholino chemistry have been shown to restore dystrophin expression in muscle fibers from the mdx mouse, and are currently being tested in phase I clinical trials for Duchenne Muscular Dystrophy (DMD. However, ESOs remain limited in their effectiveness because of an inadequate delivery profile. Synthetic cationic copolymers of poly(ethylene imine (PEI and poly(ethylene glycol (PEG are regarded as effective agents for enhanced delivery of nucleic acids in various applications. Results We examined whether PEG-PEI copolymers can facilitate ESO-mediated dystrophin expression after intramuscular injections into tibialis anterior (TA muscles of mdx mice. We utilized a set of PEG-PEI copolymers containing 2 kDa PEI and either 550 Da or 5 kDa PEG, both of which bind 2'OMe ESOs with high affinity and form stable nanoparticulates with a relatively low surface charge. Three weekly intramuscular injections of 5 μg of ESO complexed with PEI2K-PEG550 copolymers resulted in about 500 dystrophin-positive fibers and about 12% of normal levels of dystrophin expression at 3 weeks after the initial injection, which is significantly greater than for injections of ESO alone, which are known to be almost completely ineffective. In an effort to enhance biocompatibility and cellular uptake, the PEI2K-PEG550 and PEI2K-PEG5K copolymers were functionalized by covalent conjugation with nanogold (NG or adsorbtion of colloidal gold (CG, respectively. Surprisingly, using the same injection and dosing regimen, we found no significant difference in dystrophin expression by Western blot between the NG-PEI2K-PEG550, CG-PEI2K-PEG5K, and non-functionalized PEI2K-PEG550 copolymers. Dose-response experiments using the CG-PEI2K-PEG5K copolymer with total ESO ranging from 3–60 μg yielded a maximum of about 15% dystrophin expression. Further improvements in dystrophin expression up to 20% of normal

  3. Role of FAT/CD36 in fatty acid sensing, energy, and glucose homeostasis regulation in DIO and DR rats.

    Science.gov (United States)

    Le Foll, Christelle; Dunn-Meynell, Ambrose A; Levin, Barry E

    2015-02-01

    Hypothalamic fatty acid (FA) sensing neurons alter their activity utilizing the FA translocator/receptor, FAT/CD36. Depletion of ventromedial hypothalamus (VMH) CD36 with adeno-associated viral vector expressing CD36 shRNA (AAV CD36 shRNA) leads to redistribution of adipose stores and insulin resistance in outbred rats. This study assessed the requirement of VMH CD36-mediated FA sensing for the regulation of energy and glucose homeostasis in postnatal day 5 (P5) and P21 selectively bred diet-induced obese (DIO) and diet-resistant (DR) rats using VMH AAV CD36 shRNA injections. P5 CD36 depletion altered VMH neuronal FA sensing predominantly in DIO rats. After 10 wk on a 45% fat diet, DIO rats injected with VMH AAV CD36 shRNA at P21 ate more and gained more weight than DIO AAV controls, while DR AAV CD36 shRNA-injected rats gained less weight than DR AAV controls. VMH CD36 depletion increased inguinal fat pad weights and leptin levels in DIO and DR rats. Although DR AAV CD36 shRNA-injected rats became as obese as DIO AAV controls, only DIO control and CD36 depleted rats became insulin-resistant on a 45% fat diet. VMH CD36 depletion stunted linear growth in DIO and DR rats. DIO rats injected with AAV CD36 shRNA at P5 had increased fat mass, mostly due to a 45% increase in subcutaneous fat. They were also insulin-resistant with an associated 71% increase of liver triglycerides. These results demonstrate that VMH CD36-mediated FA sensing is a critical factor in the regulation of energy and glucose homeostasis and fat deposition in DIO and DR rats.

  4. Nanoparticle-Mediated Pulmonary Drug Delivery: A Review

    Directory of Open Access Journals (Sweden)

    Mukta Paranjpe

    2014-04-01

    Full Text Available Colloidal drug delivery systems have been extensively investigated as drug carriers for the application of different drugs via different routes of administration. Systems, such as solid lipid nanoparticles, polymeric nanoparticles and liposomes, have been investigated for a long time for the treatment of various lung diseases. The pulmonary route, owing to a noninvasive method of drug administration, for both local and systemic delivery of an active pharmaceutical ingredient (API forms an ideal environment for APIs acting on pulmonary diseases and disorders. Additionally, this route offers many advantages, such as a high surface area with rapid absorption due to high vascularization and circumvention of the first pass effect. Aerosolization or inhalation of colloidal systems is currently being extensively studied and has huge potential for targeted drug delivery in the treatment of various diseases. Furthermore, the surfactant-associated proteins present at the interface enhance the effect of these formulations by decreasing the surface tension and allowing the maximum effect. The most challenging part of developing a colloidal system for nebulization is to maintain the critical physicochemical parameters for successful inhalation. The following review focuses on the current status of different colloidal systems available for the treatment of various lung disorders along with their characterization. Additionally, different in vitro, ex vivo and in vivo cell models developed for the testing of these systems with studies involving cell culture analysis are also discussed.

  5. MMR vaccine in 14 months old children, intramuscular versus subcutaneous administration

    NARCIS (Netherlands)

    Lafeber AF; Klis FRM van der; Marzec AHJO; Labadie J; Ommen R van; Strieder TG; Berbers GAM; Utrecht Stichting Thuiszorg; Amersfoort Stichting Thuiszorg Eemland (STE),; LVO

    2001-01-01

    In this study we compared the recommended subcutaneous administration of the RIVM MMR vaccine with the intramuscular administration for both safety and immunogenicity. Study subjects were 14 months old children, living in Amersfoort or Utrecht, who were eligible for their first MMR vaccination.

  6. Myosin7a deficiency results in reduced retinal activity which is improved by gene therapy.

    Directory of Open Access Journals (Sweden)

    Pasqualina Colella

    Full Text Available Mutations in MYO7A cause autosomal recessive Usher syndrome type IB (USH1B, one of the most frequent conditions that combine severe congenital hearing impairment and retinitis pigmentosa. A promising therapeutic strategy for retinitis pigmentosa is gene therapy, however its pre-clinical development is limited by the mild retinal phenotype of the shaker1 (sh1(-/- murine model of USH1B which lacks both retinal functional abnormalities and degeneration. Here we report a significant, early-onset delay of sh1(-/- photoreceptor ability to recover from light desensitization as well as a progressive reduction of both b-wave electroretinogram amplitude and light sensitivity, in the absence of significant loss of photoreceptors up to 12 months of age. We additionally show that subretinal delivery to the sh1(-/- retina of AAV vectors encoding the large MYO7A protein results in significant improvement of sh1(-/- photoreceptor and retinal pigment epithelium ultrastructural anomalies which is associated with improvement of recovery from light desensitization. These findings provide new tools to evaluate the efficacy of experimental therapies for USH1B. In addition, although AAV vectors expressing large genes might have limited clinical applications due to their genome heterogeneity, our data show that AAV-mediated MYO7A gene transfer to the sh1(-/- retina is effective.

  7. First intramuscular administration in the U.S. space program. [of motion sickness drugs

    Science.gov (United States)

    Bagian, James P.

    1991-01-01

    In the past, the only kind of medicines used for symptomatic treatment of space motion sickness (SMS) in space had been oral, transdermal, or suppositories. This paper describes the effect of the first intramuscular (IM) administration of Phenergan (50-mg in single dose) on SMS in one subject who exhibited grade-3 symptoms and signs which persisted unabated throughout the first and the second flight days aboard the Space Shuttle. Thirty minutes after the injection, the subject had completely recovered. His symptoms were gone, his appetite was back, and he had no recurrences for the remainder of the flight. Since that experiment, intramuscular injections have been given nine more times on subsequent flights, with similar results.

  8. Diphtheria toxoid loaded poly-(epsilon-caprolactone) nanoparticles as mucosal vaccine delivery systems.

    Science.gov (United States)

    Singh, Jasvinder; Pandit, Sreenivas; Bramwell, Vincent W; Alpar, H Oya

    2006-02-01

    Poly-(epsilon-caprolactone) (PCL), a poly(lactide-co-glycolide) (PLGA)-PCL blend and co-polymer nanoparticles encapsulating diphtheria toxoid (DT) were investigated for their potential as a mucosal vaccine delivery system. The nanoparticles, prepared using a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation method, demonstrated release profiles which were dependent on the properties of the polymers. An in vitro experiment using Caco-2 cells showed significantly higher uptake of PCL nanoparticles in comparison to polymeric PLGA, the PLGA-PCL blend and co-polymer nanoparticles. The highest uptake mediated by the most hydrophobic nanoparticles using Caco-2 cells was mirrored in the in vivo studies following nasal administration. PCL nanoparticles induced DT serum specific IgG antibody responses significantly higher than PLGA. A significant positive correlation between hydrophobicity of the nanoparticles and the immune response was observed following intramuscular administration. The positive correlation between hydrophobicity of the nanoparticles and serum DT specific IgG antibody response was also observed after intranasal administration of the nanoparticles. The cytokine assays showed that the serum IgG antibody response induced is different according to the route of administration, indicated by the differential levels of IL-6 and IFN-gamma. The nanoparticles eliciting the highest IgG antibody response did not necessarily elicit the highest levels of the cytokines IL-6 and IFN-gamma.

  9. Family-Mediated Exercises (FAME): an exploration of participant's involvement in a novel form of exercise delivery after stroke.

    Science.gov (United States)

    Galvin, Rose; Stokes, Emma; Cusack, Tara

    2014-01-01

    Family members and caregivers play a significant supporting role in the rehabilitation process after stroke, a role that may increase with the growing trend of providing stroke rehabilitation in the individual's own home after discharge from the hospital. To explore the impact of family involvement in exercise delivery after stroke from the perspective of the individual with stroke and his or her family member. A qualitative research design was used in which in-depth semi-structured interviews were carried out with participants who had taken part in an 8-week family-mediated exercise program (FAME). A phenomenological theoretical framework and a grounded theory methodology were used to inform the data analysis. Fifteen individuals with acute stroke and 15 designated "family" members participated in the study after completion of an 8-week, individually tailored, family-mediated exercise intervention. An overarching concept of patient-centeredness emerged after data analysis, which detailed the extent to which individuals with stroke and their families felt that their rehabilitation was enhanced by the active role of their families. Four key themes that expanded the concept of patient-centeredness were identified: personalized nature of the reported benefits, therapeutic value of the program, family involvement, and caregiver commitment to program. This research serves to increase our understanding of the role of family members in the rehabilitation process after stroke, particularly in relation to exercise delivery, from the perspective of the individuals with stroke and their family members.

  10. Efficacy and Tolerability of Intramuscular Dexketoprofen in Postoperative Pain Management following Hernia Repair Surgery

    Directory of Open Access Journals (Sweden)

    P. T. Jamdade

    2011-01-01

    Full Text Available Objective. To evaluate the safety and efficacy of intramuscular dexketoprofen for postoperative pain in patients undergoing hernia surgery. Methodology. Total 202 patients received single intramuscular injection of dexketoprofen 50 mg or diclofenac 50 mg postoperatively. The pain intensity (PI was self-evaluated by patients on VAS at baseline 1, 2, 4, 6, and 8 hours. The efficacy parameters were number of responders, difference in PI (PID at 8 hours, sum of analogue of pain intensity differences (SAPID, and onset and duration of analgesia. Tolerability assessment was done by global evaluation and adverse events in each group. Results. Dexketoprofen showed superior efficacy in terms of number of responders (P=.007, PID at 8 hours (P=.02, and SAPID 0–8 hours (P<.0001. It also showed faster onset of action (42 minutes and longer duration of action (6.5 hours. The adverse events were comparable in both groups. Conclusion. Single dose of dexketoprofen trometamol 50 mg given intramuscularly provided faster, better, and longer duration of analgesia in postoperative patients of hernia repair surgery than diclofenac 50 mg, with comparable safety.

  11. Pokemon siRNA Delivery Mediated by RGD-Modified HBV Core Protein Suppressed the Growth of Hepatocellular Carcinoma.

    Science.gov (United States)

    Kong, Jing; Liu, Xiaoping; Jia, Jianbo; Wu, Jinsheng; Wu, Ning; Chen, Jun; Fang, Fang

    2015-10-01

    Hepatocellular carcinoma (HCC) is a deadly human malignant tumor that is among the most common cancers in the world, especially in Asia. Hepatitis B virus (HBV) infection has been well established as a high risk factor for hepatic malignance. Studies have shown that Pokemon is a master oncogene for HCC growth, suggesting it as an ideal therapeutic target. However, efficient delivery system is still lacking for Pokemon targeting treatment. In this study, we used core proteins of HBV, which is modified with RGD peptides, to construct a biomimetic vector for the delivery of Pokemon siRNAs (namely, RGD-HBc-Pokemon siRNA). Quantitative PCR and Western blot assays revealed that RGD-HBc-Pokemon siRNA possessed the highest efficiency of Pokemon suppression in HCC cells. In vitro experiments further indicated that RGD-HBc-Pokemon-siRNA exerted a higher tumor suppressor activity on HCC cell lines, evidenced by reduced proliferation and attenuated invasiveness, than Pokemon-siRNA or RGD-HBc alone. Finally, animal studies demonstrated that RGD-HBc-Pokemon siRNA suppressed the growth of HCC xenografts in mice by a greater extent than Pokemon-siRNA or RGD-HBc alone. Based on the above results, Pokemon siRNA delivery mediated by RGD-modified HBV core protein was shown to be an effective strategy of HCC gene therapy.

  12. Intramuscular manifestation of non-Hodgkin lymphoma and myeloma: Prevalence, clinical signs, and computed tomography features

    Energy Technology Data Exchange (ETDEWEB)

    Surov, Alexey; Spielmann, Rolf-Peter; Behrmann, Curd (Dept. of Radiology, Martin Luther Univ., Halle-Wittenberg (Germany)), e-mail: alex.surow@medizin.uni-halle.de; Holzhausen, Hans-Juergen (Dept. of Hematology/Oncology, Martin Luther Univ., Halle-Wittenberg (Germany)); Arnold, Dirk (Dept. of Pathology, Martin Luther Univ., Halle-Wittenberg (Germany)); Schmidt, Joerg (Dept. of Medical Statistics and Controlling, Martin Luther Univ., Halle-Wittenberg (Germany))

    2010-01-15

    Background: Intramuscular manifestations of malignant immuno proliferative diseases (IMMID) are very rare. Purpose: To determine the prevalence and the clinical features of IMMID in a large series of patients, and to analyze their radiological appearances. Material and Methods: Between 1997 and 2007, 20 patients with IMMID (non-Hodgkin lymphoma [NHL], n=14, and myeloma, n=6) were identified. All patients underwent computed tomography (CT). In five cases, magnetic resonance imaging (MRI) was additionally performed. Results: Clinically, 16 patients presented with local pain and soft-tissue swelling. In four patients, IMMID was found incidentally. The most common site was the erector spinae muscle, followed by the iliopsoas and pelvic muscles. In 13 cases of IMMID, diffuse mass-forming muscle infiltration was found. Focal intramuscular masses were identified in seven cases. Conclusion: NHL mostly manifests as diffuse muscle enlargement, whereas myelomas form focal intramuscular masses. Nevertheless, CT and MR appearances are nonspecific and can be misinterpreted as muscle sarcoma or inflammatory disease. Although rare, muscle involvement should be considered in the differential diagnosis of muscle disorders in patients with non-Hodgkin lymphoma and myeloma

  13. Proteomic and transcriptomic studies of HBV-associated liver fibrosis of an AAV-HBV-infected mouse model.

    Science.gov (United States)

    Kan, Fangming; Ye, Lei; Yan, Tao; Cao, Jiaqi; Zheng, Jianhua; Li, Wuping

    2017-08-22

    Human hepatitis B virus (HBV) infection is an important public health issue in the Asia-Pacific region and is associated with chronic hepatitis, liver fibrosis, cirrhosis and even liver cancer. However, the underlying mechanisms of HBV-associated liver fibrosis remain incompletely understood. In the present study, proteomic and transcriptomic approaches as well as biological network analyses were performed to investigate the differentially expressed molecular signature and key regulatory networks that were associated with HBV-mediated liver fibrosis. RNA sequencing and 2DE-MALDI-TOF/TOF were performed on liver tissue samples obtained from HBV-infected C57BL/6 mouse generated via AAV8-HBV virus. The results showed that 322 genes and 173 proteins were differentially expressed, and 28 HBV-specific proteins were identified by comprehensive proteomic and transcriptomic analysis. GO analysis indicated that the differentially expressed proteins were predominantly involved in oxidative stress, which plays a key role in HBV-related liver fibrosis. Importantly, CAT, PRDX1, GSTP1, NXN and BLVRB were shown to be associated with oxidative stress among the differentially expressed proteins. The most striking results were validated by Western blot and RT-qPCR. The RIG-I like receptor signaling pathway was found to be the major signal pathway that changed during HBV-related fibrosis. This study provides novel insights into HBV-associated liver fibrosis and reveals the significant role of oxidative stress in liver fibrosis. Furthermore, CAT, BLVRB, NXN, PRDX1, and IDH1 may be candidates for detection of liver fibrosis or therapeutic targets for the treatment of liver fibrosis.

  14. Nicolau Syndrome after Intramuscular Injection: 3 Cases

    Directory of Open Access Journals (Sweden)

    Seok-Kwun Kim

    2012-05-01

    Full Text Available Nicolau syndrome is a rare complication of intramuscular injection consisting of ischemicnecrosis of skin, soft tissue, and muscular tissue that arises locoregionally. The characteristicpattern is pain around the injection site, developing into erythema, a livedoid dermatitispatch, and necrosis of the skin, subcutaneous fat, and muscle tissue. Three patients wereinjected with drugs (diclofenac sodium, ketoprofen, meperidine for pain relief. Three patientscomplained of pain, and a skin lesion was observed, after which necrosis developed on theirbuttocks. Each patient underwent debridement and coverage. The wound healed uneventfully.We report three cases of Nicolau syndrome in the buttocks following diclofenac intramuscularinjection.

  15. Técnica intramuscular na gluteoplastia de aumento

    OpenAIRE

    Carvalho, Francisco de Assis Montenegro Cido; Alcântara, Fernando Soares de; Martins, Elmiro Heli; Kruse, Ricardo Lapa; Nogueira, Régis Pinheiro; Raad, Nidall de Sousa

    2012-01-01

    INTRODUÇÃO: Região glútea harmoniosa é considerada elemento essencial na composição da beleza corporal e expressão maior de feminilidade, suscitando o crescente interesse de homens e mulheres na melhoria estética dessa região. O objetivo deste estudo é demonstrar uma alternativa às técnicas já publicadas acerca da gluteoplastia de aumento, baseada na colocação da prótese intramuscular, utilizando de forma simplificada os limites da dissecção, tendo como referência as estruturas anatômicas fix...

  16. Irreversible muscle damage in bodybuilding due to long-term intramuscular oil injection.

    Science.gov (United States)

    Banke, I J; Prodinger, P M; Waldt, S; Weirich, G; Holzapfel, B M; Gradinger, R; Rechl, H

    2012-10-01

    Intramuscular oil injections generating slowly degrading oil-based depots represent a controversial subject in bodybuilding and fitness. However they seem to be commonly reported in a large number of non-medical reports, movies and application protocols for 'site-injections'. Surprisingly the impact of long-term (ab)use on the musculature as well as potential side-effects compromising health and sports ability are lacking in the medical literature. We present the case of a 40 year old male semi-professional bodybuilder with systemic infection and painful reddened swellings of the right upper arm forcing him to discontinue weightlifting. Over the last 8 years he daily self-injected sterilized sesame seed oil at numerous intramuscular locations for the purpose of massive muscle building. Whole body MRI showed more than 100 intramuscular rather than subcutaneous oil cysts and loss of normal muscle anatomy. 2-step septic surgery of the right upper arm revealed pus-filled cystic scar tissue with the near-complete absence of normal muscle. MRI 1 year later revealed the absence of relevant muscle regeneration. Persistent pain and inability to perform normal weight training were evident for at least 3 years post-surgery. This alarming finding indicating irreversible muscle mutilation may hopefully discourage people interested in bodybuilding and fitness from oil-injections. The impact of such chronic tissue stress on other diseases like malignancy remains to be determined. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Dendrimer advances for the central nervous system delivery of therapeutics.

    Science.gov (United States)

    Xu, Leyuan; Zhang, Hao; Wu, Yue

    2014-01-15

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included.

  18. Characterization of the adenoassociated virus Rep protein complex formed on the viral origin of DNA replication

    International Nuclear Information System (INIS)

    Li Zengi; Brister, J. Rodney; Im, Dong-Soo; Muzyczka, Nicholas

    2003-01-01

    Interaction between the adenoassociated virus (AAV) replication proteins, Rep68 and 78, and the viral terminal repeats (TRs) is mediated by a DNA sequence termed the Rep-binding element (RBE). This element is necessary for Rep-mediated unwinding of duplex DNA substrates, directs Rep catalyzed cleavage of the AAV origin of DNA replication, and is required for viral transcription and proviral integration. Six discrete Rep complexes with the AAV TR substrates have been observed in vitro, and cross-linking studies suggest these complexes contain one to six molecules of Rep. However, the functional relationship between Rep oligomerization and biochemical activity is unclear. Here we have characterized Rep complexes that form on the AAV TR. Both Rep68 and Rep78 appear to form the same six complexes with the AAV TR, and ATP seems to stimulate formation of specific, higher order complexes. When the sizes of these Rep complexes were estimated on native polyacrylamide gels, the four slower migrating complexes were larger than predicted by an amount equivalent to one or two TRs. To resolve this discrepancy, the molar ratio of protein and DNA was calculated for the three largest complexes. Data from these experiments indicated that the larger complexes included multiple TRs in addition to multiple Rep molecules and that the Rep-to-TR ratio was approximately 2. The two largest complexes were also associated with increased Rep-mediated, origin cleavage activity. Finally, we characterized a second, Rep-mediated cleavage event that occurs adjacent to the normal nicking site, but on the opposite strand. This second site nicking event effectively results in double-stranded DNA cleavage at the normal nicking site

  19. Influence of conjugated linoleic acid (CLA on intramuscular fatty acid composition in rabbit

    Directory of Open Access Journals (Sweden)

    C. Corino

    2010-01-01

    Full Text Available The impact of feeding CLA has been thoroughly investigated in pigs, and Thiel- Cooper et al. (2001, Ostrowska et al. (2003, Lo Fiego et al. (2004, found that CLA modifies lipid fatty acid profile, negatively affecting some nutritional lipid indexes. So far,much less attention has been paid to rabbits. Recently, Corino et al. (2003 have shown that supplementing rabbit diets with CLA has limited effect on the chemical composition of meat and at a high slaughter weight reduces intramuscular fat content. The present research has been carried out to evaluate the effect of dietary CLA supplementation on cis-9, trans-11 and trans-10,cis-12- C18:2 isomers content, and on fatty acid composition of rabbit intramuscular lipids.

  20. Intramuscular injection of human umbilical cord-derived mesenchymal stem cells improves cardiac function in dilated cardiomyopathy rats.

    Science.gov (United States)

    Mao, Chenggang; Hou, Xu; Wang, Benzhen; Chi, Jingwei; Jiang, Yanjie; Zhang, Caining; Li, Zipu

    2017-01-28

    Stem cells provide a promising candidate for the treatment of the fatal pediatric dilated cardiomyopathy (DCM). This study aimed to investigate the effects of intramuscular injection of human umbilical cord-derived mesenchymal stem cells (hUCMSCs) on the cardiac function of a DCM rat model. A DCM model was established by intraperitoneal injections of doxorubicin in Sprague-Dawley rats. hUCMSCs at different concentrations or cultured medium were injected via limb skeletal muscles, with blank medium injected as the control. The rats were monitored for 4 weeks, meanwhile BNP, cTNI, VEGF, HGF, GM-CSF, and LIF in the peripheral blood were examined by ELISA, and cardiac function was monitored by echocardiography (Echo-CG). Finally, the expression of IGF-1, HGF, and VEGF in the myocardium was examined by histoimmunochemistry and real-time PCR, and the ultrastructure of the myocardium was examined by electron microscopy. Injection of hUCMSCs markedly improved cardiac function in the DCM rats by significantly elevating left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS). The BNP and cTNI levels in the peripheral blood were reduced by hUCMSCs, while HGF, LIF, GM-CSF, and VEGF were increased by hUCMSCs. Expression of IGF-1, HGF, and VEGF in the myocardium from the DCM rats was significantly increased by hUCMSC injection. Furthermore, hUCMSCs protected the ultrastructure of cardiomyocytes by attenuating mitochondrial swelling and maintaining sarcolemma integrity. Intramuscular injection of UCMSCs can improve DCM-induced cardiac function impairment and protect the myocardium. These effects may be mediated by regulation of relevant cytokines in serum and the myocardium.

  1. Efficacious and safe tissue-selective controlled gene therapy approaches for the cornea.

    Directory of Open Access Journals (Sweden)

    Rajiv R Mohan

    2011-04-01

    Full Text Available Untargeted and uncontrolled gene delivery is a major cause of gene therapy failure. This study aimed to define efficient and safe tissue-selective targeted gene therapy approaches for delivering genes into keratocytes of the cornea in vivo using a normal or diseased rabbit model. New Zealand White rabbits, adeno-associated virus serotype 5 (AAV5, and a minimally invasive hair-dryer based vector-delivery technique were used. Fifty microliters of AAV5 titer (6.5×10(12 vg/ml expressing green fluorescent protein gene (GFP was topically applied onto normal or diseased (fibrotic or neovascularized rabbit corneas for 2-minutes with a custom vector-delivery technique. Corneal fibrosis and neovascularization in rabbit eyes were induced with photorefractive keratectomy using excimer laser and VEGF (630 ng using micropocket assay, respectively. Slit-lamp biomicroscopy and immunocytochemistry were used to confirm fibrosis and neovascularization in rabbit corneas. The levels, location and duration of delivered-GFP gene expression in the rabbit stroma were measured with immunocytochemistry and/or western blotting. Slot-blot measured delivered-GFP gene copy number. Confocal microscopy performed in whole-mounts of cornea and thick corneal sections determined geometric and spatial localization of delivered-GFP in three-dimensional arrangement. AAV5 toxicity and safety were evaluated with clinical eye exam, stereomicroscopy, slit-lamp biomicroscopy, and H&E staining. A single 2-minute AAV5 topical application via custom delivery-technique efficiently and selectively transduced keratocytes in the anterior stroma of normal and diseased rabbit corneas as evident from immunocytochemistry and confocal microscopy. Transgene expression was first detected at day 3, peaked at day 7, and was maintained up to 16 weeks (longest tested time point. Clinical and slit-lamp eye examination in live rabbits and H&E staining did not reveal any significant changes between AAV5

  2. Pharmacologic Effects in vivo in Brain by Vector-Mediated Peptide Drug Delivery

    Science.gov (United States)

    Bickel, Ulrich; Yoshikawa, Takayoshi; Landaw, Elliot M.; Faull, Kym F.; Pardridge, William M.

    1993-04-01

    Pharmacologic effects in brain caused by systemic administration of neuropeptides are prevented by poor transport of the peptide through the brain vascular endothelium, which comprises the blood-brain barrier in vivo. In the present study, successful application of a chimeric peptide approach to enhance drug delivery through the blood-brain barrier for the purpose of achieving a central nervous system pharmacologic effect is described. The chimeric peptide was formed by linkage of a potent vasoactive intestinal peptide (VIP) analogue, which had been monobiotinylated, to a drug transport vector. The vector consisted of a covalent conjugate of avidin and the OX26 monoclonal antibody to the transferrin receptor. Owing to the high concentration of transferrin receptors on brain capillary endothelia, OX26 targets brain and undergoes receptor-mediated transcytosis through the blood-brain barrier. Systemic infusion of low doses (12 μg/kg) of the VIP chimeric peptide in rats resulted in an in vivo central nervous system pharmacologic effect: a 65% increase in cerebral blood flow. Biotinylated VIP analogue without the brain transport vector was ineffective.

  3. AAV-dominant negative tumor necrosis factor (DN-TNF gene transfer to the striatum does not rescue medium spiny neurons in the YAC128 mouse model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Laura Taylor Alto

    Full Text Available CNS inflammation is a hallmark of neurodegenerative disease, and recent studies suggest that the inflammatory response may contribute to neuronal demise. In particular, increased tumor necrosis factor (TNF signaling is implicated in the pathology of both Parkinson's disease (PD and Alzheimer's disease (AD. We have previously shown that localized gene delivery of dominant negative TNF to the degenerating brain region can limit pathology in animal models of PD and AD. TNF is upregulated in Huntington's disease (HD, like in PD and AD, but it is unknown whether TNF signaling contributes to neuronal degeneration in HD. We used in vivo gene delivery to test whether selective reduction of soluble TNF signaling could attenuate medium spiny neuron (MSN degeneration in the YAC128 transgenic (TG mouse model of Huntington's disease (HD. AAV vectors encoding cDNA for dominant-negative tumor necrosis factor (DN-TNF or GFP (control were injected into the striatum of young adult wild type WT and YAC128 TG mice and achieved 30-50% target coverage. Expression of dominant negative TNF protein was confirmed immunohistologically and biochemically and was maintained as mice aged to one year, but declined significantly over time. However, the extent of striatal DN-TNF gene transfer achieved in our studies was not sufficient to achieve robust effects on neuroinflammation, rescue degenerating MSNs or improve motor function in treated mice. Our findings suggest that alternative drug delivery strategies should be explored to determine whether greater target coverage by DN-TNF protein might afford some level of neuroprotection against HD-like pathology and/or that soluble TNF signaling may not be the primary driver of striatal neuroinflammation and MSN loss in YAC128 TG mice.

  4. Pharmacokinetic Evaluation of a Single Intramuscular High Dose versus an Oral Long-Term Supplementation of Cholecalciferol.

    Directory of Open Access Journals (Sweden)

    Katharina Wylon

    Full Text Available Vitamin D deficiency is frequent during the winter and occurs throughout the year in the elderly or patients suffering from autoimmune diseases. The objective of this study was to evaluate the pharmacokinetic properties of oral supplementation versus a single intramuscular injection of cholecalciferol in healthy individuals.Up to 8,000 I.U. oral cholecalciferol was administered daily for 84 days in a 4 week dose-escalation setting to vitamin D deficient individuals. In another cohort, a single intramuscular injection of 100,000 I.U. cholecalciferol was given. In both cohorts, individuals without vitamin D intake served as the comparison group. 25-hydroxyvitamin D (25(OHD concentrations were measured in all individuals at defined time points throughout the studies.The mean 25(OHD serum concentration increased significantly after oral cholecalciferol intake compared to the control group (day 28: 83.4 nmol/l and 42.5 nmol/l; day 56: 127.4 nmol/l and 37.3 nmol/l; day 84: 159.7 nmol/l and 30.0 nmol/l. In individuals receiving 100,000 I.U. cholecalciferol intramuscular, the mean 25(OHD serum concentration peaked after 4 weeks measuring 70.9 nmol/l compared to 32.7 nmol/l in the placebo group (p = 0.002. The increase of 25(OHD serum concentrations after 28 days was comparable between both routes of administration (p = 0.264.Oral and intramuscular cholecalciferol supplementation effectively increased serum 25(OHD concentrations.

  5. Sonographic Appearance of a Solitary Intramuscular Cysticercosis: A Case Report

    International Nuclear Information System (INIS)

    Moon, Ju Hee; Joo, Seung Ho; Shim, Joo Eun; Kim, Yee Jeong; Oh, Hyun Cheol; Kim, Tae Hwan

    2009-01-01

    The development of antiparasitic drugs and public health strategies has reduced the prevalence of cysticercosis in South Korea. In contrast, the disease is still endemic in Southeast Asia. The influx of immigrants from endemic areas has been on the increase. We report the sonographic and pathological findings of cysticercosis that presented as an intramuscular solitary mass in a 27-year-old Philippine woman

  6. Sonographic Appearance of a Solitary Intramuscular Cysticercosis: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Ju Hee; Joo, Seung Ho; Shim, Joo Eun; Kim, Yee Jeong; Oh, Hyun Cheol; Kim, Tae Hwan [NHIC Ilsan Hospital, Ilsan (Korea, Republic of)

    2009-03-15

    The development of antiparasitic drugs and public health strategies has reduced the prevalence of cysticercosis in South Korea. In contrast, the disease is still endemic in Southeast Asia. The influx of immigrants from endemic areas has been on the increase. We report the sonographic and pathological findings of cysticercosis that presented as an intramuscular solitary mass in a 27-year-old Philippine woman

  7. Sendai virosomal infusion of an adeno-associated virus-derived construct containing neuropeptide Y into primary rat brain cultures.

    Science.gov (United States)

    Wu, P; de Fiebre, C M; Millard, W J; Elmstrom, K; Gao, Y; Meyer, E M

    1995-05-05

    A novel neuronal gene-delivery system was investigated in primary neuron-enriched cultures with respect to driving the expression of neuropeptide Y (NPY). This delivery system consists of an adeno-associated virus-derived (AAV) plasmid, pJDT95npy, encapsulated in reconstituted Sendai virosomes. pJDT95npy contains full length rat NPY cDNA inserted downstream from the P40 promoter in a cap-gene deleted AAV-derived construct. The rep-sequences under control of the P5 and P19 promoters are intact. Virosomally encapsulated pJDT95npy drove the expression of NPY mRNAs, predominantly by P40. Total cellular NPY immunoreactivity and release in the presence of depolarization increased following pJDT95npy-transfection. Neither empty virosomes nor virosomes containing pJDT95 affected NPY mRNA expression or immunoreactivity. This study demonstrates that an AAV-derived plasmid can drive exogenous gene expression in intact neurons after infusion by Sendai virosomes.

  8. Intramuscular dissection of Baker's cysts: report on three cases

    International Nuclear Information System (INIS)

    Fang, Christopher S.J.; McCarthy, Catherine L.; McNally, Eugene G.

    2004-01-01

    Baker's cysts are fluid distensions of the gastrocnemius-semimembranosus bursa and are the most common cystic lesion around the knee. Typically cysts enlarge along intermuscular planes around the knee. We report three cases in which the expanding cyst did not respect these planes and dissected along an intramuscular route as confirmed by MR imaging. Such behaviour by Baker's cysts is hitherto unreported in the literature. Possible mechanisms to account for this phenomenon are discussed. (orig.)

  9. Buccal delivery of thiocolchicoside: in vitro and in vivo permeation studies.

    Science.gov (United States)

    Artusi, M; Santi, P; Colombo, P; Junginger, H E

    2003-01-02

    Thiocolchicoside, a muscle-relaxant agent, is administered by the oral, intra-muscular and topical route. After oral administration the extent of bioavailability compared with intra-muscular administration is low, due to a first pass effect. In this paper, the delivery of thiocolchicoside through oral mucosa is studied to improve the bioavailability. Thiocolchicoside in vitro permeation through porcine oral mucosa and in vivo buccal transport in humans were investigated. Two dosage forms, a bioadhesive disc and a fast dissolving disc for buccal and sublingual administration of thiocolchicoside, respectively, were designed. The in vitro permeation of thiocolchicoside through porcine buccal mucosa from these dosage forms was evaluated and compared with in vivo absorption. Results from in vitro studies demonstrated that thiocolchicoside is quite permeable across porcine buccal mucosa and that permeation enhancers, such as sodium taurocholate and sodium taurodeoxycholate, were not able to increase its flux. The in vivo thiocolchicoside absorption experiments, in which the drug loss from oral cavity was measured, indicated that both formulations could be useful for therapeutic application. The fast dissolving (sublingual) form resulted in a quick uptake of 0.5 mg of thiocolchicoside within 15 min whereas with the adhesive buccal form the same dose can be absorbed over an extended period of time.

  10. Substrate mediated enzyme prodrug therapy.

    Directory of Open Access Journals (Sweden)

    Betina Fejerskov

    Full Text Available In this report, we detail Substrate Mediated Enzyme Prodrug Therapy (SMEPT as a novel approach in drug delivery which relies on enzyme-functionalized cell culture substrates to achieve a localized conversion of benign prodrug(s into active therapeutics with subsequent delivery to adhering cells or adjacent tissues. For proof-of-concept SMEPT, we use surface adhered micro-structured physical hydrogels based on poly(vinyl alcohol, β-glucuronidase enzyme and glucuronide prodrugs. We demonstrate enzymatic activity mediated by the assembled hydrogel samples and illustrate arms of control over rate of release of model fluorescent cargo. SMEPT was not impaired by adhering cells and afforded facile time - and dose - dependent uptake of the in situ generated fluorescent cargo by hepatic cells, HepG2. With the use of a glucuronide derivative of an anticancer drug, SN-38, SMEPT afforded a decrease in cell viability to a level similar to that achieved using parent drug. Finally, dose response was achieved using SMEPT and administration of judiciously chosen concentration of SN-38 glucuronide prodrug thus revealing external control over drug delivery using drug eluting surface. We believe that this highly adaptable concept will find use in diverse biomedical applications, specifically surface mediated drug delivery and tissue engineering.

  11. A compact dual promoter adeno-associated viral vector for efficient delivery of two genes to dorsal root ganglion neurons

    NARCIS (Netherlands)

    Fagoe, N D; Eggers, R; Verhaagen, J; Mason, M R J

    Adeno-associated viral (AAV) vectors based on serotype 5 are an efficient means to target dorsal root ganglia (DRG) to study gene function in the primary sensory neurons of the peripheral nervous system. In this study, we have developed a compact AAV dual promoter vector composed of the

  12. Microstructure alterations in beef intramuscular connective tissue caused by hydrodynamic pressure processing

    Science.gov (United States)

    Scanning electron microscopy (SEM) was utilized to evaluate microstructural changes in intramuscular connective tissue of beef semimembranosus muscle subjected to hydrodynamic pressure processing (HDP). Samples were HDP treated in a plastic container (HDP-PC) or a steel commercial unit (HDP-CU). C...

  13. Dendrimer Advances for the Central Nervous System Delivery of Therapeutics

    Science.gov (United States)

    2013-01-01

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included. PMID:24274162

  14. Genetic modification of adeno-associated viral vector type 2 capsid enhances gene transfer efficiency in polarized human airway epithelial cells.

    Science.gov (United States)

    White, April F; Mazur, Marina; Sorscher, Eric J; Zinn, Kurt R; Ponnazhagan, Selvarangan

    2008-12-01

    Cystic fibrosis (CF) is a common genetic disease characterized by defects in the expression of the CF transmembrane conductance regulator (CFTR) gene. Gene therapy offers better hope for the treatment of CF. Adeno-associated viral (AAV) vectors are capable of stable expression with low immunogenicity. Despite their potential in CF gene therapy, gene transfer efficiency by AAV is limited because of pathophysiological barriers in these patients. Although a few AAV serotypes have shown better transduction compared with the AAV2-based vectors, gene transfer efficiency in human airway epithelium has still not reached therapeutic levels. To engineer better AAV vectors for enhanced gene delivery in human airway epithelium, we developed and characterized mutant AAV vectors by genetic capsid modification, modeling the well-characterized AAV2 serotype. We genetically incorporated putative high-affinity peptide ligands to human airway epithelium on the GH loop region of AAV2 capsid protein. Six independent mutant AAV were constructed, containing peptide ligands previously reported to bind with high affinity for known and unknown receptors on human airway epithelial cells. The vectors were tested on nonairway cells and nonpolarized and polarized human airway epithelial cells for enhanced infectivity. One of the mutant vectors, with the peptide sequence THALWHT, not only showed the highest transduction in undifferentiated human airway epithelial cells but also indicated significant transduction in polarized cells. Interestingly, this modified vector was also able to infect cells independently of the heparan sulfate proteoglycan receptor. Incorporation of this ligand on other AAV serotypes, which have shown improved gene transfer efficiency in the human airway epithelium, may enhance the application of AAV vectors in CF gene therapy.

  15. Pharmacokinetics and -dynamics of intramuscular and intranasal naloxone: an explorative study in healthy volunteers.

    Science.gov (United States)

    Skulberg, Arne Kristian; Tylleskar, Ida; Nilsen, Turid; Skarra, Sissel; Salvesen, Øyvind; Sand, Trond; Loftsson, Thorsteinn; Dale, Ola

    2018-03-22

    This study aimed to develop a model for pharmacodynamic and pharmacokinetic studies of naloxone antagonism under steady-state opioid agonism and to compare a high-concentration/low-volume intranasal naloxone formulation 8 mg/ml to intramuscular 0.8 mg. Two-way crossover in 12 healthy volunteers receiving naloxone while receiving remifentanil by a target-controlled infusion for 102 min. The group were subdivided into three different doses of remifentanil. Blood samples for serum naloxone concentrations, pupillometry and heat pain threshold were measured. The relative bioavailability of intranasal to intramuscular naloxone was 0.75. Pupillometry showed difference in antagonism; the effect was significant in the data set as a whole (p < 0.001) and in all three subgroups (p < 0.02-p < 0.001). Heat pain threshold showed no statistical difference. A target-controlled infusion of remifentanil provides good conditions for studying the pharmacodynamics of naloxone, and pupillometry was a better modality than heat pain threshold. Intranasal naloxone 0.8 mg is inferior for a similar dose intramuscular. Our design may help to bridge the gap between studies in healthy volunteers and the patient population in need of naloxone for opioid overdose. clinicaltrials.gov : NCT02307721.

  16. Assessing Anticalcification Treatments in Bioprosthetic Tissue by Using the New Zealand Rabbit Intramuscular Model

    Science.gov (United States)

    Wright, Gregory A; Faught, Joelle M; Olin, Jane M

    2009-01-01

    The objective of this work was to demonstrate that the New Zealand White (NZW) rabbit intramuscular model can be used for detecting calcification in bioprosthetic tissue and to compare the calcification in the rabbit to that of native human valves. The rabbit model was compared with the commonly used Sprague–Dawley rat subcutaneous model. Eighteen rabbits and 18 rats were used to assess calcification in bioprosthetic tissue over time (7, 14, 30, and 90 d). The explanted rabbit and rat tissue discs were measured for calcium by using atomic absorption and Raman spectroscopy. Calcium deposits on the human valve explants were assessed by using Raman spectroscopy. The results showed that the NZW rabbit model is robust for detecting calcification in a shorter duration (14 d), with less infection complications, more space to implant tissue groups (thereby reducing animal use numbers), and a more metabolically and mechanically dynamic environment than the rat subcutaneous model . The human explanted valves and rabbit explanted tissue both showed Raman peaks at 960 cm−1 which is representative of hydroxyapatite. Hydroxyapatite is the final calcium and phosphate species in the calcification of bioprosthetic heart valves and rabbit intramuscular implants. The NZW rabbit intramuscular model is an effective model for assessing calcification in bioprosthetic tissue. PMID:19619417

  17. Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus.

    Science.gov (United States)

    Yue, Yongping; Pan, Xiufang; Hakim, Chady H; Kodippili, Kasun; Zhang, Keqing; Shin, Jin-Hong; Yang, Hsiao T; McDonald, Thomas; Duan, Dongsheng

    2015-10-15

    The ultimate goal of muscular dystrophy gene therapy is to treat all muscles in the body. Global gene delivery was demonstrated in dystrophic mice more than a decade ago using adeno-associated virus (AAV). However, translation to affected large mammals has been challenging. The only reported attempt was performed in newborn Duchenne muscular dystrophy (DMD) dogs. Unfortunately, AAV injection resulted in growth delay, muscle atrophy and contracture. Here we report safe and bodywide AAV delivery in juvenile DMD dogs. Three ∼2-m-old affected dogs received intravenous injection of a tyrosine-engineered AAV-9 reporter or micro-dystrophin (μDys) vector at the doses of 1.92-6.24 × 10(14) viral genome particles/kg under transient or sustained immune suppression. DMD dogs tolerated injection well and their growth was not altered. Hematology and blood biochemistry were unremarkable. No adverse reactions were observed. Widespread muscle transduction was seen in skeletal muscle, the diaphragm and heart for at least 4 months (the end of the study). Nominal expression was detected in internal organs. Improvement in muscle histology was observed in μDys-treated dogs. In summary, systemic AAV gene transfer is safe and efficient in young adult dystrophic large mammals. This may translate to bodywide gene therapy in pediatric patients in the future. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Random Insertion of mCherry Into VP3 Domain of Adeno-associated Virus Yields Fluorescent Capsids With no Loss of Infectivity

    Directory of Open Access Journals (Sweden)

    Justin Judd

    2012-01-01

    Full Text Available Adeno-associated virus (AAV-derived vectors are promising gene delivery systems, and a number of design strategies have been pursued to improve their performance. For example, genetic insertion of proteins into the capsid may be used to achieve vector retargeting, reduced immunogenicity, or to track vector transport. Unfortunately, rational approaches to genetic insertion have experienced limited success due to the unpredictable context-dependent nature of protein folding and the complexity of the capsid's macroassembly. We report the construction and use of a frame-enriched DNase-based random insertion library based on AAV2 cap, called pAAV2_RaPID (Random Peptide Insertion by DNase. The fluorescent mCherry protein was inserted randomly throughout the AAV2 capsid and the library was selected for fluorescent and infectious variants. A capsid site was identified in VP3 that can tolerate the large protein insertion. In contrast to previous efforts to incorporate fluorescent proteins into the AAV2 capsid, the isolated mCherry mutant maintains native infectivity while displaying robust fluorescence. Collectively, these results demonstrate that the pAAV2_RaPID platform library can be used to create fully infectious AAV vectors carrying large functional protein domains on the capsid.

  19. A surface-mediated siRNA delivery system developed with chitosan/hyaluronic acid-siRNA multilayer films through layer-by-layer self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lijuan [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Wu, Changlin, E-mail: Ph.Dclwu1314@sina.cn [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Liu, Guangwan [Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Liao, Nannan [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Zhao, Fang; Yang, Xuxia; Qu, Hongyuan [Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Peng, Bo [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Chen, Li [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China); Suzhou Novovita Bio-products Co., Ltd., Suzhou 215300 (China); Yang, Guang [Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062 (China)

    2016-12-15

    Highlights: • We prepared Chitosan/Hyaluronic acid-siRNA multilayer as carrier to effectively load and protect siRNAs. • The stability and integrity of the siRNA was verified in the siRNA-loaded films. • The siRNA-loaded films showed good cells adhesion and gene silencing effect in eGFP-HEK 293T cells. • This is a new type of surface-mediated non-viral multilayer films. - Abstract: siRNA delivery remains highly challenging because of its hydrophilic and anionic nature and its sensitivity to nuclease degradation. Effective siRNA loading and improved transfection efficiency into cells represents a key problem. In our study, we prepared Chitosan/Hyaluronic acid-siRNA multilayer films through layer-by-layer self-assembly, in which siRNAs can be effectively loaded and protected. The construction process was characterized by FTIR, {sup 13}C NMR (CP/MAS), UV–vis spectroscopy, and atomic force microscopy (AFM). We presented the controlled-release performance of the films during incubation in 1 M NaCl solution for several days through UV–vis spectroscopy and polyacrylamide gel electrophoresis (PAGE). Additionally, we verified the stability and integrity of the siRNA loaded on multilayer films. Finally, the biological efficacy of the siRNA delivery system was evaluated via cells adhesion and gene silencing analyses in eGFP-HEK 293T cells. This new type of surface-mediated non-viral multilayer films may have considerable potential in the localized and controlled-release delivery of siRNA in mucosal tissues, and tissue engineering application.

  20. Normal-tissue radioprotection by overexpression of the copper-zinc and manganese superoxide dismutase genes

    Energy Technology Data Exchange (ETDEWEB)

    Veldwijk, Marlon R. [Dept. of Radiation Oncology, Univ. Medical Center Mannheim, Univ. of Heidelberg, Mannheim (Germany); Pharmacology of Cancer Treatment (G402), German Cancer Research Center, Heidelberg (Germany); Herskind, Carsten; Wenz, Frederik [Dept. of Radiation Oncology, Univ. Medical Center Mannheim, Univ. of Heidelberg, Mannheim (Germany); Sellner, Leopold; Zeller, W. Jens [Pharmacology of Cancer Treatment (G402), German Cancer Research Center, Heidelberg (Germany); Radujkovic, Aleksandar [Dept. of Internal Medicine V, Univ. of Heidelberg (Germany); Laufs, Stephanie [Dept. of Experimental Surgery, Univ. Medical Center Mannheim, Univ. of Heidelberg, Mannheim (Germany); Molecular Oncology of Solid Tumors (G360), German Cancer Research Center, Heidelberg (Germany); Fruehauf, Stefan [Center for Tumor Diagnostic and Therapy, Paracelsus-Klinik, Osnabrueck (Germany)

    2009-08-15

    Background and Purpose: Protection of normal tissue against radiation-induced damage may increase the therapeutic ratio of radiotherapy. A promising strategy for testing this approach is gene therapy-mediated overexpression of the copper-zinc (CuZnSOD) or manganese superoxide dismutase (MnSOD) using recombinant adeno-associated viral (rAAV2) vectors. The purpose of this study was to test the modulating effects of the SOD genes on human primary lung fibroblasts (HPLF) after irradiation. Material and Methods: HPLF were transduced with rAAV2 vectors containing cDNA for the CuZnSOD, MnSOD or a control gene. The cells were irradiated (1-6 Gy), and gene transfer efficiency, apoptosis, protein expression/activity, and radiosensitivity measured by the colony-forming assay determined. Results: After transduction, 90.0% {+-} 6.4% of the cells expressed the transgene. A significant fivefold overexpression of both SOD was confirmed by an SOD activity assay (control: 21.1 {+-} 12.6, CuZnSOD: 95.1 {+-} 17.1, MnSOD: 108.5 {+-} 36.0 U SOD/mg protein) and immunohistochemistry. CuZnSOD and MnSOD overexpression resulted in a significant radioprotection of HPLF compared to controls (surviving fraction [SF] ratio SOD/control > 1): CuZnSOD: 1.18-fold (95% confidence interval [CI]: 1.06-1.32; p = 0.005), MnSOD: 1.23-fold (95% CI: 1.07-1.43; p = 0.01). Conclusion: Overexpression of CuZnSOD and MnSOD in HPLF mediated an increase in clonogenic survival after irradiation compared to controls. In previous works, a lack of radioprotection in SOD-overexpressing tumor cells was observed. Therefore, the present results suggest that rAAV2 vectors are promising tools for the delivery of radioprotective genes in normal tissue. (orig.)

  1. Haematological and biochemical alterations caused by epidural and intramuscular administration of xylazine hydrochloride in dromedary camels (Camelus dromedarius

    Directory of Open Access Journals (Sweden)

    Omid Azari

    2012-09-01

    Full Text Available This study was conducted in 16 healthy immature dromedary camels weighing 120-150 kg to evaluate and compare the effects of epidural and intramuscular injections of xylazine administered at 0.1 mg/kg and 0.2 mg/kg. Haematological parameters included haemoglobin, packed cell volume, total erythrocyte count and total leukocyte count. Biochemical parameters included alkaline phosphates, alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, creatinine and glucose. Parameters were measured at different intervals before (baseline and after the administration of drugs. Our study showed that the effect of xylazine on haematological and biochemical parameters is dose-dependant and is also related to the route of administration. The low dose of xylazine administered using both intramuscular and epidural methods showed minimal effects, whereas high doses of the drug, especially when injected intramuscularly, caused greater changes in haematological and biochemical parameters.

  2. Albumin-mediated delivery of siRNA

    DEFF Research Database (Denmark)

    Bienk, Konrad

    2015-01-01

    . The human body, however, possesses several natural transport mechanisms for active transport of molecules. Amongst these is albumin, which is the most abundant plasma protein and has a circulatory half-life of ~21 days, partially due to engagement and recycling by the neonatal Fc receptor (FcRn). Albumin...... vehicle. This proof of concept silencing showed that siRNA can be used for therapeutic purposes without the use of non-biocompatible polymer or lipid materials. This work, therefore, provides a novel technology platform for the safe delivery of siRNA therapeutics....

  3. Intramuscular Lipid Metabolism in the Insulin Resistance of Smoking

    OpenAIRE

    Bergman, Bryan C.; Perreault, Leigh; Hunerdosse, Devon M.; Koehler, Mary C.; Samek, Ali M.; Eckel, Robert H.

    2009-01-01

    OBJECTIVE Smoking decreases insulin action and increases the risk of type 2 diabetes in humans. Mechanisms responsible for smoking-induced insulin resistance are unclear. We hypothesized smokers would have increased intramuscular triglyceride (IMTG) and diacylglycerol (DAG) concentration and decreased fractional synthesis rate (FSR) compared with nonsmokers. RESEARCH DESIGN AND METHODS Nonsmokers (n = 18, aged 20 ± 0.5 years, BMI 22 ± 0.4 kg/m2, body fat 20 ± 2%, 0 cigarettes per day) and smo...

  4. Routes for Drug Translocation Across the Blood-Brain Barrier: Exploiting Peptides as Delivery Vectors.

    Science.gov (United States)

    Kristensen, Mie; Brodin, Birger

    2017-09-01

    A number of potent drugs for the treatment of brain diseases are available. However, in order for them to reach their target site of action, they must pass the blood-brain barrier (BBB). The capillary endothelium comprises the major barrier of the BBB and allows only passive permeation of some small lipophilic molecules. Brain delivery of the larger biopharmaceuticals, which today includes an increasing number of novel drug entities, is therefore restricted, both due to their molecular size and their hydrophilic nature. Thus, the development of novel drug entities intended for the treatment of brain diseases such as neurodegenerative diseases or brain cancers require a delivery strategy for overcoming the BBB before reaching its final target within the brain. Peptide-based delivery vector is an emerging tool as shuttles for drug delivery across the BBB and one may explore receptor-mediated transcytosis, adsorptive-mediated transcytosis, and the paracellular route. The latter, however, being controversial due to the risk of co-delivery of blood-borne potential harmful substances. On the other hand, a number of studies report on drug delivery across the BBB exploiting receptor-mediated transcytosis and adsorptive-mediated transcytosis, indicating that peptides and peptide vectors may be of use in a central nervous system delivery context. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. GRIN: "GRoup versus INdividual physiotherapy following lower limb intra-muscular Botulinum Toxin-A injections for ambulant children with cerebral palsy: an assessor-masked randomised comparison trial": study protocol.

    Science.gov (United States)

    Thomas, Rachel E; Johnston, Leanne M; Boyd, Roslyn N; Sakzewski, Leanne; Kentish, Megan J

    2014-02-07

    Cerebral palsy is the most common cause of physical disability in childhood. Spasticity is a significant contributor to the secondary impairments impacting functional performance and participation. The most common lower limb spasticity management is focal intramuscular injections of Botulinum Toxin-Type A accompanied by individually-delivered (one on one) physiotherapy rehabilitation. With increasing emphasis on improving goal-directed functional activity and participation within a family-centred framework, it is timely to explore whether physiotherapy provided in a group could achieve comparable outcomes, encouraging providers to offer flexible models of physiotherapy delivery. This study aims to compare individual to group-based physiotherapy following intramuscular Botulinum Toxin-A injections to the lower limbs for ambulant children with cerebral palsy aged four to fourteen years. An assessor-masked, block randomised comparison trial will be conducted with random allocation to either group-based or individual physiotherapy. A sample size of 30 (15 in each study arm) will be recruited. Both groups will receive six hours of direct therapy following Botulinum Toxin-A injections in either an individual or group format with additional home programme activities (three exercises to be performed three times a week). Study groups will be compared at baseline (T1), then at 10 weeks (T2, efficacy) and 26 weeks (T3, retention) post Botulinum Toxin-A injections. Primary outcomes will be caregiver/s perception of and satisfaction with their child's occupational performance goals (Canadian Occupational Performance Measure) and quality of gait (Edinburgh Visual Gait Score) with a range of secondary outcomes across domains of the International Classification of Disability, Functioning and Health. This paper outlines the study protocol including theoretical basis, study hypotheses and outcome measures for this assessor-masked, randomised comparison trial comparing group versus

  6. Intramuscular Distribution of the Abducens Nerve in the Lateral Rectus Muscle for the Management of Strabismus.

    Science.gov (United States)

    Shin, Hyun Jin; Lee, Shin-Hyo; Shin, Kang-Jae; Koh, Ki-Seok; Song, Wu-Chul

    2018-06-01

    To elucidate the intramuscular distribution and branching patterns of the abducens nerve in the lateral rectus (LR) muscle so as to provide anatomical confirmation of the presence of compartmentalization, including for use in clinical applications such as botulinum toxin injections. Thirty whole-mount human cadaver specimens were dissected and then Sihler's stain was applied. The basic dimensions of the LR and its intramuscular nerve distribution were investigated. The distances from the muscle insertion to the point at which the abducens nerve enters the LR and to the terminal nerve plexus were also measured. The LR was 46.0 mm long. The abducens nerve enters the muscle on the posterior one-third of the LR and then typically divides into a few branches (average of 1.8). This supports a segregated abducens nerve selectively innervating compartments of the LR. The intramuscular nerve distribution showed a Y-shaped ramification with root-like arborization. The intramuscular nerve course finished around the middle of the LR (24.8 mm posterior to the insertion point) to form the terminal nerve plexus. This region should be considered the optimal target site for botulinum toxin injections. We have also identified the presence of an overlapping zone and communicating nerve branches between the neighboring LR compartments. Sihler's staining is a useful technique for visualizing the entire nerve network of the LR. Improving the knowledge of the nerve distribution patterns is important not only for researchers but also clinicians to understand the functions of the LR and the diverse pathophysiology of strabismus.

  7. Serial MR Imaging of Intramuscular Hematoma: Experimental Study in a Rat Model with the Pathologic Correlation

    Science.gov (United States)

    Lee, Yeon Soo; Kwon, Soon Tae; Kim, Jong Ok

    2011-01-01

    Objective We wanted to demonstrate the temporal changes of the magnetic resonance imaging (MRI) findings in experimentally-induced intramuscular hematomas in rats and to correlate these data with the concurrent pathologic observations. Materials and Methods Intramuscular hematoma was induced in 30 rats. The MR images were obtained at 1, 4, 7 and 10 days and at 2, 3, 4, 6 and 8 weeks after muscle injury. The characteristic serial MRI findings were evaluated and the relative signal intensities were calculated. Pathologic specimens were obtained at each time point. Results On the T1-weighted imaging (T1WI), the intramuscular hematomas exhibited isointensity compared to that of muscle or the development of a high signal intensity (SI) rim on day one after injury. The high SI persisted until eight weeks after injury. On the T2-weighted imaging (T2WI), the hematomas showed high SI or centrally low SI on day one after injury, and mainly high SI after four days. A dark signal rim was apparent after seven days, which was indicative of hemosiderin on the pathology. The gradient echo (GRE) imaging yielded dark signal intensities at all stages. Conclusion Unlike brain hematomas, experimentally-induced intramuscular hematomas show increased SI on both the T1WI and T2WI from the acute stage onward, and this is pathologically correlated with a rich blood supply and rapid healing response to injury in the muscle. On the T2WI and GRE imaging, high SI with a peripheral dark signal rim is apparent from seven days to the chronic stage. PMID:21228942

  8. Serial MR Imaging of Intramuscular Hematoma: Experimental Study in a Rat Model with the Pathologic Correlation

    International Nuclear Information System (INIS)

    Lee, Yeon Soo; Kim, Jong Ok; Choi, Eun Seok; Kwon, Soon Tae

    2011-01-01

    We wanted to demonstrate the temporal changes of the magnetic resonance imaging (MRI) findings in experimentally-induced intramuscular hematomas in rats and to correlate these data with the concurrent pathologic observations. Intramuscular hematoma was induced in 30 rats. The MR images were obtained at 1, 4, 7 and 10 days and at 2, 3, 4, 6 and 8 weeks after muscle injury. The characteristic serial MRI findings were evaluated and the relative signal intensities were calculated. Pathologic specimens were obtained at each time point. On the T1-weighted imaging (T1WI), the intramuscular hematomas exhibited isointensity compared to that of muscle or the development of a high signal intensity (SI) rim on day one after injury. The high SI persisted until eight weeks after injury. On the T2-weighted imaging (T2WI), the hematomas showed high SI or centrally low SI on day one after injury, and mainly high SI after four days. A dark signal rim was apparent after seven days, which was indicative of hemosiderin on the pathology. The gradient echo (GRE) imaging yielded dark signal intensities at all stages. Unlike brain hematomas, experimentally-induced intramuscular hematomas show increased SI on both the T1WI and T2WI from the acute stage onward, and this is pathologically correlated with a rich blood supply and rapid healing response to injury in the muscle. On the T2WI and GRE imaging, high SI with a peripheral dark signal rim is apparent from seven days to the chronic stage

  9. Nanoparticle-mediated rhodopsin cDNA but not intron-containing DNA delivery causes transgene silencing in a rhodopsin knockout model.

    Science.gov (United States)

    Zheng, Min; Mitra, Rajendra N; Filonov, Nazar A; Han, Zongchao

    2016-03-01

    Previously, we compared the efficacy of nanoparticle (NP)-mediated intron-containing rhodopsin (sgRho) vs. intronless cDNA in ameliorating retinal disease phenotypes in a rhodopsin knockout (RKO) mouse model of retinitis pigmentosa. We showed that NP-mediated sgRho delivery achieved long-term expression and phenotypic improvement in RKO mice, but not NP housing cDNA. However, the protein level of the NP-sgRho construct was only 5-10% of wild-type at 8 mo postinjection. To have a better understanding of the reduced levels of long-term expression of the vectors, in the present study, we evaluated the epigenetic changes of subretinal delivering NP-cDNA vs. NP-sgRho in the RKO mouse eyes. Following the administration, DNA methylation and histone status of specific regions (bacteria plasmid backbone, promoter, rhodopsin gene, and scaffold/matrix attachment region) of the vectors were evaluated at various time points. We documented that epigenetic transgene silencing occurred in vector-mediated gene transfer, which were caused by the plasmid backbone and the cDNA of the transgene, but not the intron-containing transgene. No toxicity or inflammation was found in the treated eyes. Our results suggest that cDNA of the rhodopsin transgene and bacteria backbone interfered with the host defense mechanism of DNA methylation-mediated transgene silencing through heterochromatin-associated modifications. © FASEB.

  10. Topical Administration Is a Promising Inoculating Route versus Intramuscular Inoculation for the Nanoparticle-Carried DNA Vaccine to Prevent Corneal Infections.

    Science.gov (United States)

    Hu, Kai; Malla, Tejsu; Zhai, Yujia; Dong, Lili; Tang, Ru

    2015-01-01

    To evaluate the comparative effect of topical versus intramuscular administration of nanoparticle-carried DNA vaccine in preventing corneal herpes simplex virus type 1 (HSV-1) infection. Nanoparticle [polyethylenimine (PEI)-Fe3O4]-carried DNA vaccine (PEI-Fe3O4-pRSC-gD-IL-21) or DNA vaccine (pRSC-gD-IL-21) alone were topically versus intramuscularly inoculated into one eye each of mice on days 0, 14 and 28. Three weeks after the final immunization, the specific immune responses and clinical degrees of primary herpes simplex keratitis were evaluated. Topical inoculation of nanoparticle-carried DNA vaccine induced mice to generate similar levels of specific HSV-1-neutralizing antibody, IFN-γ and IL-4 in serum and specific killing (cytotoxicity) and proliferative activities of the splenic lymphocytes, but a significantly higher level of secretory IgA in tears compared to those of intramuscular inoculation. More importantly, the mice inoculated topically showed a significantly decreased herpes simplex keratitis severity than the mice inoculated intramuscularly after HSV-1 challenge on the corneas of the mice. Topical inoculation of nanoparticle-carried DNA vaccine elicits a stronger specific local immune response and more effectively inhibits herpes simplex keratitis as compared to intramuscular inoculation in an HSV-1 ocular challenge mouse model. Thus, topical administration may be a promising inoculating route for the nanoparticle-carried DNA vaccine to prevent corneal infections. © 2015 S. Karger AG, Basel.

  11. Lentivirus-mediated delivery of sonic hedgehog into the striatum stimulates neuroregeneration in a rat model of Parkinson disease.

    Science.gov (United States)

    Zhang, Yi; Dong, Weiren; Guo, Suiqun; Zhao, Shu; He, Suifen; Zhang, Lihua; Tang, Yinjuan; Wang, Haihong

    2014-12-01

    Parkinson disease (PD) is a progressive neurodegenerative disorder in which the nigrostriatal pathway, consisting of dopaminergic neuronal projections from the substantia nigra to the striatum, degenerates. Viral transduction is currently the most promising in vivo strategy for delivery of therapeutic proteins into the brain for treatment of PD. Sonic hedgehog (Shh) is necessary for cell proliferation, differentiation and neuroprotection in the central nervous system. In this study, we investigated the effects of overexpressed N-terminal product of SHH (SHH-N) in a PD model rat. A lentiviral vector containing SHH-N was stereotactically injected into the striatum 24 h after a striatal 6-OHDA lesion. We found that overexpressed SHH-N attenuated behavioral deficits and reduced the loss of dopamine neurons in the substantia nigra and the loss of dopamine fibers in the striatum. In addition, fluoro-ruby-labeled nigrostriatal projections were also repaired. Together, our results demonstrate the feasibility and efficacy of using the strategy of lentivirus-mediated Shh-N delivery to delay nigrostriatal pathway degeneration. This strategy holds the potential for therapeutic application in the treatment of PD.

  12. Monocyte-mediated delivery of polymeric backpacks to inflamed tissues: a generalized strategy to deliver drugs to treat inflammation.

    Science.gov (United States)

    Anselmo, Aaron C; Gilbert, Jonathan B; Kumar, Sunny; Gupta, Vivek; Cohen, Robert E; Rubner, Michael F; Mitragotri, Samir

    2015-02-10

    Targeted delivery of drugs and imaging agents to inflamed tissues, as in the cases of cancer, Alzheimer's disease, Parkinson's disease, and arthritis, represents one of the major challenges in drug delivery. Monocytes possess a unique ability to target and penetrate into sites of inflammation. Here, we describe a broad approach to take advantage of the natural ability of monocytes to target and deliver flat polymeric particles ("Cellular Backpacks") to inflamed tissues. Cellular backpacks attach strongly to the surface of monocytes but do not undergo phagocytosis due to backpack's size, disk-like shape and flexibility. Following attachment of backpacks, monocytes retain important cellular functions including transmigration through an endothelial monolayer and differentiation into macrophages. In two separate in vivo inflammation models, backpack-laden monocytes exhibit increased targeting to inflamed tissues. Cellular backpacks, and their abilities to attach to monocytes without impairing monocyte functions and 'hitchhike' to a variety of inflamed tissues, offer a new platform for both cell-mediated therapies and broad targeting of inflamed tissues. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Sequential decoding of intramuscular EMG signals via estimation of a Markov model.

    Science.gov (United States)

    Monsifrot, Jonathan; Le Carpentier, Eric; Aoustin, Yannick; Farina, Dario

    2014-09-01

    This paper addresses the sequential decoding of intramuscular single-channel electromyographic (EMG) signals to extract the activity of individual motor neurons. A hidden Markov model is derived from the physiological generation of the EMG signal. The EMG signal is described as a sum of several action potentials (wavelet) trains, embedded in noise. For each train, the time interval between wavelets is modeled by a process that parameters are linked to the muscular activity. The parameters of this process are estimated sequentially by a Bayes filter, along with the firing instants. The method was tested on some simulated signals and an experimental one, from which the rates of detection and classification of action potentials were above 95% with respect to the reference decomposition. The method works sequentially in time, and is the first to address the problem of intramuscular EMG decomposition online. It has potential applications for man-machine interfacing based on motor neuron activities.

  14. In vitro simulation of distribution processes following intramuscular injection

    Directory of Open Access Journals (Sweden)

    Probst Mareike

    2016-09-01

    Full Text Available There is an urgent need for in vitro dissolution test setups for intramuscularly applied dosage forms. Especially biorelevant methods are needed to predict the in vivo behavior of newly developed dosage forms in a realistic way. There is a lack of knowledge regarding critical in vivo parameters influencing the release and absorption behavior of an intramuscularly applied drug. In the presented work the focus was set on the simulation of blood perfusion and muscle tissue. A solid agarose gel, being incorporated in an open-pored foam, was used to mimic the gel phase of muscle tissue and implemented in a flow through cell. An aqueous solution of fluorescein sodium was injected. Compared to recently obtained in vivo results the distribution of the model substance was very slow. Furthermore an agarose gel of lower viscosity an open-pored foam and phosphate buffer saline pH 7.4 were implemented in a multi-channel-ceramic membrane serving as a holder for the muscle imitating material. Blood simulating release medium was perfused through the ceramic membrane including filling materials. Transport of the dissolved fluorescein sodium was, in case of the gel, not only determined by diffusion but also by convective transport processes. The more realistic the muscle simulating materials were constituted the less reproducible results were obtained with the designed test setups.

  15. Prehospital Agitation and Sedation Trial (PhAST): A Randomized Control Trial of Intramuscular Haloperidol versus Intramuscular Midazolam for the Sedation of the Agitated or Violent Patient in the Prehospital Environment.

    Science.gov (United States)

    Isenberg, Derek L; Jacobs, Dorian

    2015-10-01

    Violent patients in the prehospital environment pose a threat to health care workers tasked with managing their medical conditions. While research has focused on methods to control the agitated patient in the emergency department (ED), there is a paucity of data looking at the optimal approach to subdue these patients safely in the prehospital setting. Hypothesis This study evaluated the efficacy of two different intramuscular medications, midazolam and haloperidol, to determine their efficacy in sedating agitated patients in the prehospital setting. This was a prospective, randomized, observational trial wherein agitated patients were administered intramuscular haloperidol or intramuscular midazolam to control agitation. Agitation was quantified by the Richmond Agitation and Sedation Scale (RASS). Paramedics recorded the RASS and vital signs every five minutes during transport and again upon arrival to the ED. The primary outcome was mean time to achieve a RASS less than +1. Secondary outcomes included mean time for patients to return to baseline mental status and adverse events. Five patients were enrolled in each study group. In the haloperidol group, the mean time to achieve a RASS score of less than +1 was 24.8 minutes (95% CI, 8-49 minutes), and the mean time for the return of a normal mental status was 84 minutes (95% CI, 0-202 minutes). Two patients required additional prehospital doses for adequate sedation. There were no adverse events recorded in the patients administered haloperidol. In the midazolam group, the mean time to achieve a RASS score of less than +1 was 13.5 minutes (95% CI, 8-19 minutes) and the mean time for the return of normal mental status was 105 minutes (95% CI, 0-178 minutes). One patient required additional sedation in the ED. There were no adverse events recorded among the patients administered midazolam. Midazolam and haloperidol administered intramuscularly appear equally effective for sedating an agitated patient in the

  16. Randomised, prospective, non-blinded pilot study comparing the effect of intramuscular steroid injections and intralesional steroid injections in the management of tennis elbow

    Science.gov (United States)

    Tahir, Hasan; Biro, Izolda; Donnelly, Simon; Greenwood, Mandy

    2016-01-01

    Background Tennis elbow is an overuse injury affecting people performing repetitive forearm movements. It is a soft tissue disorder that causes significant disability and pain. The aim of the study was to establish that an intramuscular steroid injection is effective in the short-term pain relief and functional improvement of tennis elbow. The severity of pain at the injection site was monitored to determine whether the intramuscular injection is better tolerated than the intralesional injection. Methods and results 19 patients, who had no treatment for tennis elbow in the preceding 3 months, were recruited from Whipps Cross University Hospital, London, and were randomised to receive either 80 mg of intramuscular Depo-Medrone or 40 mg of intralesional Depo-Medrone injection. Blinding proved difficult as the injection sites differed and placebo arms were not included in the study. A Patient-Rated Tennis Elbow Evaluation (PRTEE) Questionnaire and a 10-point Likert scale were used to assess primary outcome. Six weeks after the treatment, there was a reduction in pain, improvement in function and total PRTEE scores in both intramuscular and intralesional groups (p=0.008) using a 95% CI for mean treatment difference of −26 to +16 points. A statistically significant result (p=0.001) in favour of intramuscular causing less pain at the injection site was noted. Conclusion Non-inferiority of intramuscular to intralesional injections was not confirmed; however, the intramuscular injection proved to be effective in reducing tennis elbow-related symptoms and was found less painful at the site of injection at the time of administration. Trial registration number EUDRACT Number: 2010-022131-11. REC Number: 10/H0718/76 (NRES, Central London REC 1). PMID:28879024

  17. Polyostotic fibrous dysplasia associated with intramuscular myxomas: Mazabraud syndrome

    International Nuclear Information System (INIS)

    Samper Wamba, Jose Daniel; Fernandez Bermudez, Maria Jose; Dominguez, Teresa Lorenzo; Pascua, Luis Ramos

    2015-01-01

    The authors report a new case of Mazabraud syndrome in a 69-year-old woman complaining of pain in her right thigh. Plain radiographs demonstrated radiological findings consistent with polyostotic fibrous dysplasia of the right femur and tibia. Magnetic resonance imaging (MRI) study showed soft tissue tumors located in the vastus intermedius muscle with typical signal features of intramuscular myxomas. Biopsy was not performed because of its benign nature. Symptomatic treatment was prescribed and all the lesions remained 1 year after the diagnosis

  18. Muscle enhancement using intramuscular injections of oil in bodybuilding

    DEFF Research Database (Denmark)

    Schäfer, Ch. N.; Hvolris, Jørgen Jesper; Karlsmark, Tonny

    2012-01-01

    BACKGROUND: Self-administered intramuscular injection of site enhancement oil (SEO) is a cosmetic and performance-enhancing procedure used to reshape muscles in the bodybuilder subculture, but its consequences and complications are only sporadically described. Methods: A systematic search...... in MEDLINE and EMBASE databases during the spring of 2009 and 2010. Internet searches were performed, and bodybuilder pharmacopoeias were consulted to describe SEO use and the clinical complications known. Results: One review and seven case reports were identified. Eight case reports describe oleomas caused...

  19. POSTPARTUM BOVINE ENDOMETRITIS TREATMENT BY INTRAUTERINE AND INTRAMUSCULAR ADMINISTRATION OF OXITETRACYCLINE TRATAMENTO DE ENDOMETRITE BOVINA PÓS PUERPERAL PELAS VIAS INTRAMUSCULAR E INTRA-UTERINA

    Directory of Open Access Journals (Sweden)

    Ciro Alexandre Alves Torres

    2009-07-01

    Full Text Available The aim of this study was to evaluate the efficiency of the postpartum bovine endometritis treatment by intrauterine and intramuscular administration of tetracycline. Forty six cross bred cows diagnosed by gynecological exam with postpartum endometritis were assigned randomly in two treatments: G1 (n=21 - animals were treated with one intramuscular (IM dose of tetracycline (20 mg/Kg of body weight, while in G2 (n=25 animals were treated with one intrauterine (IU dose of tetracycline (30 mg/Kg of body weight. No difference (p>0.05 was observed in the recovery rate between the two treatments (61.9 X 76.0%, G1 and G2, respectively. The interval from treatment until first estrous was 33.9±22.6 versus 14.8 ±10.9 days (P<0.05 and until first service was 54.7 ± 33.9 versus 27.2 ± 20.3 days (P<0.05; for G1 and G2, respectively. No difference (p>0.05 was observed in the number of services per conception between G1 (1.54 and G2 (1.3. The treatment cost was lower for the G1 (U$ 3.51 versus U$ 5.00. Although not to have had differences in the clinical recovery rate, the use of the oxitetracycline managed for way IU in the postpuerperal treatment of endometrites in cows revealed more efficient in the reduction of the interval between the treatment and first heat and first insemination, beyond presenting lower cost that the treatment with oxitetracycline managed for way IM

    KEY WORDS: Bovine, postpartum endometritis, intrauterine, intramuscular, oxitetracicline.
    Este trabalho teve por objetivo comparar a eficiência do uso da oxitetracilina, administrada pelas vias intramuscular (IM e intrauterina (IU, no tratamento de endometrites em vacas no período pós-puerperal. Foram utilizados 46 animais mestiços que apresentaram quadro clínico de endometrite, distribuídos aleatoriamente em dois tratamentos: G1 (n=21 – tratado com uma dose de 30 mg/Kg PV de oxitetraciclina por via IM, e G2 (n=25  – uma infusão de 20 mg/Kg PV de

  20. Association between FASN gene polymorphisms ultrasound carcass traits and intramuscular fat in Qinchuan cattle.

    Science.gov (United States)

    Raza, Sayed Haidar Abbas; Gui, Linsheng; Khan, Rajwali; Schreurs, Nicola M; Xiaoyu, Wang; Wu, Sen; Mei, Chugang; Wang, Li; Ma, Xueyao; Wei, Dawei; Guo, Hongfang; Zhang, Song; Wang, Xingping; Kaleri, Hubdar Ali; Zan, Linsen

    2018-03-01

    Fatty acid synthase (FASN) is an enzyme involved with fat deposition and fatty acid composition in cattle. This study was conducted to detect single nucleotide polymorphisms (SNPs) of the FASN gene and explore their relationships with ultrasound carcass traits in order to assess the potential use of the FASN gene for the breeding selection of Qinchuan cattle for desirable carcass traits. The frequencies of SNP g.12740C>T, g.13192T>C and g.13232C>T were identified in 525 individual Qinchuan cattle which were also assessed for backfat depth, eye muscle area and intramuscular fat by ultrasound. According to the PIC values, g.13192T>C possessed an intermediate polymorphism (0.25T, g.12740C>T possessed low polymorphism (PICC were in Hardy-Weinberg disequilibrium (c2C was associated with a greater eye muscle area and the TT genotype at g.13232C>T was associated with greater intramuscular fat. When these genotypes were combined there was no difference in eye muscle area and intramuscular fat between the diplotypes. The H 2 H 2 diplotype was associated with carcass traits that are likely to provide economic advantage in Qinchuan cattle. Variations in the FASN genes and their corresponding genotypes may be considered as molecular markers for economic traits in cattle breeding. Copyright © 2017 Elsevier B.V. All rights reserved.