WorldWideScience

Sample records for aapprox130 odd-odd nuclei

  1. Quartetting in odd-odd self-conjugate nuclei

    CERN Document Server

    Sambataro, M

    2016-01-01

    We provide a description of odd-odd self-conjugate nuclei in the sd shell in a formalism of collective quartets and pairs. Quartets are four-body structures carrying isospin T=0 while pairs can have either T=0 or T=1. Both quartets and pairs are labeled by the angular momentum J and they are chosen so as to describe the lowest states of 20Ne (quartets) and the lowest T=0 and T=1 states of 18F (pairs). We carry out configuration interaction calculations in spaces built by one quartet and one pair for 22Na and by two quartets and one pair for 26Al. The spectra that are generated are in good agreement with the shell model and experimental ones. These calculations confirm the relevance of quartetting in the structure of N=Z nuclei that had already emerged in previous studies of the even-even systems and highlight the role of J>0 quartets in the composition of the odd-odd spectra.

  2. Calculation of {beta}-ray spectra. Odd-odd nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Takahiro [Waseda Univ., Tokyo (Japan). Advanced Research Center for Science and Engineering

    1996-05-01

    In order to study {beta}-ray of atomic nucleus, it is natural to consider {beta}-ray data fundamental and important. In a recent experiment, Rudstam measured {beta}-ray spectra from short term nuclear fission product species in 1990. It is an important check point in theoretical study on {beta}-ray to investigate if these experimental data can be reproduced by any theoretical calculation. As there are several spectrum studies of {beta}-ray through decay heat for its various properties due to the general theory of the {beta}-decay, little descriptions can be found. In even such studies, spectra under high excitation state of daughter species difficult to measure and apt to short experimental results were treated with combination spectra composed of experimental and calculated values such as substitution of a part of the general theory with calculated value. In this paper, the {beta} spectra supposed by only the general theory was reported without using such data combination in order to confirm effectiveness of the theory. In particular, this report was described mainly on the results using recent modification of odd-odd nucleus species. (G.K.)

  3. Description of the Superdeformed Bands of Odd-Odd Nuclei in A ~ 80 Region

    Institute of Scientific and Technical Information of China (English)

    ZHANG Da-Li

    2005-01-01

    Properties of the superdeformed bands of odd-odd nuclei in A ~ 80 mass region are investigated systematically within the supersymmetry scheme including many-body interactions and a perturbation possessing the S0(5)(or SU(5)) symmetry on the rotational symmetry. The obtained γ-ray energies, and the dynamical moments of inertia agree with experimental data. It shows that this approach is quite powerful in describing odd-odd nuclei in A ~ 80 mass region.

  4. Description of the Superdeformed Bands of the Odd-Odd Nuclei in A ~ 150 Region

    Institute of Scientific and Technical Information of China (English)

    ZHANG Da-Li; LIU Yu-Xin

    2002-01-01

    With the supersymmetry scheme including many-body interactions, the global property and the △I = 4bifurcation in the superdeformed (SD) bands of odd-odd nuclei in A ~ 150 mass region are investigated systematically.Good results for the γ-ray energies, the dynamical moments of inertia, and energy differences △ Eγ - △ Erefγ are obtained.It shows that this approach is quite powerful in describing not only the SD bands in even-even and odd-A nuclei butalso those in odd-odd nuclei in the mass region.

  5. Influence of Traxiality on the Signature Inversion in Odd-Odd Nuclei

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ren-Rong; E. S. Paul; ZHU Shun-Quan; LUO Xiang-Dong; Janos Timár; Andree Gizon; Jean Gizon; D.Sohler; B. M. Nyakó; L. Zolnai

    2004-01-01

    @@ The nature of signature inversion in the πg9/2νh11/2 bands of odd-odd 98,102Rh nuclei is studied. Calculations are performed by using a triaxial rotor plus two-quasiparticle model and are compared with the experimentally observed signature inversions. The calculations reproduce well the observations and suggest that, in these bands,the signature inversion can be interpreted mainly as a competition between the Coriolis and the proton-neutron residual interactions in low K space.

  6. Theoretical description of fine structure in the α decay of heavy odd-odd nuclei

    Science.gov (United States)

    Ni, Dongdong; Ren, Zhongzhou

    2013-02-01

    The newly developed multichannel cluster model (MCCM), based on the coupled-channel Schrödinger equation with outgoing wave boundary conditions, is extended to study the α-decay fine structure in heavy odd-odd nuclei. Calculations are performed for the α transitions to favored rotational bands where the unpaired nucleons remain unchanged. The simple WKB barrier penetration formula is also used to evaluate the branching ratios for various daughter states. It is found that the WKB formula seems to overestimate the branching ratios for the second and third members of the favored rotational band, while the MCCM gives a precise description of them without any adjustable parameters. Moreover, the experimental total α-decay half-lives are well reproduced within the MCCM.

  7. Microscopic study of chiral rotation in odd-odd A $\\sim$ 100 nuclei

    CERN Document Server

    Dar, W A; Bhat, G H; Palit, R; Frauendorf, S

    2013-01-01

    A systematic study of the doublet bands observed in odd-odd mass $\\sim$ 100 is performed using the microscopic triaxial projected shell model approach. This mass region has depicted some novel features which are not observed in other mass regions, for instance, it has been observed that two chiral bands cross diabatically in $^{106}$Ag. It is demonstrated that this unique feature is due to crossing of the two 2-quasiparticle configurations having different intrinsic structures. Further, we provide a complete set of transition probabilities for all the six-isotopes studied in this work and it is shown that the predicted transitions are in good agreement with the available experimental data.

  8. Triaxial projected shell model study of chiral rotation in odd-odd nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, G.H. [Department of Physics, University of Kashmir, Srinagar, 190 006 (India); Sheikh, J.A. [Department of Physics, University of Kashmir, Srinagar, 190 006 (India); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Palit, R., E-mail: palit@tifr.res.in [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Colaba, Mumbai, 400 005 (India)

    2012-01-20

    Chiral rotation observed in {sup 128}Cs is studied using the newly developed microscopic triaxial projected shell model (TPSM) approach. The observed energy levels and the electromagnetic transition probabilities of the nearly degenerate chiral dipole bands in this isotope are well reproduced by the present model. This demonstrates the broad applicability of the TPSM approach, based on a schematic interaction and angular-momentum projection technique, to explain a variety of low- and high-spin phenomena in triaxial rotating nuclei.

  9. Unique first-forbidden β-decay transitions in odd-odd and even-even heavy nuclei

    Science.gov (United States)

    Nabi, Jameel-Un; Çakmak, Necla; Majid, Muhammad; Selam, Cevad

    2017-01-01

    The allowed Gamow-Teller (GT) transitions are the most common weak nuclear processes of spin-isospin (στ) type. These transitions play a key role in numerous processes in the domain of nuclear physics. Equally important is their contribution in astrophysics, particularly in nuclear synthesis and supernova-explosions. In situations where allowed GT transitions are not favored, first-forbidden transitions become significant, specifically in medium heavy and heavy nuclei. For neutron-rich nuclei, first-forbidden transitions are favored mainly due to the phase-space amplification for these transitions. In this work we calculate the allowed GT as well as unique first-forbidden (U1F) | ΔJ | = 2 transitions strength in odd-odd and even-even nuclei in mass range 70 ≤ A ≤ 214. Two different pn-QRPA models were used with a schematic separable interaction to calculate GT and U1F transitions. The inclusion of U1F strength improved the overall comparison of calculated terrestrial β-decay half-lives in both models. The ft values and reduced transition probabilities for the 2- ⟷0+ transitions were also calculated. We compared our calculations with the previously reported correlated RPA calculation and experimental results. Our calculations are in better agreement with measured data. For stellar applications we further calculated the allowed GT and U1F weak rates. These include β±-decay rates and electron/positron capture rates of heavy nuclei in stellar matter. Our study shows that positron and electron capture rates command the total weak rates of these heavy nuclei at high stellar temperatures.

  10. The competition between alpha decay and spontaneous fission in odd-even and odd-odd nuclei in the range 99 \\leg Z \\leg 129

    CERN Document Server

    Santhosh, K P

    2015-01-01

    The predictions on the mode of decay of the odd-even and odd-odd isotopes of heavy and superheavy nuclei with Z = 99-129, in the range 228 \\leg A \\leg 336, have been done within the Coulomb and proximity potential model for deformed nuclei (CPPMDN). A comparison of our calculated alpha half lives with the values computed using other theoretical models shows good agreement with each other. An extensive study on the spontaneous fission half lives of all the isotopes under study has been performed to identify the long-lived isotopes in the mass region. The study reveals that the alpha decay half lives and the mode of decay of the isotopes with Z = 109, 111, 113, 115 and 117, evaluated using our formalisms, agrees well with the experimental observations. As our study on the odd-even and odd-odd isotopes of Z = 99-129 predicts that, the isotopes $^{238,240-254}$99, $^{244,246-258}$101, $^{248,250,252-260,262}$103, $^{254,256,258-262,264}$105, $^{258,260,262-264,266}$107, $^{262,264,266-274}$109, $^{266,268-279}$11...

  11. Anomalous Signature Splitting of the πh11/2(×)vi13/2 Band in A ~ 160 Odd-Odd Nuclei

    Institute of Scientific and Technical Information of China (English)

    杨春祥; 周宏余

    2003-01-01

    Systematic features of anomalous signature splitting of the πh11/2 vi13/2 band in A ~ 160 odd-odd nuclei have been investigated. It is shown that the mechanism of anomalous signature splitting is similar to that of the normal signature splitting which is essentially caused by the Coriolis mixing of Ω = 1/2 components into the nuclear wavefunction and the anomalous splitting in signature is mainly caused by the definition. The extensively observed anomalous signature splitting in this band might be an indication that the interaction between the h11/2 proton and the i13/2 neutron cannot be neglected. The new observation of high- and low-K bands based on the same πh11/2 vi13/2 configuration in 164Tm is also discussed.

  12. Beta decay of deformed r-process nuclei near A = 80 and A= 160, including odd-A and odd-odd nuclei, with the Skyrme finite-amplitude method

    CERN Document Server

    Shafer, T; Fröhlich, C; McLaughlin, G C; Mumpower, M; Surman, R

    2016-01-01

    After identifying the nuclei in the regions near A =80 and A = 160 for which beta-decay rates have the greatest effect on weak and main r-process abundance patterns, we apply the finite-amplitude method (FAM) with Skyrme energy-density functionals (EDFs) to calculate beta-decay half-lives of those nuclei in the quasiparticle random-phase approximation (QRPA). We use the equal filling approximation to extend our implementation of the charge-changing FAM, which incorporates pairing correlations and allows axially symmetric deformation, to odd-A and odd-odd nuclei. Within this framework we find differences of up to a factor of seven between our calculated beta-decay half-lives and those of previous efforts. Repeated calculations with nuclei near A = 160 and multiple EDFs show a spread of two to four in beta-decay half-lives, with differences in calculated Q values playing an important role. We investigate the implications of these results for r-process simulations.

  13. Nonadiabatic effects in odd-odd deformed proton emitters

    Energy Technology Data Exchange (ETDEWEB)

    Patial, M.; Jain, A. K. [Department of Physics, Indian Institute of Technology Roorkee, Uttarakhand 247 667 (India); Arumugam, P. [Department of Physics, Indian Institute of Technology Roorkee, Uttarakhand 247 667 (India); Centro de Fisica das Interaccoes Fundamentais, and Departmento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais, P1049-001 Lisbon (Portugal); Maglione, E. [Dipartimento di Fisica ' ' G. Galilei' ' , Via Marzolo 8, I-35131 Padova, Italy and Istituto Nazionale di Fisica Nucleare, Padova (Italy); Ferreira, L. S. [Centro de Fisica das Interaccoes Fundamentais, and Departmento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais, P1049-001 Lisbon (Portugal)

    2011-11-30

    We present for the first time, the nonadiabatic quasiparticle approach to study proton emission from odd-odd deformed nuclei. Coriolis effects are incorporated in both the parent and daughter wavefunctions and hence our formalism allows us to study their complete role on the decay widths. First results obtained for the nucleus {sup 112}Cs suggest a weak dependance on Coriolis effect. However, we are able to reproduce the experimental half-lives without assuming the exact Nilsson orbital from which the decay proceeds.

  14. Non-adiabatic description of proton emission from the odd-odd nucleus 130Eu

    Directory of Open Access Journals (Sweden)

    Patial Monika

    2014-03-01

    Full Text Available We discuss the non-adiabatic quasiparticle approach for calculating the rotational spectra and decay width of odd-odd proton emitters. The Coriolis effects are incorporated in both the parent and daughter wave functions. Results for the two probable ground states (1+ and 2+ of the proton emitter 130Eu are discussed. With our calculations, we confirm the proton emitting state to be the Iπ = 1+ state, irrespective of the strength of the Coriolis interaction. This study provides us with an opportunity to look into the details of wave functions of deformed odd-odd nuclei to which the proton emission halflives are quite sensitive.

  15. Neutron Transfer Reactions on Neutron-Rich N=50 and N=82 Nuclei Near the r-Process Path

    Energy Technology Data Exchange (ETDEWEB)

    Cizewski, J. A. [Rutgers University; Jones, K. L. [University of Tennessee, Knoxville (UTK); Kozub, R. L. [Tennessee Technological University; Pain, S. D. [Rutgers University; Thomas, J. S. [Rutgers University; Arbanas, Goran [ORNL; Adekola, Aderemi S [ORNL; Bardayan, Daniel W [ORNL; Blackmon, Jeff C [ORNL; Chae, K. Y. [University of Tennessee, Knoxville (UTK); Chipps, K. [Colorado School of Mines, Golden; Dean, David Jarvis [ORNL; Erikson, Luke [Colorado School of Mines, Golden; Gaddis, A. L. [Furman University; Harlin, Christopher W [ORNL; Hatarik, Robert [Rutgers University; Howard, Joshua A [ORNL; Johnson, Micah [ORNL; Kapler, R. [University of Tennessee, Knoxville (UTK); Krolas, W. [University of Warsaw; Liang, J Felix [ORNL; Livesay, Jake [ORNL; Ma, Zhanwen [ORNL; Matei, Catalin [Oak Ridge Associated Universities (ORAU); Moazen, Brian [University of Tennessee, Knoxville (UTK); Nesaraja, Caroline D [ORNL; O' Malley, Patrick [Rutgers University; Paulauskas, Stanley V [ORNL; Shapira, Dan [ORNL; ShrinerJr., J. F. [Tennessee Technological University; Sissom, D. J. [Tennessee Technological University; Smith, Michael Scott [ORNL; Swan, T. P. [University of Surrey, UK; Wilson, Gemma L [ORNL

    2009-01-01

    Neutron transfer (d,p) reaction studies on the N = 50 isotones, 82Ge and 84Se, and A{approx}130 nuclei, 130,132Sn and 134Te, have been measured. Direct neutron capture cross sections for 82Ge and 84Se (n,?) have been calculated and are combined with Hauser-Feshbach expectations to estimate total (n,?) cross sections. The A{approx}130 studies used an early implementation of the ORRUBA array of position-sensitive silicon strip detectors for reaction proton measurements. Preliminary excitation energy and angular distribution results from the A{approx}130 measurements are reported.

  16. Spectra Statistics for the Odd-Odd Nucleus 86Nb

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ren-Rong; ZHU Shun-Quan; CHENG Nan-Pu

    2001-01-01

    The energy levels of the odd-odd nucleus 86 Nb at low spins are calculated by using quasi-particles plus a rotor model. The distribution of the nearest-neighbour spacing and the spectral rigidity are studied. We find that the chaotic degree of the energy spectra increases with the increasing spin and reaches a maximum at I = 10; then it decreases gradually for spins above I = 10. The recoil term in the model Haniltonian makes the energy spectra slightly regular. The Coriolis force, however, makes the spectra chaotic and plays a major role in the spectral statistics of the odd-odd nucleus 86Nb.

  17. Tilted axis rotation in odd-odd {sup 164}Tm

    Energy Technology Data Exchange (ETDEWEB)

    Reviol, W.; Riedinger, L.L.; Wang, X.Z.; Zhang, J.Y. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1996-12-31

    Ten band structures are observed in {sup 164}Tm, among them sets of parallel and anti-parallel couplings of the proton and neutron spins. The Tilted Axis Cranking scheme is applied for the first time to an odd-odd nucleus in a prominent region of nuclear deformation.

  18. Contribution to the study of transition odd-odd nuclei. Case of {sup 184} Au and influence of residual interaction; Contribution a l`etude des noyaux impairs-impairs de transition. Cas de {sup 184}Au et influence de l`interaction residuelle

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, F.

    1994-06-01

    The main topic of this work is the study of the low-spin and high-spin states of the transitional odd-odd nucleus {sup 184}Au. This nucleus has been studied from the {beta}{sup +}/CE decay of {sup 184}Hg produced by the {sup 148}Sm({sup 40}Ar,4n) reaction. The reaction products were then transported by a helium jet system. This nucleus has also been studied from the {sup 165}Ho({sup 24}Mg,5n) and {sup 170}Yb({sup 19}F,5n) reactions at the ``Chateau de Cristal`` setup at Orsay. The level schemes of both high and low spin states have been established from {gamma}-{gamma}-t coincidence relationships. Experimental results have been interpreted in the frame of the ``rotor plus two quasi-particles`` model. This calculations have shown that this model, which has his strongest justification in well deformed nuclei regions, reproduces correctly the experimental results for the transitional nucleus {sup 184}Au. The influence of the neutron-proton residual interaction has been studied comparing the different results obtained in the ``rotor+2qp`` calculations with and without taking into account the residual interaction. (author). 60 refs., 54 figs., 10 tabs.

  19. INTRUDER STATES IN ODD ODD TL NUCLEI POPULATED IN THE ALPHA-DECAY OF ODD ODD BI ISOTOPES

    NARCIS (Netherlands)

    VANDUPPEN, P; DECROCK, P; DENDOOVEN, P; HUYSE, M; REUSEN, G; WAUTERS, J

    1991-01-01

    The alpha-decay of mass separated Bi-190,192,194,196 isotopes has been studied with the LISOL on-line separator. Time sequential alpha-singles spectra were taken and for Bi-190,192,194, alpha-Xt and alpha-gamma-t coincidences were collected. Transition probabilities of levels in Tl-186,188,190 were

  20. Nuclear spin of odd-odd α emitters based on the behavior of α -particle preformation probability

    Science.gov (United States)

    Ismail, M.; Adel, A.; Botros, M. M.

    2016-05-01

    The preformation probabilities of an α cluster inside radioactive parent nuclei for both odd-even and odd-odd nuclei are investigated. The calculations cover the isotopic chains from Ir to Ac in the mass regions 166 ≤A ≤215 and 77 ≤Z ≤89 . The calculations are employed in the framework of the density-dependent cluster model. A realistic density-dependent nucleon-nucleon (N N ) interaction with a finite-range exchange part is used to calculate the microscopic α -nucleus potential in the well-established double-folding model. The main effect of antisymmetrization under exchange of nucleons between the α and daughter nuclei has been included in the folding model through the finite-range exchange part of the N N interaction. The calculated potential is then implemented to find both the assault frequency and the penetration probability of the α particle by means of the Wentzel-Kramers-Brillouin approximation in combination with the Bohr-Sommerfeld quantization condition. The correlation of the α -particle preformation probability and the neutron and proton level sequences of the parent nucleus as obtained in our previous work is extended to odd-even and odd-odd nuclei to determine the nuclear spin and parities. Two spin coupling rules are used, namely, strong and weak rules to determine the nuclear spin for odd-odd isotopes. This work can be a useful reference for theoretical calculation of undetermined nuclear spin of odd-odd nuclei in the future.

  1. Structure of odd-odd /sup 132/Sb

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C.A.; Faller, S.H.; Walters, W.B.

    1989-05-01

    New information is presented on the decay of 40-s /sup 132/Sn to levels of odd-odd /sup 132/Sb. A second ..beta../sup -/-fed 1/sup +/ level was identified in /sup 132/Sb; it lies at an energy of 2268 keV and is fed by a relatively strong 0.83% ..beta../sup -/-decay branch. Four ..gamma.. rays were identified that form a weakly populated cascade from a level at 483 keV. Coincidence data demonstrate that the 254-keV level in this cascade is the 102-ns isomer identified previously by Clark et al. A 96-keV, isomeric ..gamma.. ray has been assigned to the decay of the 4.1-min, 8/sup -/ isomer in /sup 132/Sb. It may also be the 96-keV transition that is associated with the 1.8-..mu..s isomer identified in the A = 132 chain by Clark et al. The splitting of the levels in the proton-neutron multiplets is discussed and compared with the results of several recent shell-model calculations.

  2. Coulomb Excitation of Odd-Mass and Odd-Odd Cu Isotopes using REX-ISOLDE and Miniball

    CERN Multimedia

    Lauer, M; Iwanicki, J S

    2002-01-01

    We propose to study the properties of the odd-mass and the odd-odd neutron-rich Cu nuclei applying the Coulomb excitation technique and using the REX-ISOLDE facility coupled to the Miniball array. The results from the Coulex experiments accomplished at REX-ISOLDE after its upgrade to 3 MeV/u during the last year have shown the power of this method and its importance in order to obtain information on the collective properties of even-even nuclei. Performing an experiment on the odd-mass and on the odd-odd neutron-rich Cu isotopes in the vicinity of N=40 should allow us to determine and interpret the effective proton and neutron charges in the region and to unravel the lowest proton-neutron multiplets in $^{68,70}$Cu. This experiment can take the advantage of the unique opportunity to accelerate isomerically separated beams using the RILIS ion source at ISOLDE.

  3. High spin states in odd-odd {sup 132}Cs

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Takehito [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Lu, J.; Furuno, K. [and others

    1998-03-01

    Excited states with spin larger than 5 {Dirac_h} were newly established in the {sup 132}Cs nucleus via the {sup 124}Sn({sup 11}B,3n) reaction. Rotational bands built on the {nu}h{sub 11/2} x {pi}d{sub 5/2}, {nu}h{sub 11/2} x {pi}g{sub 7/2} and {nu}h{sub 11/2} x {pi}h{sub 11/2} configurations were observed up to spin I {approx} 16 {Dirac_h}. The {nu}h{sub 11/2} x {pi}h{sub 11/2} band shows inverted signature splitting below I < 14 {Dirac_h}. A dipole band was firstly observed in doubly odd Cs nuclei. (author)

  4. High-spin states and signature inversion in odd-odd 182Au

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Yuhu; (

    2003-01-01

    [1]Bengtsson, R., Frisk, R. H., May, R. F. et al., Signature inversion: a fingerprint of triaxiality, Nucl. Phys. A, 1984, 415: 189-214.[2]Zhang, Y. H., Hayakawa, T., Oshima, M. et al., Signature inversion in the rotational bands of odd-odd 178Ir, High Energy Phys. & Nucl. Phys. (in Chinese), 2000, 24(1): 1123-1130.[3]Xu, F. R., Satula, W., Wyss, R., Quadrupole pairing interaction and signature inversion, Nucl. Phys. A, 2000, 669: 119-134.[4]Zhang, Y. H., Zhao, Q. Z., Zhang, S. Q. et al., Experimental study of high-spin states in odd-odd nuclei around 160-180 mass region, High Energy Phys. & Nucl. Phys. (in Chinese), 2000, 24(supp): 21-28.[5]Zhang, Y. H., Oshima, M., Toh, Y. et al., Rotational bands and signature inversion phenomena in πh9/2(*)Vi13/2 and πi13/2(*)Vi13/2 structures in odd-odd 176Ir, Eur. Phys. J. A, 2002, 13(4): 429-433.[6]Zhang, Y. H., Hayakawa, T., Oshima, M. et al., Search for signature inversion in the πi13/2(*)Vi13/2 band in odd-odd 178Ir, Chin. Phys. Lett., 2001, 18 (10):1323-1326.[7]Zhang, Y. H., Hayakawa, T., Oshima, M. et al., Configuration-dependent band structure in odd-odd 180Ir, Phys. Rev. C, 2002, 65: 014302-1-014302-15.[8]Ibrahim, F., Genevey, J., Cottereau, E. et al., Low-spin states of doubly odd 182Au, Eur. Phys. J. A, 2001, 10(2): 139-143.[9]Mueller, W. F., Jin, H. Q., Lewis, J. M. et al., High-spin structure in 181,183Au, Phys. Rev. C, 1999, 59(4): 2009-2032.[10]De Voigt, M. J. A., Kaczarowski, R., Riezebos, H. J. et al., Rotational bands in 181Pt, Nucl. Phys. A, 1990, 507: 447-471.[11]Popescu, D. G., Waddington, J. C., Cameron, J. A. et al., High-spin states and band structures in 182Pt, Phys. Rev. C, 1997, 55(3): 1175-1191.[12]Jin, H. Q., Riedinger, L. L., Bingham, C. R. et al., Effects of intruder states in 179Ir, Phys. Rev. C, 1996, 53(5): 2106-2125.[13]Hojman, D., Cardona, M. A., Napoli, D. R. et al., Signature inversion in Vi13/2(*)Vi13/2 structure in 178Ir, Eur. Phys

  5. Neutron-proton multiplets in the odd-odd nucleus 53 37 90Rb

    Science.gov (United States)

    Czerwiński, M.; RzÄ ca-Urban, T.; Urban, W.; BÄ czyk, P.; Sieja, K.; Timár, J.; Nyakó, B. M.; Kuti, I.; Tornyi, T. G.; Atanasova, L.; Blanc, A.; Jentschel, M.; Mutti, P.; Köster, U.; Soldner, T.; de France, G.; Simpson, G. S.; Ur, C. A.

    2016-03-01

    Medium-spin excited levels in 90Rb, populated in the fission of 235U induced by neutrons, have been observed for the first time. γ radiation from fission has been measured by using the EXILL array of Ge detectors at the cold-neutron-beam facility PF1B of the Institut Laue-Langevin, Grenoble. Low-energy levels are interpreted as members of the π p3/2 -1ν (d5/2) 3 , π f5/2 -1ν (d5/2) 3 , and π g9 /2ν (d5/2) 3 multiplets with the 0- ground state due to the seniority-3 coupling in the ν d5 /2 shell. Analogous anomalous coupling within the π g9 /2ν (d5/2) 3 configuration explains the 5+, 6+, and 7+ triplet of states, observed at medium spins, similar to the triplet seen in the N =53 isotone, 88Br. Shell-model calculations reproduce well the proposed structures in Rb,9088 and support the seniority-3 coupling in N =53 isotones and its absence in N =51 isotones. The structure of the odd-odd 88Rb and 90Rb nuclei provides an argument in favor of the collectivity building up at the neutron number N =53 .

  6. Superdeformation studies in the odd-odd nucleus {sup 192}Tl

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, S.; Carpenter, M.P.; Janssens, R.V.F. [and others

    1995-08-01

    The study of yrast and near-yrast structures of odd-odd nuclei to high spins is somewhat limited due to the complexity of the spectra resulting from the many proton-neutron couplings near the Fermi surface. In superdeformed nuclei, the number of available protons and neutrons near the Fermi surface is somewhat limited due to the presence of large-shell gaps which stabilize the nuclear shape. A relatively small number of available neutron and proton configurations can lead to fragmentation of the SD intensity into a number of different bands. Two good examples of this phenomenon were found in {sup 192}Tl and {sup 194}Tl where the presence of six superdeformed bands were reported in both nuclei. We reexamined {sup 192}Tl at Gammasphere using the {sup 160}Gd({sup 37}Cl,5n) reaction at 178 MeV to populate states in the superdeformed well of this nucleus. While our previous study on {sup 192}Tl at ATLAS was very successful, a number of questions remained which formed the basis of our objectives in this experiment: obtain better {gamma}-ray energies for the known transitions and identify higher spin members in each band; determine how the bands feed the known yrast states in {sup 192}Tl as well as determine the complete spectrum in coincidence with the SD bands; look for M1 transitions connecting proposed signature partners; and attempt to identify other excitations in the superdeformed well. Analysis is underway and four of the six bands were confirmed. The reasons that two of the reported bands were not observed in this latest work is still under investigation. As of this time, no other superdeformed bands were identified in the data. Two of the confirmed SD bands have a constant moment of inertia and show indications of cross-talk between each other. This observation is not unexpected since the calculated M1 rates for the proposed configuration of the band, {pi}{sub 13/2} x {upsilon}j{sub 15/2}, indicate that M1 transitions linking the two SD bands should be observed.

  7. Comparative study of Gamow-Teller strength distributions in the odd-odd nucleus 50V and its impact on electron capture rates in astrophysical environments

    CERN Document Server

    Nabi, Jameel-Un; 10.1103/PhysRevC.76.055803

    2011-01-01

    Gamow-Teller (GT) strength transitions are an ideal probe for testing nuclear structure models. In addition to nuclear structure, GT transitions in nuclei directly affect the early phases of Type Ia and Type-II supernovae core collapse since the electron capture rates are partly determined by these GT transitions. In astrophysics, GT transitions provide an important input for model calculations and element formation during the explosive phase of a massive star at the end of its life-time. Recent nucleosynthesis calculations show that odd-odd and odd-A nuclei cause the largest contribution in the rate of change of lepton-to-baryon ratio. In the present manuscript, we have calculated the GT strength distributions and electron capture rates for odd-odd nucleus 50V by using the pn-QRPA theory. At present 50V is the first experimentally available odd-odd nucleus in fp-shell nuclei. We also compare our GT strength distribution with the recently measured results of a 50V(d,2He)50Ti experiment, with the earlier work ...

  8. Microsecond isomers in the odd-odd nucleus [sup 144]Tb

    Energy Technology Data Exchange (ETDEWEB)

    Sferrazza, M.; Bazzacco, D.; Lunardi, S.; Maglione, E. (INFN, Padua (Italy) Dipt. di Fisica, Padua Univ. (Italy)); Cardona, M.A.; Rico, J.; Facco, A. (INFN, Laboratori Nazionali di Legnaro (Italy)); De Angelis, G.; Bizzeti, P.G.; Bizzeti-Sona, A.M. (INFN, Florence (Italy) Dipt. di Fisica, Florence Univ. (Italy))

    1992-11-01

    Two new isomers with half-lives of 0.67(6) [mu]s and 2.8(3) [mu]s have been identified in the odd-odd nucleus [sup 144]Tb. A partial decay scheme is presented. An interpretation in the framework of the shell model is discussed for the low lying energy states. (orig.).

  9. Pseudo-spin band in the odd-odd nucleus sup 1 sup 7 sup 2 Lu

    CERN Document Server

    Venkova, T; Gast, W; Podsvirova, E O; Jäger, H M; Mihailescu, L; Bazzacco, D; Menegazzo, R; Lunardi, S; Alvarez, C R; Ur, C; Martínez, T; Angelis, G D; Axiotis, M; Napoli, D; Urban, W; Rzaca-Urban, T; Frauendorf, S

    2003-01-01

    High-spin states in the odd-odd nucleus sup 1 sup 7 sup 2 Lu have been populated in a sup 1 sup 7 sup 0 Er( sup 7 Li,5n) reaction and the emitted gamma-radiation was detected with the GASP array. Two sequences of a new identical band have been observed with the transition energies in the favoured and unfavoured sequences being identical within approx 3 keV at low spins and approx 1 keV at high spins over the whole observed spin range. An interpretation as a pseudo-spin singlet band of pi 1/2 sup - [541] x nu 1/2 sup - [420] configuration is proposed. It represents the best example of a pseudo-spin singlet band in normal deformed nuclei known until now.

  10. Comparative study of Gamow-Teller strength distributions in the odd-odd nucleus V50 and its impact on electron capture rates in astrophysical environments

    Science.gov (United States)

    Nabi, Jameel-Un; Sajjad, Muhammad

    2007-11-01

    Gamow-Teller (GT) strength transitions are an ideal probe for testing nuclear structure models. In addition to nuclear structure, GT transitions in nuclei directly affect the early phases of Type Ia and Type-II supernovae core collapse since the electron capture rates are partly determined by these GT transitions. In astrophysics, GT transitions provide an important input for model calculations and element formation during the explosive phase of a massive star at the end of its life-time. Recent nucleosynthesis calculations show that odd-odd and odd-A nuclei cause the largest contribution in the rate of change of lepton-to-baryon ratio. In the present manuscript, we have calculated the GT strength distributions and electron capture rates for odd-odd nucleus V50 by using the pn-QRPA theory. At present V50 is the first experimentally available odd-odd nucleus in fp-shell nuclei. We also compare our GT strength distribution with the recently measured results of a V50(d, He2)Ti50 experiment, with the earlier work of Fuller, Fowler, and Newman (referred to as FFN) and subsequently with the large-scale shell model calculations. One curious finding of the paper is that the Brink's hypothesis, usually employed in large-scale shell model calculations, is not a good approximation to use at least in the case of V50. SNe Ia model calculations performed using FFN rates result in overproduction of Ti50, and were brought to a much acceptable value by employing shell model results. It might be interesting to study how the composition of the ejecta using presently reported QRPA rates compare with the observed abundances.

  11. Spectroscopy of the odd-odd fp-shell nucleus 52Sc from secondary fragmentation

    CERN Document Server

    Gade, A; Brown, B A; Campbell, C M; Carpenter, M P; Cook, J M; Deacon, A N; Dinca, D C; Freeman, S J; Glasmacher, T; Janssens, R V F; Kay, B P; Mantica, P F; Müller, W F; Terry, J R; Zhu, S

    2006-01-01

    The odd-odd fp-shell nucleus 52Sc was investigated using in-beam gamma-ray spectroscopy following secondary fragmentation of a 55V and 57Cr cocktail beam. Aside from the known gamma-ray transition at 674(5)keV, a new decay at E_gamma=212(3) keV was observed. It is attributed to the depopulation of a low-lying excited level. This new state is discussed in the framework of shell-model calculations with the GXPF1, GXPF1A, and KB3G effective interactions. These calculations are found to be fairly robust for the low-lying level scheme of 52Sc irrespective of the choice of the effective interaction. In addition, the frequency of spin values predicted by the shell model is successfully modeled by a spin distribution formulated in a statistical approach with an empirical, energy-independent spin-cutoff parameter.

  12. Coulomb excitation of the odd-odd isotopes $^{106, 108}$In

    CERN Document Server

    Ekstrom, A; Blazhev, A; Van de Walle, J; Weisshaar, D; Zielinska, M; Tveten, G M; Marsh, B A; Siem, S; Gorska, M; Engeland, T; Hurst, A M; Cederkall, J; Finke, F; Iwanicki, J; Hjorth-Jensen, M; Davinson, T; Eberth, J; Sletten, G; Mierzejewski, J; Reiter, P; Warr, N; Butler, P A; Fahlander, C; Stefanescu, I; Koester, U; Ivanov, O; Wenander, F; Voulot, D

    2010-01-01

    The low-lying states in the odd-odd and unstable isotopes In-106,In-108 have been Coulomb excited from the ground state and the first excited isomeric state at the REX-ISOLDE facility at CERN. With the additional data provided here the pi g(9/2)(-1) circle times nu d(5/2) and pi g(9/2)(-1) circle times nu g7/2 multiplets have been re-analyzed and are modified compared to previous results. The observed gamma-ray de-excitation patterns were interpreted within a shell model calculation based on a realistic effective interaction. The agreement between theory and experiment is satisfactory and the calculations reproduce the observed differences in the excitation pattern of the two isotopes. The calculations exclude a 6(+) ground state in In-106. This is in agreement with the conclusions drawn using other techniques. Furthermore, based on the experimental results, it is also concluded that the ordering of the isomeric and ground state in In-108 is inverted compared to the shell model prediction. Limits on B(E2) val...

  13. Diabatic crossing of chiral "twins" in the odd-odd 106Ag nucleus: A theoretical perspective

    Science.gov (United States)

    Malik, Sham S.

    2016-07-01

    A systematic study of both the observed positive-parity magnetic rotation band and the negative-parity Δ I =1 doublet bands in an odd-odd 106Ag nucleus is carried out. The negative-parity doublet bands depict some unusual features that have not been observed in any isotope in the mass A =100 region. For instance, (i) the moment of inertia of the partner band is quite different from that of the yrast band, and (ii) these bands cross each other at an angular momentum of I =14 ℏ . Also, the observed significantly large but constant B (M 1 ) transitions confirm that the strong M 1 transitions are being reinforced by the contributions from collective rotation. To explain these features, a collective model has been developed whose kinetic and potential energies are extracted from the tilted-axis cranking model. Instead of the triaxial parameter γ , a second-order phase transition is found to be responsible for the spontaneous breakdown of chiral symmetry. Analytical solution of the Schrödinger equation has generated a doublet nondegenerate eigenvalue spectrum. The ensuing model results based on the two-quasiparticle configuration π g9/2⊗ν h11/2 exhibit similarities with many observed features of the negative-parity doublet bands and hence confirm their chiral character. The cranking mass parameter in kinetic energy plays an important role in diabatic crossing between these emerged chiral twin bands.

  14. Identification and structure of yrast levels in the N = 89 odd-odd /sup 158/Tm nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Drissi, S.; Andre, S.; Genevey, J.; Barci, V.; Gizon, A.; Gizon, J.; Pinston, J.A.; Jastrzebski, J.; Kossakowski, R.; Preibisz, Z.

    1981-10-01

    Excited levels have been identified in the odd-odd /sup 158/Tm nucleus produced in the /sup 150/Sm (/sup 14/N,6n) reaction. The observed level structure based on an isomeric state (Tsub(1/2) = 16 +- 4 ns) is interpreted as a rotational aligned band.

  15. High-spin Band Structure in Odd-odd 170Re

    Institute of Scientific and Technical Information of China (English)

    WangHualei; ZhangYuhu; ZhouXiaohong; GuoYingxiang; LeiXiangguo; LiuMinliang; LuoPeng; XieChengying; SongLitao; YuHaiping; ZhengYong; GuoWentao; WenShuxian; ZhuLihua

    2003-01-01

    High-spin states in doubly odd 170Re nucleus have been investigated for the first time, through in-beam γ-ray spectroscopy, following the 142Nd(32S, 1p3n γ) 170Re reaction at 166 McV bombarding energy. The 32 Sbeam was provided by the tandem accelerator at the China Institute of Atomic Energy, Bcijing. The 142 Ndtarget is an enriched metallic foil of about 2.2 mg/cm2 thickness with a 7.0 mg/cm2 Pb backing to stop the recoiling nuclei. Measurement of X-γ, and γ-γ coincidences wcrc performed with 12 BGO(AC)HPGc detectors. A total of 150 million coincidence events wcrc recorded. The detector energies and cfficicncics wcrc calibrated

  16. 奇奇核86Nb的能谱统计%Level Statistics of Odd-Odd Nucleon 86Nb

    Institute of Scientific and Technical Information of China (English)

    程南璞; 郑仁蓉; 朱顺泉

    2001-01-01

    The energy levels of odd-odd nucleon 86 N b are calculated by using the axially symmetric rotor plus quasiparticle model. Its emphasis is to study the statistical properties of the nearest-neighbor spa cings (NNS) and the spectral rigidity (Δ3) under different s pins. And the factors that affect the properties of level statistics are also in vestigated.%用粒子-转子理论模型计算奇奇核86Nb低 自旋下的 能谱,研究了不同自旋下能谱最近邻能级间距分布(NNS)和能谱刚性度 (Δ3)的特点,并就影响能谱统计特征的因素进行了分析.

  17. Fission Cross-Section Measurements of the Odd-Odd Isotopes 232Pa, 238Np, and 236Np

    Energy Technology Data Exchange (ETDEWEB)

    Danon, Y. [Rensselaer Polytechnic Institute; Moore, M. S. [Los Alamos National Laboratory (LANL); Koehler, Paul Edward [ORNL; Littleton, P. E. [Los Alamos National Laboratory (LANL); Miller, G. G. [Los Alamos National Laboratory (LANL); Ott, M. A. [Los Alamos National Laboratory (LANL); Rowton, L. J. [Los Alamos National Laboratory (LANL); Taylor, W. A. [Los Alamos National Laboratory (LANL); Wilhelmy, J. B. [Los Alamos National Laboratory (LANL); Yates, M. A. [Los Alamos National Laboratory (LANL); Carlson, A. D. [National Institute of Standards and Technology (NIST); Hill, Nathaniel [ORNL; Harper, R. [EG& G Energy Measurements, Los Alamos, NM; Hilko, R. [EG& G Energy Measurements, Los Alamos, NM

    1996-01-01

    Transmutation of actinide waste into fission products could be enhanced by using resonance fission of odd-odd target materials; those of interest are 232Pa, 238Np, and 242Am. Fission cross-section measurements of two of these short-lived materials were performed at Los Alamos National Laboratory. Samples were produced by the (d,2n) reaction in the Los Alamos Ion Beam Facility followed by fast radiochemistry to separate the odd-odd target of interest. The fission cross section of the nanogram samples was measured in a high intensity pulsed neutron beam produced by 800-MeV proton spallation. Using this procedure, the fission cross sections of the 1.3-day 232Pa and 2.1-day 238Np were successfully measured in the energy range from 0.01 eV to 50 keV. The fission cross section of the relatively long-life isotope 236Np was also measured in the same system while the short half-life isotopes were being prepared. The results and resonance analysis are presented.

  18. High-spin structure of the neutron-rich odd-odd sup 1 sup 0 sup 6 sup , sup 1 sup 0 sup 8 sub 4 sub 5 Rh and sup 1 sup 1 sup 0 sup , sup 1 sup 1 sup 2 sub 4 sub 7 Ag isotopes

    CERN Document Server

    Porquet, M G; Deloncle, I; Wilson, A; Venkova, T; Petkov, P; Kutsarova, T; Astier, A; Buforn, N; Meyer, M; Redon, N; Duprat, J; Gall, B J P; Hoellinger, F; Schulz, N; Gautherin, C; Lucas, R; Gueorguieva, E; Minkova, A; Sergolle, H

    2002-01-01

    The sup 1 sup 0 sup 6 sup , sup 1 sup 0 sup 8 Rh and sup 1 sup 1 sup 0 sup , sup 1 sup 1 sup 2 Ag nuclei have been produced as fission fragments following the fusion reaction sup 2 sup 8 Si+ sup 1 sup 7 sup 6 Yb at 145 MeV bombarding energy and studied with the Eurogam2 array. The yrast high-spin states of these four odd-odd nuclei, which are observed for the first time, consist of rotational bands in which the odd proton occupies the pi g sub 9 sub / sub 2 subshell and the odd neutron the nu h sub 1 sub 1 sub / sub 2 subshell. Their behaviour as a function of spin values does not vary with the number of neutrons: as observed in the odd-N neighbouring nuclei, the motion of the odd neutron remains decoupled from the motion of the core, from N=61 to N=65. Moreover, the staggering observed in the yrast bands of odd-odd isotopes is strongly reduced as compared to the large values displayed by the rotational bands built on the pi g sub 9 sub / sub 2 subshell in the odd-A Rh and Ag isotopes. The results of particle...

  19. Analysis of the triaxial, strongly deformed bands in odd-odd nucleus 164Lu with the tops-on-top model

    Science.gov (United States)

    Sugawara-Tanabe, Kazuko; Tanabe, Kosai; Yoshinaga, Naotaka

    2014-06-01

    The top-on-top model with angular-momentum-dependent moments of inertia is extended to the tops-on-top model for an odd-odd nucleus, where one proton and one neutron in each single-j orbital are coupled to the triaxial rotor. For a pure rotor case, an explicit algebraic formula for the triaxial, strongly deformed (TSD) band levels is given, and its stability problem is discussed. Both positive and negative parity TSD bands are well reproduced by taking account of attenuation factors in the Coriolis interaction and the proton-neutron interaction in the recoil term. Difference in quantum numbers between the yrast and yrare TSD bands is confirmed by direct estimation of spin alignments. The electromagnetic transition rates of B(M1) are much reduced because of the different sign of g-factors in comparison with the odd-A case, while B(E2) are in the same order.

  20. Hindered Gamow-Teller decay to the odd-odd N=Z (62)Ga: absence of proton-neutron T=0 condensate in A=62.

    Science.gov (United States)

    Grodner, E; Gadea, A; Sarriguren, P; Lenzi, S M; Grebosz, J; Valiente-Dobón, J J; Algora, A; Górska, M; Regan, P H; Rudolph, D; de Angelis, G; Agramunt, J; Alkhomashi, N; Amon Susam, L; Bazzacco, D; Benlliure, J; Benzoni, G; Boutachkov, P; Bracco, A; Caceres, L; Cakirli, R B; Crespi, F C L; Domingo-Pardo, C; Doncel, M; Dombrádi, Zs; Doornenbal, P; Farnea, E; Ganioğlu, E; Gelletly, W; Gerl, J; Gottardo, A; Hüyük, T; Kurz, N; Leoni, S; Mengoni, D; Molina, F; Morales, A I; Orlandi, R; Oktem, Y; Page, R D; Perez, D; Pietri, S; Podolyák, Zs; Poves, A; Quintana, B; Rinta-Antila, S; Rubio, B; Nara Singh, B S; Steer, A N; Verma, S; Wadsworth, R; Wieland, O; Wollersheim, H J

    2014-08-29

    Search for a new kind of superfluidity built on collective proton-neutron pairs with aligned spin is performed studying the Gamow-Teller decay of the T=1, J(π)=0+ ground state of (62)Ge into excited states of the odd-odd N=Z nucleus (62)Ga. The experiment is performed at GSI Helmholtzzentrum für Shwerionenforshung with the (62)Ge ions selected by the fragment separator and implanted in a stack of Si-strip detectors, surrounded by the RISING Ge array. A half-life of T1/2=82.9(14)  ms is measured for the (62)Ge ground state. Six excited states of (62)Ga, populated below 2.5 MeV through Gamow-Teller transitions, are identified. Individual Gamow-Teller transition strengths agree well with theoretical predictions of the interacting shell model and the quasiparticle random phase approximation. The absence of any sizable low-lying Gamow-Teller strength in the reported beta-decay experiment supports the hypothesis of a negligible role of coherent T=0 proton-neutron correlations in (62)Ga.

  1. β decay of Si,4038 (Tz=+5 ,+6 ) to low-lying core excited states in odd-odd P,4038 isotopes

    Science.gov (United States)

    Tripathi, Vandana; Lubna, R. S.; Abromeit, B.; Crawford, H. L.; Liddick, S. N.; Utsuno, Y.; Bender, P. C.; Crider, B. P.; Dungan, R.; Fallon, P.; Kravvaris, K.; Larson, N.; Macchiavelli, A. O.; Otsuka, T.; Prokop, C. J.; Richard, A. L.; Shimizu, N.; Tabor, S. L.; Volya, A.; Yoshida, S.

    2017-02-01

    Low-lying excited states in P,4038 have been identified in the β decay of Tz=+5 ,+6 , Si,4038. Based on the allowed nature of the Gamow-Teller (GT) decay observed, these states are assigned spin and parity of 1+ and are core-excited 1p1h intruder states with a parity opposite to the ground state. The occurrence of intruder states at low energies highlights the importance of pairing and quadrupole correlation energies in lowering the intruder states despite the N =20 shell gap. Configuration interaction shell model calculations with the state-of-art SDPF-MU effective interaction were performed to understand the structure of these 1p1h states in the even-A phosphorus isotopes. States in 40P with N =25 were found to have very complex configurations involving all the f p orbitals leading to deformed states as seen in neutron-rich nuclei with N ≈28 . The calculated GT matrix elements for the β decay highlight the dominance of the decay of the core neutrons rather than the valence neutrons.

  2. Octupole shapes in heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.

    1994-08-01

    Theoretical calculations and measurements show the presence of strong octupole correlations in thecyround states and low-lying states of odd-mass and odd-odd nuclei in the RaPa region. Evidence for octupole correlations is provided by the observation of parity doublets and reductions in M1 matrix elements, decoupling parameters, and Coriolis matrix elements Involving high-j states. Enhancement of E1 transition rates has also been observed for some of the octupole deformed nuclei. The most convincing argument for octupole deformation is provided by the similarities of the reduced alpha decay rates to the two members of parity doublets.

  3. Systematic Study on the Superdeformed Bands of Double Odd Nuclei in A~130 Region

    Institute of Scientific and Technical Information of China (English)

    ZAHNGDa-Li; LIJin-Bo; DINGBin-Gang

    2003-01-01

    Properties of the superdeformed bands of odd-odd nuclei in A~130 mass region are investigated systematically within the supersymmetry scheme including many-body interactions and a perturbation possessing the SO(5) (or SU(5)) symmetry on the rotational symmetry. The obtained γ-ray energies, the dynamical moments of inertia, and energy differences △Eγ - △Eγref agree wlth experimental data. It shows that this approach is quite powerful in describing odd-odd nuclei in 130 mass region.

  4. Systematic Study on the Superdeformed Bands of Double Odd Nuclei in A~130 Region

    Institute of Scientific and Technical Information of China (English)

    ZAHNG Da-Li; LI Jin-Bo; DING Bin-Gang

    2003-01-01

    Properties of the superdeformed bands of odd-odd nuclei in A ~ 130 mass region are investigatedsystematically within the supersymmetry scheme including many-body interactions and a perturbation possessing theSO(5) (or SU(5)) symmetry on the rotational symmetry. The obtained γ-ray energies, the dynamical moments ofinertia, and energy differences △Eγ - △Erefγ ef agree with experimental data. It shows that this approach is quite powerfulin describing odd-odd nuclei in 130 mass region.

  5. Description of the Superdeformed Bands of Double Odd Nuclei in A ~ 190 Region

    Institute of Scientific and Technical Information of China (English)

    ZHANG Da-Li; ZHAO Hui-Ying; LI Zu-Xin

    2003-01-01

    With the supersymmetry scheme including many-body interactions and aperturbation possessing the SO(5)(or SU(5)) symmetry on the rotational symmetry, the superdeformed bands and △I=4 bifurcation of odd-odd nuclei in A ~ 190 mass region are investigated systematically. Good results for the γ-ray energies, the dynamical moments of inertia, and energy differences △Eγ - △Eref γ are obtained. It shows that this approach is quite powerful in describing odd-odd nuclei in the region.

  6. The Northwest Frontier: Spectroscopy of N sim Z Nuclei Below Mass 100

    Science.gov (United States)

    Wadsworth, R.; Nara Singh, B. S.; Steer, A. N.; Jenkins, D. G.; Bentley, M. A.; Brock, T.; Davies, P.; Glover, R.; Pattabiraman, N. S.; Scholey, C.; Grahn, T.; Greenlees, P. T.; Jones, P.; Jakobsson, U.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Nyman, M.; Perua, P.; Pakarinen, J.; Rahkila, P.; Ruotslainen, P.; Sorri, J.; Uusitalo, J.; Lister, C. J.; Butler, P. A.; Dimmock, M.; Joss, D. T.; Thomson, J.; Rinta-Antila, S.; Cederwall, B.; Hadinia, B.; Sandzelius, M.; Atac, A.; Betterman, L.; Blazhev, A.; Braun, N.; Finke, F.; Geibel, K.; Ilie, G.; Iwasaki, H.; Jolie, J.; Reiter, P.; Scholl, C.; Warr, N.; Boutachkov, P.; Caceres, L.; Domingo, C.; Engert, T.; Farinon, F.; Gerl, J.; Goel, N.; Gorska, M.; Grawe, H.; Kurz, N.; Kojuharov, I.; Pietri, S.; Nociforo, C.; Prochazka, A.; Wollersheim, H.-J.; Eppinger, K.; Faestermann, T.; Hinke, C.; Hoischen, R.; Kruecken, R.; Gottardo, A.; Liu, Z.; Woods, P.; Grebosz, J.; Merchant, E.; Nyberg, J.; Soderstrom, P.-A.; Podolyak, Z.; Regan, P.; Steer, S.; Pfutzner, M.; Rudolph, D.

    2009-03-01

    The spectroscopy and structure of excited states of N sim Z nuclei in the mass 70-100 region has been investigated using two techniques. In the A sim 70-80 region fusion evaporation reactions coupled with the recoil- beta -tagging method have been employed at Jyvaskyla to study low-lying states in odd-odd N = Z nuclei. Results from these and other data for known odd-odd nuclei above mass 60 will be discussed. In the heavier mass 90 region a fragmentation experiment has been performed using the RISING/FRS setup at GSI. This experiment was primarily aimed at searching for spin gap isomers in nuclei around A sim 96. The objectives of the latter experiment will be discussed.

  7. Adiabatic fission barriers in superheavy nuclei

    CERN Document Server

    Jachimowicz, P; Skalski, J

    2016-01-01

    Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy we calculated static fission barriers $B_{f}$ for 1305 heavy and superheavy nuclei $98\\leq Z \\leq 126$, including even - even, odd - even, even - odd and odd - odd systems. For odd and odd-odd nuclei, adiabatic potential energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from the 10-th below to the 10-th above the Fermi level. The parameters of the model that have been fixed previously by a fit to masses of even-even heavy nuclei were kept unchanged. A search for saddle points has been performed by the "Imaginary Water Flow" method on a basic five-dimensional deformation grid, including triaxiality. Two auxiliary grids were used for checking the effects of the mass asymmetry and hexadecapole non-axiallity. The ground states were found by energy minimization over configurations and deformations...

  8. Neutron-proton pairing competition in N=Z nuclei: Metastable state decays in the proton dripline nuclei {sup 82}{sub 41}Nb and {sup 86}{sub 43}Tc

    Energy Technology Data Exchange (ETDEWEB)

    Garnsworthy, A.B. [Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom); WNSL, Yale University, 272 Whitney Avenue, New Haven, CT 06520 (United States)], E-mail: a.garnsworthy@surrey.ac.uk; Regan, P.H. [Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom); Caceres, L. [GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Departmento di Teorica, Universidad Autonoma de Madrid, Madrid (Spain); Pietri, S. [Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom); Sun, Y. [Department of Physics and Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Rudolph, D. [Department of Physics, Lund University, S-22100 Lund (Sweden); Gorska, M. [GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Podolyak, Zs.; Steer, S.J. [Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom); Hoischen, R. [GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Department of Physics, Lund University, S-22100 Lund (Sweden); Heinz, A. [WNSL, Yale University, 272 Whitney Avenue, New Haven, CT 06520 (United States); Becker, F. [GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Bednarczyk, P. [GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); The Institute of Nuclear Physics, PL-31-342 Krakow (Poland); Doornenbal, P.; Geissel, H.; Gerl, J.; Grawe, H. [GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Grebosz, J. [GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Institute of Nuclear Physics, PL-31-342 Cracow (Poland); Kelic, A.; Kojouharov, I. [GSI, Planckstrasse 1, D-64291 Darmstadt (Germany)] (and others)

    2008-02-28

    The low-lying structures of the self-conjugate (N=Z) nuclei {sup 82}{sub 41}Nb{sub 41} and {sup 86}{sub 43}Tc{sub 43} have been investigated using isomeric-decay spectroscopy following the projectile fragmentation of a {sup 107}Ag beam. These represent the heaviest odd-odd N=Z nuclei in which internal decays have been identified to date. The resulting level schemes shed light on the shape evolution along the N=Z line between the doubly-magic systems {sup 56}{sub 28}Ni and {sup 100}{sub 50}Sn and support a preference for T=1 states in T{sub z}=0 odd-odd nuclei at low excitation energies associated with a T=1 neutron-proton pairing gap. Comparison with Projected Shell Model calculations suggests that the decay in {sup 82}Nb may be interpreted as an isospin-changing K isomer.

  9. New supersymmetric quartet of nuclei in the A=190 mass region

    CERN Document Server

    Barea, J; Frank, A; Graw, G; Hertenberger, R; Wirth, H F; Christen, S; Jolie, J; Tonev, D; Balodis, M; Berzins, J; Kramere, N; Von Egidy, T

    2008-01-01

    We present evidence for a new supersymmetric quartet in the A=190 region of the nuclear mass table. New experimental information on transfer and neutron capture reactions to the odd-odd nucleaus 194 Ir strongly suggests the existence of a new supersymmetric quartet, consisting of the 192,193 Os and 193,194 Ir nuclei. We make explicit predictions for the odd-neutron nucleus 193 Os, and suggest that its spectroscopic properties be measured in dedicated experiments.

  10. New supersymmetric quartet of nuclei: 192Os, 193Os, 193Ir, 194Ir

    CERN Document Server

    Bijker, R; Frank, A; Graw, G; Hertenberger, R; Jolie, J; Wirth, H -F

    2008-01-01

    We present evidence of the existence of a new supersymmetric quartet of nuclei in the A=190 mass region. The analysis is based on new experimental information on the odd-odd nucleus 194Ir from transfer and capture reactions. The new data allow the identification of a new supersymmetric quartet, consisting of the 192,193Os and 193,194Ir nuclei. We make explicit predictions fo r193Os, and suggest that its spectroscopic properties be measured in dedicated experiments. Finally, we study correlations between different transfer reactions.

  11. Tracking the monopole migration of the {nu}1f{sub 5/2} state near the N=32 subshell closure in neutron-rich nuclei above {sup 48}Ca

    Energy Technology Data Exchange (ETDEWEB)

    Liddick, S.N. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Chemistry, Michigan State University, East Lansing, Michigan 48824 (United States); Mantica, P.F. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Janssens, R.V.F. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Broda, R. [Niewodniczanski Institute of Nuclear Physics, PL-31342 Cracow (Poland); Brown, B.A. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Carpenter, M.P. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Fornal, B. [Niewodniczanski Institute of Nuclear Physics, PL-31342 Cracow (Poland); Morton, A.C. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Mueller, W.F. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Pavan, J. [Department of Physics, Florida State University, Tallahassee, Florida 32306 (United States); Stolz, A. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Tabor, S.L. [Department of Physics, Florida State University, Tallahassee, Florida 32306 (United States); Tomlin, B.E. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Wiedeking, M.

    2004-12-27

    The {beta} decay of neutron-rich nuclei in the {pi}1f{sub 7/2} and {nu}pf shells has been studied at the NSCL to track the development of new proposed shell closures at N=32 and 34 due to the monopole migration of the {nu}1f{sub 5/2} orbital. From a measurement of absolute {gamma}-ray intensities following the {beta} decay of odd-odd nuclei, the {beta}-decay branching ratios to levels in the even-even daughters can be deduced. The branching ratios, especially to the 0{sup +} daughter ground state, can be used to assign spins and parities to the parent ground states. The interpretation of these assignments for odd-odd nuclei in a single-particle limit can be used to track the migration of the {nu}1f{sub 5/2} single-particle state.

  12. Isospin-symmetry-breaking effects in A∼70 nuclei within beyond-mean-field approach

    Energy Technology Data Exchange (ETDEWEB)

    Petrovici, A.; Andrei, O. [National Institute for Physics and Nuclear Engineering, R-077125 Bucharest (Romania)

    2015-02-24

    Particular isospin-symmetry-breaking probes including Coulomb energy differences (CED), mirror energy differences (MED), and triplet energy differences (TED) manifest anomalies in the A∼70 isovector triplets of nuclei. The structure of proton-rich nuclei in the A∼70 mass region suggests shape coexistence and competition between pairing correlations in different channels. Recent results concerning the interplay between isospin-mixing and shape-coexistence effects on exotic phenomena in A∼70 nuclei obtained within the beyond-mean-field complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction in a relatively large model space are presented. Excited Vampir predictions concerning the Gamow-Teller β decay to the odd-odd N=Z {sup 66}As and {sup 70}Br nuclei correlated with the pair structure analysis in the T=1 and T=0 channel of the involved wave functions are discussed.

  13. Candidates for Long Lived High-K Ground States in Superheavy Nuclei

    CERN Document Server

    Jachimowicz, P; Skalski, J

    2015-01-01

    On the basis of systematic calculations for 1364 heavy and superheavy nuclei, including odd-systems, we have found a few candidates for high-K ground states in superheavy nuclei. The macroscopic-microscopic model based on the deformed Woods-Saxon single particle potential which we use offers a reasonable description of SH systems, including known: nuclear masses, $Q_{\\alpha}$-values, fission barriers, ground state deformations, super- and hyper-deformed minima in the heaviest nuclei. %For odd and odd-odd systems, both ways of including pairing correlations, % blocking and the quasi-particle method, have been applied. Exceptionally untypical high-K intruder contents of the g.s. found for some nuclei accompanied by a sizable excitation of the parent configuration in daughter suggest a dramatic hindrance of the $\\alpha$-decay. Multidimensional hyper-cube configuration - constrained calculations of the Potential Energy Surfaces (PES's) for one especially promising candidate, $^{272}$ Mt, shows a $\\backsimeq$ 6 Me...

  14. High spin spectroscopy of near spherical nuclei: Role of intruder orbitals

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, S.; Bhattacharjee, T.; Mukherjee, G. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata - 700064 (India); Chanda, S. [Fakir Chand College, Diamond Herbour, West Bengal (India); Banerjee, D.; Das, S. K.; Guin, R. [Radiochemistry Division, Variable Energy Cyclotron Centre, BARC, Kolkata - 700064 (India); Gupta, S. Das [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata - 700064, India and Saha Institute of Nuclear Physics, Kolkata-700064 (India); Pai, H. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata - 700064, India and Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)

    2014-08-14

    High spin states of nuclei in the vicinity of neutron shell closure N = 82 and proton shell closure Z = 82 have been studied using the Clovere Ge detectors of Indian National Gamma Array. The shape driving effects of proton and neutron unique parity intruder orbitals for the structure of nuclei around the above shell closures have been investigated using light and heavy ion beams. Lifetime measurements of excited states in {sup 139}Pr have been done using pulsed-beam-γ coincidence technique. The prompt spectroscopy of {sup 207}Rn has been extended beyond the 181μs 13/2{sup +} isomer. Neutron-rich nuclei around {sup 132}Sn have been produced from proton induced fission of {sup 235}U and lifetime measurement of low-lying states of odd-odd {sup 132}I have been performed from offline decay.

  15. Systematization of α-decaying nuclei based on shell structures: The case of even-odd nuclei

    Science.gov (United States)

    Yarman, Tolga; Zaim, Nimet; Yarman, O.; Kholmetskii, Alexander; Arık, Metin

    2017-01-01

    Previously, we provided a novel systematization of α-decaying even-even nuclei starting with the classically adopted mechanism (Yarman et al., Eur. Phys. J. A 52, 140 (2016)). The decay half-life of an α-decaying nucleus was framed so that i) the α-particle is taken at the outset to be born inside the parent nucleus with a given probability, ii) where it then keeps on bouncing off of the barrier of the parent nucleus till iii) it finally tunnels through the barrier. Knowing beforehand the measured decay half-life, we have taken into consideration, as a parameter, the probability of the α-particle being first born within the parent before it is emitted. We thence developed a scaffold based on shell properties of families composed of alike even-even nuclei. Nevertheless, our model allows us to incorporate any α-decaying nuclei, and along this line, we present a follow-up systematization of even-odd nuclei, with cases of odd-even and odd-odd α-decaying nuclei pending to be considered in a separate contribution. Notwithstanding, we make an effort herein to expand our approach to investigate the effect of "pairing" ( e.g., when a number of nucleons in the given nucleus becomes an even number, instead of the initial odd number, due to the addition of at least one neutron). Our results show that "pairing", as expected, definitely increases the stability of the given nucleus.

  16. Superheavy nuclei

    CERN Document Server

    Sáro, S

    2003-01-01

    Experiments leading to transuranium and far transuranium nuclei as far as element 106 (seaborgium) are described. Physical knowledge derived from experimental data at this stage of complete synthesis nuclear reactions since the 1980s is analyzed. The effect of the shell structure on the stability of the nuclei, the extra-push effect, and the effect of isospin are discussed. Experiments leading to the synthesis of nuclei with Z = 107 - 112 by cold fusion are also described, as are hot fusion reactions resulting in superheavy nuclei Z = 114, 116 where, however, confirmation is only pending. Current state of the art in this area is also highlighted

  17. Quantum algebra U{sub qp}(u{sub 2}) and application to the rotational collective dynamics of the nuclei; Algebre quantique U{sub qp}(u{sub 2}) et application a la dynamique collective de rotation dans les noyaux

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, R.

    1995-09-22

    This thesis concerns some aspects of new symmetries in Nuclear Physics. It comprises three parts. The first one is devoted to the study of the quantum algebra U{sub qp}(u{sub 2}). More precisely, we develop its Hopf algebraic structure and we study its co-product structure. The bases of the representation theory of U{sub qp}(u{sub 2}) are introduced. On one hand, we construct the finite-dimensional irreducible representations of U{sub qp}(u{sub 2}). On the other hand, we calculate the Clebsch-Gordan coefficients with the projection operator method. To complete our study, we construct some deformed boson mappings of the quantum algebras U{sub qp}(u{sub 2}), U{sub q{sup 2}}(su{sub 2}) and U{sub qp}(u{sub 1,1}). The second part deals with the construction of a new phenomenological model of the non rigid rotator. This model is based on the quantum algebra U{sub qp}(u{sub 2}). The rotational energy and the E2 reduced transition probabilities are obtained. They depend on the two deformation parameters q and p of the quantum algebra. We show how the use of the two-parameter deformation of the algebra U{sub qp}(u{sub 2}) leads to a generalization of the U{sub q}(su{sub 2})-rotator model. We also introduce a new model of the anharmonic oscillator on the basis of the quantum algebra U{sub qp}(u{sub 2}). We show that the system of the U{sub q}(su{sub 2})-rotator and of the anharmonic oscillator can be coupled with the use of the deformation parameters of U{sub qp}(u{sub 2}). A ro-vibration energy formula and expansion `a la` Dunham are obtained. The aim of the last part is to apply our non rigid rotator model to the rotational collective dynamics of the superdeformed nuclei of the A{approx}130 - 150 and A{approx}190 mass regions and deformed nuclei of the actinide and rare earth series. We adjust the free parameters of our model and compare our results with those from four other models of the non rigid rotator. A comparative analysis is given in terms of transition energies.

  18. Specific features and symmetries for magnetic and chiral bands in nuclei

    Science.gov (United States)

    Raduta, A. A.

    2016-09-01

    Magnetic and chiral bands have been a hot subject for more than twenty years. Therefore, quite large volumes of experimental data as well as theoretical descriptions have been accumulated. Although some of the formalisms are not so easy to handle, the results agree impressively well with the data. The objective of this paper is to review the actual status of both experimental and theoretical investigations. Aiming at making this material accessible to a large variety of readers, including young students and researchers, I gave some details on the schematic models which are able to unveil the main features of chirality in nuclei. Also, since most formalisms use a rigid triaxial rotor for the nuclear system's core, I devoted some space to the semi-classical description of the rigid triaxial as well as of the tilted triaxial rotor. In order to answer the question whether the chiral phenomenon is spread over the whole nuclear chart and whether it is specific only to a certain type of nuclei, odd-odd, odd-even or even-even, the current results in the mass regions of A ∼ 60 , 80 , 100 , 130 , 180 , 200 are briefly described for all kinds of odd/even-odd/even systems. The chiral geometry is a sufficient condition for a system of proton-particle, neutron-hole and a triaxial rotor to have the electromagnetic properties of chiral bands. In order to prove that such geometry is not unique for generating magnetic bands with chiral features, I presented a mechanism for a new type of chiral bands. One tries to underline the fact that this rapidly developing field is very successful in pushing forward nuclear structure studies.

  19. In beam {gamma}-ray spectroscopy of the odd-odd nucleus {sup 144}Tb

    Energy Technology Data Exchange (ETDEWEB)

    Sferrazza, M. [Padua Univ. (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Padua (Italy)]|[Cambridge Univ. (United Kingdom). Cavendish Lab.; Cardona, M.A. [Istituto Nazionale di Fisica Nucleare, Legnaro (Italy). Lab. Nazionali di Legnaro; Bazzacco, D. [Padua Univ. (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Padua (Italy); Lunardi, S. [Padua Univ. (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Padua (Italy); Maglione, E. [Padua Univ. (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Padua (Italy); De Angelis, G. [Istituto Nazionale di Fisica Nucleare, Legnaro (Italy). Lab. Nazionali di Legnaro

    1996-03-01

    The level scheme of the N=79 nucleus {sup 144}Tb was investigated via in beam {gamma}-ray spectroscopy using the {sup 112}Sn({sup 35}Cl,n2p), {sup 116}Sn({sup 32}S,3np) and {sup 89}Y({sup 58}Ni,2np) reactions. States up to I{approx}20 and E{sub x}{approx}5 MeV were established above the 6{sup -} {beta}{sup +} decaying isomer. Two new isomers with half-life of 0.67(6) {mu}s and 2.8(3) {mu}s were identified. The level scheme of {sup 144}Tb is interpreted in the framework of the spherical shell model with a few valence nucleons outside the {sup 146}Gd core. (orig.)

  20. An Exploration of Structures in the Transitional Odd-Odd Nucleus Lu-160

    Science.gov (United States)

    2015-05-18

    This document has been approved for public release and sale ; its distribution is limited. U.S.N.A. --- Trident Scholar project report; no. 434 (2015...model, it is perhaps best to illustrate it through its chemistry analog: the atomic shell model. In truth, much of the notation and nomenclature for...have protons and neutrons that exist in different energy states. As we have seen, nuclear physicists borrow nomenclature from chemists to describe these

  1. Transition strengths and signature inversion in odd-odd 74Br

    Science.gov (United States)

    García-Bermúdez, G.; Cardona, M. A.; Filevich, A.; Ribas, R. V.; Somacal, H.; Szybisz, L.

    1999-04-01

    Lifetimes of states in 74Br produced by the 60Ni(16O,np) reaction at 50 MeV have been measured by using the recoil-distance method. From these experiments several reduced transition strengths for the low energy states have also been determined. The results show that the alternating pattern in the B(M1) strengths of the yrast positive parity band is preserved across the signature inversion region.

  2. Level density and gamma-ray strength function in the odd-odd 238Np

    CERN Document Server

    Tornyi, Tamás Gábor; Eriksen, Tomas Kvalheim; Görgen, Andreas; Giacoppo, Francesca; Hagen, Trine Wiborg; Krasznahorkay, Attila; Larsen, Ann-Cecilie; Renstrøm, Therese; Rose, Sunniva Johanne; Siem, Sunniva; Tveten, Gry Merete

    2014-01-01

    The level density and gamma-ray strength function in the quasi-continuum of 238Np has been measured using the Oslo method. The level density function follows closely the constant-temperature level density formula and reaches 43 million levels per MeV at Sn = 5.488 MeV of excitation energy. The gamma-ray strength function displays a two-humped resonance at low-energy as also seen in previous investigations of Th, Pa and U isotopes. The structure is interpreted as the scissors resonance and has an average centroid of wSR = 2.26(5) MeV and a total strength of BSR = 10.8(12)m2N, which is in excellent agreement with sum-rule estimates. The scissors resonance is shown to have an impact on the 237Np(n; g)238Np cross section.

  3. High-spin States in Odd-odd 140Pr Nucleus

    Institute of Scientific and Technical Information of China (English)

    YuHaiping; GuoYingxiang; ZhouXiaohong; ZhangYuhu; LeiXiangguo; LiuMinliang; LuoPeng; SongLitao; WangHualei; XieChengying; ZhengYong; GuoWentao; ZhuLihua; WuXiaoguang

    2003-01-01

    The high-spin level structures of doubly odd nucleus 140Pr have been investigated by means of the 130Te(14N,4n)140Pr reaction. The 14N beam was obtained from the HI-13 tandem accelerator of China Institute of Atomic Energy, Beijing. The target is an enriched 130Te metallic foil of 1.67mg/cm2 thickness with a 10.37mg/cm2 Pb backing. Measurements of γ-ray singles, γ-γ-t coincidences and γ-ray excitation function were performed with twelve BGO(AC)HPGe detectors. Based on detailed analysis of γ-γ coincidence relationships, γ-ray

  4. High-spin states in the odd-odd nucleus sup 8 sup 0 Y

    CERN Document Server

    Bucurescu, D; Ionescu-Bujor, M; Iordachescu, A; Bazzacco, D; Brandolini, F; De Angelis, G; De Poli, M; Gadea, A; Lunardi, S; Marginean, N; Medina, N H; Napoli, D R; Pavan, P; Rossi-Alvarez, C; Spolaore, P

    2002-01-01

    The high-spin states of sup 8 sup 0 Y have been studied with the reactions sup 2 sup 4 Mg( sup 5 sup 8 Ni, pn gamma) at 180 MeV and sup 5 sup 8 Ni( sup 2 sup 4 Mg, pn gamma) at 77 MeV. Gamma-ray transitions in this nucleus have been unambiguously assigned by using the GASP detector array in conjunction with the recoil mass spectrometer CAMEL and the ISIS Silicon detector ball. These transitions have been arranged into several rotational bands extending up to an excitation energy of about 12 MeV and spin 24 Planck constant. The bands are discussed within the framework of the interacting boson-fermion-fermion and cranked shell models.

  5. Coulomb energy difference as a probe of isospin-symmetry breaking in the upper fp-shell nuclei

    CERN Document Server

    Kaneko, K; Sun, Y; Tazaki, S; de Angelis, G

    2012-01-01

    The anomaly in Coulomb energy differences (CED) between the isospin T=1 states in the odd-odd N=Z nucleus 70Br and the analogue states in its even-even partner 70Se has remained a puzzle. This is a direct manifestation of isospin-symmetry breaking in effective nuclear interactions. Here, we perform large-scale shell-model calculations for nuclei with A=66-78 using the new filter diagonalization method based on the Sakurai-Sugiura algorithm. The calculations reproduce well the experimental CED. The observed negative CED for A=70 are accounted for by the cross-shell neutron excitations from the fp-shell to the g9/2 intruder orbit with the enhanced electromagnetic spin-orbit contribution at this special nucleon number.

  6. β and Isomeric Decay of Nuclei in the 100Sn Region

    Science.gov (United States)

    Becerril, A. D.; Amthor, A. M.; Baumann, T.; Bazin, D.; Berryman, J. S.; Crawford, H.; Estrade, A.; Gade, A.; Ginter, T.; Guess, C. J.; Hausmann, M.; Hitt, G. W.; Lorusso, G.; Mantica, P. F.; Matos, M.; Meharchand, R.; Minamisono, K.; Montes, F.; Pereira, J.; Perdikakis, G.; Portillo, M.; Schatz, H.; Smith, K.; Stoker, J.; Zegers, R. T. G.

    2010-08-01

    The decay properties of rp-process nuclei in the vicinity of 100Sn have been studied at the National Superconducting Cyclotron Laboratory (NSCL). The measured β-decay half-life for 100Sn is 0.55-0.31+0.70 s, in agreement with a previous measurement. In 98In, the β-decay of the ground state plus that of a long lived isomer were observed with half-lives of 47(13) ms and 0.66(40) s respectively. The half-life of 96Cd, measured for the first time, is 1.03-0.21+0.24 s; however, the existence of a predicted isomeric state in this nucleus could not be confirmed. Additionally, a gamma cascade de-exciting a μ-isomer in the odd-odd nucleus 96Ag was observed. The implications of the measured half-life of 96Cd on the calculated rp-process final abundances are discussed.

  7. N = Z nuclei: a laboratory for neutron-proton collective mode

    Science.gov (United States)

    Qi, Chong; Wyss, Ramon

    2016-01-01

    The neutron-neutron and proton-proton pairing correlations have long been recognized to be the dominant many-body correlation beyond the nuclear mean field since the introduction of pairing mechanism by Bohr, Mottelson and Pines nearly 60 years ago. Nevertheless, few conclusions have been reached concerning the existence of analogous neutron-proton (np) pair correlated state. One can see a renaissance in np correlation studies in relation to the significant progress in radioactive ion beam facilities and detection techniques. The np pairs can couple isospin T = 1 (isovector) or 0 (isoscalar). In the isovector channel, the angular momentum zero component is expected to be the most important one. On the other hand, as one may infer from the general properties of the np two-body interaction, in the isoscalar channel, both the np pairs with minimum (J = 1) and maximum (J = 2j) spin values can be important. In this contribution, we will discuss the possible evidence for np pair coupling from a different perspective and analyze its influence on interesting phenomena including the Wigner effect and mass correlations in odd-odd nuclei. In particular, we will explain the spin-aligned pair coupling scheme and quartet coupling involving pairs with maximum (J = 2j) spin values.

  8. Large scale evaluation of beta-decay rates of r-process nuclei with the inclusion of first-forbidden transitions

    CERN Document Server

    Marketin, T; Martínez-Pinedo, G

    2015-01-01

    R-process nucleosynthesis models rely, by necessity, on nuclear structure models for input. Particularly important are beta-decay half-lives of neutron rich nuclei. At present only a single systematic calculation exists that provides values for all relevant nuclei making it difficult to test the sensitivity of nucleosynthesis models to this input. Additionally, even though there are indications that their contribution may be significant, the impact of first-forbidden transitions on decay rates has not been systematically studied within a consistent model. We use a fully self-consistent covariant density functional theory (CDFT) framework to provide a table of $\\beta$-decay half-lives and $\\beta$-delayed neutron emission probabilities, including first-forbidden transitions. We observe a significant contribution of the first-forbidden transitions to the total decay rate in nuclei far from the valley of stability. The experimental half-lives are in general well reproduced, both for even-even, odd-A and odd-odd n...

  9. {gamma}-spectroscopy and radioactive beams: search for highly deformed exotic nuclei; Detection {gamma} et faisceaux radioactifs: recherche de noyaux exotiques tres deformes

    Energy Technology Data Exchange (ETDEWEB)

    Rosse, B

    2006-07-15

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A {approx} 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr{sup 76} radioactive beam (T1/2 = 14.8 h). {gamma}-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first {gamma} transition was observed in the very exotic odd-odd Pm{sup 130} nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  10. Deformation change in light iridium nuclei from laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Verney, D.; Le Blanc, F.; Obert, J.; Oms, J.; Puteaux, J.C.; Roussiere, B.; Sauvage, J. [IN2P3-CNRS/Universite Paris Sud-XI, Institut de Physique Nucleaire, Orsay Cedex (France); Cabaret, L.; Duong, H.T.; Pinard, J. [CNRS, Laboratoire Aime Cotton, Orsay Cedex (France); Crawford, J.E.; Lee, J.K.P. [McGill University, Physics Department, Montreal (Canada); Fricke, B.; Rashid, K. [Institut fuer Theoretische Physik der Universitaet Kassel, Kassel (Germany); Genevey, J.; Ibrahim, F. [IN2P3-CNRS/Universite Joseph Fourier-Grenoble I, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble Cedex (France); Huber, G.; Krieg, M.; Sebastian, V. [Institut fuer Physik der Universitaet Mainz, Mainz (Germany); Le Scornet, G.; Lunney, D. [IN2P3-CNRS/Universite Paris Sud-XI, Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, Orsay Cedex (France)

    2006-12-15

    Laser spectroscopy measurements have been performed on neutron-deficient and stable Ir isotopes using the COMPLIS experimental setup installed at ISOLDE-CERN. The radioactive Ir atoms were obtained from successive decays of a mass-separated Hg beam deposited onto a carbon substrate after deceleration to 1kV and subsequently laser desorbed. A three-color, two-step resonant scheme was used to selectively ionize the desorbed Ir atoms. The hyperfine structure (HFS) and isotope shift (IS) of the first transition of the ionization path 5d{sup 7}6s{sup 24}F{sub 9/2}{yields}5d{sup 7}6s6p{sup 6}F{sub 11/2} at 351.5nm were measured for {sup 182-189}Ir, {sup 186}Ir{sup m} and the stable {sup 191,193}Ir. The nuclear magnetic moments {mu}{sub I} and the spectroscopic quadrupole moments Q{sub s} were obtained from the HFS spectra and the change of the mean square charge radii from the IS measurements. The sign of {mu}{sub I} was experimentally determined for the first time for the masses 182{<=}A{<=}189 and the isomeric state {sup 186}Ir{sup m}. The spectroscopic quadrupole moments of {sup 182}Ir and {sup 183}Ir were measured also for the first time. A large mean square charge radius change between {sup 187}Ir and {sup 186}Ir{sup g} and between {sup 186}Ir{sup m} and {sup 186}Ir{sup g} was observed corresponding to a sudden increase in deformation: from {beta}{sub 2}{approx_equal}+0.16 for the heavier group A = 193, 191, 189, 187 and 186m to {beta}{sub 2}{>=}+0.2 for the lighter group A=186g, 185, 184, 183 and 182. These results were analyzed in the framework of a microscopic treatment of an axial rotor plus one or two quasiparticle(s). This sudden deformation change is associated with a change in the proton state that describes the odd-nuclei ground state or that participates in the coupling with the neutron in the odd-odd nuclei. This state is identified with the {pi}3/2 {sup +}[402 ] orbital for the heavier group and with the {pi}1/2{sup -}[541 ] orbital stemming from the 1h

  11. Level Statistics of Odd-odd Nucleon 84Y%奇奇核84Y的能谱统计

    Institute of Scientific and Technical Information of China (English)

    程南璞; 郑仁蓉; 朱顺泉

    2000-01-01

    用粒子-转子模型计算奇奇核84Y低自旋下的能谱,重点研究不同自旋下能谱最近邻能级间距分布(NNS)和能谱刚性度(▽3)的特点,并就影响能谱统计特征的因素进行了分析.

  12. A fast degrading odd-odd aliphatic polyester-5,7 made by condensation polymerization for biomedical applications.

    Science.gov (United States)

    Chen, Fei; Nölle, Jan Martin; Wietzke, Steffen; Reuter, Marco; Chatterjee, Sangam; Koch, Martin; Agarwal, Seema

    2012-01-01

    A fast enzymatic degradable aliphatic all-odd-polyester-5,7, based on 1,7-heptanedioic acid (pimelic acid) and 1,5-pentanediol, was synthesized by polycondensation. The structural characterization of the polyester was done using 1D- and 2D-NMR spectroscopic techniques. The properties of the resulting polyester-like crystallization behavior, enzymatic degradation, thermal stability, etc., were investigated using differential scanning calorimetry, wide-angle X-ray diffraction, scanning electron microscopy and gel-permeation chromatography. Terahertz time-domain spectroscopy was employed to determine the glass transition temperature, which could not be revealed reliably by conventional thermal analysis. The properties of all-odd-polyester-5,7 were compared with a well-known enzymatic degradable polyester (polycaprolactone). The results indicated that polyester-5,7 has a crystal structure similar to PCL, but a much faster degradation rate. The morphology of polyester-5,7 film during enzymatic degradation showed a fibrillar structure and degradation began by surface erosion.

  13. Quarks in finite nuclei

    CERN Document Server

    Guichon, P A M; Thomas, A W

    1996-01-01

    We describe the development of a theoretical description of the structure of finite nuclei based on a relativistic quark model of the structure of the bound nucleons which interact through the (self-consistent) exchange of scalar and vector mesons.

  14. Response of hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Broglia, R.A.

    1986-01-01

    The dipole giant resonance is reviewed, as it is the only vibration which has been experimentally identified in the decay of hot nuclei. The mechanism of exciting the resonance and the mode of the resonance are described. The methods used to calculate the vibrations from the shell model are discussed, including the Hartree-Fock approximation and random phase approximation. Nuclei formed by compound nuclear reactions, which possess high excitation energy and angular momentum, are considered. It is argued that the stability of the dipole may be used to advantage in the study of other properties of nuclei at high excitation. It is also considered possible that the discussion of the dipole giant resonance may be extended to the gamma decay of the isovector quadrupole vibration. 26 refs., 18 figs. (LEW)

  15. Scattering Of Light Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Quaglioni, S; Navratil, P; Roth, R

    2009-12-15

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches.We present a new ab initio many-body approach which derives from the combination of the ab initio no-core shell model with the resonating-group method [4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on sand light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment of more complex reactions.

  16. The shapes of nuclei

    CERN Document Server

    Bertsch, G F

    2016-01-01

    Gerry Brown initiated some early studies on the coexistence of different nuclear shapes. The subject has continued to be of interest and is crucial for understanding nuclear fission. We now have a very good picture of the potential energy surface with respect to shape degrees of freedom in heavy nuclei, but the dynamics remain problematic. In contrast, the early studies on light nuclei were quite successful in describing the mixing between shapes. Perhaps a new approach in the spirit of the old calculations could better elucidate the character of the fission dynamics and explain phenomena that current theory does not model well.

  17. Anharmonic vibrations in nuclei

    CERN Document Server

    Fallot, M; Andrés, M V; Catara, F; Lanza, E G; Scarpaci, J A; Chomaz, Ph.

    2003-01-01

    In this letter, we show that the non-linearitites of large amplitude motions in atomic nuclei induce giant quadrupole and monopole vibrations. As a consequence, the main source of anharmonicity is the coupling with configurations including one of these two giant resonances on top of any state. Two-phonon energies are often lowered by one or two MeV because of the large matrix elements with such three phonon configurations. These effects are studied in two nuclei, 40Ca and 208Pb.

  18. Elusive active galactic nuclei

    NARCIS (Netherlands)

    Maiolino, R; Comastri, A; Gilli, R; Nagar, NM; Bianchi, S; Boker, T; Colbert, E; Krabbe, A; Marconi, A; Matt, G; Salvati, M

    2003-01-01

    A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically 'elusive'. X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtai

  19. Shape Deformations in Atomic Nuclei

    CERN Document Server

    Hamamoto, Ikuko

    2011-01-01

    The ground states of some nuclei are described by densities and mean fields that are spherical, while others are deformed. The existence of non-spherical shape in nuclei represents a spontaneous symmetry breaking.

  20. Ultra High Energy Nuclei Propagation

    CERN Document Server

    Aloisio, Roberto

    2008-01-01

    We discuss the problem of ultra high energy nuclei propagation in astrophysical backgrounds. We present a new analytical computation scheme based on the hypothesis of continuos energy losses in a kinetic formulation of the particles propagation. This scheme enables the computation of the fluxes of ultra high energy nuclei as well as the fluxes of secondaries (nuclei and nucleons) produced by the process of photo-disintegration suffered by nuclei.

  1. Bubble nuclei; Noyaux Bulles

    Energy Technology Data Exchange (ETDEWEB)

    Legoll, F. [Service de Physique Theorique, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1998-07-22

    For nuclei with very high electrical charge, the Coulomb field is expected to drive the protons away from the centre to the surface of the nucleus. Such a nucleus would be no more compact but look like a bubble. The goal of this work is to confirm this idea. We are interested in only the ground state of spherical nuclei. We use the Skyrme potential with the Sly4 parametrization to calculate the mean-field Hamiltonian. Paring correlations are described by a surface-active delta paring interaction. In its ground state the nucleus {sup A=900} X{sub Z=274} is shown to be a bubble. Another stable state is found with a little higher energy: it is also a bubble. (author) 11 refs., 18 figs., 33 tabs.

  2. Symmetries in Nuclei

    CERN Document Server

    Van Isacker, P

    2010-01-01

    The use of dynamical symmetries or spectrum generating algebras for the solution of the nuclear many-body problem is reviewed. General notions of symmetry and dynamical symmetry in quantum mechanics are introduced and illustrated with simple examples such as the SO(4) symmetry of the hydrogen atom and the isospin symmetry in nuclei. Two nuclear models, the shell model and the interacting boson model, are reviewed with particular emphasis on their use of group-theoretical techniques.

  3. On Quasibound N* Nuclei

    CERN Document Server

    Kelkar, N G; Moskal, P

    2015-01-01

    The possibility for the existence of unstable bound states of the S11 nucleon resonance N$^*$(1535) and nuclei is investigated. These quasibound states are speculated to be closely related to the existence of the quasibound states of the eta mesons and nuclei. Within a simple model for the N N$^*$ interaction involving a pion and eta meson exchange, N$^*$-nucleus potentials for N*-$^3$He and N*-$^{24}$Mg are evaluated and found to be of a Woods-Saxon like form which supports two to three bound states. In case of N*-$^3$He, one state bound by only a few keV and another by 4 MeV is found. The results are however quite sensitive to the N N$^*$ $\\pi$ and N N$^*$ $\\eta$ vertex parameters. A rough estimate of the width of these states, based on the mean free path of the exchanged mesons in the nuclei leads to very broad states with $\\Gamma \\sim$ 80 and 110 MeV for N*-$^3$He and N*-$^{24}$Mg respectively.

  4. Skyrmions and Nuclei

    Science.gov (United States)

    Battye, R. A.; Manton, N. S.; Sutcliffe, P. M.

    We review recent work on the modelling of atomic nuclei as quantised Skyrmions, using Skyrme's original model with pion fields only. Skyrmions are topological soliton solutions, whose conserved topological charge B is identified with the baryon number of a nucleus. Apart from an energy and length scale, the Skyrme model has just one dimensionless parameter m, proportional to the pion mass. It has been found that a good fit to experimental nuclear data requires m to be of order 1. The Skyrmions for B up to 7 have been known for some time, and are qualitatively insensitive to whether m is zero or of order 1. However, for baryon numbers B = 8 and above, the Skyrmions have quite a compact structure for m of order 1, rather than the hollow polyhedral structure found when m = 0. One finds for baryon numbers which are multiples of four, that the Skyrmions are composed of B = 4 sub-units, as in the α-particle model of nuclei. The rational map ansatz gives a useful approximation to the Skyrmion solutions for all baryon numbers when m = 0. For m of order 1, it gives a good approximation for baryon numbers up to 7, and generalisations of this ansatz are helpful for higher baryon numbers. We briefly review the work from the 1980s and 90s on the semiclassical rigidbody quantisation of Skyrmions for B = 1, 2, 3 and 4. We then discuss more recent work extending this method to B = 6, 7, 8, 10 and 12. We determine the quantum states of the Skyrmions, finding their spins, isospins and parities, and compare with the experimental data on the ground and excited states of nuclei up to mass number 12.

  5. Active galactic nuclei

    CERN Document Server

    Blandford, RD; Woltjer, L

    1990-01-01

    Starting with this volume, the Lecture Notes of the renowned Advanced Courses of the Swiss Society for Astrophysics and Astronomy will be published annually. In each course, three extensive lectures given by leading experts in their respective fields cover different and essential aspects of the subject. The 20th course, held at Les Diablerets in April 1990, dealt with current research on active galactic nuclei; it represents the most up-to-date views on the subject, presented with particular regard for clarity. The previous courses considered a wide variety of subjects, beginning with ""Theory

  6. Active galactic nuclei

    CERN Document Server

    Beckmann, Volker

    2012-01-01

    This AGN textbook includes phenomena based on new results in the X-Ray domain from new telescopes such as Chandra and XMM Newton not mentioned in any other book. Furthermore, it considers also the Fermi Gamma Ray Space Telescope with its revolutionary advances of unprecedented sensitivity, field of view and all-sky monitoring. Those and other new developments as well as simulations of AGN merging events and formations, enabled through latest super-computing capabilities. The book gives an overview on the current knowledge of the Active Galacitc Nuclei phenomenon. The spectral energy d

  7. Elusive Active Galactic Nuclei

    CERN Document Server

    Maiolino, R; Gilli, R; Nagar, N M; Bianchi, S; Böker, T; Colbert, E; Krabbe, A; Marconi, A; Matt, G; Salvati, M

    2003-01-01

    A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically "elusive". X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtain a first estimate of the fraction of elusive AGN in local galaxies and to constrain their nature. Our results suggest that elusive AGN have a local density comparable to or even higher than optically classified Seyfert nuclei. Most elusive AGN are heavily absorbed in the X-rays, with gas column densities exceeding 10^24 cm^-2, suggesting that their peculiar nature is associated with obscuration. It is likely that in elusive AGN, the nuclear UV source is completely embedded and the ionizing photons cannot escape, which prevents the formation of a classical Narrow Line Region. Elusive AGN may contribute significantly to the 30 keV bump of the X-ray background.

  8. Electron scattering for exotic nuclei

    Indian Academy of Sciences (India)

    Toshimi Suda

    2014-11-01

    A brand-new electron scattering facility, the SCRIT Electron Scattering Facility, will soon start its operation at RIKEN RI Beam Factory, Japan. This is the world’s first electron scattering facility dedicated to the structure studies of short-lived nuclei. The goal of this facility is to determine the charge density distributions of short-lived exotic nuclei by elastic electron scattering. The first collision between electrons and exotic nuclei will be observed in the year 2014.

  9. Nucleomorphs: enslaved algal nuclei.

    Science.gov (United States)

    Cavalier-Smith, T

    2002-12-01

    Nucleomorphs of cryptomonad and chlorarachnean algae are the relict, miniaturised nuclei of formerly independent red and green algae enslaved by separate eukaryote hosts over 500 million years ago. The complete 551 kb genome sequence of a cryptomonad nucleomorph confirms that cryptomonads are eukaryote-eukaryote chimeras and greatly illuminates the symbiogenetic event that created the kingdom Chromista and their alveolate protozoan sisters. Nucleomorph membranes may, like plasma membranes, be more enduring after secondary symbiogenesis than are their genomes. Partial sequences of chlorarachnean nucleomorphs indicate that genomic streamlining is limited by the mutational difficulty of removing useless introns. Nucleomorph miniaturisation emphasises that selection can dramatically reduce eukaryote genome size and eliminate most non-functional nuclear non-coding DNA. Given the differential scaling of nuclear and nucleomorph genomes with cell size, it follows that most non-coding nuclear DNA must have a bulk-sequence-independent function related to cell volume.

  10. Clusters in nuclei

    CERN Document Server

    Beck, Christian

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics:  - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...

  11. Gluon density in nuclei

    CERN Document Server

    Ayala, A P; Levin, E M

    1996-01-01

    In this talk we present our detail study ( theory and numbers) [1] on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather contraversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula [2] and estimate the value of the shadowing corrections in this case. Than we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus - nucleus cascade.

  12. Pulsars: Gigantic Nuclei

    CERN Document Server

    Xu, Renxin

    2011-01-01

    What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the {\\em gigantic nucleus} speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction.

  13. Clusters in Light Nuclei

    CERN Document Server

    Beck, C; Zafra, A Sanchez i; Thummerer, S; Azaiez, F; Bednarczyk, P; Courtin, S; Curien, D; Dorvaux, O; Goasduff, A; ~Lebhertz, D; Nourreddine, A; ~Rousseau, M; Salsac, M -D; von Oertzen, W; Gebauer, B; Wheldon, C; Kokalova, Tz; Efimov, G; Zherebchevsky, V; Schulz, Ch; Bohlen, H G; Kamanin, D; de Angelis, G; Gadea, A; Lenzi, S; Napoli, D R; Szilner, S; Milin, M; Catford, W N; Jenkins, D G; Royer, G

    2010-01-01

    A great deal of research work has been undertaken in the alpha-clustering study since the pioneering discovery, half a century ago, of 12C+12C molecular resonances. Our knowledge of the field of the physics of nuclear molecules has increased considerably and nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. In this work, the occurence of "exotic" shapes in light N=Z alpha-like nuclei is investigated. Various approaches of superdeformed and hyperdeformed bands associated with quasimolecular resonant structures are presented. Results on clustering aspects are also discussed for light neutron-rich Oxygen isotopes.

  14. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors) 304 refs., 53 figs., 5 tabs.

  15. Quarks in Few Body Nuclei

    Directory of Open Access Journals (Sweden)

    Holt Roy J.

    2016-01-01

    Full Text Available Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  16. Quarks in Few Body Nuclei

    Science.gov (United States)

    Holt, Roy J.

    2016-03-01

    Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  17. Gluon density in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, A.L. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica][Pelotas Univ., RS (Brazil). Inst. de Fisica e Matematica; Ducati, M.B.G. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Levin, E.M. [Fermi National Accelerator Lab., Batavia, IL (United States)][Nuclear Physics Inst., St. Petersburg (Russian Federation)

    1996-10-01

    In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab.

  18. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph

    1997-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author) 270 refs.

  19. Monopole transitions in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sujkowski, Z. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs.

  20. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    S K Tandel

    2015-09-01

    Structural studies of heavy nuclei are quite challenging due to increased competition from fission, particularly at high spins. Nuclei in the actinide region exhibit a variety of interesting phenomena. Recent advances in instrumentation and analysis techniques have made feasible sensitive measurements of nuclei populated with quite low cross-sections. These include isomers and rotational band structures in isotopes of Pu ( = 94) to Rf ( = 104), and octupole correlations in the Th ( = 90) region. The obtained experimental data have provided insights on various aspects like moments of inertia and nucleon alignments at high spins, quasiparticle energies and evolution of quadrupole and octupole collectivity, among others. An overview of some of these results is presented.

  1. Physics with loosely bound nuclei

    Indian Academy of Sciences (India)

    Chhanda Samanta

    2001-08-01

    The essential aspect of contemporary physics is to understand properties of nucleonic matter that constitutes the world around us. Over the years research in nuclear physics has provided strong guidance in understanding the basic principles of nuclear interactions. But, the scenario of nuclear physics changed drastically as the new generation of accelerators started providing more and more rare isotopes, which are away from the line of stability. These weakly bound nuclei are found to exhibit new forms of nuclear matter and unprecedented exotic behaviour. The low breakup thresholds of these rare nuclei are posing new challenges to both theory and experiments. Fortunately, nature has provided a few loosely bound stable nuclei that have been studied thoroughly for decades. Attempts are being made to find a consistent picture for the unstable nuclei starting from their stable counterparts. Some significant differences in the structure and reaction mechanisms are found.

  2. Pseudospin Dynamical Symetry in Nuclei

    CERN Document Server

    Ginocchio, Joseph N

    2014-01-01

    Pseudospin symmetry has been useful in understanding atomic nuclei. We review the arguments that this symmetry is a relativistic symmetry. The condition for this symmetry is that the sum of the vector and scalar potentials in the Dirac Hamiltonian is a constant. We give the generators of pseudospin symmetry. We review some of the predictions that follow from this insight into the relativistic origins of pseudospin symmetry. Since in nuclei the sum of the scalar and vector potentials is not zero but is small, we discuss preliminary investigations into the conditions on the potentials to produce partial dynamic pseudospin symmetry. Finally we show that approximate pseudospin symmetry in nuclei predicts approximate spin symmetry in anti-nucleon scattering from nuclei.

  3. Contribution of the radioactive decay to the study of the structure of N=Z nuclei of mass A>70; Apport de la decroissance radioactive a l'etude de la structure des noyaux N=Z de masse A>70

    Energy Technology Data Exchange (ETDEWEB)

    Longour, Christophe [Institut de Recherches Subatomiques, B.P.28, 23, Rue du Loess, F-67037 Strasbourg Cedex 2 (France)

    1999-04-21

    Radioactive decay study gives an access to the interaction which rules the {beta} decay process as well as the structure of the nuclear states involved. This work describes the observation of the decay of N = Z nuclei with mass A > 70. For the odd-odd N = Z nuclei {sup 78}Y, {sup 82}Nb and {sup 86}Tc, the decay has been established as superallowed Fermi type transitions. The results pave the way for more precise measurements and extend the mass range nowadays used to understand the behaviour of the weak interaction in the nuclear matter. The observation of the decay of the even-even N = Z {sup 72}Kr leads us to build the Gamow-Teller strength distribution from which some clues about the ground state deformation of this isotope can be obtained. More complete experimental observation and some developments of the calculations used to interpret the distribution of the Gamow-Teller strength are needed. Finally, this work describes the developments and tests of a prototype detector the aim of which to determine the contribution of {beta} particles to energy distribution observed in germanium detector. The tests we have performed show that this prototype can identify and reject 80% of the {beta} particles emitted by a source with a 2,3 MeV end-point. The very satisfactory performances of this prototype need now to be confirmed under experimental conditions.

  4. Risk of Misinterpreting Nearly Degenerate Doublet Bands as Chiral Partners in Odd-even 103,105,107Ag and Odd-odd 106Ag

    Institute of Scientific and Technical Information of China (English)

    MA; Hai-liang; YAO; Shun-he; DONG; Bao-guo; WU; Xiao-guang; ZHANG; Huan-qiao; ZHANG; Xi-zhen

    2013-01-01

    The chiral doublet bands were claimed to be found in several silver isotopes.In the present study of negative parity bands of the odd-even 103,105,107Ag,by using the principal cranking Nilsson-Strutinsky approach it is demonstrated from the point view of spectroscopy that the nearly degenerateΔI=1 doublet

  5. Identification of a strongly coupled band in deformed odd-odd 184Au%形变双奇核184Au中的强耦合带

    Institute of Scientific and Technical Information of China (English)

    李仕成; 张玉虎; 周小红; 柳敏良; 雷祥国; 郭松; 高丙水; de ANGELIS G; MARGINEAN N

    2013-01-01

    利用重离子融合蒸发反应159Tb(29Si,4nγ) 184Au布居了形变双奇核184Au的高自旋态,用GASP探测器阵列进行了在束γ实验测量.通过对实验数据的深入分析,新发现了一条可归属于184Au核的强耦合转动带.基于对转动带有效K值的分析以及从实验数据中提取出的带内B(M1)/B(E2)值与理论计算值的比较,建议了转动带的准粒子组态和能级的自旋宇称值.

  6. Search for Signature Inversion in the πi13/2 vi13/2 Band in Odd-Odd 178Ir

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-Hu; H. Kusakari; M. Sugawara; T. Komatsubara; K. Furuno; T. Hayakawa; M. Oshima; Y. Toh; J. Katakura; Y. Hatsukawa; M. Matsuda; N. Shinohara; T. Ishii

    2001-01-01

    The search for the ri13/2 vi13/2 band in 178Ir has been conducted through the 152Sm(31 P, 5nγ) 178Ir reaction and the excitation functions, x-γ and γ-γ-t coincidence measurements. Five rotational bands have been newly identified. The low-spin signature inversion in the πi13/2 vi13/2 band has been confirmed by the observations of linking transitions and signature crossing at I = 25.5 h. The inversion phenomenon in rh11/2 vi13/2, rh9/2 vi13/2 and ri13/2 vi13/2 structures in 178Ir provides a unique testing ground for different theoretical interpretations.

  7. A relativistic symmetry in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ginocchio, J N [MS B283, Theoretical Division, Los Alamos National Laboratory Los Alamos, New Mexico 87545 (Mexico)

    2007-11-15

    We review some of the empirical and theoretical evidence supporting pseudospin symmetry in nuclei as a relativistic symmetry. We review the case that the eigenfunctions of realistic relativistic nuclear mean fields approximately conserve pseudospin symmetry in nuclei. We discuss the implications of pseudospin symmetry for magnetic dipole transitions and Gamow-Teller transitions between states in pseudospin doublets. We explore a more fundamental rationale for pseudospin symmetry in terms of quantum chromodynamics (QCD), the basic theory of the strong interactions. We show that pseudospin symmetry in nuclei implies spin symmetry for an anti-nucleon in a nuclear environment. We also discuss the future and what role pseudospin symmetry may be expected to play in an effective field theory of nucleons.

  8. Photodissociation of neutron deficient nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sonnabend, K.; Babilon, M.; Hasper, J.; Mueller, S.; Zarza, M.; Zilges, A. [TU Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)

    2006-03-15

    The knowledge of the cross sections for photodissociation reactions like e.g. ({gamma}, n) of neutron deficient nuclei is of crucial interest for network calculations predicting the abundances of the so-called p nuclei. However, only single cross sections have been measured up to now, i.e., one has to rely nearly fully on theoretical predictions. While the cross sections of stable isotopes are accessible by experiments using real photons, the bulk of the involved reactions starts from unstable nuclei. Coulomb dissociation (CD) experiments in inverse kinematics might be a key to expand the experimental database for p-process network calculations. The approach to test the accuracy of the CD method is explained. (orig.)

  9. Studies of exotic light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Cerny, J.

    1976-05-01

    For neutron-deficient nuclei, extension of the T/sub z/ = --3/2 series of strong beta-delayed proton precursors to /sup 61/Ge is discussed. For neutron-excess nuclei, heavy-ion induced, multi-nucleon transfer reaction studies of masses and energy levels of 2sld shell nuclei with T/sub z/ greater than or equal to 5/2 are covered. In addition, preliminary attempts to employ the (/sup 7/Li,/sup 2/He) reaction for the latter studies are shown; a new detection system capable of observing unbound final states as reaction products is demonstrated via investigations of the (..cap alpha..,/sup 2/He) reaction.

  10. Photoproduction of mesons off nuclei

    CERN Document Server

    Krusche, B

    2011-01-01

    Recent results for the photoproduction of mesons off nuclei are reviewed. These experiments have been performed for two major lines of research related to the properties of the strong interaction. The investigation of nucleon resonances requires light nuclei as targets for the extraction of the isospin composition of the electromagnetic excitations. This is done with quasi-free meson photoproduction off the bound neutron and supplemented with the measurement of coherent photoproduction reactions, serving as spin and/or isospin filters. Furthermore, photoproduction from light and heavy nuclei is a very efficient tool for the study of the interactions of mesons with nuclear matter and the in-medium properties of hadrons. Experiments are currently rapidly developing due to the combination of high quality tagged (and polarized) photon beams with state-of-the-art 4pi detectors and polarized targets.

  11. International Symposium on Exotic Nuclei

    CERN Document Server

    Sobolev, Yu G; EXON-2014

    2015-01-01

    The production and the properties of nuclei in extreme conditions, such as high isospin, temperature, angular momenta, large deformations etc., have become the subject of detailed investigations in all scientific centers. The main topics discussed at the Symposium were: Synthesis and Properties of Exotic Nuclei; Superheavy Elements; Rare Processes, Nuclear Reactions, Fission and Decays; Experimental Facilities and Scientific Projects. This book provides a comprehensive overview of the newest results of the investigations in the main scientific centers such as GSI (Darmstadt, Germany), GANIL (Caen, France), RIKEN (Wako-shi, Japan), MSU (Michigan, USA), and JINR (Dubna, Russia).

  12. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    R A Gherghescu; D N Poenaru

    2015-09-01

    The macroscopic–microscopic method is extended to calculate the deformation energy and penetrability for binary nuclear configurations typical for fission processes. The deformed two-centre shell model is used to obtain single-particle energy levels for the transition region of two partially overlapped daughter and emitted fragment nuclei. The macroscopic part is obtained using the Yukawa-plus-exponential potential. The microscopic shell and pairing corrections are obtained using the Strutinsky and BCS approaches and the cranking formulae yield the inertia tensor. Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations are performed for the decay of 282,292120 nuclei.

  13. PDFs from nucleons to nuclei

    CERN Document Server

    Accardi, Alberto

    2016-01-01

    I review recent progress in the extraction of unpolarized parton distributions in the proton and in nuclei from a unified point of view that highlights how the interplay between high energy particle physics and lower energy nuclear physics can be of mutual benefit to either field. Areas of overlap range from the search for physics beyond the standard model at the LHC, to the study of the non perturbative structure of nucleons and the emergence of nuclei from quark and gluon degrees of freedom, to the interaction of colored probes in a cold nuclear medium.

  14. Multiphonon giant resonances in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, T. [Mainz Univ. (Germany). Inst. fuer Kernchemie; Bortignon, P.F. [Milan Univ. (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Milan (Italy); Emling, H. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    1998-07-01

    We review the present knowledge of multiphonon giant resonances in nuclei. Theoretical concepts approaching the intrinsic structure and excitation mechanisms of multi-phonon states are discussed. The available experimental results are summarized, including a brief description of applied techniques. This review emphasizes electromagnetic excitations of double dipole resonances. Open questions and possible routes toward a solution are addressed. (orig.)

  15. Partial Dynamical Symmetries in Nuclei

    CERN Document Server

    Leviatan, A

    2000-01-01

    Partial dynamical symmetries (PDS) are shown to be relevant to the interpretation of the $K=0_2$ band and to the occurrence of F-spin multiplets of ground and scissors bands in deformed nuclei. Hamiltonians with bosonic and fermionic PDS are presented.

  16. Nuclear astrophysics of light nuclei

    DEFF Research Database (Denmark)

    Fynbo, Hans Otto Uldall

    2013-01-01

    A review of nuclear astrophysics of light nuclei using radioactive beams or techniques developed for radioactive beams is given. We discuss Big Bang nucleosynthesis, with special focus on the lithium problem, aspects of neutrino-physics, helium-burning and finally selected examples of studies...

  17. Low energy + scattering on = nuclei

    Indian Academy of Sciences (India)

    Swapan Das; Arun K Jain

    2003-11-01

    The data for the total cross-section of + scattering on various nuclei have been analysed in the Glauber multiple scattering theory. Energy-dependent +-nucleus optical potential is generated using the forward +-nucleon scattering amplitude and the nuclear density distribution. Along with this, the calculated total +-nucleus cross-sections using the effective +-nucleon cross-section inside the nucleus are also presented.

  18. Fission dynamics of hot nuclei

    Indian Academy of Sciences (India)

    Santanu Pal; Jhilam Sadhukhan

    2014-04-01

    Experimental evidence accumulated during the last two decades indicates that the fission of excited heavy nuclei involves a dissipative dynamical process. We shall briefly review the relevant dynamical model, namely the Langevin equations for fission. Statistical model predictions using the Kramers’ fission width will also be discussed.

  19. Scissors Mode in Gd Nuclei

    Directory of Open Access Journals (Sweden)

    Wu C.Y.

    2012-02-01

    Full Text Available Spectra of γ rays following neutron capture at isolated resonances of 6 stable Gd isotopes were measured with highly segmented BaF2 detector DANCE at the Los Alamos LANSCE spallation neutron source. The main emphasis was put on studying the γ-cascade decay of neutron resonances to get unique information on photon strength. An analysis of the accumulated γ-ray spectra within the extreme statistical model leads to an inescapable conclusion that scissors mode resonances are built not only on the ground-state, but also on excited levels in all product nuclei studied. The results on summed B(M1↑ strength and energy of the scissors mode are compared with systematics of scissors mode parameters for the ground-state transitions deduced from nuclear resonance fluorescence measurements. A specific feature of our experiments is the investigation of scissors mode of odd nuclei, for which the nuclear resonance fluorescence provides only limited information.

  20. Scissors Mode in Gd Nuclei

    Science.gov (United States)

    Kroll, J.; Baramsai, B.; Becker, J. A.; Bečvář, F.; Bredeweg, T. A.; Couture, A.; Chyzh, A.; Dashdorj, D.; Haight, R. C.; Jandel, M.; Krtička, M.; Mitchell, G. E.; O'Donnell, J. M.; Parker, W.; Rundberg, R. S.; Ullmann, J. L.; Vieira, G. J.; Walker, C. L.; Wilhelmy, J. B.; Wouters, J. M.; Wu, C. Y.

    2012-02-01

    Spectra of γ rays following neutron capture at isolated resonances of 6 stable Gd isotopes were measured with highly segmented BaF2 detector DANCE at the Los Alamos LANSCE spallation neutron source. The main emphasis was put on studying the γ-cascade decay of neutron resonances to get unique information on photon strength. An analysis of the accumulated γ-ray spectra within the extreme statistical model leads to an inescapable conclusion that scissors mode resonances are built not only on the ground-state, but also on excited levels in all product nuclei studied. The results on summed B(M1)↑ strength and energy of the scissors mode are compared with systematics of scissors mode parameters for the ground-state transitions deduced from nuclear resonance fluorescence measurements. A specific feature of our experiments is the investigation of scissors mode of odd nuclei, for which the nuclear resonance fluorescence provides only limited information.

  1. Evolution of active galactic nuclei

    CERN Document Server

    Merloni, Andrea

    2012-01-01

    [Abriged] Supermassive black holes (SMBH) lurk in the nuclei of most massive galaxies, perhaps in all of them. The tight observed scaling relations between SMBH masses and structural properties of their host spheroids likely indicate that the processes fostering the growth of both components are physically linked, despite the many orders of magnitude difference in their physical size. This chapter discusses how we constrain the evolution of SMBH, probed by their actively growing phases, when they shine as active galactic nuclei (AGN) with luminosities often in excess of that of the entire stellar population of their host galaxies. Following loosely the chronological developments of the field, we begin by discussing early evolutionary studies, when AGN represented beacons of light probing the most distant reaches of the universe and were used as tracers of the large scale structure. This early study turned into AGN "Demography", once it was realized that the strong evolution (in luminosity, number density) of ...

  2. Proton scattering from unstable nuclei

    Indian Academy of Sciences (India)

    Y Blumenfeld; E Khan; F Maréchal; T Suomijärvi

    2001-08-01

    Recent improvements in the intensities and optical qualities of radioactive beams have made possible the study of elastic and inelastic proton scattering on unstable nuclei. The design and performances of an innovative silicon strip detector array devoted to such experiments are described. The quality of the data obtained are illustrated with recent results obtained at the GANIL facility for unstable oxygen, sulfur and argon isotopes. Methods to analyse the data using phenomenological and microscopic optical model potentials are discussed.

  3. Double pion photoproduction in nuclei

    CERN Document Server

    Vicente-Vacas, M J; Gómez-Tejedor, J A; Vicente-Vacas, M J; Oset, E; Gómez Tejedor, J A

    1994-01-01

    Abstract: The inclusive A(gamma,pi+ pi-)X reaction is studied theoretically. A sizeable enhancement of the cross section is found, in comparison with the scaling of the deuteron cross section (sigma_deuteron * A/2). This enhancement is due to the modifications in the nuclear medium of the gamma N ----> pi pi N amplitude and the pion dispersion relation. The enhancement is found to be bigger than the one already observed in the (pi,pi pi) reaction in nuclei.

  4. Triaxial rotation in atomic nuclei

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-Shou; GAO Zao-Chun

    2009-01-01

    The Projected Shell Model has been developed to include the spontaneously broken axial symmetry so that the rapidly rotating triaxial nuclei can be described microscopically. The theory provides an useful tool to gain an insight into how a triaxial nucleus rotates, a fundamental question in nuclear structure. We shall address some current interests that are strongly associated with the triaxial rotation. A feasible method to explore the problem has been suggested.

  5. Strange neutral currents in nuclei

    CERN Document Server

    Ressell, M T; Aufderheide, M B; Bloom, S D; Resler, D A

    1995-01-01

    We examine the effects on the nuclear neutral current Gamow-Teller (GT) strength of a finite contribution from a polarized strange quark sea. We perform nuclear shell model calculations of the neutral current GT strength for a number of nuclei likely to be present during stellar core collapse. We compare the GT strength when a finite strange quark contribution is included to the strength without such a contribution. As an example, the process of neutral current nuclear de-excitation via \

  6. Weak pion production from nuclei

    Indian Academy of Sciences (India)

    S K Singh; M Sajjad Athar; Shakeb Ahmad

    2006-04-01

    The charged current pion production induced by neutrinos in 12C, 16O and 56Fe nuclei has been studied. The calculations have been done for the coherent as well as the incoherent processes assuming dominance and takes into account the effect of Pauli blocking, Fermi motion and the renormalization of in the nuclear medium. The pion absorption effects have also been taken into account.

  7. Geometric symmetries in light nuclei

    CERN Document Server

    Bijker, Roelof

    2016-01-01

    The algebraic cluster model is is applied to study cluster states in the nuclei 12C and 16O. The observed level sequences can be understood in terms of the underlying discrete symmetry that characterizes the geometrical configuration of the alpha-particles, i.e. an equilateral triangle for 12C, and a regular tetrahedron for 16O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of alpha-particles.

  8. Continuum spectroscopy of light nuclei

    Directory of Open Access Journals (Sweden)

    Charity R. J.

    2016-01-01

    Full Text Available Resonance spectroscopy of light nuclei is discussed with emphasis on the invariant-mass measurements performed with the HiRA detector. For three-body exit channels, we consider the exact conditions necessary such that the decay can be described as either sequential or prompt. However experimentally, we find some cases where the decay is intermediate between these two limits. Finally, two-proton decay from isobaric analog states is discussed.

  9. Tensor Effect on Bubble Nuclei

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-Zhao; GU Jian-Zhong; ZHANG Xi-Zhen; DONG Jian-Min

    2011-01-01

    In the framework of the Hartree-Fock-Bogoliubov (HFB) approach with Skyrme interactions SLy5+T, SLy5+Tw and several sets of TIJ parametrizations, I.e. The Skyrme interaction parametrizations including the tensor terms, the proton density distribution in 34Si and 46Ar nuclei is calculated with and without the tensor force. It is shown that the bubble effect in 34Si does not depend a great deal on the Skyrme parametrization and the proton density distribution in 34Si is hardly influenced by the tensor force. As to 46Ar, the SLy5+Tw parametrization favors the formation of the bubble structure due to the inversion between the 2s1/2 and 1d3/2 orbits (2s1/2-ld3/2 inversion). The inversion mechanism induced by the SLy5+Tw interaction is analyzed based on the proton single-particle spectra obtained from the SLy5 and SLy5+Tw interactions as well as the wave functions of the 2s1/2 and 1d3/2 states.%In the framework of the Hartree-Fock-Bogoliubov (HFB) approach with Skyrme interactions SLy5+ T,SLy5+ Tω and several sets of TIJ parametrizations,i.e.the Skyrme interaction pararmetrizations including the tensor terms,the proton density distribution in 34Si and 46 Ar nuclei is calculated with and without the tensor force.It is shown that the bubble effect in 34Si does not depend a great deal on the Skyrme parametrization and the proton density distribution in 34Si is hardly influenced by the tensor force.As to 46Ar,the SLy5+ Tω parametrization favors the formation of the bubble structure due to the inversion between the 2s1/2 and 1d3/2 orbits (2s1/2-1d3/2 inversion).The inversion mechanism induced by the SLy5+ Tω interaction is analyzed based on the proton single-particle spectra obtained from the SLy5 and SLy5+ Tω interactions as well as the wave functions of the 2s1/2 and 1d3/2 states.The study of exotic nuclear structures has been a hot topic in nuclear physics.[1-4] Exotic nuclei are unstabile,superheavy nuclei,halo nuclei and so forth,whose structures are quite different

  10. Double pion photoproduction in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Tejedor, J.A. [Departamento de Fisica Teorica, Valencia (Spain); Vicente-Vacas, M.J. [Departamento de Fisica Teorica, Valencia (Spain); Oset, E. [Departamento de Fisica Teorica, Valencia (Spain)

    1995-06-19

    The inclusive A({gamma},{pi}{sup +}{pi}{sup -})X reaction is studied theoretically. A sizable enhancement of the cross section is found, in comparison with the scaling of the deuteron cross section ({sigma}{sub d} A/2). This enhancement is due to the modifications in the nuclear medium of the {gamma}N {yields}{pi}{pi}N amplitude and the pion dispersion relation. The enhancement is found to be bigger than the one already observed in the ({pi},{pi}{pi}) reaction in nuclei. ((orig.)).

  11. Breakup Densities of Hot Nuclei.

    Science.gov (United States)

    Viola, Vic

    2006-04-01

    Breakup densities of hot ^197Au-like residues have been deduced from the systematic trends of Coulomb parameters required to fit intermediate-mass-fragment kinetic-energy spectra. The results indicate emission from nuclei near normal nuclear density below an excitation energy E*/A .3ex˜x 5 MeV. Temperatures derived from these data with a density-dependent Fermi-gas model yield a nuclear caloric curve that is generally consistent with those derived from isotope ratios.

  12. Microscopic properties of superdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Lennart B

    1999-04-01

    Many high spin rotational bands in superdeformed nuclei have been found in the A 140 - 150 region, but so far no linking transitions to known normal-deformed states have been found in these nuclei. Therefore, configuration and spin assignments have to be based on indirect spectroscopic information. Identical bands were first discovered in this region of superdeformed states. At present, some identical bands have also been found at normal deformation, but such bands are more common at superdeformation. Recently lifetime measurements have given relative quadrupole moments with high accuracy. Spectroscopic quantities are calculated using the configuration constrained cranked Nilsson-Strutinsky model with the modified oscillator potential. In a statistical study the occurrence of identical bands is tested. Comparing superdeformed and normal deformed nuclei, the higher possibility for identical bands at superdeformation is understood from calculated reduced widths of the E{sub {gamma}} and J{sup (2)} distributions. The importance of high-N orbitals for identical bands is also discussed. Additivity of electric quadrupole moment contributions in the superdeformed A - 150 region is discussed with the nucleus {sup 152}Dy as a `core`. In analytic harmonic oscillator calculations, the effective electric quadrupole moment q{sub eff}, i.e. the change in the total quadrupole moment caused by the added particle, is expressed as a simple function of the single-particle mass, quadrupole moment q{sub {nu}}. Also in realistic calculations, simple relations between q{sub eff} and q{sub {nu}} can be used to estimate the total electric quadrupole moment, e.g. for the nucleus {sup 142}Sm, by adding the effect of 10 holes, to the total electric quadrupole moment of {sup 152}Dy. Furthermore, tools are given for estimating the quadrupole moment for possible configurations in the superdeformed A - 150 region. For the superdeformed region around {sup 143}Eu, configuration and spin assignments

  13. Thermal instability of cell nuclei

    Science.gov (United States)

    Warmt, Enrico; Kießling, Tobias R.; Stange, Roland; Fritsch, Anatol W.; Zink, Mareike; Käs, Josef A.

    2014-07-01

    DNA is known to be a mechanically and thermally stable structure. In its double stranded form it is densely packed within the cell nucleus and is thermo-resistant up to 70\\:^\\circ {\\rm{C}}. In contrast, we found a sudden loss of cell nuclei integrity at relatively moderate temperatures ranging from 45 to 55\\:^\\circ {\\rm{C}}. In our study, suspended cells held in an optical double beam trap were heated under controlled conditions while monitoring the nuclear shape. At specific critical temperatures, an irreversible sudden shape transition of the nuclei was observed. These temperature induced transitions differ in abundance and intensity for various normal and cancerous epithelial breast cells, which clearly characterizes different cell types. Our results show that temperatures slightly higher than physiological conditions are able to induce instabilities of nuclear structures, eventually leading to cell death. This is a surprising finding since recent thermorheological cell studies have shown that cells have a lower viscosity and are thus more deformable upon temperature increase. Since the nucleus is tightly coupled to the outer cell shape via the cytoskeleton, the force propagation of nuclear reshaping to the cell membrane was investigated in combination with the application of cytoskeletal drugs.

  14. Selfconsistent calculations for hyperdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D. [Universite Louis Pasteur, Strasbourg (France)

    1996-12-31

    Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.

  15. Pairing correlations in exotic nuclei

    CERN Document Server

    Sagawa, H

    2012-01-01

    The BCS and HFB theories which can accommodate the pairing correlations in the ground states of atomic nuclei are presented. As an application of the pairing theories, we investigate the spatial extension of weakly bound Ne and C isotopes by taking into account the pairing correlation with the Hartree-Fock-Bogoliubov (HFB) method and a 3-body model, respectively. We show that the odd-even staggering in the reaction cross sections of $^{30,31,32}$Ne and $^{14,15,16}$C are successfully reproduced, and thus the staggering can be attributed to the unique role of pairing correlations in nuclei far from the stability line. A correlation between a one-neutron separation energy and the anti-halo effect is demonstrated for $s$- and p-waves using the HFB wave functions. We also propose effective density-dependent pairing interactions which reproduce both the neutron-neutron ($nn$) scattering length at zero density and the neutron pairing gap in uniform matter. Then, we apply these interactions to study pairing gaps in ...

  16. Excited nuclei in neutron star crusts

    CERN Document Server

    Takibayev, Nurgali; Nasirova, Diana

    2012-01-01

    The paper considers the chains of successive electron capture reactions by nuclei of the iron group which take place in the crystal structures of neutron star envelopes. It is shown that as a result of such reactions the daughter nuclei in excited states accumulate within certain layers of neutron star crusts. The phonon model of interactions is proposed between the excited nuclei in the crystalline structure, as well as formation of highly excited nuclear states which emit neutrons and higher energy photons.

  17. Review of metastable states in heavy nuclei

    Science.gov (United States)

    Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.

    2016-07-01

    The structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A≳ 150 . The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

  18. Formation of $\\phi$ mesic nuclei

    CERN Document Server

    Yamagata-Sekihara, J; Vacas, M J Vicente; Hirenzaki, S

    2010-01-01

    We study the structure and formation of the $\\phi$ mesic nuclei to investigate the in-medium modification of the $\\phi$-meson spectral function at finite density. We consider (${\\bar p},\\phi$), ($\\gamma,p$) and ($\\pi^-,n$) reactions to produce a $\\phi$-meson inside the nucleus and evaluate the effects of its medium modifications to the reaction cross sections. We also estimate the consequences of the uncertainties of the ${\\bar K}$ selfenergy in medium to the $\\phi$-nucleus interaction. We find that it may be possible to see a peak structure in the reaction spectra for the strong attractive potential cases. On the other hand, for strong absorptive interaction cases with relatively weak attractions, it is very difficult to observe clear peaks and we may need to know the spectrum shape in a wide energy region to deduce the properties of $\\phi$.

  19. Inclusive breakup of Borromean nuclei

    CERN Document Server

    Hussein, Mahir S; Frederico, Tobias

    2016-01-01

    We derive the inclusive breakup cross section of a three-fragment projectile nuclei, $a = b +x_1 + x_2$, in the spectator model. The resulting four-body cross section for observing $b$, is composed of the elastic breakup cross section which contains information about the correlation between the two participant fragments, and the inclusive non-elastic breakup cross section. This latter cross section is found to be a non-trivial four-body generalization of the Austern formula \\cite{Austern1987}, which is proportional to a matrix element of the form, $\\langle\\hat{\\rho}_{{x_1},{x_2}}\\left|\\left[W_{{x_1}} + W_{{x_2}} + W_{3B}\\right]\\right|\\hat{\\rho}_{{x_1}, {x_2}}\\rangle$. The new feature here is the three-body absorption, represented by the imaginary potential, $W_{3B}$. We analyze this type of absorption and supply ideas of how to calculate its contribution.

  20. CAVITATION NUCLEI: EXPERIMENTS AND THEORY

    Institute of Scientific and Technical Information of China (English)

    MфRCH K. A.

    2009-01-01

    The Swedish astrophysicist and Nobel Prize winner Hannes Alfvén said: Theories come and go ─ the experiment is here forever. Often a theory, which we set up to describe an observed physical phenomenon, suffers from the lack of knowledge of decisive parameters, and therefore at best the theory becomes insufficient. Contrary, the experiment always reveals nature itself, though at prevailing experimental conditions. With essential parameters being out of control and even maybe unidentified, apparently similar experiments may deviate way beyond our expectations. However, these discrepancies offer us a chance to reflect on the character of the unknown parameters. In this way non-concordant experimental results may hold the key to the development of better theories – and to new experiments for the testing of their validity. Cavitation and cavitation nuclei are phenomena of that character.

  1. Cavitation Nuclei: Experiments and Theory

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2009-01-01

    The Swedish astrophysicist and Nobel Prize winner Hannes Alfven said: Theories come and go - the experiment is here forever. Often a theory, which we set up to describe an observed physical phenomenon, suffers from the lack of knowledge of decisive parameters, and therefore at best the theory...... becomes insufficient. Contrary, the experiment always reveals nature itself, though at prevailing experimental conditions. With essential parameters being out of control and even maybe unidentified, apparently similar experiments may deviate way beyond our expectations. However, these discrepancies offer...... us a chance to reflect on the character of the unknown parameters. In this way non-concordant experimental results may hold the key to the development of better theories - and to new experiments for the testing of their validity. Cavitation and cavitation nuclei are phenomena of that character....

  2. Decay of heavy and superheavy nuclei

    Indian Academy of Sciences (India)

    K P Santhosh

    2014-04-01

    We present here, an overview and progress of the theoretical works on the isomeric state decay, decay fine structure of even–even, even–odd, odd–even and odd–odd nuclei, a study on the feasibility of observing decay chains from the isotopes of the superheavy nuclei = 115 in the range 271 ≤ ≤ 294 and the isotopes of = 117 in the range 270 ≤ ≤ 301, within the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The computed half-lives of the favoured and unfavoured decay of nuclei in the range 67 ≤ ≤ 91 from both the ground state and isomeric state, are in good agreement with the experimental data and the standard deviation of half-life is found to be 0.44. From the fine structure studies done on various ranges of nuclei, it is evident that, for nearly all the transitions, the theoretical values show good match with the experimental values. This reveals that CPPMDN is successful in explaining the fine structure of even–even, even–odd, odd–even and odd–odd nuclei. Our studies on the decay of the superheavy nuclei 271−294115 and 270−301117 predict 4 chains consistently from 284,285,286115 nuclei and 5 chains and 3 chains consistently from 288−291117 and 292117, respectively. We thus hope that these studies on 284−286115 and 288−292117 will be a guide to future experiments.

  3. Towards the exact calculation of medium nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gandolfi, Stefano [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carlson, Joseph Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lonardoni, Diego [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Xiaobao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-19

    The prediction of the structure of light and medium nuclei is crucial to test our knowledge of nuclear interactions. The calculation of the nuclei from two- and three-nucleon interactions obtained from rst principle is, however, one of the most challenging problems for many-body nuclear physics.

  4. Energy Radiation of the Active Galactic Nuclei

    Institute of Scientific and Technical Information of China (English)

    TANG Zhi-Ming; WANG Yong-Jiu

    2004-01-01

    In the Hellings-Nordtvedt theory, we obtain some expressions of energy radiation and mass defect effect for a kind of the active galactic nuclei, which is meaningful to calculating the energy radiation in the procession of forming this kind of celestial bodies. This calculation can give some interpretation for energy source of the jet from the active galactic nuclei.

  5. Variation of hadron masses in finite nuclei

    CERN Document Server

    Saitô, K; Tsushima, K; Saito, Koichi; Thomas, Anthony W.; Tsushima, Kazuo

    1997-01-01

    Using a self-consistent, Hartree description for both infinite nuclear matter and finite nuclei based on a relativistic quark model (the quark-meson coupling model), we investigate the variation of the masses of the non-strange vector mesons, the hyperons and the nucleon in infinite nuclear matter and in finite nuclei.

  6. Positron production in collision of heavy nuclei

    CERN Document Server

    Khriplovich, I B

    2016-01-01

    We consider the electromagnetic production of positron in collision of slow heavy nuclei, with the simultaneously produced electron captured by one of the nuclei. The cross-section of the discussed process exceeds essentially the cross-section of $e^+e^-$ production.

  7. Partial Dynamical Symmetry in Deformed Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    1996-07-01

    We discuss the notion of partial dynamical symmetry in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei. {copyright} {ital 1996 The American Physical Society.}

  8. Partial dynamical symmetry in deformed nuclei

    CERN Document Server

    Leviatan, A

    1996-01-01

    We discuss the notion of partial dynamical symmetry in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei.

  9. Mean-field models and exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M.; Buervenich, T.; Maruhn, J.A.; Greiner, W. [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); Rutz, K. [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany)]|[Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Reinhard, P.G. [Inst. fuer Theoretische Physik, Univ. Erlangen (Germany)

    1998-06-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)

  10. Isovector multiphonon excitations in near spherical nuclei

    CERN Document Server

    Smirnova, N A; Pietralla, N; Van Isacker, P; Isacker, Piet Van; Mizusaki, Takahiro; Pietralla, Norbert; Smirnova, Nadya A.

    2000-01-01

    The lowest isoscalar and isovector quadrupole and octupole excitations in near spherical nuclei are studied within the the proton-neutron version of the interacting boson model including quadrupole and octupole bosons (sdf-IBM-2). The main decay modes of these states in near spherical nuclei are discussed.

  11. Total Nuclear Reaction Cross Section Induced by Halo Nuclei and Stable Nuclei

    Institute of Scientific and Technical Information of China (English)

    GUO Wen-Jun; JIANG Huan-Qing; LIU Jian-Ye; ZUO Wei; REN Zhong-Zhou; LEE Xi-Guo

    2003-01-01

    We develop a method for calculation of the total reaction cross sections induced by the halo nuclei and stable. nuclei. This approach is based on the Glauber theory, which is valid for nuclear reactions at high energies. It is extended for nuclear reactions at low energies and intermediate energies by including both the quantum correction and Coulomb correction under the assumption of the effective nuclear density distribution. The calculated results of the total reaction cross section induced by stable nuclei agree well with 30 experimental data within 10 percent accuracy. The comparison between the numerical results and 20 experimental data for the total nuclear reaction cross section induced by the neutron halo nuclei and the proton halo nuclei indicates a satisfactory agreement after considering the halo structure of these nuclei, which implies quite different mean fields for the nuclear reactions induced by halo nuclei and stable nuclei. The halo nucleon distributions and the root-mean-square radii of these nuclei can be extracted from the above comparison based on the improved Glauber model, which indicates clearly the halo structures of these nuclei. Especially,it is clear to see that the medium correction of the nucleon-nucleon collision has little effect on the total reaction cross sections induced by the halo nuclei due to the very weak binding and the very extended density distribution.

  12. Total Nuclear Reaction Cross Section Induced by Halo Nuclei and Stable Nuclei

    Institute of Scientific and Technical Information of China (English)

    GUOWen-Jun; JIANGHuan-Qing; LIUJian-Ye; ZUOWei; RENZhong-Zhou; LEEXi-Guo

    2003-01-01

    We develop a method for calculation of the total reaction cross sections induced by the halo nuclei and stable nuclei. This approach is based on the Glauber theory, which is valid for nuclear reactions at high energies. It is extended for nuclear reactions at low energies and intermediate energies by including both the quantum correction and Coulomb correction under the assumption of the effective nuclear density distribution. The calculated results of the total reaction cross section induced by stable nuclei agree well with 30 experimental data within 10 percent accuracy.The comparison between the numerical results and 20 experimental data for the total nuclear reaction cross section induced by the neutron halo nuclei and the proton halo nuclei indicates a satisfactory agreement after considering the halo structure of these nuclei, which implies quite digerent mean fields for the nuclear reactions induced by halo nuclei and stable nuclei. The halo nucleon distributions and the root-mean-square radii of these nuclei can be extracted from the above comparison based on the improved Glauber model, which indicates clearly the halo structures of these nuclei. Especially,it is clear to see that the medium correction of the nucleon-nucleon collision has little effect on the total reaction cross sections, induced by the halo nuclei due to the very weak binding and the very extended density distribution.

  13. Fusion probability in heavy nuclei

    Science.gov (United States)

    Banerjee, Tathagata; Nath, S.; Pal, Santanu

    2015-03-01

    Background: Fusion between two massive nuclei is a very complex process and is characterized by three stages: (a) capture inside the potential barrier, (b) formation of an equilibrated compound nucleus (CN), and (c) statistical decay of the CN leading to a cold evaporation residue (ER) or fission. The second stage is the least understood of the three and is the most crucial in predicting yield of superheavy elements (SHE) formed in complete fusion reactions. Purpose: A systematic study of average fusion probability, PCN> , is undertaken to obtain a better understanding of its dependence on various reaction parameters. The study may also help to clearly demarcate onset of non-CN fission (NCNF), which causes fusion probability, PCN, to deviate from unity. Method: ER excitation functions for 52 reactions leading to CN in the mass region 170-220, which are available in the literature, have been compared with statistical model (SM) calculations. Capture cross sections have been obtained from a coupled-channels code. In the SM, shell corrections in both the level density and the fission barrier have been included. PCN> for these reactions has been extracted by comparing experimental and theoretical ER excitation functions in the energy range ˜5 %-35% above the potential barrier, where known effects of nuclear structure are insignificant. Results: PCN> has been shown to vary with entrance channel mass asymmetry, η (or charge product, ZpZt ), as well as with fissility of the CN, χCN. No parameter has been found to be adequate as a single scaling variable to determine PCN> . Approximate boundaries have been obtained from where PCN> starts deviating from unity. Conclusions: This study quite clearly reveals the limits of applicability of the SM in interpreting experimental observables from fusion reactions involving two massive nuclei. Deviation of PCN> from unity marks the beginning of the domain of dynamical models of fusion. Availability of precise ER cross sections

  14. Molecular outflows in starburst nuclei

    CERN Document Server

    Roy, Arpita; Sharma, Prateek; Shchekinov, Yuri

    2016-01-01

    Recent observations have detected molecular outflows in a few nearby starburst nuclei. We discuss the physical processes at work in such an environment in order to outline a scenario that can explain the observed parameters of the phenomenon, such as the molecular mass, speed and size of the outflows. We show that outflows triggered by OB associations, with $N_{OB}\\ge 10^5$ (corresponding to a star formation rate (SFR)$\\ge 1$ M$_{\\odot}$ yr$^{-1}$ in the nuclear region), in a stratified disk with mid-plane density $n_0\\sim 200\\hbox{--}1000$ cm$^{-3}$ and scale height $z_0\\ge 200 (n_0/10^2 \\, {\\rm cm}^{-3})^{-3/5}$ pc, can form molecules in a cool dense and expanding shell. The associated molecular mass is $\\ge 10^7$ M$_\\odot$ at a distance of a few hundred pc, with a speed of several tens of km s$^{-1}$. We show that a SFR surface density of $10 \\le \\Sigma_{SFR} \\le 50$ M$_\\odot$ yr$^{-1}$ kpc$^{-2}$ favours the production of molecular outflows, consistent with observed values.

  15. Coupled-cluster computations of atomic nuclei

    CERN Document Server

    Hagen, G; Hjorth-Jensen, M; Dean, D J

    2013-01-01

    In the past decade, coupled-cluster theory has seen a renaissance in nuclear physics, with computations of neutron-rich and medium-mass nuclei. The method is efficient for nuclei with product-state references, and it describes many aspects of weakly bound and unbound nuclei. This report reviews the technical and conceptual developments of this method in nuclear physics, and the results of coupled-cluster calculations for nucleonic matter, and for exotic isotopes of helium, oxygen, calcium, and some of their neighbors.

  16. Alpha decay chains from superheavy nuclei

    CERN Document Server

    Samanta, C

    2008-01-01

    Magic islands for extra-stable nuclei in the midst of the sea of fission-instability were predicted to be around Z=114, 124 or, 126 with N=184, and Z=120, with N=172. Whether these fission-survived superheavy nuclei with high Z and N would live long enough for detection or, undergo alpha-decay in a very short time remains an open question. Alpha-decay half lives of nuclei with 130 118 are found to have alpha-decay half lives of the order of microseconds or, less.

  17. Doubly Decoupled Structure in Odd-Odd 178-186Ir Nuclei

    Institute of Scientific and Technical Information of China (English)

    张玉虎; H. Kusakari; M. Sugawara; T. Komatsubara; T. Havakawa; M. Oshima; Y. Toh; J. Katakura; Y. Hatsukawa; M. Matsuda; N. Shinohara; T. Ishii

    2001-01-01

    High-spin states in 178'180Ir have been studied via the 152'154Sm(31P, 5nγ) reactions through excitation functions, x-γ and γ-γ-t coincidence measurements. A doubly decoupled band has been identified in each of the isotopes.The level spacings for such structures in odd-odd 178-186Ir have been inspected and thus a regular level staggering as a function of the neutron number is revealed. This particular phenomenon may be associated with bandmixing at lower excitation energies.

  18. On The Structure of A=3 Nuclei

    CERN Document Server

    Abbas, Syed Afsar

    2011-01-01

    The hole in the charge distribution of $^3{\\text He}$ is a major problem in A=3 nuclei. The canonical wavefucntion of A=3 nuclei which does well for electromagnetic properties of A=3 nuclei fails to produce the hole in A=3 nuclei. The hole is normally assumed to arise from explicit quark degree of freedom. Very often quark degrees of freedom are imposed to propose a different short range part of the wavefunction for A=3 to explain the hole in $^3{\\text He}$. So an hybrid model with nucleonic degree of freedom in outer part and quark degrees of freedom in the inner part of the nucleus have been invoked to understand the above problem. Here we present a different picture with a new wavefunction working at short range within nucleonic degrees of freedom itself. So the above problem is explained here based entirely on the nucleonic degree of freedom only.

  19. Few-Body Universality in Halo Nuclei

    Directory of Open Access Journals (Sweden)

    Hammer H.-W.

    2016-01-01

    Full Text Available Few-body systems with resonant S-wave interactions show universal properties which are independent of the interaction at short distances. These properties include a geometric spectrum of three- and higher-body bound states and universal correlations between few-body observables. They can be observed on a wide range of scales from hadrons and nuclei to ultracold atoms. In this contribution, we focus on few-body universality in halo nuclei which can be considered as effective few-body systems consisting of halo nucleons and a core. This concept provides a unifying framework for halo nuclei with calculable corrections. Recent progress in this field with an emphasis on the possibility of finding Efimov states in halo nuclei is discussed.

  20. Few-Body Universality in Halo Nuclei

    Science.gov (United States)

    Hammer, H.-W.

    2016-03-01

    Few-body systems with resonant S-wave interactions show universal properties which are independent of the interaction at short distances. These properties include a geometric spectrum of three- and higher-body bound states and universal correlations between few-body observables. They can be observed on a wide range of scales from hadrons and nuclei to ultracold atoms. In this contribution, we focus on few-body universality in halo nuclei which can be considered as effective few-body systems consisting of halo nucleons and a core. This concept provides a unifying framework for halo nuclei with calculable corrections. Recent progress in this field with an emphasis on the possibility of finding Efimov states in halo nuclei is discussed.

  1. Critical-Point Structure in Finite Nuclei

    CERN Document Server

    Leviatan, A

    2006-01-01

    Properties of quantum shape-phase transitions in finite nuclei are considered in the framework of the interacting boson model. Special emphasis is paid to the dynamics at the critical-point of a general first-order phase transition.

  2. GDR in Hot Nuclei: New Measurements

    Science.gov (United States)

    Camera, F.; Kmiecik, M.; Wieland, O.; Benzoni, G.; Bracco, A.; Brambilla, S.; Crespi, F.; Mason, P.; Moroni, A.; Million, B.; Leoni, S.; Maj, A.; Styczen, J.; Brekiesz, M.; Meczynski, W.; Zieblinski, M.; Gramegna, F.; Barlini, S.; Kravchuk, V. L.; Lanchais, A. L.; Mastinu, P. F.; Bruno, M.; D'Agostino, M.; Geraci, E.; Ordine, A.; Casini, G.; Chiari, M.

    2005-04-01

    The measured properties of the Giant Dipole Resonance in hot rotating nuclei are successfully described with the model of thermal fluctuations, even though there are still some open problems especially at very low (T 2.5MeV) temperatures and missing data in some mass regions. Recent experimental works have addressed more specific problems regarding the nuclear shape and its behaviour in very particular and delimited phase space regions. In this paper will be discussed new exclusive measurements of the GDR γ decay in heavy 216Rn nuclei (where the shape of nuclei surviving fission have been probed) and some preliminary data on the 132Ce nuclei at very high excitation energy.

  3. Quantum Monte Carlo Calculations of Light Nuclei

    CERN Document Server

    Pieper, Steven C

    2007-01-01

    During the last 15 years, there has been much progress in defining the nuclear Hamiltonian and applying quantum Monte Carlo methods to the calculation of light nuclei. I describe both aspects of this work and some recent results.

  4. Realistic level density calculation for heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Cerf, N. [Institut de Physique Nucleaire, Orsay (France); Pichon, B. [Observatoire de Paris, Meudon (France); Rayet, M.; Arnould, M. [Institut d`Astronomie et d`Astrophysique, Bruxelles (Belgium)

    1994-12-31

    A microscopic calculation of the level density is performed, based on a combinatorial evaluation using a realistic single-particle level scheme. This calculation relies on a fast Monte Carlo algorithm, allowing to consider heavy nuclei (i.e., large shell model spaces) which could not be treated previously in combinatorial approaches. An exhaustive comparison of the predicted neutron s-wave resonance spacings with experimental data for a wide range of nuclei is presented.

  5. Quark Degrees of Freedom in Finite Nuclei

    CERN Document Server

    Tsushima, K; Thomas, A W; Tsushima, Kazuo; Saito, Koichi; Thomas, Anthony W.

    1996-01-01

    Properties of finite nuclei are investigated based on relativistic Hartree equations which have been derived from a relativistic quark model of the structure of bound nucleons. Nucleons are assumed to interact through the (self-consistent) exchange of scalar ($\\sigma$) and vector ($\\omega$ and and the rms charge radius in $^{40}$Ca. Calculated properties of static, closed-shell nuclei, as well as symmetric nuclear matter are compared with experimental data and with the results of Quantum Hadrodynamics (QHD).

  6. E1 strength in N = 82 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, T.; Volz, S.; Babilon, M.; Mohr, P.; Vogt, K.; Zilges, A

    2003-05-19

    Recently the importance of small contributions of electric dipole strength near the particle threshold to the production rates of atomic nuclei has become evident. Prior estimates concentrated on the Giant Dipole Resonance (GDR) which dominates photoabsorption in all nuclei. Extrapolations to smaller excitation energies were assumed to be sufficiently reliable. However, new measurements reveal that collective E1 strength can be found in the threshold region.

  7. Masses of nuclei close to the dripline

    CERN Document Server

    Herfurth, F; Beck, D; Blaum, K; Bollen, G; Kellerbauer, A G; Kluge, H J; Lunney, M D; Rodríguez, D; Schwarz, S; Sikler, G; Weber, C

    2003-01-01

    Mass measurements of radioactive nuclides are one of the cornerstones of our understanding of the nucleus. The Penning trap spectrometer ISOLTRAP performs direct mass measurements far away from the valley of stability, as well as high-precision measurements of key nuclei to anchor long decay chains. Both schemes provide valuable information on the dripline itself and on nuclei in its close vicinity. (10 refs) .

  8. Statistical Properties of Quantum Spectra in Nuclei

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Some aspects of quantum chaos in a finite system have been studied based on the analysis of statistical behaviors of quantum spectrum in nuclei. The experiment data show the transition from order to chaos with increasing excitation energy in spherical nuclei. The dependence of the order to chaos transition on nuclear deformation and nuclear rotating is described. The influence of pairing effect on the order to chaos transition is also discussed. Some important experiment phenomena in nuclear

  9. Shell structure of nuclei far from stability

    CERN Document Server

    Grawe, H

    2001-01-01

    The experimental status of shell structure studies in medium-heavy nuclei far off the line of beta-stability is reviewed. Experimental techniques, signatures for shell closure and expectations for future investigations are discussed for the key regions around sup 4 sup 8 sup , sup 5 sup 6 Ni, sup 1 sup 0 sup 0 Sn for proton rich nuclei and the neutron-rich N=20 isotones, Ca, Ni and Sn isotopes.

  10. Synthesis of superheavy nuclei: Obstacles and opportunities

    Directory of Open Access Journals (Sweden)

    Zagrebaev V.I.

    2015-01-01

    Full Text Available There are only 3 methods for the production of heavy and superheavy (SH nuclei, namely, fusion reactions, a sequence of neutron capture and beta(- decay and multinucleon transfer reactions. Low values of the fusion cross sections and very short half-lives of nuclei with Z<120 put obstacles in synthesis of new elements. At the same time, an important area of SH isotopes located between those produced in the cold and hot fusion reactions remains unstudied yet. This gap could be filled in fusion reactions of 48Ca with available lighter isotopes of Pu, Am, and Cm. New neutron-enriched isotopes of SH elements may be produced with the use of a 48Ca beam if a 250Cm target would be prepared. In this case we get a real chance to reach the island of stability owing to a possible beta(+ decay of 291114 and 287112 nuclei formed in this reaction with a cross section of about 0.8 pb. A macroscopic amount of the long-living SH nuclei located at the island of stability may be produced by using the pulsed nuclear reactors of the next generation only if the neutron fluence per pulse will be increased by about three orders of magnitude. Multinucleon transfer processes look quite promising for the production and study of neutron-rich heavy nuclei located in upper part of the nuclear map not reachable by other reaction mechanisms. Reactions with actinide beams and targets are of special interest for synthesis of new neutron-enriched transfermium nuclei and not-yet-known nuclei with closed neutron shell N=126 having the largest impact on the astrophysical r-process. The estimated cross sections for the production of these nuclei allows one to plan such experiments at currently available accelerators.

  11. Reflections on cavitation nuclei in water

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2007-01-01

    The origin of cavitation bubbles, cavitation nuclei, has been a subject of debate since the early years of cavitation research. This paper presents an analysis of a representative selection of experimental investigations of cavitation inception and the tensile strength of water. At atmospheric...... on the surface of particles and bounding walls. Such nuclei can be related to the full range of tensile strengths measured, when differences of experimental conditions are taken into consideration. The absence or presence of contamination on surfaces, as well as the structure of the surfaces, are central...... to explaining why the tensile strength of water varies so dramatically between the experiments reported. A model for calculation of the critical pressure of skin-covered free gas bubbles as well as that of interfacial gaseous nuclei covered by a skin is presented. This model is able to bridge the apparently...

  12. Alpha-cluster model of atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sosin, Zbigniew; Kallunkathariyil, Jinesh [Jagiellonian University, M. Smoluchowski Institute of Physics, Krakow (Poland); Blocki, Jan [NCBJ, Theoretical Physics Division (BP2), Swierk (Poland); Lukasik, Jerzy; Pawlowski, Piotr [IFJ PAN, Krakow (Poland)

    2016-05-15

    The description of a nuclear system in its ground state and at low excitations based on the equation of state (EoS) around normal density is presented. In the expansion of the EoS around the saturation point, additional spin polarization terms are taken into account. These terms, together with the standard symmetry term, are responsible for the appearance of the α-like clusters in the ground-state configurations of the N=Z even-even nuclei. At the nuclear surface these clusters can be identified as alpha particles. A correction for the surface effects is introduced for atomic nuclei. Taking into account an additional interaction between clusters the binding energies and sizes of the considered nuclei are very accurately described. The limits of the EoS parameters are established from the properties of the α, {sup 3}He and t particles. (orig.)

  13. Nucleon localization in light and heavy nuclei

    CERN Document Server

    Zhang, C L; Nazarewicz, W

    2016-01-01

    An electron localization measure was originally introduced to characterize chemical bond structures in molecules. Recently, a nucleon localization based on Hartree-Fock densities has been introduced to investigate $\\alpha$-cluster structures in light nuclei. Compared to the local nucleonic densities, the nucleon localization function has been shown to be an excellent indicator of shell effects and cluster correlations. Using the spatial nucleon localization measure, we investigate the cluster structures in deformed light nuclei and study the emergence of fragments in fissioning heavy nuclei. To illustrate basic concepts of nucleon localization, we employ the deformed harmonic oscillator model. Realistic calculations are carried out using self-consistent nuclear density functional theory with quantified energy density functionals optimized for fission studies. We study particle densities and spatial nucleon localization distributions for deformed cluster configurations of $^{8}$Be and $^{20}$Ne, and also along...

  14. Shape phase mixing in critical point nuclei

    CERN Document Server

    Budaca, R

    2016-01-01

    Spectral properties of nuclei near the critical point of the quantum phase transition between spherical and axially symmetric shapes are studied in a hybrid collective model which combines the $\\gamma$-stable and $\\gamma$-rigid collective conditions through a rigidity parameter. The model in the lower and upper limits of the rigidity parameter recovers the X(5) and X(3) solutions respectively, while in the equally mixed case it corresponds to the X(4) critical point symmetry. Numerical applications of the model on nuclei from regions known for critical behavior reveal a sizable shape phase mixing and its evolution with neutron or proton numbers. The model also enables a better description of energy spectra and electromagnetic transitions for these nuclei.

  15. Computer Model Of Fragmentation Of Atomic Nuclei

    Science.gov (United States)

    Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.

    1995-01-01

    High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.

  16. Light nuclei from chiral EFT interactions

    Science.gov (United States)

    Navrátil, P.; Gueorguiev, V. G.; Vary, J. P.; Ormand, W. E.; Nogga, A.; Quaglioni, S.

    2008-12-01

    Recent developments in nuclear theory allow us to make a connection between quantum chromodynamics (QCD) and low-energy nuclear physics. First, chiral effective field theory (χEFT) provides a natural hierarchy to define two-nucleon ( NN), three-nucleon ( NNN), and even four-nucleon interactions. Second, ab-initio methods have been developed capable to test these interactions for light nuclei. In this contribution, we discuss ab-initio no-core shell-model (NCSM) calculations for s-shell and p-shell nuclei with NN and NNN interactions derived within χEFT.

  17. Statistical properties of quantum spectra in nuclei

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Some aspects of quantum chaos in a finite system have been studied based on the analysis of statistical behavior of quantum spectra in nuclei.The experiment data show the transition from order to chaos with increasing excitation energy in spherical nuclei.The dependence of the order to chaos transition on nuclear deformation and nuclear rotating is described.The influence of pairing effect on the order to chaos transition is also discussed.Some important experiment phenomena in nuclear physics have been understood from the point of view of the interplay between order and chaos.

  18. Doubly magic properties in superheavy nuclei

    Institute of Scientific and Technical Information of China (English)

    HUANG Ya-Wei; ZHU Jian-Yu

    2009-01-01

    A systematic study of global properties of superheavy nuclei in the framework of the Liquid Drop Model and the Strutinsky shell correction method is performed. The evolution equilibrium deformations, TRS graphs and α-decay energies are calculated using the TRS model. The analysis covers a wide range of even-even superheavy nuclei from Z = 102 to 122. Magic numbers and their observable influence occurring in this region have been investigated. Shell closures appear at proton number Z = 114 and at neutron number N = 184.

  19. Monte Carlo approaches to light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.

    1990-01-01

    Significant progress has been made recently in the application of Monte Carlo methods to the study of light nuclei. We review new Green's function Monte Carlo results for the alpha particle, Variational Monte Carlo studies of {sup 16}O, and methods for low-energy scattering and transitions. Through these calculations, a coherent picture of the structure and electromagnetic properties of light nuclei has arisen. In particular, we examine the effect of the three-nucleon interaction and the importance of exchange currents in a variety of experimentally measured properties, including form factors and capture cross sections. 29 refs., 7 figs.

  20. Observation of nuclei reassembled from demembranated Xenopus sperm nuclei and analysis of their lamina components

    Institute of Scientific and Technical Information of China (English)

    QUJIAN; CHUANMAOZHANG; 等

    1994-01-01

    A cell-free preparation obtained from extracts of activated Xenopus laevis eggs induced chromatin decondensation and nuclear formation from demembranated Xenopus sperm nuclei.Electron microscopy revealed that the reassembled nucleus had a double-layered nuclear memblane,nuclear pore complexes,and decondensed chromatin etc.Indirect immunofluorescence analysis demonstrated the presence of lamina in newly assembled nuclei.Western-blotting results showed that lamin LII was present in egg extracts and in lamina of the reassembled nuclei which were previously reported to contain only egg derived lamin LIII.

  1. Building Atomic Nuclei with the Dirac Equation

    OpenAIRE

    Serot, Brian D.

    2003-01-01

    The relevance of the Dirac equation for computations of nuclear structure is motivated and discussed. Quantitatively successful results for medium- and heavy-mass nuclei are described, and modern ideas of effective field theory and density functional theory are used to justify them.

  2. Comment on Breakup Densities of Hot Nuclei

    CERN Document Server

    Viola, V E; Natowitz, J B; Yennello, S J

    2006-01-01

    In [1,2]the observed decrease in spectral peak energies of IMFs emitted from hot nuclei was interpreted in terms of a breakup density that decreased with increasing energy. Subsequently, Raduta et al. [3] performed MMM simulations that showed decreasing spectral peaks could be obtained at constant density. In this letter we examine this apparent inconsistency.

  3. Spectroscopic Studies of Exotic Nuclei at ISOLDE

    CERN Multimedia

    2002-01-01

    Experiment IS50 is designed to: a) Investigate the full range of the @b strength function of heavy (A~$>$~48)~K nuclei b)~Study the decay of isomeric states in n-deficient bromine nuclei (A~=~72 and 70). The heavy K isotopes appeared to have complex decay schemes, including feeding by the @b-decay of levels having open neutron channels (Beta decay energy Q(@b) exceeds neutron binding energy S^n); in addition, a large fraction of the delayed transitions populate excited levels in the daughter nuclei. The allowed @b-decay selects states in the daughter nucleus with wave functions having a large overlap with the initial state. Hence, the @b strength functions, deduced from these deca reveal simple structures correlated to the particle-hole excitation energies in the Ca nuclei. These results are valuable for the application of the shell-model calculations far from stability. The delayed neutron spectra are measured with a large area curved scintillator in coincidence either with high resolution Ge(Li) detectors, ...

  4. Test of Pseudospin Symmetry in Deformed Nuclei

    CERN Document Server

    Ginocchio, J N; Meng, J; Zhou, S G; Zhou, Shan-Gui

    2004-01-01

    Pseudospin symmetry is a relativistic symmetry of the Dirac Hamiltonian with scalar and vector mean fields equal and opposite in sign. This symmetry imposes constraints on the Dirac eigenfunctions. We examine extensively the Dirac eigenfunctions of realistic relativistic mean field calculations of deformed nuclei to determine if these eigenfunctions satisfy these pseudospin symmetry constraints.

  5. Magnetic Dipole Sum Rules for Odd Nuclei

    CERN Document Server

    Ginocchio, J N

    1997-01-01

    Sum rules for the total- and scissors-mode M1 strength in odd-A nuclei are derived within the single-j interacting boson-fermion model. We discuss the physical content and geometric interpretation of these sum rules and apply them to ^{167}Er and ^{161}Dy. We find consistency with the former measurements but not with the latter.

  6. Physics of the continuum of borromean nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vaagen, J.S.; Rogde, T. [Dept. of Physics, Univ. of Bergen (Norway); Danilin, B.V. [RRC The Kurchatov Inst., Kurchatov, Moscow (Russian Federation); Ershov, S.N. [JINR, Dubna, Moscow (Russian Federation); Thompson, I.J. [Dept. of Physics, Univ. of Surrey, Guildford (United Kingdom); Zhukov, M.V. [Chalmers Univ. of Technology and Goeteborg Univ., Goeteborg (Sweden); RNBT Collaboration

    1998-06-01

    The continuum states of two-neutron halo nuclei are calculated in the method of hyperspherical harmonics. Using DWIA theory appropriate for dilute halo matter we have probed the structure of the low-lying {sup 6}He continuum via calculations of charge-exchange and inelastic scattering. (orig.)

  7. Heavy Mesons in Nuclear Matter and Nuclei

    CERN Document Server

    Tolos, Laura; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; Romanets, Olena; Salcedo, Lorenzo Luis; Torres-Rincon, Juan M

    2014-01-01

    Heavy mesons in nuclear matter and nuclei are analyzed within different frameworks, paying a special attention to unitarized coupled-channel approaches. Possible experimental signatures of the properties of these mesons in matter are addressed, in particular in connection with the future FAIR facility at GSI.

  8. Spectroscopic factors for two-proton radioactive nuclei

    Indian Academy of Sciences (India)

    Chinmay Basu

    2004-11-01

    Spectroscopic factors for two-proton emitting nuclei are discussed in the framework of the BCS (Bardeen–Cooper–Schriefer) model. Calculations carried out for the two-proton unstable 45Fe, 48Ni and 54Zn nuclei are presented.

  9. Incidence of centrally positioned nuclei in mouse masticatory muscle fibers

    DEFF Research Database (Denmark)

    Vilmann, A; Vilmann, H; Kirkeby, S

    1989-01-01

    Cross-sections of normal digastric, temporalis and masseter muscles from 7- and 30-week-old mice were studied for centrally positioned nuclei. Such nuclei were inhomogeneously distributed throughout each muscle and varied markedly between specimens. The incidence of centrally positioned nuclei......, the frequency in a given muscle was apparently age-independent. A connection between fiber type and centrally positioned nuclei is suggested....

  10. Flux of cosmic ray heavy nuclei enders behind low shielding

    CERN Document Server

    Allkofer, O C

    1975-01-01

    The authors investigate the number of stopping nuclei per cm/sup 3/ tissue hour as a function of absorbing material thickness. Fragmentation probabilities of heavy nuclei were deduced from the measured attenuation of the heavy nuclei flux in the atmosphere. Comparison is made with the results of the Biostack I experiment on board Apollo 16. (11 refs).

  11. Isospin Mixing In N $\\approx$ Z Nuclei

    CERN Multimedia

    Srnka, D; Versyck, S; Zakoucky, D

    2002-01-01

    Isospin mixing in N $\\approx$ Z nuclei region of the nuclear chart is an important phenomenon in nuclear physics which has recently gained theoretical and experimental interest. It also forms an important nuclear physics correction in the precise determination of the $ft$-values of superallowed 0$^+ \\rightarrow 0^+ \\beta$- transitions. The latter are used in precision tests of the weak interaction from nuclear $\\beta$- decay. We propose to experimentally measure isospin mixing into nuclear ground states in the N $\\approx$ Z region by determining the isospin forbidden Fermi-component in the Gamow-Teller dominated $J^{\\pi} \\rightarrow J^{\\pi} \\beta$- transitions through the observation of anisotropic positron emission from oriented nuclei. First measurements were carried out with $^{71}$As and are being analyzed now.

  12. Simulation of nuclei morphologies for binary alloy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We study the critical nuclei morphologies of a binary alloy by the string method. The dynamic equation of the string, connecting the metastable phase (liquid) and stable phase (solid), is governed by Helmholtz free energy for the binary alloy system at a given temperature. The stationary string through the critical nucleus (saddle point) is obtained if the relaxation time of the string is su?ciently large. The critical nucleus radius and energy barrier to nucleation of a pure alloy with isotropic interface energy in two and three dimensions are calculated, which are consistent with the classical nucleation theory. The critical nuclei morphologies are sensitive to the anisotropy strength of interface energy and interface thickness of alloy in two and three dimensions. The critical nucleus and energy barrier to nucleation become smaller if the anisotropy strength of the interface energy is increased, which means that it is much easier to form a stable nucleus if the anisotropy of the interface energy is considered.

  13. Gamma spectroscopy of neutron rich actinide nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Birkenbach, Benedikt; Geibel, Kerstin; Vogt, Andreas; Hess, Herbert; Reiter, Peter; Steinbach, Tim; Schneiders, David [Koeln Univ. (Germany). IKP; Collaboration: AGATA-Collaboration

    2013-07-01

    Excited states in neutron-rich actinide Th and U nuclei were investigated after multi nucleon transfer reactions employing the AGATA demonstrator and PRISMA setup at LNL (INFN, Italy). A primary {sup 136}Xe beam of 1 GeV hitting a {sup 238}U target was used to produce the nuclei of interest. Beam-like reaction products of Xe- and Ba isotopes after neutron transfer were selected by the PRISMA spectrometer. The recoil like particles were registered by a MCP detector inside the scattering chamber. Coincident γ-rays from excited states in beam and target like particles were measured with the position sensitive AGATA HPGe detectors. Improved Doppler correction and quality of the γ-spectra is based on the novel γ-ray tracking technique which was successfully exploited. First results on the collective properties of various Th and U isotopes are discussed.

  14. Clustering in stable and exotic nuclei

    CERN Document Server

    Beck, C

    2016-01-01

    Since the pioneering discovery of molecular resonances in the 12C+12C reaction more than half a century ago a great deal of research work has been undertaken in alpha clustering. Our knowledge on physics of nuclear molecules has increased considerably and nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. The occurrence of "exotic" shapes and Bose-Einstein alpha condensates in light N=Z alpha-conjugate nuclei is investigated. Various approaches of the superdeformed and hyperdeformed bands associated with quasimolecular resonant structures are presented. Evolution of clustering from stability to the drip-lines is examined: clustering aspects are, in particular, discussed for light exotic nuclei with large neutron excess such as neutron-rich Oxygen isotopes with their complete spectroscopy.

  15. DAPI fluorescence in nuclei isolated from tumors.

    Science.gov (United States)

    Krishan, Awtar; Dandekar, Payal D

    2005-08-01

    In DNA histograms of some human solid tumors stained with nuclear isolation medium--4,6-diamidino-2-phenylindole dihydrochloride (NIM-DAPI), the coefficient of variation (CV) of the G0/G1 peak was broad, and in nuclear volume vs DNA scattergrams, a prominent slope was seen. To determine the cause for this, nuclei from frozen breast tumors were stained with NIM-DAPI and analyzed after dilution or resuspension in PBS. In two-color (blue vs red) analysis, most of the slope and broad CV was due to red fluorescence of nuclei stained with NIM-DAPI, which was reduced on dilution or resuspension in PBS, resulting in elimination of the slope and tightening of the CV.

  16. Population of rotational bands in superheavy nuclei

    Directory of Open Access Journals (Sweden)

    Antonenko N.V.

    2012-02-01

    Full Text Available Using the statistical approach, we study the population of ground-state rotational bands of superheavy nuclei produced in the fusion-evaporation reactions 208Pb(48Ca, 2n254No, 206Pb(48Ca, 2n252No, and 204Hg(48Ca, 2n250Fm. We calculate relative intensities of E2-transitions between the rotational states and entry spin distributions of the residual nuclei, evaporation residue cross sections, and excitation functions for these reactions. Fermi-gas model is used for the calculation of level density, and damping of shell effects both with excitation energy and angular momentum is taking into account. The results are in a good agreement with the experiment data.

  17. Shell model for warm rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, M.; Yoshida, K. [Kyoto Univ. (Japan); Dossing, T. [Univ. of Copenhagen (Denmark)] [and others

    1996-12-31

    Utilizing a shell model which combines the cranked Nilsson mean-field and the residual surface and volume delta two-body forces, the authors discuss the onset of rotational damping in normal- and super-deformed nuclei. Calculation for a typical normal deformed nucleus {sup 168}Yb indicates that the rotational damping sets in at around 0.8 MeV above the yrast line, and about 30 rotational bands of various length exists at a given rotational frequency, in overall agreement with experimental findings. It is predicted that the onset of rotational damping changes significantly in different superdeformed nuclei due to the variety of the shell gaps and single-particle orbits associated with the superdeformed mean-field.

  18. Collective properties of drip-line nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hamamoto, I. [Univ. of Lund (Sweden); Sagawa, H. [Univ. of Aizu, Fukushima (Japan)

    1996-12-31

    Performing the spherical Hartree-Fock (HF) calculations with Skyrme interactions and, then, using RPA solved in the coordinate space with the Green`s function method, the authors have studied the effect of the unique shell structure as well as the very low particle threshold on collective modes in drip line nuclei. In this method a proper strength function in the continuum is obtained, though the spreading width of collective modes is not included. They have examined also one-particle resonant states in the obtained HF potential. Unperturbed particle-hole (p-h) response functions are carefully studied, which contain all basic information on the exotic behaviour of the RPA strength function in drip line nuclei.

  19. Antiproton Induced Fission and Fragmentation of Nuclei

    CERN Multimedia

    2002-01-01

    The annihilation of slow antiprotons with nuclei results in a large highly localized energy deposition primarily on the nuclear surface. \\\\ \\\\ The study of antiproton induced fission and fragmentation processes is expected to yield new information on special nuclear matter states, unexplored fission modes, multifragmentation of nuclei, and intranuclear cascades.\\\\ \\\\ In order to investigate the antiproton-nucleus interaction and the processes following the antiproton annihilation at the nucleus, we propose the following experiments: \\item A)~Measurement of several fragments from fission and from multifragmentation in coincidence with particle spectra, especially neutrons and kaons. \\item B)~Precise spectra of $\\pi$, K, n, p, d and t with time-of-flight techniques. \\item C)~Installation of the Berlin 4$\\pi$ neutron detector with a 4$\\pi$ Si detector placed inside for fragments and charged particles. This yields neutron multiplicity distributions and consequently distributions of thermal excitation energies and...

  20. Clustering effects induced by light nuclei

    CERN Document Server

    Beck, C

    2013-01-01

    Since the pioneering discovery, half a century ago, of 12C+12C molecular resonances, a great deal of research work has been undertaken in theSince the pioneering discovery, half a century ago, of 12C+12C molecular resonances, a great deal of research work has been undertaken in the alpha-clustering study. Our knowledge in the physics of nuclear molecules has increased considerably and nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. In this work, the occurence of "exotic" shapes in light N=Z alpha-like nuclei is investigated. Various approaches of superdeformed and hyperdeformed bands associated with quasimolecular resonant structures are presented. Clustering aspects are also discussed for light nuclei with neutron excess through very recent results on neutron-rich Oxygen isotopes.

  1. Fayans functional for deformed nuclei. Uranium region

    CERN Document Server

    Tolokonnikov, S V; Kortelainen, M; Lutostansky, Yu S; Saperstein, E E

    2015-01-01

    Fayans energy density functional (EDF) FaNDF^0 has been applied to the nuclei around uranium region. Ground state characteristics of the Th, U and Pu isotopic chains, up to the two-neutron drip line, are found and compared with predictions from several Skyrme EDFs. The two-neutron drip line is found for FaNDF^0, SLy4 and SkM^* EDFs for a set of elements with even proton number, from Pb up to Fm.

  2. Understanding active galactic nuclei: peeling the onion.

    Science.gov (United States)

    Krolik, J. H.

    A brief review is presented of selected current problems in understanding active galactic nuclei, with special emphasis on the contributions that X-ray observations can make. Questions having to do with: how the character of the host galaxy influences nuclear activity; emission line regions; the border between the nucleus and the stellar portion of the active galaxy; radiation of the nonthermal continuum; and the possible existence of an accretion disk are touched upon.

  3. SEARCH FOR NUCLEI CONTAINING TWO STRANGE QUARKS.

    Energy Technology Data Exchange (ETDEWEB)

    MAY,M.

    1997-10-13

    This paper discusses a search for nuclei containing two strange quarks performed at Brookhaven National Laboratory. The goals and approach of experiment E885 are reviewed. Preliminary missing mass spectra for a subset of the data are presented, showing sensitivity for {Xi} hypernuclei and H particle searches. Existence of an angular correlation between pions in the sequential decay of {Lambda}{Lambda} hypernuclei is suggested on theoretical grounds.

  4. Search for nuclei containing two strange quarks

    Energy Technology Data Exchange (ETDEWEB)

    May, M.

    1997-12-31

    This paper discusses a search for nuclei containing two strange quarks performed at Brookhaven National Laboratory. The goals and approach of experiment E885 are reviewed. Preliminary missing mass spectra for a subset of the data are presented, showing sensitivity for {Xi} hypernuclei and H particle searches. Existence of an angular correlation between pions in the sequential decay of {Lambda}{Lambda} hypernuclei is suggested on theoretical grounds.

  5. Green's function calculations of light nuclei

    Science.gov (United States)

    Sun, ZhongHao; Wu, Qiang; Xu, FuRong

    2016-09-01

    The influence of short-range correlations in nuclei was investigated with realistic nuclear force. The nucleon-nucleon interaction was renormalized with V lowk technique and applied to the Green's function calculations. The Dyson equation was reformulated with algebraic diagrammatic constructions. We also analyzed the binding energy of 4He, calculated with chiral potential and CD-Bonn potential. The properties of Green's function with realistic nuclear forces are also discussed.

  6. Light nuclei production in heavy ion collisions

    CERN Document Server

    Khan, K H; Wazir, Z; Khan, E U; Haseeb, Mahnaz Q; Ajaz, M

    2009-01-01

    Light nuclei production as a result of nuclear coalescence effect can give some signals on final state of Quark Gluon Plasma formation. We are studying the behavior of nuclear modification factor as a function of different variables using the simulated data coming from the FASTMC generator. This data is necessary to extract information on coalescence mechanism from experimental data on high energy nuclear-nuclear interactions.

  7. Electromagnetic interactions with nuclei and nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, S.T.; Sealock, R.M.

    1990-11-10

    This report discusses the following topics: general LEGS work; photodisintegration of the deuteron; progress towards other experiments; LEGS instrumentation; major LEGS software projects; NaI detector system; nucleon detector system; waveshifting fibers; EGN prototype detector for CEBAF; photon beam facility at CEBAF; delta electroproduction in nuclei; quasielastic scattering and excitation of the Delta by {sup 4}He(e,e{prime}); and quasielastic scattering at high Q{sup 2}.

  8. Spin-isospin resonances in nuclei

    NARCIS (Netherlands)

    Fujiwara, M; Akimune, H; Daito, [No Value; Ejiri, H; Fujita, Y; Greenfield, MB; Harakeh, MN; Inomata, T; Janecke, J; Nakayama, S; Takemura, N; Tamii, A; Tanaka, M; Toyokawa, H; Yosoi, M

    1996-01-01

    Spin-isospin excitations in nuclei have been investigated via the (He-3,t) reaction at 450 MeV. The volume integrals of the effective interactions J(sigma tau) and J(tau) for the (He-3,t) reaction at 450 MeV have been empirically determined to be 172+/-17 MeV-fm(3) and 53+/-5 MeV-fm(3), respectively

  9. Chromatin associations in Arabidopsis interphase nuclei

    Directory of Open Access Journals (Sweden)

    Veit eSchubert

    2014-11-01

    Full Text Available The arrangement of chromatin within interphase nuclei seems to be caused by topological constraints and related to gene expression depending on tissue and developmental stage. In yeast and animals it was found that homologous and heterologous chromatin association are required to realize faithful expression and DNA repair. To test whether such associations are present in plants we analysed Arabidopsis thaliana interphase nuclei by FISH using probes from different chromosomes. We found that chromatin fibre movement and variable associations, although in general relatively seldom, may occur between euchromatin segments along chromosomes, sometimes even over large distances. The combination of euchromatin segments bearing high or low co-expressing genes did not reveal different association frequencies probably due to adjacent genes of deviating expression patterns.Based on previous data and on FISH analyses presented here, we conclude that the global interphase chromatin organization in A. thaliana is relatively stable, due to the location of its ten centromeres at the nuclear periphery and of the telomeres mainly at the centrally localized nucleolus. Nevertheless, chromatin movement enables a flexible spatial genome arrangement in plant nuclei.

  10. Wave function calculations in finite nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, S.C.

    1993-07-01

    One of the central problems in nuclear physics is the description of nuclei as systems of nucleons interacting via realistic potentials. There are two main aspects of this problem: (1) specification of the Hamiltonian, and (2) calculation of the ground (or excited) states of nuclei with the given interaction. Realistic interactions must contain both two- and three-nucleon potentials and these potentials have a complicated non-central operator structure consisting, for example, of spin, isospin and tensor dependencies. This structure results in formidable many-body problems in the computation of the ground states of nuclei. At Argonne and Urbana, the authors have been following a program of developing realistic NN and NNN interactions and the methods necessary to compute nuclear properties from variational wave functions suitable for these interactions. The wave functions are used to compute energies, density distributions, charge form factors, structure functions, momentum distributions, etc. Most recently they have set up a collaboration with S. Boffi and M. Raduci (University of Pavia) to compute (e,e{prime}p) reactions.

  11. Wave function calculations in finite nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, S.C.

    1993-01-01

    One of the central problems in nuclear physics is the description of nuclei as systems of nucleons interacting via realistic potentials. There are two main aspects of this problem: (1) specification of the Hamiltonian, and (2) calculation of the ground (or excited) states of nuclei with the given interaction. Realistic interactions must contain both two- and three-nucleon potentials and these potentials have a complicated non-central operator structure consisting, for example, of spin, isospin and tensor dependencies. This structure results in formidable many-body problems in the computation of the ground states of nuclei. At Argonne and Urbana, the authors have been following a program of developing realistic NN and NNN interactions and the methods necessary to compute nuclear properties from variational wave functions suitable for these interactions. The wave functions are used to compute energies, density distributions, charge form factors, structure functions, momentum distributions, etc. Most recently they have set up a collaboration with S. Boffi and M. Raduci (University of Pavia) to compute (e,e[prime]p) reactions.

  12. Fusion excitation functions involving transitional nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K.E.; Jiang, C.L.; Esbensen, H. [and others

    1995-08-01

    Measurements of fusion excitation functions involving transitional nuclei {sup 78}Kr and {sup 100}Mo showed a different behavior at low energies, if compared to measurements with {sup 86}Kr and {sup 92}Mo. This points to a possible influence of nuclear structure on the fusion process. One way to characterize the structure of vibrational nuclei is via their restoring force parameters C{sub 2} which can be calculated from the energy of the lowest 2{sup +} state and the corresponding B(E2) value. A survey of the even-even nuclei between A = 28-150 shows strong variations in C{sub 2} values spanning two orders of magnitude. The lowest values for C{sub 2} are observed for {sup 78}Kr, {sup 104}Ru and {sup 124}Xe followed by {sup 74,76}Ge, {sup 74,76}Se, {sup 100}Mo and {sup 110}Pd. In order to learn more about the influence of {open_quotes}softness{close_quotes} on the sub-barrier fusion enhancement, we measured cross sections for evaporation residue production for the systems {sup 78}Kr + {sup 104}Ru and {sup 78}Kr + {sup 76}Ge with the gas-filled magnet technique. For both systems, fusion excitation functions involving the closed neutron shell nucleus {sup 86}Kr were measured previously. The data are presently being analyzed.

  13. Electron and pion scattering off nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Buss, O.; Mosel, U. [Inst. fuer Theoretische Physik, Univ. Giessen (Germany); Alvarez-Ruso, L. [Dept. de Fisica Teorica and IFIC, Centro Mixto Univ. de Valencia-CSIC (Spain)

    2007-07-01

    We present a treatment of pion and electron scattering off nuclei within the framework of a Boltzmann-Uehling-Uhlenbeck (BUU) transport model. In this approach we realize a full coupled channel treatment and include medium modifications such as mean-field potentials, Fermi motion and width modifications. We have applied the GiBUU model to the description of the double charge exchange (DCX) reaction of pions with different nuclear targets at incident kinetic energies of 120-180 MeV. The DCX process is highly sensitive to details of the interactions of pions with the nuclear medium and, therefore, represents a major benchmark for any model of pion scattering off nuclei at low and intermediate energies. We discuss the impact of surface effects and the dependence on the nuclear mass number. We have achieved a good quantitative agreement with the extensive data set obtained at LAMPF. Furthermore, we present a description of electron induced reactions, i.e. pion production, off nuclei. We consider the scattering of electrons off the bound nucleons in an impulse approximation and investigate medium modifications to exclusive particle production cross sections and compare our results to available data. (orig.)

  14. Interaction of eta mesons with nuclei

    CERN Document Server

    Kelkar, N G; Upadhyay, N J; Jain, B K

    2013-01-01

    Back in the mid eighties, a new branch of investigation which was related to the interaction of eta mesons with nuclei came into existence. It started with the theoretical prediction of possible exotic states of eta mesons and nuclei bound by the strong interaction and later developed into an extensive experimental program to search for such unstable states as well as understand the underlying interaction via eta meson producing reactions. The vast literature of experimental as well as theoretical works which studied various aspects of eta producing reactions such as the $\\pi ^+$ $n$ $\\to \\eta p$, $p d \\to ^3$He $\\eta$, $p \\,^6$Li $\\to ^7$Be $\\eta$ and $\\gamma ^3$He $\\to \\eta$ X, to name a few, had but one objective in mind: to understand the eta - nucleon ($\\eta N$) and hence the $\\eta$-nucleus interaction which could explain the production data and confirm the existence of some $\\eta$-mesic nuclei. In spite of these efforts, there remain uncertainties in the knowledge of the $\\eta N$ and hence the $\\eta$-nu...

  15. Multi-K¯ nuclei and kaon condensation

    Science.gov (United States)

    Gazda, D.; Friedman, E.; Gal, A.; Mareš, J.

    2008-04-01

    We extend previous relativistic mean-field (RMF) calculations of multi-K¯ nuclei, using vector boson fields with SU(3) PPV coupling constants and scalar boson fields constrained phenomenologically. For a given core nucleus, the resulting K¯ separation energy BK¯, as well as the associated nuclear and K¯-meson densities, saturate with the number κ of K¯ mesons for κ>κsat~10. Saturation appears robust against a wide range of variations, including the RMF nuclear model used and the type of boson fields mediating the strong interactions. Because BK¯ generally does not exceed 200 MeV, it is argued that multi-K¯ nuclei do not compete with multihyperonic nuclei in providing the ground state of strange hadronic configurations and that kaon condensation is unlikely to occur in strong-interaction self-bound strange hadronic matter. Last, we explore possibly self-bound strange systems made of neutrons and K¯0 mesons, or protons and K- mesons, and study their properties.

  16. Synthesis of superheavy nuclei with 238U target

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The production of superheavy nuclei with Z=108-116 via hot fusion reactions of the neutron-rich projectiles with 238U target is systematically studied.The results show that the production cross sections of superheavy nuclei do not decrease monotonously as the atomic number Z increasing.The cross sections of the superheavy nuclei at Z = 112 and 115 are enhanced as compared with the whole Z-trend in synthesis of the superheavy nuclei,which clearly illustrates that the reactions with large negative Q-value and shell correction are more favorable to synthesize superheavy nuclei.

  17. Synthesis of superheavy nuclei with 238U target

    Institute of Scientific and Technical Information of China (English)

    LIU ZuHua; BAO JingDong

    2009-01-01

    The production of superheavy nuclei with Z=108-116 via hot fusion reactions of the neutron-rich projectiles with 238u target is systematically studied.The results show that the production cross sections of superheavy nuclei do not decrease monotonously as the atomic number Z increasing.The cross sections of the superheavy nuclei at Z=112 and 115 are enhanced as compared with the whole Z-trend in synthesis of the superheavy nuclei,which clearly illustrates that the reactions with large negative Q-value and shell correction are more favorable to synthesize superheavy nuclei.

  18. Electric monopole transitions from low energy excitations in nuclei

    CERN Document Server

    Wood, J L; De Coster, C; Heyde, Kris L G

    1999-01-01

    Electric monopole (E0) properties are studied across the entire nuclear mass surface. Besides an introductory discussion of various model results (shell model, geometric vibrational and rotational models, algebraic models), we point out that many of the largest E0 transition strengths, $\\rho^2$(E0), are associated with shape mixing. We discuss in detail the manifestation of E0 transitions and present extensive data for~: single-closed shell nuclei, vibrational nuclei, well-deformed nuclei, nuclei that exhibit sudden ground-state changes, and nuclei that exhibit shape coexistence and intruder states. We also give attention to light nuclei, odd-A nuclei, and illustrate a suggested relation between $\\rho^2$(E0) and isotopic shifts.

  19. Statistical properties of quantum spectra in nuclei

    Institute of Scientific and Technical Information of China (English)

    WU; Xizhen

    2001-01-01

    [1]Wu Xizhen,Sakata,F.,Zhuo Yizhong et al.,Dynamic realization of statistical state in finite systems,Phys.ReV.C,1996,53:1233-1244.[2]Weidenmüller,H.A.,Statistical theory of nuclear reactions and the Gaussian Othogonal Ensemble,Annals of Physics,1984,158:120-141.[3]Hag,R.U.,Pandey,A.,Bohigas,O.,Fluctuation properties of nuclear energy levels:Do theory and experiment agree? Phys.Rev.Lett.,1982,48:1086-1089.[4]Wu Xizhen,Gu Jianzhong,Iwamoto,A.,Statistical properties of quasiparticle spectra in deformed nuclei,Phys.Rev.C,1999,59:215-220.[5]Garrett,J.D.,Robinson,J.Q.,Foglia,A.J.et al.,Nuclear level repulsion and order vs chaos,Phys.Lett.B,1997,392:24-29.[6]Bohigas,O.,Hag,R.U.,Pandy,A.,Fluctuation properties of nuclear energy levels and widths comparison of theory with experiment,in Nuclear Data for Science and Technology (ed.Bockhoff,K.H.),Dordrecht:Reidel,1983,809-813.[7]Heiss,W.D.,Nazmitdinov,R.G.,Radu,S.,Chaos in axially symmetric potentials with Octupole deformation,Phys.Rev.Lett.,1994,72:2351-2354.[8]Wu Xizhen,Gu Jianzhong,Zhuo Yizhong et al.,Possible understanding of hyperdeformed 144-146Ba nuclei appearing in the spontaneous fission of 252Cf,Phys.Rev.Lett.,1997,79:4542-4545.[9]Ter-Akopian,G.M.,Hamilton,J.H.,Oganessian,Y.T.et al.,New spontaneous fission mode for 252Cf:Indication of hyperdeformed 144,145,146Ba at scission,Phys.Rev.Lett.,1996,77:32-35.[10]Adamian,G.G.,Antonenko,N.V.,Ivanova,S.P.et al.,Problems in description of fusion of heavy nuclei in the two-center shell model approach,Nucl.Phys.A,1999,646:29-52.[11]Hofmann,H.,A quantal transport theory for nuclear collective motion:the metrits of a locally harmonic approximation method,Phys.Rep.,1997,284:139-380.[12]Gu Jianzhong,Wu Xizhen,Zhuo Yizhong,Quantum chaotic motion of a single particle in heavy nuclei,Nucl.Phys.A,1997,625:621-632.[13]Gu Jianzhong,Wu Xizhen,Zhuo Yizhong,The single-particle spectrum and its spacing and curvature distributions in

  20. Collisions of Rare Earth Nuclei - a New Reaction Route for Synthesis of Super Heavy Nuclei

    CERN Document Server

    Choudhury, R K

    2012-01-01

    Theories have predicted an island of stability in the super heavy mass region with half lives ranging from a few seconds to a few thousands of years. Extensive efforts are being made experimentally to reach these nuclei in the region of Z = 110 and above with suitable combinations of proton and neutron numbers. However, the cross sections for production of these nuclei are seen to be in the range of a few pico barns or less, and pose great experimental challenges. We show in the present note that great advantages can be obtained by carrying out heavy ion reactions with suitable combinations of projectile and target nuclei in the rare earth region, that will lead to compound systems with very small excitation energy, and with better neutron/proton ratio for larger stability.

  1. From heavy nuclei to super-heavy nuclei; Des noyaux lourds aux super-lourds

    Energy Technology Data Exchange (ETDEWEB)

    Theisen, Ch

    2003-01-01

    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)

  2. Recent topics of mesic atoms and mesic nuclei -- $\\phi$ mesic nuclei exist ?--

    CERN Document Server

    Yamagata-Sekihara, J; Cabrera, D; Vacas, M J Vicente

    2008-01-01

    We study $\\phi$-meson production in nuclei to investigate the in-medium modification of the $\\phi$-meson spectral function at finite density. We consider (${\\bar p},\\phi$), ($\\gamma,p$) and ($\\pi^-,n$) reactions to produce a $\\phi$-meson inside the nucleus and evaluate the effects of the medium modifications to reaction cross sections. The structures of the bound states, $\\phi$-mesic nuclei, are also studied. For strong absorptive interaction cases, we need to know the spectrum shape in a wide energy region to deduce the properties of $\\phi$.

  3. alpha-decay spectroscopy of light odd-odd Bi isotopes - II sup 1 sup 8 sup 6 Bi and the new nuclide sup 1 sup 8 sup 4 Bi

    CERN Document Server

    Andreyev, A N; Ackermann, D; Münzenberg, G; Hessberger, F P; Hofmann, S; Kojouharov, I; Kindler, B; Lommel, B; Huyse, M; Vel, K V D; Duppen, P V; Heyde, Kris L G

    2003-01-01

    Alpha-decay of the new nuclide sup 1 sup 8 sup 4 Bi has been studied in the complete-fusion reaction sup 9 sup 3 Nb( sup 9 sup 4 Mo, 3n) sup 1 sup 8 sup 4 Bi at the velocity filter SHIP. The evaporation residues were separated in-flight and subsequently identified on the basis of recoil-alpha, recoil-alpha-gamma analysis and excitation functions measurements. Two alpha-decaying isomeric states in sup 1 sup 8 sup 4 Bi with half-life values of 13(2) ms and 6.6(1.5) ms were identified. The alpha-branching ratio of sup 1 sup 8 sup 0 Tl was deduced for the first time as b subalpha = (2-12)%. Improved data on the fine-structure alpha-decay of sup 1 sup 8 sup 6 Bi were obtained in the sup 9 sup 3 Nb( sup 9 sup 5 Mo, 2n) sup 1 sup 8 sup 6 Bi reaction. A similarity of the decay energies and half-life values of sup 1 sup 8 sup 4 sup , sup 1 sup 8 sup 6 Bi is pointed out and a possible explanation for this effect is suggested.

  4. Studies of exotic nuclei; Etudes des noyaux exotiques

    Energy Technology Data Exchange (ETDEWEB)

    Angelique, J.C.; Orr, N.A. [Lab. de Physique Corpusculaire, Caen Univ., 14 (France); Collaboratio: CATANE (Italy), DAPNIA-Saclay, CSNSM-Orsay, GANIL-Caen, IPN-Orsay, NSCL-MSU (USA), Los Alamos (USA), University of Manchester (United Kingdom), University of Surrey (United Kingdom), FLNR JINR Dubna (Russia), IAP-Bucharest (Romania), NPI-Rez (Czech Republic), CCLRLC-Daresbury (United Kingdom)

    1997-12-31

    The study of the nuclei far off stability valley is of much interest for testing the nuclear models established for the stable nuclei but also for astrophysics to understand the nucleosynthesis. Experiments aim to measure the mass and lifetime, to build the decay schemes and also to study the structure and the properties of these nuclei. The radioactive beam group focused its research on light neutron-rich nuclei having a halo neutron structure. Mass measurements in N {approx} Z nuclei namely in A {approx} 60-80 proton-rich nuclei, important for understanding the rp process, are mentioned, as well as in nuclei in the {sup 100}Sn region. In the newly obtained {sup 26}O and {sup 28}O nuclei the lifetimes, the probabilities of emission of one for more neutrons were determined. The data analysis has permitted to determine also for the first time the lifetimes of {sup 27,29}F and {sup 30}Ne. Studies of nuclei in the {sup 100}Sn region, near the proton drip line in the ground and isomeric states are now under way. The spectroscopy (energy levels, gamma emissions, etc.) of the neutron-rich nuclei produced by the {sup 36}S fragmentation has been carried out in {sup 31}Ne, {sup 17}B and {sup 29}F. Studies by Coulomb excitation of the 2{sup +} excited states and associated probability B (E2) in O, Ne, Ni and Zn are now analysed 6 refs.

  5. Nuclei at extreme conditions. A relativistic study

    Energy Technology Data Exchange (ETDEWEB)

    Afanasjev, Anatoli [Mississippi State Univ., Mississippi State, MS (United States)

    2014-11-14

    The major goals of the current project were further development of covariant density functional theory (CDFT), better understanding of its features, its application to different nuclear structure and nuclear astrophysics phenomena and training of graduate and undergraduate students. The investigations have proceeded in a number of directions which are discussed in detail in the part “Accomplishments” of this report. We have studied the role of isovector and isoscalar proton-neutron pairings in rotating nuclei; based on available experimental data it was concluded that there are no evidences for the existence of isoscalar proton-neutron pairing. Generalized theoretical approach has been developed for pycnonuclear reaction rates in the crust of neutron stars and interior of white dwarfs. Using this approach, extensive database for considerable number of pycnonuclear reactions involving stable and neutron-rich light nuclei has been created; it can be used in future for the study of various nuclear burning phenomena in different environments. Time-odd mean fields and their manifestations in terminating states, non-rotating and rotating nuclei have been studied in the framework of covariant density functional theory. Contrary to non-relativistic density functional theories these fields, which are important for a proper description of nuclear systems with broken time-reversal symmetry, are uniquely defined in the CDFT framework. Hyperdeformed nuclear shapes (with semi-axis ratio 2.5:1 and larger) have been studied in the Z = 40-58 part of nuclear chart. We strongly believe that such shapes could be studied experimentally in the future with full scale GRETA detector.

  6. Inclusive inelastic electron scattering from nuclei

    CERN Document Server

    Fomin, Nadia

    2007-01-01

    Inclusive electron scattering from nuclei at large x and $Q^2$ is the result of a reaction mechanism that includes both quasi--elastic scattering from nucleons and deep inelastic scattering from the quark constituents of the nucleons. Data in this regime can be used to study a wide variety of topics, including the extraction of nuclear momentum distributions, the influence of final state interactions and the approach to $y$-scaling, the strength of nucleon-nucleon correlations, and the approach to $x$- scaling, to name a few. Selected results from the recent experiment E02-019 at the Thomas Jefferson National Accelerator Facility will be shown and their relevance discussed.

  7. Reactions and structure of exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Esbensen, H.

    1993-08-01

    Radioactive beam experiments have made it possible to study the structure of light neutron rich nuclei. A characteristic feature is a large dipole strength near threshold. An excellent example is the loosely bound nucleus ``Li for which Coulomb dissociation plays a dominant role in breakup reactions on a high Z target. I will describe a three-body model and apply it to calculate the dipole response of {sup 11}Li and the momentum distributions for the three-body breakup reaction: {sup 11}Li {yields} {sup 9}Li+n+n, and comparisons will be made to recent three-body coincidence measurements.

  8. Short-Distance Structure of Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Douglas Higinbotham, Eliazer Piasetzky, Stephen Wood

    2011-06-01

    One of Jefferson Lab's original missions was to further our understanding of the short-distance structure of nuclei. In particular, to understand what happens when two or more nucleons within a nucleus have strongly overlapping wave-functions; a phenomena commonly referred to as short-range correlations. Herein, we review the results of the (e,e'), (e,e'p) and (e,e'pN) reactions that have been used at Jefferson Lab to probe this short-distance structure as well as provide an outlook for future experiments.

  9. Coherent Pions From Neutrino Scattering Off Nuclei

    CERN Document Server

    Valverde, M; Hernandez, E; Nieves, J; Vacas, M J Vicente

    2010-01-01

    We describe a model for pion production off nucleons and coherent pions from nuclei induced by neutrinos in the 1 GeV energy regime. Besides the dominant Delta pole contribution, it takes into account the effect of background terms required by chiral symmetry. Moreover, the model uses a reduced nucleon-to-Delta resonance axial coupling, which leads to coherent pion production cross sections around a factor two smaller than most of the previous theoretical estimates. Nuclear effects like medium corrections on the Delta propagator and final pion distortion are included.

  10. New insights on pseudospin doublets in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Desplanques, B. [Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, INPG, LPSC, Grenoble Cedex (France); Marcos, S. [Universidad de Cantabria, Departamento de Fisica Moderna, Santander (Spain)

    2010-03-15

    The relevance of pseudospin symmetry in nuclei is considered. New insights are obtained from looking at the continuous transition from a non-relativistic model satisfying spin symmetry to another one satisfying pseudospin symmetry. This study suggests that there are models allowing no missing single-particle states in this transition, contrary to what is usually advocated. It rather points to an association of pseudospin partners that is quite different from the one generally assumed, together with a strong violation of the corresponding symmetry. This assignment is supported by an examination of the wave functions and related quantities for the pseudospin partners. (orig.)

  11. Modeling a neutron rich nuclei source

    Energy Technology Data Exchange (ETDEWEB)

    Mirea, M.; Bajeat, O.; Clapier, F.; Ibrahim, F.; Mueller, A.C.; Pauwels, N.; Proust, J. [Institut de Physique Nucleaire, IN2P3/CNRS, 91 - Orsay (France); Mirea, M. [Institute of Physics and Nuclear Engineering, Tandem Lab., Bucharest (Romania)

    2000-07-01

    The deuteron break-up process in a suitable converter gives rise to intense neutron beams. A source of neutron rich nuclei based on the neutron induced fission can be realised using these beams. A theoretical optimization of such a facility as a function of the incident deuteron energy is reported. The model used to determine the fission products takes into account the excitation energy of the target nucleus and the evaporation of prompt neutrons. Results are presented in connection with a converter-target specific geometry. (author000.

  12. Algebraic description of intrinsic modes in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A. (Los Alamos National Lab., NM (USA))

    1990-01-01

    We present a procedure for extracting normal modes in algebraic number-conserving systems of interacting bosons relevant for collective states in even-even nuclei. The Hamiltonian is resolved into intrinsic (bandhead related) and collective (in-band related) parts. Shape parameters are introduced through non-spherical boson bases. Intrinsic modes decoupled from the spurious modes are obtained from the intrinsic part of the Hamiltonian in the limit of large number of bosons. Intrinsic states are constructed and serve to evaluate electromagnetic transition rates. The method is illustrated for systems with one type of boson as well as with proton-neutron bosons. (author).

  13. Algebraic description of intrinsic modes in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A.

    1989-01-01

    We present a procedure for extracting normal modes in algebraic number-conserving systems of interacting bosons relevant for collective states in even-even nuclei. The Hamiltonian is resolved into intrinsic (bandhead related) and collective (in-band related) parts. Shape parameters are introduced through non-spherical boson bases. Intrinsic modes decoupled from the spurious modes are obtained from the intinsic part of the Hamiltonian in the limit of large number of bosons. Intrinsic states are constructed and serve to evaluate electromagnetic transition rates. The method is illustrated for systems with one type of boson as well as with proton-neutron bosons. 28 refs., 1 fig.

  14. Fusion and reactions of exotic nuclei

    Directory of Open Access Journals (Sweden)

    Sánchez-Benítez A.M.

    2011-10-01

    Full Text Available Close to the drip lines, the scattering cross sections of halo nuclei show a different behaviour as compared to the tightly bound projectiles of the stability line. Several experiments carried out in the last decade have been dedicated to investigate the competition between transfer, breakup and fusion channels at energies around and below the Coulomb barrier. The rather complex scenario gives rise to conflicting conclusions concerning the effect of breakup and transfer on reaction dynamics and the sub-barrier fusion process. In this work we discuss recent experimental findings in fusion and reactions of 6He halo nucleus at energies around the Coulomb barrier.

  15. Signatures for quark clustering in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, C.E. [College of William and Mary, Williamsburg, VA (United States); Lassila, K.E. [Iowa State Univ., Ames, IA (United States)

    1994-04-01

    As a signature for the presence of quark clusters in nuclei, the authors suggest studying backward protons produced by electron scattering off deuterons and suggest a ratio that cancels out much of the detailed properties of deuterons or 6-quark clusters. The test may be viewed as a test that the short range part of the deuteron is still a 2-nucleon system. They make estimates to show how it fails in characteristic and significant ways if the two nucleons at short range coalesce into a kneaded 6-quark cluster.

  16. Effective field theory for deformed atomic nuclei

    CERN Document Server

    Papenbrock, T

    2015-01-01

    We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband $E2$ transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.

  17. Few-body resonances in light nuclei

    CERN Document Server

    Csoto, A

    2000-01-01

    We have localized several few-body resonances in light nuclei, using methods which can properly handle two- or three-body resonant states. Among other results, we predict the existence of a three-neutron resonance, small spin-orbit splittings between the low-lying states in He-5 and Li-5, the nonexistence of the soft dipole resonance in He-6, new 1+ states in Li-8 and B-8, and the presence of a nonlinear amplification phenomenon in the 0+_2 state of C-12.

  18. Double giant dipole resonance in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Cinausero, M.; Rizzi, V.; Viesti, G.; Fabris, D.; Lunardon, M.; Moretto, S.; Nebbia, G.; Pesente, S.; Barbui, M.; Fioretto, E.; Prete, G.; Bracco, A.; Camera, F.; Million, B.; Leoni, S.; Wieland, O.; Benzoni, G.; Brambilla, S.; Airoldi, A.; Maj, A.; Kmiecik, M

    2004-02-09

    Signals from Double Dipole Giant Resonances (DGDR) in hot nuclei have been searched in a {gamma}-{gamma} coincidence experiment using the HECTOR array at the Laboratori Nazionali di Legnaro. The experimental single {gamma}-ray spectrum and the projection of the {gamma}-{gamma} matrix have been compared with a standard Monte Carlo Statistical Model code including only the single GDR excitation. These calculations have been used as background to determine the extra-yield associated with the DGDR de-excitation. Results have been compared with a previous experiment confirming the presence of the DGDR excitation in fusion-evaporation reactions.

  19. The Structure of Nuclei Far from Stability

    Energy Technology Data Exchange (ETDEWEB)

    Zganjar, E.F.

    1999-02-25

    From among a number of important nuclear structure results that have emerged from our research program during the past few years, two stand out as being of extra significance. These are: (a) the identification of a diabatic coexisting structure in {sup 187}Au which arises solely from differences in proton occupation of adjacent oscillator shells, and (b) the realization of a method for estimating EO strength in nuclei and the resulting prediction that the de-excitation of superdeformed bands may proceed, in some cases, by strong EO transitions.

  20. Incoherent rho^0 electroproduction off nuclei

    CERN Document Server

    Falter, T; Mosel, U

    2003-01-01

    In the present paper we investigate incoherent rho^0 electroproduction off complex nuclei. We derive a novel, simple expression for the incoherent electroproduction cross section in which one can clearly separate the final state interactions of the reaction products from the 'initial state interactions' of the photon that give rise to nuclear shadowing. In the special case of purely absorptive final state interactions we deduce from our expression the known Glauber result. A more realistic treatment of the final state interactions within a transport model is then used to compare our predictions with experimental data from the HERMES experiment.

  1. Superheavy nuclei – cold synthesis and structure

    Indian Academy of Sciences (India)

    Raj K Gupta

    2001-08-01

    The quantum mechanical fragmentation theory (QMFT), given for the cold synthesis of new and superheavy elements, is reviewed and the use of radioactive nuclear beams (RNB) and targets (RNT) is discussed. The QMFT is a complete theory of cold nuclear phenomena, namely, the cold fission, cold fusion and cluster radioactivity. Also, the structure calculations based on the axially deformed relativistic mean field (DRMF) approach are presented which predict new regions of spherical magicity, namely = 120 and = 172 or 184, for superheavy nuclei. This result is discussed in the light of recent experiments reporting the cold synthesis of = 118 element.

  2. Cosmic rays from active galactic nuclei

    CERN Document Server

    Berezhko, E G

    2008-01-01

    Cosmic ray (CR) acceleration at the shock created by the expanding cocoons around active galactic nuclei (AGNs) is studied. It is shown that above the energy $10^{18}$ eV the overall energy spectrum of CRs, produced during the AGN evolution and released in the intergalactic space, has the form $N\\propto \\epsilon^{-\\gamma}$, with $\\gamma\\approx 2.6$, which extends up to $\\epsilon_{max}\\sim 10^{20}$ eV. It is concluded that cocoons shocks have to be considered as a main source of extragalactic CRs, which together with Galactic supernova remnants provide the observed CR spectrum.

  3. Probing Chiral Interactions in Light Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nogga, A; Barrett, B R; Meissner, U; Witala, H; Epelbaum, E; Kamada, H; Navratil, P; Glockle, W; Vary, J P

    2004-01-08

    Chiral two- and three-nucleon interactions are studied in a few-nucleon systems. We investigate the cut-off dependence and convergence with respect to the chiral expansion. It is pointed out that the spectra of light nuclei are sensitive to the three-nucleon force structure. As an example, we present calculations of the 1{sup +} and 3{sup +} states of {sup 6}Li using the no-core shell model approach. The results show contributions of the next-to-next-to-leading order terms to the spectra, which are not correlated to the three-nucleon binding energy prediction.

  4. Experimental level densities of atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Guttormsen, M.; Bello Garrote, F.L.; Eriksen, T.K.; Giacoppo, F.; Goergen, A.; Hagen, T.W.; Klintefjord, M.; Larsen, A.C.; Nyhus, H.T.; Renstroem, T.; Rose, S.J.; Sahin, E.; Siem, S.; Tornyi, T.G.; Tveten, G.M. [University of Oslo, Department of Physics, Oslo (Norway); Aiche, M.; Ducasse, Q.; Jurado, B. [University of Bordeaux, CENBG, CNRS/IN2P3, B.P. 120, Gradignan (France); Bernstein, L.A.; Bleuel, D.L. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Byun, Y.; Voinov, A. [Ohio University, Department of Physics and Astronomy, Athens, Ohio (United States); Gunsing, F. [CEA Saclay, DSM/Irfu/SPhN, Cedex (France); Lebois, L.; Leniau, B.; Wilson, J. [Institut de Physique Nucleaire d' Orsay, Orsay Cedex (France); Wiedeking, M. [iThemba LABS, P.O. Box 722, Somerset West (South Africa)

    2015-12-15

    It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. From the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least up to the neutron threshold. (orig.)

  5. Effective field theory for deformed atomic nuclei

    Science.gov (United States)

    Papenbrock, T.; Weidenmüller, H. A.

    2016-05-01

    We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.

  6. Precision measurement of the mass difference between light nuclei and anti-nuclei

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmed, Ijaz; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kouzinopoulos, Charalampos; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasnopolskiy, Stanislav; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2015-01-01

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons ($\\bar{d}$), and $^{3}{\\rm He}$ and $^3\\overline{\\rm He}$ nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirm CPT invariance to an unprecedented precision in the sector of light nuclei. This funda...

  7. Optical Tweezing Nuclei in the Cellular Blastoderm of Drosophila Embryos

    Science.gov (United States)

    Schoetz, Eva-Maria; Chaikin, Paul M.; Wieschaus, Eric F.

    2004-03-01

    Optical tweezers are used to manipulate nuclei in the syncytial blastoderm of Drosophila embryos. Our aim is to move a nucleus in a living embryo and study the reactions of its nearest neighbors to this displacement. Effects on the surrounding nuclei may allow us to test models in which actin-microtubule networks connect individual nuclei and keep them in place. In our experiments we use video analysis to follow individual nuclei using GFP-labeled histone protein. In a first approach, we were able to move nuclei in embryonic homogenates suspended in oil. Although the squashing destroys the cell, mitotic nuclear divisions continue, implying that the cytoskeleton, which connects the nuclei to the cortex, is still functioning. We will present studies of nuclear interactions in these squashes and in intact syncytial blastoderms.

  8. Symmetry energy, unstable nuclei, and neutron star crusts

    CERN Document Server

    Iida, Kei

    2013-01-01

    Phenomenological approach to inhomogeneous nuclear matter is useful to describe fundamental properties of atomic nuclei and neutron star crusts in terms of the equation of state of uniform nuclear matter. We review a series of researches that we have developed by following this approach. We start with more than 200 equations of state that are consistent with empirical masses and charge radii of stable nuclei and then apply them to describe matter radii and masses of unstable nuclei, proton elastic scattering and total reaction cross sections off unstable nuclei, and nuclei in neutron star crusts including nuclear pasta. We finally discuss the possibility of constraining the density dependence of the symmetry energy from experiments on unstable nuclei and even observations of quasi-periodic oscillations in giant flares of soft gamma-ray repeaters.

  9. Symmetry energy, unstable nuclei and neutron star crusts

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Kei [Kochi University, Department of Natural Science, Kochi (Japan); RIKEN Nishina Center, Saitama (Japan); Oyamatsu, Kazuhiro [RIKEN Nishina Center, Saitama (Japan); Aichi Shukutoku University, Department of Human Informatics, Aichi (Japan)

    2014-02-15

    The phenomenological approach to inhomogeneous nuclear matter is useful to describe fundamental properties of atomic nuclei and neutron star crusts in terms of the equation of state of uniform nuclear matter. We review a series of researches that we have developed by following this approach. We start with more than 200 equations of state that are consistent with empirical masses and charge radii of stable nuclei and then apply them to describe matter radii and masses of unstable nuclei, proton elastic scattering and total reaction cross sections off unstable nuclei, and nuclei in neutron star crusts including nuclear pasta. We finally discuss the possibility of constraining the density dependence of the symmetry energy from experiments on unstable nuclei and even observations of quasi-periodic oscillations in giant flares of soft gamma-ray repeaters. (orig.)

  10. Mid-infrared spectra of comet nuclei

    CERN Document Server

    Kelley, Michael S P; Gehrz, Robert D; Reach, William T; Harker, David E

    2016-01-01

    Jovian Trojan D-type asteroids have mid-infrared emissivity features strikingly similar to comet comae, suggesting that they have the same compositions and that the surfaces of the Trojans are highly porous. However, a direct comparison between a comet and asteroid surface has not been possible due to the paucity of spectra of comet nuclei at mid-infrared wavelengths. We present 5-35 {\\mu}m thermal emission spectra of comets 10P/Tempel 2, and 49P/Arend-Rigaux observed with the Infrared Spectrograph on the Spitzer Space Telescope. Our analysis suggests the spectra are dominated by the comet nucleus. We fit each spectrum with the near-Earth asteroid thermal model (NEATM) and find sizes in agreement with previous values. However, the NEATM beaming parameters of the nuclei, 0.74 to 0.83, are systematically lower than the Jupiter-family comet population mean of 1.03+/-0.11, derived from 16- and 22-{\\mu}m photometry. When the spectra are normalized by the NEATM model, a weak 10-{\\mu}m silicate plateau is evident, w...

  11. Superheavy nuclei: from predictions to discovery

    Science.gov (United States)

    Oganessian, Yu Ts; Sobiczewski, A.; Ter-Akopian, G. M.

    2017-02-01

    A fundamental outcome of modern nuclear microscopic theory is the prediction of the ‘islands of stability’ in the region of hypothetical superheavy elements (SHEs). In a heavy nucleus, going through the large-scale deformation on the way to fission, the motion of single nucleons is coupled with the collective degrees of freedom of the whole system. The most striking effect of this coupling is obtained for the case of fission of the heaviest nuclei, whose existence is defined entirely by the nuclear structure, i.e. by the shell effect. From this point of view, the synthesis and study of properties of superheavy nuclei (SHN) is a direct way for checking the basic statements of the microscopic nuclear theory. On the nuclide map, SHN outline the border of the heaviest nuclear masses. SHN set the limits of the periodic system of chemical elements. The study of possible existence of SHN in nature offers a way for testing different scenarios of astrophysical nucleosynthesis. The paper elucidates experimental approaches, used for testing the theory predictions made about the SHN, and presents the results of the discovery of the ‘stability island’ of SHEs.

  12. Incomprehensibility in finite nuclei and nuclear matter

    CERN Document Server

    Stone, J R; Moszkowski, S A

    2014-01-01

    The incompressibility (compression modulus) $K_{\\rm 0}$ of infinite symmetric nuclear matter at saturation density has become one of the major constraints on mean-field models of nuclear many-body systems as well as of models of high density matter in astrophysical objects and heavy-ion collisions. We present a comprehensive re-analysis of recent data on GMR energies in even-even $^{\\rm 112-124}$Sn and $^{\\rm 106,100-116}$Cd and earlier data on 58 $\\le$ A $\\le$ 208 nuclei. The incompressibility of finite nuclei $K_{\\rm A}$ is expressed as a leptodermous expansion with volume, surface, isospin and Coulomb coefficients $K_{\\rm vol}$, $K_{\\rm surf}$, $K_\\tau$ and $K_{\\rm coul}$. \\textit{Assuming} that the volume coefficient $K_{\\rm vol}$ is identified with $K_{\\rm 0}$, the $K_{\\rm coul}$ = -(5.2 $\\pm$ 0.7) MeV and the contribution from the curvature term K$_{\\rm curv}$A$^{\\rm -2/3}$ in the expansion is neglected, compelling evidence is found for $K_{\\rm 0}$ to be in the range 250 $ < K_{\\rm 0} < $ 315 MeV,...

  13. Cluster radioactivity in very heavy nuclei: a new perspective

    OpenAIRE

    Routray, T. R.; Nayak, Jagajjaya; Basu, D. N.

    2008-01-01

    Exotic cluster decay of very heavy nuclei is studied using the microscopic nuclear potentials obtained by folding density dependent M3Y effective interaction with the densities of the cluster and the daughter nuclei. The microscopic nuclear potential, Coulomb interaction and the centrifugal barrier arising out of spin-parity conservation are used to obtain the potential between the cluster and the daughter nuclei. Half life values are calculated in the WKB framework and the preformation facto...

  14. Collisions of Small Nuclei in the Thermal Model

    CERN Document Server

    Cleymans, J; Oeschler, H.; Redlich, K.; Sharma, N.

    2016-01-01

    An analysis is presented of the expectations of the thermal model for particle production in collisions of small nuclei. The maxima observed in particle ratios of strange particles to pions as a function of beam energy in heavy ion collisions, are reduced when considering smaller nuclei. Of particular interest is the $\\Lambda/\\pi^+$ ratio shows the strongest maximum which survives even in collisions of small nuclei.

  15. Study of nuclear level densities for exotic nuclei

    Directory of Open Access Journals (Sweden)

    M Nasri Nasrabadi

    2012-06-01

    Full Text Available Nuclear level density (NLD is one of the properties of nuclei with widespread applications in astrophysics and nuclear medicine. Since there has been little experimental and theoretical research on the study of nuclei which are far from stability line, studying NLD for these nuclei is of crucial importance. Also, as NLD is an important input for nuclear research codes, hence studying the methods for calculation of this parameter is essential. Besides introducing various methods and models for calculating NLD for practical applications, we used exact spectra distribution (SPDM for determining NLD of two neutron and proton enriched exotic nuclei with the same mass number.

  16. The isovector dipole strength in nuclei with extreme neutron excess

    CERN Document Server

    Arteaga, Daniel Pena; Ring, Peter

    2008-01-01

    The E1 strength is systematically analyzed in very neutron-rich Sn nuclei, beyond $^{132}$Sn until $^{166}$Sn, within the Relativistic Quasiparticle Random Phase Approximation. The great neutron excess favors the appearance of a deformed ground state for $^{142-162}$Sn. The evolution of the low-lying strength in deformed nuclei is determined by the interplay of two factors, isospin asymmetry and deformation: while greater neutron excess increases the total low-lying strength, deformation hinders and spreads it. Very neutron rich deformed nuclei may not be as good candidates as stable spherical nuclei like $^{132}$Sn for the experimental study of low-lying E1 strength.

  17. ``Missing'' cloud condensation nuclei in peat smoke

    Science.gov (United States)

    Dusek, U.; Frank, G. P.; Helas, G.; Iinuma, Y.; Zeromskiene, K.; Gwaze, P.; Hennig, T.; Massling, A.; Schmid, O.; Herrmann, H.; Wiedensohler, A.; Andreae, M. O.

    2005-06-01

    We characterized particulate emissions from vegetation fires by burning Indonesian and German peat and other biomass fuels in a controlled laboratory setting. By measuring cloud condensation nuclei (CCN) both as a function of particle diameter (dp) and supersaturation (S), we discovered particles in peat smoke that were not activated to cloud droplets at high S (1.6%). These hydrophobic particles were present predominantly in the size range of dp > 200 nm, where typical wood burning particles are activated at S < 0.3%. Ambient measurements during the 1997 Indonesian peat fires suggested that peat smoke particles are highly soluble and therefore efficient CCN. Our CCN measurements performed on fresh smoke from peat samples of the same area suggest that these Indonesian smoke particles probably acquired soluble material through chemical processing in the atmosphere. Freshly emitted peat smoke particles are at least partially not very efficient CCN.

  18. Dynamical effects in fusion with exotic nuclei

    CERN Document Server

    Vo-Phuoc, K; Simpson, E C

    2016-01-01

    [Background] Reactions with stable beams have demonstrated a strong interplay between nuclear structure and fusion. Exotic beam facilities open new perspectives to understand the impact of neutron skin, large isospin, and weak binding energies on fusion. Microscopic theories of fusion are required to guide future experiments. [Purpose] To investigate new effects of exotic structures and dynamics in near-barrier fusion with exotic nuclei. [Method] Microscopic approaches based on the Hartree-Fock (HF) mean-field theory are used for studying fusion barriers in $^{40-54}$Ca+$^{116}$Sn reactions for even isotopes. Bare potential barriers are obtained assuming frozen HF ground-state densities. Dynamical effects on the barrier are accounted for in time-dependent Hartree-Fock (TDHF) calculations of the collisions. Vibrational couplings are studied in the coupled-channel framework and near-barrier nucleon transfer is investigated with TDHF calculations. [Results] The development of a neutron skin in exotic calcium iso...

  19. Ground State Properties of Neutron Magic Nuclei

    CERN Document Server

    Saxena, G

    2016-01-01

    A systematic study of the ground state properties of the entire chains of even even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82 and 126 has been carried out using relativistic mean field (rmf) plus Bardeen Cooper Schrieffer (BCS) approach. Our present investigation includes deformation, binding energy, two proton separation energy, single particle energy, rms radii along with proton and neutron density profiles, etc. Several of these results are compared with the results calculated using non relativistic approach (Skyrme Hartree Fock method) along with available experimental data and indeed they are found with excellent agreement. In addition, the possible locations of the proton and neutron drip lines, the (Z,N) values for the new shell closures, disappearance of traditional shell closures as suggested by the detailed analyzes of results are also discussed in detail.

  20. Viscosity: From air to hot nuclei

    Indian Academy of Sciences (India)

    Nguyen Dinh Dang

    2014-11-01

    After a brief review of the history of viscosity from classical to quantal fluids, a discussion of how the shear viscosity of a finite hot nucleus is calculated directly from the width and energy of the giant dipole resonance (GDR) of the nucleus is given in this paper. The ratio / with s being the entropy volume density, is extracted from the experimental systematic of GDR in copper, tin and lead isotopes at finite temperature . These empirical results are compared with the results predicted by several independent models, as well as with almost model-independent estimations. Based on these results, it is concluded that the ratio / in medium and heavy nuclei decreases with increasing to reach (1.3−4)$×\\hbar/(4 k_B)$ at = 5 MeV, which is almost the same as that obtained for quark-gluon plasma at > 170 MeV.

  1. Parity nonconservation in /sup 19/F nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Elsener, K.; Gruebler, W.; Koenig, V.; Schmelzbach, P.A.; Ulbricht, J.; Vuaridel, B.; Singy, D.; Forstner, C.; Zhang, W.Z.

    1987-01-12

    The parity nonconserving asymmetry A/sub ..gamma../ in the decay of polarized /sup 19/F/sup */(110 keV) nuclei has been measured. A value of A/sub ..gamma../=-(6.83 +- 2.11) x 10/sup -5/ (total error) was found. Systematic errors are extensively investigated and found to be small. The absolute normalization is given by the /sup 19/F/sup */ polarization, which is found to be rho/sub F/=-0.52 +- 0.08 in a separate experiment, using a calibrated Compton polarimeter. The new result A/sub ..gamma../(/sup 19/F) is compared to earlier experiments and recent theoretical calculations. From an analysis including /sup 18/F and /sup 21/Ne results, constraints on the weak meson-nucleon coupling constants f/sub ..pi../ and h/sub rho//sup 0/ are deduced. Agreement with calculations based on the standard electroweak theory and QCD is found.

  2. Production of Polarized Vector Mesons off Nuclei

    CERN Document Server

    Kopeliovich, B Z; Schmidt, I; Schmidt, Ivan

    2007-01-01

    Using the light-cone QCD dipole formalism we investigate manifestations of color transparency (CT) and coherence length (CL) effects in electroproduction of longitudinally (L) and transversally (T) polarized vector mesons. Motivated by forthcoming data from the HERMES experiment we predict both the A and Q^2 dependence of the L/T- ratios, for rho^0 mesons produced coherently and incoherently off nuclei. For an incoherent reaction the CT and CL effects add up and result in a monotonic A dependence of the L/T-ratio at different values of Q^2. On the contrary, for a coherent process the contraction of the CL with Q^2 causes an effect opposite to that of CT and we expect quite a nontrivial A dependence, especially at Q^2 >> m_V^2.

  3. Neutrino Nucleosynthesis of radioactive nuclei in supernovae

    CERN Document Server

    Sieverding, A; Langanke, K; Martínez-Pinedo, G; Heger, A

    2015-01-01

    We study the neutrino-induced production of nuclides in explosive supernova nucleosynthesis for progenitor stars with solar metallicity and initial main sequence masses between 15 M$_\\odot$ and 40 M$_\\odot$. We improve previous investigations i) by using a global set of partial differential cross sections for neutrino-induced charged- and neutral-current reactions on nuclei with charge numbers $Z < 76 $ and ii) by considering modern supernova neutrino spectra which have substantially lower average energies compared to those previously adopted in neutrino nucleosynthesis studies. We confirm the production of $^7$Li, $^{11}$B, $^{138}$La, and $^{180}$Ta by neutrino nucleosynthesis, albeit at slightly smaller abundances due to the changed neutrino spectra. We find that for stars with a mass smaller than 20 M$_\\odot$, $^{19}$F is produced mainly by explosive nucleosynthesis while for higher mass stars it is produced by the $\

  4. Compressed Baryonic Matter: from Nuclei to Pulsars

    CERN Document Server

    Xu, Renxin

    2013-01-01

    Our world is wonderful because of the negligible baryonic part although unknown dark matter and dark energy dominate the Universe. Those nuclei in the daily life are forbidden to fuse by compression due to the Coulomb repulse, nevertheless, it is usually unexpected in extraterrestrial extreme-environments: the gravity in a core of massive evolved star is so strong that all the other forces (including the Coulomb one) could be neglected. Compressed baryonic matter is then produced after supernova, manifesting itself as pulsar-like stars observed. The study of this compressed baryonic matter can not only be meaningful in fundamental physics (e.g., the elementary color interaction at low-energy scale, testing gravity theories, detecting nano-Hertz background gravitational waves), but has also profound implications in engineering applications (including time standard and navigation), and additionally, is focused by Chinese advanced telescopes, either terrestrial or in space. Historically, in 1930s, L. Landau spec...

  5. Momentum distribution of N$^*$ in nuclei

    CERN Document Server

    Kelkar, N G

    2016-01-01

    Due to its dominance in the low energy eta-nucleon interaction, the S11 N$^*$(1535) resonance enters as an important ingredient in the analyses of experiments aimed at finding evidence for the existence of eta-mesic nuclei. The static properties of the resonance get modified inside the nucleus and its momentum distribution is used in deciding these properties as well as the kinematics in the analyses. Here we show that given the possibility for the existence of an N$^*$-$^3$He quasibound state, the relative momentum distribution of an N$^*$ and $^3$He inside such a $^4$He is narrower than that of neutron-$^3$He in $^4$He. Results for the N$^*$-$^{24}$Mg system are also presented. The present exploratory work could be useful in motivating searches of exotic N$^*$-nucleus quasibound states as well as in performing analyses of eta meson production data.

  6. The Doubling of Stellar Black Hole Nuclei

    CERN Document Server

    Kazandjian, Mher V

    2012-01-01

    It is strongly believed that Andromeda's double nucleus signals a disk of stars revolving around its central super-massive black hole on eccentric Keplerian orbits with nearly aligned apsides. A self-consistent stellar dynamical origin for such apparently long-lived alignment has so far been lacking, with indications that cluster self-gravity is capable of sustaining such lopsided configurations if and when stimulated by external perturbations. Here, we present results of N-body simulations which show unstable counter-rotating stellar clusters around super-massive black holes saturating into uniformly precessing lopsided nuclei. The double nucleus in our featured experiment decomposes naturally into a thick eccentric disk of apo-apse aligned stars which is embedded in a lighter triaxial cluster. The eccentric disk reproduces key features of Keplerian disk models of Andromeda's double nucleus; the triaxial cluster has a distinctive kinematic signature which is evident in HST observations of Andromeda's double ...

  7. Eta-mesic nuclei: past, present, future

    CERN Document Server

    Haider, Q

    2015-01-01

    Eta-mesic nucleus or the quasibound nuclear state of an eta ($\\eta$) meson in a nucleus is caused by strong-interaction force alone. This new type of nuclear species, which extends the landscape of nuclear physics, has been extensively studied since its prediction in 1986. In this paper, we review and analyze in great detail the models of the fundamental $\\eta$--nucleon interaction leading to the formation of an $\\eta$--mesic nucleus, the methods used in calculating the properties of a bound $\\eta$, and the approaches employed in the interpretation of the pertinent experimental data. In view of the successful observation of the $\\eta$--mesic nucleus $^{25}$Mg$_{\\eta}$ and other promising experimental results, future direction in searching for more $\\eta$--mesic nuclei is suggested.

  8. Dielectronic Recombination In Active Galactic Nuclei

    Science.gov (United States)

    Lukić, D.; Savin, D. W.; Schnell, M.; Brandau, C.; Schmidt, E.; Schippers, S.; Müller, A.; Lestinsky, M.; Sprenger, F.; Wolf, A.; Altun, Z.; Badnell, N. R.

    2006-05-01

    Recent X-ray satelitte observations of active galactic nuclei point out shortcomings in our understanding of low temperature dielectronic recombination (DR) for iron M- shell ions. In order to resolve this issue and to provide reliable iron M-shell DR data for modeling astrophysical plasmas, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring at the Max- Plank-Institute for Nuclear Physics in Heidelberg, Germany. Storage rings are currently the only laboratory method capable of studying low temperature DR. We use our results to produce experimentally- derived DR rate coefficients. We are also providing our data to atomic theorist to benchmark their DR calculations. Here we will report our recent DR results for selected Fe M-shell ions. At temperatures where these ions are predicted to form in photoionized gas, we find a significant discrepancy between our experimental results and previously recommended DR rate coefficients.

  9. Active Galactic Nuclei Feedback and Clusters

    Indian Academy of Sciences (India)

    Biman B. Nath

    2011-12-01

    The Intracluster Medium (ICM) is believed to have been affected by feedback from Active Galactic Nuclei (AGN) and/or supernovae-driven winds. These sources are supposed to have injected entropy into the ICM gas. The recently determined universal pressure profile of the ICM gas has been used and after comparing with the entropy profile of the gas from gravitational effects of the dark matter halo, the additional entropy injected by non-gravitational sources, as a function of the total cluster mass is determined. The current observational data of red-shift evolution of cluster scaling relation is shown that allow models in which the entropy injection decreases at high red-shift.

  10. Power spectra of active galactic nuclei

    Institute of Scientific and Technical Information of China (English)

    WANG TaiShan; WU YuXiang; LIU Yuan

    2009-01-01

    The power spectral densities (PSDs) for a sample of active galactic nuclei (AGNs) are analyzed in both the frequency domain and the time domain. We find for each object that for broadband noise a character timescale-bifurcation timescale of Fourier and time-domain PSD exists in the 103-106 s range,below which the time-domain power spectrum is systematically higher than the corresponding Fourier spectrum. The relationship between bifurcation timescale, AGN mass and luminosity is studied. Compared with the fact that similar phenomena have been found for Galactic black hole candidates (GBHs)with bifurcation timescale ~0.1 s but not for accreting neutron stars, our finding indicates that AGNs and GBHs have common intrinsic nature in rapid X-ray variability with a character time parameter scaled with their masses.

  11. Power spectra of active galactic nuclei

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The power spectral densities(PSDs)for a sample of active galactic nuclei(AGNs)are analyzed in both the frequency domain and the time domain.We find for each object that for broadband noise a character timescale-bifurcation timescale of Fourier and time-domain PSD exists in the 10 3 -10 6 s range, below which the time-domain power spectrum is systematically higher than the corresponding Fourier spectrum.The relationship between bifurcation timescale,AGN mass and luminosity is studied.Compared with the fact that similar phenomena have been found for Galactic black hole candidates(GBHs) with bifurcation timescale~0.1 s but not for accreting neutron stars,our finding indicates that AGNs and GBHs have common intrinsic nature in rapid X-ray variability with a character time parameter scaled with their masses.

  12. Correlations of Active Galactic Nuclei with Microquasars

    Institute of Scientific and Technical Information of China (English)

    YE Yong-Chun; ZUO Xue-Qin; WANG Ding-Xiong

    2006-01-01

    Correlations of active galactic nuclei (AGNs) with microquasars are discussed based on the coexistence of the Blandford-Znajek (BZ) and magnetic coupling (MC) processes (CEBZMC) in black hole (BH) accretion disk.The proportions of several quantities of BH systems for both AGNs and microquasars are derived by combining the observational data with CEBZMC. It is shown that the square of the magnetic field at the BH horizon is inversely proportional to the BH mass, while the accretion rate of the disk is proportional to the BH mass. In addition, the very steep emissivity indexes from the recent XMM-Newton observations of the nearby bright Seyfert 1 galaxy MCG-6-30-15 and the microquasars XTE J1650-500 are well fitted by considering the MC effects on the disk radiation. These results suggest strongly the correlations of A GNs with microquasars.

  13. Are cometary nuclei primordial rubble piles?

    Science.gov (United States)

    Weissman, P. R.

    1986-01-01

    Whipple's icy conglomerate model for the cometary nucleus has had considerable sucess in explaining a variety of cometary phenomena such as gas production rates and nongravitational forces. However, as discussed here, both observational evidence and theoretical considerations suggest that the cometary nucleus may not be a well-consolidated single body, but may instead be a loosely bound agglomeration of smaller fragments, weakly bonded and subject to occasional or even frequent disruptive events. The proposed model is analogous to the 'rubble pile' model suggested for the larger main-belt asteroids, although the larger cometary fragments are expected to be primordial condensations rather than collisionally derived debris as in the asteroid case. The concept of cometary nuclei as primordial rubble piles is proposed as a modification of the basic Whipple model, not as a replacement for it.

  14. Single-particle states in transcurium nuclei.

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.

    1999-09-30

    Identification of single-particle states in the heaviest known nuclei is important because their energies can be used to test the single-particle potential in these high-Z elements. These states can be identified by studying the decay schemes of very heavy odd-mass nuclides. For neutrons, the heaviest odd-mass nuclide available in milliCurie quantities is the 20-h {sup 255}Fm and for protons the heaviest nuclide available is the 20-d {sup 253}Es. These two isotopes were obtained from the Transplutonium Element Production Program at Oak Ridge and their spectra were measured with high-resolution germanium spectrometers. From the results of these measurements we have identified states in {sup 251}Cf and {sup 249}Bk up to 1 MeV excitation energy.

  15. Structural features of protein folding nuclei.

    Science.gov (United States)

    Garbuzynskiy, S O; Kondratova, M S

    2008-03-05

    A crucial event of protein folding is the formation of a folding nucleus. We demonstrate the presence of a considerable coincidence between the location of folding nuclei and the location of so-called "root structural motifs", which have unique overall folds and handedness. In the case of proteins with a single root structural motif, the involvement in the formation of a folding nucleus is in average significantly higher for amino acids residues that are in root structural motifs, compared to residues in other parts of the protein. The tests carried out revealed that the observed difference is statistically reliable. Thus, a structural feature that corresponds to the protein folding nucleus is now found.

  16. Clusters in neutron-rich light nuclei

    Directory of Open Access Journals (Sweden)

    Jelavić Malenica D.

    2016-01-01

    Full Text Available Due to their high selectivity, transfer and sequential decay reactions are powerful tools for studies of both single particle (nucleon and cluster states in light nuclei. Their use is particularly simple for investigations of α-particle clustering (because α-particle has Jπ=0+, which simplifies spin and parity assignments to observed cluster states, but they are also easily applicable to other types of clustering. Recent results on clustering in neutron-rich isotopes of beryllium, boron and carbon obtained measuring the 10B+10B reactions (at 50 and 72 MeV are presented. The highly efficient and segmented detector systems used, built from 4 Double Sided Silicon Strip Detectors (DSSSD allowed detection of double and multiple coincidences and, in that way, studies of states populated in transfer reactions, as well as their sequential decay.

  17. Feldspar minerals as efficient deposition ice nuclei

    Directory of Open Access Journals (Sweden)

    J. D. Yakobi-Hancock

    2013-06-01

    Full Text Available Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically-relevant mineral samples have been studied, using a continuous flow diffusion chamber at −40.0 ± 0.3 °C. The same particle size (200 nm and particle preparation procedure were used throughout. The ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD and Mojave Desert Dust (MDD, and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN, requiring a critical relative humidity with respect to ice (RHi of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RHi 126.3 ± 3.4% and ATD (RHi 129.5 ± 5.1% have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite, non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz, and feldspar minerals (orthoclase, plagioclase present in the atmospheric dusts it was found that the feldspar minerals (particularly orthoclase, and not the clays, were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals.

  18. Dynamical effects in fusion with exotic nuclei

    Science.gov (United States)

    Vo-Phuoc, K.; Simenel, C.; Simpson, E. C.

    2016-08-01

    Background: Reactions with stable beams have demonstrated strong interplay between nuclear structure and fusion. Exotic beam facilities open new perspectives to understand the impact of neutron skin, large isospin, and weak binding energies on fusion. Microscopic theories of fusion are required to guide future experiments. Purpose: To investigate new effects of exotic structures and dynamics in near-barrier fusion with exotic nuclei. Method: Microscopic approaches based on the Hartree-Fock (HF) mean-field theory are used for studying fusion barriers in -54Ca40+116Sn reactions for even isotopes. Bare potential barriers are obtained assuming frozen HF ground-state densities. Dynamical effects on the barrier are accounted for in time-dependent Hartree-Fock (TDHF) calculations of the collisions. Vibrational couplings are studied in the coupled-channel framework and near-barrier nucleon transfer is investigated with TDHF calculations. Results: The development of a neutron skin in exotic calcium isotopes strongly lowers the bare potential barrier. However, this static effect is not apparent when dynamical effects are included. On the contrary, a fusion hindrance is observed in TDHF calculations with the most neutron-rich calcium isotopes which cannot be explained by vibrational couplings. Transfer reactions are also important in these systems due to charge equilibration processes. Conclusions: Despite its impact on the bare potential, the neutron skin is not seen as playing an important role in the fusion dynamics. However, the charge transfer with exotic projectiles could lead to an increase of the Coulomb repulsion between the fragments, suppressing fusion. The effects of transfer and dissipative mechanisms on fusion with exotic nuclei deserve further studies.

  19. Nuclei in motion: movement and positioning of plant nuclei in development, signaling, symbiosis and disease.

    Directory of Open Access Journals (Sweden)

    Anna Hare Newman Griffis

    2014-04-01

    Full Text Available While textbook figures imply nuclei as resting spheres at the center of idealized cells, this picture fits few real situations. Plant nuclei come in many shapes and sizes, and can be actively transported within the cell. In several contexts, this nuclear movement is tightly coupled to a developmental program, the response to an abiotic signal, or a cellular reprogramming during either mutualistic or parasitic plant-microbe interactions. While many such phenomena have been observed and carefully described, the underlying molecular mechanism and the functional significance of the nuclear movement are typically unknown. Here, we survey recent as well as older literature to provide a concise starting point for applying contemporary molecular, genetic and biochemical approaches to this fascinating, yet poorly understood phenomenon.

  20. Decay of Hot Nuclei at Low Spins Produced by Antiproton-Annihilation in Heavy Nuclei

    CERN Multimedia

    2002-01-01

    % PS208 \\\\ \\\\ The objective of the experiment is to study (i) the thermal excitation energy distribution of antiproton-induced reactions in heavy nuclei and (ii) the decay properties of hot nuclei at low spins via evaporation, multifragmentation and fission as a function of excitation energy. The experimental set-up consists of 4-$\\pi$ detectors: the Berlin Neutron Ball~(BNB) which is a spherical shell of gadolinium-loaded scintillator liquid with an inner and outer diameter of 40 and 160~cm, respectively. This detector counts the number of evaporated neutrons in each reaction. Inside BNB there is a 4-$\\pi$ silicon ball~(BSIB) with a diameter of 20~cm consisting of 162 detectors which measure energy and multiplicity of all emitted charged nuclear particles. The particles are identified via time of flight, energy and pulse shape correlations.

  1. Airborne measurements of condensation nuclei and cloud condensation nuclei above the alpine foothills

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, B. [Inst. for Meteorology and Geophysics, Univ. of Frankfurt (Germany); Georgii, H.W. [Inst. for Meteorology and Geophysics, Univ. of Frankfurt (Germany)

    1994-11-01

    During the Cloud Experiment OberPfaffenhofen And TRAnsport (CLEOPATRA) in the summer 1992 airborne measurements of cloud condensation nuclei (CCN) and concentrations of condensation nuclei (CN) or total particle concentration have been determined. Flights were made in convective as well as in stratiform clouds. Enhancement of particle concentrations in the vicinity of clouds was observed in some but not all cases. Conditions pertaining to enhanced concentrations are examined. (orig.) [Deutsch] Im Sommer 1992 wurden im Rahmen des CLoud Experiment OberPfaffenhofen And TRAnsport (CLEOPATRA) Flugzeugmessungen von Wolkenkondensationskernen (CCN) und Kondensationskernen (CN) durchgefuehrt. Bei Fluegen in konvektiven und stratiformen Wolken wurde ein Anstieg von Partikeln im Wolkenrandbereich gemessen. Dieser Anstieg konnte allerdings nicht in allen Faellen beobachtet werden und war abhaengig von den Umgebungsbedingungen. (orig.)

  2. Study of cosmic ray nuclei detection by an image calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Casolino, M.; Sparvoli, R.; Morselli, A.; Picozza, P. [Rome Univ. `Tor Vergata` (Italy)]|[INFN, Sezione Univ. `Tor Vergata` Rome (Italy); Ozerov, Yu.V.; Zemskov, V.M.; Zverev, V.G.; Galper, A.M. [Moscow Engineering Physics Institute, Moscow (Russian Federation); Carlson, P. [Royal Institute of Technology, Stockholm (Sweden); Fuglesang, C. [ESA-EAC, Cologne (Germany)

    1995-09-01

    It is shown that a cosmic gamma-ray telescope made of a multilayer silicon tracker and a imaging CsI calorimeter, is capable of identifying cosmic ray nuclei. The telescope charge resolution is estimated around 4% independently of charge. Simulation methods are used to determine the telescope properties for nuclei detection.

  3. Comparing and contrasting nuclei and cold atomic gases

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas; Jensen, Aksel Stenholm

    2013-01-01

    , interactions, and relevant length and energy scales of cold atoms and nuclei. Next we address some attempts in nuclear physics to transfer the concepts of condensates in nuclei that can in principle be built from bosonic alpha-particle constituents. We also consider Efimov physics, a prime example of nuclear...

  4. Origin of light nuclei in near earth orbit

    CERN Document Server

    Derome, L

    2001-01-01

    The possible sources of light nuclei populations observed recently below the geomagnetic cutoff by the AMS experiment are discussed in terms of nuclear processes: fragmentation of the incoming flux of cosmic helium on atmospheric nuclei, and nuclear coalescence from proton and helium induced reactions. Results of simulations for deuterium, tritium, helium 3 and 4, are presented.

  5. Analysis of Orientation Relations Between Deformed Grains and Recrystallization Nuclei

    DEFF Research Database (Denmark)

    West, Stine S.; Winther, Grethe; Juul Jensen, Dorte

    2011-01-01

    Nucleation in 30 pct rolled high-purity aluminum samples was investigated by the electron backscattering pattern method before and after annealing. A total of 29 nuclei including two twins were observed, and approximately one third of these nuclei had orientations not detected in the deformed sta...

  6. Mass Measurements of Proton-rich Nuclei with JYFLTRAP

    OpenAIRE

    Eronen, Tommi

    2011-01-01

    The Penning trap setup JYFLTRAP, connected to the IGISOL facility, has been extensively used for atomic mass measurements of exotic nuclei. On the proton rich side of the chart of nuclei mass measurements have mostly contributed to fundamental physics and nuclear astrophysics studies with about 100 atomic masses measured.

  7. Unstable nuclei in dissociation of light stable and radioactive nuclei in nuclear track emulsion

    CERN Document Server

    Artemenkov, D A; Zarubin, P I

    2016-01-01

    A role of the unstable nuclei ${}^{6}$Be, ${}^{8}$Be and ${}^{9}$B in the dissociation of relativistic nuclei ${}^{7,9}$Be, ${}^{10}$B and ${}^{10,11}$C is under study on the basis of nuclear track emulsion exposed to secondary beams of the JINR Nuclotron. Contribution of the configuration ${}^{6}$Be + $\\mit{n}$ to the ${}^{7}$Be nucleus structure is 8 $\\pm$ 1% which is near the value for the configuration ${}^{6}$Li + $\\mit{p}$. Distributions over the opening angle of $\\alpha$-particle pairs indicate to a simultaneous presence of virtual ${}^{8}$Be$_{g.s.}$ and ${}^{8}$Be$_{2^+}$ states in the ground states of the ${}^{9}$Be and ${}^{10}$C nuclei. The core ${}^{9}$B is manifested in the {${}^{10}$C} nucleus with a probability of 30 $\\pm$ 4%. Selection of the ${}^{10}$C "white" stars accompanied by ${}^{8}$Be$_{g.s.}$ (${}^{9}$B) leads to appearance in the excitation energy distribution of 2$\\alpha$2$\\mit{p}$ "quartets" of the distinct peak with a maximum at 4.1 $\\pm$ 0.3 MeV. ${}^{8}$Be$_{g.s.}$ decays are p...

  8. Analysis of isomeric ratios for medium-mass nuclei

    Science.gov (United States)

    Danagulyan, A. S.; Hovhannisyan, G. H.; Bakhshiyan, T. M.; Kerobyan, I. A.

    2016-09-01

    Values of the isomeric ratios for product nuclei originating from simple charge-exchange reactions were analyzed. The cross sections for the formation of product nuclei in ground and isomeric states were calculated with the aid of the TALYS 1.4 and EMPIRE 3.2 codes. The calculated values of the isomeric ratios were compared with their experimental counterparts taken from the EXFOR database. For the 86,87Y, 94,95,96,99Tc, and 44Sc nuclei, the experimental values of the isomeric ratios exceed the respective calculated values. The nuclei in question feature weak deformations and have high-spin yrast lines and rotational bands. The possible reason behind the discrepancy between theoretical and experimental isomeric ratios is that the decay of yrast states leads with a high probability to the formation of isomeric states of detected product nuclei.

  9. A new spin-oriented nuclei facility: POLAREX

    Directory of Open Access Journals (Sweden)

    Etilé A.

    2014-03-01

    Full Text Available Using the On-Line Nuclear Orientation method, POLAREX (POLARization of EXotic nuclei is a new facility allowing to study the anisotropic decay of spin-oriented nuclei. Based on the combination of on-line implantation of radioactive nuclei with Low Temperature Nuclear Orientation technique and Nuclear Magnetic Resonance, POLAREX allows to measure nuclear electromagnetic moments and ground-state spins, in the aim to get information about the wave function composition of the nuclear state. Polarized nuclei can also be used to study fundamental interactions involving nuclear β-decay asymmetries. The POLAREX infrastructure will be installed at Accélérateur Linéaire auprés du Tandem d’Orsay in order to study neutron-rich nuclei, some of which have not been studied yet. Will be presented here, all the possibilities of this new facility and a non exhaustive scientific program.

  10. Mid-infrared spectra of comet nuclei

    Science.gov (United States)

    Kelley, Michael S. P.; Woodward, Charles E.; Gehrz, Robert D.; Reach, William T.; Harker, David E.

    2017-03-01

    Comet nuclei and D-type asteroids have several similarities at optical and near-IR wavelengths, including near-featureless red reflectance spectra, and low albedos. Mineral identifications based on these characteristics are fraught with degeneracies, although some general trends can be identified. In contrast, spectral emissivity features in the mid-infrared provide important compositional information that might not otherwise be achievable. Jovian Trojan D-type asteroids have emissivity features strikingly similar to comet comae, suggesting that they have the same compositions and that the surfaces of the Trojans are highly porous. However, a direct comparison between a comet and asteroid surface has not been possible due to the paucity of spectra of comet nuclei at mid-infrared wavelengths. We present 5-35 μm thermal emission spectra of comets 10P/Tempel 2, and 49P/Arend-Rigaux observed with the Infrared Spectrograph on the Spitzer Space Telescope. Our analysis reveals no evidence for a coma or tail at the time of observation, suggesting the spectra are dominated by the comet nucleus. We fit each spectrum with the near-Earth asteroid thermal model (NEATM) and find sizes in agreement with previous values. However, the NEATM beaming parameters of the nuclei, 0.74-0.83, are systematically lower than the Jupiter-family comet population mean of 1.03 ± 0.11, derived from 16- and 22-μm photometry. We suggest this may be either an artifact of the spectral reduction, or the consequence of an emissivity low near 16 μm. When the spectra are normalized by the NEATM model, a weak 10-μm silicate plateau is evident, with a shape similar to those seen in mid-infrared spectra of D-type asteroids. A silicate plateau is also evident in previously published Spitzer spectra of the nucleus of comet 9P/Tempel 1. We compare, in detail, these comet nucleus emission features to those seen in spectra of the Jovian Trojan D-types (624) Hektor, (911) Agamemnon, and (1172) Aneas, as well

  11. A unified nucleosynthetic site for the production of heavy isotopes and p-nuclei

    CERN Document Server

    Ouyed, Amir; Leahy, Denis

    2014-01-01

    Current r-process models under-produce A130 nuclei, and spallation fragments these isotopes into A<130 nuclei and all 35 p-nuclei. Our model is universal in relation to a star's age, metallicity, and chemistry.

  12. Effective field theory for halo nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Philipp Robert

    2014-02-19

    We investigate properties of two- and three-body halo systems using effective field theory. If the two-particle scattering length a in such a system is large compared to the typical range of the interaction R, low-energy observables in the strong and the electromagnetic sector can be calculated in halo EFT in a controlled expansion in R/ vertical stroke a vertical stroke. Here we focus on universal properties and stay at leading order in the expansion. Motivated by the existence of the P-wave halo nucleus {sup 6}He, we first set up an EFT framework for a general three-body system with resonant two-particle P-wave interactions. Based on a Lagrangian description, we identify the area in the effective range parameter space where the two-particle sector of our model is renormalizable. However, we argue that for such parameters, there are two two-body bound states: a physical one and an additional deeper-bound and non-normalizable state that limits the range of applicability of our theory. With regard to the three-body sector, we then classify all angular-momentum and parity channels that display asymptotic discrete scale invariance and thus require renormalization via a cut-off dependent three-body force. In the unitary limit an Efimov effect occurs. However, this effect is purely mathematical, since, due to causality bounds, the unitary limit for P-wave interactions can not be realized in nature. Away from the unitary limit, the three-body binding energy spectrum displays an approximate Efimov effect but lies below the unphysical, deep two-body bound state and is thus unphysical. Finally, we discuss possible modifications in our halo EFT approach with P-wave interactions that might provide a suitable way to describe physical three-body bound states. We then set up a halo EFT formalism for two-neutron halo nuclei with resonant two-particle S-wave interactions. Introducing external currents via minimal coupling, we calculate observables and universal correlations for

  13. Nuclei far from stability using exotic targets

    CERN Document Server

    Wilhelmy, J B; Brown, R E; Flynn, E R; Thomas, K E; Van der Plicht, J

    1981-01-01

    The meson factories have made possible high fluence medium energy proton beams that can be used for spallation reactions to produce macro quantities of unstable isotopes. Targets of over 10 g/cm/sup 2/ can be exposed to total fluence approaching 1 A-hour resulting in spallation yields in the 0.01-10 mg range for many isotopes of potential interest for nuclear structure studies. With the use of hot cell facilities, chemical processing can isolate the desired material and this coupled with subsequent isotope separation can result in usable quantities of material for nuclear target application. With offstable isotopes as target materials, conventional nuclear spectroscopy techniques can be employed to study nuclei far from stability. The irradiation and processing requirements for such an operation, along with the isotope production possibilities, are discussed. Also presented are initial experiments using a /sup 148/Gd (t/sub 1/2/=75a) target to perform the (p, t) reaction to establish levels in the proposed do...

  14. Giant dipole resonance in hot rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, D.R. [Bhabha Atomic Research Centre, Nuclear Physics Division, Mumbai (India); Dinh Dang, N. [RIKEN, Nishina Centre for Accelerator-based Science, Saitama (Japan); VINATOM, Institute of Nuclear Science and Technique, Hanoi (Viet Nam); Datar, V.M. [Tata Institute of Fundamental Research, INO Cell, Mumbai (India)

    2016-05-15

    Over the last several decades, extensive experimental and theoretical work has been done on the giant dipole resonance (GDR) in excited nuclei covering a wide range of temperature (T), angular momentum (J) and nuclear mass. A reasonable stability of the GDR centroid energy and an increase of the GDR width with T (in the range∝1-3 MeV) and J are the two well-established results. Some experiments have indicated the saturation of the GDR width at high T. The gradual disappearance of the GDR vibration at much higher T has been observed. Experiments on the Jacobi transition and the GDR built on superdeformed shapes at high rotational frequencies have been reported in a few cases. Theoretical calculations on the damping of the collective dipole vibration, characterised by the GDR width, have been carried out within various models such as the thermal shape fluctuation model and the phonon damping model. These models offer different interpretations of the variation of the GDR width with T and J and have met with varying degrees of success in explaining the experimental data. In this review, the present experimental and theoretical status in this field is discussed along with the future outlook. The interesting phenomenon of the pre-equilibrium GDR excitation in nuclear reactions is briefly addressed. (orig.)

  15. Warm absorbers in active galactic nuclei

    CERN Document Server

    Reynolds, C S; Reynolds, C S; Fabian, A C

    1995-01-01

    Recent {\\it ASCA} observations confirm the presence of X-ray absorption due to partially ionized gas in many Seyfert 1 galaxies; the so-called warm absorber. Constraints on the location of the warm material are presented with the conclusion that this material lies at radii coincident with, or just outside, the broad-line region. The stability of this warm material to isobaric perturbations under the assumptions of thermal and photoionization equilibrium is also studied. It is shown that there is a remarkably small range of ionization parameter, \\xi, for which the warm absorber state is stable. The robustness of this result to changes in the shape of the primary continuum, the assumed density and optical depth is investigated. Given the constraints on the location and the stability properties of the material, several models for the environments of Seyfert nuclei are discussed. These attempt to explain the presence of significant amounts of partially ionized material. In particular, various models of the broad-...

  16. Pairing and specific heat in hot nuclei

    CERN Document Server

    Gambacurta, Danilo; Sandulescu, Nicu

    2013-01-01

    The thermodynamics of pairing phase-transition in nuclei is studied in the canonical ensemble and treating the pairing correlations in a finite-temperature variation after projection BCS approach (FT-VAP). Due to the restoration of particle number conservation, the pairing gap and the specific heat calculated in the FT-VAP approach vary smoothly with the temperature, indicating a gradual transition from the superfluid to the normal phase, as expected in finite systems. We have checked that the predictions of the FT-VAP approach are very accurate when compared to the results obtained by an exact diagonalization of the pairing Hamiltonian. The influence of pairing correlations on specific heat is analysed for the isotopes $^{161,162}$Dy and $^{171,172}$Yb. It is shown that the FT-VAP approach, applied with a level density provided by mean field calculations and supplemented, at high energies, by the level density of the back-shifted Fermi gas model, can approximate reasonably well the main properties of specifi...

  17. Efimov effect in 2-neutron halo nuclei

    Indian Academy of Sciences (India)

    Indranil Mazumdar

    2010-07-01

    This paper presents an overview of our theoretical investigations in search of Efimov states in light 2-neutron halo nuclei. The calculations have been carried out within a three-body formalism, assuming a compact core and two valence neutrons forming the halo. The calculations provide strong evidence for the occurrence of at least two Efimov states in 20C nucleus. These excited states move into the continuum as the two-body (core-neutron) binding energy is increased and show up as asymmetric resonances in the elastic scattering cross-section of the n- 19C system. The Fano mechanism is invoked to explain the asymmetry. The calculations have been extended to 38Mg, 32Ne and a hypothetical case of a very heavy core ( = 100) with two valence neutrons. In all these cases the Efimov states show up as resonances as the two-body energy is increased. However, in sharp contrast, the Efimov states, for a system of three equal masses, show up as virtual states beyond a certain value of the two-body interaction.

  18. Shell Model for Warm Rotating Nuclei

    CERN Document Server

    Matsuo, M; Vigezzi, E; Broglia, R A; Yoshida, K

    1997-01-01

    In order to provide a microscopic description of levels and E2 transitions in rapidly rotating nuclei with internal excitation energy up to a few MeV, use is made of a shell model which combines the cranked Nilsson mean-field and the residual surface delta two-body force. The damping of collective rotational motion is investigated in the case of a typical rare-earth nucleus, namely \\Yb. It is found that rotational damping sets in at around 0.8 MeV above the yrast line, and the levels which form rotational band structures are thus limited. We predict at a given rotational frequency existence of about 30 rotational bands of various lengths, in overall agreement with the experimental findings. The onset of the rotational damping proceeds quite gradually as a function of the internal excitation energy. The transition region extends up to around 2 MeV above yrast and it is characterized by the presence of scars of discrete rotational bands which extend over few spin values and stand out among the damped transition...

  19. Electromagnetic Studies of Mesons, Nucleons, and Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Oliver K.

    2013-08-20

    Professor Baker was a faculty member at Hampton University in Hampton, Virginia, and, jointly, a Staff Physicist at Jefferson Lab in nearby Newport News from September 1989 to July 2006. The Department of Energy (DOE) funded the grant DE-FG02-97ER41035 Electromagnetic Studies of Mesons, Nucleons, and Nuclei, while Baker was in this joint appointment. Baker sent a closeout report on these activities to Hampton University’s Sponsored Research Office some years ago, shortly after joining Yale University in 2006. In the period around 2001, the research grant with Baker as the Principal Investigator (PI) was put under the supervision of Professor Liguang Tang at Hampton University. Baker continued to pursue the research while in this join appointment, however the administrative responsibilities with the DOE and with Hampton University rested with Professor Tang after 2001, to my recollection. What is written in this document is from Baker’s memory of the research activities, which he has not pursued since joining the Yale University faculty.

  20. Fission properties for r-process nuclei

    CERN Document Server

    Erler, J; Loens, H P; Martínez-Pinedo, G; Reinhard, P -G

    2011-01-01

    We present a systematics of fission barriers and fission lifetimes for the whole landscape of super-heavy elements (SHE), i.e. nuclei with Z>100. The fission lifetimes are also compared with the alpha-decay half-lives. The survey is based on a self-consistent description in terms of the Skyrme-Hartree-Fock (SHF) approach. Results for various different SHF parameterizations are compared to explore the robustness of the predictions. The fission path is computed by quadrupole constrained SHF. The computation of fission lifetimes takes care of the crucial ingredients of the large-amplitude collective dynamics along the fission path, as self-consistent collective mass and proper quantum corrections. We discuss the different topologies of fission landscapes which occur in the realm of SHE (symmetric versus asymmetric fission, regions of triaxial fission, bi-modal fission, and the impact of asymmetric ground states). The explored region is extended deep into the regime of very neutron-rich isotopes as they are expec...

  1. Parameterizing cloud condensation nuclei concentrations during HOPE

    Science.gov (United States)

    Hande, Luke B.; Engler, Christa; Hoose, Corinna; Tegen, Ina

    2016-09-01

    An aerosol model was used to simulate the generation and transport of aerosols over Germany during the HD(CP)2 Observational Prototype Experiment (HOPE) field campaign of 2013. The aerosol number concentrations and size distributions were evaluated against observations, which shows satisfactory agreement in the magnitude and temporal variability of the main aerosol contributors to cloud condensation nuclei (CCN) concentrations. From the modelled aerosol number concentrations, number concentrations of CCN were calculated as a function of vertical velocity using a comprehensive aerosol activation scheme which takes into account the influence of aerosol chemical and physical properties on CCN formation. There is a large amount of spatial variability in aerosol concentrations; however the resulting CCN concentrations vary significantly less over the domain. Temporal variability is large in both aerosols and CCN. A parameterization of the CCN number concentrations is developed for use in models. The technique involves defining a number of best fit functions to capture the dependence of CCN on vertical velocity at different pressure levels. In this way, aerosol chemical and physical properties as well as thermodynamic conditions are taken into account in the new CCN parameterization. A comparison between the parameterization and the CCN estimates from the model data shows excellent agreement. This parameterization may be used in other regions and time periods with a similar aerosol load; furthermore, the technique demonstrated here may be employed in regions dominated by different aerosol species.

  2. Cluster radioactivity in very heavy nuclei: a new perspective

    Energy Technology Data Exchange (ETDEWEB)

    Routray, T.R. [P.G. Department of Physics, Sambalpur University, Jyoti Vihar, Burla, Orissa 768019 (India)], E-mail: trr1@rediffmail.com; Nayak, Jagajjaya [P.G. Department of Physics, Sambalpur University, Jyoti Vihar, Burla, Orissa 768019 (India)], E-mail: jagat.su_ph@yahoo.in; Basu, D.N. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700 064 (India)], E-mail: dnb@veccal.ernet.in

    2009-08-01

    Exotic cluster decay of very heavy nuclei is studied using the microscopic nuclear potentials obtained by folding density dependent M3Y effective interaction with the densities of the cluster and the daughter nuclei. The microscopic nuclear potential, Coulomb interaction and the centrifugal barrier arising out of spin-parity conservation are used to obtain the potential between the cluster and the daughter nuclei. Half life values are calculated in the WKB framework and the preformation factors are extracted. The latter values are seen to have only a very weak dependence on the mass of the emitted cluster.

  3. Is the proton electromagnetic form factor modified in nuclei?

    Energy Technology Data Exchange (ETDEWEB)

    Morgenstern, J; Meziani, Zein-eddine

    2003-06-01

    Guided by the recent experimental confirmation of the validity of the Effective Momentum Approximation (EMA) in quasi-elastic scattering off nuclei, we have re-examined the extraction of the Longitudinal and Transverse Response Functions in medium-weight and heavy nuclei. In the EMA we have performed a Rosenbluth separation of the available world data on 40Ca, 48Ca, 56Fe and 208Pb. We find that the Longitudinal Response Function for these nuclei is quenched and that the Coulomb sum is not saturated, at odds with recent claims in the literature.

  4. Is the Coulomb sum rule violated in nuclei?

    CERN Document Server

    Morgenstern, J

    2001-01-01

    Guided by the experimental confirmation of the validity of the Effective Momentum Approximation (EMA) in quasi-elastic scattering off nuclei, we have re-examined the extraction of the longitudinal and transverse response functions in medium-weight and heavy nuclei. In the EMA we have performed a Rosenbluth separation of the available world data on $^{40}$Ca, $^{48}$Ca, $^{56}$Fe, $^{197}$Au, $^{208}$Pb and $^{238}$U. We find that the longitudinal response function for these nuclei is "quenched" and that the Coulomb sum is not saturated, at odds with claims in the literature.

  5. Precision mass measurements of radioactive nuclei at JYFLTRAP

    CERN Document Server

    Rahaman, S; Eronen, T; Hager, U; Hakala, J; Jokinen, A; Kankainen, A; Moore, I D; Pentillä, H; Rinta-Antila, S; Rissanen, J; Saastamoinen, A; Sonoda, T; Weber, C; Äystö, J

    2007-01-01

    The Penning trap mass spectrometer JYFLTRAP was used to measure the atomic masses of radioactive nuclei with an uncertainty better than 10 keV. The atomic masses of the neutron-deficient nuclei around the N = Z line were measured to improve the understanding of the rp-process path and the SbSnTe cycle. Furthermore, the masses of the neutron-rich gallium (Z = 31) to palladium (Z = 46) nuclei have been measured. The physics impacts on the nuclear structure and the r-process paths are reviewed. A better understanding of the nuclear deformation is presented by studying the pairing energy around A = 100.

  6. Relativistic Mean Field Study on Halo Structures of Mirror Nuclei

    Institute of Scientific and Technical Information of China (English)

    LIANG Yu-Jie; LI Yan-Song; LIU Zu-Hua; ZHOU Hong-Yu

    2009-01-01

    Halo structures of some light mirror nuclei are investigated with the relativistic mean field (RMF) theory.The calculations show that the dispersion of the valence proton is larger than that of the valence neutron in its mirror nucleus,the difference between the root-mean-square (rms) radius of the valence nucleon in each pair of mirror nuclei becomes smailer with the increase of the mass number A,and all the ratios of the rms radius of the valence nucleon to that of the matter in each pair o~ mirror nuclei decrease almost linearly with the increase of the mass number A.

  7. Quantum-Information Content of Fractional Occupation Probabilities in Nuclei

    CERN Document Server

    Chatzisavvas, K C

    2004-01-01

    Three measures of the information content of a probability distribution are briefly reviewed. They are applied to fractional occupation probabilities in light nuclei, taking into account short-range correlations. The effect of short-range correlations is to increase the information entropy (or disorder) of nuclei, comparing with the independent particle model. It is also indicated that the information entropy can serve as a sensitive index of order and short-range correlations in nuclei. It is concluded that increasing $Z$, the information entropy increases i.e. the disorder of the nucleus increases for all measures of information considered in the present work.

  8. New aspects of the neutron capture in light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mengoni, A. [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-03-01

    Several neutron capture cross sections of light nuclei (A {<=} 40) for neutron energies up to the MeV region have been recently calculated. Examples are (target nuclei): {sup 12}C, {sup 13}C, {sup 16}O and {sup 10}Be. The results of these calculations will be shown together with a comparison with the most recent experimental data. In the case of n + {sup 10}Be case, the cross section of the inverse process (Coulomb dissociation of {sup 11}Be) is considered and compared with the measurement. A discussion on the relevant nuclear structure information required for the evaluation of nuclear data of light nuclei is given. (author)

  9. The intergalactic propagation of ultrahigh energy cosmic ray nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; /Fermilab; Sarkar, Subir; /Oxford U., Theor. Phys.; Taylor, Andrew M.; /Oxford U.

    2006-08-01

    We investigate the propagation of ultra-high energy cosmic ray nuclei (A = 1-56) from cosmologically distant sources through the cosmic radiation backgrounds. Various models for the injected composition and spectrum and of the cosmic infrared background are studied using updated photodisintegration cross-sections. The observational data on the spectrum and the composition of ultra-high energy cosmic rays are jointly consistent with a model where all of the injected primary cosmic rays are iron nuclei (or a mixture of heavy and light nuclei).

  10. Detecting and Identifying Heavy Nuclei and Antinuclei with Standard Detectors

    CERN Document Server

    Swain, J; Widom, A; Srivastava, Y N

    2011-01-01

    Most data gathered from high energy experiments at colliders are analyzed assuming that particles stable enough to not decay in the detector volume, and able to interact strongly or electromagnetically, must be electrons, muons, protons, neutrons, photons, kaons, and charged pions, or their antiparticles. While light nuclei and antinuclei such as (anti)deuterons have been detected, we argue that it is experimentally interesting to look for even heavier nuclei in high energy collisions. To this end, we point out that using only tracking and calorimetry information it is, in principle, possible to also search for high energy nuclei and antinuclei and determine, with errors, their charge Z and atomic weight A.

  11. Relativistic Brueckner-Hartree-Fock theory for finite nuclei

    CERN Document Server

    Shen, Shihang; Liang, Haozhao; Meng, Jie; Ring, Peter; Zhang, Shuangquan

    2016-01-01

    Starting with a bare nucleon-nucleon interaction, for the first time the full relativistic Brueckner-Hartree-Fock equations are solved for finite nuclei in a Dirac-Woods-Saxon basis. No free parameters are introduced to calculate the ground-state properties of finite nuclei. The nucleus $^{16}$O is investigated as an example. The resulting ground-state properties, such as binding energy and charge radius, are considerably improved as compared with the non-relativistic Brueckner-Hartree-Fock results and much closer to the experimental data. This opens the door for \\emph{ab initio} covariant investigations of heavy nuclei.

  12. Strangeness in nuclei and neutron stars

    Science.gov (United States)

    Lonardoni, Diego

    2017-01-01

    The presence of exotic particles in the core of neutron stars (NS) has been questioned for a long time. At present, it is still an unsolved problem that drives intense research efforts, both theoretical and experimental. The appearance of strange baryons in the inner regions of a NS, where the density can exceed several times the nuclear saturation density, is likely to happen due to energetic considerations. The onset of strange degrees of freedom is considered as an effective mechanism to soften the equation of state (EoS). This softening affects the entire structure of the star, reducing the pressure and therefore the maximum mass that the star can stably support. The observation of two very massive NS with masses of the order of 2M⊙ seems instead to rule out soft EoS, apparently excluding the possibility of hyperon formation in the core of the star. This inconsistency, usually referred to as the hyperon puzzle, is based on what we currently know about the interaction between strange particles and normal nucleons. The combination of a poor knowledge of the hypernuclear interactions and the difficulty of obtaining clear astrophysical evidence of the presence of hyperons in NS makes the understanding of the behavior of strange degrees of freedom in NS an intriguing theoretical challenge. We give our contribution to the discussion by studying the general problem of the hyperon-nucleon interaction. We attack this issue by employing a quantum Monte Carlo (QMC) technique, that has proven to be successful in the description of strongly correlated Fermion systems, to the study of finite size nuclear systems including strange degrees of freedom, i.e. hypernuclei. We show that many-body hypernuclear forces are fundamental to properly reproduce the ground state physics of Λ hypernuclei from light- to medium-heavy. However, the poor abundance of experimental data on strange nuclei leaves room for a good deal of indetermination in the construction of hypernuclear

  13. Scissors mode of Gd nuclei studied from resonance neutron capture

    Science.gov (United States)

    Kroll, J.; Baramsai, B.; Becker, J. A.; Bečvár, F.; Bredeweg, T. A.; Couture, A.; Chyzh, A.; Dashdorj, D.; Haight, R. C.; Heil, M.; Jandel, M.; Käppeler, F.; Krtička, M.; Mitchell, G. E.; O'Donnell, J. M.; Parker, W.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Valenta, S.; Vieira, D. J.; Walker, C. L.; Wilhelmy, J. B.; Wouters, J. M.; Wu, C. Y.

    2012-10-01

    Spectra of γ rays following the neutron capture at isolated resonances of stable Gd nuclei weremeasured. The objectives were to get new information on photon strength of 153,155-159Gd with emphasis on the role of the M1 scissors-mode vibration. An analysis of the data obtained clearly indicates that the scissors mode is coupled not only to the ground state, but also to all excited levels of the nuclei studied. The specificity of our approach ensures unbiasedness in estimating the sumed scissors-mode strength ΣB(M1)↑, even for odd product nuclei, for which conventional nuclear resonance fluorescence measurements yield only limited information. Our analysis indicates that for these nuclei the sum ΣB(M1)↑ increases with A and for 157,159Gd it is significantly higher compared to 156,158Gd.

  14. Studies of pear-shaped nuclei using accelerated radioactive beams

    CERN Document Server

    Gaffney, L P; Scheck, M; Hayes, A B; Wenander, F; Albers, M; Bastin, B; Bauer, C; Blazhev, A; Bonig, S; Bree, N; Cederkall, J; Chupp, T; Cline, D; Cocolios, T E; Davinson, T; DeWitte, H; Diriken, J; Grahn, T; Herzan, A; Huyse, M; Jenkins, D G; Joss, D T; Kesteloot, N; Konki, J; Kowalczyk, M; Kroll, Th; Kwan, E; Lutter, R; Moschner, K; Napiorkowski, P; Pakarinen, J; Pfeiffer, M; Radeck, D; Reiter, P; Reynders, K; Rigby, S V; Robledo, L M; Rudigier, M; Sambi, S; Seidlitz, M; Siebeck, B; Stora, T; Thoele, P; Van Duppen, P; Vermeulen, M J; von Schmid, M; Voulot, D; Warr, N; Wimmer, K; Wrzosek-Lipska, K; Wu, C Y; Zielinska, M

    2013-01-01

    There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are ‘octupole deformed’, that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions. Our data on and $^{224}$Ra show clear evidence for stronger octupole deformation in the latter. The results enable discrimination between differing theoretical approaches to octupole correlations, and help to constrain suitable candidates for experimental...

  15. Deformed $sd$-shell nuclei from first principles

    CERN Document Server

    Jansen, G R; Hagen, G; Navrátil, P

    2015-01-01

    We extend the ab initio coupled-cluster effective interaction (CCEI) method to deformed open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei $^{20}$Ne and $^{24}$Mg we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory for deformed nuclei, thereby demonstrating that collective phenomena in $sd$-shell nuclei emerge from complex ab initio calculations.

  16. Binding energies and modelling of nuclei in semiclassical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Garcia, M. Angeles [Departamento de Fisica Fundamental and Instituto Universitario de Fisica Fundamental y Matematicas, IUFFyM, Universidad de Salamanca, Plaza de la Merced s/n 37008 Salamanca (Spain)], E-mail: mperezga@usal.es; Tsushima, K. [Departamento de Fisica Fundamental and Instituto Universitario de Fisica Fundamental y Matematicas, IUFFyM, Universidad de Salamanca, Plaza de la Merced s/n 37008 Salamanca (Spain)], E-mail: tsushima@usal.es; Valcarce, A. [Departamento de Fisica Fundamental and Instituto Universitario de Fisica Fundamental y Matematicas, IUFFyM, Universidad de Salamanca, Plaza de la Merced s/n 37008 Salamanca (Spain)], E-mail: valcarce@usal.es

    2008-03-06

    We study the binding energies of spin-isospin saturated nuclei with nucleon number 8{<=}A{<=}100 in semiclassical Monte Carlo many-body simulations. The model Hamiltonian consists of (i) nucleon kinetic energy, (ii) a nucleon-nucleon interaction potential, and (iii) an effective Pauli potential which depends on density. The basic ingredients of the nucleon-nucleon potential are a short-range repulsion, and a medium-range attraction. Our results demonstrate that one can always expect to obtain the empirical binding energies for a set of nuclei by introducing a proper density dependent Pauli potential in terms of a single variable, the nucleon number, A. The present work shows that in the suggested procedure there is a delicate counterbalance of kinetic and potential energetic contributions allowing a good reproduction of the experimental nuclear binding energies. This type of calculations may be of interest in further reproduction of other properties of nuclei such as radii and also exotic nuclei.

  17. Structure of proton-rich nuclei of astrophysical interest

    Energy Technology Data Exchange (ETDEWEB)

    Roeckl, E. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany)

    1998-06-01

    Recent experimental data concerning proton-rich nuclei between A=20 and A=100 are presented and discussed with respect to their relevance to the astrophysical rp process and to the calibration of solar neutrino detectors. (orig.)

  18. Pseudospin Symmetry as a Bridge between Hadrons and Nuclei

    Directory of Open Access Journals (Sweden)

    Joseph N. Ginocchio

    2016-03-01

    Full Text Available Atomic nuclei exhibit approximate pseudospin symmetry. We review the arguments that this symmetry is a relativistic symmetry. The condition for this symmetry is that the sum of the vector and scalar potentials in the Dirac Hamiltonian is a constant. We give the generators of pseudospin symmetry. We review some of the predictions that follow from the insight that pseudospin symmetry has relativistic origins . We show that approximate pseudospin symmetry in nuclei predicts approximate spin symmetry in anti-nucleon scattering from nuclei. Since QCD sum rules predict that the sum of the scalar and vector potentials is small, we discuss the quark origins of pseudospin symmetry in nuclei and spin symmetry in hadrons.

  19. Description of deformed nuclei in the sdg boson model

    CERN Document Server

    Li, S C

    1996-01-01

    We present a study of deformed nuclei in the framework of the sdg interacting boson model utilizing both numerical diagonalization and analytical 1/N expansion techniques. The focus is on description of high-spin states which have recently become computationally accessible through the use of computer algebra in the 1/N expansion formalism. A systematic study is made of high-spin states in rare-earth and actinide nuclei.

  20. Cluster decay in very heavy nuclei in Relativistic Mean Field

    OpenAIRE

    Bhattacharya, Madhubrata; Gangopadhyay, G.

    2008-01-01

    Exotic cluster decay of very heavy nuclei has been studied in the microscopic Super-Asymmetric Fission Model. Relativistic Mean Field model with the force FSU Gold has been employed to obtain the densities of the cluster and the daughter nuclei. The microscopic nuclear interaction DDM3Y1, which has an exponential density dependence, and the Coulomb interaction have been used in the double folding model to obtain the potential between the cluster and the daughter. Half life values have been ca...

  1. Structure and reactions of light neutron rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Esbensen, H.

    1993-01-01

    Radioactive beam experiments have made it possible to study the structure of nuclei at the neutron drip line. Pair correlations play a crucial role in such nuclei and characteristic features include an extended neutron halo density and a large dipole strength near threshold. The most detailed studies have been performed for [sup 11]Li. I will present a 3-body model that explains the main features of the data obtained for this nucleus.

  2. Structure and reactions of light neutron rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Esbensen, H.

    1993-04-01

    Radioactive beam experiments have made it possible to study the structure of nuclei at the neutron drip line. Pair correlations play a crucial role in such nuclei and characteristic features include an extended neutron halo density and a large dipole strength near threshold. The most detailed studies have been performed for {sup 11}Li. I will present a 3-body model that explains the main features of the data obtained for this nucleus.

  3. Particle unstable nuclei in the Hartree-Fock theory

    Energy Technology Data Exchange (ETDEWEB)

    Kruppa, A.T. [Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete; Heenen, P.H. [Brussels Univ. (Belgium). Service de Physique Nucleaire Theorique; Flocard, H. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Liotta, R.J. [Manne Siegbahn Inst. of Physics, Stockholm (Sweden)

    1997-12-31

    Ground state energies and decay widths of particle unstable nuclei are calculated within the Hartree-Fock approximation by performing a complex scaling of the many-body Hamiltonian. Through this transformation, the wave functions of the resonant state become square integrable. The method is implemented with Skyrme effective interactions. Several Skyrme parametrizations are tested on four unstable nuclei: {sup 10}He, {sup 12}O, {sup 26}O and {sup 28}O. (author). 24 refs.

  4. The response of ionization chambers to relativistic heavy nuclei

    Science.gov (United States)

    Newport, B. J.; Stone, E. C.; Waddington, C. J.; Binns, W. R.; Fixsen, D. J.; Garrard, T. L.; Grimm, G.; Israel, M. H.; Klarmann, J.

    1985-01-01

    The LBL Bevalac for the Heavy Nuclei Experiment on HEAO-3, compared the response of a set of laboratory ionization chambers to beams of 26Fe, 36Kr, 54Xe, 67 Ho, and 79Au nuclei at maximum energies ranging from 1666 MeV/amu for Fe to 1049 MeV/amu for Au. The response of these chambers shows a significant deviation from the expected energy dependence, but only a slight deviation from Z sq scaling.

  5. Quantum Phase Transitions in Odd-Mass Nuclei

    CERN Document Server

    Leviatan, A; Iachello, F

    2011-01-01

    Quantum shape-phase transitions in odd-even nuclei are investigated in the framework of the interacting boson-fermion model. Classical and quantum analysis show that the presence of the odd fermion strongly influences the location and nature of the phase transition, especially near the critical point. Experimental evidence for the occurrence of spherical to axially-deformed transitions in odd-proton nuclei Pm, Eu and Tb (Z=61, 63, 65) is presented.

  6. Silicon Burning: Formation of the Iron Peak Nuclei

    Science.gov (United States)

    Hix, Wm. Raphael; Thielemann, Friederich-Karl

    1993-12-01

    As the most tightly bound nuclei, the 'Iron Peak' nuclei are the culmination of nuclear energy generation in astrophysical environments. Our re-examination of silicon burning, the mechanism by which the nuclei of the iron peak are produced, has revealed a number of potential improvements in the treatment of this ultimate stage of astrophysical nuclear energy generation. Previous work on Nuclear Statistical Equilibrium (NSE), the end state of silicon burning, has neglected the effect that Coulomb screening of capture reactions and their reverse reactions has on the equilibrium distribution, or assumed that these effects cancel, leaving an abundance distribution identical to that predicted in the absence of such screening. We find that the proper treatment of the screening of nuclear reactions in Nuclear Statistical Equilibrium (NSE), can produce significant differences in the relative abundances of the nuclei produced. This is particularly true at high density. Further, results gleaned from simulation work done with a large nuclear network (300 nuclei and 3000 reactions) and from independent calculations of NSE abundance distributions, offer new insights into the quasi-equilibrium mechanism and the approach to NSE. We will discuss methods which use this quasi-equilibrium mechanism to preserve the most important features of the large nuclear network calculations at a significant improvement in computational speed. Such improved methods are ideally suited for hydro- dynamic calculations which involve the production of iron peak nuclei, where the larger network calculation proves unmanageable.

  7. Active Galactic Nuclei Feedback and Galactic Outflows

    Science.gov (United States)

    Sun, Ai-Lei

    Feedback from active galactic nuclei (AGN) is thought to regulate the growth of supermassive black holes (SMBHs) and galaxies. The most direct evidence of AGN feedback is probably galactic outflows. This thesis addresses the link between SMBHs and their host galaxies from four different observational perspectives. First, I study the local correlation between black hole mass and the galactic halo potential (the MBH - Vc relation) based on Very Large Array (VLA) HI observations of galaxy rotation curves. Although there is a correlation, it is no tighter than the well-studied MBH - sigma* relation between the black hole mass and the potential of the galactic bulge, indicating that physical processes, such as feedback, could link the evolution of the black hole to the baryons in the bulge. In what follows, I thus search for galactic outflows as direct evidence of AGN feedback. Second, I use the Atacama Large Millimeter Array (ALMA) to observe a luminous obscured AGN that hosts an ionized galactic outflow and find a compact but massive molecular outflow that can potentially quench the star formation in 10. 6 years.The third study extends the sample of known ionized outflows with new Magellan long-slit observations of 12 luminous obscured AGN. I find that most luminous obscured AGN (Lbol > 1046 ergs s-1) host ionized outflows on 10 kpc scales, and the size of the outflow correlates strongly with the luminosity of the AGN. Lastly, to capitalize on the power of modern photometric surveys, I experiment with a new broadband imaging technique to study the morphology of AGN emission line regions and outflows. With images from the Sloan Digital Sky Survey (SDSS), this method successfully constructs images of the [OIII]lambda5007 emission line and reveals hundreds of extended emission-line systems. When applied to current and future surveys, such as the Large Synoptic Survey Telescope (LSST), this technique could open a new parameter space for the study of AGN outflows. In

  8. Photoproduction of vector messons off nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kossov, M.

    1994-04-01

    Vector mesons play an important role in photonuclear reactions because they carry the same quantum numbers as the incident photon. It has recently been suggested by G.E. Brown and M. Rho that the mass of vector mesons could decrease with increasing baryon density. This phenomenon would provide a physical observable for chiral symmetry ({xi}{sup S}) restoration at high baryon density, an essential non-perturbative phenomenon associated with the structure of quantum chromodynamics (QCD). According to the constituent quark model the difference between the mass of the valence quark m{sub v} and the mass of the current quark m{sub c} is expected to be proportional to the mean vacuum value of the quark condensate: m{sub v}-m{sub c} {proportional_to} ({psi}{psi}){sub v}. The mass difference appears because of chiral symmetry breaking {xi}{sup SB}. QCD sum rule calculations show that the value of this difference is about 300 MeV for all quarks. If the mean vacuum value differs from that for the hadron density in nuclei, then the constituent quark mass should be renormalized as follows: m{sub v}{sup l}=m{sub c} + ({psi}{psi})n/({psi}{psi})v {center_dot}300MeV, where the indices n correspond to nuclear matter and v to vacuum. The same conclusion was reached in a nuclear matter model based on quark degrees of freedom. Using the symmetry properties of QCD in an effective Lagrangian theory, Brown and Rho have found a scaling law for the vector meson masses at finite baryon density: M{sub N}{sup n}/M{sub N}{sup v}=M{sub V}{sup n}/M{sub V}{sup v}=f{sub {pi}}{sup n}/f{sub {pi}}{sup v}, where f{sub {pi}} is the {pi} {r_arrow}{mu}{nu} decay constant playing the role of an order parameter for the chiral symmetry restoration. At nuclear density the value of f{sub {pi}} was found to be 15-20% smaller than in vacuum. In contrast to the constituent quark model, it was found that M{sup n}/M=({sub n}/{sub v}){sup 1/3}.

  9. Sexing the human fetus and identification of polyploid nuclei by DNA-DNA in situ hybridisation in interphase nuclei.

    Science.gov (United States)

    West, J D; Gosden, C M; Gosden, J R; West, K M; Davidson, Z; Davidson, C; Nicolaides, K H

    1989-01-01

    Samples of human adult lymphocytes, fetal lymphocytes, amniotic fluid cells, and chorionic villus cells were sexed independently by cytogenetics and DNA-DNA in situ hybridisation to a tritiated Y probe. For the in situ hybridisation analysis, the presence of Y bodies (hybridisation bodies) in 100 interphase nuclei were scored after autoradiography. In all, 82/83 samples were sexed in this way (one technical failure) and 78/82 were sexed by both in situ hybridisation and cytogenetics. There was complete agreement between the two methods. There was a considerable variation (40-100%) in the percentage of interphase nuclei with a hybridisation body among the male samples, but very few nuclei from female samples showed significant hybridisation. In situ hybridisation could be used to sex the conceptus when males but not females are at risk for various X-linked genetic disorders and may also be useful for detecting 45,X/46,XY mosaicism or polyploid/diploid mosaicism. This would be particularly useful for direct preparations of chorionic villus samples, which often prove difficult to analyse cytogenetically but offer the best means of avoiding maternal contamination. Some interphase nuclei had more than one hybridisation body, and this was most commonly found among amniotic fluid cells. Comparison of sizes of nuclei with one or two hybridisation bodies strongly suggested that most of the amniotic fluid cell nuclei with two hybridisation bodies were tetraploid.

  10. Detnex Project: Dispersion, Structure and Tracking of Exotic Nuclei

    Science.gov (United States)

    Alvarez, M. A. G.; Gómez-Camacho, J.; Espino, J. M.; Mukha, I.; Martel, I.

    2007-05-01

    Since 1970's when double-folding model, based on M3Y interaction, had to be renormalized to fit the elastic scattering of weakly bound 6,7Li and 9Be nuclei, we learned that preconceptions based on the highly successful experience of the optical model on stable nuclei could not be simply extrapolated to the scattering of exotic nuclei. Recently, we have shown some evidences of long range mechanisms in 6He induced reactions that lead to the loss of flux in the elastic channel at kinematic conditions that suggest the nuclei are well beyond the strong absorption radius [O. R. Kakuee, M. A. G. Alvarez, M. V. Andrés, S. Cherubini, T. Davinson, A. Di Pietro, W. Galster, J. Gómez-Camacho, A. M. Laird, M. Lamehi-Rachti, I. Martel, A. M. Moro, J. Rahighi, A. M. Sánchez-Benitez, A. C. Shotter, W. B. Smith, J. Vervier, P. J. Woods. Nucl. Phys. A 765, (2006) 294]. Even so, the use of nuclear reactions as an spectroscopic tool to investigate the nuclear structure of weakly bound nuclei requires a deep understanding of the reactions induced by these nuclei. Therefore, precise experimental measurements of the elastic scattering of exotic nuclei on a variety of targets, as well as the measurements of the main reaction channels are required in order to converge experimentally and theoretically to this understanding. With this aim a campaign of experiments involving different institutions and collaborations is being carefully established and going ahead at several radioactive ion beam (RIB) facilities: ISOLDE (CERN), CRC (Be), GSI (Ge) and TRIUMPH (Ca). The main idea is to measure the scattering of He, Li, and Be isotopes, and perform an intensive theoretical treatment, besides promoting some necessary instrumental development. In particular we participate in the low energy branch of the FAIR project where we take part in the tracking studies and developments.

  11. Detnex Project: Dispersion, Structure and Tracking of Exotic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, M.A.G. [Universidad de Sevilla, P.O. Box 1065, E-41080, Seville (Spain); Gomez-Camacho, J. [Universidad de Sevilla, P.O. Box 1065, E-41080, Seville (Spain); Espino, J.M. [Universidad de Sevilla, P.O. Box 1065, E-41080, Seville (Spain); Mukha, I. [Universidad de Sevilla, P.O. Box 1065, E-41080, Seville (Spain); Martel, I. [Universidad de Huelva, Departamento de Fisica Aplicada, E-21819 Huelva (Spain)

    2007-05-01

    Since 1970's when double-folding model, based on M3Y interaction, had to be renormalized to fit the elastic scattering of weakly bound {sup 6,7}Li and {sup 9}Be nuclei, we learned that preconceptions based on the highly successful experience of the optical model on stable nuclei could not be simply extrapolated to the scattering of exotic nuclei. Recently, we have shown some evidences of long range mechanisms in {sup 6}He induced reactions that lead to the loss of flux in the elastic channel at kinematic conditions that suggest the nuclei are well beyond the strong absorption radius [O. R. Kakuee, M. A. G. Alvarez, M. V. Andres, S. Cherubini, T. Davinson, A. Di Pietro, W. Galster, J. Gomez-Camacho, A. M. Laird, M. Lamehi-Rachti, I. Martel, A. M. Moro, J. Rahighi, A. M. Sanchez-Benitez, A. C. Shotter, W. B. Smith, J. Vervier, P. J. Woods. Nucl. Phys. A 765 (2006) 294]. Even so, the use of nuclear reactions as an spectroscopic tool to investigate the nuclear structure of weakly bound nuclei requires a deep understanding of the reactions induced by these nuclei. Therefore, precise experimental measurements of the elastic scattering of exotic nuclei on a variety of targets, as well as the measurements of the main reaction channels are required in order to converge experimentally and theoretically to this understanding. With this aim a campaign of experiments involving different institutions and collaborations is being carefully established and going ahead at several radioactive ion beam (RIB) facilities: ISOLDE (CERN), CRC (Be), GSI (Ge) and TRIUMPH (Ca). The main idea is to measure the scattering of He, Li, and Be isotopes, and perform an intensive theoretical treatment, besides promoting some necessary instrumental development. In particular we participate in the low energy branch of the FAIR project where we take part in the tracking studies and developments.

  12. Deformed shell model study of heavy N=Z nuclei and dark matter detection

    CERN Document Server

    Sahu, R

    2016-01-01

    Deformed shell model (DSM) based on Hartree-Fock intrinsic states is applied to address two current problems of interest. Firstly, in the $f_{5/2}pg_{9/2}$ model space with jj44b effective interaction along with isospin projection, DSM is used to describe the structure of the recently observed low-lying $T=0$ and $T=1$ bands in the heavy odd-odd N=Z nucleus $^{66}$As. DSM results are close to the data and also to the shell model results. For the $T=1$ band, DSM predicts structural change at $8^+$ just as in the shell model. In addition, the lowest two $T=0$ bands are found to have quasi-deuteron structure above a $^{64}$Ge core and the $5^+$ and $9^+$ levels of the third $T=0$ band are found to be isomeric states. Secondly, in a first application of DSM to dark matter, detection rates for the lightest supersymmetric particle (a dark matter candidate) are calculated with $^{73}$Ge as the detector.

  13. Calciumreleasing activity induced by nuclei of mouse fertilized early embryos

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    At fertilization, repetitive transient rises of intracellular calcium concentration occur in all mammals studied so far. It has been shown that calcium rises could be induced when mouse fertilized 1-, 2-cell nuclei were transplanted into unfertilized eggs and that the reconstituted embryo could be activated. However, whether the capability of inducing calcium rises occurs in all stages of mammalian embryos remains unknown. In this study, by using the nuclear transplantation technique and measurement of intracellular calcium rises in living cells, we showed that only the nuclei from mouse fertilized 1-cell and 2-cell embryos, neither the nuclei from 4-, 8-cell and ethanol activated parthenogenetic embryos nor 2 or 3 nuclei of electrofused 4-cell stage syncytium, have calcium-releasing activity when they were transferred into unfertilized mature oocytes. Our results indicate that the calcium-releasing activity in nuclei of 1-, 2-cell embryos is produced during fertilization and exists at the special stage of fertilized early embryos. These suggested that the capacity of inducing calcium release activity in fertilized early embryos is important for normal embryonic development.

  14. Search for Nuclei in Heavy Ion Collisions at Ultrarelativistic Energies

    CERN Multimedia

    2002-01-01

    We would like to know if nuclei are still present after a collision of two heavy ions at ultrarelativistic energies. If one can detect some of them at large angle ($>$10-15|0) they very likely come from a multifragmentation of the excited target spectators. Such a multifragmentation in several nuclei has been in proton induced reactions at Fermilab and it was interpreted as a gas-liquid phase transition in nuclei matter near the critical point. With heavy ions the energy deposited in the target spectators will be much higher than in the case of protons and a different mechanism should be involved if nuclei are still observed. \\\\ \\\\ We propose to detect nuclei using 1-2 silicon telescopes and a 1-2mg/cm|2 Au target bombarded by an |1|6O or |3|2S beam at 226 GeV/u. The set-up will be installed in a small cube located just before the NA38 experiment and should not perturb it.\\\\ \\\\ Data from |1|6O incident on Au have been taken last year. The experiment is presently taking data with |3|2S ions.

  15. Scissors mode of Gd nuclei measured, with the DANCE detector

    Science.gov (United States)

    Kroll, J.; Bečvář, F.; Krtička, M.; Valenta, S.; Baramsai, B.; Mitchell, G. E.; Walker, C. L.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Becker, J. A.; Chyzh, A.; Dashdorj, D.; Parker, W.; Wu, C. Y.

    2013-05-01

    Spectra of γ-rays following the neutron capture at isolated resonances of stable Gd nuclei were measured with the DANCE detector. The objectives were to obtain new information on the photon strength of 153,155-159Gd with emphasis on the role of the M1 scissors-mode vibration. An analysis of the data obtained clearly indicates that the scissors mode is built not only on the ground state, but also on all excited levels of the nuclei studied. Our approach allows estimating the summed scissors-mode strength \\sum B(M1)\\!\\!\\uparrow even for odd product nuclei for which conventional nuclear resonance fluorescence measurements yield only limited information. Our data indicate that for 157,159Gd the strength \\sum B(M1)\\!\\!\\uparrow is significantly higher compared to 156,158Gd.

  16. Beta decay rates of neutron-rich nuclei

    Science.gov (United States)

    Marketin, Tomislav; Huther, Lutz; Petković, Jelena; Paar, Nils; Martínez-Pinedo, Gabriel

    2016-06-01

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei. Aside from the astrophysical applications, the results of this calculation can also be employed in the modeling of the electron and antineutrino spectra from nuclear reactors.

  17. Density-dependent potential for multi-neutron halo nuclei

    Institute of Scientific and Technical Information of China (English)

    CHEN Shuang; CHU Yan-Yun; REN Zhong-Zhou

    2009-01-01

    We apply a simple density-dependent potential model to the three-body calculation of the ground-state structure of drip-line nuclei with a weakly bound core. The hyperspherical harmonics method is used to solve the Faddeev equations. There are no undetermined potential parameters in this calculation. We find that for the halo nuclei with a weakly-bound core, the calculated properties of the ground-state structure are in better agreement with experimental data than the results calculated from the standard Woods-Saxon and Gauss type potentials. We also successfully reproduce the experimental cross sections by using the density calculated from this method. This may be explained by the fact that the simple Fermi or Gaussian function can not exactly describe the density distribution of the drip-line nuclei.

  18. Skyrme RPA for spherical and axially symmetric nuclei

    CERN Document Server

    Repko, Anton; Nesterenko, V O; Reinhard, P -G

    2015-01-01

    Random Phase Approximation (RPA) is the basic method for calculation of excited states of nuclei over the Hartree-Fock ground state, suitable also for energy density functionals (EDF or DFT). We developed a convenient formalism for expressing densities and currents in a form of reduced matrix elements, which allows fast calculation of spectra for spherical nuclei. All terms of Skyrme functional were taken into account, so it is possible to calculate electric, magnetic and vortical/toroidal/compression transitions and strength functions of any multipolarity. Time-odd (spin) terms in Skyrme functional become important for magnetic M1 and isovector toroidal E1 transitions. It was also found that transition currents in pygmy region (low-lying part of E1 resonance) exhibit isoscalar toroidal flow, so the previously assumed picture of neutron-skin vibration is not the only mechanism present in pygmy transitions. RPA calculations with heavy axially-symmetric nuclei now become feasible on ordinary PC. Detailed formul...

  19. Electronic detection of ultra-heavy nuclei by pyroelectric materials

    Science.gov (United States)

    Simpson, J. A.; Tuzzolino, A. J.

    1983-01-01

    A recent prediction by the authors that pyroelectric materials may be capable of detecting ultra-heavy nuclei has been confirmed. Charge pulse signals from pyroelectric crystals of lithium tantalate exposed to Au ions and a pulsed beam of Ni-58 ions, and from pyroelectric films of polyvinylidene fluoride exposed to a pulsed beam of Ni-58 ions, have been measured using pulse electronics with time constants in the microsecond range. These studies show that pyroelectric materials, in general, are capable of detecting incident nuclei having very high mass and charge. In particular, pyroelectric polymers, such as polyvinylidene fluoride, are readily available as inexpensive flexible films. This new class of charged particle detector could eventually find applications in large-area experiments for detection and trajectory determination of low-energy, ultra-heavy nuclei.

  20. Microscopic description of neutron emission rates in compound nuclei

    CERN Document Server

    Zhu, Yi

    2014-01-01

    The neutron emission rates in thermal excited nuclei are conventionally described by statistical models with a phenomenological level density parameter that depends on excitation energies, deformations and mass regions. In the microscopic view of hot nuclei, the neutron emission rates can be determined by the external neutron gas densities without any free parameters. Therefore the microscopic description of thermal neutron emissions is desirable that can impact several understandings such as survival probabilities of superheavy compound nuclei and neutron emissivity in reactors. To describe the neutron emission rates microscopically, the external thermal neutron gases are self-consistently obtained based on the Finite-Temperature Hartree-Fock-Bogoliubov (FT-HFB) approach. The results are compared with the statistical model to explore the connections between the FT-HFB approach and the statistical model. The Skyrme FT-HFB equation is solved by HFB-AX in deformed coordinate spaces. Based on the FT-HFB approach...

  1. Semi-microscopic model of pairing in nuclei

    CERN Document Server

    Pankratov, S S; Baldo, M; Lombardo, U; Saperstein, E E

    2011-01-01

    A semi-microscopic model for nucleon pairing in nuclei is presented starting from the ab intio BCS gap equation with Argonne v18 force and the self-consistent Energy Density Functional Method basis characterized with the bare nucleon mass. The BCS theory is formulated in terms of the model space S0 with the effective pairing interaction calculated from the first principles in the subsidiary space S0. This effective interaction is supplemented with a small phenomenological addendum containing one phenomenological parameter universal for all medium and heavy atomic nuclei. We consider the latter as a phenomenological way to take into account both the many-body corrections to the BCS theory and the effective mass effects. For protons, the Coulomb interaction is introduced directly. Calculations made for several isotopic and isotonic chains of semi-magic nuclei confirm the validity of the model. The role of the self-consistent basis is stressed.

  2. Beta decay rates of neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Marketin, Tomislav, E-mail: marketin@phy.hr [Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb (Croatia); Huther, Lutz [Institut für Kernphysik (Theoriezentrum), Technische Universität Darmstadt, 64289 Darmstadt (Germany); Martínez-Pinedo, Gabriel [Institut für Kernphysik (Theoriezentrum), Technische Universität Darmstadt, 64289 Darmstadt (Germany); GSI Helmholtzzentrum für Schwerioneneforschung, Planckstraße 1, 64291 Darmstadt (Germany)

    2015-10-15

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. Currently, a single large-scale calculation is available based on a QRPA calculation with a schematic interaction on top of the Finite Range Droplet Model. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei.

  3. Review of the electric dipole moment of light nuclei

    CERN Document Server

    Yamanaka, Nodoka

    2016-01-01

    In this review, we summarize the theoretical development on the electric dipole moment of light nuclei. We first describe the nucleon level CP violation and its parametrization. We then present the results of calculations of the EDM of light nuclei in the ab initio approach and in the cluster model. The analysis of the effect of several models beyond standard model is presented, together with the prospects for its discovery. The advantage of the electric dipole moment of light nuclei is focused in the point of view of the many-body physics. The evaluations of the nuclear electric dipole moment generated by the $\\theta$-term and by the CP phase of the Cabibbo-Kobayashi-Maskawa matrix are also reviewed.

  4. Proton-Neutron Pairs in Heavy Deformed Nuclei

    CERN Document Server

    Bonatsos, Dennis; Martinou, Andriana

    2015-01-01

    The microscopic justification of the emergence of SU(3) symmetry in heavy nuclei remains an interesting problem. In the past, the pseudo-SU(3) approach has been used, with considerable success. Recent results seem to suggest that the key for understanding the emergence of SU(3) symmetry lies in the properties of the proton-neutron interaction, namely in the formation of (S=1, T=0) p-n pairs in heavy nuclei, especially when the numbers of valence protons and valence neutrons are nearly equal. Although this idea has been around for many years, since the introduction of the Federman-Pittel mechanism, it is only recently that information about the p-n interaction could be obtained from nuclear masses, which become available from modern facilities. Based on this information, a new coupling scheme for heavy deformed nuclei has been suggested and is under development.

  5. Exotic decay of hot rotating nuclei near proton drip line

    Science.gov (United States)

    Ray, J.; Datta Pramanik, U.; Bhowmik, R. K.; Ray, I.; Rahaman, A.; Chakraborty, A.; Chakraborty, S.; Garg, R.; Goyal, S.; Ganguly, S.; Kumar, S.; Mandal, S.; Mukherjee, B.; Mukherjee, P.; Muralithar, S.; Negi, D.; Saxena, M.; Selvakumar, K.; Singh, P.; Singh, A. K.; Singh, R. P.

    2014-03-01

    Hot and rotating exotic 124Ce nucleus near proton drip line has been populated through fusion evaporation reaction of 32S and 92Mo. This exotic nucleus was de-excited by evaporating p, n, α and/or light nuclei etc and several exotic nuclei have been populated. The experimentally obtained relative population of those exotic nuclei have been compared with the statistical model calculation. Agreement between experimental and statistical model calculation have been observed for most of the evaporation channels. Huge enhancement in comparison to statistical model calculation have been observed fora few channels related to multiple proton evaporation which could not be explained by using default and modified input parameters in statistical calculation.

  6. Formation of superheavy nuclei in cold fusion reactions

    CERN Document Server

    Feng, Zhao-Qing; Li, Jun-Qing; Scheid, Werner

    2007-01-01

    Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118 and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.

  7. Energy density functional for nuclei and neutron stars

    CERN Document Server

    Erler, J; Nazarewicz, W; Rafalski, M; Reinhard, P -G

    2012-01-01

    We aim to develop a nuclear energy density functional that can be simultaneously applied to finite nuclei and neutron stars. We use the self-consistent nuclear density functional theory (DFT) with Skyrme energy density functionals and covariance analysis to assess correlations between observables for finite nuclei and neutron stars. In a first step two energy functionals -- a high density energy functional giving reasonable neutron properties, and a low density functional fitted to nuclear properties -- are matched. In a second step, we optimize a new functional using exactly the same protocol as in earlier studies pertaining to nuclei but now including neutron star data. This allows direct comparisons of performance of the new functional relative to the standard one. The new functional TOV-min yields results for nuclear bulk properties (energy, r.m.s. radius, diffraction radius, surface thickness) that are of the same quality as those obtained with the established Skyrme functionals, including SV-min. When c...

  8. Nuclear astrophysics with exotic nuclei and rare ion beams

    Science.gov (United States)

    Trache, Livius

    2013-02-01

    Nuclear astrophysics has become a major motivation for nuclear physics research in the latest few decades. The quests to understand grand scale cosmic phenomena, the origin of elements and isotopes, the sources of energy in stars, were advanced by studies at the microscopic scale of nuclei. Advances in the production, separation and acceleration of unstable nuclei lead not only to new knowledge in the structure of nuclei and nuclear matter, but also have revolutionized nuclear physics for astrophysics. I will review some of the many contributions that nuclear astrophysics made to our fundamental knowledge, and then will describe a few indirect methods used in nuclear astrophysics using radioactive beams, concentrating on those used by the groups I work with.

  9. Coupled cluster calculations of neutron-rich nuclei

    Science.gov (United States)

    Hagen, Gaute

    2016-09-01

    In this talk I will present recent highlights from ab initio computations of atomic nuclei using coupled-cluster methods with state-of-the-art interactions from chiral effective field theory (EFT). The recent progress in computing nuclei from scratch is based on new optimizations of interactions from chiral EFT, and ab initio methods with a polynomial computational cost together with available super computing resources. The physics advancements I will discuss include: (i) accurate nuclear binding energies and radii of light and medium-mass nuclei, (ii) the neutron distribution and electric dipole polarizability of the nucleus 48Ca, (iii) and the structure of the rare nucleus 78Ni from first principles. All these quantities are currently targeted by precision measurements worldwide.

  10. MULTI-bar K (hyper)nuclei and Kaon Condensation

    Science.gov (United States)

    Gazda, D.; Mareš, J.; Friedman, E.; Gal, A.

    2010-10-01

    We report on recent relativistic mean-field calculations of multi-bar K nuclei1,2 which were performed fully and self-consistently across the periodic table. The bar K separation energy B{bar K} as well as the nuclear and bar K-meson densities were found to saturate with the number of antikaons in the nuclear medium. Saturation appears robust against a wide range of variations, including the nuclear model used and the type of boson fields mediating the strong interactions. In addition, we have explored properties of kaonic hypernuclei - strange systems made of nucleons, hyperons and K- mesons. We observed saturation also in these objects. Since the bar K separation energy B{bar K} does not exceed 200 MeV, multi-bar K nuclei lie energetically well above multi-hyperonic nuclei and it is unlikely that kaon condensation could occur in strong-interaction self-bound hadronic matter.

  11. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W. Udo [Univ. of Rochester, NY (United States). Dept. of Chemistry. Dept. of Physics

    2016-07-28

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.

  12. Reactions with fast radioactive beams of neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like {sup 11}Li and {sup 12}Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  13. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W. Udo [Univ. of Rochester, NY (United States). Dept. of Chemistry. Dept. of Physics

    2016-07-28

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.

  14. Constrained caloric curves and phase transition for hot nuclei

    CERN Document Server

    Borderie, Bernard; Rivet, M F; Raduta, Ad R; Ademard, G; Bonnet, E; Bougault, R; Chbihi, A; Frankland, J D; Galichet, E; Gruyer, D; Guinet, D; Lautesse, P; Neindre, N Le; Lopez, O; Marini, P; Parlog, M; Pawlowski, P; Rosato, E; Roy, R; Vigilante, M

    2013-01-01

    Simulations based on experimental data obtained from multifragmenting quasi-fused nuclei produced in central $^{129}$Xe + $^{nat}$Sn collisions have been used to deduce event by event freeze-out properties in the thermal excitation energy range 4-12 AMeV [Nucl. Phys. A809 (2008) 111]. From these properties and the temperatures deduced from proton transverse momentum fluctuations, constrained caloric curves have been built. At constant average volumes caloric curves exhibit a monotonic behaviour whereas for constrained pressures a backbending is observed. Such results support the existence of a first order phase transition for hot nuclei.

  15. Modes of decay in neutron-rich nuclei

    CERN Document Server

    Kumar, B; Singh, S K; Lahiri, C; Patra, S K

    2016-01-01

    We calculate the ground, first intrinsic excited states and density distribution for neutron-rich thorium and uranium isotopes, within the framework of relativistic mean field(RMF) approach using axially deformed basis. The total nucleon densities are calculated, from which the cluster-structures inside the parent nuclei are determined. The possible modes of decay, like {\\alpha}-decay and \\b{eta} -decay are analyzed. We find the neutron-rich isotopes are stable against {\\alpha}-decay, however they are very much unstable against \\b{eta} -decay. The life time of these nuclei predicted to be tens of second against \\b{eta} -decay.

  16. Rotational states in deformed nuclei: An analytic approach

    CERN Document Server

    Bentz, W; Enders, J; Richter, A; Wambach, J

    2011-01-01

    The consequences of the spontaneous breaking of rotational symmetry are investigated in a field theory model for deformed nuclei, based on simple separable interactions. The crucial role of the Ward-Takahashi identities to describe the rotational states is emphasized. We show explicitly how the rotor picture emerges from the isoscalar Goldstone modes, and how the two-rotor model emerges from the isovector scissors modes. As an application of the formalism, we discuss the M1 sum rules in deformed nuclei, and make connection to empirical information.

  17. Modes of decay in neutron-rich nuclei

    Science.gov (United States)

    Kumar, B.; Biswal, S. K.; Singh, S. K.; Lahiri, C.; Patra, S. K.

    2016-03-01

    We calculate the ground, first intrinsic excited states and density distribution for neutron-rich thorium and uranium isotopes, within the framework of relativistic mean field (RMF) approach using axially deformed basis. The total nucleon densities are calculated, from which the cluster-structures inside the parent nuclei are determined. The possible modes of decay, like α-decay and β-decay are analyzed. We find the neutron-rich isotopes are stable against α-decay, however they are very much unstable against β-decay. The life time of these nuclei predicted to be tens of second against β-decay.

  18. Gamma-Rays from Heavy Nuclei Accelerated in Supernova Remnants

    CERN Document Server

    Caprioli, D; Amato, E

    2010-01-01

    We investigate the theoretical and observational implications of the acceleration of protons and heavier nuclei in supernova remnants (SNRs). By adopting a semi-analytical technique, we study the non-linear interplay among particle acceleration, magnetic field generation and shock dynamics, outlining a self-consistent scenario for the origin of the spectrum of Galactic cosmic rays as produced in this class of sources. Moreover, the inferred chemical abundances suggest nuclei heavier than Hydrogen to be relevant not only in the shock dynamics but also in the calculation of the gamma-ray emission from SNRs due to the decay of neutral pions produced in nuclear interactions.

  19. Cluster radioactivity in very heavy nuclei: a new perspective

    CERN Document Server

    Routray, T R; Basu, D N

    2008-01-01

    Exotic cluster decay of very heavy nuclei is studied using the microscopic nuclear potentials obtained by folding density dependent M3Y effective interaction with the densities of the cluster and the daughter nuclei. The microscopic nuclear potential, Coulomb interaction and the centrifugal barrier arising out of spin parity conservation are used to obtain the potential between the cluster and the daughter. Half life values are calculated in the WKB framework and the preformation factors are extracted. The latter values are seen to have only a very weak dependence on the mass of the cluster.

  20. Study on decay of rare earth nuclei produced by fission

    Energy Technology Data Exchange (ETDEWEB)

    Kawade, Kiyoshi; Yamamoto, Hiroshi; Shibata, Michihiro; Asai, Masato [Nagoya Univ. (Japan); Tsukada, Kazuaki; Osa, Akihiko; Shinohara, Nobuo; Iimura, Hideki

    1996-01-01

    JAERI-ISOL utilizes charge particle induced fission by proton and heavy proton produced by the tandem type accelerator (JAERI). To study the decay mechanism and nuclei structure of neutron and excess nuclei produced by actinoid fission, JAERI-ISOL was improved by developing the multilayer target tank. So that, the intensity of mass separated ion beam increased enough to use. New 76.6 KeV {gamma}-ray with about 10s of half life was found in the preliminary experiment. (S.Y.)

  1. How the Pauli exclusion principle affects fusion of atomic nuclei

    Science.gov (United States)

    Simenel, C.; Umar, A. S.; Godbey, K.; Dasgupta, M.; Hinde, D. J.

    2017-03-01

    The Pauli exclusion principle induces a repulsion between composite systems of identical fermions such as colliding atomic nuclei. Our goal is to study how heavy-ion fusion is impacted by this "Pauli repulsion." We propose a new microscopic approach, the density-constrained frozen Hartree-Fock method, to compute the bare potential including the Pauli exclusion principle exactly. Pauli repulsion is shown to be important inside the barrier radius and increases with the charge product of the nuclei. Its main effect is to reduce tunneling probability. Pauli repulsion is part of the solution to the long-standing deep sub-barrier fusion hindrance problem.

  2. How the Pauli exclusion principle affects fusion of atomic nuclei

    CERN Document Server

    Simenel, C; Godbey, K; Dasgupta, M; Hinde, D J

    2016-01-01

    The Pauli exclusion principle induces a repulsion between composite systems of identical fermions such as colliding atomic nuclei. Our goal is to study how heavy-ion fusion is impacted by this "Pauli repulsion". We propose a new microscopic approach, the density-constrained frozen Hartree-Fock method, to compute the bare potential including the Pauli exclusion principle exactly. Pauli repulsion is shown to be important inside the barrier radius and increases with the charge product of the nuclei. Its main effect is to reduce tunnelling probability. Pauli repulsion is part of the solution to the long-standing deep sub-barrier fusion hindrance problem.

  3. Reliability of the pseudospin symmetry in atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, S.; Niembro, R. [Departamento de Fisica Moderna, Universidad de Cantabria, E-39005 Santander (Spain); Lopez-Quelle, M. [Departamento de Fisica Aplicada, Universidad de Cantabria, E-39005 Santander (Spain); Savushkin, L.N. [Department of Physics, St. Petersburg University for Telecommunications, 191065 St. Petersburg (Russian Federation); Bernardos, P. [Departamento de Matematica Aplicada y Ciencias de la Computacion, Universidad de Cantabria, E-39005 Santander (Spain)

    2003-06-01

    The reliability of the pseudospin symmetry (PSS) in atomic nuclei is analyzed in the framework of the relativistic Hartree approach. We find that the nuclear surface strongly increases the effect of the pseudospin-orbit potential (PSOP), spoiling the possibility of the exact realization of the PSS even in the limit of a vanishing PSOP. It is also shown that the PSS cannot be explained by the fact that {sigma}{sub S}{approx_equal}-{sigma}. New arguments to explain the PSS in finite nuclei are given. The important role the spin-orbit interaction plays in the achievement of the PSS is also discussed. (orig.)

  4. Dynamical Relativistic Effects in Breakup Processes of Halo Nuclei

    CERN Document Server

    Ogata, Kazuyuki

    2009-01-01

    The continuum-discretized coupled-channels (CDCC) method is used to study the breakup of weakly-bound nuclei at intermediate energies collisions. For large impact parameters, the Eikonal CDCC (E-CDCC) method was applied. The effects of Lorentz contraction on the nuclear and Coulomb potentials have been investigated in details. Such effects tend to increase cross sections appreciably. We also show that, for loosely-bound nuclei, the contribution of the so-called close field is small and can be neglected.

  5. JUSTIPEN: Japan US Theory Institute for Physics with Exotic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Papenbrock, Thomas

    2014-05-16

    The grant “JUSTIPEN: Japan US Theory Institute for Physics with Exotic Nuclei ” (DOE DE-FG02-06ER41407) ran from 02/01/2006 thru 12/31/2013. JUSTIPEN is a venue for international collaboration between U.S.-based and Japanese scientists who share an interest in theory of rare isotopes. Since its inception JUSTIPEN has supported many visitors, fostered collaborations between physicists in the U.S. and Japan, and enabled them to deepen our understanding of exotic nuclei and their role in cosmos.

  6. Short range correlations between nucleons in finite nuclei

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Juan; MA Wei-Xing

    2008-01-01

    The short-range correlation between nucleons in finite nuclei is investigated in high energy protonnucleus and α-nucleus elastic scattering in the framework of Glauber multiple scattering theory without any free parameters. The effects on the p-4He and 4He-12C elastic scattering, and in particular on the proton elastic scattering off hallo-like nuclei, 6,8He, are estimated. Our calculations show that the short-range correlations play an important role in reproducing experimental data and could be also thought of as being possible origin and nature of halo-like phenomena in the nuclear structure. More accurate calculations along this line are needed.

  7. Repolarization of Negative Muons by Polarized $^{209}$Bi Nuclei

    CERN Document Server

    Kadono, R; Ishikawa, T; Nishiyama, K; Nagamine, K; Yamazaki, T; Bosshard, A; Döbeli, M; van Elmbt, L; Schaad, M; Truöl, P; Bay, A; Perroud, J P; Deutsch, J; Tasiaux, B; Hagn, E

    2016-01-01

    A large $\\mu^-$ polarization was achieved in muonic Bi atoms with the help of the strong hyperfine field in a polarized nuclear target. Using $^{209}$Bi nuclei polarized to ($59\\pm9$)% in ferromagnetic BiMn, we observed a $\\mu$-$e$ decay asymmetry of ($13.1\\pm3.9$)%, which gives $\\mu^-$ polarization per nuclear polarization equal to $-1.07\\pm 0.35$. This value is almost consistent with $-0.792$ calculated for nuclei with spin $I= \\frac{9}{2}$ and a positive magnetic moment under the assumption that the hyperfine interaction becomes effective in the lowest muonic states.

  8. Modification of meson properties in the vicinty of nuclei

    Directory of Open Access Journals (Sweden)

    Filip Peter

    2014-01-01

    Full Text Available We suggest that modification of meson properties (lifetimes and branching ratios can occur due to the interaction of constituent quark magnetic moments with strong magnetic fields present in the close vicinity of nuclei. A superposition of (J =0 and (J =1, mz =0 particle-antiparticle quantum states (as observed for ortho-Positronium may occur also in the case of quarkonium states J/Ψ, ηc ϒ, ηb in heavy ion collisions. We speculate on possible modification of η(548 meson properties (related to C parity and CP violation in strong magnetic fields which are present in the vicinity of nuclei.

  9. Electric dipole moments of neutron-odd nuclei

    Science.gov (United States)

    Fujita, Takehisa; Oshima, Sachiko

    2012-09-01

    We systematically calculate the electric dipole moments (EDMs) of neutron-odd nuclei with even protons in a phenomenological shell model picture. We first derive the relation between the EDM and the magnetic moment operators by making use of the core polarization scheme. This relation enables us to calculate the EDM of neutron-odd nuclei using the experimental values of the magnetic moments. From the calculations, one may find the best atomic system suitable for future EDM experiments where the estimations are made for doubly ionized atoms.

  10. Formation of nuclei during precipitation in metallic mixed crystals

    Science.gov (United States)

    Becker, R.

    1988-01-01

    Assuming that the energy of a mixed crystal can be calculated by simple addition of neighboring bonds, the nuclear formation energy is calculated for precipation in a super-saturated binary mixed crystal. From this can be determined the frequency of the formation of nuclei. From the calculation of a numerical example we can obtain, for the degree of sub-cooling at which the frequency of the formation of nuclei reaches its maximum, satisfactory agreement with available measurements of the rate of precipitation.

  11. General Relativistic Mean Field Theory for rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Madokoro, Hideki [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Matsuzaki, Masayuki

    1998-03-01

    The {sigma}-{omega} model Lagrangian is generalized to an accelerated frame by using the technique of general relativity which is known as tetrad formalism. We apply this model to the description of rotating nuclei within the mean field approximation, which we call General Relativistic Mean Field Theory (GRMFT) for rotating nuclei. The resulting equations of motion coincide with those of Munich group whose formulation was not based on the general relativistic transformation property of the spinor fields. Some numerical results are shown for the yrast states of the Mg isotopes and the superdeformed rotational bands in the A {approx} 60 mass region. (author)

  12. Suprachiasmatic nuclei and Circadian rhythms. The role of suprachiasmatic nuclei on rhythmic activity of neurons in the lateral hypothalamic area, ventromedian nuclei and pineal gland

    Science.gov (United States)

    Nishino, H.

    1977-01-01

    Unit activity of lateral hypothalamic area (LHA) and Ventromedian nuclei (VMN) was recorded in urethane anesthetized male rats. A 5 to 10 sec. a 3-5 min and a circadian rhythmicity were observed. In about 15% of all neurons, spontaneous activity of LHA and VMN showed reciprocal relationships. Subthreshold stimuli applied at a slow rate in the septum and the suprachiasmatic nuclei (SCN) suppressed the rhythms without changing firing rates. On the other hand, stimulation of the optic nerve at a rate of 5 to 10/sec increased firing rates in 1/3 of neurons of SCN. Iontophoretically applied acetylcholine increased 80% of tested neurons of SCN, whereas norepinephrine, dopamine and 5 HT inhibited 64, 60 and 75% of SCN neurons respectively. These inhibitions were much stronger in neurons, the activity of which was increased by optic nerve stimulation. Stimulation of the SCN inhibited the tonic activity in cervical sympathetic nerves.

  13. COMETARY NUCLEI. The shape and structure of cometary nuclei as a result of low-velocity accretion.

    Science.gov (United States)

    Jutzi, M; Asphaug, E

    2015-06-19

    Cometary nuclei imaged from flyby and rendezvous spacecraft show common evidence of layered structures and bilobed shapes. But how and when these features formed is much debated, with distinct implications for solar system formation, dynamics, and geology. We show that these features could be a direct result of accretionary collisions, based on three-dimensional impact simulations using realistic constitutive properties. We identify two regimes of interest: layer-forming splats and mergers resulting in bilobed shapes. For bodies with low tensile strength, our results can explain key morphologies of cometary nuclei, as well as their low bulk densities. This advances the hypothesis that nuclei formed by collisional coagulation-either out of cometesimals accreting in the early solar system or, alternatively, out of comparable-sized debris clumps paired in the aftermath of major collisions.

  14. Heavy particle radioactivity from superheavy nuclei leading to $^{298}$114 daughter nuclei

    CERN Document Server

    Santhosh, K P

    2013-01-01

    The feasibility for the alpha decay and the heavy particle decay from the even-even superheavy (SH) nuclei with Z = 116-124 have been studied within the Coulomb and proximity potential model (CPPM). The Universal formula for cluster decay (UNIV) of Poenaru et al., the Universal Decay Law (UDL) and the Scaling Law of Horoi et al., has also been used for the evaluation of the decay half lives. A comparison of our predicted half lives with the values evaluated using these empirical formulas are in agreement with each other and hence CPPM could be considered as a unified model for alpha and cluster decay studies. Within our fission model, we have studied cluster formation probability for various clusters and the maximum cluster formation probability for the decay accompanying $^{298}$114 reveals its doubly magic behavior. In the plots for log_10(T_1/2) against the neutron number of the daughter in the corresponding decay, the half life is found to be the minimum for the decay leading to $^{298}$114 (Z = 114, N = ...

  15. Heavy particle radioactivity from superheavy nuclei leading to {sup 298}114 daughter nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K.P., E-mail: drkpsanthosh@gmail.com; Priyanka, B.

    2014-09-15

    The feasibility for the alpha decay and the heavy particle decay from the even–even superheavy (SH) nuclei with Z=116–124 has been studied within the Coulomb and proximity potential model (CPPM). Our predicted half lives agree well with the values evaluated using the Universal formula for cluster decay (UNIV) of Poenaru et al., the Universal Decay Law (UDL) of Qi et al., and the Scaling Law of Horoi et al. The spontaneous fission half lives of the corresponding parents have also been evaluated using the semi-empirical formula of Santhosh et al. Within our fission model, we have studied the cluster formation probability for various clusters and the maximum cluster formation probability is found for the decay accompanying {sup 298}114. In the plots for log{sub 10}(T{sub 1/2}) against the neutron number of the daughter in the corresponding decay, the half life is found to be the minimum for the decay leading to {sup 298}114 (Z=114, N=184). Most of the predicted half lives are well within the present upper limit for measurements (T{sub 1/2}<10{sup 30} s) and the computed alpha half lives for {sup 290,292}Lv agree well with the experimental data.

  16. Heavy particle radioactivity from superheavy nuclei leading to 298114 daughter nuclei

    Science.gov (United States)

    Santhosh, K. P.; Priyanka, B.

    2014-09-01

    The feasibility for the alpha decay and the heavy particle decay from the even-even superheavy (SH) nuclei with Z = 116- 124 has been studied within the Coulomb and proximity potential model (CPPM). Our predicted half lives agree well with the values evaluated using the Universal formula for cluster decay (UNIV) of Poenaru et al., the Universal Decay Law (UDL) of Qi et al., and the Scaling Law of Horoi et al. The spontaneous fission half lives of the corresponding parents have also been evaluated using the semi-empirical formula of Santhosh et al. Within our fission model, we have studied the cluster formation probability for various clusters and the maximum cluster formation probability is found for the decay accompanying 298114. In the plots for log10 (T1/2) against the neutron number of the daughter in the corresponding decay, the half life is found to be the minimum for the decay leading to 298114 (Z = 114, N = 184). Most of the predicted half lives are well within the present upper limit for measurements (T1/2 <1030 s) and the computed alpha half lives for 290,292Lv agree well with the experimental data.

  17. STORMVEX. Ice Nuclei and Cloud Condensation Nuclei Characterization Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Cziczo, D. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-03-01

    The relationship between aerosol particles and the formation of clouds is among the most uncertain aspects in our current understanding of climate change. Warm clouds have been the most extensively studied, in large part because they are normally close to the Earth’s surface and only contain large concentrations of liquid droplets. Ice and mixed-phase clouds have been less studied even though they have extensive global coverage and dominate precipitation formation. Because they require low temperatures to form, both cloud types are infrequently found at ground level, resulting in more difficult field studies. Complex mixtures of liquid and ice elements, normally at much lower concentrations than found in warm clouds, require precise separation techniques and accurate identification of phase. Because they have proved so difficult to study, the climatic impact of ice-containing clouds remains unresolved. In this study, cloud condensation nuclei (CCN) concentrations and associated single particles’ composition and size were measured at a high-elevation research site—Storm Peak Lab, east of Steamboat Springs, Colorado, operated by the Desert Research Institute. Detailed composition analyses were presented to compare CCN activation with single-particle composition. In collaboration with the scientists of the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), our goal was to relate these findings to the cloud characteristics and the effect of anthropogenic activities.

  18. Quasi-elastic scattering of 6He, 7Be, and 8B nuclei by 12C nuclei

    CERN Document Server

    Kovalchuk, V I

    2016-01-01

    The observed cross sections of quasi-elastic scattering of 6He, 7Be, and 8B nuclei by 12C nuclei are described within the framework of the diffraction nuclear model and the model of nucleus-nucleus scattering in the high-energy approximation with a double folding potential, for intermediate energies of the incident particles. The calculations make use of realistic distributions of nucleon densities and take account of the Coulomb interaction and inelastic scattering with excitation of low-lying collective states of the target.

  19. Statistical Spectroscopy for Neutron-rich sd-Shell Nuclei

    CERN Document Server

    Kar, Kamales

    2012-01-01

    Statistical spectroscopic results using the spectral distribution theory are obtained for the structure of neutron-rich light nuclei going towards the drip line and compared to experimental values available. These results will be useful for nuclear astrophysics problems where often averaged nuclear properties are adequate.

  20. Auxiliary-field quantum Monte Carlo methods in nuclei

    CERN Document Server

    Alhassid, Y

    2016-01-01

    Auxiliary-field quantum Monte Carlo methods enable the calculation of thermal and ground state properties of correlated quantum many-body systems in model spaces that are many orders of magnitude larger than those that can be treated by conventional diagonalization methods. We review recent developments and applications of these methods in nuclei using the framework of the configuration-interaction shell model.

  1. On the Formation Mechanism of the Atomcule of Light Nuclei

    CERN Document Server

    Dineykhan, M D; Sakhyev, S K

    2002-01-01

    In the framework of the oscillator representation method the interaction potential between the antiproton and the nucleus is analytically derived. This potential is antisymmetrical with respect to the charge and masses of the constituent particles. It is shown that the antisymmetry of the potential determines the stability of the atomcule of light nuclei.

  2. First forbidden beta decay of some strongly deformed nuclei

    NARCIS (Netherlands)

    Werf, Siebren Ysbrand van der

    1971-01-01

    In this thesis we present measurements of the shape factors of the first forbidden beta decays of the nuclei Tm^170, Re^186, Re^188 and Lu^176m. For Lu^176m, also the beta gamma directionalcorrelation was measured. In chapter I formulas for the observable quantities in first forbidden beta decay and

  3. Borromean halo, Tango halo, and halo isomers in atomic nuclei

    Science.gov (United States)

    Izosimov, Igor

    2016-01-01

    Structure of the ground and excited states in halo-like nuclei is discussed. Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei.Structure of the halo may be different for the different levels and resonances in atomic nuclei. Isobar analog, double isobar analog, configuration, and double configuration states can simultaneously have n-n, n-p, and p-p halo components in their wave functions. When the halo structure of the excited state differs from that of the ground state, or the ground state has non-halo structure, the γ-transition from the excited state to the ground state can be essentially hindered, i.e. the formation of a specific type of isomers (halo isomers) becomes possible. B(Mγ) and B(Eγ) values for γ-transitions in 6,7,8Li, 8,9,10Be, 8,10,11B, 10,11,12,13,14C, 13,14,15,16,17N, 15,16,17,19O, and 17F are analyzed. Special attention is given to nuclei which ground state does not exhibit halo structure but the excited state (halo isomer) may have one.

  4. Rapid Scan Humidified Growth Cloud Condensation Nuclei Counter

    Energy Technology Data Exchange (ETDEWEB)

    Gregory L. Kok; Athanasios Nenes

    2013-03-13

    This research focused on enhancements to the streamwise thermal gradient cloud condensation nuclei counter to support the rapid scan mode and to enhance the capability for aerosol humidified growth measurements. The research identified the needs for flow system modifications and range of capability for operating the conventional instrument in the rapid scan and humidified growth modes.

  5. Thermostability of sperm nuclei assessed by microinjection into hamster oocytes

    Science.gov (United States)

    Nuclei isolated from spermatozoa of various species (golden hamster, mouse, human, rooster, and the fish tilapia) were heated at 60 degrees-125 degrees C for 20-120 min and then microinjected into hamster oocytes to determine whether they could decondense and develop into pronucl...

  6. Band structure systematics and symmetries in even-even nuclei

    Science.gov (United States)

    Bucurescu, D.; Cata-Danil, Gh.; Ivascu, M.; Ur, C. A.

    1993-07-01

    It is shown that the experimental in-band energy ratios for the even-even nuclei obey universal systematics similar to those observed by Mallmann for the quasiground band. Systematic correlations between energy ratios belonging to different bands are also found in certain cases. Finally, correlations between mixed energy ratios are shown to be useful in characterizing the evolution of the nulcear collectivity.

  7. THE MODULATION OF HEAVY NUCLEI IN THE PRIMARY COSMIC RADIATION,

    Science.gov (United States)

    The ntensities of the primary cosmic ray heavy nuclei, Z equal to or greater than 3, have been studied during several Forbush decreases. Fifteen...observed before, during or after four of the largest Forbush decreases that occurred in the last solar cycle. Examination of this data, together with that

  8. Thermal pairing and giant dipole resonance in highly excited nuclei

    CERN Document Server

    Dang, Nguyen Dinh

    2014-01-01

    Recent results are reported showing the effects of thermal pairing in highly excited nuclei. It is demonstrated that thermal pairing included in the phonon damping model (PDM) is responsible for the nearly constant width of the giant dipole resonance (GDR) at low temperature $T $ 170 MeV.

  9. COMPRESSIBILITY OF NUCLEI IN RELATIVISTIC MEAN FIELD-THEORY

    NARCIS (Netherlands)

    BOERSMA, HF; MALFLIET, R; SCHOLTEN, O

    1991-01-01

    Using the relativistic Hartree approximation in the sigma-omega model we study the isoscalar giant monopole resonance. It is shown that the ISGMR of lighter nuclei has non-negligible anharmonic terms. The compressibility of nuclear matter is determined using a leptodermous expansion.

  10. Quantum Shape-Phase Transitions in Finite Nuclei

    CERN Document Server

    Leviatan, A

    2007-01-01

    Quantum shape-phase transitions in finite nuclei are considered in the framework of the interacting boson model. Critical-point Hamiltonians for first- and second-order transitions are identified by resolving them into intrinsic and collective parts. Suitable wave functions and finite-N estimates for observables at the critical-points are derived.

  11. Quantum Shape-Phase Transitions in Finite Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

    2007-05-15

    Quantum shape-phase transitions in finite nuclei are considered in the framework of the interacting boson model. Critical-point Hamiltonians for first- and second-order transitions are identified by resolving them into intrinsic and collective parts. Suitable wave functions and finite-N estimates for observables at the critical-points are derived.

  12. Relativistic Pseudospin Symmetry as a Supersymmetric Pattern in Nuclei

    CERN Document Server

    Leviatan, A

    2004-01-01

    Shell-model states involving several pseudospin doublets and ``intruder'' levels in nuclei, are combined into larger multiplets. The corresponding single-particle spectrum exhibits a supersymmetric pattern whose origin can be traced to the relativistic pseudospin symmetry of a nuclear mean-field Dirac Hamiltonian with scalar and vector potentials.

  13. Symmetry Remnants in the Face of Competing Interactions in Nuclei

    CERN Document Server

    Leviatan, A

    2015-01-01

    Detailed description of nuclei necessitates model Hamiltonians which break most dynamical symmetries. Nevertheless, generalized notions of partial and quasi dynamical symmetries may still be applicable to selected subsets of states, amidst a complicated environment of other states. We examine such scenarios in the context of nuclear shape-phase transitions.

  14. Symmetry remnants in the face of competing interactions in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A., E-mail: ami@phys.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Macek, M., E-mail: michal.macek@yale.edu [Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520-8120 (United States)

    2015-10-15

    Detailed description of nuclei necessitates model Hamiltonians which break most dynamical symmetries. Nevertheless, generalized notions of partial and quasi dynamical symmetries may still be applicable to selected subsets of states, amidst a complicated environment of other states. We examine such scenarios in the context of nuclear shape-phase transitions.

  15. Studies of relativistic jets in active galactic nuclei with SKA

    NARCIS (Netherlands)

    Agudo, I.; Bottcher, M.; Falcke, H.; Georganopoulos, M.; Ghisellini, G.; Giovannini, G.; Giroletti, M.; Gomez, J.L.; Gurvits, L.; Laing, R.; Lister, M.; Marti, J.M.; Meyer, E.T.; Mizuno, Y.; O'Sullivan, S.; Padovani, P.; Paragi, Z.; Perucho, M.; Schleicher, D.; Stawarz, L.; Vlahakis, N.; Wardle, J.

    2014-01-01

    Relativistic jets in active galactic nuclei (AGN) are among the most powerful astrophysical objects discovered to date. Indeed, jetted AGN studies have been considered a prominent science case for SKA, and were included in several different chapters of the previous SKA Science Book (Carilli & Rawlin

  16. Radiative Corrections to High Energy Lepton Bremsstrahlung on Heavy Nuclei

    CERN Document Server

    Arbuzov, A B

    2008-01-01

    One-loop radiative corrections to the leptonic tensor in high energy bremsstrahlung on heavy nuclei are calculated. Virtual and real photon radiation is taken into account. Double bremsstrahlung is simulated by means of Monte Carlo. Numerical results are presented for the case of muon bremsstrahlung in conditions of the COMPASS experiment at CERN.

  17. MCNP6 fragmentation of light nuclei at intermediate energies

    CERN Document Server

    Mashnik, Stepan G

    2014-01-01

    Fragmentation reactions induced on light target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the latest Los Alamos Monte Carlo transport code MCNP6 and with its cascade-exciton model (CEM) and Los Alamos version of the quark-gluon string model (LAQGSM) event generators, version 03.03, used as stand-alone codes. Such reactions are involved in different applications, like cosmic-ray-induced single event upsets (SEU's), radiation protection, and cancer therapy with proton and ion beams, among others; therefore, it is important that MCNP6 simulates them as well as possible. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after INC. Both CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to He4 from energetic nucleons ...

  18. Are the nuclei beyond 132Sn very exotic?

    Science.gov (United States)

    Lozeva, R.; Naïdja, H.; Nowacki, F.; Odahara, A.; Moon, C.-B.; NP1112-RIBF87 Collaboration

    2016-06-01

    The term exotic nucleus is used for nuclei that have different from normal behavior. However, it turns out that the term normal is valid only for nuclei close to stability and more particularly for regions close to double-shell closures. As long as one drives away in the neutron-rich nuclei, especially at intermediate mass number, interplay between normal single-particle and many collective particle-hole excitations compete. In some cases with the addition of neutrons, these may turn to evolve as a skin, acting against the core nucleus that may also influence its shell evolution. Knowledge of these nuclear ingredients is especially interesting beyond the doubly-magic 132Sn, however a little is known on how the excitations modes develop with the addition of both protons and neutrons. Especially for the Sb nuclei, where one gradually increases these valence particles, the orbital evolution and its impact on exoticness is very intriguing. Experimental studies were conducted on several such isotopes using isomer and, β-decay spectroscopy at RIBF within EURICA. In particular, new data on 140Sb and 136Sb are examined and investigated in the framework of shell model calculations.

  19. Haloes and clustering in light, neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Orr, N.A

    2001-10-01

    Clustering is a relatively widespread phenomenon which takes on many guises across the nuclear landscape. Selected topics concerning the study of halo systems and clustering in light, neutron-rich nuclei are discussed here through illustrative examples taken from the Be isotopic chain. (author)

  20. Rare βp decays in light nuclei

    DEFF Research Database (Denmark)

    Borge, M.J.G.; Fraile, L.M.; Fynbo, Hans Otto Uldall

    2013-01-01

    Beta-delayed proton emission may occur at very low rates in the decays of the light nuclei 11Be and 8B. This paper explores the potential physical significance of such decays, estimates their rates and reports on first attempts to detect them: an experiment at ISOLDE/CERN gives a branching ratio...

  1. Recent studies of heavy nuclei far from stability at JYFL

    Energy Technology Data Exchange (ETDEWEB)

    Julin, R.; Enqvist, T.; Helariutta, K. [Univ. of Jyvaeskylae (Finland)] [and others

    1996-12-31

    The new K=130 Cyclotron + ECR facility of the Physics Department of the University of Jyvaskyla (JYFL) provides stable beams from protons up to krypton ions for nuclear structure studies. Two instruments designed especially for in-beam spectroscopic studies of heavy nuclei at JYFL are introduced in this contribution. Some results from recent measurements with them are reported.

  2. Neutron and Alpha Structure in Neutron Deficient Nuclei in Astrophysics

    Institute of Scientific and Technical Information of China (English)

    S. Kubono; T. Hashimoto; Y. Wakabayashi; N. Iwasa; S. Kato; T. Komatsubara; D. N. Binh; L. H. Khiem; N. N. Duy; T. Kawabata; C. Spitaleri; 何建军; G. G. Rapisarda; M. La Cognata; L. Lamia; R. G. Pizzone; S. Romano; A. Coc; N. de Sereville; F. Hammache; G. Kiss; S. Bishop; H. Yamaguchi; D. M. Kahl; S. Hayakawa; T. Teranishi; S. Cheribini; M. Gulino; Y. K. Kwon

    2016-01-01

    The paper includes discussions on the important role of neutron and alpha configurations in proton-rich nuclei in nuclear astrophysics in terms of nucleosynthesis under extremely high-temperature hydrogenburning conditions. The νp-process, which is supposed to take place at the very early epoch of type II supernovae, has considerable neutrons and alphas together with protons. The alpha-induced reactions on proton-rich unstable nuclei in the light mass regions is expected to play a crucial role, but very few of them were investigated well yet because of the experimental difficulties. Specifically, I report our recent experimental effort for the breakout process from the pp-chain region, 7Be(α,γ)11C(α,p)14N under the νp-process. The neutron-induced reactions on proton-rich nuclei, which is even more a challenging subject, were investigated previously for very few nuclei. One possible experimental method is the Trojan Horse Method (THM). We successfully have applied THM to the 18F(n,α)14N reaction study with an unstable beam of 18F.

  3. Cavitation nuclei in water exposed to transient pressures

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Mørch, Knud Aage

    2015-01-01

    A model of skin-stabilized interfacial cavitation nuclei and their response to tensile and compressive stressing is presented. The model is evaluated in relation to experimental tensile strength results for water at rest at the bottom of an open water-filled container at atmospheric pressure and ...

  4. Three-particle decays of light-nuclei resonances

    DEFF Research Database (Denmark)

    Álvarez-Rodríguez, R.; Jensen, A.S.; Garrido, E.

    2012-01-01

    We have studied the three-particle decay of 12C, 9Be and 6Be resonances. These nuclei have been described as three-body systems by means of the complex scaled hyperspherical adiabatic expansion method. The short-distance part of the wave function is responsible for the energies, whereas the infor...

  5. Monte Carlo studies of nuclei and quantum liquid drops

    Energy Technology Data Exchange (ETDEWEB)

    Pandharipande, V.R.; Pieper, S.C.

    1989-01-01

    The progress in application of variational and Green's function Monte Carlo methods to nuclei is reviewed. The nature of single-particle orbitals in correlated quantum liquid drops is discussed, and it is suggested that the difference between quasi-particle and mean-field orbitals may be of importance in nuclear structure physics. 27 refs., 7 figs., 2 tabs.

  6. Mini-Proceedings of ECT Workshop "Strangeness in Nuclei"

    CERN Document Server

    Curceanu, C

    2011-01-01

    This workshop brought together international experts in the research area of strangeness in nuclei physics, working on theory as well as on experiments, to discuss the present status, to develop new methods of analysis and to have the opportunity for brainstorming towards future studies, going towards a deeper understanding of the hot topics in the low-energy QCD in the strangeness sector.

  7. Continuum Coupling and Pair Correlation in Weakly Bound Deformed Nuclei

    CERN Document Server

    Oba, Hiroshi

    2009-01-01

    We formulate a new Hartree-Fock-Bogoliubov method applicable to weakly bound deformed nuclei using the coordinate-space Green's function technique. An emphasis is put on treatment of quasiparticle states in the continuum, on which we impose the correct boundary condition of the asymptotic out-going wave. We illustrate this method with numerical examples.

  8. Neutrino and Drell-Yan processes off nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Epele, L.N.; Fanchiotti, S.H.; Garcia Canal, C.A.

    1989-05-01

    The chi-rescaling approach to the EMC effect is used in the analysis of neutrino deep inelastic scattering and Drell-Yan processes off nuclei. The expected probe independence of the EMC effect is supported by the good agreement of the present results with the experimental data. (author).

  9. Electric dipole moments of light nuclei from χEFT

    Science.gov (United States)

    Higa, Renato

    2013-03-01

    I present recent calculations of EDMs of light nuclei using chiral effective field theory techniques. At leading-order, we argue that they can be expressed in terms of six CP-violating low-energy constants. With our expressions, eventual non-zero measurements of EDMs of deuteron, helion, and triton can be combined to disentangle the different sources of CP-violation.

  10. An image processing pipeline to detect and segment nuclei in muscle fiber microscopic images.

    Science.gov (United States)

    Guo, Yanen; Xu, Xiaoyin; Wang, Yuanyuan; Wang, Yaming; Xia, Shunren; Yang, Zhong

    2014-08-01

    Muscle fiber images play an important role in the medical diagnosis and treatment of many muscular diseases. The number of nuclei in skeletal muscle fiber images is a key bio-marker of the diagnosis of muscular dystrophy. In nuclei segmentation one primary challenge is to correctly separate the clustered nuclei. In this article, we developed an image processing pipeline to automatically detect, segment, and analyze nuclei in microscopic image of muscle fibers. The pipeline consists of image pre-processing, identification of isolated nuclei, identification and segmentation of clustered nuclei, and quantitative analysis. Nuclei are initially extracted from background by using local Otsu's threshold. Based on analysis of morphological features of the isolated nuclei, including their areas, compactness, and major axis lengths, a Bayesian network is trained and applied to identify isolated nuclei from clustered nuclei and artifacts in all the images. Then a two-step refined watershed algorithm is applied to segment clustered nuclei. After segmentation, the nuclei can be quantified for statistical analysis. Comparing the segmented results with those of manual analysis and an existing technique, we find that our proposed image processing pipeline achieves good performance with high accuracy and precision. The presented image processing pipeline can therefore help biologists increase their throughput and objectivity in analyzing large numbers of nuclei in muscle fiber images.

  11. Determining the number of clusters for nuclei segmentation in breast cancer image

    Science.gov (United States)

    Fatichah, Chastine; Navastara, Dini Adni; Suciati, Nanik; Nuraini, Lubna

    2017-02-01

    Clustering is commonly technique for image segmentation, however determining an appropriate number of clusters is still challenging. Due to nuclei variation of size and shape in breast cancer image, an automatic determining number of clusters for segmenting the nuclei breast cancer is proposed. The phase of nuclei segmentation in breast cancer image are nuclei detection, touched nuclei detection, and touched nuclei separation. We use the Gram-Schmidt for nuclei cell detection, the geometry feature for touched nuclei detection, and combining of watershed and spatial k-Means clustering for separating the touched nuclei in breast cancer image. The spatial k-Means clustering is employed for separating the touched nuclei, however automatically determine the number of clusters is difficult due to the variation of size and shape of single cell breast cancer. To overcome this problem, first we apply watershed algorithm to separate the touched nuclei and then we calculate the distance among centroids in order to solve the over-segmentation. We merge two centroids that have the distance below threshold. And the new of number centroid as input to segment the nuclei cell using spatial k- Means algorithm. Experiment show that, the proposed scheme can improve the accuracy of nuclei cell counting.

  12. Three-body halo nuclei in an effective theory framework

    Energy Technology Data Exchange (ETDEWEB)

    Canham, David L.

    2009-05-20

    The universal properties and structure of halo nuclei composed of two neutrons (2n) and a core are investigated within an effective quantum mechanics framework. We construct an effective interaction potential that exploits the separation of scales in halo nuclei and treat the nucleus as an effective three-body system, which to leading order is described by the large S-wave scattering lengths in the underlying two-body subsystems. The uncertainty from higher orders in the expansion is quantified through theoretical error bands. First, we investigate the possibility to observe excited Efimov states in 2n halo nuclei. Based on the experimental data, {sup 20}C is the only halo nucleus candidate to possibly have an Efimov excited state, with an energy less than 7 keV below the scattering threshold. Second, we study the structure of {sup 20}C and other 2n halo nuclei. In particular, we calculate their matter density form factors, radii, and two-neutron opening angles. We then make a systematic improvement upon these calculations by extending the effective potential to the next-to-leading order. To this order, we require an additional two-body parameter, which we tune to the effective range of the interaction. In addition to range corrections to the 2n halo nuclei results, we show corrections to the Efimov effect in the three-boson system. Furthermore, we explore universality in the linear range corrections to the Efimov spectrum. Finally, we study the scattering of D{sup 0} and D{sup *0} mesons and their antiparticles off the X(3872) in an effective field theory for short-range interactions. We present results for the S-wave scattering amplitude, total interaction cross section and S-wave scattering length. (orig.)

  13. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  14. Energy Density Functional for Nuclei and Neutron Stars

    Energy Technology Data Exchange (ETDEWEB)

    Erler, J. [UTK/ORNL/German Cancer Research Center-Heidelberg; Horowitz, C. J. [UTK/ORNL/Indiana University; Nazarewicz, Witold [UTK/ORNL/University of Warsaw; Rafalski, M. [UTK/ORNL; Reinhard, P.-G. [Universitat Erlangen, Germany

    2013-01-01

    Background: Recent observational data on neutron star masses and radii provide stringent constraints on the equation of state of neutron rich matter [ Annu. Rev. Nucl. Part. Sci. 62 485 (2012)]. Purpose: We aim to develop a nuclear energy density functional that can be simultaneously applied to finite nuclei and neutron stars. Methods: We use the self-consistent nuclear density functional theory (DFT) with Skyrme energy density functionals and covariance analysis to assess correlations between observables for finite nuclei and neutron stars. In a first step two energy functionals a high density energy functional giving reasonable neutron properties, and a low density functional fitted to nuclear properties are matched. In a second step, we optimize a new functional using exactly the same protocol as in earlier studies pertaining to nuclei but now including neutron star data. This allows direct comparisons of performance of the new functional relative to the standard one. Results: The new functional TOV-min yields results for nuclear bulk properties (energy, rms radius, diffraction radius, and surface thickness) that are of the same quality as those obtained with the established Skyrme functionals, including SV-min. When comparing SV-min and TOV-min, isoscalar nuclear matter indicators vary slightly while isovector properties are changed considerably. We discuss neutron skins, dipole polarizability, separation energies of the heaviest elements, and proton and neutron drip lines. We confirm a correlation between the neutron skin of 208Pb and the neutron star radius. Conclusions: We demonstrate that standard energy density functionals optimized to nuclear data do not carry information on the expected maximum neutron star mass, and that predictions can only be made within an extremely broad uncertainty band. For atomic nuclei, the new functional TOV-min performs at least as well as the standard nuclear functionals, but it also reproduces expected neutron star data

  15. X-Ray bright active galactic nuclei in massive galaxy clusters - II. The fraction of galaxies hosting active nuclei

    DEFF Research Database (Denmark)

    Ehlert, S.; von der Linden, A.; Allen, S. W.

    2013-01-01

    We present a measurement of the fraction of cluster galaxies hosting X-ray bright active galactic nuclei (AGN) as a function of clustercentric distance scaled in units of r500. Our analysis employs high-quality Chandra X-ray and Subaru optical imaging for 42 massive X-ray-selected galaxy cluster...

  16. The Role of Nuclei-Nuclei Interactions in the Production of Gamma-ray Lines in Solar Flares

    Institute of Scientific and Technical Information of China (English)

    Boris M. Kuzhevskij; Wei-Qun Gan; Leonty I. Miroshnichenko

    2005-01-01

    Dramatic extensions of experimental possibilities (spacecraft RHESSI,CORONAS-F and others) in solar gamma-ray astronomy call for urgent, detailed theoretical consideration of a set of physical problems of solar activity and solarterrestrial relationships that earlier may have only been outlined. Here we undertake a theoretical analysis of issues related to the production of gamma-radiation in the processes of interactions of energetic (accelerated) heavy and middle nuclei with the nuclei of the solar atmosphere (the so-called i-j interactions). We also make an estimate of the contribution of these interactions to the formation of nuclear and isotopic abundances of the solar atmosphere in the range of light and rare elements. The analysis is carried out for solar flares in the wide range of their intensities. We compare our theoretical estimates with RHESSI observations for the flare of 2002 July 23. It was shown that the 24Mg gamma-ray emission in this event was produced by the newly generated Mg nuclei. With a high probability,the gamma-ray line emission of 28Si nuclei from this flare was generated by the same processes.

  17. Solid state nuclear magnetic resonance studies of cross polarization from quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    De Paul, Susan M. [Univ. of California, Berkeley, CA (United States)

    1997-08-01

    The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure and dynamics. For such nuclei, the technique of cross polarization is well-established as a method for sensitivity enhancement. However, over two-thirds of the nuclei in the periodic table have a spin-quantum number greater than one-half and are known as quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the extent to which polarization can be transferred from quadrupolar nuclei. In this dissertation, solid-state NMR experiments involving cross polarization from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions are investigated in detail.

  18. Blood vessels and desmin control the positioning of nuclei in skeletal muscle fibers

    DEFF Research Database (Denmark)

    Ralston, E; Lu, Z; Biscocho, N

    2006-01-01

    . Here we show that the nuclei are preferentially localized near blood vessels (BV), particularly in slow-twitch, oxidative fibers. Thus, in rat soleus muscle fibers, 81% of the nuclei appear next to BV. Lack of desmin markedly perturbs the distribution of nuclei along the fibers but does not prevent...

  19. File list: His.Neu.20.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Thalamic_Nuclei hg19 Histone Neural Thalamic Nuclei SRX998288,SRX9...98287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.20.AllAg.Thalamic_Nuclei.bed ...

  20. File list: His.Neu.10.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Thalamic_Nuclei hg19 Histone Neural Thalamic Nuclei SRX998288,SRX9...98287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.10.AllAg.Thalamic_Nuclei.bed ...

  1. File list: ALL.Neu.50.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Thalamic_Nuclei hg19 All antigens Neural Thalamic Nuclei SRX998288...,SRX998287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.50.AllAg.Thalamic_Nuclei.bed ...

  2. File list: His.Neu.50.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Thalamic_Nuclei hg19 Histone Neural Thalamic Nuclei SRX998288,SRX9...98287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.50.AllAg.Thalamic_Nuclei.bed ...

  3. File list: ALL.Neu.05.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Thalamic_Nuclei hg19 All antigens Neural Thalamic Nuclei SRX998288...,SRX998287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.05.AllAg.Thalamic_Nuclei.bed ...

  4. File list: His.Neu.05.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Thalamic_Nuclei hg19 Histone Neural Thalamic Nuclei SRX998288,SRX9...98287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.05.AllAg.Thalamic_Nuclei.bed ...

  5. File list: ALL.Neu.20.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Thalamic_Nuclei hg19 All antigens Neural Thalamic Nuclei SRX998288...,SRX998287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.20.AllAg.Thalamic_Nuclei.bed ...

  6. File list: ALL.Neu.10.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Thalamic_Nuclei hg19 All antigens Neural Thalamic Nuclei SRX998288...,SRX998287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.10.AllAg.Thalamic_Nuclei.bed ...

  7. Neutrino absorption by hot nuclei in supernova environments

    CERN Document Server

    Dzhioev, Alan A; Wambach, J

    2015-01-01

    Using the thermal quasiparticle random phase approximation, we study the process of neutrino and antineutrino capture on hot nuclei in supernova environments. For the sample nuclei $^{56}$Fe and $^{82}$Ge we perform a detailed analysis of thermal effects on the strength distribution of allowed Gamow-Teller transitions which dominate low-energy charged-current neutrino reactions. The finite temperature cross sections are calculated taking into account the contributions of both allowed and forbidden transitions. The enhancement of the low-energy cross sections is explained by considering thermal effects on the GT$_\\pm$ strength. For $^{56}$Fe we compare the calculated finite-temperature cross sections with those obtained from large-scale shell-model calculations.

  8. Particles and Nuclei an introduction to the physical concepts

    CERN Document Server

    Povh, B; Scholz, C; Zetsche, F

    2008-01-01

    This well-established textbook gives a uniform and unique presentation of both nuclear and particle physics. Analysis, Part 1, is devoted to disentangling the substructure of matter. This part shows that experiments designed to uncover the substructures of nuclei and nucleons have a similar conceptual basis, and lead to the present picture of all matter being built out of a small number of elementary building blocks and a small number of fundamental interactions. Synthesis, Part 2, shows how the elementary particles may be combined to build hadrons and nuclei. The fundamental interactions responsible for the forces in all systems become less and less evident in increasingly complex systems. A section on neutrino oscillations and one on nuclear matter at high temperatures bridge the field of "nuclear and particle physics" and "modern astrophysics and cosmology". The new edition incorporates a large amount of new experimental results on deep inelastic scattering (obtained at the Electron-Proton Collider HERA at...

  9. Particles and Nuclei An Introduction to the Physical Concepts

    CERN Document Server

    Povh, Bogdan; Scholz, Christoph; Zetsche, Frank

    2006-01-01

    This well-known introductory textbook gives a uniform presentation of nuclear and particle physics from an experimental point of view. The new edition has been extensively revised and updated. The first part, Analysis, is devoted to disentangling the substructure of matter. This part shows that experiments designed to uncover the substructures of nuclei and nucleons have a similar conceptual basis, and lead to the present picture of all matter being constructed from a small number of elementary building blocks and a small number of fundamental interactions. The second part, Synthesis, shows how the elementary particles may be combined to build hadrons and nuclei. The fundamental interactions, which are responsible for the forces in all systems, become less and less evident in increasingly complex systems. Such systems are in fact dominated by many-body phenomena. A section on neutrino oscillations and one on nuclear matter at high temperatures bridge the field of "nuclear and particle physics" and "modern ast...

  10. Enhancement of octupole strength in near spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Robledo, L.M. [Universidad Autonoma de Madrid, Dep. Fisica Teorica, Facultad de Ciencias, Madrid (Spain)

    2016-09-15

    The validity of the rotational formula used to compute E1 and E3 transition strengths in even-even nuclei is analyzed within the Generator Coordinate Method framework based on mean field wave functions. It turns out that those nuclei with spherical or near spherical shapes the E1 and E3 strengths computed with this formula are strongly underestimated and a sound evaluation of them requires angular-momentum projected wave functions. Results for several isotopic chains with proton number equal to or near magic numbers are analyzed and compared with experimental data. The use of angular-momentum projected wave functions greatly improves the agreement with the scarce experimental data. (orig.)

  11. Structure of light neutron-rich nuclei through Coulomb dissociation

    Indian Academy of Sciences (India)

    U Datta Pramanik; T Aumann; D Cortina; H Emling; H Geissel; M Hellström; R Holzmann; N Iwasa; Y Leifels; G Münzenberg; M Rejmund; C Scheidenberger; K Sümmerer; A Leistenschneider; Th W Elze; A Grünschloss; S Ilievski; K Boretzky; J V Kratz; R Kulessa; E Lubkiewicz; E Wajda; W Walus; P Reiter; H Simon

    2001-08-01

    Coulomb breakup of neutron-rich nuclei around mass ∼ 20 has been studied experimentally using secondary beams (∼ 500–600 MeV/u) of unstable nuclei produced at GSI. The spectroscopic factor deduced for the neutron occupying 1/2 level in 15C ground state is consistent with the earlier reported value. The data analysis for Coulomb breakup of 17C shows that most of the cross section yields the 16C core in its excited state. For 17-22O, the low-lying E1 strength amounts up to about 12% of the energy weighted dipole sum rule strength depending on neutron excess. The cluster sum rule limit with 16O as a core is almost exhausted for 17,18O, while for more neutron rich isotopes the strength with respect to that limit decreases.

  12. Coherence transfer between spy nuclei and nitrogen-14 in solids.

    Science.gov (United States)

    Cavadini, Simone; Abraham, Anuji; Bodenhausen, Geoffrey

    2008-01-01

    Coherence transfer from 'spy nuclei' such as (1)H or (13)C (S=1/2) was used to excite single- or double-quantum coherences of (14)N nuclei (I=1) while the S spins were aligned along the static field, in the manner of heteronuclear single-quantum correlation (HSQC) spectroscopy. For samples spinning at the magic angle, coherence transfer can be achieved through a combination of scalar couplings J(I,S) and second-order quadrupole-dipole cross-terms, also known as residual dipolar splittings (RDS). The second-order quadrupolar powder patterns in the two-dimensional spectra allow one to determine the quadrupolar parameters of (14)N in amino acids.

  13. Cluster emissions with ? daughter from neutron-rich nuclei

    Science.gov (United States)

    Kumar, Satish; Batra, J. S.; Gupta, Raj K.

    1996-02-01

    Cluster emissions from neutron-rich 0954-3899/22/2/006/img2, and 0954-3899/22/2/006/img3 nuclei are studied within the preformed cluster model of Malik and Gupta. Q-value estimates of the decays selected on the basis of shell effects in binding energies and their relative preformation probabilities show that these nuclei are stable (Qdecays and all the metastable (Q>0) decays are of non-alpha-like heavy clusters. The most probable decays (minimum half-life times) are the ones with a doubly magic 0954-3899/22/2/006/img6 nucleus as the daughter nucleus, arising due to the WKB penetrability. Compared to the presently measurable alpha-like cluster decays of the corresponding neutron-deficient parents into a 0954-3899/22/2/006/img7 daughter nucleus, these decays are suppressed by many orders of magnitude.

  14. Cluster decay in very heavy nuclei in Relativistic Mean Field

    CERN Document Server

    Bhattacharya, Madhubrata

    2008-01-01

    Exotic cluster decay of very heavy nuclei has been studied in the microscopic Super-Asymmetric Fission Model. Relativistic Mean Field model with the force FSU Gold has been employed to obtain the densities of the cluster and the daughter nuclei. The microscopic nuclear interaction DDM3Y1, which has an exponential density dependence, and the Coulomb interaction have been used in the double folding model to obtain the potential between the cluster and the daughter. Half life values have been calculated in the WKB approximation and the spectroscopic factors have been extracted. The latter values are seen to have a simple dependence of the mass of the cluster as has been observed earlier. Predictions have been made for some possible decays.

  15. Multiple quantum spin counting techniques with quadrupolar nuclei.

    Science.gov (United States)

    Dodd, Andrew J; van Eck, Ernst R H

    2004-01-01

    Phase incremented and continuous irradiation multiple spin correlation methods are applied to spin [Formula: see text] nuclei with small quadrupole couplings such as (7)Li in LiCl and are shown to successfully produce a coherently coupled dipolar spin network. Application to the analogous Na salt shows successful spin correlation evolving at a slower rate due to the weaker homonuclear dipolar coupling strength between Na nuclei. The results are analysed using a statistical approach. Spin counting is non-trivial as not only multiple quantum coherences between spins are generated but also within the quadrupolar spin levels. Na(2)C(2)O(4) is investigated as a material with non-negligible quadrupole coupling and it is in this limit that the spin correlation techniques are found to break down.

  16. HAMLET interacts with histones and chromatin in tumor cell nuclei.

    Science.gov (United States)

    Düringer, Caroline; Hamiche, Ali; Gustafsson, Lotta; Kimura, Hiroshi; Svanborg, Catharina

    2003-10-24

    HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.

  17. Auxetic nuclei in embryonic stem cells exiting pluripotency

    Science.gov (United States)

    Pagliara, Stefano; Franze, Kristian; McClain, Crystal R.; Wylde, George W.; Fisher, Cynthia L.; Franklin, Robin J. M.; Kabla, Alexandre J.; Keyser, Ulrich F.; Chalut, Kevin J.

    2014-06-01

    Embryonic stem cells (ESCs) self-renew in a state of naïve pluripotency in which they are competent to generate all somatic cells. It has been hypothesized that, before irreversibly committing, ESCs pass through at least one metastable transition state. This transition would represent a gateway for differentiation and reprogramming of somatic cells. Here, we show that during the transition, the nuclei of ESCs are auxetic: they exhibit a cross-sectional expansion when stretched and a cross-sectional contraction when compressed, and their stiffness increases under compression. We also show that the auxetic phenotype of transition ESC nuclei is driven at least in part by global chromatin decondensation. Through the regulation of molecular turnover in the differentiating nucleus by external forces, auxeticity could be a key element in mechanotransduction. Our findings highlight the importance of nuclear structure in the regulation of differentiation and reprogramming.

  18. From the stable to the exotic: clustering in light nuclei

    CERN Document Server

    Beck, C

    2016-01-01

    A great deal of research work has been undertaken in alpha-clustering study since the pioneering discovery of 12C+12C molecular resonances half a century ago. Our knowledge on physics of nuclear molecules has increased considerably and nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. The occurrence of "exotic" shapes in light N=Z alpha-like nuclei is investigated. Various approaches of the superdeformed and hyperdeformed bands associated with quasimolecular resonant structures are presented. Evolution of clustering from stability to the drip-lines is examined: clustering aspects are, in particular, discussed for light exotic nuclei with large neutron excess such as neutron-rich Oxygen isotopes with their complete spectroscopy.

  19. Light nuclei in the vicinity of the dripline and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Chulkov, L.V. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Kurchatov Institute, Moscow (Russian Federation); Jonson, B.; Zhukov, M.V. [Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden)

    2015-08-15

    After a brief historical overview of the field of physics with radioactive beams, we give an update of the most recent experimental achievements for nuclei at or beyond the nuclear driplines. Long-lived exotic nuclear states are discussed including multi-nucleon radioactivity and exotic isomers. Studies of correlations between decay products in three-body decays and analysis in a Jacobi-coordinate framework are discussed with special emphasis on the difficulty in the interpretations of data obtained in different reactions. We give examples of systematic studies that the vast amount of now existing data allows, such as shell closures, competition between single-particle states in isotopes, isotones and mirror nuclei. The Thomas-Ehrman shift, Garvey-Kelson-type mass relations and IMME analysis of isobaric multiplets with isospin T = 3/2 and 2 are also discussed as well as alternative interpretations in certain cases. (orig.)

  20. Three-body model for neutron-halo nuclei

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The neutron-halo nuclei,11Li,14Be,and 17B,are studied in the three-body model.The Yukawa interaction is used to describe the interaction of the two-body subsystem.For given parameters of the two-body interaction,the properties of these neutron-halo nuclei are calculated with the Faddeev equations and the results are compared with those in the variational method.It is shown that the method of the Faddeev equations is more accurate.Then the dependencies of the two-and three-body energies on the parameters are studied. We find numerically that two-and three-body correlations differ greatly from each other with the variation of the intrinsic force range.

  1. How to Study Efimov States in Exotic Nuclei?

    Science.gov (United States)

    Macchiavelli, Augusto O.

    2015-12-01

    The existence of Efimov states in atomic nuclei has been predicted by several authors considering 3-body systems of the form Core-neutron-neutron. While these states appear elusive and very challenging experimentally, we discuss possible reactions that can be used to produce and study them in exotic (weakly-bound) nuclei. Following simple arguments, we show that cross-sections relative to the ground states should scale with the parameter {λ_0}, which is the same scale factor for binding energies and radii. We derive back of the envelope estimates for: one- and two-neutron transfer reactions, and inelastic scattering. The ( d, p) reaction appears as the most promising approach and we discuss in more detail some experimental considerations using the example of {^{19}C(d, p)^{20}C}. These initial estimates could serve as a starting point for more refined and realistic calculations, which will be required for careful experimental planning and further analysis.

  2. [DNA quantification in nuclei of cultivated mushroom with DAPI staining].

    Science.gov (United States)

    Pancheva, E V; Volkova, V N; Kamzolkina, O V

    2004-01-01

    Agaricus bisporus (Lange) Imbach is actively cultivated amphithallic basidiomycete, in which various strains are primary homothallic, heterothallic or secondary homothallic. Countings of relative nuclear DNA content by means of DAPI stain and its comparison in different strains can help to understand the mushroom's life cycle features. The authors for the first time observed change of nuclear phases in basidia of A. bisporus strains with different types of life cycle and revealed that DNA content in diploid nuclei is about 1.3 times higher than in haploid ones. The method is highly sensitive and can be used for quantitative measurings of nuclear DNA even in objects with nuclei of about 1 mkm in diameter.

  3. Reactions of Proton Halo Nuclei in a Relativistic Optical Potential

    CERN Document Server

    Rashdan, M

    2003-01-01

    The reaction cross section, sigma sub R; of the proton halo nuclei sup 1 sup 7 Ne and sup 1 sup 2 N on Si is calculated using an optical potential derived from the solution of the Dirac-Brueckner-Bethe-Goldstone equation, starting from the one-boson-exchange potential of Bonn. The nuclear densities are generated from self-consistent Hartree-Fock calculations using the recent Skyrme interaction SKRA. It is found that the enhancement in the reaction cross section found experimentally for the sup 1 sup 7 Ne + Si system in comparison to sup 1 sup 5 O + Si, where sup 1 sup 5 O has been considered as a core of sup 1 sup 7 Ne, is mainly due to the proton halo structure of sup 1 sup 7 Ne which increases the interaction, in the surface and tail regions. Glauber model calculations did not produce this enhancement in sigma sub R for proton halo nuclei

  4. Probable Heavy Particle Decays from 306-339128 Superheavy Nuclei

    Science.gov (United States)

    Santhosh, K. P.; Sukumaran, Indu

    2016-12-01

    The heavy particle decays that are probable from the isotopes of Z = 128 superheavy nuclei within the range A = 306-339 have been analyzed within the Coulomb and proximity potential model (CPPM). The study includes the evaluation of heavy particle decay half-lives of 24 clusters, including both odd and even clusters that are supposed to be emitted from the Z = 128 superheavy nuclei. The predicted values in comparison with the models Universal curve (UNIV), Universal decay law (UDL), and scaling law of Horoi et al. are observed to follow the same trend, and almost all the values lie well within the experimental limit ( T 1/2 Geiger-Nuttall plots of log10( T 1/2) vs. Q -1/2 confirming the presence of shell closure effect and the plot of universal curve of log10( T 1 /2) vs.-lnP revealed the reliability of the model CPPM.

  5. Thermal Model Description of Collisions of Small Nuclei

    CERN Document Server

    Cleymans, J.; Oeschler, H.; Redlich, K.; Sharma, N.

    2016-01-01

    The dependence of particle production on the size of the colliding nuclei is analyzed in terms of the thermal model using the canonical ensemble. The concept of strangeness correlation in clusters of sub-volume $V_c$ is used to account for the suppression of strangeness. A systematic analysis is presented of the predictions of the thermal model for particle production in collisions of small nuclei. The pattern of the maxima in particle ratios of strange particles to pions as a function of beam energy is quite special, as they do not occur at the same beam energy and are sensitive to system size. In particular, the $\\Lambda/\\pi^+$ ratio shows a clear maximum even for the smallest systems while the maximum in the K$^+/\\pi^+$ ratio disappears in small systems.

  6. Linking partial and quasi dynamical symmetries in rotational nuclei

    CERN Document Server

    Kremer, C; Leviatan, A; Pietralla, N; Rainovski, G; Trippel, R; Van Isacker, P

    2014-01-01

    Background: Quasi dynamical symmetries (QDS) and partial dynamical symmetries (PDS) play an important role in the understanding of complex systems. Up to now these symmetry concepts have been considered to be unrelated. Purpose: Establish a link between PDS and QDS and find an emperical manifestation. Methods: Quantum number fluctuations and the intrinsic state formalism are used within the framework of the interacting boson model of nuclei. Results: A previously unrecognized region of the parameter space of the interacting boson model that has both O(6) PDS (purity) and SU(3) QDS (coherence) in the ground band is established. Many rare-earth nuclei approximately satisfying both symmetry requirements are identified. Conclusions: PDS are more abundant than previously recognized and can lead to a QDS of an incompatible symmetry.

  7. Particles and nuclei an introduction to the physical concepts

    CERN Document Server

    Povh, Bogdan; Scholz, Christoph; Zetsche, Frank; Rodejohann, Werner

    2015-01-01

    This well-known introductory textbook gives a uniform presentation of nuclear and particle physics from an experimental point of view.   The first part, Analysis, is devoted to disentangling the substructure of matter. This part shows that experiments designed to uncover the substructures of nuclei and nucleons have a similar conceptual basis, and lead to the present picture of all matter being constructed from a small number of elementary building blocks and a small number of fundamental interactions.   The second part, Synthesis, shows how the elementary particles may be combined to build hadrons and nuclei. The fundamental interactions, which are responsible for the forces in all systems, become less and less evident in increasingly complex systems. Such systems are in fact dominated by many-body phenomena. A section on neutrino oscillations and one on nuclear matter at high temperatures bridge the field of "nuclear and particle physics" and "modem astrophysics and cosmology.   The seventh revised and e...

  8. Low-energy pi pi photoproduction off nuclei

    CERN Document Server

    Mühlich, P; Buss, O; Mosel, U

    2004-01-01

    In the present paper we investigate pi0 pi0 and pi(+/-)pi0 photoproduction off complex nuclei at incident beam energies of 400-460 MeV. Simulations of two pion photoproduction on protons and nuclei are performed by means of a semi-classical BUU transport model including a full coupled-channel treatment of the final state interactions. Elastic scattering of the final state pions with the nucleons in the surrounding nuclear medium is found to yield a downward shift of the pi pi invariant mass distribution. We show that the target mass dependence of the pi0 pi0 invariant mass spectrum as measured by the TAPS collaboration can be explained without introducing medium effects beyond absorption and quasi-elastic scattering of the final state particles. On the other hand, we find considerable discrepancies with the data in the pi(+/-)pi0 channel, which are not understood.

  9. Lattice Effective Field Theory for Medium-Mass Nuclei

    CERN Document Server

    Lähde, Timo A; Krebs, Hermann; Lee, Dean; Meißner, Ulf-G; Rupak, Gautam

    2014-01-01

    We extend Nuclear Lattice Effective Field Theory (NLEFT) to the regime of medium-mass nuclei, and describe a method which allows us to greatly decrease the uncertainties due to extrapolation at large Euclidean time. We present results for the ground states of alpha nuclei from $^4$He to $^{28}$Si, calculated up to next-to-next-to-leading order (NNLO) in the EFT expansion. We discuss systematic errors associated with the momentum-cutoff scale and the truncation of the EFT expansion. While the long-term objectives of NLEFT are a decrease in the lattice spacing and the inclusion of higher-order contributions, we show that the missing physics at NNLO can be approximated by an effective four-nucleon interaction.

  10. Neutron skin studies of medium and heavy nuclei

    Directory of Open Access Journals (Sweden)

    Thiel M.

    2014-06-01

    Full Text Available The recent PREX experiment at JLab has demonstrated the sensitivity of parity violating electron scattering to the neutron density, meanwhile outlining its major experimental challenges. On the other side, intermediate energy photons are an ideal probe for studying the properties of strongly interacting matter from the nuclear scale down to the sub-nuclear components of the nucleus. Among others coherent pion photoproduction can provide information on the existence and nature of neutron skins in nuclei. The simultaneous combination of different techniques allows a systematic determination across the periodic table thus benchmarking modern calculation. Recently a systematic investigation of the latter method has been exploited at MAMI (Mainz. At MESA the same setup as in the measurement of the weak mixing angle can be used to determine the parity-violating asymmetry for polarized electrons scattered on heavy nuclei with a 1% resolution. Status and prospects of the projects are presented.

  11. Unresolved issues in the search for eta-mesic nuclei

    CERN Document Server

    Kelkar, N G

    2015-01-01

    Even if the theoretical definition of an unstable state is straightforward, its experimental identification often depends on the method used in the analysis and extraction of data. A good example is the case of eta mesic nuclei where strong hints of their existence led to about three decades of extensive theoretical and experimental searches. Considering the still undecided status of these states and the limitations in the understanding of the eta-nucleon as well as the eta-nucleus interaction, the present article tries to look back at some unresolved problems in the production mechanism and final state interaction of the eta mesons and nuclei. An unconventional perspective which provides a physical insight into the nature of the eta-nucleus interaction is also presented using quantum time concepts.

  12. Ab Initio Calculations Of Nuclear Reactions And Exotic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Quaglioni, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-05-05

    Our ultimate goal is to develop a fundamental theory and efficient computational tools to describe dynamic processes between nuclei and to use such tools toward supporting several DOE milestones by: 1) performing predictive calculations of difficult-to-measure landmark reactions for nuclear astrophysics, such as those driving the neutrino signature of our sun; 2) improving our understanding of the structure of nuclei near the neutron drip line, which will be the focus of the DOE’s Facility for Rare Isotope Beams (FRIB) being constructed at Michigan State University; but also 3) helping to reveal the true nature of the nuclear force. Furthermore, these theoretical developments will support plasma diagnostic efforts at facilities dedicated to the development of terrestrial fusion energy.

  13. Comparing and contrasting nuclei and cold atomic gases

    CERN Document Server

    Zinner, N T; 10.1088/0954-3899/40/5/053101

    2013-01-01

    The experimental revolution in ultracold atomic gas physics over the past decades have brought tremendous amounts of new insight to the world of degenerate quantum systems. Here we compare and constrast the developments of cold atomic gases with the physics of nuclei since many concepts, techniques, and nomenclatures are common to both fields. However, nuclei are finite systems with interactions that are typically much more complicated than those of ultracold atomic gases. The simularities and differences must therefore be carefully addressed for a meaningful comparison and to facilitate fruitful crossdisciplinary activity. Universal results from atomic physics should have impact in certain limits of the nuclear domain. In particular, with advances in the trapping of few-body atomic systems we expect a more direct exchange of ideas and results.

  14. Microscopic Description of Diffractive Deuteron Breakup by He-3 Nuclei

    CERN Document Server

    Kovalchuk, Valery

    2016-01-01

    A microscopic formalism for describing observed cross sections for deuteron breakup by three-nucleon nuclei was developed on the basis of the diffraction nuclear model. A general formula that describes the amplitude for the reaction d+3He->3He+p+n and which involves only one adjustable parameter was obtained by using expansions of the integrands involved in terms of a Gaussian basis. This formula was used to analyze experimental data on the exclusive cross sections for deuteron breakup by He-3 nuclei at the projectile energy of 89.4 MeV. The importance of employing, in calculations, a deuteron wave function that has a correct asymptotic behavior at large nucleon-nucleon distances was demonstrated.

  15. Effects of Isospin Equilibrium on Cold Fusion of Superheavy Nuclei

    Institute of Scientific and Technical Information of China (English)

    LIU Zu-Hua; BAO Jing-Dong

    2005-01-01

    @@ The neutron flow model predicts that neutrons start to flow freely between the approaching nuclei 58Fe and 208 Pb at s = 3fm, a length in which the effective surfaces of these nuclei are 3fm apart. As a result of neutron flow,the N/Z value rapidly reaches an equilibrium distribution. Meanwhile the system, originally in the fusion valley,is injected into the asymmetric fission valley. The dynamic process of the composite nucleus in the asymmetric fission valley is treated with a two-parameter Smoluchowski equation. It is shown that the probability to overcome the asymmetric fission barrier and to achieve compound nucleus configuration, hence the fusion cross section is obviously suppressed due to the effect of isospin equilibrium.

  16. Formation of Superheavy Nuclei in Massive Fusion Reactions

    Institute of Scientific and Technical Information of China (English)

    FENG Zhao-qing; JIN Gen-ming; LI Jun-qing; Scheid Werner

    2009-01-01

    Within the concept of the dinuclear system(DNS),by incorporating the coupling of the relative motion to the nucleon transfer process,a dynamical model is proposed for describing the formation of superheavy residue nucleus in massive fusion reactions,in which the capture of two heavy colliding nuclei,the formation of compound nucleus and the de-excitation process are calculated using empirical coupled channel model,solving master equation numerically and statistical theory,respectively.By using the DNS model,the evaporation-residue excitation functions in the ~(48)Ca induced fusion reactions and in the cold fusion reactions are investigated systematically and compared with available experimental data.Optimal evaporation channels and combinations as well as the corresponding excitation energies are proposed.The possible factors that influencing the isotopic dependence of the production cross sections are analyzed.The formation of the superheavy nuclei based on the isotopes U with different projectiles are also investigated.

  17. Multipole strength function of deformed superfluid nuclei made easy

    CERN Document Server

    Stoitsov, M; Nakatsukasa, T; Losa, C; Nazarewicz, W

    2011-01-01

    We present an efficient method for calculating strength functions using the finite amplitude method (FAM) for deformed superfluid heavy nuclei within the framework of the nuclear density functional theory. We demonstrate that FAM reproduces strength functions obtained with the fully self-consistent quasi-particle random-phase approximation (QRPA) at a fraction of computational cost. As a demonstration, we compute the isoscalar and isovector monopole strength for strongly deformed configurations in $^{240}$Pu by considering huge quasi-particle QRPA spaces. Our approach to FAM, based on Broyden's iterative procedure, opens the possibility for large-scale calculations of strength distributions in well-bound and weakly bound nuclei across the nuclear landscape.

  18. Generalized seniority with realistic interactions in open-shell nuclei

    CERN Document Server

    Caprio, M A; Cai, K; Constantinou, Ch; Hellemans, V

    2014-01-01

    Generalized seniority provides a truncation scheme for the nuclear shell model, based on pairing correlations, which offers the possibility of dramatically reducing the dimensionality of the nuclear shell-model problem. Systematic comparisons against results obtained in the full shell-model space are required to assess the viability of this scheme. Here, we extend recent generalized seniority calculations for semimagic nuclei, the Ca isotopes, to open-shell nuclei, with both valence protons and valence neutrons. The even-mass Ti and Cr isotopes are treated in a full major shell and with realistic interactions, in the generalized seniority scheme with one broken proton pair and one broken neutron pair. Results for level energies, orbital occupations, and electromagnetic observables are compared with those obtained in the full shell-model space. We demonstrate that, even for the Ti isotopes, significant benefit would be obtained in going beyond the approximation of one broken pair of each type, while the Cr iso...

  19. Mutual boosting of the saturation scales in colliding nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kopeliovich, B.Z., E-mail: bzk@mpi-hd.mpg.d [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Instituto de Estudios Avanzados en Ciencias e Ingenieria, Centro Cientifico-Tecnologico de Valparaiso, Casilla 110-V, Valparaiso (Chile); Institut fuer Theoretische Physik der Universitaet, Philosophenweg 19, 69120 Heidelberg (Germany); Pirner, H.J. [Institut fuer Theoretische Physik der Universitaet, Philosophenweg 19, 69120 Heidelberg (Germany); Potashnikova, I.K.; Schmidt, Ivan [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Instituto de Estudios Avanzados en Ciencias e Ingenieria, Centro Cientifico-Tecnologico de Valparaiso, Casilla 110-V, Valparaiso (Chile)

    2011-03-14

    Saturation of small-x gluons in a nucleus, which has the form of transverse momentum broadening of projectile gluons in pA collisions in the nuclear rest frame, leads to a modification of the parton distribution functions in the beam compared with pp collisions. The DGLAP driven gluon distribution turns out to be suppressed at large x, but significantly enhanced at x<<1. This is a high twist effect. In the case of nucleus-nucleus collisions all participating nucleons on both sides get enriched in gluon density at small x, which leads to a further boosting of the saturation scale. We derive reciprocity equations for the saturation scales corresponding to a collision of two nuclei. The solution of these equations for central collisions of two heavy nuclei demonstrate a significant, up to several times, enhancement of Q{sub sA}{sup 2}, in AA compared with pA collisions.

  20. NEW EQUATIONS OF STATE BASED ON THE LIQUID DROP MODEL OF HEAVY NUCLEI AND QUANTUM APPROACH TO LIGHT NUCLEI FOR CORE-COLLAPSE SUPERNOVA SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Shun; Yamada, Shoichi [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Sumiyoshi, Kohsuke [Numazu College of Technology, Ooka 3600, Numazu, Shizuoka 410-8501 (Japan); Suzuki, Hideyuki, E-mail: furusawa@heap.phys.waseda.ac.jp [Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510 (Japan)

    2013-08-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to {approx}1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.

  1. Coupling of transcription and translation in Dictyostelium discoideum nuclei.

    Science.gov (United States)

    Mangiarotti, G

    1999-03-30

    The nuclei of Dictyostelium discoideum cells have been found to contain polyribosomes active in protein synthesis. mRNA molecules enter nuclear polyribosomes while they are still being synthesized. "Non sense mediated mRNA decay" occurs in the nucleus, through the interaction of the mRNAs containing a nonsense codon with newly formed nuclear ribosomes, rather than with cytoplasmic ribosomes, as previously generally supposed.

  2. Nuclear forces and ab initio calculations of atomic nuclei

    OpenAIRE

    Meißner, Ulf-G.

    2014-01-01

    Nuclear forces and the nuclear many-body problem have been some of Gerry Brown's main topics in his so productive life as a theoretical physicist. In this talk, I outline how Gerry's work laid the foundations of the modern theory of nuclear forces and ab initio calculations of atomic nuclei. I also present some recent developments obtained in the framework of nuclear lattice simulations.

  3. Isospin asymmetry in nuclei and nuclear symmetry energy

    OpenAIRE

    Mukhopadhyay, Tapan; Basu, D. N.

    2006-01-01

    The volume and surface symmetry parts of the nuclear symmetry energy and other coefficients of the liquid droplet model are determined from the measured atomic masses by the maximum likelihood estimator. The volume symmetry energy coefficient extracted from finite nuclei provides a constraint on the nuclear symmetry energy. This approach also yields the neutron skin of a finite nucleus through its relationship with the volume and surface symmetry terms and the Coulomb energy coefficient. The ...

  4. Infrared-ultraviolet spectra of active galactic nuclei

    Science.gov (United States)

    Malkan, M. A.; These corrected SEDs are shown.

    1987-01-01

    Data from IRAS and IUE were combined with ground based optical and infrared spectrophotometry to derive emission line free spectral energy distributions (SEDs) for 29 active galactic nuclei (AGNs) between 0.1 and 100 microns. The IRAS data were scaled down to account for extended emission. These correction factors, determined by comparing small aperture ground based 10.6 micron data with large aperture IRAS 12 micron fluxes, were usually less than 25%. These corrected SEDs are shown.

  5. The Galactic Center compared with nuclei of nearby galaxies

    Science.gov (United States)

    Combes, Francoise

    2017-01-01

    Understanding our Galactic Center is easier with insights from nearby galactic nuclei. Both the star formation activity in nuclear gas disks, driven by bars and nuclear bars, and the fueling of low-luminosity AGN, followed by feedback of jets, driving molecular outflows, were certainly present in our Galactic Center, which appears now quenched. Comparisons and diagnostics are reviewed, in particular of m = 2 and m = 1 modes, lopsidedness, different disk orientations, and fossil evidences of activity and feedback.

  6. The Galactic Center compared with nuclei of nearby galaxies

    CERN Document Server

    Combes, F

    2016-01-01

    Understanding our Galactic Center is easier with insights from nearby galactic nuclei. Both the star formation activity in nuclear gas disks, driven by bars and nuclear bars, and the fueling of low-luminosity AGN, followed by feedback of jets, driving molecular outflows, were certainly present in our Galactic Center, which appears now quenched. Comparisons and diagnostics are reviewed, in particular of m=2 and m=1 modes, lopsidedness, different disk orientations, and fossil evidences of activity and feedback.

  7. Experimental Temperature and Heat Capacity in Rare Earth Nuclei

    Science.gov (United States)

    Melby, E.; Bergholt, L.; Guttormsen, M.; Hjorth-Jensen, M.; Ingebretsen, F.; Messelt, S.; Rekstad, J.; Schiller, A.; Siem, S.; Ødegård, S. W.

    Temperature and heat capacity for the rare earth nuclei 162Dy, 166Er and 172Yb have been extracted from experimental data at the Oslo Cyclotron Laboratory (OCL). The starting point to determine thermodynamical quantities is the density of levels as a function of excitation energy. The density of accessible levels in the (3He,α γ)-reaction has been extracted from measured γ-spectra.

  8. Precision spectroscopy of pionic atoms and chiral symmetry in nuclei

    Directory of Open Access Journals (Sweden)

    Itahashi Kenta

    2016-01-01

    Full Text Available We conduct an experimental project to make spectroscopy of deeply bound pionic atoms systematically over wide range of nuclei. We aim at studying the strong interaction in the low energy region, which has close connection to spontaneous chiral symmetry breaking and its partial restoration in nuclear matter. First experimental results show improved spectral resolution and much better statistical sensitivity than previous experiments. Present status of the experiment is reported.

  9. Production of actinide nuclei by multi-nucleon transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, T.; Ahmad, I.; Carpenter, M.P. [and others

    1995-08-01

    Multi-nucleon transfers have increasingly allowed us to reach parts of the nuclear chart where regular compound nuclear reactions are prohibited. The interesting region of Ra and Rn, where a rich tapestry of nuclear structure manifests itself, is now accessible using this technique of deep inelastic scattering. In particular, these nuclei are predicted to lie at the onset of octupole deformation and the region is rich in examples of shape coexistence. There are several theoretical predictions of nuclear structure of these nuclei that have not been experimentally tested. Moreover, there is serious disagreement among these theories. We used a beam of {sup 136}Xe at 720 MeV from ATLAS on a target of {sup 232}Th to produce a range of Rn isotopes, with a mass from 220 to 224, and Ra isotopes with masses greater than 222. The beam energy, target and beam were selected carefully to enhance the cross-section for production of these nuclei and reduce the Doppler broadening of the gamma rays that were observed in the Argonne Notre Dame gamma-ray facility. The 12 germanium detectors of this array allowed the observation of gamma-gamma coincidences. The inner ball of 50 BGO detectors allowed us to record the multiplicity and sum-energy information for each event. The latter should permit us to determine the entry region in the products of the transfer reaction. We had four successful days of beam-time, when we collected in excess of 8 x 10{sup 7} events. Data analysis is in progress at the University of Liverpool. A complete set of spectroscopic information on the yrast structure of the many nuclei produced in this reaction is being extracted.

  10. Investigation of astrophysically relevant neutron-rich argon nuclei

    CERN Multimedia

    2002-01-01

    We propose to measure $\\beta$-decay properties especially the half-lives and P$_{n}$-values of the neutron-rich $^{47,48,49}$Ar nuclei. The acquired information will be important for a better understanding of the origin of the $^{48}$Ca/$^{46}$Ca isotopic "FUN" anomalies discovered in several refractory inclusions (in particular EK-1-4-1)of the Allende meteorite.

  11. Plasmid DNA entry into postmitotic nuclei of primary rat myotubes.

    OpenAIRE

    Dowty, M E; Williams, P.; G. Zhang; Hagstrom, J E; Wolff, J A

    1995-01-01

    These studies were initiated to elucidate the mechanism of DNA nuclear transport in mammalian cells. Biotin- or gold-labeled plasmid and plasmid DNA expression vectors for Escherichia coli beta-galactosidase or firefly luciferase were microinjected into the cytoplasm of primary rat myotubes in culture. Plasmid DNA was expressed in up to 70% of the injected myotubes, which indicates that it entered intact, postmitotic nuclei. The nuclear transport of plasmid DNA occurred through the nuclear po...

  12. Experimental studies of unbound neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lecouey, J.L

    2003-10-01

    The three-body description of two-neutron halo nuclei relies on the two-body interactions between the constituents. In order to provide constraints on calculations devoted to {sup 14}Be and {sup 17}B, the neutron unbound states of {sup 13}Be and {sup 16}B have been investigated by one-proton knockout. The experimental techniques and results are discussed here. (author)

  13. Proton-neutron deformations and F -spin symmetry in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A.; Ginocchio, J.N. (Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM (USA)); Kirson, M.W. (Nuclear Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel))

    1990-12-03

    The purity of intrinsic states of nuclei with respect to a proton-neutron boson symmetry ({ital F} spin) is shown to be largely determined by the difference between proton and neutron deformations and not by whether the Hamiltonian is an {ital F}-spin scalar. Upper and lower bounds on {ital F}-spin mixing in the ground-state band of {sup 165}Ho are estimated using recent pion single-charge-exchange data.

  14. Algebraic benchmark for prolate-oblate coexistence in nuclei

    CERN Document Server

    Leviatan, A

    2016-01-01

    We present a symmetry-based approach for prolate-oblate and spherical-prolate-oblate shape coexistence, in the framework of the interacting boson model of nuclei. The proposed Hamiltonian conserves the SU(3) and $\\overline{\\rm SU(3)}$ symmetry for the prolate and oblate ground bands and the U(5) symmetry for selected spherical states. Analytic expressions for quadrupole moments and $E2$ rates involving these states are derived and isomeric states are identified by means of selection rules.

  15. Magnetic Dipole Sum Rules for Odd-Mass Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ginocchio, J.N.; Leviatan, A. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Leviatan, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Ginocchio, J.N.; Leviatan, A. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT), I-38050 Villazano, Trento (Italy)

    1997-08-01

    Sum rules for the total- and scissors-mode M1 strength in odd-A nuclei are derived within the single-j interacting boson-fermion model. We discuss the physical content and geometric interpretation of these sum rules and apply them to {sup 167}Er and {sup 161}Dy. We find consistency with the former measurements but not with the latter. {copyright} {ital 1997 } {ital The American Physical Society}

  16. From local active galactic nuclei to early quasars

    Energy Technology Data Exchange (ETDEWEB)

    Cavaliere, A.; Giallongo, E.; Vagnetti, F.

    1985-09-15

    To close the gap between the local luminosity function of the optically selected active galactic nuclei and the population properties of distant (z< or approx. =2) quasars, we propose a model of differential luminosity evolution which is astrophysically based and contains a minimal number of free parameters. We discuss the advantages of the model and its predictions, and indicate how to extend it for z > 2 to cover the beginning of the quasar era.

  17. Relativistic elastic differential cross sections for equal mass nuclei

    Directory of Open Access Journals (Sweden)

    C.M. Werneth

    2015-10-01

    Full Text Available The effects of relativistic kinematics are studied for nuclear collisions of equal mass nuclei. It is found that the relativistic and non-relativistic elastic scattering amplitudes are nearly indistinguishable, and, hence, the relativistic and non-relativistic differential cross sections become indistinguishable. These results are explained by analyzing the Lippmann–Schwinger equation with the first order optical potential that was employed in the calculation.

  18. Relativistic elastic differential cross sections for equal mass nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Werneth, C.M., E-mail: charles.m.werneth@nasa.gov [NASA Langley Research Center, 2 West Reid Street, Hampton, VA 23681 (United States); Maung, K.M.; Ford, W.P. [The University of Southern Mississippi, 118 College Drive, Box 5046, Hattiesburg, MS 39406 (United States)

    2015-10-07

    The effects of relativistic kinematics are studied for nuclear collisions of equal mass nuclei. It is found that the relativistic and non-relativistic elastic scattering amplitudes are nearly indistinguishable, and, hence, the relativistic and non-relativistic differential cross sections become indistinguishable. These results are explained by analyzing the Lippmann–Schwinger equation with the first order optical potential that was employed in the calculation.

  19. Pairing Field and Moments of Inertia of Superdeformed Nuclei

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The dynamic moments of inertia of the experimental superdeformed bands observed in the A=190,150 and 60~80 mass regions were systematically analyzed. By getting together the different massregions the dramatic features of the dynamic moments of inertia were found and explained based on thecalculations of the pairing fields of SD nuclei with the anisotropic harmonic oscillator quadrupole pairingHartree-Fock-Bogolyubor model. The gradually rising behavior of J2 indicates that the SD states in the

  20. Pairing Field and Moments of Inertia of Superdeformed Nuclei

    Institute of Scientific and Technical Information of China (English)

    陈永静; 陈永寿; 陈辅新

    2002-01-01

    We have systematically analysed the dynamic moments of inertia of the experimental superdeformed (SD)bands observed in the A = 190, 150 and 60-80 mass regions as functions of rotational frequency. By combining the different mass regions, the dramatic features of the dynamic moments of inertia were found and explained based on the calculations of the pairing fields of SD nuclei with the anisotropic harmonic oscillator quadrupole pairing Hartree-Fock-Bogoliubov model.

  1. Spatial organization and correlations of cell nuclei in brain tumors.

    Directory of Open Access Journals (Sweden)

    Yang Jiao

    Full Text Available Accepting the hypothesis that cancers are self-organizing, opportunistic systems, it is crucial to understand the collective behavior of cancer cells in their tumorous heterogeneous environment. In the present paper, we ask the following basic question: Is this self-organization of tumor evolution reflected in the manner in which malignant cells are spatially distributed in their heterogeneous environment? We employ a variety of nontrivial statistical microstructural descriptors that arise in the theory of heterogeneous media to characterize the spatial distributions of the nuclei of both benign brain white matter cells and brain glioma cells as obtained from histological images. These descriptors, which include the pair correlation function, structure factor and various nearest neighbor functions, quantify how pairs of cell nuclei are correlated in space in various ways. We map the centroids of the cell nuclei into point distributions to show that while commonly used local spatial statistics (e.g., cell areas and number of neighboring cells cannot clearly distinguish spatial correlations in distributions of normal and abnormal cell nuclei, their salient structural features are captured very well by the aforementioned microstructural descriptors. We show that the tumorous cells pack more densely than normal cells and exhibit stronger effective repulsions between any pair of cells. Moreover, we demonstrate that brain gliomas are organized in a collective way rather than randomly on intermediate and large length scales. The existence of nontrivial spatial correlations between the abnormal cells strongly supports the view that cancer is not an unorganized collection of malignant cells but rather a complex emergent integrated system.

  2. Study of Survival Probability of Super Heavy Nuclei

    Institute of Scientific and Technical Information of China (English)

    WANGNan; ZHAOEn-Guang; LIWen-Fei; LIJian-Feng; XUHu-Shan; ZUOWei; LIJun-Qing

    2003-01-01

    The survival probability of super heavy nuclei produced in cold fusion reactions is studied by using the standard Fermi gas level density formula and analyzed with fission and neutron evaporation characteristics predicted in different theoretical models. The level density formula used in this letter suppresses the ratio of neutron emission width to fission width, Гn/Гf. The dependence of Гn/Гf on the saddle point level density parameter and excitation energy is also investigated.

  3. A Search For Neutrinos From Active Galactic Nuclei

    CERN Document Server

    Demuth, D M

    1999-01-01

    Several authors have presented astrophysical mechanisms that would lead to measureable sources of high energy neutrinos. These include binary pulsars, early supernova remnants, and active galactic nuclei (AGN). In the case of AGN, a portion of the gravitational energy released by plasma accreting onto a central black hole is converted into non-thermal luminosity which produce high energy protons. Neutrinos (ν ) and gamma-rays (γ ) are among the particles produced in inelastic collisions of protons with thermal matter or radiation...

  4. Renormalization of the Spin-dependent WIMP scattering off nuclei

    CERN Document Server

    Divari, P C

    2013-01-01

    We study the amplitude for the spin-dependent WIMP scattering off nuclei by including the leading long-range two-body currents in the most important isovector contribution. We show that such effects are essentially independent of the target nucleus and, as a result, they can be treated as a mere renormalization of the effective nucleon cross section or, equivalently, of the corresponding effective coupling with values around 25%.

  5. Fragmentation of relativistic oxygen nuclei in interactions with a proton

    CERN Document Server

    Glagolev, V V; Lipin, V D; Lutpullaev, S L; Olimov, K K; Yuldashev, A A; Yuldashev, B S; Olimov, Kh.K.

    2001-01-01

    The data on investigation of inelastic interactions of 16O nuclei with a proton at 3.25 A GeV/c momentum by the bubble chamber method are presented. The separate characteristics as fragments isotopic composition and as topo-logical cross sections of fragmentation channels are given. The processes of light fragments formation and breakup of 16O nucleus on multicharge fragments have been investigated. The comparison of experimental data with the calculations by statistical multifragmentation model was conducted.

  6. Electric Dipole Moments of Light Nuclei from Chiral EFT

    OpenAIRE

    Higa, Renato

    2012-01-01

    Recent calculations of EDMs of light nuclei in the framework of chiral effective field theory are presented. We argue that they can be written in terms of the leading six low-energy constants encoding CP-violating physics. EDMs of the deuteron, triton, and helion are explicitly given in order to corroborate our claim. An eventual non-zero measurement of these EDMs can be used to disentangle the different sources and strengths of CP-violation.

  7. Semiclassical model for pion production by neutrons on nuclei

    CERN Document Server

    Sparrow, D A; Sternheim, M M

    1974-01-01

    A model for pion production by neutrons on nuclei is derived by a straightforward extension of the semiclassical model for pion production by protons, previously described by two of the present authors, Silbar and Sternheim (1973). Both models are then applied to compute pion production cross sections for nucleons incident on Pb, Cu and Al, and pion absorption cross sections in nuclear matter. Results are consistent with (unpublished) experimental data from CERN. (10 refs).

  8. Poroelasticity of cell nuclei revealed through atomic force microscopy characterization

    Science.gov (United States)

    Wei, Fanan; Lan, Fei; Liu, Bin; Liu, Lianqing; Li, Guangyong

    2016-11-01

    With great potential in precision medical application, cell biomechanics is rising as a hot topic in biology. Cell nucleus, as the largest component within cell, not only contributes greatly to the cell's mechanical behavior, but also serves as the most vital component within cell. However, cell nucleus' mechanics is still far from unambiguous up to now. In this paper, we attempted to characterize and evaluate the mechanical property of isolated cell nuclei using Atomic Force Microscopy with a tipless probe. As indicated from typical indentation, changing loading rate and stress relaxation experiment results, cell nuclei showed significant dynamically mechanical property, i.e., time-dependent mechanics. Furthermore, through theoretical analysis, finite element simulation and stress relaxation experiment, the nature of nucleus' mechanics was better described by poroelasticity, rather than viscoelasticity. Therefore, the essence of nucleus' mechanics was clarified to be poroelastic through a sophisticated analysis. Finally, we estimated the poroelastic parameters for nuclei of two types of cells through a combination of experimental data and finite element simulation.

  9. Structure Shape Evolution in Lanthanide and Actinide Nuclei

    Directory of Open Access Journals (Sweden)

    Khalaf A. M.

    2013-04-01

    Full Text Available To give the characteristics of the evolution of the collectivity in even-even nuclei, we studied the behavior of the energy ratios R(4 / 2 and R(6 / 4. All chains of lanthanides begins as vibrational with R(4 / 2 near 2.0 and move towards rotational (R(4 / 2 3.33 as neutron number increases. A rabid jump in R(4 / 2 near N = 90 was seen. The plot of R(4 / 2 against Z shows not only the existence of a shape transitions but also the change in curvature in the data for N = 88 and 90, concave to convex. For intermedi- ate structure the slopes in E-GOS ( E over spin plots range between the vibrator and rotor extremes. The abnormal behavior of the two-neutron separation energies of our lanthanide nuclei as a function of neutron number around neutron number 90 is cal- culated. Nonlinear behavior is observed which indicate that shape phase transition is occurred in this region. The calculated reduced B(E2 transition probabilities of the low states of the ground state band in the nuclei 150 Nd / 152 Sm / 154 Gd / 156 Dy are analyzed and compared to the prediction of vibrational U(5 and rotational SU(3 limits of interacting boson model calculations.

  10. Effective field theory for vibrations in odd-mass nuclei

    CERN Document Server

    Pérez, E A Coello

    2016-01-01

    Heavy even-even nuclei exhibit low-energy collective excitations that are separated in scale from the microscopic (fermion) degrees of freedom. This separation of scale allows us to approach nuclear vibrations within an effective field theory (EFT). In odd-mass nuclei collective and single-particle properties compete at low energies, and this makes their description more challenging. In this article we describe odd-mass nuclei with ground-state spin $I=\\sfrac{1}{2}$ by means of an EFT that couples a fermion to the collective degrees of freedom of an even-even core. The EFT relates observables such as energy levels, electric quadrupole ($E2$) transition strengths, and magnetic dipole ($M1$) moments of the odd-mass nucleus to those of its even-even neighbor, and allows us to quantify theoretical uncertainties. For isotopes of rhodium and silver the theoretical description is consistent with data within experimental and theoretical uncertainties. Several testable predictions are made.

  11. Classically dynamical behaviour of a nucleon in heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gu Jianzhong [CCAST World Lab., Beijing, BJ (China)]|[Institute of Theoretical Physics, Academia Sinica, P.O. Box 2735, Beijing, 100080 (China); Zhao Enguang; Zong Hongshi [Institute of Theoretical Physics, Academia Sinica, P.O. Box 2735, Beijing, 100080 (China); Zhuo Yizhong [Institute of Theoretical Physics, Academia Sinica, P.O. Box 2735, Beijing, 100080 (China)]|[China Institute of Atomic Energy, P.O. Box 275 18, Beijing, 102413 (China); Wu Xizhen [China Institute of Atomic Energy, P.O. Box 275 18, Beijing, 102413 (China)

    1998-06-01

    Within the framework of the two-center shell model the classically dynamical behaviour of a nucleon in heavy nuclei is investigated systematically with the change of nuclear shape parameters for the first time. It is found that as long as the nucleonic energy 0is appreciably higher than the height of the potential barrier there is a good quantum-classical correspondence of nucleonic regular (chaotic) motion. Thus, Bohigas, Giannoni and Schmit conjecture is confirmed once again. We find that the difference between the potential barrier for prolate nuclei and that for oblate ones is reponsible for the energy-dependence difference between the nucleonic chaotic dynamics for prolate nuclei and that for oblate ones. In addition, it is suggested that nuclear dissipation is shape-dependent, and strong nuclear dissipation can be expected for medium or large separations in the presence of a considerable neck deformation built on a pronounced octupole-like deformation, which provides us a dynamical understanding of nuclear shape dependence of nuclear dissipation. (orig.) With 5 figs., 22 refs.

  12. Fusion Enhancement for Neutron-Rich Light Nuclei

    CERN Document Server

    Singh, Varinderjit; Steinbach, T K; Hudan, S; deSouza, R T; Baby, L T; Kuvin, S A; Tripathi, V; Wiedenhover, I

    2016-01-01

    Measurement of the fusion cross-section for neutron-rich light nuclei is crucial in ascertaining if fusion of these nuclei occurs in the outer crust of a neutron star. The fusion excitation function at near-barrier energies for the $^{19}$O + $^{12}$C system was measured and the experimental results are compared to the fusion excitation function of $^{18}$O + $^{12}$C and $^{16}$O + $^{12}$C. The experiment was performed by utilizing a beam of $^{19}$O, produced via the $^{18}$O(d,p) reaction, to bombard a $^{12}$C target at energies near the Coulomb barrier. Evaporation residues produced in fusion of $^{18,19}$O ions with $^{12}$C target nuclei were detected with good geometric efficiency and identified by measuring their energy and time-of-flight. A significant enhancement is observed in the fusion probability of $^{19}$O ions with a $^{12}$C target as compared to $^{18}$O ions. The larger cross-sections observed at near barrier energies is related to significant narrowing of the fusion barrier indicating a...

  13. Study of octupole correlations in rare earth nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Babilon, M.

    2005-07-01

    Possible signatures of octupole correlations are discussed in this thesis for the rare earth nuclei {sup 148-154}Sm and {sup 152}Gd. Microscopic models suggest the occurence of strong octupole correlations in nuclei with N {approx} 88. The available data on {sup 148-154}Sm isotopes allowed for the examination of signatures of octupole correlations through the study of systematics in this region within the framework of the spdf Interacting Boson Approximation (IBA) model. It was found that properties of low-lying states can be readily understood with a simple hamiltonian consisting of a known positive parity hamiltonian coupled to a negative parity boson, and that multiple negative parity bosons were needed to describe properties at higher spin. Experiments on {sup 152}Gd have been performed at wright nuclear structure laboratory of yale university to extend the investigations on octupole correlations to other N=88 nuclei. An experiment at the moving tape collector allowed for the determination of decay properties of low-spin levels in {sup 152}Gd. To obtain information on medium-spin states, including their branchings, a fusion evaporation experiment was performed at the SASSYER setup. Existing data were verified and knowledge of state properties was extended towards higher spins. (orig.)

  14. The star formation history of Seyfert 2 nuclei

    CERN Document Server

    Fernandes, R C; Melnick, Yu M; Terlevich, E; Terlevich, R J; Kunth, D; Lacerda, R R; Joguet, B

    2004-01-01

    We present a study of the stellar populations in the central ~ 200 pc of a large and homogeneous sample comprising 79 nearby galaxies, most of which are type 2 Seyferts. The star-formation history of these nuclei is reconstructed by means of state-of-the art population synthesis modeling of their spectra in the 3500--5200 A interval. A QSO-like featureless continuum (FC) is added to the models to account for possible scattered light from a hidden AGN. We find that: (1) The star-formation history of Seyfert 2 nuclei is remarkably heterogeneous: young starbursts, intermediate age, and old stellar populations all appear in significant and widely varying proportions. (2) A significant fraction of the nuclei show a strong FC component, but this FC is not always an indication of a hidden AGN: it can also betray the presence of a young, dusty starburst. (3) We detect weak broad Hbeta emission in several Seyfert 2s after cleaning the observed spectrum by subtracting the synthesis model. These are most likely the weak...

  15. Predicting the growth of nanoscale nuclei by histotripsy pulses

    Science.gov (United States)

    Bader, Kenneth B; Holland, Christy K

    2016-01-01

    Histotripsy is a focused ultrasound therapy that ablates tissue through the mechanical action of cavitation. Histotripsy-initiated cavitation activity is generated from shocked ultrasound pulses that scatter from incidental nuclei (shock scattering histotripsy), or purely tensile ultrasound pulses (microtripsy). The Yang/Church model was numerically integrated to predict the behavior of the cavitation nuclei exposed to measured shock scattering histotripsy pulses. The bubble motion exhibited expansion only behavior, suggesting that the ablative action of a histotripsy pulse is related to the maximum size of the bubble. The analytic model of Holland and Apfel was extended to predict the maximum size of cavitation nuclei for both shock scattering histotripsy and microtripsy excitations. The predictions of the analytic model and the numerical model agree within 2% for fully developed shock scattering histotripsy pulses (>72 MPa peak positive pressure). For shock scattering histotripsy pulses that are not fully developed (<72 MPa), the analytic model underestimated the maximum size by less than 5%. The analytic model was also used to predict bubble growth nucleated from microtripsy insonations, and was found to be consistent with experimental observations. Based on the extended analytic model, metrics were developed to predict the extent of the treatment zone from histotripsy pulses. PMID:26988374

  16. Production rates of cosmogenic nuclei on the lunar surface

    Science.gov (United States)

    Dong, Tie-Kuang; Yun, Su-Jun; Ma, Tao; Chang, Jin; Dong, Wu-Dong; Zhang, Xiao-Ping; Li, Guo-Long; Ren, Zhong-Zhou

    2014-07-01

    A physical model for Geant4-based simulation of the galactic cosmic ray (GCR) particles' interaction with the lunar surface matter has been developed to investigate the production rates of cosmogenic nuclei. In this model the GCRs, mainly very high energy protons and α particles, bombard the surface of the Moon and produce many secondary particles, such as protons and neutrons. The energies of protons and neutrons at different depths are recorded and saved as ROOT files, and the analytical expressions for the differential proton and neutron fluxes are obtained through the best-fit procedure using ROOT software. To test the validity of this model, we calculate the production rates of the long-lived nuclei 10Be and 26Al in the Apollo 15 long drill core by combining the above differential fluxes and the newly evaluated spallation reaction cross sections. Our numerical results show that the theoretical production rates agree quite well with the measured data, which means that this model works well. Therefore, it can be expected that this model can be used to investigate the cosmogenic nuclei in future lunar samples returned by the Chinese lunar exploration program and can be extended to study other objects, such as meteorites and the Earth's atmosphere.

  17. Predicting the growth of nanoscale nuclei by histotripsy pulses

    Science.gov (United States)

    Bader, Kenneth B.; Holland, Christy K.

    2016-04-01

    Histotripsy is a focused ultrasound therapy that ablates tissue through the mechanical action of cavitation. Histotripsy-initiated cavitation activity is generated from shocked ultrasound pulses that scatter from incidental nuclei (shock scattering histotripsy), or purely tensile ultrasound pulses (microtripsy). The Yang/Church model was numerically integrated to predict the behavior of the cavitation nuclei exposed to measured shock scattering histotripsy pulses. The bubble motion exhibited expansion only behavior, suggesting that the ablative action of a histotripsy pulse is related to the maximum size of the bubble. The analytic model of Holland and Apfel was extended to predict the maximum size of cavitation nuclei for both shock scattering histotripsy and microtripsy excitations. The predictions of the analytic model and the numerical model agree within 2% for fully developed shock scattering histotripsy pulses (>72 MPa peak positive pressure). For shock scattering histotripsy pulses that are not fully developed (<72 MPa), the analytic model underestimated the maximum size by less than 5%. The analytic model was also used to predict bubble growth nucleated from microtripsy insonations, and was found to be consistent with experimental observations. Based on the extended analytic model, metrics were developed to predict the extent of the treatment zone from histotripsy pulses.

  18. An Improved Method of Lifetime Measurement of Nuclei in Radioactive Decay Chain

    CERN Document Server

    Puzović, J M; Nađđerđ, L J

    2016-01-01

    We present an improved statistical method for calculation of mean lifetime of nuclei in a decay chain with uncertain relation between mother and daughter nuclei. The method is based on formation of time distribution of intervals between mother and daughter nuclei, without trying to set the exact mother-daughter nuclei relationship. If there is a coincidence of mother and daughter nuclei decays, sum of these distributions has flat term on which an exponential term is superimposed. Parameters of this exponential function allow lifetime of daughter nucleus to be extracted. The method is tested on Monte Carlo simulation data.

  19. An improved method of lifetime measurement of nuclei in radioactive decay chain

    Science.gov (United States)

    Puzović, J. M.; Manić, D.; Nađđerđ, L. J.

    2017-04-01

    We present an improved statistical method for the calculation of mean lifetime of nuclei in a decay chain with an uncertain relation between mother and daughter nuclei. The method is based on the formation of time distribution of intervals between mother and daughter nuclei, without trying to set the exact mother-daughter nuclei relationship. If there is a coincidence of mother and daughter nuclei decays, the sum of these distributions has flat term on which an exponential term is superimposed. Parameters of this exponential function allow lifetime of daughter nucleus to be extracted. The method is tested on Monte Carlo simulation data.

  20. Translationally invariant treatment of pair correlations in nuclei; 1, spin and isospin dependent correlations

    CERN Document Server

    Guardiola, R; Navarro, J; Bishop, R F; Puente, A; Walet, N R; Walet, Niels R.

    1996-01-01

    We study the extension of our translationally invariant treatment of few-body nuclear systems to heavier nuclei. At the same time we also introduce state-dependent correlation operators. Our techniques are tailored to those nuclei that can be dealt with in $LS$ coupling, which includes all nuclei up to the shell closure at $A=40$. We study mainly $p$-shell nuclei in this paper. A detailed comparison with other microscopic many-body approaches is made, using a variety of schematic nuclear interactions. It is shown that our methodology produces very good energies, and presumably also wave functions, for medium mass nuclei.