Signature Inversion in Odd-odd Nuclei
Institute of Scientific and Technical Information of China (English)
LIU Min-liang; ZHANG Yu-hu; ZHOU Xiao-hong; GUO Ying-xiang; LEI Xiang-guo; GUO Wen-tao
2009-01-01
Signature inversion in odd-odd nuclei is investigated by using a proton and a neutron coupling to the coherent state of the core.Two parameters are employed in the Hamiltonian to set the energy scales of rotation,neutron-proton coupling and their competition.Typical level staggering is extracted from the calculated level energies.The calculation can approximately reproduce experimental signature inversion.Signature inversion is attributed to the rotational motion and neutronproton residual interaction having reversed signature splitting rules.It is found signature inversion can appear at axially symmetric shape and high-K band.
Quadrupole moments of odd-odd near-magic nuclei
Directory of Open Access Journals (Sweden)
Achakovskiy O.
2012-12-01
Full Text Available Ground state quadrupole moments of odd-odd near-double-magic nuclei are calculated in the approximation of non-interacting odd neutron and odd proton. Under such a simple approximation the problem is reduced to the calculations of quadrupole moments of corresponding odd-even nuclei. These calculations are performed within the self-consistent Theory of Finite Fermi Systems based on the Energy Density Functional by Fayans et al. with the known DF3-a parameters. A reasonable agreement with the available experimental data is obtained for odd-odd nuclei and odd near-magic nuclei investigated. The self-consistent approach under consideration allowed us to predict the unknown quadrupole moments of odd-even and odd-odd nuclei near the double-magic 56,78Ni, 100,132Sn nuclides.
Magnetic moments of odd-odd spherical nuclei
Achakovskiy, O I; Saperstein, E E; Tolokonnikov, S V
2013-01-01
Magnetic moments of more than one hundred odd-odd spherical nuclei in ground and excited states are calculated within the self-consistent TFFS based on the EDF method by Fayans {\\it et al}. We limit ourselves to nuclei with a neutron and a proton particle (hole) added to the magic or semimagic core. A simple model of no interaction between the odd nucleons is used. In most the cases we analyzed, a good agreement with the experimental data is obtained. Several cases are considered where this simple model does not work and it is necessary to go beyond. The unknown values of magnetic moments of many unstable odd and odd-odd nuclei are predicted including sixty values for excited odd-odd nuclei.
Quadrupole moments of odd-odd near-magic nuclei
Achakovskiy O.; Voitenkov D.; Kamerdzhiev S.; Tolokonnikov S.
2012-01-01
Ground state quadrupole moments of odd-odd near double magic nuclei are calculated in the approximation of no interaction between odd particles. Under such a simple approximation, the problem is reduced to the calculations of quadrupole moments of corresponding odd-even nuclei. These calculations are performed within the self-consistent Theory of Finite Fermi Systems based on the Energy Density Functional by Fayans et al. with the known DF3-a parameters. A reasonable agreement with the availa...
Unique features of transuranic odd-odd nuclei
International Nuclear Information System (INIS)
Odd-odd nuclei in the transuranic region have significantly longer half-lives than their odd-mass core nuclei. Further, the occurrence of long-lived isomers is a quite common feature in these nuclei. Interestingly in almost all the known isomer pairs, the ambiguity in the relative energy placement of the two isomers does not enable to know which of the two isomers is the real ground state. This is due to the fact that due to large difference in isomer spins, the two do not connect through an isomeric transition (IT). In this report these properties are illustrated by discussing the Z=99 Einsteinium sequence of nuclei
Magnetic moments of odd-odd spherical nuclei
Achakovskiy, O. I.; Kamerdzhiev, S. P.; Saperstein, E. E.; Tolokonnikov, S. V.
2013-01-01
Magnetic moments of more than one hundred odd-odd spherical nuclei in ground and excited states are calculated within the self-consistent TFFS based on the EDF method by Fayans {\\it et al}. We limit ourselves to nuclei with a neutron and a proton particle (hole) added to the magic or semimagic core. A simple model of no interaction between the odd nucleons is used. In most the cases we analyzed, a good agreement with the experimental data is obtained. Several cases are considered where this s...
Modeling level structures of odd-odd deformed nuclei
International Nuclear Information System (INIS)
A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei has been applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation were derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings were used. Calculated and experimental level structures for 238Np, 244Am, and 250Bk are compared, as well as those for several nuclei in the rare-earth region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Corresponding average deviations for five rare-earth nuclei are 47 keV and 7%. Several applications of this modeling technique are discussed. 18 refs., 5 figs., 4 tabs
Quartetting in odd-odd self-conjugate nuclei
Sambataro, M
2016-01-01
We provide a description of odd-odd self-conjugate nuclei in the sd shell in a formalism of collective quartets and pairs. Quartets are four-body structures carrying isospin T=0 while pairs can have either T=0 or T=1. Both quartets and pairs are labeled by the angular momentum J and they are chosen so as to describe the lowest states of 20Ne (quartets) and the lowest T=0 and T=1 states of 18F (pairs). We carry out configuration interaction calculations in spaces built by one quartet and one pair for 22Na and by two quartets and one pair for 26Al. The spectra that are generated are in good agreement with the shell model and experimental ones. These calculations confirm the relevance of quartetting in the structure of N=Z nuclei that had already emerged in previous studies of the even-even systems and highlight the role of J>0 quartets in the composition of the odd-odd spectra.
Calculation of {beta}-ray spectra. Odd-odd nuclei
Energy Technology Data Exchange (ETDEWEB)
Tachibana, Takahiro [Waseda Univ., Tokyo (Japan). Advanced Research Center for Science and Engineering
1996-05-01
In order to study {beta}-ray of atomic nucleus, it is natural to consider {beta}-ray data fundamental and important. In a recent experiment, Rudstam measured {beta}-ray spectra from short term nuclear fission product species in 1990. It is an important check point in theoretical study on {beta}-ray to investigate if these experimental data can be reproduced by any theoretical calculation. As there are several spectrum studies of {beta}-ray through decay heat for its various properties due to the general theory of the {beta}-decay, little descriptions can be found. In even such studies, spectra under high excitation state of daughter species difficult to measure and apt to short experimental results were treated with combination spectra composed of experimental and calculated values such as substitution of a part of the general theory with calculated value. In this paper, the {beta} spectra supposed by only the general theory was reported without using such data combination in order to confirm effectiveness of the theory. In particular, this report was described mainly on the results using recent modification of odd-odd nucleus species. (G.K.)
Experimental level-structure determination in odd-odd actinide nuclei
International Nuclear Information System (INIS)
The status of experimental determination of level structure in odd-odd actinide nuclei is reviewed. A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei is applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation are derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings are used. Calculated and experimental level structures for 238Np, 244Am, and 250Bk are compared, as well as those for several nuclei in the rare-earth region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Applications of this modeling technique are discussed
Energy Levels of Odd-Odd nuclei Using Broken Pair Model
Hamammu, I. M.; Haq, S; Eldahomi, J. M.
2007-01-01
Simple methods in the frame work of the broken pair model have been worked out for odd-odd nuclei. The reliability of the model has been tested by reproducing the shell model results of limiting cases in which the broken pair model exactly coincides with the shell model. The model is then applied to calculate the energy levels of some nuclei in the Zirconium region. The model results compare reasonably well with the shell model as well as with the experimental data.
Study on rotational bands in odd-odd nuclei 102,l04Nb by using PSM
International Nuclear Information System (INIS)
The Projected Shell Model (PSM) is used to study the low energy scheme of the neutron-rich normal-deformed isotopes of odd-odd nuclei 102,104Nb. The quasiparticle configuration is assigned. The theoretical calculations of the energy band of 102,104Nb could well reproduce the experimental data. It is shown that PSM is a valid method for studying the low energy scheme of heavy nuclei. (authors)
Nuclear structure in odd-odd nuclei, 144≤A≤194
International Nuclear Information System (INIS)
A comprehensive review of the present understanding, both theoretical and experimental, of intrinsic and rotational level structures in medium-heavy deformed odd-odd nuclei is presented. A discussion of the various experimental methods is presented, emphasizing the need for a variety of experimental approaches. The odd-odd nuclei that are immediately amenable to fruitful additional study are pointed out. A discussion of the intrinsic level structures, Gallagher-Moszkowski (GM) splittings, Newby (N) shifts, and role of the residual p-n interaction is presented. Currently available data in the rare-earth region allow the empirical determination of 137 GM splittings and 36 N shifts for 25 odd-odd nuclei in the mass region 152≤A≤188. A new parametrization of the residual p-n interaction is presented which also takes into account the 27 GM splittings and 12 N shifts from the actinide region. Newly discovered features of rotational bands, such as odd-even staggering, and other high-spin phenomena, such as signature inversion and delay in bandcrossing frequency, are discussed. The role of higher-order Coriolis coupling is pointed out. Systematics of the two-quasiparticle excitations, shape coexistence, isomers, and four-quasiparticle states are presented. Calculated results of the two-quasiparticle intrinsic excitations using two methods, the intrinsic level spacings for odd-A neighboring nuclei and the quasiparticle-plus-phonon coupling model, are compared with experiment. copyright 1998 The American Physical Society
Some considerations of the energy spectrum of odd-odd deformed nuclei
International Nuclear Information System (INIS)
The odd-odd deformed nuclei are described as a rotator plus two odd nucleons moving in orbitals Ωp and Ωn of the deformed potential. We investigate the energies and wave functions of the various states of the (Ωp, Ωn) configurations by calculating and numerically diagonalizing the Hamiltonian matrix (with R.P.C. and residual interactions). The Gallagher-Mosskowski coupling rules ana the abnormal K equals 0 rotational bands are discussed. (authors)
Shape coexistence in odd and odd-odd nuclei in the A $\\sim$ 100 region
Pinston, J.A.; Genevey, J.; Simpson, G.S.; Urban, W.
2005-01-01
In the even-even nuclei around A=100 a transition from spherical to deformed shapes occurs from N=58 to N=60. The isotones with N=59 are of special interest, because they are just at the border between the two regions. Very recently, we have studied odd-neutrons and odd-odd nuclei with N=59, by means of prompt $\\gamma$-ray spectroscopy of the spontaneous fission of $^{247}$Cm, using the EUROGAM 2 multi-detector, and by measurements of $\\mu$s isomers produced by fission of $^{239,241}$Pu with ...
Proton emission from the deformed odd-odd nuclei near drip line
Patial, M.; Arumugam, P.; Jain, A. K.; Maglione, E.; Ferreira, L. S.
2016-01-01
Proton emission from odd-odd nuclei is studied within the two quasiparticle plus rotor model which includes the non-adiabatic effects and the residual interaction between valence proton and neutron. Justification of the formalism is discussed through corroboration of our results with the experimental spectrum of 180Ta. Exact calculations are performed to get the proton emission halflives. Our results for the proton emitter 130Eu leads to the assignment of spin and parity Jπ = 1+ for the ground state. The role of Coriolis and residual neutron-proton interactions on the proton emission halflives and their interplay are also discussed.
Effective neutron-proton interaction in rare earth odd-odd nuclei
International Nuclear Information System (INIS)
The effective neutron-proton interaction V(np) in the rare earth odd-odd deformed nuclei is studied. The parameters of the effective interaction are determined from least square fits of calculated matrix elements compared to the ones extracted from experiment. These fits show the existence of a long range repulsive component as well the importance of the even term of the tensor part of V(np). Some informations are obtained concerning the influence of the choice of the sample of experimental data, of the average field and finally, of the radial shape of the effective interaction. Some predictions are made concerning as yet unconfirmed V(np) matrix elements
Reflection asymmetry in odd-A and odd-odd actinium nuclei
International Nuclear Information System (INIS)
Theoretical calculations and measurements indicate that octupole correlations are at a maximum in the ground states of the odd-proton nuclei Ac and Pa. It has been expected that odd-odd nuclei should have even larger amount of octupole-octupole correlations. We have recently made measurements on the structure of 224Ac. Although spin and parity assignments could not be made, two bands starting at 354.1 and 360.0 keV have properties characteristic of reflection asymmetric shape. These two bands have very similar rotational constants and also similar alpha decay rates, which suggest similarity between the wavefunctions of these bands. These signatures provide evidence for octupole correlations in these nuclides
High-spin states in the transitional odd-odd nuclei 150Eu and 152Tb
International Nuclear Information System (INIS)
The (7Li, 5n) and (11B, 5n) reactions have been used to study the high-spin states in the two odd-odd nuclei 150Eu and 152Tb. Three decoupled bands have been evidenced in each nucleus belonging to the same configurations [f 7/2]sub(n) [h 11/2]sub(p), [h 9/2]sub(n) [h 11/2 ]sub(p) and [i 13/2]sub(n) [h 11/2]sub(p). The latter one is well developped and improves our knowledge of this system between the spherical and deformed region. The analysis of the collective moment of inertia and transition ratios strongly suggests an increase of the deformation when the rotational frequency increases in these two transitional nuclei 150Eu and 152Tb
Coriolis coupling in the rotational bands of deformed odd-odd nuclei
International Nuclear Information System (INIS)
Evidence is presented for the existence of odd-even staggering in K/sup -/ rotational bands (with K>0) of odd-odd nuclei in the rare-earth and actinide regions. Coriolis-coupling calculations have been carried out for rotational bands in 168Tm, 176Lu, 182Ta, and 182Re. With these calculations, we are able to reproduce the odd-even staggering observed in these nuclei. In particular, the unusually strong staggering observed in the K=2+ and 4/sup -/ bands of 182Re can be understood. Unusual features in the wave functions of some bands reflect the importance of couplings due to terms other than Coriolis in the Hamiltonian
Empirical residual neutron-proton interaction in odd-odd nuclei
Wu, Zheying; Qi, Chong
2016-01-01
Two types of average neutron-proton interaction formulas are compared: In the first type, neutron-proton interactions for even-even and odd-$A$ nuclei extracted from experimental binding energies show a smooth behavior as a function of mass number $A$ and are dominated by the contribution from the symmetry energy. Whereas in the second type large systematic staggering is seen between even-$A$ and odd-$A$ nuclei. This deviation is understood in term of the additional neutron-proton interaction in odd-odd nuclei relative to the neighboring even-even and odd-$A$ systems. We explore three possible ways to extract this additional interaction from the binding energy difference of neighboring nuclei. The extracted interactions are positive in nearly all cases and show weak dependence on the mass number. The empirical interactions are also compared with theoretical values extracted from recent nuclear mass models where large unexpected fluctuations are seen in certain nuclei. The reproduction of the residual neutron-...
The Lowest Spin and Parity Levels on Two Particle System for Odd-oddNuclei 60Co and 46K
International Nuclear Information System (INIS)
For obtaining the lowest spin and parity levels of odd-odd nuclei, theanalyzing of the nuclei 60Co and 46K has been done using delta forcemodel. The calculation is done by theoretically and compared with experiment.To get a result optimally, the data analyzed using least square method. It isshown that the lowest spin and parity level from calculation result and theexperiment result are similar. (author)
Quasi particles rotor-plus two approach of odd-odd nuclei using a self-consistent field
International Nuclear Information System (INIS)
Microscopical description of the odd-odd nuclei: dynamics of the even-even core and dynamics of the interacting valence particles; deformation of the even-even core and individual states of the proton and neutron are defined with the Hartree-Fock method and BCS theory at the fundamental of the even-even core, using the skyrme SIII effective interaction under the axial symmetry assumption study of the 238Np and 174Lu nuclei
Microscopic study of chiral rotation in odd-odd A $\\sim$ 100 nuclei
Dar, W.A.(Department of Physics, University of Kashmir, Srinagar, 190 006, India); Sheikh, J. A.; Bhat, G.H.(Department of Physics, University of Kashmir, Srinagar, 190 006, India); Palit, R.; Frauendorf, S.
2013-01-01
A systematic study of the doublet bands observed in odd-odd mass $\\sim$ 100 is performed using the microscopic triaxial projected shell model approach. This mass region has depicted some novel features which are not observed in other mass regions, for instance, it has been observed that two chiral bands cross diabatically in $^{106}$Ag. It is demonstrated that this unique feature is due to crossing of the two 2-quasiparticle configurations having different intrinsic structures. Further, we pr...
Isospin Symmetry of Odd-Odd Mirror Nuclei: Identification of Excited States in N=Z-2 48Mn
International Nuclear Information System (INIS)
Excited states have been observed in the N=Z-2 odd-odd nucleus 48Mn for the first time. Through comparison with the structure of 48V, a first high-spin study of an odd-odd mirror pair has been achieved. Differences between the T=1 analogue states in this pair have been interpreted in terms of Coulomb effects, with the aid of shell-model calculations in the full pf valence space. Unlike other mirror pairs, the energy differences have been interpreted almost entirely as due to a monopole effect associated with smooth changes in radius (or deformation) as a function of angular momentum. In addition, the large energy shift between analogue negative-parity states is interpreted in terms of the electromagnetic spin-orbit interaction in nuclei
Microscopic study of chiral rotation in odd-odd A $\\sim$ 100 nuclei
Dar, W A; Bhat, G H; Palit, R; Frauendorf, S
2013-01-01
A systematic study of the doublet bands observed in odd-odd mass $\\sim$ 100 is performed using the microscopic triaxial projected shell model approach. This mass region has depicted some novel features which are not observed in other mass regions, for instance, it has been observed that two chiral bands cross diabatically in $^{106}$Ag. It is demonstrated that this unique feature is due to crossing of the two 2-quasiparticle configurations having different intrinsic structures. Further, we provide a complete set of transition probabilities for all the six-isotopes studied in this work and it is shown that the predicted transitions are in good agreement with the available experimental data.
Low-lying states in near-magic odd-odd nuclei and the effective interaction
Carlsson, B G
2014-01-01
The iterative quasi-particle-random-phase approximation (QRPA) method we previously developed to accurately calculate properties of individual nuclear states is extended so that it can be applied for nuclei with odd numbers of neutrons and protons. The approach is based on the proton-neutron-QRPA (pnQRPA) and uses an iterative non-hermitian Arnoldi diagonalization method where the QRPA matrix does not have to be explicitly calculated and stored. The method is used to calculate excitation energies of proton-neutron multiplets for several nuclei. The influence of a pairing interaction in the $T=0$ channel is studied.
International Nuclear Information System (INIS)
The main topic of this work is the study of the low-spin and high-spin states of the transitional odd-odd nucleus 184Au. This nucleus has been studied from the β+/CE decay of 184Hg produced by the 148Sm(40Ar,4n) reaction. The reaction products were then transported by a helium jet system. This nucleus has also been studied from the 165Ho(24Mg,5n) and 170Yb(19F,5n) reactions at the ''Chateau de Cristal'' setup at Orsay. The level schemes of both high and low spin states have been established from γ-γ-t coincidence relationships. Experimental results have been interpreted in the frame of the ''rotor plus two quasi-particles'' model. This calculations have shown that this model, which has his strongest justification in well deformed nuclei regions, reproduces correctly the experimental results for the transitional nucleus 184Au. The influence of the neutron-proton residual interaction has been studied comparing the different results obtained in the ''rotor+2qp'' calculations with and without taking into account the residual interaction. (author). 60 refs., 54 figs., 10 tabs
International Nuclear Information System (INIS)
The program makes it possible to calculate the E1, E2 and M1 reduced transition probabilities in odd-odd deformed nuclei. The mixed wave functions used result from a least-squares fit of energy levels (taking the Coriolis effect into account) to the experimental ones, performed with the modified ODDODDCORI subprogram. (orig./HSI)
Resonance Spin Memory in Low-Energy Gamma-Ray Spectra from Sb, Tb, Ho and Ta Odd-Odd Compound Nuclei
Olejniczak, U; Pikelner, L B; Przytula, M; Serov, D G
2002-01-01
The low-energy gamma-ray spectra from neutron resonance capture with natural samples of Sb, Tb, Ho and Ta were measured using HPGe detector at IBR-30 pulsed reactor (JINR, Dubna). The resonance spin memory effect in the spectra from the odd-odd compound nuclei of ^{122}Tb, ^{160}Tb and ^[166}Ho was found to be quite distinct. For the ^{182}Ta compound nucleus it proved to be rather weak.
Resonance spin memory in low-energy gamma-ray spectra from Sb, Tb, Ho and Ta odd-odd compound nuclei
International Nuclear Information System (INIS)
The low-energy gamma-ray spectra from neutron resonance capture with natural samples of Sb, Tb, Ho and Ta were measured using a HPGe detector at the IBR-30 pulsed reactor (JINR, Dubna). The resonance spin memory effect in the spectra from the odd-odd compound nuclei of 122Sb, 160Tb and 166Ho was found to be quite distinct. For the 182Ta compound nucleus it proved to be rather weak
Shafer, T; Fröhlich, C; McLaughlin, G C; Mumpower, M; Surman, R
2016-01-01
After identifying the nuclei in the regions near A =80 and A = 160 for which beta-decay rates have the greatest effect on weak and main r-process abundance patterns, we apply the finite-amplitude method (FAM) with Skyrme energy-density functionals (EDFs) to calculate beta-decay half-lives of those nuclei in the quasiparticle random-phase approximation (QRPA). We use the equal filling approximation to extend our implementation of the charge-changing FAM, which incorporates pairing correlations and allows axially symmetric deformation, to odd-A and odd-odd nuclei. Within this framework we find differences of up to a factor of seven between our calculated beta-decay half-lives and those of previous efforts. Repeated calculations with nuclei near A = 160 and multiple EDFs show a spread of two to four in beta-decay half-lives, with differences in calculated Q values playing an important role. We investigate the implications of these results for r-process simulations.
Non-adiabatic description of proton emission from the odd-odd nucleus 130Eu
Directory of Open Access Journals (Sweden)
Patial Monika
2014-03-01
Full Text Available We discuss the non-adiabatic quasiparticle approach for calculating the rotational spectra and decay width of odd-odd proton emitters. The Coriolis effects are incorporated in both the parent and daughter wave functions. Results for the two probable ground states (1+ and 2+ of the proton emitter 130Eu are discussed. With our calculations, we confirm the proton emitting state to be the Iπ = 1+ state, irrespective of the strength of the Coriolis interaction. This study provides us with an opportunity to look into the details of wave functions of deformed odd-odd nuclei to which the proton emission halflives are quite sensitive.
Spectra Statistics for the Odd-Odd Nucleus 86Nb
Institute of Scientific and Technical Information of China (English)
ZHENG Ren-Rong; ZHU Shun-Quan; CHENG Nan-Pu
2001-01-01
The energy levels of the odd-odd nucleus 86 Nb at low spins are calculated by using quasi-particles plus a rotor model. The distribution of the nearest-neighbour spacing and the spectral rigidity are studied. We find that the chaotic degree of the energy spectra increases with the increasing spin and reaches a maximum at I ＝ 10; then it decreases gradually for spins above I ＝ 10. The recoil term in the model Haniltonian makes the energy spectra slightly regular. The Coriolis force, however, makes the spectra chaotic and plays a major role in the spectral statistics of the odd-odd nucleus 86Nb.
Tilted axis rotation in odd-odd {sup 164}Tm
Energy Technology Data Exchange (ETDEWEB)
Reviol, W.; Riedinger, L.L.; Wang, X.Z.; Zhang, J.Y. [Univ. of Tennessee, Knoxville, TN (United States)] [and others
1996-12-31
Ten band structures are observed in {sup 164}Tm, among them sets of parallel and anti-parallel couplings of the proton and neutron spins. The Tilted Axis Cranking scheme is applied for the first time to an odd-odd nucleus in a prominent region of nuclear deformation.
Quasiparticle features and level statistics of odd-odd nucleus
International Nuclear Information System (INIS)
The energy levels of the odd-odd nucleus 84Y are calculated by using the axially symmetric rotor plus quasiparticles model. The two standard statistical tests of Random-Matrix Theory such as the distribution function p(s) of the nearest-neighbor level spacings (NNS) and the spectral rigidity Δ3 are used to explore the statistical properties of the energy levels. By analyzing the properties of p(s) and Δ3 under various conditions, the authors find that the quasiparticle features mainly affect the statistical properties of the odd-odd nucleus 84Y through the recoil term and the Coriolis force in this theoretical mode, and that the chaotic degree of the energy levels decreases with the decreasing of the Fermi energy and the energy-gap parameters. The effect of the recoil term is small while the Coriolis force plays a major role in the spectral structure of 84Y
Coulomb Excitation of Odd-Mass and Odd-Odd Cu Isotopes using REX-ISOLDE and Miniball
Lauer, M; Iwanicki, J S
2002-01-01
We propose to study the properties of the odd-mass and the odd-odd neutron-rich Cu nuclei applying the Coulomb excitation technique and using the REX-ISOLDE facility coupled to the Miniball array. The results from the Coulex experiments accomplished at REX-ISOLDE after its upgrade to 3 MeV/u during the last year have shown the power of this method and its importance in order to obtain information on the collective properties of even-even nuclei. Performing an experiment on the odd-mass and on the odd-odd neutron-rich Cu isotopes in the vicinity of N=40 should allow us to determine and interpret the effective proton and neutron charges in the region and to unravel the lowest proton-neutron multiplets in $^{68,70}$Cu. This experiment can take the advantage of the unique opportunity to accelerate isomerically separated beams using the RILIS ion source at ISOLDE.
New isomers and their decay in odd-odd neutron-deficient cesium isotopes
International Nuclear Information System (INIS)
By a systematic on-line cesium mass separation from A = 122 to A = 132 and subsequent gamma and electron decay spectroscopy at very low energy, new isomers have been precisely identified: sup(122m)Cs(Tsub(1/2) = 0.36 +- 0.02 seconds), sup(124m)Cs(Tsub(1/2) = 6.3 +- 0.2 seconds) and sup(130m)Cs(Tsub(1/2) = 3.46 +- 0.06 minutes). Detailed level schemes are given for both sup(124m)Cs and sup(130m)Cs. Comparison of excited levels known in the odd-odd nuclei of the same region shows that more experimental informations are needed to propose a clear and realistic picture of the nuclear states structure
Isovector pairing in odd-odd N=Z {sup 50}Mn.
Energy Technology Data Exchange (ETDEWEB)
O' Leary, C. D. O.; Bentley, M. A.; Lenzi, S. M.; Martinez-Pinedo, G.; Warner, D. D.; Bruce, A. M.; Cameron, J. A.; Carpenter, M. P.; Davids, C. N.; Fallon, P.; Frankland, L.; Gelletly, W.; Janssens, R. V. F.; Joss, D. T.; Lister, C. J.; Regan, P. H.; Reiter, P.; Rubio, B.; Seweryniak, D.; Svensson, C. E.; Vincent, S. M.; Williams, S. J.; Physics; Univ. of York; Univ. of Liverpool; Keele Univ.; Dipartimento di Fisica dell' Universit and INFN; Univ. Basel; CLRC Daresbury Lab.; Univ. of Brighton; McMaster Univ.; LBNL; Univ. of Surrey; CSIC-Uni.
2002-01-17
High-spin states in the odd-odd N=Z nucleus {sup 50}{sub 25}Mn have been investigated. A sequence of states up to J{sup {pi}}=6{sup +} has been assigned as the T=1 analogue of the yrast band in {sup 50}{sub 24}Cr for the first time. The differences in energy between levels in these bands are interpreted in terms of rotational alignments and the effect they have on the Coulomb energy of the nucleus. Comparisons with shell model calculations show that the Coulomb energy difference between the T=1 analogue structures is an important indicator of the competition between isovector pairing modes in N=Z nuclei and their isobars.
High spin states in odd-odd {sup 132}Cs
Energy Technology Data Exchange (ETDEWEB)
Hayakawa, Takehito [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Lu, J.; Furuno, K. [and others
1998-03-01
Excited states with spin larger than 5 {Dirac_h} were newly established in the {sup 132}Cs nucleus via the {sup 124}Sn({sup 11}B,3n) reaction. Rotational bands built on the {nu}h{sub 11/2} x {pi}d{sub 5/2}, {nu}h{sub 11/2} x {pi}g{sub 7/2} and {nu}h{sub 11/2} x {pi}h{sub 11/2} configurations were observed up to spin I {approx} 16 {Dirac_h}. The {nu}h{sub 11/2} x {pi}h{sub 11/2} band shows inverted signature splitting below I < 14 {Dirac_h}. A dipole band was firstly observed in doubly odd Cs nuclei. (author)
Neutron-proton multiplets in the odd-odd nucleus 53 37 90Rb
Czerwiński, M.; RzÄ ca-Urban, T.; Urban, W.; BÄ czyk, P.; Sieja, K.; Timár, J.; Nyakó, B. M.; Kuti, I.; Tornyi, T. G.; Atanasova, L.; Blanc, A.; Jentschel, M.; Mutti, P.; Köster, U.; Soldner, T.; de France, G.; Simpson, G. S.; Ur, C. A.
2016-03-01
Medium-spin excited levels in 90Rb, populated in the fission of 235U induced by neutrons, have been observed for the first time. γ radiation from fission has been measured by using the EXILL array of Ge detectors at the cold-neutron-beam facility PF1B of the Institut Laue-Langevin, Grenoble. Low-energy levels are interpreted as members of the π p3/2 -1ν (d5/2) 3 , π f5/2 -1ν (d5/2) 3 , and π g9 /2ν (d5/2) 3 multiplets with the 0- ground state due to the seniority-3 coupling in the ν d5 /2 shell. Analogous anomalous coupling within the π g9 /2ν (d5/2) 3 configuration explains the 5+, 6+, and 7+ triplet of states, observed at medium spins, similar to the triplet seen in the N =53 isotone, 88Br. Shell-model calculations reproduce well the proposed structures in Rb,9088 and support the seniority-3 coupling in N =53 isotones and its absence in N =51 isotones. The structure of the odd-odd 88Rb and 90Rb nuclei provides an argument in favor of the collectivity building up at the neutron number N =53 .
Superdeformation studies in the odd-odd nucleus {sup 192}Tl
Energy Technology Data Exchange (ETDEWEB)
Fischer, S.; Carpenter, M.P.; Janssens, R.V.F. [and others
1995-08-01
The study of yrast and near-yrast structures of odd-odd nuclei to high spins is somewhat limited due to the complexity of the spectra resulting from the many proton-neutron couplings near the Fermi surface. In superdeformed nuclei, the number of available protons and neutrons near the Fermi surface is somewhat limited due to the presence of large-shell gaps which stabilize the nuclear shape. A relatively small number of available neutron and proton configurations can lead to fragmentation of the SD intensity into a number of different bands. Two good examples of this phenomenon were found in {sup 192}Tl and {sup 194}Tl where the presence of six superdeformed bands were reported in both nuclei. We reexamined {sup 192}Tl at Gammasphere using the {sup 160}Gd({sup 37}Cl,5n) reaction at 178 MeV to populate states in the superdeformed well of this nucleus. While our previous study on {sup 192}Tl at ATLAS was very successful, a number of questions remained which formed the basis of our objectives in this experiment: obtain better {gamma}-ray energies for the known transitions and identify higher spin members in each band; determine how the bands feed the known yrast states in {sup 192}Tl as well as determine the complete spectrum in coincidence with the SD bands; look for M1 transitions connecting proposed signature partners; and attempt to identify other excitations in the superdeformed well. Analysis is underway and four of the six bands were confirmed. The reasons that two of the reported bands were not observed in this latest work is still under investigation. As of this time, no other superdeformed bands were identified in the data. Two of the confirmed SD bands have a constant moment of inertia and show indications of cross-talk between each other. This observation is not unexpected since the calculated M1 rates for the proposed configuration of the band, {pi}{sub 13/2} x {upsilon}j{sub 15/2}, indicate that M1 transitions linking the two SD bands should be observed.
Nabi, Jameel-Un; 10.1103/PhysRevC.76.055803
2011-01-01
Gamow-Teller (GT) strength transitions are an ideal probe for testing nuclear structure models. In addition to nuclear structure, GT transitions in nuclei directly affect the early phases of Type Ia and Type-II supernovae core collapse since the electron capture rates are partly determined by these GT transitions. In astrophysics, GT transitions provide an important input for model calculations and element formation during the explosive phase of a massive star at the end of its life-time. Recent nucleosynthesis calculations show that odd-odd and odd-A nuclei cause the largest contribution in the rate of change of lepton-to-baryon ratio. In the present manuscript, we have calculated the GT strength distributions and electron capture rates for odd-odd nucleus 50V by using the pn-QRPA theory. At present 50V is the first experimentally available odd-odd nucleus in fp-shell nuclei. We also compare our GT strength distribution with the recently measured results of a 50V(d,2He)50Ti experiment, with the earlier work ...
Pseudo-spin band in the odd-odd nucleus sup 1 sup 7 sup 2 Lu
Venkova, T; Gast, W; Podsvirova, E O; Jäger, H M; Mihailescu, L; Bazzacco, D; Menegazzo, R; Lunardi, S; Alvarez, C R; Ur, C; Martínez, T; Angelis, G D; Axiotis, M; Napoli, D; Urban, W; Rzaca-Urban, T; Frauendorf, S
2003-01-01
High-spin states in the odd-odd nucleus sup 1 sup 7 sup 2 Lu have been populated in a sup 1 sup 7 sup 0 Er( sup 7 Li,5n) reaction and the emitted gamma-radiation was detected with the GASP array. Two sequences of a new identical band have been observed with the transition energies in the favoured and unfavoured sequences being identical within approx 3 keV at low spins and approx 1 keV at high spins over the whole observed spin range. An interpretation as a pseudo-spin singlet band of pi 1/2 sup - [541] x nu 1/2 sup - [420] configuration is proposed. It represents the best example of a pseudo-spin singlet band in normal deformed nuclei known until now.
Quasiparticles plus rotor model and analysis of level statistics of odd-odd nucleus
International Nuclear Information System (INIS)
The energy levels of odd-odd nucleus 84Y at low spins were calculated by using the axially symmetric particles plus rotor model. In order to study the statistical properties of the energy levels, the two standard tests of Random-Matrix Theory such as the nearest-neighbor level spacings and the spectral rigidity were adopted. It is shown that the chaotic degree of the energy levels initially increases with increasing spin and reaches a maximum around I = 10, and then decreases for spins above I ≅10. On the other hand, the proton-neutron interaction makes the energy levels slightly regular/ordered. However, the Coriolis force which makes the energy levels chaotic plays a major role in the spectral structure of the odd-odd nucleus 84Y
Co-58: Structure of an odd-odd nucleus in the pf shell
Silveira, M. A. G; Medina, N H; Oliveira, J. R. B.; Alcantara-Nunez, J. A.; Cybulska, E. W; Dias, H.; Rao, M N; Ribas, R. V; Seale, W. A; Wiedemann, K.T.; Brown, B.A.(Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321, USA); Honma, M.; Mizusaki, T; Otsuka, Taka
2006-01-01
High-spin states in the odd-odd 58 Co nucleus have been studied with the fusion-evaporation reaction 51 V( 10 B ,p 2 n ) using the γ -spectrometer Saci-Perere. Thirty-six new excited states up to spin 11 + and an excitation energy of 8.0 MeV have been observed, which are connected by 46 γ -ray transitions. Transition probabilities for 14 excited states were measured through the Doppler-shift attenuatio...
High spin structure in the odd-odd nucleus sup 124 Cs
Energy Technology Data Exchange (ETDEWEB)
Komatsubara, T.; Furuno, K. (Niels Bohr Inst., Roskilde (Denmark) Tsukuba Univ., Sakura, Ibaraki (Japan). Inst. of Physics); Hosoda, T. (Tsukuba Univ., Sakura, Ibaraki (Japan). Inst. of Physics); Espino, J. (Niels Bohr Inst., Roskilde (Denmark) Sevilla Univ. (Spain). Dept. de Fisica Atomica, Molecular y Nuclear); Gascon, J.; Hagemann, G.B.; Jerrestam, D.; Nyberg, J.; Sletten, G. (Niels Bohr Inst., Roskilde (Denmark)); Iwata, Y.; Morikawa, T. (Niels Bohr Inst., Roskilde (Denmark) Hiroshima Univ. (Japan). Dept. of Physics); Kato, N. (Niels Bohr Inst., Roskilde (Denmark) Kyushu Univ., Fukuoka (Japan). Dept. of Physics); Tjoem, P.O. (Niels Bohr Inst., Roskilde (Denmark) Oslo Univ. (Norway). Fysisk Inst.)
1990-01-01
High spin states in the odd-odd nucleus {sup 124}Cs have been investigated within the NORDBALL Collaboration. In the yrast cascade which is determined as a {pi}h{sub 11/2} x {nu}h{sub 11/2} configuration, a rather large signature splitting in the ratios, B(M1)/B(E2), has been observed. Furthermore, signature inversion is suggested in the lower spin part of the yrast band. (orig.).
High-Spin States in Odd-Odd N=Z {sup 46}V
Energy Technology Data Exchange (ETDEWEB)
O' Leary, C.D.; Bentley, M.A.; Appelbe, D.E.; Bark, R.A.; Cullen, D.M.; Erturk, S.; Maj. A.; Sheikh, J.A.; Warner, D.D.
1999-12-31
High-spin states up to the F{sub 7/2}-shell band termination at J{pi}=15+ have been observed for the first time in the odd-odd N=Z=23 nucleous {sup 46}V. The new level scheme has two separate structures corresponding to spherical and prolate shapes. A rotational band has very similar energies to the yrast sequence in {sup 46}Ti and is therefore assumed to be a T=1 configuration.
High spin levels in 108In odd-odd nucleus, excited by the reaction 98Mo(14N,4nγ)
International Nuclear Information System (INIS)
Odd-odd nuclei have been studied by heavy ion nuclear reactions, particularly Indium 108. In odd nuclei, the rotor plus particle model gave good results and coupled or uncoupled bands were possible to predict. In the case of this nucleus, the presence of two single particles: one proton and one neutron, with different 'couplings' present a conflictual situation. To establish the level scheme, excitation functions, γ-γ coincidences, angular distributions and linear polarization were measured to obtain spin and parity. For energy-level transitions between 100 keV and 600 keV, the Grenoble ISN 'orange' spectrometer has been used to measure the internal conversion coefficients. The on-line mass separator permitted to obtain the isomeric state spin. The rotor plus two quasiparticle model has been used for the theoretical approximation
Coulomb excitation of the odd-odd isotopes $^{106, 108}$In
Ekstrom, A; Blazhev, A; Van de Walle, J; Weisshaar, D; Zielinska, M; Tveten, G M; Marsh, B A; Siem, S; Gorska, M; Engeland, T; Hurst, A M; Cederkall, J; Finke, F; Iwanicki, J; Hjorth-Jensen, M; Davinson, T; Eberth, J; Sletten, G; Mierzejewski, J; Reiter, P; Warr, N; Butler, P A; Fahlander, C; Stefanescu, I; Koester, U; Ivanov, O; Wenander, F; Voulot, D
2010-01-01
The low-lying states in the odd-odd and unstable isotopes In-106,In-108 have been Coulomb excited from the ground state and the first excited isomeric state at the REX-ISOLDE facility at CERN. With the additional data provided here the pi g(9/2)(-1) circle times nu d(5/2) and pi g(9/2)(-1) circle times nu g7/2 multiplets have been re-analyzed and are modified compared to previous results. The observed gamma-ray de-excitation patterns were interpreted within a shell model calculation based on a realistic effective interaction. The agreement between theory and experiment is satisfactory and the calculations reproduce the observed differences in the excitation pattern of the two isotopes. The calculations exclude a 6(+) ground state in In-106. This is in agreement with the conclusions drawn using other techniques. Furthermore, based on the experimental results, it is also concluded that the ordering of the isomeric and ground state in In-108 is inverted compared to the shell model prediction. Limits on B(E2) val...
Level structures in odd-odd deformed nucleus {sup 184}Ta
Energy Technology Data Exchange (ETDEWEB)
Gowrishankar, R.; Sood, P.C. [Sri Sathya Sai Institute of Higher Learning, Department of Physics, Prasanthinilayam (India)
2016-02-15
A detailed low-energy level scheme of the odd-odd n-rich nucleus {sub 73}{sup 184}Ta{sub 111} is constructed using the well tested Two-Quasiparticle Rotor Model (TQRM) for calculating the bandhead energies of physically admissible 2qp configurations with the inclusion of residual n-p interaction contribution. The presently available data on this level scheme from {sup 184}Hf decay are shown to be in agreement with these calculations. Our analysis concludes that {sup 184}Hf (Q{sub β} = 1340(30) keV) decay admits of 7 additional (to the 3 presently reported) β -branches to {sup 184}Ta with J = 0 or 1 and 8 more physically admissible weak (1f{sup u}) β -branches populating J{sup π} = 2{sup -} levels in {sup 184}Ta. Further, a close examination of our level scheme clearly indicates the existence of a low-lying (E{sub x} = 260(40) keV) high-spin (J{sup π} = 10{sup -}) long-lived isomer in this nucleus. (orig.)
Level Density In Interacting Boson-Fermion-Fermion Model (IBFFM) Of The Odd-Odd Nucleus 196Au
International Nuclear Information System (INIS)
The level density of the odd-odd nucleus 196Au is investigated in the interacting boson-fermion-fermion model (IBFFM) which accounts for collectivity and complex interaction between quasiparticle and collective modes.The IBFFM total level density is fitted by Gaussian and its tail is also fitted by Bethe formula and constant temperature Fermi gas model
Yarunin, V. S.
2001-01-01
Spontaneous nuclear ortho-para transitions are shown to be possible in hydrogen molecule and molecular ion as due to hyperfine interaction odd-odd relative to the space or spin nuclear coordinate permutations. A part of this interaction inversely proportional to the first power of nuclear mass is found for hydrogen molecular ion.
Experimental study of high-spin states in deformed odd-odd 180Ir
International Nuclear Information System (INIS)
High-spin states in deformed odd-odd 180Ir have been investigated using the 154Sm(31P, 5nγ)180Ir reaction through the measurements of excitation functions at 150, 155, 160, 165 and 170 MeV beam energies, K X-γ and γ-γ coincidences at 160 MeV. A new level scheme composed of 5 rotational bands has been established. According to the band structure characteristics and the deduced in-band B(M1)/B(E2) ratios, the quasiparticle configurations and spin and parity have been proposed to the observed bands. The neutron AB crossing is observed at ℎωc ≅ 0.26 MeV for the π1/2-[541] direct x ν1/2-[521] and π1/2-[541] direct xν5/2-[512] bands. This AB crossing frequency is close to that in the ν5/2-[512] band of 179Os indicating the loss of intruder nature of the π1/2- [541] orbit. Gradual alignment gain in both the π9/2-[541] direct x ν7/2+[633] and π9/2- [514] direct x ν5/2-[512] bands is observed which is similar to the low-spin anomaly in alignment in the πh11/2, πd5/2 and πi13/2 bands of neighboring Ir and Re isotopes. Different alignment properties have been discussed in the framework of cranked shell model, and a larger quadrupole deformation is suggested for the bands with π9/2-[514] orbit involved
Spin-dependent level density in interacting Boson-Fermion-Fermion model of the Odd-Odd Nucleus 196Au
International Nuclear Information System (INIS)
The level density of the odd-odd nucleus 196Au is investigated in the interacting boson-fermion-fermion model (IBFFM) which accounts for collectivity and complex interaction between quasiparticle and collective modes.The IBFFM spin-dependent level densities show high-spin reduction with respect to Bethe formula.This can be well accounted for by a modified spin-dependent level density formula. (authors)
Structure of positive parity bands in odd-odd 108Ag
International Nuclear Information System (INIS)
Nuclei in the transitional A ∼ 110 region near the Z = 50 shell closure are known to exhibit a variety of phenomena like magnetic rotation, anti-magnetic rotation, chiral rotation and collective behavior as well. The present work provides significant new information on the spectroscopic levels of the positive parity bands in 108Ag nucleus. The comparison of the experimental data of high spin states of a ΔI = 1 band with Tilted Axis Cranking (TAC) model calculations suggests its origin is due to magnetic rotation
Configuration-dependent band structures in odd-odd 180Ir
International Nuclear Information System (INIS)
High-spin states in 180Ir have been investigated by means of in-beam γ-ray spectroscopy techniques with the 154Sm(31P,5nγ)180Ir reaction. Excitation functions, x-γ and γ-γ-t coincidences, DCO (directional correlation of γ rays deexciting oriented states) ratios, and intraband B(M1)/B(E2) ratios were measured. Five rotational bands have been identified and their configurations are proposed on the basis of B(M1)/B(E2) ratios and by comparing the band properties with known bands in neighboring odd-mass and even-mass nuclei. The neutron AB crossing is observed at (ℎ/2π)ωc=0.26(1) MeV for the π1/2-[541](multiply-in-circle sign)ν1/2-[521] and π1/2-[541](multiply-in-circle sign)ν5/2-[512] bands, respectively. Staggering of levels as a function of the number of neutron pairs is revealed in the π1/2-[541](multiply-in-circle sign)ν1/2-[521] doubly decoupled bands of 178-186Ir. The gradual alignment gains at low rotational frequencies are observed in the two strongly coupled bands. Band crossings and alignments in 180Ir are discussed with reference to the total Routhian surface and cranked shell model calculations performed for the neighboring odd-mass nuclei
Isomeric ratios in crossed reactions yielding odd-odd 184Re, 190Ir, and 196Au isotopes
International Nuclear Information System (INIS)
The ratios of the cross section of the 184Re, 190Ir, and 196Au nuclei formation in the isomeric and basic states in the (γn) and (n,2n), (d,2n) and (α,n) reactions are measured. The identification of the nuclei, formed in these reactions in the basic and isomeric states, are carried out by the spectra of their γ- and X-ray radiation and by their half-life period. The calculations are accomplished on the basis of the statistic model; the parameters of this model are discussed
Isomeric ratios in reactions (γn) and (nγ) result in odd-odd isotopes of Ir and Au
International Nuclear Information System (INIS)
The results of measuring the (nγ) reactions with thermal neutrons and (γn) reactions on the electrons bremsstrahlung spectrum with the boundary energy of 25 MeV leading to the 190Ir, 192Ir, 196Au and 198Au odd-odd nuclides are presented. The calculations of the ratios are accomplished on the basis of the statistic model. The parameters of this model necessary for describing the obtained experimental data and determining the dependence of the excitation energy and the nucleus angular moment are discussed
Adiabatic fission barriers in superheavy nuclei
Jachimowicz, P.; Kowal, M; Skalski, J.
2016-01-01
Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy we calculated static fission barriers $B_{f}$ for 1305 heavy and superheavy nuclei $98\\leq Z \\leq 126$, including even - even, odd - even, even - odd and odd - odd systems. For odd and odd-odd nuclei, adiabatic potential energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from ...
Octupole shapes in heavy nuclei
International Nuclear Information System (INIS)
Theoretical calculations and measurements show the presence of strong octupole correlations in thecyround states and low-lying states of odd-mass and odd-odd nuclei in the RaPa region. Evidence for octupole correlations is provided by the observation of parity doublets and reductions in M1 matrix elements, decoupling parameters, and Coriolis matrix elements Involving high-j states. Enhancement of E1 transition rates has also been observed for some of the octupole deformed nuclei. The most convincing argument for octupole deformation is provided by the similarities of the reduced alpha decay rates to the two members of parity doublets
Directory of Open Access Journals (Sweden)
Minkov N.
2016-01-01
Full Text Available We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.
Interacting boson model for exotic nuclei at low isospin
International Nuclear Information System (INIS)
With Wigner's SU(4) supermultiplet symmetry [and its generalization to pseudo-SU(4)] as a starting point, a boson-model space is constructed that includes T = 0 as well as T = 1 bosons (IBM-4). The boson Hamiltonian is derived microscopically from a realistic shell-model interaction through a mapping that relies on the existence of approximate shell-model symmetries. Applications are presented for odd-odd N = Z nuclei from 2958Cu29 to 3570Br35. (authors)
Adiabatic fission barriers in superheavy nuclei
Jachimowicz, P; Skalski, J
2016-01-01
Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy we calculated static fission barriers $B_{f}$ for 1305 heavy and superheavy nuclei $98\\leq Z \\leq 126$, including even - even, odd - even, even - odd and odd - odd systems. For odd and odd-odd nuclei, adiabatic potential energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from the 10-th below to the 10-th above the Fermi level. The parameters of the model that have been fixed previously by a fit to masses of even-even heavy nuclei were kept unchanged. A search for saddle points has been performed by the "Imaginary Water Flow" method on a basic five-dimensional deformation grid, including triaxiality. Two auxiliary grids were used for checking the effects of the mass asymmetry and hexadecapole non-axiallity. The ground states were found by energy minimization over configurations and deformations...
New supersymmetric quartet of nuclei in the A∼190 mass region
International Nuclear Information System (INIS)
We present evidence for a new supersymmetric quartet in the A∼190 region of the nuclear mass table. New experimental information on transfer and neutron capture reactions to the odd-odd nucleus 194Ir strongly suggests the existence of a new supersymmetric quartet, consisting of the 192,193Os and 193,194Ir nuclei. We make explicit predictions for the odd-neutron nucleus 193Os and suggest that its spectroscopic properties be measured in dedicated experiments
Nuclear Shell Structure and Beta Decay I. Odd A Nuclei II. Even A Nuclei
Mayer, M.G.; Moszkowski, S.A.; Nordheim, L.W.
1951-05-01
In Part I a systematics is given of all transitions for odd A nuclei for which sufficiently reliable data are available. The allowed or forbidden characters of the transitions are correlated with the positions of the initial and final odd nucleon groups in the nuclear shell scheme. The nuclear shells show definite characteristics with respect to parity of the ground states. The latter is the same as the one obtained from known spins and magnetic moments in a one-particle interpretation. In Part II a systematics of the beta transitions of even-A nuclei is given. An interpretation of the character of the transitions in terms of nuclear shell structure is achieved on the hypothesis that the odd nucleon groups have the same structure as in odd-A nuclei, together with a simple coupling rule between the neutron and proton groups in odd-odd nuclei.
Recent results at ultrahigh spin: Terminating states and beyond in mass 160 rare-earth nuclei
International Nuclear Information System (INIS)
A classic region of band termination at high spin occurs in rare-earth nuclei with around ten valence nucleons above the 146Gd closed core. The results are presented here for such non-collective oblate (γ = 60°) terminating states in odd-Z 155Ho, odd-odd 156Ho, and even-even 156Er, where they are compared with neighboring nuclei. In addition to these particularly favoured states, the occurrence of collective triaxial strongly deformed (TSD) bands, bypassing the terminating states and extending to over 65ℎ, is reviewed
Self-consistent calculations of quadrupole moments of spherical nuclei
Directory of Open Access Journals (Sweden)
Saperstein E.E.
2012-12-01
Full Text Available The self-consistent Theory of Finite Fermi Systems based on the Energy Density Functional byFayans et al. with the set DF3-a of parameters fixed previously is used to calculate three kinds of quadrupolemoments. At first, we examined systematically quadrupole moments of odd neighbors of semi-magic lead andtin isotopes and N = 50, N = 82 isotones. Second, we found quadrupole moments of the first 2+ states in thesame two chains of isotopes. Finally, we evaluated quadrupole moments of odd-odd nuclei neighboring to doublemagic ones. Reasonable agreement with available experimental data has been obtained. Predictions are made forquadrupole moments of nuclei in the vicinity of unstable magic nuclei
Strength functions for transfer of a neutron-proton pair on 82Se, 96Mo, 116Cd and 128Te nuclei
International Nuclear Information System (INIS)
This study presents the calculation of strength functions for neutron-proton pair transfer on 82Se, 96Mo, 116Cd and 128Te even-even nuclei. We study 1+ states, which are a part of the Gamow-Teller (GT) giant resonances in neighboring odd-odd nuclei, excited via the neutron-proton pair transfer on even-even parent nuclei. The main result of this work is to find these states using strength functions. Calculations have been made only in the particle-particle channel of charge-exchange spin-spin forces via the random phase approximation (RPA).
Neutron-proton pairing correlations in medium mass N approx =Z nuclei
Petrovici, A; Faessler, A
1999-01-01
The pair structure and the average pairing gaps of realistic wave functions obtained within the complex Excited Vampir variational approach are investigated in order to evaluate the neutron-proton pairing correlations at low and high spins in medium mass N approx =Z nuclei. The number of isovector J suppi=0 sup + pairs is calculated for the lowest few 0 sup + states in two chains of nuclei in the A approx =70 mass region. The results indicate the dominant role played by the isovector neutron-proton pairing correlations in the structure of odd-odd N=Z nuclei and the reduction of their importance with increasing neutron excess in even-even nuclei. The evolution of particular isovector and isoscalar pairs with increasing angular momentum is analyzed for the odd-odd N=Z nucleus sup 7 sup 4 Rb and the even-even N=Z nucleus sup 7 sup 2 Kr. It turns out that in the nucleus sup 7 sup 4 Rb the neutron-proton correlations play an essential role for the alignment of the yrast positive-parity even-spin band.
Study of structure of light unstable nuclei by AMD
International Nuclear Information System (INIS)
We applied an antisymmetrized molecular dynamics method (AMD), at the first time, to investigate the nuclear structure and succeeded the description of light nuclei with unstable nuclei. The wave function of one nucleus by AMD makes possible to describe various kinds of structure from cluster to the shell model by the configuration of the wave packet. The results of Li, Be, B and C isotopes (without odd-odd nucleus) by AMD were shown. The bond-energy, the magnetic dipole moment, the electric quadrupole moment and E2 transition strength were reappeared by the experimental values, but the abnormal large reaction radius of unstable nucleus was not. The internal structure was investigated on the basis of these values. (S.Y.)
Candidates for Long Lived High-K Ground States in Superheavy Nuclei
Jachimowicz, P; Skalski, J
2015-01-01
On the basis of systematic calculations for 1364 heavy and superheavy nuclei, including odd-systems, we have found a few candidates for high-K ground states in superheavy nuclei. The macroscopic-microscopic model based on the deformed Woods-Saxon single particle potential which we use offers a reasonable description of SH systems, including known: nuclear masses, $Q_{\\alpha}$-values, fission barriers, ground state deformations, super- and hyper-deformed minima in the heaviest nuclei. %For odd and odd-odd systems, both ways of including pairing correlations, % blocking and the quasi-particle method, have been applied. Exceptionally untypical high-K intruder contents of the g.s. found for some nuclei accompanied by a sizable excitation of the parent configuration in daughter suggest a dramatic hindrance of the $\\alpha$-decay. Multidimensional hyper-cube configuration - constrained calculations of the Potential Energy Surfaces (PES's) for one especially promising candidate, $^{272}$ Mt, shows a $\\backsimeq$ 6 Me...
Gross theory of beta-decay and half-lives of short-lived nuclei
International Nuclear Information System (INIS)
The gross theory of beta-decay has been developed, and this theory offers the means of calculating directly the function of beta-decay intensity, then half-lives, complex beta spectra and so on are estimated from it. This paper presents the more refined theory by introducing the shell effect. The shell effect is considered in the intensity function. The half-lives in the electron decay of In with spin of 9/2+, the positron decay of Bi, Po, At and Rn, and the decay of odd-odd nuclei were estimated. The introduction of the shell effect shows better agreement between the theory and the experimental data. The inequality relations of intensity functions and half-lives of two adjacent nuclei were obtained. When the spins and parities of two nuclei are same, the inequality relations hold especially good. (Kato, T.)
Shape changes and electromagnetic properties of odd-proton rare-earth nuclei
International Nuclear Information System (INIS)
Very rapidly rotating odd-proton and odd-odd rare earth nuclei have been studied using in-beam gamma-ray spectroscopy following heavy-ion reactions. The nucleus 171Re was studied using the reaction 123Sb(52Cr,4n)171Re. A back-bend in the proton i13/2 band was fully delineated for the first time, a second back-bend was observed in the 5/2+[402] band and other bands were extended to higher spin. Band crossings were interpreted using the Cranked Shell Model and three-band mixing calculations. Deformations as functions of spin, based on diabatic configurations, have been calculated for proton i13/2 and h9/2 bands in Re and Ir isotopes. The nuclei 173,174Ta were studied using a 19F beam on a 160Gd target. A total of 16 bands have been identified and interpreted in terms of different quasiparticle excitations. Weak interband transitions between the pseudospin doublet, composed of the 5/2+[402] and 7/2+[404] band, together with accurately measured intraband mixing ratios were compared with particle-rotor calculations. A total of 10 rotational bands were identified in the odd-odd nucleus 174Ta. 38 refs, 20 figs, 3 tabs
International Nuclear Information System (INIS)
Doppler-shift attenuation methods. The experiment was performed at LNL, using the GASP spectrometer and Cologne plunger. The reaction 24Mg + 116Sn at 130 MeV beam energy has been used to populate states of 136Pm at moderate excitation energy and angular momentum. For the first time new results for the branching ratios and lifetime values in the chiral candidate bands of 136Pm will be reported at the conference. Based on these results conclusion about the chiral character of the bands in 136Pm will be performed. The chiral interpretation of twin bands in odd-odd nuclei based on the interacting boson fermion-fermion model will be discussed. The analysis of the wave functions has shown that the possibility for angular momenta of the valence proton, neutron and core to find themselves in the favorable, almost orthogonal geometry is present, but not dominant [5]. Such behavior is found to be similar in nuclei where both the level energies and the electromagnetic decay properties display the chiral pattern, as well as in those where only the level energies of the corresponding levels in the twin bands are close together. The difference in the structure of the two types of chiral candidates nuclei can be attributed to different β and γ fluctuations, induced by the exchange boson-fermion interaction of the interacting boson fermion-fermion model. In both cases the chirality is weak and dynamic. The present contribution will try to answer the question, how experimental results deduced for chiral candidates nuclei, 134Pr and 136Pm fits the picture of dynamic chirality?(author)
On stepwise change in heavy nuclei properties at 3-5 MeV excitation energy
International Nuclear Information System (INIS)
The experimental data obtained at Dubna, Riga, and Rez on cascade transitions from (nth,γ) measurements for 40 nuclei in the excitation energy region up to Bn allowed us to give a probabilistic picture of the process under consideration and introduce the following results: (a) The properties of levels, with energies below ∼ 1 MeV in odd-odd and even-odd nuclei and below ∼ 2 MeV in even-even nuclei, are mainly determined by quasi-particle excitations; (b) The nuclear structures of the observed states for these nuclei, below ∼ 3-4 MeV, are of dominant influence of vibration al-type excitations; (c) Above this excitation energy, deformed nuclei are characterized by sharp transitions to the states whose structures are determined by inner (quasi-particle) excitations; (d) The transitional region from dominant influence of vibration al excitations to that of inner excitations in near-magic nuclei is, perhaps, noticeably wider than that one for deformed nuclei; (e) It is not excluded that a similar stepwise process may repeat itself at higher excitation energies
Boson symmetries in exotic N ∼ Z nuclei
International Nuclear Information System (INIS)
Heavy N ∼ Z nuclei provide an ideal testing ground for various symmetries such as isospin and isospin-spin or SU(4) symmetry. The associated quantum numbers of orbital angular momentum L, isospin T, spin S and SU(4) labels (λμν) can be carried over onto appropriate versions of the interacting boson model (IBM). Symmetries allow to relate the boson model to the shell model; the composite character of the bosons permits a broader application of the concept of symmetry in IBM. The discussion then focuses on IBM-3 (which includes T=1 bosons only) and IBM-4 (with T=0 and T=1 bosons). A connection is established between them which relies on an IBM-4 classification that breaks Wigner's SU(4) symmetry. The resulting generalised IBM-4 is relevant for studying the competition between T=0 and T=1 pairing in N ∼ Z nuclei. An application to odd-odd self-conjugate nuclei is presented. (author)
Spectroscopy of Neutron-Deficient Nuclei Near the Z=82 Closed Shell via Symmetric Fusion Reactions
Directory of Open Access Journals (Sweden)
Kondev F.G.
2013-12-01
Full Text Available In-beam and decay-spectroscopy studies of neutron-deficient nuclei near the Z=82 shell closure were carried out using the Fragment Mass Analyzer (FMA and the Gammasphere array, in conjunction with symmetric fusion reactions and the Recoil Decay Tagging (RDT technique. The primary motivation was to study properties of 179Tl and 180Tl, and their daughter, and grand-daughter isotopes. For the first time, in-beam structures associated with 179Tl and 180Tl were observed, as well as γ rays associated with the 180Tl α decay. No long-lived isomer was identified in 180Tl, in contrast with the known systematics for the heavier odd-odd Tl isotopes.
International Nuclear Information System (INIS)
It has been shown previously that, below a critical angular momentum, yrast bands of non-magic nuclei are well described by the two-parameter variable moment of inertia model. Some striking exceptions to this rule are found in nuclei which have the same mass number as doubly magic nuclei but possess either one (or two) proton pairs beyond a magic number and one (or two) neutron hole pairs, or vice versa. Yrast bands in these 'pseudomagic' nuclei resemble those in magic nuclei. (author)
Meson-exchange forces and medium polarization in finite nuclei
International Nuclear Information System (INIS)
A G-matrix, derived from a meson-exchange potential in nuclear matter, is applied to finite, semi-magic nuclei. For the open shell the broken-pair model, which can accomodate many particle levels, is used. The excitations of the closed shell are treated as particle-hole states. Energy spectra and electromagnetic transition densities are calculated for 88Sr and 58Ni. The standard random-phase approximation for finite systems is extended by including the effects of the exchange of the RPA phonons in the residual interaction selfconsistently. It is shown that this particle-hole interaction is strongly energy dependent due to the presence of poles corresponding to 2p-2h (and more complex) excitations. The RPA eigenvalue problem with this energy-dependent residual interaction also provides solutions for these predominantly 2p2h-like states. In addition a modified normalization condition is obtained. This scheme is applied to 56Ni(56Co) in a large configuration space using a residual interaction of the G-matrix type. The effect of dynamic medium polarization on the properties of giant resonances is illustrated for the case of A=48 nuclei. A large fragmentation of the monopole strength is calculated, which is in accordance with the non-observation of the GMR in light nuclei. Properties of A=48 nuclei are computed with an interaction deduced from the NN scattering data without introduction of additional parameters. The role of medium polarization is illustrated for spectra and (e,e') form factors. It is shown how medium polarization induces a coupling between excitations in even-even and in the adjacent odd-odd nuclei. (Auth.)
Synthesis and decay properties of the heaviest nuclei
Oganessian, Yuri
2006-07-01
The formation and decay properties of the heaviest nuclei with Z=112-116 and 118 were studied in the reactions 238U, 242,244Pu, 243Am, 245,248Cm and 249Cf + 48Ca. The new nuclides mainly undergo sequential α-decay, which ends with spontaneous fission. The total time of decay ranges from 0.5 ms to ~1 day, depending on the proton and neutron numbers in the synthesized nuclei. The atomic number of the new elements 115 and 113 was confirmed also by an independent radiochemical experiment based on the identification of the neutron-rich isotope 268Db (TSF~30 h), the final product in the chain of α-decays of the odd-odd parent nucleus 288115. The comparison of the decay properties of 29 new nuclides with Z=104-118 and N=162-177 gives evidence of the decisive influence of the structure of superheavy elements on their stability with respect to different modes of radioactive decay. The investigations connected with the search for superheavy elements in Nature and prospects of superheavy element research are also presented. The experiments were carried out at the Flerov Laboratory of Nuclear Reactions (JINR, Dubna) in collaboration with the Analytical and Nuclear Chemistry Division of the Lawrence Livermore National Laboratory (USA).
Energy Technology Data Exchange (ETDEWEB)
Barbier, R.
1995-09-22
This thesis concerns some aspects of new symmetries in Nuclear Physics. It comprises three parts. The first one is devoted to the study of the quantum algebra U{sub qp}(u{sub 2}). More precisely, we develop its Hopf algebraic structure and we study its co-product structure. The bases of the representation theory of U{sub qp}(u{sub 2}) are introduced. On one hand, we construct the finite-dimensional irreducible representations of U{sub qp}(u{sub 2}). On the other hand, we calculate the Clebsch-Gordan coefficients with the projection operator method. To complete our study, we construct some deformed boson mappings of the quantum algebras U{sub qp}(u{sub 2}), U{sub q{sup 2}}(su{sub 2}) and U{sub qp}(u{sub 1,1}). The second part deals with the construction of a new phenomenological model of the non rigid rotator. This model is based on the quantum algebra U{sub qp}(u{sub 2}). The rotational energy and the E2 reduced transition probabilities are obtained. They depend on the two deformation parameters q and p of the quantum algebra. We show how the use of the two-parameter deformation of the algebra U{sub qp}(u{sub 2}) leads to a generalization of the U{sub q}(su{sub 2})-rotator model. We also introduce a new model of the anharmonic oscillator on the basis of the quantum algebra U{sub qp}(u{sub 2}). We show that the system of the U{sub q}(su{sub 2})-rotator and of the anharmonic oscillator can be coupled with the use of the deformation parameters of U{sub qp}(u{sub 2}). A ro-vibration energy formula and expansion `a la` Dunham are obtained. The aim of the last part is to apply our non rigid rotator model to the rotational collective dynamics of the superdeformed nuclei of the A{approx}130 - 150 and A{approx}190 mass regions and deformed nuclei of the actinide and rare earth series. We adjust the free parameters of our model and compare our results with those from four other models of the non rigid rotator. A comparative analysis is given in terms of transition energies.
International Nuclear Information System (INIS)
The nuclei far from the β-stability valley which are referred to as exotic nuclei have attracted considerable interest in recent years. Undoubtedly the study of the exotic nuclei is destined to be one of the frontier fields in nuclear structure physics. The recent experiments with radioactive beams have opened up this new era in nuclear spectroscopy. The lighter exotic nuclei are observed to show quite interesting features. For example, a halo structure has been attributed to 11Li in order to explain the observed large matter radius. Also, it is seen that 31--33Na show deformed characteristics rather than the spherical shape expected from the shell closure at N = 20. This points towards a need for a new investigation of the shell structure as one moves away from the β - stability valley. With the aforementioned interesting features observed for the lighter nuclei, clearly one question of great interest is whether similar effects can be seen in heavy nuclei. New calculations using the relativistic mean field approach have been performed for a range of nuclei over a wide range of isotopes up to those with a large excess of neutrons. In the present talk, some interesting new results obtained from these calculations win be discussed
Coulomb energy difference as a probe of isospin-symmetry breaking in the upper fp-shell nuclei
Kaneko, K; Sun, Y; Tazaki, S; de Angelis, G
2012-01-01
The anomaly in Coulomb energy differences (CED) between the isospin T=1 states in the odd-odd N=Z nucleus 70Br and the analogue states in its even-even partner 70Se has remained a puzzle. This is a direct manifestation of isospin-symmetry breaking in effective nuclear interactions. Here, we perform large-scale shell-model calculations for nuclei with A=66-78 using the new filter diagonalization method based on the Sakurai-Sugiura algorithm. The calculations reproduce well the experimental CED. The observed negative CED for A=70 are accounted for by the cross-shell neutron excitations from the fp-shell to the g9/2 intruder orbit with the enhanced electromagnetic spin-orbit contribution at this special nucleon number.
Spectroscopy of the odd-odd chiral candidate nucleus 102Rh
Directory of Open Access Journals (Sweden)
Yavahchova M.S.
2014-03-01
Full Text Available Excited states in 102Rh were populated in the fusion-evaporation reaction 94Zr(11B, 3n102Rh at a beam energy of 36 MeV, using the INGA spectrometer at IUAC, New Delhi. The angular correlations and the electromagnetic character of some of the 03B3-ray transitions observed in 102Rh were investigated in detail. A new candidate for achiral twin band was identified in 102Rh for the first time.
γ-spectroscopy and radioactive beams: search for highly deformed exotic nuclei
International Nuclear Information System (INIS)
This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A ∼ 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr76 radioactive beam (T1/2 = 14.8 h). γ-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first γ transition was observed in the very exotic odd-odd Pm130 nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)
Czech Academy of Sciences Publication Activity Database
Mareš, Jiří; Friedman, E.; Gal, A.
-, č. 56 (2006), s. 95-98. ISSN 0323-0465 R&D Projects: GA AV ČR IAA1048305 Institutional research plan: CEZ:AV0Z10480505 Keywords : key words * kaonic nuclei * Kbar-nucleus interactions Subject RIV: BE - Theoretical Physics Impact factor: 0.647, year: 2006
International Nuclear Information System (INIS)
Superdeformation was first proposed some twenty years ago to explain the fission isomers observed in some actinide nuclei. It was later realized that superdeformed shapes can occur at high angular momentum in lighter nuclei. The interest in the mechanisms responsible for these exotic shapes has increased enormously with the discovery of a superdeformed band of nineteen discrete lines in 152Dy (8). At about the same time, evidence for highly deformed nuclei (axis ratio 3:2) was also reported near 132Ce(9). Striking properties emerged from the first experiments, such as the essentially constant energy spacing between transitions (picket-fence spectra), the unexpectedly strong population of superdeformed bands at high spins, and the apparent lack of a link between the superdeformed states and the yrast levels. These findings were reviewed by Nolan and Twin. The present article follows upon their work and discusses the wealth of information that has since become available. This includes the discovery of a new island of superdeformation near A = 190, the detailed spectroscopy of ground and excited bands in the superdeformed well near A = 150 and A = 190, the surprising occurrence of superdeformed bands with identical transition energies in nuclei differing by one or two mass units, and the improved understanding of mechanisms responsible for the feeding into and the decay out of the superdeformed states
International Nuclear Information System (INIS)
4 nuclei of Nickel-48 have been produced in the GANIL accelerator. This nucleus is made up of 28 protons and 20 neutrons, it has at least 10 neutrons less than natural nickel but it is doubly magic: both protons and neutrons are distributed on full shells. It appears as if being doubly magic could compensate for the instability due to the shortage of neutrons. (A.C.)
Odd-even staggering of binding energy for nuclei in the s d shell
Fu, G. J.; Cheng, Y. Y.; Jiang, H.; Zhao, Y. M.; Arima, A.
2016-08-01
In this paper we study odd-even staggering phenomena of binding energy in the framework of the nuclear shell model for nuclei in the s d shell. We decompose the USDB effective interaction into the monopole interaction and multipole (residual) interactions. We extract the empirical proton-neutron interaction, the Wigner energy, and the one-neutron separation energy using calculated binding energies. The monopole interaction, which represents the spherical mean field, provides contributions to the empirical proton-neutron interaction, the symmetry energy, and the Wigner energy. It does not induce odd-even staggering of the empirical proton-neutron interaction or the one-neutron separation energy. Isovector monopole and quadrupole pairing interactions and isoscalar spin-1 pairing interactions play a key role in reproducing an additional binding energy in both even-even and odd-odd nuclei. The Wigner energy coefficients are sensitive to residual two-body interactions. The nuclear shell structure has a strong influence on the evolution of the one-neutron separation energy, but not on empirical proton-neutron interactions. The so-called three-point formula is a good probe of the shell structure.
Contribution of the radioactive decay to the study of the structure of N=Z nuclei of mass A>70
International Nuclear Information System (INIS)
Radioactive decay study gives an access to the interaction which rules the β decay process as well as the structure of the nuclear states involved. This work describes the observation of the decay of N = Z nuclei with mass A > 70. For the odd-odd N = Z nuclei 78Y, 82Nb and 86Tc, the decay has been established as superallowed Fermi type transitions. The results pave the way for more precise measurements and extend the mass range nowadays used to understand the behaviour of the weak interaction in the nuclear matter. The observation of the decay of the even-even N = Z 72Kr leads us to build the Gamow-Teller strength distribution from which some clues about the ground state deformation of this isotope can be obtained. More complete experimental observation and some developments of the calculations used to interpret the distribution of the Gamow-Teller strength are needed. Finally, this work describes the developments and tests of a prototype detector the aim of which to determine the contribution of β particles to energy distribution observed in germanium detector. The tests we have performed show that this prototype can identify and reject 80% of the β particles emitted by a source with a 2,3 MeV end-point. The very satisfactory performances of this prototype need now to be confirmed under experimental conditions. (author)
Energy Technology Data Exchange (ETDEWEB)
Rosse, B
2006-07-15
This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A {approx} 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr{sup 76} radioactive beam (T1/2 = 14.8 h). {gamma}-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first {gamma} transition was observed in the very exotic odd-odd Pm{sup 130} nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)
International Nuclear Information System (INIS)
This paper covers the following aspects of isobar excitations in nuclei: Nuclear spin response; Electromagnetic probes; Pion-nuclear reactions; Baryon charge exchange reactions; Charge exchange reactions on nuclei; and Exclusive spectra
Search for the chiral band in the N = 71 odd-odd nucleus sup 1 sup 2 sup 6 Cs
Li Xian Feng; Liu Yun Zuo; Lu Jing Bin; Zhao Guang Yi; Yin Li Chang; Meng Rui; Zhang Zheng Long; Wen Li Jun; Zhou Xiao Hong; Guo Ying Xiang; Lei Xia; Liu Zhong; He Jian Jun; Zheng Yong
2002-01-01
High-spin states in sup 1 sup 2 sup 6 Cs are studied via the sup 1 sup 1 sup 6 Cd ( sup 1 sup 4 N, 4n) reaction at a beam energy of 65 MeV. The sideband of the pi h sub 1 sub 1 sub / sub 2 direct x nu h sub 1 sub 1 sub / sub 2 yrast band, a DELTA I = 2 band known from previous study, is developed into a DELTA I = 1 coupled structure at low spins. This sideband is assigned to be built on the same configuration as the yrast band according to the measured ratios of directional correlation of orientation and observed alignment properties. On the basis of comparisons with the previously proposed chiral doublet bands for sup 1 sup 2 sup 8 sup , sup 1 sup 3 sup 0 Cs, the observed two pi h sub 1 sub 1 sub / sub 2 direct x nu h sub 1 sub 1 sub / sub 2 bands are proposed to be candidates for chiral doublet bands in sup 1 sup 2 sup 6 Cs
Marketin, T.; Huther, L.; Martínez-Pinedo, G.
2016-02-01
Background: r -process nucleosynthesis models rely, by necessity, on nuclear structure models for input. Particularly important are β -decay half-lives of neutron-rich nuclei. At present only a single systematic calculation exists that provides values for all relevant nuclei making it difficult to test the sensitivity of nucleosynthesis models to this input. Additionally, even though there are indications that their contribution may be significant, the impact of first-forbidden transitions on decay rates has not been systematically studied within a consistent model. Purpose: Our goal is to provide a table of β -decay half-lives and β -delayed neutron emission probabilities, including first-forbidden transitions, calculated within a fully self-consistent microscopic theoretical framework. The results are used in an r -process nucleosynthesis calculation to asses the sensitivity of heavy element nucleosynthesis to weak interaction reaction rates. Method: We use a fully self-consistent covariant density functional theory (CDFT) framework. The ground state of all nuclei is calculated with the relativistic Hartree-Bogoliubov (RHB) model, and excited states are obtained within the proton-neutron relativistic quasiparticle random phase approximation (p n -RQRPA). Results: The β -decay half-lives, β -delayed neutron emission probabilities, and the average number of emitted neutrons have been calculated for 5409 nuclei in the neutron-rich region of the nuclear chart. We observe a significant contribution of the first-forbidden transitions to the total decay rate in nuclei far from the valley of stability. The experimental half-lives are in general well reproduced for even-even, odd-A , and odd-odd nuclei, in particular for short-lived nuclei. The resulting data table is included with the article as Supplemental Material. Conclusions: In certain regions of the nuclear chart, first-forbidden transitions constitute a large fraction of the total decay rate and must be
International Nuclear Information System (INIS)
This document gathers the slides and their commentaries that have been presented at the conference 'physics and fundamental questions' by P. Chomaz. The author reviews the different quantum aspects of nuclei: tunnel effect, symmetries, magic numbers, wave functions, size, shapes and deformations. The author shows that nuclei are quantum objects of great complexity, their structures are not yet well understood and the study of exotic nuclei will continue bringing valuable information
International Nuclear Information System (INIS)
If some β- emitters are particularly interesting to study in light, medium, and heavy nuclei, another (and also) difficult problem is to know systematically the properties of these neutron rich nuclei far from the stability line. A review of some of their characteristics is presented. How far is it possible to be objective in the interpretation of data is questioned and implications are discussed
International Nuclear Information System (INIS)
The purpose of 1991 Joliot-Curie Summer School is to review the most advances in the understanding of the nuclei physics after the considerable progress in gamma spectroscopy. It covers the following topics: Highly and super-deformed nuclei, nuclear structures, mean-field approach and beyond, fission isomers, nuclear excitations with long lifetime and metal clusters
International Nuclear Information System (INIS)
ALTO (Accelerateur Lineaire et Tandem d'Orsay) is a facility composed of two accelerators dedicated to research and industrial applications. There is a 15 MV tandem and a linear accelerator. My PhD work was to develop the instrumentation of the linear accelerator part of ALTO which provides radioactive beams for fundamental research. These radioactive beams are produced using the Isotope Separation On-Line method (ISOL). This technique allows three kinds of experiments: mass measurement, nuclear orientation and radioactivity experiments. Among those three types of experiments, I worked on the development of two new experimental platforms for the ALTO instrumentation. The first one, BEDO (Beta Decay studies in Orsay) is an ensemble of detectors dedicated to β-γ spectroscopy of β-decaying nuclei produced by ALTO. I present in this thesis, the commissioning of this new experimental set-up, its technical characteristics and the tools development leading to the first results. For this commissioning experiment a mass 82 radioactive beam was produced, taking this opportunity the 82Ge → 82As decay was re-investigated allowing to establish a new level scheme for 82As and giving the first evidences for the presence of intruder states in the N=49 odd-odd isotones. The second project, which is developed, is POLAREX (Polarization of Exotic nuclei), a new facility for nuclear orientation experiments. My thesis deals with the entire reconditioning of a 3He-4He dilution refrigerator (major and most complex element of the facility) and R and D and technical developments of the platform. These contributions allowed the successful commissioning of the new experimental platform with the first physical measurements on 54Mn, 56Co, 57Co created by activation of an iron foil with deuterons produced by the Tandem. (author)
International Nuclear Information System (INIS)
The topics presented at the 1989 Joliot-Curie Lectures are reported. Two main subjects were retained: a simplified description of the N-body motion of particles in the quasi-particle configuration; study of the dynamics of nuclear components which are not described by nucleons in their ground state. The following themes were presented: quasiparticles and the Green functions, relativistic aspects of the quasiparticle concept, the dimensions of nucleons in the nuclei and the EMC effect, quarks and gluons in the nuclei, the delta in the nuclei, the strangeness, quasiparticles far from the Fermi sea, diffusion of electrons, stellar evolution and nucleosynthesis
International Nuclear Information System (INIS)
The density functional determining the Coulomb energy of nuclei is calculated to the first order in e2. It is shown that the Coulomb energy includes three terms: the Hartree energy; the Fock energy; and the correlation Coulomb energy (CCE), which contributes considerably to the surface energy, the mass difference between mirror nuclei, and the single-particle spectrum. A CCE-based mechanism of a systematic shift of the single-particle spectrum is proposed. A dominant contribution to the CCE is shown to come from the surface region of nuclei. The CCE effect on the calculated proton drip line is examined, and the maximum charge Z of nuclei near this line is found to decrease by 2 or 3 units. The effect of Coulomb interaction on the effective proton mass is analyzed
Shaginyan, V R
2001-01-01
The density functional determining the Coulomb energy of nuclei is calculated to the first order in $e^2$. It is shown that the Coulomb energy includes three terms: the Hartree energy; the Fock energy; and the correlation Coulomb energy (CCE), which contributes considerably to the surface energy, the mass difference between mirror nuclei, and the single-particle spectrum. A CCE-based mechanism of a systematic shift of the single-particle spectrum is proposed. A dominant contribution to the CCE is shown to come from the surface region of nuclei. The CCE effect on the calculated proton drip line is examined, and the maximum charge $Z$ of nuclei near this line is found to decrease by 2 or 3 units. The effect of Coulomb interaction on the effective proton mass is analyzed.
Shaginyan, V. R.
2002-01-01
The density functional determining the Coulomb energy of nuclei is calculated to the first order in $e^2$. It is shown that the Coulomb energy includes three terms: the Hartree energy; the Fock energy; and the correlation Coulomb energy (CCE), which contributes considerably to the surface energy, the mass difference between mirror nuclei, and the single-particle spectrum. A CCE-based mechanism of a systematic shift of the single-particle spectrum is proposed. A dominant contribution to the CC...
International Nuclear Information System (INIS)
A review is made of the present status concerning the production of nuclei above 5 MeV temperature. Considerable progress has been made recently on the understanding of the formation and the fate of such hot nuclei. It appears that the nucleus seems more stable against temperature than predicted by static calculations. However, the occurrence of multifragment production at high excitation energies is now well established. The various experimental features of the fragmentation process are discussed. (author) 59 refs., 12 figs
Electroweak interactions in nuclei
Henley, E. M.
1984-06-01
Nuclear and subnuclear degrees of freedom and lepton nucleus scattering were discussed. Electroweak interactions in nuclei were examined. Topics discussed include: introduction to electroweak theory; the Weinberg-Salam theory for leptons; the Weinberg-Salam theory for hadrons-the GIM mechanism; electron scattering as a probe of the electroweak interaction (observation of PV, the weak interaction for nucleons, and parity violation in atoms); and time reversed invariance and electric dipole moments of nucleons, nuclei, and atoms.
International Nuclear Information System (INIS)
In this thesis five heavy deformed isotopes from the mass region A≥230, namely 234U, 233U, 231Th, 230Pa and 232Pa, were investigated by means of deuteron-induced neutron transfer reactions. The even-even isotope 234U has been studied with the 4π-γ-spectrometer MINIBALL at the Cologne Tandem accelerator. Excited nuclei in the isotope 234U were produced using the reaction 235U(d,t) at a beam energy of 11 MeV. The target thickness was 3.5 mg/cm2. The analysis of the γγ-coincidence data yielded a reinterpretation of the level scheme in 12 cases. Considering its decay characteristics, the 4+ state at an excitation energy of 1886.7 keV is a potential candidate for a two-phonon vibrational state. The isotopes 233U, 231Th, 230Pa and 232Pa were investigated at the Munich Q3D spectrometer. For each isotope an angular distribution with angles between 5 and 45 were measured. In all four cases the energy of the polarized deuteron beam (vector polarization of 80%) was 22 MeV. As targets 234U (160 μg/cm2), 230Th (140 μg/cm2) and 231Pa (140 μg/cm2) were used. The experimental angular distributions were compared to results of DWBA calculations. For the odd isotope 233U spin and parity for 33 states are assigned and in the other odd isotope 231Th 22 assignments are made. The excitation spectra of the two odd-odd isotopes 230Pa and 232Pa were investigated for the first time. For the isotope 230Pa 63 states below an excitation energy of 1.5 MeV are identified. Based on the new experimental data the Nilsson configuration of the ground state is either 1/2[530]p-5/2[633]n or 1/2[530]p+3/2[631]n. In addition 12 rotational bands are proposed and from this six values for the GM splitting energy are deduced as well as two new values for the Newby shift. In the other odd-odd isotope 232Pa 40 states below an excitation energy of 850 keV are observed and suggestions for the groundstate band and its GM partner are made. From this one GM splitting energy was determined.
Khoa, Dao Tien; Egelhof, Peter; Gales, Sydney; Giai, Nguyen Van; Motobayashi, Tohru
2008-04-01
Studies at the RIKEN RI beam factory / T. Motobayashi -- Dilute nuclear states / M. Freer -- Studies of exotic systems using transfer reactions at GANIL / D. Beaumel et al. -- First results from the Magnex large-acceptance spectrometer / A. Cunsolo et al. -- The ICHOR project and spin-isospin physics with unstable beams / H. Sakai -- Structure and low-lying states of the [symbol]He exotic nucleus via direct reactions on proton / V. Lapoux et al. -- Shell gap below [symbol]Sn based on the excited states in [symbol]Cd and [symbol]In / M. Górska -- Heavy neutron-rich nuclei produced in the fragmentation of a [symbol]Pb beam / Zs. Podolyák et al. -- Breakup and incomplete fusion in reactions of weakly-bound nuclei / D.J. Hinde et al. -- Excited states of [symbol]B and [symbol]He and their cluster aspect / Y. Kanada-En'yo et al. -- Nuclear reactions with weakly-bound systems: the treatment of the continuum / C. H. Dasso, A. Vitturi -- Dynamic evolution of three-body decaying resonances / A. S. Jensen et al. -- Prerainbow oscillations in [symbol]He scattering from the Hoyle state of [symbol]C and alpha particle condensation / S. Ohkubo, Y. Hirabayashi -- Angular dispersion behavior in heavy ion elastic scattering / Q. Wang et al. -- Microscopic optical potential in relativistic approach / Z.Yu. Ma et al. -- Exotic nuclei studied in direct reactions at low momentum transfer - recent results and future perspectives at fair / P. Egelhof -- Isotopic temperatures and symmetry energy in spectator fragmentation / M. De Napoli et al. -- Multi-channel algebraic scattering theory and the structure of exotic compound nuclei / K. Amos et al. -- Results for the first feasibility study for the EXL project at the experimental storage ring at GSI / N. Kalantar-Nayestanaki et al. -- Coulomb excitation of ISOLDE neutron-rich beams along the Z = 28 chain / P. Van Duppen -- The gamma decay of the pygmy resonance far from stability and the GDR at finite temperature / G. Benzoni et al
International Nuclear Information System (INIS)
The present collection of letters from JINR, Dubna, contains seven separate records on kinematic separation and mass analysis of heavy recoiling nuclei, dynamical effects prior to heavy ion fusion, VACTIV-DELPHI graphical dialog based program for the analysis of gamma-ray spectra, irradiation of nuclear emulsions in relativistic beams of 6He and3H nuclei, optical and structural investigations of PLZT x/65/35 (x = 4, 8 %) ferroelectric ceramics irradiated by a high-current pulsed electron beam, the oscillating charge and first evidence for neutrinoless double beta decay
International Nuclear Information System (INIS)
The present collection of letters from JINR, Dubna, contains seven separate records on physics from extra dimensions, new physics in the new millennium with GENIUS: double beta decay, dark matter, solar neutrinos, the (μ-, e+) conversion in nuclei mediated by light Majorana neutrinos, exotic muon-to-positron conversion in nuclei: partial transition sum evaluation by using shell model, solar neutrino problem accounting for self consistent magnetohydrodynamics solution for solar magnetic fields, first neutrino observations from the Sudbury neutrino observatory and status report on BOREXINO and results of the muon-background measurements at CERN
International Nuclear Information System (INIS)
Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra
International Nuclear Information System (INIS)
New insights have been gained into the frontiers of nuclear structure of neutron-rich nuclei by means of γ-γ-γ and γ-γ (θ) coincidences of prompt γ rays emitted in the spontaneous fission of 252Cf at Gammasphere. Over 5.7 x 1011 triple-and higher-fold coincidence events and the less-compressed cube data provide excellent conditions for searches and studies over a wide unknown range with more neutron excess. High-spin yrast and near yrast level schemes of neutron-rich nuclei in regions of physics interest have been identified for the first time, or extensively extended and expanded compared to previous preliminary measurements. Chiral symmetry breaking was recently identified in even-even neutron-rich 110,112Ru and 108Mo isotopes. The former have the largest lowering of ground state energy when axial symmetry is broken, and near maximum triaxiality was deduced in the isotopes. By exhibiting all the fingerprints for chiral doubling, especially the best energy degeneracy, the doublet bands observed in these Ru and Mo isotopes are the best examples of chiral properties reported in this region. The evolution of chirality from γ-soft 108Ru to triaxial 110,112Ru is proposed. Tilted axis cranking (TAC) calculations extended by random phase approximation (RPA) calculations can explain the features of the doublet bands in terms of a soft chiral vibration for these even-even nuclei. The chirality in these even-even nuclei cannot be reduced to the simple geometrical picture as in odd-odd nuclei. Instead, in these even-even nuclei the tendency to chirality comes about from the interplay of all the neutrons in the open shell. Systematic studies of the N = 83 isotonic chain in the vicinity of the doubly-magic 132Sn have yielded a wealth of spectroscopic information in this attractive region. The new data of N = 83 isotones 135Te (Z = 52), 136I (Z = 53), 137Xe (Z = 54), 138Cs (Z = 55) and 139Ba (Z = 56), especially the observation of the long-sought level scheme of 138Cs
Hoyer, Paul
1995-01-01
I review hard photon initiated processes on nuclei. The space-time development of the DIS reaction as viewed in the target rest frame qualitatively describes the nuclear shadowing of quark and gluon distributions, although it may be difficult to understand the very weak $Q^2$ dependence of the low $x$ data. The current jet hadron energy distribution at large $\
Electroweak interactions in nuclei
International Nuclear Information System (INIS)
Topics include: introduction to electroweak theory; the Weinberg-Salam theory for leptons; the Weinberg-Salam theory for hadrons-the GIM mechanism; electron scattering as a probe of the electroweak interaction (observation of PV, the weak interaction for nucleons, and parity violation in atoms); and time reversed invariance and electric dipole moments of nucleons, nuclei, and atoms. 52 references
Nuclei with tetrahedral symmetry
International Nuclear Information System (INIS)
We discuss a point-group-theory based method of searching for new regions of nuclear stability. We illustrate the related strategy with realistic calculations employing the tetrahedral and the octahedral point groups. In particular, several nuclei in the rare earth region appear as excellent candidates to study the new mechanism. (author)
Octupole collectivity in nuclei
Butler, P. A.
2016-07-01
The experimental and theoretical evidence for octupole collectivity in nuclei is reviewed. Recent theoretical advances, covering a wide spectrum from mean-field theory to algebraic and cluster approaches, are discussed. The status of experimental data on the behaviour of energy levels and electric dipole and electric octupole transition moments is reviewed. Finally, an outlook is given on future prospects for this field.
Triaxiality in superheavy nuclei
International Nuclear Information System (INIS)
In this work, triaxial degree of freedom is explicitly utilized in calculating alpha decay lifetimes. The synthesis of superheavy nuclei with Z = 114-116 and 118 were detected by their decaying alpha chains with terminating spontaneous fission events. The lifetime of alpha decay chains measured are to be compared with the values evaluated theoretically
Fissibility of compound nuclei
Iwata, Yoritaka
2012-01-01
Collisions between $^{248}$Cm and $^{48}$Ca are systematically investigated by time-dependent density functional calculations with evaporation prescription. Depending on the incident energy and impact parameter, fusion, deep-inelastic and fission events are expected to appear. In this paper, a microscopic method of calculating the fissibility of compound nuclei is presented.
Disintegration of comet nuclei
International Nuclear Information System (INIS)
The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies. (physics of our days)
Energy Technology Data Exchange (ETDEWEB)
Legoll, F. [Service de Physique Theorique, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)
1998-07-22
For nuclei with very high electrical charge, the Coulomb field is expected to drive the protons away from the centre to the surface of the nucleus. Such a nucleus would be no more compact but look like a bubble. The goal of this work is to confirm this idea. We are interested in only the ground state of spherical nuclei. We use the Skyrme potential with the Sly4 parametrization to calculate the mean-field Hamiltonian. Paring correlations are described by a surface-active delta paring interaction. In its ground state the nucleus {sup A=900} X{sub Z=274} is shown to be a bubble. Another stable state is found with a little higher energy: it is also a bubble. (author) 11 refs., 18 figs., 33 tabs.
International Nuclear Information System (INIS)
Nuclei in the Cosmos is the foremost bi-annual conference of nuclear physicists, astrophysicists, cosmochemists, and others to survey the recent achievements in Nuclear Astrophysics. As an interdisciplinary meeting it promotes mutual understanding and collaboration over fields fundamental to solve a range of open questions, from the origin of the elements to stellar evolution. Inherent part of the conference is a school devoted to students and young scientists where prominent scientists introduce the field of nuclear astrophysics to the participants. Conference Topics: Cosmology and big bang nucleosynthesis; Element production, stellar evolution and stellar explosions; Evidences of nucleosynthesis in stars and in presolar grains; Experiments in nuclear astrophysics; Nuclei far from stability; Nuclear theory in astrophysics; New facilities. [TRA
Effenberger, M.; Mosel, U.
1997-01-01
We calculate the total photoabsorption cross section and cross sections for inclusive pion and eta photoproduction in nuclei in the energy range from 300 MeV to 1 GeV within the framework of a semi-classical BUU transport model. Besides medium modifications like Fermi motion and Pauli blocking we focus on the collision broadening of the involved resonances. The resonance contributions to the elementary cross section are fixed by fits to partial wave amplitudes of pion photoproduction. The cro...
Ayala, A. L.; Ducati, M. B. Gay; Levin, E. M.
1996-01-01
In this talk we present our detail study ( theory and numbers) [1] on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather contraversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula [2] and estimate the value of the shadowing corrections in this case. Than we calculate the first corrections to the Glauber approach and ...
International Nuclear Information System (INIS)
Discoveries of many different types of nuclear shape coexistence are being found at both low and high excitation energies throughout the periodic table, as documented in recent reviews. Many new types of shape coexistence have been observed at low excitation energies, for examples bands on more than four different overlapping and coexisting shapes are observed in 185Au, and competing triaxial and prolate shapes in 71Se and 176Pt. Discrete states in super-deformed bands with deformations β 2 ∼ 0.4-0.6, coexisting with other shapes, have been seen to high spin up to 60ℎ in 152Dy, 132Ce and 135Nd. Super-deformed nuclei with N and Z both around 38 and around Z = 38, N ≥ 60. These data led to the discovery of new shell gaps and magic numbers of 38 for N and Z and 60 for N but now for deformed shapes. Marked differences in structure are observed at spins of 6 to 20 in nuclei in this region, which differ by only two protons; for example, 68Ge and 70Se. The differences are thought to be related to the competing shell gaps in these nuclei
Kelkar, N G; Moskal, P
2015-01-01
The possibility for the existence of unstable bound states of the S11 nucleon resonance N$^*$(1535) and nuclei is investigated. These quasibound states are speculated to be closely related to the existence of the quasibound states of the eta mesons and nuclei. Within a simple model for the N N$^*$ interaction involving a pion and eta meson exchange, N$^*$-nucleus potentials for N*-$^3$He and N*-$^{24}$Mg are evaluated and found to be of a Woods-Saxon like form which supports two to three bound states. In case of N*-$^3$He, one state bound by only a few keV and another by 4 MeV is found. The results are however quite sensitive to the N N$^*$ $\\pi$ and N N$^*$ $\\eta$ vertex parameters. A rough estimate of the width of these states, based on the mean free path of the exchanged mesons in the nuclei leads to very broad states with $\\Gamma \\sim$ 80 and 110 MeV for N*-$^3$He and N*-$^{24}$Mg respectively.
Self-consistent calculations of quadrupole moments of spherical nuclei
Saperstein E. E.; Tolokonnikov S.; Krewald S.; Kamerdzhiev S.; Voitenkov D.
2012-01-01
The self-consistent Theory of Finite Fermi Systems based on the Energy Density Functional by Fayans et al. with the set DF3-a of parameters fixed previously is used to calculate three kinds of quadrupole moments. At first, we examined systematically quadrupole moments of odd neighbors of semi-magic lead and tin isotopes and $N=50,N=82$ isotones. Second, we found quadrupole moments of the first $2^+$ states in the same two chains of isotopes. Finally, we evaluated quadrupole moments of odd-odd...
Beckmann, Volker
2012-01-01
This AGN textbook includes phenomena based on new results in the X-Ray domain from new telescopes such as Chandra and XMM Newton not mentioned in any other book. Furthermore, it considers also the Fermi Gamma Ray Space Telescope with its revolutionary advances of unprecedented sensitivity, field of view and all-sky monitoring. Those and other new developments as well as simulations of AGN merging events and formations, enabled through latest super-computing capabilities. The book gives an overview on the current knowledge of the Active Galacitc Nuclei phenomenon. The spectral energy d
Blandford, RD; Woltjer, L
1990-01-01
Starting with this volume, the Lecture Notes of the renowned Advanced Courses of the Swiss Society for Astrophysics and Astronomy will be published annually. In each course, three extensive lectures given by leading experts in their respective fields cover different and essential aspects of the subject. The 20th course, held at Les Diablerets in April 1990, dealt with current research on active galactic nuclei; it represents the most up-to-date views on the subject, presented with particular regard for clarity. The previous courses considered a wide variety of subjects, beginning with ""Theory
International Nuclear Information System (INIS)
The present collection of letters from JINR, Dubna, contains eight separate records on the interaction of high energy Λ6He hypernuclear beams with atomic nuclei, the position-sensitive detector of a high spatial resolution on the basis of a multiwire gas electron multiplier, pseudorapidity hadron density at the LHC energy, high precision laser control of the ATLAS tile-calorimeter module mass production at JINR, a new approach to ECG's features recognition involving neural network, subcriticity of a uranium target enriched in 235U, beam space charge effects in high-current cyclotron injector CI-5, a homogeneous static gravitational field and the principle of equivalence
International Nuclear Information System (INIS)
The present collection of letters from JINR, Dubna, contains six separate records on the DELPHI experiment at LEP, the Fermi-surface dynamics of rotating nuclei, production of large samples of the silica dioxide aerogel in the 37-litre autoclave and test of its optical properties, preliminary radiation resource results on scintillating fibers, a new algorithm for the direct transformation method of time to digital with the high time resolution and development and design of analogue read-out electronics for HADES drift chamber system
Effenberger, M.; Hombach, A; Teis, S.; Mosel, U.
1996-01-01
We calculate the total photoabsorption cross section on nuclei in the energy range from 300 MeV to 1 GeV within the framework of a semi-classical phase space model. Besides medium modifications like Fermi motion and Pauli blocking we focus on the collision broadening of the involved resonances. The resonance contributions to the elementary cross section are fixed by fits to partial wave amplitudes of pion photoproduction. The cross sections for $N \\, R \\to N \\, N$, needed for the calculation ...
Ho, L C; Sargent, W L W; Ho, Luis C.; Filippenko, Alexei V.; Sargent, Wallace L. W.
1996-01-01
We describe a new sample of Seyfert nuclei discovered during the course of an optical spectroscopic survey of nearby galaxies. The majority of the objects, many recognized for the first time, have luminosities much lower than those of classical Seyferts and populate the faint end of the AGN luminosity function. A significant fraction of the nuclei emit broad H-alpha emission qualitatively similar to the broad lines seen in classical Seyfert 1 nuclei and QSOs.
Electron scattering for exotic nuclei
Indian Academy of Sciences (India)
Toshimi Suda
2014-11-01
A brand-new electron scattering facility, the SCRIT Electron Scattering Facility, will soon start its operation at RIKEN RI Beam Factory, Japan. This is the world’s first electron scattering facility dedicated to the structure studies of short-lived nuclei. The goal of this facility is to determine the charge density distributions of short-lived exotic nuclei by elastic electron scattering. The first collision between electrons and exotic nuclei will be observed in the year 2014.
International Nuclear Information System (INIS)
The present collection of letters from JINR, Dubna, contains ten separate records on the properties of the N=82 even-even nuclei, an investigation of the charge collection for strongly irradiated silicon strip detectors of the CMS ECAL preshower, the rate capability of the CSC cathode readout electronics, the timing resolution of cathode strip chambers of the CMS ME1/1 muon station and bunch crossing identification, strengthening and damping of synchrotron oscillations, photoradiation hardness of organic scintillators, as well as on a method of anode wire incident angle calculation of the first muon station (ME1/1) of the Compact Muon Solenoid set-up (CMS), heavy ion studies with CMS HF calorimeter, an investigation of the possibility of developing iodine-containing treatment and prophylactic pharmaceuticals based on blue-green algae Spirulina platensis using neutron activation analysis, a comparison between schemes for heavy ion injection into Nuclotron booster
International Nuclear Information System (INIS)
The present collection of letters from JINR, Dubna, contains nine separate records on the transport of the evanescent electron beam in the vacuum section with plasma disks, determination of ΔΓs from analysis of untagged decays Bs0→J/ψφ by using the method of angular moments, investigation of light nucleus clustering in relativistic multifragmentation processes, secondary fragments of relativistic 22Ne at 4.1 A · GeV/c nuclei in nuclear emulsion, extrapolation of experimental data of accelerated radiation aging to the operation condition of dipole magnet electrical insulation at low dose rates, automatic quality control system of the installed straws into TRT wheels, a new method of fast simulation for a hadron calorimeter response, empirical evidence for relation between threshold effects and neutron strength function as well as on what information can be derived when no events are registered
International Nuclear Information System (INIS)
The present collection of letters from JINR, Dubna, contains seven separate records on the integral representation for structure functions and target mass effects, multiscale properties of DNA primary structure including cross-scale correlations, dissipative evolution of the elementary act, the fine structure of the MT=1 Gamow-Teller resonance in 147gTb→147Gd β+/EC decay, the behaviour of the TVO temperature sensors in the magnetic fields, a fast method for searching for tracks in multilayer drift chambers of HADES spectrometer, a novel approach to particle track etching including surfactant enhanced control of pore morphology, azimuthal correlations of secondary particles in 32S induced interactions with Ag(Br) nuclei at 4.5 GeV/ c/ nucleon
International Nuclear Information System (INIS)
The present collection of letters from JINR, Dubna, contains ten separate records on Wien filter using in exploring on low-energy radioactive nuclei, memory effects in dissipative nucleus-nucleus collision, topological charge and topological susceptibility in connection with translation and gauge invariance, solutions of the multitime Dirac equation, the maximum entropy technique. System's statistical description, the charged conductor inside dielectric. Solution of boundary condition by means of auxiliary charges and the method of linear algebraic equations, optical constants of the TGS single crystal irradiated by power pulsed electron beam, interatomic pair potential and n-e amplitude from slow neutron scattering by noble gases, the two-coordinate multiwire proportional chamber of the high spatial resolution and neutron drip line in the region of O-Mg isotopes
International Nuclear Information System (INIS)
What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the gigantic nucleus speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction. (author)
International Nuclear Information System (INIS)
The applications of skyrmions to the derivation of the nucleon-nucleon force are now over a dozen years old, and this occasion is used to assess the degree of success of the endeavor. A very brief review is given of the use of skyrmions for determining single-baryon properties. Then their use for two-nucleon systems is described, with attention to the use of the product ansatz, the full structure of the lagrangian, baryon resonance admixtures, dilatons, and exact solutions for the B=2 system in order to find the sources of attraction in the central potential. We briefly address possible insights into the behavior of the nucleon in nuclei achieved from the skyrmion approach. (author)
International Nuclear Information System (INIS)
In this talk I discuss properties of hot stellar matter at sub-nuclear densities which is formed in supernova explosions. I emphasize that thermodynamic conditions in this case are rather similar to those created in the laboratory by intermediate-energy heavy-ion collisions. Theoretical methods developed for the interpretation of multi-fragment final states in such reactions can be used also for description of the stellar matter. I present main steps of the statistical approach to the equation of state and nuclear composition, dealing with an ensemble of nuclear species instead of one “average” nucleus. Finally some results of this approach are presented. The emphasis is put on possible formation of heavy and superheavy nuclei. (author)
Electron scattering off nuclei
International Nuclear Information System (INIS)
Two recently developed aspects related to the scattering of electrons off nuclei are presented. On the one hand, a model is introduced which emphasizes the relativistic aspects of the problem in the impulse approximation, by demanding strict maintenance of the algebra of the Poincare group. On the other hand, the second model aims at a more sophisticated description of the nuclear response in the case of collective excitations. Basically, it utilizes the RPA formalism with a new development which enables a more careful treatment of the states in the continuum as is the case for the giant resonances. Applications of both models to the description of elastic scattering, inelastic scattering to discrete levels, giant resonances and the quasi-elastic region are discussed. (Author)
Ayala, A P; Levin, E M
1996-01-01
In this talk we present our detail study ( theory and numbers) [1] on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather contraversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula [2] and estimate the value of the shadowing corrections in this case. Than we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus - nucleus cascade.
Beck, Christian
Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics: - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...
Collective excitations in nuclei
Energy Technology Data Exchange (ETDEWEB)
Chomaz, Ph. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)
1998-12-31
The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors) 304 refs., 53 figs., 5 tabs.
Collective excitations in nuclei
International Nuclear Information System (INIS)
The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors)
Directory of Open Access Journals (Sweden)
Holt Roy J.
2016-01-01
Full Text Available Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.
Holt, Roy J.
2016-03-01
Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.
Search for Signature Inversion in the πi13/2 vi13/2 Band in Odd-Odd 178Ir
Institute of Scientific and Technical Information of China (English)
ZHANG Yu-Hu; H. Kusakari; M. Sugawara; T. Komatsubara; K. Furuno; T. Hayakawa; M. Oshima; Y. Toh; J. Katakura; Y. Hatsukawa; M. Matsuda; N. Shinohara; T. Ishii
2001-01-01
The search for the ri13/2 vi13/2 band in 178Ir has been conducted through the 152Sm(31 P, 5nγ) 178Ir reaction and the excitation functions, x-γ and γ-γ-t coincidence measurements. Five rotational bands have been newly identified. The low-spin signature inversion in the πi13/2 vi13/2 band has been confirmed by the observations of linking transitions and signature crossing at I = 25.5 h. The inversion phenomenon in rh11/2 vi13/2, rh9/2 vi13/2 and ri13/2 vi13/2 structures in 178Ir provides a unique testing ground for different theoretical interpretations.
Monopole transitions in hot nuclei
International Nuclear Information System (INIS)
Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs
Spectroscopy of heavy fissionable nuclei
Indian Academy of Sciences (India)
S K Tandel
2015-09-01
Structural studies of heavy nuclei are quite challenging due to increased competition from fission, particularly at high spins. Nuclei in the actinide region exhibit a variety of interesting phenomena. Recent advances in instrumentation and analysis techniques have made feasible sensitive measurements of nuclei populated with quite low cross-sections. These include isomers and rotational band structures in isotopes of Pu ( = 94) to Rf ( = 104), and octupole correlations in the Th ( = 90) region. The obtained experimental data have provided insights on various aspects like moments of inertia and nucleon alignments at high spins, quasiparticle energies and evolution of quadrupole and octupole collectivity, among others. An overview of some of these results is presented.
International Nuclear Information System (INIS)
The present collection of letters from JINR, Dubna, contains ten separate records on the role of the Coulomb distortion in form-factor calculations for 12C with alpha-clusterization and nucleon-nucleon correlations, optimization of a set-up for the investigation of the light-nuclei spin structure at the internal target of the Nuclotron, precessing deuteron polarization, connection of the parameter estimation quality of maximum likelihood and generalized moments, determination of the total energy QEC for 156Ho(T1/2∼56 min)β+/EC decay using the total absorption γ-ray spectrometer, selection of signal events in the DUBTO experiment, a search for the dineutron in the interaction of neutrons with deuterons, tracking performance of the HERA-B outer tracker PC chambers, construction and manufacture of large size straw-chambers of the COMPASS spectrometer tracking system, as well as on the charge form factor and the nucleon momentum distribution of 24He and their centre-of-mass correction
Collective excitations in nuclei
Energy Technology Data Exchange (ETDEWEB)
Chomaz, Ph
1997-12-31
The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author) 270 refs.
Collective excitations in nuclei
International Nuclear Information System (INIS)
The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author)
Mishustin, I N; Buervenich, T J; Stöcker, H; Greiner, W
2005-01-01
We study the possibility of producing a new kind of nuclear systems which in addition to ordinary nucleons contain a few antibaryons (antiproton, antilambda, etc.). The properties of such systems are described within the relativistic mean-field model by employing G-parity transformed interactions for antibaryons. Calculations are first done for infinite systems and then for finite nuclei from He to Pb. It is demonstrated that the presence of a real antibaryon leads to a strong rearrangement of a target nucleus resulting in a significant increase of its binding energy and local compression. Noticeable effects remain even after the antibaryon coupling constants are reduced by factor 3-4 compared to G-parity motivated values. We have performed detailed calculations of the antibaryon annihilation rates in the nuclear environment by applying a kinetic approach. It is shown that due to significant reduction of the reaction Q-values, the in-medium annihilation rates should be strongly suppressed leading to relativel...
International Nuclear Information System (INIS)
In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab
Energy Technology Data Exchange (ETDEWEB)
Ayala, A.L. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica][Pelotas Univ., RS (Brazil). Inst. de Fisica e Matematica; Ducati, M.B.G. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Levin, E.M. [Fermi National Accelerator Lab., Batavia, IL (United States)][Nuclear Physics Inst., St. Petersburg (Russian Federation)
1996-10-01
In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab.
Physics with loosely bound nuclei
Indian Academy of Sciences (India)
Chhanda Samanta
2001-08-01
The essential aspect of contemporary physics is to understand properties of nucleonic matter that constitutes the world around us. Over the years research in nuclear physics has provided strong guidance in understanding the basic principles of nuclear interactions. But, the scenario of nuclear physics changed drastically as the new generation of accelerators started providing more and more rare isotopes, which are away from the line of stability. These weakly bound nuclei are found to exhibit new forms of nuclear matter and unprecedented exotic behaviour. The low breakup thresholds of these rare nuclei are posing new challenges to both theory and experiments. Fortunately, nature has provided a few loosely bound stable nuclei that have been studied thoroughly for decades. Attempts are being made to ﬁnd a consistent picture for the unstable nuclei starting from their stable counterparts. Some signiﬁcant differences in the structure and reaction mechanisms are found.
Collisions between complex atomic nuclei
International Nuclear Information System (INIS)
The use of heavy ion accelerators in the study of nuclear structure and states is reviewed. The reactions discussed are the quasielastic reactions in which small amounts of energy and few particles are exchanged between the colliding nuclei. The development of heavy ion accelerators is also discussed, as well as detection equipment. Exotic phenomena, principally the possible existence of superheavy nuclei, are also treated. (JIW)
International Nuclear Information System (INIS)
PANIC is the triennal International Conference on Particles and Nuclei, and judging from the latest PANIC, held in Kyoto from 20-24 April there is no need for panic yet. Faced with two pictures – one of nuclei described in nucleon and meson terms, and another of nucleons containing quarks and gluons – physicists are intrigued to know what new insights from the quark level can tell us about nuclear physics, or vice versa
Investigation of copper nuclei
International Nuclear Information System (INIS)
An extensive study has been performed on copper isotopes in the mass region A=63-66. The results of a precise measurement are presented on the properties of levels of 64Cu and 66Cu. They were obtained by bombarding the 63Cu and 65Cu nuclei with neutrons. The gamma spectra collected after capture of thermal, 2-keV, 24-keV neutrons have been analysed and combined to give a rather extensive set of precise level energies and gamma transition strengths. From the angular distribution of the gamma rays it is possible to obtain information concerning the angular momentum J of several low-lying states. The level schemes derived from such measurements have been used as a test for calculations in the framework of the shell model. The spectral distributions of eigenstates in 64Cu for different configuration spaces are presented and discussed. In this study the relative importance of configurations with n holes in the 1f7/2 shell with n up to 16, are investigated. It is found that the results strongly depend on the values of the single-particle energies. The results of the spectral-distribution method were utilized for shell-model calculations. From the information obtained from the spectral analysis it was decided to adopt a configuration space which includes up to one hole in the 1f7/2 shell and up to two particles in the 1g9/2 shell. Further, restrictions on seniority and on the coupling of the two particles in the 1g9/2 orbit have been applied and their effects have been studied. It is found that the calculated excitation energies reproduce the measured values in a satisfactory way, but that some of the electromagnetic properties are less well in agreement with experimental data. (Auth.)
International Nuclear Information System (INIS)
We have investigated systematically kaonic nuclei which are ppnK-, pppK-, pppnK-, 6BeK-, 9BK- and 11CK-. Since I = 0 K-barN interaction, which is very attractive, plays an essential role in kaonic nuclei, we should treat it adequately. For this purpose, we have improved the framework of antisymmetrized molecular dynamics (AMD): 1) we can treat pK-/nK-bar0 mixing and 2) perform not only angular-momentum projection but also isospin projection. As a result of our calculation with a new framework of AMD, all kaonic nuclei we calculated are deeply bound by about 100 MeV as a discrete state. They have various structures with highly dense state. We have also investigated double kaonic nuclei, ppnK-K- and ppnK-K-. They are more shrunk than single kaonic nuclei, but the binding energy per single kaon (E(K-bar)) is about 100 MeV, which is equal to that in the case of single kaonic nuclei. (author)
Spectrin-like proteins in plant nuclei
Ruijter, de N.C.A.; Ketelaar, T.; Blumenthal, S.S.D.; Emons, A.M.C.; Schel, J.H.N.
2000-01-01
We analysed the presence and localization of spectrin-like proteins in nuclei of various plant tissues, using several anti-erythrocyte spectrin antibodies on isolated pea nuclei and nuclei in cells. Western blots of extracted purified pea nuclei show a cross-reactive pair of bands at 220–240 kDa, ty
From heavy nuclei to super-heavy nuclei
International Nuclear Information System (INIS)
The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)
Cavitation inception from bubble nuclei.
Mørch, K A
2015-10-01
The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes. PMID:26442138
Photodissociation of neutron deficient nuclei
Energy Technology Data Exchange (ETDEWEB)
Sonnabend, K.; Babilon, M.; Hasper, J.; Mueller, S.; Zarza, M.; Zilges, A. [TU Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)
2006-03-15
The knowledge of the cross sections for photodissociation reactions like e.g. ({gamma}, n) of neutron deficient nuclei is of crucial interest for network calculations predicting the abundances of the so-called p nuclei. However, only single cross sections have been measured up to now, i.e., one has to rely nearly fully on theoretical predictions. While the cross sections of stable isotopes are accessible by experiments using real photons, the bulk of the involved reactions starts from unstable nuclei. Coulomb dissociation (CD) experiments in inverse kinematics might be a key to expand the experimental database for p-process network calculations. The approach to test the accuracy of the CD method is explained. (orig.)
Photodissociation of neutron deficient nuclei
Sonnabend, K.; Babilon, M.; Hasper, J.; Müller, S.; Zarza, M.; Zilges, A.
2006-03-01
The knowledge of the cross sections for photodissociation reactions like e.g. (γ, n) of neutron deficient nuclei is of crucial interest for network calculations predicting the abundances of the so-called p nuclei. However, only single cross sections have been measured up to now, i.e., one has to rely nearly fully on theoretical predictions. While the cross sections of stable isotopes are accessible by experiments using real photons, the bulk of the involved reactions starts from unstable nuclei. Coulomb dissociation (CD) experiments in inverse kinematics might be a key to expand the experimental database for p-process network calculations. The approach to test the accuracy of the CD method is explained.
Cavitation inception from bubble nuclei
DEFF Research Database (Denmark)
Mørch, Knud Aage
2015-01-01
experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The...... cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model...... and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes....
Theoretical models for exotic nuclei
Energy Technology Data Exchange (ETDEWEB)
Sagawa, Hiroyuki [RIKEN Nishina Center, Saitama (Japan); University of Aizu, Center for Mathematics and Physics, Fukushima (Japan); Hagino, Kouichi [Tohoku University, Department of Physics, Sendai (Japan); Tohoku University, Research Center for Electron Photon Science, Sendai (Japan); National Astronomical Observatory of Japan, Tokyo (Japan)
2015-08-15
We review various theoretical models which have been used to study the properties of the ground state and excited states of nuclei close to and beyond the neutron and proton drip lines. The validity and limitations of these models are discussed with applications to recent experimental findings such as di-neutron correlations in Borromian nuclei, the soft dipole excitations, direct two-neutron and two-proton decays, and odd-even staggerings of reaction cross sections. The role of isoscalar spin-triplet pairing interaction is also pointed out in the low-lying energy spectra as well as the spin- and isospin-dependent decay rates for N = Z and N = Z + 2 nuclei with mass A < 60. A characteristic feature of the Coulomb energy displacement of the Borromian nucleus {sup 11}Li is discussed in connection to the energies of isobaric analogue states (IAS) of T = 5/2 multiples in the A = 11 systems. (orig.)
Spontaneous fission of superheavy nuclei
Indian Academy of Sciences (India)
R A Gherghescu; D N Poenaru
2015-09-01
The macroscopic–microscopic method is extended to calculate the deformation energy and penetrability for binary nuclear configurations typical for fission processes. The deformed two-centre shell model is used to obtain single-particle energy levels for the transition region of two partially overlapped daughter and emitted fragment nuclei. The macroscopic part is obtained using the Yukawa-plus-exponential potential. The microscopic shell and pairing corrections are obtained using the Strutinsky and BCS approaches and the cranking formulae yield the inertia tensor. Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations are performed for the decay of 282,292120 nuclei.
International Symposium on Exotic Nuclei
Sobolev, Yu G; EXON-2014
2015-01-01
The production and the properties of nuclei in extreme conditions, such as high isospin, temperature, angular momenta, large deformations etc., have become the subject of detailed investigations in all scientific centers. The main topics discussed at the Symposium were: Synthesis and Properties of Exotic Nuclei; Superheavy Elements; Rare Processes, Nuclear Reactions, Fission and Decays; Experimental Facilities and Scientific Projects. This book provides a comprehensive overview of the newest results of the investigations in the main scientific centers such as GSI (Darmstadt, Germany), GANIL (Caen, France), RIKEN (Wako-shi, Japan), MSU (Michigan, USA), and JINR (Dubna, Russia).
Coulomb displacement energies in nuclei
International Nuclear Information System (INIS)
In the present work the positions of the isobaric analog resonances (IAR) are calculated using the HF-TDA theory with a complete proton particle-neutron hole basis. The important feature of this approach is the fact that the HF potential and the particle-hole interaction used in the TDA are derived from the same two-body interactions. In this theroy all the higher order effects are taken into account in one consistent framework. The calculations are performed for several N > Z, closed shell nuclei. For these nuclei good agreement between the experimental and theoretical excitation energies of the IAR is obtained. (orig.)
Accardi, Alberto
2016-01-01
I review recent progress in the extraction of unpolarized parton distributions in the proton and in nuclei from a unified point of view that highlights how the interplay between high energy particle physics and lower energy nuclear physics can be of mutual benefit to either field. Areas of overlap range from the search for physics beyond the standard model at the LHC, to the study of the non perturbative structure of nucleons and the emergence of nuclei from quark and gluon degrees of freedom, to the interaction of colored probes in a cold nuclear medium.
Nuclei, hadrons, and elementary particles
International Nuclear Information System (INIS)
This book is a short introduction to the physics of the nuclei, hadrons, and elementary particles for students of physics. Important facts and model imaginations on the structure, the decay, and the scattering of nuclei, the 'zoology' of the hadrons and basic facts of hadronic scattering processes, a short introduction to quantum electrodynamics and quantum chromodynamics and the most important processes of lepton and parton physics, as well as the current-current approach of weak interactions and the Glashow-Weinberg-Salam theory are presented. (orig.) With 153 figs., 10 tabs
Neutron scattering on deformed nuclei
International Nuclear Information System (INIS)
Measurements of neutron elastic and inelastic differential cross sections around 14 MeV for 9Be, C, 181Ta, 232Th, 238U and 239Pu have been analyzed using a coupled channel (CC) formalism for deformed nuclei and phenomenological global optical model potentials (OMP). For the actinide targets these results are compared with the predictions of a semi-microscopic calculation using Jeukenne, Lejeune and Mahaux (JLM) microscopic OMP and a deformed ground state nuclear density. The overall agreement between calculations and the measurements is reasonable good even for the very light nuclei, where the quality of the fits is better than those obtained with spherical OMP
International Nuclear Information System (INIS)
The possibility of connecting apparently different descriptions of quarks in nuclei has already been shown. The authors pursue the consequences of this 'duality' for flavour-singlet distributions. An interesting possibility is that nuclear pions may have unusual quark-gluon substructure. Indeed, pions in general could be relatively 'rich' in glue. (author)
Magnetic shift of magic nuclei
International Nuclear Information System (INIS)
The shell effect of nuclei in strong magnetic fields associated with magnetars' is considered within the shell model. It is demonstrated that the magnetic field gives rise to a change of the phase in shell-oscillations of nuclear masses. The nuclear magic numbers of the iron region are shifted significantly towards smaller mass numbers. (author)
Fission dynamics of hot nuclei
Indian Academy of Sciences (India)
Santanu Pal; Jhilam Sadhukhan
2014-04-01
Experimental evidence accumulated during the last two decades indicates that the fission of excited heavy nuclei involves a dissipative dynamical process. We shall briefly review the relevant dynamical model, namely the Langevin equations for fission. Statistical model predictions using the Kramers’ fission width will also be discussed.
Low energy + scattering on = nuclei
Indian Academy of Sciences (India)
Swapan Das; Arun K Jain
2003-11-01
The data for the total cross-section of + scattering on various nuclei have been analysed in the Glauber multiple scattering theory. Energy-dependent +-nucleus optical potential is generated using the forward +-nucleon scattering amplitude and the nuclear density distribution. Along with this, the calculated total +-nucleus cross-sections using the effective +-nucleon cross-section inside the nucleus are also presented.
Nuclear astrophysics of light nuclei
DEFF Research Database (Denmark)
Fynbo, Hans Otto Uldall
2013-01-01
A review of nuclear astrophysics of light nuclei using radioactive beams or techniques developed for radioactive beams is given. We discuss Big Bang nucleosynthesis, with special focus on the lithium problem, aspects of neutrino-physics, helium-burning and finally selected examples of studies...
International Nuclear Information System (INIS)
The application of the Skyrme model to nuclear physics is discussed. A new approach is presented in which nuclei are identified with static soliton solutions in the appropriate topological sector. When this approach is applied to the deuteron, it yields automatically the correct spin, isospin, and parity quantum numbers. 4 refs
Generalized parton distributions of nuclei
Guzey, V.
2009-01-01
We review recent theoretical results on generalized parton distributions (GPDs) of nuclei, emphasizing the following three roles of nuclear GPDs: (i) complementarity to free proton GPDs, (ii) the enhancement of traditional nuclear effects such as nuclear binding, EMC effect, nuclear shadowing, and (iii) an access to novel nuclear effects such as medium modifications of bound nucleons.
Octupole correlation effects in nuclei
International Nuclear Information System (INIS)
Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions
Fission Dynamics of Compound Nuclei
Iwata, Yoritaka; Heinz, Sophia
2012-01-01
Collisions between $^{248}$Cm and $^{48}$Ca are systematically investigated by time-dependent density functional calculations with evaporation prescription. Depending on the incident energy and impact parameter, fusion, deep-inelastic and quasi-fission events are expected to appear. In this paper, possible fission dynamics of compound nuclei is presented.
Percolation and multifragmentation of nuclei
International Nuclear Information System (INIS)
A method to build the 'cold' nuclei as percolation clusters is suggested. Within the framework of definite assumptions of the character of nucleon-nucleon couplings breaking resulting from the nuclear reactions as description of the multifragmentation process in the hadron-nucleus and nucleus-nucleus reactions at high energies is obtained. 19 refs.; 6 figs
Chiral Electroweak Currents in Nuclei
Riska, D O
2016-01-01
The development of the chiral dynamics based description of nuclear electroweak currents is reviewed. Gerald E. (Gerry) Brown's role in basing theoretical nuclear physics on chiral Lagrangians is emphasized. Illustrative examples of the successful description of electroweak observables of light nuclei obtained from chiral effective field theory are presented.
Static multipole deformations in nuclei
International Nuclear Information System (INIS)
The physics of static multipole deformations in nuclei is reviewed. Nuclear static moments result from the delicate balance between the vibronic Jahn-Teller interaction (particle-vibration coupling) and the residual interaction (pairing force). Examples of various permanent nuclear deformations are discussed
Four-body correlations in heavy nuclei
International Nuclear Information System (INIS)
The origin of four-body correlations in heavy nuclei is studied. It is found that the physical picture for this phenomenon can be different in heavy and light nuclei. An application to the /sup 208/Pb region is made
Cluster Structure of Atomic Nuclei and Nucleosynthesis
International Nuclear Information System (INIS)
It is shown that the static and dynamic α-cluster models of nuclei, which describe an elastic electron scattering, photodisintegration reactions and pion double charge exchange reactions on α-cluster nuclei are in favor of the α-capture and α process of the formation of these nuclei
Transmutations of atomic nuclei in hadron-nuclei nuclear collisions at GeV energies
International Nuclear Information System (INIS)
In hadron-nuclei nuclear collisions nuclei change their mass numbers A and the charge numbers Z. The mechanism of transmutation of a target nucleus was prompted experimentally and is described in this work. The information about the nuclei transmutation may be a basis for elaboration of the method of nuclei changes in beams of hadrons from accelerators
Evolution of active galactic nuclei
Merloni, Andrea
2012-01-01
[Abriged] Supermassive black holes (SMBH) lurk in the nuclei of most massive galaxies, perhaps in all of them. The tight observed scaling relations between SMBH masses and structural properties of their host spheroids likely indicate that the processes fostering the growth of both components are physically linked, despite the many orders of magnitude difference in their physical size. This chapter discusses how we constrain the evolution of SMBH, probed by their actively growing phases, when they shine as active galactic nuclei (AGN) with luminosities often in excess of that of the entire stellar population of their host galaxies. Following loosely the chronological developments of the field, we begin by discussing early evolutionary studies, when AGN represented beacons of light probing the most distant reaches of the universe and were used as tracers of the large scale structure. This early study turned into AGN "Demography", once it was realized that the strong evolution (in luminosity, number density) of ...
Multiple phonon excitation in nuclei
International Nuclear Information System (INIS)
The studies of multiphonon excitations in nuclei are reviewed both from the theoretical and experimental points of view. The presence of giant resonances in nuclei is described in the framework of macroscopic and microscopic models and the relative merits of different probes to excite such states are illustrated. The existence of giant resonances built on excited states is stressed. An exhaustive description of the theoretical estimates of the properties of the multiphonon states is presented. The theory predicts that such multiple collective excitations should closely follow a harmonic pattern. Recent experimental results on the double giant dipole resonance using the (π+π-) double charge exchange reaction are shown. The status of the search for isoscalar multiphonon excitations by means of the strong nuclear potential produced by heavy ions is presented. Conclusions are drawn and new prospects are discussed. (authors) 293 refs., 67 figs., 8 tabs
Relativistic description of deformed nuclei
International Nuclear Information System (INIS)
The author has shown that relativistic Hartree calculations using parameters that have been fit to the properties of nuclear matter can provide a good description of both spherical and axially deformed nuclei. The quantitative agreement with experiment is equivalent to that which was obtained in non-relativistic calculations using Skyrme interactions. The equilibrium deformation is strongly correlated with the size of the spin-orbit splitting, and that parameter sets which give roughly the correct value for this splitting provide the best agreement with the quadrupole moments in the s-d shell. Finally, for closed shell +/- 1 nuclei, it was shown that the self-consistent calculations are able to reproduce the experimental magnetic moments. This was not possible in relativistic calculations which include only the effects of the valence orbital
Moessbauer effects on oriented nuclei
International Nuclear Information System (INIS)
Standard nuclear orientation methods (not sensitive to the polarization) do not give information on the sign of the magnetic moment. Mossbauer effect separates right-hand and left-hand circularly polarized components, thus its detection on oriented nuclei (T approximately 10 mK) gives the sign of the magnetic moment of oriented state. In this thesis we applied this method to study the 3/2- ground states of 191Pt and 193Os, which are in the prolate-oblate transition region, where assignement of experimental levels to theoretical states is often umbiguous. We show that for those nuclei the sign of the magnetic moment is the signature of the configuration, and its determination establishes the correspondance between experimental and theoretical levels
Phonon operators for deformed nuclei
International Nuclear Information System (INIS)
The mathematical formalism with the phonon operators independent of the signature of the angular momentum projection turns out to be inadequate for describing excited states of deformed nuclei. New phonon operators are introduced which depend on the signature of the angular momentum projection on the symmetry axis of a deformed nucleus. It is shown that the calculations with the new phonons take correctly into account the Pauli principle in two-phonon components of wave functions. The results obtained differ from those given by the phonons independent of the signature of the angular momentum projection. The new phonons must be used in deformed nuclei at taking systematically the Pauli principle into account and in calculations involving wave functions of excited states having components with more than one-phonon operator
Compton Scattering on Light Nuclei
Directory of Open Access Journals (Sweden)
Shukla D.
2010-04-01
Full Text Available Compton scattering on light nuclei (A = 2, 3 has emerged as an eﬀective avenue to search for signatures of neutron polarizabilities, both spin–independent and spin–dependent ones. In this discussion I will focus on the theoretical aspect of Compton scattering on light nuclei; giving ﬁrst a brief overview and therafter concentrating on our Compton scattering calculations based on Chiral eﬀective theory at energies of the order of pion mass. These elastic γd and γHe-3 calculations include nucleons, pions as the basic degrees of freedom. I will also discuss γd results where the ∆-isobar has been included explicitly. Our results on unpolarized and polarization observables suggest that a combination of experiments and further theoretical eﬀorts will provide an extraction of the neutron polarizabilities.
Phonon operators in deformed nuclei
International Nuclear Information System (INIS)
For the description of the excited states in deformed nuclei new phonon operators are introduced, which depend on the sign of the angular momentum projection onto the symmetry axis of a deformed nucleus. In the calculations with new phonons the Pauli principle is correctly taken into account in the two-phonon components of the wave functions. There is a difference in comparison with the calculation with phonons independent of the sign of the angular momentum projection. The new phonons should be used in deformed nuclei if the Pauli principle is consistently taken into account and in the calculations with the excited state wave functions having the components with more than one phonon operator
International Nuclear Information System (INIS)
We describe recent efforts to study Cooper pairs in atomic nuclei. We consider a self-consistent Hartree Fock mean field for the even Sm isotopes and compare results based on three treatments of pairing correlations: a BCS treatment, a number-projected BCS treatment and an exact treatment using the Richardson Ansatz. Significant differences are seen in the pairing correlation energies. Furthermore, because it does not average over the properties of the fermion pairs, the Richardson solution permits a more meaningful definition of the Cooper wave function and of the fraction of pairs that are collective. Our results confirm that only a few pairs near the Fermi surface in realistic atomic nuclei are collective. (Author)
Energy Technology Data Exchange (ETDEWEB)
Pittel, S. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, 19716 Delaware (United States); Dussel, G. G. [Departamento de Fisica J.J. Giambiagi, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Dukelsky, J.; Sarriguren, P. [Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid (Spain)
2008-12-15
We describe recent efforts to study Cooper pairs in atomic nuclei. We consider a self-consistent Hartree Fock mean field for the even Sm isotopes and compare results based on three treatments of pairing correlations: a BCS treatment, a number-projected BCS treatment and an exact treatment using the Richardson Ansatz. Significant differences are seen in the pairing correlation energies. Furthermore, because it does not average over the properties of the fermion pairs, the Richardson solution permits a more meaningful definition of the Cooper wave function and of the fraction of pairs that are collective. Our results confirm that only a few pairs near the Fermi surface in realistic atomic nuclei are collective. (Author)
Variability of Active Galactic Nuclei
Peterson, Bradley M.
2001-01-01
Continuum and emission-line variability of active galactic nuclei provides a powerful probe of microarcsecond scale structures in the central regions of these sources. In this contribution, we review basic concepts and methodologies used in analyzing AGN variability. We develop from first principles the basics of reverberation mapping, and pay special attention to emission-line transfer functions. We discuss application of cross-correlation analysis to AGN light curves. Finally, we provide a ...
Direct Reactions with Exotic Nuclei
International Nuclear Information System (INIS)
We discuss recent work on Coulomb dissociation and an effective-range theory of low-lying electromagnetic strength of halo nuclei. We propose to study Coulomb dissociation of a halo nucleus bound by a zero-range potential as a homework problem. We study the transition from stripping to bound and unbound states and point out in this context that the Trojan-Horse method is a suitable tool to investigate subthreshold resonances
Triaxial rotation in atomic nuclei
Institute of Scientific and Technical Information of China (English)
CHEN Yong-Shou; GAO Zao-Chun
2009-01-01
The Projected Shell Model has been developed to include the spontaneously broken axial symmetry so that the rapidly rotating triaxial nuclei can be described microscopically. The theory provides an useful tool to gain an insight into how a triaxial nucleus rotates, a fundamental question in nuclear structure. We shall address some current interests that are strongly associated with the triaxial rotation. A feasible method to explore the problem has been suggested.
Neurotransmitters of the suprachiasmatic nuclei
Reghunandanan, Vallath; Reghunandanan, Rajalaxmy
2006-01-01
There has been extensive research in the recent past looking into the molecular basis and mechanisms of the biological clock, situated in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. Neurotransmitters are a very important component of SCN function. Thorough knowledge of neurotransmitters is not only essential for the understanding of the clock but also for the successful manipulation of the clock with experimental chemicals and therapeutical drugs. This article reviews the c...
Weak pion production from nuclei
Indian Academy of Sciences (India)
S K Singh; M Sajjad Athar; Shakeb Ahmad
2006-04-01
The charged current pion production induced by neutrinos in 12C, 16O and 56Fe nuclei has been studied. The calculations have been done for the coherent as well as the incoherent processes assuming dominance and takes into account the effect of Pauli blocking, Fermi motion and the renormalization of in the nuclear medium. The pion absorption effects have also been taken into account.
Direct Reactions with Exotic Nuclei
Baur, G
2005-01-01
We discuss recent work on Coulomb dissociation and an effective-range theory of low-lying electromagnetic strength of halo nuclei. We propose to study Coulomb dissociation of a halo nucleus bound by a zero-range potential as a homework problem. We study the transition from stripping to bound and unbound states and point out in this context that the Trojan-Horse method is a suitable tool to investigate subthreshold resonances.
An introduction to mesic nuclei
Wilkin, Colin
2016-01-01
There is much speculation and a modest amount of evidence that certain mesons might form quasi-bound states with nuclei to produce really exotic states of matter. For this to be a practical possibility, the interaction between the meson and nucleons at low energies must be strong and attractive and the production rates "healthy". The conditions for this are surveyed for the light mesons. How this might lead to quasi-bound states is then discussed in a few typical cases.
Weak pion production from nuclei
International Nuclear Information System (INIS)
The charged current pion production induced by neutrinos in 12C, 16O and 56Fe nuclei has been studied. The calculations have been done for the coherent as well as the incoherent processes assuming Δ dominance and takes into account the effect of Pauli blocking, Fermi motion and the renormalization of Δ in the nuclear medium. The pion absorption effects have also been taken into account. (author)
Superheavy nuclei and fission barriers
Lu, Bing-Nan; Zhao, Jie; Zhao, En-Guang; Zhou, Shan-Gui
In this chapter, we will present relativistic mean field (RMF) description of heavy and superheavy nuclei (SHN). We will discuss the shell structure and magic numbers in the mass region of SHN, binding energies and α decay Q values, shapes of ground states and potential energy surfaces and fission barriers. We particularly focus on the multidimensionally-constrained covariant density functional theories (CDFT) and the applications of CDFT to the study of exotic nuclear shapes and fission barriers.
Geometric symmetries in light nuclei
Bijker, Roelof
2016-01-01
The algebraic cluster model is is applied to study cluster states in the nuclei 12C and 16O. The observed level sequences can be understood in terms of the underlying discrete symmetry that characterizes the geometrical configuration of the alpha-particles, i.e. an equilateral triangle for 12C, and a regular tetrahedron for 16O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of alpha-particles.
Proton scattering from unstable nuclei
Indian Academy of Sciences (India)
Y Blumenfeld; E Khan; F Maréchal; T Suomijärvi
2001-08-01
Recent improvements in the intensities and optical qualities of radioactive beams have made possible the study of elastic and inelastic proton scattering on unstable nuclei. The design and performances of an innovative silicon strip detector array devoted to such experiments are described. The quality of the data obtained are illustrated with recent results obtained at the GANIL facility for unstable oxygen, sulfur and argon isotopes. Methods to analyse the data using phenomenological and microscopic optical model potentials are discussed.
PREFACE: Correlation Dynamics in Nuclei
Suzuki, Toshio; Otsuka, Takaharu; Ichimura, Munetake
2005-01-01
The International Symposium on `Correlation Dynamics in Nuclei' was held at the Sanjo Kaikan, the University of Tokyo, from the 31 January to 4 February 2005. This symposium was organized on the occasion of the 50th anniversary of the Configuration Mixing theory of Arima and Horie. The symposium was hosted by the University of Tokyo, and supported by the Inoue Foundation for Science, the Japan Atomic Energy Research Institute and the Ministry of Education, Culture, Sports, Science and Technology. The purpose of the symposium was to discuss theoretical and experimental developments and future prospects in physics of correlation dynamics in nuclei, including topics such as effective interactions, shell model studies of configuration mixing and spin-isospin modes in nuclei. It was shown in many ways and angles that the Arima-Horie theory has been a starting point of a variety of developments of the studies in these fields over many decades. The developments have been enhanced by the expansion of computational capabilities and the progress in accelerators, detectors and radioactive beam facilities. We enjoyed 28 excellent and lively invited talks and 30 oral presentations in the symposium with about 90 participants. A special session was dedicated to celebrate the 80th birthday of Professor Igal Talmi, who made invaluable and pioneering works in the shell model theory. Finally, we would like to thank all the speakers and the participants as well as the other organizers for their contributions which made the symposium very successful.
Review on theoretical researches of superheavy nuclei
International Nuclear Information System (INIS)
We review the recent progress of theoretical researches on heavy nuclei and superheavy nuclei. At first we analyze the experimental data of long lifetime heavy nuclei and discuss their stability. Then the calculated binding energies and alpha-decay energies of heavy and superheavy nuclei from different models are compared and discussed. This includes the results from the local binding energy formula of heavy nuclei with Z ≥ 90 and N ≥ 130, those from the relativistic mean-field model, and from other models. For the local binding energy formula, it can reproduce experimental binding energies of known heavy and superheavy nuclei well. The relativistic mean-field model and non-relativistic mean-field model show that there is shape coexistence in superheavy nuclei. For some superheavy nuclei, superdeformed prolate shape can be their ground states and there are isomers in lowly excited states due to shape coexistence. The properties of some unknown superheavy nuclei are predicted. Some new views on the stability and on half-lives of heavy and superheavy nuclei are presented. Possible new phenomenon in superheavy region is analyzed and discussed. (author)
Exotic light nuclei and nuclei in the lead region
International Nuclear Information System (INIS)
Three methods are discussed for modifying, or renormalizing, a truncated nuclear hamiltonian such that the wave functions obtained by diagonalizing this modified or effective hamiltoniandescribe the nucleus as well as possible: deriving the hamiltonian directly from a realistic nucleon-nucleon interaction between free nucleons; parametrizing the hamiltonian in terms of a number of parameters and determining these parameters from a least-squares fit of calculated properties to experimental data; approximating the nucleon-nucleon (NN) interaction between two nucleons in a nucleus by a simple analytic expression. An effective hamiltonian derived following the second method is applied in a theoretical study of exotic nuclei in the region of Z=2-9 and A=4-30 and the problem of the neutron halo in 11Li is discussed. Results of shell-model calculations of 20iPb and nuclei in its neighbourhood are presented in which an effective hamiltonian was employed derived with the last method. The quenching of M1 strength in 208Pb, and the spectroscopic factors measured in proton knock-out reactions could be described quite satisfactory. Finally, a method is presented for deriving the effective hamiltonian directly from the realistic NN interaction with algebraic techniques. (H.W.). 114 refs.; 34 figs.; 12 tabs.; schemes
Doubly Decoupled Structure in Odd－Odd 178-186Ir Nuclei
Institute of Scientific and Technical Information of China (English)
张玉虎; H. Kusakari; M. Sugawara; T. Komatsubara; T. Havakawa; M. Oshima; Y. Toh; J. Katakura; Y. Hatsukawa; M. Matsuda; N. Shinohara; T. Ishii
2001-01-01
High-spin states in 178'180Ir have been studied via the 152'154Sm(31P, 5nγ) reactions through excitation functions, x-γ and γ-γ-t coincidence measurements. A doubly decoupled band has been identified in each of the isotopes.The level spacings for such structures in odd-odd 178-186Ir have been inspected and thus a regular level staggering as a function of the neutron number is revealed. This particular phenomenon may be associated with bandmixing at lower excitation energies.
Permutation group in light nuclei
International Nuclear Information System (INIS)
From general features of the multiplet scheme, a framework is provided for the application of permutation groups to the structure of light nuclei. It is shown that the description of nuclear states in terms of cluster configurations offers possibilities of finding the best orbital states for a given partition f. The significance of the orbital partition for orbital states is explained in terms of selection rules. Specific methods and results obtained in shell configurations, cluster configurations, and nuclear reactions are discussed. (2 figures, 4 tables, 42 references) (U.S.)
Nucleon transfer between heavy nuclei
International Nuclear Information System (INIS)
Nucleon transfer reactions between heavy nuclei are characterized by the classical behaviour of the scattering orbits. Thus semiclassical concepts are well suited for the description of these reactions. In the present contribution the characteristics of single and multinucleon transfer reactions at energies below and above the Coulomb barrier are shown for systems like Sn+Sn, Xe+U and Ni+Pb. The role of the pairing interaction in the transfer of nucleon pairs is illustrated. For strong transitions the coupling of channels and the absorption into more complicated channels is taken into account in a coupled channels calculation
Superdeformation in the bismuth nuclei
International Nuclear Information System (INIS)
High angular-momentum states in 196,197Bi were populated in the reaction 183W (19F,xn) at a beam energy of 108 MeV, and γ rays were detected with the Gammasphere array. Two weakly populated rotational bands, with energy spacings characteristic of superdeformation have been found. Both cascades can be assigned unambiguously to the Bi nuclei; however, their isotopic assignment to 197Bi is tentative. The properties of the bands and their possible structures are discussed. Our results represent the first identification of superdeformed bands in a nucleus of the A∼190 mass region with Z>82
Samanta, C.; Adhikari, S
2001-01-01
A new mass formula capable of explaining the binding energies of almost all the known isotopes from Li to Bi is prescribed. In addition to identifying the new magic number at neutron number N=16 (Z=7-9), pseudo-magic numbers at N=14 (Z=7-10), Z=14 (N=13-19), and at N=6 (Z=3-8), the formula accounts for the loss of magicity for nuclei with N=8 (Z=4) and N=20 (Z=12-17). The redefinition of the neutron drip line resulting from this formula further allows us to predict the existence of 26O,31F, 3...
Exotic nuclei and Yukawa's forces
Otsuka, Taka; Suzuki, Toshio; Utsuno, Yutaka
2008-01-01
In this plenary talk, we will overview the evolution of the shell structure in stable and exotic nuclei as a new paradigm of nuclear structure physics. This shell evolution is primarily due to the tensor force. The robust mechanism and some examples will be presented. Such examples include the disappearance of existing magic numbers and the appearance of new ones. The nuclear magic numbers have been believed, since Mayer and Jensen, to be constants as 2, 8, 20, 28, 50, …This turned out to be ...
Collective bands in superdeformed nuclei
International Nuclear Information System (INIS)
The collective properties of excited superdeformed bands have been investigated in the framework of self-consistent cranked Nilsson plus quasiparticle random-phase approximation. The expected octupole nature of some bands observed recently in some nuclei has been confirmed by a comparative analysis of their E1 decays to the yrast band and of the anomalous behavior of their dynamical moment of inertia. It is also shown that the onset of supederformation affects considerably the structure of the giant resonances and greatly enhances the collectivity of the low-lying scissors mode. (author)
Single Pion production from Nuclei
International Nuclear Information System (INIS)
We have studied charged current one pion production induced by νμ(ν-barμ) from some nuclei. The calculations have been done for the incoherent pion production processes from these nuclear targets in the Δ dominance model and take into account the effect of Pauli blocking, Fermi motion and renormalization of Δ properties in the nuclear medium. The effect of final state interactions of pions has also been taken into account. The numerical results have been compared with the recent results from the MiniBooNE experiment for the charged current 1π production, and also with some of the older experiments in Freon and Freon-Propane from CERN
Microscopic properties of superdeformed nuclei
Energy Technology Data Exchange (ETDEWEB)
Karlsson, Lennart B
1999-04-01
Many high spin rotational bands in superdeformed nuclei have been found in the A 140 - 150 region, but so far no linking transitions to known normal-deformed states have been found in these nuclei. Therefore, configuration and spin assignments have to be based on indirect spectroscopic information. Identical bands were first discovered in this region of superdeformed states. At present, some identical bands have also been found at normal deformation, but such bands are more common at superdeformation. Recently lifetime measurements have given relative quadrupole moments with high accuracy. Spectroscopic quantities are calculated using the configuration constrained cranked Nilsson-Strutinsky model with the modified oscillator potential. In a statistical study the occurrence of identical bands is tested. Comparing superdeformed and normal deformed nuclei, the higher possibility for identical bands at superdeformation is understood from calculated reduced widths of the E{sub {gamma}} and J{sup (2)} distributions. The importance of high-N orbitals for identical bands is also discussed. Additivity of electric quadrupole moment contributions in the superdeformed A - 150 region is discussed with the nucleus {sup 152}Dy as a `core`. In analytic harmonic oscillator calculations, the effective electric quadrupole moment q{sub eff}, i.e. the change in the total quadrupole moment caused by the added particle, is expressed as a simple function of the single-particle mass, quadrupole moment q{sub {nu}}. Also in realistic calculations, simple relations between q{sub eff} and q{sub {nu}} can be used to estimate the total electric quadrupole moment, e.g. for the nucleus {sup 142}Sm, by adding the effect of 10 holes, to the total electric quadrupole moment of {sup 152}Dy. Furthermore, tools are given for estimating the quadrupole moment for possible configurations in the superdeformed A - 150 region. For the superdeformed region around {sup 143}Eu, configuration and spin assignments
Exotic nuclei: another aspect of nuclear structure
International Nuclear Information System (INIS)
This document gathers the lectures made at the Joliot Curie international summer school in 2002 whose theme that year was exotic nuclei. There were 11 contributions whose titles are: 1) interactions, symmetry breaking and effective fields from quarks to nuclei; 2) status and perspectives for the study of exotic nuclei: experimental aspects; 3) the pairing interaction and the N = Z nuclei; 4) borders of stability region and exotic decays; 5) shell structure of nuclei: from stability to decay; 6) variational approach of system with a few nucleons; 7) from heavy to super-heavy nuclei; 8) halos, molecules and multi-neutrons; 9) macroscopic approaches for fusion reactions; 10) beta decay: a tool for spectroscopy; 11) the gas phase chemistry of super-heavy elements
Nuclei at the limits of particle stability
International Nuclear Information System (INIS)
The properties and synthesis of nuclei at the limits of particle stability are reviewed. Nuclear reactions were induced and studied by means of the 'exotic' nuclear beams, i.e. beams of radioactive drip-line nuclei. The beams are mostly generated in heavy-ion projectile fragmentation. The cases of both neutron-rich and proton-rich nuclei are discussed. (K.A.) 270 refs.; 13 figs.; 1 tab
Review of metastable states in heavy nuclei
Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.
2016-07-01
The structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A≳ 150 . The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.
Pairing correlations in exotic nuclei
Sagawa, H
2012-01-01
The BCS and HFB theories which can accommodate the pairing correlations in the ground states of atomic nuclei are presented. As an application of the pairing theories, we investigate the spatial extension of weakly bound Ne and C isotopes by taking into account the pairing correlation with the Hartree-Fock-Bogoliubov (HFB) method and a 3-body model, respectively. We show that the odd-even staggering in the reaction cross sections of $^{30,31,32}$Ne and $^{14,15,16}$C are successfully reproduced, and thus the staggering can be attributed to the unique role of pairing correlations in nuclei far from the stability line. A correlation between a one-neutron separation energy and the anti-halo effect is demonstrated for $s$- and p-waves using the HFB wave functions. We also propose effective density-dependent pairing interactions which reproduce both the neutron-neutron ($nn$) scattering length at zero density and the neutron pairing gap in uniform matter. Then, we apply these interactions to study pairing gaps in ...
Mass-23 nuclei in astrophysics
Fraser, P. R.; Amos, K.; Canton, L.; Karataglidis, S.; Svenne, J. P.; van der Kniff, D.
2015-09-01
The formation of mass-23 nuclei by radiative capture is of great interest in astrophysics. A topical problem associated with these isobars is the so-called 22Na puzzle of ONe white dwarf novae, where the abundance of 22Na observed is not as is predicted by current stellar models, indicating there is more to learn about how the distribution of elements in the universe occurred. Another concerns unexplained variations in elements abundance on the surface of aging red giant stars. One method for theoretically studying nuclear scattering is the Multi-Channel Algebraic Scattering (MCAS) formalism. Studies to date have used a simple collective-rotor prescription to model the target states which couple to projectile nucleons. While, in general, the target states considered all belong to the ground state rotor band, for some systems it is necessary to include coupling to states outside of this band. Herein we discuss an extension of MCAS to allow coupling of different strengths between such states and the ground state band. This consideration is essential when studying the scattering of neutrons from 22Ne, a necessary step in studying the mass-23 nuclei mentioned above.
Selfconsistent calculations for hyperdeformed nuclei
Energy Technology Data Exchange (ETDEWEB)
Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D. [Universite Louis Pasteur, Strasbourg (France)
1996-12-31
Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.
The asymptotic hadron spectrum, anti-nuclei, hyper-nuclei and quark phase
International Nuclear Information System (INIS)
The only hope of determining the hadronic spectrum in the high mass region is through a study of matter produced in very high energy nuclear collisions. Along the way, exotic nuclei, i.e., anti-nuclei and hyper-nuclei may be produced in appreciable numbers, and the detection of a quark phase may be possible. (orig.)
Short range correlations in nuclei
International Nuclear Information System (INIS)
Studying nucleon-nucleon (NN) correlated pairs will teach us a great deal about the high momentum part of the nuclear wave function,the short range part of the NN interaction, and the nature of cold dense nuclear matter. These correlations are similar in all nuclei, differing only in magnitude. High momentum nucleons, p > pfermi, all have a correlated partner with approximately equal and opposite momentum. At pair relative momenta of 300 rel < 500 MeV/c, these correlated pairs are dominated by tensor correlations. This is shown by the dominance of pn over pp pairs at pair total momentum and by the parity of pn to pp pairs at large pair total momentum. (author)
Inclusive breakup of Borromean nuclei
Hussein, Mahir S; Frederico, Tobias
2016-01-01
We derive the inclusive breakup cross section of a three-fragment projectile nuclei, $a = b +x_1 + x_2$, in the spectator model. The resulting four-body cross section for observing $b$, is composed of the elastic breakup cross section which contains information about the correlation between the two participant fragments, and the inclusive non-elastic breakup cross section. This latter cross section is found to be a non-trivial four-body generalization of the Austern formula \\cite{Austern1987}, which is proportional to a matrix element of the form, $\\langle\\hat{\\rho}_{{x_1},{x_2}}\\left|\\left[W_{{x_1}} + W_{{x_2}} + W_{3B}\\right]\\right|\\hat{\\rho}_{{x_1}, {x_2}}\\rangle$. The new feature here is the three-body absorption, represented by the imaginary potential, $W_{3B}$. We analyze this type of absorption and supply ideas of how to calculate its contribution.
Cavitation Nuclei: Experiments and Theory
DEFF Research Database (Denmark)
Mørch, Knud Aage
2009-01-01
The Swedish astrophysicist and Nobel Prize winner Hannes Alfven said: Theories come and go - the experiment is here forever. Often a theory, which we set up to describe an observed physical phenomenon, suffers from the lack of knowledge of decisive parameters, and therefore at best the theory...... becomes insufficient. Contrary, the experiment always reveals nature itself, though at prevailing experimental conditions. With essential parameters being out of control and even maybe unidentified, apparently similar experiments may deviate way beyond our expectations. However, these discrepancies offer...... us a chance to reflect on the character of the unknown parameters. In this way non-concordant experimental results may hold the key to the development of better theories - and to new experiments for the testing of their validity. Cavitation and cavitation nuclei are phenomena of that character....
Precision experiments with exotic nuclei
International Nuclear Information System (INIS)
Progress and modern developments of secondary nuclear beam facilities based on the in-flight and ISOL separation methods are outlined. Precision experiments with nuclear beams characterized by large emittances have been performed by using special ion-optical conditions in spectrometers. A new generation of experiments have been started with stored and cooled exotic nuclei at sub-eV and at relativistic energies using the combination of an ISOL facility and an ion trap or the combination of an in-flight system with a storage and cooler ring, respectively. Both experimental scenarios are realized by ISOLDE and the ISOLTRAP at CERN and the fragment separator FRS in combination with the experimental storage ring ESR at GSI. The power and the potential of these devices are illustrated by direct mass and lifetime measurements. (orig.)
Quasifree kaon photoproduction on nuclei
Energy Technology Data Exchange (ETDEWEB)
Frank Lee; T. MART; Cornelius Bennhold; Lester Wright
2001-12-01
Investigations of the quasifree reaction A({gamma}, K Y)B are presented in the distorted wave impulse approximation (DWIA). For this purpose, we present a revised tree-level model of elementary kaon photoproduction that incorporates hadronic form factors consistent with gauge invariance, uses SU(3) values for the Born couplings and uses resonances consistent with multi-channel analyses. The potential of exclusive quasifree kaon photoproduction on nuclei to reveal details of the hyperon-nucleus interaction is examined. Detailed predictions for the coincidence cross section, the photon asymmetry, and the hyperon polarization and their sensitivities to the ingredients of the model are obtained for all six production channels. Under selected kinematics these observables are found to be sensitive to the hyperon-nucleus final state interaction. Some polarization observables are found to be insensitive to distortion effects, making them ideal tools to search for possible medium modifications of the elementary amplitude.
Probing nuclei by stripping them
International Nuclear Information System (INIS)
The towing mode appears in nucleus collisions in which forward moving particles with specific angular correlations are emitted. In fact some particles are extracted from the target and towed along for a short while by the projectile during the collision. This process was discovered at the GANIL accelerator in the nineties. These collisions are peripheral. A simulation has shown that the energy and angle features of the particles emitted depends on their initial quantum state inside the target nucleus just before their emission which means that towing mode can be used as a tool to study quantum states in nuclei and their correlations. Experimental results concerning the following reactions: 11Be + 48Ti and 6He + Pb are presented. (A.C.)
Decay of heavy and superheavy nuclei
Indian Academy of Sciences (India)
K P Santhosh
2014-04-01
We present here, an overview and progress of the theoretical works on the isomeric state decay, decay fine structure of even–even, even–odd, odd–even and odd–odd nuclei, a study on the feasibility of observing decay chains from the isotopes of the superheavy nuclei = 115 in the range 271 ≤ ≤ 294 and the isotopes of = 117 in the range 270 ≤ ≤ 301, within the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The computed half-lives of the favoured and unfavoured decay of nuclei in the range 67 ≤ ≤ 91 from both the ground state and isomeric state, are in good agreement with the experimental data and the standard deviation of half-life is found to be 0.44. From the fine structure studies done on various ranges of nuclei, it is evident that, for nearly all the transitions, the theoretical values show good match with the experimental values. This reveals that CPPMDN is successful in explaining the fine structure of even–even, even–odd, odd–even and odd–odd nuclei. Our studies on the decay of the superheavy nuclei 271−294115 and 270−301117 predict 4 chains consistently from 284,285,286115 nuclei and 5 chains and 3 chains consistently from 288−291117 and 292117, respectively. We thus hope that these studies on 284−286115 and 288−292117 will be a guide to future experiments.
RFP for the Comet Nuclei Tour (CONTOUR)
DEFF Research Database (Denmark)
Jørgensen, John Leif; Madsen, Peter Buch; Betto, Maurizio;
1999-01-01
This document describes the ASC Star Tracker (performance, functionality, requirements etc.) to The Johns Hopkins University - Applied Physics Laboratory for their Comet Nuclei TOUR (CONTOUR) Program.......This document describes the ASC Star Tracker (performance, functionality, requirements etc.) to The Johns Hopkins University - Applied Physics Laboratory for their Comet Nuclei TOUR (CONTOUR) Program....
Etaprime interactions with nucleons and nuclei
Bass, Steven D
2015-01-01
We summarise recent progress in theory and experiment towards understanding etaprime meson interactions with nucleons and nuclei. Highlights include the production mechanism of etaprime mesons in proton-proton collisions close to threshold, the etaprime effective mass shift in nuclei and the determination of the etaprime-nucleon scattering length in free space.
Mean-field models and exotic nuclei
Energy Technology Data Exchange (ETDEWEB)
Bender, M.; Buervenich, T.; Maruhn, J.A.; Greiner, W. [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); Rutz, K. [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany)]|[Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Reinhard, P.G. [Inst. fuer Theoretische Physik, Univ. Erlangen (Germany)
1998-06-01
We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)
Coupled-Cluster Theory for Nuclei
International Nuclear Information System (INIS)
The quantum-many body problem spans numerous scientific disciplines ranging from condensed matter to quantum dots, to high-temperature superconductors, and to nuclei. In these proceedings, we discuss the development of coupled-cluster techniques and their application to nuclei. We concentrate specifically on calculations pertaining to the ground- and excited-state properties of 4He and 16O
Energy Radiation of the Active Galactic Nuclei
Institute of Scientific and Technical Information of China (English)
TANG Zhi-Ming; WANG Yong-Jiu
2004-01-01
In the Hellings-Nordtvedt theory, we obtain some expressions of energy radiation and mass defect effect for a kind of the active galactic nuclei, which is meaningful to calculating the energy radiation in the procession of forming this kind of celestial bodies. This calculation can give some interpretation for energy source of the jet from the active galactic nuclei.
Total Nuclear Reaction Cross Section Induced by Halo Nuclei and Stable Nuclei
Institute of Scientific and Technical Information of China (English)
GUO Wen-Jun; JIANG Huan-Qing; LIU Jian-Ye; ZUO Wei; REN Zhong-Zhou; LEE Xi-Guo
2003-01-01
We develop a method for calculation of the total reaction cross sections induced by the halo nuclei and stable. nuclei. This approach is based on the Glauber theory, which is valid for nuclear reactions at high energies. It is extended for nuclear reactions at low energies and intermediate energies by including both the quantum correction and Coulomb correction under the assumption of the effective nuclear density distribution. The calculated results of the total reaction cross section induced by stable nuclei agree well with 30 experimental data within 10 percent accuracy. The comparison between the numerical results and 20 experimental data for the total nuclear reaction cross section induced by the neutron halo nuclei and the proton halo nuclei indicates a satisfactory agreement after considering the halo structure of these nuclei, which implies quite different mean fields for the nuclear reactions induced by halo nuclei and stable nuclei. The halo nucleon distributions and the root-mean-square radii of these nuclei can be extracted from the above comparison based on the improved Glauber model, which indicates clearly the halo structures of these nuclei. Especially,it is clear to see that the medium correction of the nucleon-nucleon collision has little effect on the total reaction cross sections induced by the halo nuclei due to the very weak binding and the very extended density distribution.
RADIO VARIABILITY IN SEYFERT NUCLEI
International Nuclear Information System (INIS)
Comparison of 8.4 GHz radio images of a sample of eleven, early-type Seyfert galaxies with previous observations reveals possible variation in the nuclear radio flux density in five of them over a seven year period. Four Seyferts (NGC 2110, NGC 3081, MCG -6-30-15, and NGC 5273) show a decline in their 8.4 GHz nuclear flux density between 1992 and 1999, while one (NGC 4117) shows an increase; the flux densities of the remaining six Seyferts (Mrk 607, NGC 1386, Mrk 620, NGC 3516, NGC 4968, and NGC 7465) have remained constant over this period. New images of MCG -5-23-16 are also presented. We find no correlation between radio variability and nuclear radio luminosity or Seyfert nuclear type, although the sample is small and dominated by type 2 Seyferts. Instead, a possible correlation between the presence of nuclear radio variability and the absence of hundred parsec-scale radio emission is seen, with four out of five marginally resolved or unresolved nuclei showing a change in nuclear flux density, while five out of six extended sources show no nuclear variability despite having unresolved nuclear sources. NGC 2110 is the only source in our sample with significant extended radio structure and strong nuclear variability (∼38% decline in nuclear flux density over seven years). The observed nuclear flux variability indicates significant changes are likely to have occurred in the structure of the nucleus on scales smaller than the VLA beam size (i.e., within the central ∼0.''1 (15 pc)), between the two epochs, possibly due to the appearance and fading of new components or shocks in the jet, consistent with previous detection of subparsec-scale nuclear structure in this Seyfert. Our results suggest that all Seyferts may exhibit variation in their nuclear radio flux density at 8.4 GHz, but that variability is more easily recognized in compact sources in which emission from the variable nucleus is not diluted by unresolved, constant flux density radio jet emission
Symmetry and Phase Transitions in Nuclei
International Nuclear Information System (INIS)
Phase transitions in nuclei have received considerable attention in recent years, especially after the discovery that, contrary to expectations, systems at the critical point of a phase transition display a simple structure. In this talk, quantum phase transitions (QPT), i.e. phase transitions that occur as a function of a coupling constant that appears in the quantum Hamiltonian, H, describing the system, will be reviewed and experimental evidence for their occurrence in nuclei will be presented. The phase transitions discussed in the talk will be shape phase transitions. Different shapes have different symmetries, classified by the dynamic symmetries of the Interacting Boson Model, U(5), SU(3) and SO(6). Very recently, the concept of Quantum Phase Transitions has been extended to Excited State Quantum Phase Transitions (ESQPT). This extension will be discussed and some evidence for incipient ESQPT in nuclei will be presented. Systems at the critical point of a phase transition are called 'critical systems'. Approximate analytic formulas for energy spectra and other properties of 'critical nuclei', in particular for nuclei at the critical point of the second order U(5)-SO(6) transition, called E(5), and along the line of first order U(5)-SU(3) transitions, called X(5), will be presented. Experimental evidence for 'critical nuclei' will be also shown. Finally, the microscopic derivation of shape phase transitions in nuclei within the framework of density functional methods will be briefly discussed.(author)
Cluster structure of nuclei based on AMD
International Nuclear Information System (INIS)
The technique of cooling the energy of the system being examined by using molecular dynamics is utilized for multi-dimensional variation calculation in the fields of physical properties and chemistry. By simulating the cooling of a finite nucleon system, the ground state of atomic nuclei can be studied. By antisymmetrized molecular dynamics, as for the ordinary nuclei with proton number Z=2n and neutron number N=2n, the cluster structure is examined. Further, the nuclei with excess neutrons, to which attention has been paid recently, are examined, and the feature of the systems with different Z and N are noticed. As to AMD method, the wave function, the ground state and the extension of the wave function are explained. AMD was applied to the even-even nuclei of A=4n. The results of density distribution are shown. It is known that most of 4n nuclei are constituted with the basic unit of alpha cluster. In the atomic nuclei with 4 nucleons in a closed shell, they have the developed cluster structure. The various internal deformation corresponding to the number of nucleons was observed. In the nuclei with excess neutrons Z< N, because the shell structures of protons and neutrons are different, the overall structure is determined by respective effects. The dependence of nuclear structure on the number of neutrons is reported. (K.I.)
Fusion probability in heavy nuclei
Banerjee, Tathagata; Nath, S.; Pal, Santanu
2015-03-01
Background: Fusion between two massive nuclei is a very complex process and is characterized by three stages: (a) capture inside the potential barrier, (b) formation of an equilibrated compound nucleus (CN), and (c) statistical decay of the CN leading to a cold evaporation residue (ER) or fission. The second stage is the least understood of the three and is the most crucial in predicting yield of superheavy elements (SHE) formed in complete fusion reactions. Purpose: A systematic study of average fusion probability, , is undertaken to obtain a better understanding of its dependence on various reaction parameters. The study may also help to clearly demarcate onset of non-CN fission (NCNF), which causes fusion probability, PCN, to deviate from unity. Method: ER excitation functions for 52 reactions leading to CN in the mass region 170-220, which are available in the literature, have been compared with statistical model (SM) calculations. Capture cross sections have been obtained from a coupled-channels code. In the SM, shell corrections in both the level density and the fission barrier have been included. for these reactions has been extracted by comparing experimental and theoretical ER excitation functions in the energy range ˜5 %-35% above the potential barrier, where known effects of nuclear structure are insignificant. Results: has been shown to vary with entrance channel mass asymmetry, η (or charge product, ZpZt ), as well as with fissility of the CN, χCN. No parameter has been found to be adequate as a single scaling variable to determine . Approximate boundaries have been obtained from where starts deviating from unity. Conclusions: This study quite clearly reveals the limits of applicability of the SM in interpreting experimental observables from fusion reactions involving two massive nuclei. Deviation of from unity marks the beginning of the domain of dynamical models of fusion. Availability of precise ER cross sections over a wider energy range for
International Nuclear Information System (INIS)
Magnetic rotation is a new phenomenon that is forcing physicists to rethink their understanding of what goes on inside the nucleus The rotation of quantum objects has a long and distinguished history in physics. In 1912 the Danish scientist Niels Bjerrum was the first to recognize that the rotation of molecules is quantized. In 1938 Edward Teller and John Wheeler observed similar features in the spectra of excited nuclei, and suggested that this was caused by the nucleus rotating. But a more complete explanation had to wait until 1951, when Aage Bohr (the son of Niels) pointed out that rotation was a consequence of the nucleus deforming from its spherical shape. We owe much of our current understanding of nuclear rotation to the work of Bohr and Ben Mottelson, who shared the 1975 Nobel Prize for Physics with James Rainwater for developing a model of the nucleus that combined the individual and collective motions of the neutrons and protons inside the nucleus. What makes it possible for a nucleus to rotate? Quantum mechanically, a perfect sphere cannot rotate because it appears the same when viewed from any direction and there is no point of reference against which its change in position can be detected. To see the rotation the spherical symmetry must be broken to allow an orientation in space to be defined. For example, a diatomic molecule, which has a dumbbell shape, can rotate about the two axes perpendicular to its axis of symmetry. A quantum mechanical treatment of a diatomic molecule leads to a very simple relationship between rotational energy, E, and angular momentum. This energy is found to be proportional to J(J + 1), where J is the angular momentum quantum number. The molecule also has a magnetic moment that is proportional to J. These concepts can be applied to the atomic nucleus. If the distribution of mass and/or charge inside the nucleus becomes non-spherical then the nucleus will be able to rotate. The rotation is termed ''collective'' because many
Stability of the heaviest atomic nuclei
International Nuclear Information System (INIS)
Calculations of the alpha-decay and the spontaneous-fission of the heaviest nuclei are described. Main attention is given to the presentation of the results of the author, obtained in recent few years. One of the important modification, with respect to earlier studies, is the use of a multidimensional deformation space, which is especially important for the calculation of the fission barrier. Even-even nuclei with atomic number Z=92-110 are considered. Much attention is paid to the description of shell effects in the half-lives. These effects are especially important for the heaviest nuclei as they decide the question of their existence. (author)
Properties of superheavy nuclei with Z = 124
Mehta, M S; Kumar, Bharat; Patra, S K
2015-01-01
We employ Relativistic Mean Field (RMF) model with NL3 parametrization to investigate the ground state properties of superheavy nucleus, Z = 124. The nuclei selected (from among complete isotopic series) for detailed investigation show that the nucleon density at the center is very low and therefore, these nuclei can be treated as semi-bubble nuclei. The considerable shell gap appears at neutron numbers N = 172, 184 and 198 showing the magicity corresponding to these numbers. The results are compared with the macro-microscopic Finite Range Droplet Model (FRDM) wherever possible.
True ternary fission of superheavy nuclei
Zagrebaev, V.I.; A. V. Karpov; Greiner, Walter
2010-01-01
We found that a true ternary fission with formation of a heavy third fragment (a new type of radioactivity) is quite possible for superheavy nuclei due to the strong shell effects leading to a three-body clusterization with the two doubly magic tin-like cores. The simplest way to discover this phenomenon in the decay of excited superheavy nuclei is a detection of two tin-like clusters with appropriate kinematics in low-energy collisions of medium mass nuclei with actinide targets. The three-b...
Brueckner-AMD Study of Light Nuclei
International Nuclear Information System (INIS)
We applied the Brueckner theory to the Antisymmetrized Molecular Dynamics (AMD) and examined the reliability of the AMD calculations based on realistic nuclear interactions. In this method, the Bethe-Goldstone equation in the Brueckner theory is solved for every nucleon pair described by wave packets of AMD, and the G-matrix is calculated with single-particle orbits in AMD self-consistently. We apply this framework to not only α-nuclei but also N≠Z nuclei with A∼10. It is confirmed that these results present the description of reasonable cluster structures and energy-level schemes comparable with the experimental ones in light nuclei.
Molecular outflows in starburst nuclei
Roy, Arpita; Sharma, Prateek; Shchekinov, Yuri
2016-01-01
Recent observations have detected molecular outflows in a few nearby starburst nuclei. We discuss the physical processes at work in such an environment in order to outline a scenario that can explain the observed parameters of the phenomenon, such as the molecular mass, speed and size of the outflows. We show that outflows triggered by OB associations, with $N_{OB}\\ge 10^5$ (corresponding to a star formation rate (SFR)$\\ge 1$ M$_{\\odot}$ yr$^{-1}$ in the nuclear region), in a stratified disk with mid-plane density $n_0\\sim 200\\hbox{--}1000$ cm$^{-3}$ and scale height $z_0\\ge 200 (n_0/10^2 \\, {\\rm cm}^{-3})^{-3/5}$ pc, can form molecules in a cool dense and expanding shell. The associated molecular mass is $\\ge 10^7$ M$_\\odot$ at a distance of a few hundred pc, with a speed of several tens of km s$^{-1}$. We show that a SFR surface density of $10 \\le \\Sigma_{SFR} \\le 50$ M$_\\odot$ yr$^{-1}$ kpc$^{-2}$ favours the production of molecular outflows, consistent with observed values.
Molecular outflows in starburst nuclei
Roy, Arpita; Nath, Biman B.; Sharma, Prateek; Shchekinov, Yuri
2016-08-01
Recent observations have detected molecular outflows in a few nearby starburst nuclei. We discuss the physical processes at work in such an environment in order to outline a scenario that can explain the observed parameters of the phenomenon, such as the molecular mass, speed and size of the outflows. We show that outflows triggered by OB associations, with NOB ≥ 105 (corresponding to a star formation rate (SFR)≥1 M⊙ yr-1 in the nuclear region), in a stratified disk with mid-plane density n0 ˜ 200-1000 cm-3 and scale height z0 ≥ 200(n0/102 cm-3)-3/5 pc, can form molecules in a cool dense and expanding shell. The associated molecular mass is ≥107 M⊙ at a distance of a few hundred pc, with a speed of several tens of km s-1. We show that a SFR surface density of 10 ≤ ΣSFR ≤ 50 M⊙ yr-1 kpc-2 favours the production of molecular outflows, consistent with observed values.
From Nucleons To Nuclei To Fusion Reactions
Energy Technology Data Exchange (ETDEWEB)
Quaglioni, S; Navratil, P; Roth, R; Horiuchi, W
2012-02-15
Nuclei are prototypes of many-body open quantum systems. Complex aggregates of protons and neutrons that interact through forces arising from quantum chromo-dynamics, nuclei exhibit both bound and unbound states, which can be strongly coupled. In this respect, one of the major challenges for computational nuclear physics, is to provide a unified description of structural and reaction properties of nuclei that is based on the fundamental underlying physics: the constituent nucleons and the realistic interactions among them. This requires a combination of innovative theoretical approaches and high-performance computing. In this contribution, we present one of such promising techniques, the ab initio no-core shell model/resonating-group method, and discuss applications to light nuclei scattering and fusion reactions that power stars and Earth-base fusion facilities.
Understanding Nuclei in the upper sd - shell
Sarkar, M Saha; Ray, Sudatta; Kshetri, Ritesh; Sarkar, S
2013-01-01
Nuclei in the upper-$sd$ shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A$\\simeq$ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array setup. We have compared and combined our empirical observations with the large-scale shell model results to interpret the structure of these nuclei. Indication of population of states of large deformation has been found in our data. This gives us an opportunity to investigate the interplay of single particle and collective degrees of freedom in this mass region.
Systematic study of shell gaps in nuclei
Mo, Qiuhong; Wang, Ning
2014-01-01
The nucleon separation energies and shell gaps in nuclei over the whole nuclear chart are systematically studied with eight global nuclear mass models. For unmeasured neutron-rich and super-heavy regions, the uncertainty of the predictions from these different mass models is still large. The latest version (WS4) of the Weizs\\"acker-Skyrme mass formula, in which the isospin dependence of model parameters is introduced into the macroscopic-microscopic approach inspired by the Skyrme energy-density functional, is found to be the most accurate one in the descriptions of nuclear masses, separation energies and shell gaps. Based on the predicted shell gaps in nuclei, the possible magic numbers in super-heavy nuclei region are investigated. In addition to the shell closures at $N=184, Z=114$, the sub-shell closures at around $N=178, Z=120$ could also play a role for the stability of super-heavy nuclei.
Relativistic symmetry breaking in light kaonic nuclei
Yang, Rong-Yao; Xiang, Qian-Fei; Zhang, Dong-Rui; Wei, Si-Na
2014-01-01
As the experimental data from kaonic atoms and $K^{-}N$ scatterings imply that the $K^{-}$-nucleon interaction is strongly attractive at saturation density, there is a possibility to form $K^{-}$-nuclear bound states or kaonic nuclei. In this work, we investigate the ground-state properties of the light kaonic nuclei with the relativistic mean field theory. It is found that the strong attraction between $K^{-}$ and nucleons reshapes the scalar and vector meson fields, leading to the remarkable enhancement of the nuclear density in the interior of light kaonic nuclei and the manifest shift of the single-nucleon energy spectra and magic numbers therein. As a consequence, the pseudospin symmetry is shown to be violated together with enlarged spin-orbit splittings in these kaonic nuclei.
Brueckner-AMD study of light nuclei
International Nuclear Information System (INIS)
In many states of light nuclei, the cluster structure is observed in addition to the shell structure. To understand the mechanism of clustering, we apply the Brueckner theory to the Antisymmetrized Molecular Dynamics (AMD) based on realistic nuclear interactions. The Bethe-Goldstone equation in the Brueckner theory is solved for every nucleon pair described by wave packets of AMD, and the G-matrix is calculated with single-particle orbits in AMD self-consistently. We show applicability of this method not only to self-conjugate nuclei but also to N ≠ Z nuclei with A ≤ 12. It is confirmed that these results present reasonable description of cluster structures and energy-level schemes in comparison with the experimental ones in light nuclei. For 8Be having a typical α + α cluster structure, the structure dependence of the G-matrix is investigated and the role of tensor force is shown to be important in understanding the clustering mechanism.
Superheavy Nuclei: Relativistic Mean Field Outlook
Afanasjev, A V
2006-01-01
The analysis of quasiparticle spectra in heaviest $A\\sim 250$ nuclei with spectroscopic data provides an additional constraint for the choice of effective interaction for the description of superheavy nuclei. It strongly suggest that only the parametrizations of the relativistic mean field Lagrangian which predict Z=120 and N=172 as shell closures are reliable for superheavy nuclei. The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied. Large central depression produces large shell gaps at Z=120 and N=172. The shell gaps at Z=126 and N=184 are favored by a flat density distribution in the central part of nucleus. It is shown that approximate particle number projection (PNP) by means of the Lipkin-Nogami method removes pairing collapse seen at these gaps in the calculations without PNP.
Superheavy nuclei: a relativistic mean field outlook
International Nuclear Information System (INIS)
The analysis of quasi-particle spectra in the heaviest A∼250 nuclei with spectroscopic data provides an additional constraint for the choice of effective interaction for the description of superheavy nuclei. It strongly suggests that only the parametrizations which predict Z = 120 and N = 172 as shell closures are reliable for superheavy nuclei within the relativistic mean field theory. The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied. A large central depression produces large shell gaps at Z = 120 and N = 172. The shell gaps at Z = 126 and N = 184 are favoured by a flat density distribution in the central part of the nucleus. It is shown that approximate particle number projection (PNP) by means of the Lipkin-Nogami (LN) method removes pairing collapse seen at these gaps in the calculations without PNP
Perspectives of production of superheavy nuclei
Adamian, G. G.; Antonenko, N. V.; Bezbakh, A. N.; Sargsyan, V. V.; Scheid, W.
2016-07-01
Possible ways of production of superheavies are discussed. Impact of nuclear structure on the production of superheavy nuclei in complete fusion reactions is discussed. The proton shell closure at Z = 120 is discussed.
Physics with nuclei at high energies
International Nuclear Information System (INIS)
Physics with nuclei at high energy is not reducible to a superposition of interactions involving individual nucleons; rather, qualitatively new phenomena show up. This is what one concludes from recent data on dilepton production off nuclei and on elastic proton-nucleus scattering. Furthermore, recent analyses of ion collisions at BNL and CERN reveal a number of non-conventional features. The relevant contributions to this Rencontre are summarized here. 37 refs., 16 figs
Synthesis of superheavy nuclei: Obstacles and opportunities
Directory of Open Access Journals (Sweden)
Zagrebaev V.I.
2015-01-01
Full Text Available There are only 3 methods for the production of heavy and superheavy (SH nuclei, namely, fusion reactions, a sequence of neutron capture and beta(- decay and multinucleon transfer reactions. Low values of the fusion cross sections and very short half-lives of nuclei with Z<120 put obstacles in synthesis of new elements. At the same time, an important area of SH isotopes located between those produced in the cold and hot fusion reactions remains unstudied yet. This gap could be filled in fusion reactions of 48Ca with available lighter isotopes of Pu, Am, and Cm. New neutron-enriched isotopes of SH elements may be produced with the use of a 48Ca beam if a 250Cm target would be prepared. In this case we get a real chance to reach the island of stability owing to a possible beta(+ decay of 291114 and 287112 nuclei formed in this reaction with a cross section of about 0.8 pb. A macroscopic amount of the long-living SH nuclei located at the island of stability may be produced by using the pulsed nuclear reactors of the next generation only if the neutron fluence per pulse will be increased by about three orders of magnitude. Multinucleon transfer processes look quite promising for the production and study of neutron-rich heavy nuclei located in upper part of the nuclear map not reachable by other reaction mechanisms. Reactions with actinide beams and targets are of special interest for synthesis of new neutron-enriched transfermium nuclei and not-yet-known nuclei with closed neutron shell N=126 having the largest impact on the astrophysical r-process. The estimated cross sections for the production of these nuclei allows one to plan such experiments at currently available accelerators.
Synthesis of superheavy nuclei: Obstacles and opportunities
Zagrebaev, V. I.; Karpov, A. V.; Greiner, Walter
2015-01-01
There are only 3 methods for the production of heavy and superheavy (SH) nuclei, namely, fusion reactions, a sequence of neutron capture and beta(-) decay and multinucleon transfer reactions. Low values of the fusion cross sections and very short half-lives of nuclei with Zcold and hot fusion reactions remains unstudied yet. This gap could be filled in fusion reactions of 48Ca with available lighter isotopes of Pu, Am, and Cm. New neutron-enriched isotopes of SH elements may be produced with the use of a 48Ca beam if a 250Cm target would be prepared. In this case we get a real chance to reach the island of stability owing to a possible beta(+) decay of 291114 and 287112 nuclei formed in this reaction with a cross section of about 0.8 pb. A macroscopic amount of the long-living SH nuclei located at the island of stability may be produced by using the pulsed nuclear reactors of the next generation only if the neutron fluence per pulse will be increased by about three orders of magnitude. Multinucleon transfer processes look quite promising for the production and study of neutron-rich heavy nuclei located in upper part of the nuclear map not reachable by other reaction mechanisms. Reactions with actinide beams and targets are of special interest for synthesis of new neutron-enriched transfermium nuclei and not-yet-known nuclei with closed neutron shell N=126 having the largest impact on the astrophysical r-process. The estimated cross sections for the production of these nuclei allows one to plan such experiments at currently available accelerators.
Determining properties of baryon resonances in nuclei
International Nuclear Information System (INIS)
Meson-nucleus and photon-nucleus interactions are important sources of information about the medium modifications of baryon resonances in nuclei. Indications of how large the medium effects are for resonances above the Δ33(1232) are provided by it combined analysis of photonuclear and pion cross sections in the GeV range of energies. Tile existing data indicate a possible 10-20% renormalization of the pion coupling to higher-lying resonances in nuclei
Cosmic Ray Nuclei (CRN) detector investigation
Meyer, Peter; Muller, Dietrich; Lheureux, Jacques; Swordy, Simon
1991-01-01
The Cosmic Ray Nuclei (CRN) detector was designed to measure elemental composition and energy spectra of cosmic radiation nuclei ranging from lithium to iron. CRN was flown as part of Spacelab 2 in 1985, and consisted of three basic components: a gas Cerenkov counter, a transition radiation detector, and plastic scintillators. The results of the experiment indicate that the relative abundance of elements in this range, traveling at near relativistic velocities, is similar to those reported at lower energy.
Relativistic symmetry breaking in light kaonic nuclei
Yang, Rong-Yao; Jiang, Wei-Zhou; Xiang, Qian-Fei; Zhang, Dong-Rui; Wei, Si-Na
2014-01-01
As the experimental data from kaonic atoms and $K^{-}N$ scatterings imply that the $K^{-}$-nucleon interaction is strongly attractive at saturation density, there is a possibility to form $K^{-}$-nuclear bound states or kaonic nuclei. In this work, we investigate the ground-state properties of the light kaonic nuclei with the relativistic mean field theory. It is found that the strong attraction between $K^{-}$ and nucleons reshapes the scalar and vector meson fields, leading to the remarkabl...
Shell structure of nuclei far from stability
Energy Technology Data Exchange (ETDEWEB)
Grave, H. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Lewitowicz, M. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)
2001-03-01
The experimental status of shell structure studies in medium-heavy nuclei far off the line of {beta}-stability is reviewed. Experimental techniques, signatures for shell closure and expectations for future investigations are discussed for the key regions around {sup 48,56}Ni, {sup 100}Sn for proton rich nuclei and neutron-rich N=20 isotones, Ca, Ni and Sn isotopes. (authors)
Effective Field Theory for Lattice Nuclei
Barnea, N.; Contessi, L.; Gazit, D.; Pederiva, F.; van Kolck, U.
2013-01-01
We show how nuclear effective field theory (EFT) and ab initio nuclear-structure methods can turn input from lattice quantum chromodynamics (LQCD) into predictions for the properties of nuclei. We argue that pionless EFT is the appropriate theory to describe the light nuclei obtained in recent LQCD simulations carried out at pion masses much heavier than the physical pion mass. We solve the EFT using the effective-interaction hyperspherical harmonics and auxiliary-field diffusion Monte Carlo ...
Strength of Coriolis alignment in actinide nuclei
International Nuclear Information System (INIS)
Analysis of aligned angular momenta i/sub α/(ω) in different rotational bands extracted from experimental data with a linear spin term approx.BI in the formulas for E/sub rot/(I) reveal that, in actinide nuclei in the levels with modest spin I< or =23, i/sub α/(ω) usually is very small (< or approx. =0.7), i.e., is much smaller than in rare earth nuclei
Proton radioactivity from proton-rich nuclei
Energy Technology Data Exchange (ETDEWEB)
Guzman, F.; Goncalves, M. [Instituto Superior de Ciencias y Tecnologia Nucleares (ISCTN), La Habana (Cuba); Tavares, O.A.P.; Duarte, S.B. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Garcia, F.; Rodriguez, O. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica
1999-03-01
Half-lives for proton emission from proton-rich nuclei have been calculated by using the effective liquid drop model of heavy-particle decay of nuclei. It is shown that this model is able to offer results or spontaneous proton-emission half-life-values in excellent agreement with the existing experimental data. Predictions of half-life-values for other possible proton-emission cases are present for null orbital angular momentum. (author)
Spectral fluctuation properties of spherical nuclei
Jafarizadeh, M. A.; Fouladi, N.; Sabri, H.
2012-01-01
The spectral fluctuation properties of spherical nuclei are considered by use of NNSD statistic. With employing a generalized Brody distribution included Poisson, GOE and GUE limits and also MLE technique, the chaoticity parameters are estimated for sequences prepared by all the available empirical data. The ML-based estimated values and also KLD measures propose a non regular dynamic. Also, spherical odd-mass nuclei in the mass region, exhibit a slight deviation to the GUE spectral statistic...
Symmetries in nuclei and molecules
International Nuclear Information System (INIS)
Recent progress in two different fronts is reported. First, the concept of bisection of a harmonic oscillator or hydrogen atom, used in the past in establishing the connection between U(3) and O(4), is generalized into multisection (trisection, tetra section, etc.). It is then shown that all symmetries of the N-dimensional anisotropic harmonic oscillator with rational ratios of frequencies (RHO), some of which are underlying the structure of superdeformed and hyperdeformed nuclei, can be obtained from the U(N) symmetry of the corresponding isotropic oscillator with the appropriate combination of multisections. Furthermore, it is seen that bisections of the N-dimensional hydrogen atom, which possesses an O(N+1) symmetry, lead to the U(N) symmetry, so that further multisections of the hydrogen atom lead to the symmetries of the N-dim RHO. The opposite is in general not true, i.e. multisections of U(N) do not lead to O(N+1) symmetries, the only exception being the occurrence of O(4) after the bisection of U(3). Second, it is shown that there is evidence that the recently observed in superdeformed nuclear bands δ I=4 bifurcation is also occurring in normal deformed bands of actinides and rare earths, in hyperdeformed nuclear bands, as well as in rotational bands of diatomic molecules. In addition there is evidence that a δ I=8 bifurcation, of the same order of magnitude as the δ I=4 one, is observed in superdeformed nuclear bands and rotational bands of diatomic molecules. (author)
Major new sources of biological ice nuclei
Moffett, B. F.; Hill, T.; Henderson-Begg, S. K.
2009-12-01
Almost all research on biological ice nucleation has focussed on a limited number of bacteria. Here we characterise several major new sources of biogenic ice nuclei. These include mosses, hornworts, liverworts and cyanobacteria. Ice nucleation in the eukaryotic bryophytes appears to be ubiquitous. The temperature at which these organisms nucleate is that at which the difference in vapour pressure over ice and water is at or close to its maximum. At these temperatures (-8 to -18 degrees C) ice will grow at the expense of supercooled water. These organisms are dependent for their water on occult precipitation - fog, dew and cloudwater which by its nature is not collected in conventional rain gauges. Therefore we suggest that these organism produce ice nuclei as a water harvesting mechanism. Since the same mechanism would also drive the Bergeron-Findeisen process, and as moss is known to become airborne, these nuclei may have a role in the initiation of precipitation. The properties of these ice nuclei are very different from the well characterised bacterial nuclei. We will also present DNA sequence data showing that, although related, the proteins responsible are only very distantly related to the classical bacterial ice nuclei.
Characterization of biological ice nuclei from a lichen.
Kieft, T. L.; Ruscetti, T
1990-01-01
Biological ice nuclei (active at approximately -4 degrees C) were extracted from cells of the lichen Rhizoplaca chrysoleuca by sonication. Sensitivity to proteases, guanidine hydrochloride, and urea showed these nuclei to be proteinaceous. The nuclei were relatively heat stable, active from pH 1.5 to 12, and active without lipids, thereby demonstrating significant differences from bacterial ice nuclei.
On search for and synthesis of superdense nuclei
International Nuclear Information System (INIS)
The theory of π condensation and the sigma model, predicting the existence of superdense (SD) nuclei, and of the experimental works in the search for such nuclei are presented. Possible properties of SD-nuclei are discussed: the conditions of β-stability and spontaneous fission, the life-time of β-active SD nuclei. The properties of SD nuclei are essentially different from those of ordinary nuclei: the energy of β-decay and the barrier of spontaneous fission are several times higher; the mass defects are significantly different from those of normal nuclei. An experimental search for SD nuclei in natural samples and in products of the interaction of heavy ions and protons with nuclei gave no positive results. In the autors opinion this does not mean the impossibility of the existence of SD-nuclei
Binding energy and stability of heavy and superheavy nuclei
Kolesnikov, N.N.
2012-01-01
Three different ways for description of binding energy of superheavy nuclei are discussed. First, one can consider superheavy nuclei as a part of a whole system of nuclei for which a global mass formula is found. Another way is the detailed local description of energy of superheavy nuclei taking into account the effects of shells and subshells. The third way of description, applied for nuclei in the region limited by principal magic numbers, is attached to the beta-stability line.
Release of cell-free ice nuclei by Erwinia herbicola.
Phelps, P; Giddings, T. H.; Prochoda, M; Fall, R
1986-01-01
Several ice-nucleating bacterial strains, including Erwinia herbicola, Pseudomonas fluorescens, and Pseudomonas syringae isolates, were examined for their ability to shed ice nuclei into the growth medium. Only E. herbicola isolates shed cell-free ice nuclei active at -2 to -10 degrees C. These cell-free nuclei exhibited a freezing spectrum similar to that of ice nuclei found on whole cells, both above and below -5 degrees C. Partially purified cell-free nuclei were examined by density gradie...
Stability and production of superheavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Moeller, P. [P. Moller Scientific Computing and Graphics, Inc., Los Alamos, NM (United States)]|[Los Alamos National Lab., NM (United States). Theoretical Div.; Nix, J.R. [Los Alamos National Lab., NM (United States). Theoretical Div.
1997-12-31
Beyond uranium heavy elements rapidly become increasingly unstable with respect to spontaneous fission as the proton number Z increases, because of the disruptive effect of the long-range Coulomb force. However, in the region just beyond Z = 100 magic proton and neutron numbers and the associated shell structure enhances nuclear stability sufficient to allow observation of additional nuclei. Some thirty years ago it was speculated that an island of spherical, relatively stable superheavy nuclei would exist near the next doubly magic proton-neutron combination beyond {sup 208}Pb, that is, at proton number Z = 114 and neutron number N = 184. Theory and experiment now show that there also exists a rock of stability in the vicinity of Z = 110 and N = 162 between the actinide region, which previously was the end of the peninsula of known elements, and the predicted island of spherical superheavy nuclei slightly southwest of the magic numbers Z = 114 and N = 184. The authors review here the stability properties of the heavy region of nuclei. Just as the decay properties of nuclei in the heavy region depend strongly on shell structure, this structure also dramatically affects the fusion entrance channel. The six most recently discovered new elements were all formed in cold-fusion reactions. They discuss here the effect of the doubly magic structure of the target in cold-fusion reactions on the fusion barrier and on dissipation.
Ways to fusion of heavy nuclei
International Nuclear Information System (INIS)
The experimental synthesis of superheavy elements and heavy nuclei far from the line of stability stimulates the study of the mechanism of fusion in heavy ion collisions at low energies. Two ways could be thought: the first one assumes a fixed mass asymmetry during fusion and describes the process as a melting of two nuclei in the relative distance; the second one describes the evolution of the di-nuclear system to the compound nucleus as a change of the mass asymmetry by nucleon transfer from the light nucleus to the heavy one (dinuclear system concept). With calculated mass parameters and a time-dependent diabatic interaction potential obtained within a two-center shell model, we demonstrate that a structural forbiddingness exists for the motion of the nuclei to smaller internuclear distances in near symmetric dinuclear systems. Energy thresholds for complete fusion in relevant collective variables show that the dinuclear system prefers to proceed in the mass asymmetry degree of freedom to the compound nucleus. The comparison of calculated evaporation residue cross sections with experimental data supports the basic assumption of the dinuclear system concept that the nuclei do not melt together directly, but form the compound nucleus by transferring nucleons in a dinuclear configuration of touching nuclei. (authors)
Superdeformation in Z = 120 superheavy nuclei
International Nuclear Information System (INIS)
Significant progress has been made in the discovery of new superheavy nuclei in the last decade. Superheavy nuclei at the extreme end of the periodic table have been synthesized in the laboratory. The stability of nuclei in superheavy mass region came into existence when the extensive shell correction calculations were added to the liquid drop binding energy. As it well known there was no existence of stable nuclides for Z ≥100 by the liquid drop model because of large coulomb repulsion. Various mocroscopic approaches such as non-relativistic density-dependent Skyrme Hartree-Fock (SHF) theory and that of MM type are used extensively to investigate the properties and structure of superheavy nuclei. In spite of impressive agreement with experimental data for the heaviest elements the theoretical uncertainties are large when extrapolating to unknown regions of the nuclear chart. Since in these nuclei the single-particle level density is relatively large, small shifting of single-particle levels can be crucial for determining the shell stability of a nucleus. So there is a need to design the new experiments with exotic radioactive beams to solve the problem of locating the precise island of stability
Fast neutron inelastic scattering from nuclei
International Nuclear Information System (INIS)
The need for accurate values of inelastic scattering cross sections appears when the requests for neutron data for reactors and other applied purposes are considered. These requests are partly related to values for spherical nuclei, well studied over many years. These studies were extensively considered in two review papers presented, in 1976, at the International Conference on the Interactions of Neutrons with nuclei. Other requests are related to vibrational and rotational nuclei, and relevant studies have been recently performed. The quality of these investigations and the large number of recent results have lead to concentration on them as the topic of the present review. The constant improvements of the experimental techniques permits precise measurements of inelastic scattering cross sections to the first excited levels over a range of incident energies, such that different reactions mechanisms are predominant in different parts of that range of energies. Quadrupole, hexadecapole and octupole deformation parameters of the target nuclei can be deduced from the data using phenomenological models. The successful application of the analysis over the range of energies leads to the conclusion that reliable information on the shape of the nuclei has been derived. The validity of the various models, which include direct interaction and compound nucleus reaction mechanisms, is discussed in connection with analyses of recent experiments. (author)
Shape-based nuclei area of digitized pap smear images
Muhimmah, Izzati; Kurniawan, Rahadian
2012-04-01
Nuclei of the epithelial of Pap smear cells are important risk indicator of cervical cancers. Pathologist uses the changing of the area of the nuclei to determine whether cells are normal or abnormal. It means that having correct measurement of the area of nuclei is important on the pap smears assessment. Our paper present a novel approach to analyze the shape of nuclei in pap smear images and measuring the area of nuclei. We conducted a study to measure the area of nuclei automatically by calculating the number of pixels contained in each of the segmented nuclei. For comparison, we performed measurements of nuclei area using the ellipse area approximation. The result of the t-test confirmed that there were similarity between elliptical area approximation and automatic segmented nuclei-area at 0.5% level of significance.
Quantum Monte Carlo calculations of light nuclei
International Nuclear Information System (INIS)
Quantum Monte Carlo calculations using realistic two- and three-nucleon interactions are presented for nuclei with up to eight nucleons. We have computed the ground and a few excited states of all such nuclei with Greens function Monte Carlo (GFMC) and all of the experimentally known excited states using variational Monte Carlo (VMC). The GFMC calculations show that for a given Hamiltonian, the VMC calculations of excitation spectra are reliable, but the VMC ground-state energies are significantly above the exact values. We find that the Hamiltonian we are using (which was developed based on 3H, 4He, and nuclear matter calculations) underpredicts the binding energy of p-shell nuclei. However our results for excitation spectra are very good and one can see both shell-model and collective spectra resulting from fundamental many-nucleon calculations. Possible improvements in the three-nucleon potential are also be discussed
Triaxiality in 146,148Sm nuclei
International Nuclear Information System (INIS)
Recently, attempts have been made to use the dynamic pairing plus quadrupole model to evaluate B(E2) values, B(E2) branching ratios, and low-lying energy levels for 146,148Sm nuclei, which are in poor agreement with experiment. Application of the boson expansion technique on 148Sm shows too much splitting and an incorrect order for the quintet states, while other properties have not been discussed. In the present work, 146,148Sm nuclei have been described using an asymmetric rotor model framework. The nonaxiality parameter γ has been evaluated using the energy ration E2+'/E6+. Remarkable success has been achieved in explaining the correct ordering of known low-lying energy levels, B(E2) values, and B(E2) branching ratios, which indicate that the so-called spherical nuclei may be treated as triaxial. (author). 8 refs., 9 tabs., 1 fig
Supermassive Black Holes in Galactic Nuclei
Ho, L C
1998-01-01
I review the status of observational determinations of central masses in nearby galactic nuclei. Results from a variety of techniques are summarized, including ground-based and space-based optical spectroscopy, radio VLBI measurements of luminous water vapor masers, and variability monitoring studies of active galactic nuclei. I will also discuss recent X-ray observations that indicate relativistic motions arising from the accretion disks of active nuclei. The existing evidence suggests that supermassive black holes are an integral component of galactic structure, at least in elliptical and bulge-dominated galaxies. The black hole mass appears to be correlated with the mass of the spheroidal component of the host galaxy. This finding may have important implications for many astrophysical issues.
Probing intruder structures in lead nuclei
International Nuclear Information System (INIS)
In-beam γ-ray spectroscopy measurements provide important information on coexisting normal and intruder configurations in lead nuclei. However, in these experiments the yrast states are preferentially populated so that in many cases nothing is known about non-yrast states that are essential for obtaining a fuller understanding. Complementary experiments designed to study fine structure in the α decays of polonium nuclei have led to the discovery of low-spin non-yrast states in the daughter lead nuclei, while higher-spin states can be identified through the γ decays of isomeric states. The α-decay studies have the additional benefit of allowing information on configuration mixing in the polonium parents to be deduced from the measured hindrance factors. (orig.)
Probing intruder structures in lead nuclei
Energy Technology Data Exchange (ETDEWEB)
Page, R.D. [Dept. of Physics, Oliver Lodge Lab., Univ. of Liverpool, Liverpool (United Kingdom); Ackerman, D.; Andreyev, A.N.; Cagarda, P.; Eskola, K.; Gerl, J.; Greenlees, P.T.; Hessberger, F.P.; Heyde, K.; Hofmann, S.; Huyse, M.; Jones, P.; Joss, D.T.; Julin, R.; Juutinen, S.; Kankaanpaeae, H.; Keenan, A.; Kettunen, H.; Kleinboehl, A.; Kuusiniemi, P.; Lavrentiev, A.; Leino, M.; Matos, M.; Melarangi, A.; Moore, C.J.P.; Muikku, M.; Muenzenberg, G.; Nieminen, P.; O' Leary, C.D.; Rahkila, P.; Reshitko, S.; Schaffner, H.; Schlegel, C.; Scholey, C.; Taylor, M.J.; Uusitalo, J.; Van de Vel, K.; Van Duppen, P.; Weissman, L.; Wheldon, C.; Wyss, R.
2003-07-01
In-beam {gamma}-ray spectroscopy measurements provide important information on coexisting normal and intruder configurations in lead nuclei. However, in these experiments the yrast states are preferentially populated so that in many cases nothing is known about non-yrast states that are essential for obtaining a fuller understanding. Complementary experiments designed to study fine structure in the {alpha} decays of polonium nuclei have led to the discovery of low-spin non-yrast states in the daughter lead nuclei, while higher-spin states can be identified through the {gamma} decays of isomeric states. The {alpha}-decay studies have the additional benefit of allowing information on configuration mixing in the polonium parents to be deduced from the measured hindrance factors. (orig.)
Ab Initio Path to Heavy Nuclei
Binder, Sven; Calci, Angelo; Roth, Robert
2014-01-01
We present the first ab initio calculations of nuclear ground states up into the domain of heavy nuclei, spanning the range from 16-O to 132-Sn based on two- plus three-nucleon interactions derived within chiral effective field theory. We employ the similarity renormalization group for preparing the Hamiltonian and use coupled-cluster theory to solve the many-body problem for nuclei with closed sub-shells. Through an analysis of theoretical uncertainties resulting from various truncations in this framework, we identify and eliminate the technical hurdles that previously inhibited the step beyond medium-mass nuclei, allowing for reliable validations of nuclear Hamiltonians in the heavy regime. Following this path we show that chiral Hamiltonians qualitatively reproduce the systematics of nuclear ground-state energies up to the neutron-rich Sn isotopes.
Nucleon localization in light and heavy nuclei
Zhang, C L; Nazarewicz, W
2016-01-01
An electron localization measure was originally introduced to characterize chemical bond structures in molecules. Recently, a nucleon localization based on Hartree-Fock densities has been introduced to investigate $\\alpha$-cluster structures in light nuclei. Compared to the local nucleonic densities, the nucleon localization function has been shown to be an excellent indicator of shell effects and cluster correlations. Using the spatial nucleon localization measure, we investigate the cluster structures in deformed light nuclei and study the emergence of fragments in fissioning heavy nuclei. To illustrate basic concepts of nucleon localization, we employ the deformed harmonic oscillator model. Realistic calculations are carried out using self-consistent nuclear density functional theory with quantified energy density functionals optimized for fission studies. We study particle densities and spatial nucleon localization distributions for deformed cluster configurations of $^{8}$Be and $^{20}$Ne, and also along...
Static quadrupole moments in 120Te nuclei
International Nuclear Information System (INIS)
In recent years the region in the vicinity of tin isotopes has been intensively investigated both from experimental and theoretical perspectives. In tellurium nuclei with two protons outside the major shell, the partial level schemes are dominated by the 1g7/2 orbit leading to 6+ isomers in the vicinity of N=82 shell closure. At low spin, the Te nuclei are considered to be one of the best examples of quadrupole vibrators. For any nuclei to be vibrational namely three criteria must be satisfied : (i) the R4/2 ratio is equal to 2, (ii) a nearly degenerate two-phonon triplet of 0+, 2+ and 4+ states (iii) collective electric quadrupole transitions between states differing by one phonon and strong hindrance of E2 transition between states differing by more than one phonon
Acceleration of heavy nuclei in solar flares
International Nuclear Information System (INIS)
The overabundance of heavy nuclei in solar cosmic rays of energy approximately less than 5 MeV/nucleon is explained by taking into account the pre-flare ionization states of these nuclei in the region where they are accelerated. A model is proposed which considers two-step accelerations associated with the initial development of solar flares. The first step is closely related to the triggering process of flares, while the second one starts with the development of the explosive phase. Further ionization of medium and heavy nuclei occurs through their interaction with keV electrons accelerated by the first-step acceleration. It is suggested that the role of these electrons is important in producing fully ionized atoms in the acceleration regions. (U.S.)
New approaches to studies of exotic nuclei
International Nuclear Information System (INIS)
New generations of 4π gamma-ray detectors, recoil mass spectrometers (RMS), and radioactive beam accelerators will open up many new areas of research, including present inaccessible in-beam and radioactive decay studies of exotic nuclei still farther off stability. The new generation RMS and radioactive beam developments at the Holifield Heavy Ion Research Facility are presented. Current research and further prospects to probe the N -- Z line up to 100Sn are described. Superdeformation in A -- 70 to 190 nuclei is described in terms of its underlying physics of reinforcing proton and neutron shell gaps which lead to new superdeformed, doubly-magic nuclei. Recent results provide new insights into the coexistence of multiple nuclear shapes near the ground states
Superscaling and nucleon momentum distributions in nuclei
International Nuclear Information System (INIS)
The scaling functions f(ψ') and F(y) from the ψ'- and y-scaling analyses of inclusive electron scattering from nuclei are constructed within the Coherent Density Fluctuation Model (CDFM) using its two equivalent formulations based on either the local density or the nucleon momentum distribution (NMD). The approach is a natural extension of the relativistic Fermi-gas model to finite realistic nuclear systems. The calculations show that the high-momentum components of NMD in the CDFM and their similarity for different nuclei lead to quantitative description of the super-scaling phenomenon and to a good agreement with the experimental data for y'''- and y-scaling are informative for NMDs at momenta not larger than 2.0-2.5 fm-1. The work shows the role of both basic quantities, the momentum and density distributions, for the explanation of super-scaling in inclusive electron scattering from nuclei
Computer Model Of Fragmentation Of Atomic Nuclei
Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.
1995-01-01
High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.
Angular velocity: a new dimension in nuclei
Energy Technology Data Exchange (ETDEWEB)
Diamond, R.M.; Stephens, F.S.
1984-08-09
Nuclei can be studied from their ground states (approx.O(h/2..pi..)) up to angular momenta of order 100 (h/2..pi..), where they are literally pulled apart by centrifugal effects. This range of angular momenta can be viewed as resulting from cranking the nucleus around a rotation axis, where the critical variable is the cranking velocity. The calculated response of nuclei to such an imposed angular velocity corresponds well with recent observations, and includes a rich and varied interplay of collective and single-particle phenomena.
Governor model for asymmetric deformed nuclei
International Nuclear Information System (INIS)
The governor model is extended to include the asymmetric shape of nuclei which allows a simultaneous analysis of the data for both the ground state and the γ-vibrational bands in deformed even-even nuclei. The rotationally invariant core is assumed to be a spheroid with an axis of symmetry parallel to the axis of rotation. The calculations are carried out under the assumption of no stretching. The static γ-deformation results are compared with the VMI(ARM) and Krutov values, and the calculated energies are in good agreement with the experimental data
Dissipation and the population of compound nuclei
International Nuclear Information System (INIS)
The importance of nuclear dissipative efforts on the formation of compound nuclei is studied with the γ-ray decay of the giant dipole resonance (GDR) built on highly excited states. The compound nuclei 164Yb, 160Er, and 110Sn were produced with very mass-asymmetric and with more mass-symmetric target/projectile combinations. The large deviation from statistical model prediction observed in the γ-ray spectra from the more symmetrically formed 160Er and 164Yb can be qualitatively explained within the particle exchange model
Theory of the effective interaction in nuclei
International Nuclear Information System (INIS)
Extending the coupled-cluster many-body method the authors present ab initio calculations of the effective interaction in nuclei neighbouring 16O. The convergence problems encountered in previous approaches are overcome by means of three-body Bethe-Faddeev summations included fully self-consistently. The results for mass 15 to 18 nuclei are in agreement with experiment to within the uncertainties due to insufficient knowledge of the bare nucleon-nucleon interaction and neglect of mesonic and isobaric degrees of freedom. (Auth.)
Doubly magic properties in superheavy nuclei
Institute of Scientific and Technical Information of China (English)
HUANG Ya-Wei; ZHU Jian-Yu
2009-01-01
A systematic study of global properties of superheavy nuclei in the framework of the Liquid Drop Model and the Strutinsky shell correction method is performed. The evolution equilibrium deformations, TRS graphs and α-decay energies are calculated using the TRS model. The analysis covers a wide range of even-even superheavy nuclei from Z = 102 to 122. Magic numbers and their observable influence occurring in this region have been investigated. Shell closures appear at proton number Z = 114 and at neutron number N = 184.
Structure of neutron-rich nuclei
Energy Technology Data Exchange (ETDEWEB)
Nazarewicz, W. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics]|[Oak Ridge National Lab., TN (United States). Physics Div.]|[Warsaw Univ. (Poland). Inst. of Theoretical Physics
1997-11-01
One of the frontiers of today`s nuclear science is the ``journey to the limits``: of atomic charge and nuclear mass, of neutron-to-proton ratio, and of angular momentum. The new data on exotic nuclei are expected to bring qualitatively new information about the fundamental properties of the nucleonic many-body system, the nature of the nuclear interaction, and nucleonic correlations at various energy-distance scales. In this talk, current developments in nuclear structure of neutron-rich nuclei are discussed from a theoretical perspective.
Medium energy hadron scattering from nuclei
International Nuclear Information System (INIS)
The Glauber approximation for medium energy scattering of hadronic projectiles from nuclei is combined with the interacting boson model of nuclei to produce a transition matrix for elastic and inelastic scattering in algebraic form which includes coupling to all the intermediate states. We present closed form analytic expresions for the transition matrix elements for the three dynamical symmetries of the interacting boson model; that is for, a spherical quadrupole vibrator, a γ unstable rotor, and both prolate and oblate axially symmetric rotors. We give examples of application of this formalism to proton scattering from 154Sm and 154Gd. 27 refs., 5 figs., 1 tab
Light nuclei from chiral EFT interactions
International Nuclear Information System (INIS)
Recent developments in nuclear theory allow us to make a connection between quantum chromodynamics (QCD) and low-energy nuclear physics. First, chiral effective field theory (XEFT) provides a natural hierarchy to define two-nucleon (NN), three-nucleon (NNN), and even four-nucleon interactions. Second, ab-initio methods have been developed capable to test these interactions for light nuclei. In this contribution, we discuss ab-initio no-core shell-model (NCSM) calculations for s-shell and p-shell nuclei with NN and NNN interactions derived within XEFT. Presented at the 20th Few-Body Conference, Pisa, Italy, 10-14 September 2007. (author)
Statistical properties of quantum spectra in nuclei
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Some aspects of quantum chaos in a finite system have been studied based on the analysis of statistical behavior of quantum spectra in nuclei.The experiment data show the transition from order to chaos with increasing excitation energy in spherical nuclei.The dependence of the order to chaos transition on nuclear deformation and nuclear rotating is described.The influence of pairing effect on the order to chaos transition is also discussed.Some important experiment phenomena in nuclear physics have been understood from the point of view of the interplay between order and chaos.
Pairing schemes for HFB calculations of nuclei
Duguet, T; Bonche, P
2005-01-01
Several pairing schemes currently used to describe superfluid nuclei through Hartree-Fock-Bogolyubov (HFB) calculations are briefly reviewed. We put a particular emphasis on the regularization recipes used in connection with zero-range forces and on the density dependence which usually complement their definition. Regarding the chosen regularization process, the goal is not only to identify the impact it may or may not have on pairing properties of nuclei through spherical 1D HFB calculations but also to assess its tractability for systematic axial 2D and 3D mean-field and beyond-mean-field calculations.
Reflections on cavitation nuclei in water
DEFF Research Database (Denmark)
Mørch, Knud Aage
2007-01-01
The origin of cavitation bubbles, cavitation nuclei, has been a subject of debate since the early years of cavitation research. This paper presents an analysis of a representative selection of experimental investigations of cavitation inception and the tensile strength of water. At atmospheric...... on the surface of particles and bounding walls. Such nuclei can be related to the full range of tensile strengths measured, when differences of experimental conditions are taken into consideration. The absence or presence of contamination on surfaces, as well as the structure of the surfaces, are...
Formation and decay of hot nuclei
International Nuclear Information System (INIS)
The challenge in understanding the behaviour of hot nuclei is twofold: how are they formed in nucleus-nucleus collisions and how do they decay. Both aspects are considered in the light of theories developed recently and experimental data. Special emphasis has been put on the relevance of temperature measurements as well as on the concept of a limiting temperature
Contact nuclei formation in aqueous dextrose solutions
Cerreta, Michael K.; Berglund, Kris A.
1990-06-01
A laser Raman microprobe was used in situ to observe the growth of alpha dextrose monohydrate on alpha anhydrous dextrose crystals. The Raman spectra indicate growth of the monohydrate below 28.1°C, but the presence of only the anhydrous form above 40.5°C. Contact nucleation experiments with parent anhydrous crystals yielded only monohydrate nuclei below 28.1°C, while contacts in solutions between 34.5 and 41.0°C produced both crystalline forms, and contacts in solutions above 43.5°C produced only anhydrous nuclei. The inability of the monohydrate to grow on anhydrous crystals in the same solution that forms the two crystalline phases with a single contact precludes a simple attrition mechanism of nuclei formation. For the same reason, the hypothetical mechanism involving parent crystal stabilization of pre-crystalline clusters, allowing the clusters to grow into nuclei, is also contradicted. A third, mechanism, which may be a combination of the two, is believed to apply.
Two-phase model of rotating nuclei
International Nuclear Information System (INIS)
Using the generator-coordinate method a model is formulated in which the nucleus is treated as a triaxial rotator with coupled normal and superconductive phases. Averaging the model hamiltonian over coherent states the effects of different orientations of the mass quadrupoloid with respect to the angular momentum are studied in the case of 156166Er nuclei. (Auth.)
Two-phase model of rotating nuclei
International Nuclear Information System (INIS)
Using the generator-coordinate method the model is formulated in which the nucleus is treated as a triaxial rotator with coupled normal and superconductive phases. Averaging the model Hamiltonian over coherent states the effects of different orientations of the mass quadrupoloid with respect to the angular momentum are studied in the case of 156Er and 166Er nuclei. (author)
Nucleon momentum and density distributions of nuclei
International Nuclear Information System (INIS)
In the framework of recently suggested density coherent fluctuations model the nucleon momentum and density distributions are examined. Nucleon momentum and density distributions are expressed in terms of the fluctuation's function, experimentally obtainable from the elastic electron-nuclei scattering. (author)
Heavy Mesons in Nuclear Matter and Nuclei
Tolos, Laura; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; Romanets, Olena; Salcedo, Lorenzo Luis; Torres-Rincon, Juan M
2014-01-01
Heavy mesons in nuclear matter and nuclei are analyzed within different frameworks, paying a special attention to unitarized coupled-channel approaches. Possible experimental signatures of the properties of these mesons in matter are addressed, in particular in connection with the future FAIR facility at GSI.
Heavy Mesons in Nuclear Matter and Nuclei
International Nuclear Information System (INIS)
Heavy mesons in nuclear matter and nuclei are analyzed within different frameworks, paying a special attention to unitarized coupled-channel approaches. Possible experimental signatures of the properties of these mesons in matter are addressed, in particular in connection with the future FAIR facility at GSI
Photodisintegration of p-process nuclei
Energy Technology Data Exchange (ETDEWEB)
Wagner, A.; Nair, C.; Erhard, M.; Bemmerer, D.; Beyer, R.; Junghans, A.; Kosev, K.; Rusev, G.; Schilling, K.D.; Schwengner, R. [Forschungszentrum Dresden-Rossendorf, 01314 Dresden (Germany); Grosse, E. [Forschungszentrum Dresden-Rossendorf, 01314 Dresden (Germany); Technische Universitaet Dresden, 01062 Dresden (Germany)
2009-07-01
The neutron deficient p-nuclei are shielded from the s- or r-process by stable isotopes. P-nuclei are likely to be formed in high temperature cosmic scenarios like exploding supernovae by photodisintegration reactions on heavy r- or s- seed nuclei. The lack of experimental information on energy-dependent cross sections especially for ({gamma},p) and ({gamma},{alpha}) reactions reduces the applicability of nucleosynthesis models. Using intense bremsstrahlung produced at the superconducting electron linear accelerator ELBE at Forschungszentrum Dresden-Rossendorf we investigated ({gamma},n), ({gamma},p) and ({gamma},{alpha}) reactions for the medium-mass p-nuclei {sup 92}Mo and {sup 144}Sm, as well as ({gamma},n) reactions for {sup 100}Mo and {sup 154}Sm by photo-activation. The lowest photoactivation yields have been measured in an underground laboratory. The photodisintegration of {sup 197}Au serves as a benchmark and it is compared to data measured previously with the positron annihilation technique.
Mass measurements of exotic nuclei with speg
International Nuclear Information System (INIS)
Masses of up to know unknown nuclei have been obtained in the present experiment with a total of 13 hours of beam for accumulation of data. Masses of 20N, 21N, 23O, 24F, 25F and 26F are given and compared to predictions from other references
Closed shells at drip-line nuclei
Dobaczewski, J.; Nazarewicz, W.; Werner, T. R.
1994-01-01
The shell structure of magic nuclei far from stability is discussed in terms of the self-consistent spherical Hartree-Fock-Bogoliubov theory. In particular, the sensitivity of the shell-gap sizes and the two-neutron separation energies to the choice of particle-hole and particle-particle components of the effective interaction is investigated.
Standard Model Masses and Models of Nuclei
Rivero, Alejandro
2003-01-01
We note an intriguing coincidence in nuclear levels, that the subshells responsible for doubly magic numbers happen to bracket nuclei at the energies of the Standard Model bosons. This could show that these bosons actually contribute to the effective mesons of nuclear models.
Energy Density Functional Approach to Superfluid Nuclei
Yu, Yongle; Bulgac, Aurel
2002-01-01
We show that within the framework of a simple local nuclear energy density functional (EDF), one can describe accurately the one-- and two--nucleon separation energies of semi--magic nuclei. While for the normal part of the EDF we use previously suggested parameterizations, for the superfluid part of the EDF we use the simplest possible local form compatible with known nuclear symmetries.
Coherent dissociation of relativistic 12N nuclei
International Nuclear Information System (INIS)
The dissociation of relativistic 12N nuclei having a momentum of 2 GeV/c per nucleon and undergoing the most peripheral interactions in a track emulsion is studied. The picture of charged topology of product ensembles of relativistic fragments and special features of their angular distributions are presented
Alpha-particle condensation in nuclei
International Nuclear Information System (INIS)
A round up of the present status of the conjecture that nα nuclei form an α-particle condensate in excited states close to the nα threshold is given. Experiments which could demonstrate the condensate character are proposed. Possible lines of further theoretical developments are discussed. (authors)
Alpha-particle condensation in nuclei
International Nuclear Information System (INIS)
A round-up of the present status of the conjecture that nα nuclei form an α-particle condensate in excited states close to the nα threshold is given. Experiments which could demonstrate the condensate character are proposed. Possible lines of further theoretical developments are discussed. (author)
Spectroscopic Studies of Exotic Nuclei at ISOLDE
2002-01-01
Experiment IS50 is designed to: a) Investigate the full range of the @b strength function of heavy (A~$>$~48)~K nuclei b)~Study the decay of isomeric states in n-deficient bromine nuclei (A~=~72 and 70). The heavy K isotopes appeared to have complex decay schemes, including feeding by the @b-decay of levels having open neutron channels (Beta decay energy Q(@b) exceeds neutron binding energy S^n); in addition, a large fraction of the delayed transitions populate excited levels in the daughter nuclei. The allowed @b-decay selects states in the daughter nucleus with wave functions having a large overlap with the initial state. Hence, the @b strength functions, deduced from these deca reveal simple structures correlated to the particle-hole excitation energies in the Ca nuclei. These results are valuable for the application of the shell-model calculations far from stability. The delayed neutron spectra are measured with a large area curved scintillator in coincidence either with high resolution Ge(Li) detectors, ...
Physics of the continuum of borromean nuclei
Energy Technology Data Exchange (ETDEWEB)
Vaagen, J.S.; Rogde, T. [Dept. of Physics, Univ. of Bergen (Norway); Danilin, B.V. [RRC The Kurchatov Inst., Kurchatov, Moscow (Russian Federation); Ershov, S.N. [JINR, Dubna, Moscow (Russian Federation); Thompson, I.J. [Dept. of Physics, Univ. of Surrey, Guildford (United Kingdom); Zhukov, M.V. [Chalmers Univ. of Technology and Goeteborg Univ., Goeteborg (Sweden); RNBT Collaboration
1998-06-01
The continuum states of two-neutron halo nuclei are calculated in the method of hyperspherical harmonics. Using DWIA theory appropriate for dilute halo matter we have probed the structure of the low-lying {sup 6}He continuum via calculations of charge-exchange and inelastic scattering. (orig.)
Nuclear mass systematics and exotic nuclei
International Nuclear Information System (INIS)
The importance of theoretical studies of nuclei for stability in checking and improving mass formulae is discussed. Several tests for existing mass formulae or systematics are considered. It is believed that most of the shortcomings found are due to shell effects not included in the formulae
Four-body correlations in nuclei
Sambataro, M
2015-01-01
Low-energy spectra of 4$n$ nuclei are described with high accuracy in terms of four-body correlated structures ("quartets"). The states of all $N\\geq Z$ nuclei belonging to the $A=24$ isobaric chain are represented as a superposition of two-quartet states, with quartets being characterized by isospin $T$ and angular momentum $J$. These quartets are assumed to be those describing the lowest states in $^{20}$Ne ($T_z$=0), $^{20}$F ($T_z$=1) and $^{20}$O ($T_z$=2). We find that the spectrum of the self-conjugate nucleus $^{24}$Mg can be well reproduced in terms of $T$=0 quartets only and that, among these, the $J$=0 quartet plays by far the leading role in the structure of the ground state. The same conclusion is drawn in the case of the three-quartet $N=Z$ nucleus $^{28}$Si. As an application of the quartet formalism to nuclei not confined to the $sd$ shell, we provide a description of the low-lying spectrum of the proton-rich $^{92}$Pd. The results achieved indicate that, in 4$n$ nuclei, four-body degrees of f...
Statistical properties of hot zirconium nuclei
International Nuclear Information System (INIS)
The statistical properties and stability of hot nuclei have been studied, using Hartree-Fock calculations and the temperature dependence of these properties has been investigated. In this work, the statistical theory was used to extract the properties of Zr isotopes
Shell structure evolution in nuclei: new paradigm
International Nuclear Information System (INIS)
Shell structure evolution in nuclei situated at the extremes of neutron and proton excess are investigated using in-beam gamma spectroscopy techniques with radioactive beams at GANIL. A selection of results obtained very recently is presented: i) The reduced transition probabilities B(E2;01+ → 2+) of the neutron-rich 74Zn and 70Ni nuclei have been measured using Coulomb excitation at intermediate energy. An unexpected large proton core polarization has been found in 70Ni and interpreted as being due to the monopole interaction between the neutron g9/2 and protons f7/2 and f5/2 spin-orbit partner orbitals. ii) Two proton knock-out reactions has been performed in order to study the most neutron-rich nuclei at the N=28 shell closure. Gamma rays spectra and momentum distribution have been obtained for 42Si and neighboring nuclei. Evidences has been found for a deformed structure for 42Si and for the disappearance of the spherical N=28 shell effect. iii) The in-beam gamma spectroscopy of 36Ca performed using neutron knock-out reactions revealed that N=16 is as large sub-shell closure as large as Z=16 in 36S. The uniquely large excitation energy difference of the first 2+ state in these mirror nuclei turns out to be a consequence of the relatively pure neutron (in 36Ca) or proton (in 36S) 1p(d3/2)-1h(s1/2) nature. (author)
Spectroscopic factors for two-proton radioactive nuclei
Indian Academy of Sciences (India)
Chinmay Basu
2004-11-01
Spectroscopic factors for two-proton emitting nuclei are discussed in the framework of the BCS (Bardeen–Cooper–Schriefer) model. Calculations carried out for the two-proton unstable 45Fe, 48Ni and 54Zn nuclei are presented.
PPCO: polarizational-polarizational correlation from oriented nuclei
International Nuclear Information System (INIS)
A Polarizational-Polarizational Correlation from Oriented Nuclei (PPCO) measuring method is described. The method allows one to determine spin and parity of the excited states of nuclei as well as multipole gamma transitions
Coriolis mixing in the K=0 and 1 rotational bands of 180-182Ta
International Nuclear Information System (INIS)
It is now well established that the Coriolis force plays an important role in influencing the complex spectra of deformed nuclei. However, the different possibilities of angular momentum coupling and their mixings further enhance the complexity of rotational spectrum of odd-odd nuclei. In the present paper, we investigate the role of Newby shift in two-quasiparticle bands of odd-odd 180-182Ta nuclei. The mismatch about the placement of a 12+ level in 180Ta is also resolved
Level density parameter for nuclei with few nucleons above magic number nuclei Z = 82
International Nuclear Information System (INIS)
Since nuclei with extreme neutron richness formed in collisions, or otherwise, or obtained as fission fragments, may be in an excited state, they require a thermodynamical approach in which both the spin degree of freedom and temperature effects have been incorporated. This is similar to the earlier works where these effects have been incorporated to reproduce microscopic fluctuations in high spin nuclei. This spin degree of freedom inherently involves deformation and structural or shape changes
Sturmian method for light exotic nuclei
International Nuclear Information System (INIS)
This research concentrates on halo like systems: Abnormally large light nuclei at the neutron dripline which exhibit a clear separation between a ''normal'' core nucleus and a loosely bound low-density veil of neutrons. This phenomenon offers very interesting possibilities for studies of neutron matter under extreme conditions in a low-density background. This work is focused on few-body theory for light halo-like nuclei: Borromean systems, i.e. while the three-body-like system is bound (but very loosely) none of the binary subsystems are bound. Three representatives were closely investigated: 6He. 11Li and 14Be. The aim of this work was to gain an insight how important are for light exotic nuclei different aspects of three-body description. The investigation was performed by applying for light halo systems a few-body model originally developed for ordinary heavy well-bound nuclei. Special features of the Borromean systems, most important of which are enormous size and weak binding, suggested the need for modifications of the method to allow more subtle treatment. Theoretical considerations and numerical tests provided evidences for importance to accurately include certain effects into the description scheme. Our calculations are based on Bisturmian three-body method. The two-particle (three body) bound state is expanded on a set of Sturm-Liouville basis functions. These basis functions are derived from a well-depth-prescription method where single-particle wave functions are used which are eigenstates in a Saxon-Woods potential with one-nucleon separation energy ε each. The basis set is in principle infinite, but discrete, and corresponds to the intuitive picture of increasingly deeper wells, all able to support bound motion with energy ε. The three-body bound state is found by diagonalising with the neutron-core and neutron-neutron potentials simultaneously. Pauli blocking is taken into account by projecting out those basis states coinciding with occupied
Shell evolution of atomic nuclei due to the tensor force
International Nuclear Information System (INIS)
Magic numbers and shell structure are extremely important for the study of atomic nuclei, as they determine the mass, the shape of surface, and the limit of the existence of nuclei, and have been considered to be universal over all nuclei, since Mayer and Jensen (1949). However, recent studies on exotic nuclei with large variations of proton or neutron numbers indicate that the changes of magic numbers and shell structure, i.e, shell evolution, arise due to nuclear forces, in particular the tensor force, demolishing this universality. We shall present an overview of such a paradigm shift emerging in exotic nuclei. (author)
Giant dipole resonance in highly excited nuclei
Dang, Nguyen Dinh
2013-01-01
The evolution of the giant dipole resonance's (GDR) width and shape at finite temperature $T$ and angular momentum $J$ is described within the framework of the phonon damping model (PDM). The PDM description is compared with the established experimental systematics obtained from heavy-ion fusion and inelastic scattering of light particles on heavy target nuclei, as well as with predictions by other theoretical approaches. Extended to include the effect of angular momentum $J$, its strength functions have been averaged over the probability distributions of $T$ and $J$ for the heavy-ion fusion-evaporation reaction, which forms the compound nucleus $^{88}$Mo at high $T$ and $J$. The results of theoretical predictions are found in excellent agreement with the experimental data. The predictions by PDM and the heavy-ion fusion data are also employed to predict the viscosity of hot medium and heavy nuclei.
Heavy Nuclei Photofission at Intermediate Energies
Deppman, A; Guimaraes, V; Demekhina, N A; Karapetyan, G S
2013-01-01
In the present work the yields of fission fragments, from Bremsstrahlung induced fission of 232Th, 238U targets, were reproduced by CRISP model calculations, to which a multimodal fission option had been added. An extension of the calculation to the properties of the fission products is presented. Dividing the fissioning nuclei according to their fissionability, an approach which accounts for the contribution of symmetric and asymmetric fission is introduced. It allows to calculate the main parameters of the fission fragment charge distribution: the most probable charge for a given fission product mass chain and the width parameter. Furthermore, it reproduces the features of fragment mass distribution, and evaluates the fissility of fissioning nuclei in photon-induced fission. A comparison between the results of this calculation and experimental data is accomplished.
Antiproton Induced Fission and Fragmentation of Nuclei
2002-01-01
The annihilation of slow antiprotons with nuclei results in a large highly localized energy deposition primarily on the nuclear surface. \\\\ \\\\ The study of antiproton induced fission and fragmentation processes is expected to yield new information on special nuclear matter states, unexplored fission modes, multifragmentation of nuclei, and intranuclear cascades.\\\\ \\\\ In order to investigate the antiproton-nucleus interaction and the processes following the antiproton annihilation at the nucleus, we propose the following experiments: \\item A)~Measurement of several fragments from fission and from multifragmentation in coincidence with particle spectra, especially neutrons and kaons. \\item B)~Precise spectra of $\\pi$, K, n, p, d and t with time-of-flight techniques. \\item C)~Installation of the Berlin 4$\\pi$ neutron detector with a 4$\\pi$ Si detector placed inside for fragments and charged particles. This yields neutron multiplicity distributions and consequently distributions of thermal excitation energies and...
Clustering in stable and exotic nuclei
Beck, C
2016-01-01
Since the pioneering discovery of molecular resonances in the 12C+12C reaction more than half a century ago a great deal of research work has been undertaken in alpha clustering. Our knowledge on physics of nuclear molecules has increased considerably and nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. The occurrence of "exotic" shapes and Bose-Einstein alpha condensates in light N=Z alpha-conjugate nuclei is investigated. Various approaches of the superdeformed and hyperdeformed bands associated with quasimolecular resonant structures are presented. Evolution of clustering from stability to the drip-lines is examined: clustering aspects are, in particular, discussed for light exotic nuclei with large neutron excess such as neutron-rich Oxygen isotopes with their complete spectroscopy.
Electron interactions with nuclei: Progress report
International Nuclear Information System (INIS)
High energy is being conducted at the Stanford Linear Accelerator Center. This includes inclusive electron scattering, electroexcitation of the delta in nuclei, longitudinal and transverse response in the quasi-elastic region, the q2 dependence of 4He(e,e'p), deep inelastic scattering from nuclei, transverse and longitudinal response in the resonance region, nuclear physics at PEP and 1.6 GeV spectrometer properties. Additional high energy research on electron scattering on 3H and 3He and the nuclear structure of 205Tl and 206Pb are being conducted at MIT-Bates. Other activities are being carried out at Saclay and research and development for Monte Carlo studies of Hall A spectrometers for CEBAF is being conducted
Photoproduction of pi0-mesons from nuclei
Krusche, B; Ahrens, J; Annand, J R M; Beck, R; Bloch, Felix; Fog, L S; Hornidge, D; Janssen, S; Kotulla, M; McGeorge, J C; MacGregor, I J D; Messchendorp, J; Metag, V; Mosel, U; Novotny, R; Owens, R O; Pfeiffer, M; Sanderson, R; Schadmand, S; Watts, D P
2004-01-01
Photoproduction of neutral pions from nuclei (carbon, calcium, niobium, lead) has been studied for incident photon energies from 200 MeV to 800 MeV with the TAPS detector using the Glasgow photon tagging spectrometer at the Mainz MAMI accelerator. Data were obtained for the inclusive photoproduction of neutral pions and the partial channels of quasifree single pi0, double pi0, and pi0pi+/- photoproduction. They have been analyzed in terms of the in-medium behavior of nucleon resonances and the pion - nucleus interaction. They are compared to earlier measurements from the deuteron and to the predictions of a Boltzmann-Uehling-Uhlenbeck (BUU) transport model for photon induced pion production from nuclei.
Simulation of nuclei morphologies for binary alloy
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
We study the critical nuclei morphologies of a binary alloy by the string method. The dynamic equation of the string, connecting the metastable phase (liquid) and stable phase (solid), is governed by Helmholtz free energy for the binary alloy system at a given temperature. The stationary string through the critical nucleus (saddle point) is obtained if the relaxation time of the string is su?ciently large. The critical nucleus radius and energy barrier to nucleation of a pure alloy with isotropic interface energy in two and three dimensions are calculated, which are consistent with the classical nucleation theory. The critical nuclei morphologies are sensitive to the anisotropy strength of interface energy and interface thickness of alloy in two and three dimensions. The critical nucleus and energy barrier to nucleation become smaller if the anisotropy strength of the interface energy is increased, which means that it is much easier to form a stable nucleus if the anisotropy of the interface energy is considered.
Cumulative processes and quark distribution in nuclei
International Nuclear Information System (INIS)
Assuming existence of multiquark (mainly 12q) bags in nuclei the spectra of cumulative nucleons and mesons produced in high-energy particle-nucleus collisions are discussed. The exponential form of quark momentum distribution in 12q-bag (agreeing well with the experimental data on lepton-nucleus interactions at large q2) is shown to result in quasi-exponential distribution of cumulative particles over the light-cone variable αsub(B). The dependence of f(αsub(B); psub(perpendicular)) (where psub(perpendicular) is the transverse momentum of the bag) upon psub(perpendicular) is considered. The yields of cumulative resonances as well as effects related to the u- and d-quark distributions in N > Z nuclei being different are dicscussed
Nuclei at HERA and heavy ion physics
Energy Technology Data Exchange (ETDEWEB)
Gavin, S. [Brookhaven National Lab., Upton, NY (United States); Strikman, M. [Pennsylvania State Univ., University Park, PA (United States)
1995-12-31
Copies of 16 viewgraph sets from a workshop held at Brookhaven National Laboratory, 17-18 November, 1995. Titles of talks: HERA: The Present; HERA: Potential with Nuclei; Review of Hadron-Lepton Nucleus Data; Fermilab E665: results in muon scattering; Interactions of Quarks and Gluons with Nuclear Matter; Rescattering in Nuclear Targets for Photoproduction and DIS; Structure Functions and Nuclear Effect at PHENIX; Probing Spin-Averaged and Spin-Dependent Parton Distributions Using the Solenoidal Tracker at RHIC (STAR); Jet Quenching in eA, pA, AA; Nuclear Gluon Shadowing via Continuum Lepton Pairs; What can we learn from HERA with a colliding heavy ion beam? The limiting curve of leading particles at infinite A; Coherent Production of Vector Mesons off Light Nuclei in DIS; A Model of High Parton Densities in PQCD; Gluon Production for Weizaecker-Williams Field in Nucleus-Nucleus Collisions; Summary Talk.
Nuclear structure investigations on spherical nuclei
International Nuclear Information System (INIS)
This report discusses the following topics: electron scattering studies on spherical nuclei; electron scattering from collective states in deformed nuclei; proton and pion scattering studies; 12C(e,e'p) and 16O(e,e'p); 12C(e,e'α) and 16O(e,e'α); studies at high q at Bates; measurements with rvec e at Bates; 12C(γ,p); future directions in giant resonance studies; proton knockout from 16O; quasielastic studies at Bates; triple coincidence studies of nuclear correlations; contributions to (e,e'2p) at KIKHEF; contributions to instrumentation at CEBAF; instrumentation development at UNH; the Bates large acceptance spectrometer toroid; shell model and core polarization calculations; and the relativistic nuclear model
Heavy fragments emission from highly excited nuclei
International Nuclear Information System (INIS)
In the intermediate energy domain, the high amount of excitation energy and angular momentum deposited in the nuclei allow the emission of fragments heavier than the usual evaporation particles to have a significant cross section. The study of the properties characterizing the production of these fragments could be a good way to investigate the mechanisms which contribute to formation of hot nuclei and the limits for linear momentum and excitation energy deposited in the nucleus, as well as possible deformations related to these high temperatures. These phenomena might depend much on the center of mass energies and angular momenta. In order to analyse these entrance channel effects3, we chose to study the following systems: Kr + C, Kr + Al, Kr + Ti at an incident energy of the Kr beam delivered by GANIL of 2216 MeV. 7 figs, 1 tab, 9 refs
Nuclei at HERA and heavy ion physics
International Nuclear Information System (INIS)
Copies of 16 viewgraph sets from a workshop held at Brookhaven National Laboratory, 17-18 November, 1995. Titles of talks: HERA: The Present; HERA: Potential with Nuclei; Review of Hadron-Lepton Nucleus Data; Fermilab E665: results in muon scattering; Interactions of Quarks and Gluons with Nuclear Matter; Rescattering in Nuclear Targets for Photoproduction and DIS; Structure Functions and Nuclear Effect at PHENIX; Probing Spin-Averaged and Spin-Dependent Parton Distributions Using the Solenoidal Tracker at RHIC (STAR); Jet Quenching in eA, pA, AA; Nuclear Gluon Shadowing via Continuum Lepton Pairs; What can we learn from HERA with a colliding heavy ion beam? The limiting curve of leading particles at infinite A; Coherent Production of Vector Mesons off Light Nuclei in DIS; A Model of High Parton Densities in PQCD; Gluon Production for Weizaecker-Williams Field in Nucleus-Nucleus Collisions; Summary Talk
Effective Field Theory for Lattice Nuclei
Barnea, N.; Contessi, L.; Gazit, D.; Pederiva, F.; van Kolck, U.
2015-02-01
We show how nuclear effective field theory (EFT) and ab initio nuclear-structure methods can turn input from lattice quantum chromodynamics (LQCD) into predictions for the properties of nuclei. We argue that pionless EFT is the appropriate theory to describe the light nuclei obtained in LQCD simulations carried out at pion masses heavier than the physical pion mass. We solve the EFT using the effective-interaction hyperspherical harmonics and auxiliary-field diffusion Monte Carlo methods. Fitting the three leading-order EFT parameters to the deuteron, dineutron, and triton LQCD energies at mπ≈800 MeV , we reproduce the corresponding alpha-particle binding and predict the binding energies of mass-5 and mass-6 ground states.
Effective Field Theory for Lattice Nuclei
Barnea, N; Gazit, D; Pederiva, F; van Kolck, U
2013-01-01
We show how nuclear effective field theory (EFT) and ab initio nuclear-structure methods can turn input from lattice quantum chromodynamics (LQCD) into predictions for the properties of nuclei. We argue that pionless EFT is the appropriate theory to describe the light nuclei obtained in recent LQCD simulations carried out at pion masses much heavier than the physical pion mass. We solve the EFT using the effective-interaction hyperspherical harmonics and auxiliary-field diffusion Monte Carlo methods. Fitting the three leading-order EFT parameters to the deuteron, dineutron and triton LQCD energies at $m_{\\pi}\\approx 800$ MeV, we reproduce the corresponding alpha-particle binding and predict the binding energies of mass-5 and 6 ground states.
Octupole vibrations in rare-earth nuclei
Energy Technology Data Exchange (ETDEWEB)
Buessing, Marc Andre; Elvers, Michael; Endres, Janis; Hasper, Jens; Zilges, Andreas [Institut fuer Kernphysik, Universitaet Koeln, D-50823 Koeln (Germany)
2009-07-01
The systematics of octupole vibrations in the region of rare-earth nuclei are still not well understood. First test measurements have been carried out at the FN Tandem accelerator of the University of Cologne. The gamma-ray spectroscopy was performed at the highly-efficient HORUS spectrometer which consists of 16 High-Purity Germanium detectors. The nucleus {sup 158}Dy has been investigated via the reactions {sup 156}Gd({alpha},2n) and {sup 149}Sm({sup 12}C,3n), furthermore the nucleus {sup 154}Dy was studied via the reaction {sup 144}Nd({sup 14}N,4n). In addition measurements with the (p,p{sup '}) reaction were carried out on the nuclei {sup 142}Nd and {sup 172}Yb. First results of these measurements are shown in the context of existing data for this mass region.
Isospin Mixing In N $\\approx$ Z Nuclei
Srnka, D; Versyck, S; Zakoucky, D
2002-01-01
Isospin mixing in N $\\approx$ Z nuclei region of the nuclear chart is an important phenomenon in nuclear physics which has recently gained theoretical and experimental interest. It also forms an important nuclear physics correction in the precise determination of the $ft$-values of superallowed 0$^+ \\rightarrow 0^+ \\beta$- transitions. The latter are used in precision tests of the weak interaction from nuclear $\\beta$- decay. We propose to experimentally measure isospin mixing into nuclear ground states in the N $\\approx$ Z region by determining the isospin forbidden Fermi-component in the Gamow-Teller dominated $J^{\\pi} \\rightarrow J^{\\pi} \\beta$- transitions through the observation of anisotropic positron emission from oriented nuclei. First measurements were carried out with $^{71}$As and are being analyzed now.
Octupole correlations in U and Pu nuclei
International Nuclear Information System (INIS)
We study the even-even U and Pu nuclei in the framework of the spdf interacting boson model. Analysis of the systematics of positive and negative parity bands, together with the E1, E2, and E3 transitions, suggests that the properties of low-lying states can be understood without the introduction of stable octupole deformation. Double octupole phonon characteristics are also identified in certain low-lying 0+ excited states in U and Pu
QCD Effects in Particle Production on Nuclei
Hoyer, Paul
1993-01-01
I discuss some questions related to hard scattering processes in nuclei and corrections to the leading twist approximation. The QCD factorization theorem requires that high energy partons do not lose energy while traversing the nucleus. I explain the physical reason for this. The theorem also states that spectator partons, not involved in the hard collision, have no influence on the inclusive cross section. Important spectator effects are, however, seen in the data for certain reactions and i...
Deuteron Stripping on Nuclei at Intermediate Energies
Kovalchuk, V I
2016-01-01
A general analytical expression for the double differential cross section of inclusive deuteron stripping reaction on nuclei at intermediate energies of incident particles was obtained in the diffraction approximation. Nucleon-nucleus phases were calculated in the framework of Glauber formalism and making use of the double-folding potential. The exact wave function of deuteron with correct asymptotics at short and long distances between nucleons was used. The calculated angular dependencies of cross sections are in good agreement with corresponding experimental data.
Mean Field Studies of Exotic Nuclei}
Chinn, C. R.; Umar, A. S.; Vallières, M.; Strayer, M. R.
1994-01-01
{Full three dimensional static and dynamic mean field calculations using collocation basis splines with a Skyrme type Hamiltonian are described. This program is developed to address the difficult theoretical challenges offered by exotic nuclei. Ground state and deformation properties are calculated using static Hartree-Fock, Hartree-Fock+BCS and constrained Hartree-Fock models. Collective properties, such as reaction rates and resonances, are described using a new alternate method for evaluat...
Fission Barriers of Compound Superheavy Nuclei
Pei, J C; Nazarewicz, W.; Sheikh, J. A.; Kerman, A. K.
2009-01-01
The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. In this work, we investigate the isentropic fission barriers by means of the self-consistent nuclear density functional theory. The relationship between isothermal and isentropic descriptions is demonstrated. Calculations have been carried out for $^{264}$Fm, $^{272}$Ds, $^{278}$112, $^{292}$114, and $^{312}$124. F...
Stability and Production of Superheavy Nuclei
Moller, Peter; Nix, J. Rayford
1997-01-01
Beyond uranium heavy elements rapidly become increasingly unstable with respect to spontaneous fission as the proton number Z increases, because of the disruptive effect of the long-range Coulomb force. However, in the region just beyond Z = 100 magic proton and neutron numbers and the associated shell structure enhances nuclear stability sufficiently to allow observation of additional nuclei. Some thirty years ago it was speculated that an island of spherical, relatively stable superheavy nu...
On stable nuclei mass charge distribution
International Nuclear Information System (INIS)
The charge distribution of mass averaged stable nuclei about trajectory that cross the points with proton and neutron numbers nearly magic is investigated. It is shown that the charge distribution of ΔM have a symmetric property on nucleus charge z=45 and mass number A=103. The distribution of ΔM is compared with charge distribution of product of 206Th fission in framework of statistic model. 4 refs.; 1 fig. (author)
Pairing and specific heat in hot nuclei
Gambacurta, Danilo; Lacroix, Denis; Sandulescu, Nicu
2013-01-01
The thermodynamics of pairing phase-transition in nuclei is studied in the canonical ensemble and treating the pairing correlations in a finite-temperature variation after projection BCS approach (FT-VAP). Due to the restoration of particle number conservation, the pairing gap and the specific heat calculated in the FT-VAP approach vary smoothly with the temperature, indicating a gradual transition from the superfluid to the normal phase, as expected in finite systems. We have checked that th...
Nuclear magnetic resonance of thermally oriented nuclei
International Nuclear Information System (INIS)
The more recent developments in the spectroscopy of Nuclear Magnetic Resonance on Oriented Nuclei (NMRON) are reviewed; both theoretical and experimental advances are summarised with applications to On-Line and Off-Line determination of magnetic dipole and electric quadrupole hyperfine parameters. Some emphasis is provided on solid state considerations with indications of where likely enhancements in technique will lead in conventional hyperfine studies. (orig.)
On Closed Shells in Nuclei. II
Mayer, M. G.
1949-04-01
Discussion on the use of spins and magnetic moments of the even-odd nuclei by Feenberg and Nordheim to determine the angular momentum of the eigenfunction of the odd particle; discussion of prevalence of isomerism in certain regions of the isotope chart; tabulated data on levels of square well potential, spectroscopic levels, spin term, number of states, shells and known spins and orbital assignments.
How do nuclei really vibrate or rotate
International Nuclear Information System (INIS)
By means of the adiabatic cranking model the properties of the current and velocity fields of nuclear quadrupole vibrations for even-even nuclei in the rare-earth region are investigated. BCS correlated wave functions based on the Nilsson single particle Hamiltonian have been used. The current fields are analyzed in terms of vector spherical harmonics. The realistic microscopic currents show a vortex structure not present in the classical irrotational flow. The microscopic origin of the vortex structure is investigated
Fayans functional for deformed nuclei. Uranium region
Tolokonnikov, S V; Kortelainen, M; Lutostansky, Yu S; Saperstein, E E
2015-01-01
Fayans energy density functional (EDF) FaNDF^0 has been applied to the nuclei around uranium region. Ground state characteristics of the Th, U and Pu isotopic chains, up to the two-neutron drip line, are found and compared with predictions from several Skyrme EDFs. The two-neutron drip line is found for FaNDF^0, SLy4 and SkM^* EDFs for a set of elements with even proton number, from Pb up to Fm.
Nuclear moments of radioactive nuclei. Final report
International Nuclear Information System (INIS)
An unsuccessful attempt was made to study nuclear moments of radioactive nuclear using laser spectroscopy. Although preliminary tests had indicated a sensitivity sufficient to observe signals of fluxes less than one atom/s no resonance fluorescence was detected. Activity measurements showed several hundred nuclei per second were in the beam; therefore it was postulated that, due to the the reactivity of the 126Ba and sodium used, contaminants were the probable source of negative results. 3 refs., 2 figs
On minor black holes in galactic nuclei
McKernan, Barry; Ford, K. E. Saavik; Yaqoob, Tahir; Winter, Lisa M.
2011-01-01
Small and intermediate mass black holes should be expected in galactic nuclei as a result of stellar evolution, minor mergers and gravitational dynamical friction. If these minor black holes accrete as X-ray binaries or ultra-luminous X-ray sources, and are associated with star formation, they could account for observations of many low luminosity AGN or LINERs. Accreting and inspiralling intermediate mass black holes could provide a crucial electromagnetic counterpart to strong gravitational ...
Chiral bags, skyrmions and quarks in nuclei
International Nuclear Information System (INIS)
Recent developments on an intriguing connection between the quark-bag description of the baryons (nucleons in particular) and the Skyrmion model are discussed in terms of the constraints coming from chiral anomalies. Topics treated are the leaking baryon charge, axial charge and energy density; the role of chiral anomalies; the role of Skyrme's quartic term and the connection to the meson degrees of freedom; and finally some qualitative implications in nuclei. The presentation is purposely descriptive and intuitive instead of mathematically precise
The interactions of heavy mesons with nuclei
International Nuclear Information System (INIS)
Data obtained from interactions of heavy mesons with nuclei is reviewed. Nucleon-nucleon reactions followed by p + d (or d+p) reactions and nucleon-nucleus reactions are described. A meson decay experiment is discussed. The fundamental importance of S11 (1535) in η-nucleon is stressed. The propagation of resonances through nuclear matter is considered. Improvements in this research field require the developement of a new accelerator generation
Structure of residual interaction in spherical nuclei
Kamchatnov, A. M.; Nosov, V. G.
2003-01-01
The effect of residual interaction between nucleons (quasiparticles) on shell oscillations of the masses of spherical nuclei is considered. The singularity of the ground state energy of the system in the vicinity of nucleon magic numbers is analyzed for various types of the dependence of residual interaction on orbital momentum of the quasiparticle. It is shown that only the perturbation band width of the Fermi distribution due to residual interaction which is proportional to the square of th...
Microscopic approaches to complex excitations in nuclei
Bianco, Davide
2011-01-01
Studying the spectroscopic properties of nuclei in terms of their nucleonic degrees of freedom is one of the most challenging tasks in nuclear structure physics. In principle, the nuclear Shell Model (SM) allows to solve exactly the nuclear eigenvalue problem. Its actual implementation, however, presents several problems. One has first to turn the eigenvalue problem in the full space into an equivalent one formulated in a restricted model space. In order to achieve this step, it is necess...
Light nuclei production in heavy ion collisions
K.H. Khan; Suleymanov, M. K.; Wazir, Z.; Khan, E. U.; Haseeb, Mahnaz Q.; Ajaz, M.
2009-01-01
Light nuclei production as a result of nuclear coalescence effect can give some signals on final state of Quark Gluon Plasma formation. We are studying the behavior of nuclear modification factor as a function of different variables using the simulated data coming from the FASTMC generator. This data is necessary to extract information on coalescence mechanism from experimental data on high energy nuclear-nuclear interactions.
Fission of nuclei far from stability
International Nuclear Information System (INIS)
The secondary-beam facility of GSI provided the technical equipment for a new kind of fission experiment. Fission properties of short-lived neutron-deficient nuclei have been investigated in inverse kinematics. The measured element distributions reveal new kinds of systematics on shell structure and even-odd effects and lead to an improved understanding of structure effects in nuclear fission. Prospects for further experimental studies are discussed. (orig.)
Search for nuclei containing two strange quarks
International Nuclear Information System (INIS)
This paper discusses a search for nuclei containing two strange quarks performed at Brookhaven National Laboratory. The goals and approach of experiment E885 are reviewed. Preliminary missing mass spectra for a subset of the data are presented, showing sensitivity for Ξ hypernuclei and H particle searches. Existence of an angular correlation between pions in the sequential decay of ΛΛ hypernuclei is suggested on theoretical grounds
Study of shape changes of rotating nuclei
International Nuclear Information System (INIS)
The systematic calculation of the rotational band heads was performed for 65 < Z < 81 nuclei. The equilibrium deformations have been determined for each band-head separately and a comparison with several hundreds of levels known experimentally has been given. Also, the calculations of the total energy surfaces with pairing using the mean-pairing field ansatz have been given. The first results were illustrated on the shape-coexistence effects in N = 87 isotones
Multifragmentation of hot and compressed nuclei
International Nuclear Information System (INIS)
A proper description of this phenomenon has to go beyond the conventional mean field approaches. One usually refer to the important many-body correlations as the fluctuations of the mean field. They become especially important when the density of the medium becomes small. Several theoretical approaches attempt to understand and describe the multifragmentation of nuclei. We present the main physical ideas which we have used to describe the onset of multifragmentation. We also present the most interesting results that we have obtained
Green's function calculations of light nuclei
Sun, ZhongHao; Wu, Qiang; Xu, FuRong
2016-09-01
The influence of short-range correlations in nuclei was investigated with realistic nuclear force. The nucleon-nucleon interaction was renormalized with V lowk technique and applied to the Green's function calculations. The Dyson equation was reformulated with algebraic diagrammatic constructions. We also analyzed the binding energy of 4He, calculated with chiral potential and CD-Bonn potential. The properties of Green's function with realistic nuclear forces are also discussed.
Fourth nuclear theory workshop 'clusters in nuclei'
International Nuclear Information System (INIS)
This document gathers the slides of 3 lectures: 1) the R-matrix method, 2) from realistic NN-interactions to cluster structures in nuclei - in this part the unitary correlation operator method (UCOM) is applied to 3 domains: the fermionic molecular dynamics, the Hartree-Fock approximation, and the no-core shell model -, and 3) the shell model point of view on cluster states
History of cluster structure in nuclei
International Nuclear Information System (INIS)
This contribution focuses on the history of clustering in nuclei. Elementary alpha models treat light 4-n nuclei as systems of alpha-particles obeying Bose Einstein statistics. These models neglect the internal structure of the alphas and effects of the Pauli principle between the nucleons in the alpha clusters are taken into account by introducing a short range repulsion between the clusters. The orthogonality condition model and excluded state model treat the alphas as elementary particles, but include effects of the Pauli principle in a more microscopic way. Wheeler's resonating group method is a fully microscopic theory for calculating properties of cluster systems. It makes simplifying assumptions about the internal structure of the clusters but takes the Pauli principle explicitly. Hartree-Fock theory can be used for a microscopic theory of nuclear structure but it is not suitable for light nuclei because there is no well defined mean field. Margenau's microscopic cluster model avoids this problem by using trial wave functions which are antisymmetrized products of parametrized single particle wave functions
Fusion excitation functions involving transitional nuclei
Energy Technology Data Exchange (ETDEWEB)
Rehm, K.E.; Jiang, C.L.; Esbensen, H. [and others
1995-08-01
Measurements of fusion excitation functions involving transitional nuclei {sup 78}Kr and {sup 100}Mo showed a different behavior at low energies, if compared to measurements with {sup 86}Kr and {sup 92}Mo. This points to a possible influence of nuclear structure on the fusion process. One way to characterize the structure of vibrational nuclei is via their restoring force parameters C{sub 2} which can be calculated from the energy of the lowest 2{sup +} state and the corresponding B(E2) value. A survey of the even-even nuclei between A = 28-150 shows strong variations in C{sub 2} values spanning two orders of magnitude. The lowest values for C{sub 2} are observed for {sup 78}Kr, {sup 104}Ru and {sup 124}Xe followed by {sup 74,76}Ge, {sup 74,76}Se, {sup 100}Mo and {sup 110}Pd. In order to learn more about the influence of {open_quotes}softness{close_quotes} on the sub-barrier fusion enhancement, we measured cross sections for evaporation residue production for the systems {sup 78}Kr + {sup 104}Ru and {sup 78}Kr + {sup 76}Ge with the gas-filled magnet technique. For both systems, fusion excitation functions involving the closed neutron shell nucleus {sup 86}Kr were measured previously. The data are presently being analyzed.
Few-Body Models of Light Nuclei
Ershov, S. N.; Vaagen, J. S.; Zhukov, M. V.
2015-06-01
Experiments confirm a variety of cluster structures in many light nuclei. The observation of nuclear halos at drip-lines has accentuated the question of the degrees of freedom for bound and low-lying continuum states. In these cases the many-body dynamics of nuclear structure may be well approximated by few-body cluster models that often suggest conceptually simple approaches explaining successfully many features of light nuclei. Thus few-body cluster models have been successfully used for description of the nuclear structure of weakly bound halo nuclei and their emergent cluster degrees of freedom. They have attractive features supplying in a most transparent way the asymptotic behavior and continuum properties of weakly bound systems. Such models assume a separation in internal cluster (core) degrees of freedom and the relative motion of few-body constituents. Such separation is only an approximation, and low-lying states appear where the core cannot be considered as inert system and additional degrees of freedom connected to excited core states have to be taken into account. For fixed total angular momentum a coupling to excited core states having different spins involves additional partial waves into the consideration. This allows to account for some emergent (collective) core degrees of freedom and gives a more realistic description of nuclear properties. It is an analogue to increasing the number of shells within the framework of shell-model approaches. Some examples from recent nuclear structure exploration within few-body halo cluster models are presented.
A Search for "Dwarf" Seyfert Nuclei; 4, Nuclei with Broad H-$\\alpha$ Emission
Ho, L C; Sargent, W L W; Peng, C Y; Ho, Luis C.; Filippenko, Alexei V.; Sargent, Wallace L. W.; Peng, Chien Y.
1997-01-01
We present the results of an optical spectroscopic survey designed to search for low-luminosity, "dwarf" Seyfert nuclei in a magnitude-limited sample of 486 bright, northern galaxies. Moderate-resolution spectra of exceptionally high quality were obtained in part to detect broad H-alpha emission, similar in character to, but much weaker than, the broad permitted lines that define type 1 Seyfert nuclei. One of the primary goals of the survey is to better quantify the faint end of the luminosity function of active galactic nuclei. This paper describes the subset of nuclei showing definite or probable evidence of broad H-alpha emission. We outline the procedures for determining the presence of this elusive spectral feature, steps for its quantitative measurement, and the associated systematic errors. Of the 211 emission-line galaxies classified as having Seyfert or LINER nuclei in our survey, the broad H-alpha line was detected with confidence in 34 objects, and with less certainty in another 12. Most of the det...
Interaction of eta mesons with nuclei
Kelkar, N. G.; Khemchandani, K. P.; Upadhyay, N. J.; Jain, B. K.
2013-06-01
Back in the mid-1980s, a new branch of investigation related to the interaction of eta mesons with nuclei came into existence. It started with the theoretical prediction of possible exotic states of eta mesons and nuclei bound by the strong interaction and later developed into an extensive experimental program to search for such unstable states as well as understand the underlying interaction via eta-meson producing reactions. The vast literature of experimental as well as theoretical works that studied various aspects of eta-producing reactions such as the π+n → ηp, pd → 3Heη, p 6Li → 7Be η and γ 3He → η X, to name a few, had but one objective in mind: to understand the eta-nucleon (ηN) and hence the η-nucleus interaction which could explain the production data and confirm the existence of some η-mesic nuclei. In spite of these efforts, there remain uncertainties in the knowledge of the ηN and hence the η-nucleus interaction. Therefore, this review is an attempt to bind together the findings in these works and draw some global and specific conclusions which can be useful for future explorations. The ηN scattering length (which represents the strength of the η-nucleon interaction) using different theoretical models and analyzing the data on η production in pion, photon and proton induced reactions was found to be spread out in a wide range, namely, 0.18 ⩽ ℜe aηN ⩽ 1.03 fm and 0.16 ⩽ ℑm aηN ⩽ 0.49 fm. Theoretical searches of heavy η-mesic nuclei based on η-nucleus optical potentials and lighter ones based on Faddeev type few-body approaches predict the existence of several quasibound and resonant states. Although some hints of η-mesic states such as ^3_{\\eta} He and ^{25}_{\\eta} Mg do exist from previous experiments, the promise of clearer signals for the existence of η-mesic nuclei lies in the experiments to be performed at the J-PARC, MAMI and COSY facilities in the near future. This review is aimed at giving an overall
Nuclear structure models: Applications and development
International Nuclear Information System (INIS)
This report discusses the following topics: Studies of superdeformed States; Signature Inversion in Odd-Odd Nuclei: A fingerprint of Triaxiality; Signature Inversion in 120Cs - Evidence for a Residual p-n Interaction; Signatures of γ Deformation in Nuclei and an Application to 125Xe; Nuclear Spins and Moments: Fundamental Structural Information; and Electromagnetic Properties of 181Ir: Evidence of β Stretching
Collisions of Rare Earth Nuclei - a New Reaction Route for Synthesis of Super Heavy Nuclei
Choudhury, R K
2012-01-01
Theories have predicted an island of stability in the super heavy mass region with half lives ranging from a few seconds to a few thousands of years. Extensive efforts are being made experimentally to reach these nuclei in the region of Z = 110 and above with suitable combinations of proton and neutron numbers. However, the cross sections for production of these nuclei are seen to be in the range of a few pico barns or less, and pose great experimental challenges. We show in the present note that great advantages can be obtained by carrying out heavy ion reactions with suitable combinations of projectile and target nuclei in the rare earth region, that will lead to compound systems with very small excitation energy, and with better neutron/proton ratio for larger stability.
From heavy nuclei to super-heavy nuclei; Des noyaux lourds aux super-lourds
Energy Technology Data Exchange (ETDEWEB)
Theisen, Ch
2003-01-01
The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)
International Nuclear Information System (INIS)
Examinations of the production cross-sections and the kinematics permitted refinement of model concepts of the peripheral reactions in exotic nuclei at energies from 100 to 1000 A MeV. Due to the strong selectivity and resolution achieved it was possible to discover a large number of novel isotopes at the fragment separator FRS, despite the relatively low projectile beam intensities of the SIS. The two twice magic nuclei found, Ni 78 and Sn 100, are particularly interesting, as they could not be measured so far with other experimental systems. Fission of relativistic uranium ions proved to be a particularly successful process yielding many medium-heavy, neutron-rich nuclei. Insight into the structure of light neutron halos could be improved. The superlarge spatial dimensions of the nuclear halos is discussed. (orig./CB)
Photoproduction of Mesons off Light Nuclei - The Search for η-Mesic Nuclei
International Nuclear Information System (INIS)
Photoproduction of η mesons off light nuclei (d, 3He, 7Li) has been measured at the tagged photon beam of the Mainz MAMI accelerator with the combined Crystal Ball/TAPS detection system. Special attention was given to the threshold behavior of the reactions in view of possible indications for the formation of (quasi-) bound η-nucleus states, so-called η-mesic nuclei. A very strong threshold enhancement of coherent η photoproduction off 3He was found and coherent η photoproduction off 7Li was observed for the first time. Preliminary results will be discussed. (authors)
The dynamics of the nuclei-nuclei interactions at very high energies
International Nuclear Information System (INIS)
The lectures on the dynamics of nuclei-nuclei interactions at very high energies, presented in the Summer School on Nuclear Physics and Particle Physics (1988), are shown. The equation of state of the hadronic matter is analyzed, by means of simple models, and some orders of magnitude can be asserted. The main characteristics of the high energy hadronic interactions are recalled. The basis of the dynamics of the relativistic fluids are given. Applications of this dynamics in the description of the space-time evolution of a plasma, generated by heavy ions collision, are carried out
Nuclei at extreme conditions. A relativistic study
Energy Technology Data Exchange (ETDEWEB)
Afanasjev, Anatoli [Mississippi State Univ., Mississippi State, MS (United States)
2014-11-14
The major goals of the current project were further development of covariant density functional theory (CDFT), better understanding of its features, its application to different nuclear structure and nuclear astrophysics phenomena and training of graduate and undergraduate students. The investigations have proceeded in a number of directions which are discussed in detail in the part “Accomplishments” of this report. We have studied the role of isovector and isoscalar proton-neutron pairings in rotating nuclei; based on available experimental data it was concluded that there are no evidences for the existence of isoscalar proton-neutron pairing. Generalized theoretical approach has been developed for pycnonuclear reaction rates in the crust of neutron stars and interior of white dwarfs. Using this approach, extensive database for considerable number of pycnonuclear reactions involving stable and neutron-rich light nuclei has been created; it can be used in future for the study of various nuclear burning phenomena in different environments. Time-odd mean fields and their manifestations in terminating states, non-rotating and rotating nuclei have been studied in the framework of covariant density functional theory. Contrary to non-relativistic density functional theories these fields, which are important for a proper description of nuclear systems with broken time-reversal symmetry, are uniquely defined in the CDFT framework. Hyperdeformed nuclear shapes (with semi-axis ratio 2.5:1 and larger) have been studied in the Z = 40-58 part of nuclear chart. We strongly believe that such shapes could be studied experimentally in the future with full scale GRETA detector.
The superdeformation phenomenon in atomic nuclei
Meyer, M.; Vivien, J. P.
After the discovery of discrete rotational bands corresponding to superdeformed nuclei with spin around 60h, the study of the structure of these nuclei over the last five years has witnessed a significant expansion in physical understanding with the emergence of new phenomena and in a technical development with the construction of sophisticated apparatus to examine these nuclei. On the eve of the approaching operation of news detectors such as EUROGAM resulting from a French-British collaboration,or the American GAMMASPHERE, this article discusses the present state of knowledge on superdeformation and exposes the theoretical basis as well as recent experimental results in the field. Avec la découverte de bandes de rotations discrètes correspondant à des noyaux superdéformés ayant des moments angulaires avoisinant 60h, l'étude de la structure de ces noyaux connait depuis les cinq dernières années un essor important tant sur le plan de la physique avec l'apparition de phénomènes nouveaux que sur le plan de la technique avec le développement d'appareillages sophistiqués pour scruter ces noyaux. A la veille de l'entrée en fonction de nouveaux détecteurs comme EUROGAM issu d'une collaboration Franco-Britannique ou GAMMASPHERE résultant des efforts des laboratoires Americains, cet article fait le point des connaissances actuelles sur la superdéformation et relate les acquis théoriques ainsi que les resultats expérimentaux accumulés récemment dans ce domaine.
Modeling a neutron rich nuclei source
International Nuclear Information System (INIS)
The deuteron break-up process in a suitable converter gives rise to intense neutron beams. A source of neutron rich nuclei based on the neutron induced fission can be realised using these beams. A theoretical optimization of such a facility as a function of the incident deuteron energy is reported. The model used to determine the fission products takes into account the excitation energy of the target nucleus and the evaporation of prompt neutrons. Results are presented in connection with a converter-target specific geometry. (authors)
AGN variability: from Seyfert nuclei to QSOs
Aretxaga, Itziar
1996-01-01
The continuum variability of optically selected Active Galactic Nuclei (AGN) is found to be consistent with that expected from a simple Poissonian process, in which the total luminosity of an object is produced by the multiple superposition of identical pulses. The energies, time-scales and rates of the pulses are found to be in the range of those expected from supernovae which generate fast evolving remnants in a nuclear starburst.However, radio-loud AGN don't follow the predictions of that ...
Double-beta decay in deformed nuclei
International Nuclear Information System (INIS)
A brief review of theoretical results for the double-beta decay and the double-electron capture in heavy deformed nuclei is presented. The ββ half life of 160Gd is evaluated using an extended version of the pseudo SU(3) model. While the 2ν mode is forbidden when the most probable occupations are considered, states with different occupation numbers can be mixed through the pairing interaction. The amount of this mixing is calculated using perturbation theory. The possibility of observing the ββ decay in 160Gd is discussed for both the 2ν and 0ν modes. (author)
Light unstable nuclei in the continuum
International Nuclear Information System (INIS)
It is discussed that the complex scaling method is one of the most available frameworks to solve many body resonances. As the recent developments of the complex scaling method, we present several ways to analyse the properties of resonant states; the matrix elements associated with resonant states, the extended completeness relation and partial widths of resonances. We also show the discussions on the binding mechanism and excited resonant structure of the Borromean systems 4He+n+n and 9Li+n+n. It is shown that the pairing correlation between valence neutrons and among core neutrons plays an important role in neutron-rich nuclei. (author)
Electromagnetic properties of nuclei at high spins
International Nuclear Information System (INIS)
A photon emitted by an excited state is likely to carry away, at most, 1 or 2 h-bar of angular momentum. Therefore, a profusion of photons is needed to deexcite the rapidly rotating states of nuclei formed by heavy-ion reactions. The study of electromagnetic properties has become the primary source of information on nuclear structure at high spins and, also, at the warm temperatures present in the initial stage of the electromagnetic cascade process. The purpose of this paper is a review of the E1, M1, and E2 properties of such highly excited states. 42 refs., 5 figs
Isovector excitations of N ≠ Z nuclei
International Nuclear Information System (INIS)
We show that the method based on the tensor coupling of an appropriate family of isovector excitation operators to the parent isospin multiplet can be used, to advantage, for the correct treatment of the isospin degree of freedom in non isoscalar nuclei. This method is applicable to any isovector excitation operator and for parent states which need not to be of the closed subshells type. As an illustration we apply it to the study of the Gamow-Teller transition strength in 90Zr. (author)
Propagation of heavy cosmic-ray nuclei
International Nuclear Information System (INIS)
Techniques for modeling the propagation of heavy cosmic-ray nuclei, and the required atomic and nuclear data, are assembled in this paper. Emphasis is on understanding nuclear composition in the charge range 3< Z<83. Details of the application of ''matrix methods'' above a few hundred meV per nucleon, a new treatment of electron capture decay, and a new table of cosmic-ray-stable isotopes are presented. Computation of nuclear fragmentation cross sections, stopping power, and electron stripping and attachment are briefly reviewed
The Structure of Nuclei Far from Stability
Energy Technology Data Exchange (ETDEWEB)
Zganjar, E.F.
1999-02-25
From among a number of important nuclear structure results that have emerged from our research program during the past few years, two stand out as being of extra significance. These are: (a) the identification of a diabatic coexisting structure in {sup 187}Au which arises solely from differences in proton occupation of adjacent oscillator shells, and (b) the realization of a method for estimating EO strength in nuclei and the resulting prediction that the de-excitation of superdeformed bands may proceed, in some cases, by strong EO transitions.
A new superfluid phase in atomic nuclei
International Nuclear Information System (INIS)
The influence of pairing and the dynamical α-type correlations on the structure of nuclear states is studied within the enlarged superfluid model (ESM). A comparison between ESM and different modern nuclear structure models such as: the quasiparticle-phonon nuclear model, interaction boson model, Hartree-Fock-Bogoliubov, temperature dependent Hartree-Fock-Bogoliubov and Migdal's finite Fermi system model, is done for particular cases. New gap equations are obtained. The phase structure is enriched by a new superfluid phase - the so-called α-like superfluid phase-dominated by α-type correlations. New first and second order phase transitions are predicted. A first order phase transition between the α-like superfluid phase and the pairing superfluid phase seems to be observed in Sm region. New types of isomers, the so-called ''superfluid isomers'', with their bands of elementary excitations are predicted. One of them is observed in 152Sm. These isomers correspond to a second (local) minimum of the correlation energy versus pairing deformations, analogous to the fission or superdeformed (shape) isomers, which correspond to the second (local) minimum of the potential energy along the elongation degree of shape deformation. The superfluidities of neutron and proton systems in heavy nuclei region may be generated by one another. This fact leads to the explanation of the origin of the odd-even staggering of the charge radii of chains of isotopes of different nuclei. The fact that the magnitude of the α-decay reduced widths (γ2) of the neutron-defficient Pb isotopes is almost equal to the γ2 of the actinide α-decaying nuclei is due to the above mentioned induction of the neutron superfluidity into the proton system also. Such exotic data ESM can explain especially in the region of single magic nuclei. Within ESM we could find a natural microscopic description of the scissors mode that dominates the structure of the Kπ=1+ magnetic states. (author). 89 refs, 27 figs
Experimental level densities of atomic nuclei
International Nuclear Information System (INIS)
It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. From the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least up to the neutron threshold. (orig.)
Inclusive inelastic electron scattering from nuclei
Fomin, Nadia
2007-01-01
Inclusive electron scattering from nuclei at large x and $Q^2$ is the result of a reaction mechanism that includes both quasi--elastic scattering from nucleons and deep inelastic scattering from the quark constituents of the nucleons. Data in this regime can be used to study a wide variety of topics, including the extraction of nuclear momentum distributions, the influence of final state interactions and the approach to $y$-scaling, the strength of nucleon-nucleon correlations, and the approach to $x$- scaling, to name a few. Selected results from the recent experiment E02-019 at the Thomas Jefferson National Accelerator Facility will be shown and their relevance discussed.
Two-scale scalar mesons in nuclei
Energy Technology Data Exchange (ETDEWEB)
K. Saito; H. Kouno; K. Tsushima; A.W. Thomas
2005-03-01
We generalize the linear sigma model in order to develop a chiral-invariant model of nuclear structure. The model is natural, and contains not only the usual sigma meson which is the chiral partner of the pion but also a new chiral-singlet that is responsible for the medium-range nucleon-nucleon attraction. This approach provides significant advantages in terms of its description of nuclear matter and finite nuclei in comparison with conventional models based on the linear sigma model.
Superheavy nuclei – cold synthesis and structure
Indian Academy of Sciences (India)
Raj K Gupta
2001-08-01
The quantum mechanical fragmentation theory (QMFT), given for the cold synthesis of new and superheavy elements, is reviewed and the use of radioactive nuclear beams (RNB) and targets (RNT) is discussed. The QMFT is a complete theory of cold nuclear phenomena, namely, the cold ﬁssion, cold fusion and cluster radioactivity. Also, the structure calculations based on the axially deformed relativistic mean ﬁeld (DRMF) approach are presented which predict new regions of spherical magicity, namely = 120 and = 172 or 184, for superheavy nuclei. This result is discussed in the light of recent experiments reporting the cold synthesis of = 118 element.
Probing Chiral Interactions in Light Nuclei
Energy Technology Data Exchange (ETDEWEB)
Nogga, A; Barrett, B R; Meissner, U; Witala, H; Epelbaum, E; Kamada, H; Navratil, P; Glockle, W; Vary, J P
2004-01-08
Chiral two- and three-nucleon interactions are studied in a few-nucleon systems. We investigate the cut-off dependence and convergence with respect to the chiral expansion. It is pointed out that the spectra of light nuclei are sensitive to the three-nucleon force structure. As an example, we present calculations of the 1{sup +} and 3{sup +} states of {sup 6}Li using the no-core shell model approach. The results show contributions of the next-to-next-to-leading order terms to the spectra, which are not correlated to the three-nucleon binding energy prediction.
Light unstable nuclei in the continuum
Energy Technology Data Exchange (ETDEWEB)
Kato, Kiyoshi [Hokkaido Univ., Division of Physics, Hokkaido (Japan)
2000-01-01
It is discussed that the complex scaling method is one of the most available frameworks to solve many body resonances. As the recent developments of the complex scaling method, we present several ways to analyse the properties of resonant states; the matrix elements associated with resonant states, the extended completeness relation and partial widths of resonances. We also show the discussions on the binding mechanism and excited resonant structure of the Borromean systems {sup 4}He+n+n and {sup 9}Li+n+n. It is shown that the pairing correlation between valence neutrons and among core neutrons plays an important role in neutron-rich nuclei. (author)
Fission properties for r-process nuclei
Erler, J.; Langanke, K; Loens, H. P.; Martínez-Pinedo, G.; Reinhard, P.-G.
2011-01-01
We present a systematics of fission barriers and fission lifetimes for the whole landscape of super-heavy elements (SHE), i.e. nuclei with Z>100. The fission lifetimes are also compared with the alpha-decay half-lives. The survey is based on a self-consistent description in terms of the Skyrme-Hartree-Fock (SHF) approach. Results for various different SHF parameterizations are compared to explore the robustness of the predictions. The fission path is computed by quadrupole constrained SHF. Th...
Shell effect in synthesis of superheavy nuclei
International Nuclear Information System (INIS)
The improved isospin dependent quantum molecular dynamics model which includes the shell correction and switch function method is employed to study the synthesis of superheavy nuclei. The shell effect on a fusion process is investigated for 32S+208Pb system. For heavy reaction systems 48Ca+154Sm and 32S+208Pb, the theoretical calculations of fusion cross section are in agreement with the experimental data. The nucleus-nucleus interaction potential is also calculated, and compared with the proximity potential as well. (author)
Signatures for quark clustering in nuclei
International Nuclear Information System (INIS)
As a signature for the presence of quark clusters in nuclei, the authors suggest studying backward protons produced by electron scattering off deuterons and suggest a ratio that cancels out much of the detailed properties of deuterons or 6-quark clusters. The test may be viewed as a test that the short range part of the deuteron is still a 2-nucleon system. They make estimates to show how it fails in characteristic and significant ways if the two nucleons at short range coalesce into a kneaded 6-quark cluster
The Structure of Nuclei Far from Stability
International Nuclear Information System (INIS)
From among a number of important nuclear structure results that have emerged from our research program during the past few years, two stand out as being of extra significance. These are: (a) the identification of a diabatic coexisting structure in 187Au which arises solely from differences in proton occupation of adjacent oscillator shells, and (b) the realization of a method for estimating EO strength in nuclei and the resulting prediction that the de-excitation of superdeformed bands may proceed, in some cases, by strong EO transitions
Synthesis and Properties of Superheavy Nuclei
International Nuclear Information System (INIS)
The mechanism of production and decay of excited compound nuclei leading to production of isotopes of trans actinide elements in the vicinity of closed deformed shells Z = 108, N = 162 is being considered. The implementation of experiments is described and data on synthesis of new isotopes 262104, 265,266 106 and 267 108 in hot fusion reactions is presented. The properties of the new nuclides point to a considerable increase of the periods of spontaneous fission predicted by the macro-microscopic theory. Prospects for using fusion reactions in synthesizing new elements are discussed.(author). 30 refs.; 9 figs.; 2 tabs
Effective field theory for deformed atomic nuclei
Papenbrock, T
2015-01-01
We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband $E2$ transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
Signatures for quark clustering in nuclei
Energy Technology Data Exchange (ETDEWEB)
Carlson, C.E. [College of William and Mary, Williamsburg, VA (United States); Lassila, K.E. [Iowa State Univ., Ames, IA (United States)
1994-04-01
As a signature for the presence of quark clusters in nuclei, the authors suggest studying backward protons produced by electron scattering off deuterons and suggest a ratio that cancels out much of the detailed properties of deuterons or 6-quark clusters. The test may be viewed as a test that the short range part of the deuteron is still a 2-nucleon system. They make estimates to show how it fails in characteristic and significant ways if the two nucleons at short range coalesce into a kneaded 6-quark cluster.
International Nuclear Information System (INIS)
We study nuclear potential-energy surfaces, ground-state masses and shapes calculated by use of a Yukawa-plus-exponential macroscopic model and a folded-Yukawa single-particle potential for 4023 nuclei ranging from 16O to 279112. We discuss extensively the transition from spherical to deformed shapes and study the relation between shape changes and the mass corresponding to the ground-state minimum. The calculated values for the ground-state mass and shape show good agreement with experimental data throughout the periodic system, but some discrepancies remain that deserve further study. We also discuss the effect of deformation on Gamow-Teller #betta#-strength functions
Modeling a neutron-rich nuclei source
International Nuclear Information System (INIS)
The deuteron break-up process in a suitable converter gives rise to intense neutron beams. A source of neutron-rich nuclei based on the neutron-induced fission can be realised using these beams. A theoretical optimization of such a facility as a function of the incident deuteron energy is reported. The model used to determine the fission products takes into account the excitation energy of the target nucleus and the evaporation of prompt neutrons. Results are presented in connection with a converter-target specific geometry. (orig.)
Enhanced subbarrier fusion for proton halo nuclei
Kumar, Raj; Lay, J. A.; Vitturi, A.
2014-02-01
In this Brief Report we use a simple model to describe the dynamical effects of break-up processes in the subbarrier fusion involving weakly bound nuclei. We model two similar cases involving either a neutron or a proton halo nucleus, both schematically coupled to the break-up channels. We find that the decrease of the Coulomb barrier in the proton break-up channel leads, ceteris paribus, to a larger enhancement of the subbarrier fusion probabilities with respect to the neutron halo case.
Enhanced subbarrier fusion for proton halo nuclei
Kumar, Raj; J.A. Lay; Vitturi, A.
2014-01-01
In this short note we use a simple model to describe the dynamical effects of break-up processes in the subbarrier fusion involving weakly bound nuclei. We model two similar cases involving either a neutron or a proton halo nucleus, both schematically coupled to the break-up channels. We find that the decrease of the coulomb barrier in the proton break-up channel leads, ceteris paribus, to a larger enhancement of the subbarier fusion probabilities with respect to the neutron-halo case.
Effective field theory for deformed atomic nuclei
Papenbrock, T.; Weidenmüller, H. A.
2016-05-01
We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
Effective field theory for deformed atomic nuclei
Papenbrock, T.; Weidenmüller, H. A.
2015-01-01
We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband $E2$ transitions. For rotational bands with a finite spin of the band head, the EFT is equivalen...
Light nuclei from chiral EFT interactions
Navratil, P.; Gueorguiev, V. G.; Vary, J. P.; Ormand, W. E.; Nogga, A.; Quaglioni, S.
2008-01-01
Recent developments in nuclear theory allow us to make a connection between quantum chromodynamics (QCD) and low-energy nuclear physics. First, chiral effective field theory (chi EFT) provides a natural hierarchy to define two-nucleon (NN), three-nucleon (NNN), and even four-nucleon interactions. Second, ab-initio methods have been developed capable to test these interactions for light nuclei. In this contribution, we discuss ab-initio no-core shell-model (NCSM) calculations for s-shell and p...
Self-Consistency Effects In Superheavy Nuclei
International Nuclear Information System (INIS)
The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied within the relativistic mean field theory. Large depression leads to the shell gaps at the proton Z = 120 and neutron N = 172 numbers, while flatter density distribution favors N = 184 for neutrons and leads to the appearance of a Z 126 shell gap and to the decrease of the size of the Z = 120 shell gap. The correlations between the magic shell gaps and the magnitude of central depression are discussed for relativistic and non-relativistic mean field theories
Selected topics on Hadrons in Nuclei
Oset, E; Hernandez, E; Ramos, A; Magas, V K; Yamagata-Sekihara, J; Hirenzaki, S; Gamermann, D; Molina, R; Tolos, L; Roca, L
2011-01-01
In this talk we report on selected topics on hadrons in nuclei. The first topic is the renormalization of the width of the $\\Lambda(1520)$ in a nuclear medium. This is followed by a short update of the situation of the $\\omega$ in the medium. The investigation of the properties of $\\bar{K}$ in the nuclear medium from the study of the $(K_{flight},p)$ reaction is also addressed, as well as properties of X,Y,Z charmed and hidden charm resonances in a nuclear medium. Finally we address the novel issue of multimeson states.
Photoproduction of pions in 12C nuclei
International Nuclear Information System (INIS)
A preliminary analysis was carried out of relativistic effects in coherent and incoherent pion production for the reaction 12C(γ, π0)12C by considering all the diagrams that contribute to the scattering amplitude. For the coherent pion the contribution to the scattering cross section mainly comes from the direct and exchange diagrams of γN → Δ → Nπ0, where N is a nucleon. The results were compared with the nonrelativistic calculations done in 12C nuclei assuming the nuclear effects and the final state interactions to be the same
Rings with generalized commutators in the nuclei
Chen-Te Yen
2002-01-01
Let $ R$ be a prime weakly Novikov ring and $ T_k=\\underbrace{[[[\\ldots[[R,R],R]\\ldots,R],R],R]}_{k R's}$ where $ k$ is a positive integer. We prove that if $ T_k\\subseteq N_l\\cap N_r$ or $ T_k\\subseteq N_m\\cap N_r$ then $ R$ is associative or $ T_k=0$. Moreover, if $ T_k$ is contained in two of the three nuclei, and $ k=2$ or $ k=3$ then the same conclusions hold. We also consider such rings with derivations. Some similar results of weakly M-rings are obtained.
Isospin transfer modes in exotic nuclei
Directory of Open Access Journals (Sweden)
Litvinova Elena
2015-01-01
Full Text Available This work presents an approach to nuclear spin-isospin response, which is capable of describing the overall strength distribution up to high excitation energies, including the fine structure of the low-lying strength, and resolving the long-standing quenching problem. The model is a covariant realization of the nuclear field theory and based on the self-consistent extensions of the covariant energy density functional (CEDF theory. Results of the recent calculations for spin-isospin response of ordinary and exotic medium-mass nuclei are presented and discussed.
Photoproduction of vector mesons in nuclei
International Nuclear Information System (INIS)
The mass of vector mesons in the nuclear medium is of great interest in strong interaction dynamics because vector meson masses could decrease with increasing baryonic density as a consequence of chiral symmetry restoration. The purpose of this work is to define an observable sensitive to vector meson masses at nuclear matter density. This short paper reports some preliminary results which suggest that the quantum interference between (e+e-) pairs emitted in the photoproduction of ρ- and ω- mesons near threshold in heavy nuclei could be such quantity. (J.S.). 4 refs., 2 figs
Annular diffraction of very unstable light nuclei
International Nuclear Information System (INIS)
Because they are brittle, unstable light nuclei can produce an annular diffraction pattern observed on their decay products with large cross sections. With such a simple model, the 9Li angular distribution observed in the 11Li fragmentation have been reproduced together with the reaction cross-section and the fragmentation yield provided recoil effects from neutron emission are included. It results that for this projectile and for light targets, diffraction is the main source of transverse momentum for 9Li whereas for neutrons it originates from its emission energy in the 11Li center of mass
Search for Hyperdeformation in Light Xe Nuclei
International Nuclear Information System (INIS)
The ultimate search for hyperdeformation (HD) at high spins with the EUROBALL spectrometer was performed for 126Ba as a hyper long (HLHD) experiment. The Diamant ancillary detector was used to tag γ-rays in coincidence with the emitted light charged particles. Using γ-energy correlation methods, the particle-x n-γ data have been analysed to search for hyperdeformed structures in the corresponding residual nuclei. Data in coincidence with one particle indicate the presence of normal deformed collective bands up to very high spins and the possible occurrence of HD-like ridge structures in 122Xe. (author)
Search for Hyperdeformation in Light Xe Nuclei
Nyako, B. M.; Papp, F.; Gal, J.; Molnar, J.; Timar, J.; Algora, A.; Dombradi, Zs.; Kalinka, G.; Zolnai, L.; Juhasz, K.; Singh, A. K.; Huebel, H.; Al-Khatib, A.; Bringel, P.; Buerger, A.; Neusser, A.; Schoenwasser, G.; Herskind, B.; Hagemann, G. B.; Hansen, C. R.; Sletten, G.; Scheurer, J. N.; Hannachi, F.; Kmiecik, M.; Maj, A.; Styczen, J.; Zuber, K.; Hauschild, K.; Korichi, A.; Lopez-Martens, A.; Roccaz, J.; Siem, S.; Bednarczyk, P.; Byrski, Th.; Curien, D.; Dorvaux, O.; Duchene, G.; Gall, B.; Khalfallah, F.; Piqueras, I.; Robin, J.; Patel, S. B.; Evans, A. O.; Rainovski, G.; Airoldi, A.; Benzoni, G.; Bracco, A.; Camera, F.; Million, B.; Mason, P.; Paleni, A.; Sacchi, R.; Wieland, O.; La Rana, G.; Moro, R.; Petrache, C. M.; Petrache, D.; de Angelis, G.; Fallon, P.; Lee, I.-Y.; Lisle, J. C.; Cederwall, B.; Lagergren, K.; Lieder, R. M.; Podsvirova, E.; Gast, W.; Jaeger, H.; Redon, N.; Goergen, A.
2005-04-01
The ultimate search for hyperdeformation (HD) at high spins with the EUROBALL spectrometer was performed for 126Ba as a hyper long (HLHD) experiment. The DIAMANT ancillary detector was used to tag γ -rays in coincidence with the emitted light charged particles. Using γ -energy correlation methods, the particle--xn-γ data have been analysed to search for hyperdeformed structures in the corresponding residual nuclei. Data in coincidence with one α particle indicate the presence of normal deformed collective bands up to very high spins and the possible occurrence of HD-like ridge structures in 122Xe.
Experimental level densities of atomic nuclei
Energy Technology Data Exchange (ETDEWEB)
Guttormsen, M.; Bello Garrote, F.L.; Eriksen, T.K.; Giacoppo, F.; Goergen, A.; Hagen, T.W.; Klintefjord, M.; Larsen, A.C.; Nyhus, H.T.; Renstroem, T.; Rose, S.J.; Sahin, E.; Siem, S.; Tornyi, T.G.; Tveten, G.M. [University of Oslo, Department of Physics, Oslo (Norway); Aiche, M.; Ducasse, Q.; Jurado, B. [University of Bordeaux, CENBG, CNRS/IN2P3, B.P. 120, Gradignan (France); Bernstein, L.A.; Bleuel, D.L. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Byun, Y.; Voinov, A. [Ohio University, Department of Physics and Astronomy, Athens, Ohio (United States); Gunsing, F. [CEA Saclay, DSM/Irfu/SPhN, Cedex (France); Lebois, L.; Leniau, B.; Wilson, J. [Institut de Physique Nucleaire d' Orsay, Orsay Cedex (France); Wiedeking, M. [iThemba LABS, P.O. Box 722, Somerset West (South Africa)
2015-12-15
It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. From the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least up to the neutron threshold. (orig.)
Symmetry energy, unstable nuclei and neutron star crusts
Energy Technology Data Exchange (ETDEWEB)
Iida, Kei [Kochi University, Department of Natural Science, Kochi (Japan); RIKEN Nishina Center, Saitama (Japan); Oyamatsu, Kazuhiro [RIKEN Nishina Center, Saitama (Japan); Aichi Shukutoku University, Department of Human Informatics, Aichi (Japan)
2014-02-15
The phenomenological approach to inhomogeneous nuclear matter is useful to describe fundamental properties of atomic nuclei and neutron star crusts in terms of the equation of state of uniform nuclear matter. We review a series of researches that we have developed by following this approach. We start with more than 200 equations of state that are consistent with empirical masses and charge radii of stable nuclei and then apply them to describe matter radii and masses of unstable nuclei, proton elastic scattering and total reaction cross sections off unstable nuclei, and nuclei in neutron star crusts including nuclear pasta. We finally discuss the possibility of constraining the density dependence of the symmetry energy from experiments on unstable nuclei and even observations of quasi-periodic oscillations in giant flares of soft gamma-ray repeaters. (orig.)
Precision measurement of the mass difference between light nuclei and anti-nuclei
Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmed, Ijaz; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kouzinopoulos, Charalampos; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasnopolskiy, Stanislav; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym
2015-01-01
The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons ($\\bar{d}$), and $^{3}{\\rm He}$ and $^3\\overline{\\rm He}$ nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirm CPT invariance to an unprecedented precision in the sector of light nuclei. This funda...
Exotic modes of excitation in atomic nuclei far from stability
Paar, N.; Vretenar, D.; Khan, E.; Colo, G.
2007-01-01
We review recent studies of the evolution of collective excitations in atomic nuclei far from the valley of $\\beta$-stability. Collective degrees of freedom govern essential aspects of nuclear structure, and for several decades the study of collective modes such as rotations and vibrations has played a vital role in our understanding of complex properties of nuclei. The multipole response of unstable nuclei and the possible occurrence of new exotic modes of excitation in weakly-bound nuclear ...
Structure of collective modes in transitional and deformed nuclei
Caprio, M. A.
2005-01-01
The collective structure of atomic nuclei intermediate between spherical and quadrupole deformed structure presents challenges to theoretical understanding. However, models have recently been proposed in terms of potentials which are soft with respect to the quadrupole deformation variable beta. To test these models, information is needed on low-spin states of transitional nuclei. The present work involves measurement of electromagnetic decay properties of low-spin states for nuclei in the A=...
Collisions of Small Nuclei in the Thermal Model
Cleymans, J; Oeschler, H; Redlich, K; Sharma, N
2016-01-01
An analysis is presented of the expectations of the thermal model for particle production in collisions of small nuclei. The maxima observed in particle ratios of strange particles to pions as a function of beam energy in heavy ion collisions, are reduced when considering smaller nuclei. Of particular interest is the $\\Lambda/\\pi^+$ ratio shows the strongest maximum which survives even in collisions of small nuclei.
Systematics of light nuclei in a relativistic model
International Nuclear Information System (INIS)
The results of relativistic mean field calculations for non-spherical nuclei are presented and discussed. The need for non-linear scalar meson self-couplings in order to describe the properties of s-d shell nuclei is emphasized along with the importance of self-consistency in calculations of magnetic moments of odd-mass nuclei. 16 refs., 3 figs., 2 tabs
Production of light nuclei in the thermal and coalescence models
Mrowczynski, Stanislaw
2016-01-01
The thermal model properly describes the yield of light nuclei in relativistic heavy-ion collisions even so the loosely bound sizable nuclei cannot exist in the dense and hot hadron gas. Within the coalescence model, light nuclei are formed at the latest stage of nuclear collisions due to final state interactions. After discussing the models, we derive simple analytic formulas showing that the thermal and coalescence model predictions are quantitatively close to each other.
AMD study of cluster structures in light nuclei
International Nuclear Information System (INIS)
We review the AMD study of cluster structures in stable and unstable light nuclei. We place emphasis on the characteristic features of the AMD approach, which include variation after parity projection, three-dimensional cranking and variation after angular momentum projection, superposition of Slater determinants for the study of excited states, and unified treatment of structure and reaction calculations. We discuss the novel features of clustering in neutron-rich nuclei in comparison with clustering in stable nuclei. (author)
Shape coexistence and triaxiality in nuclei near 80Zr
Zheng, S J; Shen, S F; Liu, H L; Wyss, R
2013-01-01
Total-Routhian-Surface calculations have been performed to investigate the shape evolutions of $A\\sim80$ nuclei, $^{80-84}$Zr, $^{76-80}$Sr and $^{84,86}$Mo. Shape coexistences of spherical, prolate and oblate deformations have been found in these nuclei. Particularly for the nuclei, $^{80}$Sr and $^{82}$Zr, the energy differences between two shape-coexisting states are less than 220 keV. At high spins, the $g_{9/2}$ shell plays an important role for shape evolutions. It has been found that the alignment of the $g_{9/2}$ quasi-particles drives nuclei to be triaxial.
The synthesis structure and decay of super-heavy nuclei
International Nuclear Information System (INIS)
Super-heavy nuclei are those transuranic nuclei with more than 106 protons . The underlying nuclear structure of super-heavy elements may be visualized as 5 concentric closed layers of alpha particles. This structure is an extension of layered alpha particle models of common nuclei based on Bernal's model of a drop of a monatomic liquid. It will be shown mat all super-heavy nuclei with atomic numbers in excess of 107 may be thought of as having a fifth closed layer of 16 alpha particles which decays because of its inherent instability
Study of nuclear level densities for exotic nuclei
Directory of Open Access Journals (Sweden)
M Nasri Nasrabadi
2012-06-01
Full Text Available Nuclear level density (NLD is one of the properties of nuclei with widespread applications in astrophysics and nuclear medicine. Since there has been little experimental and theoretical research on the study of nuclei which are far from stability line, studying NLD for these nuclei is of crucial importance. Also, as NLD is an important input for nuclear research codes, hence studying the methods for calculation of this parameter is essential. Besides introducing various methods and models for calculating NLD for practical applications, we used exact spectra distribution (SPDM for determining NLD of two neutron and proton enriched exotic nuclei with the same mass number.
Energy loss and critical energies of ultrarelativistic nuclei
International Nuclear Information System (INIS)
The energy loss and critical energies of ultrarelativistic nuclei are calculated with allowance for the fact that the dominant radiation process for the nuclei is the formation of e+e- pairs. It is shown that in the region of superhigh energies the total average ionization loss of the nuclei (hadrons) reaches a plateau dependent on the type of nucleus (hadron) and on the characteristics of the medium. Special features of the energy spectra of e+e- pairs and δ electrons formed by the nuclei are analyzed
Relativistic mean field study of clustering in nuclei
International Nuclear Information System (INIS)
Clustering phenomenon in exotic, light, heavy and superheavy nuclei is studied within the relativistic mean field (RMF) approach. Numerical calculations are done by using the axially deformed harmonic oscillator basis. The calculated nucleon density distributions and deformation parameters are analyzed to look for the cluster configurations. In case of light nuclei, the calculations explain many of the well established cluster structures in both the ground and intrinsic excited states. In the heavy and superheavy nuclei, interesting results are obtained and the results indicate new possibilities of exotic clusters at the centre of superheavy nuclei. (author)
Spectroscopy of very heavy nuclei with a view to study super-heavy nuclei
International Nuclear Information System (INIS)
Within the recent years, the spectroscopic study of single particle orbitals of very heavy elements (VHE) has become possible with the development of increasingly efficient experimental setups. This allows us, through nuclear deformation, to access with these deformed nuclei to orbitals situated around the Fermi level in the spherical superheavy elements (SHE) and learn more about the nuclear structure of these nuclei. The aim of this work is the spectroscopic studies of heavy and very heavy elements. Because of the experimental difficulties associated with the fusion reactions in the VHE region, a detailed optimization studies is essential. Simulation of energy loss and angular straggling of these nuclei due to the interaction in the target and to neutron's evaporation was carried out and allowed us to optimize the angular acceptance of the separators according to the target thickness. An extensive survey and exploration in the VHE region was also conducted on the basis of cross section's systematics in the literature and simulations carried out using the statistical code Hivap. In this framework, the possible extension of the range of validity of a set of Hivap parameters was investigated. This work has enabled us to prepare a list of experiments of interest for the production of very heavy nuclei. In this thesis, our work was concentrated on the spectroscopy of the nuclei No256 et Rf256 for which two experimental proposals were accepted. The octupole deformations predicted in the actinides region is studied in another part of this thesis, a part witch is dedicated to the gamma spectroscopy of Pa223. The data from a new experiment carried out using the Jurogam-Ritu-Great setup are analysed and compared to previous results. They confirm the octupole deformed shape in this nucleus. (author)
Halo Nuclei: Stepping Stones Across the Dripline
International Nuclear Information System (INIS)
The availability of intense secondary beams in conjunction with efficient detection setups allows for a production and study of the most extreme nuclear systems, in terms of asymmetry of proton and neutron number, in the continuum. They can be produced via transfer and knockout reactions, depending on beam energies, with beams of nuclei close to the driplines, exhibiting exotic properties themselves, as seeds. These nuclear open quantum systems far from the valley of beta stability challenge nuclear structure theory being as well as reaction theory that tries to describe their production mechanisms. Due to their strong clustering they exhibit a rather clean few-body character. From experiments momentum distributions, relative energy spectra, and spin alignment during the reaction can be determined, which leads to the observation of energy and angular correlations as well as dependent quantities like e.g. the profile function denoting a momentum width in dependence of relative energy. They are determined from momentum vectors of fragments and gamma radiation leaving the reaction zone. The link to intrinsic properties of these unbound systems has to be explored by gathering precise knowledge of the properties of the seed nuclei and compare them to the structures observed in the continuum. In this paper I will exemplify the above-mentioned methods, and apply them particularly to light systems like 10He, 10−13Li, and neutron-rich Beryllium systems. Furthermore, perspectives for the 7H and heavy Oxygen systems are discussed. (author)
Charming Mesons with Baryons and Nuclei
Tolos, Laura
2013-11-01
The properties of charmed mesons in nuclear matter and nuclei are reviewed. Different frameworks are discussed paying a special attention to unitarized coupled-channel approaches which incorporate heavy-quark spin symmetry. Several charmed baryon states with negative parity are generated dynamically by the s-wave interaction between pseudoscalar and vector meson multiplets with 1/2+ and 3/2+ baryons. These states are compared to experimental data. Moreover, the properties of open-charm mesons in matter are analyzed. The in-medium solution accounts for Pauli blocking effects, and for the meson self-energies in a self-consistent manner. The behavior in the nuclear medium of the rich spectrum of dynamically-generated baryon states is studied as well as their influence in the self-energy and, hence, the spectral function of open charm. The possible experimental signatures of the in-medium properties of open charm are finally addressed, such as the formation of charmed nuclei, in connection with the future FAIR facility.
Charming mesons with baryons and nuclei
Tolos, Laura
2013-01-01
The properties of charmed mesons in nuclear matter and nuclei are reviewed. Different frameworks are discussed paying a special attention to unitarized coupled-channel approaches which incorporate heavy-quark spin symmetry. Several charmed baryon states with negative parity are generated dynamically by the s-wave interaction between pseudoscalar and vector meson multiplets with $1/2^+$ and $3/2^+$ baryons. These states are compared to experimental data. Moreover, the properties of open-charm mesons in matter are analyzed. The in-medium solution accounts for Pauli blocking effects, and for the meson self-energies in a self-consistent manner. The behavior in the nuclear medium of the rich spectrum of dynamically-generated baryon states is studied as well as their influence in the self-energy and, hence, the spectral function of open charm. The possible experimental signatures of the in-medium properties of open charm are finally addressed, such as the formation of charmed nuclei, in connection with the future F...
Stellar transits in active galactic nuclei
Béky, Bence
2012-01-01
Supermassive black holes (SMBH) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGN) produce a characteristic transit lightcurve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit lightcurves using the Novikov--Thorne thin accretion disk model, including general relatistic effects. Based on the expected properties of stellar cusps, we find that around 10^6 solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low mass AGNs to 1% photometric accuracy in optical, or ~ 10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Su...
Stellar Transits in Active Galactic Nuclei
Béky, Bence; Kocsis, Bence
2013-01-01
Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 106 solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or ~10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.
Fast neutron scattering on actinide nuclei
International Nuclear Information System (INIS)
More and more sophisticated neutron experiments have been carried out with better samples in several laboratories and it was necessary to intercompare them. In this respect, let us quote for example (n,n'e) and (n,n'#betta#) measurements. Moreover, high precision (p,p), (p,p') and (p,n) measurements have been made, thus supplementing neutron experiments in the determination of the parameters of the optical model, still widely used to describe the neutron-nucleus interaction. The optical model plays a major role and it is therefore essential to know it well. The spherical optical model is still very useful, especially because of its simplicity and of the relatively short calculation times, but is obviously insufficient to treat deformed nuclei such as actinides. For accurate calculations about these nuclei, it is necessary to use a deformed potential well and solve a set of coupled equations, hence long computational times. The importance of compound nucleus formation at low energy requires also a good knowledge of the statistical model together with that of all the reaction mechanisms which are involved, including fission for which an accurate barrier is necessary and, of course, well-adjusted level densities. The considerations form the background of the Scientific Programme set up by a Programme Committee whose composition is given further on in this book
Halo Nuclei: Stepping Stones Across the Dripline
Simon, Haik
2013-08-01
The availability of intense secondary beams in conjunction with efficient detection setups allows for a production and study of the most extreme nuclear systems, in terms of asymmetry of proton and neutron number, in the continuum. They can be produced via transfer and knockout reactions, depending on beam energies, with beams of nuclei close to the driplines, exhibiting exotic properties themselves, as seeds. These nuclear open quantum systems far from the valley of beta stability challenge nuclear structure theory being as well as reaction theory that tries to describe their production mechanisms. Due to their strong clustering they exhibit a rather clean few-body character. From experiments momentum distributions, relative energy spectra, and spin alignment during the reaction can be determined, which leads to the observation of energy and angular correlations as well as dependent quantities like e.g. the profile function denoting a momentum width in dependence of relative energy. They are determined from momentum vectors of fragments and gamma radiation leaving the reaction zone. The link to intrinsic properties of these unbound systems has to be explored by gathering precise knowledge of the properties of the seed nuclei and compare them to the structures observed in the continuum. In this paper I will exemplify the above-mentioned methods, and apply them particularly to light systems like 10He, 10-13Li, and neutron-rich Beryllium systems. Furthermore, perspectives for the 7H and heavy Oxygen systems are discussed.
Birth, life and death of hot nuclei
International Nuclear Information System (INIS)
Intermediate energy heavy-ions (10-100 MeV/u) are the most powerful tool to study hot nuclear matter properties. In this paper we give a review of experimental and theoretical works which support this statement. The first challenge is to achieve hot nuclei formation. The second one is to study their properties. The formation step is governed by the relative influence of nucleon-nucleon collisions and mean field effects. Fundamental quantities such as excited matter decay time, thermalization time, relaxation time for collective modes are of major importance and are compared with typical collision times. It appears that semi-classical theories are able to give a reasonable description of the collision and that they are a good guide for defining further experiments. We show how it has been possible to experimentally establish that very hot equilibrated nuclei are really formed. Their decay properties are not basically different from decay properties at lower bombarding energy. However specific channels are open: in that sense, we take stock of the multifragmentation process. Moreover, compression effects may be an important feature of this energy range. Future studies will involve heavier projectiles around 30-50 MeV/u. They will be the best probe for hot and compressed nuclear matter studies
Photoproduction of Mesons off Light Nuclei
International Nuclear Information System (INIS)
During the last few years, a series of experiments has been done at the ELSA accelerator in Bonn with the Crystal Barrel/TAPS setup and at the MAMI accelerator in Mainz with the Crystal Ball/TAPS setup. Photoproduction of light mesons off the deuteron and 3He-nuclei has been studied in detail. We will report some of the most interesting results.A completely unexpected finding, is the pronounced structure in the excitation function of the γn → nη reaction around 1 GeV, which has no counterpart for the proton. Recent measurements at GRAAL, Sendai, ELSA [1] and MAMI estimate it's width below 50 MeV, which would be extremely narrow for a nucleon resonance at this excitation energy. In the experiment with the 3He target, special attention was given to the threshold behavior of the γHe3 reactions in view of possible indications for the formation of (quasi-)bound η-nucleus states, so-called η-mesic nuclei. A very strong threshold enhancement of coherent η-photoproduction off 3He was found. In a new experiment, this reaction was measured with much better statistical accuracy compared to an earlier experiment at MAMI-B using the TAPS detector [2].
Neutron-rich nuclei studied with AMD
International Nuclear Information System (INIS)
Antisymmetrized molecular dynamics (AMD) which is a newly constructed theory of quantum-mechanical microscopic simulation of heavy ion collisions is explained to present us with a very useful theoretical approach for the study of the structure-changes which occur when we go from ordinary nuclei to exotic neutron-rich nuclei. It is because of the flexible nature of the AMD wave function which can describe the formation and dissolution of clusters both in collision problems and in structure problems. After brief explanation of successful applications of AMD to heavy ion collisions and that of the frictional cooling technique for constructing minimum-energy wave functions, the results of the AMD analyses of Li, Be, and B isotopes are discussed. Very good reproduction of magnetic moments is obtained and is explained to be related with the structure-change between cluster structure and shell-model-like structure within each isotope. The superposition of AMD determinants is shown to reproduce neutron halo structure. (orig.)
Experiments with stored relativistic exotic nuclei
International Nuclear Information System (INIS)
Beams of relativistic exotic nuclei were produced, separated and investigated with the combination of the fragment separator FRS and the storage ring ESR. The following experiments are presented: (1) Direct mass measurements of relativistic nickel and bismuth projectile fragments were performed using Schottky spectrometry. Applying electron cooling, the relative velocity spread of the circulating secondary nuclear beams of low intensity was reduced to below 10-6. The achieved mass resolving power of m/Δm = 6.5 . 105 (FWHM) in recent measurements represents an improvement by a factor of two compared to our previous experiments. The previously unknown masses of more than 100 proton-rich isotopes have been measured in the range of 54 ≤ Z ≤ 84. The results are compared with mass models and estimated values based on extrapolations of experimental values. (2) Exotic nuclei with half-lives shorter than the time required for electron cooling can be investigated by time-of-flight measurements with the ESR being operated in the isochronous mode. This novel experimental technique has been successfully applied in a first measurement with nickel fragments. A mass resolving power of m/Δm = 1.5 . 105 (FWHM) was achieved in this mode of operation. (3) Nuclear half-lives of stored and cooled bare projectile fragments have been measured to study the influence of the ionic charge state on the beta-decay probability. (orig.)
Theoretical Search for RNA Folding Nuclei
Directory of Open Access Journals (Sweden)
Leonid B. Pereyaslavets
2015-11-01
Full Text Available The functions of RNA molecules are defined by their spatial structure, whose folding is regulated by numerous factors making RNA very similar to proteins. Prediction of RNA folding nuclei gives the possibility to take a fresh look at the problems of the multiple folding pathways of RNA molecules and RNA stability. The algorithm previously developed for prediction of protein folding nuclei has been successfully applied to ~150 various RNA structures: hairpins, tRNAs, structures with pseudoknots, and the large structured P4-P6 domain of the Tetrahymena group I intron RNA. The calculated Φ-values for tRNA structures agree with the experimental data obtained earlier. According to the experiment the nucleotides of the D and T hairpin loops are the last to be involved in the tRNA tertiary structure. Such agreement allowed us to do a prediction for an example of large structured RNA, the P4-P6 RNA domain. One of the advantages of our method is that it allows us to make predictions about the folding nucleus for nontrivial RNA motifs: pseudoknots and tRNA.
A quark structure of hadrons and nuclei
International Nuclear Information System (INIS)
In this review we look into the recent understanding of mesons, baryons and nuclei as few quark bound states within the framework of quantum chromodynamics (QCD). In particular, we have reviewed our understanding of the nature of confining interaction, the spin - dependence of colour forces and the role of non-perturbative effects in the study of quark forces in the potential model approach. We also give a comparative study of results obtained by several potential models with reference to the experimental data. We find that although the Lorentz nature of confinement and the nature of spin-dependent colour forces have been better understood now, only a partial understanding of these problems are obtained so far. Our study reveals that properties of baryons could be explained by the same potential model which successfully describe the mesons. However, the nuclei require chiral symmetry and non-perturbative methods for their description. We also discuss the relation between constituent, current and dynamical quark masses. We conclude that QCD motivated approaches have shown much success in explaining many results on hadronic and nuclear data. (author). 212 refs, 14 tabs
Studies of nuclei using radioactive beams
International Nuclear Information System (INIS)
The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden
Approximate particle number projection in hot nuclei
International Nuclear Information System (INIS)
Heated finite systems like, e.g., hot atomic nuclei have to be described by the canonical partition function. But this is a quite difficult technical problem and, as a rule, the grand canonical partition function is used in the studies. As a result, some shortcomings of the theoretical description appear because of the thermal fluctuations of the number of particles. Moreover, in nuclei with pairing correlations the quantum number fluctuations are introduced by some approximate methods (e.g., by the standard BCS method). The exact particle number projection is very cumbersome and an approximate number projection method for T ≠ 0 basing on the formalism of thermo field dynamics is proposed. The idea of the Lipkin-Nogami method to perform any operator as a series in the number operator powers is used. The system of equations for the coefficients of this expansion is written and the solution of the system in the next approximation after the BCS one is obtained. The method which is of the 'projection after variation' type is applied to a degenerate single j-shell model. 14 refs., 1 tab
Compressed Baryonic Matter: from Nuclei to Pulsars
Xu, Renxin
2013-01-01
Our world is wonderful because of the negligible baryonic part although unknown dark matter and dark energy dominate the Universe. Those nuclei in the daily life are forbidden to fuse by compression due to the Coulomb repulse, nevertheless, it is usually unexpected in extraterrestrial extreme-environments: the gravity in a core of massive evolved star is so strong that all the other forces (including the Coulomb one) could be neglected. Compressed baryonic matter is then produced after supernova, manifesting itself as pulsar-like stars observed. The study of this compressed baryonic matter can not only be meaningful in fundamental physics (e.g., the elementary color interaction at low-energy scale, testing gravity theories, detecting nano-Hertz background gravitational waves), but has also profound implications in engineering applications (including time standard and navigation), and additionally, is focused by Chinese advanced telescopes, either terrestrial or in space. Historically, in 1930s, L. Landau spec...
Nuclei as superposition of topological solitons
International Nuclear Information System (INIS)
The rational map approximation provides an opportunity to describe light nuclei as classical solitons with baryon number B > 1 in the framework of the Skyrme model. The rational map ansatz yields a possibility of factorization of S3 baryon charge into S1 and S2 parts, the phenomenology of the model being strongly affected by the chosen factorization. Moreover, in the fundamental representation superposition of two different soliton factorizations can be used as solution ansatz. The canonical quantization procedure applied to collective degrees of freedom of the classical soliton leads to anomalous breaking of the chiral symmetry and exponential falloff of the energy density of the soliton at large distance, without explicit symmetry breaking terms included. The evolution of the shape of electric form factor as a function of two different factorization soliton mix ratio is investigated. Numerical results are presented. (author)
Diffraction on nuclei: Effects of nucleon correlations
International Nuclear Information System (INIS)
The cross sections for a variety of diffractive processes in proton-nucleus scattering, associated with large gaps in rapidity, are calculated within an improved Glauber-Gribov theory, where the inelastic shadowing corrections are summed to all orders by employing the dipole representation. The effects of nucleon correlations, leading to a modification of the nuclear thickness function, are also taken into account. Numerical calculations are performed for the energies of the Hadron-Electron Ring Accelerator-B experiment, the Relativistic Heavy Ion Collider and Large Hadron Collider, and for several nuclei. It is found that whereas the Gribov corrections generally make nuclear matter more transparent, nucleon correlations act in the opposite direction and have important effects in various diffractive processes.
Power spectra of active galactic nuclei
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The power spectral densities(PSDs)for a sample of active galactic nuclei(AGNs)are analyzed in both the frequency domain and the time domain.We find for each object that for broadband noise a character timescale-bifurcation timescale of Fourier and time-domain PSD exists in the 10 3 -10 6 s range, below which the time-domain power spectrum is systematically higher than the corresponding Fourier spectrum.The relationship between bifurcation timescale,AGN mass and luminosity is studied.Compared with the fact that similar phenomena have been found for Galactic black hole candidates(GBHs) with bifurcation timescale~0.1 s but not for accreting neutron stars,our finding indicates that AGNs and GBHs have common intrinsic nature in rapid X-ray variability with a character time parameter scaled with their masses.
Power spectra of active galactic nuclei
Institute of Scientific and Technical Information of China (English)
WANG TaiShan; WU YuXiang; LIU Yuan
2009-01-01
The power spectral densities (PSDs) for a sample of active galactic nuclei (AGNs) are analyzed in both the frequency domain and the time domain. We find for each object that for broadband noise a character timescale-bifurcation timescale of Fourier and time-domain PSD exists in the 103-106 s range,below which the time-domain power spectrum is systematically higher than the corresponding Fourier spectrum. The relationship between bifurcation timescale, AGN mass and luminosity is studied. Compared with the fact that similar phenomena have been found for Galactic black hole candidates (GBHs)with bifurcation timescale ～0.1 s but not for accreting neutron stars, our finding indicates that AGNs and GBHs have common intrinsic nature in rapid X-ray variability with a character time parameter scaled with their masses.
Searching for E(5) behavior in nuclei
International Nuclear Information System (INIS)
The properties of even-even nuclei with 30≤Z≤82, A≥60 have been examined to find examples displaying the characteristics of E(5) critical-point behavior for the shape transition from a spherical vibrator to a triaxially soft rotor. On the basis of the known experimental state energies and E2 transition strengths, the best candidates that were identified are 102Pd, 106,108Cd, 124Te, 128Xe, and 134Ba. The closest agreement between experimental data and the predictions of E(5) is for 128Xe and for the previously suggested example of 134Ba. It is proposed that 128Xe may be a new example of a nucleus at the E(5) critical point
Thermodynamics of pairing transition in hot nuclei
Liu, Lang; Zhao, Peng-Wei
2014-01-01
The pairing correlations in hot nuclei $^{162}$Dy are investigated in terms of the thermodynamical properties by covariant density functional theory. The heat capacities $C_V$ are evaluated in the canonical ensemble theory and the paring correlations are treated by a shell-model-like approach, in which the particle number is conserved exactly. A S-shaped heat capacity curve, which agrees qualitatively with the experimental data, has been obtained and analyzed in details. It is found that the one-pair-broken states play crucial roles in the appearance of the S shape of the heat capacity curve. Moreover, due to the effect of the particle-number conservation, the pairing gap varies smoothly with the temperature, which indicates a gradual transition from the superfluid to the normal state.
Spitzer Observations of Deeply Obscured Galactic Nuclei
Spoon, H W W; Cami, J; Lahuis, F; Tielens, A G G M; Armus, L; Charmandaris, V
2005-01-01
We report on our first results from a mid-infrared spectroscopic study of ISM features in a sample of deeply obscured ULIRG nuclei using the InfraRed Spectrograph (IRS) on the Spitzer Space Telescope. The spectra are extremely rich and complex, revealing absorption features of both amorphous and crystalline silicates, aliphatic hydrocarbons, water ice and gas phase bands of hot CO and warm C_2H_2, HCN and CO_2. PAH emission bands were found to be generally weak and in some cases absent. The features are probing a dense and warm environment in which crystalline silicates and water ice are able to survive but volatile ices, commonly detected in Galactic dense molecular clouds, cannot. If powered largely by star formation, the stellar density and conditions of the gas and dust have to be extreme not to give rise to the commonly detected emission features associated with starburst.
Clusters in neutron-rich light nuclei
Directory of Open Access Journals (Sweden)
Jelavić Malenica D.
2016-01-01
Full Text Available Due to their high selectivity, transfer and sequential decay reactions are powerful tools for studies of both single particle (nucleon and cluster states in light nuclei. Their use is particularly simple for investigations of α-particle clustering (because α-particle has Jπ=0+, which simplifies spin and parity assignments to observed cluster states, but they are also easily applicable to other types of clustering. Recent results on clustering in neutron-rich isotopes of beryllium, boron and carbon obtained measuring the 10B+10B reactions (at 50 and 72 MeV are presented. The highly efficient and segmented detector systems used, built from 4 Double Sided Silicon Strip Detectors (DSSSD allowed detection of double and multiple coincidences and, in that way, studies of states populated in transfer reactions, as well as their sequential decay.
Halo exotic nuclei and Schroedingers's cat
International Nuclear Information System (INIS)
A 'doorway' description of Ε1 transitions in the Coulomb excitation of 'halo'exotic nuclei is formulated. The 'doorway'is defined as that (normalizable, non-stationary) state which can be reached from the ground state through the action of the relevant transition operator. In this picture, the Coulomb excitation process naturally appears in the form of a non Breit-Wigner resonance production process, while the so called 'soft'and 'hard' dipole modes can be related to the non standard spectral distribution of the doorway in its host physical system. Coherence and decoherence effects involving the different spectral components in fast Coulomb excitation processes and photon inelastic scattering are briefly discussed. (author)
Mean field and collisions in hot nuclei
International Nuclear Information System (INIS)
Collisions between heavy nuclei produce nuclear matter of high density and excitation. Brueckner methods are used to calculate the momentum and temperature dependent mean field for nucleons propagating through nuclear matter during these collisions. The mean field is complex and the imaginary part is related to the ''two-body'' collision, while the real part relates to ''one-body'' collisions. A potential model for the N-N interactions is avoided by calculating the Reaction matrix directly from the T-matrix (i.e., N-N phase shifts) using a version of Brueckner theory previously published by the author. Results are presented for nuclear matter at normal and twice normal density and for temperatures up to 50 MeV. 23 refs., 7 figs
Comment on breakup densities of hot nuclei
International Nuclear Information System (INIS)
In [V.E. Viola et al., Phys. Rev. Lett. 93 (2004) 132701, D.S. Bracken et al., Phys. Rev. C 69 (2004) 034612] the observed decrease in spectral peak energies of IMFs emitted from hot nuclei was interpreted in terms of a breakup density that decreased with increasing excitation energy. Subsequently, Raduta et al. [Ad. Raduta et al., Phys. Lett. B 623 (2005) 43] performed MMM simulations that showed decreasing spectral peaks could be obtained at constant density. In this Letter we point out that this apparent inconsistency is due to a selective comparison of theory and data that overlooks the evolution of the fragment multiplicities as a function of excitation energy
Ground State Properties of Neutron Magic Nuclei
Saxena, G
2016-01-01
A systematic study of the ground state properties of the entire chains of even even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82 and 126 has been carried out using relativistic mean field (rmf) plus Bardeen Cooper Schrieffer (BCS) approach. Our present investigation includes deformation, binding energy, two proton separation energy, single particle energy, rms radii along with proton and neutron density profiles, etc. Several of these results are compared with the results calculated using non relativistic approach (Skyrme Hartree Fock method) along with available experimental data and indeed they are found with excellent agreement. In addition, the possible locations of the proton and neutron drip lines, the (Z,N) values for the new shell closures, disappearance of traditional shell closures as suggested by the detailed analyzes of results are also discussed in detail.
Active Galactic Nuclei Feedback and Clusters
Indian Academy of Sciences (India)
Biman B. Nath
2011-12-01
The Intracluster Medium (ICM) is believed to have been affected by feedback from Active Galactic Nuclei (AGN) and/or supernovae-driven winds. These sources are supposed to have injected entropy into the ICM gas. The recently determined universal pressure profile of the ICM gas has been used and after comparing with the entropy profile of the gas from gravitational effects of the dark matter halo, the additional entropy injected by non-gravitational sources, as a function of the total cluster mass is determined. The current observational data of red-shift evolution of cluster scaling relation is shown that allow models in which the entropy injection decreases at high red-shift.
Broad iron lines in Active Galactic Nuclei
Fabian, A C; Reynolds, C S; Young, A J
2000-01-01
An intrinsically narrow line emitted by an accretion disk around a black hole appears broadened and skewed as a result of the Doppler effect and gravitational redshift. The fluorescent iron line in the X-ray band at 6.4-6.9keV is the strongest such line and is seen in the X-ray spectrum of many active galactic nuclei and, in particular, Seyfert galaxies. It is an important diagnostic with which to study the geometry and other properties of the accretion flow very close to the central black hole. The broad iron line indicates the presence of a standard thin accretion disk in those objects, often seen at low inclination. The broad iron line has opened up strong gravitational effects around black holes to observational study with wide-reaching consequences for both astrophysics and physics.
Viscosity: From air to hot nuclei
Indian Academy of Sciences (India)
Nguyen Dinh Dang
2014-11-01
After a brief review of the history of viscosity from classical to quantal fluids, a discussion of how the shear viscosity of a finite hot nucleus is calculated directly from the width and energy of the giant dipole resonance (GDR) of the nucleus is given in this paper. The ratio / with s being the entropy volume density, is extracted from the experimental systematic of GDR in copper, tin and lead isotopes at finite temperature . These empirical results are compared with the results predicted by several independent models, as well as with almost model-independent estimations. Based on these results, it is concluded that the ratio / in medium and heavy nuclei decreases with increasing to reach (1.3−4)$×\\hbar/(4 k_B)$ at = 5 MeV, which is almost the same as that obtained for quark-gluon plasma at > 170 MeV.
Sequential binary decay of highly excited nuclei
International Nuclear Information System (INIS)
The decay of highly excited nuclei is described as a sequence of binary processes involving emission of fragments in their ground, excited-bound and unbound states. Primary together with secondary decay products lead to the final mass distributions. Asymmetric mass splittings involving nucleon emission up to symmetric binary ones are treated according to a generalized Weisskopf evaporation formalism. This procedure is implemented in the Monte-Carlo multi-step statistical model code MECO (Multisequential Evaporation COde). We examine the evolution of the calculated final mass distributions in the decay of a light compound nucleus, as the initial excitation energy increases towards the limits of complete dissociation. Comparisons are made with the predictions of the transition-stage theory, as well as a consistent Weisskopf treatment in which the decay process is described by rate equations for the generation of different fragment species. (author)
Magic ultramagnetized nuclei in explosive nucleosynthesis
International Nuclear Information System (INIS)
Direct evidence of the presence of 44Ti and content of the isotope in the supernova remnant Cassiopeia A are obtained from the analysis of gamma-ray spectrum of the remnant. A significant excess of observational 44Ti volume on predictions of supernova models can be explained as the magnetization effect in the process of explosive nucleosynthesis. The formation of chemical elements is considered accounting for superstrong magnetic fields predicted for supernovae and neutron stars. Using the arguments of nuclear statistical equilibrium, a significant effect of magnetic field on the nuclear shell energy is demonstrated. The magnetic shift of the most tightly “bound” nuclei from the transition metals of iron series to titanium leads to an exponential increase in the portion of 44Ti and, accordingly to a significant excess of the yield of these products of nucleosynthesis.
Giant resonances in hot rotating nuclei
International Nuclear Information System (INIS)
Present theoretical descriptions of the giant resonances in hot rotating nuclei are reviewed. Mean field theory is used as a basis for the description of the hot compound states. Starting from the static solution at finite temperature and with fixed angular momentum small amplitude collective vibrations are calculated in the frame work of finite temperature random phase approximation for quasi-particles. The effect of pairing at low temperatures as well as the effect of rotations on the position of the resonance maxima are investigated. Microscopic and phenomenological descriptions of the damping mechanisms are reviewed. In particular it turns out that fluctuations play an important role in understanding of the behaviour of the width as a function of the temperature. Motional narrowing is critically discussed. (author). 99 refs., 5 figs
Einstein Observatory results on active galactic nuclei
Mushotzky, R. F.; Holt, S. S.
1982-01-01
The results of Einstein Observatory surveys of active galactic nuclei (AGN) are reviewed. The ubiquity of X-ray emission from AGNs was confirmed. The relations between X-ray and optical luminosities, between X-ray and radio properties, and between X-ray and optical-UV line emission found by the surveys are summarized and briefly discussed. The possible causes of observed X-ray emission from jets in Cen-A, 3C273, and M87 are considered. The active nucleus discovered in the optically 'dull' galaxy NGC 4156 is covered, and a model for NGC 4151 based on detailed spectral studies is briefly discussed. This model establishes the global symmetry of the AGN clouds, their approximate sizes, and their ionization state. Difficulties encountered in attempting to explain the cosmic X-ray background in terms of AGN contributions are addressed.
Neutron reactions with nuclei in isomeric states
International Nuclear Information System (INIS)
The authors give theoretical calculation results for the cross-sections of reactions (n,n'γ) and (n,2n) with high-spin target nuclei in the excited state. It is shown that an increase in the target nucleus excitation energy shifts the cross-section curve to the left along the energy axis, while an increase in the ground state spin considerably reduces the (n,2n) reaction cross-section in the threshold region of the reaction. In the authors' opinion, this change in the excitation functions is due to a sharp rise in the role of gamma competition because of the effect of the spin conservation law on neutron emission. (author)
Real and virtual pions in nuclei
International Nuclear Information System (INIS)
The thesis first part is concerned with physical pion interaction with deuton, studied in a three-body problem frame. The elastic cross-section in the energy range near the resonance (3-3), has been deduced taking in account the pion virtual absorption. The second part is concerned with virtual pion in nuclei. In particular the virtual pion cloud around the nucleus has been studied and the effective constant coupling pion-nucleus has been deduced. This one is strongly reduced by polorazation effects of the nuclear medium (essentially by virtual excitation of the Δ isobar), in relation to its value for free nucleon collection. In the frame of the same polarization model, the pion field inside the nucleus has been studied also. This field is lowered for small momentum transfer. It is increased for large momentum transfer. This last phenomenon corresponds to critical opalescence related to phase transition of pion condensation
Momentum distribution of N$^*$ in nuclei
Kelkar, N G
2016-01-01
Due to its dominance in the low energy eta-nucleon interaction, the S11 N$^*$(1535) resonance enters as an important ingredient in the analyses of experiments aimed at finding evidence for the existence of eta-mesic nuclei. The static properties of the resonance get modified inside the nucleus and its momentum distribution is used in deciding these properties as well as the kinematics in the analyses. Here we show that given the possibility for the existence of an N$^*$-$^3$He quasibound state, the relative momentum distribution of an N$^*$ and $^3$He inside such a $^4$He is narrower than that of neutron-$^3$He in $^4$He. Results for the N$^*$-$^{24}$Mg system are also presented. The present exploratory work could be useful in motivating searches of exotic N$^*$-nucleus quasibound states as well as in performing analyses of eta meson production data.
Cluster magnetic fields from active galactic nuclei
Sutter, P M; Yang, H -Y
2009-01-01
Active galactic nuclei (AGN) found at the centers of clusters of galaxies are a possible source for weak cluster-wide magnetic fields. To evaluate this scenario, we present 3D adaptive mesh refinement MHD simulations of a cool-core cluster that include injection of kinetic, thermal, and magnetic energy via an AGN-powered jet. Using the MHD solver in FLASH 2, we compare several sub-resolution approaches that link the estimated accretion rate as measured on the simulation mesh to the accretion rate onto the central black hole and the resulting feedback. We examine the effects of magnetized outflows on the accretion history of the black hole and discuss the ability of these models to magnetize the cluster medium.
Eta-mesic nuclei: Past, present, future
International Nuclear Information System (INIS)
Eta-mesic nucleus or the quasibound nuclear state of an eta (η) meson in a nucleus is caused by strong interaction force alone. This new type of nuclear species, which extends the landscape of nuclear physics, has been extensively studied since its prediction in 1986. We review and analyze in great detail the models of the fundamental η-nucleon interaction leading to the formation of an η-mesic nucleus, the methods used in calculating the properties of a bound η, and the approaches employed in the interpretation of the pertinent experimental data. In view of the successful observation of the η-mesic nucleus 25Mgη and other promising experimental results, future direction in searching for more η-mesic nuclei is suggested
Suzaku observations of 'bare' active galactic nuclei
Walton, D J; Fabian, A C; Gallo, L C; Reis, R C
2012-01-01
We present a X-ray spectral analysis of a large sample of 25 'bare' active galactic nuclei, sources with little or no complicating intrinsic absorption, observed with Suzaku. Our work focuses on studying the potential contribution from relativistic disc reflection, and examining the implications of this interpretation for the intrinsic spectral complexities frequently displayed by AGN in the X-ray bandpass. During the analysis, we take the unique approach of attempting to simultaneously undertake a systematic analysis of the whole sample, as well as a detailed treatment of each individual source, and find that disc reflection has the required flexibility to successfully reproduce the broadband spectrum observed for all of the sources considered. Where possible, we use the reflected emission to place constraints on the black hole spin for this sample of sources. Our analysis suggests a general preference for rapidly rotating black holes, which if taken at face value is most consistent with the scenario in whic...
Dynamical effects in fusion with exotic nuclei
Vo-Phuoc, K; Simpson, E C
2016-01-01
[Background] Reactions with stable beams have demonstrated a strong interplay between nuclear structure and fusion. Exotic beam facilities open new perspectives to understand the impact of neutron skin, large isospin, and weak binding energies on fusion. Microscopic theories of fusion are required to guide future experiments. [Purpose] To investigate new effects of exotic structures and dynamics in near-barrier fusion with exotic nuclei. [Method] Microscopic approaches based on the Hartree-Fock (HF) mean-field theory are used for studying fusion barriers in $^{40-54}$Ca+$^{116}$Sn reactions for even isotopes. Bare potential barriers are obtained assuming frozen HF ground-state densities. Dynamical effects on the barrier are accounted for in time-dependent Hartree-Fock (TDHF) calculations of the collisions. Vibrational couplings are studied in the coupled-channel framework and near-barrier nucleon transfer is investigated with TDHF calculations. [Results] The development of a neutron skin in exotic calcium iso...
Electromagnetic Transition Strengths in Heavy Nuclei
Buck, B; Perez, S M
2012-01-01
We calculate reduced B(E2) and B(M1) electromagnetic transition strengths within and between K-bands in support of a recently proposed model for the structure of heavy nuclei. Previously, only spectra and a rough indication of the largest B(E2) strengths were reported. The present more detailed calculations should aid the experimental identification of the predicted $0^+$, $1^+$ and $2^+$ bands and, in particular, act to confirm or refute the suggestion that the model $0^+$ and $2^+$ bands correspond to the well known and widespread beta and gamma bands. Furthermore they pinpoint transitions which can indicate the presence of a so far elusive $1^+$ band by feeding relatively strongly into or out of it. Some of these transitions may already have been measured in $^{230}$Th, $^{232}$Th and $^{238}$U.
LINERs as Low-Luminosity Active Galactic Nuclei
Ho, L C
1998-01-01
Many nearby galaxies contain optical signatures of nuclear activity in the form of LINER nuclei. LINERs may be the weakest and most common manifestation of the quasar phenomenon. The physical origin of this class of objects, however, has been ambiguous. I draw upon a number of recent observations to argue that a significant fraction of LINERs are low-luminosity active galactic nuclei.
Oriented collisions for cold synthesis of superheavy nuclei
Raj K Gupta; Balasubramaniam, M.; Kumar, Rajesh; Singh, Narinder
2003-01-01
The conditions of optimum orientations (lowest barrier and largest interaction radius) for deformed colliding nuclei are introduced in "cold" fusion of superheavy nuclei. Also, the role of (octupole and) hexadecupole deformations is studied. We have used the proximity potential and applied our method to Ca-induced reactions.
Isoscalar giant quadrupole resonance in hot and rotating nuclei
International Nuclear Information System (INIS)
We discuss the role of thermal shape fluctuations on isoscalar giant quadrupole resonance (ISGOR) in hot and rotating nuclei. Our results show that the GQR energies strongly reflect the shape transition in hot and rotating nuclei despite the smoothing effect of thermal fluctuation. (author)
HOT SUPERHEAVY NUCLEI SEEN WITH THE GDR GAMMA-DECAY
MAJ, A; TVETER, TS; GAARDHOJE, JJ; HERSKIND, B; SLETTEN, G; RAMSOY, T; ATAC, A; KORTEN, W; BRACCO, A; CAMERA, F; MATTIUZZI, M; MILLION, B; PIGNANELLI, M; BACELAR, J; BUDA, A; PLOEG, HVD; KROLAS, W; NIFENECKER, H; SCHUSSLER, F; PINSTON, JA; MENTHE, A; PAUL, P; HOFMAN, DJ; DIOSZEGI, [No Value; SCHADMAND, S
1995-01-01
The GDR gamma decay of highly excited (272)Hs and (269)Ns nuclei and their evaporation daughters was studied in coincidence with fission fragments. A difference technique was used to isolate the pre-fission component. Strong dipole collectivity was observed. The lifetime of the hot superheavy nuclei
4th International Conference on Exotic Nuclei and Atomic Masses
Gross, Carl J; Rykaczewski, Krzysztof P; The European Physical Journal A : Volume 25, Supplement 1, 2005
2005-01-01
The International Conference on Exotic Nuclei and Atomic Masses (ENAM) has gained the status of the premier meeting for the physics of nuclei far from stability. The selected and refereed papers presenting the main results constitute valuable proceedings that offer everyone working in this field an authoritative and comprehensive source of reference.
Delayed-particle spectroscopy on very exotic nuclei at Ganil
International Nuclear Information System (INIS)
This paper describes recent developments concerning the spectroscopy of the preponderate decay mode of these nuclei far off stability: their high β decay energy 0β opens up the window for decay into particle-unstable states of the daughter nucleus leading to β delayed proton or neutron emission in the case of very neutron-deficient or neutron-rich nuclei, respectively
Shell evolution: A paradigm of structure of exotic nuclei?
Otsuka, Taka
2003-01-01
The evolution of shell structure and magic numbers of exotic nuclei are discussed with a rather pedagogical introduction. A major origin of the shell evolution is shown to be the spin-isospin dependent central part of the nucleon-nucleon interaction in nuclei. The importance and robustness of this mechanism ...
Relativistic many body theory for unstable nuclei and supernova
International Nuclear Information System (INIS)
The motivation of applying the relativistic many-body theory comes from the recent experimental development of unstable nuclear beam facilities. Many interesting phenomena may be found in the study of unstable nuclei. Already in light nuclei, neutron halos and neutron skins have been found. The relativistic many-body theory was selected for studying on the structures of unstable nuclei up to the drip lines. The recent work on nuclear matters with the relativistic Brueckner Hartree-Fock (RBHF) theory is introduced. When RBHF was applied to finite nuclei as 16O and 40Ca, it also provided promising results. The relativistic mean field (RMF) theory was taken, and its parameters were to be fixed so that it reproduced the results of the RBHF theory as closely as possible. After summarizing the results for unstable nuclei with the standard NL-1 parameter set, the effort of getting a new parameter set is discussed. The unstable nuclei with deformation were also calculated successfully. The large difference between the self energy of nucleons in nuclear matters and that of RBHF is discussed. The introduction of a nonlinear term for omega mesons is explained. The new parameter set named TMI is able to describe the nuclear properties of unstable nuclei and the nuclear matters obtained by the RBHF. The relativity is the key ingredient of the success in the description of nuclei. (K.I.)
The structure of proton rich nuclei in nuclear astrophysics
International Nuclear Information System (INIS)
The properties of exotic proton rich nuclei are of great importance for nuclear astrophysics models. In the present work, we show how to address many nuclear structure properties of these nuclei at the extremes of stability, from the analysis of proton radioactivity
Momentum distribution of Delta- isobar in closed shell nuclei
Tabachenko, A. N.
2005-01-01
One Delta- isobar components of the wave function in closed shell nuclei are considered within the framework of the harmonic oscillator model. Conventional transition potential is the pi- and rho- exchange potential. On the basis of the Delta- isobar configuration wave function, the momentum distribution of the Delta- isobar is calculated for the light nuclei $^4 He$,$^{16}O$,$^{12}C$
Study of nuclei' excitation in the charge exchange reactions (Draft)
International Nuclear Information System (INIS)
Carried out experimental and theoretical studies show, that in the nuclear charge exchange reactions there is an unique ability for study both properties and behavior of the delta-isobar in the excited nuclear environment. However for theoretical analysis of these reactions it is necessary have experimental data on nuclei charge exchange on free nucleons. It is offered the experiment of measurement dependence of inclusive cross section of the tritium nuclei charge exchange in 3He nuclei on hydrogen from transferred energy. This reaction is isotopically dependent on 3He nuclei in tritons charge exchange reaction on neutrons. Aim of proposed experiment is checking of a hypothesis believability about the delta-isobar excitation in flying nucleus, and measurement of the process intensity. Peculiarity of this experiment is application of relativistic tritons beams formed from accelerated fragments of 4He nuclei. Experimental facility presents of combination of two one-arm spectrometers: first one - time-flying spectrometer for measurement tritium nuclei impulse in beam to target with accuracy 0.3 % for 6 GeV/s and identification of tritium nuclei, the second one - magnetic spectrometer for identification and measurement of 3He nuclei impulse forming in the result of the charge exchange reaction
Role of cranking frequency in hot rotating deformed nuclei
International Nuclear Information System (INIS)
A comparative study between the cranking method and Lagrangian Multiplier method of generating angular momentum reveals that the rotational frequency ω and Lagrangian Multiplier γ are identically equal for axially symmetric shapes, while for triaxially deformed nuclei γ ≠ ω. In this paper the role of the cranking frequency in hot rotating deformed nuclei is studied
Feldspar minerals as efficient deposition ice nuclei
Directory of Open Access Journals (Sweden)
J. D. Yakobi-Hancock
2013-06-01
Full Text Available Mineral dusts are well known to be efficient ice nuclei, where the source of this efficiency has typically been attributed to the presence of clay minerals such as illite and kaolinite. However, the ice nucleating abilities of the more minor mineralogical components have not been as extensively examined. As a result, the deposition ice nucleation abilities of 24 atmospherically-relevant mineral samples have been studied, using a continuous flow diffusion chamber at −40.0 ± 0.3 °C. The same particle size (200 nm and particle preparation procedure were used throughout. The ice nucleation behaviour of the pure minerals is compared to that of complex mixtures, such as Arizona Test Dust (ATD and Mojave Desert Dust (MDD, and to lead iodide, which has been previously proposed for cloud seeding. Lead iodide was the most efficient ice nucleus (IN, requiring a critical relative humidity with respect to ice (RHi of 122.0 ± 2.0% to activate 0.1% of the particles. MDD (RHi 126.3 ± 3.4% and ATD (RHi 129.5 ± 5.1% have lower but comparable activity. From a set of clay minerals (kaolinite, illite, montmorillonite, non-clay minerals (e.g. hematite, magnetite, calcite, cerussite, quartz, and feldspar minerals (orthoclase, plagioclase present in the atmospheric dusts it was found that the feldspar minerals (particularly orthoclase, and not the clays, were the most efficient ice nuclei. Orthoclase and plagioclase were found to have critical RHi values of 127.1 ± 6.3% and 136.2 ± 1.3%, respectively. The presence of feldspars (specifically orthoclase may play a significant role in the IN behaviour of mineral dusts despite their lower percentage in composition relative to clay minerals.
SO8 model of collectivity in nuclei
International Nuclear Information System (INIS)
The interacting boson model (IBM) has been very successful in giving a unified and simple description of the spectroscopic properties of a wide range of nuclei, from vibrational through rotational nuclei. The three basic assumptions of the model are that (1) the valence nucleons move about a doubly closed core, (2) the collective low-lying states are composed primarily of coherent pairs of neutrons and pairs of protons coupled to angular momentum zero and two and (3) these coherent pairs are approximated as bosons. Thus the IBM is an approximation to the nuclear shell model in which the number of degrees of freedom are reduced drastically. Once these assumptions are made, the effective Hamiltonian can then be written in terms of neutron monopole (angular momentum zero) and quadrupole (angular momentum two) bosons and proton monopole and quadrupole bosons. Since each nucleus will have a fixed number of nucleon pairs this boson Hamiltonian will conserve the number of bosons. Phemonologically, the Hamiltonian is assumed to be finite and to be a sum of a boson self-energy Hamiltonian plus pairwise interactions between bosons. However, the parameters of the boson Hamiltonian depend smoothly on the mass of the nucleus. The mass dependence of these parameters presumably arise because of two effects resulting from the approximations made. In this review we shall show how it is possible to have fermion Hamiltonians which have a class of collective eigenstates composed entirely of monopole and quadrupole pairs of fermions. Hence these models satisfy the assumptions (1) and (2) above but no boson approximation need be made. Thus the Pauli principle is kept in tact. Furthermore the fermion shell model states excluded in the IBM can be classified by the number of fermion pairs which are not coherent monopole of quadrupole pairs. Hence the mixing of these states into the low-lying spectrum can be calculated in a systematic and tractable manner
Deep inelastic collisions between very heavy nuclei
International Nuclear Information System (INIS)
A systematic survey of deep inelastic reactions was performed for colliding nuclei of masses between 80 and 240 amu. The application of large surface detectors and, particularly, of a position sensitive ionization chamber, has proved to be very effective and appropriate for this type of investigation. The Wilczynski diagrams describing the relative motion between the colliding objects shows a gradual trend as a function of growing masses of target and projectile where the trajectories lead the particles not toward negative scattering angles but increasingly into the direction around and above the grazing angle. This behavior is attributed to a delicate balance between Coulomb and nuclear forces. The energy dumping as a function of the mass transfer strength matches a general law between total kinetic energy loss and the variance of the proton number distribution. For the partly damped component this relation seems to hold independently from the choice of ingoing channel and bombarding energy. The dissipation of the kinetic energy does not depend only on the relative velocity of the impinging nuclei, and the simple friction model is not appropriate to describe these processes. The γ-multiplicity measurement displays a rapid increase as a function of scattering angle and total kinetic energy loss, which give new insights to the process and indicate the necessity of microscopic quantum mechanical calculations of the interaction. In the U-U collision large mass transfers are present which possibly populate with relatively large cross sections the transuranic elements. In the Pb-Pb reaction the mass transfer is more restricted. The decay probability by fission of the primary masses increases strongly for growing masses and excitation energies
Dynamical effects in fusion with exotic nuclei
Vo-Phuoc, K.; Simenel, C.; Simpson, E. C.
2016-08-01
Background: Reactions with stable beams have demonstrated strong interplay between nuclear structure and fusion. Exotic beam facilities open new perspectives to understand the impact of neutron skin, large isospin, and weak binding energies on fusion. Microscopic theories of fusion are required to guide future experiments. Purpose: To investigate new effects of exotic structures and dynamics in near-barrier fusion with exotic nuclei. Method: Microscopic approaches based on the Hartree-Fock (HF) mean-field theory are used for studying fusion barriers in -54Ca40+116Sn reactions for even isotopes. Bare potential barriers are obtained assuming frozen HF ground-state densities. Dynamical effects on the barrier are accounted for in time-dependent Hartree-Fock (TDHF) calculations of the collisions. Vibrational couplings are studied in the coupled-channel framework and near-barrier nucleon transfer is investigated with TDHF calculations. Results: The development of a neutron skin in exotic calcium isotopes strongly lowers the bare potential barrier. However, this static effect is not apparent when dynamical effects are included. On the contrary, a fusion hindrance is observed in TDHF calculations with the most neutron-rich calcium isotopes which cannot be explained by vibrational couplings. Transfer reactions are also important in these systems due to charge equilibration processes. Conclusions: Despite its impact on the bare potential, the neutron skin is not seen as playing an important role in the fusion dynamics. However, the charge transfer with exotic projectiles could lead to an increase of the Coulomb repulsion between the fragments, suppressing fusion. The effects of transfer and dissipative mechanisms on fusion with exotic nuclei deserve further studies.
Decay of Hot Nuclei at Low Spins Produced by Antiproton-Annihilation in Heavy Nuclei
2002-01-01
% PS208 \\\\ \\\\ The objective of the experiment is to study (i) the thermal excitation energy distribution of antiproton-induced reactions in heavy nuclei and (ii) the decay properties of hot nuclei at low spins via evaporation, multifragmentation and fission as a function of excitation energy. The experimental set-up consists of 4-$\\pi$ detectors: the Berlin Neutron Ball~(BNB) which is a spherical shell of gadolinium-loaded scintillator liquid with an inner and outer diameter of 40 and 160~cm, respectively. This detector counts the number of evaporated neutrons in each reaction. Inside BNB there is a 4-$\\pi$ silicon ball~(BSIB) with a diameter of 20~cm consisting of 162 detectors which measure energy and multiplicity of all emitted charged nuclear particles. The particles are identified via time of flight, energy and pulse shape correlations.
Quadrupole deformation and clusterization in nuclei
International Nuclear Information System (INIS)
The investigation of exotic nuclear shapes, e.g. superdeformed and hyperdeformed states (in which the atomic nucleus has a spheroidal shape with ratios of main axes of 2:1 and 3:1, respectively) is one of the most interesting topics in recent nuclear structure studies. The appearance of exotic cluster configurations (or exotic cluster decay) is another issue of utmost interest. The combination of these two problems brings us to an exciting question: what is the interrelation of these two phenomena, i.e. what are the possible clusterizations of nuclear states with exotic shape. Recently we have addressed this question from the angle of both the binary and the ternary clusterizations. We apply methods which can be generalised for more complicated multicluster-configurations in a straightforward way. The basic concept of this work is that when we describe the composition of an atomic nucleus from smaller nuclei (clusters) then we take into account both of the two complementary natural laws, which govern this kind of phenomenon: the energy-minimum principle and the Pauli-exclusion principle. The crucial role of these two rules are obvious: energetically unfavoured systems are not likely to appear, and when the building blocks are fermions, like the nucleons of the atomic nuclei, then they follow the exclusion principle. However, the exact role, or relative importance of these two aspects of clusterization among di rent circumstances are not completely understood yet; the present work is meant to be a contribution to this task. Much attention has been paid to the energetic preference of various cluster-configurations of a nucleus. The methods applied along this line are partly or completely empirical ones, using information of the experimental data. Furthermore, most of these works concentrate on the simplest, i.e. binary clusterizations, especially, when the energetic calculation involves (in addition to the experimental binding energies) intercluster potentials, like
Incompressibility of finite fermionic systems: stable and exotic atomic nuclei
Khan, E; Vretenar, D; Cao, Li-Gang; Sagawa, H; Colo, G
2013-01-01
The incompressibility of finite fermionic systems is investigated using analytical approaches and microscopic models. The incompressibility of a system is directly linked to the zero-point kinetic energy of constituent fermions, and this is a universal feature of fermionic systems. In the case of atomic nuclei, this implies a constant value of the incompressibility in medium-heavy and heavy nuclei. The evolution of nuclear incompressibility along Sn and Pb isotopic chains is analyzed using global microscopic models, based on both non-relativistic and relativistic energy functionals. The result is an almost constant incompressibility in stable nuclei and systems not far from stability, and a steep decrease in nuclei with pronounced neutron excess, caused by the emergence of a soft monopole mode in neutron-rich nuclei.