WorldWideScience

Sample records for a549 lung epithelial

  1. Trichomonas vaginalis induces cytopathic effect on human lung alveolar basal carcinoma epithelial cell line A549.

    Salvador-Membreve, Daile Meek C; Jacinto, Sonia D; Rivera, Windell L

    2014-12-01

    Trichomonas vaginalis, the causative agent of trichomoniasis is generally known to inhabit the genitourinary tract. However, several case reports with supporting molecular and immunological identifications have documented its occurrence in the respiratory tract of neonates and adults. In addition, the reports have documented that its occurrence is associated with respiratory failures. The medical significance or consequence of this association is unclear. Thus, to establish the possible outcome from the interaction of T. vaginalis with lung cells, the cytopathic effects of the parasites were evaluated using monolayer cultures of the human lung alveolar basal carcinoma epithelial cell line A549. The possible effect of association of T. vaginalis with A549 epithelial cells was analyzed using phase-contrast, scanning electron microscopy and fluorescence microscopy. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), crystal-violet and TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling) assays were conducted for cytotoxicity testing. The results demonstrate that T. vaginalis: (1) adheres to A549 epithelial cells, suggesting a density-dependent parasite-cell association; (2) adherence on A549 is through flagella, membrane and axostyle; (3) causes cell detachment and cytotoxicity (50-72.4%) to A549 and this effect is a function of parasite density; and (4) induces apoptosis in A549 about 20% after 6 h of incubation. These observations indicate that T. vaginalis causes cytopathic effects on A549 cell. To date, this is the first report showing a possible interaction of T. vaginalis with the lung cells using A549 monolayer cultures. Further studies are recommended to completely elucidate this association.

  2. Human lung epithelial cell A549 proteome data after treatment with titanium dioxide and carbon black.

    Vuong, Ngoc Q; Goegan, Patrick; Mohottalage, Susantha; Breznan, Dalibor; Ariganello, Marianne; Williams, Andrew; Elisma, Fred; Karthikeyan, Subramanian; Vincent, Renaud; Kumarathasan, Premkumari

    2016-09-01

    Here, we have described the dataset relevant to the A549 cellular proteome changes after exposure to either titanium dioxide or carbon black particles as compared to the non-exposed controls, "Proteomic changes in human lung epithelial cells (A549) in response to carbon black and titanium dioxide exposures" (Vuong et al., 2016) [1]. Detailed methodologies on the separation of cellular proteins by 2D-GE and the subsequent mass spectrometry analyses using MALDI-TOF-TOF-MS are documented. Particle exposure-specific protein expression changes were measured via 2D-GE spot volume analysis. Protein identification was done by querying mass spectrometry data against SwissProt and RefSeq protein databases using Mascot search engine. Two-way ANOVA analysis data provided information on statistically significant A549 protein expression changes associated with particle exposures.

  3. Human lung epithelial cell A549 proteome data after treatment with titanium dioxide and carbon black

    Ngoc Q. Vuong

    2016-09-01

    Full Text Available Here, we have described the dataset relevant to the A549 cellular proteome changes after exposure to either titanium dioxide or carbon black particles as compared to the non-exposed controls, “Proteomic changes in human lung epithelial cells (A549 in response to carbon black and titanium dioxide exposures” (Vuong et al., 2016 [1]. Detailed methodologies on the separation of cellular proteins by 2D-GE and the subsequent mass spectrometry analyses using MALDI-TOF-TOF-MS are documented. Particle exposure-specific protein expression changes were measured via 2D-GE spot volume analysis. Protein identification was done by querying mass spectrometry data against SwissProt and RefSeq protein databases using Mascot search engine. Two-way ANOVA analysis data provided information on statistically significant A549 protein expression changes associated with particle exposures.

  4. Epithelial mesenchymal transition of non-small-cell lung cancer cells A549 induced by SPHK1

    Min Ni; Xiao-Lei Shi; Zhi-Gang Qu; Hong Jiang; Zi-Qian Chen; Jun Hu

    2015-01-01

    Objective:To explore the effect and molecular mechanism ofSPHK1 in the invasion and metastasis process of non-small-cell lung cancer cells(A549).Methods:Recombinant retrovirus was used to mediate the production ofA549/vector,A549/SPHK1,A549/scramble, andA549/SPHK1/RNAi that stably expressed or silencedSPHK1.The invasion and migration capacities of A549 cells overexpressing or silencingSPHK1 were determined usingTranswell invasion assay and scratch wound repair experiment.The protein and mRNA expression levels ofE-cadherin, fibronectin, vimentin inA549/vector,A549/SPHK1,A549/scramble,A549/SPHK1/RNAi were detected withWestern blot(WB) and quantitativePCR(QPCR) methods, respectively.Results:Transwell invasion assay and scratch wound repair experiments showed that over-expression of SPHK1 obviously enhanced the invasion and migration capacities ofA549 cells.WB andQPCR detection results showed that, the expression ofE-cadherin(a molecular marker of epithelial cells) and fibronectin, vimentin(molecular markers of mesenchymal cells) inA549 cells was upregulated after overexpression ofSPHK1; whileSPHK1 silencing significantly reduced the invasion and metastasis capacities ofA549cells, upregulated the expression of molecular marker of epithelial cells, and downregulated the expression of molecular marker of mesenchymal cells. Conclusions:SPHK1 promotes epithelial mesenchymal transition of non-small-cell lung cancer cells and affects the invasion and metastasis capacities of these cells.

  5. High throughput determination of TGFβ1/SMAD3 targets in A549 lung epithelial cells.

    Yingze Zhang

    Full Text Available BACKGROUND: Transforming growth factor beta 1 (TGFβ1 plays a major role in many lung diseases including lung cancer, pulmonary hypertension, and pulmonary fibrosis. TGFβ1 activates a signal transduction cascade that results in the transcriptional regulation of genes in the nucleus, primarily through the DNA-binding transcription factor SMAD3. The objective of this study is to identify genome-wide scale map of SMAD3 binding targets and the molecular pathways and networks affected by the TGFβ1/SMAD3 signaling in lung epithelial cells. METHODOLOGY: We combined chromatin immunoprecipitation with human promoter region microarrays (ChIP-on-chip along with gene expression microarrays to study global transcriptional regulation of the TGFβ1/SMAD3 pathway in human A549 alveolar epithelial cells. The molecular pathways and networks associated with TGFβ1/SMAD3 signaling were identified using computational approaches. Validation of selected target gene expression and direct binding of SMAD3 to promoters were performed by quantitative real time RT-PCR and electrophoretic mobility shift assay on A549 and human primary lung epithelial cells. RESULTS AND CONCLUSIONS: Known TGFβ1 target genes such as SERPINE1, SMAD6, SMAD7, TGFB1 and LTBP3, were found in both ChIP-on-chip and gene expression analyses as well as some previously unrecognized targets such as FOXA2. SMAD3 binding of FOXA2 promoter and changed expression were confirmed. Computational approaches combining ChIP-on-chip and gene expression microarray revealed multiple target molecular pathways affected by the TGFβ1/SMAD3 signaling. Identification of global targets and molecular pathways and networks associated with TGFβ1/SMAD3 signaling allow for a better understanding of the mechanisms that determine epithelial cell phenotypes in fibrogenesis and carcinogenesis as does the discovery of the direct effect of TGFβ1 on FOXA2.

  6. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    Brown, David M., E-mail: d.brown@hw.ac.uk [Heriot-Watt University, Nanosafety Research Group, School of Life Sciences (United Kingdom); Varet, Julia, E-mail: julia.varet@IOM-world.org [Institute of Occupational Medicine (United Kingdom); Johnston, Helinor, E-mail: h.johnston@hw.ac.uk; Chrystie, Alison; Stone, Vicki, E-mail: v.stone@hw.ac.uk [Heriot-Watt University, Nanosafety Research Group, School of Life Sciences (United Kingdom)

    2015-10-15

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks’ balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle’s activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed.

  7. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling

    Cheng, C.-Y.; Perevedentseva, E.; Tu, J.-S.; Chung, P.-H.; Cheng, C.-L.; Liu, K.-K.; Chao, J.-I.; Chen, P.-H.; Chang, C.-C.

    2007-04-01

    This letter presents direct observation of growth hormone receptor in one single cancer cell using nanodiamond-growth hormone complex as a specific probe. The interaction of surface growth hormone receptor of A549 human lung epithelial cells with growth hormone was observed using nanodiamond's unique spectroscopic signal via confocal Raman mapping. The growth hormone molecules were covalent conjugated to 100nm diameter carboxylated nanodiamonds, which can be recognized specifically by the growth hormone receptors of A549 cell. The Raman spectroscopic signal of diamond provides direct and in vitro observation of growth hormone receptors in physiology condition in a single cell level.

  8. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    Hiroshi Kondo

    2015-01-01

    Full Text Available Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12 were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC, an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5, an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1 expression levels were enhanced. After treatment with dexamethasone (DEX, 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP, 3-isobutyl-1-methylxanthine (IBMX, and keratinocyte growth factor (KGF, surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.

  9. Monitoring of TGF-β 1-Induced Human Lung Adenocarcinoma A549 Cells Epithelial-Mesenchymal Transformation Process by Measuring Cell Adhesion Force with a Microfluidic Device.

    Li, Yuan; Gao, AnXiu; Yu, Ling

    2016-01-01

    The epithelial-mesenchymal transition (EMT) is a process in which epithelial cells lose their cell polarity and cell-cell adhesion, and gain migratory and invasive properties. It is believed that EMT is associated with initiation and completion of the invasion-metastasis cascade. In this study, an economic approach was developed to fabricate a microfluidic device with less instrumentation requirement for the investigation of EMT by quantifying cell adhesion force. Fluid shear force was precisely controlled by a homemade microfluidic perfusion apparatus and interface. The adhesion capability of the human lung adenocarcinoma cell line A549 on different types of extracellular matrix protein was studied. In addition, effects of transforming growth factor-β (TGF-β) on EMT in A549 cells were investigated by characterizing the adhesion force changes and on-chip fluorescent staining. The results demonstrate that the microfluidic device is a potential tool to characterize the epithelial-mesenchymal transition process by measuring cell adhesion force.

  10. Airborne particulate matter in vitro exposure induces cytoskeleton remodeling through activation of the ROCK-MYPT1-MLC pathway in A549 epithelial lung cells.

    Chirino, Yolanda I; García-Cuellar, Claudia María; García-García, Carlos; Soto-Reyes, Ernesto; Osornio-Vargas, Álvaro Román; Herrera, Luis A; López-Saavedra, Alejandro; Miranda, Javier; Quintana-Belmares, Raúl; Pérez, Irma Rosas; Sánchez-Pérez, Yesennia

    2017-03-06

    Airborne particulate matter with an aerodynamic diameter ≤10μm (PM10) is considered a risk factor for the development of lung cancer. Little is known about the cellular mechanisms by which PM10 is associated with cancer, but there is evidence that its exposure can lead to an acquired invasive phenotype, apoptosis evasion, inflammasome activation, and cytoskeleton remodeling in lung epithelial cells. Cytoskeleton remodeling occurs through actin stress fiber formation, which is partially regulated through ROCK kinase activation, we aimed to investigate if this protein was activated in response to PM10 exposure in A549 lung epithelial cells. Results showed that 10μg/cm(2) of PM10 had no influence on cell viability but increased actin stress fibers, cytoplasmic ROCK expression, and phosphorylation of myosin phosphatase-targeting 1 (MYPT1) and myosin light chain (MLC) proteins, which are targeted by ROCK. The inhibition of ROCK prevented actin stress fiber formation and the phosphorylation of MYPT1 and MLC, suggesting that PM10 activated the ROCK-MYPT1-MLC pathway in lung epithelial cells. The activation of ROCK1 has been involved in the acquisition of malignant phenotypes, and its induction by PM10 exposure could contribute to the understanding of PM10 as a risk factor for cancer development through the mechanisms associated with invasive phenotype.

  11. Sanguiin H6 suppresses TGF-β induction of the epithelial-mesenchymal transition and inhibits migration and invasion in A549 lung cancer.

    Ko, Hyeonseok; Jeon, Hyelin; Lee, Dahae; Choi, Hyo-Kyoung; Kang, Ki Sung; Choi, Kyung-Chul

    2015-12-01

    In the epithelial-mesenchymal transition (EMT), an important cellular process, epithelial cells become mesenchymal cells. This process is also critically involved in cancer metastasis. Sanguiin H6 is a compound derived from ellagitannin, which is found in berries. Sanguiin H6 shows various pharmacological properties, including anti-angiogenic activity. Because the possible role of sanguiin H6 in the EMT and the underlying molecular mechanisms are unclear, we investigated the effect of sanguiin H6 on the EMT. Transforming growth factor-beta 1 (TGF-β1) induces the EMT and promotes lung adenocarcinoma migration and invasion through the Smad2/3 signaling pathway. Thus, to understand the inhibitory effects of sanguiin H6 on lung cancer migration and invasion, we investigated the ability of sanguiin H6 to inhibit TGF-β1-induced EMT in the A549 cell line. We found that sanguiin H6 significantly prevented the activation of Smad2/3 signaling pathway by TGF-β1. Additionally, sanguiin H6 increased the expression of the epithelial marker E-cadherin and repressed the expression of Snail and the mesenchymal marker N-cadherin during TGF-β1-induced EMT. Moreover, sanguiin H6 regulated the expression of EMT-dependent genes induced by TGF-β1. Finally, sanguiin H6 inhibited the migration and invasion of TGF-β1-stimulated A549 cells. Taken together, our findings provide new evidence that sanguiin H6 suppresses lung cancer migration and invasion in vitro by inhibiting TGF-β1 induction of the EMT.

  12. Up-Regulation of Pro-Inflammatory Cytokines and Chemokine Production in Avian Influenza H9N2 Virus-Infected Human Lung Epithelial Cell Line (A549).

    Farzin, Hamidreza; Toroghi, Reza; Haghparast, Alireza

    2016-01-01

    Influenza H9N2 virus mostly infects avian species but poses a potential health risk to humans. Little is known about the mammalian host immune responses to H9N2 virus. To obtain insight into the innate immune responses of human lung epithelial cells to the avian H9N2 virus, the expressions of pro-inflammatory cytokines and chemokine in the human airway epithelial cells infected with avian H9N2 virus were examined by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). H9N2 virus was able to cultivate in the human lung epithelial cell line (A549) and stimulate production of pro-inflammatory cytokines (IL-1β, IL-6) and chemokine (IL-8). Expressions of cytokine genes were up-regulated to a significantly higher level for IL-1β (p cytokines and chemokine. The findings in this study will broaden our understanding of host innate immune mechanisms and the pathogenesis of H9N2 influenza viruses in human respiratory epithelium.

  13. Novel functional view of the crocidolite asbestos-treated A549 human lung epithelial transcriptome reveals an intricate network of pathways with opposing functions

    Stevens John R

    2008-08-01

    Full Text Available Abstract Background Although exposure to asbestos is now regulated, patients continue to be diagnosed with mesothelioma, asbestosis, fibrosis and lung carcinoma because of the long latent period between exposure and clinical disease. Asbestosis is observed in approximately 200,000 patients annually and asbestos-related deaths are estimated at 4,000 annually1. Although advances have been made using single gene/gene product or pathway studies, the complexity of the response to asbestos and the many unanswered questions suggested the need for a systems biology approach. The objective of this study was to generate a comprehensive view of the transcriptional changes induced by crocidolite asbestos in A549 human lung epithelial cells. Results A statistically robust, comprehensive data set documenting the crocidolite-induced changes in the A549 transcriptome was collected. A systems biology approach involving global observations from gene ontological analyses coupled with functional network analyses was used to explore the effects of crocidolite in the context of known molecular interactions. The analyses uniquely document a transcriptome with function-based networks in cell death, cancer, cell cycle, cellular growth, proliferation, and gene expression. These functional modules show signs of a complex interplay between signaling pathways consisting of both novel and previously described asbestos-related genes/gene products. These networks allowed for the identification of novel, putative crocidolite-related genes, leading to several new hypotheses regarding genes that are important for the asbestos response. The global analysis revealed a transcriptome that bears signatures of both apoptosis/cell death and cell survival/proliferation. Conclusion Our analyses demonstrate the power of combining a statistically robust, comprehensive dataset and a functional network genomics approach to 1 identify and explore relationships between genes of known importance

  14. Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic responses of micro- and nano-particles of dolomite on human lung epithelial cells A(549).

    Patil, Govil; Khan, Mohd Imran; Patel, Devendra Kumar; Sultana, Sarwat; Prasad, Rajendra; Ahmad, Iqbal

    2012-09-01

    Dolomite is a natural mineral of great industrial importance and used worldwide, thus millions of workers are at risk of occupational exposure. Its toxicity is however, meagerly documented. In the present investigation, a dolomite powder obtained from its milling unit was analyzed by some standard methods namely, optical microscopy, transmission electron microscopy and dynamic light scattering. Results showed that dolomite powder contained particles of different shapes and size both microparticles (MPs) and nanoparticles (NPs), suggesting potential occupational exposure of these particles. An attempt was therefore, made to investigate dolomite toxicity in a particle size-dependent manner in human lung epithelial cells A(549). The comparative toxicity evaluation of MPs and NPs was carried out by assessing their effects on cell viability, membrane damage, glutathione, reactive oxygen species (ROS), lipid peroxidation (LPO), micronucleus (MN) and proinflammatory cytokines, namely tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). These markers of cytotoxicity, genotoxicity and inflammation were assayed in cells exposed to MPs and NPs in a dose-and time-dependent manner. Invariably, their toxic effects were dose-and time-dependent while NPs in general were significantly more toxic. Notably, NPs caused oxidative stress, genotoxicity and inflammatory responses, as seen by significant induction of ROS, LPO, MN, TNF-α, IL-1β and IL-6. Thus, the study tends to suggest that separate health safety standards would be required for micrometer and nanometer scale particles of dolomite.

  15. DNA damage and cytotoxicity in type II lung epithelial (A549 cell cultures after exposure to diesel exhaust and urban street particles

    Møller Peter

    2008-04-01

    Full Text Available Abstract Background Exposure to air pollution particles has been acknowledged to be associated with excess generation of oxidative damage to DNA in experimental model systems and humans. The use of standard reference material (SRM, such as SRM1650 and SRM2975, is advantageous because experiments can be reproduced independently, but exposure to such samples may not mimic the effects observed after exposure to authentic air pollution particles. This study was designed to compare the DNA oxidizing effects of authentic street particles with SRM1650 and SRM2975. The authentic street particles were collected at a traffic intensive road in Copenhagen, Denmark. Results All of the particles generated strand breaks and oxidized purines in A549 lung epithelial cells in a dose-dependent manner and there were no overt differences in their potency. The exposures also yielded dose-dependent increase of cytotoxicity (as lactate dehydrogenase release and reduced colony forming ability with slightly stronger cytotoxicity of SRM1650 than of the other particles. In contrast, only the authentic street particles were able to generate 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG in calf thymus DNA, which might be due to the much higher level of transition metals. Conclusion Authentic street particles and SRMs differ in their ability to oxidize DNA in a cell-free environment, whereas cell culture experiments indicate that the particle preparations elicit a similar alteration of the level of DNA damage and small differences in cytotoxicity. Although it cannot be ruled out that SRMs and authentic street particles might elicit different effects in animal experimental models, this study indicates that on the cellular level, SRM1650 and SRM2975 are suitable surrogate samples for the study of authentic street particles.

  16. Aspergillus fumigatus germ tube growth and not conidia ingestion induces expression of inflammatory mediator genes in the human lung epithelial cell line A549.

    Bellanger, Anne-Pauline; Millon, Laurence; Khoufache, Khaled; Rivollet, Danièle; Bièche, Ivan; Laurendeau, Ingrid; Vidaud, Michel; Botterel, Françoise; Bretagne, Stéphane

    2009-02-01

    Inhalation of conidia is the main cause of invasive pulmonary aspergillosis (IPA) and the respiratory epithelium is the first line of defence. To explore the triggering factor for the inflammatory response to Aspergillus fumigatus, the species mainly responsible for IPA, this study analysed the differential expression of three inflammatory genes in A549 cells after challenge with live and killed conidia. The influence of steroids, one of the main risk factors for developing IPA, was also investigated. Quantification of mRNAs of the inflammatory mediator genes encoding interleukin (IL)-8, tumour necrosis factor (TNF)-alpha and granulocyte-monocyte colony-stimulating factor (GM-CSF) was carried out using real-time PCR. Ingestion rates were studied for the conidia of A. fumigatus and Penicillium chrysogenum using a fluorescence brightener. Similar results were obtained for both species, with ingestion rates ranging from 35 to 40 %. Exposure of A549 cells to live A. fumigatus conidia only induced a four- to fivefold increase in the mRNA levels of the three genes, starting 8 h after the initial contact. Both inactivation of live A. fumigatus conidia and treatment by dexamethasone (10(-7) M) prevented the overexpression of TNF-alpha, IL-8 and GM-CSF. Fungal growth, rather than conidia ingestion, appears to be the main stimulus for the production of inflammatory mediators by epithelial cells, and this production is inhibited by steroid therapy. These results underline the role that the epithelium plays in the innate response against IPA.

  17. Intracellular dynamics and fate of polystyrene nanoparticles in A549 Lung epithelial cells monitored by image (cross-) correlation spectroscopy and single particle tracking.

    Deville, Sarah; Penjweini, Rozhin; Smisdom, Nick; Notelaers, Kristof; Nelissen, Inge; Hooyberghs, Jef; Ameloot, Marcel

    2015-10-01

    Novel insights in nanoparticle (NP) uptake routes of cells, their intracellular trafficking and subcellular targeting can be obtained through the investigation of their temporal and spatial behavior. In this work, we present the application of image (cross-) correlation spectroscopy (IC(C)S) and single particle tracking (SPT) to monitor the intracellular dynamics of polystyrene (PS) NPs in the human lung carcinoma A549 cell line. The ensemble kinetic behavior of NPs inside the cell was characterized by temporal and spatiotemporal image correlation spectroscopy (TICS and STICS). Moreover, a more direct interpretation of the diffusion and flow detected in the NP motion was obtained by SPT by monitoring individual NPs. Both techniques demonstrate that the PS NP transport in A549 cells is mainly dependent on microtubule-assisted transport. By applying spatiotemporal image cross-correlation spectroscopy (STICCS), the correlated motions of NPs with the early endosomes, late endosomes and lysosomes are identified. PS NPs were equally distributed among the endolysosomal compartment during the time interval of the experiments. The cotransport of the NPs with the lysosomes is significantly larger compared to the other cell organelles. In the present study we show that the complementarity of ICS-based techniques and SPT enables a consistent elaborate model of the complex behavior of NPs inside biological systems.

  18. Effect of functionalized and non-functionalized nanodiamond on the morphology and activities of antioxidant enzymes of lung epithelial cells (A549).

    Solarska-Ściuk, Katarzyna; Gajewska, Agnieszka; Glińska, Sława; Michlewska, Sylwia; Balcerzak, Łucja; Jamrozik, Agnieszka; Skolimowski, Janusz; Burda, Květoslava; Bartosz, Grzegorz

    2014-10-05

    The development of nanotechnology opens up new ways for biomedical applications of unmodified and modified diamond nanoparticles which are one of the most popular nanomaterials used in biology, biotechnology, medicine, cosmetics and engineering. They have been applied as diagnostic and therapeutic agents because they can be targeted to and localized in cells causing apoptosis and necrosis. The problem of biocompatibility of nanodiamonds at higher concentrations is thus of primary importance. The first step in the modification of DNPs is usually the introduction of hydrogen groups, which can bind other functional groups. The basic method to introduce -OH groups onto nanoparticles is the Fenton reaction. The aim of this study was to compare the effect of unmodified nanodiamond particles and nanoparticles modified by introduction of -OH groups and etoposide onto their surface reaction on human non-small lung cancer cells. A549 cells were incubated with 2-100μg/ml nanopowders and at 0.6-24μg/ml etoposide in the DMEM medium. We observed a decrease of cells viability and generation of reactive oxygen/ nitrogen species in the cells after incubation, estimated by oxidation of H2DCF-DA and DAF-FM-DA. Modified detonation nanoparticles affected also the cellular content of glutathione and activities of main antioxidant enzymes (glutathione peroxidase, glutathione reductase, glutathione S-transferase, superoxide dismutase and catalase). The results of TEM microscopy show changes in cell morphology. These data demonstrate that modified nanoparticles induce oxidative stress in the target cells.

  19. The combined effects of physicochemical properties of size-fractionated ambient particulate matter on in vitro toxicity in human A549 lung epithelial cells

    Umme S. Akhtar

    2014-01-01

    Full Text Available Epidemiological and toxicological studies have suggested that the health effects associated with exposure to particulate matter (PM are related to the different physicochemical properties of PM. These effects occur through the initiation of differential cellular responses including: the induction of antioxidant defenses, proinflammatory responses, and ultimately cell death. The main objective of this study was to investigate the effects of size-fractionated ambient PM on epithelial cells in relation to their physicochemical properties. Concentrated ambient PM was collected on filters for three size fractions: coarse (aerodynamic diameter [AD] 2.5–10 μm, fine (0.15–2.5 μm, and quasi-ultrafine (<0.2 μm, near a busy street in Toronto, Ontario, Canada. Filters were extracted and analyzed for chemical composition and redox activity. Chemical analyses showed that the coarse, fine, and quasi-ultrafine particles were comprised primarily of metals, water-soluble species, and organic compounds, respectively. The highest redox activity was observed for fine PM. After exposure of A549 cells to PM (10–100 μg/ml for 4 h, activation of antioxidant, proinflammatory and cytotoxic responses were assessed by determining the expression of heme oxygenase (HMOX-1, mRNA, interleukin-8 (IL-8, mRNA, and metabolic activity of the cells, respectively. All three size fractions induced mass-dependent antioxidant, proinflammatory, and cytotoxic responses to different degrees. Quasi-ultrafine PM caused significant induction of HMOX-1 at the lowest exposure dose. Correlation analyses with chemical components suggested that the biological responses correlated mainly with transition metals and organic compounds for coarse and fine PM and with organic compounds for quasi-ultrafine PM. Overall, the observed biological responses appeared to be related to the combined effects of size and chemical composition and thus both of these physicochemical properties should be

  20. TNF-α pro-inflammatory cytokinemodulates CD44 expression in human lung epithelial cell line (A549 treated with Temporin-Ra

    Maryam Hooshmand

    2016-03-01

    Full Text Available Antimicrobial peptides (AMPs are molecules present in innate immune systems of vertebrates and invertebrates. These small peptides inhibit the growth of pathogens invading host's body. In this study, the toxicity effect of Temporin-Ra (T-Ra antimicrobial peptide on A549 cell line was investigated by MTT assay. Furthermore, the toxicity of T-Ra peptide on human's red and white blood cells was investigated. Gene expression levels of TNF-α (tumor necrosis factor-alphaaspro-inflammatory cytokine, and CD44 cancer marker were investigated by real time- PCR, 48 h after treatment of A549 cells by different concentrations of peptide. Moreover, the production of reactive oxygen species was studied by flow cytometer. According to our results, T-Ra viability of A549 cells decreased up to 15%, while had no hemolytic and cytotoxic effects on human blood cells. In addition, T-Ra increased the expression of pro- inflammatory cytokine (TNF-α at the highest concentration (30 µg/ml, while decreased gene expression of CD44 cancer marker. Production of reactive oxygen species (ROS in A549 cells treated by T-Ra significantly increased. In conclusion, our results revealed that T-Ra could induce the expression of TNF-α, which consequently decrease CD44 expression, increase the production of reactive oxygen species, and as a result induced death in A549 cell lines.

  1. In vitro toxicity of cationic micelles and liposomes in cultured human hepatocyte (HepG2) and lung epithelial (A549) cell lines

    Roursgaard, Martin; Knudsen, Kristina Bram; Northeved, Helle;

    2016-01-01

    The aim of this study was to compare the effects of cationic micelle and liposome drug delivery systems on liver and lung cells in a toxicological in vitro screening model, with observations on cytotoxicity and genotoxicity. A screening battery was established for assessment of a broad range...

  2. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-07-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non-small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1-induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1-mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1-mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1-induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1-mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1-induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1-induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol.

  3. G4-Tetra DNA Duplex Induce Lung Cancer Cell Apoptosis in A549 Cells

    Xu, Xiaobo; Zhao, YiZhuo; Lu, Hu; Fu, Cuiping; Li, Xiao; Jiang, Liyan; Li, Shanqun

    2016-10-01

    The specific DNA is typically impermeable to the plasma membrane due to its natural characters, but DNA tetra structures (DTNs) can be readily uptake by cells in the absence of transfection agents, providing a new strategy to deliver DNA drugs. In this research, the delivery efficiency of tetrahedral DNA nanostructures was measured on adenocarcinomic human alveolar basal epithelial (A549) cells via delivering AS1411 (G4). The DNA tetra-AS1411 complex was rapidly and abundantly uptake by A549 cells, and the induced apoptosis was enhanced. Furthermore, biodistribution in mouse proved the rapid clearance from non-targeted organs in vivo. This study improved the understanding of potential function in DNA-based drug delivery and proved that DTNs-AS1411 could be potentially useful for the treatment of lung cancer.

  4. Open reading frame 3 of genotype 1 hepatitis E virus inhibits nuclear factor-κappa B signaling induced by tumor necrosis factor-α in human A549 lung epithelial cells.

    Xu, Jian; Wu, Fan; Tian, Deying; Wang, Jingjing; Zheng, Zizheng; Xia, Ningshao

    2014-01-01

    Hepatitis E virus (HEV) is one of the primary causative agents of acute hepatitis, and represents a major cause of severe public health problems in developing countries. The pathogenesis of HEV is not well characterized, however, primarily due to the lack of well-defined cell and animal models. Here, we investigated the effects of genotype 1 HEV open reading frame 3 (ORF3) on TNF-α-induced nucleus factor-κappa B (NF-κB) signaling. Human lung epithelial cells (A549) were transiently transfected with ORF3 containing plasmids. These cells were then stimulated with TNF-α and the nucleus translocation of the p65 NF-κB subunit was assessed using western blot and laser confocal microscopy. DNA-binding activity of p65 was also examined using electrophoretic mobility shift assay (EMSA), and the suppression of NF-κB target genes were detected using real-time RT-PCR and ELISA. These results enabled us to identify the decreased phosphorylation levels of IKBα. We focused on the gene of negative regulation of NF-κB, represented by TNF-α-induced protein 3 (TNFAIP3, also known as A20). Reducing the levels of A20 with siRNAs significantly enhances luciferase activation of NF-κB. Furthermore, HEV ORF3 regulated A20 primarily via activating transcription factor 6 (ATF6), involved in unfolded protein response (UPR), resulting in the degradation or inactivation of the receptor interacting protein 1 (RIP1), a major upstream activator of IKB kinase compounds (IKKs). Consequently, the phosphorylation of IKBα and the nucleus translocation of p65 are blocked, which contributes to diminished NF-κB DNA-binding activation and NF-κB-dependent gene expression. The findings suggest that genotype 1 HEV, through ORF3, may transiently activate NF-κB through UPR in early stage, and subsequently inhibit TNF-α-induced NF-κB signaling in late phase so as to create a favorable virus replication environment.

  5. Open reading frame 3 of genotype 1 hepatitis E virus inhibits nuclear factor-κappa B signaling induced by tumor necrosis factor-α in human A549 lung epithelial cells.

    Jian Xu

    Full Text Available Hepatitis E virus (HEV is one of the primary causative agents of acute hepatitis, and represents a major cause of severe public health problems in developing countries. The pathogenesis of HEV is not well characterized, however, primarily due to the lack of well-defined cell and animal models. Here, we investigated the effects of genotype 1 HEV open reading frame 3 (ORF3 on TNF-α-induced nucleus factor-κappa B (NF-κB signaling. Human lung epithelial cells (A549 were transiently transfected with ORF3 containing plasmids. These cells were then stimulated with TNF-α and the nucleus translocation of the p65 NF-κB subunit was assessed using western blot and laser confocal microscopy. DNA-binding activity of p65 was also examined using electrophoretic mobility shift assay (EMSA, and the suppression of NF-κB target genes were detected using real-time RT-PCR and ELISA. These results enabled us to identify the decreased phosphorylation levels of IKBα. We focused on the gene of negative regulation of NF-κB, represented by TNF-α-induced protein 3 (TNFAIP3, also known as A20. Reducing the levels of A20 with siRNAs significantly enhances luciferase activation of NF-κB. Furthermore, HEV ORF3 regulated A20 primarily via activating transcription factor 6 (ATF6, involved in unfolded protein response (UPR, resulting in the degradation or inactivation of the receptor interacting protein 1 (RIP1, a major upstream activator of IKB kinase compounds (IKKs. Consequently, the phosphorylation of IKBα and the nucleus translocation of p65 are blocked, which contributes to diminished NF-κB DNA-binding activation and NF-κB-dependent gene expression. The findings suggest that genotype 1 HEV, through ORF3, may transiently activate NF-κB through UPR in early stage, and subsequently inhibit TNF-α-induced NF-κB signaling in late phase so as to create a favorable virus replication environment.

  6. Empirical studies about quercetin increasing chemosensitivity on human lung adenocarcinoma cell line A549

    Xuejun Zhan; Runxiang Zhang; Yanping Xu; Shuhua Yang; Daze Xie; Liwei Tan

    2012-01-01

    Objective: The present study was designed to investigate whether quercetin exerts increasing chemosensitivity on human lung adenocarcinoma cells when quercetin combined with cisplatin (DDP) and vincristine (VCR) in vitro respectively and its possible antitumor mechanism. To provide experimental proof for clinical combination application. Methods: Using intermittent administration of high dose VCR, human lung adenocarcinoma sensitive cell line (A549/S) was induced to VCR-resistant human lung adenocarcinoma cell line (A549/VCR). MTT assay was adapted for examing the 50% inhibition (IC50) value of DDP and VCR on A549/S and A549/VCR when quercetin combined with DDP and VCR respectively. Results: IC50 of DDP on A549/S and A549/VCR was 10.18 and 12.35 mg/L, and the IC50 of VCR on the two cell lines was 1.21 and 12.77 mg/L, respectively. The resistance fold of A549/VCR on VCR and DDP was 10.55 and 1.21, respectively. When quercetin at concentration of 50, 100 and 200 μmol/L in combination with DDP and VCR respectively, the IC50 of DDP and VCR on A549/S and A549/VCR were obvious decreased (P < 0.05 – P < 0.01). Conclusion: The experiment results suggested that quercetin could increase the chemosensitivity and partly revise the resistance of A549/VCR.

  7. MicroRNA-490-3p inhibits proliferation of A549 lung cancer cells by targeting CCND1

    Gu, Haihua; Yang, Tao; Fu, Shaozi; Chen, Xiaofan; Guo, Lei; Ni, Yiming, E-mail: ni_yiming@hotmail.com

    2014-01-31

    Highlights: • We examined the level of miR-490-3p in A549 lung cancer cells compared with normal bronchial epithelial cell line. • We are the first to show the function of miR-490-3p in A549 lung cancer cells. • We demonstrate CCND1 may be one of the targets of miR-490-3p. - Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate the translation of messenger RNAs by binding their 3′-untranslated region (3′UTR). In this study, we found that miR-490-3p is significantly down-regulated in A549 lung cancer cells compared with the normal bronchial epithelial cell line. To better characterize the role of miR-490-3p in A549 cells, we performed a gain-of-function analysis by transfecting the A549 cells with chemically synthesized miR-490-3P mimics. Overexpression of miR-490-3P evidently inhibits cell proliferation via G1-phase arrest. We also found that forced expression of miR-490-3P decreased both mRNA and protein levels of CCND1, which plays a key role in G1/S phase transition. In addition, the dual-luciferase reporter assays indicated that miR-490-3P directly targets CCND1 through binding its 3′UTR. These findings indicated miR-490-3P could be a potential suppressor of cellular proliferation.

  8. Effects of the Spider Venom on proliferation of Human Lung Adenocarcinoma Cell A549

    Zengxiang HU

    2010-10-01

    Full Text Available Background and objective The spider venom may inspire new drugs to treat cancer. The aim of this study is to investigate the effects and mechanisms of spider venom on lung adenocarcinoma cell A549. Methods The proliferation of lung adenocarcinoma A549 cells was detected by MTT. The apoptosis rate was observed with MTT assay and flow cytometer. The activity of catalase was detected by colorimetry. The malondialdehyde (MDA content was determined by improved thiobarbituric acid fluorometric method. The expression of P38MAPK protein was analyzed with Western blot. Results Spider venom can remarkably inhibite the proliferation of lung adenocarcinoma A549 cells, increased activity of catalase and MDA content, down-regulated expression of P38MAPK compared with the control group. Conclusion The reduced proliferation of lung adenocarcinoma A549 cells by spider venom is may be associated with the increased of activity of catalase and MDA content and decreased expression of P38MAPK.

  9. A novel aminothiazole KY-05009 with potential to inhibit Traf2- and Nck-interacting kinase (TNIK attenuates TGF-β1-mediated epithelial-to-mesenchymal transition in human lung adenocarcinoma A549 cells.

    Jiyeon Kim

    Full Text Available Transforming growth factor (TGF-β triggers the epithelial-to-mesenchymal transition (EMT of cancer cells via well-orchestrated crosstalk between Smad and non-Smad signaling pathways, including Wnt/β-catenin. Since EMT-induced motility and invasion play a critical role in cancer metastasis, EMT-related molecules are emerging as novel targets of anti-cancer therapies. Traf2- and Nck-interacting kinase (TNIK has recently been considered as a first-in-class anti-cancer target molecule to regulate Wnt signaling pathway, but pharmacologic inhibition of its EMT activity has not yet been studied. Here, using 5-(4-methylbenzamido-2-(phenylaminothiazole-4-carboxamide (KY-05009 with TNIK-inhibitory activity, its efficacy to inhibit EMT in cancer cells was validated. The molecular docking/binding study revealed the binding of KY-05009 in the hinge region of TNIK, and the inhibitory activity of KY-05009 against TNIK was confirmed by an ATP competition assay (Ki, 100 nM. In A549 cells, KY-05009 significantly and strongly inhibited the TGF-β-activated EMT through the attenuation of Smad and non-Smad signaling pathways, including the Wnt, NF-κB, FAK-Src-paxillin-related focal adhesion, and MAP kinases (ERK and JNK signaling pathways. Continuing efforts to identify and validate potential therapeutic targets associated with EMT, such as TNIK, provide new and improved therapies for treating and/or preventing EMT-based disorders, such as cancer metastasis and fibrosis.

  10. RNA干扰抑制Snail表达对A549细胞上皮-间充质转分化及体外侵袭的影响%Inhibition of Snail expression by RNA interference repress epithelial-mesenchymal transition and invasion ability of human lung carcinoma cell A549 in vitro

    卓文磊; 张云嵩; 王彦; 敖绪军; 陈正堂

    2008-01-01

    目的:研究用RNA干扰(RNA interference,RNAi)技术抑制转录因子Snail表达后,对人肺腺癌A549细胞上皮-间充质转分化表型和体外侵袭能力的影响.方法:构建能表达针对Snail的小干扰RNA(Small interfering RNA,siRNA)的RNA干扰载体(Snail siRNA vector)和表达不针对任何已知mRNA的siRNA的阴性对照RNA干扰载体(control siRNA vector),分别转染A549细胞,新霉素抗性筛选得到Snail表达受抑制的A549-siSnail细胞和Snail表达未受影响的A549-siControl细胞.针对非转染(A549-nontransfection)、A549-siSnail、A549-siControl三组细胞,分别采用RT-PCR和Western blot技术检测Snail、α-平滑肌肌动蛋白(α-SMA)和E-钙粘素表达,用Boyden chamber模型检测细胞侵袭能力.结果: A549-nontransfection组:Snail和α-SMA表达强阳性,E-钙粘素表达弱阳性;A549-siSnail组:和A549-nontransfection组相比,Snail和α-SMA表达显著减弱(P0.05).结论: 通过RNA干扰阻滞Snail表达能有效地抑制A549细胞上皮-间充质转分化及体外侵袭能力.Snail可能在肺腺癌上皮-间充质转分化及侵袭过程中扮演重要角色,抑制Snail表达可能成肺腺癌治疗的可行策略.

  11. Inhibition of epithelial-mesenchymal transition in A549 cell by transfected Napsin A

    ZHENG Jin-xu; GUAN Shu-hong; XU Qing; LIU Ji-zhu; SONG Ping

    2012-01-01

    Background Epithelial-mesenchymal transition is a cellular process characterized by the loss of cell adhesion,inhibition of E-cadherin expression,and increased cell mobility.Cells without Napsin A are susceptible to transition.Further studies are required to investigate whether this transition can be reversed by restoration of Napsin A.Methods A Napsin A expression vector PLJM1-Napsin A plasmid was constructed and then transfected into the epithelial cell line A549 by lentivirus transfection to obtain A549-PLJM1-Napsin A cell line.Cell proliferation was assayed by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide and cell cycle was measured by flow cytometry.The E-cadherin,type I collagen,and focal adhesion kinase mRNA level was detected by reverse transcription-polymerase chain reaction.The Napsin A,E-cadherin,type I collagen,and focal adhesion kinase protein level in A549 cells was detected by Westen blotting.Results Transforming growth factor-β1 induced epithelial-mesenchymal transition in A549 cells,as demonstrated by significant reduction of E-cadherin mRNA and protein levels (P <0.01) as well as up-regulation of type I collagen (P <0.01 ).Transfection of Napsin A in A549 cells can partially block the transforming growth factor-β1-regulated expression of E-cadherin and type I collagen (P <0.01).In addition,transforming growth factor-β1-induced cell proliferation was inhibited by Napsin A (P <0.01).Further study demonstrated that Napsin A caused Go/G1 arrest and inhibited the expression of focal adhesion kinase (P <0.01),a key protein in the integrin signaling pathway,in the in vitro epithelial-mesenchymal transition model.Conclusions Sustained Napsin A expression in A549 cells can inhibit the transforming growth factor-β1-induced epithelial-mesenchymal transition.This may be due to the Napsin A-mediated inhibition of focal adhesion kinase expression and integrin signaling pathway.

  12. Role of mechanical stretching and lipopolysaccharide in early apoptosis and IL-8 of alveolar epithelial typeⅡ cells A549

    Qiao-Ming Ning; Xiao-Ning Sun; Xin-Kai Zhao

    2012-01-01

    Objective:To investigate the effects of mechanical stretching and lipopolysaccharide (LPS) on the early apoptosis and IL-8 production of alveolar epithelial typeⅡ cellsA549.Methods:The experimental matrix consisted of three integrated studies.In the first study,A549 cells were subjected to different stretching strain frequency and duration time to see the effects on the early apoptosis.In the second study,A549 cells were subjected to mechanical stretch(15%4 h, 0.5Hz) andLPS(1 or100 ng/mL) to see whether mechanical strain andLPS also have an addictive effect on the early apoptosis.In the third study to investigate whether this addictive effect could be induced byLPS and mechanical stretch onIL-8 production,A549 cells were subjected to LPS(100 ng/mL) and mechanical strain(15%,0.5Hz,4 h).Real timePCR and enzyme linked immunosorbent assay were used to measure mRNA and protein level ofIL-8.The early apoptosis was detected by flow cytometry.Results:Mechanical stretch induced the early apoptosis in a force and frequency and time-dependent manner.In the presence ofLPS, mechanical stretch enhancedLPS-induced early apoptosis, especially in100 ng/mLLPS group compared with1 ng/mLLPS and the control group.Mechanical stretch increasedIL-8 production and enhancedLPS-inducedIL-8 screation both in mRNA and protein levels.Conclusions:Mechanical stretch can induce the early apoptosis andIL-8 secretion.Mechanical stretch andLPS have an addictive effect on the early apoptosis andIL-8 production in alveolar type2 cells, which is one of the mechanisms of ventilator-induced lung injury.

  13. Rab27A regulates exosome secretion from lung adenocarcinoma cells A549: involvement of EPI64.

    Li, Wenhai; Hu, Yunsheng; Jiang, Tao; Han, Yong; Han, Guoliang; Chen, Jiakuan; Li, Xiaofei

    2014-11-01

    Exosomes are small membrane vesicles secreted into the extracellular compartment by exocytosis. The unique composition of exosomes can be transported to other cells which allow cells to exert biological functions at distant sites. However, in lung cancer, the regulation of exosome secretion was poorly understood. In this study, we employed human lung adenocarcinoma A549 cells to determine the exosome secretion and involved regulation mechanism. We found that Rab27A was expressed in A549 cells and the reduction of Rab27A by Rab27A-specific shRNA could significantly decrease the secretion of exosome by A549 cells. EPI64, a candidate GAP that is specific for Rab27, was also detected in A549 cells. By pull-down assay, we found that EPI64 participated in the exosome secretion of A549 cells by acting as a specific GAP for Rab27A, not Rab27B. Overexpression of EPI64 enhanced exosome secretion. Taken together, in A549 cells, EPI64 could regulate the exosome secretion by functioning as a GAP specific for Rab27A.

  14. Phospholipid flippase associates with cisplatin resistance in plasma membrane of lung adenocarcinoma A549 cells

    2001-01-01

    The fusion of the liposomes containing N-(7-nitro-2, 1, 3-benzoxadiazol-4-yl)-i ,2-hexadecanoylSn-glycero-3-1abeled phosphatidylethanolamine (NBD-PE) with A549 and A549/DDP cells was performed, and the activity of the phospholipid flippase in the plasma membrane of the cells was measured by fluorescence intensity change of NBDPE in the outer membrane. When A549 or A549/DDP cells containing N BD-PE were incubated at 37 C for 0, 30, 60 and 90 min, the fluorescence intensities in the outer membrane of the cells were 0%, 1.4%, 2.9% and 7.8% for A59cells, and 0%, 10.5 %, 15. 5 % and 18.3 % for A549/DDP cells respectively, demonstrating that the phospholipid flippase was distributed in the plasma membrane of As49 cells, but its activity in the drug-resistant A549/DDP cells was much higher than that in the A549 cells. When the A549/DDP cells were incubated with a multidrug resistance reverse agent, verapamil, for 60 min at 37C, the results showed that the NBD-PE in outer membrane decreased by 25.0% compared with the control's. Furthermore, when A549/DDP cells were incubated with 25 μmol/L cisplatin, which is a specific anticancer drug, the flippase activity decreased by 31.6%, and it further decreased with the increase of cisplatin concentration, suggesting that phospholipid flippase in the membrane might be related to the cisplatin-resistance of human lung adenocarcinoma cancer cells.

  15. Human decorin regulates proliferation and migration of human lung cancer A549 cells

    LIANG Shuo; XU Jin-fu; CAO Wei-jun; LI Hui-ping; HU Cheng-ping

    2013-01-01

    Background Decorin is a small leucine-rich proteoglycan and it plays an important role in regulation of cell growth and migration in various tumor cell lines.Decorin was found down-regulated in non-small cell lung cancer tissue and may be involved in regulation of lung cancer development.Methods In this study,lentivirus-mediated RNA interference and over expression were employed to change the expression levels of decorin in lung cancer A549 cells.We tested the cell cycle of A549 cells and the expression of transforming growth factor (TGF)-β1,cyclin D1,epidermal growth factor receptor (EGFR),P53,and P21.Results We found that up-regulation of decorin could inhibit proliferation,block cell cycle at G1 and decrease invasive activity of A549 cells.Moreover,we also show that up-regulation of decorin induced significant decreases of TGF-β1,cyclin D1 expression,phosphorylation of EGFR,and increases of P53 and P21 expression.Opposite results were observed in A549 cells with down-regulation of decorin.Conclusion Our results suggest that decorin is a key regulator involved in proliferation and migration ofA549 cells.

  16. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus.

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.

  17. Wheatgrass extract inhibits hypoxia-inducible factor-1-mediated epithelial-mesenchymal transition in A549 cells

    Do, Nam Yong; Shin, Hyun-Jae

    2017-01-01

    BACKGROUND/OBJECTIVES Epithelial-mesenchymal transition (EMT) is involved in not only cancer development and metastasis but also non-cancerous conditions. Hypoxia is one of the proposed critical factors contributing to formation of chronic rhinosinusitis or nasal polyposis. Wheatgrass (Triticum aestivum) has antioxidant, anti-aging, and anti-inflammatory effects. In this study, we analyzed whether wheatgrass has an inhibitory effect on the EMT process in airway epithelial cells. MATERIALS/METHODS A549 human lung adenocarcinoma cells were incubated in hypoxic conditions (CO2 5%/O2 1%) for 24 h in the presence of different concentrations of wheatgrass extract (50, 75, 100, and 150 µg/mL) and changes in expression of epithelial or mesenchymal markers were evaluated by immunoblotting and immunofluorescence. Accordingly, associated EMT-related transcriptional factors, Snail and Smad, were also evaluated. RESULTS Hypoxia increased expression of N-cadherin and reduced expression of E-cadherin. Mechanistically, E-cadherin levels were recovered during hypoxia by silencing hypoxia inducible factor (HIF)-1α or administering wheatgrass extract. Wheatgrass inhibited the hypoxia-mediated EMT by reducing the expression of phosphorylated Smad3 (pSmad3) and Snail. It suppressed the hypoxia-mediated EMT processes of airway epithelial cells via HIF-1α and the pSmad3 signaling pathway. CONCLUSION These results suggest that wheatgrass has potential as a therapeutic or supplementary agent for HIF-1-related diseases.

  18. Transcription Activity of Ectogenic Human Carcinoembryonic Antigen Promoter in Lung Adenocarcinoma Cells A549

    XIONG Weining; FANG Huijuan; XU Yongjian; XIONG Shendao; CAO Yong; SONG Qingfeng; ZENG Daxiong; ZHANG Huilan

    2006-01-01

    The transcription activity of ectogenic human carcinoembryonic antigen (CEA) promoter in lung adenocarcinoma cells A549 was investigated for the further gene-targeting therapy. The reporter gene green fluorescent protein (GFP) driven by CEA promoter and human cytomegalovirus (CMV) promoter were relatively constructed and named plasmid pCEA-EGFP and pCMV-GFP respectively. The intensity of fluorescence was detected by fluorescence microscope and flow cytometry analysis after the pCEA-GFP and pSNAV-GFP plasmids were transfected into A549 cells through liposome respectively. The results showed (4.08±0.63) % of the A549 cells transfected with pCEA-AFP plasmid expressed, significantly lower than that of the A549 cells transfected with pCMV-GFP [(43.27±3.54) %]. It was suggested that ectogenic human CEA promoter in lung adenocarcinoma cells A549 was weakly expressed. The distinct specificity of CEA promoter in CEA high expression cells was regarded as a tool in selective gene therapy, but the transcription activity of ectogenic human CEA promoter was needed to increase in the future.

  19. MicroRNA-126 inhibits the proliferation of lung cancer cell line A549

    Xun Yang; Bei-Bei Chen; Ming-Hua Zhang; Xin-Rong Wang

    2015-01-01

    Objective:To study the role of microRNA-126 in the development of lung cancer.Methods:The biological function of microRNA-126 was detected using EdU assay and CCK-8 assay;the target gene of microRNA-126 was analyzed using real time RT-PCR and Western blot assay.Results: In A549 cell line, overexpression of microRNA-126 inhibits the proliferation rate; VEGF is the target gene of microRNA-126; microRNA-126 exerts its function via regulating VEGF protein level.Conclusions: microRNA-126 inhibits the proliferation in A549 cell line.

  20. Oleanolic acid-induced apoptosis and its relation with intracellular calcium in human lung adenocarcinoma A549 cells

    Asmitanand; Thakur

    2010-01-01

    Objective To investigate the effect of oleanolic acid (OA) on apoptosis,correlation between apoptosis and intracellular calcium,and its mechanism in human lung adenocarcinoma cell line A549. Methods Human lung adenocarcinoma A549 cells were incubated in vitro and assigned with OA concentrations of 0,10,20 and 40μg/mL. The apoptosis status of A549 cell line was detected with Annexin V-FITC/PI by flow cytometry (FCM); fluorescence intensity (FI) of A549 cells was assessed and the level of intracellular calciu...

  1. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus

    Chang HB

    2015-08-01

    Full Text Available Hong-Bin Chang,1 Bing-Huei Chen1,21Department of Food Science, 2Graduate Institute of Medicine, Fu Jen Catholic University, Taipei, TaiwanAbstract: The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell was selected for comparison. A high-performance liquid chromatography (HPLC method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 µg/mL, demethoxycurcumin (1,147.4 µg/mL, and bisdemethoxycurcumin (190.2 µg/mL. A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 µg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.Keywords: curcuminoid extract, curcuminoid nanoemulsion, Curcuma longa Linnaeus, lung cancer cell, cell cycle, apoptosis mechanism

  2. Anti-tumor activity of CrTX in human lung adenocarcinoma cell line A549

    Bin YE; Yan XIE; Zheng-hong QIN; Jun-chao WU; Rong HAN; Jing-kang HE

    2011-01-01

    Aim:To assess the cytotoxic effect of crotoxin (CrTX),a potent neurotoxin extracted from the venom of the pit viper Crotalus durissus terrificus,in human lung adenocarcinoma A549 cells and investigated the underlying mechanisms.Methods:A549 cells were treated with gradient concentrations of CrTX,and the cell cycle and apoptosis were analyzed using a flow cytometric assay.The changes of cellular effectors p53,caspase-3 and cleaved caspase-3,total P38MAPK and pP38MAPK were investigated using Western blot assays.A549 xenograft model was used to examine the inhibition of CrTX on tumor growth in vivo.Results:Treatment of A549 cells with CrTX (25-200 μg/mL) for 48 h significantly inhibited the cell growth in a dose-dependent manner (IC50=78 μg/mL).Treatment with CrTX (25 iJg/mL) for 24 h caused G1 arrest and induced cell apoptosis.CrTX (25 μg/mL) significantly increased the expression of wt p53,cleaved caspase-3 and phospho-P38MAPK.Pretreatment with the specific P38MAPK inhibitor SB203580 (5 μmol/L) significantly reduced CrTX-induced apoptosis and cleaved caspase-3 level,but G1 arrest remained unchanged and highly expressed p53 sustained.Intraperitoneal injection of CrTX (10 μg/kg,twice a week for 4 weeks) significantly inhibited A549 tumor xenograft growth,and decreased MVD and VEGF levels.Conclusion:CrTX produced significant anti-tumor effects by inducing cell apoptosis probably due to activation of P38MAPK and caspase-3,and by cell cycle arrest mediated by increased wt p53 expression.In addition,CrTX displayed anti-angiogenic effects in vivo.

  3. Effects of tanshinone nanoemulsion and extract on inhibition of lung cancer cells A549

    Lee, W. D.; Liang, Y. J.; Chen, B. H.

    2016-12-01

    Danshen (Salvia miltiorrhiza), a Chinese medicinal herb, consists of several functional components including tanshinones responsible for prevention of several chronic diseases. This study intends to prepare tanshinone extract and nanoemulsion from danshen and determine their inhibition effect on lung cancer cells A549. A highly stable tanshinone nanoemulsion composed of Capryol 90, Tween 80, ethanol and deionized water with the mean particle size of 14.2 nm was successfully prepared. Tanshinone nanoemulsion was found to be more effective in inhibiting A549 proliferation than tanshinone extract. Both nanoemulsion and extract could penetrate into cytoplasm through endocytosis, with the former being more susceptible than the latter. A dose-dependent response in up-regulation of p-JNK, p53 and p21 and down-regulation of CDK2, cyclin D1 and cyclin E1 expressions was observed with the cell cycle arrested at G0/G1 phase. The cellular microcompartment change of A549 was also investigated. The study demonstrated that tanshinone nanoemulsion may be used as a botanic drug for treatment of lung cancer.

  4. ERK1/2 activation modulates pyocyanin-induced toxicity in A549 respiratory epithelial cells.

    Forbes, Amanda; Davey, Andrew K; Perkins, Anthony V; Grant, Gary D; McFarland, Amelia J; McDermott, Catherine M; Anoopkumar-Dukie, Shailendra

    2014-02-01

    Pyocyanin (PCN), a virulence factor produced by Pseudomonas aeruginosa, has many damaging effects on mammalian cells. Several lines of evidence suggest that this damage is primarily mediated by its ability to generate oxidative stress. However mechanisms underlying PCN-induced oxidative injury remain unclear. Although oxidative stress and subsequent MAPK signaling has been shown to modulate cell death in other models, its role in PCN-induced cytotoxicity remains unknown. Therefore the aim of this study was to investigate the role of redox-sensitive MAPK in PCN-induced toxicity in A549 cells. Here we show that PCN (50μM) rapidly increased ERK1/2 phosphorylation after 5min. Pre-treatment of A549 cells with the MEK1/2 inhibitor U0126 (10μM) decreased PCN-induced ERK1/2 phosphorylation and protected cells against apoptosis and cell injury suggesting a role for ERK signalling. In contrast, JNK and p38 MAPK phosphorylation remained unchanged following exposure to PCN and pretreatment with either the JNK or p38 MAPK inhibitors (10μM SP600125 and 10μM SB203580, respectively) did not afford protection against PCN toxicity. This would suggest that PCN-induced cytotoxicity appears to occur independently of JNK and p38 MAPK signaling pathways. Finally, although we confirm that oxidative stress contributes to PCN-induced toxicity, our data suggest the contribution of oxidative stress is independent of ERK1/2 signaling. These findings may provide insight for novel targeted therapies to reduce PCN-mediated lung injury in patients with chronic P. aeruginosa respiratory infections.

  5. Melatonin inhibits the migration of human lung adenocarcinoma A549 cell lines involving JNK/MAPK pathway.

    Qiaoyun Zhou

    Full Text Available OBJECTIVE: Melatonin, an indolamine produced and secreted predominately by the pineal gland, exhibits a variety of physiological functions, possesses antioxidant and antitumor properties. But, the mechanisms for the anti-cancer effects are unknown. The present study explored the effects of melatonin on the migration of human lung adenocarcinoma A549 cells and its mechanism. METHODS: MTT assay was employed to measure the viability of A549 cells treated with different concentrations of melatonin. The effect of melatonin on the migration of A549 cells was analyzed by wound healing assay. Occludin location was observed by immunofluorescence. The expression of occludin, osteopontin (OPN, myosin light chain kinase (MLCK and phosphorylation of myosin light chain (MLC, JNK were detected by western blots. RESULTS: After A549 cells were treated with melatonin, the viability and migration of the cells were inhibited significantly. The relative migration rate of A549 cells treated with melatonin was only about 20% at 24 h. The expression level of OPN, MLCK and phosphorylation of MLC of A549 cells were reduced, while the expression of occludin was conversely elevated, and occludin located on the cell surface was obviously increased. The phosphorylation status of JNK in A549 cells was also reduced when cells were treated by melatonin. CONCLUSIONS: Melatonin significantly inhibits the migration of A549 cells, and this may be associated with the down-regulation of the expression of OPN, MLCK, phosphorylation of MLC, and up-regulation of the expression of occludin involving JNK/MAPK pathway.

  6. Effect of antisense transfecting of monocarboxylate transporter gene on biological characteristics of lung adenocarcinoma A549 cells

    ZHANG Gui-zhi; HUANG Gui-jun; GUO Xian-jian; QIAN Gui-sheng

    2002-01-01

    Objective: To study the influence of transfecting antisense expression vector of the first subtype of the monocarboxylate transporter (MCT1) gene into lung cancer cells on pHi regulation, lactate transportation and cell growth, Methods: MCT1 antisense gene recombinant vector was introduced into human lung cancer cell line A549 by electroporation. The transfected A549 cells resistant to G418 were selected. Positive clones were examined by using PCR. The changes of intracellular pH and lactate were examined with spectrophotometric method. Cell growth was studied with cell growth curve. Results: Intracellular pH and lactate were remarkably decreased in the cells transfected pLXSN-MCT1 in comparison with A549 cells without transfection (P<0. 001). The growth of A549 cells transfected pLXSN-MCT1 was also inhibited remarkably. Conclusion: MCT1 gene may play an important role in pHi regulation, lactate transportation and cell growth in tumor cells.

  7. Telomere shortening and cell senescence induced by perylene derivatives in A549 human lung cancer cells.

    Taka, Thanachai; Huang, Liming; Wongnoppavich, Ariyaphong; Tam-Chang, Suk-Wah; Lee, T Randall; Tuntiwechapikul, Wirote

    2013-02-15

    Cancer cells evade replicative senescence by re-expressing telomerase, which maintains telomere length and hence chromosomal integrity. Telomerase inhibition would lead cancer cells to senesce and therefore prevent cancer cells from growing indefinitely. G-quadruplex ligands can attenuate telomerase activity by inducing G-quadruplex formation at the 3'-overhang of telomere and at the human telomerase reverse transcriptase (hTERT) promoter; the former prevents telomerase from accessing the telomere, and the latter acts as a transcriptional silencer. The present investigation found that perylene derivatives PM2 and PIPER induced G-quadruplex formation from both telomeric DNA and the hTERT promoter region in vitro. Further, TRAP assay showed that these compounds inhibited telomerase in a dose-dependent manner. When A549 human lung cancer cells were treated with these compounds, hTERT expression was down-regulated. Moreover, the crude protein extract from these treated cells exhibited less telomerase activity. In the long-term treatment of A549 lung cancer cells with sub-cytotoxic dose of these perylenes, telomere shortening, reduction of cell proliferation and tumorigenicity, and cell senescence were observed. The results of this study indicate that perylene derivatives warrant further consideration as effective agents for cancer therapy.

  8. Different maspin functions in the lung adenocarcinoma A549 and SPC-A1 cell lines.

    Zhou, Jun; Hualong, Qin; Zhou, Peng; Guo, Feng

    2015-11-01

    Mammary serine protease inhibitor (maspin) is a tumor suppressor gene that is silenced in the majority of cancer cells during metastatic progression by transcriptional and epigenetic mechanisms. The function of maspin in non‑small cell lung cancer cells (NSCLC) has not been clearly defined. In the present study, the expression of maspin in NSCLC cell lines, in particular, the adenocarcinoma cell lines, was heterogeneous. While the expression levels of maspin in PC‑9 and H460 cell lines were intact, the expression of maspin in the A549 and SPC‑A1 cells was hardly detected. Ectopic expression of maspin in A549 cells carrying the K‑ras gene point mutation significantly inhibited cell migration and invasion abilities, which was associated with downregulated expression of matrix metalloproteinase‑2 and integrin β1. Ectopic expression of maspin in SPC‑A1 cells harboring the wild‑type K‑ras gene predominantly affected cell growth via targeting the AKT signaling molecules. Maspin functions differently in lung adenocarcinoma cells, possibly due to the varied molecular characteristics.

  9. Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer.

    Khan, Merajuddin; Khan, Mujeeb; Al-Marri, Abdulhadi H; Al-Warthan, Abdulrahman; Alkhathlan, Hamad Z; Siddiqui, Mohammed Rafiq H; Nayak, Vadithe Lakshma; Kamal, Ahmed; Adil, Syed F

    2016-01-01

    Recently, graphene and graphene-based materials have been increasingly used for various biological applications due to their extraordinary physicochemical properties. Here, we demonstrate the anticancer properties and apoptosis-inducing ability of silver doped highly reduced graphene oxide nanocomposites synthesized by employing green approach. These nano composites (PGE-HRG-Ag) were synthesized by using Pulicaria glutinosa extract (PGE) as a reducing agent and were evaluated for their anticancer properties against various human cancer cell lines with tamoxifen as the reference drug. A correlation between the amount of Ag nanoparticles on the surface of highly reduced graphene oxide (HRG) and the anticancer activity of nanocomposite was observed, wherein an increase in the concentration of Ag nanoparticles on the surface of HRG led to the enhanced anticancer activity of the nanocomposite. The nanocomposite PGE-HRG-Ag-2 exhibited more potent cytotoxicity than standard drug in A549 cells, a human lung cancer cell line. A detailed investigation was undertaken and Fluorescence activated cell sorting (FACS) analysis demonstrated that the nanocomposite PGE-HRG-Ag-2 showed G0/G1 phase cell cycle arrest and induced apoptosis in A549 cells. Studies such as, measurement of mitochondrial membrane potential, generation of reactive oxygen species (ROS) and Annexin V-FITC staining assay suggested that this compound induced apoptosis in human lung cancer cells.

  10. Anti-Inflammatory Effects of Ginsenoside Rg3 via NF-κB Pathway in A549 Cells and Human Asthmatic Lung Tissue

    In-Seung Lee

    2016-01-01

    Full Text Available Objective. There is limited information of the anti-inflammatory effects of Rg3 on inflamed lung cells and tissues. Therefore, we confirmed the anti-inflammatory mechanism of ginsenoside Rg3 in inflamed human airway epithelial cells (A549 and tissues whether Rg3 regulates nuclear factor kappa B (NF-κB activity. Methods. To induce the inflammation, IL-1β (10 ng/ml was treated to A549 cells for 4 h. The effects of Rg3 on NF-κB activity and COX-2 expression were evaluated by western blotting analysis in both IL-1β-induced inflamed A549 cell and human asthmatic airway epithelial tissues. Using multiplex cytokines assay, the secretion levels of NF-κB-mediated cytokines/chemokines were measured. Result. Rg3 showed the significant inhibition of NF-κB activity thereby reduced COX-2 expression was determined in both IL-1β-induced inflamed A549 cell and human asthmatic airway epithelial tissues. In addition, among NF-κB-mediated cytokines, the secretion levels of IL-4, TNF-α, and eotaxin were significantly decreased by Rg3 in asthma tissues. Even though there was no significant difference, IL-6, IL-9, and IL-13 secretion showed a lower tendency compared to saline-treated human asthmatic airway epithelial tissues. Conclusion. The results from this study demonstrate the potential of Rg3 as an anti-inflammatory agent through regulating NF-κB activity and reducing the secretion of NF-κB-mediated cytokines/chemokines.

  11. 4-Nitroquinoline-1-oxide effects human lung adenocarcinoma A549 cells by regulating the expression of POLD4

    HUANG, QIN-MIAO; ZENG, YI-MING; ZHANG, HUA-PING; LV, LIANG-CHAO; YANG, DONG-YONG; LIN, HUI-HUANG

    2016-01-01

    The aim of the present study was to explore the expression of POLD4 in human lung adenocarcinoma A549 cells under 4-nitroquinoline-1-oxide (4NQO) stimulation to investigate the role of POLD4 in smoking-induced lung cancer. The lung cancer A549 cell line was treated with 4NQO, with or without MG132 (an inhibitor of proteasome activity), and subsequently the POLD4 level was determined by western blot analysis. Secondly, the cell sensitivity to 4NQO and Taxol was determined when the POLD4 expres...

  12. The surface charge of liposomal adjuvants is decisive for their interactions with the Calu-3 and A549 airway epithelial cell culture models

    Ingvarsson, Pall Thor; Rasmussen, Ida Svahn; Viaene, Michelle

    2014-01-01

    potential for mucosal vaccination via the airways. The purpose of this study was to investigate the importance of the liposomal surface charge on the interaction with lung epithelial cells. Thus, the cationic DDA in the liposomes was subjected to a step-wise replacement with the zwitterionic...... distearoylphosphatidylcholine (DSPC). The liposomes were tested with the model protein antigen ovalbumin for the mucosal deposition, the effect on cellular viability and the epithelial integrity by using the two cell lines A549 and Calu-3, representing cells from the alveolar and the bronchiolar epithelium, respectively...... and viability of the mucus-covered Calu-3 cells. Our in vitro results thus indicate that DDA/TDB liposomes might be efficiently and safely used as an adjuvant system for vaccines targeting the mucus-covered epithelium of the upper respiratory tract and the conducting airways....

  13. Legionella pneumophila infection induces programmed cell death, caspase activation, and release of high-mobility group box 1 protein in A549 alveolar epithelial cells: inhibition by methyl prednisolone

    Koide Michio

    2008-05-01

    Full Text Available Abstract Background Legionella pneumophila pneumonia often exacerbates acute lung injury (ALI and acute respiratory distress syndrome (ARDS. Apoptosis of alveolar epithelial cells is considered to play an important role in the pathogenesis of ALI and ARDS. In this study, we investigated the precise mechanism by which A549 alveolar epithelial cells induced by L. pneumophila undergo apoptosis. We also studied the effect of methyl prednisolone on apoptosis in these cells. Methods Nuclear deoxyribonucleic acid (DNA fragmentation and caspase activation in L. pneumophila-infected A549 alveolar epithelial cells were assessed using the terminal deoxyribonucleotidyl transferase-mediated triphosphate (dUTP-biotin nick end labeling method (TUNEL method and colorimetric caspase activity assays. The virulent L. pneumophila strain AA100jm and the avirulent dotO mutant were used and compared in this study. In addition, we investigated whether methyl prednisolone has any influence on nuclear DNA fragmentation and caspase activation in A549 alveolar epithelial cells infected with L. pneumophila. Results The virulent strain of L. pneumophila grew within A549 alveolar epithelial cells and induced subsequent cell death in a dose-dependent manner. The avirulent strain dotO mutant showed no such effect. The virulent strains of L. pneumophila induced DNA fragmentation (shown by TUNEL staining and activation of caspases 3, 8, 9, and 1 in A549 cells, while the avirulent strain did not. High-mobility group box 1 (HMGB1 protein was released from A549 cells infected with virulent Legionella. Methyl prednisolone (53.4 μM did not influence the intracellular growth of L. pneumophila within alveolar epithelial cells, but affected DNA fragmentation and caspase activation of infected A549 cells. Conclusion Infection of A549 alveolar epithelial cells with L. pneumophila caused programmed cell death, activation of various caspases, and release of HMGB1. The dot/icm system, a

  14. DNA damage response signaling in lung adenocarcinoma A549 cells following gamma and carbon beam irradiation

    Ghosh, Somnath [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Narang, Himanshi, E-mail: himinarang@gmail.com [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sarma, Asitikantha [Radiation Biology Laboratory, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Krishna, Malini [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2011-11-01

    Carbon beams (5.16 MeV/u, LET = 290 keV/{mu}m) are high linear energy transfer (LET) radiation characterized by higher relative biological effectiveness than low LET radiation. The aim of the current study was to determine the signaling differences between {gamma}-rays and carbon ion-irradiation. A549 cells were irradiated with 1 Gy carbon or {gamma}-rays. Carbon beam was found to be three times more cytotoxic than {gamma}-rays despite the fact that the numbers of {gamma}-H2AX foci were same. Percentage of cells showing ATM/ATR foci were more with {gamma}-rays however number of foci per cell were more in case of carbon irradiation. Large BRCA1 foci were found in all carbon irradiated cells unlike {gamma}-rays irradiated cells and prosurvival ERK pathway was activated after {gamma}-rays irradiation but not carbon. The noteworthy finding of this study is the early phase apoptosis induction by carbon ions. In the present study in A549 lung adenocarcinoma, authors conclude that despite activation of same repair molecules such as ATM and BRCA1, differences in low and high LET damage responses might be due to their distinct macromolecular complexes rather than their individual activation and the activation of cytoplasmic pathways such as ERK, whether it applies to all the cell lines need to be further explored.

  15. Previous heat shock treatment inhibits Mayaro virus replication in human lung adenocarcinoma (A549) cells.

    Virgilio, P L; Godinho-Netto, M C; Carvalho Mda, G

    1997-01-01

    Human lung adenocarcinoma cells (A549) were submitted to mild or severe heat shock (42 degrees C or 44 degrees C) for 1 h, while another group of cells was double-heat-shocked (submitted to 42 degrees C for 1 h, returned to 37 degrees C for 3 h, then exposed to 44 degrees C for 1 h). After each heat treatment, the cells were infected with Mayaro virus for 24 h and incubated at 37 degrees C. The results showed that the double-heat-shocked thermotolerant cells exhibited a 10(4)-fold virus titre inhibition, despite the recovery of protein synthesis and original morphology 24 h post-infection. In contrast, cells submitted to mild or severe heat shock exhibited weaker inhibition of Mayaro virus titre (10(2)-fold). The mildly heat-shocked cells also presented a full recovery in protein synthesis, which was not observed in severely heat-shocked cells. These results indicate that exposure of A549 cells to a mild or to a double heat shock treatment before Mayaro virus infection induces an antiviral state.

  16. Salvianolic acid A positively regulates PTEN protein level and inhibits growth of A549 lung cancer cells

    BI, LEI; CHEN, JIANPING; YUAN, XIAOJING; JIANG, ZEQUN; CHEN, WEIPING

    2013-01-01

    Salvianolic acid A (Sal A) is an effective compound extracted from Salvia miltiorrhiza which has been used in the treatment of various diseases. Preliminary data indicate that Sal A treatment has a specific anti-lung cancer effect. However, the manner in which Sal A regulates cancer growth remains unknown. In this study, the A549 lung cancer cell line and its response to Sal A treatment was examined. Results showed that Sal A treatment significantly decreased A549 cell growth, promoted partial apoptosis and increased mitochondrial membrane permeability. Western blot analysis showed that Sal A upregulated the phosphatase and tensin homolog (PTEN) protein level, while consistently downregulating Akt phosphorylation. These results indicate that Sal A negatively mediates A549 lung cancer cell line growth or apoptosis, most likely by positively regulating PTEN protein level. PMID:24648921

  17. [Astaxanthin inhibits proliferation and promotes apoptosis of A549 lung cancer cells via blocking JAK1/STAT3 pathway].

    Wu, Chuntao; Zhang, Jinji; Liu, Tienan; Jiao, Guimei; Li, Changzai; Hu, Baoshan

    2016-06-01

    Objective To investigate the anti-tumor effects of astaxanthin on A549 lung cancer cells and the related mechanisms. Methods A549 cells were cultured with various concentrations of astaxanthin (20, 40, 60, 80, 100 μmol/L), and DMSO at the same concentrations served as vehicle controls. The viability of A549 cells was detected by CCK-8 assay; cell cycle and apoptosis were observed by flow cytometry; and the expressions of B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), signal transducers and activators of transcription 3 (STAT3), and Janus kinase 1 (JAK1) were evaluated by Western blotting. Results CCK-8 assay showed that astaxanthin decreased the proliferation of A549 cells in a dose-dependent manner. Flow cytometry showed that astaxanthin increased the number of cells in the G0/G1 phase and induced apoptosis in A549 cells. Western blotting showed that astaxanthin up-regulated the expression of Bax and down-regulated the expressions of Bcl-2, STAT3 and JAK1. Conclusion Astaxanthin functions as a potent inhibitor of A549 lung cancer cell growth by targeting JAK1/STAT3 signaling pathway.

  18. 仙人掌多糖对人肺癌A549细胞形态结构的影响%The influence of shape and structure in human lung cancer A549 cell by purification of Cactus polysaccharides

    车加祥; 邵淑丽; 徐君懿; 陈闯; 张伟伟; 徐兴军

    2014-01-01

    以人肺癌A549细胞为研究对象,探讨仙人掌多糖组分OP1对人肺癌A549细胞生长抑制,以及对其形态、结构的影响.采用台盼蓝拒染法测定人肺癌A549细胞生长抑制曲线,通过倒置显微镜观察不同质量浓度的仙人掌多糖组分OP1作用于人肺癌A549细胞引发的形态变化.结果表明,仙人掌多糖组分OP1能抑制人肺癌A549细胞增殖,诱导人肺癌A549细胞凋亡,在一定范围内,呈时间、剂量依赖性,作用48 h的IC50为(597.55±28.97)μg/mL.经仙人掌多糖组分OP1诱导后,人肺癌A549细胞形态结构出现典型的凋亡特征.%Study to human lung cancer A549 cells as the research object,explore purification OP1 of Cactus polysaccharides on morphological structure of human lung cancer A549 cells.The inhibitory ratio of cells was measured by trypan blue stain assay.By inverted microscope to observe different concentrations of purification OP1 of cactus polysaccharides to act on human lung cancer A549 cell morphological changes.The result shown that purification OP1 of Cactus polysaccharides can inhibit proliferation of human lung cancer A549,and induce apoptosis of human lung cancer A549,and in a range of time,dose-dependent,the IC50 is (597.55±28.97)μg/mL.Purification OP1 of Cactus polysaccharides can make human lung cancer A549 DNA fragmentation.

  19. Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer

    Khan M

    2016-03-01

    Full Text Available Merajuddin Khan,1 Mujeeb Khan,1 Abdulhadi H Al-Marri,1 Abdulrahman Al-Warthan,1 Hamad Z Alkhathlan,1 Mohammed Rafiq H Siddiqui,1 Vadithe Lakshma Nayak,2 Ahmed Kamal,2 Syed F Adil1 1Department of Chemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia; 2Department of Medicinal Chemistry and Pharmacology, CSIR – Indian Institute of Chemical Technology, Hyderabad, India Abstract: Recently, graphene and graphene-based materials have been increasingly used for various biological applications due to their extraordinary physicochemical properties. Here, we demonstrate the anticancer properties and apoptosis-inducing ability of silver doped highly reduced graphene oxide nanocomposites synthesized by employing green approach. These nano­composites (PGE-HRG-Ag were synthesized by using Pulicaria glutinosa extract (PGE as a reducing agent and were evaluated for their anticancer properties against various human cancer cell lines with tamoxifen as the reference drug. A correlation between the amount of Ag nanoparticles on the surface of highly reduced graphene oxide (HRG and the anticancer activity of nanocomposite was observed, wherein an increase in the concentration of Ag nanoparticles on the surface of HRG led to the enhanced anticancer activity of the nanocomposite. The nanocomposite PGE-HRG-Ag-2 exhibited more potent cytotoxicity than standard drug in A549 cells, a human lung cancer cell line. A detailed investigation was undertaken and Fluorescence activated cell sorting (FACS analysis demonstrated that the nanocomposite PGE-HRG-Ag-2 showed G0/G1 phase cell cycle arrest and induced apoptosis in A549 cells. Studies such as, measurement of mitochondrial membrane potential, generation of reactive oxygen species (ROS and Annexin V-FITC staining assay suggested that this compound induced apoptosis in human lung cancer cells. Keywords: plant extract, graphene/silver nanocomposites, anticancer, apoptosis

  20. Schisandrin B inhibits the proliferation of human lung adenocarcinoma A549 cells by inducing cycle arrest and apoptosis.

    Lv, Xue-Jiao; Zhao, Li-Jing; Hao, Yu-Qiu; Su, Zhen-Zhong; Li, Jun-Yao; Du, Yan-Wei; Zhang, Jie

    2015-01-01

    Lung cancer is the leading cause of cancer death in the world. Schizandrin B (Sch B) is one of the main dibenzocyclooctadiene lignans present in the fruit of Schisandra chinensis (Schisandraceae). Sch B has multiple functions against cancer. The aim of this study was to determine the effect of Sch B on the proliferation, cell cycling, apoptosis and invasion of lung adenocarcinoma A549 cells by MTT, flow cytometry, wound healing and transwell invasion assays. Treatment with Sch B inhibited the proliferation of A549 cells in a dose-dependent manner. Sch B induced cell cycle arrest at G0/G1 phase by down-regulating the expression of cyclin D1, cyclin-dependent kinase (CDK)4, and CDK6, but up-regulating p53 and p21 expression in A549 cells. Furthermore, Sch B triggered A549 cell apoptosis by increasing Bax, cleaved caspase-3, 9, Cyto C, but decreasing Bcl-2 and PCNA expression. In addition, Sch B inhibited the invasion and migration of A549 cells by down-regulating the expressions of HIF-1, VEGF, MMP-9 and MMP-2. Therefore, Sch B has potent anti-tumor activity and may be a promising traditional Chinese medicine for human lung carcinoma.

  1. AS1411对紫杉醇耐药肺腺癌A549细胞凋亡的影响%Effects of AS1411 on the apoptosis of taxol-resistant lung adenocarcinoma A549 cell

    周卫; 赵梓彤; 刘玲燕; 詹启敏; 宋咏梅

    2014-01-01

    目的 探讨核酸适配子AS1411对紫杉醇耐药肺腺癌A549细胞(A549/T细胞)凋亡的影响.方法 采用0 ~ 20.0 μmol/L浓度的AS1411处理A549/T细胞,甲基甲苯基硫细胞检测(MTS)实验、平板克隆形成实验检测细胞活性[吸光度值(A490nm)]及增殖能力变化,流式细胞仪检测对细胞凋亡的影响,同时应用蛋白免疫印迹法检测凋亡信号通路相关蛋白表达的变化.结果 A549/T细胞呈现部分上皮细胞间质化(EMT)、表皮生长因子受体(EGFR)表达缺失等特征.经5.0 μmol/L的AS1411处理后,与对照序列相比,A549/T细胞的细胞活性显著降低(A490nm:0.185±0.009比0.272±0.006,P<0.001)、克隆形成数显著减少(74±13比120±12,P=0.010);随AS1411浓度的增加,细胞活性明显降低,呈剂量依赖性.用20.0 μmol/L的AS1411处理48 h后,A549/T细胞凋亡率显著高于对照序列[(19.9±2.6)%比(8.8±1.3)%,P=0.002],同时蛋白激酶B(AKT)、细胞外信号调节激酶1/2(ERK1/2)和B细胞淋巴瘤因子2(Bcl-2)表达均显著低于对照序列处理组(0.353±0.003、0.432±0.015、0.294 ±0.015比0.688±0.003、0.911±0.019、0.422±0.018,均P<0.001).结论 AS1411可通过抑制AKT-ERK通路而促进A549/T细胞凋亡.%Objective To explore the effects of AS1411 on the apoptosis of taxol-resistant lung adenocarinoma A549 cell (A549/T cell).Methods A549/T cells were treated with AS1411 at a concentration gradient of 0-20.0 μmol/L.The assays of methyl tolyl sulfide (MTS) and colony formation were used to detect the cellular vitality (absorbance value (A490,nm)) and proliferation.The apoptotic effects were detected by flow cytometer and the relevant apoptotic signaling proteins detected by Western blot.Results A549/T cells exhibited some characteristics of epithelial mesenchymal transition (EMT) and a negative expression of epidermal growth factor receptor (EGFR).After a treatment of 5.0 μmol/L AS1411,compared to the control sequence,cell vitality was inhibited

  2. Cytokines from the tumor microenvironment modulate sirtinol cytotoxicity in A549 lung carcinoma cells.

    Pal, Shyama; Shankar, Bhavani S; Sainis, Krishna B

    2013-10-01

    Cytokines in tumor microenvironment play an important role in the success or failure of molecular targeted therapies. We have chosen tumor necrosis factor α (TNF-α), TNF related apoptosis inducing ligand (TRAIL), insulin-like growth factor 1 (IGF-1) and transforming growth factor β (TGF-β) as representative pro-inflammatory, pro-apoptotic, anti-apoptotic and anti-inflammatory tumor derived cytokines. Analysis of Oncomine database revealed the differential expression of these cytokines in a subset of cancer patients. The effects of these cytokines on cytotoxicity of FDA approved drugs - cisplatin and taxol and inhibitors of epidermal growth factor receptor - AG658, Janus kinase - AG490 and SIRT1 - sirtinol were assessed in A549 lung cancer cells. TRAIL augmented cytotoxicity of sirtinol and IGF-1 had a sparing effect. Since TRAIL and IGF-1 differentially modulated sirtinol cytotoxicity, further studies were carried out to identify the mechanisms. Sirtinol or knockdown of SIRT1 increased the expression of death receptors DR4 and DR5 and sensitized A549 cells to TRAIL. Increased cell death in presence of TRAIL and sirtinol was caspase independent and demonstrated classical features of necroptosis. Inhibition of iNOS increased caspase activity and switched the mode of cell death to caspase mediated apoptosis. Interestingly, sirtinol or SIRT1 knockdown did not increase IGF-1R expression. Instead, it abrogated ligand induced downregulation of IGF-1R and increased cell survival through PI3K-AKT pathway. In conclusion, these findings reveal that the tumor microenvironment contributes to modulation of cytotoxicity of drugs and that combination therapy, with agents that increase TRAIL signaling and suppress IGF-1 pathway may potentiate anticancer effect.

  3. Cytotoxicity, oxidative stress and genotoxicity induced by glass fibers on human alveolar epithelial cell line A549.

    Rapisarda, Venerando; Loreto, Carla; Ledda, Caterina; Musumeci, Giuseppe; Bracci, Massimo; Santarelli, Lory; Renis, Marcella; Ferrante, Margherita; Cardile, Venera

    2015-04-01

    Man-made vitreous fibers have been widely used as insulation material as asbestos substitutes; however their morphology and composition raises concerns. In 1988 the International Agency for Research on Cancer classified fiberglass, rock wool, slag wool, and ceramic fibers as Group 2B, i.e. possibly carcinogenic to humans. In 2002 it reassigned fiberglass, rock and slag wool, and continuous glass filaments to Group 3, not classifiable as carcinogenic to humans. The aim of this study was to verify the cytotoxic and genotoxic effects and oxidative stress production induced by in vitro exposure of human alveolar epithelial cells A549 to glass fibers with a predominant diameter 5 μm (93%). A549 cells were incubated with 5, 50, or 100 μg/ml (2.1, 21, and 42 μg/cm(2), respectively) of glass fibers for 72 h. Cytotoxicity and DNA damage were tested by the MTT and the Comet assay, respectively. Oxidative stress was determined by measuring inducible nitric oxide synthase (iNOS) expression by Western blotting, production of nitric oxide (NO) with Griess reagent, and concentration of reactive oxygen species by fluorescent quantitative analysis with 2',7'-dichlorofluorescein-diacetate (DCFH-DA). The results showed that glass fiber exposure significantly reduced cell viability and increased DNA damage and oxidative stress production in a concentration-dependent manner, demonstrating that glass fibers exert cytotoxic and genotoxic effects related to increased oxidative stress on the human alveolar cell line A549.

  4. Safrole oxide induces apoptosis by activating caspase-3, -8, and -9 in A549 human lung cancer cells.

    Du, Aiying; Zhao, Baoxiang; Yin, Deling; Zhang, Shangli; Miao, Junying

    2006-01-01

    Previously we found that 3,4-(methylenedioxy)-1-(2',3'-epoxypropyl)-benzene (safrole oxide) induced a typical apoptosis in A549 human lung cancer cells. In this study, we further investigated which caspases were activated by safrole oxide during the apoptosis. The data showed that the activity of caspase-3, -8, and -9 was significantly enhanced by the compound, which suggested that safrole oxide might be used as a caspase promoter to initiate lung cancer cell apoptosis.

  5. Establishment of a Multidrug Resistance Cell Line A549/cDDP of Human Lung Adenocarcinoma and Expression Analysis of Multidrug Resistance-Associated Genes

    Yongcheng PAN

    2009-03-01

    Full Text Available Background and objective It has been proven that chemotherapy failure caused by multidrug resistance in lung tumor cells is the main cause for the patient's survival rate. The aim of this study is to establish a multidrug resistance cell line of human lung adenocarcinoma and study the mechanism of multidrug resistance. Methods Human lung adenocarcinoma cell line A549 was induced to multidrug resistance cell line A549/cDDP by intermittentadministration of high dose of cisplatin (cDDP. The multidrug resistance was detected by using MTT assay. The levels of expression of MDR-1 gene-coded P-glycoportein (P-gp, multidrug resistance-associated protein (MRP, and GSH/GST were examined by flow cytometric assay. The levels of expression of MDR and MRP gene were also detected by RTPCR in both A549/cDDP and A549 cell lines. Results A549/cDDP was resistant to many anti-tumor agents. The IC50 of A549/cDDP was 16.87 times higher than that of A549. The expressions of P-gp and MRP in A549/cDDP were increased significantly to (70.5±4.9% and (29.4±2.9%, respectively, vs (42.4±5.6% and (21.4±3.5% in A549. There was no difference of the GSH/GST expression between A549/cDDPand A549 cells. Conclusion A549/cDDP is a model with multidrug resistance and the levels of MDR and MRP mRNA expressions are remarkably higher in A549/cDDP than those in A549.

  6. The human lung cell line A549 does not develop adaptive protection against the DNA-damaging action of formaldehyde.

    Speit, Günter; Neuss, Simone; Schmid, Oliver

    2010-03-01

    The alkaline comet assay was used to further characterize the induction of DNA-protein crosslinks (DPX) by formaldehyde (FA) and their removal in the human lung cell line A549. DPX were indirectly measured as the reduction of gamma ray-induced DNA migration. Repeated treatments of A549 cells with low FA concentrations (up to 100 microM) did not lead to significant differences in the induction of DPX in comparison with a single treatment. Pretreatment with higher FA-concentrations (200 microM and above) enhanced the crosslinking effect. There was no indication for an adaptive protection against the induction of DPX by FA. These findings are in agreement with RT-PCR measurements of the expression of genes that encode the main enzymes involved in FA detoxification. A549 cells exposed to FA (50-300 microM) for 1, 4, or 24 hr did not reveal altered expression of the GSH-dependent formaldehyde dehydrogenase (FDH, which is identical to alcohol dehydrogenase 3; ADH3), the cytosolic aldehyde dehydrogenase 1 (ALDH1A1) and the mitochondrial ALDH2. Pretreatment of A549 cells with a low FA concentration (50 microM) also did not enhance the removal of DPX induced by higher FA concentrations. Taken together, these results suggest that A549 cells do not develop adaptive protection against the genotoxic action of FA. Neither metabolic inactivation of FA nor the repair of FA-induced DPX seems to be enhanced in cells pretreated with FA.

  7. 莪术油对人肺腺癌细胞A549增殖的影响%Effect of Zedoary Turmeric Oil on Proliferation in Human Lung Adenocarcinoma Cell Line A549

    王晓波; 牛建昭; 崔巍; 刘飒; 杨长福; 赵丕文; 唐炳华

    2011-01-01

    目的 探讨莪术油对人肺腺癌细胞A549增殖的抑制作用.方法 体外培养肺腺癌细胞A549,MTT比色法测定莪术油对A549细胞作用24、48、72 h后抑制率;流式细胞术分析莪术油对A549细胞作用24 h后细胞周期的变化;Annexin V-FITC/PI双染检测莪术油对A549细胞作用24 h后细胞凋亡与坏死情况.结果 莪术油对A549细胞增殖的抑制率随时间延长明显升高,随药物浓度增加抑制作用增强;莪术油对A549细胞作用24 h后,细胞周期停滞在G0/G1期,阻止其进入S期;细胞的早期凋亡、晚期凋亡和坏死比例随着莪术油浓度的增加而增加,且坏死细胞的比例高于凋亡细胞.结论 莪术油对A549细胞的增殖具有抑制作用,并呈时间、浓度依赖,其作用是通过阻滞细胞周期及诱导凋亡和坏死采实现的.%Objective To explore the inhibiting effect of Zedoary turmeric oil on the proliferation of A549 cell line. Methods Lung adenocarcinoma cell line A549 was cultured in vitro. The inhibition rate of Zedoary turmeric oil on the proliferation of lung adenocarcinoma cell line A549 for 24, 48, 72 h were determined by MTT colorimetric assay. The cell cycle of lung adenocarcinoma cell line A549 stimulated by Zedoary turmeric oil for 24 h was analyzed by flow cytometry. The apoptosis and necrosis of lung adenocarcinoma cell line A549 stimulated by Zedoary turmeric oil for 24 h was tested by Annexin V-FITC/PI assay. Results MTT assay indicated that the inhibition rate of Zedoary turmeric oil on the proliferation of lung adenocarcinoma cell line A549 increased significantly with the growing of time and concentration. Further analysis by flow cytometry indicated that Zedoary turmeric oil stimulating the A549 cells for 24 h led to Go/Gi phase arrest and blocked S phase entry. Meanwhile cells in early apoptosis, late apoptosis and necrosis were increased, and the percentage of necrotic cells was more than apoptotic cells with the increase of

  8. Extract from Nandina domestica inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in human pulmonary epithelial A549 cells.

    Ueki, Takuro; Akaishi, Tatsuhiro; Okumura, Hidenobu; Abe, Kazuho

    2012-01-01

    Extract from fruits of Nandina domestica THUNBERG (NDE) has been used to improve cough and breathing difficulty in Japan for many years. To explore whether NDE may alleviate respiratory inflammation, we investigated its effect on expression of cyclooxygenase-2 (COX-2) and production of prostaglandin E₂ (PGE₂) in human pulmonary epithelial A549 cells in culture. Treatment with lipopolysaccharide (LPS; 6 µg/mL) resulted in an increase of COX-2 expression and PGE₂ production in A549 cells. Both the LPS-induced COX-2 expression and PGE₂ production were significantly inhibited by NDE (1-10 µg/mL) in a concentration-dependent manner. NDE did not affect COX-1 expression nor COX activity. These results suggest that NDE downregulates LPS-induced COX-2 expression and inhibits PGE₂ production in pulmonary epithelial cells. Furthermore, higenamine and nantenine, two major constituents responsible for tracheal relaxing effect of NDE, did not mimic the inhibitory effect of NDE on LPS-induced COX-2 expression in A549 cells. To identify active constituent(s) of NDE responsible for the anti-inflammatory effect, NDE was introduced in a polyaromatic absorbent resin column and stepwise eluted to yield water fraction, 20% methanol fraction, 40% methanol fraction, 99.8% methanol fraction, and 99.5% acetone fraction. However, none of these five fractions alone inhibited LPS-induced COX-2 expression. On the other hand, exclusion of water fraction from NDE abolished the inhibitory effect of NDE on LPS-induced COX-2 expression. These results suggest that constituent(s) present in water fraction is required but not sufficient for the anti-inflammatory activity of NDE, which may result from interactions among multiple constituents.

  9. 大麻受体激动剂对肺癌A549细胞凋亡和增殖的影响%Effect of Cannabinoid Receptor Activation by THC on Proliferation and Apoptosis of Lung Cancer A549 Cells

    朱晓琴; 胡景鑫; 周于婷; 白红波; 赵青

    2011-01-01

    目的 研究大麻受体激动剂(delta9-tetrahydrocannabinol,THC)对肺癌A549细胞凋亡和增殖的影响.方法 MTT法测定THC对A549细胞增殖的影响;苏木精-伊红染色、扫描电镜观察细胞的形态学变化;Western blot 法分析大麻受体CB1、CB2的蛋白表达;DNA梯度电泳检测A549细胞凋亡;流式细胞仪分析细胞凋亡率变化.结果 THC预处理后,MTT检测表明THC对A549细胞增殖有明显抑制作用,随着药物浓度增大,抑制作用更加明显;苏木精-伊红染色、扫描电镜观察显示:肺癌A549细胞有典型的细胞凋亡形态;Western blot检测显示:A549细胞大麻受体CB1、CB2水平较正常气道上皮细胞株16HBE升高;DNA梯度电泳法及流式细胞仪检测显示:THC能抑制A549细胞生长,诱导其凋亡,并具有剂量依赖性.结论 大麻受体激动剂THC能抑制肺癌细胞的增殖,并诱导肺癌细胞凋亡,此效应可能与大麻受体CB1、CB2作用有关.%Objective To study the effect of the cannabinoid receptor activation by THC on the proliferation and apoptosis of lung cancer A549 cells- Methods The effects of THC on proliferation of A549 cells were measured by using MTT assay,and morphological changes of A549 cells after HE staining were observed under an electron microscopy. Protein expression of can nabinoid receptors CB1 and CB2 was detected by using Western blot. Apoptosis of A549 cells was examined by using DNA gra dient gel electrophoresis,and the change of apoptosis rate was analyzed by using flow cytometry. Results After pretreatment with THC,MTT assay revealed that THC could significantly suppress proliferation of A549 cells in a dose dependent man ner. HE staining and electron microscopy displayed that A549 cells had the typical apoptotic morphology. Western blot showed that cannabinoid receptors CB1 and CB2 were increased A549 cells as compared with those in normal airway epithelial cells 16HBE. DNA gradient electrophoresis and flow cytometry demonstrated

  10. Capsaicin-induced genotoxic stress does not promote apoptosis in A549 human lung and DU145 prostate cancer cells.

    Lewinska, Anna; Jarosz, Paulina; Czech, Joanna; Rzeszutek, Iwona; Bielak-Zmijewska, Anna; Grabowska, Wioleta; Wnuk, Maciej

    2015-02-01

    Capsaicin is the major pungent component of the hot chili peppers of the genus Capsicum, which are consumed worldwide as a food additive. More recently, the selective action of capsaicin against cancer cells has been reported. Capsaicin was found to induce apoptosis and inhibit proliferation of a wide range of cancer cells in vitro, whereas being inactive against normal cells. As data on capsaicin-induced genotoxicity are limited and the effects of capsaicin against human lung A549 and DU145 prostate cancer cells were not explored in detail, we were interested in determining whether capsaicin-associated genotoxicity may also provoke A549 and DU145 cell death. Capsaicin-induced decrease in metabolic activity and cell proliferation, and changes in the cell cycle were limited to high concentrations used (≥ 100 μM), whereas, at lower concentrations, capsaicin stimulated both DNA double strand breaks and micronuclei production. Capsaicin was unable to provoke apoptotic cell death when used up to 250 μM concentrations. Capsaicin induced oxidative stress, but was ineffective in provoking the dissipation of the mitochondrial inner transmembrane potential. A different magnitude of p53 binding protein 1 (53BP1) recruitment contributed to diverse capsaicin-induced genotoxic effects in DU145 and A549 cells. Capsaicin was also found to be a DNA hypermethylating agent in A549 cells. In summary, we have shown that genotoxic effects of capsaicin may contribute to limited susceptibility of DU145 and A549 cancer cells to apoptosis in vitro, which may question the usefulness of capsaicin-based anticancer therapy, at least in a case of lung and prostate cancer.

  11. CDK-associated Cullin 1 promotes cell proliferation with activation of ERK1/2 in human lung cancer A549 cells

    Chen, Tian Jun [Respiratory Department, The First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an 710061 (China); Gao, Fei [Hua-shan Central Hospital of Xi’an, Xi’an 710043 (China); Yang, Tian; Thakur, Asmitanand; Ren, Hui; Li, Yang; Zhang, Shuo; Wang, Ting [Respiratory Department, The First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an 710061 (China); Chen, Ming Wei, E-mail: xjtucmw@163.com [Respiratory Department, The First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an 710061 (China)

    2013-07-19

    Highlights: •CDK-associated Cullin 1 (CAC1) expression increases in human lung carcinoma. •CAC1 promotes the proliferation of lung cancer A549 cells. •CAC1 promotes human lung cancer A549 cell proliferation with activation of ERK1/2. -- Abstract: Lung cancer is one of the most common causes of cancer-related death in the world, but the mechanisms remain unknown. In this study, we investigated the expression of CDK-associated Cullin 1 (CAC1) in lung cancer, the effect of CAC1 on the proliferation of human lung cancer A549 cells, and the activation of signaling pathways of mitogen-activated protein kinases (MAPKs). Results showed that CAC1 expression was higher levels in human lung carcinoma than normal lung tissue, and CAC1 siRNA reduced the proliferation of lung cancer A549 cells by decreasing cell activity and cell division in vitro. The proportion of cells treated with CAC1 siRNA increased in the G1 phase and decreased in the S and G2/M phase, indicative of G1 cell cycle arrest. Furthermore, the proportions of early/late apoptosis in lung cancer A549 cells were enhanced with CAC1 siRNA treatment. It was also found that activation of extracellular signal-regulated protein kinase (ERK) and p38 signaling pathways were involved in the proliferation of A549 cells. After CAC1 siRNA treatment, p-ERK1/2 levels decreased, and meanwhile p-p38 level increased, A549 cell proliferation increased when ERK1/2 signaling is activated by PMA. Our findings demonstrated that CAC1 promoted the proliferation of human lung cancer A549 cells with activation of ERK1/2 signaling pathways, suggesting a potential cure target for treatment of human lung cancer.

  12. Molecular mechanisms underlying mangiferin-induced apoptosis and cell cycle arrest in A549 human lung carcinoma cells.

    Shi, Wei; Deng, Jiagang; Tong, Rongsheng; Yang, Yong; He, Xia; Lv, Jianzhen; Wang, Hailian; Deng, Shaoping; Qi, Ping; Zhang, Dingding; Wang, Yi

    2016-04-01

    Mangiferin, which is a C‑glucosylxanthone (1,3,6,7-tetrahydroxyxanthone-C2-β-D-glucoside) purified from plant sources, has recently gained attention due to its various biological activities. The present study aimed to determine the apoptotic effects of mangiferin on A549 human lung adenocarcinoma cells. In vitro studies demonstrated that mangiferin exerted growth‑inhibitory and apoptosis-inducing effects against A549 cells. In addition, mangiferin exhibited anti-tumor properties in A549 xenograft mice in vivo. Mangiferin triggered G2/M phase cell cycle arrest via downregulating the cyclin-dependent kinase 1-cyclin B1 signaling pathway, and induced apoptotic cell death by inhibiting the protein kinase C-nuclear factor-κB pathway. In addition, mangiferin was able to enhance the antiproliferative effects of cisplatin on A549 cells, thus indicating the potential for a combined therapy. Notably, mangiferin exerted anticancer effects in vivo, where it was able to markedly decrease the volume and weight of subcutaneous tumor mass, and expand the lifespan of xenograft mice. The present study clarified the molecular mechanisms underlying mangiferin-induced antitumor activities, and suggested that mangiferin may be considered a potential antineoplastic drug for the future treatment of cancer.

  13. SIRT1 Influences the Sensitivity of A549 Non-small Cell Lung Cancer Cell Line to 
Cisplatin via Modulating the Noxa Expression

    Bin CAO

    2016-02-01

    Full Text Available Background and objective The resistance of non-small cell lung cancer cells to cisplant is a common clinical phenomenon which could induce a poor therapeutic effect and should be difficult problem to be solved. SIRT1 and Noxa expression are associated with the chemotherapy for tumors. The present study focused on how SIRT1 expression influence the senstivity of non-small cell lung cancer cells and dissected the potential mechanism involved with Noxa. Methods The difference of SIRT1 and Noxa expression between A549 cells and A549/DDP cells was detected by real-time quantitative PCR (qRT-PCR and Western blot. SIRT1 targeted siRNA was uesed to inhibit the SIRT1 expression in A549/DDP, after transfection, Cell Titer Blue assay, flow cytometry were performed to analyze the cell viability, cell cycle and cell apoptosis in order to reveal the effect of inhibition of SIRT1 on sensitivity of A549/DDP cells to cisplant. Moreover, the expression changes of Noxa in A549/DDP cells after siRNA treatment were detected by qRT-PCR and Western blot. Results There was a significant difference in senstivity to cisplant between A549 and A549/DDP cells. Compared with A549 cells, the A549/DDP cells showed a higher SIRT1 expression and lower Noxa expression. After transfected with SIRT1 targeted siRNA, the cell viability decreased accompanied with a increasing apoptosis rate, meanwhile, higher percent of G2/M phase was detected after the 4 μg/mL cisplant treatment. Further more, inhibition of SIRT1 could induce the Noxa expression in A549/DDP cells. Conclusion Higher SIRT1 expression may induce resistance to cisplant in A549 cells. SIRT1 inhibition may improve the sensitivity of A549/DDP cells to cisplantin though modulating the Noxa expression.

  14. Enhancement of radiosensitivity by CpG-oligodeoxyribonucleotide-7909 in human non-small cell lung cancer A549 cells.

    Zha, Lin; Qiao, Tiankui; Yuan, Sujuan; Lei, Linjie

    2010-04-01

    CpG-oligodeoxyribonucleotides (CpG-ODNs), which induce signaling through the toll-like receptor 9, are currently under investigation as immunity stimulators against cancer. It has recently been suggested that CpG-ODNs may also enhance sensitivity to traditional therapies including chemotherapy in certain cancer-cell lines. The purpose of this study was to define the activity of CpG-ODN7909 in increasing radiosensitivity of the human non-small cell lung cancer cell line A549 in vitro. First, a dose- and time-dependent inhibitory effect on cell viability was observed after A549 cells were treated with different concentrations of CpG-ODN7909 (5, 10, 30, and 60 microg/mL). Second, decreased cell clonogenic survival, enhanced cell apoptotic index, accumulated percentage of cells in the G2/M phase, and increased tumor necrosis factor (TNF)-alpha secretion were found after combined treatments with 10 microg/mL of CpG-ODN7909 and radiation compared to either treatment alone (p CpG-ODN7909 can increase the radiosensitivity of human non-small cell lung cancer A549 cells, which may be associated with reduced cell clonogenic survival, enhanced apoptosis, prolonged cell-cycle arrest in G2/M, and stimulation of TNF-alpha secretion.

  15. Anacardic acid, a histone acetyltransferase inhibitor, modulates LPS-induced IL-8 expression in a human alveolar epithelial cell line A549 [v1; ref status: indexed, http://f1000r.es/o7

    Tetsuo Yasutake

    2013-03-01

    Full Text Available Objective and design: The histone acetylation processes, which are believed to play a critical role in the regulation of many inflammatory genes, are reversible and regulated by histone acetyltransferases (HATs, which promote acetylation, and histone deacetylases (HDACs, which promote deacetylation. We studied the effects of lipopolysaccharide (LPS on histone acetylation and its role in the regulation of interleukin (IL-8 expression.  Material: A human alveolar epithelial cell line A549 was used in vitro. Methods: Histone H4 acetylation at the IL-8 promoter region was assessed by a chromatin immunoprecipitation (ChIP assay. The expression and production of IL-8 were evaluated by quantitative polymerase chain reaction and specific immunoassay. Effects of a HDAC inhibitor, trichostatin A (TSA, and a HAT inhibitor, anacardic acid, were assessed.  Results: Escherichia coli-derived LPS showed a dose- and time-dependent stimulatory effect on IL-8 protein production and mRNA expression in A549 cells in vitro. LPS showed a significant stimulatory effect on histone H4 acetylation at the IL-8 promoter region by ChIP assay. Pretreatment with TSA showed a dose-dependent stimulatory effect on IL-8 release from A549 cells as compared to LPS alone. Conversely, pretreatment with anacardic acid inhibited IL-8 production and expression in A549 cells.  Conclusion: These data suggest that LPS-mediated proinflammatory responses in the lungs might be modulated via changing chromatin remodeling by HAT inhibition.

  16. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    Zhang, Jian, E-mail: zhangjian197011@yahoo.com [Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Zhang, Tao [Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi' an 710038 (China); Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling [Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Yin, Hong, E-mail: yinnhong@yahoo.com [The Medical Image Center, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China)

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  17. Differential replication of avian influenza H9N2 viruses in human alveolar epithelial A549 cells

    Peiris Malik

    2010-03-01

    Full Text Available Abstract Avian influenza virus H9N2 isolates cause a mild influenza-like illness in humans. However, the pathogenesis of the H9N2 subtypes in human remains to be investigated. Using a human alveolar epithelial cell line A549 as host, we found that A/Quail/Hong Kong/G1/97 (H9N2/G1, which shares 6 viral "internal genes" with the lethal A/Hong Kong/156/97 (H5N1/97 virus, replicates efficiently whereas other H9N2 viruses, A/Duck/Hong Kong/Y280/97 (H9N2/Y280 and A/Chicken/Hong Kong/G9/97 (H9N2/G9, replicate poorly. Interestingly, we found that there is a difference in the translation of viral protein but not in the infectivity or transcription of viral genes of these H9N2 viruses in the infected cells. This difference may possibly be explained by H9N2/G1 being more efficient on viral protein production in specific cell types. These findings suggest that the H9N2/G1 virus like its counterpart H5N1/97 may be better adapted to the human host and replicates efficiently in human alveolar epithelial cells.

  18. Claudin-18 inhibits cell proliferation and motility mediated by inhibition of phosphorylation of PDK1 and Akt in human lung adenocarcinoma A549 cells.

    Shimobaba, Shun; Taga, Saeko; Akizuki, Risa; Hichino, Asami; Endo, Satoshi; Matsunaga, Toshiyuki; Watanabe, Ryo; Yamaguchi, Masahiko; Yamazaki, Yasuhiro; Sugatani, Junko; Ikari, Akira

    2016-06-01

    Abnormal expression of claudin subtypes has been reported in various cancers. However, the pathological role of each claudin has not been clarified in detail. Claudin-18 was absent in human non-small cell and small cell lung cancers, although it is expressed in normal lung tissues. Here, we examined the effect of claudin-18 expression on the expression of junctional proteins, cell proliferation, and cell motility using human lung adenocarcinoma A549 cells. Real-time PCR and western blotting showed that exogenous expression of claudin-18 had no effect on the expression of junctional proteins including claudin-1, zonula occludens-1 (ZO-1), occludin, and E-cadherin. Claudin-18 was mainly distributed in cell-cell contact areas concomitant with ZO-1. Cell proliferation was significantly decreased at 48 and 72h after seeding of claudin 18-expressing cells. Claudin-18 suppressed cell motility, whereas it increased cell death in anoikis. Claudin-18 decreased phosphorylated (p)-3-phosphoinositide-dependent protein kinase-1 (PDK1) and p-Akt levels without affecting p-epidermal growth factor receptor and p-phosphatidylinositol-3 kinase (PI3K) levels. Furthermore, claudin-18 was bound with PDK1 and suppressed the nuclear localization of PDK1. We suggest that claudin-18 suppresses the abnormal proliferation and motility of lung epithelial cells mediated by inhibition of the PI3K/PDK1/Akt signaling pathway.

  19. Vitamin D Analogs Potentiate the Antitumor Effect of Imatinib Mesylate in a Human A549 Lung Tumor Model.

    Maj, Ewa; Filip-Psurska, Beata; Świtalska, Marta; Kutner, Andrzej; Wietrzyk, Joanna

    2015-11-13

    In previous papers, we presented data on studies on the anticancer activity of the vitamin D₃ analogs, named PRI-2191 and PRI-2205, in different cancer models. In this study, we showed the improved antiproliferative activity of a combination of imatinib mesylate (Gleevec, GV) and cytostatic agents in in vitro studies, when used with a third compound, namely PRI-2191, in an A549 human lung cancer model. Furthermore, we analyzed the influence of both PRI-2191, as well as PRI-2205 on the anticancer activity of GV in mice bearing A549 tumors. The route of PRI-2191 analog administration showed a significant impact on the outcome of GV treatment: subcutaneous injection was more efficient and less toxic than oral gavage. Moreover, both vitamin D compounds increased the anticancer activity of GV; however, they might also potentiate some adverse effects. We also evaluated in tumor tissue the expression of VEGF, PDGF-BB, vitamin D receptor, CYP27B1, CYP24, p53 and Bcl-2, as well as PDGF receptors: α and β. We observed the upregulation of p53 expression and the downregulation of Bcl-2, as well as VEGF in A549 tumors as a result of the tested treatment. However, vitamin D analogs did not significantly influence the expression of these proteins.

  20. Vitamin D Analogs Potentiate the Antitumor Effect of Imatinib Mesylate in a Human A549 Lung Tumor Model

    Maj, Ewa; Filip-Psurska, Beata; Świtalska, Marta; Kutner, Andrzej; Wietrzyk, Joanna

    2015-01-01

    In previous papers, we presented data on studies on the anticancer activity of the vitamin D3 analogs, named PRI-2191 and PRI-2205, in different cancer models. In this study, we showed the improved antiproliferative activity of a combination of imatinib mesylate (Gleevec, GV) and cytostatic agents in in vitro studies, when used with a third compound, namely PRI-2191, in an A549 human lung cancer model. Furthermore, we analyzed the influence of both PRI-2191, as well as PRI-2205 on the anticancer activity of GV in mice bearing A549 tumors. The route of PRI-2191 analog administration showed a significant impact on the outcome of GV treatment: subcutaneous injection was more efficient and less toxic than oral gavage. Moreover, both vitamin D compounds increased the anticancer activity of GV; however, they might also potentiate some adverse effects. We also evaluated in tumor tissue the expression of VEGF, PDGF-BB, vitamin D receptor, CYP27B1, CYP24, p53 and Bcl-2, as well as PDGF receptors: α and β. We observed the upregulation of p53 expression and the downregulation of Bcl-2, as well as VEGF in A549 tumors as a result of the tested treatment. However, vitamin D analogs did not significantly influence the expression of these proteins. PMID:26580599

  1. Vitamin D Analogs Potentiate the Antitumor Effect of Imatinib Mesylate in a Human A549 Lung Tumor Model

    Ewa Maj

    2015-11-01

    Full Text Available In previous papers, we presented data on studies on the anticancer activity of the vitamin D3 analogs, named PRI-2191 and PRI-2205, in different cancer models. In this study, we showed the improved antiproliferative activity of a combination of imatinib mesylate (Gleevec, GV and cytostatic agents in in vitro studies, when used with a third compound, namely PRI-2191, in an A549 human lung cancer model. Furthermore, we analyzed the influence of both PRI-2191, as well as PRI-2205 on the anticancer activity of GV in mice bearing A549 tumors. The route of PRI-2191 analog administration showed a significant impact on the outcome of GV treatment: subcutaneous injection was more efficient and less toxic than oral gavage. Moreover, both vitamin D compounds increased the anticancer activity of GV; however, they might also potentiate some adverse effects. We also evaluated in tumor tissue the expression of VEGF, PDGF-BB, vitamin D receptor, CYP27B1, CYP24, p53 and Bcl-2, as well as PDGF receptors: α and β. We observed the upregulation of p53 expression and the downregulation of Bcl-2, as well as VEGF in A549 tumors as a result of the tested treatment. However, vitamin D analogs did not significantly influence the expression of these proteins.

  2. Effects of green tea extract on lung cancer A549 cells: proteomic identification of proteins associated with cell migration.

    Lu, Qing-Yi; Yang, Yanan; Jin, Yu Sheng; Zhang, Zuo-Feng; Heber, David; Li, Frederick P; Dubinett, Steven M; Sondej, Melissa A; Loo, Joseph A; Rao, Jian Yu

    2009-02-01

    Green tea polyphenols exhibit multiple antitumor activities, and the mechanisms of action are not completely understood. Previously, we reported that green tea extract (GTE)-induced actin remolding is associated with increased cell adhesion and decreased motility in A549 lung cancer cells. To identify the cellular targets responsible for green tea-induced actin remodeling, we performed 2-DE LC-MS/MS of A549 cells before and after GTE exposure. We have identified 14 protein spots that changed in expression (> or =2-fold) after GTE treatment. These proteins are involved in calcium-binding, cytoskeleton and motility, metabolism, detoxification, or gene regulation. In particular we found upregulation of several genes that modulate actin remodeling and cell migration, including lamin A/C. Our data indicated that GTE-induced lamin A/C upregulation appears to be at the transcriptional level and the increased expression results in the decrease in cell motility, as confirmed by siRNA. The result of the study demonstrates that GTE alters the levels of many proteins involved in growth, motility and apoptosis of A549 cells and their identification may explain the multiple antitumor activities of GTE.

  3. Cytotoxic, Antiproliferative and Apoptotic Effects of New Benzimidazole Derivatives on A549 Lung Carcinoma and C6 Glioma Cell Lines.

    Yurttas, Leyla; Demirayak, Seref; Ciftci, Gulsen Akalın

    2015-01-01

    Benzimidazole ring is a versatile structure which has been extensively utilized in medicinal chemistry. Since we are working on 1,2-disubstutited benzimidazoles, we have reported new antitumor active derivatives. As a continuation to our previous work, we have synthesized a new series of 1-(2-aryl-2-oxoethyl)-2-[(N,Ndimethylamino/pyrrolidinyl/piperidinyl)thiocarbamoyl] benzimidazole derivatives. Anticancer activity of the compounds was evaluated using MTT assay, BrdU assay and flow cytometric analysis on A549 human lung carcinoma and C6 rat glioma cell lines. Compounds bearing dimethylamino moiety exhibited higher antitumor activity.

  4. 卡瓦胡椒素B对人非小细胞肺癌A549细胞的抑制作用%Inhibitory Effect of Flavokawain B on Human Non-small Cell Lung Cancer A549 Cells

    王晶; 安君霞; 朱启彧; 马玉玲; 裴哲; 魏枭; 孙健; 唐亚雄

    2012-01-01

    The anti-lung tumor potential of flavokawain B, one of active chalcones isolated from Kawa was investigated. Flavokawain B's action was assessed on proliferation, apoptosis, cell cycle and molecular mechanisms in human non-small cell lung cancer (NSCLC) A549 cells in vitro. The results demonstrated that flavokawain B significantly inhibited the growth of A549 cells in a dose- and time-dependent manner. Meanwhile, flavokawain B induced cell apoptosis and cell cycle G2-M phase arrest in A549 cells. Mechanistically, flavokawain B could activate JNK signaling pathway, down-regulate the expression of survivin protein, and activate the cleavage of PARP, leading to marked inhibitory effect on A549 cells. These findings suggest that flavokawain B may be a potential usefulness for preventing and treatment of NSCLC. Fig 5, Ref 16%卡瓦胡椒素B是药用植物卡瓦胡椒根中的一种天然查耳酮类化合物,研究了其对人非小细胞肺癌A549细胞的增殖抑制作用及其诱导细胞凋亡的分子机制.实验结果显示,卡瓦胡椒素B能显著抑制非小细胞肺癌A549细胞的增殖,且随着药物浓度的增加、处理时间的延长其抑制作用呈明显的剂量时间效应;同时,卡瓦胡椒素B能显著诱导A549细胞凋亡、细胞周期阻滞于G2-M期;分子机制研究表明,卡瓦胡椒素B能通过活化JNK激酶活性、下调凋亡抑制蛋白survivin的表达以及激活PARP活性从而导致其对A549细胞的增殖抑制作用.结果表明卡瓦胡椒素B对人非小细胞肺癌的预防与治疗可能具有潜在价值.

  5. Proteases and oxidant stress control organic dust induction of inflammatory gene expression in lung epithelial cells

    Natarajan, Kartiga; Gottipati, Koteswara R.; Berhane, Kiflu; Samten, Buka; Pendurthi, Usha; Boggaram, Vijay

    2016-01-01

    Background Persistant inflammatory responses to infectious agents and other components in organic dust underlie lung injury and development of respiratory diseases. Organic dust components responsible for eliciting inflammation and the mechanisms by which they cause lung inflammation are not fully understood. We studied the mechanisms by which protease activities in poultry dust extracts and intracellular oxidant stress induce inflammatory gene expression in A549 and Beas2B lung epithelial ce...

  6. Perfluorocarbon inhibits lipopolysaccharide-induced macrophage inflammatory protein-2 expression and activation of ATF-2 and c-Jun in A549 pulmonary epithelial cells.

    Hu, Y; Li, C S; Li, Y Q; Liang, Y; Cao, L; Chen, L A

    2016-04-30

    The signaling pathway that mediates the anti-inflammatory effects of perfluorocarbon (PFC) in alveolar epithelial cells treated with lipopolysaccharide (LPS) remains unclear. To evaluate the role of macrophage-inflammatory protein-2 (MIP-2), four A549 treatment groups were utilized: (1) untreated control, (2) 10 μg/mL of LPS, (3) 10 μg/mL of LPS+30% PFC and (4) 30% PFC. MIP-2 mRNA expression was determined by qPCR and ELISA. Mitogen-activated protein kinase (MAPK) activation was determined by Western blot analysis, and MIP-2 expression was determined by qPCR following treatment with MAPK inhibitors. PFC suppressed LPS-induced MIP-2 mRNA levels (P≤0.035) and MIP-2 secretion (P≤0.046). LPS induced ATF-2 and c-Jun phosphorylation, which was suppressed by PFC. Finally, inhibitors of ERK, JNK, and p38 suppressed LPS-induced MIP-2 mRNA expression. Thus, PFC inhibits LPS-induced MIP-2 expression and ATF-2 and c-Jun phosphorylation. To fully explore the therapeutic potential of PFC for acute lung injury (ALI), in vivo analyses are required to confirm these effects.

  7. Anti-Proliferative and Apoptosis-Inducing Effect of Theabrownin against Non-small Cell Lung Adenocarcinoma A549 Cells

    Wu, Feifei; Zhou, Li; Jin, Wangdong; Yang, Weiji; Wang, Ying; Yan, Bo; Du, Wenlin; Zhang, Qiang; Zhang, Lei; Guo, Yonghua; Zhang, Jin; Shan, Letian; Efferth, Thomas

    2016-01-01

    With the highest cancer incidence rate, lung cancer, especially non-small cell lung cancer (NSCLC), is the leading cause of cancer death in the world. Tea (leaves of Camellia sinensis) has been widely used as a traditional beverage beneficial to human health, including anti-NSCLC activity. Theabrownin (TB) is one major kind of tea pigment responsible for the beneficial effects of tea liquor. However, its effect on NSCLC is unknown. The aim of the present study was to evaluate anti-proliferative and apoptosis-inducing effect of TB on NSCLC (A549) cells, using MTT assay, morphological observation (DAPI staining), in situ terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and annexin-V/PI flow cytometry. Subsequently, the expression of several genes associated with cell proliferation and apoptosis were detected by real time PCR assay to explore its potential underlying mechanism. TB was revealed to inhibit cell proliferation of A549 cells in a concentration-dependent and time-dependent manner. Morphological observation, TUNEL assay and flow cytometric analysis evidenced an apoptosis-inducing effect of TB on A549 cells in a concentration-dependent manner. The real time PCR assay demonstrated that TB down-regulated the expression of TOPO I, TOPO II, and BCL-2, and up-regulated the expression of E2F1, P53, GADD45, BAX, BIM, and CASP 3,7,8,9, which suggests an activation of P53-mediated apoptotic (caspase-dependent) pathway in response to TB treatment. The western blot analysis showed a similar trend for the corresponding protein expression (P53, Bax, Bcl-2, caspase 3,9, and PARP) and further revealed DNA damage as a trigger of the apoptosis (phosphorylation of histone H2A.X). Accordingly, TB can be speculated as a DNA damage inducer and topoisomerase (Topo I and Topo II) inhibitor that can up-regulate P53 expression and subsequently modulate the expression of the downstream genes to induce cell proliferation inhibition and apoptosis of A549 cells

  8. Anti-proliferative and apoptosis-inducing effect of theabrownin against non-small cell lung adenocarcinoma A549 cells

    Feifei Wu

    2016-12-01

    Full Text Available With the highest cancer incidence rate, lung cancer, especially non-small cell lung cancer (NSCLC, is the leading cause of cancer death in the world. Tea (leaves of Camellia sinensis has been widely used as a traditional beverage beneficial to human health, including anti-NSCLC activity. Theabrownin (TB is one major kind of tea pigment responsible for the beneficial effects of tea liquor. However, its effect on NSCLC is unknown. The aim of the present study was to evaluate anti-proliferative and apoptosis-inducing effect of TB on NSCLC (A549 cells, using MTT assay, morphological observation (DAPI staining, in situ terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assay, and annexin V/PI flow cytometry. Subsequently, the expression of several genes associated with cell proliferation and apoptosis were detected by real time PCR assay to explore its potential underlying mechanism. TB was revealed to inhibit cell proliferation of A549 cells in a concentration-dependent and time-dependent manner. Morphological observation, TUNEL assay and flow cytometric analysis evidenced an apoptosis-inducing effect of TB on A549 cells in a concentration-dependent manner. The real time PCR assay demonstrated that TB down-regulated the expression of TOPO I, TOPO II, and BCL-2, and up-regulated the expression of E2F1, P53, GADD45, BAX, BIM, and CASP 3,7,8,9, which suggests an activation of P53-mediated apoptotic (caspase-dependent pathway in response to TB treatment. The western blot analysis showed a similar trend for the corresponding protein expression (P53, Bax, Bcl-2, caspase 3,9, and PARP and further revealed DNA damage as a trigger of the apoptosis (phosphorylation of histone H2A.X. Accordingly, TB can be speculated as a DNA damage inducer and topoisomerase (Topo I and Topo II inhibitor that can up-regulate P53 expression and subsequently modulate the expression of the downstream genes to induce cell proliferation inhibition and apoptosis of

  9. Function of Lycium Barbarum Polysaccharide on Proliferation and Apoptosis of Human Lung Cancer A549 Cells%枸杞多糖对人肺腺癌A549细胞增殖和凋亡的影响

    孟凡珍; 江涛

    2012-01-01

    Objective To investigate the growth inhibition and proliferation of human lung adenocarcinoma AS49 cells induced by Lycium bar-barum polysaccharide( LBP) in vitro,and the possible underlying mechanisms. Methods A549 cells cultured in vitro were divided into control group and experimental group ( I/ZICjo for 48 hours) by the different concentrations of LBP treatment. The inhibitory effects of LBP on proliferation of A549 were determined by MTT assay at 24 h ,48 h ,72 h after the addition of LBP to A549 culture. Growth curve were generated by MTT assay,doubling time were calculated by cell counting,Cell cycle and apoptosis were examined by Flow cytometry(FCM) ,Sur-vivin mRNA changes were detected by RT-PCR,CyclinBl protein changes were detected by Western blot ,Tramwell assay in vitro was utilized to evaluate the invasive activity. Results MTT assay demonstrated that different concentrations of LBP significantly inhibited the proliferation of A549 cells in a dose-dependent manner,the doubling time and the rate of apoptosis of cells in experimental group is dramatically different from the control group. ( P < 0. 05 ) , It was found that LBP arrested A549 cells at G2 phase; Survivin mRNA expression and CyclinBl protein expression were lower,compared with that in the control group( P <0. 05 ) . Conclusion The present study suggests that LBP can significantly inhibit the proliferation of A549 cells. The mechanism may be related to an arrest effect on cell cycle,reducing Survivin mRNA and CyclinBl protein expression and inhibiting tumour invasion.%目的 探讨枸杞多糖(LBP)对体外培养的人肺腺癌细胞A549的增殖抑制作用及其可能的作用机制.方法 用不同浓度的LBP处理A549细胞,MTT法检测24、48、72h时间点LBP对A549细胞的生长抑制率,实验设为对照组和实验组(1/2IC50作用48小时),MTT法绘制生长曲线、细胞计数计算倍增时间、流式细胞仪检测凋亡率及其细胞周期、RT-PcR检测Survivin m

  10. Atrial natriuretic peptide: A novel mediator for TGF-β1-induced epithelial-mesenchymal transition in 16HBE-14o and A549 cells.

    Chu, Shuyuan; Zhang, Xiufeng; Sun, Yabing; Yu, Yuanyuan; Liang, Yaxi; Jiang, Ming; Huang, Jianwei; Ma, Libing

    2017-02-13

    Atrial natriuretic peptide (ANP) is increasingly expressed on airway and inhibits pulmonary arterial remodeling. However, the role of ANP in remodeling of respiratory system is still unclear. The role of ANP on airway remodeling and the possible mechanism was explored in this study. Both human bronchial epithelial 16HBE-14o cells and alveolar epithelial A549 cells were stimulated by TGF-β1, ANP, cGMP inhibitor, PKG inhibitor, and cGMP analogue. The expressions of epithelial markers, mesenchymal markers, and Smad3 were assessed by quantitative real-time PCR and western blotting. Immunohistochemical staining was employed to assess Smad3 expression once it was silenced by siRNA in 16HBE-14o or A549 cells. Our results showed that the mRNA and protein expressions of E-Cadherin were decreased, whereas α-SMA expressions were increased after induction by TGF-β1 in 16HBE-14o and A549 cells. The E-Cadherin expressions were increased and α-SMA expressions were decreased after ANP stimulation. Inhibition of cGMP or PKG decreased E-Cadherin expression but increased α-SMA expression, which could be reversed by cGMP analogue. Moreover, the phosphorylated Smad3 expression was consistent with α-SMA expression. After smad3 was silenced, Smad3 was mostly expressed in cytoplasm instead of nucleus as non-silenced cells during epithelial-mesenchymal transition (EMT). In conclusion, ANP inhibits TGF-β1-induced EMT in 16HBE-14o and A549 cells through cGMP/PKG signaling, by which it targets TGF-β1/Smad3 via attenuating phosphorylation of Smad3. These findings suggest the potential of ANP in the treatment on pulmonary diseases with airway remodeling.

  11. Oleifolioside B-mediated autophagy promotes apoptosis in A549 human non-small cell lung cancer cells.

    Jin, Cheng-Yun; Yu, Hai Yang; Park, Cheol; Han, Min Ho; Hong, Su Hyun; Kim, Kyoung-Sook; Lee, Young-Choon; Chang, Young-Chae; Cheong, Jaehun; Moon, Sung-Kwon; Kim, Gi-Young; Moon, Hyung-In; Kim, Wun-Jae; Lee, Jai-Heon; Choi, Yung Hyun

    2013-12-01

    The biochemical mechanisms of cell death by oleifolioside B (OB), a cycloartane-type triterpene glycoside isolated from Dendropanax morbifera Leveille, were investigated in A549 human lung carcinoma cells. Our data indicated that exposure to OB led to caspase activation and typical features of apoptosis; however, apoptotic cell death was not prevented by z-VAD-fmk, a pan-caspase inhibitor, demonstrating that OB-induced apoptosis was independent of caspase activation. Subsequently, we found that OB increased autophagy, as indicated by an increase in monodansylcadaverine fluorescent dye-labeled autophagosome formation and in the levels of the autophagic form of microtubule-associated protein 1 light chain 3 and Atg3, an autophagy-specific gene, which is associated with inhibiting phospho-nuclear factor erythroid 2-related factor 2 (Nrf2) expression. However, pretreatment with bafilomycin A1, an autophagy inhibitor, attenuated OB-induced apoptosis and dephosphorylation of Nrf2. The data suggest that OB-induced autophagy functions as a death mechanism in A549 cells and OB has potential as a novel anticancer agent capable of targeting apoptotic and autophagic cell death and the Nrf2 signaling pathway.

  12. Effects of miR-424 on Proliferation and Migration Abilities in Non-small Cell Lung Cancer A549 Cells and Its Molecular Mechanism

    Hongmin LI

    2016-09-01

    Full Text Available Background and objective The inhibitory ability of miR-424 on the proliferation of renal carcinoma cell and the migration and invasion of cancer cells has been widely explored and demonstrated. However, the effects of miR-424 on non-small cell lung cancer (NSCLC have not been systematically examined. In this study, detected the growth and invasion effect of miR-424 in NSCLC A549 cell. The migration and molecular mechanism of this cell are also detected. Methods NSCLC A549 cell was transfected with miR-424 and its inhibitor. After transfection, the proliferation ability of A549 cell was detectedby CCK8 assay. Then, the migration ability in A549 cell was detected by migration assays. Furthermore, the expression level of MMP2 and MMP9 in A549 was detected by Western blot and immune fluorescence. The 3'UTR of E2F6 was cloned into luciferase reporter vector and its enzymatic activitywas detected to verify whether miR-424 can target E2F6. The expression level of E2F6 in a549 cell after transfecing with miR-424 was detected by Western blot. Results After transfection of miR-424, the proliferation and migration abilities were remarkably decreased and the expression level of MMP-2 and MMP-9 were down-regulated in A549. Moreover, MiR-424 inhibited the enzymatic activity of luviferase reporter vector of E2F6. Specifically, the expression level of E2F6 was down-regulated in A549. Conclusion miR-424 can inhibit the proliferation and migration abilities of A549 by negatively regulating the expression of E2F6.

  13. The Inhibitory Effects of Rh-endostatin(YH-16) in Combination with Radiotherapy on Lung Adenocarcinoma A549 in Mice and the Underlying Mechanisms

    吴辉塔; 邓洁; 于世英; 王馨; 陈元

    2010-01-01

    In order to investigate the inhibitory effects of Endostar(rh-endostatin,YH-16)in combination with radiotherapy on lung adenocarcinoma A549 in mice and the interaction mechanisms of combined therapy,the transplantation tumor models of A549 lung adenocarcinoma were established.When the largest diameter of tumor reached 1.0cm,all nude mice were randomly divided into 4 groups:Endostar group,radiotherapy group,radiotherapy plus Endostar(combined treatment)group,and control group(n=6 in each group).The largest d...

  14. IFN-gamma Impairs Release of IL-8 by IL-1beta-stimulated A549 Lung Carcinoma Cells

    Pfeilschifter Josef

    2008-09-01

    Full Text Available Abstract Background Production of interferon (IFN-γ is key to efficient anti-tumor immunity. The present study was set out to investigate effects of IFNγ on the release of the potent pro-angiogenic mediator IL-8 by human A549 lung carcinoma cells. Methods A549 cells were cultured and stimulated with interleukin (IL-1β alone or in combination with IFNγ. IL-8 production by these cells was analyzed with enzyme linked immuno sorbent assay (ELISA. mRNA-expression was analyzed by real-time PCR and RNase protection assay (RPA, respectively. Expression of inhibitor-κ Bα, cellular IL-8, and cyclooxygenase-2 was analyzed by Western blot analysis. Results Here we demonstrate that IFNγ efficiently reduced IL-8 secretion under the influence of IL-1β. Surprisingly, real-time PCR analysis and RPA revealed that the inhibitory effect of IFNγ on IL-8 was not associated with significant changes in mRNA levels. These observations concurred with lack of a modulatory activity of IFNγ on IL-1β-induced NF-κB activation as assessed by cellular IκB levels. Moreover, analysis of intracellular IL-8 suggests that IFNγ modulated IL-8 secretion by action on the posttranslational level. In contrast to IL-8, IL-1β-induced cyclooxygenase-2 expression and release of IL-6 were not affected by IFNγ indicating that modulation of IL-1β action by this cytokine displays specificity. Conclusion Data presented herein agree with an angiostatic role of IFNγ as seen in rodent models of solid tumors and suggest that increasing T helper type 1 (Th1-like functions in lung cancer patients e.g. by local delivery of IFNγ may mediate therapeutic benefit via mechanisms that potentially include modulation of pro-angiogenic IL-8.

  15. Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549

    Syaefudin; Juniarti, A.; Rosiyana, L.; Setyani, A.; Khodijah, S.

    2016-01-01

    The aim of the present study is to evaluate cytotoxicity effect of nanoparticles of Selaginella doederleinii (S. doederleinii) leaves extract. S. doederleinii was extracted by maceration method using 70%(v/v) ethanol as solvent. Phytochemical content was analyzed qualitatively by using Harborne and Thin Layer Chromatography (TLC) methods. Nanoparticle extract was prepared by ionic gelation using chitosan as encapsulant agent. Anticancer activity was performed by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results showed that S. doederleinii contains of flavonoids. Nanoparticle of S. doederleinii leaves extract greatly inhibited A549 cells growth (cancer cells), with IC50 of 3% or 1020 μg/ml. These nanoparticles extract also inhibited the growth of Chang cells (normal cells), with IC50 of 4% or 1442 μg/ml. The effective concentration of nanoparticles extract which inhibits cancer cells without harming the normal cells is 0.5% or 167 μg/ml. Further studies are needed to obtain the concentration of nanoparticles extract which can selectively suppress cancer cells.

  16. Growth-inhibiting and apoptosis-inducing activities of Myricanol from the bark of Myrica rubra in human lung adenocarcinoma A549 cells.

    Dai, G H; Meng, G M; Tong, Y L; Chen, X; Ren, Z M; Wang, K; Yang, F

    2014-09-25

    Myrica rubra (Lour.) Sieb. Et Zucc. is a myricaceae Myrica plant. It is a subtropical fruit tree in China and other Asian countries. The bark of M. rubra is used in Chinese folk medicine because of its antibacterial, antioxidant, anti-inflammatory, and anticancer activities. However, the mechanisms underlying such activities remain unclear. This study investigated whether or not Myricanol extracted from M. rubra bark elicits anti-cancer effects on human lung adenocarcinoma A549 cells by inducing apoptosis in vivo. Myricanol was extracted from M. rubra bark through system solvent extraction and silica gel layer column separation. The results of tritiated thymidine assay, colony formation assay, and flow cytometry indicated that Myricanol inhibited the growth of A549 cells. The effects of Myricanol on the expression of key apoptosis-related genes in A549 cells were evaluated by quantitative PCR and Western blot analyses. Myricanol significantly inhibited the growth of A549 cells in a dose-dependent manner, with a half maximal inhibitory concentration of 4.85 μg/ml. Myricanol significantly decreased colony formation and induced A549 cell apoptosis. Myricanol upregulated the expression of Caspase-3, Caspase-9, Bax, and p21 and downregulated the expression of Bcl-2 at the mRNA and protein levels. These changes were associated with apoptosis. Based on these results, we propose that Myricanol elicits growth inhibitory and cytotoxic effects on lung cancer cells. Therefore, Myricanol may be a clinical candidate for the prevention and treatment of lung cancer.

  17. Extract of menispermum dauricum induces apoptosis of human lung cancer cell line A549%蝙蝠葛提取物对人肺癌细胞系A549诱导凋亡作用的研究

    王永刚; 孙抒; 杨万山; 孙凤丹; 刘全

    2011-01-01

    目的 探讨蝙蝠葛提取物对人肺癌细胞系A549诱导凋亡和抗增殖作用及其机制,为开发抗肿瘤新中药提供实验依据.方法 应用MTT法测定蝙蝠葛提取物对人肺癌细胞系A549的生长抑制作用;通过倒置显微镜、光学显微镜观察肿瘤细胞凋亡的形态学变化;采用流式细胞术检测A549细胞的凋亡率;应用免疫组织化学技术检测药物处理前后凋亡相关蛋白酶caspase-3、caspase-8、caspase-9的表达.结果 (1) MTT法检测结果:蝙蝠葛提取物对人肺癌细胞系A549有明显的抑制生长的作用,且呈现出浓度的依赖性;(2)倒置显微镜观察结果:实验组肿瘤细胞体积变小、变圆,核染色质凝集,细胞间连接疏松,贴壁能力减弱;(3) HE染色观察结果:实验组肿瘤细胞体积变小、变圆,核染色质浓缩或染色质块形成,有的细胞膜起泡形成凋亡小体;(4)流式细胞术检测结果显示:蝙蝠葛提取物可以诱导A549细胞发生凋亡,加药组出现亚二倍体峰.结论 (1)蝙蝠葛提取物在体外对人肺癌细胞系A549有显著的诱导凋亡作用;(2)蝙蝠葛提取物诱导凋亡作用机制可能通过上调caspase-3、caspase-8和caspase-9蛋白表达,经由细胞凋亡的死亡受体和线粒体通路完成凋亡的启动和执行;(3)蝙蝠葛提取物具有显著的体外抗肿瘤作用,有望开发成一种新的抗肿瘤药物.%Objective To investigate the effects of menispermum dauricum extract on apoptosis of human lung cancer cell line A349. Methods MTI assay was used to determine the effects of menispermum dauricum extract on the growth inhibition of human lung cancer A549 cells. Morphological changes of the apoptosis of A549 cells were observed by using inverted microscope. Flow cytometry was used to detected apoptotic rate of A549 cells. caspase-3, caspase-8 and caspase-9 proteins were determined by immunocytochemical S-P staining technique. Results MTT test showed that menispermum dauricum extract

  18. 盐霉素对人肺腺癌A549细胞株生物学特性的影响%Effects of Salinomycin on the biological characteristics of lung adenocarcinoma cell line A549 cells

    石俊杰; 王哲; 李阳; 张翼翔; 刘晶; 顾春东

    2013-01-01

    Objective To investigate the effects of Salinomycin on the biological characteristics of lung adenocarcinoma cell line A549 cells.Methods The scratch test,Transwell assay and cell counting kit-8 assay were applied to study the influence of Salinomycin on biological characteristics of lung adenocarcinoma A549 cells.Flow cytometry was used to analyze the proportion of side population cells.Western blotting was used to detect the expression of Oct4 protein in A549 cells treated with Salinomycin.Results In blank control group,30 mg/L Salinomycin group and 60 mg/L Salinomycin group,migration distance was 70,40 and 10 μm,the number of invasive cells was (32.3 ± 2.5),(21.4 ± 1.8) and (1.3 ± 0.3)/HP,and cell survival rate was 98%,74% and 50%,respectively.The proportion of side population cells in 60 mg/L Salinomycin group,30 mg/L Salinomycin group,blank control group and reserpine blocking group was 3.4%,10.5%,12.5% and 0.7% respectively.Western blotting revealed that the Oct4 expression was decreased with increasing Salinomycin.Conclusion Salinomycin has an important impact on the biological characteristics of lung adenocarcinoma cell line A549.Salinomycin might become a new effective drug for the treatment of lung adenocarcinoma.%目的 观察盐霉素对人肺腺癌A549细胞株生物学特性的影响.方法 无血清培养A549干细胞,进行划痕、Transwell和细胞计数实验,运用流式细胞仪检测细胞侧群比例,采用Westernblot检测盐霉素对转录因子Oct4表达的影响.结果 空白对照组、30 mg/L、60 mg/L盐霉素组迁移距离分别为70、40、10μm,侵袭细胞数目分别为(32.3±2.5)、(21.4±1.8)、(1.3±0.3)个/HP,细胞存活率分别为98%、74%、50%;60 mg/L组、30 mg/L组、空白对照组、利血平阻断组侧群比例分别为3.4%、10.5%、12.5%、0.7%.Western blot示随着盐霉素浓度增加,Oct4的表达量下降.结论 盐霉素对人肺腺癌细胞株A549生物学特性具有重要影响.

  19. β-Elemonic acid inhibits the cell proliferation of human lung adenocarcinoma A549 cells: The role of MAPK, ROS activation and glutathione depletion.

    Wu, Tsu-Tuan; Lu, Chien-Lin; Lin, Hen-I; Chen, Bing-Fang; Jow, Guey-Mei

    2016-01-01

    β-elemonic acid, a known triterpene, exhibits anti-inflammatory effects, yet research on the pharmacological effects of β-elemonic acid is rare. We investigated the anticancer effects and the related molecular mechanisms of β-elemonic acid on human non-small cell lung cancer (NSCLC) A549 cells. The effects of β-elemonic acid on the growth of A549 cells were studied using a 3-(4,5)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected using Annexin V staining. The effect of β-elemonic acid on the cell cycle of A549 cells was assessed using the propidium iodide method. The change in reactive oxygen species (ROS) was detected using a dichlorodihydrofluorescein diacetate (DCFH-DA) assay with microscopic examination. The expression levels of Bcl-2 family proteins, mitogen-activated protein kinase (MAPK) family proteins and cyclooxygenase 2 (COX-2) were detected using western blot analysis. Our data revealed that β-elemonic acid strongly induced human A549 lung cancer cell death in a dose- and time-dependent manner as determined by the MTT assay. β-elemonic acid-induced cell death was considered to be apoptotic when the phosphatidylserine exposure was observed using Annexin V staining. The death of human A549 lung cancer cells was caused by apoptosis induced by activation of ROS activity, increase in the sub-G1 proportion, downregulation of Bcl-2 expression, upregulation of Bax expression and inhibition of the MAPK signaling pathways. These results clearly demonstrated that β-elemonic acid inhibits proliferation by inducing hypoploid cells and cell apoptosis. Moreover, the anticancer effects of β-elemonic acid were related to the MAPK signaling pathway, ROS activation and glutathione depletion in human A549 lung cancer cells.

  20. 三种缝线材料对人肺腺癌细胞A549增殖和细胞周期的影响%Effect of three suture lines on the proliferation and cell cycle of lung adenocarcinoma cell A549 in vitro

    Lianhua Ye; Yunchao Huang; Qilin Jin; Feng Hua; Guangqiang Zhao

    2011-01-01

    Objective: The interaction of cell and medical biomaterial is one of the significant factors to affect clinical application of medical biomaterial. This research is to investigate three of suture lines how to affect the proliferation and cell cycle of lung adenocarcinoma cell A549 in vitro. Methods: Three of suture lines were respectively cultivated with lung adenocarcinoma cell A549, after of 72 hours, we detected absorptions of each group by MTT method in order to reflect the proliferation of lung adenocarcinoma cell A549, and also examined percentage of G1 period cells and S period cells of each group by flow cytometry. Results: Different of suture lines had different effects on the proliferation and cell cycle of lung adenocarcinoma cell A549 (P < 0.05). The effect of absorbent suture line was the strongest on the proliferation and cell cycle of lung adenocarcinoma cell A549, the effect of chorda serica chirurgicalis was medium, and the effect of slide wire was poor. Different length of each suture line had different effects on the proliferation and cell cycle of lung adenocarcinoma cell A549 (P < 0.05).Conclusion: Three of suture line materials have different effects on the proliferation and cell cycle of lung adenocarcinoma cell A549, with dose-effect relationship.

  1. Low Dose Hyper-radiosensitivity in Human Lung Cancer Cell Line A549 and Its Possible Mechanisms

    Xiaofang DAI; Dan TAO; Hongge WU; Jing CHENG

    2009-01-01

    The low dose hyper-radiosensitivity (HRS) in human lung cancer cell line A549 was in-vestigated,the changes of ATM kinase,cell cycle and apoptosis of cells at different doses of radiation were observed,and the possible mechanisms were discussed.A549 cells in logarithmic growth phase were irradiated with 60Co γ-rays at doses of 0-2 Gy.Together with flow cytometry for precise cell sorting,cell survival fraction was measured by means of conventional colony-formation assay.The expression of ATM1981Ser-P protein was examined by Western blot 1 h after radiation.Apoptosis was detected by Hoechst 33258 fluorescent staining,and Annexin V-FITC/PI staining flow cytometry 24 h after radiation.Cell cycle distribution was observed by flow cytometly 6,12 and 24 h after ra-diation.The results showed that the expression of ATM1981Ser-P protein was observed at 0.2 Gy,followed by an increase at >0.2 Gy,and reached the peak at 0.5 Gy,with little further increase as the dose exceeded 0.5 Gy.Twenty-four h after radiation,partial cells presented the characteristic mor-phological changes of apoptosis,and the cell apoptosis curve was coincident with the survival curve.As compared with control group,the cell cycle almost had no changes after exposure to 0.1 and 0.2 Gy radiation (P>0.05).After exposure to 0.3,0.4 and 0.5 Cry radiation,G2/M phase arrest occurred 6 and 12 h after radiation (P<0.05),and the ratio of G2/M phase cells was decreased 24 h after radiation (P<0.05).It was concluded that A549 cells displayed the phenomenon of HRS/IRR.The mode of cell death was mainly apoptosis.The activity of ATM and cell cycle change may take an important role in HRS/IRR.

  2. Effects of matrine on the growth inhibition, c-myc and hTERT protein expression in human adenocarcinoma lung cancer cell line A549

    Qiong CHEN

    2008-08-01

    Full Text Available Background and objective It was reported that telomerase was associated with the oncogenesis and progression of cancer, and to be the common targets of cancer therapy. The mechanism of matrine on lung cancer in vitro is not clear. We studied the effect of matrine on growth of human lung adenocarcinoma A549 cells and the mechanism related with telomerase. Methods MTT was used for measuring A549 cells viability, Hoechst 33342-propidium iodide fluorescent staining for observing apoptotic cells, flow cytometry (FCM for analyzing cell cycle and apoptosis, and immunocytochemistry for measuring the protein expressions of c-myc and hTERT in A549 cells. Results Matrine inhibited the proliferation of A549 cells with a time-dose-dependent manner (P<0.05. Hoechst 33342-propidium iodide staining showed apoptotic cells with chromatin condensation and fragmentation of nuclei. FCM analysis indicated elevating rate of cells in G0/G1 phase, lowering rate of that in S phase and the highering apoptotic rate. The levels of c-myc and hTERT protein expression in the matrine group was lower than that in the control group (P<0.05, and AOD of c-myc showed positive correlation with AOD of hTERT (r=0.633, P<0.01 Conclusion The inhibitory effect of matrine on A549 cells may be related to the lower expression of c-myc and hTERT.

  3. The Study of CpG Island Methylation of BRCA1 Gene Promoter in a Taxol Induced Drug-resistant Human Lung Aadenocarcinoma Cell Line A549%耐紫杉醇人肺腺癌A549细胞株中BRCA1基因启动子CpG岛甲基化的研究

    尹红英; 王红兵

    2012-01-01

    目的 检测耐紫杉醇人肺腺癌A549细胞株(A549/Taxol)中BRCA1基因启动子CpG岛甲基化状态,探讨A549/Taxol细胞对紫杉醇的耐药机制.方法 应用甲基化特异性聚合酶链反应(MSP)技术,检测耐紫杉醇人肺腺癌A549细胞株BRCA1基因启动子CpG岛甲基化状态.结果 A549/Taxol细胞存在BRCA1基因异常甲基化,呈部分甲基化.结论 A549/Taxol细胞存在BRCA1基因异常甲基化,可能是A549/Taxol细胞对紫杉醇耐药的机制之一.%Objective To detect the CpG island methylation status of BRCA1 gene promoter in the Taxol induced drug-resistant human lung adenocarcinoma cell line A549 ( A549/Taxol ), and to explore the resistance mechanisms of A549/Taxol. Methods A549/Taxol were examined CpG island methylation of BRCA1 gene promoter by methylation specific PCR ( MSP ). Results IBRCA1 gene aberrant methylation of A549/Taxol cells is part of methylation. Conclusion BRCA1 gene aberrant methylation of A549/Taxol may be one of the resistance mechanisms of taxol in A549/Taxol.

  4. Acrolein activates cell survival and apoptotic death responses involving the endoplasmic reticulum in A549 lung cells.

    Tanel, André; Pallepati, Pragathi; Bettaieb, Ahmed; Morin, Patrick; Averill-Bates, Diana A

    2014-05-01

    Acrolein, a highly reactive α,β-unsaturated aldehyde, is a product of endogenous lipid peroxidation. It is a ubiquitous environmental pollutant that is generated mainly by smoke, overheated cooking oil and vehicle exhaust. Acrolein damages cellular proteins, which could lead to accumulation of aberrantly-folded proteins in the endoplasmic reticulum (ER). This study determines the mechanisms involved in acrolein-induced apoptosis mediated by the ER and possible links with the ER stress response in human A549 lung cells. The exposure of cells to acrolein (15-50μM) for shorter times of 15 to 30min activated several ER stress markers. These included the ER chaperone protein BiP and the three ER sensors: (i) the survival/rescue molecules protein kinase RNA (PKR)-like ER kinase (PERK) and eukaryotic initiation factor 2 alpha (eIF2α) were phosphorylated; (ii) cleavage of activating transcription factor 6 (ATF6) occurred, and (iii) inositol-requiring protein-1 alpha (IRE1α) was phosphorylated. Acrolein (25-50μM) caused apoptotic cell death mediated by the ER after 2h, which was characterised by the induction of CHOP and activation of ER proteases calpain and caspase-4. Calpain and caspase-7 were the initiating factors for caspase-4 activation in acrolein-induced apoptosis. These results increase our knowledge about cellular responses to acrolein in lung cells, which have implications for human health.

  5. Winter fine particulate matter from Milan induces morphological and functional alterations in human pulmonary epithelial cells (A549).

    Gualtieri, Maurizio; Mantecca, Paride; Corvaja, Viviana; Longhin, Eleonora; Perrone, Maria Grazia; Bolzacchini, Ezio; Camatini, Marina

    2009-07-10

    Samples of PM(2.5) were gravimetrically collected during the winter 2005/2006 in the urban area of Milan (North Italy). Samples were chemically characterized and the particles were detached from filters to determine their cytotoxic effects on the A549 cell line. Based on the potential toxicological relevance of its components, Milan winter PM(2.5) contained high concentrations of pro-oxidant transition metals and PAHs, while re-suspended particles showed a relatively high frequency of dimensional classes ranging from 40 nm to 300 nm. A549 cells exposed to particle suspensions showed a concentration-dependent decrease in viability, starting from 10 microg/cm(2). Phagocytosis of particles by A549 cells and particle aggregates were morphologically characterized and seemed to depend on both particle concentration and exposure time, with the majority of particles being engulfed in membrane-bound vacuoles after 24h of exposure. The ability of ultrafine particles to penetrate and spread throughout the cells was also verified. Cell membrane lysis and mitochondrial ultrastructural disruption appeared to be the main modifications induced by PM(2.5) on A549 cells. Concomitantly to the adverse effects observed in terms of cell mortality and ultrastructural lesions, a significant intracellular production of reactive oxygen species (ROS) was observed, suggesting that the cytotoxicity, exerted by the winter PM(2.5) in Milan, derived also from its oxidative potential, probably associated with particle-adsorbed metals and PAHs.

  6. Impact of CHK2-small interfering RNA on CpG ODN7909-enhanced radiosensitivity in lung cancer A549 cells

    Chen W; Liu XQ; Qiao TK; Yuan SJ

    2012-01-01

    Wei Chen,* Xiaoqun Liu,* Tiankui Qiao, Sujuan Yuan Department of Oncology, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China*These authors contributed equally to this workObjective: To investigate the impact of checkpoint kinase 2 (CHK2)-small interfering RNA (CHK2-siRNA) on the enhancement of radiosensitivity by CpG oligodeoxynucleotide (ODN) 7909 in lung cancer A549 cells.Methods: The A549 cells were randomly divided into five groups: control, CpG, X-ray, CpG ...

  7. Cyto- and genotoxicity assessment of Gold nanoparticles obtained by laser ablation in A549 lung adenocarcinoma cells

    Bucchianico, Sebastiano Di [Karolinska Institutet, Institute of Environmental Medicine (Sweden); Migliore, Lucia [University of Pisa, Department of Translational Research and New Technologies in Medicine and Surgery, Division of Medical Genetics (Italy); Marsili, Paolo [Institute of Complex Systems (ISC-CNR) (Italy); Vergari, Chiara [Plasma Diagnostics and Technologies s.r.l. (Italy); Giammanco, Francesco [University of Pisa, Department of Physics “E. Fermi” (Italy); Giorgetti, Emilia, E-mail: emilia.giorgetti@fi.isc.cnr.it [Institute of Complex Systems (ISC-CNR) (Italy)

    2015-05-15

    Gold nanoparticles have attracted enormous interest in biomedical applications, based on their unique optical properties. However, their toxicity on human tissues is still an open issue. Beyond the potential intrinsic toxicity of nanostructured gold, a non-negligible contribution of stabilizers or reaction by-products related to current wet chemical synthesis procedures can be expected. Aimed at isolating gold contribution from that of any other contaminant, we produced colloidal suspensions of Gold nanoparticles having average size <10 nm in deionized water or acetone by pulsed laser ablation, that permits preparation of uncoated and highly stable Gold nanoparticles in pure solvents. Subsequently, we investigated the role of surface chemistry, size, and dispersivity of synthesized Gold nanoparticles in exerting toxicity in a cell model system of deep respiratory tract, representing the main route of exposure to NPs, namely adenocarcinoma epithelial A549 cells. Gold nanoparticles prepared in water showed no particular signs of cytotoxicity, cytostasis, and/or genotoxicity as assessed by MTT colorimetric viability test and Cytokinesis-block micronucleus cytome assay up to concentrations of the order of 5 μg/mL. In contrast, Gold nanoparticles produced in pure acetone and then transferred into deionized water showed impaired cell viability, apoptosis responses, micronuclei, and dicentric chromosomes induction as well as nuclear budding, as a function of the amount of surface contaminants like amorphous carbon and enolate ions.

  8. Nanostructured delivery system for zinc phthalocyanine: preparation, characterization, and phototoxicity study against human lung adenocarcinoma A549 cells

    Mariana da Volta Soares

    2011-01-01

    Full Text Available Mariana da Volta Soares1, Mainara Rangel Oliveira1, Elisabete Pereira dos Santos1, Lycia de Brito Gitirana2, Gleyce Moreno Barbosa3, Carla Holandino Quaresma3, Eduardo Ricci-Júnior11Department of Medicines, Laboratório de Desenvolvimento Galênico (LADEG, Faculty of Pharmacy, 2Laboratory of Animal and Comparative Histology, Glycobiology Research Program, Institute of Biomedical Science, 3Department of Medicines, Laboratório Multidisciplinar de Ciências Farmacêuticas, Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ, Rio de Janeiro, BrazilAbstract: In this study, zinc phthalocyanine (ZnPc was loaded onto poly-ε-caprolactone (PCL nanoparticles (NPs using a solvent emulsification–evaporation method. The process yield and encapsulation efficiency were 74.2% ± 1.2% and 67.1% ± 0.9%, respectively. The NPs had a mean diameter of 187.4 ± 2.1 nm, narrow distribution size with a polydispersity index of 0.096 ± 0.004, zeta potential of -4.85 ± 0.21 mV, and spherical shape. ZnPc has sustained release, following Higuchi’s kinetics. The photobiological activity of the ZnPc-loaded NPs was evaluated on human lung adenocarcinoma A549 cells. Cells were incubated with free ZnPc or ZnPc-loaded NPs for 4 h and then washed with phosphate-buffered saline. Culture medium was added to the wells containing the cells. Finally, the cells were exposed to red light (660 nm with a light dose of 100 J/cm2. The cellular viability was determined after 24 h of incubation. ZnPc-loaded NPs and free photosensitizer eliminated about 95.9% ± 1.8% and 28.7% ± 2.2% of A549 cells, respectively. The phototoxicity was time dependent up to 4 h and concentration dependent at 0–5 µg ZnPc. The cells viability decreased with the increase of the light dose in the range of 10–100 J/cm2. Intense lysis was observed in the cells incubated with the ZnPc-loaded NPs and irradiated with red light. ZnPc-loaded PCL NPs are the release systems that promise photodynamic

  9. Synergistic Antiproliferative Effects of a New Cucurbitacin B Derivative and Chemotherapy Drugs on Lung Cancer Cell Line A549.

    Marostica, Lucas Lourenço; Silva, Izabella Thaís; Kratz, Jadel Müller; Persich, Lara; Geller, Fabiana Cristina; Lang, Karen Luise; Caro, Miguel Soriano Balparda; Durán, Fernando Javier; Schenkel, Eloir Paulo; Simões, Cláudia Maria Oliveira

    2015-10-19

    Nonsmall cell lung cancer (NSCLC) represents an important cause of mortality worldwide due to its aggressiveness and growing resistance to currently available therapy. Cucurbitacins have emerged as novel potential anticancer agents showing strong antiproliferative effects and can be promising candidates for combined treatments with clinically used anticancer agents. This study investigates the synergistic antiproliferative effects of a new semisynthetic derivative of cucurbitacin B (DACE) with three chemotherapy drugs: cisplatin (CIS), irinotecan (IRI), and paclitaxel (PAC) on A549 cells. The most effective combinations were selected for studies of the mechanism of action. Using an in silico tool, DACE seems to act by a different mechanism of action when compared with that of different classes of drugs already used in clinical settings. DACE also showed potent synergic effects with drugs, and the most potent combinations induced G2/M cell cycle arrest by modulating survivin and p53 expression, disruption of F-actin cytoskeleton, and cell death by apoptosis. These treatments completely inhibited the clonogenic potential and did not reduce the proliferation of nontumoral lung cells (MRC-5). DACE also showed relevant antimigratory and anti-invasive effects, and combined treatments modulated cell migration signaling pathways evolved with metastasis progression. The effects of DACE associated with drugs was potentiated by the oxidant agent l-buthionine-sulfoximine (BSO), and attenuated by N-acetilcysteine (NAC), an antioxidant agent. The antiproliferative effects induced by combined treatments were attenuated by a pan-caspase inhibitor, indicating that the effects of these treatments are dependent on caspase activity. Our data highlight the therapeutic potential of DACE used in combination with known chemotherapy drugs and offer important insights for the development of more effective and selective therapies against lung cancer.

  10. Alteration of membrane lipid biophysical properties and resistance of human lung adenocarcinoma A549 cells to cisplatin

    2001-01-01

    Alterations of membrane lipid biophysical properties of sensitiveA549 and resistant A549/DDP cells to the Cis-dichlorodiammine platinum (Cisplatin) were performed by measurements of fluorescence and flow cytometry approaches using fluorescence dyes of DPH, N-AS and Merocyanine 540 (MC 540) respectively. Fatty acids of membrane lipid of the two cell lines were analyzed by gas chromatography. The results indicated clearly that fluorescence polarization (P) of the DPH probe is 0.169 for the sensitive A549 cell and 0.194 for the resistant A549/DDP cells. Statistical analysis showed significant difference between the two cell lines. The polarizations of 2-AS and 7-AS which reflect the fluidity of surface and middle of lipid bilayer are 0.134 and 0.144 for the sensitive A549 cells as well as 0.171 and 0.178 for the resistant A549/DDP cells respectively, but there is no significant difference of the polarization of 12-AS between the two cell lines. This shows that altera-tions of the membrane fluidity of both cells were mainly located on the surface and middle of the lipid bilayer. In addition, the packing density of phospholipid molecules in the membrane of the two cell lines detected by MC540 probe indicated that lipid packing of A549 cell membranes was looser than that of the A549/DDP cells. And unsaturation degree of plasma membrane fatty acids of the A549/DDP cells was also lower than that of A549 cells. Taken together, it was proposed that the al-teration of membrane lipid biophysical state may be involved in the resistance of A549/DDP cells to cisplatin.

  11. Effects of fatty acids on benzo[a]pyrene uptake and metabolism in human lung adenocarcinoma A549 cells.

    Rola Barhoumi

    Full Text Available Dietary supplementation with natural chemoprotective agents is receiving considerable attention because of health benefits and lack of toxicity. In recent in vivo and in vitro experimental studies, diets rich in n-3 polyunsaturated fatty acids have been shown to provide significant anti-tumor action. In this investigation, the effects of control fatty acids (oleic acid (OA, linoleic acid (LA and n-3 PUFA, e.g., docosahexaenoic acid (DHA on the uptake and metabolism of the carcinogenic polycyclic aromatic hydrocarbon, benzo[a]pyrene (BaP was investigated in A549 cells, a human adenocarcinoma alveolar basal epithelial cell line. A549 cells activate BaP through the cytochrome P450 enzyme system to form reactive metabolites, a few of which covalently bind to DNA and proteins. Therefore, multiphoton microscopy spectral analysis combined with linear unmixing was used to identify the parent compound and BaP metabolites formed in cells, in the presence and absence of fatty acids. The relative abundance of select metabolites was associated with altered P450 activity as determined using ethoxyresorufin-O-deethylase activity in cells cultured in the presence of BSA-conjugated fatty acids. In addition, the parent compound within cellular membranes increases significantly in the presence of each of the fatty acids, with the greatest accumulation observed following DHA treatment. DHA treated cells exhibit significantly lower pyrene-like metabolites indicative of lower adducts including DNA adducts compared to control BSA, OA or LA treated cells. Further, DHA reduced the abundance of the proximate carcinogen BaP 7,8-dihydrodiol and the 3-hydroxybenzo[a]pyrene metabolites compared to other treatments. The significant changes in BaP metabolites in DHA treated cells may be mediated by the effects on the physicochemical properties of the membrane known to affect enzyme activity related to phase I and phase II metabolism. In summary, DHA is a highly bioactive chemo

  12. Combined therapy using suicide gef gene and paclitaxel enhances growth inhibition of multicellular tumour spheroids of A-549 human lung cancer cells.

    Prados, Jose; Melguizo, Consolacion; Rama, Ana; Ortiz, Raul; Boulaiz, Houria; Rodriguez-Serrano, Fernando; Caba, Octavio; Rodriguez-Herva, Jose Juan; Ramos, Juan Luis; Aranega, Antonia

    2008-07-01

    The low efficiency of conventional therapies in achieving long-term survival of lung cancer patients calls for development of novel options. The potential use of combined gene therapy is under intensive study. One approach uses the expression of genes encoding cytotoxic proteins that affect cellular viability. The gef gene from E. coli, identified as a member of a gene family encoding homologous cell-killing functions, encodes for a membrane protein with a toxic domain which leads to a decrease in the rate of tumour cell growth. To improve the antitumoral effect of the paclitaxel in lung cancer cells, we investigated a combined suicide gene therapy using this drug and gef gene in vitro, using A-549 lung cancer cells in culture and forming multicellular tumour spheroids (MTS). Our results showed that gef expression in A-549 cells led to an ultrastructural changes, including dilated mitochondria with clear matrices and disrupted cristae and cell surface alterations such as reduction in length and number of microvilli and cytoplasmic membrane evaginations. The use of paclitaxel in A-549 lung cancer cells transfected with gef gene enhanced the chemotherapeutic effect of this drug. Volume analyses showed an 87.4% decrease in the A-549 MTS growth after 96 h in comparison with control MTS. This inhibition was greater than that obtained using the gene therapy or chemotherapy alone. In conclusion, gef gene has a cytotoxic effect in lung cancer cells and enhances cell growth inhibition when used with paclitaxel. These results indicate that this combined therapy may be of potential therapeutic value in lung cancer.

  13. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways.

    Min, Jie; Huang, Kenan; Tang, Hua; Ding, Xinyu; Qi, Chen; Qin, Xiong; Xu, Zhifei

    2015-12-01

    Phloretin (Ph) existing in apples, pears and various vegetables is known to have antitumor activities in several cancer cell lines. However, little is known about its effect on human lung cancer cells. The aim of the present study was to see whether Ph could induce apoptosis of non-small cell lung cancer (NSCLC) cells, and explore the possible underlying mechanism of action. We found that Ph markedly induced cell apoptosis of NSCLC cell line A549, and inhibited the migration of A549 cells in a dose-dependent manner. The expression level of BAX, cleaved caspase-3 and -9, and degraded form of PARP was increased and Bcl-2 was decreased after Ph treatment. In addition, the phosphorylation of P38 MAPK, ERK1/2 and JNK1/2 was increased in a dose‑dependent manner in parallel with Ph treatment. Inhibition of P38 MAPK and JNK1/2 by specific inhibitors significantly abolished the Ph-induced activation of the caspase-3 and -9. In vivo tumor-suppression assay further indicated that Ph (20 mg/kg) displayed a more significant inhibitory effect on A549 xenografts in tumor growth. All these findings indicate that Ph is able to inhibit NSCLC A549 cell growth by inducing apoptosis through P38 MAPK and JNK1/2 pathways, and therefore may prove to be an adjuvant to the treatment of NSCLC.

  14. Safrole oxide induces apoptosis by up-regulating Fas and FasL instead of integrin beta4 in A549 human lung cancer cells.

    Du, AiYing; Zhao, BaoXiang; Miao, JunYing; Yin, DeLing; Zhang, ShangLi

    2006-04-01

    Previously, we found that 3,4-(methylenedioxy)-1-(2',3'-epoxypropyl)-benzene (safrole oxide) induced a typical apoptosis in A549 human lung cancer cells by activating caspase-3, -8, and -9. In this study, we further investigated which upstream pathways were activated by safrole oxide during the apoptosis. Immunofluorescence assay combined with laser scanning confocal microscopy revealed that both Fas and Fas ligand (FasL) were up-regulated by the small molecule. In addition, Fas protein distribution was altered, showing a clustering distribution instead of a homogeneous one. Subsequently, Western blot analysis confirmed the up-regulations of Fas and its membrane-binding form of FasL (m-FasL), as well as P53 protein. Conversely, safrole oxide hardly affected integrin beta4 subunit expression or distribution, which was reflected from the data obtained by immunofluorescence assay combined with laser scanning confocal microscopy. The results suggested that Fas/FasL pathway might be involved in safrole oxide-induced apoptosis of A549 cells, while integrin beta4 might be irrelevant to the apoptosis. Nevertheless, we first found the strong expression of integrin beta4 in A549 cells. The study first suggested that safrole oxide might be used as a small molecular promoter of Fas/FasL pathway to elicit apoptosis in A549 cells, which would lay the foundation for us to insight into the new strategies for lung cancer therapy.

  15. Integrin αv promotes proliferation by activating ERK 1/2 in the human lung cancer cell line A549.

    Fu, Shijie; Fan, Limin; Pan, Xufeng; Sun, Yifeng; Zhao, Heng

    2015-02-01

    Lung cancer is a leading cause of cancer-related death worldwide, and non-small cell lung cancer (NSCLC) constitutes ~85% of lung cancers. However, the mechanisms underlying the progression of NSCLC remain unclear. In this study, we found the mRNA and protein expression levels of integrin αv are both increased in NSCLC tissues compared to healthy ones, which indicates that integrin αv may play an important role in NSCLC progression. To further investigate the roles of integrin αv in NSCLC, we overexpressed the integrin αv gene in the NSCLC cell line A549, and found that the cell proliferative ability increased. The apoptosis of A549 cells was inhibited with overexpression of integrin αv. To elucidate the molecular mechanism underlying the role of integrin αv in promoting NSCLC progression, we studied the expression of proteins from a number of important pathways associated with tumorigenesis, and found that the extracellular signal regulated protein kinase (ERK)1/2 signaling pathway may be involved in the mediation of the observed integrin αv effects. component of an important pathway for tumorigenesis, the ERK 1/2. Following inhibition of ERK 1/2 signaling, the proliferation of A549 cells induced by integrin αv was reduced, while the inhibition of apoptosis was attenuated. Our findings demonstrate that integrin αv promotes the proliferation of the human lung cancer cell line A549 by activating the ERK 1/2 signaling pathway, which suggests that this pathway may be a promising target for the treatment of human lung cancer.

  16. TGF-β1 downregulates COX-2 expression leading to decrease of PGE2 production in human lung cancer A549 cells, which is involved in fibrotic response to TGF-β1.

    Erina Takai

    Full Text Available Transforming growth factor-ß1 (TGF-β1 is a multifunctional cytokine that is involved in various pathophysiological processes, including cancer progression and fibrotic disorders. Here, we show that treatment with TGF-β1 (5 ng/mL induced downregulation of cyclooxygenase-2 (COX-2, leading to reduced synthesis of prostaglandin E2 (PGE2, in human lung cancer A549 cells. Treatment of cells with specific inhibitors of COX-2 or PGE2 receptor resulted in growth inhibition, indicating that the COX-2/PGE2 pathway contributes to proliferation in an autocrine manner. TGF-β1 treatment induced growth inhibition, which was attenuated by exogenous PGE2. TGF-β1 is also a potent inducer of epithelial mesenchymal transition (EMT, a phenotype change in which epithelial cells differentiate into fibroblastoid cells. Supplementation with PGE2 or PGE2 receptor EP4 agonist PGE1-alcohol, as compared with EP1/3 agonist sulprostone, inhibited TGF-β1-induced expression of fibronectin and collagen I (extracellular matrix components. Exogenous PGE2 or PGE2 receptor agonists also suppressed actin remodeling induced by TGF-β1. These results suggest that PGE2 has an anti-fibrotic effect. We conclude that TGF-β1-induced downregulation of COX-2/PGE2 signaling is involved in facilitation of fibrotic EMT response in A549 cells.

  17. Curcumin Promoted the Apoptosis of Cisplain-resistant Human Lung Carcinoma Cells A549/DDP through Down-regulating miR-186*

    Jian ZHANG

    2010-04-01

    Full Text Available Background and objective Curcumin, a natural compound, is derived from the rthizom of Curcuma longa. In vitro and in vivo preclinical studies have shown its anti-inflammatory, antioxidant, anticancer activities and so on. miR-186*, which was found by microarray technology, was highly expressed in lung carcinoma cells A549/DDP. The aim of this study is to illustrate whether Curcumin could promote the apoptosis of A549/DDP cells through regulating the expression of miR-186*. Methods An oligonucleotide microarray chip was used to profile microRNA (miRNA expressions in A549/DDP cells treated with and without Curcumin. The significantly differentially expressed miRNA, which was selected from microarray chip, validated by quantitative real-time PCR. Ultimately, the remarkably expressed miRNA modulated the apoptosis assaying by flow cytometry expriments and the survival rate was measured by MTT method. Results The microarray chip results demonstrated: Curcumin altered the expression level of miRNAs compared with untreated control in A549/DDP cell line, miR-186* was significantly down-regulated after Curcumin treatment, which confirmed by quantitative real-time PCR. Downregulation of miR-186* expression by curcumin elevated the apoptosis, and the survival rate of A549/DDP cells decreased; but up-regulation of miR-186* expression by transfection its mimics restrained the apoptosis, the survival rate of A549/DDP cells increased, which were assayed by flow cytometry expriments and MTT method. Conclusion Modulation of miRNAs expression may be an important mechanism underlying the biological roles of Curcumin.

  18. Cellular and spectroscopic characterization of cancer stem cell-like cells derived from A549 lung carcinoma

    Murali M. S. Balla

    2016-01-01

    Conclusions and General Significance: Overall, these observations provide novel FT-IR and CD spectroscopy signatures in A549 clones enriched with CSCs, which may have implications in the quantifying magnitude of CSCs as prognostic markers in cancer therapy.

  19. Mycelial Extract of Phellinus linteus Induces Cell Death in A549 Lung Cancer Cells and Elevation of Nitric Oxide in Raw 264.7 Macrophage Cells.

    Lee, Jong-Jin; Kwon, Ho-Kyun; Lee, Dong-Soo; Lee, Seung-Woo; Lee, Kye-Kwan; Kim, Kyu-Joong; Kim, Jong-Lae

    2006-09-01

    In the present study, in order to investigate the anti-proliferative phenomenon of PLME, the effects of mycelial extract of Phellinus linteus (PLME) on the growth of human lung carcinoma cell line A549 was examined. We studied on the effects of PLME on the release of nitric oxide (NO) in mouse macrophage Raw 264.7 cells. Treatment of PLME to A549 cells resulted in the growth inhibition, morphological change and induction of apoptotic cell death in a dose-dependent manner as measured by MTT assay. We found that PLME stimulated a dose-dependent increase in NO production. These findings suggest that PLME enhances the anti-tumoral activity of macrophage and may be a potential therapeutic agent for the control of human lung carcinoma cells.

  20. Apoptosis-Inducing Activity of Marine Sponge Haliclona sp. Extracts Collected from Kosrae in Nonsmall Cell Lung Cancer A549 Cells

    Woori Bae

    2015-01-01

    Full Text Available Although various anticancer drugs have been developed for the treatment of nonsmall cell lung cancer, chemotherapeutic efficacy is still limited. Natural products such as phytochemicals have been screened as novel alternative materials, but alternative funds such as marine bioresources remain largely untapped. Of these resources, marine sponges have undergone the most scrutiny for their biological activities, including antiinflammatory, antiviral, and anticancer properties. However, the biological mechanisms of the activities of these marine sponges are still unclear. We investigated the anticancer activity of marine sponges collected from Kosrae in Micronesia and examined their mechanisms of action using nonsmall cell lung cancer A549 cells as a model system. Of 20 specimens, the Haliclona sp. (KO1304-328 showed both dose- and time-dependent cytotoxicity. Further, methanol extracts of Haliclona sp. significantly inhibited cell proliferation and cell viability. A549 cells treated with Haliclona sp. demonstrated induced expression of c-Jun N-terminal kinase (JNK, p53, p21, caspase-8, and caspase-3. The percentage of apoptotic cells significantly increased in A549 cultures treated with Haliclona sp. These results indicate that Haliclona sp. induces apoptosis via the JNK-p53 pathway and caspase-8, suggesting that this marine sponge is a good resource for the development of drugs for treatment of nonsmall cell lung cancer.

  1. Construction of Eukaryotic Expression Vector of Human CC10 Gene and Expression of CC10 Protein in Lung Adenocarcinoma A549 Cell Line

    2005-01-01

    A mammalian expression plasmid pcDNA3.1-hCC10 was constructed and identified, then CC10 protein expression in A549 lung cancer cell line was detected. A 273 bp cDNA fragment was amplified from the total RNA of normal lung tissue by using RT-PCR and cloned into expression plasmid cDNA3.1, and the recombinant plasmid was identified by employing double digestion restriction enzymes HindⅢ and BamH Ⅰ and the cDNA sequence was assayed by the Sanger dideoxymediated chain termination method. The segment was then transfected into the A549 lung cancer cell line. The protein expression of CC10 was detected by immunofluorescence and Western blot.Our results showed that the cDNA fragment included the entire coding region (273 bp). The recombinant eukaryotic cell expression vector of pcDNA3.1-hCC10 was successfully constructed, and the sequence of the insert was identical to the published sequence. A549 cells line transfected with the pcDNA3.1-hCC10 expressed high level of CC10 protein. The recombinant plasmid cDNA3. 1hCC10 may serve as an effective tool for the study of tumorogenesis and tumor treatment.

  2. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells

    Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Han, Jae Woong; Zhang, Xi-Feng; Park, Jung Hyun; Kim, Jin-Hoi

    2015-02-01

    Silver nanoparticles (AgNPs) are prominent group of nanomaterials and are recognized for their diverse applications in various health sectors. This study aimed to synthesize the AgNPs using the leaf extract of Artemisia princeps as a bio-reductant. Furthermore, we evaluated the multidimensional effect of the biologically synthesized AgNPs in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma (A549) cells. UV-visible (UV-vis) spectroscopy confirmed the synthesis of AgNPs. X-ray diffraction (XRD) indicated that the AgNPs are specifically indexed to a crystal structure. The results from Fourier transform infrared spectroscopy (FTIR) indicate that biomolecules are involved in the synthesis and stabilization of AgNPs. Dynamic light scattering (DLS) studies showed the average size distribution of the particle between 10 and 40 nm, and transmission electron microscopy (TEM) confirmed that the AgNPs were significantly well separated and spherical with an average size of 20 nm. AgNPs caused dose-dependent decrease in cell viability and biofilm formation and increase in reactive oxygen species (ROS) generation and DNA fragmentation in H. pylori and H. felis. Furthermore, AgNPs induced mitochondrial-mediated apoptosis in A549 cells; conversely, AgNPs had no significant effects on L132 cells. The results from this study suggest that AgNPs could cause cell-specific apoptosis in mammalian cells. Our findings demonstrate that this environmentally friendly method for the synthesis of AgNPs and that the prepared AgNPs have multidimensional effects such as anti-bacterial and anti-biofilm activity against H. pylori and H. felis and also cytotoxic effects against human cancer cells. This report describes comprehensively the effects of AgNPs on bacteria and mammalian cells. We believe that biologically synthesized AgNPs will open a new avenue towards various biotechnological and biomedical applications in the near future.

  3. A study of the effect of CCL21/CCR7 axis on VEGF-C expression in human lung adenocarcinoma A549 cells%CCL21/CCR7轴对人肺癌A549细胞VEGF-C表达影响的研究

    郭学光; 陈正堂; 刘长庭

    2011-01-01

    目的 研究二级淋巴组织趋化因子/CC趋化因子受体7(CCL21/CCR7)轴对肺癌A549细胞血管内皮细胞生长因子-C(VEGF-C)表达的影响.方法 实时定量PCR及Western Blot法检测CCL21作用前后A549细胞及A549-CCR7细胞VEGF-C mRNA及蛋白的表达.结果 CCL21作用下无论是在mRNA水平还是蛋白水平A549-CCR7细胞VEGF-C的表达均较A549细胞高.结论 CCL21与其受体CCR7结合能够促进A549细胞VEGF-C的表达,CCL21/CCR7轴可能参与了肺癌淋巴结转移的过程.进一步研究CCL21/CCR7轴和VEGF-C 的关系可能有助于阐明肺癌淋巴结转移的机制.%Objective To investigate the effects of CCL21/CCR7 axis on VEGF - C expression of human lung adenocarcinoma A549 cells and A549 - CCR7 cells. Methods VEGF - C expression was detected using Real - Time RT - PCR and Western Blot in A549 cells and A549 -CCR7 cells before and after incuhation with CCL21 . Results Under the influence of CCL21 , the VEGF - C expression of the A549 - CCR7 cells ,in mRNA and protein levels, was significantly increased compared to that of A549 cells ( P <0. 01 ). Conclusion These data suggest that the bind of CCL21 to its receptor CCR7 leads to the increase of the VE(-JF - C expression of A549 cells, and CCL21/CCR7 axis may play a role in lymph node metastasis of lung cancer. To further study the relationship between CCL21/CCR7 axis and VEGF - C may help to elucidate the mechanism of lymph node metastasis in human lung cancer.

  4. Erucin, a new promising cancer chemopreventive agent from rocket salads, shows anti-proliferative activity on human lung carcinoma A549 cells.

    Melchini, A; Costa, C; Traka, M; Miceli, N; Mithen, R; De Pasquale, R; Trovato, A

    2009-07-01

    Erucin (ER) is a dietary isothiocyanate present in cruciferous vegetables, such as rocket salads (Erucasativa Mill., Diplotaxis sp.), that has been recently considered a promising cancer chemopreventive phytochemical. Biological activity of ER was investigated on human lung adenocarcinoma A549 cells, analyzing its effects on molecular pathways involved in apoptosis and cell cycle arrest, such as PARP-1 cleavage, p53 and p21 protein expression. Our results show that ER affects the A549 cell proliferation, enhancing significantly p53 and p21 protein expression in a dose-dependent manner (pinduction of p53, p21 and PARP-1 cleavage may participate in the anti-proliferative activity of ER in human lung adenocarcinoma A549 cells. Comparison of data with those obtained with the isothiocyanate sulforaphane (SF), structurally related to ER, underlines the strong relationship between structural analogy of ITCs and their biological activity. The ability of dietary compounds to modulate molecular mechanisms that affect cancer cell proliferation is certainly a key point of the cancer prevention potential by functional foods.

  5. Highly expressed N1-acetylpolyamine oxidase detoxifies polyamine analogue N1-cyclopropylmethyl-N11-ethylnorspermine in human lung cancer cell line A549

    HAN Yu; REN Yu-san; CAO Chun-yu; REN Dong-ming; ZHOU Yong-qin; WANG Yan-lin

    2009-01-01

    Background The critical roles of polyamines in cell growth and differentiation have made polyamine metabolic pathway a promising target for antitumor therapy. Recent studies have demonstrated in vitro that some antitumor polyamine analogues could be used as substrates and oxidized by purified recombinant human N1-acetylpolyamine oxidase (APAO, an enzyme that catabolizes natural polyamines), indicating a potential role of APAO in determining the sensitivity of cancer cells to specific antitumor analogues. This study evaluated, in vivo, the effect of APAO on cytotoxicity of antitumor polyamine analogue, N1-cyclopropylmethyI-N11-ethylnorspermine (CPENS) and its mechanism when highly expressed in human lung cancer line A549.Methods A clone with high expression of APAO was obtained by transfecting A549 lung cancer cell line with pcDNA3.1/APAO plasmid and selecting with quantitative realtime PCR and APAO activity assay. Cell proliferation was determined by MTT method and apoptosis related events were evaluated by DNA fragmentation, sub-G1/flow cytometric assay, western blotting (for cytochrome C and Bax) and colorimetric assay (for casapse-3 activity). Results A clone highly expressing APAO was obtained. High expression of APAO in A549 cells inhibited accumulation of CPENS, decreased their sensitivity to the toxicity of CPENS and prevented CPENS induced apoptosis. Conclusion These results indicate a new drug resisting, mechanism in the tumor cells. High expression of APAO can greatly decrease the sensitivity of tumor cells to the specific polyamine analogues by detoxitying those analogues and prevent analogue induced apoptosis.

  6. Impact of siRNA targeting pirh2 on proliferation and cell cycle control of the lung adenocarcinoma cell line A549

    SU Yuan; ZHU Liping; JIN Yang; ZHANG Xiaoju; ZHOU Qiong; BAI Ming

    2007-01-01

    The aim of this study was to investigate the role of pirh2(p53-induced RING-H2)protein in the proliferation,apoptosis and cell cycle control of the lung cancer cell line A549.Pirh2 expression was detected by immunofluorescence,Western blot analysis and real-time polymerase chain reaction(PCR).Cell proliferation was assessed by cell counting kit-8(CCK-8).Cell cycle control and apoptosis were analyzed by flow cytometry.The results showed that pirh2 was expressed in the cytoplasm ofA549 cells.The inhibition of pirh2 expression by siRNA(psiRNA-pirh2)resulted in reduced cell proliferation and increased apoptosis.In addition,the number of G0/G1 phase cells was increased but G2/M cells were not affected significantly.Taken together,the inhibition of pirh2 expression in the lung adenocarcinoma cell line A549 resulted in reduced tumor cell growth via the inhibition of cell proliferation,the activation of apoptosis and the interruption of cell cycle transition.

  7. Genome-wide transcriptional analysis of apoptosis-related genes and pathways regulated by H2AX in lung cancer A549 cells.

    Lu, Chengrong; Xiong, Min; Luo, Yuan; Li, Jing; Zhang, Yanjun; Dong, Yaqiong; Zhu, Yanjun; Niu, Tianhui; Wang, Zhe; Duan, Lianning

    2013-09-01

    Histone H2AX is a novel tumor suppressor protein and plays an important role in apoptosis of cancer cells. However, the role of H2AX in lung cancer cells is unclear. The detailed mechanism and epigenetic regulation by H2AX remain elusive in cancer cells. We showed that H2AX was involved in apoptosis of lung cancer A549 cells as in other tumor cells. Knockdown of H2AX strongly suppressed apoptosis of A549 cells. We clarified the molecular mechanisms of apoptosis regulated by H2AX based on genome-wide transcriptional analysis. Microarray data analysis demonstrated that H2AX knockdown in A549 cells affected expression of 3,461 genes, including upregulation of 1,435 and downregulation of 2,026. These differentially expressed genes were subjected to bioinformatic analysis for exploring biological processes regulated by H2AX in lung cancer cells. Gene ontology analysis showed that H2AX affected expression of many genes, through which, many important functions including response to stimuli, gene expression, and apoptosis were involved in apoptotic regulation of lung cancer cells. Pathway analysis identified the mitogen-activated protein kinase signaling pathway and apoptosis as the most important pathways targeted by H2AX. Signal transduction pathway networks analysis and chromatin immunoprecipitation assay showed that two core genes, NFKB1 and JUN, were involved in apoptosis regulated by H2AX in lung cancer cells. Taken together, these data provide compelling clues for further exploration of H2AX function in cancer cells.

  8. 地塞米松诱导人肺腺癌A549细胞对紫杉醇耐药性及Bcl-xL基因表达的影响%Influence of lung adenocarcinoma A549 cells induced by dexamethasone on the drug resistance of PTX and expression of Bcl-xL gene

    康马飞; 李林凤

    2014-01-01

    Objective To observe the changes of the drug resistance of lung adenocarcinoma A549 cells and the expres-sion of mRNA and protein of Bcl-xL in human lung adenocarcinoma A549 cell after dexamethasone(DEX) pretreatment in dif-ferent concentrations and intervention with paclitaxel(PTX),and to explore the molecular mechanism of DEX-induced A549 cell to the drug resistance of PTX. Methods The cell viability rate of lung adenocarcinoma A549 cells was determined by MTT assay after treatment of different concentrations of PTX,and to screen the half inhibitory concentration(IC50) of PTX. The cell viability rate of A549 cells which pretreated with different concentrations of DEX and different concentrations of PTX was determined by MTT assay,and the expression level of mRNA and protein of Bcl-xL in the A549 cells were determined by reverse transcriptase-poly merase chain reaction(RT-PCR) and Western blotting. Results After being pretreated with DEX in different concentrations, A549 cells were induced to resist to PTX,and the rate of resistance increased gradually with the increasing concentrations of DEX and the expression level of Bcl-xL gene and protein also increased gradually with the increasing of DEX concentrations. Conclu-sions DEX can induce resistance to PTX in lung adenocarcinoma A549 cells ,whose mechanism might be involved in increase of Bcl-xL gene(anti-apoptosis gene) in DEX-induced lung adenocarcinoma A549 cells.%目的:观察紫杉醇(PTX)干预不同浓度地塞米松(DEX)预处理人肺腺癌A549细胞后的耐药情况和Bcl-xL基因及蛋白表达变化,探讨DEX诱导A549细胞对PTX产生耐药的分子机制。方法采用四甲基偶氮唑蓝比色法(MTT法)测定不同浓度PTX作用于A549细胞后的细胞存活率,筛选出PTX的半数抑制浓度(IC50);用不同浓度DEX预处理A549细胞后,再给予不同浓度PTX作用于A549细胞,用MTT法测定细胞存活率,逆转录-聚合酶链反应和蛋白质印迹法

  9. Photodynamic Activity and Security of Five New Hypocrellins Derivatives in Human Lung Cancer A549 Cells%五种竹红菌素衍生物对A549细胞的光动力效应研究

    张露勇; 顾瑛; 赵井泉; 邱海霞; 曾晶

    2013-01-01

    目的 比较五种新型竹红菌素衍生物分别为竹红菌素乙素(hypocrellin,HB)的二位ω-氨基磺酸衍生物THB、3HB和4HB,及十七位ω-氨基磺酸衍生物3SB和4SB对体外培养的人肺腺癌上皮细胞(A549)的光动力(photodynamic therapy,PDT)效应,筛选光动力活性和安全性较好的竹红菌素衍生物.方法 (1)杀伤效应.将0.94 nmol/ml的5种新型竹红菌素衍生物和HB分别与A549细胞孵育4h后,分别以波长630和532 nm激光照射,功率密度20 mW/cm2,照射时间1000s,能量密度20 J/cm2,照光后继续避光孵育24 h后采用MTT法测定细胞存活率.(2)安全系数.分别以波长532和630nm激光照射,以血卟啉(hematoporph-yrin derivative,HpD)为对照光敏剂,研究17-4-amino-1-butane-sulfonic acid-hypocrellin B(4SB)对A549细胞的光动力效应及和暗毒性,并比较安全系数(暗毒性IC50/光毒性IC50).结果 (1)杀伤效应.五种竹红菌素衍生物中,4SB在630和532 nm激光照射下对A549的光动力杀伤作用强于其它衍生物,接近HB.(2)安全系数.波长532 nm激光照射,4SB的光毒性分别为103.86和84.16 ng/ml是HpD 960.14 ng/ml的10.53和11.4倍,但前两者之间差异无显著意义(P>0.05);波长630 nm激光照射下,4SB光毒性的IC50为50.7 ng/ml,HpDIC50为1 069.88 ng/ml,暗毒性HpD、4SB分别为7.84、21.93μg/ml,安全系数4SB(432.5)>HpD(7.3).HpD在532和630 nm两波长下的光毒性IC50差异无显著意义(P>0.05),而4SB在532和630hm两波长下的光毒性差异有显著意义(P<0.05).结论 5种衍生物可能成为有价值的光敏剂,值得进一步深入研究.%Objective To study the photodynamic activity of five new hypocrellins derivatives in human lung cancer A549 cells line,filtrate these hypocrellin derivatives,discuss their metabolism and transport in vivo,and study the combination of hypocrellin derivative molecule with HSA for the sake of driving photosensitive drug development.Methods (1) Spectral properties of hypocrellin

  10. Umbelliprenin is cytotoxic against QU-DB large cell lung cancer cell line but anti-proliferative against A549 adenocarcinoma cells

    Khaghanzadeh Narges

    2012-10-01

    Full Text Available Abstract Background Umbelliprenin is a natural compound, belonging to the class of sesquiterpene coumarins. Recently, umbelliprenin has attracted the researchers' attention for its antitumor activities against skin tumors. Its effect on lung cancer is largely unknown. The aim of our study was to investigate the effects of this natural compound, which is expected to have low adverse effects, on lung cancer. Methods The QU-DB large cell and A549 adenocarcinoma lung cancer cell lines were treated with umbelliprenin. IC50 values were estimated using methyl thiazolely diphenyl-tetrazolium bromide (MTT assay, in which a decrease in MTT reduction can occur as a result of cell death or cell proliferation inhibition. To quantify the rate of cell death at IC50 values, flow cytometry using Annexin V-FITC (for apoptotic cells, and propidium iodide (for necrotic cells dyes were employed. Results Data from three independent MTT experiments in triplicate revealed that IC50 values for QU-DB and A549 were 47 ± 5.3 μM and 52 ± 1.97 μM, respectively. Annexin V/PI staining demonstrated that umbelliprenin treatment at IC50 induced 50% cell death in QU-DB cells, but produced no significant death in A549 cells until increasing the umbelliprenin concentration to IC80. The pattern of cell death was predominantly apoptosis in both cell lines. When peripheral blood mononuclear cells were treated with 50 μM and less concentrations of umbelliprenin, no suppressive effect was observed. Conclusions We found cytotoxic/anti-proliferative effects of umbelliprenin against two different types of lung cancer cell lines.

  11. Umbelliprenin is Cytotoxic against QU-DB Large Cell Lung Cancer Cell Line but Anti-Proliferative against A549 Adenocarcinoma Cells

    Abbas Ghaderi

    2012-10-01

    Full Text Available Background:Umbelliprenin is a natural compound, belonging to the class of sesquiterpene coumarins.Recently, umbelliprenin has attracted the researchers' attention for its antitumor activitiesagainst skin tumors. Its effect on lung cancer is largely unknown. The aim of our study was to investigate the effects of this natural compound, which is expected to have low adverse effects, on lung cancer.Methods:The QU-DB large cell and A549 adenocarcinoma lung cancer cell lines were treated with umbelliprenin. IC50 values were estimated using methyl thiazolely diphenyl-tetrazolium bromide (MTT assay, in which a decrease in MTT reduction can occur as a result of cell death or cell proliferation inhibition. To quantify the rate of cell death at IC50 values, flow cytometry using Annexin V-FITC (for apoptotic cells, and propidium iodide (for necrotic cells dyes were employed.Results:Data from three independent MTT experiments in triplicate revealed that IC50 values for QUDB and A549 were 47 ± 5.3 μM and 52 ± 1.97 μM, respectively. Annexin V/PI staining demonstrated that umbelliprenin treatment at IC50 induced 50% cell death in QU-DB cells,but produced no significant death in A549 cells until increasing the umbelliprenin concentration to IC80. The pattern of cell death was predominantly apoptosis in both cell lines. When peripheral blood mononuclear cells were treated with 50 μM and lessconcentrations of umbelliprenin, no suppressive effect was observed.Conclusions:We found cytotoxic/anti-proliferative effects of umbelliprenin against two different types of lung cancer cell lines.

  12. Reversal of multidrug resistance by cisplatin-loaded magnetic Fe3O4 nanoparticles in A549/DDP lung cancer cells in vitro and in vivo.

    Li, Ke; Chen, Baoan; Xu, Lin; Feng, Jifeng; Xia, Guohua; Cheng, Jian; Wang, Jun; Gao, Feng; Wang, Xuemei

    2013-01-01

    The purpose of this study was to explore whether magnetic Fe(3)O(4) nanoparticles (Fe(3)O(4)-MNP) loaded with cisplatin (Fe(3)O(4)-MNP-DDP) can reverse DDP resistance in lung cancer cells and to investigate mechanisms of multidrug resistance in vitro and in vivo. MTT assay showed that DDP inhibited both A549 cells and DDP-resistant A549 cells in a time-dependent and dose-dependent manner, and that this inhibition was enhanced by Fe(3)O(4)-MNP. An increased rate of apoptosis was detected in the Fe(3)O(4)-MNP-DDP group compared with a control group and the Fe(3)O(4)-MNP group by flow cytometry, and typical morphologic features of apoptosis were confirmed by confocal microscopy. Accumulation of intracellular DDP in the Fe(3)O(4)-MNP-DDP group was greater than that in the DDP group by inductively coupled plasma mass spectrometry. Further, lower levels of multidrug resistance-associated protein-1, lung resistance-related protein, Akt, and Bad, and higher levels of caspase-3 genes and proteins, were demonstrated by reverse transcriptase polymerase chain reaction and Western blotting in the presence of Fe(3)O(4)-MNP-DDP. We also demonstrated that Fe(3)O(4)-MNP enhanced the effect of DDP on tumor growth in BALB/c nude mice bearing DDP-resistant human A549 xenografts by decreasing localization of lung resistance-related protein and Ki-67 immunoreactivity in cells. There were no apparent signs of toxicity in the animals. Overall, these findings suggest potential clinical application of Fe(3)O(4)-MNP-DDP to increase cytotoxicity in lung tumor xenografts.

  13. Expression of inducible nitric oxide in human lung epithelial cells.

    Robbins, R A; Barnes, P J; Springall, D R; Warren, J B; Kwon, O J; Buttery, L D; Wilson, A J; Geller, D A; Polak, J M

    1994-08-30

    Nitric oxide (NO) is increased in the exhaled air of subjects with several airway disorders. To determine if cytokines could stimulate epithelial cells accounting for the increased NO, the capacity of the proinflammatory cytokines (cytomix: tumor necrosis factor-alpha, interleukin-1 beta, and interferon-gamma) to increase inducible nitric oxide synthase (iNOS) was investigated in A549 and primary cultures of human bronchial epithelial cells. Cytomix induced a time-dependent increase in nitrite levels in culture supernatant fluids (p < 0.05). Increased numbers of cells stained for iNOS and increased iNOS mRNA was detected in the cytokine-stimulated cells compared to control (p < 0.05). Dexamethasone diminished the cytokine-induced increase in nitrite, iNOS by immunocytochemistry, and iNOS mRNA. These data demonstrate that cytokines, such as those released by mononuclear cells, can induce lung epithelial iNOS expression and NO release, and that this is attenuated by dexamethasone.

  14. Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells.

    Amin, Shayista; Thywissen, Andreas; Heinekamp, Thorsten; Saluz, Hans Peter; Brakhage, Axel A

    2014-07-01

    Aspergillus fumigatus is the most important air-borne pathogenic fungus of humans. Upon inhalation of conidia, the fungus makes close contact with lung epithelial cells, which only possess low phagocytic activity. These cells are in particular interesting to address the question whether there is some form of persistence of conidia of A. fumigatus in the human host. Therefore, by also using uracil-auxotrophic mutant strains, we were able to investigate the interaction of A549 lung epithelial cells and A. fumigatus conidia in detail for long periods. Interestingly, unlike professional phagocytes, our study showed that the presence of conidial dihydroxynaphthalene (DHN) melanin enhanced the uptake of A. fumigatus conidia by epithelial cells when compared with non-pigmented pksP mutant conidia. Furthermore, conidia of A. fumigatus were able to survive within epithelial cells. This was due to the presence of DHN melanin in the cell wall of conidia, because melanised wild-type conidia showed a higher survival rate inside epithelial cells and led to inhibition of acidification of phagolysosomes. Both effects were not observed for white (non-melanised) conidia of the pksP mutant strain. Moreover, in contrast to pksP mutant conidia, melanised wild-type conidia were able to inhibit the extrinsic apoptotic pathway in A549 lung epithelial cells even for longer periods. The anti-apoptotic effect was not restricted to conidia, because both conidia-derived melanin ghosts (cell-free DHN melanin) and a different type of melanin, dihydroxyphenylalanine (DOPA) melanin, acted anti-apoptotically. Taken together, these data indicate the possibility of melanin-dependent persistence of conidia in lung epithelial cells.

  15. Alveolar epithelial cells (A549) exposed at the air-liquid interface to diesel exhaust: First study in TNO's powertrain test center

    Kooter, I.M.; Alblas, M.J.; Jedynska, A.D.; Steenhof, M.; Houtzager, M.M.G.; Ras, M.G. van

    2013-01-01

    Air–liquid interface (ALI) exposures enable in vitro testing ofmixtures of gases and particles such as diesel exhaust (DE). The main objective of this study was to investigate the feasibility of exposing human lung epithelial cells at the ALI to complete DE generated by a heavy-duty truck in the sta

  16. Study of the Effects of Betaine and/or C-Phycocyanin on the Growth of Lung Cancer A549 Cells In Vitro and In Vivo

    Rea Bingula

    2016-01-01

    Full Text Available We investigated the effects of betaine, C-phycocyanin (C-PC, and their combined use on the growth of A549 lung cancer both in vitro and in vivo. When cells were coincubated with betaine and C-PC, an up to 60% decrease in viability was observed which is significant compared to betaine (50% or C-PC treatment alone (no decrease. Combined treatment reduced the stimulation of NF-κB expression by TNF-α and increased the amount of the proapoptotic p38 MAPK. Interestingly, combined treatment induced a cell cycle arrest in G2/M phase for ~60% of cells. In vivo studies were performed in pathogen-free male nude rats injected with A549 cells in their right flank. Their daily food was supplemented with either betaine, C-PC, both, or neither. Compared to the control group, tumour weights and volumes were significantly reduced in either betaine- or C-PC-treated groups and no additional decrease was obtained with the combined treatment. This data indicates that C-PC and betaine alone may efficiently inhibit tumour growth in rats. The synergistic activity of betaine and C-PC on A549 cells growth observed in vitro remains to be further confirmed in vivo. The reason behind the nature of their interaction is yet to be sought.

  17. Digoxin Downregulates NDRG1 and VEGF through the Inhibition of HIF-1α under Hypoxic Conditions in Human Lung Adenocarcinoma A549 Cells

    Dong Wei

    2013-04-01

    Full Text Available Digoxin, an inhibitor of Na+/K+ ATPase, has been used in the treatment of heart-related diseases (such as congestive heart failure and atrial arrhythmia for decades. Recently, it was reported that digoxin is also an effective HIF-1α inhibitor. We investigated whether digoxin could suppress tumor cell growth through HIF-1α in non-small cell lung cancer cells (A549 cells under hypoxic conditions. An MTT assay was used to measure cell viability. RT-PCR and western blotting were performed to analyze the mRNA and protein expression of VEGF, NDRG1, and HIF-1α. HIF-1α nuclear translocation was then determined by EMSA. Digoxin was found to inhibit the proliferation of A549 cells under hypoxic conditions. Our results showed that hypoxia led to the upregulation of VEGF, NDRG1, and HIF-1α both at the mRNA and protein levels. We also found that the hypoxia-induced overexpression of VEGF, NDRG1, and HIF-1α was suppressed by digoxin in a concentration-dependent manner. As expected, our EMSA results demonstrated that under hypoxic conditions HIF-1α nuclear translocation was also markedly reduced by digoxin in a concentration-dependent manner. Our results suggest that digoxin downregulated hypoxia-induced overexpression of VEGF and NDRG1 at the transcriptional level probably through the inhibition of HIF-1α synthesis in A549 cells.

  18. Green tea catechin, epigallocatechin-3-gallate, attenuates the cell viability of human non-small-cell lung cancer A549 cells via reducing Bcl-xL expression.

    Sonoda, Jun-Ichiro; Ikeda, Ryuji; Baba, Yasutaka; Narumi, Keiko; Kawachi, Akio; Tomishige, Erisa; Nishihara, Kazuya; Takeda, Yasuo; Yamada, Katsushi; Sato, Keizo; Motoya, Toshiro

    2014-07-01

    Clinical and epidemiological studies have indicated that the consumption of green tea has a number of beneficial effects on health. Epigallocatechin-3-gallate (EGCg), the major polyphenolic compound present in green tea, has received much attention as an active ingredient. Among the numerous promising profiles of EGCg, the present study focused on the anticancer effects. Apoptosis induced by EGCg and subsequent cell growth suppression have been demonstrated in a number of cell culture studies. However, the underlying mechanism of apoptotic cell death remains unclear. Thus, the aim of the present study was to identify the major molecule that mediates proapoptotic cell death by EGCg. The effect of EGCg on cell proliferation and the induction of mRNA that modulates apoptotic cell death was evaluated in the A549 human non-small-cell lung cancer cell line. In addition, morphological changes were assessed by microscopy in A549 cells that had been treated with 100 μM EGCg for 24 h. The MTT assay revealed that cell proliferation was significantly reduced by EGCg in a dose-dependent manner (3-100 μM). The mRNA expression level of B-cell lymphoma-extra large (Bcl-xL) was decreased in A549 cells following 24 h incubation with 100 μM EGCg. Therefore, the results indicated that the inhibition of cell proliferation by EGCg may be achieved via suppressing the expression of the cell death-inhibiting gene, Bcl-xL.

  19. Identification of epigallocatechin-3-gallate in green tea polyphenols as a potent inducer of p53-dependent apoptosis in the human lung cancer cell line A549.

    Yamauchi, Rieko; Sasaki, Kaori; Yoshida, Kenichi

    2009-08-01

    The effects of green tea polyphenols on cultured cancer cells have been well characterized, especially the effects of epigallocatechin-3-gallate (EGCg), since EGCg suppresses oncogenic signaling pathways and induces cell cycle arrest or apoptosis by regulating cell cycle-associated proteins. In the present study, we attempted to identify signaling pathways or target molecules regulated by each of or a mixture of green tea polyphenols, including epicatechin (EC), epicatechin-3-gallate (ECg), epigallocatechin (EGC), and EGCg, in the human lung cancer cell line A549. ECg, EGC, and a catechin mixture, in addition to EGCg, significantly decreased cell viability. In contrast, caspase 3/7 activity, an apoptosis indicator, was specifically induced by EGCg. By conducting a series of luciferase-based reporter assays, we revealed that the catechin mixture only up-regulates the p53 reporter. EGCg was a more potent inducer of p53-dependent transcription, and this induction was further supported by the induced level of p53 protein. RNA interference (RNAi)-mediated p53 knockdown completely abolished EGCg-induced apoptosis. Finally, a proteome and western blot analysis using approximately 70 different antibodies failed to detect up-regulated proteins in catechin mixture-treated A549 cells. Taken together, these results indicate that EGCg, among several green tea polyphenols, is a potent apoptosis inducer that functions exclusively through a p53-dependent pathway in A549 cells.

  20. The role of reactive oxygen species (ROS) production on diallyl disulfide (DADS) induced apoptosis and cell cycle arrest in human A549 lung carcinoma cells

    Wu Xinjiang [Institute of Indoor and Environmental Toxicology, Faculty of Medicine, Justus-Liebig-University of Giessen, Aulweg 123, D-35385 Giessen (Germany); Kassie, Fekadu [Institute of Indoor and Environmental Toxicology, Faculty of Medicine, Justus-Liebig-University of Giessen, Aulweg 123, D-35385 Giessen (Germany); Mersch-Sundermann, Volker [Institute of Indoor and Environmental Toxicology, Faculty of Medicine, Justus-Liebig-University of Giessen, Aulweg 123, D-35385 Giessen (Germany)]. E-mail: Volker.mersch-sundermann@uniklinikum-giessen.de

    2005-11-11

    Diallyl disulfide (DADS), an oil soluble constituent of garlic (Allium sativum), has been reported to cause antimutagentic and anticarcinogenic effects in vitro and in vivo by modulating phases I and II enzyme activities. In recent years, several studies suggested that the chemopreventive effects of DADS can also be attributed to induction of cell cycle arrest and apoptosis in cancer cells. In the present study, we reported that DADS-induced cell cycle arrest at G2/M and apoptosis in human A549 lung cancer cells in a time- and dose-dependent manner. Additionally, a significant increase of intracellular reactive oxygen species (ROS) was induced in A549 cells less than 0.5 h after DADS treatment, indicating that ROS may be an early event in DADS-modulated apoptosis. Treatment of A549 cells with N-acetyl cysteine (NAC) completely abrogated DADS-induced cell cycle arrest and apoptosis. The result indicated that oxidative stress modulates cell proliferation and cell death induced by DADS.

  1. Epithelial Cell Apoptosis and Lung Remodeling

    Kazuyoshi Kuwano

    2007-01-01

    Lung epithelium is the primary site of lung damage in various lung diseases. Epithelial cell apoptosis has been considered to be initial event in various lung diseases. Apoptosis signaling is classically composed of two principle pathways. One is a direct pathway from death receptor ligation to caspase cascade activation and cell death. The other pathway triggered by stresses such as drugs, radiation, infectious agents and reactive oxygen species is mediated by mitochondria. Endoplasmic reticulum has also been shown to be the organelle to mediate apoptosis.Epithelial cell death is followed by remodeling processes, which consist of epithelial and fibroblast activation,cytokine production, activation of coagulation pathway, neoangiogenesis, re-epithelialization and fibrosis.Epithelial and mesenchymal interaction plays important roles in these processes. Further understanding of apoptosis signaling and its regulation by novel strategies may lead to effective treatments against various lung diseases. We review the recent advances in the understanding of apoptosis signaling and discuss the involvement of apoptosis in lung remodeling.

  2. PI3K Mediates the Effect of Resolvin D1 on the Protein Expression of Epithelial Sodium Channel in A549 Cells Treated with Lipopolysaccharide%PI3K介导消退素D1上调脂多糖刺激的A549细胞钠离子通道

    杨艺; 程杨; 金胜威; 高防

    2013-01-01

    目的 研究促炎症消退介质消退素D1(resolvin D1,RvD1)对脂多糖(lipopolysaccharide,LPS)刺激的肺泡上皮A549细胞钠离子通道α亚基(epithelial sodium channel α-subunit,α-ENaC)和γ亚基(epithelial sodium channel-γ-subunit,γ-ENaC)蛋白表达的影响并探讨其机制.方法 不同时间点和不同剂量的LPS刺激A549细胞建立LPS刺激A549细胞模型.将A549细胞分为:空白对照组;LPS(1μg/ml)组;LPS+RvD1(100nmol/L)组;LPS+LY294002(10μmol/L)组.用Western blot检测A549细胞中α-ENaC和γ-ENaC蛋白表达及磷酸化的磷脂酰肌醇-3-激酶(PI3K)水平.结果 LPS下调A549细胞α-ENaC和γ-ENaC蛋白表达,消退素D1抑制LPS对ENaC的下调作用,抑制LPS刺激的磷酸化PI3K.结论 消退素D1通过下调磷酸化PI3K,抑制LPS对A549细胞α-ENaC和γ-ENaC蛋白表达的下调作用.%Objective To study the effect of resolvin D1 (RvD1) on the protein expression of epithelial sodium channel αt-subunit (αt-ENaC) and epithelial sodium channel γ-subunit (γ-ENaC) in A549 cells treated with lipopolysaccharide (LPS),and to explore the molecular mechanisms of signal pathway in RvD1 actions.Methods To establish the model of LPS-induced injury,A549 cells were treated with different concentrations of LPS and simulated by LPS at different time points.A549 cells were divided into four groups:control group; LPS (LPS,1μg/ml) group; LPS +RvD1 (100nmol/L) group and LPS + LY294002 (10μmoL/L) group.Protein expression of ENaC and phosphorylation of phosphoinositide 3-kinase (PI3K) were detected by western blot.Results Protein expression of α-ENaC and γ-ENaC was found to be markedly decreased in the LPS group as compared with control group.This decrease was significantly reduced by RvD1 and LY294002.RvD1 inhibited phosphorylation of PI3K induced by LPS.Conclusion RvD1 increases the protein expression of α-ENaC and γ-ENaC stimulated by LPS via PI3 K pathway in A549 cells.

  3. 肺腺癌A549细胞葡萄糖代谢与紫杉醇耐药的关系%Glucose metabolism of lung adenocarcinoma A549 cells and its correlation with taxol-resistance

    赵士艳; 周翔; 李佳津; 黄钢

    2013-01-01

    目的:探讨人肺腺癌细胞株A549及其紫杉醇耐药细胞株A549/taxol之间葡萄糖代谢的差异,以及二氯乙酸盐(dichloroacetate,DCA)对这2种细胞葡萄糖代谢的影响.方法:首先采用CCK-8法检测A549A549/taxol细胞对紫杉醇的耐药性.再用液体闪烁仪检测A549A549/taxol细胞摄取14C-葡萄糖后CO2的产生和脂质的生成情况.另外,分别用γ计数器和乳酸测定试剂盒检测18氟-2-脱氧-β-D-葡萄糖(18F-2-deoxy-β-D-glucose,18F-FDG)摄取和乳酸产生情况.结果:A549/taxol细胞摄取6-14C-葡萄糖后CO2释放量、18F-FDG摄取率和乳酸生成量均低于A549细胞.A549细胞经DCA处理后6-14C-葡萄糖释放的CO2水平升高,而A549/taxol细胞经DCA处理后6-14C-葡萄糖释放的CO2量无变化.结论:A549/taxol细胞有一定的线粒体氧化呼吸抑制作用.DCA能促进A549细胞线粒体的氧化呼吸作用,而对其耐药株A549/taxol细胞的氧化呼吸作用不大.

  4. Antiproliferative and antimetastatic action of quercetin on A549 non-small cell lung cancer cells through its effect on the cytoskeleton.

    Klimaszewska-Wiśniewska, Anna; Hałas-Wiśniewska, Marta; Izdebska, Magdalena; Gagat, Maciej; Grzanka, Alina; Grzanka, Dariusz

    2017-03-01

    To our knowledge, this study is the first to investigate the effect of the dietary flavonoid quercetin on the main cytoskeletal elements, namely microfilaments, microtubules and vimentin intermediate filaments, as well as cytoskeleton-driven processes in A549 non-small cell lung cancer cells. The methyl-thiazol-diphenyl-tetrazolium assay, annexin V/propidium iodide test, electron microscopic examination, cell cycle analysis based on DNA content, real-time PCR assays, in vitro scratch wound-healing assay, fluorescence staining of F-actin, β-tubulin and vimentin were performed to assess the effects of quercetin on A549 cells. Our results showed that quercetin triggered BCL2/BAX-mediated apoptosis, as well as necrosis and mitotic catastrophe, and inhibited the migratory potential of A549 cells. The disassembling effect of quercetin on microfilaments, microtubules and vimentin filaments along with its inhibitory impact on vimentin and N-cadherin expression might account for the decreased migration of A549 cells in response to quercetin treatment. We also suggest that the possible mechanism underlying quercetin-induced mitotic catastrophe involves the perturbation of mitotic microtubules leading to monopolar spindle formation, and, consequently, to the failure of cytokinesis. We further propose that cytokinesis failure could also be a result of the depletion of actin filaments by quercetin. These findings are important to our further understanding of the detailed mechanism of the antitumor activity of quercetin and render this flavonoid a potentially useful candidate for combination therapy with conventional antimicrotubule drugs, nucleic acid-directed agents or novel cytoskeletal-directed agents.

  5. Synergistic induction of apoptosis by sulindac and simvastatin in A549 human lung cancer cells via reactive oxygen species-dependent mitochondrial dysfunction.

    Hwang, Ki-Eun; Park, Chul; Kwon, Su-Jin; Kim, Young-Suk; Park, Do-Sim; Lee, Mi-Kyung; Kim, Byoung-Ryun; Park, Seong-Hoon; Yoon, Kwon-Ha; Jeong, Eun-Taik; Kim, Hak-Ryul

    2013-07-01

    Prevention of lung cancer is more feasible and holds greater promise when different agents are used in combination to target multiple processes during carcinogenesis. The mechanisms by which non-steroidal anti-inflammatory drugs and statins inhibit cancer cell growth and induce apoptosis are not fully understood. This study was designed to investigate lung cancer chemoprevention through a mechanism-based approach using sulindac at low doses in combination with simvastatin. We found that sulindac-induced cytotoxicity was significantly enhanced in the presence of simvastatin. The combination of sulindac and simvastatin induced more extensive caspase-dependent apoptosis in A549 cells compared to that induced with either drug alone. The combination of sulindac and simvastatin also increased the loss of mitochondrial transmembrane potential (∆Ψm) and the cytosolic release of cytochrome c. In addition, ROS generation in cells treated with both sulindac and simvastatin was markedly increased compared to cells treated with either sulindac or simvastatin alone. The enhancement of ROS generation by sulindac and simvastatin was abrogated by pretreatment with NAC, which also prevented apoptosis and mitochondrial dysfunction induced by sulindac and simvastatin. These results suggest that sulindac and simvastatin-induced ROS generation in A549 lung cancer cells causes their accumulation in mitochondria, triggering the release of apoptogenic molecules from the mitochondria to the cytosol, and thus leading to caspase activation and cell death.

  6. New geranylated flavanones from the fruits of Paulownia catalpifolia Gong Tong with their anti-proliferative activity on lung cancer cells A549.

    Gao, Tian-yang; Jin, Xing; Tang, Wen-zhao; Wang, Xiao-jing; Zhao, Yun-xue

    2015-09-01

    Three new geranylated flavanones, named as paucatalinone A (1), B (2), and isopaucatalinone B (3), were isolated from the fruits of Paulownia catalpifolia Gong Tong (Scrophulariaceae). Their structures were well determined by means of IR, MS, 1D and 2D NMR, and CD techniques. Paucatalinone A (1) is the first sample as a dimeric geranylated flavanone derivative isolated from natural products. Paucatalinone A (1) displayed good antiproliferative effects on human lung cancer cells A549 and resulted in a clear increase of the percentage of cells in G1 phase and a decrease in the percentage of cells in S and G2/M phases in comparison with control cells.

  7. Reversal of multidrug resistance by cisplatin-loaded magnetic Fe3O4 nanoparticles in A549/DDP lung cancer cells in vitro and in vivo

    Li K

    2013-05-01

    Full Text Available Ke Li,1 Baoan Chen,1,2 Lin Xu,3 Jifeng Feng,3 Guohua Xia,1,2 Jian Cheng,1,2 Jun Wang,1,2 Feng Gao,1,2 Xuemei Wang,41Department of Hematology, Key Medical Disciplines of Jiangsu Province, Zhongda Hospital, Medical School, Southeast University, Nanjing, 2Faculty of Oncology, Medical School, Southeast University, Nanjing, 3Department of Thoracic Surgery, Jiangsu Province Cancer Hospital, Jiangsu Province, 4State Key Laboratory of Bioelectronics, Southeast University, Nanjing, People’s Republic of ChinaAbstract: The purpose of this study was to explore whether magnetic Fe3O4 nanoparticles (Fe3O4-MNP loaded with cisplatin (Fe3O4-MNP-DDP can reverse DDP resistance in lung cancer cells and to investigate mechanisms of multidrug resistance in vitro and in vivo. MTT assay showed that DDP inhibited both A549 cells and DDP-resistant A549 cells in a time-dependent and dose-dependent manner, and that this inhibition was enhanced by Fe3O4-MNP. An increased rate of apoptosis was detected in the Fe3O4-MNP-DDP group compared with a control group and the Fe3O4-MNP group by flow cytometry, and typical morphologic features of apoptosis were confirmed by confocal microscopy. Accumulation of intracellular DDP in the Fe3O4-MNP-DDP group was greater than that in the DDP group by inductively coupled plasma mass spectrometry. Further, lower levels of multidrug resistance-associated protein-1, lung resistance-related protein, Akt, and Bad, and higher levels of caspase-3 genes and proteins, were demonstrated by reverse transcriptase polymerase chain reaction and Western blotting in the presence of Fe3O4-MNP-DDP. We also demonstrated that Fe3O4-MNP enhanced the effect of DDP on tumor growth in BALB/c nude mice bearing DDP-resistant human A549 xenografts by decreasing localization of lung resistance-related protein and Ki-67 immunoreactivity in cells. There were no apparent signs of toxicity in the animals. Overall, these findings suggest potential clinical application of

  8. Apoptotic induction of lung adenocarcinoma A549 cells infected by recombinant RVG Newcastle disease virus (rL-RVG) in vitro.

    Yan, Yulan; Liang, Bing; Zhang, Jin; Liu, Yang; Bu, Xuefeng

    2015-01-01

    Newcastle disease virus (NDV) is a member of the genus Avulavirus in the Paramyxoviridae family and its antitumor properties depend on its ability to kill malignant cells while not affecting normal cells. The present study investigated a recombinant avirulent NDV LaSota strain (wild-type NDV strain) expressing the rabies virus glycoprotein (rL-RVG), examined its oncolytic effect on the lung adenocarcinoma A549 cell line and evaluated its potential to serve as a vaccine against lung cancer. A549 cells were infected with the rL-RVG virus and analyzed by MTT, western blot, polymerase chain reaction (PCR), immunofluorescence, terminal deoxynucleotidyl transferase dUTP nick end labeling and flow-cytometric analyses. PCR, western blot and immunofluorescence showed that the RVG gene and protein were stably expressed in A549 cells following infection with rL-RVG. The growth of A549 cells in the rL-RVG group was inhibited more effectively compared to those infected with the wild-type NDV strain. MTT results showed that cell growth inhibition rates in the rL-RVG group were significantly higher than those in the NDV group (PrL-RVG group was also more evident, with the apoptotic index being increased in rL-RVG group. The expression of the pro-apoptotic proteins caspase-3, -8 and -9 increased. The expression of caspase-3 decreased following application of the broad-specificity caspase inhibitor Z-VAD-FMK. However, the expression of the inhibitory apoptosis protein B-cell lymphoma 2 (bcl-2) did not change, but bcl-2-associated X/bcl-2 ratio was higher in the rL-RVG group than that in the NDV group. The rL-RVG strain was able to suppress lung cancer cell growth and promote lung cancer cell apoptosis to a greater extent than the wild-type NDV strain. Therefore, the rL-RVG strain is a potent antitumor agent.

  9. Matrine Attenuates COX-2 and ICAM-1 Expressions in Human Lung Epithelial Cells and Prevents Acute Lung Injury in LPS-Induced Mice

    Chian-Jiun Liou

    2016-01-01

    Full Text Available Matrine is isolated from Sophora flavescens and shows anti-inflammatory effects in macrophages. Here we evaluated matrine’s suppressive effects on cyclooxygenase 2 (COX-2 and intercellular adhesion molecule-1 (ICAM-1 expressions in lipopolysaccharide- (LPS- stimulated human lung epithelial A549 cells. Additionally, BALB/c mice were given various matrine doses by intraperitoneal injection, and then lung injury was induced via intratracheal instillation of LPS. In LPS-stimulated A549 cells, matrine inhibited the productions of interleukin-8 (IL-8, monocyte chemotactic protein-1, and IL-6 and decreased COX-2 expression. Matrine treatment also decreased ICAM-1 protein expression and suppressed the adhesion of neutrophil-like cells to inflammatory A549 cells. In vitro results demonstrated that matrine significantly inhibited mitogen-activated protein kinase phosphorylation and decreased nuclear transcription factor kappa-B subunit p65 protein translocation into the nucleus. In vivo data indicated that matrine significantly inhibited neutrophil infiltration and suppressed productions of tumor necrosis factor-α and IL-6 in mouse bronchoalveolar lavage fluid and serum. Analysis of lung tissue showed that matrine decreased the gene expression of proinflammatory cytokines, chemokines, COX-2, and ICAM-1. Our findings suggest that matrine improved lung injury in mice and decreased the inflammatory response in human lung epithelial cells.

  10. Matrine Attenuates COX-2 and ICAM-1 Expressions in Human Lung Epithelial Cells and Prevents Acute Lung Injury in LPS-Induced Mice.

    Liou, Chian-Jiun; Lai, You-Rong; Chen, Ya-Ling; Chang, Yi-Hsien; Li, Zih-Ying; Huang, Wen-Chung

    2016-01-01

    Matrine is isolated from Sophora flavescens and shows anti-inflammatory effects in macrophages. Here we evaluated matrine's suppressive effects on cyclooxygenase 2 (COX-2) and intercellular adhesion molecule-1 (ICAM-1) expressions in lipopolysaccharide- (LPS-) stimulated human lung epithelial A549 cells. Additionally, BALB/c mice were given various matrine doses by intraperitoneal injection, and then lung injury was induced via intratracheal instillation of LPS. In LPS-stimulated A549 cells, matrine inhibited the productions of interleukin-8 (IL-8), monocyte chemotactic protein-1, and IL-6 and decreased COX-2 expression. Matrine treatment also decreased ICAM-1 protein expression and suppressed the adhesion of neutrophil-like cells to inflammatory A549 cells. In vitro results demonstrated that matrine significantly inhibited mitogen-activated protein kinase phosphorylation and decreased nuclear transcription factor kappa-B subunit p65 protein translocation into the nucleus. In vivo data indicated that matrine significantly inhibited neutrophil infiltration and suppressed productions of tumor necrosis factor-α and IL-6 in mouse bronchoalveolar lavage fluid and serum. Analysis of lung tissue showed that matrine decreased the gene expression of proinflammatory cytokines, chemokines, COX-2, and ICAM-1. Our findings suggest that matrine improved lung injury in mice and decreased the inflammatory response in human lung epithelial cells.

  11. Effects of resveratrol on cell cycle regulatory processes of human lung adenocarcinoma A549 cells and its mechanism%白藜芦醇对人肺腺癌A549细胞周期的影响及其机制研究

    陈加顺; 吕俊明; 束永前

    2011-01-01

    目的 研究白藜芦醇对人肺腺癌A549细胞周期的影响,并探讨其分子机制.方法 MTT法检测白藜芦醇对人肺腺癌A549细胞增殖的影响;PI单标流式细胞术检测白藜芦醇对A549细胞周期分布的影响;Western blotting法检测白藜芦醇对A549细胞cyclin D1和p21cip1蛋白表达的影响.结果 MTT法检测显示,白藜芦醇能明显抑制人肺腺癌A549细胞的增殖,其抑制作用呈时效和量效关系,100μmol/L白藜芦醇在作用48h时抑制率最高,为(76.54±1.33)%.流式细胞术检测提示不同浓度白藜芦醇作用24h细胞周期发生改变,G0/G1期细胞比例明显增加(P<0.01),且呈剂量依赖关系.Western blotting法检测显示,白藜芦醇以时间依赖方式下调周期蛋白cyclin D1的表达,上调p21cip1蛋白表达.结论 白藜芦醇能明显抑制人肺腺癌A549细胞的增殖.白藜芦醇可通过调节细胞周期蛋白cyclin D1、p21cip1的表达调控细胞周期进程,抑制细胞增殖.%Objective To investigate the anti-cancer activities of resveratrol on human lung adenocarcinoma A549 cells and its molecular mechanism involved. Methods The effects of resveratrol on the growth of human lung carcinoma A549 cell lines were studied by MTT assay. The effect of resveratrol on the cell cycle phase distribution of A549 cells was analyzed using flow cytometry by a propidium iodide method. The effect of resveratrol on the expression of cyclin D1 and p21cipl protein was studied by Western blotting analysis. Results MTT assay showed that resveratrol could significantly inhibit the growth of human lung adenocarcinoma A549 cells.It inhibited the proliferation of A549 cells in a time and dose dependent manner, and the highest inhibitory rate was ( 76. 54 ± 1.33 ) %at the concentration of 100μmol/L when cells were cultured for 48h. Meanwhile, different concentrations of resveratrol treated A549 cells for 24h resulted in an increase of G0/G1 phase cells (P < 0. 01 ). The expression of

  12. CCL21/CCR7轴促进人肺癌A549细胞的趋化与侵袭%CCL21/CCR7 axis promotes chemotaxis and invasion of human lung adenocarcinoma A549 cells

    郭学光; 陈正堂

    2007-01-01

    目的:研究CCL21/CCR7轴对肺癌A549细胞定向趋化与侵袭活性的影响.方法:RT-PCR法从临床肺腺癌标本中扩增出CCR7编码区序列,定向克隆至载体pEGFP-N1中,稳定转染A549细胞,Boyden小室法检测转染前后A549细胞对CCL21的趋化和侵袭活性的改变.结果:CCL21作用下多聚碳酸酯膜背面的转染后A549细胞数明显多于转染前的A549细胞数.结论:CCL21/CCR7轴能够促进A549细胞的趋化与侵袭,其可能参与了肺癌淋巴结转移的过程.进一步研究CCL21/CCR7在肺癌中的作用将有助于阐明肺癌淋巴结转移的机制.

  13. Induction of Apoptotic Effects of Antiproliferative Protein from the Seeds of Borreria hispida on Lung Cancer (A549 and Cervical Cancer (HeLa Cell Lines

    S. Rupachandra

    2014-01-01

    Full Text Available A 35 KDa protein referred to as F3 was purified from the seeds of Borreria hispida by precipitation with 80% ammonium sulphate and gel filtration on Sephadex G-100 column. RP-HPLC analysis of protein fraction (F3 on an analytical C-18 column produced a single peak, detected at 220 nm. F3 showed an apparent molecular weight of 35 KDa by SDS PAGE and MALDI-TOF-MS analyses. Peptide mass fingerprinting analysis of F3 showed the closest homology with the sequence of 1-aminocyclopropane-1-carboxylate deaminase of Pyrococcus horikoshii. The protein (F3 exhibited significant cytotoxic activity against lung (A549 and cervical (HeLa cancer cells in a dose-dependent manner at concentrations ranging from 10 µg to 1000 µg/mL, as revealed by the MTT assay. Cell cycle analysis revealed the increased growth of sub-G0 population in both cell lines exposed to a concentration of 1000 µg/mL of protein fraction F3 as examined from flow cytometry. This is the first report of a protein from the seeds of Borreria hispida with antiproliferative and apoptotic activity in lung (A549 and cervical (HeLa cancer cells.

  14. Effect of an Albumin-Coated Mesoporous Silicon Nanoparticle Platform for Paclitaxel Delivery in Human Lung Cancer Cell Line A549

    Yu Gao

    2016-01-01

    Full Text Available Albumin-coated paclitaxel-mesoporous silicon nanoparticles (APMSN were prepared to improve the anticancer effect in lung cancer by means of regulating the dissolution rate of paclitaxel (PTX. PTX was absorbed into the mesoporous structure of mesoporous silicon nanoparticles (MSN, which was defined as PMSN. PTX was proved to exist in an amorphous state in PMSN, which increased the dissolution rate of PTX. Albumin was coated on the surface of MSN to form AMSN; AMSN and PTX were mixed to form APMSN in order to achieve sustained release of PTX. Then, it was found that APMSN had more significant antiproliferate effects and induced more apoptotic proportion in comparison with PTX in A549 cells. Furthermore, the absorption mechanism of APMSN into A549 cells was investigated. Transmission electron microscopy (TEM and laser scanning confocal microscopy (LSCM showed that APMSN could cross the cell membrane and was taken into the cytoplasm quickly. Taken together, our results demonstrate that AMSN carriers have potential as nanodrug delivery systems in the treatment of lung cancer.

  15. Molecular switch role of Akt in Polygonatum odoratum lectin-induced apoptosis and autophagy in human non-small cell lung cancer A549 cells.

    Li, Chunyang; Chen, Jie; Lu, Bangmin; Shi, Zheng; Wang, Hailian; Zhang, Bin; Zhao, Kailiang; Qi, Wei; Bao, Jinku; Wang, Yi

    2014-01-01

    Polygonatum odoratum lectin (POL), isolated from traditional Chinese medicine herb (Mill.) Druce, has drawn rising attention due to its wide biological activities. In the present study, anti-tumor effects, including apoptosis- and autophagy-inducing properties of POL, were determined by a series of cell biology methods such as MTT, cellular morphology observation, flow cytometry, immunoblotting. Herein, we found that POL could simultaneously induce apoptosis and autophagy in human non-small cell lung cancer A549 cells. POL initiated apoptosis through inhibiting Akt-NF-κB pathway, while POL triggered autophagy via suppressing Akt-mTOR pathway, suggesting the molecular switch role of Akt in regulating between POL-induced apoptosis and autophagy. Moreover, ROS was involved in POL-induced inhibition of Akt expression, and might therefore mediate both apoptosis and autophagy in A549 cells. In addition, POL displayed no significant cytotoxicity toward normal human embryonic lung fibroblast HELF cells. Due to the anti-tumor activities, POL might become a potent anti-cancer drug in future therapy, which might pave the way for exploring GNA-related lectins into effective drugs in cancer treatment.

  16. Non-small-cell lung cancer cell lines A549 and NCI-H460 express hypoxanthine guanine phosphoribosyltransferase on the plasma membrane

    Townsend, Michelle H; Anderson, Michael D; Weagel, Evita G; Velazquez, Edwin J; Weber, K Scott; Robison, Richard A; O’Neill, Kim L

    2017-01-01

    In both males and females, lung cancer is one of the most lethal cancers worldwide and accounts for >30% of cancer-related deaths. Despite advances in biomarker analysis and tumor characterization, there remains a need to find suitable biomarker antigen targets for treatment in late-stage lung cancer. Previous research on the salvage pathway enzyme TK1 shows a unique relationship with cancer patients as serum levels are raised according to cancer grade. To expand this analysis, the other salvage pathway enzymes were evaluated for possible upregulation within lung cancer. Adenine phosphoribosyltransferase, deoxycytidine kinase, and hypoxanthine guanine phosphoribosyltransferase (HPRT) were assessed for their presentation on two non-small-cell lung cancer cell lines NCI-H460 and A549. In the present study, we show that deoxycytidine kinase and adenine phosphoribosyltransferase have no significant relationship with the membrane of NCI-H460 cells. However, we found significant localization of HPRT to the membrane of NCI-H460 and A549 cells. When treated with anti-HPRT antibodies, the average fluorescence of the cell population increased by 24.3% and 12.9% in NCI-H460 and A549 cells, respectively, in comparison with controls. To ensure that expression was not attributed to cytoplasmic HPRT, confocal microscopy was performed to visualize HPRT binding on the plasma membrane. After staining NCI-H460 cells treated with both fluorescent antibodies and a membrane-specific dye, we observed direct overlap between HPRT and the membrane of the cancer cells. Additionally, gold-conjugated antibodies were used to label and quantify the amount of HPRT on the cell surface using scanning electron microscopy and energy-dispersive analysis X-ray. Further confirming HPRT presence, the gold weight percentage of the sample increased significantly when NCI-H460 cells were exposed to HPRT antibody (P=0.012) in comparison with isotype controls. Our results show that HPRT is localized on the

  17. Inhibitory Effect of Cantharidin on Proliferation of A549 Cells

    WANG Xiao-hua; YIN Yuan-qin; SUI Cheng-guang; MENG Fan-dong; MA Ping; JIANG You-hong

    2007-01-01

    Objective: To study the inhibition of Cantharidin against the proliferation of human lung cancer A549 cells and its mechanism. Methods: MTT assay was employed to determine the inhibition of Cantharidin against proliferation of A549 cells and flow Cytometry was applied to analyze A549 cell cycle and the effect of Cantharidin on cell cycle. Results: Cantharidin showed inhibition against the proliferation of A549 cells, and the inhibition was mediated by blocking A549 cell cycle at G2/M phase significantly. Conclusion: Cantharidin exhibits inhibition against the proliferation of human lung cancer A549 cells.

  18. Impact of CHK2-small interfering RNA on CpG ODN7909-enhanced radiosensitivity in lung cancer A549 cells

    Chen W

    2012-12-01

    Full Text Available Wei Chen,* Xiaoqun Liu,* Tiankui Qiao, Sujuan Yuan Department of Oncology, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China*These authors contributed equally to this workObjective: To investigate the impact of checkpoint kinase 2 (CHK2-small interfering RNA (CHK2-siRNA on the enhancement of radiosensitivity by CpG oligodeoxynucleotide (ODN 7909 in lung cancer A549 cells.Methods: The A549 cells were randomly divided into five groups: control, CpG, X-ray, CpG + X-ray, and CHK2-siRNA + CpG + X-ray. Cell colonization was observed using inverted microscopy. Cell cycle and apoptosis were analyzed by flow cytometry. CHK2 expression was detected by Western blot. CHK2-siRNA was adopted to silence the expression of CHK2.Results: The level of CHK2 phosphorylation was higher in the CpG + X-ray group than in the X-ray group. Increases in G2/mitotic (M phase arrest and apoptosis and a decrease of cell survival rate in the CpG + X-ray group were statistically significant (P < 0.05 when compared with the CHK2-siRNA + CpG + X-ray group in which the expression of CHK2 was obviously inhibited. The combination of CpG ODN7909 and X-ray irradiation was found to enhance the mitotic death of A549 cells. The sensitization enhancement ratio of mean death dose (D0 was 1.42 in the CpG + X-ray group, which was higher than that of the CHK2-siRNA + CpG + X-ray group, in which D0 was 1.05.Conclusion: To a certain extent, the impact of a combination of CpG ODN7909 and X-ray on G2/M phase arrest, apoptosis, and rate of cell survival was attenuated by CHK2-siRNA in human lung adenocarcinoma A549 cells, indicating that increased phosphorylation of CHK2 might be a radiosensitive pathway.Keywords: oligodeoxynucleotide, checkpoint kinase 2, mitotic death, apoptosis, X-ray

  19. Thromboxane A2 receptor-mediated release of matrix metalloproteinase-1 (MMP-1) induces expression of monocyte chemoattractant protein-1 (MCP-1) by activation of protease-activated receptor 2 (PAR2) in A549 human lung adenocarcinoma cells.

    Li, Xiuling; Tai, Hsin-Hsiung

    2014-08-01

    Matrix metalloproteinases (MMPs) and monocyte chemoattractant protein-1 (MCP-1, CCL2) are known to be upregulated in many tumors. Their roles in tumor invasion and metastasis are being uncovered. How they are related to each other and involved in tumor progression remains to be determined. Earlier it was reported that I-BOP-initiated activation of thromboxane A2 receptor (TP) induced the release of MMP-1, MMP-3, and MMP-9 from lung cancer A549 cells overexpressing TPα (A549-TPα). Herein it was found that MMP-1, but not MMP-3 or MMP-9, induced the expression of MCP-1 in A549 cells. Conditioned medium (CM) from I-BOP activated, MMP-1 siRNA pretreated A549-TPα cells induced greatly attenuated expression of MCP-1 in A549 cells indicating that MMP-1 in the CM contributed significantly to the expression of MCP-1. MMP-1 was shown to activate protease-activated receptor 2 (PAR2) instead of commonly assumed PAR1 to increase the expression of MCP-1 in A549 cells. This conclusion was reached from the following findings: (1) expression of MCP-1 induced by trypsin, a PAR2 agonist, and also PAR2 agonist peptide, was inhibited by a PAR2 antagonist; (2) expression of MCP-1 induced by MMP-1 and by CM from I-BOP activated A549-TPα cells was blocked by a PAR2 antagonist but not by other PAR antagonists; (3) expression of MCP-1 induced by MMP-1 and by CM from I-BOP activated A549-TPα cells was attenuated significantly by pretreatment of cells with PAR2-siRNA. These results suggest that PAR2 is a novel MMP-1 target mediating MMP-1-induced signals in A549 lung cancer cells.

  20. Inhibition of mitogen activated protein kinases increases the sensitivity of A549 lung cancer cells to the cytotoxicity induced by a kava chalcone analog.

    Warmka, Janel K; Solberg, Eric L; Zeliadt, Nicholette A; Srinivasan, Balasubramanian; Charlson, Aaron T; Xing, Chengguo; Wattenberg, Elizabeth V

    2012-08-03

    We are interested in investigating the biological activity of chalcones, a major class of compounds found in the beverage kava, in order to develop potent and selective chemopreventive candidates. Consumption of kava in the South Pacific Islands is inversely correlated with cancer incidence, even among smokers. Accordingly, chalcones have anti-cancer activities in animal and cell culture models. To investigate signaling pathways that affect chalcone action we studied a potent analog, (E)-3-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (chalcone-24). Chalcone-24 was selected from a series of chalcone analogs that were synthesized based on the structures derived from flavokawain compounds found in kava, and screened in A549 lung cancer cells for induction of cytotoxicity and inhibition of NF-κB, a transcription factor associated with cell survival. Incubation of A549 cells with chalcone-24 resulted in a dose-dependent inhibition of cell viability, inhibition of NF-κB, activation of caspases, and activation of extracellular signal regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK); ERK1/2 and JNK are mitogen activated protein kinases that play central roles in regulating cell fate. Pharmacological inhibitors of ERK1/2 or JNK increased the sensitivity of A549 cells to chalcone-24-induced cytotoxicity, without affecting NF-κB or caspase activity. These results will help refine the synthesis of chalcone analogs to maximize the combination of actions required to prevent and treat cancer.

  1. TGF-β and Hypoxia/Reoxygenation Promote Radioresistance of A549 Lung Cancer Cells through Activation of Nrf2 and EGFR

    Sae-lo-oom Lee

    2016-01-01

    Full Text Available Although many studies have examined the roles of hypoxia and transforming growth factor- (TGF- β separately in the tumor microenvironment, the effects of simultaneous treatment with hypoxia/reoxygenation and TGF-β on tumor malignancy are unclear. Here, we investigated the effects of redox signaling and oncogenes on cell proliferation and radioresistance in A549 human lung cancer cells in the presence of TGF-β under hypoxia/reoxygenation conditions. Combined treatment with TGF-β and hypoxia activated epidermal growth factor receptor (EGFR and nuclear factor (erythroid-derived 2-like 2 (Nrf2, a redox-sensitive transcription factor. Interestingly, Nrf2 knockdown suppressed the effects of combined treatment on EGFR phosphorylation. In addition, blockade of EGFR signaling also suppressed induction of Nrf2 following combined treatment with hypoxia and TGF-β, indicating that the combined treatment induced positive crosstalk between Nrf2 and EGFR. TGF-β and hypoxia/reoxygenation increased the accumulation of reactive oxygen species (ROS, while treatment with N-acetyl-L-cysteine abolished the activation of Nrf2 and EGFR. Treatment with TGF-β under hypoxic conditions increased the proliferation of A549 cells compared with that after vehicle treatment. Moreover, cells treated with the combined treatment exhibited resistance to ionizing radiation (IR, and knockdown of Nrf2 increased IR-induced cell death under these conditions. Thus, taken together, our findings suggested that TGF-β and hypoxia/reoxygenation promoted tumor progression and radioresistance of A549 cells through ROS-mediated activation of Nrf2 and EGFR.

  2. Andrographolide down-regulates hypoxia-inducible factor-1α in human non-small cell lung cancer A549 cells.

    Lin, Hui-Hsuan; Tsai, Chia-Wen; Chou, Fen-Pi; Wang, Chau-Jong; Hsuan, Shu-Wen; Wang, Cheng-Kun; Chen, Jing-Hsien

    2011-02-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1α (HIF-1α) in A549 cells. HIF-1α plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1α was correlated with a rapid ubiquitin-dependent degradation of HIF-1α, and was accompanied by increased expressions of hydroxyl-HIF-1α and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1α inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGFβ1/PHD2/HIF-1α pathway, as demonstrated by the transfection of TGFβ1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1α transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  3. Cytotoxic and pro-apoptotic activities of leaf extract of Croton bonplandianus Baill. against lung cancer cell line A549.

    Bhavana, J; Kalaivani, M K; Sumathy, A

    2016-06-01

    The acetone extract (AcE) of the Croton bonplandianus Baill., an exotic weed of the Euphorbiaceae family was studied for cytotoxicity, apoptosis, cell cycle arrest in A549 cell line and antioxidant capacities using MTT assay, acridine orange/ethidium bromide (AO/EB staining), cell cycle analysis and DPPH radical scavenging assay respectively. Based on the cytotoxic activity, the extract was tested for the apoptotic effect using AO/EB and Hoechst 33258 staining. The apoptosis was characterized by chromatin condensation and DNA fragmentation. Further, to determine the stage of cell death, cell cycle analysis was performed by flow cytometry and AcE was found to arrest G2/M phase in a dose dependent manner. The number of cells in G2/M phase increases with concurrent accumulation of cells in sub G₀/G₁phase indicates the induction of apoptosis at G2M phase. The free radical scavenging activity of the AcE against DPPH was considerably significant. The cytotoxic, apoptotic and antioxidant effect of the AcE could be well correlated with the presence of potent free radical scavenging secondary metabolites such as phenols (43 ± 0.05 µg/mL), flavonoids (3.5 ± 0.07 µg/mL) and tannin (0.36 ± 0.1 µg/mL). Our study has shown that A549 cells were more sensitive to AcE with an IC₅₀ of 15.68 ± 0.006 µg/mL compared to the standard drug 2.20 ± 0.008 µg/mL (cisplatin). The results suggest that Croton bonplandianus could serve as a potential source of alternative therapeutic agent for treating cancer. Further research is required to isolate the active principle compound and determination of its anticancer property.

  4. NBM-T-BMX-OS01, an Osthole Derivative, Sensitizes Human Lung Cancer A549 Cells to Cisplatin through AMPK-Dependent Inhibition of ERK and Akt Pathway

    Tian-Jun Chen

    2015-06-01

    Full Text Available Background: Drug combination therapies using cisplatin and natural products are common practice in the treatment of human lung cancer. Osthole is a natural compound extracted from a number of medicinal plants and has been shown to exert strong anticancer activities with low toxicity. Methods: In the present study, NBM-T-BMX-OS01 (BMX, derived from the semi-synthesis of osthole, was evaluated in cisplatin treated A549 cells to investigate its effect on cisplatin resistance in human lung cancer. The anticancer effect of BMX were measured by cell viablity‚ colony formation‚ TUNEL staining‚ flow cytometry and cell cycle assay. The fluorescence staining was performed to detect intracellular and mitochondrial reactive oxygen species (ROS generation. Western blot analysis, antagonists pretreatment and small interfering RNA (siRNA transfection were used to determine the potential mechanism. Results: It was found that, in comparison with single cisplatin treatment, the combination of BMX and cisplatin resulted in greater efficacy in inhibition of proliferation and colony formation, apoptosis induction and cell cycle arrest. The results of fluorescence staining showed that the combination effect of BMX and cisplatin was due to oxidative stress induced by mitochondrial ROS generation. In addition, BMX significantly attenuated the phosphorylation of ERK and Akt, two important pro-survival kinases. In contrast, BMX inhibited the activation of AMPK, and knockdown of AMPK using specific siRNA partially reversed BMX-induced inhibition of ERK and Akt, as well as its synthetic effects on cisplatin induced anticancer activity in A549 cells. Conclusion: Taken together, this study provides that BMX might modulate cisplatin resistance through AMPK-ERK and AMPK-Akt pathways. These results also support the role of BMX as a potential drug candidate for use in combination with cisplatin in the treatment of human lung cancer.

  5. Human Noxin is an anti-apoptotic protein in response to DNA damage of A549 non-small cell lung carcinoma.

    Won, Kyoung-Jae; Im, Joo-Young; Yun, Chae-Ok; Chung, Kyung-Sook; Kim, Young Joo; Lee, Jung-Sun; Jung, Young-Jin; Kim, Bo-Kyung; Song, Kyung Bin; Kim, Young-Ho; Chun, Ho-Kyung; Jung, Kyeong Eun; Kim, Moon-Hee; Won, Misun

    2014-06-01

    Human Noxin (hNoxin, C11Orf82), a homolog of mouse noxin, is highly expressed in colorectal and lung cancer tissues. hNoxin contains a DNA-binding C-domain in RPA1, which mediates DNA metabolic processes, such as DNA replication and DNA repair. Expression of hNoxin is associated with S phase in cancer cells and in normal cells. Expression of hNoxin was induced by ultraviolet (UV) irradiation. Knockdown of hNoxin caused growth inhibition of colorectal and lung cancer cells. The comet assay and western blot analysis revealed that hNoxin knockdown induced apoptosis through activation of p38 mitogen-activated protein kinase (MAPK)/p53 in non-small cell lung carcinoma A549 cells. Furthermore, simultaneous hNoxin knockdown and treatment with DNA-damaging agents, such as camptothecin (CPT) and UV irradiation, enhanced apoptosis, whereas Trichostatin A (TSA) did not. However, transient overexpression of hNoxin rescued cells from DNA damage-induced apoptosis but did not block apoptosis in the absence of DNA damage. These results suggest that hNoxin may be associated with inhibition of apoptosis in response to DNA damage. An adenovirus expressing a short hairpin RNA against hNoxin transcripts significantly suppressed the growth of A549 tumor xenografts, indicating that hNoxin knockdown has in vivo anti-tumor efficacy. Thus, hNoxin is a DNA damage-induced anti-apoptotic protein and potential therapeutic target in cancer.

  6. Mechanism of cisplatin combined with zoledronic acid on lung cancer A549 cells%顺铂联合唑来膦酸对肺癌A549细胞增殖的影响及其机制

    茆勇; 马凤锦; 黄朝晖; 许林; 游庆军; 华东

    2011-01-01

    Objective To investigate the function of cisplatin combined with Zoledronic acid on proliferation and mechanisms of A549 cells.Methods ( 1 ) Methyl thiazol tetrazolium (MTT) assay and Annexin V-FITC/PI double-staining flow cytometry were employed to observe the effects of cisplatin combined with Zoledronic acid upon anti-proliferation and apoptosis respectively.Reverse transcription-polymerase chain reaction (RT-PCR) was applied to assay mRNA expression of MDC1 among different groups.Results Inhibition of the cell proliferation was observed under the treatment of combined cisplatin and zoledronic acid (39.16 ±4.94)%,superior to the treatment of zoledronic acid ( 19.66 ±4.57)% or cisplatin ( 16.87 ± 2.50) %.Combined group induced A549 cells apoptosis ( 32.30 ± O.50 ) %,compared with cisplatin (23.90 ± 2.46) %,zoledronic acid ( 18.87 ± 3.04 ) %,the difference was statistically significant; cisplatin after zoledronic acid treatment of A549 cells M DC1 mRNA expression (0.134 ± 0.037 )was significantly decreased compared with single-drug,zoledronic acid ( 0.208 ± 0.040 ) and cisplatin (0.356 ± 0.033) ( P < 0.05 ).Conclusion Zoledronic acid or cisplatin can significantly inhibit A549 cell proliferation and markedly induce the apoptosis.Zoledronic acid and cisplatin in a synergistic way inhibited the cell proliferation and induced apoptosis on A549 cell.The downregulated expression level of MDC1 mRNA may involved in the mechanism of synergistic effect.%目的 观察顺铂联合唑来膦酸对肺癌A-549细胞增殖的影响并探讨其作用机制.方法 以噻唑蓝(MTT)比色法观察顺铂联合唑来膦酸对A549细胞增殖的影响,以Annexin-V/PI双染法检测细胞凋亡,逆转录-聚合酶链反应(RT-PCR)检测DNA损伤检查点蛋白调节因子1(MDC1)mRNA的表达.结果 顺铂联合唑来膦酸对A549细胞增殖的抑制率(39.16±4.94)%高于顺铂(16.87±2.50)%、唑来膦酸(19.66±4.57)%;联合用药诱导A549

  7. 肉桂酸对人肺腺癌A549细胞相关基因表达的影响%Effects of cinnamic acid on correlative gene expression of A549 cells in human lung cancer

    范天黎; 许培荣; 杨静; 王霞; 杨观瑞

    2006-01-01

    目的 探讨肉桂酸(CINN)诱导肺癌A549细胞分化的能力及其分子机制.方法 采用原位杂交和完整细胞原位斑点印迹等技术,研究CINN对人肺腺癌A549细胞分化相关蛋白质分子CD15,相关基因c-myc、EGFR、wtp53、wtp16等表达的影响.结果 CINN可上调wtp53、wtp16基因,抑制CD15、c-myc、EGFR基因表达.结论 CINN的上述作用可能是其诱导肺癌A549细胞分化的机制之一.

  8. Gliotoxin promotes Aspergillus fumigatus internalization into type II human pneumocyte A549 cells by inducing host phospholipase D activation.

    Jia, Xiaodong; Chen, Fangyan; Pan, Weihua; Yu, Rentao; Tian, Shuguang; Han, Gaige; Fang, Haiqin; Wang, Shuo; Zhao, Jingya; Li, Xianping; Zheng, Dongyu; Tao, Sha; Liao, Wanqing; Han, Xuelin; Han, Li

    2014-06-01

    The internalization of Aspergillus fumigatus into lung epithelial cells is critical for the infection process in the host. Gliotoxin is the most potent toxin produced by A. fumigatus. However, its role in A. fumigatus internalization into the lung epithelial cells is still largely unknown. In the present study, the deletion of the gliP gene regulating the production of gliotoxin in A. fumigatus suppressed the internalization of conidia into the A549 lung epithelial cells, and this suppression could be rescued by the exogenous addition of gliotoxin. At lower concentrations, gliotoxin enhanced the internalization of the conidia of A. fumigatus into A549 cells; in contrast, it inhibited the phagocytosis of J774 macrophages in a dose-dependent manner. Under a concentration of 100 ng/ml, gliotoxin had no effect on A549 cell viability but attenuated ROS production in a dose-dependent manner. Gliotoxin significantly stimulated the phospholipase D activity in the A549 cells at a concentration of 50 ng/ml. This stimulation was blocked by the pretreatment of host cells with PLD1- but not PLD2-specific inhibitor. Morphological cell changes induced by gliotoxin were observed in the A549 cells accompanying with obvious actin cytoskeleton rearrangement and a moderate alteration of phospholipase D distribution. Our data indicated that gliotoxin might be responsible for modulating the A. fumigatus internalization into epithelial cells through phospholipase D1 activation and actin cytoskeleton rearrangement.

  9. Biological impacts of TiO2 on human lung cell lines A549 and H1299: particle size distribution effects

    Tedja, Roslyn; Marquis, Christopher; Lim, May; Amal, Rose

    2011-09-01

    Increasing use of titanium dioxide (TiO2) nanoparticles in many commercial applications has led to emerging concerns regarding the safety and environmental impact of these materials. In this study, we have investigated the biological impact of nano-TiO2 (with particle primary size of 20 nm Aeroxide P25) on human lung cell lines in vitro and also the effect of particle size distribution on the particle uptake and apparent toxicity. The biological impact of nano-TiO2 is shown to be influenced by the concentration and particle size distribution of the TiO2 and the impact was shown to differ between the two cell lines (A549 and H1299) investigated herein. A549 cell line was shown to be relatively resistant to the total amount of TiO2 particles uptaken, as measured by cell viability and metabolic assays, while H1299 had a much higher capacity to ingest TiO2 particles and aggregates, with consequent evidence of impact at concentrations as low as 30-150 μg/mL TiO2. Evidence gathered from this study suggests that both viability and metabolic assays (measuring metabolic and mitochondrial activities and also cellular ATP level) should be carried out collectively to gain a true assessment of the impact of exposure to TiO2 particles.

  10. Growth arrest of lung carcinoma cells (A549) by polyacrylate-anchored peroxovanadate by activating Rac1-NADPH oxidase signalling axis.

    Chatterjee, Nirupama; Anwar, Tarique; Islam, Nashreen S; Ramasarma, T; Ramakrishna, Gayatri

    2016-09-01

    Hydrogen peroxide is often required in sublethal, millimolar concentrations to show its oxidant effects on cells in culture as it is easily destroyed by cellular catalase. Previously, we had shown that diperoxovanadate, a physiologically stable peroxovanadium compound, can substitute H2O2 effectively in peroxidation reactions. We report here that peroxovanadate when anchored to polyacrylic acid (PAPV) becomes a highly potent inhibitor of growth of lung carcinoma cells (A549). The early events associated with PAPV treatment included cytoskeletal modifications, increase in GTPase activity of Rac1, accumulation of the reactive oxygen species, and also increase in phosphorylation of H2AX (γH2AX), a marker of DNA damage. These effects persisted even at 24 h after removal of the compound and culminated in increased levels of p53 and p21 together with growth arrest. The PAPV-mediated growth arrest was significantly abrogated in cells pre-treated with the N-acetylcysteine, Rac1 knocked down by siRNA and DPI an inhibitor of NADPH oxidase. In conclusion, our results show that polyacrylate derivative of peroxovanadate efficiently arrests growth of A549 cancerous cells by activating the axis of Rac1-NADPH oxidase leading to oxidative stress and DNA damage.

  11. Studies on cytotoxic constituents from the leaves of Elaeagnus oldhamii Maxim. in non-small cell lung cancer A549 cells.

    Liao, Chi-Ren; Kuo, Yueh-Hsiung; Ho, Yu-Ling; Wang, Ching-Ying; Yang, Chang-Syun; Lin, Cheng-Wen; Chang, Yuan-Shiun

    2014-07-04

    Elaeagnus oldhamii Maxim. is a commonly used traditional herbal medicine. In Taiwan the leaves of E. oldhamii Maxim. are mainly used for treating lung disorders. Twenty five compounds were isolated from the leaves of E. oldhamii Maxim. in the present study. These included oleanolic acid (1), 3-O-(Z)-coumaroyl oleanolic acid (2), 3-O-(E)-coumaroyl oleanolic acid (3), 3-O-caffeoyl oleanolic acid (4), ursolic acid (5), 3-O-(Z)-coumaroyl ursolic acid (6), 3-O-(E)-coumaroyl ursolic acid (7), 3-O-caffeoyl ursolic acid (8), 3β, 13β-dihydroxyolean-11-en-28-oic acid (9), 3β, 13β-dihydroxyurs-11-en-28-oic acid (10), uvaol (11), betulin (12), lupeol (13), kaempferol (14), aromadendrin (15), epigallocatechin (16), cis-tiliroside (17), trans-tiliroside (18), isoamericanol B (19), trans-p-coumaric acid (20), protocatechuic acid (21), salicylic acid (22), trans-ferulic acid (23), syringic acid (24) and 3-O-methylgallic acid (25). Of the 25 isolated compounds, 21 compounds were identified for the first time in E. oldhamii Maxim. These included compounds 1, 4, 5 and 8-25. These 25 compounds were evaluated for their inhibitory activity against the growth of non-small cell lung cancer A549 cells by the MTT assay, and the corresponding structure-activity relationships were discussed. Among these 25 compounds, compound 6 displayed the best activity against the A549 cell line in vitro (CC50=8.56±0.57 μg/mL, at 48 h of MTT asssay). Furthermore, compound 2, 4, 8 and 18 exhibited in vitro cytotoxicity against the A549 cell line with the CC50 values of less than 20 μg/mL at 48 h of MTT asssay. These five compounds 2, 4, 6, 8 and 18 exhibited better cytotoxic activity compared with cisplatin (positive control, CC50 value of 14.87±1.94 μg/mL, at 48 h of MTT asssay). The result suggested that the five compounds might be responsible for its clinical anti-lung cancer effect.

  12. Studies on Cytotoxic Constituents from the Leaves of Elaeagnus oldhamii Maxim. in Non-Small Cell Lung Cancer A549 Cells

    Chi-Ren Liao

    2014-07-01

    Full Text Available Elaeagnus oldhamii Maxim. is a commonly used traditional herbal medicine. In Taiwan the leaves of E. oldhamii Maxim. are mainly used for treating lung disorders. Twenty five compounds were isolated from the leaves of E. oldhamii Maxim. in the present study. These included oleanolic acid (1, 3-O-(Z-coumaroyl oleanolic acid (2, 3-O-(E-coumaroyl oleanolic acid (3, 3-O-caffeoyl oleanolic acid (4, ursolic acid (5, 3-O-(Z-coumaroyl ursolic acid (6, 3-O-(E-coumaroyl ursolic acid (7, 3-O-caffeoyl ursolic acid (8, 3β, 13β-dihydroxyolean-11-en-28-oic acid (9, 3β, 13β-dihydroxyurs-11-en-28-oic acid (10, uvaol (11, betulin (12, lupeol (13, kaempferol (14, aromadendrin (15, epigallocatechin (16, cis-tiliroside (17, trans-tiliroside (18, isoamericanol B (19, trans-p-coumaric acid (20, protocatechuic acid (21, salicylic acid (22, trans-ferulic acid (23, syringic acid (24 and 3-O-methylgallic acid (25. Of the 25 isolated compounds, 21 compounds were identified for the first time in E. oldhamii Maxim. These included compounds 1, 4, 5 and 8–25. These 25 compounds were evaluated for their inhibitory activity against the growth of non-small cell lung cancer A549 cells by the MTT assay, and the corresponding structure-activity relationships were discussed. Among these 25 compounds, compound 6 displayed the best activity against the A549 cell line in vitro (CC50 = 8.56 ± 0.57 μg/mL, at 48 h of MTT asssay. Furthermore, compound 2, 4, 8 and 18 exhibited in vitro cytotoxicity against the A549 cell line with the CC50 values of less than 20 μg/mL at 48 h of MTT asssay. These five compounds 2, 4, 6, 8 and 18 exhibited better cytotoxic activity compared with cisplatin (positive control, CC50 value of 14.87 ± 1.94 μg/mL, at 48 h of MTT asssay. The result suggested that the five compounds might be responsible for its clinical anti-lung cancer effect.

  13. Inhibition of nuclear factor-κB activity enhanced chemosensitivity to cisplatin in human lung adeno-carcinoma A549 cells under chemical hypoxia conditions

    LI Fang; HUANG Li; SU Xiao-li; GU Qi-hua; HU Cheng-ping

    2013-01-01

    Background Tumor hypoxia,one of the features of solid tumors,is associated with chemo-resistance.Recently,nuclear factor-KB (NF-kB) was found to be activated during hypoxia.However,the impact of NF-kB activation on chemo-resistance during hypoxia remains unknown.Methods Human lung adenocarcinoma A549 cells were transfected with NF-kB p65siRNA and treated with cobalt chloride (CoCl2) to mimic hypoxia in the presence or absence of cisplatin.NF-kB expression was measured by Western blotting,immune-fluorescence and real-time PCR.Hypoxia-inducible factor-1α (HIF-1α) and Bcl-2 expression were determined by Western blotting.Cell apoptosis and survival with half-maximum inhibitory concentration (IC50) of cisplatin were determined by Annexin V-FITC/PI and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT),respectively.Results Exposure ofA549 cells to CoCl2 increased nuclear HIF-1α protein expression,and enhanced NF-kB p65 protein nuclear accumulation (the mark of NF-kB activation) in a time and dose dependant manner.CoCl2 did not promote apoptosis in A549 cells; on the contrary,it reduced cisplatin-induced apoptosis and increased the IC50 of cisplatin.However,when we inhibited CoCl2-induced activation of NF-kB through NF-kB p65siRNA,cisplatin-induced apoptosis was increased and IC50 of cisplatin was reduced to levels similar to those in control cells.Meanwhile,CoCl2-induced Bcl-2 overexpression was down-regulated in the presence of cisplatin when NF-KB activity was inhibited.Conclusion Up-regulating Bcl-2 might be involved in NF-kB activation induced resistance to cisplatin in A549 cells under CoCl2-induced chemical hypoxia.

  14. Effect of Paclitaxel-Mesoporous Silica Nanoparticles with a Core-Shell Structure on the Human Lung Cancer Cell Line A549

    Wang, Tieliang; Liu, Ying; Wu, Chao

    2017-01-01

    A nanodrug delivery system of paclitaxel-mesoporous silica nanoparticles with a core-shell structure (PAC-csMSN) was used to increase the dissolution of paclitaxel (PAC) and improve its treatment of lung cancer. PAC was loaded into the core-shell mesoporous silica nanoparticles (csMSN) by the adsorption equilibrium method and was in an amorphous state in terms of its mesoporous structure. In vitro and in vivo studies showed that csMSN increased the dissolution rate of PAC and improved its lung absorption. The area under concentration-time curve (AUC) value of PAC-csMSN used for pulmonary delivery in rabbits was 2.678-fold higher than that obtained with the PAC. After continuous administration for 3 days, a lung biopsy showed no signs of inflammation. Cell apoptosis results obtained by flow cytometry indicated that PAC-csMSN was more potent than pure PAC in promoting cell apoptosis. An absorption investigation of PAC-csMSN in A549 cells was carried out by transmission electron microscopy (TEM) and laser scanning confocal microscopy (LSCM). The obtained results indicated that the cellular uptake was time-dependent and csMSN was uptaken into the cytoplasm. All these results demonstrate that csMSN have the potential to achieve pulmonary inhalation administration of poorly water-soluble drugs for the treatment of lung cancer.

  15. 托瑞米芬协同顺铂对人肺癌细胞株A549的影响%Synergistic effect of toremifene and cisplatin on human lung cancer cell line A549

    张雪艳; 李强; 韩一平; 刘忠令

    2002-01-01

    目的研究托瑞米芬(TOR)对人肺腺癌细胞系A549的毒性作用及其与顺铂(DDP)联用的协同效应,探讨肺癌综合治疗的方向.方法用MTT显色法检测TOR及与DDP联用后对A549细胞的毒性作用,测定其吸光度(A)值.用流式细胞仪检测细胞DNA含量,Western blot 法检测p21蛋白表达.结果 TOR能直接抑制A549细胞的生长,≥5 μmol/L 的TOR可明显增强DDP的细胞毒性作用.TOR可加强DDP对S期、G2期及M期细胞的作用,且DDP+TOR后p21蛋白表达增加.结论≥5 μmol/L的TOR与DDP联用对A549细胞具有显著的协同抗肿瘤效应.

  16. Effect of FGF-2 on the Proliferation of Human Lung Adenocarcinoma Cell line A549%FGF-2对人肺腺癌细胞株A549增殖的影响

    李婷; 周建华

    2014-01-01

    目的:观察不同浓度成纤维细胞生长因子-2(fibroblast growth factor-2,FGF-2)对体外培养的人肺腺癌细胞株A549增殖的影响.方法:以体外培养的人肺腺癌细胞株A549为研究对象,采用MTT比色法测定不同浓度(0,12.5,25,50,75,100 ng/mL)的FGF-2对A549细胞增殖活性的影响.结果:与对照组相比,不同浓度的FGF-2处理组细胞的OD值、增殖比均明显增加,差异具有统计学意义(P<0.01).FGF-2浓度为75 ng/mL时细胞增殖比最高,为对照组的183%.结论:FGF-2促进A549细胞增殖,FGF-2对肺腺癌的发生发展具有重要作用.

  17. 雷氏大疣蛛蜘蛛毒素对人肺癌细胞A549增殖的影响%Effects of the Spider Venom on proliferation of Human Lung Adenocarcinoma Cell A549

    胡增祥; 杜昱蕾; 刘全喜; 王媛; 李亮

    2010-01-01

    背景与目的 雷氏大疣蛛蜘蛛毒素作为新药有可能用于癌症的治疗,本研究旨在探讨雷氏大疣蛛蜘蛛毒索对人肺癌细胞4549的作用及机理.方法 应用MTT法检测雷氏大疣蛛蜘蛛毒素对人肺癌细胞A549增殖的影响,比色法检测过氧化氢酶活性,改良的硫代巴比妥酸荧光法检测丙二醛含量;流式细胞仪检测细胞凋亡率.采用免疫印迹分析A549细胞中P38MAPK蛋白的表达.结果 雷氏大疣蛛蜘蛛毒素可抑制A549细胞增殖,使CAT活性和MDA的形成增加,且使P38MAPK的表达较对照组明显增多.结论 雷氏大疣蛛蜘蛛毒素抑制A549细胞增殖可能与CAT活性和MDA的形成增加以及P38MAPK的表达降低相关.

  18. Inhibition of Oridonin on Human Lung Adenocarcinoma A549 Cells and Its Mechanisms%冬凌草甲素诱导人肺腺癌细胞株A549凋亡及其机制研究

    彭蕾; 顾振纶; 薛仁宇; 周颖; 蒋小岗; 郭次仪

    2010-01-01

    目的:探讨冬凌草甲素(oridnin)对人肺腺癌细胞株A549细胞凋亡的影响.方法:利用MTT法检测oridnin对A549细胞增殖作用的影响;Hoechst 33258染色观察给药后细胞形态改变;透射电镜观察给药后细胞超微结构改变;FITC-AnnexinV/PI双标记检测细胞凋亡率.结果:Hoechst 33258染色和透射电镜观察,oridonin给药后A549细胞出现空泡变性,染色质高度凝集;FTTC-AnnexinV/PI双标记检测oridnin(25,50,100μmol/L)作用细胞48 h后凋亡率分别为1.5%,6.2%,59.7%.结论:Oridonin对A549细胞具有抑制增殖和诱导凋亡作用.

  19. 盐霉素抑制人肺腺癌耐顺铂细胞株A549/DDP增殖及诱导凋亡的机制%Salinomycin inhibited proliferation and induced apoptosis of cisplatin-resistant human lung adenocarcinoma cell line A549/DDP

    曾葭; 刘成成; 祝爱珍; 陈小宇; 谭广销; 刘革修

    2012-01-01

    目的:探讨盐霉素对人肺腺癌耐药细胞株A549/DDP增殖的抑制作用及其可能机制.方法:采用MTT法检测盐霉素对A549/DDP细胞生长的抑制作用;流式细胞术检测盐霉素对A549/DDP细胞凋亡及线粒体膜电位(ΔΨm)的影响;比色法检测caspase-3、8和9活性;Western blotting分析细胞色素C、Bcl-2、Bax、β-catenin和磷酸化低密度脂蛋白受体相关蛋白6(p-LRP6)蛋白水平.结果:盐霉素对A549/DDP细胞生长具有剂量依赖性抑制作用.0.2 μmol/L盐霉素作用于A549/DDP细胞,ΔΨm显著下降,而细胞内活性氧和Ca2+浓度在短期显著升高,胞浆细胞色素C蛋白水平、caspase-3、8和9酶活性均显著增加,与对照组比较差异均有统计学意义(P<0.01);Bcl- 2 的表达下调,Bax 的表达明显增加,Bcl-2/Bax 比值显著降低.48 h时增殖抑制率为(34.61±1.97)%,细胞凋亡率为(18.74±2.08)%.盐霉素也减少A549/DDP细胞内β-catenin和p-LRP6蛋白水平.结论:盐霉素通过抑制Wnt信号通路抑制A549/DDP细胞增殖,通过Bcl-2/Bax途径和线粒体凋亡途径诱导人肺腺癌耐药细胞株A549/DDP凋亡.%AIM: To invesligale the effect of salinomycin on the proliferation and apoptosis of cisplalin - resist-ant human lung adenocarcinoma cell line A549/DDP. METHODS: The inhibitory effect of salinomycin on the growlh of A549/DDP cells was tesled by MTT method in vitro. The apoptosis and milochondrial membrane potential ( △ψm ) of A549/DDP cells were assayed by flow cylomelry. The aclivily of caspase -3,8 and 9 was determined by the melhod of col-orimeLry. The levels of cylochrome C, Bcl - 2 , Bax, β - catenin, and phosphorylaled low - densily lipoprolein receptor -relaled protein 6(p - LRP6) were measured by Weslern blotting. RESULTS: Salinomycin inhibited the growth of A549/ DDP cells in a dose - dependent manner. Salinomycin at concentration of 0. 2 μmol/L decreased △ψm level, and increased reactive oxygen species (ROS) , cytochrome C and

  20. Effect of 3-bromopyruvate combined with cisplatin on inhibiting growth of lung cancer A549 cells%3-溴丙酮酸联合顺铂抑制肺癌细胞株A549的生长

    张梦娇; 张明; 胡义德

    2016-01-01

    目的 探讨3-溴丙酮酸(3-bromopyruvate,3-BrPA)联合顺铂体外抗肺癌A549细胞的作用及其可能机制.方法 采用CCK-8检测不同浓度的3-BrPA、顺铂单用及联用对A549细胞的增殖抑制;选择低于半数抑制浓度(IC50)的40 μmol/L 3-BrPA与1 mg/L顺铂单独和联合作用A549细胞48 h后,用倒置相差显微镜观察细胞形态变化,流式细胞术检测细胞凋亡;不同浓度的3-BrPA作用A549细胞48 h后,流式细胞术检测细胞周期变化,己糖激酶(hexokinase,HK)活性检测试剂盒检测3-BrPA对细胞内HK活性的影响.结果 CCK-8结果显示,与阴性对照组比较,3-BrPA浓度大于20 μmol/L时对A549细胞有明显抑制作用(P<0.01),与单用顺铂组比较,3-BrPA联合顺铂组可显著增强顺铂对A549细胞的毒性作用(P<0.01);3-BrPA作用A549细胞48 h后,倒置显微镜观察到3-BrPA组大多数细胞出现凋亡,而联合用药组细胞凋亡更加明显,部分区域出现细胞碎片等坏死征象;流式细胞术结果显示,3-BrPA和顺铂单用组及联合用药组细胞凋亡率均明显高于阴性对照组(P<0.01),且联合用药组细胞凋亡率明显高于单独用药组(P<0.01);细胞周期检测结果显示3-BrPA可将A549细胞阻滞于G1期;HK活性结果显示:与阴性对照组比较,3-BrPA组HK活性明显降低(P<0.01).结论 3-BrPA有抑制肺癌A549细胞增殖、诱导其凋亡的作用,且与顺铂具有协同抗肺癌A549细胞增殖作用,其机制可能为抑制肺癌细胞糖酵解,进而影响肺癌细胞能量代谢.

  1. Role of miR-155 in invasion and metastasis of lung adenocarcinoma A549 cells%miR-155在肺腺癌 A549细胞侵袭和转移中的作用

    程田力; 胡成平; 李敏; 顾其华; 安健

    2016-01-01

    拟物对照组、miR-155抑制剂组和 miR-155抑制剂对照组的 PTEN 蛋白相对表达水平分别为0.4±0.1、1.0±0.3、2.8±0.2和1.4±0.1。 miR-155模拟物组与miR-155模拟物对照组、miR-155抑制剂组与 miR-155抑制剂对照组的 PTEN mRNA 和蛋白表达差异均有统计学意义(均 P<0.05)。结论miR-155可能是通过下调靶基因 PTEN 的表达而促进肺腺癌的侵袭和转移。%Objective To investigate the role and mechanism of miR-155 in invasion and metastasis of lung adenocarcinoma A549 cells.Methods Real-time PCR and fluorescence in situ hybridization were used to detect the miR-155 expression in patients′lung adenocarcinoma and adjacent tissue and lymph nodes.Scratch test and Transwell migration assay were used to assess the effect of miR-155 on the A549 cell migration and invasion capability.Bioinformatics software was used to predict the target genes of miR-155, and using luciferase to assay the target gene.Western blot and real-time PCR were performed to confirm the role of miR-155 expression in the regulation of target gene PTEN.Results The real-time quantitative PCR showed that the miR-155 expression levels in adjacent normal tissue, lung adenocarcinoma and metastatic lymph nodes were 4.1±0.5, 9.6±3.1 and 7.8±2.2, respectively.The in situ hybridization showed that the expression rates of miR-155 in the adjacent normal tissue, lung adenocarcinoma and metastatic lymph nodes were (23.2±15.3)%, (75.4±20.2 )% and (60.4±25.1)%,respectively.The Scratch assay showed that the wound healing rates in the miR-155 mimics group, miR-155 mimics NC group, miR-155 inhibitor group and miR-155 inhibitor NC group at 24 h were (43.2±2.2)%, (21.3±4.2)%, (24.3±5.3)%, and (35.2± 5.1)%, and that at 48 h were (75.2±4.5)%, (52.6±5.2)%, (39.4±4.2)%, and( 51.5±4.3)%, respectively.Dual luciferase reporter gene assay showed that the value of the luciferase in the miR -155 mimics group co-transfected with PTEN 3

  2. Inhibitory effect of gallic acid on proliferation of human non-small cell lung cancer A549 cells%没食子酸对人非小细胞肺癌A549细胞增殖的抑制作用

    郗艳丽; 许娜; 李澍; 王迪; 王舒然; 牛凤兰

    2016-01-01

    组间比较差异无统计学意义(P>0.05);中和高剂量没食子酸组 A549细胞中 GSH-Px活性低于对照组,但组间比较差异亦无统计学意义(P>0.05);随着没食子酸剂量的不断增加,GSH-Px活性反而降低。低、中和高剂量没食子酸组间A549细胞中CAT、SOD和 GSH-Px活性比较差异无统计学意义(P>0.05)。结论:没食子酸可能是通过诱导氧化损伤的方式抑制肺癌细胞增殖,Fas/FasL信号通路可能是其诱导细胞凋亡的重要作用机制之一。%Objective:To detect the inhibitory effect of gallic acid on the proliferation of human non-small cell lung cancer A549 cells,and to investigate the molecular mechanisms of its drug toxicity.Methods:The human non-small cell lung cancer A549 cells were cultured invitro.The cells were divided into control group,low,middle, and high dosages of gallic acid groups (0,300,500 and 750μmol·L-1 ).The survival rates of cells were tested by MTT method;the morphology of A549 cells were tested by Switzerland and Giemsa staining;the apoptotic rates of A549 cells and the levels of reactive oxygen species (ROS)in A549 cells were analyzed by FCM;the expression levels of Fas and FasL in the A549 cells in various groups were detected by Western blotting method;the activities of catalase (CAT),superoxide dismutase (SOD)and glutathione peroxidase (GSH-Px)in the A549 cells in various groups were analyzed by spectrophotometry. Results:Compared with gallic acid treatment for 6 h, the survival rates of A549 cells treated for 12 and 24 h in different dosages of gallic acid groups were significantly decreased (P0.05);the activities of CAT in A549 cells in different dosages of gallic acid groups were reduced with the increasing of gallic acid dosage. The activity of SOD in low dosage of gallic acid group was higher than that in control group (P0.05).The activities of SOD were reduced with the increasing of gallic acid dosages.The activity of GSH

  3. Silencing ATM by siRNA enhances the radiosensitization effect of CpG ODN 7909 on lung cancer A549 cells%siRNA沉默ATM增强CpG ODN 7909对肺癌A549细胞的放射增敏作用

    袁素娟; 乔田奎; 刘小群; 陈伟

    2013-01-01

    目的:研究siRNA沉默毛细血管扩张—共济失调突变(atxia-telangiectasia mutated,ATM)基因的表达增强胞嘧啶鸟嘌呤二核苷酸寡脱氧核苷酸(cytosine-phophate-guanine oligodeoxynucleotide,CpG ODN) 7909对人非小细胞肺癌A549细胞的放射增敏作用.方法:将ATM-siRNA转染至A549细胞中,Western blotting检测A549细胞中ATM蛋白的表达.A549细胞随机分为6组:对照组、CpG组、X射线(IR)组、CpG+ IR组、ATM-siRNA+ CpG+ IR组和NC-siRNA+ CpG+ IR组,克隆形成分析法检测各组细胞克隆形成率,Graphpad prism 5.0软件进行单击多靶模型和L-Q线性模型拟合辐射后A549细胞的生存曲线,以D0、Dq、N、α/β及SF2等参数分析A549细胞辐射损伤修复能力,流式细胞术检测A549细胞的凋亡.结果:ATM-siRNA转染可明显抑制A549细胞中ATM蛋白的表达(P<0.01).X射线可剂量依赖性抑制A549细胞的克隆形成能力(P<0.05);且CpG+ IR组A549细胞的克隆形成能力进一步降低(P<0.01);ATM-siRNA转染后,CpG处理的A549细胞克隆形成能力再度降低[10 Gy时,(0.05±0.00)%vs(0.71±0.00)%,P<0.01].辐射损伤剂量生存曲线结果显示,ATM-siRNA转染后,ATM-siRNA+ CpG+ IR组较CpG+ IR组A549细胞的α/β值明显增大(1.48 vs0.97,P<0.05),对放射损伤修复能力明显减弱.CpG+ IR组较IR组细胞凋亡率显著升高[(9.18±0.16)%vs(6.56±0.33)%,P<0.01];ATM-siRNA+ CpG+ IR组A549细胞凋亡率进一步升高[(10.45 ±0.40)% vs (9.18±0.16)%,P<0.05].结论:siRNA沉默ATM的表达可增强CpGODN 7909对A549细胞的放射增敏作用,ATM可作为肺癌治疗的潜在靶点.%Objective:To explore the potentiation of silencing atxia-telangiectasia mutated (ATM) gene expression in the radiosensitization effect of cytosine-phophate-guanine oligodeoxynucleotide (CpG ODN) 7909 on non-small cell lung cancer A549 cell line.Methods:ATM-siRNA was transfected into A549 cells,and the expression of ATM protein in A549 cells was

  4. Reversal effect of toremifene (TOR) on A549 /cDDP lung cancer cell line with resistance to cisplatin%托瑞米芬逆转肺癌耐药细胞株A549/cDDP耐药性的研究

    刘利则; 夏莉; 刘玉侠; 段北野

    2012-01-01

    目的:探讨托瑞米芬(TOR)对耐顺铂(cDDP)细胞株A549的逆转作用,为临床应用提供实验数据.方法:用不同浓度的托瑞米芬单独及与cDDP联合与耐药细胞A549共同培养,通过MTT法和流式细胞仪法检测其对A549/cDDP的逆转及增敏效果.结果:经不同浓度的托瑞米芬单独及与cDDP联合与耐药细胞A549共同培养后,单独TOR(5 μmol/L、10 μmol/L)对A549/cDDP细胞的增殖均无明显影响,各组间数据无明显差异(P>0.05).当cDDP与TOR联合作用时无论TOR终浓度5 μmol/L或10 μmol/L,均能明显增加cDDP对A549/cDDP细胞的敏感性(P<0.05,P<0.001).其IC50值分别为39.06 μmol/L和30.64 μmol/L,逆转倍数分别为2.05倍和2.65倍.cDDP+TOR终浓度5 μmol/L与cDDP+TOR终浓度10 μmol/L之间除了在cDDP浓度为200 μmol/L时两者有差异(P<0.05)外其它均无明显差异.结论:托瑞米芬与DDP联合应用可以提高A549/cDDP的逆转及治疗效果.%Objective: To investigate the reversal effect of toremifene (TOR) on A549/cDDP lung cancer cell line, which resistance to cisplatin, and provide the experimental data for clinical application. Methods: A549 cell line was cultured with different concentrations of toremifene, with or without cisplatin. Sensitive effect of toremifene on A549/cDDP was measured by MTT assay. The cell apoptotic activity was determined with Annexin V/PI staining by flow cytometry. Results:Using TOR (5 μmol / L, 10 μmol / L) alone had no significant effect on proliferation of A549/cDDP cell line (P > 0. 05) , but TOR combined with cDDP (the final concentration of TOR was 5 (μmol/Lor 10 μmol/L) significantly increased the sensitive effect of A549/cDDP cells to cDDP (P<0.05, P< 0. 001) . The value of IC50 elevated up to 39. 06 μmol/L and 30. 64 μmol/L, and the fold of reversal effect was 2. 05 and 2. 65 times, respectively. In addition to 200 μmol/L of cDDP, there was no significant differences between 5 μmol/L and 10 μmol/L of cDDP combined

  5. Association of advanced glycation end products with A549 cells, a human pulmonary epithelial cell line, is mediated by a receptor distinct from the scavenger receptor family and RAGE.

    Nakano, Nahoko; Fukuhara-Takaki, Kaori; Jono, Tadashi; Nakajou, Keisuke; Eto, Nobuaki; Horiuchi, Seikoh; Takeya, Motohiro; Nagai, Ryoji

    2006-05-01

    Cellular interactions with advanced glycation end products (AGE)-modified proteins are known to induce several biological responses, not only endocytic uptake and degradation, but also the induction of cytokines and growth factors, combined responses that may be linked to the development of diabetic vascular complications. In this study we demonstrate that A549 cells, a human pulmonary epithelial cell line, possess a specific binding site for AGE-modified bovine serum albumin (AGE-BSA) (K(d) = 27.8 nM), and additionally for EN-RAGE (extracellular newly identified RAGE binding protein) (K(d) = 118 nM). Western blot and RT-PCR analysis showed that RAGE (receptor for AGE) is highly expressed on A549 cells, while the expression of other known AGE-receptors such as galectin-3 and SR-A (class A scavenger receptor), are below the level of detection. The binding of (125)I-AGE-BSA to these cells is inhibited by unlabeled AGE-BSA, but not by EN-RAGE. In contrast, the binding of (125)I-EN-RAGE is significantly inhibited by unlabeled EN-RAGE and soluble RAGE, but not by AGE-BSA. Our results indicate that A549 cells possess at least two binding sites, one specific for EN-RAGE and the other specific for AGE-BSA. The latter receptor on A549 cells is distinct from the scavenger receptor family and RAGE.

  6. HIF-1对乏氧人肺腺癌 A549细胞侵袭、迁徙能力的影响及其机制%Impact of hypoxia inducible factor-1 on tumor invasion and metastasis in human lung adenocarcinoma A549 cells under hypoxia

    洪昆; 李芳; 黄瓅; 胡成平

    2015-01-01

    Objective To investigate the role of hypoxia inducible factor-1 (HIF-1 )in tumor metastasis and invasion in human lung adenocarcinoma A549 cells under hypoxia.Methods CoCl2 was used to establish chemical hypoxia model of human lung adenocarcinoma A549 cells.HIF-1-specific inhibitor YC-1 was added to block the expression of HIF-1.Western blot,immune-chemistry and real time-PCR were used to examine the protein and mRNA expressions of HIF-1αand S100A4.Capability of cellular invasion and migration were detected by transwell booth model.Results Compared with normoxic group,HIF-1αand S100A4 were over-expressed,capability of cellular invasion and migration increased in A549 cells of CoCl2 group.However,when HIF-1α expression was specifically inhibited by YC-1,the expression of S100A4 was depressed both at protein and mRNA level,the ability of invasion and migration attenuated in A549 cells of YC-1 group.Conclusions HIF-1 may be able to promote invasion and metastasis of lung adenocarcinoma cells through up-regulating S100A4.%目的:探索低氧诱导因子-1(HIF-1)对乏氧人肺腺癌 A549细胞侵袭及迁徙能力的影响及可能机制。方法采用氯化钴建立人肺腺癌 A549细胞体外化学乏氧模型。给予 HIF-1α特异性抑制剂YC-1抑制 A549细胞 HIF-1α的表达;通过 Western blot、免疫细胞化学、real time-PCR 检测 HIF-1α、S100A4蛋白及 mRNA 的表达;Transwell 小室模型检测 A549细胞 侵 袭 及 迁 徙 能 力。结果乏氧组A549细胞 HIF-1α、S100A4表达较常氧组增加,侵袭及迁徙能力较常氧组增强。YC-1干扰 HIF-1α表达后,YC-1组 A549细胞侵袭及迁徙能力减弱,S100A4蛋白及 mRNA 表达均降低。结论 HIF-1可能通过上调 S100A4的表达促进乏氧人肺腺癌 A549细胞侵袭及迁徙的能力。

  7. The fruit juice of Morinda citrifolia (noni) downregulates HIF-1α protein expression through inhibition of PKB, ERK-1/2, JNK-1 and S6 in manganese-stimulated A549 human lung cancer cells.

    Jang, Byeong-Churl

    2012-03-01

    High exposure of manganese is suggested to be a risk factor for many lung diseases. Evidence suggests anticancerous and antiangiogenic effects by products derived from Morinda citrifolia (noni) fruit. In this study, we investigated the effect of noni fruit juice (NFJ) on the expression of HIF-1α, a tumor angiogenic transcription factor in manganese-chloride (manganese)-stimulated A549 human lung carcinoma cells. Treatment with manganese largely induced expression of HIF-1α protein but did not affect HIF-1α mRNA expression in A549 cells, suggesting the metal-mediated co- and/or post-translational HIF-1α upregulation. Manganese treatment also led to increased phosphorylation of extracellular-regulated protein kinase-1/2 (ERK-1/2), c-Jun N-terminal kinase-1 (JNK-1), protein kinase B (PKB), S6 and eukaryotic translation initiation factor-2α (eIF-2α) in A549 cells. Of note, the exposure of NFJ inhibited the manganese-induced HIF-1α protein upregulation in a concentration-dependent manner. Importantly, as assessed by results of pharmacological inhibition and siRNA transfection studies, the effect of NFJ on HIF-1α protein downregulation seemed to be largely associated with the ability of NFJ to interfere with the metal's signaling to activate PKB, ERK-1/2, JNK-1 and S6 in A549 cells. It was further shown that NFJ could repress the induction of HIF-1α protein by desferoxamine or interleukin-1β (IL-1β), another HIF-1α inducer in A549 cells. Thus, the present study provides the first evidence that NFJ has the ability to strongly downregulate manganese-induced HIF-1α protein expression in A549 human lung cancer cells, which may suggest the NFJ-mediated beneficial effects on lung pathologies in which manganese and HIF-1α overexpression play pathogenic roles.

  8. IL-6 promotes growth and epithelial-mesenchymal transition of CD133+ cells of non-small cell lung cancer.

    Lee, Soo Ok; Yang, Xiaodong; Duan, Shanzhou; Tsai, Ying; Strojny, Laura R; Keng, Peter; Chen, Yuhchyau

    2016-02-09

    We examined IL-6 effects on growth, epithelial-mesenchymal transition (EMT) process, and metastatic ability of CD133+ and CD133- cell subpopulations isolated from three non-small cell lung cancer (NSCLC) cell lines: A549, H157, and H1299. We developed IL-6 knocked-down and scramble (sc) control cells of A549 and H157 cell lines by lentiviral infection system, isolated CD133+ and CD133- sub-populations, and investigated the IL-6 role in self-renewal/growth of these cells. IL-6 showed either an inhibitory or lack of effect in modulating growth of CD133- cells depending on intracellular IL-6 levels, but there was higher self-renewal ability of IL-6 expressing CD133+ cells than IL-6 knocked down cells, confirming the promoter role of IL-6 in CD133+ cells growth. We then examined tumor growth of xenografts developed from CD133+ cells of A549IL-6si vs. A549sc cell lines. Consistently, there was retarded growth of tumors developed from A549IL-6si, CD133+ cells compared to tumors originating from A549sc, CD133+ cells. The effect of IL-6 in promoting CD133+ self-renewal was due to hedgehog (Hhg) and Erk signaling pathway activation and higher Bcl-2/Bcl-xL expression. We also investigated whether IL-6 regulates the EMT process of CD133- and CD133+ cells differently. Expression of the EMT/metastasis-associated molecules in IL-6 expressing cells was higher than in IL-6 knocked down cells. Together, we demonstrated dual roles of IL-6 in regulating growth of CD133- and CD133+ subpopulations of lung cancer cells and significant regulation of IL-6 on EMT/metastasis increase in CD133+ cells, not in CD133- cells.

  9. Responses of genes involved in cell cycle control to diverse DNA damaging chemicals in human lung adenocarcinoma A549 cells

    Gooderham Nigel J

    2005-08-01

    Full Text Available Abstract Background Many anticancer agents and carcinogens are DNA damaging chemicals and exposure to such chemicals results in the deregulation of cell cycle progression. The molecular mechanisms of DNA damage-induced cell cycle alteration are not well understood. We have studied the effects of etoposide (an anticancer agent, cryptolepine (CLP, a cytotoxic alkaloid, benzo [a]pyrene (BaP, a carcinogenic polycyclic aromatic hydrocarbon and 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP, a cooked-meat derived carcinogen on the expression of cell cycle regulatory genes to understand the molecular mechanisms of the cell cycle disturbance. Results A549 cells were treated with DMSO or chemicals for up to 72 h and periodically sampled for cell cycle analysis, mRNA and protein expression. DMSO treated cells showed a dominant G1 peak in cell cycle at all times examined. Etoposide and CLP both induced G2/M phase arrest yet the former altered the expression of genes functioning at multiple phases, whilst the latter was more effective in inhibiting the expression of genes in G2-M transition. Both etoposide and CLP induced an accumulation of p53 protein and upregulation of p53 transcriptional target genes. Neither BaP nor PhIP had substantial phase-specific cell cycle effect, however, they induced distinctive changes in gene expression. BaP upregulated the expression of CYP1B1 at 6–24 h and downregulated many cell cycle regulatory genes at 48–72 h. By contrast, PhIP increased the expression of many cell cycle regulatory genes. Changes in the expression of key mRNAs were confirmed at protein level. Conclusion Our experiments show that DNA damaging agents with different mechanisms of action induced distinctive changes in the expression pattern of a panel of cell cycle regulatory genes. We suggest that examining the genomic response to chemical exposure provides an exceptional opportunity to understand the molecular mechanism involved in cellular

  10. Deleted in malignant brain tumors 1 (DMBT1) elicits increased VEGF and decreased IL-6 production in type II lung epithelial cells

    Müller, Hanna; Nagel, Christian; Weiss, Christel

    2015-01-01

    between VEGF and IL-6 levels to DMBT1 expression in the lungs of preterm and term infants and in lung epithelial cells in vitro. METHODS: We examined by ELISA VEGF levels in 120 tracheal aspirates of 57 preterm and term infants and tested for correlation with different perinatal factors as well...... as with DMBT1 levels. To examine the effect of DMBT1 on VEGF and IL-6 expression we compared type II lung epithelial A549 cells stably transfected with a DMBT1 expression plasmid (DMBT1+ cells) to A549 cells stably transfected with an empty expression plasmid (DMBT1- cells). The concentrations of VEGF and IL-6...... that DMBT1 promotes VEGF and suppresses IL-6 production in alveolar tissues, which could point to DMBT1 having a possible role in the transition from inflammation to regeneration and being a potentially useful clinical marker....

  11. Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines.

    Tammina, Sai Kumar; Mandal, Badal Kumar; Ranjan, Shivendu; Dasgupta, Nandita

    2017-01-01

    Different sized tetragonal tin oxide nanoparticles (SnO2 NPs) were synthesized using Piper nigrum seed extract at three different calcination temperatures (300, 500, 900°C) and these nanoparticles (NPs) were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS) and Fourier transform infrared spectrophotometry (FT-IR). The optical properties were studied using UV-Vis and photoluminescence (PL) spectrophotometers. The generation of reactive oxygen species (ROS) was monitored by using a fluorescence spectrophotometer and fluorescence microscope. The cytotoxicity of the synthesized SnO2 NPs was checked against the colorectal (HCT116) and lung (A549) cancer cell lines and the study results show that SnO2 NPs were toxic against cancer cell lines depending on their size and dose. IC50 values of SnO2 NPs having average particle sizes of 8.85±3.5, 12.76±3.9 and 29.29±10.9nm are 165, 174 and 208μgL(-1) against HCT116, while these values are 135, 157 and 187μgL(-1) against A549 carcinoma cell lines, respectively. The generated ROS were responsible for the cytotoxicity of SnO2 NPs to the studied cancer cells and smaller size NPs generated more ROS and hence showed higher cytotoxicity over larger size NPs. The results of this study suggest that the synthesized stable nanoparticles could be a potent therapeutic agent towards cancerous cell lines.

  12. Flavonoid Fraction of Orange and Bergamot Juices Protect Human Lung Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Stress

    Nadia Ferlazzo; Giuseppa Visalli; Antonella Smeriglio; Santa Cirmi; Giovanni Enrico Lombardo; Pietro Campiglia; Angela Di Pietro; Michele Navarra

    2015-01-01

    It has been reported that oxidant/antioxidant imbalance triggers cell damage that in turn causes a number of lung diseases. Flavonoids are known for their health benefits, and Citrus fruits juices are one of the main food sources of these secondary plant metabolites. The present study was designed to evaluate the effect of the flavonoid fraction of bergamot and orange juices, on H2O2-induced oxidative stress in human lung epithelial A549 cells. First we tested the antioxidant properties of bo...

  13. Dexmedetomidine Attenuates Oxidative Stress Induced Lung Alveolar Epithelial Cell Apoptosis In Vitro

    Jian Cui

    2015-01-01

    Full Text Available Background. Oxidative stress plays a pivotal role in the lung injuries of critical ill patients. This study investigates the protection conferred by α2 adrenoceptor agonist dexmedetomidine (Dex from lung alveolar epithelial cell injury induced by hydrogen peroxide (H2O2 and the underlying mechanisms. Methods. The lung alveolar epithelial cell line, A549, was cultured and then treated with 500 μM H2O2 with or without Dex (1 nM or Dex in combination with atipamezole (10 nM, an antagonist of α2 receptors. Their effect on mitochondrial membrane potential (Δψm, reactive oxygen species (ROS, and the cell cycle was assessed by flow cytometry. Cleaved-caspases 3 and 9, BAX, Bcl-2, phospho-mTOR (p-mTOR, ERK1/2, and E-cadherin expression were also determined with immunocytochemistry. Results. Upregulation of cleaved-caspases 3 and 9 and BAX and downregulation of Bcl-2, p-mTOR, and E-cadherin were found following H2O2 treatment, and all of these were reversed by Dex. Dex also prevented the ROS generation, cytochrome C release, and cell cycle arrest induced by H2O2. The effects of Dex were partially reversed by atipamezole. Conclusion. Our study demonstrated that Dex protected lung alveolar epithelial cells from apoptotic injury, cell cycle arrest, and loss of cell adhesion induced by H2O2 through enhancing the cell survival and proliferation.

  14. Haemophilia, AIDS and lung epithelial permeability

    O' Doherty, M.J.; Page, C.J.; Harrington, C.; Nunan, T.; Savidge, G. (Haemophilia Centre and Coagulation Research Unit, Department of Nuclear Medicine, Rayne Institute, St. Thomas' Hospital, London (United Kingdom))

    1990-01-01

    Lung {sup 99m}Tc DTPA transfer was measured in HIV antibodypositive haemophiliacs (11 smokers, 26 nonsmokers, 5 patients with Pneumocystis carinii pneumonia (PCP)). Lung {sup 99m}Tc DTPA transfer as a marker of lung epithelial permeability was measured as the half time of transfer (from airspace into blood). This half time was faster in smokers compred to nonsmokers and the transfer curve was monoexponential. In nonsmokers no difference was observed between asymptomatic HIV-positive haemophiliacs and normal subjects, with the exception of the lung bases. At the lung basis in HIV-positive haemophiliac nonsmokers the transfer was faster than in normal individuals, implying increased alveolar permeability. Pneumocystis carinii pneumonia resulted in a rapid transfer of {sup 99m}Tc DTPA (mean T50 of 2 minutes) and the transfer curve was biphasic, confirming previous observations in homosexual HIV antibody-positive patients with PCP. These changes returned to a monoexponential profile by 6 weeks following successful treatment. The DTPA lung transfer study may enable clinicians to instigate therapy for PCP without the need for initial bronchoscopy and provide a noninvasive method for the reassessment of patients should further respiratory signs or symptoms develop. This method is considered to be highly cost-effective in that it obviates the use of factor VIII concentrates required to cover bronchoscopic procedures and, with its early application and ease of use as a follow-up investigation, permits the evaluation of patients on an outpatient basis, thus reducing hospital costs. (au).

  15. THE EFFECT OF IRISQUINONE ON THE GLUTATHIONE SYSTEM AND MRP EXPRESSION OF CISPLATIN-RESISTANT HUMAN LUNG ADENOCARCINOMA CELL LINE (A549DDP)

    LIANG; li

    2001-01-01

    [1] Li DH. A novel radiosensitizer "ANKA" for tumor (Irisquinone) [J]. Chin J Clin Oncol 1999; 26:153.[2]Bordow SB, Haber M, Madafiglio J, et al. Expression of the multidrug resistance-associated protein (MRP) gene correlates with amplification and overexpression of the N-myc oncogene in childhood neuroblastoma [J]. Cancer Res 1994; 54:5036.[3]Cai P, Liu XY, Han FS, et al. Establishment human lung adenocarcinoma cisplatin-resistant cell line A549DDP and the mechanism of its drug resistance [J]. Chin J Clin Oncol 1995; 22:582.[4]Cai P, Liu XY, Wang P. The value of glutathione reductase recycling assay measurement of content of glutathione in human plasma during tumor chemotherapy [J]. Chin J Clin Oncol l994; 21:717.[5]Zhan MC, Liu XY, Cai P, et al. Mechanism of resistance of human cell line A549DDP to cisplatin [J]. Chin J Clin Oncol 1998; 25:726.[6]Wang J, Liu XY, Wu MN, et al. Expression and reversion of drug resistance- and apoptosis- related genes of a DDP-resistant lung adeno-carcinoma cell line A549DDP [J]. Chin J Oncol 1999; 21:422.[7]Ishikawa T. The ATP-dependent glutathione S-conjugate export pump [J]. Treads Biol Sci 1992; 17:463.[8]Goto S, Yoshida K, Morikawa T, et al. Augmen-tation of transport for cisplatin-glutathione adduct in cisplatin-resistant cancer cells [J]. Cancer Res 1995; 55:4297.[9]Fujil R, Mutoh M, Sumizama T, et al. Adenosine triphosphate-dependent transport of leukotriene C4 by membrane vesicles prepared from cis-platinum-resistant human epidermoid carcinoma tumor cells [J]. JNCI 1994; 86:1781.[10]Ishikawa T, Ali-Osman F. Glutathion-associated cis-diamminedichloroplatinum (II) metabolism and ATP-dependent efflux from leukemia cells [J]. J Biol Chem 1993; 268:20116.[11]Ishikawa T, Wrighe CE, Ishizuka H. GS-X pumq is function ally overexpressed in cis-diammine-dichloroplatinum (II)-resistant human leukemia HL-60 cells and downregulated by cell differentiation [J]. J Biol Chem 1994; 269: 29085.

  16. Suppression of Type 1 Insulin-like Growth Factor Receptor Expression by Small Interfering RNA Inhibits A549 Human Lung Cancer Cell Invasion in vitro and Metastasis in Xenograft Nude Mice

    Jianfang QIAN; Aiqiang DONG; Minjian KONG; Zhiyuan MA; Junqiang FAN; Guanyu JIANG

    2007-01-01

    Cancer invasion and metastasis, involving a variety of pathological processes and cytophysiological changes, contribute to the high mortality of lung cancer. The type 1 insulin-like growth factor receptor (IGF-1R), associated with cancer progression and invasion, is a potential anti-invasion and anti-metastasis target in lung cancer. To inhibit the invasive properties of lung cancer cells, we successfully down-regulated IGF-1R gene expression in A549 human lung cancer cells by small interfering RNA (siRNA)technology, and evaluated its effects on invasion-related gene expression, tumor cell in vitro invasion, and metastasis in xenograft nude mice. A549 cells transfected with a plasmid expressing hairpin siRNA for IGF-1R showed a significantly decreased IGF-1R expression at the mRNA level as well as the protein level. In biological assays, transfected A549 cells showed a significant reduction of cell-matrix adhesion,migration and invasion. Consistent with these results, we found that down-regulation of IGR-1R concomitantly accompanied by a large reduction in invasion-related gene expressions, including MMP-2,MMP-9, u-PA, and IGF-1R specific downstream p-Akt. Direct tail vein injections of plasmid expressing hairpin siRNA for IGF-1R significantly inhibited the formation of lung metastases in nude mice. Our results showed the therapeutic potential of siRNA as a method for gene therapy in inhibiting lung cancer invasion and metastasis.

  17. Mimulone-Induced Autophagy through p53-Mediated AMPK/mTOR Pathway Increases Caspase-Mediated Apoptotic Cell Death in A549 Human Lung Cancer Cells

    Lee, Ji-Won; Park, Mi-Hyun; Moon, Hyung-In; Park, Shin-Ji; Baik, Ji-Sue; Kim, Cheorl-Ho; Lee, Young-Choon

    2014-01-01

    Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3) puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC) staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA), pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ) suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α) and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy. PMID:25490748

  18. Mimulone-induced autophagy through p53-mediated AMPK/mTOR pathway increases caspase-mediated apoptotic cell death in A549 human lung cancer cells.

    Hyun-Kyu An

    Full Text Available Anticancer properties and mechanisms of mimulone (MML, C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3 puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA, pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy.

  19. Vaccine research on biological characteristics of human dendritic cells and A-549 lung cancer cell fusion%人树突状细胞与肺癌细胞 A-549融合疫苗生物学特性研究

    王佳烈; 马国强

    2014-01-01

    目的:探讨人树突状细胞(DC)与人肺癌细胞 A-549融合所得疫苗在制备过程中的生物学特性,总结高效制备融合疫苗的方法。方法应用 GM-CSF 和 IL-4优化的方法制备肺癌患者人外周血单核细胞以获得 DC,寻找 DC 制备率最高时间段;同时应用 PKH672GL(绿色荧光)和 PKH262GL(红荧光)分别标记 DC 和肺癌细胞 A-549细胞,筛查最佳的融合比例。结果应用 GM-CSF 和 IL-4优化法进行 DC 制备第7天所得百分率为(66.26±5.13)%,高于其他时间( P <0.05);通过对比不同融合比例 DC 与人肺癌细胞 A-549,显示1∶1时所取得的融合百分率为(35.15±2.16)%,高于其他比例( P <0.05)。结论在 DC 制备过程中制备第7天所得 DC 百分率最高,应选取此时作为提取 DC 的最佳时间;同时 DC 与人肺癌细胞 A-549以1∶1比例相融合所得疫苗百分率最高。%Objective To explore the human dendritic cells (DC) and A-549 in human lung cancer cell fusion vac -cine in the biological characteristics of the process of preparation , summarize the methods of efficient preparation of fusion vac -cine.Methods By using of GM-CSF and IL-4 optimization method for preparing patients with lung cancer in human peripher -al blood mononuclear cells for DC, DC looking for the highest rate of preparation time ; while applying PKH672GL (green flu-orescence) and PKH262GL (red fluorescence) and lung cancer cells were labeled DC and A -549 cells, screening the best blend ratio.Results Application of GM-CSF and IL-4 optimization method for the first 7 days resulting percentage was (66.26 ±5.13)%, higher than at other times ( P <0.05) DC preparation; By comparing different fusion the proportion of DC with human lung cancer cell A -549, showing the percentage of fusion was obtained (35.15 ±2.16)%, higher than the other ratios ( P <0.05).Conclusion The seventh days 'percentage of DC is the best in

  20. Tea extracts inhibit the human lung cancer cells (A549) growth in vitro%茶叶提取物对抗肺癌细胞(A549)体外试验研究

    李伟; 屠幼英

    2006-01-01

    观察表没食子儿茶素没食子酸酯(EGCG)、茶黄素-3、3'-双没食子酸酯(TFDG)、茶黄素(TF)、茶黄素复合物(TFs)、葡萄籽提取物(Grape Seed Extract,GSE)、松树皮提取物(Pine Bark Extract,PBE)、咖啡因(Caf)、槲寄生(VCE)和茶氨酸(The)的体外抗癌活性,通过人肺癌细胞(A549)进行体外试验,结果表明除咖啡因、槲寄生、茶氨酸的作用较小以外其他几种均有很强的促进人肺癌细胞(A549)凋亡的作用,并且EGCG的作用最强,顺序为EGCG、TFs>GSE>PBE、TFDG>TF.用作图法求得EGCG、GSE、PBE、TFDG和TF的IC50值分别为1.01μM、21.91μM、31.01μM、32.87 μM和279.67 μM.

  1. Rapamycin regulates connective tissue growth factor expression of lung epithelial cells via phosphoinositide 3-kinase.

    Xu, Xuefeng; Wan, Xuan; Geng, Jing; Li, Fei; Yang, Ting; Dai, Huaping

    2013-09-01

    The pathogenesis of idiopathic pulmonary fibrosis (IPF) remains largely unknown. It is believed that IPF is mainly driven by activated alveolar epithelial cells that have a compromised migration capacity, and that also produce substances (such as connective tissue growth factor, CTGF) that contribute to fibroblast activation and matrix protein accumulation. Because the mechanisms regulating these processes are unclear, the aim of this study was to determine the role of rapamycin in regulating epithelial cell migration and CTGF expression. Transformed epithelial cell line A549 and normal human pulmonary alveolar or bronchial epithelial cells were cultured in regular medium or medium containing rapamycin. Real time reverse transcriptase polymerase chain reaction was employed to determine CTGF mRNA expression. Western blotting and an enzyme-linked immunosorbent assay were used for detecting CTGF protein. Wound healing and migration assays were used to determine the cell migration potential. Transforming growth factor (TGF)-β type I receptor (TβRI) inhibitor, SB431542 and phosphoinositide 3-kinase (PI3K) inhibitor, LY294002 were used to determine rapamycin's mechanism of action. It was found that treatment of A549 and normal human alveolar or bronchial epithelial cells with rapamycin significantly promoted basal or TGF-β1 induced CTGF expression. LY294002, not SB431542 attenuated the promotional effect of rapamycin on CTGF expression. Cell mobility was not affected by rapamycin in wound healing and migration assays. These data suggest rapamycin has a profibrotic effect in vitro and underscore the potential of combined therapeutic approach with PI3K and mammalian target of rapamycin inhibitors for the treatment of animal or human lung fibrosis.

  2. Effect of siRNA-mediated silencing Bmi-1 gene expression on the proliferation of lung cancer cell line A549 in vitro and in vivo%Bmi-1-siRNA对肺腺癌A549细胞体内外增殖能力的影响

    郑翔宇; 朱杰; 王艺芳; 刘纯青; 刘奔; 杨春辉; 刘丹丹; 孟秀香

    2013-01-01

    背景与目的:原癌基因Bmi-1是多梳基因家族中的一员,能调节正常干细胞和肿瘤干细胞的自我更新能力。近年来发现其在多种恶性肿瘤中表达上调。本文旨在观察Bmi-1基因沉默对肺腺癌A549细胞体内外增殖的影响,并初步探讨其机制。方法:根据本实验室设计的4条针对Bmi-1的小干扰RNA(siRNA)序列,选择一条已经证实最有效的序列作为靶序列和一条随机序列作为阴性对照,构建重组逆转录病毒siRNA表达载体并将其转染入A549细胞中;应用RT-PCR和蛋白质印迹法(Western blot)检测对Bmi-1基因的沉默效果;应用MTT比色法、台盼蓝拒染法及平板克隆形成实验检测Bmi-1-siRNA对A549细胞体外增殖的影响;利用流式细胞仪分析各组细胞的细胞周期;通过裸鼠腋窝皮下接种各组细胞,观察Bmi-1-siRNA对A549细胞在裸鼠体内的致瘤能力的影响;Western blot检测PTEN、p-AKT、cyclin D1、P21、P27蛋白表达。结果:Bmi-1-siRNA有效地沉默了Bmi-1基因mRNA和蛋白的表达;沉默Bmi-1基因的表达能够抑制A549细胞的体内外增殖能力,使干扰组细胞的细胞周期阻滞于G1期;沉默Bmi-1基因的表达后,干扰组细胞中PTEN、P21、P27蛋白增加,p-AKT、cyclin D1蛋白表达降低。结论:Bmi-1-siRNA通过使细胞周期阻滞于G1期来抑制肺腺癌A549的体内外增殖能力,这种抑制作用涉及cyclin D1和p-AKT表达下降以及P21/P27和PTEN的表达上调。%Background and purpose:The pro-oncogene Bmi-1 is a member of the polycomb-group family, can regulation of the proliferation and self-renewal of normal and tumor stem cells. In recent years, Bmi-1 has been found that it is overexpressed in varieties of human malignant tumors. The study aimed to observe the effects of Bmi-1-siRNA on the growth capacity of lung cancer cell line A549 in vivo and in vivo, and explore its mechanism. Methods:The most effective one as a target

  3. Antitumor activity of paclitaxel or/and cisplatin drug delivery system against lung cancer cells A549 in vitro%紫杉醇-顺铂联合药物控释系统对肺腺癌细胞系 A549细胞生长的抑制作用

    崔永; 柳明亮; 吴炳群; 段新春; 龚民

    2014-01-01

    Objective To observe paclitaxel and/ or cisplatin loaded microfiber by electrospinning technique, deliver this system to lung cancer cell A549 in vitro and observe the inhibition of cancer cell and to research effectiveness of controlled drugs delivered by electrospinning technique in antitumor field. Methods Lung cancer cell A549 was cultivated in vitro and incubated on 96-well plates with density of 1×104 per well. The plates were incubated at 37 ℃ and saturated humidity for 24 hours. The plates were taken out and drugs were delivered at different concentrations in each group. There were controlled groups. Plates were incubated for 48 hours. Add in MTT(20 μL/ well) and incubated for 4 hours. The medium containing MTT was discarded thoroughly and 150 μL DMSO was added, gently shaken to get a clear solution 10 ~ 15 min later. OD 490 was determined. Inhibition rate of drugs was calculated. Results Poly propylene carbonate loading paclitaxel and cisplatin controlled delivery system by electrospinning technique could inhibit cancer cell in vitro, stronger than naked paclitaxel and cisplatin and their single drug-loaded microfiber. Poly propylene carbonate loading paclitaxel or cisplatin has stronger inhibition to A549 lung cancer cells than naked paclitaxel or cisplatin. Blank poly propylene carbonate showed no inhibitory effect on the cancer cells. Conclusion Poly propylene carbonate loading paclitaxel and/ or cisplatin by electrospinning technique could inhibit lung cancer cells in vitro significantly. Controlled drug-delivery system by electrospinning technique could implant antitumor drugs locally, reduce toxicity and side effect of chemotherapeutics and have a great application potential.%目的:观察以聚碳酸亚丙酯乳液作为纺丝液,采用静电纺丝技术,负载紫杉醇和顺铂制备的载药纤维控释系统对体外培养的肺腺癌细胞系 A549的抑制率,为进一步的动物实验奠定基础,并探讨用于肺癌治疗的

  4. The combination effect of gemcitabine with mitomycin on human lung cancer A549 cell line in vitro%吉西他滨和丝裂霉素联合应用对人肺癌细胞A549的作用

    赵可新; 李军霞; 姜杉; 王伟刚; 胡建平; 单靖珊

    2011-01-01

    目的 观察吉西他滨和丝裂霉素联合应用对人肺癌细胞A549的抑制效应,并探讨其作用机制.方法 用MTT法检测化疗药物对人肺癌细胞A549生长的抑制作用;流式细胞术(FCM)检测细胞周期分布和凋亡率.结果 (1)丝裂霉素和吉西他滨单独和联合用药可浓度依赖性抑制A549细胞的生长.(2)丝裂霉素和吉西他滨在合用72 h后,当Fa >0.18时,丝裂霉素和吉西他滨合用指数CI均1外,其余均1外,其余均<1.(5)丝裂霉素和吉西他滨单用和合用时对细胞周期和凋亡均有影响.结论 丝裂霉素和吉西他滨单独和联合用药可浓度依赖性抑制A549细胞的生长.不同用药次序和药物浓度比例也影响药物联合作用.%Objective To investigate the combination effect of gemcitabine with mitomycin on human lung cancer A549 cell line in vitro,and to explore its action mechanism. Methods MTT assay was used to analyze the inhibition effect of chemotherapy drugs on the growth of human lung cancer A549 cell line, and the cell cycle and cell apoptosis were detected by flow cytometry. Results The gemcitabine and mitomycin alone or combination application could inhibit the growth of human lung cancer A549 cell line in a time and concentration dependent mode. The combination index (CI) was less than 1 at 72h when Fa >0.18,which indicated that gemcitabine and mitomycin had synergistic effect. However,the combination index was more than 1 at 72h when Fa < 0.18,which indicated that gemcitabine and mitomycin had antagonistic effect. The combination application of gemcitabine with mitomycin could get the highest inhibitory rate, next, the moderate inhibitory rate was got when mitomycin was given prior to gemcitabine,and the lowest inhibitory rate was got when gemcitabine was given prior to mitocymin. The CI was all less than 1 when mitomycin was combined with gemcitabine at different concentrations. The gemcitabine and.mitomycin alone or combination application had

  5. Gracilaria edulis exhibit antiproliferative activity against human lung adenocarcinoma cell line A549 without causing adverse toxic effect in vitro and in vivo.

    Sakthivel, Ravi; Muniasamy, Samuthirapandi; Archunan, Govindaraju; Devi, Kasi Pandima

    2016-02-01

    In the present study, the antiproliferative potential of various solvent extracts of Gracilaria edulis (GE) was tested against various cancer cell lines. In the A549 lung cancer cell line model, GE ethyl acetate extract (GEEA) (100 μg mL(-1)) treated group showed the maximum and significant (P < 0.05) growth inhibition at 48 h. The IC50 value was found to be 24.5 ± 19.1 μg mL(-1) at 48 h. Moreover, a low level of LDH release was observed at 48 h at various concentrations of (40, 60, 80 and 100 μg mL(-1)) GEEA extract-treated group compared to a control group. Changes in the cell morphology and echinoid spikes formation were observed at 48 h. Safety evaluation of GEEA in a non-cancerous liver cell line, PBMC and in Wistar rats positively revealed that the extract did not show any adverse toxic effects. The GEEA extract was partially purified by column chromatography and the active fraction was characterized through LC-MS analysis. Furthermore, HPLC and FT-IR analysis of the active fractions confirmed the presence of phytol, a diterpene compound with potent antiproliferative activity, which positively suggests that the red alga G. edulis contains a potent anticancer active principle.

  6. Green tea induces annexin-I expression in human lung adenocarcinoma A549 cells: involvement of annexin-I in actin remodeling.

    Lu, Qing-Yi; Jin, Yu Sheng; Zhang, Zuo-Feng; Le, Anh D; Heber, David; Li, Frederick P; Dubinett, Steven M; Rao, Jian Yu

    2007-05-01

    Green tea polyphenols exhibit multiple antitumor activities in various in vitro and in vivo tumor models, and the mechanisms of action are not clear. Previously, we found that green tea extract (GTE) regulates actin remodeling in different cell culture systems. Actin remodeling plays an important role in cancer cell morphology, cell adhesion, motility, and invasion. Using proteomic approaches, we found GTE-induced expression of annexin-I, a multifunctional actin binding protein, in these cell lines. In this study, we aimed to further define the functional role of GTE-induced annexin-I expression in actin remodeling, cell adhesion, and motility in lung adenocarcinoma A549 cells. We found that GTE stimulates the expression of annexin-I in a dose-dependent fashion. The GTE-induced annexin-I expression appears to be at the transcription level, and the increased annexin-I expression mediates actin polymerization, resulting in enhanced cell adhesion and decreased motility. Annexin-I specific interference resulted in loss of GTE-induced actin polymerization and cell adhesion, but not motility. In fact, annexin-I specific interference itself inhibited motility even without GTE. Together, annexin-I plays an important role in GTE-induced actin remodeling, and it may serve as a potential molecular target associated with the anticancer activities of green tea.

  7. Inhibitory Effects of Salinomycin on Cell Survival, Colony Growth, Migration, and Invasion of Human Non-Small Cell Lung Cancer A549 and LNM35: Involvement of NAG-1.

    Arafat, Kholoud; Iratni, Rabah; Takahashi, Takashi; Parekh, Khatija; Al Dhaheri, Yusra; Adrian, Thomas E; Attoub, Samir

    2013-01-01

    A major challenge for oncologists and pharmacologists is to develop more potent and less toxic drugs that will decrease the tumor growth and improve the survival of lung cancer patients. Salinomycin is a polyether antibiotic used to kill gram-positive bacteria including mycobacteria, protozoans such as plasmodium falciparum, and the parasites responsible for the poultry disease coccidiosis. This old agent is now a serious anti-cancer drug candidate that selectively inhibits the growth of cancer stem cells. We investigated the impact of salinomycin on survival, colony growth, migration and invasion of the differentiated human non-small cell lung cancer lines LNM35 and A549. Salinomycin caused concentration- and time-dependent reduction in viability of LNM35 and A549 cells through a caspase 3/7-associated cell death pathway. Similarly, salinomycin (2.5-5 µM for 7 days) significantly decreased the growth of LNM35 and A549 colonies in soft agar. Metastasis is the main cause of death related to lung cancer. In this context, salinomycin induced a time- and concentration-dependent inhibition of cell migration and invasion. We also demonstrated for the first time that salinomycin induced a marked increase in the expression of the pro-apoptotic protein NAG-1 leading to the inhibition of lung cancer cell invasion but not cell survival. These findings identify salinomycin as a promising novel therapeutic agent for lung cancer.

  8. Inhibitory Effects of Salinomycin on Cell Survival, Colony Growth, Migration, and Invasion of Human Non-Small Cell Lung Cancer A549 and LNM35: Involvement of NAG-1.

    Kholoud Arafat

    Full Text Available A major challenge for oncologists and pharmacologists is to develop more potent and less toxic drugs that will decrease the tumor growth and improve the survival of lung cancer patients. Salinomycin is a polyether antibiotic used to kill gram-positive bacteria including mycobacteria, protozoans such as plasmodium falciparum, and the parasites responsible for the poultry disease coccidiosis. This old agent is now a serious anti-cancer drug candidate that selectively inhibits the growth of cancer stem cells. We investigated the impact of salinomycin on survival, colony growth, migration and invasion of the differentiated human non-small cell lung cancer lines LNM35 and A549. Salinomycin caused concentration- and time-dependent reduction in viability of LNM35 and A549 cells through a caspase 3/7-associated cell death pathway. Similarly, salinomycin (2.5-5 µM for 7 days significantly decreased the growth of LNM35 and A549 colonies in soft agar. Metastasis is the main cause of death related to lung cancer. In this context, salinomycin induced a time- and concentration-dependent inhibition of cell migration and invasion. We also demonstrated for the first time that salinomycin induced a marked increase in the expression of the pro-apoptotic protein NAG-1 leading to the inhibition of lung cancer cell invasion but not cell survival. These findings identify salinomycin as a promising novel therapeutic agent for lung cancer.

  9. Effects of IL-13 on IL-13Rα2 Expression,Proliferation and Migration in Human Lung Adenocarcinoma A549 Cells%IL-13对 A549细胞 IL-13Rα2表达及增殖和迁移的影响

    陈厚文; 余群芳; 何晓燕; 金旗; 蔡震宇; 熊绍恒; 熊丽霞

    2016-01-01

    目的:探讨 IL-13对人肺腺癌细胞(A549)IL-13受体α2(IL-13Rα2)表达及增殖、迁移的影响。方法采用定量逆转录聚合酶链式反应(qRT-PCR)、Western blot 法检测 IL-13刺激 A549细胞后,检测 IL-13Rα2的转录和蛋白质表达水平;酶联免疫吸附实验(ELISA)检测细胞培养上清液中的可溶型 IL-13受体α2(sIL-13Rα2)含量;流式细胞术(FCM)检测胞膜型 IL-13受体α2(memIL-13Rα2)、胞内型 IL-13受体 Rα2(iIL-13Rα2)的细胞数。MTT 法、Transwell 实验和细胞划痕实验观察 IL-13对 A549细 胞 增 殖 及 迁 移 作 用 的 影 响。结果 A549细 胞 可 表 达IL-13Rα2,并且 IL-13在较低质量浓度(10、20 ng·mL-1)时能上调 A549细胞 IL-13Rα2的表达水平,而对增殖和迁移无显著影响;在较高质量浓度(50、100 ng·mL-1)时对 IL-13Rα2的上调作用不明显,但能促进细胞增殖和迁移。另外低质量浓度 IL-13(10、20 ng·mL-1)对 IL-13Rα2整体水平、sIL-13Rα2、memIL-13Rα2以及 iIL-13Rα2的表达均有不同程度的上调(P <0.05);高质量浓度 IL-13(50、100 ng·mL-1)刺激条件下 IL-13Rα2整体水平的上调不明显且不再有剂量依赖性,sIL-13Rα2水平无明显改变、memIL-13Rα2表达略有增加、iIL-13Rα2水平明显下调(P <0.05)。结论IL-13对人肺腺癌 A549细胞 IL-13Rα2表达水平及增殖、迁移的影响具有双相性和差异性;IL-13Rα2在肺腺癌 A549中发挥抑制 IL-13促细胞增殖和迁移的作用。%ABSTRACT:Objective To investigate the effects of interleukin 13(IL-13)on IL-13 receptor α2 (IL-13Rα2),proliferation and migration in human lung adenocarcinoma A549 cells.Methods The expression of IL-13Rα2 mRNA and protein in A549 cells was determined after IL-13 stimulation by qRT-PCR and Western blot,respectively.The content of soluble IL-13Rα2(sIL-13Rα2)in cell culture supernatant was measured by ELISA

  10. Down-regulation of the DNA-repair endonuclease 8-oxo-guanine DNA glycosylase 1 (hOGG1) by sodium dichromate in cultured human A549 lung carcinoma cells.

    Hodges, N J; Chipman, J K

    2002-01-01

    Hexavalent chromium is a genotoxic human pulmonary carcinogen that elevates DNA oxidation, apparently through the generation of reactive DNA-damaging intermediates including Cr(V), Cr(IV) and reactive oxygen species. We tested the hypothesis that elevation of DNA oxidation may also be through inhibition of the expression of the repair glycosylase for 8-oxo deoxyguanine (hOGG1) in cultured A549 human lung epithelial cells. Treatment with sodium dichromate (0-100 microM, 16 h) resulted in a concentration-dependent decrease in the levels of OGG1 mRNA as measured by both RT-PCR and RNase protection assay. Sodium dichromate at 25 microM and above gave a marked reduction of OGG1 mRNA expression which was not seen at 1 microM and below. No effect on the expression of the apurinic endonuclease hAPE or the house-keeping gene GAPDH was observed at any of the concentrations of sodium dichromate investigated. Treatment of cells with the pro-oxidant H(2)O(2) (0-200 microM) for 16 h had no detectable effect on the levels of OGG1 mRNA or protein expression suggesting that the effect of sodium dichromate is not mediated by H(2)O(2). Western blotting demonstrated that sodium dichromate (100 microM; 16 h and >25 microM; 28 h) markedly reduced levels of OGG1 protein in nuclear cell extracts. Additionally, treatment of cells with sodium dichromate (>25 microM, 28 h) resulted in a concentration-dependent decrease in the ability of nuclear extracts to nick a synthetic oligonucleotide containing 8-oxo deoxyguanine (8-oxo dG). We conclude that the elevation of 8-oxo dG levels observed in A549 cells treated with sodium dichromate may be, at least in part, due to a reduced capacity to repair endogenous and hexavalent chromium-induced 8-oxo dG.

  11. Combination therapy in A549 cells

    Yuan Menghui [Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an 710038 (China); Wang Jing [Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an 710038 (China)], E-mail: wangjing_fmmu@yahoo.com.cn; Deng Jinglan; Wang Zhe; Yang Weidong; Li Guoquan; Ren Bingxiu [Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an 710038 (China)

    2010-04-15

    Background and aim: We investigated the anti-tumor effect induced by the combination of the radiotherapeutic agent {sup 131}I-RC-160 and the prodrug 5-FC in human non-small cell lung cancer (NSCLC) A549 cells that were co-expressing the human somatostatin receptor 2 gene (hSSTR2) and E. coli cytosine deaminase gene (CD). Methods: We cloned both hSSTR2 and CD into a bicistronic mammalian expression plasmid and stably transfected it into A549 cells (pCIS-A549 cells). After antibiotic selection, SSTR expression in stable clones was determined by reverse transcription and polymerase chain reaction (RT-PCR), Western blot, flow cytometry and immunofluorescence analyses. To assess the in vivo targeting efficiency of the 'engineered' A549 cells, the cells were subcutaneously injected into nude mice and the biodistribution of {sup 99m}Tc-RC-160 was assessed at different time points. The tumor inhibitory effects of {sup 131}I-RC-160 and/or 5-FC were evaluated by measurement of tumor growth and immunohistochemical analysis. Results: Multiple analyses demonstrated the successful expression of hSSTR2 in A549 cells. In vivo radioimaging revealed specific targeting of RC-160 to the tumors derived from pCIS-A549 cells when compared to those from control A549 cells. The tumor inhibitory rate of pCIS-A549 tumors in the {sup 131}I-RC-160 plus 5-FC-treated group was significantly higher than that in the single agent-treated group, control group and control tumors. Conclusion: Co-expression of the hSSTR2 and CD genes in tumor cells can selectively sensitize these cells to the infra-additive effects of radioisotope-labeled RC-160 and 5-FC in vivo. This approach offers a potential therapeutic strategy for the treatment of lung cancer.

  12. Overexpression of the lung cancer-prognostic miR-146b microRNAs has a minimal and negative effect on the malignant phenotype of A549 lung cancer cells.

    Santosh Kumar Patnaik

    Full Text Available INTRODUCTION: Expression levels of miR-146b-5p and -3p microRNAs in human non-small cell lung cancer (NSCLC are associated with recurrence of the disease after surgery. To understand this, the effect of miR-146b overexpression was studied in A549 human lung cancer cells. METHODS: A549 cells, engineered with lentiviruses to overexpress the human pre-miR-146b precursor microRNA, were examined for proliferation, colony formation on plastic surface and in soft agar, migration and invasiveness in cell culture and in vivo in mice, chemosensitivity to cisplatin and doxorubicin, and global gene expression. miR-146b expressions were assessed in microdissected stroma and epithelia of human NSCLC tumors. Association of miR-146b-5p and -3p expression in early stage NSCLC with recurrence was analyzed. PRINCIPAL FINDINGS: A549 pre-miR-146b-overexpressors had 3-8-fold higher levels of both miR-146b microRNAs than control cells. Overexpression did not alter cellular proliferation, chemosensitivity, migration, or invasiveness; affected only 0.3% of the mRNA transcriptome; and, reduced the ability to form colonies in vitro by 25%. In human NSCLC tumors, expression of both miR-146b microRNAs was 7-10-fold higher in stroma than in cancerous epithelia, and higher miR-146b-5p but lower -3p levels were predictive of recurrence. CONCLUSIONS: Only a minimal effect of pre-miR-146b overexpression on the malignant phenotype was seen in A549 cells. This could be because of opposing effects of miR-146b-5p and -3p overexpression as suggested by the conflicting recurrence-predictive values of the two microRNAs, or because miR-146b expression changes in non-cancerous stroma and not cancerous epithelia of tumors are responsible for the prognostic value of miR-146b.

  13. 艾烟冷凝物对肺泡Ⅱ型上皮细胞A549活性及凋亡的影响%Influences of condensate of moxa smoke on viability and apoptosis of type Ⅱ alveolar epithelial cells (A549)

    胡海; 赵百孝; 邬继红; 杨陟华; 韩丽; 蔡虹; 朱茂祥

    2012-01-01

    目的 观察艾烟冷凝物(PM10采取人体可吸入的艾烟部分)对肺泡Ⅱ型上皮细胞(A549)活性及凋亡的影响.方法 体外培养A549细胞,加入不同浓度的艾烟冷凝物,应用四甲基偶氮唑蓝(MTT)法、荧光显微镜来观察其对A549的细胞活性以及细胞凋亡的影响.结果 MTT法结果显示:与对照组相比,A549的细胞存活率随浓度和时间发生改变,具有明显的时间浓度依赖性;0.12g/L浓度的艾烟冷凝物作用于细胞12h后可显著提高细胞存活率(P=0.005<0.01);荧光显微镜下观察发现艾烟冷凝物可以引起细胞发生凋亡,且具有浓度依赖性.结论 A549细胞随着艾烟冷凝物浓度的增加、刺激时间的增加而引起细胞活力逐渐下降,表明一定浓度的艾烟冷凝物和一定的刺激时间对细胞具有毒性作用;一定浓度的艾烟冷凝物在较短刺激时间内具有细胞增殖作用,故认为艾烟对细胞的增殖作用可能是艾烟发挥有效作用的重要因素之一;能够引起细胞的凋亡可能是毒性作用的重要因素之一.%Objective To observe the influences of condensate of moxa smoke (PM10, taken inhalable portion of moxa smoke) on viability and apoptosis of type Ⅱ alveolar epithelial cells ( A549 ). Methods A546 cells were cultured in vitro and then condensate of moxa smoke was added in different concentration. The influences of condensate of moxa smoke on the viability and apoptosis of A546 cells were observed by applying MTT assay and fluorescence microscope. Results The results of MTT assay showed that compared with control group, the survival rate of A546 cells changed with the changes of concentration and time showing an obvious time-dependence and a concentration-dependence. The condensate in the dose of 0. 12 mg/mL significantly improved the survival rate of A546 cells after acting on the cells for 12 hours (P =0. 005 <0. 01). The observation of fluorescence microscope showed that the apoptosis of A

  14. Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line.

    Majeed, Shahnaz; Abdullah, Mohd Syafiq Bin; Dash, Gouri Kumar; Ansari, Mohammed Tahir; Nanda, Anima

    2016-08-01

    Biosynthesis of silver and other metallic nanoparticles is one of the emerging research area in the field of science and technology due to their potentiality, especially in the field of nano-biotechnology and biomedical sciences in order to develop nanomedicine. In our present study, Penicillium decumbens (MTCC-2494) was brought from Institute of Microbial Technology (IMTECH) Chandigarh and employed for extracellular biological synthesis of silver nanoparticles. Ag-NPs formation was appeared with a dark brown color inside the conical flask. Characterization of Ag-NPs were done by UV-Spectrophotometric analysis which showed absorption peak at 430 nm determines the presence of nanoparticles, Fourier transform infrared (FT-IR) spectroscopic analysis, showed amines and amides are the possible proteins involved in the stabilization of nanoparticles as capping agent. Atomic force Microscopy (AFM) confirmed the particle are spherical, size was around 30 to 60 nm and also the roughness of nanoparticles. Field emission scanning electron microscopy (FE-SEM) showed the topology of the nanoparticles and were spherical in shape. The biosynthesis process was found fast, ecofriendly and cost effective. Nano-silver particle was found to have a broad antimicrobial activity and also it showed good enhancement of antimicrobial activity of Carbenicillin, Piperacillin, Cefixime, Amoxicillin, Ofloxacin and Sparfloxacin in a synergistic mode. These Ag-NPs showed good anti-cancer activity at 80 μg·mL(-1)upon 24 hours of incubation and toxicity increases upon 48 hours of incubation against A-549 human lung cancer cell line and the synergistic formulation of the antibiotic with the synthesized nanoparticles was found more effective against the pathogenic bacteria studied.

  15. Sulforaphane derived from broccoli inhibit proliferation and invasion of lung cancer A549 cells in vitro%西兰花提取物萝卜硫素抑制肺癌细胞的生长和侵袭

    贾侃; 贺云冲; 洪姣; 黄春琦; 任军; 许健

    2014-01-01

    Sulforaphane was a multifunction compound derived from brassicaceous vegetable such as broccoli, reports showed that Sulforaphane provided with effection of antitumor and antioxidant. Lung cancer is an aggressive malignancy with a tendency of early distant metastases, the antitumor function of sulforaphane was corroborated by numerous lines of evidence, but the anticancer mechanism of this compound has not been wel obsvered. In this work, we analyzed vitality and invasion of A549 cels treated with sulforaphane by cellcounting kit (CCK8) and transwel, then measure the half maximal (50%) inhibitory concentration (IC50) of sulforaphane for A549 cels. The cels cycle, apoptosis and DNA fragment were analyzed using Flow Cytometry Analysis and agarose electrophoresis, TGF-βand NF-κB were analyzed by western blot after treatment with 3μg/mL sulforaphane. Results showed that A549 cels proliferate and invade were inhibited by sulforaphane with a dose-dependent manner, IC50 of sulforaphane was 3μg/mL, and the cellcycle were arrested at G2/M phase. 3μg/mL sulforaphane induced apoptosis , DNA fragment, decreased the expression of TGF-βand NF-κB in A549 cels. Our results pointed out that sulforaphane inhibited proliferation and invasion of lung cancer A549 cels in vitro, decreased the expression of inflammation proteins, maybe a novel chemotherapy for lung cancer.%萝卜硫素是从十字花科蔬菜中提取的多功能物质,研究已证实其具有抗癌、抗氧化等功效。肺癌是恶性程度高、具有转移倾向的恶性肿瘤,萝卜硫素抗肺癌的机制尚不是十分清楚。本研究通过CCK-8和transwel侵袭实验分析初步判断萝卜硫素对A549肺癌细胞活性和转移侵袭的影响,计算体外干预A549的IC50,流式细胞学分析IC50浓度萝卜硫素对细胞周期和凋亡的影响,电泳分析DNA片段化改变。结果显示A549细胞活性对萝卜硫素剂量依赖性下降,萝卜硫素作用于A549细胞的IC50为3μg

  16. Xanthatin Induces Cell Cycle Arrest at G2/M Checkpoint and Apoptosis via Disrupting NF-κB Pathway in A549 Non-Small-Cell Lung Cancer Cells

    Yin Lu

    2012-03-01

    Full Text Available Xanthatin, a natural sesquiterpene lactone, has significant antitumor activity against a variety of cancer cells, yet little is known about its anticancer mechanism. In this study, we demonstrated that xanthatin had obvious dose-/time-dependent cytotoxicity against the human non-small-cell lung cancer (NSCLC cell line A549. Flow cytometry analysis showed xanthatin induced cell cycle arrest at G2/M phase. Xanthatin also had pro-apoptotic effects on A549 cells as evidenced by Hoechst 33258 staining and annexin V-FITC staining. Mechanistic data revealed that xanthatin downregulated Chk1, Chk2, and phosphorylation of CDC2, which contributed to the cell cycle arrest. Xathatin also increased total p53 protein levels, decreased Bcl-2/Bax ratio and expression of the downstream factors procaspase-9 and procaspase-3, which triggered the intrinsic apoptosis pathway. Furthermore, xanthatin blocked phosphorylation of NF-κB (p65 and IκBa, which might also contribute to its pro-apoptotic effects on A549 cells. Xanthatin also inhibited TNFa induced NF-κB (p65 translocation. We conclude that xanthatin displays significant antitumor effects through cell cycle arrest and apoptosis induction in A549 cells. These effects were associated with intrinsic apoptosis pathway and disrupted NF-κB signaling. These results suggested that xanthatin may have therapeutic potential against NSCLC.

  17. 曲古抑菌素A下调人肺腺癌细胞A549内IDO表达的分子机制%Molecular Mechanism of TSA-induced Down-regulation of IDO in Human Lung Adenocarcinoma Cell Line A549

    李玲玲; 江冠民; 杜军

    2011-01-01

    [Objective] To investigate the molecular mechanism of TSA-induced indoleamine 2, 3-dioxygenase (IDO) down-regulation in human lung adenocarcinoma cell line A549. [Methods] The roles of TSA on the IFN-7 induced IDO expression in A549 cell, the phosphorylation of signal transducer and activator of transcription 1 (STAT1) and the activation of interferon regulatory factor 1 (IRF-l)were examined by western blotting. Effect of TSA on STAT1 nuclear translocation was observed by a confocal laser-scanning microscope. The luciferase activity of the activation of 7-interferon activated sites (GAS) , interferon stimulated response element (ISRE) and nuclear factor-kB (NF-kB) was measured by dual luciferase reporter assay system. [Results] TSA concentration-dependently reduced IFN-7 induced IDO expression, inhibited STAT1 phosphorylation at Tyr-701 and nuclear translocation in A549 cell. Dual luciferase reporter assay and Western blotting results showed that TSA blocked IFN-"y -induced activation of GAS, ISRE, and IRF-1, but not NF-kB. [Conclusions] TSA can down-regulate IFN-7 induced IDO expression in A549 cell, which may be associated with the repression of phosphorylation and nuclear translocation of STAT1 and its binding to GAS.%[目的]研究曲古抑菌素A (TSA)抑制γ干扰素(IFN-γ)诱导的人A549细胞内吲哚胺2,3-双加氧酶(IDO)表达的分子机制.[方法]采用蛋白质免疫印迹技术检测TSA在IFN-γ诱导的A549细胞中IDO的表达、信号转导及转录激活子1 (STAT1)的磷酸化和干扰素调节因子1(IRF-1)的激活等过程中的作用,在激光共聚焦显微镜下观察TSA对STAT1核转位的影响,利用双荧光素酶报告基因系统检测TSA对γ-干扰素激活位点(GAS)、干扰素刺激应答元件(ISRE)和核因子-κB(NF-κB)的激活的影响.[结果]TSA以浓度依赖方式下调A549细胞中IFN-γ诱导的IDO表达,并能明显抑制STAT1第701位酪氨酸的磷酸化和STAT1的核转位.双荧光

  18. [SIRT1 Influences the Sensitivity of A549 Non-small Cell Lung Cancer Cell Line to 
Cisplatin via Modulating the Noxa Expression].

    Cao, Bin; He, Xiaofeng; Wang, Wengong; Shi, Minke

    2016-02-01

    背景与目的 非小细胞肺癌的顺铂耐药是常见的临床现象,严重制约了患者的化疗效果,是亟待解决的问题。SIRT1和Noxa的表达变化影响肿瘤细胞对化疗药物的敏感性。本研究旨在研究SIRT1表达对非小细胞肺癌对顺铂的敏感性的影响,并探讨其涉及Noxa表达的机制,以求为提高非小细胞肺癌细胞对顺铂敏感性提供希望。方法 利用实时荧光定量PCR和Western blot分析A549细胞及顺铂耐药的A549/DDP细胞SIRT1及Noxa mRNA和蛋白水平的表达差异。利用siRNA干扰技术抑制A549/DDP细胞的SIRT1表达,进而使用Cell Titer Blue试验、流式细胞术从细胞增殖、细胞周期和细胞凋亡方面分析SIRT1沉默对A549/DPP细胞顺铂敏感性的影响。同时利用实时荧光定量PCR和Western blot分析SIRT1抑制对A549/DPP细胞Noxa表达的影响。结果 A549细胞和A549/DDP细胞对顺铂的敏感性有显著差异,与A549细胞相比,A549/DDP细胞的SIRT1表达较高,但Noxa表达较低。使用siRNA抑制A549/DPP细胞的SIRT1表达后,与未抑制SIRT1细胞相比,4 μg/mL顺铂处理后的细胞存活率降低,G2期/M期阻滞比例增加,凋亡率提高。同时,SIRT1沉默导致A549/DPP细胞的Noxa表达增加。结论 较高的SIRT1可能引起A549细胞对顺铂的耐药性,抑制SIRT1可以提高A549/DDP细胞对顺铂的敏感性,其机制可能涉及SIRT1对Noxa的调节。.

  19. Uranium induces apoptosis in lung epithelial cells

    Periyakaruppan, Adaikkappan; Sarkar, Shubhashish; Sadanandan, Bindu; Thomas, Renard; Wilson, Bobby L. [Texas Southern University, Environmental Toxicology Program, Department of Chemistry, Houston, TX (United States); Ravichandran, Prabakaran; Sharma, Chidananda S.; Ramesh, Vani; Hall, Joseph C.; Ramesh, Govindarajan T. [Norfolk State University, Molecular Toxicology Laboratory, Department of Biology, Center for Biotechnology and Biomedical Sciences, Norfolk, VA (United States)

    2009-06-15

    Uranium is a naturally occurring radioactive material present everywhere in the environment. It is toxic because of its chemical or radioactive properties. Uranium enters environment mainly from mines and industry and cause threat to human health by accumulating in lungs as a result of inhalation. In our previous study, we have shown the effectiveness of antioxidant system response to the oxidative stress induced by uranyl acetate (UA) in rat lung epithelial (LE) cells. As part of our continuing studies; here, we investigated the mechanism underlying when LE cells are exposed to different concentration of UA. Oxidative stress may lead to apoptotic signaling pathways. LE cells treated with 0.25, 0.5 and 1 mM of UA results in dose and time-dependent increase in activity of both caspases-3 and -8. Increase in the concentration of cytochrome-c oxidase in cytosol was seen in LE cells treated with 1 mM UA as a result of mitochondria membrane permeability. The cytochrome-c leakage may trigger the apoptotic pathway. TUNEL assay performed in LE cells treated with 1 mM of UA showed significant incorporation of dNTPs in the nucleus after 24 h. In the presence of the caspase inhibitors, we observed the significant decrease in the activity of caspases-8 and -3 in 0.5 and 1 mM UA-treated LE cells. (orig.)

  20. Formaldehyde induces apoptosis through decreased Prx 2 via p38 MAPK in lung epithelial cells.

    Lim, Seul Ki; Kim, Jong Chun; Moon, Chang Jong; Kim, Gye Yeop; Han, Ho Jae; Park, Soo Hyun

    2010-05-27

    Formaldehyde (FA) is an important substance that induces sick house syndrome and diseases, such as asthma and allergies. Oxidative stress is involved in the development of respiratory disease, and diverse antioxidants may protect respiratory tract cells from apoptosis. Peroxiredoxin is a pivotal endogenous antioxidant. In the present study, FA induced death in A549 cells, a lung epithelial cell line, in a dose-dependent manner. FA also increased lipid peroxide formation (LPO) in A549 cells, suggesting a role for oxidative stress. Additionally, FA decreased peroxiredoxin 2 (Prx 2) protein levels after a 24 or 48h exposure to FA. We also examined whether the FA-induced decrease in Prx 2 was associated with apoptosis. Prx 2 overexpression protected against FA-induced cell apoptosis but not necrosis. Prx 2 overexpression blocked FA-induced increase in Bax, a pro-apoptotic molecule, and a decrease in Bcl-2, an anti-apoptotic molecule. Prx 2 overexpression also protected against FA-induced activation of some special apoptosis-associated proteins [caspase-3, caspase-9, and polypeptide poly (ADP-ribose) polymerase (PARP)]. Furthermore, we examined the signaling molecules involved in the FA-induced decrease in Prx 2 expression. The FA-induced decrease in Prx 2 and increase in cell apoptosis was restored by treatment with SB203580 [a p38 mitogen activated protein kinase (MAPK) inhibitor], but not by SP600125 [a c-jun-N-terminal kinase (JNK) inhibitor]. Also, FA-induced events were blocked by treatment with p38 siRNA, but not by scrambled siRNA. Indeed, FA increased p38 MAPK activation, suggesting a role for p38 MAPK in FA action. In conclusion, FA mediated apoptosis in lung epithelial cells by decreasing Prx 2 via p38 MAPK.

  1. Migration-stimulating factor (MSF) is over-expressed in non-small cell lung cancer and promotes cell migration and invasion in A549 cells over-expressing MSF

    Deng, Xuefeng, E-mail: dengxfdoctor@hotmail.com [Department of Thoracic Surgery, Tangdu Hospital, Forth Military Medical University (China); Department of Cardio-thoracic Surgery, Affiliated Hospital of Academy of Military Medical Sciences (China); Ma, Qunfeng [Department of Cardio-thoracic Surgery, Affiliated Hospital of Academy of Military Medical Sciences (China); Zhang, Bo [Department of Pathology, Affiliated Hospital of Academy of Military Medical Sciences (China); Jiang, Hong [College of Life Sciences and Bioengineering, Beijing Jiaotong University (China); Zhang, Zhipei; Wang, Yunjie [Department of Thoracic Surgery, Tangdu Hospital, Forth Military Medical University (China)

    2013-10-15

    Migration-stimulating factor (MSF), an oncofetal truncated isoform of fibronectin, is a potent stimulator of cell invasion. However, its distribution and motogenic role in non-small cell lung cancer (NSCLC) have never been identified. In this study, real-time PCR and immunohistochemical staining (IHC) were performed to detect MSF mRNA and protein levels in tumor tissues and matched adjacent tumor-free tissues. Furthermore, to examine the effect of MSF on invasiveness, MSF was upregulated in A549 cells. The invasiveness and viability of A549 cells were then determined using a transwell migration assay and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assays, respectively. The expression level of MSF in NSCLC tissue was markedly higher than in matched adjacent tumor-free tissue. Additionally, the level of MSF protein expression in stage III and IV NSCLC samples was higher than in stage I and II NSCLC samples. More importantly, we also demonstrated that migration and invasion of A549 cells increased substantially after upregulating MSF, although proliferation remained unchanged. Meanwhile, we found no correlation between increasing motility and invasiveness of MSF-overexpressing cells and expression levels and activities of matrix metalloprotease MMP-2 and MMP-9. Our current study shows that MSF plays a role in migration and invasion of A549 cells and suggests that MSF may be a potential biomarker of NSCLC progression. - Highlights: • MSF expression was upregulated in NSCLC and correlated with TNM stages. • MSF may be a new biomarker for NSCLC progression. • MSF promoted migration and invasion in A549 cells, independent of MMP-2/MMP-9 expression.

  2. Quantitative proteome profiling of respiratory virus-infected lung epithelial cells.

    van Diepen, Angela; Brand, H Kim; Sama, Iziah; Lambooy, Lambert H J; van den Heuvel, Lambert P; van der Well, Leontine; Huynen, Martijn; Osterhaus, Albert D M E; Andeweg, Arno C; Hermans, Peter W M

    2010-08-05

    Respiratory virus infections are among the primary causes of morbidity and mortality in humans. Influenza virus, respiratory syncytial virus (RSV), parainfluenza (PIV) and human metapneumovirus (hMPV) are major causes of respiratory illness in humans. Especially young children and the elderly are susceptible to infections with these viruses. In this study we aim to gain detailed insight into the molecular pathogenesis of respiratory virus infections by studying the protein expression profiles of infected lung epithelial cells. A549 cells were exposed to a set of respiratory viruses [RSV, hMPV, PIV and Measles virus (MV)] using both live and UV-inactivated virus preparations. Cells were harvested at different time points after infection and processed for proteomics analysis by 2-dimensional difference gel electrophoresis. Samples derived from infected cells were compared to mock-infected cells to identify proteins that are differentially expressed due to infection. We show that RSV, hMPV, PIV3, and MV induced similar core host responses and that mainly proteins involved in defense against ER stress and apoptosis were affected which points towards an induction of apoptosis upon infection. By 2-D DIGE analyses we have gathered information on the induction of apoptosis by respiratory viruses in A549 cells.

  3. Ablation of lung epithelial cells deregulates FGF-10 expression and impairs lung branching morphogenesis.

    Kim, Namjin; Yamamoto, Hiroaki; Pauling, Michelle Haynes; Lorizio, Walter; Vu, Thiennu H

    2009-01-01

    Epithelial-mesenchymal interactions are essential for tissue patterning during organogenesis. Distal lung epithelium and its adjacent mesenchyme comprise the epithelial-mesenchymal signaling unit that regulates lung branching morphogenesis. Tissue recombination experiments have demonstrated the importance of mesenchymal signals in inducing lung epithelial differentiation and branching, but the role of the epithelium in regulating mesenchymal signals has not been well characterized. Using transgenic mice, we ablated distal lung epithelial cells during lung development by inducing the expression of a constitutively active proapoptotic Bax protein under the surfactant protein C (SP-C) promoter. We found that epithelial cell ablation results in impaired lung branching morphogenesis, which progresses to emphysematous airspaces in the adults. Mesenchymal expression of fibroblast growth factor 10 (Fgf-10), whose strict spatial and temporal expression is critical for proper lung branching morphogenesis, is disrupted and loses its localized pattern. Interestingly, the expression of sonic hedgehog (Shh), an epithelial gene known to modulate Fgf-10 expression, is unchanged, indicating the existence of other distal epithelial signals that regulate mesenchymal Fgf-10expression. We propose that distal SP-C expressing lung epithelial cells provide essential signals for the downregulation of Fgf-10 expression in the distal mesenchyme during lung development. 292:123-130, 2009. (c) 2008 Wiley-Liss, Inc.

  4. Tumor growth influence of rl-RVG on lung adenocarcinoma A549 transfected in vivo%稳定表达狂犬病毒糖蛋白的重组新城疫病毒对人肺腺癌A549细胞荷瘤鼠瘤体生长的影响

    贾丽娟; 刘洋; 张金; 梁冰; 张杰; 严玉兰

    2014-01-01

    Objective:To explore the effects of recombinant avirulent newcastle disease virus LaSota strain expressing the rabies virus glycoprotein (rl-RVG) on the proliferation of A549 lung adenocarcinoma tumor-bearing mice and potential immune mechanism.Methods:A tumor model of human A549 into nude mice was constructed and divided randomly into rl-RVG group,newcastle disease virus (NDV) group and control group.The mice in each group received rl-RVG,NDV and PBS injection,respectively,twice a week,for 3 weeks.The growth of tumor were recorded,and the expression of NDV and rabies virus glycoprotein (RVG) were assayed by immunohistochemistry.The pathological change of the tissues were observed by HE staining.The number of NK (CD3-CD49 +) cells were detected by flow cytometry.Results:Compared with the control group,the growth of tumor in rl-RVG group and NDV group were inhibited more effectively.The subcutaneous tumor necrosis were more evident and there were much more multinucleated giant cells in the spleen tissue of the mice in rl-RVG group and NDV group.Immunohistochemical analysis showed that RVG protein was expressed in rl-RVG group and NDV protein was expressed in both rl-RVG group and NDV group.The number of NK cells was significantly higher in rl-RVG group and NDV group than that in the control group,and in rl-RVG group it was more higher than that in NDV group.Conclusion:Recombinant rl-RVG transfected successfully,and effectively inhibited the growth of A549 lung adenocarcinoma by mechanism which activating cell immune response.%目的:探讨重组稳定表达狂犬病毒糖蛋白的新城疫病毒疫苗(recombinant avirulent newcastle disease virus LaSota strain expressing the rabies virus glycoprotein,rl-RVG)对人肺腺癌A549细胞荷瘤鼠的生长抑制作用及其可能的免疫机制.方法:建立A549荷瘤鼠模型并随机分为rl-RVG组、新城疫病毒(NDV)组和对照组,每组10只,分别于瘤体注射rl-RVG,NDV和PBS,每周2次,共3周.测量3组瘤

  5. Cotton dust-mediated lung epithelial injury.

    Ayars, G H; Altman, L C; O'Neil, C E; Butcher, B T; Chi, E Y

    1986-01-01

    To determine if constituents of cotton plants might play a role in byssinosis by injuring pulmonary epithelium, we added extracts of cotton dust, green bract, and field-dried bract to human A549 and rat type II pneumocytes. Injury was measured as pneumocyte lysis and detachment, and inhibition of protein synthesis. Extracts of cotton dust and field-dried bract produced significant dose- and time-dependent lysis and detachment of both target cells, while green bract extract was less damaging. ...

  6. Study on proliferation inhibition and its mechanism of astragalus polysaccharide combined with cisplatin on human lung cancer A549 cells%黄芪多糖联合顺铂对人肺癌A549细胞增殖抑制作用及其机制研究

    李蓉; 章运生; 谭小武

    2015-01-01

    Objective To observe the inhibitory effects of astragalus polysaccharides and cisplatin on the cell prolifera-tion,cycle,apoptosis induction of human lung cancer A549 cells,and initially discuss its action mechanism. Methods The ef-fects on cell proliferation of astragalus polysaccharides ,cisplatin and their combinations was detected by MTT assay. It analyzed the impact of cell cycle and apoptosis rate by flow cytometry. The A549 human lung cancer cells Bax ,Bcl-2 and Caspase-3 gene expression levels by reverse transcription polymerase chain reaction (RT-PCR) and Western blotting. Results Astragalus polysac-charide,cisplatin and two-drug combination on inhibition of proliferation of human lung cancer A549 cells had a time-concentra-tion-dependent proliferation. Compared with the negative control group ,the cell cycle blockage in G1 phase after astragalus polysaccharide action while the cell cycle blockage in S phase after cisplatin action and the application of two-drug combination appeared cell cycle blockage by flow cytometry both in G1 and S phases(P<0.01). The expression of Bax,Caspase-3 mRNA and pro-tein were upgraded in the expression of the two-drug combination group and lowered in Bcl-2 mRNA protein compared to the nega-tive control and monotherapy group. The difference had statistical significance (P<0.05). Conclusion The astragalus polysaccharide combined with cisplatin may strengthen human lung cancer A549 cells to enhance the pro-apoptosis,whose mechanism is associ-ated with upgrading the expression of Bax ,Caspase-3 and lowering the expression of Bcl-2mRNA.%目的:观察黄芪多糖与顺铂对人肺癌A549细胞增殖、细胞周期、诱导凋亡的影响,并对其作用机制进行初步探讨。方法采用四甲基偶氮唑盐法检测黄芪多糖、顺铂及两药联合对细胞增殖的影响;用流式细胞仪分析对细胞周期及凋亡率的影响;用反转录聚合酶链反应(RT-PCR)和Western blotting法检测对人肺癌A

  7. Proteomic response to 5,6-dimethylxanthenone 4-acetic acid (DMXAA, vadimezan) in human non-small cell lung cancer A549 cells determined by the stable-isotope labeling by amino acids in cell culture (SILAC) approach.

    Pan, Shu-Ting; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Yang, Yin-Xue; Wang, Dong; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    5,6-Dimethylxanthenone 4-acetic acid (DMXAA), also known as ASA404 and vadimezan, is a potent tumor blood vessel-disrupting agent and cytokine inducer used alone or in combination with other cytotoxic agents for the treatment of non-small cell lung cancer (NSCLC) and other cancers. However, the latest Phase III clinical trial has shown frustrating outcomes in the treatment of NSCLC, since the therapeutic targets and underlying mechanism for the anticancer effect of DMXAA are not yet fully understood. This study aimed to examine the proteomic response to DMXAA and unveil the global molecular targets and possible mechanisms for the anticancer effect of DMXAA in NSCLC A549 cells using a stable-isotope labeling by amino acids in cell culture (SILAC) approach. The proteomic data showed that treatment with DMXAA modulated the expression of 588 protein molecules in A549 cells, with 281 protein molecules being up regulated and 306 protein molecules being downregulated. Ingenuity pathway analysis (IPA) identified 256 signaling pathways and 184 cellular functional proteins that were regulated by DMXAA in A549 cells. These targeted molecules and signaling pathways were mostly involved in cell proliferation and survival, redox homeostasis, sugar, amino acid and nucleic acid metabolism, cell migration, and invasion and programed cell death. Subsequently, the effects of DMXAA on cell cycle distribution, apoptosis, autophagy, and reactive oxygen species (ROS) generation were experimentally verified. Flow cytometric analysis showed that DMXAA significantly induced G1 phase arrest in A549 cells. Western blotting assays demonstrated that DMXAA induced apoptosis via a mitochondria-dependent pathway and promoted autophagy, as indicated by the increased level of cytosolic cytochrome c, activation of caspase 3, and enhanced expression of beclin 1 and microtubule-associated protein 1A/1B-light chain 3 (LC3-II) in A549 cells. Moreover, DMXAA significantly promoted intracellular ROS

  8. X线对肺癌细胞株A549 XRCC2和XRCC3表达水平的影响%Effect of X-ray on expression levels of XRCC2 and XRCC3 in lung cancer cell line A549

    史卫林; 李坚; 陈萍; 戴春华

    2009-01-01

    目的:研究X线对肺癌细胞X线修复交叉互补基因2((X-ray repair cross complementing gene 2,XRCC2))与XRCC3表达水平的影响,探讨DNA同源重组修复机制在肺癌放疗过程中的作用.方法:以噻唑蓝还原法(MTT)检测X线对肺腺癌细胞株A549抑制率的影响,实时荧光定量RT-PCR技术检测X线处理肺癌细胞(人肺腺癌细胞株A549)后XRCC2和XRCC3 mR-NA的表达水平.结果:肺癌细胞抑制率多数情况下随X线照射时间的延长及照射剂量的增大,细胞增殖抑制率增加,呈照射时间依赖性(P<0.05)和剂量依赖性(P<0.05),除了16Gy组与32Gy组比较无统计学意义(P=0.211).X线照射后肺癌细胞XRCC2与XRCC3 mRNA的表达水平均先增高后降低,在照射后48 h表达水平达高峰(P<0.05),且随着照射剂量的增大,XRCC2与XR-CC3 mRNA的表达水平也随之增加(P<0.05).结论:X线照射可引起肺癌细胞XRCC2与XRCC3 mRNA表达水平的明显改变,表明DNA同源重组修复机制可能在肺癌放疗耐受中起了重要的作用.%Objective:To study the effect of X-ray on expression levels of X-ray repair cross-complementing gene2(XRCC2)and XRCC3 in lung cancer cells,and explore the effect of DNA homologous recombination repair mechanism in radiotherapy of lung cancer. Methods:Cell inhibition ratio was measured using MTT assay. The expression levels of XRCC2 mRNA and XRCC3 mRNA in lung cancer cell line A549 were measured by RFQ-PCR assay. Results:The rate of proliferation inhibiting of lung cancer cells increased in line with the prolong radiation time of X-ray (P < 0.05) and the increase of radiation dose(P < 0.05) ,but there was no difference between the groups of 16 Gy and 32 Gy (P=0.211). The expression levels of XRCC2 and XRCC3 mRNA in these lung cancer cells increased significantly after treated with X-ray,and then decreased. The expression levels of XRCC2 and XRCC3 mRNA peaked at 48 h after X-ray treatment (P < 0.05). The expression levels of XRCC2 and XRCC3 m

  9. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line

    Jun Xie

    2015-11-01

    Full Text Available The effects of tanshinone IIA on the proliferation of the human non-small cell lung cancer cell line A549 and its possible mechanism on the VEGF/VEGFR signal pathway were investigated. The exploration of the interaction between tanshinone IIA and its target proteins provides a feasible platform for studying the anticancer mechanism of active components of herbs. The CCK-8 assay was used to evaluate the proliferative activity of A549 cells treated with tanshinone IIA (2.5−80 μmol/L for 24, 48 and 72 h, respectively. Flow cytometry was used for the detection of cell apoptosis and cell cycle perturbation. VEGF and VEGFR2 expression were studied by Western blotting. The binding mode of tanshinone IIA within the crystal structure of the VEGFR2 protein was evaluated with molecular docking analysis by use of the CDOCKER algorithm in Discovery Studio 2.1. The CCK-8 results showed that tanshinone IIA can significantly inhibit A549 cell proliferation in a dose- and time-dependent manner. Flow cytometry results showed that the apoptosis rate of tested group was higher than the vehicle control, and tanshinone IIA-treated cells accumulated at the S phase, which was higher than the vehicle control. Furthermore, the expression of VEGF and VEGFR2 was decreased in Western blot. Finally, molecular docking analysis revealed that tanshinone IIA could be stably docked into the kinase domain of VEGFR2 protein with its unique modes to form H-bonds with Cys917 and π–π stacking interactions with Val848. In conclusion, tanshinone IIA may suppress A549 proliferation, induce apoptosis and cell cycle arrest at the S phase. This drug may suppress angiogenesis by targeting the protein kinase domains of VEGF/VEGFR2.

  10. Ent-11α-Hydroxy-15-oxo-kaur-16-en-19-oic-acid Inhibits Growth of Human Lung Cancer A549 Cells by Arresting Cell Cycle and Triggering Apoptosis

    Li Li; George G Chen; Ying-nian Lu; Yi Liu; Ke-feng Wu; Xian-ling Gong; Zhan-ping Gou; Ming-yue Li; Nian-ci Liang

    2012-01-01

    Objective:To examine the apoptotic effect of ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid (5F),a compound isolated from Pteris semipinnata L(PsL),in human lung cancer A549 cells.Methods:A549 cells were treated with 5F (0-80 μg/ml) for different time periods.Cytotoxicity was examined using a MTT method.Cell cycle was examined using propidium iodide staining.Apoptosis was examined using Hoechst 33258 staining,enzyme-linked immunosorbent assay (ELISA) and caspase-3 activity analysis.Expression of representative apoptosis-related proteins was evaluated by Western blot analysis.Reactive oxygen species (ROS) level was measured using standard protocols.Potential interaction of 5F with cisplatin was also examined.Results:5F inhibited the proliferation of A549 cells in a concentration- and time-dependent manner.5F increased the accumulation of cells in sub-G1 phase and arrested the cells in the G2 phase.Exposure to 5F induced morphological changes and DNA fragmentation that are characteristic of apoptosis.The expression of p21 was increased.5F exposure also increased Bax expression,release of cytochrome c and apoptosis inducing factor (AIF),and activation of caspase-3.5F significantly sensitized the cells to cisplatin toxicity Interestingly,treatment with 5F did not increase ROS,but reduced ROS production induced by cisplatin.Conclusion:SF could inhibit the proliferation of A549 cells by arresting the cells in G2 phase and by inducing mitochondrial-mediated apoptosis.

  11. Flavonoid Fraction of Orange and Bergamot Juices Protect Human Lung Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Stress.

    Ferlazzo, Nadia; Visalli, Giuseppa; Smeriglio, Antonella; Cirmi, Santa; Lombardo, Giovanni Enrico; Campiglia, Pietro; Di Pietro, Angela; Navarra, Michele

    2015-01-01

    It has been reported that oxidant/antioxidant imbalance triggers cell damage that in turn causes a number of lung diseases. Flavonoids are known for their health benefits, and Citrus fruits juices are one of the main food sources of these secondary plant metabolites. The present study was designed to evaluate the effect of the flavonoid fraction of bergamot and orange juices, on H2O2-induced oxidative stress in human lung epithelial A549 cells. First we tested the antioxidant properties of both extracts in cell-free experimental models and then we assayed their capability to prevent the cytotoxic effects induced by H2O2. Our results demonstrated that both Citrus juice extracts reduce the generation of reactive oxygen species and membrane lipid peroxidation, improve mitochondrial functionality, and prevent DNA-oxidative damage in A549 cells incubated with H2O2. Our data indicate that the mix of flavonoids present in both bergamot and orange juices may be of use in preventing oxidative cell injury and pave the way for further research into a novel healthy approach to avoid lung disorders.

  12. Flavonoid Fraction of Orange and Bergamot Juices Protect Human Lung Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Stress

    Nadia Ferlazzo

    2015-01-01

    Full Text Available It has been reported that oxidant/antioxidant imbalance triggers cell damage that in turn causes a number of lung diseases. Flavonoids are known for their health benefits, and Citrus fruits juices are one of the main food sources of these secondary plant metabolites. The present study was designed to evaluate the effect of the flavonoid fraction of bergamot and orange juices, on H2O2-induced oxidative stress in human lung epithelial A549 cells. First we tested the antioxidant properties of both extracts in cell-free experimental models and then we assayed their capability to prevent the cytotoxic effects induced by H2O2. Our results demonstrated that both Citrus juice extracts reduce the generation of reactive oxygen species and membrane lipid peroxidation, improve mitochondrial functionality, and prevent DNA-oxidative damage in A549 cells incubated with H2O2. Our data indicate that the mix of flavonoids present in both bergamot and orange juices may be of use in preventing oxidative cell injury and pave the way for further research into a novel healthy approach to avoid lung disorders.

  13. Effect of P2X7R agonist BzATP on cell growth and apoptosis in non-small cell lung cancer A549 cells%P2X7R激动剂BzATP对非小细胞肺癌A549细胞生长和凋亡的影响

    曾康华; 茹琴; 熊琪; 艾永循

    2016-01-01

    目的 研究配体门控离子通道P2X7受体(P2X7R)在非小细胞肺癌A549细胞中的表达,观察P2X7R激动剂2'-3'-O-(4-苯甲酰-苯甲酰)腺苷三磷酸三乙烷胺盐(BzATP)对A549细胞生长及凋亡的影响,并探究相关作用机制.方法 采用免疫荧光法检测P2X7R在A549细胞中的表达.用不同浓度的BzATP(150、300、600 μmol/L)处理,未用BzATP干预的细胞作为对照组.采用四甲基偶氮唑蓝(MTT)和Hoest33342染色法分别检测细胞存活率与凋亡情况,酶联免疫吸附试验检测上清液中肿瘤坏死因子-α(TNF-α)的浓度,Western blotting检测核转录因子-κB(NF-κB) p65、NF-κB抑制因子α(IκBα)及磷酸化NF-κB抑制因子α(phospho-IκBα)蛋白的表达.结果 P2X7R在A549细胞膜上表达.在300、600 μmol/L BzATP作用下A549细胞存活率分别为(67.87±8.98)%、(44.73±6.92)%,较对照组(98.60±1.44)%明显下降,差异均具有统计学意义(=4.481,P=0.027;t =3.920,P=0.038).BzATP可促进细胞凋亡,并且300、600 μmol/L BzATP可上调细胞培养上清中TNF-α浓度,分别为(57.35±6.41)pg/ml、(78.63±11.33) pg/ml,与对照组(42.56±0.37) pg/ml比较差异具有统计学意义(t=6.410,P=0.035;t=11.330,P=0.005).此外,BzATP可下调NF-κB p65的表达,上调IκBα的表达,对phospho-IκBα的表达无明显作用.结论 P2X7R表达于A549细胞膜,BzATP能够抑制细胞增殖,促进细胞凋亡,其作用机制可能与促进细胞中TNF-α的释放,抑制NF-κB通路有关.%Objective To investigate the expression of P2X7 receptor (P2X7R) and the effect of P2X7R agonist 2'-3'-O-(4-benzoyl-benzoyl) ethane adenosine triphosphate three amine salt (BzATP) on cell growth and apoptosis in non-small cell lung cancer A549 cells,and to explore the related mechanism.Methods The expression of P2X7R in A549 cells was detected by immunofluorescence.Cells were treated with different concentrations (150,300,600 μmol/L) of BzATP.Cells untreated with BzATP were used as control

  14. 香烟对大鼠肺及A549细胞IL-1,6,8表达影响的实验研究%Influence of cigarette smoke on the expression of IL-1, 6, 8 in rats' lungs and A549 cell

    李文芳; 万丹; 刘福荣; 石梦蝶

    2012-01-01

    目的 研究香烟烟气对肺部炎性介质IL-1,IL-6,IL-8表达的影响.方法 (1)建立动物长期吸烟模型,用放射免疫法检测肺灌洗液(BALF)中IL-1,IL-6,IL-8的表达水平.(2)制备香烟烟气提取物(CSE)并用它染毒A549细胞,检测细胞上清液中IL-1,IL-6,Ⅱ-8的含量.结果 动物吸烟各剂量组IL-1表达水平与对照组相比差异无统计学意义(P>0.05),低、中、高剂量组IL-6,IL-8水平显著升高,差异有统计学意义(P<0.05).CSE染毒的A549细胞培养上清液中IL-1表达水平与对照组相比差异无统计学意义(P>0.05),20%、50%、100%CSE组IL-6的表达水平明显升高,IL-8表达水平下降,差异有统计学意义(P<0.05).结论 香烟对肺部炎性介质IL-6,IL-8的表达有影响.%OBJECTIVE To investigate the influence of cigarette smoke on the expression of inflammatory mediators in lungs. METHODS The animal model of smoking was established. Each group of rats was given smoking by the respective doses for 12 weeks. IL-1, IL-6 and IL-8 in bronchoalveolar lavage fluid (BALF) were detected by radiation immune method. Human lung adenocarcinoma A549 cells were cultured. Mainstream smoke was collected by using dimethyl sulfoxide (DMSO) as absorbent AS49 cells were incubated with different concentrations of CSE (cigarette smoke extract) . After 4 hours the level of 1L-1, IL-6 and IL-8 was measured with radioimmunoassay. RESULTS The expression of IL-1 in A549 cells with different concentrations of CSE had no difference with the control cells (P > 0.05). Compared with the control group, the IL-6 expressions of 20%, 50%, 100% concentrations increased (P 0.05). The levels of IL-6 and IL-8 in BALF increased significantly in high-dose group, middle-dose group and low-dose group respectively compared to that of Control group (P < 0.05). CONCLUSION Cigarette smoke could influence the expression of IL-6 and IL-8 in lungs.

  15. Induction of human microsomal prostaglandin E synthase 1 by activated oncogene RhoA GTPase in A549 human epithelial cancer cells

    Choi, Hye Jin [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Lee, Dong-Hyung [Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University, Busan (Korea, Republic of); Park, Seong-Hwan; Kim, Juil; Do, Kee Hun [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); An, Tae Jin; Ahn, Young Sup; Park, Chung Berm [Department of Herbal Crop Research, NIHHS, RDA, Eumseong (Korea, Republic of); Moon, Yuseok, E-mail: moon@pnu.edu [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Medical Research Institute and Research Institute for Basic Sciences, Pusan National University, Busan (Korea, Republic of)

    2011-09-30

    Highlights: {yields} As a target of oncogene RhoA-linked signal, a prostaglandin metabolism is assessed. {yields} RhoA activation increases PGE{sub 2} levels and its metabolic enzyme mPGES-1. {yields} RhoA-activated NF-{kappa}B and EGR-1 are positively involved in mPGES-1 induction. -- Abstract: Oncogenic RhoA GTPase has been investigated as a mediator of pro-inflammatory responses and aggressive carcinogenesis. Among the various targets of RhoA-linked signals, pro-inflammatory prostaglandin E{sub 2} (PGE{sub 2}), a major prostaglandin metabolite, was assessed in epithelial cancer cells. RhoA activation increased PGE{sub 2} levels and gene expression of the rate-limiting PGE{sub 2} producing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase 1 (mPGES-1). In particular, human mPGES-1 was induced by RhoA via transcriptional activation in control and interleukin (IL)-1{beta}-activated cancer cells. To address the involvement of potent signaling pathways in RhoA-activated mPGES-1 induction, various signaling inhibitors were screened for their effects on mPGES-1 promoter activity. RhoA activation enhanced basal and IL-1{beta}-mediated phosphorylated nuclear factor-{kappa}B and extracellular signal-regulated kinase1/2 proteins, all of which were positively involved in RhoA-induced gene expression of mPGES-1. As one potent down-stream transcription factor of ERK1/2 signals, early growth response gene 1 product also mediated RhoA-induced gene expression of mPGES-1 by enhancing transcriptional activity. Since oncogene-triggered PGE{sub 2} production is a critical modulator of epithelial tumor cells, RhoA-associated mPGES-1 represents a promising chemo-preventive or therapeutic target for epithelial inflammation and its associated cancers.

  16. Cedrol induces autophagy and apoptotic cell death in A549 non-small cell lung carcinoma cells through the P13K/Akt signaling pathway, the loss of mitochondrial transmembrane potential and the generation of ROS.

    Zhang, Shi-Yi; Li, Xue-Bo; Hou, Sheng-Guang; Sun, Yao; Shi, Yi-Ran; Lin, Song-Sen

    2016-07-01

    The objective of the present study was to determine the anticancer effects of cedrol in A549 human non-small cell lung cancer cells by examining the effects of cedrol on apoptosis induction, the phosphatidylinositol 3'-kinase (PI3K)/Akt signaling pathway, autophagy, reactive oxygen species (ROS) generation and mitochondrial transmembrane potential (MTP). The anticancer effects of cedrol were examined using A549 human lung carcinoma cells as an in vitro model. Cell viability was determined using MTT and lactate dehydrogenase (LDH) assays, and an inverted phase contrast microscope was used to examine the morphological changes in these cells. Cedrol‑triggered autophagy was confirmed by transmission electron microscopy (TEM) analysis of the cells, as well as by western blot analysis of microtubule-associated protein light-chain 3 (LC3)B expression. Intracellular ROS generation was measured by flow cytometry using 5-(6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate (CM-DCFH2-DA) staining and MTP was measured using flow cytometry. The results demonstrated that cedrol reduced cell viability and induced cell apoptosis in a dose-dependent manner. Mechanistic evaluations indicated that cedrol induced apoptosis by reducing the MTP and by decreasing the levels of phosphorylated (p-)PI3K and p-Akt. Cedrol induced autophagy, which was confirmed by TEM analysis, by increasing intracellular ROS formation in a concentration-dependent manner, which was almost completely reversed by N-acetyl-L-cysteine (NAC) and tocopherol. Taken together, these findings reveal that cedrol inhibits cell proliferation and induces apoptosis in A549 cells through mitochondrial and PI3K/Akt signaling pathways. Our findings also reveal that cedrol induced pro-death autophagy by increasing intracellular ROS production.

  17. 人肺腺癌细胞株A549中HIF-1α对Survivin的表达调控%Regulation of survivin expression by hypoxia-inducible factor-1α in non-small cell lung cancer

    李伟; 陈余清; 孙艳; 赵成岭; 王效静

    2011-01-01

    Background and purpose: Survivin gene is a unique member of the inhibitor of apoptosis protein (LAP) family. It plays an important role, not only in regulating mitosis but also in inhibiting apoptosis. It is highly expressed in almost all types of human tumors and fetal tissues but rarely detectable in normal adult tissues. High levels of survivin expression have been associated with tumor progression, resistance to radiation and drug treatments and poor survival rates in cancer patients. The current literature contains few reports on the transcriptional regulation of survivin expression in lung cancer. Previous studies have found that there are also 2 putative binding sites for hypoxia-inducible factor- la(HIF- la) in the core promoter region of survivin gene. Survivin promoter-luciferase reporter vectors Pgl3-SVP230-luc have been constructed early. The purpose of this study was to investigate the mechanism of (HIF-la)on transcriptional regulation of survivin in A549 cells by hypoxia. Methods: (l)Double labeling immunofluorescence method was used to detect co-expression of survivin/HIF-lα protein; (2)RT-polymerase chain reaction (RT-PCR) and Western blot was used to examine the level of survivin Mrna and protein in A549 cells transfected by HIF-lα expression plasmid and HIF-lα siRNA; (3)Luciferase activity was detected in A549 cells following cotransfection with Pgl3-SVP230-luc as well as HIF-la expression plasmid or HIF-lα siRNA to value the transcriptional activity of survivin. (4)Electrophoretic mobility shift assay (EMS A) was performed to test the nuclear extract of the A549 cells binding to the r-32P labeled probes containing survivin promoter squences. Results: (l)Survivin/HIF-lα proteins co-expressed in A549 cell; (2)Compared with control groups, the level of survivin Mrna and protein is markedly increased in A549 cells transfected with HIF-lα expression plasmid, but decreased in the HIF-lα siRNA group(P<0.01); (3)The relative activity of Pgl3-SVP

  18. Inhibitory effect of new copper (Ⅱ) complex with coumarin derivatives on lung cancer cells A549 in vivo and vitro%新型香豆素类酰腙-铜配合物对肺腺癌A549细胞的体内外抑制作用

    陆勤; 欧秋霞; 朱文娇; 朱涛峰

    2015-01-01

    目的:观察新型香豆素类酰腙—铜配合物(以下缩写为CCCD)在体内外对肺癌A549细胞的抑制作用,并探讨其机制。方法培养肺癌A549细胞,分别加入5、10、20、30、50、80、120、160μmol/L的CCCD,干预72 h后,采用MTT法,计算细胞生长抑制率( IR )。将A549细胞分为干预组、对照组,干预组分别加入10、20、40μmol/L CCCD,对照组加入PBS,采用流式细胞术检测各组细胞凋亡情况并计算细胞凋亡率,采用Western blot法检测各组细胞Caspase-3蛋白表达。取18只裸鼠建立肺癌荷瘤鼠模型,分为观察1组、观察2组、对照组,每组各6只,分别予尾静脉注射4、8 mg/kg CCCD及PBS,1次/周,共干预3周,干预结束后测算各组肿瘤体积并计算抑瘤率。随后处死各组裸鼠,取瘤体组织,应用TUNEL法检测各组肿瘤细胞凋亡情况并计算凋亡指数( AD)。结果加入5、10、20、30、50、80、120、160μmol/L CCCD 后, A549细胞 IR 分别为8.80%、16.52%、37.24%、55.75%、77.22%、87.16%、95.25%、98.70%,随着药物浓度增高,IR呈增高趋势。干预组加入10、20、40μmol/L CCCD后,细胞凋亡率均高于对照组(P均<0.05)。干预组Caspase-3蛋白表达高于对照组(P<0.05)。观察1组、观察2组、对照组AD分别为16.83%±8.44%、24.65%±11.24%、3.30%±2.12%,各组间比较P均<0.05。观察1组、观察2组抑瘤率分别为51.08%、56.78%。结论 CCCD在体内外均可抑制肺癌A549细胞的生长,促进细胞凋亡,其作用机制可能与经Caspase-3途径诱导细胞凋亡有关。%Objective To observe the inhibitory effect of a new copper (Ⅱ) complex with coumarin derivatives ( CCCD) on lung cancer cell line A549 in vivo and in vitro and to investigate the mechanism .Methods The lung cancer A549 cells were cultured and were treated with 5, 10

  19. A polysaccharide fraction of adlay seed (Coixlachryma-jobi L.) induces apoptosis in human non-small cell lung cancer A549 cells

    Lu, Xiangyi; Liu, Wei; Wu, Junhua; Li, Mengxian [Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Wang, Juncheng; Wu, Jihui [School of Life Science, University of Science and Technology of China, Hefei 230022 (China); Luo, Cheng, E-mail: Luo58@yahoo.com [Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer A polysaccharide from adlay seed, its molecular mass, optical rotation and sugars was determined. Black-Right-Pointing-Pointer We demonstrated that a polysaccharide from adlay can induce apoptosis in cancer cells. Black-Right-Pointing-Pointer The polysaccharide inhibited the metabolism and proliferation of NSCLC A549 cells. Black-Right-Pointing-Pointer The polysaccharide may trigger apoptosis via the mitochondria-dependent pathway. -- Abstract: Different seed extracts from Coix lachryma-jobi (adlay seed) have been used for the treatment of various cancers in China, and clinical data support the use of these extracts for cancer therapy; however, their underlying molecular mechanisms have not been well defined. A polysaccharide fraction, designated as CP-1, was extracted from the C.lachryma-jobi L. var. using the ethanol subsiding method. CP-1 induced apoptosis in A549 cells in a dose-dependent manner, as determined by MTT assay. Apoptotic bodies were observed in the cells by scanning electronic microscopy. Apoptosis and DNA accumulation during S-phase of the cell cycle were determined by annexin V-FITC and PI staining, respectively, and measured by flow cytometry. CP-1 also extended the comet tail length on single cell gel electrophoresis, and disrupted the mitochondrial membrane potential. Further analysis by western blotting showed that the expression of caspase-3 and caspase-9 proteins was increased. Taken together, our results demonstrate that CP-1 is capable of inhibiting A549 cell proliferation and inducing apoptosis via a mechanism primarily involving the activation of the intrinsic mitochondrial pathway. The assay data suggest that in addition to its nutritional properties, CP-1 is a very promising candidate polysaccharide for the development of anti-cancer medicines.

  20. Resveratrol reduces IL-6 and VEGF secretion from co-cultured A549 lung cancer cells and adipose-derived mesenchymal stem cells.

    Sahin, Erhan; Baycu, Cengiz; Koparal, Ayse Tansu; Burukoglu Donmez, Dilek; Bektur, Ezgi

    2016-06-01

    Stem cell therapies are important treatment methodologies used in many areas of experimental or clinical medicine. In recent studies of cancer models, Mesenchymal stem cells (MSCs) suppressed the growth of cancer cells. However, also in some studies, stem cell treatments have been shown to induce cancer formation, increase tumor volume, induce the formation of new vessels, and lead to cancer invasion. The presence of MSC-secreted cytokines and their effects on cancer cells limits the reliability of MSC-based treatments. Resveratrol (trans-3,5,4'-trihydroxystilbene), an antioxidant found in red wine, has been shown to have therapeutic effects against several cancers. The aim of this study was to co-culture MSCs with A549 cancer cells to suppress the release of cancer-promoting cytokines from MSCs and to increase the applicability and reliability of stem cell therapies with resveratrol. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and neutral red cell viability assays were used to find safety dose of resveratrol. The MSCs secreted the cytokines IL-6 and VEGF, and the effect of resveratrol on these cytokines was analyzed by ELISA and western blot analysis of conditioned medium. One μM of resveratrol was found to be the safety dose for the A549 cancer cells and MSCs. We observed the highest release of IL-6 and VEGF from the co-cultured A549 cells and MSCs, and resveratrol was found to significantly decrease the release of these cytokines. Our study suggests that resveratrol exerts a positive effect on the release of cytokines. The safety dose of resveratrol can be administered together with stem cells during stem cell treatment.

  1. Induction of IL-6 and CCL5 (RANTES in human respiratory epithelial (A549 cells by clinical isolates of respiratory syncytial virus is strain specific

    Levitz Ruth

    2012-09-01

    Full Text Available Abstract Background Respiratory syncytial virus (RSV is the major respiratory pathogen of infants and young children. During each seasonal epidemic, multiple strains of both subgroup A and B viruses circulate in the community. Like other RNA viruses, RSV genome replication is prone to errors that results in a heterogeneous population of viral strains some of which may possess differences in virulence. We sought to determine whether clinical isolates of RSV differ in their capacity to induce inflammatory cytokines IL-6 and CCL5 (previously known as RANTES [regulated upon activation, normal T-cell expressed and secreted protein], which are known to be induced in vitro and in vivo in response to RSV, during infection of A549 cells. Results Screening of subgroup A and B isolates revealed heterogeneity among strains to induce IL-6 and CCL5. We chose two subgroup B strains, New Haven (NH1067 and NH1125, for further analysis because of their marked differences in cytokine inducing properties and because subgroup B strains, in general, are less genetically heterogeneous as compared to subgroup A strains. At 12 and 24 hours post infection RSV strains, NH1067 and NH1125 differed in their capacity to induce IL-6 by an order of magnitude or more. The concentrations of IL-6 and CCL5 were dependent on the dose of infectious virus and the concentration of these cytokines induced by NH1125 was greater than that of those induced by NH1067 when the multiplicity of infection of NH1067 used was as much as 10-fold higher than that of NH1125. The induction of IL-6 was dependent on viable virus as infection with UV-inactivated virus did not induce IL-6. The difference in IL-6 induction most likely could not be explained by differences in viral replication kinetics. The intracellular level of RSV RNA, as determined by quantitative RT-PCR, was indistinguishable between the 2 strains though the titer of progeny virus produced by NH1125 was greater than that produced by

  2. Epithelial inactivation of Yy1 abrogates lung branching morphogenesis.

    Boucherat, Olivier; Landry-Truchon, Kim; Bérubé-Simard, Félix-Antoine; Houde, Nicolas; Beuret, Laurent; Lezmi, Guillaume; Foulkes, William D; Delacourt, Christophe; Charron, Jean; Jeannotte, Lucie

    2015-09-01

    Yin Yang 1 (YY1) is a multifunctional zinc-finger-containing transcription factor that plays crucial roles in numerous biological processes by selectively activating or repressing transcription, depending upon promoter contextual differences and specific protein interactions. In mice, Yy1 null mutants die early in gestation whereas Yy1 hypomorphs die at birth from lung defects. We studied how the epithelial-specific inactivation of Yy1 impacts on lung development. The Yy1 mutation in lung epithelium resulted in neonatal death due to respiratory failure. It impaired tracheal cartilage formation, altered cell differentiation, abrogated lung branching and caused airway dilation similar to that seen in human congenital cystic lung diseases. The cystic lung phenotype in Yy1 mutants can be partly explained by the reduced expression of Shh, a transcriptional target of YY1, in lung endoderm, and the subsequent derepression of mesenchymal Fgf10 expression. Accordingly, SHH supplementation partially rescued the lung phenotype in vitro. Analysis of human lung tissues revealed decreased YY1 expression in children with pleuropulmonary blastoma (PPB), a rare pediatric lung tumor arising during fetal development and associated with DICER1 mutations. No evidence for a potential genetic interplay between murine Dicer and Yy1 genes during lung morphogenesis was observed. However, the cystic lung phenotype resulting from the epithelial inactivation of Dicer function mimics the Yy1 lung malformations with similar changes in Shh and Fgf10 expression. Together, our data demonstrate the crucial requirement for YY1 in lung morphogenesis and identify Yy1 mutant mice as a potential model for studying the genetic basis of PPB.

  3. Proteomic response to 5,6-dimethylxanthenone 4-acetic acid (DMXAA, vadimezan in human non-small cell lung cancer A549 cells determined by the stable-isotope labeling by amino acids in cell culture (SILAC approach

    Pan ST

    2015-02-01

    Full Text Available Shu-Ting Pan,1,* Zhi-Wei Zhou,2,3,* Zhi-Xu He,3 Xueji Zhang,4 Tianxin Yang,5 Yin-Xue Yang,6 Dong Wang,7 Jia-Xuan Qiu,1 Shu-Feng Zhou2 1Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, 4Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China; 5Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA; 6Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 7Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China *These two authors contributed equally to this work Abstract: 5,6-Dimethylxanthenone 4-acetic acid (DMXAA, also known as ASA404 and vadimezan, is a potent tumor blood vessel-disrupting agent and cytokine inducer used alone or in combination with other cytotoxic agents for the treatment of non-small cell lung cancer (NSCLC and other cancers. However, the latest Phase III clinical trial has shown frustrating outcomes in the treatment of NSCLC, since the therapeutic targets and underlying mechanism for the anticancer effect of DMXAA are not yet fully understood. This study aimed to examine the proteomic response to DMXAA and unveil the global molecular targets and possible mechanisms for the anticancer effect of DMXAA in NSCLC A549 cells using a stable-isotope labeling by amino acids in cell culture (SILAC approach. The proteomic data showed that treatment with DMXAA

  4. Infection of A549 human type II epithelial cells with Mycobacterium tuberculosis induces changes in mitochondrial morphology, distribution and mass that are dependent on the early secreted antigen, ESAT-6.

    Fine-Coulson, Kari; Giguère, Steeve; Quinn, Frederick D; Reaves, Barbara J

    2015-10-01

    Pulmonary infection by Mycobacterium tuberculosis (Mtb) involves the invasion of alveolar epithelial cells (AECs). We used Mitotracker Red(®) to assess changes in mitochondrial morphology/distribution and mass from 6 to 48 h post infection (hpi) by confocal microscopy and flow cytometry in Mtb-infected A549 type II AECs. During early infection there was no effect on mitochondrial morphology, however, by 48 hpi mitochondria appeared fragmented and concentrated around the nucleus. In flow cytometry experiments, the median fluorescence intensity (MFI) decreased by 44% at 48 hpi; double-labelling using antibodies to the integral membrane protein COXIV revealed that these changes were due to a decrease in mitochondrial mass. These changes did not occur with the apathogenic strain, Mycobacterium bovis BCG. ESAT-6 is a virulence factor present in Mtb Erdman but lacking in M. bovis BCG. We performed similar experiments using Mtb Erdman, an ESAT-6 deletion mutant and its complement. MFI decreased at 48 hpi in the parent and complemented strains versus uninfected controls by 52% and 36% respectively; no decrease was detected in the deletion mutant. These results indicate an involvement of ESAT-6 in the perturbation of mitochondria induced by virulent Mtb in AECs and suggest mitophagy may play a role in the infection process.

  5. 用SILAC技术研究感染H5N1禽流感病毒后A549肺癌细胞蛋白质组的表达变化%Cellular Proteome Alterations in Highly Pathogenic H5N1 Avian In-fluenza Virus-Infected Human Lung Cell Line A549

    王继峰; 李靖; 康晓平; 吴晓燕; 钱小红; 应万涛; 杨银辉

    2013-01-01

    Objective: To determine the cellular proteome responses of human lung A549 cell lines to the highly pathogenic H5N1 avian influenza virus infection, explore changes of specific molecular pathways and identify the key proteins involved in the infection. Methods: By using stable isotope labeling by amino acids in cell culture (SILAC) method to obtain“heavy”labeled cell lines which were infected with H5N1 virus and“light”labeled cell lines which were not infected, from which the cellular proteins were extracted and mixed in even amounts. Then the peptides derived from the mixed proteins digestion were identified by orthogonal reversed-phase chroma-tography coupled with mass spectroscopy and performed qualitative and quantitative analysis. Results: Of the total 3504 identified proteins and 2469 proteins with quantitative information, 72 were significantly up-regulated, 66 were significantly down-regulated. These proteins were involved in several molecular regulation pathways, including RNA splicesome, interferon inducible pathways, ubiquitin degradation pathway, insulin pathway and so on. Conclu-sion: We successfully established a strategy to explore the virus-host cell interactions with SILAC method. The identification of the key proteins involved in highly pathogenic H5N1 avian influenza virus infection, providedthe theoretical basis forunderstanding the molecular pathogenesis of H5N1 infection.%目的:鉴定高致病性H5N1禽流感病毒感染A549肺癌细胞后,细胞蛋白质组的表达变化,并鉴定特异分子通路的改变及其涉及的关键蛋白质分子。方法:利用稳定同位素标记氨基酸技术(SILAC)标记A549细胞,得到“重标”或“轻标”的A549细胞;“重标”细胞感染高致病性H5N1禽流感病毒24 h后提取细胞总蛋白,与从未感染病毒的“轻标”细胞中提取的总蛋白等量混合,酶解肽段,经正交反相色谱分离后用质谱鉴定,对数据进行定性和定量

  6. Hyaluronic acid-fabricated nanogold delivery of the inhibitor of apoptosis protein-2 siRNAs inhibits benzo[a]pyrene-induced oncogenic properties of lung cancer A549 cells

    Lin, Chung-Ming; Kao, Wei-Chien; Yeh, Chun-An; Chen, Hui-Jye; Lin, Shinn-Zong; Hsieh, Hsien-Hsu; Sun, Wei-Shen; Chang, Chih-Hsuan; Hung, Huey-Shan

    2015-03-01

    Benzo[a]pyrene (BaP), a component of cooking oil fumes (COF), promotes lung cancer cell proliferation and survival via the induction of inhibitor of apoptosis protein-2 (IAP-2) proteins. Thus knockdown of IAP-2 would be a promising way to battle against lung cancer caused by COF. Functionalized gold nanoparticle (AuNP) is an effective delivery system for bio-active materials. Here, biocompatible hyaluronic acid (HA) was fabricated into nanoparticles to increase the target specificity by binding to CD44-over-expressed cancer cells. IAP-2-specific small-interfering RNA (siRNAs) or fluorescein isothiocyanate (FITC) were then incorporated into AuNP-HA. Conjugation of IAP-2 siRNA into AuNPs-HA was verified by the UV-vis spectrometer and Fourier transform infrared spectrometer. Further studies showed that AuNP-HA/FITC were effectively taken up by A549 cells through CD44-mediated endocytosis. Incubation of BaP-challenged cells with AuNP-HA-IAP-2 siRNAs silenced the expression of IAP-2, decreased cell proliferation and triggered pronounced cell apoptosis by the decrease in Bcl-2 protein and the increase in Bax protein as well as the active form of caspases-3. The BaP-elicited cell migration and enzymatic activity of the secreted matrix metalloproteinase-2 were also substantially suppressed by treatment with AuNP-HA-IAP-2 siRNAs. These results indicated that IAP-2 siRNAs can be efficiently delivered into A549 cells by functionalized AuNP-HA to repress the IAP-2 expression and BaP-induced oncogenic events, suggesting the potential therapeutic application of IAP-2 siRNA or other siRNA-conjugated AuNP-HA composites to COF-induced lung cancer and other gene-caused diseases in the future.

  7. Irciniastatin A induces potent and sustained activation of extracellular signal-regulated kinase and thereby promotes ectodomain shedding of tumor necrosis factor receptor 1 in human lung carcinoma A549 cells.

    Quach, Hue Tu; Hirano, Seiya; Fukuhara, Sayuri; Watanabe, Tsubasa; Kanoh, Naoki; Iwabuchi, Yoshiharu; Usui, Takeo; Kataoka, Takao

    2015-01-01

    Irciniastatin A is a pederin-type marine product that potently inhibits translation. We have recently shown that irciniastatin A induces ectodomain shedding of tumor necrosis factor (TNF) receptor 1 with slower kinetics than other translation inhibitors. In human lung carcinoma A549 cells, irciniastatin A induced a marked and sustained activation of extracellular signal-regulated kinase (ERK) and induced little activation of p38 mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK). Moreover, the TNF receptor 1 shedding induced by irciniastatin A was blocked by the MAP kinase/ERK kinase inhibitor U0126, but not by the p38 MAP kinase inhibitor SB203580 or the JNK inhibitor SP600125. Thus unlike other translation inhibitors that trigger ribotoxic stress response, our results show that irciniastatin A is a unique translation inhibitor that induces a potent and sustained activation of the ERK pathway, and thereby promotes the ectodomain shedding of TNF receptor 1 in A549 cells.

  8. Gene expression profiling of the effects of organic dust in lung epithelial and THP-1 cells reveals inductive effects on inflammatory and immune response genes.

    Boggaram, Vijay; Loose, David S; Gottipati, Koteswara R; Natarajan, Kartiga; Mitchell, Courtney T

    2016-04-01

    The intensification and concentration of animal production operations expose workers to high levels of organic dusts in the work environment. Exposure to organic dusts is a risk factor for the development of acute and chronic respiratory symptoms and diseases. Lung epithelium plays important roles in the control of immune and inflammatory responses to environmental agents to maintain lung health. To better understand the effects of organic dust on lung inflammatory responses, we characterized the gene expression profiles of A549 alveolar and Beas2B bronchial epithelial and THP-1 monocytic cells influenced by exposure to poultry dust extract by DNA microarray analysis using Illumina Human HT-12 v4 Expression BeadChip. We found that A549 alveolar and Beas2B bronchial epithelial and THP-1 cells responded with unique changes in the gene expression profiles with regulation of genes encoding inflammatory cytokines, chemokines, and other inflammatory proteins being common to all the three cells. Significantly induced genes included IL-8, IL-6, IL-1β, ICAM-1, CCL2, CCL5, TLR4, and PTGS2. Validation by real-time qRT-PCR, ELISA, Western immunoblotting, and immunohistochemical staining of lung sections from mice exposed to dust extract validated DNA microarray results. Pathway analysis indicated that dust extract induced changes in gene expression influenced functions related to cellular growth and proliferation, cell death and survival, and cellular development. These data show that a broad range of inflammatory mediators produced in response to poultry dust exposure can modulate lung immune and inflammatory responses. This is the first report on organic dust induced changes in expression profiles in lung epithelial and THP-1 monocytic cells.

  9. Nuclear methods in pulmonary medicine. Evaluation of lung epithelial permeability

    Newhouse, M.; Jordana, M.; Dolovich, M.

    1987-06-01

    During the last few years a number of factors affecting the measurements of the rate of absorption of /sup 99m/Tc-DTPA across the alveolar-capillary membrane have been identified. These have helped to provide insights into the significance of lung epithelial permeability (LEP) measurements and their potential limitations.

  10. Influence of thermalization on A549 cells growth, c-Jun N-terminal kinase phosphorylation and expression of heat shock protein 70 in patients with lung cancer%热化联合对肺癌患者A549细胞生长、c-Jun N-末端激酶磷酸化及热休克蛋白70表达的影响

    吴海乔; 田甜; 胡君程; 林蓁

    2015-01-01

    目的:观察热化联合对肺癌患者A549细胞生长的影响及机制探讨。方法对A549细胞分别进行单独热疗、单独化疗,热化联合干预及热化联合并SP600125干预,同时选取未做任何处理的A549细胞作为对照组。观察各组细胞增殖率、细胞侵袭力的变化。同时采用蛋白免疫印记法(Western Bolt)检测JNK磷酸化以及热休克蛋白70(HSP70)的表达。结果热化联合组的A549细胞增值率明显低于单独热疗、单独化疗和热化联合并SP600125组(P<0.05)。热化联合组JNK磷酸化表达明显高于对照组及单独化疗组(P<0.05),热化联合组HSP70表达明显低于单独热疗组(P<0.05)。热化联合干预下,p-JNK表达水平出现上升,与对照组、单独热疗组和单独化疗组相比,差异均具有统计学意义(P<0.05);热化联合并SP600125组的p-JNK的表达水平较热化联合组显著下降(P<0.05)。结论热化联合抑制A549细胞增殖的效果优于单独热疗或单独化疗,作用机制可能与激活JNK信号通路或抑制HSP70表达有关。%Objective To investigate the effect of thermalization on A549 cells growth in patients with lung cancer and its mechanism. Methods A549 cells were given thermotherapy alone (group A), chemotherapy alone (group B), and thermotherapy combined with chemotherapy (group C), thermotherapy combined with chemotherapy and SP600125 intervention (group D). Untreated A549 cells were selected as the control group. The changes of cell in-vasion, proliferation rate of the cells in each group were observed. Phosphorylated JNK and expression of heat shock protein 70 (HSP70) were detected by Western blot. Results A549 cell proliferation rate of group C was significantly lower than that of group A, group B and group D (P<0.05). The expression of group C was significantly higher than that of control group and group B (P<0.05), and the expression of HSP70 in group C was significantly lower than that in group A

  11. Free radical generation induces epithelial-to-mesenchymal transition in lung epithelium via a TGF-β1-dependent mechanism.

    Gorowiec, Marta R; Borthwick, Lee A; Parker, Sean M; Kirby, John A; Saretzki, Gabriele C; Fisher, Andrew J

    2012-03-15

    Fibrotic remodelling of lung parenchymal and airway compartments is the major contributor to life-threatening organ dysfunction in chronic lung diseases such as idiopathic pulmonary fibrosis (IPF) and Chronic Obstructive Pulmonary Disease (COPD). Since transforming growth factor-β1 (TGF-β1) is believed to play a key role in disease pathogenesis and markers of oxidative stress are also commonly detected in bronchoalveolar lavage (BAL) from such patients we sought to investigate whether both factors might be interrelated. Here we investigated the hypothesis that oxidative stress to the lung epithelium promotes fibrotic repair by driving epithelial-to-mesenchymal transition (EMT) via the augmentation of TGF-β1. We show that in response to 400μM hydrogen peroxide (H(2)O(2)) A549 cells, used a model for alveolar epithelium, and human primary bronchial epithelial cells (PBECs) undergo EMT displaying morphology changes, decreased expression of epithelial markers (E-cadherin and ZO-1), increased expression of mesenchymal markers (vimentin and α-smooth muscle actin) as well as increased secretion of extracelluar matrix components. The same oxidative stress also promotes expression of TGF-β1. Inhibition of TGF-β1 signalling as well as treatment with antioxidants such as phenyl tert-butylnitrone (PBN) and superoxide dismutase 3 (SOD3) prevent the oxidative stress driven EMT-like changes described above. Interventions also inhibited EMT-like changes. This study identifies a link between oxidative stress, TGF-β1 and EMT in lung epithelium and highlights the potential for antioxidant therapies to limit EMT and its potential contribution to chronic lung disease.

  12. Cytokines and Growth Factors Stimulate Hyaluronan Production: Role of Hyaluronan in Epithelial to Mesenchymal-Like Transition in Non-Small Cell Lung Cancer

    Geraldine Chow

    2010-01-01

    Full Text Available In this study, we investigated the role of hyaluronan (HA in non-small cell lung cancer (NSCLC since close association between HA level and malignancy has been reported. HA is an abundant extracellular matrix component and its synthesis is regulated by growth factors and cytokines that include epidermal growth factor (EGF and interleukin-1β (IL-1β. We showed that treatment with recombinant EGF and IL-1β, alone or in combination with TGF-β, was able to stimulate HA production in lung adenocarcinoma cell line A549. TGF-β/IL-1β treatment induced epithelial to mesenchymal-like phenotype transition (EMT, changing cell morphology and expression of vimentin and E-cadherin. We also overexpressed hyaluronan synthase-3 (HAS3 in epithelial lung adenocarcinoma cell line H358, resulting in induced HA expression, EMT phenotype, enhanced MMP9 and MMP2 activities and increased invasion. Furthermore, adding exogenous HA to A549 cells and inducing HA H358 cells resulted in increased resistance to epidermal growth factor receptor (EGFR inhibitor, Iressa. Together, these results suggest that elevated HA production is able to induce EMT and increase resistance to Iressa in NSCLC. Therefore, regulation of HA level in NSCLC may be a new target for therapeutic intervention.

  13. Doxycycline reverses epithelial-to-mesenchymal transition and suppresses the proliferation and metastasis of lung cancer cells.

    Qin, Yuan; Zhang, Qiang; Lee, Shan; Zhong, Wei-Long; Liu, Yan-Rong; Liu, Hui-Juan; Zhao, Dong; Chen, Shuang; Xiao, Ting; Meng, Jing; Jing, Xue-Shuang; Wang, Jing; Sun, Bo; Dai, Ting-Ting; Yang, Cheng; Sun, Tao; Zhou, Hong-Gang

    2015-12-01

    The gelatinase inhibitor doxycycline is the prototypical antitumor antibiotic. We investigated the effects of doxycycline on the migration, invasion, and metastasis of human lung cancer cell lines and in a mouse model. We also measured the effect of doxycycline on the transcription of epithelial-mesenchymal transition (EMT) markers, and used immunohistochemistry to determine whether EMT reversal was associated with doxycycline inhibition. Doxycycline dose-dependently inhibited proliferation, migration, and invasion of NCI-H446 human small cell lung cancer cells. It also suppressed tumor growth from NCI-H446 and A549 lung cancer cell xenografts without altering body weight, inhibited Lewis lung carcinoma cell migration, and prolonged survival. The activities of the transcription factors Twist1/2, SNAI1/2, AP1, NF-κB, and Stat3 were suppressed by doxycycline, which reversed EMT and inhibited signal transduction, thereby suppressing tumor growth and metastasis. Our data demonstrate functional targeting of transcription factors by doxycycline to reverse EMT and suppress tumor proliferation and metastasis. Thus, doxycycline selectively targets malignant tumors and reduces its metastatic potential with less cytotoxicity in lung cancer patients.

  14. Role of Hypoxia-inducible factor-1 and its target genes in human lung adenocarcinoma cells after photon- versus carbon ion irradiation; Expression HIF-1-abhaengiger Gene in humanen Lungenadenokarzinom (A549)-Zellen und deren Regulation nach Photonen- und Schwerionenbestrahlung

    Bill, Verena Maria

    2013-11-26

    Exposed to hypoxia tumor cells are notably resistant to photon irradiation. The hypoxiainducible transcription factor 1α (HIF-1α) seems to play a fundamental role in this resistance, while its role after heavy-ion beam remains unknown. The intention of this study was to determine how A549-cells (non-small-cell lung carcinoma) react in different oxygenation states after irradiation with photons or heavy ions, particularly in regards to their expression of HIF-1 target genes. Resistance of hypoxic A549 cells after photon irradiation was documented by cellular and clonogenic survival. In contrast, cellular survival after heavy-ion irradiation in hypoxic cells was not elevated to normoxic cells. Among the oxygen dependent regulation of HIF-1 target genes, gene expression analyses showed an increased expression of GLUT-1, LDH-A, PDK-1 and VEGF after photon irradiation but not after heavy-ion irradiation after 48 hours in normoxic cells. As expected, CDKN1A as inhibitor of cell cycle progression showed higher expression after both radiation forms; interestingly CDKN1A was also in an oxygen dependent manner lightly upregulated. In western blot analyses we demonstrated a significant increase of HIF-1 and GLUT-1 caused by hypoxia, but only a tendency of increased protein level in hypoxia after photon irradiation and no changes after heavy-ion irradiation. Significantly higher protein level of secreted VEGF-A could be measured 72 hours after photon irradiation in normoxic cells by ELISA analyses. Controversially discussed, I could not detect an association between HIF-1 and SCF or Trx-1 in A549-cells in this study. Whereas Trx-1-expression was neither influenced by changed oxygen partial pressure nor irradiation, I could show increased SCF mRNA by quantitative Real Time-PCR and secreted protein level by ELISA after photon irradiation independent of oxygen state. In summary, this study showed that HIF-1 and its target genes (GLUT-1, LDHA; PDK, VEGF) and also SCF was

  15. The role of Sox2 on lung epithelial airway epithelial differentiation

    J.K. Ochieng (Joshua)

    2014-01-01

    markdownabstract__Abstract__ The foregut is crucial for development of respiratory organs including the lungs. Foregut morphogenesis starts around embryonic day 8.0 in mouse when the endoderm epithelial sheet folds ventrally during gastrulation [1,2]. At embryonic day 9.0, the ventral folding is ac

  16. Determination of in vitro free radical scavenging and antiproliferative effect of Pennisetum alopecuroides on cultured A549 human lung cancer cells

    Githa Elizabeth Mathew

    2015-01-01

    Conclusions: This is the 1 st time a pharmacological exploration of P. alopecuroides grasses has been conducted. We have shown that P. alopecuroides exhibits good free radical scavenging and strong in vitro cytotoxic activities against human lung cancer cell lines.

  17. MMP-2 Alters VEGF Expression via αVβ3 Integrin-Mediated PI3K/AKT Signaling in A549 Lung Cancer Cells

    2010-01-01

    Vascular endothelial growth factor (VEGF) is one of the most important angiogenic growth factors for tumor angiogenesis. Here, we sought to explore whether RNA interference (RNAi) targeting Matrix metalloproteinase-2 (MMP-2) could disrupt VEGF mediated angiogenesis in lung cancer. MMP-2 siRNA inhibited lung cancer cell-induced tube formation of endothelial cells in vitro; addition of recombinant human-MMP-2 restored angiogenesis. MMP-2 transcriptional suppression decreased VEGF, PI3K protein ...

  18. Empirical study on the anti-proliferation effect of siRNA against pokemon on human lung cancer cell line A549%siRNA干扰Pokemon基因影响A549细胞增殖的实验研究

    谢勇; 江涛

    2012-01-01

    目的 研究siRNA干扰Pokemon基因对肺腺癌A549细胞增殖抑制效应的变化.方法 专业设计合成3条针对Pokemon的siRNA,分别转染A549细胞后,RT-PCR检测转录水平Pokemon mRNA表达的变化,筛选出其中最高效的1条siRNA;用MTT法检测该siRNA干扰Pokemon对A549细胞增殖的抑制作用;流式细胞技术检测该siRNA干扰Pokemon对A549细胞凋亡的影响.结果 3条siRNA均成功转染A549细胞,倒置荧光显微镜下观察细胞呈圆绿色.RT-PCR结果显示有2条siRNA使细胞中Pokemon的mRNA表达降低(P<0.05).MTT法结果显示siRNA干扰Pokemon后对A549细胞增殖有抑制作用(P<0.05),其中48 h抑制效率达(24.14±1.39)%.流式细胞技术检测结果显示该siRNA干扰Pokemon可增加A549细胞的凋亡,凋亡率为14.05%.结论 应用RNA干扰Pokemon基因能够抑制A549细胞的增殖,促进A549细胞的凋亡.Pokemon基因有可能成为肺癌治疗中的一个新靶点.

  19. Toxicity of surface-modified PLGA nanoparticles toward lung alveolar epithelial cells.

    Grabowski, Nadège; Hillaireau, Hervé; Vergnaud, Juliette; Santiago, Letícia Aragão; Kerdine-Romer, Saadia; Pallardy, Marc; Tsapis, Nicolas; Fattal, Elias

    2013-10-01

    In vitro cytotoxicity and inflammatory response following exposure to nanoparticles (NPs) made of poly(lactide-co-glycolide) (PLGA) have been investigated on A549 human lung epithelial cells. Three different PLGA NPs (230 nm) were obtained using different stabilizers (polyvinyl alcohol, chitosan, or Pluronic(®) F68) to form respectively neutral, positively or negatively charged NPs. Polystyrene NPs were used as polymeric but non-biodegradable NPs, and titanium dioxide (anatase and rutile) as inorganic NPs, for comparison. Cytotoxicity was evaluated through mitochondrial activity as well as membrane integrity (lactate dehydrogenase release, trypan blue exclusion, propidium iodide staining). The cytotoxicity of PLGA-based and polystyrene NPs was lower or equivalent to the one observed after exposure to titanium dioxide NPs. The inflammatory response, evaluated through the release of the IL-6, IL-8, MCP-1, TNF-α cytokines, was low for all NPs. However, some differences were observed, especially for negative PLGA NPs that led to a higher inflammatory response, which can be correlated to a higher uptake of these NPs. Taken together, these results show that both coating of PLGA NPs and the nature of the core play a key role in cell response.

  20. Biodistribution and planar gamma camera imaging of {sup 123}I- and {sup 131}I-labeled F(ab'){sub 2} and Fab fragments of monoclonal antibody 14C5 in nude mice bearing an A549 lung tumor

    Burvenich, Ingrid J.G. [Laboratory of Radiopharmacy, University of Ghent, B-9000 Ghent (Belgium)]. E-mail: ingrid.burvenich@ugent.be; Schoonooghe, Steve [Department of Biomedical Research, Flanders Institute of Biotechnology (VIB), University of Ghent, B-9000 Ghent (Belgium); Blanckaert, Peter [Laboratory of Radiopharmacy, University of Ghent, B-9000 Ghent (Belgium); Bacher, Klaus [Department of Medical Physics and Radiation Protection, Ghent University, B-9000 Ghent (Belgium); Vervoort, Liesbet [Laboratory of Radiopharmacy, University of Ghent, B-9000 Ghent (Belgium); Coene, Elisabeth [N. Goormaghtigh Institute of Pathology, Ghent University, B-9000 Ghent (Belgium); Mertens, Nico [Department of Biomedical Research, Flanders Institute of Biotechnology (VIB), University of Ghent, B-9000 Ghent (Belgium); Vos, Filip de [Laboratory of Radiopharmacy, University of Ghent, B-9000 Ghent (Belgium); Slegers, Guido [Laboratory of Radiopharmacy, University of Ghent, B-9000 Ghent (Belgium)

    2007-04-15

    Detection of antigen 14C5, involved in substrate adhesion and highly expressed on the membrane of many carcinomas, including lung cancer, provides important diagnostic information that can influence patient management. The aim of this study was to evaluate the biodistribution and planar gamma camera imaging characteristics of radioiodinated F(ab'){sub 2} and Fab fragments of monoclonal antibody (mAb) 14C5 in tumor-bearing mice. Methods: F(ab'){sub 2} and Fab 14C5 fragments were radioiodinated using the Iodo-Gen method. In vitro stability, binding specificity and affinity of {sup 125}I-labeled 14C5 fragments were studied in A549 lung carcinoma cells. Biodistribution, blood clearance and tumor-targeting characteristics of {sup 131}I-labeled 14C5 fragments and intact mAb 14C5 were studied in Swiss nu/nu mice bearing A549 lung carcinoma tumors. Planar gamma imaging illustrated the potential use of these {sup 123}I-labeled 14C5 fragments for radioimmunodetection (RID). Results: Saturation binding experiments showed highest affinity for {sup 125}I-labeled F(ab'){sub 2} fragments (K {sub d}=0.37{+-}0.10 nmol/L) and lowest affinity for {sup 125}I-labeled Fab fragments (K {sub d}=2.25{+-}0.44 nmol/L). Blood clearance studies showed that the alpha half-life (t1/2{alpha}) value for Fab, F(ab'){sub 2} and mAb 14C5 was 14.9, 21 and 118 min, respectively. The beta half-life t1/2{beta} value for Fab, F(ab'){sub 2} and mAb 14C5 was 439, 627 and 4067 min, respectively. {sup 131}I-Fab fragments showed highest tumor uptake 3 h after injection (2.4{+-}0.8 %ID/g), {sup 131}I-labeled F(ab'){sub 2} showed highest tumor uptake 6 h after injection (4.7{+-}0.7 %ID/g) and for {sup 131}I-labeled mAb highest tumor uptake was observed at 24 h (10.7{+-}2.3 %ID/g). In planar gamma imaging, both labeled fragments gave better tumor-to-background contrast than {sup 123}I-mAb 14C5. Conclusion: Fab and F(ab'){sub 2} fragments derived from intact mAb 14C5 have

  1. P型铜转运ATP酶(ATP7B)在肺腺癌细胞株A549中的表达与顺铂耐药的关系%Expression of Copper-Transporting P-Type Adenosine Triphosphatase(ATP7B) Correlates with Cisplatin-Resistance in Human Lung Adenocarcinoma Cell Line A549

    高贵洲; 王建军; 石思恩

    2009-01-01

    背景与目的 顺铂作为肺癌的基础化疗药物,顺铂耐药是导致肺癌患者化疗失败的重要原因.本实验通过检测P型铜转运ATP酶在肺腺癌细胞A549不同水平耐药株中的表达,以评估ATP7B与A549细胞顺铂耐药的关系.方法采用逐步增加顺铂剂量的方法,诱导出3株不同水平耐顺铂A549细胞株A549/DDP0.5、A549/DDP1.0、A549/DDP2.0,MTT方法检测各组别细胞对顺铂敏感性,应用RT-PCR及Western Blot方法分别检测各组别细胞的ATP7B的mRNA及蛋白表达水平,分析A549细胞顺铂敏感性与ATP7B表达水平的关系.结果相对于亲本A549细胞,3组耐药细胞的顺铂耐药指数分别达到了1.7、3.2、5.2(P<0.001),与此相对应ATP7B的mRNA表达水平分别达到了亲本A549细胞的1.6、4.9、10.1倍(P<0.001),同样地ATP7B的蛋白表达水平也呈现出与顺铂耐药性相平行的递增性高表达.结论肺腺癌细胞A549的顺铂耐药与细胞ATP7B高表达有关,后者的高表达有可能促成了A549细胞的获得性顺铂耐药.

  2. A water soluble vitamin B12-ReI fluorescent conjugate for cell uptake screens: use in the confirmation of cubilin in the lung cancer line A549.

    Vortherms, Anthony R; Kahkoska, Anna R; Rabideau, Amy E; Zubieta, Jon; Andersen, Louise Lund; Madsen, Mette; Doyle, Robert P

    2011-09-21

    A water soluble vitamin B(12)-rhenium conjugate was synthesized and used in concert with intrinsic factor to screen for cubilin receptor-mediated uptake in lung cancer cells. Internalization of the conjugate demonstrated that it could be used to rapidly screen for the cubilin receptor in living cells, subsequently confirmed with Western blotting and RT-PCR.

  3. 下调miR-18a和miR-328抑制肺腺癌A549细胞的侵袭和迁移%Downregulation of miR-18a or miR-328 inhibits the invasion and migration of lung adenocarcinoma A549 cells

    杜传冲; 郑金旭; 陆小威; 汪毅

    2016-01-01

    目的 分析miR-18a和miR-328在肺腺癌A549细胞中的表达,并探讨下调miR-18a或miR-328的表达对其侵袭和迁移能力的影响.方法 用荧光定量PCR检测A549细胞中miR-18a和miR-328的表达;通过转染miR-18a抑制物(miR-18ainhibitor)或miR-328 inhibitor,下调miR-18a或miR-328的表达,采用TranswellTM侵袭、迁移实验分析A549细胞侵袭和迁移能力的变化.结果 A549细胞中miR-18a和miR-328均呈高表达;而转染相应抑制物后miR-18a、miR-328表达下降,A549细胞的侵袭、迁移能力均明显降低.结论 下调A549细胞miR-18a或miR-328水平可有效抑制肿瘤细胞的侵袭、迁移.

  4. 牛膝多糖硫酸酯和磷酸酯衍生物对人肺癌A549细胞的影响%Effect of the sulfated and phosphorylated derivative of Achyranthes bidentata polysaccharides on human lung cancer cell A549

    薛胜霞; 金丽琴; 叶发青; 贾东明

    2007-01-01

    目的 探讨牛膝多糖硫酸酯(s-AbPS)和磷酸酯(P-AbPS)衍生物对人肺癌A549细胞的影响及其作用机制.方法 用四甲基偶氯唑盐(MTT)法检测牛膝多糖、S-AbPS和P-AbPS对A549细胞增殖的抑制作用;流式细胞仪观察S-AbPS和P-AbPS处理A549细胞后细胞凋亡的改变.结果 S-AbPS和P-AbPS对A549细胞的增殖有抑制作用,且存在时间和剂量相关性.S-AbPS和P-AbPS的48 h抑瘤活性均较同浓度的牛膝多糖强.流式细胞仪分析显示,S-AbPS和P-AbPS均可不同程度地诱导细胞凋亡.结论 S-AbPS和P-AbPS较牛膝多糖能更有效地抑制人肺癌A549细胞的增殖,其机制可能是通过诱导A549细胞凋亡而实现.

  5. The collective nuclear migration of p53 and phosphorylated S473 of Akt during ellipticine-mediated apoptosis in human lung epithelial cancer cells.

    Wang, Jing-Ping; Yu, Ya-Chu; Chen, Shih-Ping; Liang, Huan-Chang; Lin, Chia-Wei; Fang, Kang

    2015-09-01

    Topoisomerase II inhibitor ellipticine effectively suppressed the growth of human non-small-cell-lung-cancer (NSCLC) epithelial cells. Previously, we reported the drug activity was consummated through parallel nucleus migration of p53 and Akt in A549 cells. While inducing cell death, the drug activity was proved related to autophagy through phosphorylated Akt at S473. In addition, ellipticine induced cytotoxicity in p53-null H1299 cells with stable expression of ectopic p53. In this work, we further demonstrated that dominant-negative Akt (S473A) or p53 shRNA inhibited ellipticine-mediated translocalization of p53 and Akt and attenuated apoptotic cell death in A549 cells. The presence of p53 predates ellipticine-mediated apoptotic cell death, assists in nucleus translocation of phosphorylated Akt and activation of autophagy pathway. Growth inhibition through collaborating p53 and phosphorylated Akt(473) in lung epithelial cancer cells provided a new perspective of the topoisomerase inhibitor as an effective cancer therapy agent.

  6. Uranium induces oxidative stress in lung epithelial cells

    Periyakaruppan, Adaikkappan; Kumar, Felix; Sarkar, Shubhashish; Sharma, Chidananda S.; Ramesh, Govindarajan T. [Texas Southern University, Molecular Neurotoxicology Laboratory/Proteomics Core, Department of Biology, Houston, TX (United States)

    2007-06-15

    Uranium compounds are widely used in the nuclear fuel cycle, antitank weapons, tank armor, and also as a pigment to color ceramics and glass. Effective management of waste uranium compounds is necessary to prevent exposure to avoid adverse health effects on the population. Health risks associated with uranium exposure includes kidney disease and respiratory disorders. In addition, several published results have shown uranium or depleted uranium causes DNA damage, mutagenicity, cancer and neurological defects. In the current study, uranium toxicity was evaluated in rat lung epithelial cells. The study shows uranium induces significant oxidative stress in rat lung epithelial cells followed by concomitant decrease in the antioxidant potential of the cells. Treatment with uranium to rat lung epithelial cells also decreased cell proliferation after 72 h in culture. The decrease in cell proliferation was attributed to loss of total glutathione and superoxide dismutase in the presence of uranium. Thus the results indicate the ineffectiveness of antioxidant system's response to the oxidative stress induced by uranium in the cells. (orig.)

  7. Phenazine-1-carboxamide (PCN) from Pseudomonas sp. strain PUP6 selectively induced apoptosis in lung (A549) and breast (MDA MB-231) cancer cells by inhibition of antiapoptotic Bcl-2 family proteins.

    Kennedy, R Kamaraj; Veena, V; Naik, P Ravindra; Lakshmi, Pragna; Krishna, R; Sudharani, S; Sakthivel, N

    2015-06-01

    Phenazine-1-carboxamide (PCN), a naturally occurring simple phenazine derivative isolated from Pseudomonas sp. strain PUP6, exhibited selective cytotoxic activity against lung (A549) and breast (MDA-MB-231) cancer cell lines in differential and dose-dependent manner compared to normal peripheral blood mononuclear cells. PCN-treated cancer cells showed the induction of apoptosis as evidenced by the release of low level of LDH, morphological characteristics, production of reactive oxygen species, loss of mitochondrial membrane potential (ΔΨm) and induction of caspase-3. At molecular level, PCN instigates apoptosis by mitochondrial intrinsic apoptotic pathway via the overexpression of p53, Bax, cytochrome C release and activation of caspase-3 with the inhibition of oncogenic anti-apoptotic proteins such as PARP and Bcl-2 family proteins (Bcl-2, Bcl-w and Bcl-xL). The in silico docking studies of PCN targeted against the anti-apoptotic members of Bcl-2 family proteins revealed the interaction of PCN with the BH3 domain, which might lead to the induction of apoptosis due to the inhibition of antiapoptotic proteins. Due to its innate inhibition potential of antiapoptotic Bcl-2 family proteins, PCN may be used as potent anticancer agent against both lung and breast cancer.

  8. Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air-liquid interface compared with in vivo assessment.

    Jing, Xuefang; Park, Jae Hong; Peters, Thomas M; Thorne, Peter S

    2015-04-01

    The toxicity of spark-generated copper oxide nanoparticles (CuONPs) was evaluated in human bronchial epithelial cells (HBEC) and lung adenocarcinoma cells (A549 cells) using an in vitro air-liquid interface (ALI) exposure system. Dose-response results were compared to in vivo inhalation and instillation studies of CuONPs. Cells were exposed to filtered, particle-free clean air (controls) or spark-generated CuONPs. The number median diameter, geometric standard deviation and total number concentration of CuONPs were 9.2 nm, 1.48 and 2.27×10(7)particles/cm(3), respectively. Outcome measures included cell viability, cytotoxicity, oxidative stress and proinflammatory chemokine production. Exposure to clean air (2 or 4h) did not induce toxicity in HBEC or A549 cells. Compared with controls, CuONP exposures significantly reduced cell viability, increased lactate dehydrogenase (LDH) release and elevated levels of reactive oxygen species (ROS) and IL-8 in a dose-dependent manner. A549 cells were significantly more susceptible to CuONP effects than HBEC. Antioxidant treatment reduced CuONP-induced cytotoxicity. When dose was expressed per area of exposed epithelium there was good agreement of toxicity measures with murine in vivo studies. This demonstrates that in vitro ALI studies can provide meaningful data on nanotoxicity of metal oxides.

  9. Aberrant miRNA validation in lung adenocarcinoma initiating cells spared by magnetic bead from A549%磁性分选肺腺癌始动细胞的异常miRNAs验证

    张振华; 杨红茹; 周杰; 邓曦; 吴敬波; 林盛

    2013-01-01

    目的:利用磁性活细胞分选法(magnetic activated cell sorting,MACS)从人A549肺腺癌细胞中分离得到CD133+标记细胞,通过CD133/CD326双阳性检测探讨分离效果,初步分析差异表达miRNAs对该亚群细胞的调控功能。方法将对数生长期的A549细胞离心收集,重悬于无血清培养基中,培养至第二代后利用CD133磁珠标记后分选,流式细胞术及免疫荧光验证分选后细胞的CD133/CD326双阳性率;结合前期实验miRNA芯片结果,挑选兴趣分子进行定量PCR验证。结果利用CD133磁珠分选得到的阳性细胞亚群高表达CD133/CD326分子,结合前期miRNA芯片结果,选出在CD133+/CD326+细胞亚群中表达上调的miR-663,miR-183,miR-125a-5p,miR-127,miR-520h及表达下调的miR-18b,miR-29ab,miR-17和miR-155行定量PCR检测证实miR-29ab,miR-155,miR-183,miR-127-3p及miR-17的表达趋势与芯片结果相符。结论利用磁珠分选方式能获得CD133+/CD326+高表达肺腺癌始动细胞亚群且包括miR-183等在内的6条分子与芯片结果一致,可能在肺腺癌始动细胞生物学行为的调控中发挥重要作用。%Objective To validate magnetic activated cell sorting (MACS) is another means in enriching lung adenocarcinoma initiating cells from normal A549 cells and based on quantitative RT-PCR to analyze regulatory roles of this subpopulation. Methods After obtaining the lung adenocarcinoma initiating cells by MACS, we utilize flow cytometry analysis and immunofluorescence to verify CD133/CD326 expression of this subpopulation and choose 10 miRNAs to perform quantitative RT-PCR. Results We obtained CD133/CD326 high expression subpopulation by MACS. 10 miRNAs chose for quantitative RT-PCR and 6 miRNAs expression trend were consist with array data including miR-29ab, miR-155, miR-183, miR-127-3p, miR-17. Conclusion MACS can enrich CD133+/CD326+ subpopulation and 6 miRNAs expression trend were consist with

  10. Diesel exhaust particles increase IL-1β-induced human β-defensin expression via NF-κB-mediated pathway in human lung epithelial cells

    Lee Chun

    2006-05-01

    Full Text Available Abstract Background Human β-defensin (hBD-2, antimicrobial peptide primarily induced in epithelial cells, is a key factor in the innate immune response of the respiratory tract. Several studies showed increased defensin levels in both inflammatory lung diseases, such as cystic fibrosis, diffuse panbronchiolitis, idiopathic pulmonary fibrosis and acute respiratory distress syndrome, and infectious diseases. Recently, epidemiologic studies have demonstrated acute and serious adverse effects of particulate air pollution on respiratory health, especially in people with pre-existing inflammatory lung disease. To elucidate the effect of diesel exhaust particles (DEP on pulmonary innate immune response, we investigated the hBD-2 and interleukin-8 (IL-8 expression to DEP exposure in interleukin-1 beta (IL-1β-stimulated A549 cells. Results IL-1β markedly up-regulated the hBD-2 promoter activity, and the subsequent DEP exposure increased dose-dependently the expression of hBD-2 and inflammatory cytokine IL-8 at the transcriptional level. In addition, DEP further induced the NF-κB activation in IL-1β-stimulated A549 cells more rapidly than in unstimulated control cells, which was showed by nuclear translocation of p65 NF-κB and degradation of IκB-α. The experiment using two NF-κB inhibitors, PDTC and MG132, confirmed that this increase of hBD-2 expression following DEP exposure was regulated through NF-κB-mediated pathway. Conclusion These results demonstrated that DEP exposure increases the expression of antimicrobial peptide and inflammatory cytokine at the transcriptional level in IL-1β-primed A549 epithelial cells and suggested that the increase is mediated at least partially through NF-κB activation. Therefore, DEP exposure may contribute to enhance the airway-responsiveness especially on the patients suffering from chronic respiratory disease.

  11. The effect of ataxia-telangiectasia mutated kinase-dependent hyperphosphorylation of checkpoint kinase-2 on oligodeoxynucleotide 7909 containing CpG motifs-enhanced sensitivity to X-rays in human lung adenocarcinoma A549 cells

    Liu XQ

    2015-06-01

    Full Text Available Xiaoqun Liu,1,* Xiangdong Liu,2,* Tiankui Qiao,1 Wei Chen,1 Sujuan Yuan1 1Department of Oncology, 2Department of Ophthalmology, Affiliated Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China *These authors contributed equally to this work Objective: The aim of the study reported here was to further investigate the potential effect of ataxia-telangiectasia mutated (ATM kinase-dependent hyperphosphorylation of checkpoint kinase-2 (Chk2 on radiosensitivity enhanced by oligodeoxynucleotide 7909 containing CpG motifs (CpG ODN7909 in human lung adenocarcinoma A549 cells. Methods: In vitro A549 cells were randomly separated into control, CpG, X-ray, CpG+X-ray, ATM kinase-small interfering RNA (siRNA+CpG+X-ray (ATM-siRNA, and Chk2-siRNA+CpG+X-ray (Chk2-siRNA groups. siRNAs were adopted to silence the ATM and Chk2 genes. Expression and phosphorylation of ATM kinase and Chk2 were detected by Western blot assay. Cell colonies were observed under inverted phase-contrast microscopy. Cellular survival curves were fitted using a multi-target single-hitting model. Cell cycle and apoptosis were analyzed by flow cytometry. Results: Expression of ATM kinase and Chk2 was similar among the control, CpG, X-ray, and CpG+X-ray groups. Phosphorylated ATM kinase and Chk2 were significantly increased in the CpG+X-ray group compared with in the X-ray group (t=6.00, P<0.01 and t=3.13, P<0.05, respectively, though these were hardly detected in the control and CpG groups. However, expression of ATM kinase and Chk2 was clearly downregulated in the ATM-siRNA and Chk2-siRNA groups, respectively. Similarly, their phosphorylation levels were also significantly decreased in the ATM-siRNA group (t=14.35, P<0.01 and t=8.46, P<0.01, respectively and a significant decrease in phosphorylated Chk2 was observed in the Chk2-siRNA group (t=7.28, P<0.01 when compared with the CpG+X-ray group. Further, the number of A549 cells at Gap 2/mitotic phase and the apoptosis

  12. SIRT1通过调节Noxa表达影响非小细胞肺癌细胞株A549对顺铂的敏感性%SIRT1 Influences the Sensitivity of A549 Non-small Cell Lung Cancer Cell Line to Cisplatin via Modulating the Noxa Expression

    曹彬; 何晓峰; 王文公; 史敏科

    2016-01-01

    背景与目的 非小细胞肺癌的顺铂耐药是常见的临床现象,严重制约了患者的化疗效果,是亟待解决的问题.SIRT1和Noxa的表达变化影响肿瘤细胞对化疗药物的敏感性.本研究旨在研究SIRT1表达对非小细胞肺癌对顺铂的敏感性的影响,并探讨其涉及Noxa表达的机制,以求为提高非小细胞肺癌细胞对顺铂敏感性提供希望.方法 利用实时荧光定量PCR和Westem blot分析A549细胞及顺铂耐药的A549/DDP细胞SIRT1及Noxa mRNA和蛋白水平的表达差异.利用siRNA干扰技术抑制A549/DDP细胞的SIRT1表达,进而使用Cell Titer Blue试验、流式细胞术从细胞增殖、细胞周期和细胞凋亡方面分析SIRT1沉默对A549/DPP细胞顺铂敏感性的影响.同时利用实时荧光定量PCR和Western blot分析SIRT1抑制对A549/DPP细胞Noxa表达的影响.结果 A549细胞和A549/DDP细胞对顺铂的敏感性有显著差异,与A549细胞相比,A549/DDP细胞的SIRT1表达较高,但Noxa表达较低.使用siRN抑制A549/DPP细胞的SIRT1表达后,与未抑制SIRT1细胞相比,4μg/mL顺铂处理后的细胞存活率降低,G2期/M期阻滞比例增加,凋亡率提高.同时,SIRT1沉默导致A549/DPP细胞的Noxa表达增加.结论 较高的SIRT1可能引起A549细胞对顺铂的耐药性,抑制SIRT1可以提高A549/DDP细胞对顺铂的敏感性,其机制可能涉及SIRT1对Noxa的调节.

  13. Irradiation and various cytotoxic drugs enhance tyrosine phosphorylation and {beta}{sub 1}-integrin clustering in human A549 lung cancer cells in a substratum-dependent manner in vitro

    Cordes, N.; Beinke, C.; Beuningen, D. van [Inst. of Radiobiology, German Armed Forces, Munich (Germany); Plasswilm, L. [Dept. of Radiation Oncology, Univ. Hospital Basel (Swaziland)

    2004-03-01

    Background and purpose: interactions of cells with a substratum, especially extracellular matrix proteins, initiate clustering of integrin receptors in the cell membrane. This process represents the initial step for the activation of signaling pathways regulating survival, proliferation, differentiation, adhesion, and migration, and could, furthermore, be important for cellular resistance-mediating mechanisms against radiation or cytotoxic drugs. The lack of data elucidating the impact of irradiation or cytotoxic drugs on this important phenomenon led to this study on human A549 lung cancer cells in vitro. Material and methods: the human lung carcinoma cell line A549 grown on polystyrene or fibronectin (FN) was irradiated with 0-8 Gy or treated with cisplatin (0.1-50 {mu}M), paclitaxel (0.1-50 nM), or mitomycin (0.1-50 {mu}M). Colony formation assays, immunofluorescence staining in combination with activation of integrin clustering using anti-{beta}{sub 1}-integrin antibodies (K20), and Western blotting for tyrosine phosphorylation under treatment of cells with the IC{sub 50} for irradiation (2 Gy; IC{sub 50} = 2.2 Gy), cisplatin (2 {mu}M), paclitaxel (5 nM), or mitomycin (7 {mu}M) were performed. Results: attachment of cells to FN resulted in a significantly reduced radio- and chemosensitivity compared to polystyrene. The clustering of {beta}{sub 1}-integrins examined by immunofluorescence staining was only stimulated by irradiation, cisplatin, paclitaxel, or mitomycin in case of cell attachment to FN. By contrast, tyrosine phosphorylation, as one of the major events following {beta}{sub 1}-integrin clustering, showed a 3.7-fold, FN-related enhancement, and treatment of cells with the IC{sub 50} of radiation, cisplatin, paclitaxel, or mitomycin showed a substratum-dependent induction. Conclusion: for the first time, a strong influence of irradiation and a variety of cytotoxic drugs on the clustering of {beta}{sub 1}-integrins could be shown. This event is a

  14. Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells.

    Ahamed, Maqusood; Akhtar, Mohd Javed; Siddiqui, Maqsood A; Ahmad, Javed; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; AlSalhi, Mohamad S; Alrokayan, Salman A

    2011-05-10

    Due to the interesting magnetic and electrical properties with good chemical and thermal stabilities, nickel ferrite nanoparticles are being utilized in many applications including magnetic resonance imaging, drug delivery and hyperthermia. Recent studies have shown that nickel ferrite nanoparticles produce cytotoxicity in mammalian cells. However, there is very limited information concerning the toxicity of nickel ferrite nanoparticles at the cellular and molecular level. The aim of this study was to investigate the cytotoxicity, oxidative stress and apoptosis induction by well-characterized nickel ferrite nanoparticles (size 26 nm) in human lung epithelial (A549) cells. Nickel ferrite nanoparticles induced dose-dependent cytotoxicity in A549 cells demonstrated by MTT, NRU and LDH assays. Nickel ferrite nanoparticles were also found to induce oxidative stress evidenced by generation of reactive oxygen species (ROS) and depletion of antioxidant glutathione (GSH). Further, co-treatment with the antioxidant L-ascorbic acid mitigated the ROS generation and GSH depletion due to nickel ferrite nanoparticles suggesting the potential mechanism of oxidative stress. Quantitative real-time PCR analysis demonstrated that following the exposure of A549 cells to nickel ferrite nanoparticles, the level of mRNA expressions of cell cycle checkpoint protein p53 and apoptotic proteins (bax, caspase-3 and caspase-9) were significantly up-regulated, whereas the expression of anti-apoptotic proteins (survivin and bcl-2) were down-regulated. Moreover, activities of caspase-3 and caspase-9 enzymes were also significantly higher in nickel ferrite nanoparticles exposed cells. To the best of our knowledge this is the first report showing that nickel ferrite nanoparticles induced apoptosis in A549 cells through ROS generation and oxidative stress via p53, survivin, bax/bcl-2 and caspase pathways.

  15. HIV Impairs Lung Epithelial Integrity and Enters the Epithelium to Promote Chronic Lung Inflammation.

    Brune, Kieran A; Ferreira, Fernanda; Mandke, Pooja; Chau, Eric; Aggarwal, Neil R; D'Alessio, Franco R; Lambert, Allison A; Kirk, Gregory; Blankson, Joel; Drummond, M Bradley; Tsibris, Athe M; Sidhaye, Venkataramana K

    2016-01-01

    Several clinical studies show that individuals with HIV are at an increased risk for worsened lung function and for the development of COPD, although the mechanism underlying this increased susceptibility is poorly understood. The airway epithelium, situated at the interface between the external environment and the lung parenchyma, acts as a physical and immunological barrier that secretes mucins and cytokines in response to noxious stimuli which can contribute to the pathobiology of chronic obstructive pulmonary disease (COPD). We sought to determine the effects of HIV on the lung epithelium. We grew primary normal human bronchial epithelial (NHBE) cells and primary lung epithelial cells isolated from bronchial brushings of patients to confluence and allowed them to differentiate at an air- liquid interface (ALI) to assess the effects of HIV on the lung epithelium. We assessed changes in monolayer permeability as well as the expression of E-cadherin and inflammatory modulators to determine the effect of HIV on the lung epithelium. We measured E-cadherin protein abundance in patients with HIV compared to normal controls. Cell associated HIV RNA and DNA were quantified and the p24 viral antigen was measured in culture supernatant. Surprisingly, X4, not R5, tropic virus decreased expression of E-cadherin and increased monolayer permeability. While there was some transcriptional regulation of E-cadherin, there was significant increase in lysosome-mediated protein degradation in cells exposed to X4 tropic HIV. Interaction with CXCR4 and viral fusion with the epithelial cell were required to induce the epithelial changes. X4 tropic virus was able to enter the airway epithelial cells but not replicate in these cells, while R5 tropic viruses did not enter the epithelial cells. Significantly, X4 tropic HIV induced the expression of intercellular adhesion molecule-1 (ICAM-1) and activated extracellular signal-regulated kinase (ERK). We demonstrate that HIV can enter airway

  16. HIV Impairs Lung Epithelial Integrity and Enters the Epithelium to Promote Chronic Lung Inflammation.

    Kieran A Brune

    Full Text Available Several clinical studies show that individuals with HIV are at an increased risk for worsened lung function and for the development of COPD, although the mechanism underlying this increased susceptibility is poorly understood. The airway epithelium, situated at the interface between the external environment and the lung parenchyma, acts as a physical and immunological barrier that secretes mucins and cytokines in response to noxious stimuli which can contribute to the pathobiology of chronic obstructive pulmonary disease (COPD. We sought to determine the effects of HIV on the lung epithelium. We grew primary normal human bronchial epithelial (NHBE cells and primary lung epithelial cells isolated from bronchial brushings of patients to confluence and allowed them to differentiate at an air- liquid interface (ALI to assess the effects of HIV on the lung epithelium. We assessed changes in monolayer permeability as well as the expression of E-cadherin and inflammatory modulators to determine the effect of HIV on the lung epithelium. We measured E-cadherin protein abundance in patients with HIV compared to normal controls. Cell associated HIV RNA and DNA were quantified and the p24 viral antigen was measured in culture supernatant. Surprisingly, X4, not R5, tropic virus decreased expression of E-cadherin and increased monolayer permeability. While there was some transcriptional regulation of E-cadherin, there was significant increase in lysosome-mediated protein degradation in cells exposed to X4 tropic HIV. Interaction with CXCR4 and viral fusion with the epithelial cell were required to induce the epithelial changes. X4 tropic virus was able to enter the airway epithelial cells but not replicate in these cells, while R5 tropic viruses did not enter the epithelial cells. Significantly, X4 tropic HIV induced the expression of intercellular adhesion molecule-1 (ICAM-1 and activated extracellular signal-regulated kinase (ERK. We demonstrate that HIV

  17. Nano-biointeractions of PEGylated and bare reduced graphene oxide on lung alveolar epithelial cells: A comparative in vitro study.

    Reshma, S C; Syama, S; Mohanan, P V

    2016-04-01

    Graphene and its derivatives have garnered significant scientific interest and have potential use in nano-electronics as well as biomedicine. However the undesirable biological consequence, especially upon inhalation of the particle, requires further investigations. This study aimed to elucidate the nano-biointeractions of PEGylated reduced graphene oxide (PrGO) and reduced graphene oxide (rGO) with that of lung alveolar epithelial cells (A549). Both nanomaterials showed dose dependent decrease in cell viability and alteration of cell morphology after 24h. Upon intracellular uptake of PrGO, it elicited oxidative stress mediated apoptosis in the cells by inducing ROS, loss of mitochondrial membrane potential (MMP) and inflammatory response by NF-κB activation. Conversely, rGO was found to scavenge ROS efficiently except at high dose after 24h. It was found that ROS at high dose of rGO prompted loss of MMP. rGO was found to adhere to the cell membrane, where it is assumed to bind to cell surface Toll like receptors (TLRs) thereby activating NF-κB mediated inflammatory response. All these events culminated in an increase in apoptosis of A549 cells after 24h of rGO exposure. It was also noticed that both the nanomaterials did not initiate lysosomal pathway but instead activated mitochondria mediated apoptosis. This study highlights the possible adverse toxic effect of PrGO and rGO upon inhalation and persistence of these particles in the lungs. Further research is required to comprehend the biological response of PrGO and rGO so as to advance its biomedical application and safety.

  18. Phospholipase A(2) activation by poultry particulate matter is mediated through extracellular signal-regulated kinase in lung epithelial cells: regulation of interleukin-8 release.

    Kotha, Sainath R; Piper, Melissa G; Patel, Rishi B; Sliman, Sean; Malireddy, Smitha; Zhao, Lingying; Baran, Christopher P; Nana-Sinkam, Patrick S; Wewers, Mark D; Romberger, Debra; Marsh, Clay B; Parinandi, Narasimham L

    2013-11-01

    The mechanisms of poultry particulate matter (PM)-induced agricultural respiratory disorders are not thoroughly understood. Hence, it is hypothesized in this article that poultry PM induces the release of interleukin-8 (IL-8) by lung epithelial cells that is regulated upstream by the concerted action of cytosolic phospholipase A2 (cPLA2) and extracellular signal-regulated kinase (ERK). To test this hypothesis, the widely used cultured human lung epithelial cells (A549) were chosen as the model system. Poultry PM caused a significant activation of PLA2 in A549 cells, which was attenuated by AACOCF3 (cPLA2 inhibitor) and PD98059 (ERK-1/2 upstream inhibitor). Poultry PM induced upstream ERK-1/2 phosphorylation and downstream cPLA2 serine phosphorylation, in a concerted fashion, in cells with enhanced association of ERK-1/2 and cPLA2. The poultry PM-induced cPLA2 serine phosphorylation and IL-8 release were attenuated by AACOCF3, PD98059, and by transfection with dominant-negative ERK-1/2 DNA in cells. The poultry PM-induced IL-8 release by the bone marrow-derived macrophages of cPLA2 knockout mice was significantly lower. For the first time, this study demonstrated that the poultry PM-induced IL-8 secretion by human lung epithelial cells was regulated by cPLA2 activation through ERK-mediated serine phosphorylation, suggesting a mechanism of airway inflammation among poultry farm workers.

  19. Effect of piperine combined with cisplation on proliferation and MMP-2, VEGF of human lung adenocarcinoma A549 cell%胡椒碱联合顺铂对肺腺癌 A549 细胞生长及 MMP-2、VEGF 的影响

    何含含; 岳红梅; 鲁文强; 罗亚娟

    2015-01-01

    目的:研究胡椒碱与顺铂联合对肺腺癌A549细胞生长和凋亡的作用,以及检测A549细胞基质金属蛋白酶-2(matrix metalloproteinase-2,MMP-2)和血管内皮生长因子(vascular endothelial growth factor,VEGF)的表达水平. 方法:MTT法检测不同质量浓度的胡椒碱、顺铂及两者联合对A549细胞增殖的影响. 流式细胞术分析细胞凋亡. RT-PCR测定各组A549细胞MMP-2 mRNA和VEGF mRNA的表达变化. 结果:胡椒碱与顺铂均可抑制人肺腺癌A549细胞的生长,呈时间—浓度依赖性( P<0.05 );联合组随作用时间延长,对A549细胞的抑制效应增加( P<0.05 ). 联合组较对照组、胡椒碱组、顺铂组的A549细胞凋亡率显著增高( P<0.05 ). 联合组与对照组及单用胡椒碱、顺铂比较, MMP-2 mRNA和VEGF mRNA 的表达明显下调( P<0.05 ). 结论:胡椒碱显著提高顺铂对肺腺癌A549细胞的生长抑制和促进凋亡效应,降低MMP-2、VEGF的表达,从而可能抑制肺癌细胞的迁移.%Objective:To investigate the proliferation and apoptosis of piperine combined with cisplation on A 549 cells and the changes in the expression of MMP-2 and VEGF.Methods: MTT assay was used to detect the proliferation on A549 cells after treatment with series of monotherapy group ( piperine or cisplation alone ) or combination group ( piperine combined with cisplation ) .Flow cytometry was performed to assess the cellular apoptosis.The expression of MMP-2,VEGF mRNA were measured by RT-PCR in each group.Results: Both piperine and cisplation could inhibit the growth of A 549 cells in a time-dose dependent manner ( P<0.05 ) .With the increasing time , the cell proliferation was significantly inhibited in the combination group ( P <0.05 ) .The combination group also showed an obviously higher apoptosis rate than piperine alone , cisplation alone and control group, respectively( P<0.05).In addition, the expression of MMP-2 and VEGF mRNA in combination group were evidently lower than

  20. Transcriptional mechanisms and protein kinase signaling mediate organic dust induction of IL-8 expression in lung epithelial and THP-1 cells.

    Gottipati, Koteswara R; Bandari, Shiva Kumar; Nonnenmann, Matthew W; Levin, Jeffrey L; Dooley, Gregory P; Reynolds, Stephen J; Boggaram, Vijay

    2015-01-01

    Exposure to the agricultural work environment is a risk factor for the development of respiratory symptoms and chronic lung diseases. Inflammation is an important contributor to the pathogenesis of tissue injury and disease. Cellular and molecular mechanisms mediating lung inflammatory responses to agricultural dust are not yet fully understood. We studied the effects of poultry dust extract on molecular regulation of interleukin-8 (IL-8), a proinflammatory cytokine, in A549 and Beas2B lung epithelial and THP-1 monocytic cells. Our findings indicate that poultry dust extract potently induces IL-8 levels by increasing IL-8 gene transcription without altering IL-8 mRNA stability. Increase in IL-8 promoter activity was due to enhanced binding of activator protein 1 and NF-κB. IL-8 induction was associated with protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) activation and inhibited by PKC and MAPK inhibitors. IL-8 increase was not inhibited by polymyxin B or l-nitroarginine methyl ester, indicating lack of involvement of lipopolysaccharide and nitric oxide in the induction. Lung epithelial and THP-1 cells share common mechanisms for induction of IL-8 levels. Our findings identify key roles for transcriptional mechanisms and protein kinase signaling pathways for IL-8 induction and provide insights into the mechanisms regulating lung inflammatory responses to organic dust exposure.

  1. Experimental studies of the menispermum dauricum on anti-proliferation of human lung cancer cell line A549%蝙蝠葛活性成分对人肺癌A549细胞株抗增殖作用的实验研究

    王永刚; 杨万山; 孙抒

    2010-01-01

    目的 探讨蝙蝠葛活性成分对人肺癌A549细胞株抗增殖作用及其机制.方法 应用MTT法测定蝙蝠葛活性成分对人肺癌A549细胞株的生长抑制作用;通过吖碇橙(AO)/溴化乙啶(EB)染色荧光显微镜观察肿瘤细胞的形态学变化;采用流式细胞仪检测A549细胞的周期分布相;应用免疫细胞化学技术SP法检测药物处理前后增殖细胞核抗原Ki-67、Bcl-2的表达.结果 蝙蝠葛活性成分对人肺癌A549细胞株有明显的抑制生长的作用,且呈现出浓度依赖性;蝙蝠葛活性成分可诱导A549细胞发生细胞周期阻滞;蝙蝠葛活性成分作用后Ki-67和Bcl-2阳性表达率较对照组降低(P<0.01).结论 蝙蝠葛活性成分在体外对人肺癌A549细胞株有显著的抑制增殖作用,可能与下调Ki-67、Bcl-2蛋白表达,细胞周期发生G0/G1期阻滞有关.

  2. Mite and cockroach proteases activate p44/p42 MAP kinases in human lung epithelial cells

    Kong Xiaoyuan

    2003-10-01

    Full Text Available Abstract Background The mechanisms underlying epithelial cell activation by indoor inhaled antigens are poorly understood. Methods In this study, we investigated the role of mitogen-activated protein kinases (MAPKs in A549 epithelial cells upon exposure to antigens of house dust mite (HDMA, German cockroach (GCA, and American cockroach (ACA. Results Each of these antigens induced a significant increase in IL-8 levels compared to the medium control. Exposure of A549 cells to these antigens induced the phosphorylation of p44/42 MAPKs within 5 minutes, which reached a peak at 25 minutes later and reached baseline levels at 1 hour after exposure. PD98059, a MEK1 inhibitor, significantly decreased phosphorylation of p44/p42 MAPKs and IL-8 production. Exposure of A549 cells with antigens, which had been preincubated with different protease inhibitors, also resulted in a reduction of both MAPK phosphorylation and IL-8 production. Conclusion Thus, proteolytic antigens present in HDMA, GCA and ACA activate the p44/42 MAPKs airway epithelial cells, which lead to elevated IL-8 production and initiation of the inflammatory cascade.

  3. High Glucose Promotes Tumor Invasion and Increases Metastasis-Associated Protein Expression in Human Lung Epithelial Cells by Upregulating Heme Oxygenase-1 via Reactive Oxygen Species or the TGF-β1/PI3K/Akt Signaling Pathway

    Xiaowen Kang

    2015-02-01

    Full Text Available Background: Growing evidence indicates that heme oxygenase-1 (HO-1 is up-regulated in malignancies and subsequently alters tumor aggressiveness and various cancer-related factors, such as high glucose (HG levels. HO-1 expression can be induced when glucose concentrations are above 25 mM; however, the role of HO-1 in lung cancer patients with diabetes remains unknown. Therefore, in this study we investigated the promotion of tumor cell invasion and the expression of metastasis-associated proteins by inducing the up-regulation of HO-1 expression by HG treatment in A549 human lung epithelial cells. Methods: The expression of HO-1and metastasis-associated protein expression was explored by western blot analysis. HO-1 enzymatic activity, reactive oxygen species (ROS production and TGF-β1 production were examined by ELISA. Invasiveness was analyzed using a Transwell chamber. Results: HG treatment of A549 cells induced an increase in HO-1 expression, which was mediated by the HG-induced generation of reactive oxygen species (ROS and transforming growth factor-β1 (TGF-β1 in a concentration- and time-dependent manner. Following the increase in HO-1 expression, the enzymatic activity of HO-1 also increased in HG-treated cells. Pretreatment with N-acetyl-L-cysteine (NAC or with phosphatidylinositol 3-kinase (PI3K/Akt inhibitors attenuated the HG-induced increase in HO-1 expression. HG treatment of A549 cells enhanced the invasion potential of these cells, as shown with a Transwell assay, and increased metastasis-associated protein expression. However, HO-1 siRNA transfection significantly decreased these capabilities. Conclusion: this study is the first to demonstrate that HG treatment of A549 human lung epithelial cells promotes tumor cell invasion and increases metastasis-associated protein expression by up-regulating HO-1 expression via ROS or the TGF-β1/PI3K/Akt signaling pathway.

  4. Comparative Cytotoxicity of Glycyrrhiza glabra Roots from Different Geographical Origins Against Immortal Human Keratinocyte (HaCaT), Lung Adenocarcinoma (A549) and Liver Carcinoma (HepG2) Cells.

    Basar, Norazah; Oridupa, Olayinka Ayotunde; Ritchie, Kenneth J; Nahar, Lutfun; Osman, Nashwa Mostafa M; Stafford, Angela; Kushiev, Habibjon; Kan, Asuman; Sarker, Satyajit D

    2015-06-01

    Glycyrrhiza glabra L. (Fabaceae), commonly known as 'liquorice', is a well-known medicinal plant. Roots of this plant have long been used as a sweetening and flavouring agent in food and pharmaceutical products, and also as a traditional remedy for cough, upper and lower respiratory ailments, kidney stones, hepatitis C, skin disorder, cardiovascular diseases, diabetes, gastrointestinal ulcers and stomach ache. Previous pharmacological and clinical studies have revealed its antitussive, antiinflammatory, antiviral, antimicrobial, antioxidant, immunomodulatory, hepatoprotective and cardioprotective properties. While glycyrrhizin, a sweet-tasting triterpene saponin, is the principal bioactive compound, several bioactive flavonoids and isoflavonoids are also present in the roots of this plant. In the present study, the cytotoxicity of the methanol extracts of nine samples of the roots of G. glabra, collected from various geographical origins, was assessed against immortal human keratinocyte (HaCaT), lung adenocarcinoma (A549) and liver carcinoma (HepG2) cell lines using the in vitro 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide cell toxicity/viability assay. Considerable variations in levels of cytotoxicity were observed among various samples of G. glabra.

  5. Lithium-Acetate-Mediated Biginelli One-Pot Multicomponent Synthesis under Solvent-Free Conditions and Cytotoxic Activity against the Human Lung Cancer Cell Line A549 and Breast Cancer Cell Line MCF7

    Harshita Sachdeva

    2012-01-01

    Full Text Available Various Biginelli compounds (dihydropyrimidinones have been synthesized efficiently and in high yields under mild, solvent-free, and eco-friendly conditions in a one-pot reaction of 1,3-dicarbonyl compounds, aldehydes, and urea/thiourea/acetyl thiourea using lithium-acetate as a novel catalyst without the addition of any proton source. Comparative catalytic efficiency of lithium-acetate and polyphosphoric acid to catalyze Biginelli condensation is also studied under neat conditions. The reaction is carried out in the absence of any solvent and represents an improvement of the classical Biginelli protocol and an advantage in comparison with FeCl3·6H2O, NiCl2·6H2O and CoCl2·6H2O that were used with HCl as a cocatalyst. Compared to classical Biginelli reaction conditions, the present method has advantages of good yields, short reaction times, and experimental simplicity. The obtained products have been identified by spectral (1H NMR and IR data and their melting points. The prepared compounds are evaluated for anticancer activity against two human cancer cell lines (lung cancer cell line A549 and breast cancer cell line MCF7.

  6. Lycium europaeum fruit extract: antiproliferative activity on A549 human lung carcinoma cells and PC12 rat adrenal medulla cancer cells and assessment of its cytotoxicity on cerebellum granule cells.

    Ghali, Wafa; Vaudry, David; Jouenne, Thierry; Marzouki, Mohamed Nejib

    2015-01-01

    Cancer is a major worldwide health problem and one of the leading causes of death either in developed or developing countries. Plant extracts and derivatives have always been used for various disease treatments and many anticancer agents issued from plants and vegetables are clinically recognized and used all over the world. Lycium europaeum (Solanaceae) also called "wolfberry" was known since ancient times in the Mediterranean area as a medicinal plant and used in several traditional remedies. The Lycium species capacity of reducing the incidence of cancer and also of halting or reserving the growth of cancer was reported by traditional healers. In this study, the antiproliferative capacity, protective properties, and antioxidant activity of the hydro-alcoholic fruit extract of Lycium europaeum were investigated. Results showed that Lycium extract exhibits the ability to reduce cancer cell viability, inhibits proliferation, and induces apoptosis in A549 human lung cancer cells and PC12 rat adrenal medulla cancer cells, in a concentration- and time-dependent manner. Cytotoxic effect on normal rat cerebellum granule cells was assessed to be nonsignificant. Results also showed that Lycium fruit extract protected lipids, proteins, and DNA against oxidative stress damages induced by H2O2 via scavenging reactive oxygen species.

  7. Increased Interleukin-8 in Epithelial Lining Fluid of Collapsed Lungs During One-Lung Ventilation for Thoracotomy

    Komatsu, Yoshimichi; Yamamoto, Hiroshi; Tsushima, Kenji; Furuya, Shino; Yoshikawa, Sumiko; Yasuo, Masanori; Kubo, Keishi; Yamazaki, Yoshitaka; Hasegawa, Joh; Eguchi, Takashi; Kondo, Ryuichi; Yoshida, Kazuo; Koizumi, Tomonobu

    2012-01-01

    The present study was designed to evaluate inflammatory changes in collapsed lungs during one-lung ventilation using the assistance of a bronchoscopic microsampling probe. Serial albumin and interleukin (IL)-8 concentrations in epithelial lining fluid (ELF) were measured in seven patients undergoing resection of lung tumors. The samples were taken after induction of anesthesia (baseline), 30 min after one-lung ventilation was started (point 2), just before resuming two-lung ventilation (point...

  8. Mutant K-ras-specific siRNA inhibits proliferation, migration and induces apoptosis of lung cancer A549 cells%突变型K-ras siRNA抑制肺癌A549细胞的增殖和迁移并诱导细胞凋亡

    王启钊; 刁勇; 吕颖慧; 李招发; 许瑞安

    2009-01-01

    目的:构建靶向K-ras的siRNA,研究K-ras siRNA对K-ras基因突变型肺癌细胞A549及K-ras野生型小细胞肺癌细胞NCI-H446生长和迁移的抑制作用.方法:设计并人工合成4条K-ras siRNA(针对野生型K-ras基因的K-ras siRNAl~K-ras siRNA3;针对突变型K-ras基因的K-ras siRNA4),并分别转入A549和NCI-H446细胞.RT-PCR和Western blotting检测不同K-ras siRNA对K-ras mRNA和蛋白表达的影响,MTT法检测不同K-ras siRNA对A549和NCI-H446细胞增殖的抑制作用,Transwell实验和Hoechst 33258染色检测K-ras siRNA对细胞迁移和凋亡的影响.结果:靶向突变型K-ras的K-ras siR-NA4能特异性抑制A549细胞中K-ras的表达,但时N-ras和H-ras的表达没有影响.K-ras siRNA4抑制A549细胞的增殖,但不影响含野生型K-ras基因的NCI-H446细胞的增殖.K-ras siRNA4还能诱导A549细胞凋亡、抑制A549细胞迁移.结论:针对突变型K-ras基因的siRNA可特异性抑制K-ras突变型肺癌细胞的增殖和迁移,并诱导该细胞凋亡,K-ras siRNA可望用于K-ras突变型肿瘤特别是肺癌的个体化治疗.

  9. 端粒酶催化亚单位基因启动子调控Hsv-tk/GCV系统对肺癌细胞A549选择性杀伤作用的研究%A study on selective killing effect of Hsv-tk/GCV driven by human telomerase catalytic subunit promoter on human lung cancer cell A549

    唐小军; 王艳萍; 周清华; 车国卫; 陈小禾; 朱大兴

    2007-01-01

    目的 研究人端粒酶催化亚单位(human telomerase catalytic subunit,hTERT)基因启动子调控单纯疱疹胸苷激酶/更昔洛韦(herpes simplex virus-thymidine kinase/ganciclovir, Hsv-tk/GCV)治疗系统对人肺癌细胞株A549的选择体外杀伤作用.方法 (1)用脂质体法将hTERT启动子和sv40启动子调控的tk基因表达质粒(pGL3-hTp-tk和pGL3-sv40-tk)转染端粒酶阳性的人肺腺癌细胞株A549及端粒酶阴性的人胚肺成纤维细胞株MRC-5,用逆转录-PCR方法检测转染细胞中tk基因的表达情况; (2)用MTT法检测GCV对上述转染细胞体外增殖的抑制作用; (3) 用流式细胞仪检测GCV对上述转染细胞凋亡和细胞周期的影响. 结果 (1)转染pGL3-sv40-tk的细胞A549、MRC-5和转染pGL3-hTp-tk的A549均有tk mRNA表达,转染pGL3-hTp-tk的MRC-5无tk mRNA表达; (2)GCV对转染pGL3-sv40-tk的细胞A549、MRC-5和转染pGL3-hTp-tk的A549体外增殖均有明显抑制作用,对转染pGL3-hTp-tk的MRC-5无明显抑制作用; (3) 转染pGL3-sv40-tk的A549、MRC-5和转染pGL3-hTp-tk的A549细胞,GCV处理后细胞凋亡指数(21.58%、9.35%和23.19%)均显著高于转染pGL3-hTp的A549和MRC-5细胞(0.78%和0.55%)及空白对照A549和MRC-5细胞(2.17%和0.60%),转染pGL3-hTp-tk的MRC-5细胞凋亡指数(0.88%)无明显升高.结论 hTERT启动子调控Hsv-tk基因可以在肺癌细胞中选择性表达,hTERT调控的Hsv-tk/GCV治疗系统对肺癌细胞体外增殖具有靶向性抑制作用.

  10. 小干扰RNA 抑制Pokemon表达对肺癌细胞A549和食管癌细胞EC109增殖的影响%Effects of Down-regulating Pokemon Expression by siRNA on Proliferation of Lung Cancer Cell A549 and Esophageal Cancer Cell EC109

    沈惠琳; 叶月芳; 丛德刚

    2014-01-01

    目的:探讨Pokemon特异性小干扰RNA对肺癌细胞A549和食管癌细胞EC109 增殖的影响.方法:瞬时转染Pokemon特异性小干扰RNA至肺癌细胞A549和食管癌细胞EC109,RT-PCR、Western Blot技术检测转染后细胞中Pokemon的mRNA和蛋白表达水平,检测细胞的增殖及细胞周期变化.结果:与空白组和阴性对照组相比,瞬时转染Pokemon小干扰RNA后,肺癌细胞A549和食管癌细胞EC109中Pokemon的mRNA水平均下降至25%~35%,蛋白水平亦明显下降.细胞增殖能力在培养24,48,72 h均显著降低(P<0.05).细胞周期分析显示转染Pokemon小干扰RNA后S期的比例显著高于siRNA阴性对照组(A549细胞:55.7%±2.5% vs 42.7%±0.6%,P<0.01;EC109细胞:67.7%±2.5% vs 52.0%±2.0%,P<0.01).G1期的比例显著低于siRNA阴性对照组(A549细胞:33.0%±2.0% vs 45.3%±1.5%,P<0.01;EC109细胞:30.7%±1.2% vs 44.0%±1.7%,P<0.01).两种细胞均阻滞于S期.结论:Pokemon小干扰RNA可抑制肺癌细胞A549和食管癌细胞EC109 的增殖.

  11. 厄洛替尼和培美曲塞不同方式联合对肺腺癌A549细胞的作用%Effect of different combination protocols of pemetrexed and erlotinib on the lung adenocarcinoma A549 cells

    孙杰; 牟晓燕; 董雪丽

    2013-01-01

    目的:探讨培美曲塞与厄洛替尼联合及序贯应用对肺腺癌A549细胞增殖和凋亡的影响及其可能的机制.方法:培美曲塞和厄洛替尼单药、联合及序贯作用A549细胞72 h后,MTT法检测细胞的增殖并计算联合指数,FCM法检测细胞周期分布和细胞凋亡率,蛋白质印迹法检测磷酸化细胞外调节蛋白激酶1/2(phospho-extracellular regulated protein kinase 1/2,p-ERK1/2)、磷酸化-AKT (phospho-AKT,p-AKT)和磷酸化表皮生长因子受体(phospho-epidermal growth factor receptor,p-EGFR)的表达.结果:培美曲塞序贯厄洛替尼对抑制A549细胞的增殖具有协同作用,厄洛替尼联合或序贯培美曲塞对A549细胞的增殖具有拮抗作用.与对照组(未进行药物干预的A549细胞)相比,培美曲塞组和培美曲塞序贯厄洛替尼组的S期细胞所占比例增多(P<0.05),厄洛替尼组、厄洛替尼联合培美曲塞组及厄洛替尼序贯培美曲塞组的G1期细胞所占比例增多(P<0.05).与厄洛替尼联合培美曲塞组及厄洛替尼序贯培美曲塞组相比,培美曲塞序贯厄洛替尼组A549细胞的凋亡率明显增加(P<0.05).与对照组比较,培美曲塞序贯厄洛替尼组A549细胞p-AKT和p-EGFR的表达水平明显下调(P<0.05),而p-ERK1/2的表达水平差异无统计学意义(P>0.05).结论:培美曲塞序贯厄洛替尼对A549细胞的增殖具有协同作用,其机制可能与磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)-AKT通路的表达有关.

  12. 斑蝥素通过MAPK途径对肺癌A549细胞周期阻滞及其分子机制的研究%Role and molecular mechanism of cantharidin in cell cycle arrest of A549 human lung carcinoma cells through mitogen-activated protein kinase pathway

    张卫东; 赵惠儒; 于秉治; 王晓华; 宗志红; 刘莹

    2006-01-01

    目的:探讨斑蝥素对人肺癌A549细胞的周期阻滞作用及其分子机制.方法:采用MTT法检测斑蝥素对A549细胞的增殖抑制作用;流式细胞仪检测细胞周期;以蛋白印迹法分析斑蝥素作用后细胞周期蛋白B1(cyclinB1)、p34cdc2、phos-p34cdc2、p21、survivin、ERK1/ERK2、phos-ERK1/phos-ERK2等蛋白表达或活性的改变.结果:斑蝥素能抑制A549细胞的增殖;斑蝥素作用于A549细胞后引起G2/M期阻滞;斑蝥素处理后,p34cdc2、phos-p34cdc2表达量没有改变,cyclinB1、survivin蛋白表达量减少,p21蛋白表达量增加.ERK1/ERK2、phos-ERK1/phos-ERK2表达量降低.结论:斑蝥素通过调节cyclinB1、p21、survivin、ERK1/ERK2、phos-ERK1/phos-ERK2等蛋白表达或活性的改变引起G2/M期阻滞.

  13. 成纤维细胞生长因子3-siRNA对肺癌细胞A549侵袭性和基质金属蛋白酶9表达的影响%FGFR3-siRNA Impacts on Lung Cancer A549 Cells Invasiveness and MMP9 Expression

    李玉花; 刘希光; 张红军; 宋浩; 徐明金; 姜韬; 肖文静; 赵淑芬; 于晓芸

    2015-01-01

    目的:探讨人成纤维细胞生长因子3 (Fibroblast growth factor3,FGFR3)基因沉默对人类肺腺癌A549细胞侵袭能力及其对基质金属蛋白酶9 (Matrix metaloproteinases 9,MMP9)基因表达的影响.方法:细胞分为3组:A组:实验组,即FGFR3特异性小干扰RNA(Small interfering RNA,siRNA)(siRNA-FGFR3)干扰组;B组:阴性对照组,即FGFR3非特异性阴性对照siRNA(siRNA-NC)干扰组;C组:空白对照组,无siRNA干扰;通过核酸转染试剂脂质体LipofectamineTM2000(Lipo2000)转染A549细胞;倒置荧光显微镜观察Lipo2000转染效率;转染后A549细胞的侵袭能力用Transwell实验检测;实时荧光定量聚合酶链反应(Real-time quantitative polymerase chain reaction,Real-time PCR)用于检测转染前后FGFR3及MMP9 mRNA的表达水平.结果:Lipo2000介导的FAM-siRNA对肺腺癌A549细胞的转染效率可达80%;在转染36h后,Transwell实验结果显示A组较B组、C组侵袭能力显著降低(P<0.01).Real-time PCR结果显示,A组较B、C组的FGFR3和MMP9基因表达量明显下调(P<0.01).结论:FGFR3基因沉默可明显抑制肺腺癌A549细胞的侵袭能力,并能下调MMP9表达.为肺癌的治疗提供了新的靶点.

  14. Bisphenol A suppresses glucocorticoid target gene (ENaCγ) expression via a novel ERβ/NF-κB/GR signalling pathway in lung epithelial cells.

    Hijazi, Ayten; Guan, Haiyan; Yang, Kaiping

    2016-08-13

    We previously demonstrated that prenatal exposure to Bisphenol A (BPA) disrupts fetal lung maturation likely through the glucocorticoid signalling pathway, but the precise molecular mechanisms remain obscure. Given that BPA diminished the expression of epithelial sodium channel-γ (ENaCγ), a well-known glucocorticoid receptor (GR) target gene, in fetal lungs, we used this GR target gene to delineate the molecular pathway through which BPA exerts its effects on lung cells. The A549 lung epithelial cell line was used as an in vitro model system. As a first step, we validated our in vitro cell model by demonstrating a robust concentration-dependent suppression of ENaCγ expression following BPA exposure. We also showed that both dexamethasone and siRNA-mediated knockdown of GR expression blocked/abrogated the inhibitory effects of BPA on ENaCγ expression, suggesting that BPA repressed ENaCγ expression via inhibition of GR activity. Given the well-known antagonistic interactions between the pro-inflammatory transcriptional factor NF-κB and GR, we then showed that BPA inhibited GR activity through the activation of NF-κB. Lastly, since BPA is known to function as a pro-inflammatory factor via the estrogen receptor β (ERβ), we provided evidence that BPA signals through ERβ to activate the NF-κB signalling pathway. Taken together, these findings demonstrate that BPA acts on ERβ to activate the NF-κB signalling pathway, which in turn leads to diminished GR activity and consequent repression of ENaCγ expression in lung epithelial cells. Thus, our present study reveals a novel BPA signalling pathway that involves ERβ, NF-κB and GR.

  15. Long noncoding RNA LINC01186, regulated by TGF-β/SMAD3, inhibits migration and invasion through Epithelial-Mesenchymal-Transition in lung cancer.

    Hao, Yajing; Yang, Xinling; Zhang, Dongdong; Luo, Jianjun; Chen, Runsheng

    2017-04-15

    Accumulating evidence suggests that long noncoding RNAs (lncRNAs) are crucial regulators of the Epithelial-Mesenchymal-Transition (EMT). TGF-β signaling is a major inducer of EMT and can facilitate lung cancer metastasis. However, the role of lncRNAs in this process remains largely unknown. Here, we have identified 291 lncRNAs which were differentially expressed in lung cancer tissues compared with adjacent normal tissues. Of these, the gene body or vicinity of 19 transcripts were also bound by SMAD3. The expression of LINC01186 was significantly decreased in A549 cells treated with TGF-β1. Furthermore, LINC01186 was stably down-regulated in lung cancer tissues compared with normal tissues in TCGA data sets and another published lung cancer data sets. The bioinformatics analysis suggested that LINC01186 was associated with TGF-β and might participate in EMT process. Moreover, knocking-down LINC01186 promoted cell migration and invasion, whereas, LINC01186 overexpression prevented cell metastasis. Importantly, LINC01186 expression was regulated by SMAD3. And LINC01186 affected several EMT markers expression. These findings suggest that LINC01186, a mediator of TGF-β signaling, can play a significant role in the regulation of EMT and lung cancer cell migration and invasion.

  16. CCL20 and Beta-Defensin 2 Production by Human Lung Epithelial Cells and Macrophages in Response to Brucella abortus Infection

    Fernández, Andrea G.; Bonetto, Josefina; Giambartolomei, Guillermo H.; Fossati, Carlos A.; Baldi, Pablo C.

    2015-01-01

    Both CCL20 and human β-defensin 2 (hBD2) interact with the same membrane receptor and display chemotactic and antimicrobial activities. They are produced by airway epithelia in response to infectious agents and proinflammatory cytokines. Whereas Brucella spp. can infect humans through inhalation, their ability to induce CCL20 and hBD2 in lung cells is unknown. Here we show that B. abortus induces CCL20 expression in human alveolar (A549) or bronchial (Calu-6) epithelial cell lines, primary alveolar epithelial cells, primary human monocytes, monocyte-derived macrophages and the monocytic cell line THP-1. CCL20 expression was mainly mediated by JNK1/2 and NF-kB in both Calu-6 and THP-1 cells. CCL20 secretion was markedly induced in A549, Calu-6 and THP-1 cells by heat-killed B. abortus or a model Brucella lipoprotein (L-Omp19) but not by the B. abortus lipopolysaccharide (LPS). Accordingly, CCL20 production by B. abortus-infected cells was strongly TLR2-dependent. Whereas hBD2 expression was not induced by B. abortus infection, it was significantly induced in A549 cells by conditioned media from B. abortus-infected THP-1 monocytes (CMB). A similar inducing effect was observed on CCL20 secretion. Experiments using blocking agents revealed that IL-1β, but not TNF-α, was involved in the induction of hBD2 and CCL20 secretion by CMB. In the in vitro antimicrobial assay, the lethal dose (LD) 50 of CCL20 for B. abortus (>50 μg/ml) was markedly higher than that against E. coli (1.5 μg/ml) or a B. abortus mutant lacking the O polysaccharide in its LPS (8.7 ug/ml). hBD2 did not kill any of the B. abortus strains at the tested concentrations. These results show that human lung epithelial cells secrete CCL20 and hBD2 in response to B. abortus and/or to cytokines produced by infected monocytes. Whereas these molecules do not seem to exert antimicrobial activity against this pathogen, they could recruit immune cells to the infection site. PMID:26448160

  17. CCL20 and Beta-Defensin 2 Production by Human Lung Epithelial Cells and Macrophages in Response to Brucella abortus Infection.

    Hielpos, M Soledad; Ferrero, Mariana C; Fernández, Andrea G; Bonetto, Josefina; Giambartolomei, Guillermo H; Fossati, Carlos A; Baldi, Pablo C

    2015-01-01

    Both CCL20 and human β-defensin 2 (hBD2) interact with the same membrane receptor and display chemotactic and antimicrobial activities. They are produced by airway epithelia in response to infectious agents and proinflammatory cytokines. Whereas Brucella spp. can infect humans through inhalation, their ability to induce CCL20 and hBD2 in lung cells is unknown. Here we show that B. abortus induces CCL20 expression in human alveolar (A549) or bronchial (Calu-6) epithelial cell lines, primary alveolar epithelial cells, primary human monocytes, monocyte-derived macrophages and the monocytic cell line THP-1. CCL20 expression was mainly mediated by JNK1/2 and NF-kB in both Calu-6 and THP-1 cells. CCL20 secretion was markedly induced in A549, Calu-6 and THP-1 cells by heat-killed B. abortus or a model Brucella lipoprotein (L-Omp19) but not by the B. abortus lipopolysaccharide (LPS). Accordingly, CCL20 production by B. abortus-infected cells was strongly TLR2-dependent. Whereas hBD2 expression was not induced by B. abortus infection, it was significantly induced in A549 cells by conditioned media from B. abortus-infected THP-1 monocytes (CMB). A similar inducing effect was observed on CCL20 secretion. Experiments using blocking agents revealed that IL-1β, but not TNF-α, was involved in the induction of hBD2 and CCL20 secretion by CMB. In the in vitro antimicrobial assay, the lethal dose (LD) 50 of CCL20 for B. abortus (>50 μg/ml) was markedly higher than that against E. coli (1.5 μg/ml) or a B. abortus mutant lacking the O polysaccharide in its LPS (8.7 ug/ml). hBD2 did not kill any of the B. abortus strains at the tested concentrations. These results show that human lung epithelial cells secrete CCL20 and hBD2 in response to B. abortus and/or to cytokines produced by infected monocytes. Whereas these molecules do not seem to exert antimicrobial activity against this pathogen, they could recruit immune cells to the infection site.

  18. 吉西他滨对人肺癌A549细胞株CN-Ⅱ,APE/Ref-1mRNA和蛋白表达的影响%Effects of Gemcitabine on Expression of CN-Ⅱ,APE/Ref-1 mRNA and Protein in Human Lung Cancer Cell Line A549

    宋东; 周曙光; 刘玥; 李晓栋; 王姗姗; 唐小龙

    2009-01-01

    [目的]研究人肺癌A549细胞株在吉西他滨化疗时CN-Ⅱ,APE/Ref-1基因表达的变化,并探讨其在肺癌化疗耐药中所起的作用.[方法]不同浓度吉西他滨0、10、20、40及60 μmol/L作用人肺癌A549细胞株24 h,分别以RT-PCR 及Western blot方法测定用药后CN-Ⅱ和APE/Ref-1的mRNA及蛋白表达情况. [结果]吉西他滨作用人肺癌A549细胞株24 h后,CN-Ⅱ和APE/Ref-1的mRNA及蛋白表达水平均明显上升,并与吉西他滨的浓度呈正相关(CN-Ⅱ RT-PCR:r=0.687,P=0.009;Western blot:r=0.594,P=0.021;APE/Ref-1 RT-PCR:r=0.669,P=0.010;Western blot:r=0.562,P=0.029). [结论]CN-Ⅱ和APE/Ref-1在肺癌化疗时表达明显增强,可能与化疗耐药性的产生有关,并提示针对CN-Ⅱ和APE/Ref-1的靶向干预可能有助于提高肺癌的化疗敏感性.

  19. 肺癌细胞A549抗原相关旋毛虫Tsp06172基因的克隆及原核表达%Cloning and prokaryotic expression of the Tsp06172 gene of Trichinella spiralis in A549 lung cancer cells

    高江明; 徐晓芳; 吕萌; 左绍志; 宫鹏涛; 杨举; 李赫; 李建华; 张国才

    2013-01-01

    目的 克隆旋毛虫(Trichinella spiralis)与肺癌细胞A549相关抗原Tsp06172基因,并进行原核表达. 方法 采用RT-PCR方法扩增Tsp06172基因,连接原核表达载体pET-28a,转化入感受态细胞BL21,IPTG诱导表达,经SDS-PAGE和Western blot鉴定表达产物. 结果 重组表达质粒经双酶切及测序鉴定正确.表达分子质量单位约为16 ku的融合蛋白.Western blot检测融合蛋白能被抗A549细胞的多克隆抗体识别. 结论 构建的原核表达载体pET-28a Tsp06172表达具有A549细胞反应原性的蛋白,为旋毛虫Tsp06172重组蛋白功能的研究了奠定基础.%Objective To clone and express the Trichinella spiralis Tsp06172 gene in BL21. Methods The Tsp06172 gene was amplified with RT-PCR and then subcloned into the prokaryotic expression vector pET-28a. BL21 containing the recombinant plasmid pET-28a-Tsp06172 was induced with IPTG. The fusion protein was detected and i-dentified with SDS-PAGE and Western blotting. Results The recombinant expression plasmid was successfully constructed. After induction in an E. coli system. SDS-PAGE results showed that a fusion protein of about 16 ku was successfully expressed. Western blotting indicated that the fusion protein was readily recognized by polyclonal antibodies from A549 cells. Conclusion The recombinant expression plasmid pET-28a-Tsp06172 expressed the corresponding protein in BL21. This finding lays the foundation for research into the function of the Tsp06172 protein.

  20. Potential contribution of Type I lung epithelial cells to chronic neonatal lung disease

    Henry J. Rozycki

    2014-05-01

    Full Text Available The alveolar surface is covered by large flat Type I cells (alveolar epithelial cells 1, AEC1. The normal physiological function of AEC1s involves gas exchange, based on their location in approximation to the capillary endothelium and their thinness, and in ion and water flux, as shown by the presence of solute active transport proteins, water channels, and impermeable tight junctions between cells. With the recent ability to produce relatively pure cultures of AEC1 cells, new functions have been described. These may be relevant to lung injury, repair and the abnormal development that characterizes bronchopulmonary dysplasia. To hypothesize a potential role for AEC1 in the development of lung injury and abnormal repair/development in premature lungs, evidence is presented for their presence in the developing lung, how their source may not be the Type II cell (AEC2 as has been assumed for forty years, and how the cell can be damaged by same type of stressors as those which lead to bronchopulmonary dysplasia (BPD. Recent work shows that the cells are part of the innate immune response, capable of producing pro-inflammatory mediators, which could contribute to the increase in inflammation seen in early bronchopulmonary dysplasia. One of the receptors found exclusively on AEC1 cells in the lung, called RAGE, may also have a role in increased inflammation, and to alveolar simplification. While the current evidence for AEC1 involvement in BPD is circumstantial and limited at present, the accumulating data supports several hypotheses and questions regarding potential differences in the behavior of AEC1 cells from newborn and premature lung compared with the adult lung.

  1. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung epithelial cells.

    Xie, Hong; Smith, Leah J; Holmes, Amie L; Zheng, Tongzhang; Pierce Wise, John

    2016-05-01

    Cobalt is a toxic metal used in various industrial applications leading to adverse lung effects by inhalation. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells, especially normal lung epithelial cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in normal primary human lung epithelial cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble and particulate cobalt induced similar cytotoxicity while soluble cobalt was more genotoxic than particulate cobalt. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung epithelial cells.

  2. Calpain 1 regulates TGF-β1-induced epithelial-mesenchymal transition in human lung epithelial cells via PI3K/Akt signaling pathway

    Tan, Wei-Jun; Tan, Qiu-Yue; Wang, Ting; Lian, Min; Zhang, Li; Cheng, Zhen-Shun

    2017-01-01

    Cell proliferation, transformation, and epithelial-mesenchymal transition (EMT) are key processes involved in the development of idiopathic pulmonary fibrosis (IPF). This study investigated the regulatory factors and signaling pathways that mediate EMT in the human type II alveolar epithelial A549 cell line. A549 cells were cultured in RPMI-1640 medium and allocated to the following four groups: blank control group or treated with transforming growth factor-β1 (TGF-β1), TGF-β1 + PD 150606 (a calpain 1 inhibitor), or PD 150606. We examined E-cadherin (E-cad), α-smooth muscle actin (α-SMA), and calpain 1 mRNA transcript and protein expression levels in these four groups by performing RT-PCR and western blot analyses. The results indicated that TGF-β1 treatment significantly downregulated E-cad and upregulated α-SMA expression compared with that of the blank control group (Pcells. However, TGF-β1-induced ETM was not correlated with the ERK and JNK signaling pathways. These combined results indicate that calpain 1 could regulate EMT in TGF-β1-treated A549 epithelial cells via the PI3K/Akt signaling pathway.

  3. 沉默COX-2抑制A549细胞的恶性增殖%COX-2 silencing inhibits cell proliferation in A549 cell

    Weiying Li; Wentao Yue; Lina Zhang; Xiaoting Zhao; Li Ma; Xuehui Yang; Chunyan Zhang; Yue Wang; Meng Gu

    2011-01-01

    Objective: The aim of this study was to explore the effects on malignant proliferation of A549 cell by silencing cyclooxygenase (COX)-2. Methods: In the present study, we constructed three siRNA vectors producing small interference RNA. The siRNA vectors and the vacant vectors were transfected into A549 cell with lipofectamine respectively and the transfected cell strains were constructed. The change of COX-2 expression levels was examined by Western blot and RT-PCR. The effects on the proliferation of lung cancer cells were studied by cell growth curve, clonogenic assay and xenograft assays. Results: The siRNA expression vectors produced marked effects in A549 cell but the inhibited effects were different. The effect of psi-10 was best and the mRNA and protein levels of COX-2 reduced 61.2% and 56.2% respectively in A549-si10 cell in contrast to the control.The growth of A549 cell slowed and the colony formation rate reduced after silencing COX-2. In xenograft assays, the growth speeds of tumor became slow and the numbers of tumor reduced after silencing COX-2. Conclusion: The si10 target of COX-2 has the best silencing effect in A549 cell and the best inhibition effect on malignant proliferation of A549 cell in vivo and in vitro.

  4. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    Shin, Jung Ar [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Chung, Jin Sil [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Sang-Ho [Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do (Korea, Republic of); Kim, Hyung Jung, E-mail: khj57@yuhs.ac.kr [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Yoo, Young Do, E-mail: ydy1130@korea.ac.kr [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  5. Oxidative damage to DNA and repair induced by Norwegian wood smoke particles in human A549 and THP-1 cell lines

    Danielsen, Pernille Høgh; Loft, Steffen; Kocbach, Anette;

    2009-01-01

    particulate matter (WSPM), authentic traffic-generated particles, mineral PM and standard reference material (SRM2975) of diesel exhaust particles in human A549 lung epithelial and THP-1 monocytic cell lines. DNA damage was measured as strand breaks (SB) and formamidopyrimidine DNA glycosylase (FPG) sites......Genotoxic effects of traffic-generated particulate matter (PM) are well described, whereas little data are available on PM from combustion of biomass and wood, which contributes substantially to air pollution world wide. The aim of this study was to compare the genotoxicity of wood smoke...

  6. DNA damage and cytotoxicity in type II lung epithelial (A549) cell cultures after exposure to diesel exhaust and urban street particles

    Danielsen, Pernille Høgh; Loft, Steffen; Møller, Peter

    2008-01-01

    of cytotoxicity (as lactate dehydrogenase release) and reduced colony forming ability with slightly stronger cytotoxicity of SRM1650 than of the other particles. In contrast, only the authentic street particles were able to generate 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in calf thymus DNA, which might...... and small differences in cytotoxicity. Although it cannot be ruled out that SRMs and authentic street particles might elicit different effects in animal experimental models, this study indicates that on the cellular level, SRM1650 and SRM2975 are suitable surrogate samples for the study of authentic street...

  7. The difference between multi-drug resistant cell line A549/Gem and its parental cell A549%多药耐药细胞株A549/Gem及其亲代细胞A549之间的区别研究

    Weixia Wang; Xiaoqing Liu; Chuanhao Tang

    2009-01-01

    Objective: To discuss the difference between multi-drug resistant cell line A549/Gem and its parental cell A549 on the basis of establishment of human gemcitabine-resistant cell line A549/Gem so as to elaborate the possible mechanisms of gemcitabine resistance. Methods: Human gemcitabine-resistant non-small cell lung cancer cell line A549/Gem was estab-lished by the method of repeated clinical serous peak concentration plus gradually increasing concentration of gemcitabine from its parental cell human lung adenocaroinoma cell line A549 which was sensitive to gemcitabine. During the course of inducement, we had monitored their morphology, checked their resistance indexes and resistant pedigree by MTT method, gathered their growth curves and calculated their doubling time, examined their DNA contents and cell cycles by FCM; at the same time, we had measured their expressions of P53, EGFR, Cerb-B-2, PTEN, PCNA, c-myc, VEGF, MDR-1, Bcl-2, nm23, MMP-9, TIMP-1, and CD44v6 proteins via immunocytochemistry staining, RRM1 and ERCC1 mRNA by real-time fluorescent quantitative-PCR. Results: The resistance index of A549/Gem' cells (the deputy of cells in the process of inducement) to gemcitabine was 163.228, and the cell line also exhibited cross-resistance to vinorelbine, taxotere, fluorouraci, etoposide and cisplatin, but kept sensitivity to paclitaxol and oxaliplatin. The doubling time of A549/Gem' was shorter and figures in G0-G1 phases were increased than A549 cells. Compared with A549 cells, A549/Gem' cells achieved EGFR and c-myc proteins expressions, nm23 protein expression enhanced, P53, Cerb-B-2 and Bcl-2 proteins expressions reduced, PTEN ,PCNA and MDR-1 proteins expressions vanished, but those of MMP-9, VEGF, CD44v6 and TIMP-1 proteins changed trivially. Meanwhile, expressions of RRM1 and ERCC1 mRNA were augmented markedly. The resistance index of A549/Gem cells to gemcitabine was 129.783, and the cell line also held cross-resistance to vinorelbine, taxotere

  8. CD147 siRNA 对肺腺癌细胞 A549生长转移的影响%Effect of CD147 siRNA on Cell Proliferation and Invasion of Lung Adenocarcinoma Cell Line A5 4 9

    陈娟; 彭毅强; 梁伟军; 杨红忠

    2013-01-01

    [Objective]To explore the influence of CD147 expression in lung adenocarcinoma cell line A549 on cell proliferation and invasion.[Methods]The siRNA CD147 was transfected into human lung adenocarci-noma cell line A549 mediated by Lipofectamine TM2000.After transfection for 48h,real-time fluorescent quantitive PCR(qRT-PCR)and Western blot were used to assess the inhibition effect.The influence of CD147 siRNA on cell proliferation was determined by MTT method.The effect of CD147 siRNA on cell invasive abil-ity was detected by Transwell method.The expression of MMP-9 was detected by qRT-PCR and Western blot.[Results]After transfection,the expression of CD147 in lung adenocarcinoma cell line A549 significantly decreased,and cell proliferation and invasive ability reduced.After the expression of CD147 decreased,the ex-pression of MMP-9 mRNA and protein markedly decreased.There were significant differences(P <0.05).[Conclusion]The decreasing of CD147 expression can inhibit cell proliferation and invasion of lung adenocari-noma,which may be related to the down-regulation of MMP-9 expression.%[目的]探讨肺腺癌细胞 A549中 CD147的表达对细胞增殖和侵袭能力的影响。[方法]采用脂质体 LipofectamineTM 2000介导 CD147 siRNA 转染人肺腺癌细胞 A549,转染48 h 后采用实时荧光定量 PCR (qRT-PCR)和 Western blot 方法评价干扰效果,MTT 法检测 CD147 siRNA 转染对细胞增殖的影响;Tran-swell 法检测 CD147 siRNA 转染对细胞侵袭能力的影响;qRT-PCR 和 Western blot 方法检测 MMP-9的表达。[结果]转染后肺腺癌细胞系 A549内 CD147的表达显著降低,肺腺癌细胞系 A549的增殖减慢及侵袭能力降低,且 CD147表达降低后 MMP-9的 mRNA 和蛋白表达均显著降低,其差异均有统计学意义(P <0.05)。[结论]CD147表达降低后能抑制肺腺癌细胞的增殖和侵袭能力,可能与其表达降低后使 MMP-9表达降低相关。

  9. Adhesion, invasion and intracellular growth ability of Legionella dumoffii in alveolar epithelial cells%杜莫氏军团菌对上皮细胞A549粘附侵袭和胞内生长能力的研究

    秦天; 任红宇; 朱兵清; 邵祝军

    2011-01-01

    目的 探明杜莫氏军团菌(Legionella dumoffii, L. dumoffii) 对上皮细胞A549的粘附、侵袭和胞内生长能力.方法 实验使用菌株为L. dumoffii TEX-KL(ATCC 33343) 、 L. dumoffii NY23(ATCC 33279)和嗜肺军团菌L. pneumophila philadelphila-1(ATCC 33155).配制1×108菌悬液,将其以100MOI(Multiplicity of Infection)的比例与肺泡上皮细胞A549相互作用.通过吉曼尼兹染色和菌落计数的方法,测定菌株的粘附、侵袭和胞内生长能力.结果 杜莫氏军团菌L. dumoffii TEX-KL、L. dumoffii NY23和嗜肺军团菌L. pneumophila philadelphila-1三株细菌在体外生长能力和体内对A549细胞的粘附能力方面无明显差别.L. dumoffii TEX-KL侵袭进入细胞内的菌数是其他两株菌的1 000倍,差异有统计学意义.结论 L. dumoffii TEX-KL与L. dumoffii NY23和嗜肺军团菌L. pneumophila philadelphila-1相比,对A549细胞具有更高的侵袭力,因此也具有较高的上皮细胞内生长能力.%In this study, the L. dumoffii TEX-KL (ATCC 33343), L. dumoffii NY23 (ATCC 33279) and L. pneumophila philadelphila-1(ATCC 33155) strains were used to explore the adhesion, invasion and intracellular growth ability in the epithelial cells. Approximately 1 × 108 bacteria were pelleted, resuspended, and diluted (1: 10) in RPMI 1640 tissue culture medium. The bacteria were then added to A549 cells (1 × 105 per well) in 24-well dishes togive a multiplicity of infection (MOI) of about 100. The Gimenez staining and colony counting methods were used for the determination of the strain adhesion, invasion and intracellular growth ability. It was found that in vitro growth ability of L. pneumophila philadelphila-1, L.dumoffii TEX-KL and L. dumoffii NY23 strains had no significant difference. In vivo assay, there was also no significant dif ference in adhesion ability of these strains. However, the CFU counts of L. dumoffii TEX-KL strain invaded into A549 cells was 1000 times higher than that of the other two

  10. Influence of Ciglitazone on A549 Cells Growth in vitro and in vivo and Mechanism

    2006-01-01

    The effect and mechanism of the ciglitazone on lung cancer cells A549 growth in vitro and in vivo were studied. Various concentrations of ciglitazone were added to the cultured A549 line, and the proliferation and differentiation of A549 cells were examined by MTT and cytometry analysis. A549 cells (1 × 106/mouse) were inoculated subcutaneously into 20 nude mice, which were randomly divided into two groups: the control group, the ciglitazone treated group. The weights of subcutaneous tumors were measured. The expression of cyclin D1 and P21 in the lung was detected by immohistochemistry and Western blot respectively. The results showed that the proliferation of A549 was inhibited significantly by ciglitazone in a dose- and time-dependent manner. There were more cells arrested in G1/G0 phase and the expression of PPARγ was markedly upregulated in ciglitazone-treated group. Direct injection of ciglitazone into A549-induced tumors could suppress tumor growth in nude mice and the growth inhibitory rate was 36 %. The expression of cyclin D1 was decreased and P21 increased significantly in ciglitazone-treated group as compared with control group. It was concluded that ciglitazone could inhibit A549 proliferation dose-dependently and time-dependently and induce differentiation, which might be related to the modulation of cell cycle interfered by PPARγ.

  11. Influence of suppressor gene p16 on retinoic acid inducing cancer cell A549 differentiation

    2001-01-01

    Objective To investigate the role of suppressor gene p16 in the process of differential regulation of retinoic acid (RA) on the A549 lung cancer cells.Methods Tumor suppressor gene p16 was transferred into A549 cells and the cells were treated with all-trans retinoic acid (ATR) at the dosage of 5×10-6 mol/L for 4 d. After that, the proliferation and differentiation of A549 cells were examined by growth curve and cytometry analysis, the change of lung lineage-specific marker MUC1 was tested by immunohistochemical staining. Meanwhile, Western blot was used to observe the change of p16 protein expression in A549 cells treated with ATRA.Results ATRA could obviously inhibit the growth and induce the differentiation of A549 Cells that were transferred with p16 gene. There were more cells arrested in G1/G0 phase and the expression of MUG1 was markedly down-regulated than in control cells. The expression of p16 protein was up-regulated in A549 cells treated with ATRA.Conclusion Suppressor gene p16 could enhance the effects of RA and proliferated suppression and differential induction of A549 cells.

  12. Artesunate induces AIF-dependent apoptosis in A549 cells

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  13. A proteomic study on human lung adenocarcinoma cell line A549 by 2-DE and MALDI-TOF-MS%人肺腺癌细胞系A549细胞双向电泳-飞行时间质谱研究

    杨拴盈; 田应选; 南岩东; 卜丽娜; 霍树芬; 阮禹松

    2007-01-01

    目的 初步分析人肺腺癌细胞系A549细胞蛋白质表达情况,从蛋白组水平探讨肺腺癌发病的分子机制.方法 应用2-DE技术对人肺腺癌细胞系A549细胞总蛋白进行分离,获得蛋白质表达谱;应用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)结合生物信息学进行蛋白质鉴定.结果 3块胶平均蛋白斑点数为1 138±49,平均匹配点数为986±32,匹配率为85.8%.随机选取背景清晰、分辨清楚、蛋白含量较高的20个斑点进行MALDI-TOF-MS分析,共获得了18个肽质量指纹图谱(PMF).将PMFs质量数据通过Aldente软件查询SWISS-PROT数据库,根据匹配片段及氨基酸序列覆盖率等,初步鉴定出15种蛋白质.根据功能,这些蛋白质可分为:①基本代谢相关的酶类:果糖2-磷酸醛缩酶、视网醛脱氢酶1(RALDH1)、吡多醛激酶;②细胞骨架类:蛋白细胞角蛋白8(CK8)、β-2链微管蛋白;③应激相关蛋白:蛋白二硫化物异构酶A3(PDIA3);④ 信号转导分子:膜联蛋白1(ANX1)、膜联蛋白4(ANX4);⑤分子伴侣:热休克蛋白60(HSP60)、热休克蛋白β-1、抑制素(PHB);⑥转录及翻译相关蛋白:不均一性核糖核蛋白H(hnRNP H);⑦杂类:Rgr protein、NPM、PCBP1.结论 应用2-DE/MALDI-MS方法获得了较为理想的人肺腺癌细胞系A549细胞2-DE蛋白质表达谱,初步鉴定了15种蛋白质.

  14. LMO4基因沉默对Snail诱导的非小细胞肺癌A549细胞上皮-间质转化的影响研究%Impact of LMO4 Gene Silencing on Snail-induced EMT of Non-small Cell Lung Cancer A549 Cells

    王雯珺; 伍思培; 列璞怡; 郭敏章; 何建行

    2016-01-01

    目的 探讨LMO4基因沉默对Snail诱导的非小细胞肺癌A549细胞上皮-间质转化(EMT)的影响.方法 体外培养非小细胞肺癌A549细胞,取对数生长期细胞进行实验,根据转染慢病毒分为sh-NC组(转染sh-NC慢病毒)、sh-LMO4组(转染sh-LMO4慢病毒)、Snail组(转染Snail慢病毒)和Snail+ sh-LMO4组(转染Snail慢病毒和sh-LMO4慢病毒).采用实时定量RT-PCR检测sh-NC组和sh-LMO4组LMO4mRNA相对表达量,采用Western Bloting法检测sh-NC组和sh-LMO4组LMO4蛋白相对表达量及4组N-eadherin、Vimentin、E-cadherin蛋白相对表达量,采用Transwell实验检测4组细胞侵袭个数,采用细胞划痕实验检测4组细胞迁移距离.结果 sh-LMO4组LMO4 mRNA相对表达量和LMO4蛋白相对表达量均低于sh-NC组(P<0.05).Snail组侵袭细胞个数多于sh-NC组,sh-LMO4组侵袭细胞个数少于sh-NC组,Snail+ sh-LMO4组侵袭细胞个数少于Snail组、多于sh-LMO4组(P<0.05).培养24 h后Snail组细胞迁移距离长于sh-NC组,sh-LMO4组细胞迁移距离短于sh-NC组,而Snail+ sh-LMO4组细胞迁移距离短于Snail组、长于sh-LMO4组(P<0.05).Snail组N-cadherin和Vimentin蛋白相对表达量高于sh-NC组,E-eadherin蛋白相对表达量低于sh-NC组(P<0.05);sh-LMO4组N-cadherin和Vimentin蛋白相对表达量低于sh-NC组,E-eadherin蛋白相对表达量高于sh-NC组(P<0.05);Snail+ sh-LMO4组N-cadherin和Vimentin蛋白相对表达量低于Snail组,E-cadherin蛋白相对表达量高于Snail组(P<0.05);Snail+ sh-LMO4组N-cadherin和Vimentin蛋白相对表达量高于sh-LMO4组,E-cadherin蛋白相对表达量低于sh-LMO4组(P<0.05).结论 LMO4基因沉默可逆转Snail诱导的非小细胞肺癌A549细胞EMT.

  15. 龙葵生物碱体外抑制肿瘤细胞增殖作用的实验研究%Study of Antineoplastic Effects In Vitro of Solanine Extract on Human Lung Cancer A549 Cells

    黄越燕; 朱琦峰; 周燕; 张莹楠

    2012-01-01

    目的:研究龙葵生物碱提取物对人肺癌A549细胞株增殖的抑制作用.方法:采用盐酸-乙醇混合溶剂加热回流法从龙葵中提取分离生物碱.以MTT法考察龙葵生物碱不同浓度对人肺癌A549细胞株增殖的抑制作用,采用倒置显微镜观察药物对肿瘤细胞株形态的影响.结果:龙葵生物碱提取物对人肺癌A549细胞株具有显著的细胞增殖抑制作用,且呈剂量依赖关系,并可使肿瘤细胞形态发生显著变化.结论:龙葵生物碱具有对肺癌细胞的抑制作用.

  16. Effect of taxol from Pestalotiopsis mangiferae on A549 cells-In vitro study

    Kathiravan, Govindarajan; Sureban, Sripathi M.

    2010-01-01

    Pestalotiopsis mangiferae Coelomycete fungi were used to examine the production of taxol. The taxol isolated from this fungus is biologically active against cancer cell lines were investigated for its antiproliferative activity in human Non Small Cell Lung Cancer A549 cells. The results showed that the methylene chloride extraction of Pestalotiopsis mangiferae inhibited the proliferation of A 549 cells as measured by MTT and Trypan blue assay. Flow cytometric analysis showed that methylene ch...

  17. Identification and significance of differential proteins in A549 cells transfected with HLCDG1

    ZOU Fei-yan; HU Wei; YU Yan-hui; OUYANG Yong-mei; XIE Hai-long; ZENG Ping-yao; CHEN Zhu-chu; LI Feng; XIAO Zhi-qiang; FENG Xue-ping; ZHANG Peng-fei; YANG Hai-yan

    2005-01-01

    HLCDG1, which locates in chromosome 5q33, is a novel gene cloned recently. The HLCDG1 expression was significantly down regulated in the primary lung carcinoma. It was previously studied that HLCDG1 acted like a tumor suppressor gene. In this paper, proteomics studies were performed to analyze the proteomic expression patterns in the HLCDG1-transfected human lung carcinoma cell line (A549-HLCDG1) and in the control vector-transfecred human lung carcinoma cell line (A549-vector). Employing two dimensional gel eleetrophoresis (2DE), the global pattern of protein expressions in A549-HLCDG1 human lung adenocarcinoma cell line expressing stably HL-CDG1 gene were compared with those of control A549-vector cell line to generate a differential protein expression catalog. Forty-two differentially expressed proteins were screened. Thirteen differential proteins were identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS), which were 6 upregulated (MSH5, MOD, MDH precursor, ETFβ, Prxd Ⅵ and JM23) and 7 downregulated (PLC-δ1, hnRNPA2,hnRNPB1, TIM, TCTP, nm23H-1 and PrxdⅤ) proteins in A549-HLCDG1 cells compared to control A549-vector cells. The above identified proteins were involved in energy metabolism, transcription regulation, antioxidation,cell cycle, metastasis, DNA methylation and mismatch repair. Therefore, these differential expression proteins by HLCDG1 transfection may play some important roles for investigation of the biochemical basis of growth suppression of HLCDG1 gene in lung carcinoma cells A549. Further understanding of this data base may provide valuable resources for the developing novel diagnostic markers and therapeutic targets of lung cancer.

  18. Nontypeable Haemophilus influenzae induces COX-2 and PGE2 expression in lung epithelial cells via activation of p38 MAPK and NF-kappa B

    Koga Tomoaki

    2008-01-01

    Full Text Available Abstract Background Nontypeable Haemophilus influenzae (NTHi is an important respiratory pathogen implicated as an infectious trigger in chronic obstructive pulmonary disease, but its molecular interaction with human lung epithelial cells remains unclear. Herein, we tested that the hypothesis that NTHi induces the expression of cyclooxygenase (COX-2 and prostaglandin E2 (PGE2 via activation of p38 mitogen-activated protein kinase (MAPK and nuclear factor (NF-kappa B in pulmonary alveolar epithelial cells. Methods Human alveolar epithelial A549 cells were infected with different concentrations of NTHi. The phosphorylation of p38 MAPK was detected by Western blot analysis, the DNA binding activity of NF-kappa B was assessed by electrophoretic mobility shift assay (EMSA, and the expressions of COX-1 and 2 mRNA and PGE2 protein were measured by reverse transcription-polymerase chain reaction (RT-PCR and enzyme linked immunosorbent assay (ELISA, respectively. The roles of Toll-like receptor (TLR 2 and TLR4, well known NTHi recognizing receptor in lung epithelial cell and gram-negative bacteria receptor, respectively, on the NTHi-induced COX-2 expression were investigated in the HEK293 cells overexpressing TLR2 and TLR4 in vitro and in the mouse model of NTHi-induced pneumonia by using TLR2 and TLR4 knock-out mice in vivo. In addition, the role of p38 MAPK and NF-kappa B on the NTHi-induced COX-2 and PGE2 expression was investigated by using their specific chemical inhibitors. Results NTHi induced COX-2 mRNA expression in a dose-dependent manner, but not COX-1 mRNA expression in A549 cells. The enhanced expression of PGE2 by NTHi infection was significantly decreased by pre-treatment of COX-2 specific inhibitor, but not by COX-1 inhibitor. NTHi induced COX-2 expression was mediated by TLR2 in the epithelial cell in vitro and in the lungs of mice in vivo. NTHi induced phosphorylation of p38 MAPK and up-regulated DNA binding activity of NF-kappa B

  19. In Vivo Tagging of Lung Epithelial Cells to Define the Early Steps of Tumor Cell Dissemination

    2014-10-01

    derived lung cells, only the epithelium will be tagged by this method. Prior to using these animals for our studies, we will ensure that lineage labeled...1 AWARD NUMBER: W81XWH-13-1-0184 TITLE: In Vivo Tagging of Lung Epithelial Cells To Define...REPORT TYPE Annual 3. DATES COVERED 15Sep2013-14Sep2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER In Vivo Tagging of Lung

  20. Elastase induces lung epithelial cell autophagy through placental growth factor

    Hou, Hsin-Han; Cheng, Shih-Lung; Chung, Kuei-Pin; Kuo, Mark Yen-Ping; Yeh, Cheng-Chang; Chang, Bei-En; Lu, Hsuan-Hsuan; Wang, Hao-Chien; Yu, Chong-Jen

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is a devastating disease, which is associated with increasing mortality and morbidity. Therefore, there is a need to clearly define the COPD pathogenic mechanism and to explore effective therapies. Previous studies indicated that cigarette smoke (CS) induces autophagy and apoptosis in lung epithelial (LE) cells. Excessive ELANE/HNE (elastase, neutrophil elastase), a factor involved in protease-antiprotease imbalance and the pathogenesis of COPD, causes LE cell apoptosis and upregulates the expression of several stimulus-responsive genes. However, whether or not elastase induces autophagy in LE cell remains unknown. The level of PGF (placental growth factor) is higher in COPD patients than non-COPD controls. We hypothesize that elastase induces PGF expression and causes autophagy in LE cells. In this study, we demonstrated that porcine pancreatic elastase (PPE) induced PGF expression and secretion in LE cells in vitro and in vivo. The activation of MAPK8/JNK1 (mitogen-activated protein kinase 8) and MAPK14/p38alpha MAPK signaling pathways was involved in the PGF mediated regulation of the TSC (tuberous sclerosis complex) pathway and autophagy in LE cells. Notably, PGF-induced MAPK8 and MAPK14 signaling pathways mediated the inactivation of MTOR (mechanistic target of rapamycin), the upregulation of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β) and the increase of autophagosome formation in mice. Furthermore, the PPE-induced autophagy promotes further apoptosis in vitro and in vivo. In summary, elastase-induced autophagy promotes LE cell apoptosis and pulmonary emphysema through the upregulation of PGF. PGF and its downstream MAPK8 and MAPK14 signaling pathways are potential therapeutic targets for the treatment of emphysema and COPD. PMID:24988221

  1. rmhTNF-αCombined with Cisplatin Inhibits Proliferation of A549 Cell Line In Vitro

    Le-min Xia; Yi-yang Zhou

    2014-01-01

    Objective To explore the inhibitory effect of recombinant mutant human tumor necrosis factor-α(rmhTNF-α) in combination with cisplatin on human lung adenocarcinoma cell line A549. Methods Human lung adenocarcinoma cell line A549 was treated with varying concentrations of rmhTNF-α (0.38, 0.75, 1.50, 6.00 and 12.00 IU/ml) or cisplatin (3.91, 7.81, 15.63, 31.25 and 62.50 μg/ml) for 24 hours. Viable cell number was analyzed by using crystal violet staining. The inhibitory rates of A549 cells growth by the two drugs were calculated. For analyzing whether there was a synergistic effect of rmhTNF-α with cisplatin, A549 cells were treated with 0.75 IU/ml rmhTNF-αand increased concentrations of cisplatin. Results rmhTNF-αor cisplatin inhibited the growth of A549 cell lines in a dose-dependent manner. The inhibitory effect of rmhTNF-αcombined with cisplatin was significantly greater than cisplatin alone at the same concentration (all P Conclusion rmhTNF-αcombined with cisplatin might have synergistic inhibitory effect on human lung adenocarcinoma cell line A549.

  2. Nitrative DNA damage induced by multi-walled carbon nanotube via endocytosis in human lung epithelial cells

    Guo, Feiye, E-mail: zhizi0269@doc.medic.mie-u.ac.jp [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507 (Japan); Ma, Ning, E-mail: maning@suzuka-u.ac.jp [Faculty of Health Science, Suzuka University of Medical Science, 1001-1 Kishioka-cho, Suzuka, Mie, 510-0293 (Japan); Horibe, Yoshiteru, E-mail: violinteru@yahoo.co.jp [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507 (Japan); Kawanishi, Shosuke, E-mail: kawanisi@suzuka-u.ac.jp [Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minami-Tamagaki-cho, Suzuka, Mie, 513-8670 (Japan); Murata, Mariko, E-mail: mmurata@doc.medic.mie-u.ac.jp [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507 (Japan); Hiraku, Yusuke, E-mail: y-hiraku@doc.medic.mie-u.ac.jp [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507 (Japan)

    2012-04-15

    Carbon nanotube (CNT) has a promising usage in the field of material science for industrial purposes because of its unique physicochemical property. However, intraperitoneal administration of CNT was reported to cause mesothelioma in experimental animals. Chronic inflammation may contribute to carcinogenesis induced by fibrous materials. 8-Nitroguanine is a mutagenic DNA lesion formed during inflammation and may play a role in CNT-induced carcinogenesis. In this study, we examined 8-nitroguanine formation in A549 human lung alveolar epithelial cells treated with multi-walled CNT (MWCNT) by fluorescent immunocytochemistry. Both MWCNTs with diameter of 20–30 nm (CNT20) and 40–70 nm (CNT40) significantly induced 8-nitroguanine formation at 5 and 10 μg/ml (p < 0.05), which persisted for 24 h, although there was no significant difference in DNA-damaging abilities of these MWCNTs. MWCNTs significantly induced the expression of inducible nitric oxide synthase (iNOS) for 24 h (p < 0.05). MWCNTs also significantly increased the level of nitrite, a hydrolysis product of oxidized NO, in the culture supernatant at 4 and 8 h (p < 0.05). MWCNT-induced 8-nitroguanine formation and iNOS expression were largely suppressed by inhibitors of iNOS (1400 W), nuclear factor-κB (Bay11-7082), actin polymerization (cytochalasin D), caveolae-mediated endocytosis (methyl-β-cyclodextrin, MBCD) and clathrin-mediated endocytosis (monodansylcadaverine, MDC). Electron microscopy revealed that MWCNT was mainly located in vesicular structures in the cytoplasm, and its cellular internalization was reduced by MBCD and MDC. These results suggest that MWCNT is internalized into cells via clathrin- and caveolae-mediated endocytosis, leading to inflammatory reactions including iNOS expression and resulting nitrative DNA damage, which may contribute to carcinogenesis. Highlights: ►Multi-walled carbon nanotube (MWCNT) caused DNA damage in A549 cells. ►MWCNT formed 8-nitroguanine, a DNA lesion

  3. Effect of Quercetin on Caspase-3 of A549 Cell Induced by Influenza Virus H1N1%槲皮素对甲型H1N1流感病毒诱导的A549细胞凋亡效应酶Caspase-3的影响

    万巧凤; 吴莉; 杨美玲; 马锐; 梁军; 顾立刚

    2011-01-01

    Objective To investigate the influence of quercetin on Caspase-3 of lung epithelial tumour A549 infected with H1N1. Methods MTT method was adopted to determine H1N1 virulence, quercetin cytotoxicity, inhibitory effect of quercetin on A549 cytopathic with H1N1 cause. H1N1 of 100 TCID50 was used to infect A549 for 2 h and then change quercetin fluid containing 10 mg/L to cultivate. After 4, 12, 24, 48 h, cells were collected to extract total protein. By adopting the Western-blot method and applying Image-Pro Plus, the grayscale value of Caspase-3 and fl-actin were determined. The gray ratio was relative expression quantity of Caspase-3. Results The TCIDso of H1N1 to A549 was IO-4175, the highest non-toxic concentration of quercetin to A549 (Tco) was 40 mg/L, the least effective concentration (MEC) of quercetin inhibition to A549 cytopathic with H1N1 cause was 10 mg/L. After the infection of H1N1, quercetin significantly inhibited Caspase-3 expression within 4-48 h, showing that quercetin plays an obvious antiapoptotic role. Conclusion Quercetin can play antiviral infectious functions by inhibiting the content or activity of Caspase-3.%目的 观察银杏叶主要活性成分槲皮素对甲型H1N1流感病毒感染的人肺上皮瘤细胞A549凋亡效应酶Caspase-3的影响.方法 采用MTT法测定H1N1毒力、槲皮素细胞毒性作用、槲皮素对H1N1致A549细胞病变的抑制作用.然后用100 TCID50甲型H1N1感染A549 2 h后换用含10 mg/L槲皮素维持液继续培养,于感染后4、12、24、48 h收集细胞,提取细胞总蛋白,采用Western blot方法,应用Image-Pro Plus测定Caspase-3与β-actin灰度值,两者灰度比值为Caspase-3的相对表达量.结果 甲型H1N1 A549的TCID50为10-4.75,槲皮素A549的最大无毒浓度为40 mg/L,槲皮素抑制甲型H1N1致A549细胞病变的最小有效浓度为10 mg/L.在甲型H1N1感染A549细胞后4~ 48 h内,槲皮素可显著抑制Caspase-3蛋白表达,具有明显的抗凋亡作用.结论

  4. 线粒体靶向MPG基因重组体对人非小细胞肺癌多药耐药细胞A549/DDP增殖的抑制作用%Inhibitory Effect of Human Mitochondria-targeted MPG Recombinant on Proliferation of Human Non-small Cell Lung Cancer Multidrug-resistant Cell Line A549/DDP

    余时沧; 钱桂生; 李玉英; 陆卫忠; 李瑾; 黄桂君

    2006-01-01

    背景与目的:多药耐药是影响肺癌化疗效果的重要因素.本研究拟构建线粒体靶向人N-甲基化嘌呤DNA糖基化酶(MPG)基因真核表达载体,观察其在稳定转染的人非小细胞肺癌多药耐药细胞线粒体内的表达情况,并研究其对多药耐药细胞增殖的抑制作用.方法:应用重叠延伸剪接技术重组锰超氧化物歧化酶(MnSOD)线粒体靶向序列-MPG融合基因(mito-MPG);构建pCMV-Script/mitoMPG重组真核表达载体;脂质体将其转染至人非小细胞肺癌多药耐药细胞A549/DDP;G418筛选稳定表达的转染细胞;RT-PCR检测mito-MPG基因mRNA的表达水平;分离线粒体蛋白后应用Western blot检测MPG在线粒体内的表达水平;台盼蓝拒染法检测细胞增殖能力;流式细胞术检测细胞周期分布.结果:构建的融合基因经过DNA测序分析;构建的重组载体经限制性酶切分析及DNA测序分析证实为pCMV-Script/mito-MPG重组真核表达载体;转染pCMV-Script/mito-MPG载体组(MPG组)检测到mito-MPG mRNA的表达,转染pCMV-Script载体组(P组)及未转染组(C组)细胞内则未检测到;MPG组细胞线粒体内检测到MPG,P组及C组则未检测到;MPG组细胞增殖能力明显下降,P组及C组细胞增殖能力无明显差异,倍增时间分别为72.6h(C组)、73.5 h(P组)、98.9 h(MPG组);分裂增殖指数分别为51.3%(C组)、54.3%(P组)、26.1%(MPG组),MPG组出现亚二倍体峰.结论:成功构建了线粒体靶向人MPG基因表达载体,MPG在MnSOD线粒体靶向序列的引导下,顺利地进入了A549/DDP细胞线粒体内,并导致其增殖能力下降,部分细胞死亡.

  5. Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells.

    Capasso, Laura; Camatini, Marina; Gualtieri, Maurizio

    2014-04-07

    Nickel oxide nanoparticles (NiONPs) toxicity has been evaluated in the human pulmonary epithelial cell lines: BEAS-2B and A549. The nanoparticles, used at the doses of 20, 40, 60, 80, 100 μg/ml, induced a significant reduction of cell viability and an increase of apoptotic and necrotic cells at 24h. A significant release of interleukin-6 and -8 was assessed after 24h of treatment, even intracellular ROS increased already at 45 min after exposure. The results obtained evidenced that the cytokines release was dependent on mitogen activated protein kinases (MAPK) cascade through the induction of NF-kB pathway. NiONPs induced cell cycle alteration in both the cell lines even in different phases and these modifications may be induced by the NPs genotoxic effect, suggested by the nuclear translocation of phospho-ATM and phospho-ATR. Our results confirm the cytotoxic and pro-inflammatory potential of NiONPs. Moreover their ability in inducing DNA damage responses has been demonstrated. Such effects were present in A549 cells which internalize the NPs and BEAS-2B cells in which endocytosis has not been observed.

  6. Epithelial-Derived Inflammation Disrupts Elastin Assembly and Alters Saccular Stage Lung Development.

    Benjamin, John T; van der Meer, Riet; Im, Amanda M; Plosa, Erin J; Zaynagetdinov, Rinat; Burman, Ankita; Havrilla, Madeline E; Gleaves, Linda A; Polosukhin, Vasiliy V; Deutsch, Gail H; Yanagisawa, Hiromi; Davidson, Jeffrey M; Prince, Lawrence S; Young, Lisa R; Blackwell, Timothy S

    2016-07-01

    The highly orchestrated interactions between the epithelium and mesenchyme required for normal lung development can be disrupted by perinatal inflammation in preterm infants, although the mechanisms are incompletely understood. We used transgenic (inhibitory κB kinase β transactivated) mice that conditionally express an activator of the NF-κB pathway in airway epithelium to investigate the impact of epithelial-derived inflammation during lung development. Epithelial NF-κB activation selectively impaired saccular stage lung development, with a phenotype comprising rapidly progressive distal airspace dilation, impaired gas exchange, and perinatal lethality. Epithelial-derived inflammation resulted in disrupted elastic fiber organization and down-regulation of elastin assembly components, including fibulins 4 and 5, lysyl oxidase like-1, and fibrillin-1. Fibulin-5 expression by saccular stage lung fibroblasts was consistently inhibited by treatment with bronchoalveolar lavage fluid from inhibitory κB kinase β transactivated mice, Escherichia coli lipopolysaccharide, or tracheal aspirates from preterm infants exposed to chorioamnionitis. Expression of a dominant NF-κB inhibitor in fibroblasts restored fibulin-5 expression after lipopolysaccharide treatment, whereas reconstitution of fibulin-5 rescued extracellular elastin assembly by saccular stage lung fibroblasts. Elastin organization was disrupted in saccular stage lungs of preterm infants exposed to systemic inflammation. Our study reveals a critical window for elastin assembly during the saccular stage that is disrupted by inflammatory signaling and could be amenable to interventions that restore elastic fiber assembly in the developing lung.

  7. IL-22 is essential for lung epithelial repair following influenza infection.

    Pociask, Derek A; Scheller, Erich V; Mandalapu, Sivanarayana; McHugh, Kevin J; Enelow, Richard I; Fattman, Cheryl L; Kolls, Jay K; Alcorn, John F

    2013-04-01

    Influenza infection is widespread in the United States and the world. Despite low mortality rates due to infection, morbidity is common and little is known about the molecular events involved in recovery. Influenza infection results in persistent distal lung remodeling, and the mechanism(s) involved are poorly understood. Recently IL-22 has been found to mediate epithelial repair. We propose that IL-22 is critical for recovery of normal lung function and architecture after influenza infection. Wild-type and IL-22(-/-) mice were infected with influenza A PR8/34 H1N1 and were followed up for up to 21 days post infection. IL-22 receptor was localized to the airway epithelium in naive mice but was expressed at the sites of parenchymal lung remodeling induced by influenza infection. IL-22(-/-) mice displayed exacerbated lung injury compared with wild-type mice, which correlated with decreased lung function 21 days post infection. Epithelial metaplasia was observed in wild-type mice but was not evident in IL-22(-/-) animals that were characterized with an increased fibrotic phenotype. Gene expression analysis revealed aberrant expression of epithelial genes involved in repair processes, among changes in several other biological processes. These data indicate that IL-22 is required for normal lung repair after influenza infection. IL-22 represents a novel pathway involved in interstitial lung disease.

  8. Increased interleukin-8 in epithelial lining fluid of collapsed lungs during one-lung ventilation for thoracotomy.

    Komatsu, Yoshimichi; Yamamoto, Hiroshi; Tsushima, Kenji; Furuya, Shino; Yoshikawa, Sumiko; Yasuo, Masanori; Kubo, Keishi; Yamazaki, Yoshitaka; Hasegawa, Joh; Eguchi, Takashi; Kondo, Ryuichi; Yoshida, Kazuo; Koizumi, Tomonobu

    2012-12-01

    The present study was designed to evaluate inflammatory changes in collapsed lungs during one-lung ventilation using the assistance of a bronchoscopic microsampling probe. Serial albumin and interleukin (IL)-8 concentrations in epithelial lining fluid (ELF) were measured in seven patients undergoing resection of lung tumors. The samples were taken after induction of anesthesia (baseline), 30 min after one-lung ventilation was started (point 2), just before resuming two-lung ventilation (point 3), and 30 min after two-lung ventilation was restarted (point 4). The albumin and IL-8 concentrations in ELF were significantly increased at point 2 and point 3, respectively, and remained to be high, compared to the baseline. The increase in IL-8 at point 3 was correlated with the interval of one-lung ventilation; however, none developed specific acute lung injury. These findings suggest that inflammatory changes can occur on the epithelium of a collapsed lung even in patients who underwent successful and standard thoracic surgery.

  9. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens

    Meliopoulos, Victoria A.; Van de Velde, Lee-Ann; Van De Velde, Nicholas C.; Karlsson, Erik A; Neale, Geoff; Vogel, Peter; Guy, Cliff; Sharma, Shalini; Duan, Susu; Surman, Sherri L.; Jones, Bart G.; Michael D L Johnson; Bosio, Catharine; Jolly, Lisa; Jenkins, R. Gisli

    2016-01-01

    The healthy lung maintains a steady state of immune readiness to rapidly respond to injury from invaders. Integrins are important for setting the parameters of this resting state, particularly the epithelial-restricted αVβ6 integrin, which is upregulated during injury. Once expressed, αVβ6 moderates acute lung injury (ALI) through as yet undefined molecular mechanisms. We show that the upregulation of β6 during influenza infection is involved in disease pathogenesis. β6-deficient mice (β6 KO)...

  10. Kinase activation of the non-receptor tyrosine kinase Etk/BMX alone is sufficient to transactivate STAT-mediated gene expression in salivary and lung epithelial cells.

    Wen, X; Lin, H H; Shih, H M; Kung, H J; Ann, D K

    1999-12-31

    Etk/BMX is a non-receptor protein tyrosine kinase that requires a functional phosphatidylinositol 3-kinase via the pleckstrin homology domain to be activated by cytokine. In the present study, a conditionally active form of Etk was constructed by fusing the hormone-binding domain of estrogen receptor (ER) to an amino terminus truncated form of Etk, PHDelta1-68Etk, to generate DeltaEtk:ER. In stably transfected Pa-4DeltaEtk:ER cells, the activity of DeltaEtk:ER was stimulated within minutes by the treatment of DeltaEtk:ER stimulant, estradiol, and sustained for greater than 24 h. A robust induction in the phosphorylation of signal transducers and activators of transcription (STAT) proteins, including STAT1, STAT3, and STAT5, was accompanied with DeltaEtk:ER activation. Moreover, the conditionally activated Etk stimulated STAT1- and STAT5-dependent reporter activities by approximately 160- and approximately 15-fold, respectively, however, elicited only a modest STAT3-mediated reporter activation. Qualitatively comparable results were obtained in lung A549 cells, indicating that DeltaEtk:ER inducible system could function in an analogous fashion in different epithelial cells. Furthermore, we demonstrated that Etk activation alone augmented cyclin D1 promoter/enhancer activity via its STAT5 response element in both Pa-4DeltaEtk:ER and A549 cells. Altogether, these findings support the notion that the activation of Etk kinase is sufficient to transactivate STAT-mediated gene expression. Hence, our inducible DeltaEtk:ER system represents a novel approach to investigate the biochemical events following Etk activation and to evaluate the contribution by kinase activation of Etk alone or in conjunction with other signaling pathway(s) to the ultimate biological responses.

  11. Glucocorticoid and estrogen receptors are reduced in mitochondria of lung epithelial cells in asthma.

    Davina C M Simoes

    Full Text Available Mitochondrial glucocorticoid (mtGR and estrogen (mtER receptors participate in the coordination of the cell's energy requirement and in the mitochondrial oxidative phosphorylation enzyme (OXPHOS biosynthesis, affecting reactive oxygen species (ROS generation and induction of apoptosis. Although activation of mtGR and mtER is known to trigger anti-inflammatory signals, little information exists on the presence of these receptors in lung tissue and their role in respiratory physiology and disease. Using a mouse model of allergic airway inflammation disease and applying confocal microscopy, subcellular fractionation, and Western blot analysis we showed mitochondrial localization of GRα and ERβ in lung tissue. Allergic airway inflammation caused reduction in mtGRα, mtERβ, and OXPHOS enzyme biosynthesis in lung cells mitochondria and particularly in bronchial epithelial cells mitochondria, which was accompanied by decrease in lung mitochondrial mass and induction of apoptosis. Confirmation and validation of the reduction of the mitochondrial receptors in lung epithelial cells in human asthma was achieved by analyzing autopsies from fatal asthma cases. The presence of the mitochondrial GRα and ERβ in lung tissue cells and especially their reduction in bronchial epithelial cells during allergic airway inflammation suggests a crucial role of these receptors in the regulation of mitochondrial function in asthma, implicating their involvement in the pathophysiology of the disease.

  12. Decreased Laminin Expression by Human Lung Epithelial Cells and Fibroblasts Cultured in Acellular Lung Scaffolds from Aged Mice.

    Godin, Lindsay M; Sandri, Brian J; Wagner, Darcy E; Meyer, Carolyn M; Price, Andrew P; Akinnola, Ifeolu; Weiss, Daniel J; Panoskaltsis-Mortari, Angela

    2016-01-01

    The lung changes functionally and structurally with aging. However, age-related effects on the extracellular matrix (ECM) and corresponding effects on lung cell behavior are not well understood. We hypothesized that ECM from aged animals would induce aging-related phenotypic changes in healthy inoculated cells. Decellularized whole organ scaffolds provide a powerful model for examining how ECM cues affect cell phenotype. The effects of age on ECM composition in both native and decellularized mouse lungs were assessed as was the effect of young vs old acellular ECM on human bronchial epithelial cells (hBECs) and lung fibroblasts (hLFs). Native aged (1 year) lungs demonstrated decreased expression of laminins α3 and α4, elastin and fibronectin, and elevated collagen, compared to young (3 week) lungs. Proteomic analyses of decellularized ECM demonstrated similar findings, and decellularized aged lung ECM contained less diversity in structural proteins compared to young ECM. When seeded in old ECM, hBECs and hLFs demonstrated lower gene expression of laminins α3 and α4, respectively, as compared to young ECM, paralleling the laminin deficiency of aged ECM. ECM changes appear to be important factors in potentiating aging-related phenotypes and may provide clues to mechanisms that allow for aging-related lung diseases.

  13. Decreased Laminin Expression by Human Lung Epithelial Cells and Fibroblasts Cultured in Acellular Lung Scaffolds from Aged Mice.

    Lindsay M Godin

    Full Text Available The lung changes functionally and structurally with aging. However, age-related effects on the extracellular matrix (ECM and corresponding effects on lung cell behavior are not well understood. We hypothesized that ECM from aged animals would induce aging-related phenotypic changes in healthy inoculated cells. Decellularized whole organ scaffolds provide a powerful model for examining how ECM cues affect cell phenotype. The effects of age on ECM composition in both native and decellularized mouse lungs were assessed as was the effect of young vs old acellular ECM on human bronchial epithelial cells (hBECs and lung fibroblasts (hLFs. Native aged (1 year lungs demonstrated decreased expression of laminins α3 and α4, elastin and fibronectin, and elevated collagen, compared to young (3 week lungs. Proteomic analyses of decellularized ECM demonstrated similar findings, and decellularized aged lung ECM contained less diversity in structural proteins compared to young ECM. When seeded in old ECM, hBECs and hLFs demonstrated lower gene expression of laminins α3 and α4, respectively, as compared to young ECM, paralleling the laminin deficiency of aged ECM. ECM changes appear to be important factors in potentiating aging-related phenotypes and may provide clues to mechanisms that allow for aging-related lung diseases.

  14. Expression, purification and mass spectrometric analysis of LIM mineralization protein-1 in human lung epithelial cells

    Sreedhara Sangadala; Louisa Titus; Scott D. Boden

    2008-01-01

    LIM mineralization protein-1 (LMP-1) is a novel osteoin ductive protein that has been cloned and shown to induce bone formation both in vitro and in vivo. Detection and evaluation of the possible presence of carbohydrate structures in LMP-1 is an important regulatory consideration for the therapeutic use of recombinantly expressed protein. The sequence of LMP-1 contains a highly conserved N-terminal PDZ domain and three C-terminal LIM domains. The sequence analysis of LMP-I predicts two potential N-glycosylation sites and several O-glycosylation sites. Here, we report the cloning and overexpression of LMP.1 in human lung carcinoma(A549) cells. Even though our group already reported the sequence of LMP-1 cDNA, we undertook this work to clarify whether or not the overexpressed protein undergoes any glycosylation in vivo. The expressed full-length recombinant protein was purified and subjected to chemical analysis and internal sequencing. The absence of any hexosamines (Nacetyl glucosamine or N-acetyl galactosamine) in chemical composition analysis of LMP.I protein revealed that there is little or no post-translational glycosylation of the LMP-1 polypeptide in lung carcinoma cells (A549). We performed in-gel trypsin digestion on purified LMP-I, and the resulting peptide digests were analyzed further using matrix.assisted laser desorption and ionization mass spectrometry for peptide mass finger printing, which produced several exact matches with the corresponding LMP-1 peptides. Separation by high performance liquid chromatography and purification of the desired peptides followed by N-terminal sequencing resulted in many exact LMP-1 matches for several purified peptides, thus establishing the identity of the purified protein as LMP-1.

  15. Titanium dioxide nanoparticles induce an adaptive inflammatory response and invasion and proliferation of lung epithelial cells in chorioallantoic membrane

    Medina-Reyes, Estefany I.; Déciga-Alcaraz, Alejandro [Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, CP 54059 Estado de México (Mexico); Freyre-Fonseca, Verónica [Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, CP 54059 Estado de México (Mexico); Doctorado en Ciencias en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, CP 11340 México, DF (Mexico); Delgado-Buenrostro, Norma L. [Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, CP 54059 Estado de México (Mexico); Flores-Flores, José O. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria AP 70-186, CP 04510 México, DF (Mexico); Gutiérrez-López, Gustavo F. [Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, CP 11340 México, DF (Mexico); Sánchez-Pérez, Yesennia; García-Cuéllar, Claudia M. [Instituto Nacional de Cancerología, Subdirección de Investigación Básica, San Fernando 22, Tlalpan, CP 14080 México, DF (Mexico); and others

    2015-01-15

    Titanium dioxide nanoparticles (TiO{sub 2} NPs) studies have been performed using relatively high NPs concentration under acute exposure and limited studies have compared shape effects. We hypothesized that midterm exposure to low TiO{sub 2} NPs concentration in lung epithelial cells induces carcinogenic characteristics modulated partially by NPs shape. To test our hypothesis we synthesized NPs shaped as belts (TiO{sub 2}-B) using TiO{sub 2} spheres (TiO{sub 2}-SP) purchased from Sigma Aldrich Co. Then, lung epithelial A549 cells were low-exposed (10 µg/cm{sup 2}) to both shapes during 7 days and internalization, cytokine release and invasive potential were determined. Results showed greater TiO{sub 2}-B effect on agglomerates size, cell size and granularity than TiO{sub 2}-SP. Agglomerates size in cell culture medium was 310 nm and 454 nm for TiO{sub 2}-SP and TiO{sub 2}-B, respectively; TiO{sub 2}-SP and TiO{sub 2}-B induced 23% and 70% cell size decrease, respectively, whilst TiO{sub 2}-SP and TiO{sub 2}-B induced 7 and 14-fold of granularity increase. NO{sub x} production was down-regulated (31%) by TiO{sub 2}-SP and up-regulated (70%) by TiO{sub 2}-B. Both NPs induced a transient cytokine release (IL-2, IL-6, IL-8, IL-4, IFN-γ, and TNF-α) after 4 days, but cytokines returned to basal levels in TiO{sub 2}-SP exposed cells while TiO{sub 2}-B induced a down-regulation after 7 days. Midterm exposure to both shapes of NPs induced capability to degrade cellular extracellular matrix components from chorioallantoic membrane and Ki-67 marker showed that TiO{sub 2}-B had higher proliferative potential than TiO{sub 2}-SP. We conclude that midterm exposure to low NPs concentration of NPs has an impact in the acquisition of new characteristics of exposed cells and NPs shape influences cellular outcome. - Graphical abstract: (A) Lung epithelial cells were low exposed (below 10 µg/cm{sup 2}) to titanium dioxide nanoparticles (TiO{sub 2}-NPs) shaped as spheres (TiO{sub 2

  16. 应用A549细胞单层模型研究蛋白多肽类药物肺部吸收的特性%Transport of proteins and peptides across human cultured alveolar A549 cell monolayers

    王智瑛; 张悦; 张强

    2004-01-01

    Aim An in vitro cultured monolayer system of alveolar epithelial cells was used as a model to investigate the transport pathway peptides or proteins, salmon calcitonin (sCT), insulin (INS), recombinant hirudin (rHAV2), and recombinant human growth hormone (rhGH), in pulmonary epithelium in vivo. Methods Human lung adenocareinoma A549 cells formed continuous monolayers with growing polycarbonate filters of Transwell plate. Transport studies of macromolecules in the monolayer system were carried out after 6 days in culture. The transport of peptides or proteins with MW 3 400 - 22 000 was studied in cultured human lung adenocareinoma A549 cell monolayers at different conditions. Results The results showed that the apparent permeability coefficients (Papp) of these macromolecules across A549 cell monolayers ranged from 2×10-6 to 5×10-6 cm·s-1 and exhibited good inverse correlation with molecule weight. No concentration, direction and temperature dependence were observed in the permeation of sCT, INS and rHAV2. While the Papp of rhGH in the BA direction (2.25×10-6 cm·s-1) was significantly less than that in the reverse direction. ThePapp values of rhGH were concentration and temperature independent in the AB direction. Conclusion These findings suggest that the hydrophilic peptides and proteins, salmon calcitonin, insulin, recombinant hirudin, and recombinant human growth hormone used in this study, appeared to penetrate the A549 cell monolayers via a paracellular pathway by passive diffusion mechanism.

  17. Nuclear methods in pulmonary medicine. Methodologic considerations in mucociliary clearance and lung epithelial absorption measurements

    Dolovich, M.B.; Jordana, M.; Newhouse, M.

    1987-06-01

    Measurements of mucociliary clearance and lung epithelial permeability are relatively simple to perform, with minimum discomfort to the subjects. Awareness of the factors influencing the outcome of these procedures will help to avoid errors and yield useful information about these two clearance mechanisms from both a physiological and a pathological point of view.

  18. Mechanisms and consequences of lung epithelial injury in severe RSV disease

    van den Berg, E.

    2015-01-01

    The studies in this thesis have examined mechanisms and consequences of lung epithelial injury in severe RSV disease. In this context, they specifically contribute to the knowledge of apoptosis and the formation of pulmonary edema. The results of our studies underscore the complexity of the mechanis

  19. Flow cytometric determination of stem/progenitor content in epithelial tissues: an example from nonsmall lung cancer and normal lung.

    Donnenberg, Vera S; Landreneau, Rodney J; Pfeifer, Melanie E; Donnenberg, Albert D

    2013-01-01

    Single cell analysis and cell sorting has enabled the study of development, growth, differentiation, repair and maintenance of "liquid" tissues and their cancers. The application of these methods to solid tissues is equally promising, but several unique technical challenges must be addressed. This report illustrates the application of multidimensional flow cytometry to the identification of candidate stem/progenitor populations in non-small cell lung cancer and paired normal lung tissue. Seventeen paired tumor/normal lung samples were collected at the time of surgical excision and processed immediately. Tissues were mechanically and enzymatically dissociated into single cell suspension and stained with a panel of antibodies used for negative gating (CD45, CD14, CD33, glycophorin A), identification of epithelial cells (intracellular cytokeratin), and detection of stem/progenitor markers (CD44, CD90, CD117, CD133). DAPI was added to measure DNA content. Formalin fixed paraffin embedded tissue samples were stained with key markers (cytokeratin, CD117, DAPI) for immunofluorescent tissue localization of populations detected by flow cytometry. Disaggregated tumor and lung preparations contained a high proportion of events that would interfere with analysis, were they not eliminated by logical gating. We demonstrate how inclusion of doublets, events with hypodiploid DNA, and cytokeratin+ events also staining for hematopoietic markers reduces the ability to quantify epithelial cells and their precursors. Using the lung cancer/normal lung data set, we present an approach to multidimensional data analysis that consists of artifact removal, identification of classes of cells to be studied further (classifiers) and the measurement of outcome variables on these cell classes. The results of bivariate analysis show a striking similarity between the expression of stem/progenitor markers on lung tumor and adjacent tumor-free lung.

  20. Defects in mitochondrial fission protein dynamin-related protein 1 are linked to apoptotic resistance and autophagy in a lung cancer model.

    Kelly Jean Thomas

    Full Text Available Evasion of apoptosis is implicated in almost all aspects of cancer progression, as well as treatment resistance. In this study, resistance to apoptosis was identified in tumorigenic lung epithelial (A549 cells as a consequence of defects in mitochondrial and autophagic function. Mitochondrial function is determined in part by mitochondrial morphology, a process regulated by mitochondrial dynamics whereby the joining of two mitochondria, fusion, inhibits apoptosis while fission, the division of a mitochondrion, initiates apoptosis. Mitochondrial morphology of A549 cells displayed an elongated phenotype-mimicking cells deficient in mitochondrial fission protein, Dynamin-related protein 1 (Drp1. A549 cells had impaired Drp1 mitochondrial recruitment and decreased Drp1-dependent fission. Cytochrome c release and caspase-3 and PARP cleavage were impaired both basally and with apoptotic stimuli in A549 cells. Increased mitochondrial mass was observed in A549 cells, suggesting defects in mitophagy (mitochondrial selective autophagy. A549 cells had decreased LC3-II lipidation and lysosomal inhibition suggesting defects in autophagy occur upstream of lysosomal degradation. Immunostaining indicated mitochondrial localized LC3 punctae in A549 cells increased after mitochondrial uncoupling or with a combination of mitochondrial depolarization and ectopic Drp1 expression. Increased inhibition of apoptosis in A549 cells is correlated with impeded mitochondrial fission and mitophagy. We suggest mitochondrial fission defects contribute to apoptotic resistance in A549 cells.

  1. Epithelial-Myoepithelial Carcinoma of the Salivary Gland Harboring HRAS Codon 61 Mutations With Lung Metastasis.

    Hsieh, Min-Shu; Chen, Jin-Shing; Lee, Yi-Hsuan; Chou, Yueh-Hung

    2016-05-01

    Here, we report a case involving a 43-year-old man diagnosed with Burkitt lymphoma in 2007. At the same time, 2 small lung nodules were incidentally found; however, they presented no indication of growth throughout the follow-up period. However, a 1.5-cm nodule located in the right parotid gland in 2010 gradually increased in size to 2.8 cm by 2012. A parotidectomy revealed an epithelial-myoepithelial carcinoma, characterized by biphasic tubular structures and solid areas presenting myoepithelial overgrowth. Tumor necrosis and regional lymph node invasion were also observed. During clinical follow-up in 2013, a new 1.3-cm nodule was identified in the left lower lobe of the lung, which enlarged to 3 cm by 2014. Wedge resection of the left lung nodules revealed round nodes with well-defined borders. Histologically, these lung tumors predominantly comprised spindle-shaped myoepithelial cells with occasional tubular structures. Numerous cleft-like spaces lined by entrapped TTF-1-immunoreactive pneumocytes were observed inside the nodules. The lung nodules were characterized by a morphology similar to that of the parotid cancer. Epithelial-myoepithelial carcinoma with lung metastasis was confirmed by molecular testing, which revealed identical HRAS codon 61 (Q61K) mutations in the primary parotid tumor as well as in the lung metastases.

  2. Rho GTPases RhoA and Rac1 mediate effects of dietary folate on metastatic potential of A549 cancer cells through the control of cofilin phosphorylation.

    Oleinik, Natalia V; Helke, Kristi L; Kistner-Griffin, Emily; Krupenko, Natalia I; Krupenko, Sergey A

    2014-09-19

    Folate, an important nutrient in the human diet, has been implicated in cancer, but its role in metastasis is not established. We have shown previously that the withdrawal of medium folate leads to the inhibition of migration and invasion of A549 lung carcinoma cells. Here we have demonstrated that medium folate regulates the function of Rho GTPases by enabling their carboxyl methylation and translocation to plasma membrane. Conversely, the lack of folate leads to the retention of these proteins in endoplasmic reticulum. Folate also promoted the switch from inactive (GDP-bound) to active (GTP-bound) GTPases, resulting in the activation of downstream kinases p21-activated kinase and LIM kinase and phosphorylation of the actin-depolymerizing factor cofilin. We have further demonstrated that in A549 cells two GTPases, RhoA and Rac1, but not Cdc42, are immediate sensors of folate status: the siRNA silencing of RhoA or Rac1 blocked effects of folate on cofilin phosphorylation and cellular migration and invasion. The finding that folate modulates metastatic potential of cancer cells was confirmed in an animal model of lung cancer using tail vein injection of A549 cells in SCID mice. A folate-rich diet enhanced lung colonization and distant metastasis to lymph nodes and decreased overall survival (35 versus 63 days for mice on a folate-restricted diet). High folate also promoted epithelial-mesenchymal transition in cancer cells and experimental mouse tumors. Our study provides experimental evidence for a mechanism of metastasis promotion by dietary folate and highlights the interaction between nutrients and metastasis-related signaling.

  3. Establishment and biological characteristics of a multi-drug resistant cell line A549/Gem

    Yunfeng ZHU

    2008-02-01

    Full Text Available Background and objective Multi-drug resistance is one of the most important reason why the survival time of non-small cell lung cancer patients is so short. The aim of this study is to establish multi-drug resistant cell line A549/Gem and discuss its biological characters so as to elaborate the possible mechanisms of gemcitabine resistance. Methods Human gemcitabine-resistant non-small cell lung cancer cell line A549/Gem was established by repeated clinical serous peak concentration then low but gradually increasing concentration of gemcitabine from its parental cell human lung adenocarcinoma cell line A549 which is sensitive to gemcitabine. During the course of inducement, monitored its morphology, checked its resistance index and resistant pedigree by MTT method, gathered its growth curve and calculated its doubling time, examined its DNA contents and cell cycles by flow cytometry; at the same time, measured its expression of P53, EGFR, c-erb-B-2, PTEN, PCNA, c-myc, VEGF, MDR-1, Bcl-2, nm23, MMP-9, TIMP-1, CD44v6 Proteins, and RRM1 mRNA. Results The resistance index of A549/Gem?to gemcitabine was 163.228, and the cell line also exhibited cross-resistance to vinorelbine, taxotere, fluorouraci, etoposide and cisplatin, but kept sensitivity to paclitaxol and oxaliplatin. The doubling time of it was shorter and figures in G0-G1 phase were increased than A549. Compared with A549, A549/Gem?achieved EGFR and c-myc protein expression, nm23 protein expression enhanced, p53, Cerb-B-2 and bcl-2 protein expression reduced, PTEN, PCNA and MDR-1 protein expression vanished, but that of MMP-9, VEGF, CD44v6 and TIMP-1 protein changed trivially. Meanwhile, the expression of RRM1 mRNA was augmented markedly. The resistance index of A549/Gem to gemcitabine was 129.783, and the cell line also held cross-resistance to vinorelbine, taxotere, etoposide, cisplatin and sensitivity to paclitaxol. But the resistance to fluorouracil and sensitivity to oxaliplatin

  4. Epithelial SCAP/INSIG/SREBP signaling regulates multiple biological processes during perinatal lung maturation.

    James P Bridges

    Full Text Available Pulmonary surfactant is required for lung function at birth and throughout postnatal life. Defects in the surfactant system are associated with common pulmonary disorders including neonatal respiratory distress syndrome and acute respiratory distress syndrome in children and adults. Lipogenesis is essential for the synthesis of pulmonary surfactant by type II epithelial cells lining the alveoli. This study sought to identify the role of pulmonary epithelial SREBP, a transcriptional regulator of cellular lipid homeostasis, during a critical time period of perinatal lung maturation in the mouse. Genome wide mRNA expression profiling of lung tissue from transgenic mice with epithelial-specific deletions of Scap (Scap(Δ/Δ, resulting in inactivation of SREBP signaling or Insig1 and Insig2 (Insig1/2(Δ/Δ, resulting in activation of SREBP signaling was assessed. Differentially expressed genes responding to SREBP perturbations were identified and subjected to functional enrichment analysis, pathway mapping and literature mining to predict upstream regulators and transcriptional networks regulating surfactant lipid homeostasis. Through comprehensive data analysis and integration, time dependent effects of epithelial SCAP/INSIG/SREBP deletion and defined SCAP/INSIG/SREBP-associated genes, bioprocesses and downstream pathways were identified. SREBP signaling influences epithelial development, cell death and cell proliferation at E17.5, while primarily influencing surfactant physiology, lipid/sterol synthesis, and phospholipid transport after birth. SREBP signaling integrated with the Wnt/β-catenin and glucocorticoid receptor signaling pathways during perinatal lung maturation. SREBP regulates perinatal lung lipogenesis and maturation through multiple mechanisms by interactions with distinct sets of regulatory partners.

  5. Nonhematopoietic cells are the primary source of bone marrow-derived lung epithelial cells.

    Kassmer, Susannah H; Bruscia, Emanuela M; Zhang, Ping-Xia; Krause, Diane S

    2012-03-01

    Previous studies have demonstrated that bone marrow (BM)-derived cells differentiate into nonhematopoietic cells of multiple tissues. To date, it remains unknown which population(s) of BM cells are primarily responsible for this engraftment. To test the hypothesis that nonhematopoietic stem cells in the BM are the primary source of marrow-derived lung epithelial cells, either wild-type hematopoietic or nonhematopoietic BM cells were transplanted into irradiated surfactant-protein-C (SPC)-null mice. Donor-derived, SPC-positive type 2 pneumocytes were predominantly detected in the lungs of mice receiving purified nonhematopoietic cells and were absent from mice receiving purified hematopoietic stem and progenitor cells. We conclude that cells contained in the nonhematopoietic fraction of the BM are the primary source of marrow-derived lung epithelial cells. These nonhematopoietic cells may represent a primitive stem cell population residing in adult BM.

  6. Comparisons of IL-8, ROS and p53 responses in human lung epithelial cells exposed to two extracts of PM2.5 collected from an e-waste recycling area, China

    Yang, Fangxing; Jin, Shiwei; Xu, Ying; Lu, Yuanan

    2011-04-01

    To identify the different effects of organic-soluble and water-soluble pollutants adsorbed on PM2.5 (PM: particulate matter) released from e-waste (electrical/electronic waste) on inflammatory response, oxidative stress and DNA damage, interleukin-8 (IL-8), reactive oxygen species (ROS) and p53 protein levels were determined and compared in human lung epithelial A549 cells exposed to extracts of PM2.5 collected from two sampling sites in an e-waste recycling area in China. It is found that both extracts induced increases of IL-8 release, ROS production and p53 protein expression. The differences between the organic-soluble and water-soluble extracts were determined as of significance for ROS production (p e-waste recycling areas could lead to inflammatory response, oxidative stress and DNA damage, and the organic-soluble extracts had higher potential to induce such adverse effects on human health.

  7. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Araki Hiromasa

    2007-04-01

    Full Text Available Abstract Background Proteinase-activated receptors (PARs; PAR1–4 that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells. Results Stimulation of PAR with thrombin (1 U/ml or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β. Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial

  8. Myeloperoxidase modulates lung epithelial responses to pro-inflammatory agents

    Haegens, A.; Vernooy, J. H. J.; Heeringa, P.; Mossman, B. T.; Wouters, E. F. M.

    2008-01-01

    During extensive inflammation, neutrophils undergo secondary necrosis causing myeloperoxidase (MPO) release that may damage resident lung cells. Recent observations suggest that MPO has pro-inflammatory properties, independent of its enzymatic activity. The aims of the present study were to characte

  9. The effect of autophagy on Streptococcus pneumoniae infections of lung epithelial cells and its mechanism%自噬体在肺炎链球菌感染过程中的保护作用机制探讨

    郭旭光; 唐希才; 夏勇

    2012-01-01

    目的:检测微管相关蛋白轻链-3(LC3)在肺泡Ⅱ型上皮细胞A549上的表达情况,及3-甲基腺嘌呤(3MA)刺激后对其表达的影响,为研究自噬体在抵抗肺炎链球菌感染过程中的保护作用奠定基础.方法:体外培养肺泡Ⅱ型上皮细胞A549,在肺炎链球菌感染A549细胞12h时用倒置显微镜拍照并提取RNA,采用RT-PCR的方法检测LC3 mRNA的表达情况.同时检测对照组、3MA组、Spn组和3MA+ Spn组上清液乳酸脱氢酶(LDH)的OD值.结果:RT-PCR检测LC3 mRNA有明显表达,3MA可以抑制LC3的表达.LDH检测显示Spn组和3MA+ Spn组上清液LDH的OD值数据两两比较差异有统计学意义(P<0.05).结论:LC3在肺泡Ⅱ型上皮细胞中显著表达,3MA可以抑制细胞的自噬作用.加3MA后,肺炎链球菌感染肺泡Ⅱ型上皮细胞坏死增加,提示自噬体在抵抗肺炎链球菌的感染过程中起一定的保护作用.%Objective To detect the expression of LC3 in human alveolar type Ⅱ epithelial cells A549 and the effect of Streptococcus pneumoniae and 3MA on it, lay the foundation for studying on autophagosome resistance in the process of Streptococcus pneumoniae infection. Methods Human pulmonary type Ⅱ epithelial cells cultured in vitro and stimulated with Streptococcus pneumoniae. Extract the RNA of A549 cells on 12 h and detect LC3 mRNA expression by RT-PCR. The necrosis of control group, 3-MA group, Spn group and 3-MA + Spn group were detected by the necrosis kit after 12h by Non-Radioactive cytotoxicity assay respectively. Results The expression of LC3 mRNA stimulated of 3MA deteced by RT-PCR was different. The necrosis test showed the blank group and 3-MA group was not significantly different (P > 0.05), Spn group and 3-MA + Spn group significantly different (P < 0.05). Conclusions The expression of LC3 mRNA in alveolar type Ⅱ epithelial cells stimulated with Streptococcus pneumoniae was significantly different. The necrosis number of alveolar type

  10. Regenerative potential of human airway stem cells in lung epithelial engineering.

    Gilpin, Sarah E; Charest, Jonathan M; Ren, Xi; Tapias, Luis F; Wu, Tong; Evangelista-Leite, Daniele; Mathisen, Douglas J; Ott, Harald C

    2016-11-01

    Bio-engineered organs for transplantation may ultimately provide a personalized solution for end-stage organ failure, without the risk of rejection. Building upon the process of whole organ perfusion decellularization, we aimed to develop novel, translational methods for the recellularization and regeneration of transplantable lung constructs. We first isolated a proliferative KRT5(+)TP63(+) basal epithelial stem cell population from human lung tissue and demonstrated expansion capacity in conventional 2D culture. We then repopulated acellular rat scaffolds in ex vivo whole organ culture and observed continued cell proliferation, in combination with primary pulmonary endothelial cells. To show clinical scalability, and to test the regenerative capacity of the basal cell population in a human context, we then recellularized and cultured isolated human lung scaffolds under biomimetic conditions. Analysis of the regenerated tissue constructs confirmed cell viability and sustained metabolic activity over 7 days of culture. Tissue analysis revealed extensive recellularization with organized tissue architecture and morphology, and preserved basal epithelial cell phenotype. The recellularized lung constructs displayed dynamic compliance and rudimentary gas exchange capacity. Our results underline the regenerative potential of patient-derived human airway stem cells in lung tissue engineering. We anticipate these advances to have clinically relevant implications for whole lung bioengineering and ex vivo organ repair.

  11. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens

    Van de Velde, Nicholas C.; Karlsson, Erik A.; Neale, Geoff; Vogel, Peter; Sharma, Shalini; Duan, Susu; Surman, Sherri L.; Jones, Bart G.; Johnson, Michael D. L.; Bosio, Catharine; Jolly, Lisa; Jenkins, R. Gisli; Hurwitz, Julia L.; Rosch, Jason W.; Sheppard, Dean; Thomas, Paul G.; Murray, Peter J.; Schultz-Cherry, Stacey

    2016-01-01

    The healthy lung maintains a steady state of immune readiness to rapidly respond to injury from invaders. Integrins are important for setting the parameters of this resting state, particularly the epithelial-restricted αVβ6 integrin, which is upregulated during injury. Once expressed, αVβ6 moderates acute lung injury (ALI) through as yet undefined molecular mechanisms. We show that the upregulation of β6 during influenza infection is involved in disease pathogenesis. β6-deficient mice (β6 KO) have increased survival during influenza infection likely due to the limited viral spread into the alveolar spaces leading to reduced ALI. Although the β6 KO have morphologically normal lungs, they harbor constitutively activated lung CD11b+ alveolar macrophages (AM) and elevated type I IFN signaling activity, which we traced to the loss of β6-activated transforming growth factor-β (TGF-β). Administration of exogenous TGF-β to β6 KO mice leads to reduced numbers of CD11b+ AMs, decreased type I IFN signaling activity and loss of the protective phenotype during influenza infection. Protection extended to other respiratory pathogens such as Sendai virus and bacterial pneumonia. Our studies demonstrate that the loss of one epithelial protein, αVβ6 integrin, can alter the lung microenvironment during both homeostasis and respiratory infection leading to reduced lung injury and improved survival. PMID:27505057

  12. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens.

    Meliopoulos, Victoria A; Van de Velde, Lee-Ann; Van de Velde, Nicholas C; Karlsson, Erik A; Neale, Geoff; Vogel, Peter; Guy, Cliff; Sharma, Shalini; Duan, Susu; Surman, Sherri L; Jones, Bart G; Johnson, Michael D L; Bosio, Catharine; Jolly, Lisa; Jenkins, R Gisli; Hurwitz, Julia L; Rosch, Jason W; Sheppard, Dean; Thomas, Paul G; Murray, Peter J; Schultz-Cherry, Stacey

    2016-08-01

    The healthy lung maintains a steady state of immune readiness to rapidly respond to injury from invaders. Integrins are important for setting the parameters of this resting state, particularly the epithelial-restricted αVβ6 integrin, which is upregulated during injury. Once expressed, αVβ6 moderates acute lung injury (ALI) through as yet undefined molecular mechanisms. We show that the upregulation of β6 during influenza infection is involved in disease pathogenesis. β6-deficient mice (β6 KO) have increased survival during influenza infection likely due to the limited viral spread into the alveolar spaces leading to reduced ALI. Although the β6 KO have morphologically normal lungs, they harbor constitutively activated lung CD11b+ alveolar macrophages (AM) and elevated type I IFN signaling activity, which we traced to the loss of β6-activated transforming growth factor-β (TGF-β). Administration of exogenous TGF-β to β6 KO mice leads to reduced numbers of CD11b+ AMs, decreased type I IFN signaling activity and loss of the protective phenotype during influenza infection. Protection extended to other respiratory pathogens such as Sendai virus and bacterial pneumonia. Our studies demonstrate that the loss of one epithelial protein, αVβ6 integrin, can alter the lung microenvironment during both homeostasis and respiratory infection leading to reduced lung injury and improved survival.

  13. Late appearance of a type I alveolar epithelial cell marker during fetal rat lung development.

    Danto, S I; Zabski, S M; Crandall, E D

    1994-10-01

    Recent studies in fetal lung using immunological and molecular probes have revealed type I and type II cell phenotypic markers in primordial lung epithelial cells prior to the morphogenesis of these cell types. We have recently developed monoclonal antibodies specific for adult type I cells. To evaluate further the temporal appearance of the type I cell phenotype during alveolar epithelial cell ontogeny, we analyzed fetal lung development using one of our monoclonal antibodies (mAb VIII B2). The epitope recognized by mAb VIII B2 first appears in the canalicular stage of fetal lung development, at approx. embryonic day 19 (E19), in occasional, faintly stained tubules. Staining with this type I cell probe becomes more intense and more widespread with increasing gestational age, during which time the pattern of staining changes. Initially, all cells of the distal epithelial tubules are uniformly labelled along their apical and basolateral surfaces. As morphological differentiation of the alveolar epithelium proceeds, type I cell immunoreactivity appears to become restricted to the apical surface of the primitive type I cells in a pattern approaching that seen in the mature lung. We concurrently analyzed developing fetal lung with an antiserum to surfactant apoprotein-A (alpha-SP-A). Consistent with the findings of others, labeling of SP-A was first detectable in scattered cuboidal cells at E18. Careful examination of the double-labeled specimens suggested that some cells were reactive with both the VIII B2 and SP-A antibodies, particularly at E20. Confocal microscopic analysis of such sections from E20 lung confirmed this impression. Three populations of cells were detected: cells labeled only with alpha-SP-A, cells labeled only with mAb VIII B2, and a smaller subset of cells labeled by both.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. IL-1β expression in the distal lung epithelium disrupts lung morphogenesis and epithelial cell differentiation in fetal mice.

    Hogmalm, Anna; Bry, Maija; Strandvik, Birgitta; Bry, Kristina

    2014-01-01

    Perinatal inflammation and the inflammatory cytokine IL-1 can modify lung morphogenesis. To examine the effects of antenatal expression of IL-1β in the distal airway epithelium on fetal lung morphogenesis, we studied lung development and surfactant expression in fetal mice expressing human IL-1β under the control of the surfactant protein (SP)-C promoter. IL-1β-expressing pups suffered respiratory failure and died shortly after birth. IL-1β caused fetal lung inflammation and enhanced the expression of keratinocyte-derived chemokine (KC/CXCL1) and monocyte chemoattractant protein 3 (MCP-3/CCL7), the calgranulins S100A8 and S100A9, the acute-phase protein serum amyloid A3, the chitinase-like proteins Ym1 and Ym2, and pendrin. IL-1β decreased the percentage of the total distal lung area made up of air saccules and the number of air saccules in the lungs of fetal mice. IL-1β inhibited the expression of VEGF-A and its receptors VEGFR-1 and VEGFR-2. The percentage of the cellular area of the distal lung made up of capillaries was decreased in IL-1β-expressing fetal mice. IL-1β suppressed the production of SP-B and pro-SP-C and decreased the amount of phosphatidylcholine and the percentage of palmitic acid in the phosphatidylcholine fraction of lung phospholipids, indicating that IL-1β prevented the differentiation of type II epithelial cells. The production of Clara cell secretory protein in the nonciliated bronchiolar (Clara) cells was likewise suppressed by IL-1β. In conclusion, expression of IL-1β in the epithelium of the distal airways disrupted the development of the airspaces and capillaries in the fetal lung and caused fatal respiratory failure at birth.

  15. Inhibition of Burkholderia multivorans Adhesion to Lung Epithelial Cells by Bivalent Lactosides

    Trinidad Velasco-Torrijos

    2012-08-01

    Full Text Available Burkholderia cepacia complex (Bcc is an opportunistic pathogen in cystic fibrosis patients which is inherently resistant to antimicrobial agents. The mechanisms of attachment and pathogenesis of Bcc, a group of 17 species, are poorly understood. The most commonly identified Bcc species in newly colonised patients, Burkholderia multivorans, continues to be acquired from the environment. Development of therapies which can prevent or reduce the risk of colonization on exposure to Bcc in the environment would be a better alternative to antimicrobial agents. Previously, it has been shown that Bcc strains bound to many glycolipid receptors on lung epithelia. Using a real-time PCR method to quantify the levels of binding of B. multivorans to the lung epithelial cells, we have examined glycoconjugate derivatives for their potential to inhibit host cell attachment. Bivalent lactosides previously shown to inhibit galectin binding significantly reduced the attachment of B. multivorans to CF lung epithelial cells at micromolar concentrations. This was in contrast to monosaccharides and lactose, which were only effective in the millimolar range. Development of glycoconjugate therapies such as these, which inhibit attachment to lung epithelial cells, represent an alternative means of preventing infection with inherently antimicrobially resistant pathogens such as B. multivorans.

  16. The mRNA and protein expression of folylpolyglutamate synthetase in methotrexate enantiomer-resistant A549 cell lines%信息动态

    2011-01-01

    Objective To study the expression of folylpolyglutamate synthetase ( FPGS ) in methotrexate ( MTX ) enantiomer-resistant A549 cell lines [ L-( + )-MTX and D-( - )-MTX ]. Methods The expression of FPGS on genetic and protein level was determined by FQ-PCR and Western blot in lung cancer A549 cells, and MTX enantiomer-resistant A549 cells [ L-( + )-MTX and D-( - )-MTX ], with the concentration of drug resistance was 15 μmol/L. Results The genetic expression level of FPGS was ( 0.80 ± 0. 09 ) and ( 2. 04 ± 0. 34 ) folds in L-( + )- MTX/A549 cells and D-( - )-MTX/A549 cells compared with lung cancer A549 cells, there was statistical difference between two groups ( P < 0.05 ). The protein expression level of FPGS was ( 0. 85 ± 0. 12 ) and( 1.62 ± 0. 24 ) folds in L-( + )-MTX/A549 cells and D-( - )-MTX/A549 cells compared with lung cancer A549 cells,there was statistical difference ( P < 0. 05 ). Conclusion The expression level of FPGS on genetic and protein level in drug resistant cells have been changed, and significant difference in two enantiomer-resistant cells are appeared.

  17. Blocking TGF-β expression inhibits silica particle-induced epithelial-mesenchymal transition in human lung epithelial cells.

    Rong, Yi; Shen, Yan; Zhang, Zhihong; Cui, Xiuqing; Xiao, Lili; Liu, Yuewei; Luo, Xin; Chen, Weihong

    2015-11-01

    The main characteristic of silicosis is irreversible fibrosis. Certain studies have shown that epithelial-mesenchymal transition (EMT) regulated by transforming growth factor-β (TGF-β) is involved in fibrosis. Thus, we suggest that TGF-β regulated EMT may play an important role in silicosis. In this study, we determined the expression of TGF-β-Smad2/3, EMT- and ECM-related markers in lung epithelial cells treated with silica particle by RT-PCR, western-blot and ELISA. In order to explore the role of TGF-β, we used TGF-β inhibitor in the cell model. We found that the cells lost the expression of epithelial phenotypic markers and acquired increased expression of mesenchymal cells markers with ECM deposition after treatment with silica particle. Moreover, the changes of EMT-related event was restricted in response to TGF-β inhibitor. These findings suggest that EMT is essentially involved in the pathogenesis of fibrosis induced by silica particles and down-regulating the TGF-β expression can inhibit the process of EMT.

  18. Oxidative stress by layered double hydroxide nanoparticles via an SFK-JNK and p38-NF-κB signaling pathway mediates induction of interleukin-6 and interleukin-8 in human lung epithelial cells.

    Choi, Soo-Jin; Paek, Hee-Jeong; Yu, Jin

    2015-01-01

    Anionic nanoclays are layered double hydroxide nanoparticles (LDH-NPs) that have been shown to exhibit toxicity by inducing reactive oxidative species and a proinflammatory mediator in human lung epithelial A549 cells. However, the molecular mechanism responsible for this LDH-NP-induced toxicity and the relationship between oxidative stress and inflammatory events remains unclear. In this study, we focused on intracellular signaling pathways and transcription factors induced in response to oxidative stress caused by exposure to LDH-NPs in A549 cells. Mitogen-activated protein kinase (MAPK) cascades, such as extracellular signal-regulated kinase, c-Jun-N-terminal kinase (JNK), and p38, were investigated as potential signaling mechanisms responsible for regulation of oxidative stress and cytokine release. Src family kinases (SFKs), which are known to mediate activation of MAPK, together with redox-sensitive transcription factors, including nuclear factor kappa B and nuclear factor-erythroid 2-related factor-2, were also investigated as downstream events of MAPK signaling. The results obtained suggest that LDH-NP exposure causes oxidative stress, leading to expression of antioxidant enzymes, such as catalase, glucose reductase, superoxide dismutase, and heme oxygenase-1, via a SFK-JNK and p38-nuclear factor kappa B signaling pathway. Further, activation of this signaling was also found to regulate release of inflammatory cytokines, including interleukin-6 and interleukin-8, demonstrating the inflammatory potential of LDH-NP.

  19. Integrin α6β4 identifies human distal lung epithelial progenitor cells with potential as a cell-based therapy for cystic fibrosis lung disease.

    Xiaopeng Li

    Full Text Available To develop stem/progenitor cell-based therapy for cystic fibrosis (CF lung disease, it is first necessary to identify markers of human lung epithelial progenitor/stem cells and to better understand the potential for differentiation into distinct lineages. Here we investigated integrin α6β4 as an epithelial progenitor cell marker in the human distal lung. We identified a subpopulation of α6β4(+ cells that localized in distal small airways and alveolar walls and were devoid of pro-surfactant protein C expression. The α6β4(+ epithelial cells demonstrated key properties of stem cells ex vivo as compared to α6β4(- epithelial cells, including higher colony forming efficiency, expression of stem cell-specific transcription factor Nanog, and the potential to differentiate into multiple distinct lineages including basal and Clara cells. Co-culture of α6β4(+ epithelial cells with endothelial cells enhanced proliferation. We identified a subset of adeno-associated virus (AAVs serotypes, AAV2 and AAV8, capable of transducing α6β4(+ cells. In addition, reconstitution of bronchi epithelial cells from CF patients with only 5% normal α6β4(+ epithelial cells significantly rescued defects in Cl(- transport. Therefore, targeting the α6β4(+ epithelial population via either gene delivery or progenitor cell-based reconstitution represents a potential new strategy to treat CF lung disease.

  20. In vitro cytotoxic effects of PM{sub 2.5} from the city of Abidjan (Ivory Coast) on human A549 lung cells; Effets cytotoxiques in vitro des PM{sub 2,} {sub 5} de la ville d'Abidjan (Cote-d'Ivoire) sur des cellules pulmonaires humaines

    Kouassi, Kouakou-Serge [Universite Lille Nord de France, Lille (France); Unite de Chimie Environnementale et Interactions sur le Vivant, EA 4492 MREI, Universite du Littoral Cote d' Opale, Dunkerque (France); Universite Cocody-Abidjan et Institut Pasteur, Abidjan (Cote d' Ivoire); Billet, Sylvain; Garcon, Guillaume; Verdin, Anthony; Courcot, Dominique; Shirali, Pirouz [Universite Lille Nord de France, Lille (France); Unite de Chimie Environnementale et Interactions sur le Vivant, EA 4492 MREI, Universite du Littoral Cote d' Opale, Dunkerque (France); Diouf, Amadou [Laboratoire de Toxicologie, Faculte de Medecine Pharmacologie Odontologie, Universite Cheikh Anta Diop, Dakar (Senegal); Cazier, Fabrice [Universite Lille Nord de France, Lille (France); Centre Commun de Mesures, MREI 1, Universite du Littoral Cote d' Opale, Dunkerque (France); Djaman, Joseph [Universite Cocody-Abidjan et Institut Pasteur, Abidjan (Cote d' Ivoire)

    2012-01-15

    Epidemiological studies associate air pollution, especially particulate, increased morbidity and mortality from respiratory and cardiovascular origin . Africa, which has an urbanization rate among the highest in the world, is particularly exposed. The 'Initiative on the air quality in Sub-Saharan Africa' showed the importance of atmospheric concentrations of certain pollutants such as nitrogen oxides, sulfur dioxide and particulate matter (PM{sub 10}). Like the great capitals of Africa, Abidjan, economic capital and most industrialized city of Ivory Coast is facing an air pollution from industrial-urban and health consequences for its population of nearly 6 million inhabitants. To better understand the mechanisms of action resulting from pulmonary exposure to particulate atmospheric aerosols, we proposed: (i) to collect atmospheric particles (PM{sub 2.5}) using high volume cascade impaction in the District of Abidjan in three influences (rural, urban or industrial), (ii) to determine their main physicochemical, (iii) assess their cytotoxicity and their role in the induction of oxidative damage in a model of human lung cells (A549) in culture. The chemical composition of the atmospheric particles revealed their heterogeneity, and many inorganic (e.g. Al, Ca, Fe, Mn, Zn, Ni, Cr, Cu, Pb, Mg) and organic compounds (e.g. paraffins) were quantified at the three sites. Their effect concentrations (EC) to 10 and 50% on the A549 were as follows: influence rural: EC{sub 10} = 5.91 {mu}g/cm{sup 2} and EC{sub 50} 29.55 {mu}g/cm{sup 2}, urban influence: EC{sub 10} = 5 .45 {mu}g/cm{sup 2} and EC{sub 50} = 27.23 {mu}g/cm{sup 2}, and industrial influence: EC{sub 10} = 6.86 {mu}g/cm{sup 2} and EC{sub 50} = 34.29 {mu}g/cm{sup 2}. Exposure of A549 cells to Abidjan city's PM samples for 24, 48 or 72 hours to their EC{sub 10} or EC{sub 50} induced oxidative damage, as demonstrated by the formation of malon-dialdehyde, changes in enzyme activity of superoxide dismutase

  1. Diesel exhaust particles are mutagenic in FE1-MutaMouse lung epithelial cells

    Jacobsen, Nicklas Raun; Møller, Peter; Cohn, Corey Alexander;

    2008-01-01

    The particulate phase of diesel engine exhaust is likely carcinogenic. However, the mechanisms of diesel exhaust particles (DEPs) induced mutagenicity/carcinogenicity are still largely unknown. We determined the mutant frequency following eight repeated 72 h incubations with 37.5 or 75 microg....../ml DEP (NIST SRM 1650) in the FE1-MutaMouse lung epithelial cell line. We measured DEP-induced acellular and intracellular production of reactive oxygen species (ROS) and compared with ROS production induced by carbon black, which we have previously shown is mutagenic in this cell line [N.R. Jacobsen, A.......T. Saber, P. White, P. Moller, G. Pojana, U. Vogel, S. Loft, J. Gingerich, L. Soper, G.R. Douglas, H. Wallin. Increased mutant frequency by carbon black, but not quartz, in the lacZ and cII transgenes of mutamouse lung epithelial cells, Environ. Mol. Mutagen. 48(6) (2007) 451-461]. The mutant frequency...

  2. Protective effect of erdosteine metabolite I against hydrogen peroxide-induced oxidative DNA-damage in lung epithelial cells.

    Marabini, Laura; Calò, Rossella; Braga, Pier Carlo

    2011-01-01

    It has been shown that the mucolytic agent erdosteine (N-carboxymethylthio-acetyl-homocysteine thiolactone, CAS 84611-23-4) has anti-inflammatory and anti-oxidant properties, and an active metabolite I (MET I) containing pharmacologically active sulphydryl group has been found to have a free radical scavenging activity. The aim of this study was to assess the ability of erdosteine metabolite I to protect A549 human lung adenocarcinoma cell against hydrogen peroxide (H2O2)-mediated oxidative stress and oxidative DNA damage. When A549 cells were pre-treated with the active metabolite I (2.5-5-10 microg/ml) for 10-30 min and then exposed to H2O2 (1-4 mM) for two additional hours at 37 degrees C, 5% at CO2, the intracellular peroxide production, reflected by dichlorofluorescein (DCF) fluorescence, decreased in a concentration-dependent manner. Furthermore, using a comet assay as an indicator for oxidative DNA damage, it was found that the metabolite I prevented damage to cells exposed to shortterm H2O2 treatment. The data suggest that this compound is effective in preventing H2O2-induced oxidative stress and DNA damage in A549 cells. The underlying mechanisms involve the scavenging of intracellular reactive oxygen species (ROS).

  3. Proteome data from a host-pathogen interaction study with Staphylococcus aureus and human lung epithelial cells

    Kristin Surmann

    2016-06-01

    Full Text Available To simultaneously obtain proteome data of host and pathogen from an internalization experiment, human alveolar epithelial A549 cells were infected with Staphylococcus aureus HG001 which carried a plasmid (pMV158GFP encoding a continuously expressed green fluorescent protein (GFP. Samples were taken hourly between 1.5 h and 6.5 h post infection. By fluorescence activated cell sorting GFP-expressing bacteria could be enriched from host cell debris, but also infected host cells could be separated from those which did not carry bacteria after contact (exposed. Additionally, proteome data of A549 cells which were not exposed to S. aureus but underwent the same sample processing steps are provided as a control. Time-resolved changes in bacterial protein abundance were quantified in a label-free approach. Proteome adaptations of host cells were monitored by comparative analysis to a stable isotope labeled cell culture (SILAC standard. Proteins were extracted from the cells, digested proteolytically, measured by nanoLC–MS/MS, and subsequently identified by database search and then quantified. The data presented here are related to a previously published research article describing the interplay of S. aureus HG001 and human epithelial cells (Surmann et al., 2015 [1]. They have been deposited to the ProteomeXchange platform with the identifiers PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002384 for the S. aureus HG001 proteome dataset and PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002388 for the A549 proteome dataset.

  4. Proteome data from a host-pathogen interaction study with Staphylococcus aureus and human lung epithelial cells.

    Surmann, Kristin; Simon, Marjolaine; Hildebrandt, Petra; Pförtner, Henrike; Michalik, Stephan; Dhople, Vishnu M; Bröker, Barbara M; Schmidt, Frank; Völker, Uwe

    2016-06-01

    To simultaneously obtain proteome data of host and pathogen from an internalization experiment, human alveolar epithelial A549 cells were infected with Staphylococcus aureus HG001 which carried a plasmid (pMV158GFP) encoding a continuously expressed green fluorescent protein (GFP). Samples were taken hourly between 1.5 h and 6.5 h post infection. By fluorescence activated cell sorting GFP-expressing bacteria could be enriched from host cell debris, but also infected host cells could be separated from those which did not carry bacteria after contact (exposed). Additionally, proteome data of A549 cells which were not exposed to S. aureus but underwent the same sample processing steps are provided as a control. Time-resolved changes in bacterial protein abundance were quantified in a label-free approach. Proteome adaptations of host cells were monitored by comparative analysis to a stable isotope labeled cell culture (SILAC) standard. Proteins were extracted from the cells, digested proteolytically, measured by nanoLC-MS/MS, and subsequently identified by database search and then quantified. The data presented here are related to a previously published research article describing the interplay of S. aureus HG001 and human epithelial cells (Surmann et al., 2015 [1]). They have been deposited to the ProteomeXchange platform with the identifiers PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002384 for the S. aureus HG001 proteome dataset and PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002388 for the A549 proteome dataset.

  5. Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells

    Kuehn Meta J

    2009-02-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is the major pathogen associated with chronic and ultimately fatal lung infections in patients with cystic fibrosis (CF. To investigate how P. aeruginosa-derived vesicles may contribute to lung disease, we explored their ability to associate with human lung cells. Results Purified vesicles associated with lung cells and were internalized in a time- and dose-dependent manner. Vesicles from a CF isolate exhibited a 3- to 4-fold greater association with lung cells than vesicles from the lab strain PAO1. Vesicle internalization was temperature-dependent and was inhibited by hypertonic sucrose and cyclodextrins. Surface-bound vesicles rarely colocalized with clathrin. Internalized vesicles colocalized with the endoplasmic reticulum (ER marker, TRAPα, as well as with ER-localized pools of cholera toxin and transferrin. CF isolates of P. aeruginosa abundantly secrete PaAP (PA2939, an aminopeptidase that associates with the surface of vesicles. Vesicles from a PaAP knockout strain exhibited a 40% decrease in cell association. Likewise, vesicles from PAO1 overexpressing PaAP displayed a significant increase in cell association. Conclusion These data reveal that PaAP promotes the association of vesicles with lung cells. Taken together, these results suggest that P. aeruginosa vesicles can interact with and be internalized by lung epithelial cells and contribute to the inflammatory response during infection.

  6. Effects of hypoxia on the expression of CCR7 and proliferation, invasiveness of A549 cells

    Yang LI

    2008-10-01

    Full Text Available Background and objective It has been proven that hypoxia could promote tumor cells invasion and metastasis by different mechanisms, but the relationship between hypoxia and CCR7 have not been reported. The aim of this investigate is to evaluate the effects of hypoxia on the expression of CCR7 and the invasiveness of lung adenocarcinoma A549 cells. Methods A549 cells were incubated at either normoxia (37 ℃, 5%CO2, 21%O2 or hypoxia(37 ℃, 5%CO2, 1%O2 condition for 4 h,12 h, 24 h. The expressions of CCR7 mRNA and protein levels were observed by RT-PCR and Western blotting; Cells invasiveness was measured by matrigel invasion assay. Results RT-PCR and Western blotting showed that the expression of CCR7 was detected in lung adenocarcinoma A549 cells, CCR7 mRNA and protein expression level were increased with culture time along either in normoxia or hypoxia condition; Furthermore,compared with normoxia group, the CCR7 mRNA and protein expression level in hypoxia group was increased (P <0.01.The results of Transwell invasion showed that The number of invasive cells was significantly increased in hypoxia group(t =0.006, P <0.01 and A549 cells invasive ability was inhibited after add anti-CCR7 Ab to culture medium (t =0.09, P <0.01. Conclusion The results suggest that hypoxia plays an important role in the augmentation of the CCR7 expression and invasiveness of A549 cells. Invasion of A549 cells in hypoxia condition correlated with CCR7 expression level.

  7. The impact of metformin and salinomycin on transforming growth factor β-induced epithelial-to-mesenchymal transition in non-small cell lung cancer cell lines

    KOECK, STEFAN; AMANN, ARNO; HUBER, JULIA M.; GAMERITH, GABRIELE; HILBE, WOLFGANG; ZWIERZINA, HEINZ

    2016-01-01

    The epithelial-to-mesenchymal transition (EMT) is highly involved in the development of metastases. EMT transforms epithelial carcinoma cells into mesenchymal-like cells, characterized by increased cell migration and invasiveness. Transforming growth factor β (TGFβ) appears to be crucial in this process. Metformin and salinomycin have demonstrated an EMT inhibitory effect. The current experiments indicate that these substances specifically inhibit TGFβ-induced EMT in non-small cell lung cancer (NSCLC) cell lines. The NSCLC cell lines A549 and HCC4006 were stimulated with TGFβ for 48 h to induce EMT. Metformin or salinomycin was added simultaneously with TGFβ to inhibit TGFβ-induced EMT. Western blot analyses of E-cadherin and vimentin were performed to detect changes in EMT marker expression, and a wound healing assay was conducted to determine the potential effects on cell migration. The effects of the two drugs on cell viability were also investigated using MTS tetrazolium dye assays. The results revealed that cells undergoing EMT by application of TGFβ exhibited a downregulation of E-cadherin and an upregulation of vimentin protein expression on western blot analyses, and an increased capacity for cell migration. Simultaneous application of TGFβ and metformin specifically inhibited EMT and increased E-cadherin expression. At the higher dose tested, salinomycin also inhibited EMT, despite an increase in vimentin expression in the two cell lines. Furthermore, metformin and salinomycin, at the two concentrations tested, inhibited cell migration. These findings demonstrate that metformin and salinomycin are able to block EMT and inhibit EMT-induced cell migration. Thus, these two substances are novel EMT inhibiting drugs that have the potential to specifically control EMT and metastatic spread in NSCLC. PMID:27073581

  8. The impact of metformin and salinomycin on transforming growth factor β-induced epithelial-to-mesenchymal transition in non-small cell lung cancer cell lines.

    Koeck, Stefan; Amann, Arno; Huber, Julia M; Gamerith, Gabriele; Hilbe, Wolfgang; Zwierzina, Heinz

    2016-04-01

    The epithelial-to-mesenchymal transition (EMT) is highly involved in the development of metastases. EMT transforms epithelial carcinoma cells into mesenchymal-like cells, characterized by increased cell migration and invasiveness. Transforming growth factor β (TGFβ) appears to be crucial in this process. Metformin and salinomycin have demonstrated an EMT inhibitory effect. The current experiments indicate that these substances specifically inhibit TGFβ-induced EMT in non-small cell lung cancer (NSCLC) cell lines. The NSCLC cell lines A549 and HCC4006 were stimulated with TGFβ for 48 h to induce EMT. Metformin or salinomycin was added simultaneously with TGFβ to inhibit TGFβ-induced EMT. Western blot analyses of E-cadherin and vimentin were performed to detect changes in EMT marker expression, and a wound healing assay was conducted to determine the potential effects on cell migration. The effects of the two drugs on cell viability were also investigated using MTS tetrazolium dye assays. The results revealed that cells undergoing EMT by application of TGFβ exhibited a downregulation of E-cadherin and an upregulation of vimentin protein expression on western blot analyses, and an increased capacity for cell migration. Simultaneous application of TGFβ and metformin specifically inhibited EMT and increased E-cadherin expression. At the higher dose tested, salinomycin also inhibited EMT, despite an increase in vimentin expression in the two cell lines. Furthermore, metformin and salinomycin, at the two concentrations tested, inhibited cell migration. These findings demonstrate that metformin and salinomycin are able to block EMT and inhibit EMT-induced cell migration. Thus, these two substances are novel EMT inhibiting drugs that have the potential to specifically control EMT and metastatic spread in NSCLC.

  9. Hydrogen sulfide donor regulates alveolar epithelial cell apoptosis in rats with acute lung injury

    LIU Wen-li; LIU Zhi-wei; LI Tian-shui; WANG Cong; ZHAO Bin

    2013-01-01

    Background Acute lung injury (ALl) is a common syndrome associated with high morbidity and mortality in emergency medicine.Cell apoptosis plays a key role in the pathogenesis of ALl.Hydrogen sulfide (H2S) plays a protective role during acute lung injury.We designed this study to examine the role of H2S in the lung alveolar epithelial cell apoptosis in rats with ALl.Methods Sixty-nine male Sprague Dawley rats were used.ALl was induced by intra-tail vein injection of oleic acid (OA).NaHS solution was injected intraperitonally 30 minutes before OA injection as the NaHS pretreatment group.Single sodium hydrosulfide pretreatment group and control group were designed.Index of quantitative assessment (IQA),wet/dry weight (W/D) ratio and the percentage of polymorphonuclear leukocyte (PMN) cells in the bronchoalveolar lavage fluid (BALF) were determined.H2S level in lung tissue was measured by a sensitive sulphur electrode.Apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and Fas protein was measured by immunohistochemical staining.Results The level of endogenous H2S in lung tissue decreased with the development of ALl induced by OA injection.Apoptosis and Fas protein in alveolar epithelial cells increased in the ALl of rats but NaHS lessened apoptosis and Fas protein expression in alveolar epithelial cells of rats with ALl.Conclusion Endogenous H2S protects rats from oleic acid-induced ALl,probably by inhibiting cell apoptosis.

  10. Efficient intratracheal delivery of airway epithelial cells in mice and pigs

    Gui, Liqiong; Qian, Hong; Rocco, Kevin A.; Grecu, Loreta

    2014-01-01

    Cellular therapy via direct intratracheal delivery has gained interest as a novel therapeutic strategy for treating various pulmonary diseases including cystic fibrosis lung disease. However, concerns such as insufficient cell engraftment in lungs and lack of large animal model data remain to be resolved. This study aimed to establish a simple method for evaluating cell retention in lungs and to develop reproducible approaches for efficient cell delivery into mouse and pig lungs. Human lung epithelial cells including normal human bronchial/tracheal epithelial (NHBE) cells and human lung epithelial cell line A549 were infected with pSicoR-green fluorescent protein (GFP) lentivirus. GFP-labeled NHBE cells were delivered via a modified intratracheal cell instillation method into the lungs of C57BL/6J mice. Two days following cell delivery, GFP ELISA-based assay revealed a substantial cell-retention efficiency (10.48 ± 2.86%, n = 7) in mouse lungs preinjured with 2% polidocanol. When GFP-labeled A549 cells were transplanted into Yorkshire pig lungs with a tracheal intubation fiberscope, a robust initial cell attachment (22.32% efficiency) was observed at 24 h. In addition, a lentiviral vector was developed to induce the overexpression and apical localization of cystic fibrosis transmembrane conductance regulator (CFTR)-GFP fusion proteins in NHBE cells as a means of ex vivo CFTR gene transfer in nonprogenitor (relatively differentiated) lung epithelial cells. These results have demonstrated the convenience and efficiency of direct delivery of exogenous epithelial cells to lungs in mouse and pig models and provided important background for future preclinical evaluation of intratracheal cell transplantation to treat lung diseases. PMID:25416381

  11. Efficient intratracheal delivery of airway epithelial cells in mice and pigs.

    Gui, Liqiong; Qian, Hong; Rocco, Kevin A; Grecu, Loreta; Niklason, Laura E

    2015-01-15

    Cellular therapy via direct intratracheal delivery has gained interest as a novel therapeutic strategy for treating various pulmonary diseases including cystic fibrosis lung disease. However, concerns such as insufficient cell engraftment in lungs and lack of large animal model data remain to be resolved. This study aimed to establish a simple method for evaluating cell retention in lungs and to develop reproducible approaches for efficient cell delivery into mouse and pig lungs. Human lung epithelial cells including normal human bronchial/tracheal epithelial (NHBE) cells and human lung epithelial cell line A549 were infected with pSicoR-green fluorescent protein (GFP) lentivirus. GFP-labeled NHBE cells were delivered via a modified intratracheal cell instillation method into the lungs of C57BL/6J mice. Two days following cell delivery, GFP ELISA-based assay revealed a substantial cell-retention efficiency (10.48 ± 2.86%, n = 7) in mouse lungs preinjured with 2% polidocanol. When GFP-labeled A549 cells were transplanted into Yorkshire pig lungs with a tracheal intubation fiberscope, a robust initial cell attachment (22.32% efficiency) was observed at 24 h. In addition, a lentiviral vector was developed to induce the overexpression and apical localization of cystic fibrosis transmembrane conductance regulator (CFTR)-GFP fusion proteins in NHBE cells as a means of ex vivo CFTR gene transfer in nonprogenitor (relatively differentiated) lung epithelial cells. These results have demonstrated the convenience and efficiency of direct delivery of exogenous epithelial cells to lungs in mouse and pig models and provided important background for future preclinical evaluation of intratracheal cell transplantation to treat lung diseases.

  12. Acrolein induced both pulmonary inflammation and the death of lung epithelial cells.

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Isobe, Ken-Ichi

    2014-09-02

    Acrolein, a compound found in cigarette smoke, is a major risk factor for respiratory diseases. Previous research determined that both acrolein and cigarette smoke produced reactive oxygen species (ROS). As many types of pulmonary injuries are associated with inflammation, this study sought to ascertain the extent to which exposure to acrolein advanced inflammatory state in the lungs. Our results showed that intranasal exposure of mice to acrolein increased CD11c(+)F4/80(high) macrophages in the lungs and increased ROS formation via induction of NF-κB signaling. Treatment with acrolein activated macrophages and led to their increased production of ROS and expression of several key pro-inflammatory cytokines. In in vitro studies, acrolein treatment of bone marrow-derived GM-CSF-dependent immature macrophages (GM-IMs), activated the cells and led to their increased production of ROS and expression of several key pro-inflammatory cytokines. Acrolein treatment of macrophages induced apoptosis of lung epithelial cells. Inclusion of an inhibitor of ROS formation markedly decreased acrolein-mediated macrophage activation and reduced the extent of epithelial cell death. These results indicate that acrolein can cause lung damage, in great part by mediating the increased release of pro-inflammatory cytokines/factors by macrophages.

  13. Lung inflammation and epithelial changes in a murine model of atopic asthma.

    Blyth, D I; Pedrick, M S; Savage, T J; Hessel, E M; Fattah, D

    1996-05-01

    A murine model of allergen-induced airway inflammation and epithelial phenotypic change, and the time-courses of these events, are described. Mice were sensitized to ovalbumin using an adjuvant-free protocol, and challenged by multiple intratracheal instillations of ovalbumin by a non-surgical technique. Many of the characteristic features of human atopic asthma were seen in the mice. A marked eosinophilic infiltration of lung tissue and airways followed allergen challenge, and its severity increased with each challenge, as did the number of eosinophils in the blood. Lymphocytes, neutrophils, and monocytes also invaded the lungs. Airway macrophages showed signs of activation, their appearance resembling those recovered from antigen-challenged human asthmatic airways. The airway epithelium was thickened and displayed a marked goblet cell hyperplasia in terminal bronchioles and larger airways. After repeated challenges, the reticular layer beneath the basement membrane of the airway epithelium showed fibrosis, reproducing a commonly observed histologic feature of human asthma. Goblet cell hyperplasia began to appear before eosinophils or lymphocytes had migrated across the airway epithelium, and persisted for at least 11 days after the third intratracheal challenge with ovalbumin, despite the number of inflammatory cells in the lungs and airways having decreased to near-normal levels by 4 days. Plugs of mucus occluded some of the airways. These results indicate that some of the phenotypic changes in airway epithelium that follow an allergic response in the lung can be initiated before the migration of eosinophils or lymphocytes across the epithelial layer.

  14. Role of cytoskeleton in cytokine production from lung alveolar epithelial cells

    2001-01-01

    Cytokines are involved in both host defense and inflammatory lung injury. Recent work from our laboratory and others has demonstrated that in addition to classical immune cells, lung alveolar epithelial cells (or pneumocytes) can also produce cytokines in response to various stimuli. This new knowledge has advanced our view of the host defense system in the lung. The regulatory mechanisms of cytokine production have been studied in great detail at various cellular and molecular levels, but the mechanisms of intracellular cytokine transport are largely unknown. Our recent studies suggest that the cytoskeleton could play an important role in mediating intracellular cytokine trafficking. This could be an important regulatory step for cytokine production. For example, lipopolyssacharide (LPS) induced tumor necrosis factor-α (TNF-α) from rat pneumocytes, which was further enhanced by a microfilament-disrupting agent. LPS also induced macrophage inflammatory protein-2(MIP-2), a chemokine for neutrophil recruitment and activation, from rat pneumocytes. This effect was enhanced by microtubule-disrupting agents. We speculate that both microfilaments and microtubules are involved in regulating cytokine transportation in pneumocytes through different mechanisms. Further investigation in on going in my laboratory. From a clinical perspective, if we understand the mechanisms regulating cytokine production and release from lung alveolar epithelial cells, we may be able to enhance or inhibit release of crucial cytokines depending on the clinical situation.

  15. MicroRNA Profiling of the Effect of the Heptapeptide Angiotensin-(1-7) in A549 Lung Tumor Cells Reveals a Role for miRNA149-3p in Cellular Migration Processes

    da Silva, Brenda de Oliveira; Lima, Kelvin Furtado; Gonçalves, Letícia Rocha; da Silveira, Marina Bonfogo; Moraes, Karen C. M.

    2016-01-01

    Lung cancer is one of the most frequent types of cancer in humans and a leading cause of death worldwide. The high mortality rates are correlated with late diagnosis, which leads to high rates of metastasis found in patients. Thus, despite all the improvement in therapeutic approaches, the development of new drugs that control cancer cell migration and metastasis are required. The heptapeptide angiotensin-(1–7) [ang-(1–7)] has demonstrated the ability to control the growth rates of human lung cancer cells in vitro and in vivo, and the elucidation of central elements that control the fine-tuning of cancer cells migration in the presence of the ang-(1–7), will support the development of new therapeutic approaches. Ang-(1–7) is a peptide hormone of the renin-angiotensin system (RAS) and this study investigates the modulatory effect of the heptapeptide on the expression pattern of microRNAs (miRNAs) in lung tumor cells, to elucidate mechanistic concerns about the effect of the peptide in the control of tumor migratory processes. Our primary aim was to compare the miRNA profiling between treated and untreated-heptapeptide cells to characterize the relevant molecule that modulates cellular migration rates. The analyses selected twenty one miRNAs, which are differentially expressed between the groups; however, statistical analyses indicated miRNA-149-3p as a relevant molecule. Once functional analyses were performed, we demonstrated that miRNA-149-3p plays a role in the cellular migration processes. This information could be useful for future investigations on drug development. PMID:27598578

  16. Evidence for embryonic stem-like signature and epithelial-mesenchymal transition features in the spheroid cells derived from lung adenocarcinoma.

    Roudi, Raheleh; Madjd, Zahra; Ebrahimi, Marzieh; Najafi, Ali; Korourian, Alireza; Shariftabrizi, Ahmad; Samadikuchaksaraei, Ali

    2016-09-01

    Identification of the cellular and molecular aspects of lung cancer stem cells (LCSCs) that are suggested to be the main culprit of tumor initiation, maintenance, drug resistance, and relapse is a prerequisite for targeted therapy of lung cancer. In the current study, LCSCs subpopulation of A549 cells was enriched, and after characterization of the spheroid cells, complementary DNA (cDNA) microarray analysis was applied to identify differentially expressed genes (DEGs) between the spheroid and parental cells. Microarray results were validated using quantitative real-time reverse transcription-PCR (qRT-PCR), flow cytometry, and western blotting. Our results showed that spheroid cells had higher clonogenic potential, up-regulation of stemness gene Sox2, loss of CD44 expression, and gain of CD24 expression compared to parental cells. Among a total of 160 genes that were differentially expressed between the spheroid cells and the parental cells, 104 genes were up-regulated and 56 genes were down-regulated. Analysis of cDNA microarray revealed an embryonic stem cell-like signature and over-expression of epithelial-mesenchymal transition (EMT)-associated genes in the spheroid cells. cDNA microarray results were validated at the gene expression level using qRT-PCR, and further validation was performed at the protein level by flow cytometry and western blotting. The embryonic stem cell-like signature in the spheroid cells supports two important notions: maintenance of CSCs phenotype by dedifferentiating mechanisms activated through oncogenic pathways and the origination of CSCs from embryonic stem cells (ESCs). PI3/AKT3, as the most common up-regulated pathway, and other pathways related to aggressive tumor behavior and EMT process can confer to the spheroid cells' high potential for metastasis and distant seeding.

  17. Regulation of epithelial sodium channel a-subunit expression by adenosine receptor A2a in alveolar epithelial cells

    DENG Wang; WANG Dao-xin; ZHANG Wei; LI Chang-yi

    2011-01-01

    Background The amiloride-sensitive epithelial sodium channel a-subunit (a-ENaC) is an important factor for alveolar fluid clearance during acute lung injury. The relationship between adenosine receptor A2a (A2aAR) expressed in alveolar epithelial cells and aα-ENaC is poorly understood. We targeted the A2aAR in this study to investigate its role in the expression of αa-ENaC and in acute lung injury.Methods A549 cells were incubated with different concentrations of A2aAR agonist CGS-21680 and with 100 μmol/L CGS-21680 for various times. Rats were treated with lipopolysaccharide (LPS) after CGS-21680 was injected. Animals were sacrificed and tissue was harvested for evaluation of lung injury by analysis of the lung wet-to-dry weight ratio, lung permeability and myeloperoxidase activity. RT-PCR and Western blotting were used to determine the mRNA and protein expression levels of α-ENaC in A549 cells and alveolar type II epithelial cells.Results Both mRNA and protein levels of α-ENaC were markedly higher from 4 hours to 24 hours after exposure to 100μmol/L CGS-21680. There were significant changes from 0.1 umol/L to 100 μmol/L CGS-21680, with a positive correlation between increased concentrations of CGS-21680 and expression of α-ENaC. Treatment with CGS-21680during LPS induced lung injury protected the lung and promoted α-ENaC expression in the alveolar epithelial cells.Conclusion Activation of A2aAR has a protective effect during the lung injury, which may be beneficial to the prognosis of acute lung injury.

  18. Primary epithelial myoepithelial carcinoma of lung, reporting of a rare entity, its molecular histogenesis and review of the literature.

    Arif, Farzana; Wu, Susan; Andaz, Shahriyour; Fox, Stewart

    2012-01-01

    Primary epithelial myoepithelial carcinoma of lung is a rare entity and is thought to arise from the submucosal bronchial glands distributed throughout the lower respiratory tract. Because of the rarity of this tumor, we describe one case of epithelial myoepithelial carcinoma arising in the bronchus intermedius and presenting as an endobronchial mass. A 57-year-old male patient presented with an incidental finding of an endobronchial mass located in the lumen of the right lower lobe bronchus and caused near total luminal occlusion of the bronchus. An endobronchial carcinoid tumor was entertained clinically. Subsequently the patient underwent an uneventful videothoracoscopic lobectomy of lower and middle lobes of the right lung. Morphologically and immunohistochemically the tumor was characterized by two cell populations with epithelial and myoepithelial cells forming duct-like structure. The final diagnosis of epithelial myoepithelial carcinoma of lung was rendered.

  19. Protein kinase D is increased and activated in lung epithelial cells and macrophages in idiopathic pulmonary fibrosis.

    Gan, Huachen; McKenzie, Raymond; Hao, Qin; Idell, Steven; Tang, Hua

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. Hence, there is a profound need for the identification of novel drugable targets to develop more specific and efficacious therapeutic intervention in IPF. In this study, we performed immunohistochemical analyses to assess the cell type-specific expression and activation of protein kinase D (PKD) family kinases in normal and IPF lung tissue sections. We also analyzed PKD activation and function in human lung epithelial cells. We found that PKD family kinases (PKD1, PKD2 and PKD3) were increased and activated in the hyperplastic and regenerative alveolar epithelial cells lining remodeled fibrotic alveolar septa and/or fibroblast foci in IPF lungs compared with normal controls. We also found that PKD family kinases were increased and activated in alveolar macrophages, bronchiolar epithelium, and honeycomb cysts in IPF lungs. Interestingly, PKD1 was highly expressed and activated in the cilia of IPF bronchiolar epithelial cells, while PKD2 and PKD3 were expressed in the cell cytoplasm and nuclei. In contrast, PKD family kinases were not apparently increased and activated in IPF fibroblasts or myofibroblasts. We lastly found that PKD was predominantly activated by poly-L-arginine, lysophosphatidic acid and thrombin in human lung epithelial cells and that PKD promoted epithelial barrier dysfunction. These findings suggest that PKD may participate in the pathogenesis of IPF and may be a novel target for therapeutic intervention in this disease.

  20. Epithelial nuclear factor-κB signaling promotes lung carcinogenesis via recruitment of regulatory T lymphocytes.

    Zaynagetdinov, R; Stathopoulos, G T; Sherrill, T P; Cheng, D-S; McLoed, A G; Ausborn, J A; Polosukhin, V V; Connelly, L; Zhou, W; Fingleton, B; Peebles, R S; Prince, L S; Yull, F E; Blackwell, T S

    2012-06-28

    The mechanisms by which chronic inflammatory lung diseases, particularly chronic obstructive pulmonary disease, confer enhanced risk for lung cancer are not well-defined. To investigate whether nuclear factor (NF)-κB, a key mediator of immune and inflammatory responses, provides an interface between persistent lung inflammation and carcinogenesis, we utilized tetracycline-inducible transgenic mice expressing constitutively active IκB kinase β in airway epithelium (IKTA (IKKβ trans-activated) mice). Intraperitoneal injection of ethyl carbamate (urethane), or 3-methylcholanthrene (MCA) and butylated hydroxytoluene (BHT) was used to induce lung tumorigenesis. Doxycycline-treated IKTA mice developed chronic airway inflammation and markedly increased numbers of lung tumors in response to urethane, even when transgene expression (and therefore epithelial NF-κB activation) was begun after exposure to carcinogen. Studies using a separate tumor initiator/promoter model (MCA+BHT) indicated that NF-κB functions as an independent tumor promoter. Enhanced tumor formation in IKTA mice was preceded by increased proliferation and reduced apoptosis of alveolar epithelium, resulting in increased formation of premalignant lesions. Investigation of inflammatory cells in lungs of IKTA mice revealed a substantial increase in macrophages and lymphocytes, including functional CD4+/CD25+/FoxP3+ regulatory T lymphocytes (Tregs). Importantly, Treg depletion using repetitive injections of anti-CD25 antibodies limited excessive tumor formation in IKTA mice. At 6 weeks following urethane injection, antibody-mediated Treg depletion in IKTA mice reduced the number of premalignant lesions in the lungs in association with an increase in CD8 lymphocytes. Thus, persistent NF-κB signaling in airway epithelium facilitates carcinogenesis by sculpting the immune/inflammatory environment in the lungs.

  1. Glucose-6-phosphate dehydrogenase in rat lung alveolar epithelial cells. An ultrastructural enzyme-cytochemical study

    S Matsubara

    2010-01-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is the key enzyme of the pentose phosphate pathway in carbohydrate metabolism, and it plays an important role in cell proliferation and antioxidant regulation within cells in various organs. Although marked cell proliferation and oxidant/antioxidant metabolism occur in lung alveolar epithelial cells, definite data has been lacking as to whether cytochemically detectable G6PD is present in alveolar epithelial cells. The distribution pattern of G6PD within these cells, if it is present, is also unknown. The purpose of the present study was to investigate the subcellular localization of G6PD in alveolar cells in the rat lung using a newly- developed enzyme-cytochemistry (copper-ferrocyanide method. Type I cells and stromal endothelia and fibroblasts showed no activities. Electron-dense precipitates indicating G6PD activity were clearly visible in the cytoplasm and on the cytosolic side of the endoplasmic reticulum of type II alveolar epithelial cells. The cytochemical controls ensured specific detection of enzyme activity. This enzyme may play a role in airway defense by delivering substances for cell proliferation and antioxidant forces, thus maintaining the airway architecture.

  2. Lipoxin A4 promotes lung epithelial repair whilst inhibiting fibroblast proliferation

    Shengxing Zheng

    2016-10-01

    Full Text Available Therapy that promotes epithelial repair whilst protecting against fibroproliferation is critical for restoring lung function in acute and chronic respiratory diseases. Primary human alveolar type II cells were used to model the effects of lipoxin A4 in vitro upon wound repair, proliferation, apoptosis and transdifferention. Effects of lipoxin A4 upon primary human lung fibroblast proliferation, collagen production, and myofibroblast differentiation were also assessed. Lipoxin A4 promoted type II cell wound repair and proliferation, blocked the negative effects of soluble Fas ligand/tumour necrosis factor α upon cell proliferation, viability and apoptosis, and augmented the epithelial cell proliferative response to bronchoaveolar lavage fluid (BALF from acute respiratory distress syndrome (ARDS. In contrast, Lipoxin A4 reduced fibroblast proliferation, collagen production and myofibroblast differentiation induced by transforming growth factor β and BALF from ARDS. The effects of Lipoxin A4 were phosphatidylinositol 3′-kinase dependent and mediated via the lipoxin A4 receptor. Lipoxin A4 appears to promote alveolar epithelial repair by stimulating epitheial cell wound repair, proliferation, reducing apoptosis and promoting trans-differentiation of alveolar type II cells into type I cells. Lipoxin A4 reduces fibroblast proliferation, collagen production and myofibroblast differentiation. These data suggest that targeting lipoxin actions may be a therapeutic strategy for treating the resolution phase of ARDS.

  3. Inhibition of Nonsmall Cell Lung Cancer Cell Migration by Protein Arginine Methyltransferase 1-small Hairpin RNA Through Inhibiting Epithelial-mesenchymal Transition,Extracellular Matrix Degradation, and Src Phosphorylation In Vitro

    Ting Zhang; Ge Cui; Yun-Liang Yao; Yue Guo; Qi-Chun Wang; Xi-Ning Li; Wen-Ming Feng

    2015-01-01

    Background:Protein arginine methyltransferases 1 (PRMT1) is over-expressed in a variety of cancers,including lung cancer,and is correlated with a poor prognosis of tumor development.This study aimed to investigate the role of PRMT1 in nonsmall cell lung cancer (NSCLC) migration in vitro.Methods:In this study,PRMT1 expression in the NSCLC cell line A549 was silenced using lentiviral vector-mediated short hairpin RNAs.Cell migration was measured using both scratch wound healing and transwell cell migration assays.The mRNA expression levels of matrix metalloproteinase 2 (MMP-2) and tissue inhibitor ofmetalloproteinase 1,2 (TIMP l,2) were measured using quantitative real-time reverse transcription-polymerase chain reaction.The expression levels of protein markers for epithelial-mesenchymal transition (EMT) (E-cadherin,N-cadherin),focal adhesion kinase (FAK),Src,AKT,and their corresponding phosphorylated states were detected by Western blot.Results:Cell migration was significantly inhibited in the PRMT1 silenced group compared to the control group.The mRNA expression of MMP-2 decreased while TIMP 1 and TIMP2 increased significantly.E-cadherin mRNA expression also increased while N-cadherin decreased.Only phosphorylated Src levels decreased in the silenced group while FAK or AKT remained unchanged.Conclusions:PRMT1-small hairpin RNA inhibits the migration abilities of NSCLC A549 cells by inhibiting EMT,extracellular matrix degradation,and Src phosphorylation in vitro.

  4. Mutant AKT1-E17K is oncogenic in lung epithelial cells

    De Marco, Carmela; Malanga, Donatella; Rinaldo, Nicola; De Vita, Fernanda; Scrima, Marianna; Lovisa, Sara; Fabris, Linda; Carriero, Maria Vincenza; Franco, Renato; Rizzuto, Antonia; Baldassarre, Gustavo; Viglietto, Giuseppe

    2015-01-01

    The hotspot E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6–2% of human lung cancers. In this manuscript, we sought to determine whether this AKT1 variant is a bona-fide activating mutation and plays a role in the development of lung cancer. Here we report that in immortalized human bronchial epithelial cells (BEAS-2B cells) mutant AKT1-E17K promotes anchorage-dependent and -independent proliferation, increases the ability to migrate, invade as well as to survive and duplicate in stressful conditions, leading to the emergency of cells endowed with the capability to form aggressive tumours at high efficiency. We provide also evidence that the molecular mechanism whereby AKT1-E17K is oncogenic in lung epithelial cells involves phosphorylation and consequent cytoplasmic delocalization of the cyclin-dependent kinase (cdk) inhibitor p27. In agreement with these results, cytoplasmic p27 is preferentially observed in primary NSCLCs with activated AKT and predicts poor survival. PMID:26053093

  5. Aggregates of mutant CFTR fragments in airway epithelial cells of CF lungs: new pathologic observations.

    Du, Kai; Karp, Philip H; Ackerley, Cameron; Zabner, Joseph; Keshavjee, Shaf; Cutz, Ernest; Yeger, Herman

    2015-03-01

    Cystic fibrosis (CF) is caused by a mutation in the CF transmembrane conductance regulator (CFTR) gene resulting in a loss of Cl(-) channel function, disrupting ion and fluid homeostasis, leading to severe lung disease with airway obstruction due to mucus plugging and inflammation. The most common CFTR mutation, F508del, occurs in 90% of patients causing the mutant CFTR protein to misfold and trigger an endoplasmic reticulum based recycling response. Despite extensive research into the pathobiology of CF lung disease, little attention has been paid to the cellular changes accounting for the pathogenesis of CF lung disease. Here we report a novel finding of intracellular retention and accumulation of a cleaved fragment of F508del CFTR in concert with autophagic like phagolysosomes in the airway epithelium of patients with F508del CFTR. Aggregates consisting of poly-ubiquitinylated fragments of only the N-terminal domain of F508del CFTR but not the full-length molecule accumulate to appreciable levels. Importantly, these undegraded intracytoplasmic aggregates representing the NT-NBD1 domain of F508del CFTR were found in ciliated, in basal, and in pulmonary neuroendocrine cells. Aggregates were found in both native lung tissues and ex-vivo primary cultures of bronchial epithelial cells from CF donors, but not in normal control lungs. Our findings present a new, heretofore, unrecognized innate CF gene related cell defect and a potential contributing factor to the pathogenesis of CF lung disease. Mutant CFTR intracytoplasmic aggregates could be analogous to the accumulation of misfolded proteins in other degenerative disorders and in pulmonary "conformational protein-associated" diseases. Consequently, potential alterations to the functional integrity of airway epithelium and regenerative capacity may represent a critical new element in the pathogenesis of CF lung disease.

  6. TWIST1 a new determinant of epithelial to mesenchymal transition in EGFR mutated lung adenocarcinoma.

    Karine Pallier

    Full Text Available Metastasis is a multistep process and the main cause of mortality in lung cancer patients. We previously showed that EGFR mutations were associated with a copy number gain at a locus encompassing the TWIST1 gene on chromosome 7. TWIST1 is a highly conserved developmental gene involved in embryogenesis that may be reactivated in cancers promoting both malignant conversion and cancer progression through an epithelial to mesenchymal transition (EMT. The aim of this study was to investigate the possible implication of TWIST1 reactivation on the acquisition of a mesenchymal phenotype in EGFR mutated lung cancer. We studied a series of consecutive lung adenocarcinoma from Caucasian non-smokers for which surgical frozen samples were available (n = 33 and showed that TWIST1 expression was linked to EGFR mutations (P<0.001, to low CDH1 expression (P<0.05 and low disease free survival (P = 0.044. To validate that TWIST1 is a driver of EMT in EGFR mutated lung cancer, we used five human lung cancer cell lines and demonstrated that EMT and the associated cell mobility were dependent upon TWIST1 expression in cells with EGFR mutation. Moreover a decrease of EGFR pathway stimulation through EGF retrieval or an inhibition of TWIST1 expression by small RNA technology reversed the phenomenon. Collectively, our in vivo and in vitro findings support that TWIST1 collaborates with the EGF pathway in promoting EMT in EGFR mutated lung adenocarcinoma and that large series of EGFR mutated lung cancer patients are needed to further define the prognostic role of TWIST1 reactivation in this subgroup.

  7. p53 and miR-34a Feedback Promotes Lung Epithelial Injury and Pulmonary Fibrosis.

    Shetty, Shwetha K; Tiwari, Nivedita; Marudamuthu, Amarnath S; Puthusseri, Bijesh; Bhandary, Yashodhar P; Fu, Jian; Levin, Jeffrey; Idell, Steven; Shetty, Sreerama

    2017-03-05

    Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. The pathogenesis of interstitial lung diseases, including its most common form, IPF, remains poorly understood. Alveolar epithelial cell (AEC) apoptosis, proliferation, and accumulation of myofibroblasts and extracellular matrix deposition results in progressive loss of lung function in IPF. We found induction of tumor suppressor protein, p53, and apoptosis with suppression of urokinase-type plasminogen activator (uPA) and the uPA receptor in AECs from the lungs of IPF patients, and in mice with bleomycin, cigarette smoke, silica, or sepsis-induced lung injury. Treatment with the caveolin-1 scaffolding domain peptide (CSP) reversed these effects. Consistent with induction of p53, AECs from IPF lungs or mice with diverse types of lung injuries showed increased p53 acetylation and miR-34a expression with reduction in Sirt1. This was significantly reduced after treatment of wild-type mice with CSP, and uPA-deficient mice were unresponsive. Bleomycin failed to induce miR-34a in p53- or plasminogen activator inhibitor-1 (PAI-1)-deficient mice. CSP-mediated inhibition of miR-34a restored Sirt1, suppressed p53 acetylation and apoptosis in injured AECs, and prevented pulmonary fibrosis (PF). AEC-specific suppression of miR-34a inhibited bleomycin-induced p53, PAI-1, and apoptosis and prevented PF, whereas overexpression of precursor-miR-34a increased p53, PAI-1, and apoptosis in AECs of mice unexposed to bleomycin. Our study validates p53-miR-34a feedback as a potential therapeutic target in PF.

  8. Effect of XPA expression on the chemotherapy sensitivity of A549/DDP cells%着色性干皮病A基因表达对A549/DDP化疗敏感性的影响

    张强; 吴金香; 魏玉平; 郝俊青; 黄山英; 董亮

    2012-01-01

    目的:探讨沉默着色性干皮病A(XPA)基因表达在非小细胞肺癌耐药细胞株顺铂化疗敏感性的影响.方法:采用免疫组化法、实时定量PCR(qPCR)及Western blot方法检测非小细胞肺癌患者肿瘤组织中XPA的表达情况.应用qPCR及Western blot方法检测A549/DDP细胞经XPA-shRNA转染后XPA-mRNA及其蛋白表达.通过MTT法检测沉默XPA基因后A549/DDP细胞凋亡情况及其对顺铂的敏感性.结果:肺癌组织XPA表达水平明显高于癌旁组织;沉默XPA基因能够促进A549/DDP细胞凋亡,并能提高A549/DDP对顺铂的药物敏感性.结论:沉默XPA基因表达能够逆转肺癌A549/DDP细胞对顺铂的耐药性.%AIM; To investigate the influence on platinum-based chemotherapy sensitivity by silencing xeroderma pigmentosum group A (XPA) gene expression in non-small cell lung cancer (NSCLC) drug resistance cell lines (A549/ DDP). METHODS; We detected the expression of XPA in lung normal and tumor tissues by immunohistochemistry, quantitative real-time PCR (qPCR) and Western blotting. We silenced XPA expression in A549/DDP cells by XPA-shRNA transfection, and detected the expression of XPA by qPCR and Western blotting. The cell sensitivity to cisplatin and the apoptosis of A549/DDP cells transfected with XPA-shRNA were determined by MTT assay. RESULTS: The expression of XPA was higher in NSCLC tissues than that in normal lung tissues. Silencing XPA gene increased the apoptosis and sensitivity of A549/DDP cells to cisplatin. CONCLUSION: Silencing XPA gene can partly reverse the cisplatin resistance in human cisplatin-resistant NSCLC cell line A549/DDP.

  9. Donor smoking is associated with pulmonary edema, inflammation and epithelial dysfunction in ex vivo human donor lungs

    Ware, Lorraine B.; Lee, Jae W.; Wickersham, Nancy; Nguyen, John; Matthay, Michael A.; Calfee, Carolyn S.

    2014-01-01

    Although recipients of donor lungs from smokers have worse clinical outcomes, the underlying mechanisms are unknown. We tested the association between donor smoking and the degree of pulmonary edema (as estimated by lung weight), the rate of alveolar fluid clearance (measured by airspace instillation of 5% albumin) and biomarkers of lung epithelial injury and inflammation (bronchoalveolar lavage surfactant protein-D and IL-8) in ex vivo lungs recovered from 298 organ donors. The extent of pulmonary edema was higher in current smokers (n=127) compared to non-smokers (median 408g, IQR 364-500 vs. 385g, IQR 340 - 460, p=0.009). Oxygenation at study enrollment was worse in current smokers versus non-smokers (median PaO2/FiO2 214 mmHg, IQR 126-323 vs. 266 mmHg, IQR 154-370, p=0.02). Current smokers with the highest exposure (≥20 pack-years) had significantly lower rates of alveolar fluid clearance, suggesting that the effects of cigarette smoke on alveolar epithelial fluid transport function may be dose related. BAL IL-8 was significantly higher in smokers while surfactant protein-D was lower. These findings indicate that chronic exposure to cigarette smoke has important effects on inflammation, gas exchange, lung epithelial function and lung fluid balance in the organ donor that could influence lung function in the lung transplant recipient. PMID:25146497

  10. Role of gambogic acid and NaI131 in A549/DDP cells

    Huang, Jing; Zhu, Xiaoli; Wang, Huan; Han, Shuhua; Liu, Lu; Xie, Yan; Chen, Daozhen; Zhang, Qiang; Zhang, Li; Hu, Yue

    2017-01-01

    Resistance to platinum in tumor tissue is a considerable barrier against effective lung cancer treatment. Radionuclide therapy is the primary adjuvant treatment, however, the toxic side effects limit its dosage in the clinical setting. Therefore, the present study aimed to determine whether an NaI131 radiosensitizer could help reduce the toxic side effects of radionuclide therapy. In vitro experiments were conducted to determine whether NaI131 can inhibit platinum resistance in A549/DDP cells, which are cisplatin-resistant non-small cell lung cancer cells, and whether gambogic acid (GA) is an effective NaI131 radiosensitizer. Cell proliferation following drug intervention was analyzed using MTT and isobolographic analysis. Apoptosis was assessed by flow cytometry. In addition, the mechanisms of drug intervention were analyzed by measuring the expression of P-glycoprotein (P-gP), B cell lymphoma 2 (Bcl-2), Bcl2-associated X protein (Bax) and P53 using western blot analysis and immunocytochemistry. According to isobolographic analysis, a low concentration of NaI131 combined with GA had a synergistic effect on the inhibition of A549/DDP cell proliferation, which was consistent with an increased rate of apoptosis. Furthermore, the overexpression of Bax, and the downregulation of P-gP, P53 and Bcl-2 observed demonstrated the potential mechanism(s) of NaI131 and GA intervention. NaI131 may induce apoptosis in A549/DDP cells by regulating apoptosis-related proteins. A low concentration combination of NaI131 and GA was able to significantly inhibit A549/DDP cell proliferation and induce cell apoptosis. Thus, the two drugs appear to have a synergistic effect on apoptosis of A549/DDP cells. PMID:28123519

  11. Aression of TLR9 in human pulmonary adenocarcinoma cell line A549%TLR9在人肺腺癌细胞A549中的表达

    Jun Yu; Tiecheng Pan; Xiang Wei; Ligang Liu; Min Hu; Fang Yuan; Jiaduo Li

    2009-01-01

    Objective: Being considered as a bridge between the innate immunity and acquired immunity, Toll-like receptors (TRLs) are very important innate immunity moleculars. Recent researchs on the innate immunity have focused on the relation- ship between TLRs and human tumor. This paper investgated the expression and significance of TLR9 in human pulmonary adenocarcinoma cell (A549 cell) and human bronchial epithelial cell (HBE cell). Methods: After culturing A549 cell and HBE cell in vitro, the expression of TLR9 mRNA and protein in both cells were detected by immunocytochemistry, Real-time Quantitative Reverse Transcriptase-Polymerase Chain Reaction (Real-time Quantitative PCR) and Western blot, respectively. Results: By immunocytochemistry staining, TLR9 was mainly expressed in both cells' cell membrane and endochylema as brown-yellow material. It showed that the expressions of TLR9 mRNA and protein in A549 cell were stronger than those in HBE cell (P < 0.01). Conclusion: The results suggest TLR9 might cause the progression of human pulmonary adenocaroinoma, and the mechanism needs to be further investgatied.

  12. Differences in cytotoxicity versus pro-inflammatory potency of different PM fractions in human epithelial lung cells.

    Gualtieri, Maurizio; Øvrevik, Johan; Holme, Jørn A; Perrone, M Grazia; Bolzacchini, Ezio; Schwarze, Per E; Camatini, Marina

    2010-02-01

    Air pollution in Milan causes health concern due to the high concentrations of particulate matter (PM10 and PM2.5). The aim of this study was to investigate possible seasonal differences in PM10 and PM2.5 chemical composition and their biological effects on pro-inflammatory cytokine release and cytotoxicity. The PM was sampled during winter and summer seasons. The winter PMs had higher levels of PAHs than the summer samples which contained a greater amount of mineral dust elements. The PM toxicity was tested in the human pulmonary epithelial cell lines BEAS-2B and A549. The winter PMs were more cytotoxic than summer samples, whereas the summer PM10 exhibited a higher pro-inflammatory potential, as measured by ELISA. This inflammatory potential seemed partly due to biological components such as bacterial lipopolysaccharides (LPS), as evaluated by the use of Polymixin B. Interestingly, in the BEAS-2B cells the winter PM2.5 reduced proliferation due to a mitotic delay/arrest, while no such effects were observed in the A549 cells. These results underline that the in vitro responsiveness to PM may be cell line dependent and suggest that the PM different properties may trigger different endpoints such as inflammation, perturbation of cell cycle and cell death.

  13. Conditional deletion of epithelial IKKβ impairs alveolar formation through apoptosis and decreased VEGF expression during early mouse lung morphogenesis

    Li Changgong

    2011-10-01

    Full Text Available Abstract Background Alveolar septation marks the beginning of the transition from the saccular to alveolar stage of lung development. Inflammation can disrupt this process and permanently impair alveolar formation resulting in alveolar hypoplasia as seen in bronchopulmonary dysplasia in preterm newborns. NF-κB is a transcription factor central to multiple inflammatory and developmental pathways including dorsal-ventral patterning in fruit flies; limb, mammary and submandibular gland development in mice; and branching morphogenesis in chick lungs. We have previously shown that epithelial overexpression of NF-κB accelerates lung maturity using transgenic mice. The purpose of this study was to test our hypothesis that targeted deletion of NF-κB signaling in lung epithelium would impair alveolar formation. Methods We generated double transgenic mice with lung epithelium-specific deletion of IKKβ, a known activating kinase upstream of NF-κB, using a cre-loxP transgenic recombination strategy. Lungs of resulting progeny were analyzed at embryonic and early postnatal stages to determine specific effects on lung histology, and mRNA and protein expression of relevant lung morphoreulatory genes. Lastly, results measuring expression of the angiogenic factor, VEGF, were confirmed in vitro using a siRNA-knockdown strategy in cultured mouse lung epithelial cells. Results Our results showed that IKKβ deletion in the lung epithelium transiently decreased alveolar type I and type II cells and myofibroblasts and delayed alveolar formation. These effects were mediated through increased alveolar type II cell apoptosis and decreased epithelial VEGF expression. Conclusions These results suggest that epithelial NF-κB plays a critical role in early alveolar development possibly through regulation of VEGF.

  14. Epithelial-mesenchymal interactions and lung branching morphogenesis. Role of polyamines and transforming growth factor ß1

    G Stabellini

    2009-12-01

    Full Text Available Lung branching morphogenesis is a result of epithelial-mesenchymal interactions, which are in turn dependent on extracellular matrix composition and cytokine regulation. Polyamines have recently been demonstrated as able to modify chick embryo skin differentiation. In this work we have examined the effects of putrescine and spermidine during chick embryo lung morphogenesis in organotypic cultures by morphological, histochemical and biochemical examination. To verify the role of polyamines, we used specific inhibitors, such as bis-cyclohexylammonium sulphate and alfa-difluoromethylornithine, and transforming growth factor ß1, an ornithine decarboxylase and polyamine stimulator. Our data show that lung morphogenesis is significantly altered following the induced mesenchymal glycosaminoglycan changes. The increase of mesenchymal glycosaminoglycans is correlated with a stimulation of lung development in the presence of polyamines, and with its inhibition when transforming growth factor ß1 is added to the culture medium. The morphometric data show a uniform increase of both the mesenchyme and epithelial branching with spermidine and putrescine stimulus, whereas the mesenchymal substance alone is significantly increased in apical-median lung sections with transforming growth factor ß1 and transforming growth factor ß1 + spermidine lung cultures. Transforming growth factor ß1 and transforming growth factor ß1 + spermidine confirm the blocking of epithelial branching formations and fibroblast activation, and show that polyamines are unable to prevent the blocking of epithelial cells due to the inhibitory effect of transforming growth factor ß1.

  15. [When the lungs are flooding, pumps are needed--epithelial Na-channel in respiratory insufficiency].

    Pitkänen, Oli M; Helve, Otto; Andersson, Sture

    2011-01-01

    When the lungs are flooding, pumps are needed - epithelial Na-channel in respiratory insuffiency For a newborn in order to adapt to breathing air, the lungs must gain a sufficient size and respiratory surface area, and the pulmonary circulation and interstitial lymph circulation must be functional. Any disturbance in these events will result in a chronic pulmonary disease. Transportation of sodium ions from the alveolar side of the mucous membrane into the interstitial and blood space has turned out to be an important factor in the airway surface liquid volume regulation. Deficiency of transepithelial fluid transport is a cause and eventual target for therapy of respiratory insufficiency appearing during the neonatal period or later.

  16. Pathogenesis of idiopathic pulmonary fibrosis: from initial apoptosis of epithelial cells to lung remodeling?

    JIN Hua-liang; DONG Jing-cheng

    2011-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and often fatal form of interstitial lung disease.Despite extensive efforts in research during recent years,the mechanisms of the disease remain poorly understood.Evidence of an inflammatory mechanism,both supportive and contrary,is briefly reviewed in this paper.However,growing evidence has indicated that the apoptosis of alveolar epithelial cells (AECs) may be the early driving force of progression,with subsequent disrupted integrity of the alveolar-capillary basement membrane leading to an abnormal wound healing pathway.Thus,this paper will focus on outlining a process of pathogenesis of IPF from initial apoptosis of AECs to end lung remodeling.

  17. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells

    Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.; Bell, Matthew W.; Waalkes, Michael P.; Tokar, Erik J., E-mail: tokare@niehs.nih.gov

    2015-07-01

    Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a

  18. Chidamide alleviates TGF-β-induced epithelial-mesenchymal transition in lung cancer cell lines.

    Lin, Sheng-Hao; Wang, Bing-Yen; Lin, Ching-Hsiung; Chien, Peng-Ju; Wu, Yueh-Feng; Ko, Jiunn-Liang; Chen, Jeremy J W

    2016-07-01

    Transforming growth factor-β (TGF-β)-induced epithelial-mesenchymal transition is a critical process in the initiation of metastasis of various types of cancer. Chidamide is a class I histone deacetylase inhibitor with anti-tumor activity. This study investigated the effects of chidamide on TGF-β-mediated suppression of E-cadherin expression in adenocarcinomic lung epithelial cells and the molecular mechanisms involved in these effects. Western blot analysis, confocal microscopy, Quantitative methyl-specific PCR and bisulfite sequencing were used to evaluate the effects of different treatments on chidamide ameliorating TGF-β induced-E-cadherin loss. H3 acetylation binding to the promoter of E-cadherin was detected by chromatin immunoprecipitations (CHIP). We found that chidamide reduced the level of lung cancer cell migration observed using a Boyden chamber assay (as an indicator of metastatic potential). Chidamide inhibited TGF-β-induced SMAD2 phosphorylation and attenuated TGF-β-induced loss of E-cadherin expression in lung cancer cells by Western blotting and confocal microscopy, respectively. Quantitative methyl-specific PCR and bisulfite sequencing revealed that TGF-β-enhanced E-cadherin promoter methylation was ameliorated in cells treated with chidamide. We demonstrated that histone H3 deacetylation within the E-cadherin promoter was required for TGF-β-induced E-cadherin loss; cell treatment with chidamide increased the H3 acetylation detected by CHIP. Taken together, our results demonstrate that TGF-β suppressed E-cadherin expression by regulating promoter methylation and histone H3 acetylation. Chidamide significantly enhanced E-cadherin expression in TGF-β-treated cells and inhibited lung cancer cell migration. These findings indicate that chidamide has a potential therapeutic use due to its capacity to prevent cancer cell metastasis.

  19. Inhibition of epidermal growth factor receptor expression by RNA interference in A549 cells

    MinZHANG; XinZHANG; Chun-xueBAI; JieCHEN; MinQWEI

    2004-01-01

    AIM: To investigate the biological features of A549 cells in which epidermal growth factor (EGF) receptors expression were suppressed by RNA interference (RNAi). METHODS: A549 cells were transfected using short small interfering RNAs (siRNAs) formulated with Lipofectamine 2000. The EGF receptor numbers were determined by Western blotting and flowcytometry. The antiproliferative effects of sequence specific double stranded RNA (dsRNA) were assessed using cell count, colony assay and scratch assay. The chemosensitivity of transfected cells to cisplatin was measured by MTT. RESULTS: Sequence specific dsRNA-EGFR down-regulated EGF receptor expression dramatically. Compared with the control group, dsRNA-EGFR reduced the cell number by 85.0 %, decreased the colonies by 63.3 %, inhibited the migration by 87.2 %, and increased the sensitivity of A549 to cisplatin by four-fold. CONCLUSION: Sequence specific dsRNA-EGFR were capable of suppressing EGF receptor expression, hence significantly inhibiting cellular proliferation and motility, and enhancing chemosensitivity of A549 cells to cisplatin. The successful application of dsRNA-EGFR for inhibition of proliferation in EGF receptor overexpressing cells can help extend the list of available therapeutic modalities in the treatment of non-small-cell lung carcinoma (NSCLC).

  20. Expressions and Significances of PRL-3 and RhoC in A549 Cell

    Ping ZHANG

    2010-12-01

    Full Text Available Background and objective The expression of phosphatase of regenerating liver-3 (PRL-3 is correlated with Ras homologue C (RhoC in non-small cell lung cancer (NSCLC, suggesting that they have interactions. The aim of this study is to investigate the functions of PRL-3 and RhoC in the migration of A549 cell and the potential mechanism of PRL-3 and RhoC in carcinogenesis and cancer development. Methods PRL-3Ab and RhoCAb were used to block the functions of PRL-3 and RhoC respectively. Wound healing assay was applied to detect the migration of A549 cell and the expression levels of PRL-3 and RhoC were detected by RT-PCR. Results The migration of A549 cell decreased after blockage of PRL-3 and RhoC. The expression of RhoC decreased when PRL-3 was blocked without any changes on the expression of PRL-3. Conclusion PRL-3, RhoC could increase cell migration in A549 cells.

  1. Synergy-based small-molecule screen using a human lung epithelial cell line yields ΔF508-CFTR correctors that augment VX-809 maximal efficacy.

    Phuan, Puay-Wah; Veit, Guido; Tan, Joseph; Roldan, Ariel; Finkbeiner, Walter E; Lukacs, Gergely L; Verkman, A S

    2014-07-01

    The most prevalent cystic fibrosis transmembrane conductance regulator (CFTR) mutation causing cystic fibrosis, ΔF508, impairs folding of nucleotide binding domain (NBD) 1 and stability of the interface between NBD1 and the membrane-spanning domains. The interfacial stability defect can be partially corrected by the investigational drug VX-809 (3-[6-[[[1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl]amino]-3-methyl-2-pyridinyl]-benzoic acid) or the R1070W mutation. Second-generation ΔF508-CFTR correctors are needed to improve on the modest efficacy of existing cystic fibrosis correctors. We postulated that a second corrector targeting a distinct folding/interfacial defect might act in synergy with VX-809 or the R1070W suppressor mutation. A biochemical screen for ΔF508-CFTR cell surface expression was developed in a human lung epithelium-derived cell line (CFBE41o(-)) by expressing chimeric CFTRs with a horseradish peroxidase (HRP) in the fourth exofacial loop in either the presence or absence of R1070W. Using a luminescence readout of HRP activity, screening of approximately 110,000 small molecules produced nine novel corrector scaffolds that increased cell surface ∆F508-CFTR expression by up to 200% in the presence versus absence of maximal VX-809. Further screening of 1006 analogs of compounds identified from the primary screen produced 15 correctors with an EC50 VX-809 in restoring chloride permeability in ∆F508-expressing A549 cells. An aminothiazole increased chloride conductance in human bronchial epithelial cells from a ΔF508 homozygous subject beyond that of maximal VX-809. Mechanistic studies suggested that NBD2 is required for the aminothiazole rescue. Our results provide proof of concept for synergy screening to identify second-generation correctors, which, when used in combination, may overcome the "therapeutic ceiling" of first-generation correctors.

  2. Anti-Müllerian Hormone Signaling Regulates Epithelial Plasticity and Chemoresistance in Lung Cancer

    Tim N. Beck

    2016-07-01

    Full Text Available Anti-Müllerian hormone (AMH and its type II receptor AMHR2, both previously thought to primarily function in gonadal tissue, were unexpectedly identified as potent regulators of transforming growth factor (TGF-β/bone morphogenetic protein (BMP signaling and epithelial-mesenchymal transition (EMT in lung cancer. AMH is a TGF-β/BMP superfamily member, and AMHR2 heterodimerizes with type I receptors (ALK2, ALK3 also used by the type II receptor for BMP (BMPR2. AMH signaling regulates expression of BMPR2, ALK2, and ALK3, supports protein kinase B-nuclear factor κB (AKT-NF-κB and SMAD survival signaling, and influences BMP-dependent signaling in non-small cell lung cancer (NSCLC. AMH and AMHR2 are selectively expressed in epithelial versus mesenchymal cells, and loss of AMH/AMHR2 induces EMT. Independent induction of EMT reduces expression of AMH and AMHR2. Importantly, EMT associated with depletion of AMH or AMHR2 results in chemoresistance but sensitizes cells to the heat shock protein 90 (HSP90 inhibitor ganetespib. Recognition of this AMH/AMHR2 axis helps to further elucidate TGF-β/BMP resistance-associated signaling and suggests new strategies for therapeutic targeting of EMT.

  3. Stability studies of chitosan-DNA-FAP-B nanoparticles for gene delivery to lung epithelial cells.

    Mohammadi, Zohreh; Dorkoosh, Farid Abedin; Hosseinkhani, Saman; Amini, Tina; Rahimi, Amir Abbas; Najafabadi, Abdolhossein Rouholamini; Tehrani, Morteza Rafiee

    2012-03-01

    A successful gene delivery system requires efficiency and stability during storage. Stability studies are imperative for nanomedicines containing biotechnological products such as plasmids and targeting peptides. Chitosan-DNA-FAP-B nanoparticles are novel non-viral vectors for specific gene delivery to the lung epithelial cells. In this study, the storage stability of chitosan-DNA-FAP-B nanoparticles at -20, 5 and 24 °C was examined. Size, zeta potential and transfection efficiency of these nano-particles in storage were also evaluated. Stability studies showed that chitosan-DNA-FAP-B nanoparticles were stable after 1 month when stored at -20 °C and retained their initial size, zeta potential and transfection efficiency. However, their stability was not desirable at 5 and 24 °C. Based on these results, it can be concluded that chitosan-DNA-FAP-B nanoparticles can be a promising candidate for gene delivery to lung epithelial cells with good storage stability at -20 °C during 1 month.

  4. Tamarind seed coat ameliorates fluoride induced cytotoxicity, oxidative stress, mitochondrial dysfunction and apoptosis in A549 cells.

    Ameeramja, Jaishabanu; Panneerselvam, Lakshmikanthan; Govindarajan, Vimal; Jeyachandran, Sivakamavalli; Baskaralingam, Vaseeharan; Perumal, Ekambaram

    2016-01-15

    Fluoride (F) is an environmental contaminant and industrial pollutant. Molecular mechanisms remain unclear in F induced pulmonary toxicity even after numerous studies. Tamarind fruits act as defluoridating agents, but no study was conducted in in vitro systems. Hence, we aimed to assess the ameliorative impact of the tamarind seed coat extract (TSCE) against F toxicity utilizing lung epithelial cells, A549. Cells were exposed to sodium fluoride (NaF-5 mM) alone and in combination with TSCE (750 ng/ml) or Vitamin C (positive control) for 24 h and analyzed for F content, intracellular calcium ([Ca(2+)]i) level, oxidative stress, mitochondrial integrity and apoptotic markers. TSCE treatment prevented the F induced alterations in [Ca(2+)]i overload, F content, oxidant (reactive oxygen species generation, lipid peroxidation, protein carbonyl content and nitric oxide) and antioxidant (superoxide dismutase, catalase, glutathione peroxidase and glutathione) parameters. Further, TSCE modulates F activated changes in mitochondrial membrane potential, permeability transition pore opening, cytochrome-C release, Bax/Bcl-2 ratio, caspase-3 and PARP-1 expressions. In conclusion, our study demonstrated that TSCE as a potential protective agent against F toxicity, which can be utilized as a neutraceutical.

  5. Transfection of gene Livin α/β into A549 cells and separate effect on the cell growth

    SUN Jian-guo; LIAO Rong-xia; CHEN Zheng-tang; WANG Zhi-xin; ZHANG Qing; HU Yi-de; WANG Dong-lin

    2005-01-01

    Objective:To express two Livin isoforms (Livin α & β genes) with transfection techniques in A549 cell line respectively in order to observe their effect on growth of cell line. Methods:Two eukaryotic expression vectors of Livin, pcDNA3.1-Livin α & β, were transfected into A549 cell line by electroporation. Then G418-resistant clones were screened. RT-PCR, Northern blot and immunofluorescence cytochemistry were used to detect Livin α & β expression level in the transfected cells. Finally, observation of cell morphology, growth curve assay and colony formation analysis were performed to explore the effect of Livin on growth of the cells. Results:Livin α & β were expressed in transfected A549 cells, and induced a faster cell growth, shorter doubling time and stronger cell colony forming ability, yet had no morphology change.Conclusion:Both isoforms can accelerate the growth of A549 cells, indicating a close relationship between Livin expression and the genesis and development of lung cancer. The expression of Livin α & β in A549 cells provides basis for further study of their different biological functions of anti-apoptosis and of their role in lung cancer cell resistance to radiotherapy and chemotherapy.

  6. Oxidative stress by layered double hydroxide nanoparticles via an SFK-JNK and p38-NF-κB signaling pathway mediates induction of interleukin-6 and interleukin-8 in human lung epithelial cells

    Choi SJ

    2015-04-01

    Full Text Available Soo-Jin Choi, Hee-Jeong Paek, Jin YuDepartment of Food Science and Technology, Seoul Women’s University, Seoul, Republic of KoreaAbstract: Anionic nanoclays are layered double hydroxide nanoparticles (LDH-NPs that have been shown to exhibit toxicity by inducing reactive oxidative species and a proinflammatory mediator in human lung epithelial A549 cells. However, the molecular mechanism responsible for this LDH-NP-induced toxicity and the relationship between oxidative stress and inflammatory events remains unclear. In this study, we focused on intracellular signaling pathways and transcription factors induced in response to oxidative stress caused by exposure to LDH-NPs in A549 cells. Mitogen-activated protein kinase (MAPK cascades, such as extracellular signal-regulated kinase, c-Jun-N-terminal kinase (JNK, and p38, were investigated as potential signaling mechanisms responsible for regulation of oxidative stress and cytokine release. Src family kinases (SFKs, which are known to mediate activation of MAPK, together with redox-sensitive transcription factors, including nuclear factor kappa B and nuclear factor-erythroid 2-related factor-2, were also investigated as downstream events of MAPK signaling. The results obtained suggest that LDH-NP exposure causes oxidative stress, leading to expression of antioxidant enzymes, such as catalase, glucose reductase, superoxide dismutase, and heme oxygenase-1, via a SFK-JNK and p38-nuclear factor kappa B signaling pathway. Further, activation of this signaling was also found to regulate release of inflammatory cytokines, including interleukin-6 and interleukin-8, demonstrating the inflammatory potential of LDH-NP.Keywords: layered double hydroxide, mitogen-activated protein kinases, Src family kinases, nuclear factor kappa B, oxidative stress, inflammatory cytokine

  7. Low fucose containing bacterial polysaccharide facilitate mitochondria-dependent ROS-induced apoptosis of human lung epithelial carcinoma via controlled regulation of MAPKs-mediated Nrf2/Keap1 homeostasis signaling.

    Chowdhury, Sougata Roy; Sengupta, Suman; Biswas, Subir; Sen, Ramkrishna; Sinha, Tridib Kumar; Basak, Ratan Kumar; Adhikari, Basudam; Bhattacharyya, Arindam

    2015-12-01

    Reactive oxygen species (ROS), the key mediators of cellular oxidative stress and redox dysregulation involved in cancer initiation and progression, have recently emerged as promising targets for anticancer drug discovery. Continuous free radical assault upsets homeostasis in cellular redox system and regulates the associated signaling pathways to mediate stress-induced cell death. This study investigates the dose-specific pro-oxidative behavior of a bacterial fucose polysaccharide, which attenuated proliferation of different cancer cells. In the fermentation process, Bacillus megaterium RB-05 [GenBank Accession Number HM371417] was found to biosynthesize a polysaccharide with low-fucose content (4.9%), which conferred the maximum anti-proliferative activity (750 µg/mL) against human lung cancer epithelial cells (A549) during preliminary screening. Structural elucidation and morphological characterization of the duly purified polysaccharide was done using HPLC, GC-MS, (1)H/(13)C NMR, and microscopy. The polysaccharide exhibited concentration- and time-dependent anti-proliferative effects against A549 cells by inducing intracellular ROS level and regulating the mitochondrial membrane-permeability following the apoptotic pathway. This process encompasses activation of caspase-8/9/3/7, increase in the ratio of Bax/Bcl2 ratio, translocation of Bcl2-associated X protein (Bax) and cytochrome c, decrease in expression of anti-apoptotic members of Bcl2 family, and phosphorylation of mitogen activated protein kinases (MAPKs). Apoptosis was attenuated upon pretreatment with specific caspase-inhibitors. Simultaneously, during apoptosis, the ROS-mediated stress as well as activated MAPKs triggered nuclear translocation of transcription factors like nuclear factor (erythroid-derived)-like 2 (Nrf2) and promoted further transcription of downstre