WorldWideScience

Sample records for a549 human non-small

  1. Isolation and characterization of erlotinib-resistant human non-small cell lung cancer A549 cells

    OpenAIRE

    IKEDA, RYUJI; VERMEULEN, LEE C.; LAU, ELIM; JIANG, ZHISHENG; KAVANAUGH, SHANNON M.; YAMADA, KATSUSHI; KOLESAR, JILL M.

    2010-01-01

    Erlotinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, is an effective therapy for non-small cell lung cancer (NSCLC). However, resistance to erlotinib reduces its efficacy. To investigate the basis of erlotinib resistance, we isolated erlotinib-resistant human NSCLC A549 cells, termed A549/ER cells. The A549/ER cells were found to be resistant to erlotinib, as well as paclitaxel and gemcitabine. We then performed a PCR array to investigate the resistance to erlotini...

  2. Curcumin inhibits interferon-α induced NF-κB and COX-2 in human A549 non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Lee, Jeeyun; Im, Young-Hyuck; Jung, Hae Hyun; Kim, Joo Hyun; Park, Joon Oh; Kim, Kihyun; Kim, Won Seog; Ahn, Jin Seok; Jung, Chul Won; Park, Young Suk; Kang, Won Ki; Park, Keunchil

    2005-01-01

    The A549 cells, non-small cell lung cancer cell line from human, were resistant to interferon (IFN)-α treatment. The IFN-α-treated A549 cells showed increase in protein expression levels of NF-κB and COX-2. IFN-α induced NF-κB binding activity within 30 min and this increased binding activity was markedly suppressed with inclusion of curcumin. Curcumin also inhibited IFN-α-induced COX-2 expression in A549 cells. Within 10 min, IFN-α rapidly induced the binding activity of a γ- 32 P-labeled consensus GAS oligonucleotide probe, which was profoundly reversed by curcumin. Taken together, IFN-α-induced activations of NF-κB and COX-2 were inhibited by the addition of curcumin in A549 cells

  3. Seleno-short-chain chitosan induces apoptosis in human non-small-cell lung cancer A549 cells through ROS-mediated mitochondrial pathway.

    Science.gov (United States)

    Zhao, Yana; Zhang, Shaojing; Wang, Pengfei; Fu, Shengnan; Wu, Di; Liu, Anjun

    2017-12-01

    Seleno-short-chain chitosan (SSCC) is a synthesized chitosan derivative. In this study, antitumor activity and underlying mechanism of SSCC on human non-small-cell lung cancer A549 cells were investigated in vitro. The MTT assay showed that SSCC could inhibit cell viability in a dose- and time-dependent manner, and 200 μg/ml SSCC exhibited significantly toxic effects on A549 cells. The cell cycle assay showed that SSCC triggered S phase cell cycle arrest in a dose- and time-dependent manner, which was related to a downregulation of S phase associated cyclin A. The DAPI staining and Annexin V-FITC/PI double staining identified that the SSCC could induce A549 cells apoptosis. Further studies found that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) by DCFH-DA and Rhodamin 123 staining, respectively. Meanwhile, free radical scavengers N-acetyl-L-cysteine (NAC) pretreatment confirmed that SSCC-induced A549 cells apoptosis was associated with ROS generation. Furthermore, real-time PCR and western blot assay showed that SSCC up-regulated Bax and down-regulated Bcl-2, subsequently incited the release of cytochrome c from mitochondria to cytoplasm, activated the increase of cleaved-caspase 3 and finally induced A549 cells apoptosis in vitro. In general, the present study demonstrated that SSCC induced A549 cells apoptosis via ROS-mediated mitochondrial apoptosis pathway.

  4. Molecular Switch Role of Akt in Polygonatum odoratum Lectin-Induced Apoptosis and Autophagy in Human Non-Small Cell Lung Cancer A549 Cells

    Science.gov (United States)

    Shi, Zheng; Wang, Hailian; Zhang, Bin; Zhao, Kailiang; Qi, Wei; Bao, Jinku; Wang, Yi

    2014-01-01

    Polygonatum odoratum lectin (POL), isolated from traditional Chinese medicine herb (Mill.) Druce, has drawn rising attention due to its wide biological activities. In the present study, anti-tumor effects, including apoptosis- and autophagy-inducing properties of POL, were determined by a series of cell biology methods such as MTT, cellular morphology observation, flow cytometry, immunoblotting. Herein, we found that POL could simultaneously induce apoptosis and autophagy in human non-small cell lung cancer A549 cells. POL initiated apoptosis through inhibiting Akt-NF-κB pathway, while POL triggered autophagy via suppressing Akt-mTOR pathway, suggesting the molecular switch role of Akt in regulating between POL-induced apoptosis and autophagy. Moreover, ROS was involved in POL-induced inhibition of Akt expression, and might therefore mediate both apoptosis and autophagy in A549 cells. In addition, POL displayed no significant cytotoxicity toward normal human embryonic lung fibroblast HELF cells. Due to the anti-tumor activities, POL might become a potent anti-cancer drug in future therapy, which might pave the way for exploring GNA-related lectins into effective drugs in cancer treatment. PMID:24992302

  5. Effects of MALAT1 on proliferation and apo- ptosis of human non-small cell lung cancer A549 cells in vitro and tumor xenograft growth in vivo by modulating autophagy.

    Science.gov (United States)

    Ma, Jun; Wu, Kaiming; Liu, Kuanzhi; Miao, Rong

    2018-01-29

    To explore the ability of MALAT1 to influence non-small cell lung cancer (NSCLC) A549 cells in vitro and tumor xenograft growth in vivo by modulating autophagy. LncRNA MALAT-1 in normal HBE cells and human NSCLC cells was measured. A549 cells were treated with si-MALAT-1, negative control and si-MALAT-1 + rapamycin. The mRNA levels of MALAT-1, P62 and LC3 was determined by the qRT-PCR and the protein levels of autophagy-related proteins by the western blotting. The CCK8 assay was performed for cell proliferation, the scratch test for cell migration, the Transwell assay for cell invasion, and the flow cytometry for cell cycle and apoptosis. Tumor xenograft in nude mice is performed to test tumorigenesis of the transfected A549 cells. The expression level of MALAT-1 in A549, SPC-A-1 and NCI-H460 cells was increased compared to HBE cells. And A549 with a high expression level of MALAT-1 were selected for cell transfection. si-MALAT-1 decreased cell proliferation, migration, invasion, and LC3-II/LC3-I ratio, reduced cell cycle progression, and increased cell apoptosis and P62 protein expression. No significant difference was found between A549 cells and A549 cells transfected with si-MALAT-1 + RAPA, A549 cells transfected with NC and A549 cells transfected with si-MALAT-1 + RAPA. Nude mice injected with A549 cells transfected with si-MALAT-1 had smallest tumor on size and weight among other nude mice. Downregulation of MALAT1 may promote apoptosis and suppress proliferation, migration and invasion of human NSCLC A549 cells by inhibiting autophagy, thereby suppressing the development of NSCLC.

  6. Andrographolide down-regulates hypoxia-inducible factor-1α in human non-small cell lung cancer A549 cells

    International Nuclear Information System (INIS)

    Lin, Hui-Hsuan; Tsai, Chia-Wen; Chou, Fen-Pi; Wang, Chau-Jong; Hsuan, Shu-Wen; Wang, Cheng-Kun; Chen, Jing-Hsien

    2011-01-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1α (HIF-1α) in A549 cells. HIF-1α plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1α was correlated with a rapid ubiquitin-dependent degradation of HIF-1α, and was accompanied by increased expressions of hydroxyl-HIF-1α and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1α inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGFβ1/PHD2/HIF-1α pathway, as demonstrated by the transfection of TGFβ1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1α transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  7. IRE1α-TRAF2-ASK1 pathway is involved in CSTMP-induced apoptosis and ER stress in human non-small cell lung cancer A549 cells.

    Science.gov (United States)

    Zhang, Jiexia; Liang, Ying; Lin, Yongbin; Liu, Yuanbin; YouYou; Yin, Weiqiang

    2016-08-01

    CSTMP, a Tetramethylpyrazine (TMP) analogue, is designed and synthesized based on the pharmacophores of TMP and resveratrol. Recent studies showed that CSTMP had strong protective effects in endothelial cells apoptosis by its anti-oxidant activity. However, the pharmacological function of CSTMP in cancer have not been elucidated to date. The objective of this study was to investigate the anti-cancer effect of CSTMP against human non-small cell lung cancer (NSCLC) A549 cells and the underlying mechanisms. The cell proliferation and apoptosis were detected by MTT assay and flow cytometry. Caspases activity was determined spectrophotometricaly at 405nm using a microtiter plate reader. Western blot and real-time PCR was used to assess the protein and mRNA expression. Immunoprecipitation was used to examine the protein-protein interactions. CSTMP inhibited the proliferation and induced cell cycle arrest and apoptosis of A549 cells. Caspase3, 8, 9 and PARP-1 activation, and Bax/Bcl-2 ratio analyses demonstrated that the anti-cancer effect of CSTMP in A549 cells was mediated by promoting caspase- and mitochondria-dependent apoptosis. Furthermore, CSTMP induced ER stress in A549 cells as evidenced by elevated levels of GRP78, GRP94, CHOP, IRE1α, TRAF2, p-ASK1 and p-JNK, activation of caspase12 and 4, and enhanced formation of an IRE1α-TRAF2-ASK1 complex. Knockdown of IRE1α by siRNA suppressed activation of IRE1α, TRAF2, p-ASK1 and p-JNK in CSTMP treated A549 cells. In addition, the effects of CSTMP on the formation of an IRE1α-TRAF2-ASK1 complex, caspase- and mitochondria-dependent apoptosis were also reversed by IRE1α siRNA in A549 cells. Collectively, we showed that CSTMP induced apoptosis of A549 cells were through IRE1α-TRAF2-ASK1 complex-mediated ER stress, JNK activation, and mitochondrial dysfunction. These insights on this novel compound CSTMP may provide a novel anti-cancer candidate for the treatment of NSCLC. Copyright © 2016 Elsevier Masson SAS. All

  8. Radiosensitizing Effect of Schinifoline from Zanthoxylum schinifolium Sieb et Zucc on Human Non-Small Cell Lung Cancer A549 Cells: A Preliminary in Vitro Investigation

    Directory of Open Access Journals (Sweden)

    Cheng-Fang Wang

    2014-12-01

    Full Text Available Schinifoline (SF, a 4-quinolinone derivative, was found in Zanthoxylum schinifolium for the first time. 4-Quinolinone moieties are thought to have cytotoxic activity and are often used as a tubulin polymerization inhibitors, heterogeneous enzyme inhibitors and antiplatelet agents. However, very little information respect to radiosensitization has focused on SF. This work aimed to investigate the radiosensitizing effect of SF on A549 cells. The cell viability results indicated cytotoxicity of SF on A549 cells, with IC50 values of 33.7 ± 2.4, 21.9 ± 1.9 and 16.8 ± 2.2 μg/mL, respectively, after 6, 12, 24 h treatment with different concentrations, and the 10% or 20% IC50 concentration during 12 h was applied in later experiments. The results of cell proliferative inhibition and clonogenic assay showed that SF enhanced the radiosensitivity of A549 cells when applied before 60Co γ-irradiation and this effect was mainly time and concentration dependent. The flow cytometric data indicated that SF treatment before the irradiation increased the G2/M phase, thus improving the radiosensitivity of A549, leading to cell apoptosis. This paper is the first study that describes the in vitro radiosensitising, cell cycle and apoptotic-inducing effects of schinifoline.

  9. Inhibitory Effects of Salinomycin on Cell Survival, Colony Growth, Migration, and Invasion of Human Non-Small Cell Lung Cancer A549 and LNM35: Involvement of NAG-1.

    Directory of Open Access Journals (Sweden)

    Kholoud Arafat

    Full Text Available A major challenge for oncologists and pharmacologists is to develop more potent and less toxic drugs that will decrease the tumor growth and improve the survival of lung cancer patients. Salinomycin is a polyether antibiotic used to kill gram-positive bacteria including mycobacteria, protozoans such as plasmodium falciparum, and the parasites responsible for the poultry disease coccidiosis. This old agent is now a serious anti-cancer drug candidate that selectively inhibits the growth of cancer stem cells. We investigated the impact of salinomycin on survival, colony growth, migration and invasion of the differentiated human non-small cell lung cancer lines LNM35 and A549. Salinomycin caused concentration- and time-dependent reduction in viability of LNM35 and A549 cells through a caspase 3/7-associated cell death pathway. Similarly, salinomycin (2.5-5 µM for 7 days significantly decreased the growth of LNM35 and A549 colonies in soft agar. Metastasis is the main cause of death related to lung cancer. In this context, salinomycin induced a time- and concentration-dependent inhibition of cell migration and invasion. We also demonstrated for the first time that salinomycin induced a marked increase in the expression of the pro-apoptotic protein NAG-1 leading to the inhibition of lung cancer cell invasion but not cell survival. These findings identify salinomycin as a promising novel therapeutic agent for lung cancer.

  10. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line

    Directory of Open Access Journals (Sweden)

    Jun Xie

    2015-11-01

    Full Text Available The effects of tanshinone IIA on the proliferation of the human non-small cell lung cancer cell line A549 and its possible mechanism on the VEGF/VEGFR signal pathway were investigated. The exploration of the interaction between tanshinone IIA and its target proteins provides a feasible platform for studying the anticancer mechanism of active components of herbs. The CCK-8 assay was used to evaluate the proliferative activity of A549 cells treated with tanshinone IIA (2.5−80 μmol/L for 24, 48 and 72 h, respectively. Flow cytometry was used for the detection of cell apoptosis and cell cycle perturbation. VEGF and VEGFR2 expression were studied by Western blotting. The binding mode of tanshinone IIA within the crystal structure of the VEGFR2 protein was evaluated with molecular docking analysis by use of the CDOCKER algorithm in Discovery Studio 2.1. The CCK-8 results showed that tanshinone IIA can significantly inhibit A549 cell proliferation in a dose- and time-dependent manner. Flow cytometry results showed that the apoptosis rate of tested group was higher than the vehicle control, and tanshinone IIA-treated cells accumulated at the S phase, which was higher than the vehicle control. Furthermore, the expression of VEGF and VEGFR2 was decreased in Western blot. Finally, molecular docking analysis revealed that tanshinone IIA could be stably docked into the kinase domain of VEGFR2 protein with its unique modes to form H-bonds with Cys917 and π–π stacking interactions with Val848. In conclusion, tanshinone IIA may suppress A549 proliferation, induce apoptosis and cell cycle arrest at the S phase. This drug may suppress angiogenesis by targeting the protein kinase domains of VEGF/VEGFR2.

  11. A polysaccharide fraction of adlay seed (Coixlachryma-jobi L.) induces apoptosis in human non-small cell lung cancer A549 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiangyi; Liu, Wei; Wu, Junhua; Li, Mengxian [Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Wang, Juncheng; Wu, Jihui [School of Life Science, University of Science and Technology of China, Hefei 230022 (China); Luo, Cheng, E-mail: Luo58@yahoo.com [Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer A polysaccharide from adlay seed, its molecular mass, optical rotation and sugars was determined. Black-Right-Pointing-Pointer We demonstrated that a polysaccharide from adlay can induce apoptosis in cancer cells. Black-Right-Pointing-Pointer The polysaccharide inhibited the metabolism and proliferation of NSCLC A549 cells. Black-Right-Pointing-Pointer The polysaccharide may trigger apoptosis via the mitochondria-dependent pathway. -- Abstract: Different seed extracts from Coix lachryma-jobi (adlay seed) have been used for the treatment of various cancers in China, and clinical data support the use of these extracts for cancer therapy; however, their underlying molecular mechanisms have not been well defined. A polysaccharide fraction, designated as CP-1, was extracted from the C.lachryma-jobi L. var. using the ethanol subsiding method. CP-1 induced apoptosis in A549 cells in a dose-dependent manner, as determined by MTT assay. Apoptotic bodies were observed in the cells by scanning electronic microscopy. Apoptosis and DNA accumulation during S-phase of the cell cycle were determined by annexin V-FITC and PI staining, respectively, and measured by flow cytometry. CP-1 also extended the comet tail length on single cell gel electrophoresis, and disrupted the mitochondrial membrane potential. Further analysis by western blotting showed that the expression of caspase-3 and caspase-9 proteins was increased. Taken together, our results demonstrate that CP-1 is capable of inhibiting A549 cell proliferation and inducing apoptosis via a mechanism primarily involving the activation of the intrinsic mitochondrial pathway. The assay data suggest that in addition to its nutritional properties, CP-1 is a very promising candidate polysaccharide for the development of anti-cancer medicines.

  12. In vitro effects of nicotine on the non-small-cell lung cancer line A549.

    Science.gov (United States)

    Gao, Tao; Zhou, Xue-Liang; Liu, Sheng; Rao, Chang-Xiu; Shi, Wen; Liu, Ji-Chun

    2016-04-01

    To investigate in vitro effects of nicotine on the non-small-cell lung cancer line A549. The case-control study was conducted at the First Affiliated Hospital of Nanchang University from 1st January to 30th June, 2014 and comprised A549 cells which were treated with a series of concentrations of nicotine (0.01 µM, 0.1 µM, 1 µM and 10 µM) for 24 hours. Control cells were incubated under the same conditions without the addition of nicotine. Cell growth was detected by monotetrazolium salt [3-(4, 5-dimethyl-2-thiazolyl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay. Cell apoptosis was detected by Haematoxylin and Eosin staining, immunofluorescence analysis of Filamentous actin and electron microscope observation. Nicotine had no significant effect on A549 cell growth at the dose of 0.01µM (p>0.05), but had significant growth inhibitory effects at the doses of 0.1µM, 1µM and 10µM (pA549 cells were found to be dose-dependent.

  13. [Role of SOX4 on DDP Resistance in Non-small Cell Lung Cancer Cell of A549].

    Science.gov (United States)

    Li, Wei; Liu, Xu; Zhang, Guoqian; Zhang, Linlin

    2017-05-20

    Lung cancer is one of the most serious disease and the incidence of non-small cell lung cancer (NSCLC) is the highest in lung cancer. The main reason for the failure of chemotherapy is the tolerance to cisplatin. Transcriptional regulator SOX4 plays an important role in the occurrence and development of many tumors, and regulates Wnt signaling pathway by regulating the expression of β-catenin. We aimed to investigate the role of SOX4 on cisplatin-resistance in NSCLC cell A549 cell. The cisplatin-resistance lung cancer cell line A549/DDP was constructed by induction method in vitro, and cisplatin-resistance detected by CCK8 assay. Growth curves of A549 and A549/DDP was calculated. The expression level of SOX4 in A549 and A549/DDP cells were detected by Western blot. A549/DDP were knockdown of SOX4 by siRNA transfection, and the cisplatin-resistance of detected by CCK-8 assay, the expression level of β-catenin and Survivin were detected by real-time PCR and Western blot. The cisplatin-resistance cell line A549/DDP was constructed successfully, and its cisplatin-resistance is 13.7 times higher than in A549. There was no significance difference between A549 and A549/DDP in cell proliferation. The expression level of SOX4 is higher in A549/DDP than in A549. The cisplatin-resistance significantly decreased in A549/DDP cells after knockdown of SOX4 by siRNA transfection. The expression level of β-catenin and Survivin significantly decreased in A549/DDP cells after knockdown of SOX4. SOX4 can strengthen cisplatin-resistance of non-small cell lung cancer cell A549.
.

  14. Green tea extract induces protective autophagy in A549 non-small lung cancer cell line

    Directory of Open Access Journals (Sweden)

    Magdalena Izdebska

    2015-12-01

    Full Text Available Background and objectives: For many decades, polyphenols, including green tea extract catechins, have been reported to exert multiple anti-tumor activities. However, to date the mechanisms of their action have not been completely elucidated. Thus, the aim of this study was to assess the effect of green tea extract on non-small lung cancer A549 cells. Material and methods: A549 cells following treatment with GTE were analyzed using the inverted light and fluorescence microscope. In order to evaluate cell sensitivity and cell death, the MTT assay and Tali image-based cytometer were used, respectively. Ultrastructural alterations were assessed using a transmission electron microscope.Results: The obtained data suggested that GTE, even at the highest dose employed (150 μM, was not toxic to A549 cells. Likewise, the treatment with GTE resulted in only a very small dose-dependent increase in the population of apoptotic cells. However, enhanced accumulation of vacuole-like structures in response to GTE was seen at the light and electron microscopic level. Furthermore, an increase in the acidic vesicular organelles and LC3-II puncta formation was observed under the fluorescence microscope, following GTE treatment. The analysis of the functional status of autophagy revealed that GTE-induced autophagy may provide self-protection against its own cytotoxicity, since we observed that the blockage of autophagy by bafilomycin A1 decreased the viability of A549 cells and potentiated necrotic cell death induction in response to GTE treatment.Conclusion: Collectively, our results revealed that A549 cells are insensitive to both low and high concentrations of the green tea extract, probably due to the induction of cytoprotective autophagy. These data suggest that a potential utility of GTE in lung cancer therapy may lie in its synergistic combinations with drugs or small molecules that target autophagy, rather than in monotherapy.

  15. Proteomic response to 5,6-dimethylxanthenone 4-acetic acid (DMXAA, vadimezan in human non-small cell lung cancer A549 cells determined by the stable-isotope labeling by amino acids in cell culture (SILAC approach

    Directory of Open Access Journals (Sweden)

    Pan ST

    2015-02-01

    Full Text Available Shu-Ting Pan,1,* Zhi-Wei Zhou,2,3,* Zhi-Xu He,3 Xueji Zhang,4 Tianxin Yang,5 Yin-Xue Yang,6 Dong Wang,7 Jia-Xuan Qiu,1 Shu-Feng Zhou2 1Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, 4Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China; 5Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA; 6Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 7Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China *These two authors contributed equally to this work Abstract: 5,6-Dimethylxanthenone 4-acetic acid (DMXAA, also known as ASA404 and vadimezan, is a potent tumor blood vessel-disrupting agent and cytokine inducer used alone or in combination with other cytotoxic agents for the treatment of non-small cell lung cancer (NSCLC and other cancers. However, the latest Phase III clinical trial has shown frustrating outcomes in the treatment of NSCLC, since the therapeutic targets and underlying mechanism for the anticancer effect of DMXAA are not yet fully understood. This study aimed to examine the proteomic response to DMXAA and unveil the global molecular targets and possible mechanisms for the anticancer effect of DMXAA in NSCLC A549 cells using a stable-isotope labeling by amino acids in cell culture (SILAC approach. The proteomic data showed that treatment with DMXAA

  16. Epithelial mesenchymal transition of non-small-cell lung cancer cells A549 induced by SPHK1.

    Science.gov (United States)

    Ni, Min; Shi, Xiao-Lei; Qu, Zhi-Gang; Jiang, Hong; Chen, Zi-Qian; Hu, Jun

    2015-02-01

    To explore the effect and molecular mechanism of SPHK1 in the invasion and metastasis process of non-small-cell lung cancer cells (A549). Recombinant retrovirus was used to mediate the production of A549/vector, A549/SPHK1, A549/scramble, and A549/SPHKl/RNAi that stably expressed or silenced SPHK1. The invasion and migration capacities of A549 cells overexpressing or silencing SPHK1 were determined using Transwell invasion assay and scratch wound repair experiment. The protein and mRNA expression levels of E-cadherin, fibronectin, vimentin in A549/vector, A549/SPHK1, A549/scramble, A549/SPHK1/RNAi were detected with Western blot (WB) and quantitative PCR (QPCR) methods, respectively. Transwell invasion assay and scratch wound repair experiments showed that over-expression of SPHK1 obviously enhanced the invasion and migration capacities of A549 cells. WB and QPCR detection results showed that, the expression of E-cadherin (a molecular marker of epithelial cells) and fibronectin, vimentin (molecular markers of mesenchymal cells) in A549 cells was upregulated after overexpression of SPHK1; while SPHK1 silencing significantly reduced the invasion and metastasis capacities of A549 cells, upregulated the expression of molecular marker of epithelial cells, and downregulated the expression of molecular marker of mesenchymal cells. SPHK1 promotes epithelial mesenchymal transition of non-small-cell lung cancer cells and affects the invasion and metastasis capacities of these cells. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  17. Intracellular calcium promotes radioresistance of non-small cell lung cancer A549 cells through activating Akt signaling.

    Science.gov (United States)

    Wang, Yiling; He, Jiantao; Zhang, Shenghui; Yang, Qingbo

    2017-03-01

    Radiotherapy is a major therapeutic approach in non-small cell lung cancer but is restricted by radioresistance. Although Akt signaling promotes radioresistance in non-small cell lung cancer, it is not well understood how Akt signaling is activated. Since intracellular calcium (Ca 2+ ) could activate Akt in A549 cells, we investigated the relationship between intracellular calcium (Ca 2+ ) and Akt signaling in radioresistant A549 cells by establishing radioresistant non-small cell lung cancer A549 cells. The radioresistant cell line A549 was generated by dose-gradient irradiation of the parental A549 cells. The cell viability, proliferation, and apoptosis were, respectively, assessed using the cell counting kit-8, EdU labeling, and flow cytometry analysis. The phosphorylation of Akt was evaluated by Western blotting, and the intracellular Ca 2+ concentration was assessed by Fluo 4-AM. The radioresistant A549 cells displayed mesenchymal morphology. After additional irradiation, the radioresistant A549 cells showed decreased cell viability and proliferation but increased apoptosis. Moreover, the intracellular Ca 2+ concentration and the phosphorylation level on the Akt473 site in radioresistant A549 cells were higher than those in original cells, whereas the percentage of apoptosis in radioresistant A549 cells was less. All these results could be reversed by verapamil. In conclusion, our study found that intracellular Ca 2+ could promote radioresistance of non-small cell lung cancer cells through phosphorylating of Akt on the 473 site, which contributes to a better understanding on the non-small cell lung cancer radioresistance, and may provide a new target for radioresistance management.

  18. Microcystin-LR induces a wide variety of biochemical changes in the A549 human non-small cell lung cancer cell line: Roles for protein phosphatase 2A and its substrates.

    Science.gov (United States)

    Wang, Hanying; Xu, Kailun; Wang, Beilei; Liu, Jinghui; Wang, Xiaofeng; Xing, Mingluan; Huang, Pu; Guo, Zonglou; Xu, Lihong

    2017-03-01

    Our previous studies have described the toxic effects of microcystin-LR (MC-LR) in various normal cell lines and human hepatoma SMMC-7721 cells, but the specific effects of MC-LR in other types of cancer cells with respect to protein phosphatase 2A (PP2A) have not been fully elaborated. A549 human lung adenocarcinoma cells have been identified to express organic anion-transporting polypeptides (OATP) involved in cellular uptake of MC-LR, and thus probably make an appropriate in vitro model to assess MC-LR's cytotoxicity. Hence, in our present study, A549 cells were treated with various concentrations of MC-LR for 24 h. The presence of MC-LR in A549 cells was confirmed, and PP2A activity, PP2A substrates, cytoskeleton, apoptosis, and proliferation were subsequently explored. The results showed that 5-10 μM MC-LR inhibited PP2A activity significantly but 0.5-1 μM MC-LR did not change PP2A activity dramatically. The inhibition could result from the hyperphosphorylation of PP2A/C at Tyr307, an elevation in the total PP2A/C expression and the dissociation of α4/PP2A/C complexes. Moreover, MC-LR led to rearrangements of filamentous actin and microtubules, which might be correlated with the hyperphosphorylation of Ezrin, VASP and HSP27 due to PP2A inhibition and mitogen-activated protein kinase (MAPK) activation. However, exposure to MC-LR for 24 h failed to trigger either apoptosis or proliferation, which might be related to PP2A-inhibition-induced hyperphosphorylation of Bcl-2 and Bad and the activation status of Akt. In conclusion, our data indicated that MC-LR induced extensive molecular and cellular alterations in A549 cells through a PP2A-centered pathway, which differed in some respects from our previous study in SMMC-7721 cells. To our knowledge, this is the first report comprehensively demonstrating the effects of MC-LR in A549 cells, and our findings provide insights into the mechanism of MC-LR toxicity in cancer cells. © 2016 Wiley Periodicals, Inc. Environ

  19. MiR-1244 sensitizes the resistance of non-small cell lung cancer A549 cell to cisplatin.

    Science.gov (United States)

    Li, Weili; Wang, Wenzhe; Ding, Mingjian; Zheng, Xiaoliang; Ma, Shenglin; Wang, Xiaoju

    2016-01-01

    Cisplatin (DDP)-based chemotherapy is the mainstay of first-line therapy for lung cancer. However, their efficacy is often limited by the existence or development of chemoresistance. The aim of this study was to find and investigate the function of miRNAs in cisplatin (DDP)-resistant non-small cell lung cancer (NSCLC) A549 cell. Quantitative real-time PCR assay was employed to compare the differences of miRNA expression in both cisplatin-resistant A549 (A549/DDP) cell and the parental A549 cell. The dysregulated miRNAs were then corrected by transfecting oligonucleotides into A549/DDP cells. The cellular sensitivity to cisplatin, cell apoptosis and migration were conducted by MTT, flow cytometry and cell wound healing assay, respectively. Both miR-589 and miR-1244 were significantly down-regulated in A549/DDP cell compared to the parental A549, while the expression of miR-182 and miR-224 were increased in A549/DDP cell (P A549/DDP cell. The study indicates a crucial role of miR-1244 in the progress of cisplatin resistance of A549. Further understanding of miR-1244-mediated signaling pathways may promote the clinical use of miR-1244 in lung cancer therapy.

  20. TRIM25 is associated with cisplatin resistance in non-small-cell lung carcinoma A549 cell line via downregulation of 14-3-3σ.

    Science.gov (United States)

    Qin, Xia; Qiu, Feng; Zou, Zhen

    2017-11-04

    Lung cancer, in particular, non-small cell lung cancer (NSCLC), is the leading cause of cancer-related mortality. Cis-Diamminedichloroplatinum (cisplatin, CDDP) as first-line chemotherapy for NSCLC, but resistance occurs frequently. We previously reported that Tripartite motif protein 25 (TRIM25) was highly expressed in cisplatin-resistant human lung adenocarcinoma A549 cells (A549/CDDP) in comparison with its parental A549 cells. Herein, we take a further step to demonstrate the association of TRIM25 and cisplatin resistance and also the underlying mechanisms. Knockdown of TRIM25 by RNA interference in A549/CDDP cells decreased half maximal inhibitory concentration (IC 50 ) values and promoted apoptosis in response to cisplatin, whereas overexpression of TRIM25 had opposite effects. More importantly, we found that concomitant knockdown of 14-3-3σ and TRIM25 absolutely reversed the decreased MDM2, increased p53, increased cleaved-Capsese3 and decreased IC 50 value induced by knockdown of TRIM25 individually, suggesting that TRIM25 mediated cisplatin resistance primarily through downregulation of 14-3-3σ. Our results indicate that TRIM25 is associated with cisplatin resistance and 14-3-3σ-MDM2-p53 signaling pathway is involved in this process, suggesting targeting TRIM25 may be a potential strategy for the reversal of cisplatin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Small interfering RNA targeting S100A4 sensitizes non-small-cell lung cancer cells (A549) to radiation treatment.

    Science.gov (United States)

    Qi, Ruixue; Qiao, Tiankui; Zhuang, Xibing

    2016-01-01

    This study aimed to investigate the impact of S100A4-small interfering RNA (S100A4-siRNA) on apoptosis and enhanced radiosensitivity in non-small-cell lung cancer (A549) cells. We also explored the mechanisms of radiosensitization and identified a new target to enhance radiosensitivity and gene therapy for non-small-cell lung cancer. RNA interference is a powerful tool for gene silencing. In this study, we constructed an effective siRNA to knock down S100A4. A549 cells were randomly divided into three groups: blank, negative control, and S100A4-siRNA. To investigate the effect of S100A4-siRNA, the expression of S100A4, E-cadherin, and p53 proteins and their messenger RNA (mRNA) was detected by Western blot and quantitative real-time polymerase chain reaction. Transwell chambers were used to assess cell invasion. Cell cycle and apoptosis were analyzed by flow cytometry. Radiosensitivity was determined by colony formation ability. Our results demonstrate that S100A4-siRNA effectively silenced the S100A4 gene. When siRNA against S100A4 was used, S100A4 protein expression was downregulated, whereas the expressions of E-cadherin and p53 were upregulated. In addition, a clear reduction in S100A4 mRNA levels was noted compared with the blank and negative control groups, whereas E-cadherin and p53 mRNA levels increased. Transfection with S100A4-siRNA significantly reduced the invasiveness of A549 cells. S100A4 silencing induced immediate G2/M arrest in cell cycle studies and increased apoptosis rates in A549 cells. In clonogenic assays, we used a multitarget, single-hit model to detect radiosensitivity after S100A4 knockdown. All parameters (D0, Dq, α, β) indicated that the downregulation of S100A4 enhanced radiosensitivity in A549 cells. Furthermore, S100A4-siRNA upregulated p53 expression, suggesting that S100A4 may promote A549 cell proliferation, invasion, and metastasis by regulating the expression of other proteins. Therefore, siRNA-directed S100A4 knockdown may

  2. [SIRT1 Influences the Sensitivity of A549 Non-small Cell Lung Cancer Cell Line to 
Cisplatin via Modulating the Noxa Expression].

    Science.gov (United States)

    Cao, Bin; He, Xiaofeng; Wang, Wengong; Shi, Minke

    2016-02-01

    The resistance of non-small cell lung cancer cells to cisplant is a common clinical phenomenon which could induce a poor therapeutic effect and should be difficult problem to be solved. SIRT1 and Noxa expression are associated with the chemotherapy for tumors. The present study focused on how SIRT1 expression influence the senstivity of non-small cell lung cancer cells and dissected the potential mechanism involved with Noxa. The difference of SIRT1 and Noxa expression between A549 cells and A549/DDP cells was detected by real-time quantitative PCR (qRT-PCR) and Western blot. SIRT1 targeted siRNA was uesed to inhibit the SIRT1 expression in A549/DDP, after transfection, Cell Titer Blue assay, flow cytometry were performed to analyze the cell viability, cell cycle and cell apoptosis in order to reveal the effect of inhibition of SIRT1 on sensitivity of A549/DDP cells to cisplant. Moreover, the expression changes of Noxa in A549/DDP cells after siRNA treatment were detected by qRT-PCR and Western blot. There was a significant difference in senstivity to cisplant between A549 and A549/DDP cells. Compared with A549 cells, the A549/DDP cells showed a higher SIRT1 expression and lower Noxa expression. After transfected with SIRT1 targeted siRNA, the cell viability decreased accompanied with a increasing apoptosis rate, meanwhile, higher percent of G2/M phase was detected after the 4 μg/mL cisplant treatment. Further more, inhibition of SIRT1 could induce the Noxa expression in A549/DDP cells. Higher SIRT1 expression may induce resistance to cisplant in A549 cells. SIRT1 inhibition may improve the sensitivity of A549/DDP cells to cisplantin though modulating the Noxa expression.
.

  3. APE1 modulates cellular responses to organophosphate pesticide-induced oxidative damage in non-small cell lung carcinoma A549 cells.

    Science.gov (United States)

    Thakur, Shweta; Dhiman, Monisha; Mantha, Anil K

    2018-04-01

    Monocrotophos (MCP) and chlorpyrifos (CP) are widely used organophosphate pesticides (OPPs), speculated to be linked with human pathologies including cancer. Owing to the fact that lung cells are most vulnerable to the environmental toxins, the development and progression of lung cancer can be caused by the exposure of OPPs. The present study investigates the oxidative DNA damage response evoked by MCP and CP in human non-small cell lung carcinoma A549 cells. A549 cells were exposed to MCP and CP; cytotoxicity and reactive oxygen species (ROS) generation were measured to select the non-toxic dose. In order to establish whether MCP and CP can initiate the DNA repair and cell survival signalling pathways in A549 cells, qRT-PCR and Western blotting techniques were used to investigate the mRNA and protein expression levels of DNA base excision repair (BER)-pathway enzymes and transcription factors (TFs) involved in cell survival mechanisms. A significant increase in cell viability and ROS generation was observed when exposed to low and moderate doses of MCP and CP at different time points (24, 48 and 72 h) studied. A549 cells displayed a dose-dependent accumulation of apurinic/apyrimidinic (AP) sites after 24 h exposure to MCP advocating for the activation of AP endonuclease-mediated DNA BER-pathway. Cellular responses to MCP- and CP-induced oxidative stress resulted in an imbalance in the mRNA and protein expression of BER-pathway enzymes, viz. PARP1, OGG1, APE1, XRCC1, DNA pol β and DNA ligase III α at different time points. The treatment of OPPs resulted in the upregulation of TFs, viz. Nrf2, c-jun, phospho-c-jun and inducible nitric oxide synthase. Immunofluorescent confocal imaging of A549 cells indicated that MCP and CP induces the translocation of APE1 within the cytoplasm at an early 6 h time point, whereas it promotes nuclear localization after 24 h of treatment, which suggests that APE1 subcellular distribution is dynamically regulated in response to

  4. Identification of curcumin-inhibited extracellular matrix receptors in non-small cell lung cancer A549 cells by RNA sequencing.

    Science.gov (United States)

    Li, Huiping; Wu, Hongjin; Zhang, Hongfang; Li, Ying; Li, Shuang; Hou, Qiang; Wu, Shixiu; Yang, Shuan-Ying

    2017-06-01

    Curcumin is a potent anti-cancer drug in several types of human cancers. Despite of several preclinical and clinical studies of curcumin, the precise mechanism of curcumin in cancer prevention has remained unclear. In our study, we for the first time investigated whole transcriptome alteration in A549 non-small cell lung cancer (NSCLC) cell lines after treatment with curcumin using RNA sequencing. We found that lots of genes and signaling pathways were significantly altered after curcumin treatment in A549 cells. With bioinformatics approaches (gene ontology, Kyoto Encyclopedia of Genes and Genomes, and STRING), we found that those curcumin altered genes were not only the genes that induce cell death but also those extracellular matrix receptors and mitogen-activated protein kinase signaling pathway genes which regulate cell migration and proliferation. Among those significantly altered genes, eight genes ( COL1A1, COL4A1, COL5A1, LAMA5, ITGA3, ITGA2B, DDIT3, and DUSP1) were further examined by quantitative reverse transcription polymerase chain reaction and western blot analysis in four non-small cell lung cancer cell lines. Both in cell lines and in mouse model, the extracellular matrix receptors including the integrin ( ITGA3 and ITGA2B), collagen ( COL5A1), and laminin ( LAMA5) were significantly inhibited by curcumin at messenger RNA and protein levels. Functional studies confirmed that curcumin not only induced A549 cell death but also repressed cell proliferation and migration by regulating extracellular matrix receptors. Collectively, our study suggests that curcumin may be used as a promising drug candidate for intervening lung cancer in future studies.

  5. Novel synthetic chalcones induce apoptosis in the A549 non-small cell lung cancer cells harboring a KRAS mutation.

    Science.gov (United States)

    Wang, Yiqiang; Hedblom, Andreas; Koerner, Steffi K; Li, Mailin; Jernigan, Finith E; Wegiel, Barbara; Sun, Lijun

    2016-12-01

    A series of novel chalcones were synthesized by the Claisen-Schmidt condensation reaction of tetralones and 5-/6-indolecarboxaldehydes. Treatment of human lung cancer cell line harboring KRAS mutation (A549) with the chalcones induced dose-dependent apoptosis. Cell cycle analyses and Western blotting suggested the critical role of the chalcones in interrupting G2/M transition of cell cycle. SAR study demonstrated that substituent on the indole N atom significantly affects the anticancer activity of the chalcones, with methyl and ethyl providing the more active compounds (EC 50 : 110-200nM), Compound 1g was found to be >4-fold more active in the A549 cells (EC 50 : 110nM) than in prostate (PC3) or pancreatic cancer (CLR2119, PAN02) cells. Furthermore, compound 1l selectively induced apoptosis of lung cancer cells A549 (EC 50 : 0.55μM) but did not show measurable toxicity in the normal lung bronchial epithelial cells (hBEC) at doses as high as 10μM, indicating specificity towards cancer cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Upregulation of miR-146a increases cisplatin sensitivity of the non-small cell lung cancer A549 cell line by targeting JNK-2.

    Science.gov (United States)

    Pang, Linrong; Lu, Jinger; Huang, Jia; Xu, Caihong; Li, Hui; Yuan, Guangbo; Cheng, Xiaochun; Chen, Jun

    2017-12-01

    The aim of the present study was to investigate the effects of microRNA (miR-)146a on the cisplatin sensitivity of the non-small cell lung cancer (NSCLC) A549 cell line and study the underlying molecular mechanism. The differences in expression of miRNAs between A549 and A549/cisplatin (A549/DDP) cells were determined, and miR-146a was selected to study its effect on cisplatin sensitivity of A549/DDP cells. miR-146a mimic and inhibitor transient transfection systems were constructed using vectors, and A549/DDP cells were infected with miR-146a mimic and inhibitor to investigate growth, apoptosis and migration. The directed target of miR-146a was determined and the underlying molecular mechanism was validated in the present study. The results of the present study demonstrated that miR-146a was downregulated in NSCLC A549/DDP cells, compared with A549 cells. The overexpression of miR-146a induced apoptosis and inhibited the growth and invasion of A549/DDP cells, which resulted in increased cisplatin sensitivity in NSCLC cells. The JNK2 gene was determined as the direct target of miR-146a, and may be activated by the overexpression of miR-146a. Additionally, JNK2 activated the expression of p53 and inhibited B cell lymphoma 2. The upregulation of miR-146a increased cisplatin sensitivity of the A549 cell line by targeting JNK2, which may provide a novel method for treating NSCLC cisplatin resistance.

  7. Inhibition of microRNA-196a might reverse cisplatin resistance of A549/DDP non-small-cell lung cancer cell line.

    Science.gov (United States)

    Li, Jian-Huang; Luo, Ning; Zhong, Mei-Zuo; Xiao, Zhi-Qiang; Wang, Jian-Xin; Yao, Xiao-Yi; Peng, Yun; Cao, Jun

    2016-02-01

    We aimed to explore the possible mechanism of microRNA-196a (miR-196a) inhibition and reversion of drug resistance to cisplatin (DDP) of the A549/DDP non-small-cell lung cancer (NSCLC) cell line. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect expression differences of miR-196a in the drug-resistant A549/DDP NLCLC cell line and the parental A549 cell line, and expressions of miR-196a in the A549/DDP NLCLC cell line transfected with miR-196a inhibitor (anti-miR-196a group) and the miR-196a negative control (miR-NC) group and blank group (without transfection). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was applied in examining the cell viability of A549/DDP cell line before and after transfection. Clonogenic assay was used to detect cell proliferation ability. Flow cytometry was applied in detecting apoptosis rate of assayed tumor cell and rhodamine-123 changes in cells. Western blot was applied in detecting proteins of drug-resistant related gene in A549/DDP cell line. Significantly higher expression of miR-196a was detected in the drug-resistant A549/DDP cell line than that in the parental A549 cell line (P A549/DDP cell line in the early stage were found among the three groups (all P > 0.05), but the late-stage apoptosis rate in the anti-miR-196a group was significantly higher than that in the blank group and the miR-NC group (both P A549/DDP cell lines, which might relate with inhibition of drug efflux, down-regulation of drug-resistant protein expression, cell apoptosis, and cell proliferation suppression.

  8. Effects of miR-424 on Proliferation and Migration Abilities in Non-small Cell Lung Cancer A549 Cells and Its Molecular Mechanism

    Directory of Open Access Journals (Sweden)

    Hongmin LI

    2016-09-01

    Full Text Available Background and objective The inhibitory ability of miR-424 on the proliferation of renal carcinoma cell and the migration and invasion of cancer cells has been widely explored and demonstrated. However, the effects of miR-424 on non-small cell lung cancer (NSCLC have not been systematically examined. In this study, detected the growth and invasion effect of miR-424 in NSCLC A549 cell. The migration and molecular mechanism of this cell are also detected. Methods NSCLC A549 cell was transfected with miR-424 and its inhibitor. After transfection, the proliferation ability of A549 cell was detectedby CCK8 assay. Then, the migration ability in A549 cell was detected by migration assays. Furthermore, the expression level of MMP2 and MMP9 in A549 was detected by Western blot and immune fluorescence. The 3'UTR of E2F6 was cloned into luciferase reporter vector and its enzymatic activitywas detected to verify whether miR-424 can target E2F6. The expression level of E2F6 in a549 cell after transfecing with miR-424 was detected by Western blot. Results After transfection of miR-424, the proliferation and migration abilities were remarkably decreased and the expression level of MMP-2 and MMP-9 were down-regulated in A549. Moreover, MiR-424 inhibited the enzymatic activity of luviferase reporter vector of E2F6. Specifically, the expression level of E2F6 was down-regulated in A549. Conclusion miR-424 can inhibit the proliferation and migration abilities of A549 by negatively regulating the expression of E2F6.

  9. [Effects of miR-424 on Proliferation and Migration Abilities in Non-small Cell Lung Cancer A549 Cells and Its Molecular Mechanism].

    Science.gov (United States)

    Li, Hongmin; Lan, Haitao; Zhang, Ming; An, Ning; Yu, Ruilian; He, Yangke; Gan, Chongzhi

    2016-09-20

    The inhibitory ability of miR-424 on the proliferation of renal carcinoma cell and the migration and invasion of cancer cells has been widely explored and demonstrated. However, the effects of miR-424 on non-small cell lung cancer (NSCLC) have not been systematically examined. In this study, detected the growth and invasion effect of miR-424 in NSCLC A549 cell. The migration and molecular mechanism of this cell are also detected. NSCLC A549 cell was transfected with miR-424 and its inhibitor. After transfection, the proliferation ability of A549 cell was detectedby CCK8 assay. Then, the migration ability in A549 cell was detected by migration assays. Furthermore, the expression level of MMP2 and MMP9 in A549 was detected by Western blot and immune fluorescence. The 3'UTR of E2F6 was cloned into luciferase reporter vector and its enzymatic activitywas detected to verify whether miR-424 can target E2F6. The expression level of E2F6 in a549 cell after transfecing with miR-424 was detected by Western blot. After transfection of miR-424, the proliferation and migration abilities were remarkably decreased and the expression level of MMP-2 and MMP-9 were down-regulated in A549. Moreover, MiR-424 inhibited the enzymatic activity of luviferase reporter vector of E2F6. Specifically, the expression level of E2F6 was down-regulated in A549. miR-424 can inhibit the proliferation and migration abilities of A549 by negatively regulating the expression of E2F6.
.

  10. Podophyllotoxin acetate blocks IR-induced invasion of non-small cell lung cancer cell, A549

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jeong Hyun; Choi, Jae Yeon; Hwang, Sang-Gu; Um, Hong-Duck; Park, Jong Kuk [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2015-05-15

    Some research result presented that local radiotherapy administered to primary tumors speeds their metastatic growth in vivo (4-6), thereby suggesting that besides its therapeutic effects, IR promotes the malignant behaviors of surviving cancer cells. Our findings demonstrate podophyllotoxin acetate (PA), one of new natural products, prevented side effects of IR such as invasion or metastasis promotion for improve the efficacy of radiotherapy. In this study, we demonstrated that PA inhibits IR-induced invasion and migration of A549 cells. We also observed that IR stimulates several intracellular pathway involving EMT and MAPKinses; EMT-associated events including an increase of vimentin levels and increased phosphorylation of p38 ERK, JNK in A549 cells. PA could decrease these activations of several intracellular signaling molecules. Therefore, PA might inhibit IRinduced invasion and migration via blocking EMT and MAPKiase pathway of A549 cells.

  11. Role of SOX4 on DDP Resistance in Non-small Cell Lung Cancer Cell of A549

    OpenAIRE

    Wei LI; Xu LIU; Guoqian ZHANG; Linlin ZHANG

    2017-01-01

    Background and objective Lung cancer is one of the most serious disease and the incidence of non-small cell lung cancer (NSCLC) is the highest in lung cancer. The main reason for the failure of chemotherapy is the tolerance to cisplatin. Transcriptional regulator SOX4 plays an important role in the occurrence and development of many tumors, and regulates Wnt signaling pathway by regulating the expression of β-catenin. We aimed to investigate the role of SOX4 on cisplatin-resistance in NSCLC c...

  12. Vitamin D derivatives potentiate the anticancer and anti-angiogenic activity of tyrosine kinase inhibitors in combination with cytostatic drugs in an A549 non-small cell lung cancer model

    Science.gov (United States)

    Maj, Ewa; Filip-Psurska, Beata; Milczarek, Magdalena; Psurski, Mateusz; Kutner, Andrzej; Wietrzyk, Joanna

    2018-01-01

    Numerous in vitro and in vivo studies have demonstrated that calcitriol [1,25(OH)2D3] and different vitamin D analogs possess antineoplastic activity, regulating proliferation, differentiation and apoptosis, as well as angiogenesis. Vitamin D compounds have been shown to exert synergistic effects when used in combination with different agents used in anticancer therapies in different cancer models. The aim of this study was to evaluate the mechanisms of the cooperation of the vitamin D compounds [1,24(OH)2D3 (PRI-2191) and 1,25(OH)2D3] with tyrosine kinase inhibitors (imatinib and sunitinib) together with cytostatics (cisplatin and docetaxel) in an A549 non-small cell lung cancer model. The cytotoxic effects of the test compounds used in different combinations were evaluated on A549 lung cancer cells, as well as on human lung microvascular endothelial cells (HLMECs). The effects of such combinations on the cell cycle and cell death were also determined. In addition, changes in the expression of proteins involved in cell cycle regulation, angiogenesis and the action of vitamin D were analyzed. Moreover, the effects of 1,24(OH)2D3 on the anticancer activity of sunitinib and sunitinib in combination with docetaxel were examined in an A549 lung cancer model in vivo. Experiments aiming at evaluating the cytotoxicity of the combinations of the test agents revealed that imatinib and sunitinib together with cisplatin or docetaxel exerted potent anti-proliferative effects in vitro on A549 lung cancer cells and in HLMECs; however, 1,24(OH)2D3 and 1,25(OH)2D3 enhanced the cytotoxic effects only in the endothelial cells. Among the test agents, sunitinib and cisplatin decreased the secretion of vascular endothelial growth factor (VEGF)-A from the A549 lung cancer cells. The decrease in the VEGF-A level following incubation with cisplatin correlated with a higher p53 protein expression, while no such correlation was observed following treatment of the A549 cells with sunitinib

  13. Vitamin D derivatives potentiate the anticancer and anti-angiogenic activity of tyrosine kinase inhibitors in combination with cytostatic drugs in an A549 non-small cell lung cancer model.

    Science.gov (United States)

    Maj, Ewa; Filip-Psurska, Beata; Milczarek, Magdalena; Psurski, Mateusz; Kutner, Andrzej; Wietrzyk, Joanna

    2018-02-01

    Numerous in vitro and in vivo studies have demonstrated that calcitriol [1,25(OH)2D3] and different vitamin D analogs possess antineoplastic activity, regulating proliferation, differentiation and apoptosis, as well as angiogenesis. Vitamin D compounds have been shown to exert synergistic effects when used in combination with different agents used in anticancer therapies in different cancer models. The aim of this study was to evaluate the mechanisms of the cooperation of the vitamin D compounds [1,24(OH)2D3 (PRI‑2191) and 1,25(OH)2D3] with tyrosine kinase inhibitors (imatinib and sunitinib) together with cytostatics (cisplatin and docetaxel) in an A549 non-small cell lung cancer model. The cytotoxic effects of the test compounds used in different combinations were evaluated on A549 lung cancer cells, as well as on human lung microvascular endothelial cells (HLMECs). The effects of such combinations on the cell cycle and cell death were also determined. In addition, changes in the expression of proteins involved in cell cycle regulation, angiogenesis and the action of vitamin D were analyzed. Moreover, the effects of 1,24(OH)2D3 on the anticancer activity of sunitinib and sunitinib in combination with docetaxel were examined in an A549 lung cancer model in vivo. Experiments aiming at evaluating the cytotoxicity of the combinations of the test agents revealed that imatinib and sunitinib together with cisplatin or docetaxel exerted potent anti-proliferative effects in vitro on A549 lung cancer cells and in HLMECs; however, 1,24(OH)2D3 and 1,25(OH)2D3 enhanced the cytotoxic effects only in the endothelial cells. Among the test agents, sunitinib and cisplatin decreased the secretion of vascular endothelial growth factor (VEGF)‑A from the A549 lung cancer cells. The decrease in the VEGF‑A level following incubation with cisplatin correlated with a higher p53 protein expression, while no such correlation was observed following treatment of the A549 cells

  14. Activation of Focal Adhesion Kinase and Src Mediates Acquired Sorafenib Resistance in A549 Human Lung Adenocarcinoma Xenografts.

    Science.gov (United States)

    Zhou, Qingyu; Guo, Xiaofang; Choksi, Riya

    2017-12-01

    Despite encouraging clinical results with sorafenib monotherapy in patients with KRAS- mutant non-small-cell lung cancer (NSCLC), the overall survival benefit of this drug is limited by the inevitable development of acquired resistance. The exact mechanism underlying acquired sorafenib resistance in KRAS -mutant NSCLC is unclear. In this study, the mechanism of acquired sorafenib resistance was explored using a biologically relevant xenograft model, which was established by using the A549 human lung adenocarcinoma cell line and an in vivo-derived, sorafenib-resistant A549 subline (A549/SRFres). Results from the initial study demonstrated that sorafenib treatment significantly decreased E-cadherin ( P A549/SRFres tumors, whereas expression levels of phospho-protein kinase B (AKT), phospho-focal adhesion kinase (FAK), and phospho-Src were elevated in sorafenib-treated A549 and A549/SRFres tumors. We next examined whether concomitant dasatinib treatment could overcome acquired sorafenib resistance by blocking the FAK/Src escape route that mediates resistance. Despite the observed in vitro synergy between sorafenib and dasatinib, the in vivo antitumor effect of half-dose sorafenib-dasatinib combination therapy was inferior to that of the full-dose sorafenib treatment. Although the sorafenib-dasatinib combination effectively inhibited Src and AKT phosphorylation, it did not block the Y576/577-FAK phosphorylation, nor did it decrease vimentin protein expression; unexpectedly, it increased Y397-FAK phosphorylation and MMP9 protein expression in tumors. These results suggest that acquired sorafenib resistance in KRAS -mutant A549 xenografts involves the compensatory activation of FAK and Src, and Src inhibition alone is insufficient to diminish sorafenib-promoted epithelial-mesenchymal transition process and invasive potentials in tumors. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Effects of the Notch1 signaling pathway on human lung cancer A549 cells.

    Science.gov (United States)

    Zeng, Yun; Yin, Bijian; Wang, Xinwei; Xia, Guohao; Shen, Zhengjie; Gu, Wenzhe; Wu, Mianhua

    To evaluate the effects of the Notch1 signaling pathway on human lung cancer A549 cells. A549 cells were transfected with recombinant plasmids. Cell proliferation was detected by MTT assay. A tumor-bearing mouse model was established for intratumoral gene injection. Apoptosis-related factors were detected by immunohistochemical assay. Caspase-8, caspase-3, caspase-9, PI3K, pAkt and pSTAT3 expressions were detected by Western blotting. Compared with A549-GFP and A549 cells, A549-ICN cell growth in mice decelerated, tumor volume significantly reduced (p A549 cell proliferation decelerated, growth was significantly inhibited (p A549-ICN cell growth time- and dose-dependently. After treatment for 24 h or longer, TRAIL induced apoptosis of more A549-ICN cells. Cleaved caspase-3 and cleaved caspase-9 were detected only in A549-ICN cells after 6 h of 40 ng/mL TRAIL treatment, but cleaved caspase-8 was not detected. Combining Notch1 signal with TRAIL inhibited PI3K, phosphorylated Akt and phosphorylated STAT3 expressions. The Notch1 signaling pathway may inhibit A549 cell growth in vitro and in vivo by regulating cell cycle-related and anti-apoptotic protein expressions. Notch1 activation also suppressed A549 cell apoptosis by inhibiting the PI3K/pAkt pathway and activating the caspase-3 pathway in cooperation with TRAIL.

  16. [Synergistic Antitumor Effect of Amorphigenin Combined with Cisplatin in Human Lung Adenocarcinoma A549/DDP Cells].

    Science.gov (United States)

    Zhong, Hongzhen; Zuo, Yufang; Wu, Xin; Peng, Yan; He, Huiping; Yang, Jun; Guan, Chengnong; Xu, Zumin

    2016-12-20

    Amorphigenin, a rotenoid compouns, from seeds of Amorpha fruticosa, has been shown to possess anti-proliferation activities in several cancer cells. To explore the antitumor effects of amorphigenin on cisplatin-resistant human lung adenocarcinoma A549/DDP cells and explore the underlying mechanisms. CCK-8 assay was used to measure the proliferation of A549/DDP cells; Colony formation assay was used to measure the colony formation of A549/DDP cells; Flow cytometry assay was used to detect the apoptosis rates; Western blot analysis was used to explore the expression of apoptosis-related proteins (caspase-3 protein, PARP protein) and lung resistance protein (LRP). Our results demonstrated that amorphigenin could inhibit the proliferation of A549/DDP cells with a inhibition concentration of 50% cell growth (IC50) at 48 h of (2.19±0.92) μmol/L. Amorphigenin could inhibit the colony formation ability and induce apoptosis of A549/DDP cells; Furthermore, amorphigenin combined with cisplatin showed synergistic proliferation-inhibitory effect and apoptosis-promoting effect in A549/DDP cells; reduced the expression of LRP of A549/DDP cells. Amorphigenin remarkably inhibits the proliferation and induces apoptosis in A549/DDP cells. Combination of amorphigenin with cisplatin had the synergistic inhibitory effect on A549/DDP cells by downregulating the expression of LRP.
.

  17. Apatinib resensitizes cisplatin-resistant non-small cell lung carcinoma A549 cell through reversing multidrug resistance and suppressing ERK signaling pathway.

    Science.gov (United States)

    Liu, Z-L; Jin, B-J; Cheng, C-G; Zhang, F-X; Wang, S-W; Wang, Y; Wu, B

    2017-12-01

    To observe the reversal effect of apatinib on the resistance to cisplatin (DDP) of A549/cisplatin (A549/DDP) cells and its relevant mechanism. A549/DDP cells were treated with the control method, apatinib alone, DDP alone and DDP combined with apatinib. The cell proliferation was detected by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the cell clone formation assay. The cell apoptosis was detected by Hoechst 33258 staining and annexin V and propidium iodide (PI) double labeling. The changes in apoptotic proteins, multidrug resistance protein 1 (MDR1) and extracellular signal-regulated kinase (ERK) signaling pathway proteins in each group after treatment were detected by Western blotting. MTT assay results showed that compared with A549 cells, A549/DDP cells had obvious resistance to DDP. MTT assay and cell clone formation assay revealed that the tumor inhibition rate of the sub-lethal dose of apatinib (10 μM) combined with DDP was higher than that of DDP alone. The apoptosis detection results indicated that the proportion of apoptotic cells in the apatinib (10 μM) combined with DDP group was significantly increased. Western blotting results revealed that compared with that in parental A549 cells, the expression level of MDR1 in A549/DDP cells was significantly increased, and the ERK signaling pathway was activated. In the apatinib combined with DDP group, the levels of cleaved caspase-3, cleaved caspase-9 and B-cell lymphoma-2 (Bcl-2)-associated X (BAX) proteins were significantly upregulated, while the level of Bcl-2 proteins was downregulated. Apatinib could inhibit the expression of MDR1 and the activity of the ERK signaling pathway in a dose-dependent manner. Apatinib can restore the sensitivity of A549/DDP cells to DDP by down-regulating the expression level of MDR1 and inhibiting the activity of the ERK signaling pathway.

  18. Coptisine-induced cell cycle arrest at G2/M phase and reactive oxygen species-dependent mitochondria-mediated apoptosis in non-small-cell lung cancer A549 cells.

    Science.gov (United States)

    Rao, Poorna Chandra; Begum, Sajeli; Sahai, Mahendra; Sriram, D Saketh

    2017-03-01

    This study aimed to explore the effect of coptisine on non-small-cell lung cancer and its mechanism through various in vitro cellular models (A549). Results claimed significant inhibition of proliferation by coptisine against A549, H460, and H2170 cells with IC 50 values of 18.09, 29.50, and 21.60 µM, respectively. Also, coptisine exhibited upregulation of pH2AX, cell cycle arrest at G2/M phase, and downregulation of the expression of cyclin B1, cdc2, and cdc25C and upregulation of p21 dose dependently. Furthermore, induction of apoptosis in A549 cells by coptisine was characterized by the activation of caspase 9, caspase 8, and caspase 3, and cleavage of poly adenosine diphosphate ribose polymerase. In addition, coptisine was found to increase reactive oxygen species generation, upregulate Bax/Bcl-2 ratio, disrupt mitochondrial membrane potential, and cause cytochrome c release into the cytosol. Besides, treatment with a reactive oxygen species inhibitor (N-acetyl cysteine) abrogated coptisine-induced growth inhibition, apoptosis, reactive oxygen species generation, and mitochondrial dysfunction. Thus, the mediation of reactive oxygen species in the apoptosis-induced effect of coptisine in A549 cells was corroborated. These findings have offered new insights into the effect and mechanisms of action of coptisine against non-small-cell lung cancer.

  19. Reversal of galectin-1 gene silencing on resistance to cisplatin in human lung adenocarcinoma A549 cells.

    Science.gov (United States)

    Zhang, Lei; Liu, Xuegang; Tang, Zhen; Li, Xiaojun; Wang, Gengming

    2016-10-01

    This study aims to investigate reversal of Galectin-1 gene silencing on resistance to cisplatin in human lung adenocarcinoma A549 (or A549/DDP) in vivo and in vitro. The stably transfected lentivirus vector was used to silence Galectin-1 in human lung adenocarcinoma cell line A549 and A549/DDP cells and the cell lines were cultured and passaged. RT-PCR and western blot assay were used to test A549, A549/DDP cells, silenced Galectin-1A549 (A549/I) cells, Galectin-1 mRNA and protein expression levels, respectively, in A549/DDP (A549/DDP/I) cells. CCK8 assay was used to measure median inhibitory concentration (IC50) in each group and resistant index of A549/DDP cells and A549/DDP/I cells. Tumor model in nude mice was established by armpit injection of A549, A549/DDP, A549/I, A549/DDP/I cells. Cisplatin was injected intraperitoneally in tumor models and growth of tumor was observed in vivo model. Four weeks later, nude mice were killed and tumor weight and diameter was measured. mRNA and protein expression of Galectin-1 in A549/DDP cells was higher than that in A549 cells. mRNA and protein expression of Galectin-1 in A549/DDP/I cells was lower than that in A549/DDP cells. Moreover, IC50 values ​​and resistance index in A549/DDP cells was higher than that in A549 cells group and IC50 values ​​and resistance index A549/DDP/I cell group were lower than that in A549/DDP cells. Additionally, tumor weight and volume in A549/DDP/I cell group were lower than that in A549/DDP. In conclusion, Galectin-1 gene silencing would improve the sensitivity of A549/DDP cells to cisplatin in vivo and in vitro. Copyright © 2016. Published by Elsevier Masson SAS.

  20. Cytotoxicity of withasteroids: withametelin induces cell cycle arrest at G2/M phase and mitochondria-mediated apoptosis in non-small cell lung cancer A549 cells.

    Science.gov (United States)

    Rao, Poorna Chandra; Begum, Sajeli; Jahromi, Mohammad Ali Farboodniay; Jahromi, Zahra Hosseini; Sriram, Saketh; Sahai, Mahendra

    2016-09-01

    Considerable interest has been gained by withasteroids because of their structural uniqueness and wide spectrum of biological activities. However, limited systematic studies for proving their cytotoxic potential have so far been reported. Hence, an attempt was made to test the cytotoxicity of six withasteroids viz., withametelin (WM), withaphysalin D, withaphysalin E, 12-deoxywithastramonolide, Withaperuvin B, and physalolactone against A549, HT-29, and MDA-MB-231 cancer cell lines. Significant cytotoxic effect of WM against A549 cells (IC 50 value of 6.0 μM), MDA-MB-231 cells (IC 50 value of 7.6 μM), and HT-29 cells (IC 50 value of 8.2 μM) was observed. Withaperuvin B and physalolactone were found to be effective against MDA-MB-231 cells. The significantly active WM arrested the A549 cells at G2/M phase and downregulated the expression of G2/M regulatory proteins such as cdc2, cyclin B1, and cdc25C. Apoptosis induced by WM in A549 cells was associated with the generation of ROS and depletion of MMP. Furthermore, WM treatment resulted in Bax upregulation, Bcl-2 downregulation, translocation of cytochrome c to mitochondria, activation of caspase-9 and -3, and PARP cleavage corroborating the apoptosis induction through intrinsic apoptotic pathway. Thus, WM possessing broader cytotoxic effect is a promising lead molecule which has the potential to be developed as a new therapeutic agent for NSCLC.

  1. Paracrine control of differentiation in the alveolar carcinoma, A549, by human foetal lung fibroblasts.

    Science.gov (United States)

    Speirs, V; Ray, K P; Freshney, R I

    1991-10-01

    Synthesis of pulmonary surfactant (PS) is necessary for normal functioning of the lungs and its production is indicative of normal differentiated lung. The human alveolar carcinoma, A549, has been found to synthesis and secrete PS in vitro. The purpose of this study was to optimise the culture conditions for PS synthesis by A549 as well as to determine the potential role of foetal lung fibroblasts in the induction of PS by glucocorticoids. A549 cells growing in filter wells produced higher levels of PS in response to steroid, a 5-fold increase on the filter well compared to only a 1.5-fold increase when the cells were cultured on a conventional plastic substrate. A549 cells grown in filter wells responded to coculture with fibroblasts whether in direct contact or separated co-culture. A 20-fold increase in PS over control values was observed in separated steroid-treated co-cultures, suggesting the presence of a diffusible factor. A partially purified factor was isolated from fibroblast conditioned medium which was capable of inducing differentiation and other phenotypic changes in A549, namely induction of PS, reduction of plasminogen activator activity and reduction in the in vivo growth of A549 xenografts in nude mice. These results suggest that, under the correct conditions, A549 cells, although transformed, still retain the capacity to respond to differentiation-inducing signals from normal fibroblasts.

  2. MiR-200c increases the radiosensitivity of non-small-cell lung cancer cell line A549 by targeting VEGF-VEGFR2 pathway.

    Directory of Open Access Journals (Sweden)

    Liangliang Shi

    Full Text Available MicroRNAs (miRNAs have been demonstrated to participate in many important cellular processes including radiosensitization. VEGF family, an important regulator of angiogenesis, also plays a crucial role in the regulation of cancer cell radiosensitivity. VEGFR2 mediates the major growth and permeability actions of VEGF in a paracrine/autocrine manner. MiR-200c, at the nexus of epithelial-mesenchymal transition (EMT, is predicted to target VEGFR2. The purpose of this study is to test the hypothesis that regulation of VEGFR2 pathway by miR-200c could modulate the radiosensitivity of cancer cells. Bioinformatic analysis, luciferase reporter assays and biochemical assays were carried out to validate VEGFR2 as a direct target of miR-200c. The radiosensitizing effects of miR-200c on A549 cells were determined by clonogenic assays. The downstream regulating mechanism of miR-200c was explored with western blotting assays, FCM, tube formation assays and migration assays. We identified VEGFR2 as a novel target of miR-200c. The ectopic miR-200c increased the radiosensitivity of A549 while miR-200c down-regulation decreased it. Besides, we proved that miR-200c radiosensitized A549 cells by targeting VEGF-VEGFR2 pathway specifically, thus leading to inhibition of its downstream pro-survival signaling transduction and angiogenesis, and serves as a potential target for radiosensitizition research.

  3. Trichomonas vaginalis induces cytopathic effect on human lung alveolar basal carcinoma epithelial cell line A549.

    Science.gov (United States)

    Salvador-Membreve, Daile Meek C; Jacinto, Sonia D; Rivera, Windell L

    2014-12-01

    Trichomonas vaginalis, the causative agent of trichomoniasis is generally known to inhabit the genitourinary tract. However, several case reports with supporting molecular and immunological identifications have documented its occurrence in the respiratory tract of neonates and adults. In addition, the reports have documented that its occurrence is associated with respiratory failures. The medical significance or consequence of this association is unclear. Thus, to establish the possible outcome from the interaction of T. vaginalis with lung cells, the cytopathic effects of the parasites were evaluated using monolayer cultures of the human lung alveolar basal carcinoma epithelial cell line A549. The possible effect of association of T. vaginalis with A549 epithelial cells was analyzed using phase-contrast, scanning electron microscopy and fluorescence microscopy. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), crystal-violet and TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling) assays were conducted for cytotoxicity testing. The results demonstrate that T. vaginalis: (1) adheres to A549 epithelial cells, suggesting a density-dependent parasite-cell association; (2) adherence on A549 is through flagella, membrane and axostyle; (3) causes cell detachment and cytotoxicity (50-72.4%) to A549 and this effect is a function of parasite density; and (4) induces apoptosis in A549 about 20% after 6 h of incubation. These observations indicate that T. vaginalis causes cytopathic effects on A549 cell. To date, this is the first report showing a possible interaction of T. vaginalis with the lung cells using A549 monolayer cultures. Further studies are recommended to completely elucidate this association. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. SRS06, a new semisynthetic andrographolide derivative with improved anticancer potency and selectivity, inhibits nuclear factor-κB nuclear binding in the A549 non-small cell lung cancer cell line.

    Science.gov (United States)

    Lim, Jonathan Chee Woei; Jeyaraj, Ethel Jeyaseela; Sagineedu, Sreenivasa Rao; Wong, Wai Shiu Fred; Stanslas, Johnson

    2015-01-01

    Andrographolide has been reported with anticancer and anti-inflammatory properties through the inhibition of the activity of signaling molecules such as v-Src, nuclear factor-κB (NF-κB), STAT3, and PI3K. NF-κB has been proven to promote cancer cell survival, and targeting this pathway will halt the growth of cancer cells. Efforts have been made to produce semisynthetic derivatives of andrographolide with improved anticancer potency and selectivity. Subsequently, the effect of a selected derivative, 3,14,19-tripropionylandrographolide (SRS06), was tested for its action against NF-κB. Screening against 60 US National Cancer Institute (NCI) human cancer cell lines representing leukemia and non-small cell lung (NSCL), colon, CNS, melanoma, ovarian, renal, prostate, and breast cancers was performed to determine the tumor type selectivity and potency of SRS06. Microculture tetrazolium, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and sulforhodamine B assays were used to determine the in vitro anticancer activity, while Western blot studies were performed to ascertain the inhibitory effect of SRS06 on the NF-κB signaling cascade. The TransAM™ p65 assay kit was used to determine NF-κB p65 DNA binding activity in the NSCL cancer cell line A549. From the NCI screening, SRS06 was found to exhibit potent growth-inhibitory effects on multiple cancer cell lines with 10-fold lower 50% growth inhibition (GI50) compared with andrographolide. It was also discerned that the compound preferentially targeted melanoma, CNS, renal, colon, ovarian, prostate, and NSCL cancer cell lines. The DNA fragmentation assay indicated that the main mode of cell death of SRS06-treated A549 cells was via apoptosis. At 5 µmol/l the compound decreased NF-κB protein expression and caused a significant reduction in the nuclear p65 DNA binding activity. SRS06 displayed improved anticancer selectivity and potency when compared with andrographolide. We alluded its anticancer

  5. Novel CHOP activator LGH00168 induces necroptosis in A549 human lung cancer cells via ROS-mediated ER stress and NF-κB inhibition.

    Science.gov (United States)

    Ma, Yi-Ming; Peng, Yan-Min; Zhu, Qiong-Hua; Gao, An-Hui; Chao, Bo; He, Qiao-Jun; Li, Jia; Hu, You-Hong; Zhou, Yu-Bo

    2016-09-01

    C/EBP homologous protein (CHOP) is a transcription factor that is activated at multiple levels during ER stress and plays an important role in ER stress-induced apoptosis. In this study we identified a novel CHOP activator, and further investigated its potential to be a therapeutic agent for human lung cancer. HEK293-CHOP-luc reporter cells were used in high-throughput screening (HTS) to identify CHOP activators. The cytotoxicity against cancer cells in vitro was measured with MTT assay. The anticancer effects were further examined in A549 human non-small cell lung cancer xenograft mice. The mechanisms underlying CHOP activation were analyzed using luciferase assays, and the anticancer mechanisms were elucidated in A549 cells. From chemical libraries of 50 000 compounds, LGH00168 was identified as a CHOP activator, which showed cytotoxic activities against a panel of 9 cancer cell lines with an average IC 50 value of 3.26 μmol/L. Moreover, administration of LGH00168 significantly suppressed tumor growth in A549 xenograft bearing mice. LGH00168 activated CHOP promoter via AARE1 and AP1 elements, increased DR5 expression, decreased Bcl-2 expression, and inhibited the NF-κB pathway. Treatment of A549 cells with LGH00168 (10 μmol/L) did not induce apoptosis, but lead to RIP1-dependent necroptosis, accompanied by cell swelling, plasma membrane rupture, lysosomal membrane permeabilization, MMP collapse and caspase 8 inhibition. Furthermore, LGH00168 (10 and 20 μmol/L) dose-dependently induced mito-ROS production in A549 cells, which was reversed by the ROS scavenger N-acetyl-L-cysteine (NAC, 10 mmol/L). Moreover, NAC significantly diminished LGH00168-induced CHOP activation, NF-κB inhibition and necroptosis in A549 cells. LGH00168 is a CHOP activator that inhibits A549 cell growth in vitro and lung tumor growth in vivo.

  6. Circumvention of drug resistance in human non-small cell lung cancer in vitro by verapamil.

    Science.gov (United States)

    Merry, S; Courtney, E R; Fetherston, C A; Kaye, S B; Freshney, R I

    1987-10-01

    The sensitivity of 7 human non-small cell lung cancer cell lines to each of 7 cytotoxic drugs was determined. None of the cell lines used in these experiments had been previously exposed to cytotoxic drugs in vitro. A pattern of cross-resistance (P less than 0.05) between the drugs adriamycin (ADR), vincristine (VC) and etoposide (VP16) was noted similar to that seen in other models. The calcium antagonist verapamil (6.6 microM) was shown to increase sensitivity (up to 29-fold) to ADR, VC or VP16 in 5 cell lines. For 2 of the cell lines (A549 and WIL) 2.2 microM verapamil increased VP16 cytotoxicity (up to 4-fold). Drug accumulation studies in 2 cell lines (A549 and SK-MES-1) showed that 6.6 microM verapamil increased intracellular levels of VC up to 4-fold with the greatest increase seen in the cell line (SK-MES-1) for which verapamil produced the greatest increase in cytotoxicity (10-fold). For ADR and VP16 increases in drug accumulation were smaller (up to 1.6-fold). Our data support a potential clinical role for verapamil in overcoming cytotoxic drug resistance in human lung cancer.

  7. Oxymatrine inhibited cell proliferation by inducing apoptosis in human lung cancer A549 cells.

    Science.gov (United States)

    Wang, Baiyan; Han, Qianqian; Zhu, Yanqin

    2015-01-01

    To investigate the inhibition effect of oxymatrine induces human lung cancer A549 cells apoptosis. The A549 cells were cultured for 24 h, than the various concentration of oxymatrine (2 mmol/L, 4 mmol/L, 8 mmol/L, 15 mmol/L) were added into different experimental group cells, and 5-fluorouracil were added into the positive control group cells for 12 h, 24 h, 36 h, 48 h respectively. The A549 cells inhibition rate, apoptosis, and the expression of Bcl-2 and Bax were examined by MTT method, Annexin V/PI double staining method, real-time quantitative PCR and western blot, respectively. At same time, the morphological changes of A549 cells were observed with an inverted microscope. In the range of 2 mmol/L~15 mmol/L, oxymatrine had obvious inhibition effects on the proliferation of A549 cells. Compared with the negative control group, it has significantly different (PA549 cells were treated with 8 mmol/L oxymatrine for 24 h, the morphological change of cell apoptosis was observed and the extent of apoptosis was quantified by flow cytometry. Furthermore, the expression of Bcl-2 was reduced and the expression of Bax was increased remarkably (PA549 cells by regulating the expression of Bcl-2 and Bax.

  8. ITRAQ-Based Proteomics Analysis of Triptolide On Human A549 Lung Adenocarcinoma Cells.

    Science.gov (United States)

    Li, Fangqiong; Zhao, Dongxiao; Yang, Suwen; Wang, Juan; Liu, Qin; Jin, Xin; Wang, Wei

    2018-01-01

    Triptolide (TP) is a diterpenoid triepoxide extracted from the traditional Chinese medical herb Tripterygium wilfordii that exerts prominent broad-spectrum anticancer activity to repress proliferation and induce cancer cell apoptosis through various molecular pathways. We previously observed that TP inhibits the progression of A549 cells and pancreatic cancer cells (PNCA-1) in vitro. However, the complex molecular mechanism underlying the anticancer activity of TP is not well understood. To explore the molecular mechanisms by which TP induces lung cancer cell apoptosis, we investigated changes in the protein profile of A549 cells treated with TP using a proteomics approach (iTRAQ [isobaric tags for relative and absolute quantitation] combined with NanoLC-MS/MS [nano liquid chromatography-mass spectrometry]). Changes in the profiles of the expressed proteins were analyzed using the bioinformatics tools OmicsBean and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and were verified using western blotting. Apoptosis and cell cycle effects were analyzed using flow cytometry. TP induced apoptosis in A549 cells and blocked A549 cells at the G2/M phase. Using iTRAQ technology, we observed 312 differentially expressed proteins associated in networks and implicated in different KEGG pathways. Gene Ontology (GO) analysis showed the overviews of dysregulated proteins in the biological process (BP), cell component (CC), and molecular function (MF) categories. Moreover, some candidate proteins involved in PARP1/AIF and nuclear Akt signaling pathways or metastasis processes were validated by western blotting. TP exerted anti-tumor activity on non-small cell lung cancer (NSCLC) A549 lung adenocarcinoma cells by dysregulating tumor-related protein expression. Herein, we provide a preliminary study of TP-related cytotoxicity on A549 cells using proteomics tools. These findings may improve the current understanding of the anti-tumor effects of TP on lung cancer cells and may

  9. Anti-inflammatory effects of embelin in A549 cells and human asthmatic airway epithelial tissues.

    Science.gov (United States)

    Lee, In-Seung; Cho, Dong-Hyuk; Kim, Ki-Suk; Kim, Kang-Hoon; Park, Jiyoung; Kim, Yumi; Jung, Ji Hoon; Kim, Kwanil; Jung, Hee-Jae; Jang, Hyeung-Jin

    2018-02-01

    Allergic asthma is the most common type in asthma, which is defined as a chronic inflammatory disease of the lung. In this study, we investigated whether embelin (Emb), the major component of Ardisia japonica BL. (AJB), exhibits anti-inflammatory effects on allergic asthma via inhibition of NF-κB activity using A549 cells and asthmatic airway epithelial tissues. Inflammation was induced in A549 cells, a human airway epithelial cell line, by IL-1β (10 ng/ml) treatment for 4 h. The effects of Emb on NF-κB activity and COX-2 protein expression in inflamed airway epithelial cells and human asthmatic airway epithelial tissues were analyzed via western blot. The secretion levels of NF-κB-mediated cytokines/chemokines, including IL-4, 6, 9, 13, TNF-α and eotaxin, were measured by a multiplex assay. Emb significantly blocked NF-κB activity in IL-1β-treated A549 cells and human asthmatic airway epithelial tissues. COX-2 expression was also reduced in both IL-1β-treated A549 cells and asthmatic tissues Emb application. Emb significantly reduced the secretion of IL-4, IL-6 and eotaxin in human asthmatic airway epithelial tissues by inhibiting activity of NF-κB. The results of this study suggest that Emb may be used as an anti-inflammatory agent via inhibition of NF-κB and related cytokines.

  10. Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chunrong; Zheng, Haichong; He, Wanmei; Lu, Guifang; Li, Xia [Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080 (China); Deng, Yubin, E-mail: dengyub@mail.sysu.edu.cn [Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080 (China); Zeng, Mian, E-mail: zengmian2004@163.com [Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080 (China)

    2016-05-20

    Ghrelin is a gastric acyl-peptide that plays an inhibitory role in cell apoptosis. Herein we investigate the protective effects of ghrelin in LPS-induced apoptosis of human alveolar epithelial A549 cells, along with the possible molecular mechanisms. LPS exposure impaired cell viability and increased apoptosis of A549 cells significantly in concentration- and time-dependent manners embodied in increased Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Simultaneously, LPS remarkably decreased the expression of phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinas (ERK) in A549 cells. However, ghrelin'pretreatment ameliorated LPS-caused alterations in the ratio of Bax/Bcl-2 and cleaved caspase-3 expression, whereas activated the PI3K/Akt and ERK signaling. These results demonstrate that ghrelin lightens LPS-induced apoptosis of human alveolar epithelial cells partly through activating the PI3K/Akt and ERK pathway and thereby might benefit alleviating septic ALI. -- Graphical abstract: Ghrelin ameliorates the human alveolar epithelial A549 cells apoptosis induced by lipopolysaccharide partly through activating the PI3K/Akt and ERK pathway. Display Omitted -- Highlights: •It has been observed that LPS insult significantly increased apoptosis in A549 cells. •Both Akt and ERK signaling are critical adapter molecules to mediate the ghrelin-mediated proliferative effect. •Ghrelin may have a therapeutic effect in the prevention of LPS-induced apoptosis.

  11. Curcumin induced autophagy anticancer effects on human lung adenocarcinoma cell line A549.

    Science.gov (United States)

    Liu, Furong; Gao, Song; Yang, Yuxuan; Zhao, Xiaodan; Fan, Yameng; Ma, Wenxia; Yang, Danrong; Yang, Aimin; Yu, Yan

    2017-09-01

    To investigate the anticancer effects of curcumin-induced autophagy and its effects on the human lung adenocarcinoma A549 cell line, inverted phase contrast microscopy was used to observe alterations to the cytomorphology of cells. An MTT assay was used to measure cell viability. Autophagy was detected using acridine orange (AO) staining and 3-methyladenine (3-MA) was used as an autophagy-specific inhibitor. Dose- and time-dependent A549 cell viability inhibition was observed following curcumin treatment. A dose-dependent increase in the red fluorescent structures in A549 cells was identified following curcumin treatment for 48 h through AO staining. In addition, the activation of autophagy was determined through changes in the number of autophagic vesicles (AVs; fluorescent particles) infected with monodansylcadaverine (MDC). The fluorescence intensity and density of AVs in the curcumin-treated groups were higher at 48 h compared with the control group. Finally, the MTT assay demonstrated that the survival rates of the curcumin-treated cells were increased when pretreated with 3-MA for 3 h, indicating that the inhibitory effect of curcumin on A549 cells is reduced following the inhibition of autophagy. Furthermore, AO and MDC staining confirmed that 3-MA does inhibit the induction of autophagy. Thus, it was hypothesized that the induction of autophagy is partially involved in the reduction of cell viability observed following curcumin treatment. The anticancer effects of curcumin on A549 cells can be reduced using autophagy inhibitors. This suggests a possible cancer therapeutic application of curcumin through the activation of autophagy. These findings have improved the understanding of the mechanism underlying the anticancer property of curcumin.

  12. Human lung epithelial cells A549 epithelial-mesenchymal transition induced by PVA/Collagen nanofiber.

    Science.gov (United States)

    Li, Xiuchun; Yan, Shanshan; Dai, Jing; Lu, Yi; Wang, Yiqun; Sun, Man; Gong, Jinkang; Yao, Yuan

    2018-02-01

    Epithelial-mesenchymal transition (EMT) is a process by which epithelial cells lose their cell-cell contact to become mesenchymal stem cells, which is important on development and embryogenesis, wound healing, and cancer metastasis. This research aims to investigate the effect of topological cue as modulating factor on the EMT by tuning the diameter of electrospinning nanofiber. The cell-nanofiber interaction between human lung epithelial cell A549 and electrospinning nanofibers composed of polyvinyl alcohol (PVA) and type I collagen were investigated. The electrospinning of regenerated PVA/Collagen nanofibers were performed with water/acetic acid as a spinning solvent and glutaraldehyde as a chemical cross-linker. Parameterization on concentration, applied voltage and feeding rate was finalized to generate smooth nanofibers with good homogeneity. The scanning electron microscopy result demonstrated that A549 cell appropriately achieved extended morphology by the filopodia attaching to the surface of the nanofibrous mats. When the diameter changed from 90nm to 240nm, the A549 cell was correspondingly express varied EMT related genes. Gene expression analysis was conducted by qPCR using three typical markers for detecting EMT: N-cadherin (NCad), Vimentin (Vim), and Fibronectin (Fib). An increasing expression pattern was observed on cell culturing on 170nm sample with respect to cell cultured on 90nm and 240nm. This result indicated the 170nm PVA/Collagen nanofibers induce A549 cells to process epithelial-mesenchymal transition more seriously than those on 90nm or 240nm. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Melatonin inhibits the migration of human lung adenocarcinoma A549 cell lines involving JNK/MAPK pathway.

    Directory of Open Access Journals (Sweden)

    Qiaoyun Zhou

    Full Text Available OBJECTIVE: Melatonin, an indolamine produced and secreted predominately by the pineal gland, exhibits a variety of physiological functions, possesses antioxidant and antitumor properties. But, the mechanisms for the anti-cancer effects are unknown. The present study explored the effects of melatonin on the migration of human lung adenocarcinoma A549 cells and its mechanism. METHODS: MTT assay was employed to measure the viability of A549 cells treated with different concentrations of melatonin. The effect of melatonin on the migration of A549 cells was analyzed by wound healing assay. Occludin location was observed by immunofluorescence. The expression of occludin, osteopontin (OPN, myosin light chain kinase (MLCK and phosphorylation of myosin light chain (MLC, JNK were detected by western blots. RESULTS: After A549 cells were treated with melatonin, the viability and migration of the cells were inhibited significantly. The relative migration rate of A549 cells treated with melatonin was only about 20% at 24 h. The expression level of OPN, MLCK and phosphorylation of MLC of A549 cells were reduced, while the expression of occludin was conversely elevated, and occludin located on the cell surface was obviously increased. The phosphorylation status of JNK in A549 cells was also reduced when cells were treated by melatonin. CONCLUSIONS: Melatonin significantly inhibits the migration of A549 cells, and this may be associated with the down-regulation of the expression of OPN, MLCK, phosphorylation of MLC, and up-regulation of the expression of occludin involving JNK/MAPK pathway.

  14. [Effects of 17-AAG on the proliferation and apoptosis of human lung cancer A549 and H446 cells].

    Science.gov (United States)

    Niu, Ben; Lin, Jingshuang; Feng, Tao

    2015-04-01

    To observe the effect of 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) on the apoptosis of human lung cancer cell lines A549 and H446, and to investigate the potential mechanisms. Proliferation inhibition and apoptosis assays, and the cell cycles were detected by MTT and flow cytometry respectively. Western blot was used to determine the expression level of proteins such as Hsp90, Hsp70, AKt, Her-2, Bcl-2 and Bax. After treated with 17-AAG, the proliferation of both A549 and H446 cells was inhibited significantly in a dose-dependent manner; as the concentration of 17-AAG was from 50 to 500 nmol/L, the IC₅₀ values to A549 and H446 cell lines were (222 ± 13) nmol/L and (189 ± 7) nmol/L respectively at 48 h. Cell cycle assays showed that 17-AAG was able to arrest cell cycles of A549 and H446 cell lines at the G₂/M phase. Apoptosis assay showed that 17-AAG was capable of inducing apoptosis in A549 and H446 cell lines. After treated with 17-AAG for 48 h, there were significant differences between the 400 nmol/L groups(46.3% for A549 cell line and 56.9% for H446 cell line) and the control group (11.9% for A549 cell line and 6.9% for H446 cell line, P AAG treatment: Akt and Her-2 decreased significantly while the expression of Hsp70 increased. Meanwhile, the expression of Bcl-2 decreased but that of Bax increased, indicating that 17-AAG was able to promote apoptosis mode in A549 and H446 cells. 17-AAG can regulate the expression level of apoptosis-related proteins such as Bax and Bcl-2 by Hsp90 signaling pathway in A549 and H446 cells, and ultimately inhibit cell proliferation and induce apoptosis.

  15. Effects of retinoic acid-inducible gene-I-like receptors activations and ionizing radiation cotreatment on cytotoxicity against human non-small cell lung cancer in vitro.

    Science.gov (United States)

    Yoshino, Hironori; Iwabuchi, Miyu; Kazama, Yuka; Furukawa, Maho; Kashiwakura, Ikuo

    2018-04-01

    Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) are pattern-recognition receptors that recognize pathogen-associated molecular patterns and induce antiviral immune responses. Recent studies have demonstrated that RLR activation induces antitumor immunity and cytotoxicity against different types of cancer, including lung cancer. However a previous report has demonstrated that ionizing radiation exerts a limited effect on RLR in human monocytic cell-derived macrophages, suggesting that RLR agonists may be used as effective immunostimulants during radiation therapy. However, it is unclear whether ionizing radiation affects the cytotoxicity of RLR agonists against cancer cells. Therefore, in the present study the effects of cotreatment with ionizing radiation and RLR agonists on cytotoxicity against human non-small cell lung cancer cells A549 and H1299 was investigated. Treatment with RLR agonist poly(I:C)/LyoVec™ [poly(I:C)] exerted cytotoxic effects against human non-small cell lung cancer. The cytotoxic effects of poly(I:C) were enhanced by cotreatment with ionizing radiation, and poly(I:C) pretreatment resulted in the radiosensitization of non-small cell lung cancer. Furthermore, cotreatment of A549 and H1299 cells with poly(I:C) and ionizing radiation effectively induced apoptosis in a caspase-dependent manner compared with treatment with poly(I:C) or ionizing radiation alone. These results indicate that RLR agonists and ionizing radiation cotreatment effectively exert cytotoxic effects against human non-small cell lung cancer through caspase-mediated apoptosis.

  16. Cimicifuga foetida L. inhibited human respiratory syncytial virus in HEp-2 and A549 cell lines.

    Science.gov (United States)

    Wang, Kuo Chih; Chang, Jung San; Chiang, Lien Chai; Lin, Chun Ching

    2012-01-01

    Human respiratory syncytial virus (HRSV) causes serious pediatric infection of the lower respiratory tract without effective therapeutic modality. Sheng-Ma-Ge-Gen-Tang (SMGGT; Shoma-kakkon-to) has been proven to be effective at inhibiting HRSV-induced plaque formation, and Cimicifuga foetida is the major constituent of SMGGT. We tested the hypothesis that C. foetida effectively inhibited the cytopathic effects of HRSV by a plaque reduction assay in both human upper (HEp2) and lower (A549) respiratory tract cell lines. Its ability to stimulate anti-viral cytokines was evaluated by an enzyme-linked immunosorbent assay (ELISA). C. foetida dose-dependently inhibited HRSV-induced plaque formation (p < 0.0001) before and after viral inoculation, especially in A549 cells (p < 0.0001). C. foetida dose-dependently inhibited viral attachment (p < 0.0001) and could increase heparins effect on viral attachment. In addition, C. foetida time-dependently and dose-dependently (p < 0.0001) inhibited HRSV internalization. C. foetida could stimulate epithelial cells to secrete IFN-β to counteract viral infection. However, C. foetida did not stimulate TNF-α secretion. Therefore, C. foetida could be useful in managing HRSV infection. This is the first evidence to support that C. foetida possesses antiviral activity.

  17. Ten-eleven translocation 1 functions as a mediator of SOD3 expression in human lung cancer A549 cells.

    Science.gov (United States)

    Kamiya, Tetsuro; Nakahara, Risa; Mori, Namiki; Hara, Hirokazu; Adachi, Tetsuo

    2017-03-01

    Superoxide dismutase (SOD) 3, one of the SOD isozymes, plays a pivotal role in extracellular redox homeostasis. The expression of SOD3 is regulated by epigenetics in human lung cancer A549 cells and human monocytic THP-1 cells; however, the molecular mechanisms governing SOD3 expression have not been elucidated in detail. Ten-eleven translocation (TET), a dioxygenase of 5-methylcytosine (5mC), plays a central role in DNA demethylation processes and induces target gene expression. In the present study, TET1 expression was abundant in U937 cells, but its expression was weakly expressed in A549 and THP-1 cells. These results are consistent with the expression pattern of SOD3 and its DNA methylation status in these cells. Moreover, above relationship was also observed in human breast cancer cells, human prostate cancer cells, and human skin fibroblasts. The overexpression of TET1-catalytic domain (TET1-CD) induced the expression of SOD3 in A549 cells, and this was accompanied by the direct binding of TET1-CD to the SOD3 promoter region. Furthermore, in TET1-CD-transfected A549 cells, the level of 5-hydroxymethylcytosine within that region was significantly increased, whereas the level of 5mC was decreased. The results of the present study demonstrate that TET1 might function as one of the key molecules in SOD3 expression through its 5mC hydroxylation in A549 cells.

  18. Effect of inhibition proliferation in human lung adenocarcinoma A549 cells by cytokine-induced killer cells.

    Science.gov (United States)

    Li, Dengrui; Guo, Sumin; Li, Hui; Zhu, Guiyun; Gao, Li; Xin, Xin; Yan, Dandan; Li, Xiuwu; Geng, Shujun; Hou, Hongwei; Yang, Yonghui

    2015-07-01

    Adenocarcinoma, the most common form of lung cancer, is one of main human malignant tumors. In this paper, we focus on the effect of antitumor activity of cytokine-induced killer (CIK) cells on human lung adenocarcinoma cell line A549. CIK cells were obtained by inducing peripheral blood mononuclear cells with recombinant human (rh) interferon-gamma, monoclonal anti-CD3 antibody, rh interleukin (IL)-1alpha, and rhIL-2, which were added into the culture. A549 cell viability of CIK cells was determined using MTS assay. Flow cytometry (FCM) experiments were performed to detect cell cycle changes. The expression of P27 in A549 cells treated by CIK cells was evaluated by Western blot. The percentage of CD3+CD16+CD56+ T cells in a representative peripheral blood mononucleated cell sample was 33.7 ± 1.3%. CIK cells, in dose and time dependent manners, inhibited the proliferation of A549. FCM demonstrated that A549 cells were accumulated in G2/M and G0/G1 phases when treated with CIK cells. FCM was used to analyze whether A549 cells treated with CIK cells induced apotosis or necrosis at 10:1 or 20:1. Compared to the control group, P27 was prominently upregulated in the CIK treated group. We propose that the pharmacological mechanisms of A549 cells inhibited by CIK cells can be estimated to possibly elicit different biological significance, which, in part, can be ascribed to a different mass transport rate in vitro.

  19. Phenotypic modification of human glioma and non-small cell lung carcinoma by glucocorticoids and other agents.

    Science.gov (United States)

    McLean, J S; Frame, M C; Freshney, R I; Vaughan, P F; Mackie, A E; Singer, I

    1986-01-01

    Glucocorticoids are cytostatic for human glioma grown at a high cell density in cell culture. The effect is not cytotoxic, appears to involve a modification of the cell surface, and has been detected with methyl prednisolone, dexamethasone, and beta-methasone. Glucocorticoids were also found to reduce malignancy-associated properties (plasminogen activator and endothelial mitogenesis) and enhance differentiation (glutamyl synthetase activity and high affinity GABA uptake). Cytostasis was also seen at high cell densities in non-small cell lung carcinoma with a concomitant reduction in plasminogen activator activity and endothelial mitogenesis. Preliminary data on surfactant production in A549 cells suggests that the repression of malignancy-associated properties is accompanied by an increase in cell differentiation. Treatment of the WIL adenocarcinoma gown as a xenograft in nude mice caused total cessation of growth and massive central necrosis in the tumor.

  20. Decrease in paracellular permeability and chemosensitivity to doxorubicin by claudin-1 in spheroid culture models of human lung adenocarcinoma A549 cells.

    Science.gov (United States)

    Akizuki, Risa; Maruhashi, Ryohei; Eguchi, Hiroaki; Kitabatake, Kazuki; Tsukimoto, Mitsutoshi; Furuta, Takumi; Matsunaga, Toshiyuki; Endo, Satoshi; Ikari, Akira

    2018-03-07

    Chemotherapy resistance is a major problem in the treatment of cancer, but the underlying mechanisms are not fully understood. We found that the expression levels of claudin-1 (CLDN1) and 3, tight junctional proteins, are upregulated in cisplatin (CDDP)-resistant human lung adenocarcinoma A549 (A549R) cells. A549R cells showed cross-resistance to doxorubicin (DXR). Here, the expression mechanism and function of CLDN1 and 3 were examined. CLDN1 and 3 were mainly localized at tight junctions concomitant with zonula occludens (ZO)-1, a scaffolding protein, in A549 and A549R cells. The phosphorylation levels of Src, MEK, ERK, c-Fos, and Akt in A549R cells were higher than those in A549 cells. The expression levels of CLDN1 and 3 were decreased by LY-294002, a phosphoinositide 3-kinase (PI3K) inhibitor, and BAY 11-7082, an NF-κB inhibitor. The overexpression of CLDN1 and 3 decreased the paracellular permeability of DXR in A549 cells. Hypoxia levels in A549R and CLDN1-overexpressing cells (CLDN1/A549) were greater than those in A549, mock/A549, and CLDN3/A549 cells in a spheroid culture model. In contrast, accumulation in the region inside the spheroids and the toxicity of DXR in A549R and CLDN1/A549 cells were lower than those in other cells. Furthermore, the accumulation and toxicity of DXR were rescued by CLDN1 siRNA in A549R cells. We suggest that CLDN1 is upregulated by CDDP resistance through activation of a PI3K/Akt/NF-κB pathway, resulting in the inhibition of penetration of anticancer drugs into the inner area of spheroids. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Genistein inhibits A549 human lung cancer cell proliferation via miR-27a and MET signaling.

    Science.gov (United States)

    Yang, Yang; Zang, Aimin; Jia, Youchao; Shang, Yanhong; Zhang, Zhuoqi; Ge, Kun; Zhang, Jinchao; Fan, Wufang; Wang, Bei

    2016-09-01

    Genistein is a soybean isoflavone; in its aglycone it has various biological activities. Animal experiments, clinical studies and epidemiological investigations suggest that genistein has preventative and curative functions for a number of diseases, particularly in cancer. The present study explored the potential anti-cancer effect of genistein by observing its role in inhibiting A549 human lung cancer cell proliferation and investigating the possible mechanism. A549 cells were exposed to various concentrations of genistein (0, 10, 25, 50, 100 and 200 µM; dissolved in physiological saline) for 1, 2 and 3 days. Subsequently, the viability of A549 cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell apoptosis was examined using a flow cytometer, caspase 3/9 activity was measured using commercial kits, reverse transcription quantitative polymerase chain reaction was used to analyze the miR-27a expression and western blotting was used to investigate MET protein expression. The results suggested a significant inhibition of A549 cell growth following treatment with genistein in a time- and dose-dependent manner. The current study also indicated that treatment with genistein significantly induces cell apoptosis and promotes caspase-3/9 activation of A549 cells in a dose-dependent manner. Further functional assays revealed that the anti-cancer effect of genistein activated microRNA-27a (miR-27a) expression levels and reduced MET protein expression in A549 cells. In conclusion, the present study demonstrates that genistein inhibits A549 human lung cancer cell proliferation. Furthermore, this study reports, for the first time, a correlation between the anti-cancer effect of genistein and miR-27a-mediated MET signaling.

  2. Antitumor activity of cobrotoxin in human lung adenocarcinoma A549 cells and following transplantation in nude mice.

    Science.gov (United States)

    Shen, Jian; Xie, Yan; Sun, Mei-Lin; Han, Rong; Qin, Zheng-Hong; He, Jing-Kang

    2014-11-01

    The aim of the present study was to investigate cobra neurotoxin (cobrotoxin) activity in A549 cell lines transplanted into nude mice, and to explore its molecular mechanism. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was used to detect the growth inhibition rate of cobrotoxin in human lung A549 adenocarcinoma cells and HFL1 lung fibroblasts. Cell colony formation assays were performed to determine the effect of cobrotoxin on A549 cell colony formation, and transmission electron microscopy was used to detect cobrotoxin autophagy. In addition, western blot analysis was performed to determine the effect of 3-methyl adenine (3-MA) activity on the inhibition of autophagy, SB203580 inhibition of the p38-mitogen-activated protein kinase (MAPK) pathway, and Beclin 1, LC3, p62, p38 and phosphorylated (p)-p38 protein expression. Nude mice were injected with human lung A549 cells, and intervention and control groups were compared with regard to tumor suppression. The MTT assay revealed that various concentrations of cobrotoxin inhibited growth of A549 cells, but not HFL1 cells. A549 cell colony formation decreased and autophagosome activity was significantly increased compared with the controls. Following 3-MA administration, SB203580 autophagosome activity decreased, and following cobrotoxin administration, Beclin 1, p-p38, and LC3-II protein expression significantly increased, whereas p62 expression significantly decreased. Following 3-MA inhibition of autophagy, Beclin 1, LC3-II and p62 expression increased. Furthermore, following SB203580 inhibition of the p38-MAPK pathway, Beclin 1, p-p38, LC3-II and p62 protein expression increased. Cobrotoxin exhibited inhibitory activity on the human lung cancer A549 cells transplanted into the nude mice, suppressing the tumor growth rate by 43.4% (cobrotoxin 40 μg/kg group). However, following the addition of 3-MA (10 mmol/kg) and SB203580 (5 mg/kg), the suppression of the tumor growth rate

  3. Effects of X-ray irradiation on expression of Pokemon gene in A549 cells of human lung adenocarcinoma

    International Nuclear Information System (INIS)

    Wang Lu; Zou Yue; Jiang Qisheng; Li Wei; Song Xiujun; Zhou Xiangyan; Wang Cuilan

    2011-01-01

    Objective: To study the dose-and time-effects of X-ray irradiation on the expression of Pokemon gene in A549 cells of human lung adenocarcinoma. Methods: A549 cells were cultured in vitro and exposed to X-rays with the doses of 2, 4, 6 and 8 Gy, respectively. Untreated A549 cells were used as control group. The relative levels of Pokemon mRNA expression in the cells were detected by using quantitative real-time PCR at 2, 4, 8, 12, 24, 48 and 72 h after irradiation. Results: The Pokemon mRNA expression levels decreased in the early period after irradiation (except 2 and 4 h after irradiation in 2 Gy group) and then increased in the later stage (48 h after irradiation) with significant statistical differences at the most time points in comparison with the control group (t=3.40-154.76, P<0.05). Conclusions: Higher doses of X-rays may degrade the expression of Pokemon mRNA in the human A549 cells and induce apoptosis in the early period, hut also may upgrade its expression in the later period, which might be correlated with the cell cycle regulation and DNA damage repair in the A549 cells. (authors)

  4. Jolkinolide A and Jolkinolide B Inhibit Proliferation of A549 Cells and Activity of Human Umbilical Vein Endothelial Cells.

    Science.gov (United States)

    Shen, Lei; Zhang, Shan-Qiang; Liu, Lei; Sun, Yu; Wu, Yu-Xuan; Xie, Li-Ping; Liu, Ji-Cheng

    2017-01-14

    BACKGROUND Jolkinolide A (JA) and Jolkinolide B (JB) are diterpenoids extracted from the roots of Euphorbia fischeriana Steud and have been shown to have anti-tumor activity. However, their effects on the ability of tumor cells to invade blood vessels and metastasize remain largely unknown. Investigations into the effects of JA and JB on the angiogenesis of tumor tissues may facilitate the identification of new natural drugs with anti-tumor growth and metastasis activities. MATERIAL AND METHODS We used different concentrations of JA and JB (20 μg/ml, 40 μg/ml, 60 μg/ml, 80 μg/ml, and 100 μg/ml) to stimulate A549 cells and then studied the effects on the growth and metastasis of lung cancers. In addition, we used conditional media from A549 cells (A549-CM) stimulated by either JA or JB in different concentrations to culture human umbilical vein endothelial cells (HUVECs). RESULTS We found that both JA and JB significantly inhibited the Akt-STAT3-mTOR signaling pathway and reduced the expression of VEGF in A549 cells, but JB exhibited more significant inhibitory effects than JA. The JB-stimulated A549 cell conditional media had a greater inhibitory effect on the proliferation and migration of HUVECs than did the conditional media of JA-stimulated A549 cells. This effect gradually increased with increasing concentrations of either type of Jolkinolide. CONCLUSIONS Our results suggest that JA and JB inhibited VEGF expression in A549 cells through the inhibition of the Akt-STAT3-mTOR signaling pathway, and directly inhibited the proliferation and migration of HUVECs. These findings are of great significance for the development of new plant-derived chemotherapy agents for the treatment of cancer.

  5. Combined toxic effect of airborne heavy metals on human lung cell line A549.

    Science.gov (United States)

    Choi, Yeowool; Park, Kihong; Kim, Injeong; Kim, Sang D

    2018-02-01

    Many studies have demonstrated that heavy metals existing as a mixture in the atmospheric environment cause adverse effects on human health and are important key factors of cytotoxicity; however, little investigation has been conducted on a toxicological study of a metal mixture from atmospheric fine particulate matter. The objective of this study was to predict the combined effects of heavy metals in aerosol by using in vitro human cells and obtain a suitable mixture toxicity model. Arsenic, nickel, and lead were selected for mixtures exposed to A549 human lung cancer cells. Cell proliferation (WST-1), glutathione (GSH), and interleukin (IL)-8 inhibition were observed and applied to the prediction models of mixture toxicity, concentration addition (CA) and independent action (IA). The total mixture concentrations were set by an IC 10 -fixed ratio of individual toxicity to be more realistic for mortality and enzyme inhibition tests. The results showed that the IA model was statistically closer to the observed results than the CA model in mortality, indicating dissimilar modes of action. For the GSH inhibition, the results predicted by the IA and CA models were highly overestimated relative to mortality. Meanwhile, the IL-8 results were stable with no significant change in immune reaction related to inflammation. In conclusion, the IA model is a rapid prediction model in heavy metals mixtures; mortality, as a total outcome of cell response, is a good tool for demonstrating the combined toxicity rather than other biochemical responses.

  6. Breviscapine suppresses the growth of non-small cell lung cancer ...

    Indian Academy of Sciences (India)

    Breviscapine (BVP) has previously been shown to inhibit the proliferation of hepatocellular carcinoma cells.However, little is known about the effects of BVP on non-small cell lung cancer (NSCLC) growth. Here, we aimedto study the effects of BVP on human NSCLC growth. We employed A549, NCL-H460 and A549 cells ...

  7. Inhibition of heme oxygenase-1 enhances the radiosensitivity in human nonsmall cell lung cancer a549 cells.

    Science.gov (United States)

    Zhang, Wenyi; Qiao, Tiankui; Zha, Lin

    2011-10-01

    Abstract undergoing radiotherapy or chemotherapy failed to respond. The aim of this study was to evaluate whether Inhibitor of HO-1, zinc protoporphyrin IX (Znpp), enhances the radiosensitivity in human nonsmall cell lung cancer (NSCLC) A549 Cells. A549 cells were induced by Znpp and irradiated by X-rays. Then, expression of HO-1 was measured by real-time polymerase chain reaction. Cell survival was evaluated using the MTS assay and the clonogenic survival assay; apoptosis and cell cycle distribution were monitored by flow cytometry. First, overexpression of the HO-1 mRNA was found in treatment with irradiation alone in A549 cells, and expression of the HO-1 mRNA was reduced after combined treatments with 12 μmol/L of Znpp and irradiation. Second, diminished cell viability percentage, decreased cell clonogenic survival fraction, enhanced cell apoptotic index, and increased percentage of cells in the G1 phase were found after combined treatments with 12 μmol/L of Znpp and irradiation compared to either treatment alone (pZnpp, can increase the radiosensitivity of human NSCLC A549 cells.

  8. AMPK is required for PM2.5-induced autophagy in human lung epithelial A549 cells

    Science.gov (United States)

    Wang, Yahong; Lin, Ziying; Huang, Haili; He, Huijuan; Yang, Lawei; Chen, Ting; Yang, Teng; Ren, Nina; Jiang, Yun; Xu, Wenya; Kamp, David W; Liu, Tie; Liu, Gang

    2015-01-01

    The aim is to investigate the molecular mechanisms underlying the PM2.5-induced autophagy in human lung cancer epithelial cells (A549). The effects of the PM2.5 on morphological and biochemical markers of autophagy in A549 were analyzed by electron microscopy, GFP-LC3 puncta was observed by confocal fluorescence microscope. The effects of phosphorylation of AMPK, mTOR, AKT, ERK, JNK, and p53 on LC3II in A549 were observed following PM2.5 exposure; the role of autophagy in PM2.5-induced apoptosis was examined using 3-methyladenine and rapamycin. PM2.5 induced morphological and biochemical markers of autophagy in A549. Phosphorylation of AMPK and dephosphorylation of mTOR were observed following PM2.5 treatment, and AMPK inhibitor blocked LC3B-II expression. In addition, we demonstrated that PM2.5-induced autophagy confers a pro-survival role in host defense. PMID:25784975

  9. Human papillomavirus type 16 E6 oncoprotein promotes proliferation and invasion of non-small cell lung cancer cells through Toll-like receptor 3 signaling pathway.

    Science.gov (United States)

    Wang, Xia; Zhang, Zhiqiang; Cao, Huimin; Niu, Wenyi; Li, Mingying; Xi, Xiu'e; Wang, Jing

    2017-10-01

    Human papillomavirus (HPV) oncoproteins play vital roles in non-small cell lung cancer (NSCLC) pathogenesis, and Toll-like receptors (TLRs) contribute to tumor progression. However, interaction between HPV oncoproteins and TLR signaling in NSCLC progression remains unclear. Thus, the aim of the study was to explore effects of HPV16 E6 oncoprotein-induced TLRs pathway on growth and invasion of NSCLC cells and to examine potential mechanisms being involved. Recombinant plasmid (pcDNA-HPV16 E6) expressing HPV16 E6 protein was constructed. The expression prolife of TLRs was measured in NSCLC cell line A549 with or without pcDNA-HPV16 E6 transfection by real-time reverse polymerase chain reaction and Western blot. Cellular proliferation, invasion, cytokine productions, and downstream signaling pathways were also examined in TLR3-silencing/pcDNA-HPV16 E6 transfect A549 cells. Overexpression of HPV16 E6 increased proliferation, invasion, proliferation cytokine secretion, and TLR3 expression of A549 cells, while TLR3 silence inhibited HPV16 E6-induced tumor bioactivities of A549 cells. Down-regulation of TLR3 suppressed HPV16 E6-induced phosphorylation of Src, but did not affect TRIF expression. Moreover, inhibition of Src pathway also suppressed proliferation and invasion of A549 cells. In conclusion, HPV16 E6 oncoprotein promoted the bioactivities of NSCLC cells. TLR3-Src signaling pathway might be involved in this procession by up-regulation of cytokine production. The interaction between HPV16 E6 protein and TLR3 might contribute to the poor prognosis of NSCLC. © 2017 Wiley Periodicals, Inc.

  10. Doxycycline decreases production of interleukin-8 in a549 human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Hoyt JC

    2013-03-01

    Full Text Available Doxycycline is an antibiotic that possess anti-inflammatory properties. These anti-inflammatory properties make doxycycline an attractive candidate for possible treatments for a variety of common chronic obstructive airway diseases. Interleukin-8 (IL-8 is a major inflammatory chemokine and a powerful chemo-attractant for both neutrophils and monocytes. We hypothesized that doxycycline might exert its anti-inflammatory effects, at least in part, by modulating IL-8 production. To test this hypothesis, A549 human lung epithelial cells were stimulated with cytomix (IL-1beta, TNF-alpha and gamma-IFN in the presence or absence of varying concentrations of doxycycline. Doxycycline decreased IL-8 protein production in a concentration- and time-dependent manner. In the presence of 30 microg/ml doxycycline IL-8 protein production was decreased by 63% through out a 30 hr time course. In chemotaxis assays monocyte and neutrophil migration was decreased by 55% and 57% respectively. Reverse transcriptase-polymerase chain reaction (RT-PCR experiments suggest that doxycycline does not decrease expression of IL-8 mRNA and that use of the RNA polymerase II inhibitor DRB indicates that doxycycline does not effect stability of this mRNA. In the presence of doxycycline p38-alpha mitogen-activated protein kinase (MAPK expression is decreased by 36% in cytomix-stimulated cells. These data demonstrate that doxycycline can modulate IL-8 release and suggest that it has potential as an anti-inflammatory in those disorders where IL-8 is an important inflammatory mediator.

  11. [Effect of Nm23-H1 Nuclear Localization on Proliferation of 
Human Lung Adenocarcinoma Cell Line A549].

    Science.gov (United States)

    Sheng, Ya; Xiong, Yanli; Xu, Mingfang; Kuang, Xunjie; Wang, Dong; Yang, Xueqin

    2017-04-20

    Recent studies have indicated that Nm23-H1 is found in the nucleus, but previous studies have been based on the overexpression or suppression of Nm23-H1 in the cytoplasm. Due to the lacking nuclear localization signal of Nm23-H1, these results cannot reflect or repeat cells in which Nm23-H1 mainly positioned in nuclei and whether they cause clinical biological effects. Therefore, to explore the effects of transposing Nm23-H1 from the cytoplasm to the nucleus during lung cancer cell proliferation, a vector with a nuclear localization signal of Nm23-H1 was constructed and A549 cells were transfected. Gene recombination technology was used to construct pLentis-CMV-NME1-IRES2-PURO lentiviral vectors using a nuclear localization signal sequence, and the recombinant plasmid was verified using restriction enzyme analysis and sequencing. Nm23-H1 positioning and expression were performed after the stably transfected A549 cells were assessed by Western blot and confocal laser scanning microscope. The A549 cell proliferation was assessed using a cell counting kit-8. Flow cytometry was performed to assess the cell cycle distribution of A549 cells. The directional Nm23-H1 lentiviral vector was successfully constructed within the nucleus. Compared with that of the empty vector group, the proliferation rates of the transfection groups at 72 h, 96 h, and 120 h were remarkably increased (PA549 cells in the G0/G1 phase proportion was 35.69%, which was higher than the 28.28% of the transfection group (t=1.461, P=0.217); furthermore, the transfection group of A549 cells in the G2/M phase proportion was 58.7% and that of the empty vector group was 31.30% (t=4.560, P=0.010). Human lung adenocarcinoma cell line A549 cells of Nm23-H1 nuclear localized mainly in the G2/M phase and the nuclear Nm23-H1 promoted A549 cell proliferation in vitro.

  12. Effects of RNAi-mediated TUSC3 silencing on radiation-induced autophagy and radiation sensitivity of human lung adenocarcinoma cell line A549 under hypoxic condition.

    Science.gov (United States)

    Li, Ya-Guang; Liang, Nai-Xin; Qin, Ying-Zhi; Ma, Dong-Jie; Huang, Chang-Jin; Liu, Lei; Li, Shan-Qing

    2016-11-30

    This study examined the effects of RNAi-mediated TUSC3 silencing on radiation-induced autophagy and radiation sensitivity of human lung adenocarcinoma cell line A549 under hypoxic condition. Different CoCl 2 concentrations were used to treat A549 cells and establish a CoCl 2 -induced hypoxic model of A549 cells. MTT and clone formation assays were used to determine the effects of different concentrations of CoCl 2 on the growth and proliferation of A549 cells treated by different doses of X-ray irradiation. The siRNA-expressing vector was transfected by liposomes and for silencing of TUSC3. Flow cytometry was used to measure cell cycle changes and apoptosis rate. Real-time quantitative polymerase chain reaction (qRT-PCR) assay was performed to detect the expression of TUSC3 mRNA. Western blotting was applied to detect the changes of TUSC3, LC3, and p62 proteins under different CoCl 2 concentrations and after siRNA silencing of TUSC3. The TUSC3 levels in A549 cells increased under hypoxic conditions in a dose-dependent manner (P A549 cells and promoted apoptosis (P A549 cells showed significantly increased growth and proliferation and decreased apoptosis (P A549 cell growth and proliferation after radiotherapy under hypoxic condition, promoted apoptosis, increased G0/G1 phase cells, and reduced S phase cells (all P A549 lung adenocarcinoma cells.

  13. Oxidative stress and inflammatory response to printer toner particles in human epithelial A549 lung cells.

    Science.gov (United States)

    Könczöl, Mathias; Weiß, Adilka; Gminski, Richard; Merfort, Irmgard; Mersch-Sundermann, Volker

    2013-02-04

    Reports on adverse health effects related to occupational exposure to toner powder are still inconclusive. Therefore, we have previously conducted an in vitro-study to characterize the genotoxic potential of three commercially available black printer toner powders in A549 lung cells. In these cell-based assays it was clearly demonstrated that the tested toner powders damage DNA and induce micronucleus (MN) formation. Here, we have studied the cytotoxic and proinflammatory potential of these three types of printer toner particles and the influence of ROS and NF-κB induction in order to unravel the underlying mechanisms. A549 cells were exposed to various concentrations of printer toner particle suspensions for 24 h. The toner particles were observed to exert significant cytotoxic effects in the WST-1 and neutral red (NR)-assays, although to a varying extent. Caspase 3/7 activity increased, while the mitochondrial membrane potential (MMP) was not affected. Particles of all three printer toner powders induced concentration-dependent formation of reactive oxygen species (ROS), as measured in the DCFH-DA assay. Furthermore, toner particle exposure enhanced interleukin-6 and interleukin-8 production, which is in agreement with activation of the transcription factor NF-κB in A549 cells shown by the electrophoretic mobility shift assay (EMSA). Therefore, it can be concluded that exposure of A549 lung cells to three selected printer toner powders caused oxidative stress through induction of ROS. Increased ROS formation may trigger genotoxic effects and activate proinflammatory pathways. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Oxidative stress induced apoptosis of human lung carcinoma (A549) cells by a novel copper nanorod formulation.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Valodkar, Mayur; Nagar, Padamanabhi S; Devkar, Ranjitsinh V; Thakore, Sonal

    2011-11-01

    This study elucidates the process of synthesis of copper (Cu) nanorods using almond skin extract as stabilizing cum capping agent. These nanorods were (about 200 nm long and 40 nm wide) characterized by transmission electron microscopy (TEM). Further, cytotoxicity potential of these nanorods was evaluated in A549 cells (Human lung carcinoma cell line) via cell viability assay and extracellular lactate dehydrogenase (LDH) release. Also, reduced glutathione (GSH), lipid peroxidation (LPO), cellular oxidative stress (Rhodamine 123 florescence) and apoptosis (Annexin V FITC/Propidium iodide staining) were also investigated in control and treated cells. Results indicated that Cu nanorods induced apoptotic death of cancer cells by induction of oxidative stress, depletion of cellular antioxidants and mitochondrial dysfunction. This study reports a novel process of synthesis of almond skin extract capped Cu nanorods and its potential as an anticancer agent against A549 lung carcinoma cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Cardenolide-Induced Lysosomal Membrane Permeabilization Demonstrates Therapeutic Benefits in Experimental Human Non-Small Cell Lung Cancers

    Directory of Open Access Journals (Sweden)

    Tatjana Mijatovic

    2006-05-01

    Full Text Available Non-small cell lung cancers (NSCLCs are the leading cause of cancer deaths in most developed countries. Targeting heat shock protein 70 (Hsp70 expression and function, together with the induction of lysosomal membrane permeabilization (LMP, could overcome the multiple anti-cell death mechanisms evidenced in NSCLCs that are responsible for the failure of currently used chemotherapeutic drugs. Because cardenolides bind to the sodium pump, they affect multiple signaling pathways and thus have a number of marked effects on tumor cell behavior. The aim of the present study was to characterize in vitro and in vivo the antitumor effects of a new cardenolide (UNBS1450 on experimental human NSCLCs. UNBS1450 is a potent source of in vivo antitumor activity in the case of paclitaxeland oxaliplatin-resistant subcutaneous human NCIH727 and orthotopic A549 xenografts in nude mice. In vitro UNBS1450-mediated antitumor activity results from the induction of nonapoptotic cell death. UNBS1450 mediates the decrease of Hsp70 at both mRNA and protein levels, and this is at least partly due to UNBS1450-induced downregulation of NFAT5/ TonEBP (a factor responsible for the transcriptional control of Hsp70. These effects were paralleled by the induction of LMP, as evidenced by acridine orange staining and immunofluorescence analysis for cathepsin B accumulation.

  16. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    Directory of Open Access Journals (Sweden)

    Hiroshi Kondo

    2015-01-01

    Full Text Available Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12 were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC, an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5, an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1 expression levels were enhanced. After treatment with dexamethasone (DEX, 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP, 3-isobutyl-1-methylxanthine (IBMX, and keratinocyte growth factor (KGF, surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.

  17. Genomic signature and toxicogenomics comparison of polycationic gene delivery nanosystems in human alveolar epithelial A549 cells

    Directory of Open Access Journals (Sweden)

    J Barar

    2009-10-01

    Full Text Available "nBackground and the purpose of the study: Of the gene delivery systems, non-viral polycationic gene delivery nanosystems have been alternatively exploited as a relatively safe delivery reagents compared to viral vectors. However, little is known about the genomic impacts of these delivery systems in target cells/tissues. In this study, the toxicogenomics and genotoxicity potential of some selected polycationic lipid/polymer based nanostructures (i.e., Oligofectamine® (OF, starburst polyamidoamine Polyfect® (PF and diaminobutane (DAB dendrimers were investigated in human alveolar epithelial A549 cells. "nMethods: To study the nature and the ontology of the gene expression changes in A549 cells upon treatment with polycationic nanostructures, MTT assay and microarray gene expression profiling methodology were employed. For microarray analysis, cyanine (Cy3/Cy5 labeled cDNA samples from treated and untreated cells were hybridized on target arrays housing 200 genes. "nResults and major conclusions: The polycationic nanosystems induced significant gene expression changes belonging to different genomic ontologies such as cell defence and apoptosis pathways. These data suggest that polycationic nanosystems can elicit multiple gene expression changes in A549 cells upon their chemical structures and interactions with cellular/subcellular components. Such impacts may interfere with the main goals of the desired genemedicine.

  18. Vitamin D Analogs Potentiate the Antitumor Effect of Imatinib Mesylate in a Human A549 Lung Tumor Model

    Science.gov (United States)

    Maj, Ewa; Filip-Psurska, Beata; Świtalska, Marta; Kutner, Andrzej; Wietrzyk, Joanna

    2015-01-01

    In previous papers, we presented data on studies on the anticancer activity of the vitamin D3 analogs, named PRI-2191 and PRI-2205, in different cancer models. In this study, we showed the improved antiproliferative activity of a combination of imatinib mesylate (Gleevec, GV) and cytostatic agents in in vitro studies, when used with a third compound, namely PRI-2191, in an A549 human lung cancer model. Furthermore, we analyzed the influence of both PRI-2191, as well as PRI-2205 on the anticancer activity of GV in mice bearing A549 tumors. The route of PRI-2191 analog administration showed a significant impact on the outcome of GV treatment: subcutaneous injection was more efficient and less toxic than oral gavage. Moreover, both vitamin D compounds increased the anticancer activity of GV; however, they might also potentiate some adverse effects. We also evaluated in tumor tissue the expression of VEGF, PDGF-BB, vitamin D receptor, CYP27B1, CYP24, p53 and Bcl-2, as well as PDGF receptors: α and β. We observed the upregulation of p53 expression and the downregulation of Bcl-2, as well as VEGF in A549 tumors as a result of the tested treatment. However, vitamin D analogs did not significantly influence the expression of these proteins. PMID:26580599

  19. Preclinical PK/PD model for combined administration of erlotinib and sunitinib in the treatment of A549 human NSCLC xenograft mice.

    Science.gov (United States)

    Li, Jing-Yun; Ren, Yu-Peng; Yuan, Yin; Ji, Shuang-Min; Zhou, Shu-Pei; Wang, Li-Jie; Mou, Zhen-Zhen; Li, Liang; Lu, Wei; Zhou, Tian-Yan

    2016-07-01

    Combined therapy of EGFR TKI and VEGFR TKI may produce a greater therapeutic benefit and overcome EGFR TKI-induced resistance. However, a previous study shows that a combination of EGFR TKI erlotinib (ER) with VEGFR TKI sunitinib (SU) did not improve the overall survival in patients with non-small-cell lung cancer (NSCLC). In this study we examined the anticancer effect of ER, SU and their combination in the treatment of A549 human NSCLC xenograft mice, and conducted PK/PD modeling and simulations to optimize the dose regimen. ER (20, 50 mg·kg(-1)·d(-1)) or SU (5, 10, 20 mg·kg(-1)·d(-1)) alone, or their combination were administered to BALB/c nude mice bearing A549 tumors for 22 days. The tumor size and body weight were recorded daily. The experimental data were used to develop PK/PD models describing the quantitative relationship between the plasma concentrations and tumor suppression in different dose regimens. The models were further evaluated and validated, and used to predict the efficacy of different combination regimens and to select the optimal regimen. The in vivo anticancer efficacy of the combination groups was much stronger than that of either drug administered alone. A PK/PD model was developed with a combination index (φ) of 4.4, revealing a strong synergistic effect between ER and SU. The model simulation predicted the tumor growth in different dosage regimens, and showed that the dose of SU played a decisive role in the combination treatment, and suggested that a lower dose of ER (≤5 mg·kg(-1)·d(-1)) and adjusting the dose of SU might yield a better dosage regimen for clinical research. The experimental data and modeling confirm synergistic anticancer effect of ER and SU in the treatment of A549 xenograft mice. The optimal dosage regimen determined by the PK/PD modeling and simulation can be used in future preclinical study and provide a reference for clinical application.

  20. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian, E-mail: zhangjian197011@yahoo.com [Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Zhang, Tao [Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi' an 710038 (China); Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling [Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Yin, Hong, E-mail: yinnhong@yahoo.com [The Medical Image Center, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China)

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  1. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    International Nuclear Information System (INIS)

    Zhang, Jian; Zhang, Tao; Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling; Yin, Hong

    2010-01-01

    Research highlights: → Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells → Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway → Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* → miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  2. Beauvericin-induced cell apoptosis through the mitogen-activated protein kinase pathway in human nonsmall cell lung cancer A549 cells.

    Science.gov (United States)

    Lu, Chien-Lin; Lin, Hen-I; Chen, Bing-Fang; Jow, Guey-Mei

    2016-01-01

    Beauvericin (BEA) is a cyclic hexadepsipeptide that derives from Codyceps cicadae. Our previous study results indicated that the cytotoxic effects of BEA on human A549 lung cancer cells BEA occur through an apoptotic pathway, which involves the up-regulation of cytochrome c release from mitochondria, upregulation of caspase 3 activity, and cellular and morphological changes. In this study, we identified that the mitogen-activated protein kinase (MAPK) inhibitor U0126 inhibits the cytotoxic effects of BEA on A549 cells. After exposing human A549 cells to 10 μM BEA, we observed a significant and dose-dependent increase in the percentage of hypoploid (sub-G1) phase cells in the A549 population. Following the pretreatment of the A549 cells with 25 μM U0126, the distribution of A549 cells in the sub-G1 phase decreased significantly. The BEA treatment resulted in a significant increase apoptosis in A549 cells by in situ terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Moreover, the MEK1/2 (mitogen-activated protein kinase kinase)-ERK42/44 (extracellular signal-regulated kinases)-90RSK (ribosomal s6 kinase) signaling pathway was activated in BEA-induced apoptotic A549 cells. Furthermore, treatment with MEK1/2 inhibitor U0126 was capable to attenuate the BEA induced typical apoptotic morphological change, apoptotic cells, and MEK1/2-ERK42/44-90RSK signaling pathway. These results suggested that MEK1/2-ERK42/44-90RSK signaling pathway may play a important role in BEA-induced apoptosis in human NSCLC A549 cancer cells.

  3. [Overexpression of Keap1 inhibits the cell proliferation and metastasis and overcomes the drug resistance in human lung cancer A549 cells].

    Science.gov (United States)

    Weng, X; Yan, Y Y; Tong, Y H; Fan, Y; Zeng, J M; Wang, L L; Lin, N M

    2016-06-23

    To investigate the effect of Keap1-Nrf2 pathway on cell proliferation, metastasis and drug resistance of human lung cancer A549 cell line. A549-Keap1 cell line, constantly expressing wild type Keap1, was established by lentiviral transfection. Real-time RT-PCR and western blot were used to determine the expression of Nrf2 and its target gene in A549 cells. Sulforhodamine B (SRB) assay, flow cytometry, colony formation assay, transwell assay, and cell wound-healing assay were performed to explore the effect of wild type Keap1 expression on the proliferation, invasion, migration and drug resistance of A549 cells. Over-expressed Keap1 decreased the expression of Nrf2 protein and the mRNA level of its downstream target genes and inhibited the ability of cell proliferation and clone formation of A549 cells. Keap1 overexpression induced G0/G1 phase arrest. The percentage of A549-Keap1 cells in G0/G1 phase was significantly higher than that of A549-GFP cells (80.2±5.9)% vs. (67.1±0.9%)(PA549-Keap1 cells (156.33±17.37), the number of invasive A549-GFP cells was significantly higher (306.67±22.19) in a high power field. Keap1 overexpression significantly enhanced the sensitivity of A549 cells to carboplatin and gemcitabine (PA549-Keap1 and A549-GFP cells were (52.1±3.3) μmol/L and (107.8±12.9) μmol/L, respectively. The IC50s of gemcitabine in A549-Keap1 and A549-GFP cells were (6.8±1.2) μmol/L and (9.9±0.5) μmol/L, respectively. Keap1 overexpression significantly inhibits the expression of Nrf2 and its downstream target genes, suppresses tumor cell proliferation and metastasis, and enhances the sensitivity of A549 cells to anticancer drugs.

  4. The effects of combined treatment with sevoflurane and cisplatin on growth and invasion of human adenocarcinoma cell line A549.

    Science.gov (United States)

    Liang, Hua; Wang, Han Bing; Liu, Hong Zhen; Wen, Xian Jie; Zhou, Qiao Ling; Yang, Cheng Xiang

    2013-07-01

    Sevoflurane, an inhalational anesthetic, and cisplatin (DDP)-based chemotherapy have been widely used during lung cancer surgery. However, the effect of sevoflurane on the sensitivity of lung cancer cells to DDP chemotherapy remains unclear. In this study, the effects of combined treatment with sevoflurane and cisplatin on the growth and invasion of human lung adenocarcinoma A549 cell line have been investigated. The underlying mechanism has also been explored. In our experiment, A549 cells were treated with 2.5% sevoflurane, 10μmol/L DDP, or the co-treatment of sevoflurane and DDP for 4h, respectively. Cell proliferation was evaluated by the MTT assay and colony formation assay. Apoptosis was assessed by flow cytometry. Cell invasion was detected by Transwell assay. The expressions of X-linked inhibitor of apoptosis protein (XIAP), Survivin, matrix metalloproteinase (MMP)-2 and MMP-9 were determined by western blotting. Our results showed that sevoflurane combined with DDP resulted in a more pronounced inhibition of tumor cells growth and invasion as compared with either drug alone. Besides, XIAP, Survivin, MMP-2, and MMP-9 were downregulated more significantly by the co-treatment of the two drugs as compared to sevoflurane treatment or DDP treatment alone. Taken together, the growth-inhibitory and invasion-inhibitory synergy between sevoflurane and DDP in human adenocarcinoma A549 cell line was found in this study. Furthermore, we showed that the growth-inhibitory synergy between sevoflurane and DDP might be associated with the downregulation of XIAP and Survivin, and the invasion-inhibitory synergy between sevoflurane and DDP might be involved in the downregulation of MMP-2 and MMP-9. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Brazilian green propolis induced apoptosis in human lung cancer A549 cells through mitochondrial-mediated pathway.

    Science.gov (United States)

    Frión-Herrera, Yahima; Díaz-García, Alexis; Ruiz-Fuentes, Jenny; Rodríguez-Sánchez, Hermis; Sforcin, José Maurício

    2015-10-01

    Propolis effect on the growth and apoptosis of human lung adenocarcinoma (A549 cells) was investigated as well as its mechanisms. Cells were incubated with propolis for 72 h, and 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays were employed to assess cell viability and the inhibitory concentration (IC). Apoptosis was detected by Acridine Orange/Ethidium Bromide and 4',6-diamidino-2-phenylindole staining after 24 and 48 h of incubation with ¼ IC50 of propolis by testing the mitochondrial membrane potential (ΔΨm) and the expression of apoptosis-related genes (p53, Caspase-3, Bax, Bcl-2, Bcl-XL , Noxa, Puma and p21) by reverse transcription polymerase chain reaction. Propolis displayed antiproliferative and cytotoxic effects on A549 cells in a dose- and time-dependent manner, but it did not suppress the growth of normal Vero cells. An enhanced apoptosis was seen in A549 propolis-treated cells after 48 h compared with the control cells. Propolis decreased mitochondrial membrane potential by overexpression of pro-apoptotic genes (Bax and Noxa) and reduction of the antiapoptotic gene Bcl-XL . The expression level of other genes remained unchanged (p53, Caspse-3 and Bax), whereas p21 expression was increased. Propolis induced caspase-independent apoptosis through a p53-independent mitochondrial pathway, and cell cycle arrest by upregulation of p21. Although propolis induces apoptosis mainly by p53-independent manner, it may be induced by another pathway, and new insights may arise for preventing or treating lung cancer. © 2015 Royal Pharmaceutical Society.

  6. Screening of Stat3 inhibitory effects of Korean herbal medicines in the A549 human lung cancer cell line.

    Science.gov (United States)

    Park, Jong-Shik; Bang, Ok-Sun; Kim, Jinhee

    2014-06-01

    The transcription factor signal transducer and activator of transcription 3 (Stat3) is constitutively activated in many human cancers. It promotes tumor cell proliferation, inhibits apoptosis, induces angiogenesis and metastasis, and suppresses antitumor host immune responses. Therefore, Stat3 has emerged as a promising molecular target for cancer therapies. In this study, we evaluated the Stat3-suppressive activity of 38 herbal medicines traditionally used in Korea. Medicinal herb extracts in 70% ethanol were screened for their ability to suppress Stat3 in the A549 human lung cancer cell line. A Stat3-responsive reporter assay system was used to detect intracellular Stat3 activity in extract-treated cells, and Western blot analyses were performed to measure the expression profiles of Stat3-regulated proteins. Fifty percent of the 38 extracts possessed at least mild Stat3-suppressive activities (i.e., activity less than 75% of the vehicle control). Ethanol extracts of Bupleurum falcatum L., Taraxacum officinale Weber, Solanum nigrum L., Ulmus macrocarpa Hance, Euonymus alatus Sieb., Artemisia capillaris Thunb., and Saururus chinensis (Lour.) Baill inhibited up to 75% of the vehicle control Stat3 activity level. A549 cells treated with these extracts also had reduced Bcl-xL, Survivin, c-Myc, and Mcl-1 expression. Many medicinal herbs traditionally used in Korea contain Stat3 activity-suppressing substances. Because of the therapeutic impact of Stat3 inhibition, these results could be useful when developing novel cancer therapeutics from medicinal herbs.

  7. Lipoteichoic acids from Staphylococcus aureus stimulate proliferation of human non-small-cell lung cancer cells in vitro.

    Science.gov (United States)

    Hattar, Katja; Reinert, Christian P; Sibelius, Ulf; Gökyildirim, Mira Y; Subtil, Florentine S B; Wilhelm, Jochen; Eul, Bastian; Dahlem, Gabriele; Grimminger, Friedrich; Seeger, Werner; Grandel, Ulrich

    2017-06-01

    Pulmonary infections are frequent complications in lung cancer and may worsen its outcome and survival. Inflammatory mediators are suspected to promote tumor growth in non-small-cell lung cancer (NSCLC). Hence, bacterial pathogens may affect lung cancer growth by activation of inflammatory signalling. Against this background, we investigated the effect of purified lipoteichoic acids (LTA) of Staphylococcus aureus (S. aureus) on cellular proliferation and liberation of interleukin (IL)-8 in the NSCLC cell lines A549 and H226. A549 as well as H226 cells constitutively expressed TLR-2 mRNA. Even in low concentrations, LTA induced a prominent increase in cellular proliferation of A549 cells as quantified by automatic cell counting. In parallel, metabolic activity of A549 cells was enhanced. The increase in proliferation was accompanied by an increase in IL-8 mRNA expression and a dose- and time-dependent release of IL-8. Cellular proliferation as well as the release of IL-8 was dependent on specific ligation of TLR-2. Interestingly, targeting IL-8 by neutralizing antibodies completely abolished the LTA-induced proliferation of A549 cells. The pro-proliferative effect of LTA could also be reproduced in the squamous NSCLC cell line H226. In summary, LTA of S. aureus induced proliferation of NSCLC cell lines of adeno- and squamous cell carcinoma origin. Ligation of TLR-2 followed by auto- or paracrine signalling by endogenously synthesized IL-8 is centrally involved in LTA-induced tumor cell proliferation. Therefore, pulmonary infections may exert a direct pro-proliferative effect on lung cancer growth.

  8. Chlorella sorokiniana induces mitochondrial-mediated apoptosis in human non-small cell lung cancer cells and inhibits xenograft tumor growth in vivo.

    Science.gov (United States)

    Lin, Ping-Yi; Tsai, Ching-Tsan; Chuang, Wan-Ling; Chao, Ya-Hsuan; Pan, I-Horng; Chen, Yu-Kuo; Lin, Chi-Chen; Wang, Bing-Yen

    2017-02-01

    Lung cancer is one of the leading causes of cancer related deaths worldwide. Marine microalgae are a source of biologically active compounds and are widely consumed as a nutritional supplement in East Asian countries. It has been reported that Chlorella or Chlorella extracts have various beneficial pharmacological compounds that modulate immune responses; however, no studies have investigated the anti-cancer effects of Chlorella sorokiniana (CS) on non-small cell lung cancer (NSCLC). In this study, we evaluated the anti-cancer effects of CS in two human NSCLC cell lines (A549 and CL1-5 human lung adenocarcinoma cells), and its effects on tumor growth in a subcutaneous xenograft tumor model. We also investigated the possible molecular mechanisms governing the pharmacological function of CS. Our results showed that exposure of the two cell lines to CS resulted in a concentration-dependent reduction in cell viability. In addition, the percentage of apoptotic cells increased in a dose-dependent manner, suggesting that CS might induce apoptosis in human NSCLC cells. Western blot analysis revealed that exposure to CS resulted in increased protein expression of the cleaved/activated forms of caspase-3, caspase-9, and PARP, except caspase-8. ZDEVD (caspase-3 inhibitor) and Z-LEHD (caspase-9 inhibitor) were sufficient at preventing apoptosis in both A549 and CL1-5 cells, proving that CS induced cell death via the mitochondria-mediated apoptotic pathway. Exposure of A549 and CL1-5 cells to CS for 24 h resulted in decreased expression of Bcl-2 protein and increased expression of Bax protein as well as decreased expression of two IAP family proteins, survivin and XIAP. We demonstrated that CS induces mitochondrial-mediated apoptosis in NSCLC cells via downregulation of Bcl-2, XIAP and survivin. In addition, we also found that the tumors growth of subcutaneous xenograft in vivo was markedly inhibited after oral intake of CS.

  9. DKK4-knockdown enhances chemosensitivity of A549/DTX cells to docetaxel.

    Science.gov (United States)

    Yang, Xueliang; Liu, Yang; Li, Weina; Li, Aimin; Sun, Quan

    2017-10-01

    Drug resistance greatly limits docetaxel efficiency in the treatment of non-small cell lung cancer (NSCLC). Dickkopf 4 (DKK4), a negative regulator of Wnt/β-catenin pathway, is believed to be involved in various human cancers; whereas the association of DKK4 with acquired docetaxel resistance in NSCLC remains unclear. In the present study, we investigated the involvement of DKK4 in the docetaxel-resistant human lung adenocarcinoma A549 (A549/DTX) cells. Our results showed that DKK4 expression was significantly increased in the A549/DTX cells compared with in the A549 cells, as well as in the culture supernatant of A549/DTX cells. DKK4 overexpression increased the resistance of A549 cells to docetaxel. DKK4-knockdown promoted inhibition of A549/DTX cell growth, and reduced the colony formation and invasion capacity of A549/DTX cells. Moreover, DKK4-knockdown promoted the pro-apoptotic effect of docetaxel characterized with caspase 3 activation and inhibition of BCL-2 expression in A549/DTX cells, which was possibly mediated by inducing the activation of c-Jun N-terminal kinase (JNK)-related signaling pathway. Thus, our results indicated that DKK4-knockdown promoted the cytotoxic and pro-apoptotic activity of A549/DTX cells, which suggests a critical role of DKK4 in docetaxel resistance of the A549 cells and provides the potential to combine docetaxel therapy with DKK4 depletion in treating NSCLC. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549

    Science.gov (United States)

    Syaefudin; Juniarti, A.; Rosiyana, L.; Setyani, A.; Khodijah, S.

    2016-01-01

    The aim of the present study is to evaluate cytotoxicity effect of nanoparticles of Selaginella doederleinii (S. doederleinii) leaves extract. S. doederleinii was extracted by maceration method using 70%(v/v) ethanol as solvent. Phytochemical content was analyzed qualitatively by using Harborne and Thin Layer Chromatography (TLC) methods. Nanoparticle extract was prepared by ionic gelation using chitosan as encapsulant agent. Anticancer activity was performed by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results showed that S. doederleinii contains of flavonoids. Nanoparticle of S. doederleinii leaves extract greatly inhibited A549 cells growth (cancer cells), with IC50 of 3% or 1020 μg/ml. These nanoparticles extract also inhibited the growth of Chang cells (normal cells), with IC50 of 4% or 1442 μg/ml. The effective concentration of nanoparticles extract which inhibits cancer cells without harming the normal cells is 0.5% or 167 μg/ml. Further studies are needed to obtain the concentration of nanoparticles extract which can selectively suppress cancer cells.

  11. Effects of cigarette smoke extract on A549 cells and human lung fibroblasts treated with transforming growth factor-beta1 in a coculture system.

    Science.gov (United States)

    Liu, Yin; Gao, Wei; Zhang, Deping

    2010-09-01

    Smoking is a risk factor for idiopathic pulmonary fibrosis (IPF), but the mechanism of the association remains unknown. The aim of this study was to investigate the effects of cigarette smoke extract (CSE) on A549 cells and human lung fibroblasts treated with transforming growth factor-beta1. A transwell two-chamber coculture system was used to study the proliferation, differentiation, morphologic changes and soluble factors production of A549 cells and myofibroblasts. Low concentrations of CSE promoted myofibroblasts proliferation; however, high concentrations of CSE inhibited their proliferation. Low concentrations of CSE also markedly increased extracellular secretion of hydrogen peroxide, inhibited proliferation, induced apoptosis and produced epithelial-mesenchymal transition (EMT) in cocultured A549 cells. This cigarette smoke-induced A549 cells EMT may become a new pathophysiological concept in the development of IPF. CSE possibly takes part in the development and progress of IPF by increasing oxidative stress.

  12. Toxicity of engineered nanomaterials and their transformation products following wastewater treatment on A549 human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Yanjun Ma

    2014-01-01

    Full Text Available Here we characterize the toxicity of environmentally-relevant forms of engineered nanomaterials (ENMs, which can transform during wastewater treatment and persist in aqueous effluents and biosolids. In an aerosol exposure scenario, cytotoxicity and genotoxicity of effluents and biosolids from lab-scale sequencing batch reactors (SBRs to A549 human lung epithelial cells were examined. The SBRs were dosed with nanoAg, nano zero-valent iron (NZVI, nanoTiO2 and nanoCeO2 at sequentially increasing concentrations from 0.1 to 20 mg/L. Toxicities were compared to outputs from SBRs dosed with ionic/bulk analogs, undosed SBRs, and pristine ENMs. Pristine nanoAg and NZVI showed significant cytotoxicity to A549 cells in a dose-dependent manner from 1 to 67 μg/mL, while nanoTiO2 and nanoCeO2 only exerted cytotoxicity at 67 μg/mL. Only nanoAg induced a genotoxic response, at 9, 33 and 53 μg/mL. However, no significant cytotoxic or genotoxic effects of the SBR effluents or biosolids containing nanomaterials were observed.

  13. Cathepsin L is involved in cathepsin D processing and regulation of apoptosis in A549 human lung epithelial cells.

    Science.gov (United States)

    Wille, Aline; Gerber, Annegret; Heimburg, Anke; Reisenauer, Anita; Peters, Christoph; Saftig, Paul; Reinheckel, Thomas; Welte, Tobias; Bühling, Frank

    2004-07-01

    Cathepsins are implicated in a multitude of physiological and pathophysiological processes. The aim of the present study was to investigate the function of cathepsin L (catL) in the proteolytic network of human lung epithelial cells and its role in the regulation of apoptosis. We found that catL-deficient A549 cells as well as lung tissue extracts of catL(-/-) mice express increased amounts of single-chain cathepsin D (catD). Degradation experiments indicate that catL specifically degrades the single-chain isoform of catD. Furthermore, we found that catL-deficient cells showed increased sensitivity to apoptosis. Finally, we demonstrate that the inhibition of catD activity by pepstatin A decreased the number of apoptotic cells in catL-deficient A549 cells after anti-Fas treatment. In conclusion, catL is involved in catD processing and the accumulation of catD isoforms in catL-deficient cells is associated with increased rates of spontaneous and anti-Fas-induced apoptosis.

  14. Effects of radioactive 125I seeds on A549 cell line and human embryonic lung diploid cell line 2BS cultivated in vitro and assessment of its clinical safety dose

    International Nuclear Information System (INIS)

    Bian Wenchao; Qi Liangchen

    2012-01-01

    Objective: To observe the cell count changes of A549 cell line and human embryonic lung diploid cell line 2BS after irradiated by 125 I seeds with different doses, and to study the growth inhibition of 125 I on this two kinds of cell lines, and to determine its clinical safety dose in treatment of non-small cell lung. Methods: 125 I seeds with different doses (low dose: 0.2 mCi, mediate dose: 0.4 mCi, high dose: 0.8 mCi) were chosen and put into A549 cells and human embryonic lung diploid cell line 2BS in vitro, the cells on the 2nd, 4th, 6th and 8th days after irradiation were collected, the alive cells were counted by cells dyeing experiments, then the growth curves were drawn, and the IC 50 of the radioactive 125 I seeds to both two cell lines were calculated. Results: Compared with blank and control groups, the cell proliferation trend of A549 cells in low dose group was not significantly influenced (P>0.05), but the growth of A549 cells in mediate and high dose groups were inhibited in a time-dependent manner, there were significant differences (P<0.05), the most obvious change was on the 6th day. The IC 50 of the radioactive 125 I seeds to A549 cells was about .04 mCi. While the growth inhibition of 125 I 2BS had no statistically significant differences between various dose groups (P>0.05), and the IC 50 of the radioactive 125 I seeds to 2BS cell line was about 1.65 mCi. Conclusion: 0.4 mCi of radioactive 125 I seeds has already had the obvious damage effect on A549 cell, 0.8 mCi of radioactive 125 I seeds has the stronger effect. The IC 50 of the radioactive 125 I seeds to 2BS cells is about 1.65 mCi, so the clinical safety dosage is 0.4-0.8 mCi. (authors)

  15. Plumbagin from Plumbago Zeylanica L induces apoptosis in human non-small cell lung cancer cell lines through NF- κB inactivation.

    Science.gov (United States)

    Xu, Tong-Peng; Shen, Hua; Liu, Ling-Xiang; Shu, Yong-Qian

    2013-01-01

    To detect effects of plumbagin on proliferation and apoptosis in non-small cell lung cancer cell lines, and investigate the underlying mechanisms. Human non-small cell lung cancer cell lines A549, H292 and H460 were treated with various concentrations of plumbagin. Cell proliferation rates was determined using both cell counting kit-8 (CCK-8) and clonogenic assays. Apoptosis was detected by annexin V/propidium iodide double-labeled flow cytometry and TUNEL assay. The levels of reactive oxygen species (ROS) were detected by flow cytometry. Activity of NF-κB was examined by electrophoretic mobility shift assay (EMSA) and luciferase reporter assay. Western blotting was used to assess the expression of both NF-κB regulated apoptotic-related gene and activation of p65 and IκBκ. Plumbagin dose-dependently inhibited proliferation of the lung cancer cells. The IC50 values of plumbagin in A549, H292, and H460 cells were 10.3 μmol/L, 7.3 μmol/L, and 6.1 μmol/L for 12 hours, respectively. The compound concentration-dependently induced apoptosis of the three cell lines. Treatment with plumbagin increased the intracellular level of ROS, and inhibited the activation of NK-κB. In addition to inhibition of NF-κB/p65 nuclear translocation, the compound also suppressed the degradation of IκBκ. ROS scavenger NAC highly reversed the effect of plumbagin on apoptosis and inactivation of NK-κB in H460 cell line. Treatment with plumbagin also increased the activity of caspase-9 and caspase-3, downregulated the expression of Bcl-2, upregulated the expression of Bax, Bak, and CytC. Plumbagin inhibits cell growth and induces apoptosis in human lung cancer cells through an NF-κB-regulated mitochondrial-mediated pathway, involving activation of ROS.

  16. [Effects of bufalin combined with doxorubicin on the proliferation and apoptosis of human lung cancer cell line A549 in vitro].

    Science.gov (United States)

    Zhang, Cuili; Fu, Li'na

    2017-07-28

    To explore the effects of bufalin (BUF) combined with doxorubicin (DOX) on the proliferation and apoptosis in human lung cancer cell line A549 in vitro.
 Methods: Methyl thiazolyl tetrazolium (MTT) assay was used to measure the inhibitory effects of BUF, DOX and their combination on the growth of A549 cells. Hoechst 33342 staining was used to observe the changes of nucleus. Flow cytometry was used to investigate the apoptosis and cell cycle distribution of A549 cells. Western blot was used to examine the expression of apoptotic protein.
 Results: BUF and DOX showed inhibitory effect on the A549 cells in a dose and time-dependent manner. Compared with BUF or DOX alone, combination of BUF (1, 20, 100 nmol/L) with DOX (1.0 μg/mL) could significantly increase the growth inhibition rate of A549 cells at 24, 36, 72 h, respectively (all PA549 cells, keep the cell stage stay in S stage and up-regulate the expression of caspase-3.
 Conclusion: BUF combined with DOX can significantly inhibit the proliferation of A549 cells, which might be related to the induction of apoptosis, cell cycle S phase arrest and caspase-3 up-regulation.

  17. Flavonoids isolated fromCitrus platymammainduced G2/M cell cycle arrest and apoptosis in A549 human lung cancer cells.

    Science.gov (United States)

    Nagappan, Arulkumar; Lee, Ho Jeong; Saralamma, Venu Venkatarame Gowda; Park, Hyeon Soo; Hong, Gyeong Eun; Yumnam, Silvia; Raha, Suchismita; Charles, Shobana Nancy; Shin, Sung Chul; Kim, Eun Hee; Lee, Won Sup; Kim, Gon Sup

    2016-08-01

    Citrus platymamma hort. ex Tanaka belongs to the Rutaceae family and is widely used in folk medicines in Korea due to its anti-proliferative, anti-cancer, anti-oxidant, anti-inflammatory and anti-diabetic activities. However, the molecular mechanism of its anti-cancer effect is not well understood. The present study was conducted to elucidate the anti-cancer effect and molecular mechanism of flavonoids from Citrus platymamma (FCP) on A549 cells. FCP displayed concentration-dependent inhibition on A549 cells proliferation. Further, flow cytometry revealed that FCP significantly increased the sub-G1 (apoptotic cell population) and G2/M phase population, and the total number of apoptotic cells, in a dose-dependent manner. Nuclear condensation and fragmentation were also observed upon staining with Hoechst 33342 in FCP-treated A549 cells. Immunoblotting demonstrated a dose-dependent downregulation of cyclin B1, cyclin-dependent kinase 1, cell division cycle 25c, pro-caspases -3, -6, -8 and -9, and poly (adenosine diphosphate-ribose) polymerase (PARP) in FCP-treated A549 cells. In addition, FCP induced caspase-3 activation and subsequent PARP cleavage, and increased the B-cell lymphoma (Bcl)-2-associated X protein/Bcl-extra large ratio in A549 cells. These findings suggest that FCP induced G2/M arrest and apoptosis of A549 cells. The present study provides evidence that FCP may be useful in the treatment of human lung cancer.

  18. Portulaca oleracea Seed Oil Exerts Cytotoxic Effects on Human Liver Cancer (HepG2) and Human Lung Cancer (A-549) Cell Lines.

    Science.gov (United States)

    Al-Sheddi, Ebtesam Saad; Farshori, Nida Nayyar; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed

    2015-01-01

    Portulaca oleracea (Family: Portulacaceae), is well known for its anti-inflammatory, antioxidative, anti- bacterial, and anti-tumor activities. However, cytotoxic effects of seed oil of Portulaca oleracea against human liver cancer (HepG2) and human lung cancer (A-549) cell lines have not been studied previously. Therefore, the present study was designed to investigate the cytotoxic effects of Portulaca oleracea seed oil on HepG2 and A-549 cell lines. Both cell lines were exposed to various concentrations of Portulaca oleracea seed oil for 24h. After the exposure, percentage cell viability was studied by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT), neutral red uptake (NRU) assays, and cellular morphology by phase contrast inverted microscopy. The results showed a concentration-dependent significant reduction in the percentage cell viability and an alteration in the cellular morphology of HepG2 and A-549 cells. The percentage cell viability was recorded as 73%, 63%, and 54% by MTT assay and 76%, 61%, and 50% by NRU assay at 250, 500, and 1000 μg/ml, respectively in HepG2 cells. Percentage cell viability was recorded as 82%, 72%, and 64% by MTT assay and 83%, 68%, and 56% by NRU assay at 250, 500, and 1000 μg/ml, respectively in A-549 cells. The 100 μg/ml and lower concentrations were found to be non cytotoxic to A-549 cells, whereas decrease of 14% and 12% were recorded by MTT and NRU assay, respectively in HepG2 cells. Both HepG2 and A-549 cell lines exposed to 250, 500, and 1000 μg/ ml of Portulaca oleracea seed oil lost their normal morphology, cell adhesion capacity, become rounded, and appeared smaller in size. The data from this study showed that exposure to seed oil of Portulaca oleracea resulted in significant cytotoxicity and inhibition of growth of the human liver cancer (HepG2) and human lung cancer (A-549) cell lines.

  19. TGF-β Suppresses COX-2 Expression by Tristetraprolin-Mediated RNA Destabilization in A549 Human Lung Cancer Cells

    Science.gov (United States)

    Kang, Soyeong; Min, Ahrum; Im, Seock-Ah; Song, Sang-Hyun; Kim, Sang Gyun; Kim, Hyun-Ah; Kim, Hee-Jun; Oh, Do-Youn; Jong, Hyun-Soon; Kim, Tae-You; Bang, Yung-Jue

    2015-01-01

    Purpose Overexpression of cyclooxygenase 2 (COX-2) is thought to promote survival of transformed cells. Transforming growth factor β (TGF-β) exerts anti-proliferative effects on a broad range of epithelial cells. In the current study, we investigated whether TGF-β can regulate COX-2 expression in A549 human lung adenocarcinoma cells, which are TGF-β-responsive and overexpress COX-2. Materials and Methods Western blotting, Northern blotting, and mRNA stability assays were performed to demonstrate that COX-2 protein and mRNA expression were suppressed by TGF-β. We also evaluated the effects of tristetraprolin (TTP) on COX-2 mRNA using RNA interference. Results We demonstrated that COX-2 mRNA and protein expression were both significantly suppressed by TGF-β. An actinomycin D chase experiment demonstrated that COX-2 mRNA was more rapidly degraded in the presence of TGF-β, suggesting that TGF-β–induced inhibition of COX-2 expression is achieved via decreased mRNA stability. We also found that TGF-β rapidly and transiently induced the expression of TTP, a well-known mRNA destabilizing factor, before suppression of COX-2 mRNA expression was observed. Using RNA interference, we confirmed that increased TTP levels play a pivotal role in the destabilization of COX-2 mRNA by TGF-β. Furthermore, we showed that Smad3 is essential to TTP-dependent down-regulation of COX-2 expression in response to TGF-β. Conclusion The results of this study show that TGF-β down-regulated COX-2 expression via mRNA destabilization mediated by Smad3/TTP in A549 cells. PMID:25544576

  20. Differential replication of avian influenza H9N2 viruses in human alveolar epithelial A549 cells

    Directory of Open Access Journals (Sweden)

    Peiris Malik

    2010-03-01

    Full Text Available Abstract Avian influenza virus H9N2 isolates cause a mild influenza-like illness in humans. However, the pathogenesis of the H9N2 subtypes in human remains to be investigated. Using a human alveolar epithelial cell line A549 as host, we found that A/Quail/Hong Kong/G1/97 (H9N2/G1, which shares 6 viral "internal genes" with the lethal A/Hong Kong/156/97 (H5N1/97 virus, replicates efficiently whereas other H9N2 viruses, A/Duck/Hong Kong/Y280/97 (H9N2/Y280 and A/Chicken/Hong Kong/G9/97 (H9N2/G9, replicate poorly. Interestingly, we found that there is a difference in the translation of viral protein but not in the infectivity or transcription of viral genes of these H9N2 viruses in the infected cells. This difference may possibly be explained by H9N2/G1 being more efficient on viral protein production in specific cell types. These findings suggest that the H9N2/G1 virus like its counterpart H5N1/97 may be better adapted to the human host and replicates efficiently in human alveolar epithelial cells.

  1. Short-Course Treatment With Gefitinib Enhances Curative Potential of Radiation Therapy in a Mouse Model of Human Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bokobza, Sivan M.; Jiang, Yanyan; Weber, Anika M.; Devery, Aoife M.; Ryan, Anderson J., E-mail: anderson.ryan@oncology.ox.ac.uk

    2014-03-15

    Purpose: To evaluate the combination of radiation and an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) in preclinical models of human non-small cell lung cancer. Methods and Materials: Sensitivity to an EGFR TKI (gefitinib) or radiation was assessed using proliferation assays and clonogenic survival assays. Effects on receptor signal transduction pathways (pEGFR, pAKT, pMAPK) and apoptosis (percentage of cleaved PARP Poly (ADP-ribose) polymerase (PARP)) were assessed by Western blotting. Radiation-induced DNA damage was assessed by γH2AX immunofluorescence. Established (≥100 mm{sup 3}) EGFR-mutated (HCC287) or EGFR wild-type (A549) subcutaneous xenografts were treated with radiation (10 Gy, day 1) or gefitinib (50 mg/kg, orally, on days 1-3) or both. Results: In non-small cell lung cancer (NSCLC) cell lines with activating EGFR mutations (PC9 or HCC827), gefitinib treatment markedly reduced pEGFR, pAKT, and pMAPK levels and was associated with an increase in cleaved PARP but not in γH2AX foci. Radiation treatment increased the mean number of γH2AX foci per cell but did not significantly affect EGFR signaling. In contrast, NSCLC cell lines with EGFR T790M (H1975) or wild-type EGFR (A549) were insensitive to gefitinib treatment. The combination of gefitinib and radiation treatment in cell culture produced additive cell killing with no evidence of synergy. In xenograft models, a short course of gefitinib (3 days) did not significantly increase the activity of radiation treatment in wild-type EGFR (A549) tumors (P=.27), whereas this combination markedly increased the activity of radiation (P<.001) or gefitinib alone (P=.002) in EGFR-mutated HCC827 tumors, producing sustained tumor regressions. Conclusions: Gefitinib treatment increases clonogenic cell killing by radiation but only in cell lines sensitive to gefitinib alone. Our data suggest additive rather than synergistic interactions between gefitinib and radiation and that a

  2. Short-Course Treatment With Gefitinib Enhances Curative Potential of Radiation Therapy in a Mouse Model of Human Non-Small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Bokobza, Sivan M.; Jiang, Yanyan; Weber, Anika M.; Devery, Aoife M.; Ryan, Anderson J.

    2014-01-01

    Purpose: To evaluate the combination of radiation and an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) in preclinical models of human non-small cell lung cancer. Methods and Materials: Sensitivity to an EGFR TKI (gefitinib) or radiation was assessed using proliferation assays and clonogenic survival assays. Effects on receptor signal transduction pathways (pEGFR, pAKT, pMAPK) and apoptosis (percentage of cleaved PARP Poly (ADP-ribose) polymerase (PARP)) were assessed by Western blotting. Radiation-induced DNA damage was assessed by γH2AX immunofluorescence. Established (≥100 mm 3 ) EGFR-mutated (HCC287) or EGFR wild-type (A549) subcutaneous xenografts were treated with radiation (10 Gy, day 1) or gefitinib (50 mg/kg, orally, on days 1-3) or both. Results: In non-small cell lung cancer (NSCLC) cell lines with activating EGFR mutations (PC9 or HCC827), gefitinib treatment markedly reduced pEGFR, pAKT, and pMAPK levels and was associated with an increase in cleaved PARP but not in γH2AX foci. Radiation treatment increased the mean number of γH2AX foci per cell but did not significantly affect EGFR signaling. In contrast, NSCLC cell lines with EGFR T790M (H1975) or wild-type EGFR (A549) were insensitive to gefitinib treatment. The combination of gefitinib and radiation treatment in cell culture produced additive cell killing with no evidence of synergy. In xenograft models, a short course of gefitinib (3 days) did not significantly increase the activity of radiation treatment in wild-type EGFR (A549) tumors (P=.27), whereas this combination markedly increased the activity of radiation (P<.001) or gefitinib alone (P=.002) in EGFR-mutated HCC827 tumors, producing sustained tumor regressions. Conclusions: Gefitinib treatment increases clonogenic cell killing by radiation but only in cell lines sensitive to gefitinib alone. Our data suggest additive rather than synergistic interactions between gefitinib and radiation and that a

  3. Digoxin Downregulates NDRG1 and VEGF through the Inhibition of HIF-1α under Hypoxic Conditions in Human Lung Adenocarcinoma A549 Cells

    Directory of Open Access Journals (Sweden)

    Dong Wei

    2013-04-01

    Full Text Available Digoxin, an inhibitor of Na+/K+ ATPase, has been used in the treatment of heart-related diseases (such as congestive heart failure and atrial arrhythmia for decades. Recently, it was reported that digoxin is also an effective HIF-1α inhibitor. We investigated whether digoxin could suppress tumor cell growth through HIF-1α in non-small cell lung cancer cells (A549 cells under hypoxic conditions. An MTT assay was used to measure cell viability. RT-PCR and western blotting were performed to analyze the mRNA and protein expression of VEGF, NDRG1, and HIF-1α. HIF-1α nuclear translocation was then determined by EMSA. Digoxin was found to inhibit the proliferation of A549 cells under hypoxic conditions. Our results showed that hypoxia led to the upregulation of VEGF, NDRG1, and HIF-1α both at the mRNA and protein levels. We also found that the hypoxia-induced overexpression of VEGF, NDRG1, and HIF-1α was suppressed by digoxin in a concentration-dependent manner. As expected, our EMSA results demonstrated that under hypoxic conditions HIF-1α nuclear translocation was also markedly reduced by digoxin in a concentration-dependent manner. Our results suggest that digoxin downregulated hypoxia-induced overexpression of VEGF and NDRG1 at the transcriptional level probably through the inhibition of HIF-1α synthesis in A549 cells.

  4. Growth inhibitory and apoptosis-inducing effects of allergen-free Rhus verniciflua Stokes extract on A549 human lung cancer cells.

    Science.gov (United States)

    Jang, Ik-Soon; Park, Jae-Woo; Jo, Eun-Bi; Cho, Chong-Kwan; Lee, Yeon-Weol; Yoo, Hwa-Seung; Park, Junsoo; Kim, Jihye; Jang, Byeong-Churl; Choi, Jong-Soon

    2016-11-01

    Evidence suggests that Rhus verniciflua Stokes (RVS) or its extract has the potential to be used for the treatment of inflammatory and neoplastic diseases. However, direct use of RVS or its extract as a herbal medicine has been limited due to the presence of urushiol, an allergenic toxin. In the present study, we prepared an extract of the allergen‑removed RVS (aRVS) based on a traditional method and investigated its inhibitory effect on the growth of various types of human cancer cells, including lung (A549), breast (MCF-7) and prostate (DU-145) cancer cell lines. Notably, among the cell lines tested, treatment with the aRVS extract strongly inhibited proliferation of the A549 cells at a 0.5 mg/ml concentration for 24 h that was not cytotoxic to normal human dermal fibroblasts. Furthermore, aRVS extract treatment largely reduced the survival and induced apoptosis of the A549 cells. At the mechanistic levels, treatment with the aRVS extract led to the downregulation of Bcl-2 and Mcl-1 proteins, the activation of caspase-9/-3 proteins, an increase in cytosolic cytochrome c levels, the upregulation of Bax protein, an increase in phosphorylated p53 protein but a decrease in phosphorylated S6 protein in the A549 cells. Importantly, treatment with z-VAD‑fmk, a pan-caspase inhibitor attenuated aRVS extract-induced apoptosis in the A549 cells. These results demonstrate firstly that aRVS extract has growth inhibitory and apoptosis-inducing effects on A549 human lung cancer cells through modulation of the expression levels and/or activities of caspases, Bcl-2, Mcl-1, Bax, p53 and S6.

  5. Radiosensitization of C225 on human non-small cell lung cancer cell line H-520

    International Nuclear Information System (INIS)

    Zhang Yingdong; Wang Junjie; Liu Feng; Zhao Yong

    2008-01-01

    Objective: To investigate the efficacy of C225 (cetuximab), a chimeric human-mouse anti-epithelial growth factor receptor monoclonal antibody, combined with 60 Co gamma irradiation against human non-small cell lung cancer cell line H-520. Methods: H-520 cells were treated either with different dose of 60 Co irradiation (1,2,4,6,8 and 10 Gy)alone or together with C225 (100 nmol/L). Colony forming capacity was determined to create the survival curve 10 days after the treatment. Cells in different groups were harvested 72 hours after irradiation for apoptosis analysis or 48 hours after irradiation for cell cycle analysis by flow cytometry assay. Results: The clone number in combinational treatment group was less than that in irradiation only group, which suggested that the cell survival rate in the combinational treatment group was significantly decreased comparing with irradiation only group (F=6.36, P O + G 1 phases for C225 treatment, in G 2 + M phases for 60 Co irradiation, and in both G 0 + G 1 and G 2 + M phases for C225 in combination with 60 Co irradiation. Conclusions: C225 has radiosensitizing effects on H-520 cells, which may through the enhancement of 60 Co irradiation-induced cell death and cell cycle arrest. This study provides a supportive evidence for clinical treatment in non-small cell lung cancer. (authors)

  6. p53-independent structure-activity relationships of 3-ring mesogenic compounds' activity as cytotoxic effects against human non-small cell lung cancer lines.

    Science.gov (United States)

    Fukushi, Saori; Yoshino, Hironori; Yoshizawa, Atsushi; Kashiwakura, Ikuo

    2016-07-25

    We recently demonstrated the cytotoxicity of liquid crystal precursors (hereafter referred to as "mesogenic compounds") in the human non-small cell lung cancer (NSCLC) cell line A549 which carry wild-type p53. p53 mutations are observed in 50 % of NSCLC and contribute to their resistance to chemotherapy. To develop more effective and cancer-specific agents, in this study, we investigated the structure-activity relationships of mesogenic compounds with cytotoxic effects against multiple NSCLC cells. The pharmacological effects of mesogenic compounds were examined in human NSCLC cells (A549, LU99, EBC-1, and H1299) and normal WI-38 human fibroblast. Analyses of the cell cycle, cell-death induction, and capsases expression were performed. The 3-ring compounds possessing terminal alkyl and hydroxyl groups (compounds C1-C5) showed cytotoxicity in NSCLC cells regardless of the p53 status. The compounds C1 and C3, which possess a pyrimidine at the center of the core, induced G2/M arrest, while the compounds without a pyrimidine (C2, C4, and C5) caused G1 arrest; all compounds produced caspase-mediated cell death. These events occurred in a p53-independent manner. Furthermore, it was suggested that compounds induced cell death through p53-independent DNA damage-signaling pathway. Compounds C2, C4, and C5 did not show strong cytotoxicity in WI-38 cells, whereas C1 and C3 did. However, the cytotoxicity of compound C1 against WI-38 cells was improved by modulating the terminal alkyl chain lengths of the compound. We showed the p53-indepdent structure-activity relationships of mesogenic compounds related to the cytotoxic effects. These structure-activity relationships will be helpful in the development of more effective and cancer-specific agents.

  7. Nanostructured delivery system for zinc phthalocyanine: preparation, characterization, and phototoxicity study against human lung adenocarcinoma A549 cells

    Directory of Open Access Journals (Sweden)

    Mariana da Volta Soares

    2011-01-01

    Full Text Available Mariana da Volta Soares1, Mainara Rangel Oliveira1, Elisabete Pereira dos Santos1, Lycia de Brito Gitirana2, Gleyce Moreno Barbosa3, Carla Holandino Quaresma3, Eduardo Ricci-Júnior11Department of Medicines, Laboratório de Desenvolvimento Galênico (LADEG, Faculty of Pharmacy, 2Laboratory of Animal and Comparative Histology, Glycobiology Research Program, Institute of Biomedical Science, 3Department of Medicines, Laboratório Multidisciplinar de Ciências Farmacêuticas, Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ, Rio de Janeiro, BrazilAbstract: In this study, zinc phthalocyanine (ZnPc was loaded onto poly-ε-caprolactone (PCL nanoparticles (NPs using a solvent emulsification–evaporation method. The process yield and encapsulation efficiency were 74.2% ± 1.2% and 67.1% ± 0.9%, respectively. The NPs had a mean diameter of 187.4 ± 2.1 nm, narrow distribution size with a polydispersity index of 0.096 ± 0.004, zeta potential of -4.85 ± 0.21 mV, and spherical shape. ZnPc has sustained release, following Higuchi’s kinetics. The photobiological activity of the ZnPc-loaded NPs was evaluated on human lung adenocarcinoma A549 cells. Cells were incubated with free ZnPc or ZnPc-loaded NPs for 4 h and then washed with phosphate-buffered saline. Culture medium was added to the wells containing the cells. Finally, the cells were exposed to red light (660 nm with a light dose of 100 J/cm2. The cellular viability was determined after 24 h of incubation. ZnPc-loaded NPs and free photosensitizer eliminated about 95.9% ± 1.8% and 28.7% ± 2.2% of A549 cells, respectively. The phototoxicity was time dependent up to 4 h and concentration dependent at 0–5 µg ZnPc. The cells viability decreased with the increase of the light dose in the range of 10–100 J/cm2. Intense lysis was observed in the cells incubated with the ZnPc-loaded NPs and irradiated with red light. ZnPc-loaded PCL NPs are the release systems that promise photodynamic

  8. Effects of sodium lactate Ringer's injection on transfection of human protein kinase C-α antisense oligonucleotide in A549 lung cancer cells.

    Science.gov (United States)

    Wang, Z H; Sun, W W; Han, Y L; Ma, Z

    2016-08-26

    In the present study, we evaluated the effects of four solutions [Dulbecco's modified Eagle's medium (DMEM), sodium lactate Ringer's injection (SLRI), phosphate-buffered saline (PBS), and NaCl] on the transfection of the human protein kinase C-a antisense oligonucleotide (PKC-a ASO) aprinocarsen in human lung carcinoma A549 cells. Specifically, SLRI, DMEM, PBS, or NaCl were used as the growth solutions for A549 cells, and OPTI-MEM was used as the PKC-a ASO diluent for transfection. Additionally, SLRI, DMEM, PBS, or NaCl were used as both the growth solutions and diluents for transfection. The cell viability and transfection efficiency were determined. The results demonstrated that when SLRI was used as either the growth solution or both the growth solution and diluent for aprinocarsen transfection in A549 cells, the effects were close to the best effects observed with DMEM as the growth solution and OPTI-MEM as the diluent, which supported the transfection of aprinocarsen into the cells. Moreover, SLRI resulted in higher transfection efficiency than those of PBS and NaCl. In in vitro experiments, aprinocarsen effectively induced apoptosis in A549 cells. In conclusion, SLRI may replace PBS or NaCl in clinical trials as a transfection solution readily accepted by the human body. To our knowledge, this is the first report demonstrating the use of SLRI as a transfection solution in lung-cancer cell lines.

  9. 2,3,5,4-tetrahydroxy diphenylethylene-2-O-glucoside inhibits the adhesion and invasion of A549 human lung cancer cells

    Science.gov (United States)

    Xu, Ming; Wang, Cong; Zhu, Minglin; Wang, Xianguo; Zhang, Li; Zhao, Jinping

    2017-01-01

    Lung cancer is considered to be a serious disease that poses a significant threat to human health. 2,3,5,4-tetrahydroxy diphenylethylene-2-O-glucoside (THSG) is a bioactive compound derived from Polygonum multiflorum Thunb. That has been demonstrated to possess antioxidative, anti-inflammatory and antitumor activities. However, little is currently known regarding the potential anticancer effects of this compound in lung cancer. Therefore, the present study aimed to investigate the effects of THSG on the adhesion and invasion of A549 human lung cancer cells in vitro, and to identify the putative mechanisms involved. Cell Counting kit-8 assay was performed to determine A549 cell viability following treatment with various doses (0, 5, 10, 25, 50, 100, 150 and 200 µM) of THSG for 12, 24 and 48 h. In addition, cell adhesion and invasion were determined following treatment of A549 cells with 0, 10, 25 or 50 µM THSG for 1, 2 or 3 h, respectively. Reverse transcription-quantitative polymerase chain reaction analysis was performed to examine the mRNA expression levels of Snail, E-cadherin, vimentin, matrix metalloproteinase (MMP) 2 and MMP9 following THSG treatment for 12 h. Western blot analysis was conducted to detect the protein expression levels of Snail, E-cadherin, vimentin, MMP2 and MMP9 following THSG treatment for 24 h. Treatment with THSG (10, 25 and 50 µM) significantly suppressed the adhesion and invasion of A549 human lung cancer cells in a dose-dependent manner. In addition, the mRNA and protein expression levels of adhesion and invasion-associated factors were decreased significantly in A549 cells treated with THSG. In conclusion, THSG effectively suppressed the adhesion and invasion of human lung cancer cells potentially by inhibiting the expression of adhesion and invasion-related genes. PMID:28990072

  10. Okadaic acid inhibits cell multiplication and induces apoptosis in a549 cells, a human lung adenocarcinoma cell line.

    Science.gov (United States)

    Wang, Renjun; Lv, Lili; Zhao, Yunfeng; Yang, Nana

    2014-01-01

    This essay aims to research the effect of okadaic acid (OA) on A549 cell multiplication, and cell apoptosis induced by OA was observed by cell morphology. MTT assay, trypan blue exclusion test (TBET), Giemsa staining method and acridine orange (AO) fluorescence staining assay were applied. The results of cell survival evaluated by TBET and colorimetric assay with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) showed: The number of A549 cells was decreased in a dose-dependent manner. Cytomorphology observation of okadaic acid-treated cells showed that cells became shrinkage and turned round, some cells floated in the nutrient medium with nucleus agglutination broken, resulting in apoptotic bodies. Above-mentioned results indicated that OA exerted significantly inhibitory effect on A549 cell multiplication due to the apoptosis induced by OA.

  11. Picfeltarraenin IA inhibits lipopolysaccharide-induced inflammatory cytokine production by the nuclear factor-κB pathway in human pulmonary epithelial A549 cells.

    Science.gov (United States)

    Shi, Rong; Wang, Qing; Ouyang, Yang; Wang, Qian; Xiong, Xudong

    2016-02-01

    The present study aimed to investigate the effect of picfeltarraenin IA (IA) on respiratory inflammation by analyzing its effect on interleukin (IL)-8 and prostaglandin E2 (PGE2) production. The expression of cyclooxygenase 2 (COX2) in human pulmonary adenocarcinoma epithelial A549 cells in culture was also examined. Human pulmonary epithelial A549 cells and the human monocytic leukemia THP-1 cell line were used in the current study. Cell viability was measured using a methylthiazol tetrazolium assay. The production of IL-8 and PGE2 was investigated using an enzyme-linked immunosorbent assay. The expression of COX2 and nuclear factor-κB (NF-κB)-p65 was examined using western blot analysis. Treatment with lipopolysaccharide (LPS; 10 µg/ml) resulted in the increased production of IL-8 and PGE2, and the increased expression of COX2 in the A549 cells. Furthermore, IA (0.1-10 µmol/l) significantly inhibited PGE2 production and COX2 expression in cells with LPS-induced IL-8, in a concentration-dependent manner. The results suggested that IA downregulates LPS-induced COX2 expression, and inhibits IL-8 and PGE2 production in pulmonary epithelial cells. Additionally, IA was observed to suppress the expression of COX2 in THP-1 cells, and also to regulate the expression of COX2 via the NF-κB pathway in the A549 cells, but not in the THP-1 cells. These results indicate that IA regulates LPS-induced cytokine release in A549 cells via the NF-κB pathway.

  12. Breviscapine suppresses the growth of non-small cell lung cancer ...

    Indian Academy of Sciences (India)

    2017-02-10

    Feb 10, 2017 ... Breviscapine (BVP) has previously been shown to inhibit the proliferation of hepatocellular carcinoma cells. However, little is known about the effects of BVP on non-small cell lung cancer (NSCLC) growth. Here, we aimed to study the effects of BVP on human NSCLC growth. We employed A549, NCL-H460 ...

  13. An Isoquinolin-1(2H)-Imine Derivative Induces Cell Death via Generation of Reactive Oxygen Species and Activation of JNK in Human A549 Cancer Cells.

    Science.gov (United States)

    Liu, Jing; Liu, Tongyang; Mou, Hanchuan; Jia, Shuting; Huang, Chao; Yan, Shengjiao; Lin, Jun; Luo, Ying; Zhang, Jihong

    2017-12-01

    Compound 11-benzoyl-10-chloro-7,9-difluoro-6-imino-2,3,4,6-tetrahydro-1H-pyrimido[1,2-b]isoquinoline-8-carbonitrile (HC6h) is a novel polyhalo 1,3-diazaheterocycle fused isoquinolin-1(2H)-imines derivative, which displays good anticancer activity and low toxicity in vivo. However, the underlying anticancer mechanisms have not previously been identified. The proliferation of A549 was assessed by MTT assay. The reactive oxygen species (ROS) level was assessed in A549 with a H 2 DCFDA probe. Mitochondrial membrane potential was measured using the JC-1 staining. Apoptosis were measured by annexin-V/PI assay and autophagy by acridine orange staining and GFP-LC3 fluorescence assay. The expression of autophagic and apoptotic proteins was determined by Western blot. The compound HC6h increased accumulation of vesicles, acridine orange-stained cells and LC3-II in A549 cells. Inhibition of compound HC6h-induced autophagy by bafilomycin A1 increased apoptosis. Compound HC6h enhanced activation of caspase-3, caspase-9 and PARP cleavage in A549 cells. Compound HC6h leads to the rapid generation of intracellular ROS. Moreover, compound HC6h induced phosphorylation of JNK and was conferred by the increased ROS levels. Furthermore, down-regulation of JNK attenuated autophagic and apoptotic effect in response to HC6h. The induction of ROS upon HC6h treatment leads to the activation of JNK that mediates autophagy and apoptosis in human A549 cancer cells. J. Cell. Biochem. 118: 4394-4403, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Regulation of cytotoxicity and apoptosis-associated pathways contributes to the enhancement of efficacy of cisplatin by baicalein adjuvant in human A549 lung cancer cells.

    Science.gov (United States)

    Kiartivich, Suparata; Wei, Ying; Liu, Jiaqi; Soiampornkul, Rungtip; Li, Mihui; Zhang, Hongying; Dong, Jingcheng

    2017-04-01

    Scutellaria baicalensis (SB; Chinese name, huangqin) is widely used in Chinese medicine as a traditional adjuvant in the chemotherapy of lung and liver cancer. Baicalein is one of the bioactive flavonoid components isolated from the root of SB. The present study aimed to observe the effect of baicalein, in combination with platin-based systemic chemotherapy (cisplatin), on cytotoxicity and apoptosis of human A549 lung cancer cells. The cell cultures were treated with baicalein, cisplatin, or a combination of the two. Cell viability and cytotoxicity was assayed by XTT, and cell apoptosis was measured by flow cytometry. The apoptosis-associated proteins were detected by western blot analysis. The cytokines in the culture supernatant were detected by ELISA. The present study revealed that cisplatin and the baicalein-cisplatin combination inhibited viability and promoted cytotoxicity of A549 cells. Cisplatin, baicalein and baicalein-cisplatin combination treatments were effective in the promotion of apoptosis of A549 cells. Baicalein and baicalein-cisplatin combination treatments also inhibited B cell lymphoma-2 (Bcl-2) and increased Bcl-2-associated X protein (Bax) expression. Additionally, cisplatin, baicalein and the baicalein-cisplatin combination promoted caspase-3 expression. Furthermore, the baicalein-cisplatin combination suppressed the secretion of interleukin-6, and baicalein and the combination of baicalein cisplatin decreased the secretion of tumor necrosis factor-α of A549 cells. The present study concluded that baicalein combined with cisplatin induced cytotoxicity and apoptosis of A549 cells, and such activity may be associated with the regulation of Bcl-2, Bax and caspase-3, indicating a promising alternative method for lung cancer.

  15. Andrographolide antagonizes cigarette smoke extract-induced inflammatory response and oxidative stress in human alveolar epithelial A549 cells through induction of microRNA-218.

    Science.gov (United States)

    Li, Ying-jie; Yu, Chang-hai; Li, Jing-bo; Wu, Xi-ya

    2013-12-01

    Andrographolide is a major bioactive labdane diterpenoid isolated from Andrographis paniculata and has protective effects against cigarette smoke (CS)-induced lung injury. This study was done to determine whether such protective effects were mediated through modulation of microRNA (miR)-218 expression. Therefore, we exposed human alveolar epithelial A549 cells to cigarette smoke extract (CSE) with or without andrographolide pretreatment and measured the level of glutathione, nuclear factor-kappaB (NF-κB) activation, proinflammatory cytokine production, and miR-218 expression. We found that andrographolide pretreatment significantly restored the glutathione level in CSE-exposed A549 cells, coupled with reduced inhibitor κB (IκB)-α phosphorylation and p65 nuclear translocation and interleukin (IL)-8 and IL-6 secretion. The miR-218 expression was significantly upregulated by andrographolide pretreatment. To determine the biological role of miR-218, we overexpressed and downregulated its expression using miR-218 mimic and anti-miR-218 inhibitor, respectively. We observed that miR-218 overexpression led to a marked reduction in IκB-α phosphorylation, p65 nuclear accumulation, and NF-κB-dependent transcriptional activity in CSE-treated A549 cells. In contrast, miR-218 silencing enhanced IκB-α phosphorylation and p65 nuclear accumulation in cells with andrographolide pretreatment and reversed andrographolide-mediated reduction of IL-6 and IL-8 production. In addition, depletion of miR-218 significantly reversed the upregulation of glutathione levels in A549 cells by andrographolide. Taken together, our results demonstrate that andrographolide mitigates CSE-induced inflammatory response in A549 cells, largely through inhibition of NF-κB activation via upregulation of miR-218, and thus has preventive benefits in CS-induced inflammatory lung diseases.

  16. Up-Regulation of Pro-Inflammatory Cytokines and Chemokine Production in Avian Influenza H9N2 Virus-Infected Human Lung Epithelial Cell Line (A549).

    Science.gov (United States)

    Farzin, Hamidreza; Toroghi, Reza; Haghparast, Alireza

    2016-01-01

    Influenza H9N2 virus mostly infects avian species but poses a potential health risk to humans. Little is known about the mammalian host immune responses to H9N2 virus. To obtain insight into the innate immune responses of human lung epithelial cells to the avian H9N2 virus, the expressions of pro-inflammatory cytokines and chemokine in the human airway epithelial cells infected with avian H9N2 virus were examined by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). H9N2 virus was able to cultivate in the human lung epithelial cell line (A549) and stimulate production of pro-inflammatory cytokines (IL-1β, IL-6) and chemokine (IL-8). Expressions of cytokine genes were up-regulated to a significantly higher level for IL-1β (p line compared to non-virus-cultured A549 cells and were significant in both IL-1β (p < 0.05 in 18 hours and p < 0.001 in 24-48 hours harvested supernatant) and IL-6 (p < 0.001). Silencing the p65 component of NF-κB in A549 cells suppressed the stimulatory effects of influenza virus on secretion of pro-inflammatory cytokines and chemokine. The findings in this study will broaden our understanding of host innate immune mechanisms and the pathogenesis of H9N2 influenza viruses in human respiratory epithelium.

  17. Citotoxicidad de extractos de plantas medicinales sobre la línea celular de carcinoma de pulmón humano A549 Cytotoxicity of medicinal plant extracts on the human lung carcinoma cell line A549

    Directory of Open Access Journals (Sweden)

    Alexis Díaz García

    2011-03-01

    Full Text Available OBJETIVO: evaluar el efecto de 10 extractos de plantas medicinales sobre el crecimiento de la línea celular humana de carcinoma de pulmón A549. METODOS: el efecto de los extractos sobre la células tumorales se midió a través de un ensayo colorimétrico mediante el empleo del bromuro de 3-(4,5-dimetil-tiazol-2-yl-2,5-difenil tetrazolio a concentraciones entre 3,9-250 µg/mL durante 72 h y se calculó la concentración citotóxica media para cada uno. RESULTADOS: del total de los extractos evaluados solo cuatro (Parthenium hysterophorus, Bixa orellana, Momordica charantia y Cucurbita maxima evidenciaron concentraciones citotóxicas medias inferiores a 100 µg/mL. Excepto Parthenium hysterophorus, las restantes se emplean en la medicina tradicional para el tratamiento del cáncer. Los extractos de Cecropia peltata, Melia azedarach, Annona glabra, Artemisia absintium, Lepidium virginicum y Bidens pilosa no mostraron efectos citotóxicos significativos. CONCLUSIONES: Los extractos de plantas que se emplean en la medicina tradicional para el tratamiento del cáncer, mostraron citotoxicidad sobre las células tumorales. El conocimiento etnobotánico representa una herramienta importante en la selección de plantas medicinales, en la búsqueda de nuevos compuestos para el tratamiento del cáncer.OBJECTIVES: to evaluate the effect of 10 Cuban medicinal plant extracts on the human lung tumor cell line A549. METHODS: the effect of the plant extracts on tumor cells was determined by a colorimetric assay using the 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT at concentrations ranging from 3,9-250 µg/mL for 72 hours and the mean cytotoxic concentration was calculated for each of them. RESULTS: the ethanolic extracts of Parthenium hysterophorus, Bixa orellana, Momordica charantia and Cucurbita maxima showed mean cytotoxic concentrations under 100 µg/mL. Except for P. hysterophorus, the others are used in traditional medicine to fight

  18. Dual effects of human adipose tissue-derived mesenchymal stem cells in human lung adenocarcinoma A549 xenografts and colorectal adenocarcinoma HT-29 xenografts in mice.

    Science.gov (United States)

    Rhyu, Jung Joo; Yun, Jun-Won; Kwon, Euna; Che, Jeong-Hwan; Kang, Byeong-Cheol

    2015-10-01

    Human adipose tissue-derived mesenchymal stem cells (hATMSCs) have great potential as a therapy for various diseases. However, emerging evidence shows that there are conflicting results concerning effects of hATMSCs on tumor progression. Our objective was to determine whether and how hATMSCs modulate tumor growth. After cancer cell lines were subcutaneously inoculated into BALB/c-nude and hairless severe combined immunodeficient mice, hATMSCs were intratumorally injected into the mice. The growth of the A549 tumors was inhibited by hATMSCs, yet that of the HT-29 tumors was significantly promoted by hATMSCs in the in vivo xenograft models. In vitro study using a co-culture system of cancer cells and hATMSCs was consistent with the in vivo experiments. To reveal the molecular events induced by hATMSCs in the xenograft models, global gene expression profiles of the A549 and HT-29 tumors in the absence or presence of hATMSCs were determined. Significant numbers of genes involved in biological processes were altered in the hATMSC-treated A549 tumors, whereas no biological process was regulated by treatment with hATMSCs in the HT-29 tumors, reflecting the different effects of hATMSCs in the different types of cancer. Notably, histone cluster 1, H2aj and neuropeptide Y receptor Y4 were found to be expressed in direct or inverse proportion to tumor size in both xenograft models. In addition, nuclear factor κB (NF-κB) p65 was differentially phosphorylated by the hATMSCs dependent on the source of the cancer cells. In conclusion, the identified gene profiling and NF-κB signaling provide molecular evidence to explain the conflicting findings in tumor‑MSC studies, although further study is needed to confirm these findings using various types of cancer.

  19. Anti-Inflammatory Effects of Ginsenoside Rg3 via NF-κB Pathway in A549 Cells and Human Asthmatic Lung Tissue

    Directory of Open Access Journals (Sweden)

    In-Seung Lee

    2016-01-01

    Full Text Available Objective. There is limited information of the anti-inflammatory effects of Rg3 on inflamed lung cells and tissues. Therefore, we confirmed the anti-inflammatory mechanism of ginsenoside Rg3 in inflamed human airway epithelial cells (A549 and tissues whether Rg3 regulates nuclear factor kappa B (NF-κB activity. Methods. To induce the inflammation, IL-1β (10 ng/ml was treated to A549 cells for 4 h. The effects of Rg3 on NF-κB activity and COX-2 expression were evaluated by western blotting analysis in both IL-1β-induced inflamed A549 cell and human asthmatic airway epithelial tissues. Using multiplex cytokines assay, the secretion levels of NF-κB-mediated cytokines/chemokines were measured. Result. Rg3 showed the significant inhibition of NF-κB activity thereby reduced COX-2 expression was determined in both IL-1β-induced inflamed A549 cell and human asthmatic airway epithelial tissues. In addition, among NF-κB-mediated cytokines, the secretion levels of IL-4, TNF-α, and eotaxin were significantly decreased by Rg3 in asthma tissues. Even though there was no significant difference, IL-6, IL-9, and IL-13 secretion showed a lower tendency compared to saline-treated human asthmatic airway epithelial tissues. Conclusion. The results from this study demonstrate the potential of Rg3 as an anti-inflammatory agent through regulating NF-κB activity and reducing the secretion of NF-κB-mediated cytokines/chemokines.

  20. p53-Independent thermosensitization by mitomycin C in human non-small cell lung carcinoma cells

    International Nuclear Information System (INIS)

    Jin, Z.-H.; Matsumoto, H.; Hayashi, S.; Shioura, H.; Kitai, R.; Kano, E.; Hatashita, M.

    2003-01-01

    The combined treatment with hyperthermia and chemotherapeutic drugs such as cisplatin (CDDP), doxorubicin (DOX) and mitomycin C (MMC) has been widely adopted as a strategy of interdisciplinary cancer therapy to obtain greater therapeutic benefits. However, the involved mechanisms of the interactive cytotoxic effects of hyperthermia and MMC remain unclear. To elucidate the relationship between p53 functions and the interactive effects of the combined treatment with mild-hyperthermia and MMC, we examined the potentiation of cytotoxic effects, the induction of apoptosis, the changes in cell cycles and the accumulation of Hsp72 after the combined treatment with hyperthermia at 42 degree C and MMC using human non-small cell lung carcinoma H1299 transfectants with either null, wild-type (wt) or mutant (m) p53 gene. H1299/null, H1299/wtp53 and H1299/mp53 cells showed similar sensitivities to either hyperthermia at 42 degree C alone or MMC alone. The combined treatment resulted in a synergistically enhanced cytotoxicity in H1299 transfectants in a p53-independent manner. The mechanisms involved an enhancement of heat-induced apoptosis and a modulation of the cell cycle distribution by the combined treatment. The accumulation of Hsp72 was not suppressed by the combined treatment, as is not the case of the combined treatment with hyperthermia and either CDDP (1) or bleomycin (2). Our findings demonstrate a p53-independent mechanism for a synergistically cytotoxic enhancement by the combined treatment with mild-hyperthermia and MMC

  1. Inflammatory effects induced by selected limonene oxidation products: 4-OPA, IPOH, 4-AMCH in human bronchial (16HBE14o-) and alveolar (A549) epithelial cell lines.

    Science.gov (United States)

    Lipsa, Dorelia; Leva, Paolo; Barrero-Moreno, Josefa; Coelhan, Mehmet

    2016-11-16

    Limonene, a monoterpene abundantly present in most of the consumer products (due to its pleasant citrus smell), easily undergoes ozonolysis leading to several limonene oxidation products (LOPs) such as 4-acetyl-1-methylcyclohexene (4-AMCH), 4-oxopentanal (4-OPA) and 3-isopropenyl-6-oxoheptanal (IPOH). Toxicological studies have indicated that human exposure to limonene and ozone can cause adverse airway effects. However, little attention has been paid to the potential health impact of specific LOPs, in particular of IPOH, 4-OPA and 4-AMCH. This study evaluates the cytotoxic effects of the selected LOPs on human bronchial epithelial (16HBE14o-) and alveolar epithelial (A549) cell lines by generating concentration-response curves using the neutral red uptake assay and analyzing the inflammatory response with a series of cytokines/chemokines. The cellular viability was mostly reduced by 4-OPA [IC 50 =1.6mM (A549) and 1.45mM (16HBE14o-)] when compared to IPOH [IC 50 =3.5mM (A549) and 3.4mM (16HBE14o-)] and 4-AMCH [IC 50 could not be calculated]. As a result from the inflammatory response, IPOH [50μM] induced an increase of both IL-6 and IL-8 secretion in A549 (1.5-fold change) and in 16HBE14o- (2.8- and 7-fold change respectively). 4-OPA [50μM] treatment of A549 increased IL-6 (1.4-times) and IL-8 (1.3-times) levels, while in 16HBE14o- had an opposite effect. A549 treated with 4-AMCH [50μM] elevate both IL-6 and IL-8 levels by 1.2-times, while in 16HBE14o- had an opposite effect. Based on our results, lung cellular injury characterized by inflammatory cytokine release was observed for both cell lines treated with the selected chemicals at concentrations that did not affect their cellular viability. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Inhibition of cellular proliferation and induction of apoptosis in human lung adenocarcinoma A549 cells by T-type calcium channel antagonist.

    Science.gov (United States)

    Choi, Doo Li; Jang, Sun Jeong; Cho, Sehyeon; Choi, Hye-Eun; Rim, Hong-Kun; Lee, Kyung-Tae; Lee, Jae Yeol

    2014-03-15

    The anti-proliferative and apoptotic activities of new T-type calcium channel antagonist, 6e (BK10040) on human lung adenocarcinoma A549 cells were investigated. The MTT assay results indicated that BK10040 was cytotoxic against human lung adenocarcinoma (A549) and pancreatic cancer (MiaPaCa2) cells in a dose-dependent manner with IC50 of 2.25 and 0.93μM, respectively, which is ca. 2-fold more potent than lead compound KYS05090 despite of its decreased T-type calcium channel blockade. As a mode of action for cytotoxic effect of BK10040 on lung cancer (A549) cells, this cancer cell death was found to have the typical features of apoptosis, as evidenced by the accumulation of positive cells for annexin V. In addition, BK10040 triggered the activations of caspases 3 and 9, and the cleavages of poly (ADP-ribose) polymerase (PARP). Moreover, the treatment with z-VAD-fmk (a broad spectrum caspase inhibitor) significantly prevented BK10040-induced apoptosis. Based on these results, BK10040 may be used as a potential therapeutic agent for human lung cancer via the potent apoptotic activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Neferine augments therapeutic efficacy of cisplatin through ROS- mediated non-canonical autophagy in human lung adenocarcinoma (A549 cells).

    Science.gov (United States)

    Kalai Selvi, Sivalingam; Vinoth, Amirthalingam; Varadharajan, Thiyagarajan; Weng, Ching Feng; Vijaya Padma, Viswanadha

    2017-05-01

    Combination of dietary components with chemotherapy drugs is an emerging new strategy for cancer therapy to increase antitumor responses. Neferine, major bisbenzylisoquinoline alkaloid isolated from the seed embryo of Nelumbo nucifera (Lotus). In the present study, we investigated the efficacy of the combinatorial regimen of neferine and cisplatin compared to cisplatin high dose in human lung adenocarcinoma (A549) cells. Co-treatment with neferine enhanced cisplatin-induced autophagy in A549 cells was accompanied by Acidic vesicular accumulation (AVO), enhanced generation of reactive oxygen species (ROS) and depletion of intracellular glutathione (GSH), down regulation of PI3K/AKT/mTOR pathway, conversion of LC3B-I to LC3B-II. This enhanced autophagy developed via a non-canonical mechanism that did not require Beclin-1, PI3KCIII. In conclusion, these results suggest that neferine enhances cisplatin -induced autophagic cancer cell death through downregulation of PI3K/Akt/mTOR signaling pro-survival pathway and ROS- mediated Beclin-1 and PI3K CIII independent autophagy in human lung adenocarcinoma (A549 cells). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Apoptotic action of peroxisome proliferator-activated receptor-gamma activation in human non small-cell lung cancer is mediated via proline oxidase-induced reactive oxygen species formation.

    Science.gov (United States)

    Kim, Ki Young; Ahn, Jin Hee; Cheon, Hyae Gyeong

    2007-09-01

    Peroxisome proliferator-activated receptor (PPAR)-gamma ligands have been shown to inhibit human lung cancers by inducing apoptosis and differentiation. In the present study, we elucidated the apoptotic mechanism of PPARgamma activation in human lung cancers by using a novel PPARgamma agonist, 1-(trans-methylimino-N-oxy)-6-(2-morpholinoethoxy)-3-phenyl-(1H-indene-2-carboxylic acid ethyl ester (KR-62980), and rosiglitazone. PPARgamma activation selectively inhibited cell viability of non-small-cell lung cancer with little effect on small-cell lung cancer and normal lung cells. The cell death induced by PPARgamma activation presented apoptotic features of oligonucleosomal DNA fragmentation in A549 human non-small-cell lung cancer cell line. Reactive oxygen species (ROS) production was accompanied by increased expression of proline oxidase (POX), a redox enzyme expressed in mitochondria, upon incubation with the agonists. POX RNA interference treatment blocked PPARgamma-induced ROS formation and cytotoxicity, suggesting that POX plays a functional role in apoptosis through ROS formation. The apoptotic effects by the agonists were antagonized by bisphenol A diglycidyl ether, a PPARgamma antagonist, and by knockdown of PPARgamma expression, indicating the involvement of PPARgamma in these actions. The results of the present study suggest that PPARgamma activation induces apoptotic cell death in non-small-cell lung carcinoma mainly through ROS formation via POX induction.

  5. Expression of Transient Receptor Potential Canonical Channel Proteins in Human Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Qi ZHANG

    2010-06-01

    Full Text Available Background and objective Transient receptor potential canonical (TRPC proteins, a group of Ca2+ permeable nonselective cation channels, are thought to constitute store-operated calcium channels (SOCC and mediate store-operated calcium entry (SOCE in various cell types. Members of TRPC have been found to be involved in abnormal proliferation, differentiation, and growth of cancer cells. The aim of this study is to detect the mRNA and protein expression of TRPC in non-small cell lung cancer (NSCLC. Methods Real-time quantitative PCR was performed to screen the expression of TRPC mRNA in NSCLC tissue. Protein expression of TRPC was detected by Western blot. Results Among the seven family members of TRPC so far identified (TRPC1-7, we detected the expression of TRPC1, TRPC3, TRPC4, TRPC6 mRNA in 24 cases of NSCLC tissue; TRPC2, TRPC5 and TRPC7 mRNA were not detectable. The relative abundance of the expressed TRPC was TRPC1≈TRPC6>TRPC3>TRPC4. Western blot confirmed the protein expression of TRPC1, TRPC3, TRPC4 and TRPC6 in NSCLC tissue. Conclusion Out of the seven members of TRPC, we found TRPC1, TRPC3, TRPC4, TRPC6 mRNA and protein were selectively expressed in human NSCLC tissue. This study could provide a basis for future exploration of the individual role of these TRPC proteins in mediating SOCE and in the progression of lung cancer.

  6. Interleukin-1β-induced iNOS expression in human lung carcinoma A549 cells: involvement of STAT and MAPK pathways

    International Nuclear Information System (INIS)

    Ravichandran, Kameswaran; Tyagi, Alpna; Deep, Gagan; Agarwal, Chapla; Agarwal, Rajesh

    2011-01-01

    For understanding of signaling molecules important in lung cancer growth and progression, IL-1β effect was analyzed on iNOS expression and key signaling molecules in human lung carcinoma A549 cells and established the role of specific signaling molecules by using specific chemical inhibitors. IL-1β exposure (10 ng/ml) induced strong iNOS expression in serum starved A549 cells. Detailed molecular analyses showed that IL-1β increased expression of phosphorylated STAT1 (Tyr701 and Ser727) and STAT3 (Tyr705 and Ser727) both in total cell lysates and nuclear lysates. Further, IL-1β exposure strongly activated MAPKs (ERK1/2, JNK1/2 and p38) and Akt as well as increased nuclear levels of NF-κB and HIF-1α in A549 cells. Use of specific chemical inhibitors for JAK1 kinase (piceatannol), JAK2 kinase (AG-490), MEK1/2 (PD98059) and JNK1/2 (SP600125) revealed that IL-1β-induced iNOS expression involved signaling pathways in addition to JAKSTAT and ERK1/2-JNK1/2 activation. Overall, these results suggested that instead of specific pharmacological inhibitors, use of chemopreventive agents with broad spectrum efficacy to inhibit IL-1β-induced signaling cascades and iNOS expression would be a better strategy towards lung cancer prevention and/or treatment. (author)

  7. Effects of exogenous IL-37 on the biological characteristics of human lung adenocarcinoma A549 cells and the chemotaxis of regulatory T cells.

    Science.gov (United States)

    Chen, Yu-Hua; Zhou, Bi-Yun; Wu, Guo-Cai; Liao, De-Quan; Li, Jing; Liang, Si-Si; Wu, Xian-Jin; Xu, Jun-Fa; Chen, Yong-Hua; Di, Xiao-Qing; Lin, Qiong-Yan

    2018-02-14

    This study aims to investigate the effects of exogenous interleukin (IL)-37 on the biological characteristics of human lung adenocarcinoma A549 cells and the chemotaxis of regulatory T (Treg) cells. After isolating the CD4+ CD25+ Treg cells from the peripheral blood, flow cytometry was used to detect the purity of the Treg cells. A549 cells were divided into blank (no transfection), empty plasmid (transfection with pIRES2-EGFP empty plasmid) or IL-37 group (transfection with pIRES2-EGFP-IL-37 plasmid). RT-PCR was used to detect mRNA expression of IL-37 and ELISA to determine IL-37 and MMP-9 expressions. Western blotting was applied to detect the protein expressions of PCNA, Ki-67, Cyclin D1, CDK4, cleaved caspase-3 and cleaved caspase-9. MTT assay, flow cytometry, scratch test and transwell assay were performed to detect cell proliferation, cycle, apoptosis, migration and invasion. Effect of exogenous IL-37 on the chemotaxis of Treg cells was measured through transwell assay. Xenograft models in nude mice were eastablished to detect the impact of IL-37 on A549 cells. The IL-37 group had a higher IL-37 expression, cell apoptosis in the early stage and percentage of cells in the G0/G1 phase than the blank and empty plasmid groups. The IL-37 group had a lower MMP-9 expression, optical density (OD), percentage of cells in the S and G2/M phases, migration, invasion and chemotaxis of CD4+CD25+ Foxp3+ Treg cells. The xenograft volume and weight of nude mice in the IL-37 group were lower than those in the blank and empty plasmid groups. Compared with the blank and empty plasmid groups, the IL-37 group had significantly reduced expression of PCNA, Ki-67, Cyclin D1 and CDK4 but elevated expression of cleaved caspase-3 and cleaved caspase-9. Therefore, exogenous IL-37 inhibits the proliferation, migration and invasion of human lung adenocarcinoma A549 cells as well as the chemotaxis of Treg cells while promoting the apoptosis of A549 cells.

  8. Shikonin Induces Apoptosis, Necrosis, and Premature Senescence of Human A549 Lung Cancer Cells through Upregulation of p53 Expression

    Directory of Open Access Journals (Sweden)

    Yueh-Chiao Yeh

    2015-01-01

    Full Text Available Shikonin, a natural naphthoquinone pigment isolated from Lithospermum erythrorhizon, has been reported to suppress growth of various cancer cells. This study was aimed to investigate whether this chemical could also inhibit cell growth of lung cancer cells and, if so, works via what molecular mechanism. To fulfill this, A549 lung cancer cells were treated with shikonin and then subjected to microscopic, biochemical, flow cytometric, and molecular analyses. Compared with the controls, shikonin significantly induced cell apoptosis and reduced proliferation in a dose-dependent manner. Specially, lower concentrations of shikonin (1–2.5 μg/mL cause viability reduction; apoptosis and cellular senescence induction is associated with upregulated expressions of cell cycle- and apoptotic signaling-regulatory proteins, while higher concentrations (5–10 μg/mL precipitate both apoptosis and necrosis. Treatment of cells with pifithrin-α, a specific inhibitor of p53, suppressed shikonin-induced apoptosis and premature senescence, suggesting the role of p53 in mediating the actions of shikonin on regulation of lung cancer cell proliferation. These results indicate the potential and dose-related cytotoxic actions of shikonin on A549 lung cancer cells via p53-mediated cell fate pathways and raise shikonin a promising adjuvant chemotherapeutic agent for treatment of lung cancer in clinical practice.

  9. Development of drug-loaded chitosan hollow nanoparticles for delivery of paclitaxel to human lung cancer A549 cells.

    Science.gov (United States)

    Jiang, Jie; Liu, Ying; Wu, Chao; Qiu, Yang; Xu, Xiaoyan; Lv, Huiling; Bai, Andi; Liu, Xuan

    2017-08-01

    In this study, biodegradable chitosan hollow nanospheres (CHN) were fabricated using polystyrene nanospheres (PS) as templates. CHN were applied to increase the solubility of poorly water-soluble drugs. The lung cancer drug paclitaxel (PTX), which is used as a model drug, was loaded into CHN by the adsorption equilibrium method. The drug-loaded sample (PTX-CHN) offered sustained PTX release and good bioavailability. The state characterization of PTX by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) showed that the PTX absorbed into CHN existed in an amorphous state. An in vitro toxicity experiment indicated that CHN were nontoxic as carriers of poorly water-soluble drugs. The PTX-CHN produced a marked inhibition of lung cancer A549 cells proliferation and encouraged apoptosis. A cell uptake experiment indicated that PTX-CHN was successfully taken up by lung cancer A549 cells. Furthermore, a degradation experiment revealed that CHN were readily biodegradable. These findings state clearly that CHN can be regarded as promising biomaterials for lung cancer treatment.

  10. MiR-509-3-5p causes aberrant mitosis and anti-proliferative effect by suppression of PLK1 in human lung cancer A549 cells.

    Science.gov (United States)

    Wang, Xian-Hui; Lu, Yao; Liang, Jing-Jing; Cao, Ji-Xiang; Jin, Ya-Qiong; An, Guo-Shun; Ni, Ju-Hua; Jia, Hong-Ti; Li, Shu-Yan

    2016-09-16

    MicroRNAs (miRNAs) are potent post-transcriptional regulators of gene expression and play roles in DNA damage response (DDR). PLK1 is identified as a modulator of DNA damage checkpoint. Although down-regulation of PLK1 by certain microRNAs has been reported, little is known about the interplay between PLK1 and miR-509-3-5p in DDR. Here we have demonstrated that miR-509-3-5p repressed PLK1 expression by targeting PLK1 3'-UTR, thereby causing mitotic aberration and growth arrest of human lung cancer A549 cells. Repression of PLK1 by miR-509-3-5p was further evidenced by over-expression of miR-509-3-5p in A549, HepG2 and HCT116p53(-/-) cancer cells, in which PLK1 protein was suppressed. Consistently, miR-509-3-5p was stimulated, while PLK1 protein was down-regulated in A549 cells exposed to CIS and ADR, suggesting that suppression of PLK1 by miR-509-3-5p is a component of CIS/ADR-induced DDR pathway. Flow cytometry and immunofluorescence labeling showed that over-expression of miR-509-3-5p in A549 induced G2/M arrest and aberrant mitosis characterized by abnormal bipolar mitotic spindles, condensed chromosomes, lagging DNA and chromosome bridges. In addition, over-expression of miR-509-3-5p markedly blocked A549 cell proliferation and sensitized the cells to CIS and ADR treatment. Taken together, miR-509-3-5p is a feasible suppressor for cancer by targeting PLK1. Our data may provide aid in potential design of combined chemotherapy and in our better understanding of the roles of microRNAs in response to DNA damage. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Antitumor activity of acriflavine in lung adenocarcinoma cell line A549.

    Science.gov (United States)

    Lee, Chia-Jen; Yue, Chia-Herng; Lin, Yu-Jie; Lin, Yu-Yu; Kao, Shao-Hsuan; Liu, Jer-Yuh; Chen, Yieng-How

    2014-11-01

    Aim/Materials and Methods: In order to develop better drugs against non-small cell lung cancer (NSCLC), we screened a variety of compounds and treated the human lung adenocarcinoma cell line A549 with different drug concentrations. We then examined the cell viability using the MTT assay. Data show that a new candidate drug, acriflavine (ACF), suppresses the viability of A549 cells in a concentration- and time-dependent manner. Flow cytometry analysis revealed that ACF significantly caused cell growth arrest in the G2/M phase on A549 cells. Moreover, ACF decreased Bcl-2 expression and increased Bax expression. The content of cleaved poly(ADP-ribose)polymerase-1 (PARP-1) and caspase-3 are significantly increased. These findings suggest that ACF is cytotoxic against A549 cells and suppresses A549 cells growth through the caspase-3 activation pathway. In the in vivo test, nude mice bearing A549 cells xenografts by intravenous injection were randomly assigned into two groups: control and experimental group. Treatment was initiated 10 days after implantation and intraperitoneal injection of 0.9% normal saline or 2 mg/kg of ACF was continued daily for five weeks. ACF treatment significantly decreased tumor size and tumor spots on lung surface of tumor-bearing mice. ACF can inhibit cell growth in A549 cells. Our results may assist on the delineation of the mechanism(s) leading to NSCLC cell growth inhibition and provide a new antitumor strategy against NSCLC. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Ameliorative effects of dimetylthiourea and N-acetylcysteine on nanoparticles induced cyto-genotoxicity in human lung cancer cells-A549.

    Directory of Open Access Journals (Sweden)

    Ritesh Kumar Srivastava

    Full Text Available We study the ameliorative potential of dimetylthiourea (DMTU, an OH• radical trapper and N-acetylcysteine (NAC, a glutathione precursor/H₂O₂ scavenger against titanium dioxide nanoparticles (TiO₂-NPs and multi-walled carbon nanotubes (MWCNTs induced cyto-genotoxicity in cultured human lung cancer cells-A549. Cytogenotoxicity was induced by exposing the cells to selected concentrations (10 and 50 µg/ml of either of TiO₂-NPs or MWCNTs for 24 h. Anti-cytogenotoxicity effects of DMTU and NAC were studied in two groups, i.e., treatment of 30 minutes prior to toxic insult (short term exposure, while the other group received DMTU and NAC treatment during nanoparticles exposure, i.e., 24 h (long term exposure. Investigations were carried out for cell viability, generation of reactive oxygen species (ROS, micronuclei (MN, and expression of markers of oxidative stress (HSP27, CYP2E1, genotoxicity (P⁵³ and CYP2E1 dependent n- nitrosodimethylamine-demethylase (NDMA-d activity. In general, the treatment of both DMTU and NAC was found to be effective significantly against TiO₂-NPs and MWCNTs induced cytogenotoxicity in A549 cells. Long-term treatment of DMTU and NAC during toxic insults has shown better prevention than short-term pretreatment. Although, cells responded significantly to both DMTU and NAC, but responses were chemical specific. In part, TiO₂-NPs induced toxic responses were mediated through OH• radicals generation and reduction in the antioxidant defense system. While in the case of MWCNTs, adverse effects were primarily due to altering/hampering the enzymatic antioxidant system. Data indicate the applicability of human lung cancer cells-A549 as a pre-screening tool to identify the target specific prophylactic and therapeutic potential of drugs candidate molecules against nanoparticles induced cellular damages.

  13. Α-MMC and MAP30, two ribosome-inactivating proteins extracted from Momordica charantia, induce cell cycle arrest and apoptosis in A549 human lung carcinoma cells.

    Science.gov (United States)

    Fan, Xiang; He, Lingli; Meng, Yao; Li, Gangrui; Li, Linli; Meng, Yanfa

    2015-05-01

    α‑Momorcharin (α‑MMC) and momordica anti‑human immunodeficiency virus protein (MAP30), produced by Momordica charantia, are ribosome‑inactivating proteins, which have been reported to exert inhibitory effects on cultured tumor cells. In order to further elucidate the functions of these agents, the present study aimed to investigate the effects of α‑MMC and MAP30 on cell viability, the induction of apoptosis, cell cycle arrest, DNA integrity and superoxide dismutase (SOD) activity. α‑MMC and MAP30 were purified from bitter melon seeds using ammonium sulfate precipitation in combination with sulfopropyl (SP)‑sepharose fast flow, sephacryl S‑100 and macro‑Cap‑SP chromatography. MTT, flow cytometric and DNA fragmentation analyses were then used to determine the effects of α‑MMC and MAP30 on human lung adenocarcinoma epithelial A549 cells. The results revealed that A549 cells were sensitive to α‑MMC and MAP30 cytotoxicity assays in vitro. Cell proliferation was significantly suppressed following α‑MMC and MAP30 treatment in a dose‑ and time‑dependent manner; in addition, the results indicated that MAP30 had a more potent anti‑tumor activity compared with that of α‑MMC. Cell cycle arrest in S phase and a significantly increased apoptotic rate were observed following treatment with α‑MMC and MAP30. Furthermore, DNA integrity analysis revealed that the DNA of A549 cells was degraded following treatment with α‑MMC and MAP30 for 48 h. The pyrogallol autoxidation method and nitrotetrazolium blue chloride staining were used to determine SOD activity, the results of which indicated that α‑MMC and MAP30 did not possess SOD activity. In conclusion, the results of the present study indicated that α‑MMC and MAP30 may have potential as novel therapeutic agents for the prophylaxis and treatment of cancer.

  14. Responses of A549 human lung epithelial cells to cristobalite and α-quartz exposures assessed by toxicoproteomics and gene expression analysis.

    Science.gov (United States)

    Vuong, Ngoc Q; Goegan, Patrick; De Rose, Francesco; Breznan, Dalibor; Thomson, Errol M; O'Brien, Julie S; Karthikeyan, Subramanian; Williams, Andrew; Vincent, Renaud; Kumarathasan, Premkumari

    2017-06-01

    In this study, we used cytotoxicity assays, proteomic and gene expression analyses to examine the difference in response of A549 cells to two silica particles that differ in physical properties, namely cristobalite (CR) and α-quartz (Min-U-Sil 5, MI). Cytotoxicity assays such as lactate dehydrogenase release, 5-bromo-2'-deoxyuridine incorporation and cellular ATP showed that both silica particles could cause cell death, decreased cell proliferation and metabolism in the A549 human lung epithelial cells. While cytotoxicity assays revealed little difference between CR and MI exposures, proteomic and gene expression analyses unveiled both similar and unique molecular changes in A549 cells. For instance, two-dimensional gel electrophoresis data indicated that the expression of proteins in the cell death (e.g., ALDH1A1, HTRA2 and PRDX6) and cell proliferation (e.g., FSCN1, HNRNPAB and PGK1) pathways were significantly different between the two silica particles. Reverse transcription-polymerase chain reaction data provided additional evidence supporting the proteomic findings. Preliminary assessment of the physical differences between CR and MI suggested that the extent of surface interaction between particles and cells could explain some of the observed biological effects. However, the differential dose-response curves for some other genes and proteins suggest that other physical attributes of particulate matter can also contribute to particulate matter-related cellular toxicity. Our results demonstrated that toxicoproteomic and gene expression analyses are sensitive in distinguishing subtle toxicity differences associated with silica particles of varying physical properties compared to traditional cytotoxicity endpoints. Copyright © 2016 Her Majesty the Queen in Right of Canada. Journal of Applied Toxicology published by John Wiley & Sons, Ltd. Copyright © 2016 Her Majesty the Queen in Right of Canada. Journal of Applied Toxicology published by John Wiley & Sons

  15. A micRNA-200c/cathepsin L feedback loop determines paclitaxel resistance in human lung cancer A549 cells in vitro through regulating epithelial-mesenchymal transition.

    Science.gov (United States)

    Zhao, Yi-Fan; Han, Mei-Ling; Xiong, Ya-Jie; Wang, Long; Fei, Yao; Shen, Xiao; Zhu, Ying; Liang, Zhong-Qin

    2017-12-07

    Cathepsin L (CTSL), a cysteine protease, is closely related to tumor occurrence, development, and metastasis, and possibly regulates cancer cell resistance to chemotherapy. miRNAs, especially the miR-200 family, have been implicated in drug-resistant tumors. In this study we explored the relationship of CTSL, micRNA-200c and drug resistance, and the potential regulatory mechanisms in human lung cancer A549 cells and A549/TAX cells in vitro. A549/TAX cells were paclitaxel-resistant A549 cells overexpressing CTSL and characterized by epithelial-mesenchymal transition (EMT). We showed that micRNA-200c and CTSL were reciprocally linked in a feedback loop in these cancer cells. Overexpression of micRNA-200c in A549/TAX cells decreased the expression of CTSL, and enhanced their sensitivity to paclitaxel and suppressed EMT, whereas knockdown of micRNA-200c in A549 cells significantly increased the expression of CTSL, and decreased their sensitivity to paclitaxel and induced EMT. Overexpression of CTSL in A549 cells significantly decreased the expression of micRNA-200c, and reduced their sensitivity to paclitaxel and induced EMT, but these effects were reversed by micRNA-200c, whereas knockdown of CTSL in A549/TAX cells attenuated paclitaxel resistance and remarkably inhibited EMT, but the inhibition of micRNA-200c could reverse these effects. Therefore, micRNA-200c may be involved in regulating paclitaxel resistance through CTSL-mediated EMT in A549 cells, and CTSL and micRNA-200c are reciprocally linked in a feedback loop.

  16. Celecoxib enhances radiation response of secondary bone tumors of a human non-small cell lung cancer via antiangiogenesis in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Klenke, Frank Michael [Bern Univ. (Switzerland). Dept. of Orthopedic Surgery; Abdollahi, Amir [Deutsches Krebsforschungszentrum, Heidelberg (Germany). Dept. of Radiation Oncology; Tufts Univ. School of Medicine, Boston, MA (United States). Center of Cancer Systems Biology; Bischof, Marc; Huber, Peter E. [Deutsches Krebsforschungszentrum, Heidelberg (Germany). Dept. of Radiation Oncology; Gebhard, Martha-Maria [Heidelberg Univ. (Germany). Dept. of Experimental Surgery; Ewerbeck, Volker [Heidelberg Univ. (Germany). Dept. of Orthopedic Surgery; Sckell, Axel [Charite Univ. Medical Center, Berlin (Germany). Dept. of Orthopedic, Trauma and Reconstructive Surgery

    2011-01-15

    Purpose: Cyclooxygenase-2 (COX-2) inhibitors mediate a systemic antitumor activity via antiangiogenesis and seem to enhance the response of primary tumors to radiation. Radiosensitizing effects of COX-2 inhibition have not been reported for bone metastases. Therefore, the aim of this study was the investigation of the radiosensitizing effects of the selective COX-2 inhibitor celecoxib in secondary bone tumors of a non-small cell lung carcinoma in vivo. Materials and Methods: Human A549 lung carcinomas were implanted into a cranial window preparation in male SCID mice (n = 24). Animals were treated with either celecoxib or radiation (7 Gy single photon dose) alone or a combination of celecoxib and radiation, respectively. Untreated animals served as controls. The impact of radiation and COX-2 inhibition on angiogenesis, microcirculation, and tumor growth was analyzed over 28 days by means of intravital microscopy and histological methods. Results: Monotherapies with radiation as well as celecoxib had significant antitumor effects compared to untreated controls. Both therapies reduced tumor growth and vascularization to a similar extent. The simultaneous administration of celecoxib and radiation further enhanced the antitumor and antiangiogenic effects of single-beam radiation. With the combined treatment approach, tumor vascularization and tumor size were decreased by 57% and 51%, respectively, as compared to monotherapy with radiation. Conclusion: The combined application of radiation therapy and COX-2 inhibition showed synergistic effects concerning the inhibition of tumor growth and tumor angiogenesis. Therefore, the combination of radiation with COX-2 inhibitor therapy represents a promising approach to improve the therapeutic efficacy of radiotherapy of bone metastases. (orig.)

  17. Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells.

    Science.gov (United States)

    Yamagata, Kazuo; Izawa, Yuri; Onodera, Daiki; Tagami, Motoki

    2018-04-01

    Previous studies indicated that chlorogenic acid, a compound present in many fruits and vegetables, has anti-cancer activities. We report that chlorogenic acid regulates the expression of apoptosis-related genes and self-renewal-related stem cell markers in cancer cells. The lung cancer cell line A549 was cultured with or without chlorogenic acid. The presence of chlorogenic acid decreased cell proliferation as measured by MTT activity. Polymerase chain reaction (PCR) showed that treatment of cells with chlorogenic acid reduced the expression of BCL2 but increased that of both BAX and CASP3. Chlorogenic acid enhanced annexin V expression as measured using fluorescently labeled annexin V. Chlorogenic acid also induced p38 MAPK and JNK gene expression. Meanwhile, several agents, including SB203580 (p38 MAP kinase inhibitor), N-acetylcysteine (antioxidant inhibitor), dipyridamole (phosphodiesterase inhibitor), and apocynin (NADPH-oxidase inhibitor) blocked chlorogenic acid-induced BAX gene expression. Chlorogenic acid reduced gene expression levels of stem cell-associated markers NANOG, POU5F1, and SOX2. Together these results indicate that chlorogenic acid affects the expression of apoptosis-related genes that are part of oxidative stress and p38 MAP-dependent pathways, as well as genes encoding stem cell markers. In conclusion, chlorogenic acid may contribute to the polyphenolic anti-cancer effect associated with consumption of vegetables and fruits.

  18. 1‑O‑acetylbritannilactone combined with gemcitabine elicits growth inhibition and apoptosis in A549 human non‑small cell lung cancer cells.

    Science.gov (United States)

    Wang, Feng; Li, Hong; Qiao, Jian-Ou

    2015-10-01

    Non‑small‑cell lung cancer (NSCLC) accounts for ~85% of all lung cancer cases, with a 5‑year survival rate of britannica, a Chinese traditional medicine, has been demonstrated to have anticancer activity. In the present study, the antiproliferative and proapoptotic abilities of ABL alone or in combination with gemcitabine in a human NSCLC cell line were investigated. A549 cells were treated in vitro with ABL, gemcitabine, and a combination of ABL and gemcitabine for 72 h. The results demonstrated that ABL and gemcitabine inhibited cell growth and induced apoptosis of A549 cells. These effects were more potent following the combination of ABL and gemcitabine treatment than either agent alone. Furthermore, the signal transduction analysis revealed nuclear factor (NF)‑κB expression was significantly decreased by ABL and the combination treatment. The inhibitor nuclear factor κBα (IκBα) and Bax levels were upregulated whereas Bcl‑2 was substantially downregulated following treatment. The present findings suggest that ABL combined with gemcitabine elicits potent apoptosis of lung cancer cells and therefore, ABL has the potential to be developed as a chemotherapeutic agent.

  19. Toxic Effects of the Major Components of Diesel Exhaust in Human Alveolar Basal Epithelial Cells (A549

    Directory of Open Access Journals (Sweden)

    Pavel Rossner

    2016-08-01

    Full Text Available We investigated the toxicity of benzo[a]pyrene (B[a]P, 1-nitropyrene (1-NP and 3-nitrobenzanthrone (3-NBA in A549 cells. Cells were treated for 4 h and 24 h with: B[a]P (0.1 and 1 μM, 1-NP (1 and 10 μM and 3-NBA (0.5 and 5 μM. Bulky DNA adducts, lipid peroxidation, DNA and protein oxidation and mRNA expression of CYP1A1, CYP1B1, NQO1, POR, AKR1C2 and COX2 were analyzed. Bulky DNA adducts were induced after both treatment periods; the effect of 1-NP was weak. 3-NBA induced high levels of bulky DNA adducts even after 4-h treatment, suggesting rapid metabolic activation. Oxidative DNA damage was not affected. 1-NP caused protein oxidation and weak induction of lipid peroxidation after 4-h incubation. 3-NBA induced lipid peroxidation after 24-h treatment. Unlike B[a]P, induction of the aryl hydrocarbon receptor, measured as mRNA expression levels of CYP1A1 and CYP1B1, was low after treatment with polycyclic aromatic hydrocarbon (PAH nitro-derivatives. All test compounds induced mRNA expression of NQO1, POR, and AKR1C2 after 24-h treatment. AKR1C2 expression indicates involvement of processes associated with reactive oxygen species generation. This was supported further by COX2 expression induced by 24-h treatment with 1-NP. In summary, 3-NBA was the most potent genotoxicant, whereas 1-NP exhibited the strongest oxidative properties.

  20. PED is overexpressed and mediates TRAIL resistance in human non-small cell lung cancer.

    Science.gov (United States)

    Zanca, Ciro; Garofalo, Michela; Quintavalle, Cristina; Romano, Giulia; Acunzo, Mario; Ragno, Pia; Montuori, Nunzia; Incoronato, Mariarosaria; Tornillo, Luigi; Baumhoer, Daniel; Briguori, Carlo; Terracciano, Luigi; Condorelli, Gerolama

    2008-12-01

    PED (phosphoprotein enriched in diabetes) is a death-effector domain (DED) family member with a broad anti-apoptotic action. PED inhibits the assembly of the death-inducing signalling complex (DISC) of death receptors following stimulation. Recently, we reported that the expression of PED is increased in breast cancer cells and determines the refractoriness of these cells to anticancer therapy. In the present study, we focused on the role of PED in non-small cell lung cancer (NSCLC), a tumour frequently characterized by evasion of apoptosis and drug resistance. Immunohistochemical analysis of a tissue microarray, containing 160 lung cancer samples, indicated that PED was strongly expressed in different lung tumour types. Western blotting performed with specimens from NSCLC-affected patients showed that PED was strongly up-regulated (>6 fold) in the areas of tumour compared to adjacent normal tissue. Furthermore, PED expression levels in NSCLC cell lines correlated with their resistance to tumour necrosis factor related apoptosis-inducing ligand (TRAIL)-induced cell death. The involvement of PED in the refractoriness to TRAIL-induced cell death was investigated by silencing PED expression in TRAIL-resistant NSCLC cells with small interfering (si) RNAs: transfection with PED siRNA, but not with cFLIP siRNA, sensitized cells to TRAIL-induced cell death. In conclusion, PED is specifically overexpressed in lung tumour tissue and contributes to TRAIL resistance.

  1. Citotoxicidad de extractos de plantas medicinales sobre la línea celular de carcinoma de pulmón humano A549 Cytotoxicity of medicinal plant extracts on the human lung carcinoma cell line A549

    OpenAIRE

    Alexis Díaz García; Hermis Rodríguez Sánchez; Ramón Scull Lizama

    2011-01-01

    OBJETIVO: evaluar el efecto de 10 extractos de plantas medicinales sobre el crecimiento de la línea celular humana de carcinoma de pulmón A549. METODOS: el efecto de los extractos sobre la células tumorales se midió a través de un ensayo colorimétrico mediante el empleo del bromuro de 3-(4,5-dimetil-tiazol-2-yl)-2,5-difenil tetrazolio a concentraciones entre 3,9-250 µg/mL durante 72 h y se calculó la concentración citotóxica media para cada uno. RESULTADOS: del total de los extractos evaluado...

  2. Detection of E2A-PBX1 fusion transcripts in human non-small-cell lung cancer

    OpenAIRE

    Mo, Min-Li; Chen, Zhao; Zhou, Hai-Meng; Li, Hui; Hirata, Tomomi; Jablons, David M; He, Biao

    2013-01-01

    Background E2A-PBX1 fusion gene caused by t(1;19)(q23;p13), has been well characterized in acute lymphoid leukemia (ALL). There is no report on E2A-PBX1 fusion transcripts in non-small-cell lung cancer (NSCLC). Methods We used polymerase chain reaction (PCR) to detect E2A-PBX1 fusion transcripts in human NSCLC tissue specimens and cell lines. We analyzed correlation of E2A-PBX1 fusion transcripts with clinical outcomes in 76 patients with adenocarcinoma in situ (AIS) and other subgroups. We c...

  3. Exogenous p53 upregulated modulator of apoptosis (PUMA) decreases growth of lung cancer A549 cells.

    Science.gov (United States)

    Liu, Chun-Ju; Zhang, Xia-Li; Luo, Da-Ya; Zhu, Wei-Feng; Wan, Hui-Fang; Yang, Jun-Ping; Yang, Xiao-Jun; Wan, Fu-Sheng

    2015-01-01

    To investigate the influence of exogenous p53 upregulated modulator of apoptosis (PUMA) expression on cell proliferation and apoptosis in human non-small cell lung cancer A549 cells and transplanted tumor cell growth in nude mice. A549 cells were divided into the following groups: control, non- carrier (NC), PUMA (transfected with pCEP4- (HA) 2-PUMA plasmid), DDP (10 μg/mL cisplatin treatment) and PUMA+DDP (transfected with pCEP4-(HA)2-PUMA plasmid and 10 μg/mL cisplatin treatment). The MTT method was used to detect the cell survival rate. Cell apoptosis rates were measured by flow cytometry, and PUMA, Bax and Bcl-2 protein expression levels were measured by Western blotting. Compared to the control group, the PUMA, DDP and PUMA+DDP groups all had significantly decreased A549 cell proliferation (pPUMA+DDP group. Conversely, the apoptosis rates of the three groups were significantly increased (PPUMA and DDP treatments were synergistic. Moreover, Bax protein levels significantly increased (pPUMA+DDP group was significantly higher than in the single DDP or PUMA groups. Exogenous PUMA effectively inhibited lung cancer A549 cell proliferation and transplanted tumor growth by increasing Bax protein levels and reducing Bcl-2 protein levels.

  4. Puerarin protects against Staphylococcus aureus-induced injury of human alveolar epithelial A549 cells via downregulating alpha-hemolysin secretion.

    Science.gov (United States)

    Tang, Feng; Li, Wen-Hua; Zhou, Xuan; Liu, Yong-Hua; Li, Zhe; Tang, Yu-Shun; Kou, Xu; Wang, Shu-De; Bao, Min; Qu, Lian-Da; Li, Min; Li, Bing

    2014-08-01

    Alpha-hemolysin, a secreted pore-forming toxin, plays an indispensable role in the pathogenicity of Staphylococcus aureus. In this study, the antimicrobial activity of puerarin against S. aureus was investigated; as a result, puerarin showed no influence on the growth of this organism. However, hemolysis and western blotting assays showed that puerarin concentration dependently inhibited the secretion of alpha-hemolysin at low concentrations. Real-time RT-PCR assay was further employed to evaluate the transcriptional level of hla, the gene encoding alpha-hemolysin, and RNAIII, an effector molecule of the agr system. The results indicated that the RNAIII expression and subsequent hla transcription were also inhibited by puerarin in a dose-dependent manner. Furthermore, puerarin significantly prevented human alveolar epithelial A549 cells from S. aureus-induced injury. Thereby, puerarin may be considered as a potential candidate for the development of antivirulence drugs in the treatment of S. aureus-mediated infections.

  5. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Han, Jae Woong; Zhang, Xi-Feng; Park, Jung Hyun; Kim, Jin-Hoi

    2015-02-01

    Silver nanoparticles (AgNPs) are prominent group of nanomaterials and are recognized for their diverse applications in various health sectors. This study aimed to synthesize the AgNPs using the leaf extract of Artemisia princeps as a bio-reductant. Furthermore, we evaluated the multidimensional effect of the biologically synthesized AgNPs in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma (A549) cells. UV-visible (UV-vis) spectroscopy confirmed the synthesis of AgNPs. X-ray diffraction (XRD) indicated that the AgNPs are specifically indexed to a crystal structure. The results from Fourier transform infrared spectroscopy (FTIR) indicate that biomolecules are involved in the synthesis and stabilization of AgNPs. Dynamic light scattering (DLS) studies showed the average size distribution of the particle between 10 and 40 nm, and transmission electron microscopy (TEM) confirmed that the AgNPs were significantly well separated and spherical with an average size of 20 nm. AgNPs caused dose-dependent decrease in cell viability and biofilm formation and increase in reactive oxygen species (ROS) generation and DNA fragmentation in H. pylori and H. felis. Furthermore, AgNPs induced mitochondrial-mediated apoptosis in A549 cells; conversely, AgNPs had no significant effects on L132 cells. The results from this study suggest that AgNPs could cause cell-specific apoptosis in mammalian cells. Our findings demonstrate that this environmentally friendly method for the synthesis of AgNPs and that the prepared AgNPs have multidimensional effects such as anti-bacterial and anti-biofilm activity against H. pylori and H. felis and also cytotoxic effects against human cancer cells. This report describes comprehensively the effects of AgNPs on bacteria and mammalian cells. We believe that biologically synthesized AgNPs will open a new avenue towards various biotechnological and biomedical applications in the near future.

  6. Oxidative stress, DNA damage, and inflammation induced by ambient air and wood smoke particulate matter in human A549 and THP-1 cell lines.

    Science.gov (United States)

    Danielsen, Pernille Høgh; Møller, Peter; Jensen, Keld Alstrup; Sharma, Anoop Kumar; Wallin, Håkan; Bossi, Rossana; Autrup, Herman; Mølhave, Lars; Ravanat, Jean-Luc; Briedé, Jacob Jan; de Kok, Theo Martinus; Loft, Steffen

    2011-02-18

    Combustion of biomass and wood for residential heating and/or cooking contributes substantially to both ambient air and indoor levels of particulate matter (PM). Toxicological characterization of ambient air PM, especially related to traffic, is well advanced, whereas the toxicology of wood smoke PM (WSPM) is poorly assessed. We assessed a wide spectrum of toxicity end points in human A549 lung epithelial and THP-1 monocytic cell lines comparing WSPM from high or low oxygen combustion and ambient PM collected in a village with many operating wood stoves and from a rural background area. In both cell types, all extensively characterized PM samples (1.25-100 μg/mL) induced dose-dependent formation of reactive oxygen species and DNA damage in terms of strand breaks and formamidopyrimidine DNA glycosylase sites assessed by the comet assay with WSPM being most potent. The WSPM contained more polycyclic aromatic hydrocarbons (PAH), less soluble metals, and expectedly also had a smaller particle size than PM collected from ambient air. All four types of PM combined increased the levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine dose-dependently in A549 cells, whereas there was no change in the levels of etheno-adducts or bulky DNA adducts. Furthermore, mRNA expression of the proinflammatory genes monocyte chemoattractant protein-1, interleukin-8, and tumor necrosis factor-α as well as the oxidative stress gene heme oxygenase-1 was upregulated in the THP-1 cells especially by WSPM and ambient PM sampled from the wood stove area. Expression of oxoguanine glycosylase 1, lymphocyte function-associated antigen-1, and interleukin-6 did not change. We conclude that WSPM has small particle size, high level of PAH, low level of water-soluble metals, and produces high levels of free radicals, DNA damage as well as inflammatory and oxidative stress response gene expression in cultured human cells.

  7. In vitro cytotoxic effects of PM2.5 from the city of Abidjan (Ivory Coast) on human A549 lung cells

    International Nuclear Information System (INIS)

    Kouassi, Kouakou-Serge; Billet, Sylvain; Garcon, Guillaume; Verdin, Anthony; Courcot, Dominique; Shirali, Pirouz; Diouf, Amadou; Cazier, Fabrice; Djaman, Joseph

    2012-01-01

    Epidemiological studies associate air pollution, especially particulate, increased morbidity and mortality from respiratory and cardiovascular origin . Africa, which has an urbanization rate among the highest in the world, is particularly exposed. The 'Initiative on the air quality in Sub-Saharan Africa' showed the importance of atmospheric concentrations of certain pollutants such as nitrogen oxides, sulfur dioxide and particulate matter (PM 10 ). Like the great capitals of Africa, Abidjan, economic capital and most industrialized city of Ivory Coast is facing an air pollution from industrial-urban and health consequences for its population of nearly 6 million inhabitants. To better understand the mechanisms of action resulting from pulmonary exposure to particulate atmospheric aerosols, we proposed: (i) to collect atmospheric particles (PM 2.5 ) using high volume cascade impaction in the District of Abidjan in three influences (rural, urban or industrial), (ii) to determine their main physicochemical, (iii) assess their cytotoxicity and their role in the induction of oxidative damage in a model of human lung cells (A549) in culture. The chemical composition of the atmospheric particles revealed their heterogeneity, and many inorganic (e.g. Al, Ca, Fe, Mn, Zn, Ni, Cr, Cu, Pb, Mg) and organic compounds (e.g. paraffins) were quantified at the three sites. Their effect concentrations (EC) to 10 and 50% on the A549 were as follows: influence rural: EC 10 = 5.91 μg/cm 2 and EC 50 29.55 μg/cm 2 , urban influence: EC 10 = 5 .45 μg/cm 2 and EC 50 = 27.23 μg/cm 2 , and industrial influence: EC 10 = 6.86 μg/cm 2 and EC 50 = 34.29 μg/cm 2 . Exposure of A549 cells to Abidjan city's PM samples for 24, 48 or 72 hours to their EC 10 or EC 50 induced oxidative damage, as demonstrated by the formation of malon-dialdehyde, changes in enzyme activity of superoxide dismutase and alteration of glutathione status. (authors)

  8. Plasminogen Activator Inhibitor 1 Promotes Immunosuppression in Human Non-Small Cell Lung Cancers by Enhancing TGF-Β1 Expression in Macrophage

    Directory of Open Access Journals (Sweden)

    Chengjun Zhu

    2017-12-01

    Full Text Available Background: Plasminogen activator inhibitor-1 (PAI-1 has been regarded as a risk factor for thrombosis and atherosclerosis. Since it has been shown that PAI-1 can activate macrophages through Toll-like receptor-4, we sought to investigate the role of PAI-1 in the tumor microenvironment. Methods: The expression and distribution patterns of PAI-1 and transforming growth factor beta (TGF-β were measured in 60 non-small cell lung cancer (NSCLC tumors. A statistical correlation analysis was performed between PAI-1 and TGF-β expression and distribution in each tumor. The distribution of tumor-associated macrophages (TAMs was also measured and its correlation to PAI-1 levels was analyzed. Levels of secreted CCL-17, CCL-22, IL-6 and TGF-β were measured in cell cultures of human macrophage cell lines THP-1 and U937 treated with PAI-1. Levels of secreted PAI-1 were monitored in cell cultures of human NSCLCs cell lines 95D and A549 treated with TGF-β. Secreted proteins were measured in cell culture supernatants using ELISA. Changes in downstream signaling pathways were investigated using western blot. Results: PAI-1 and TGF-β were found to be overexpressed in human NSCLCs. PAI-1 expression was tightly correlated to TGF-β expression as well as the percentage of TAMs. PAI-1 treatment increased the expression of TAM-associated cytokines and chemokines, including CCL-17, CCL-22, and IL-6. PAI-1 treatment was also observed to enhance TGF-β expression in macrophage cell lines through an IL-6 autocrine/paracrine manner. The effects on TGF-β expression were blocked by NF-κB and STAT3 inhibition. Interestingly, TGF-β also increased levels of secreted PAI-1 in NSCLC cells through SMAD3-dependent signaling, therefore resulting in a feed-forward loop. However, this loop could be blocked by NF-κB, STAT3 and SMAD3 signaling inhibition, as well as treatment with a high concentration of TGF-β. Conclusion: PAI-1 and TGF-β promote NSCLC tumor cells and TAMs and

  9. Comparative physicochemical and biological characterization of NIST Interim Reference Material PM2.5 and SRM 1648 in human A549 and mouse RAW264.7 cells.

    Science.gov (United States)

    Mitkus, Robert J; Powell, Jan L; Zeisler, Rolf; Squibb, Katherine S

    2013-12-01

    The epidemiological association between exposure to fine particulate matter (PM2.5) and adverse health effects is well-known. Here we report the size distribution, metals content, endotoxin content, and biological activity of National Institute of Standards and Technology (NIST) Interim Reference Material (RM) PM2.5. Biological activity was measured in vitro by effects on cell viability and the release of four inflammatory immune mediators, from human A549 alveolar epithelial cells or murine RAW264.7 monocytes. A dose range covering three orders of magnitude (1-1000μg/mL) was tested, and biological activity was compared to an existing Standard Reference Material (SRM) for urban PM (NIST SRM 1648). Robust release of IL-8 and MCP-1 from A549 cells was observed in response to IRM PM2.5 exposures. Significant TNF-α, but not IL-6, secretion from RAW264.7 cells was observed in response to both IRM PM2.5 and SRM 1648 particle types. Cytokine or chemokine release at high doses often occurred in the presence of cytotoxicity, likely as a result of externalization of preformed mediator. Our results are consistent with a local cytotoxic and pro-inflammatory mechanism of response to exposure to inhaled ambient PM2.5 and reinforce the continued relevance of in vitro assays for mechanistic research in PM toxicology. Our study furthers the goal of developing reference samples of environmentally relevant particulate matter of various sizes that can be used for hypothesis testing by multiple investigators. Published by Elsevier Ltd.

  10. Therapeutic effects of gold nanoparticles synthesized using Musa paradisiaca peel extract against multiple antibiotic resistant Enterococcus faecalis biofilms and human lung cancer cells (A549).

    Science.gov (United States)

    Vijayakumar, S; Vaseeharan, B; Malaikozhundan, B; Gopi, N; Ekambaram, P; Pachaiappan, R; Velusamy, P; Murugan, K; Benelli, G; Suresh Kumar, R; Suriyanarayanamoorthy, M

    2017-01-01

    Botanical-mediated synthesis of nanomaterials is currently emerging as a cheap and eco-friendly nanotechnology, since it does not involve the use of toxic chemicals. In the present study, we focused on the synthesis of gold nanoparticles using the aqueous peel extract of Musa paradisiaca (MPPE-AuNPs) following a facile and cheap fabrication process. The green synthesized MPPE-AuNPs were bio-physically characterized by UV-Vis spectroscopy, FTIR, XRD, TEM, Zeta potential analysis and EDX. MPPE-AuNPs were crystalline in nature, spherical to triangular in shape, with particle size ranging within 50 nm. The biofilm inhibition activity of MPPE-AuNPs was higher against multiple antibiotic resistant (MARS) Gram-positive Enterococcus faecalis. Light and confocal laser scanning microscopic observations evidenced that the MPPE-AuNPs effectively inhibited the biofilm of E. faecalis when tested at 100 μg mL -1 . Cytotoxicity studies demonstrated that MPPE-AuNPs were effective in inhibiting the viability of human A549 lung cancer cells at higher concentrations of 100 μg mL -1 . The morphological changes in the MPPE-AuNPs treated A549 lung cancer cells were visualized under phase-contrast microscopy. Furthermore, the ecotoxicity of MPPE-AuNPs on the freshwater micro crustacean Ceriodaphnia cornuta were evaluated. Notably, no mortality was recorded in MPPE-AuNPs treated C. cornuta at 250 μg mL -1 . This study concludes that MPPE-AuNPs are non-toxic, eco-friendly and act as a multipurpose potential biomaterial for biomedical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The apoptotic effect of 1'S-1'-Acetoxychavicol Acetate (ACA enhanced by inhibition of non-canonical autophagy in human non-small cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Sophia P M Sok

    Full Text Available Autophagy plays a role in deciding the fate of cells by inducing either survival or death. 1'S-1-acetoxychavicol acetate (ACA is a phenylpropanoid isolated from rhizomes of Alpinia conchigera and has been reported previously on its apoptotic effects on various cancers. However, the effect of ACA on autophagy remains ambiguous. The aims of this study were to investigate the autophagy-inducing ability of ACA in human non-small cell lung cancer (NSCLC, and to determine its role as pro-survival or pro-death mechanism. Cell viability assay was conducted using MTT. The effect of autophagy was assessed by acridine orange staining, GFP-LC3 punctate formation assay, and protein level were analysed using western blot. Annexin V-FITC/PI staining was performed to detect percentage of cells undergoing apoptosis by using flow cytometry. ACA inhibits the cell viability and induced formation of cytoplasmic vacuoles in NSCLC cells. Acidic vesicular organelles and GFP-LC3 punctate formation were increased in response to ACA exposure in A549 and SK-LU-1 cell lines; implying occurrence of autophagy. In western blot, accumulation of LC3-II accompanied by degradation of p62 was observed, which further confirmed the full flux of autophagy induction by ACA. The reduction of Beclin-1 upon ACA treatment indicated the Beclin-1-independent autophagy pathway. An early autophagy inhibitor, 3-methyaldenine (3-MA, failed to suppress the autophagy triggered by ACA; validating the existence of Beclin-1-independent autophagy. Silencing of LC3-II using short interfering RNA (siRNA abolished the autophagy effects, enhancing the cytotoxicity of ACA through apoptosis. This proposed ACA triggered a pro-survival autophagy in NSCLC cells. Consistently, co-treatment with lysosomal inhibitor, chloroquine (CQ, exerted a synergistic effect resulting in apoptosis. Our findings suggested ACA induced pro-survival autophagy through Beclin-1-independent pathway in NSCLC. Hence, targeting

  12. High pemetrexed sensitivity of docetaxel-resistant A549 cells is mediated by TP53 status and downregulated thymidylate synthase.

    Science.gov (United States)

    Kuo, Wei-Ting; Tu, Dom-Gene; Chiu, Ling-Yen; Sheu, Gwo-Tarng; Wu, Ming-Fang

    2017-11-01

    The chemoresistance of non-small cell lung cancer (NSCLC) that occurs in docetaxel (DOC) chemotherapy substantially decreases the survival of patients. To overcome DOC-induced chemoresistance, we established DOC-selected A549 lung cancer sublines (A549/D16 and A549/D32) and revealed that both sublines were cross-resistant to vincristine (VCR) and doxorubicin (DXR). Notably, both sublines were more sensitive to pemetrexed (PEM) than parental cells according to MTT and clonogenic assays. The expression levels of thymidylate synthase (TS) and γ-glutamyl hydrolase (GGH) were downregulated in DOC-resistant sublines. When exogenous TS was overexpressed in A549/D16 cells, PEM sensitivity was significantly decreased, however it was not decreased by overexpression of exogenous GGH. PEM treatment induced more apoptotic sub-G1 cells in both DOC-resistant sublines and in the in vivo PEM sensitivities of A549/D16 cells. These findings were further confirmed by a xenografted tumor model. To unmask the mediator of TS downregulation, we investigated human lung cancer cell lines that have various TP53 statuses using DOC treatment. The level of TS protein was significantly decreased in wild-type TP53-containing cells with DOC treatment; TS expression levels were not affected in mutant-TP53 and TP53‑null cells under the same conditions. Furthermore, when the expression of TP53 was inhibited in A549 cells, the expression level of TS was increased. Our data indicated that DOC activated wild-type TP53 and suppressed TS expression under continuous DOC exposure. Therefore, the expression of TS remained at low levels in DOC-resistant A549 cancer cells. Our data revealed that for lung cancer with DOC resistance and wild‑type TP53 status, the administration of PEM as a second-line agent to overcome DOC-resistance may benefit patients.

  13. FoxM1 inhibition enhances chemosensitivity of docetaxel-resistant A549 cells to docetaxel via activation of JNK/mitochondrial pathway.

    Science.gov (United States)

    Wang, Ke; Zhu, Xue; Zhang, Kai; Zhu, Ling; Zhou, Fanfan

    2016-09-01

    Docetaxel is recommended as a second-line chemotherapy agent for the non-small-cell lung cancer (NSCLC); however, drug resistance greatly limits its efficiency. Forkhead box M1 (FoxM1), an oncogenic transcription factor, is believed to be involved in the chemoresistance of various human cancers; whereas the association of FoxM1 with acquired docetaxel-resistance in NSCLC remains unclear. In the present study, we investigated the involvement of FoxM1 in the docetaxel-resistant human lung adenocarcinoma A549 cells (A549/DTX). Our results showed that FoxM1 expression was significantly increased in the A549/DTX cells compared with that in the parental A549 cells. FoxM1 siRNA silencing promoted the cytotoxic and pro-apoptotic effect of docetaxel in A549/DTX cells, which was possibly mediated through inducing the activation of c-Jun N-terminal kinases/mitochondrial signaling pathway. Our results suggest a critical role of FoxM1 in docetaxel-resistance of the A549 cells and form the basis for the development of combined therapy of docetaxel and FoxM1 depletion in treating NSCLC. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Screening of Stat3 inhibitory effects of Korean herbal medicines in the A549 human lung cancer cell line

    OpenAIRE

    Jong-Shik Park; Ok-Sun Bang; Jinhee Kim

    2014-01-01

    Background: The transcription factor signal transducer and activator of transcription 3 (Stat3) is constitutively activated in many human cancers. It promotes tumor cell proliferation, inhibits apoptosis, induces angiogenesis and metastasis, and suppresses antitumor host immune responses. Therefore, Stat3 has emerged as a promising molecular target for cancer therapies. In this study, we evaluated the Stat3-suppressive activity of 38 herbal medicines traditionally used in Korea. Methods: M...

  15. Anticancer and antimetastatic activities of Renieramycin M, a marine tetrahydroisoquinoline alkaloid, in human non-small cell lung cancer cells.

    Science.gov (United States)

    Halim, Hasseri; Chunhacha, Preedakorn; Suwanborirux, Khanit; Chanvorachote, Pithi

    2011-01-01

    Renieramycin M, has been shown to exhibit promising anticancer activity against some cancer cell lines; however, the underlying mechanism remains unknown. Renieramycin M was isolated from the blue sponge Xestospongia sp. Anticancer and antimetastatic activities of renieramycin M were investigated in human non-small cell lung cancer cells. Renieramycin M treatment caused p53 activation, which subsequently down-regulated anti-apoptotic MCL-1 and BCL-2 proteins, while the level of pro-apoptotic BAX protein was not altered. The subtoxic concentrations of renieramycin M significantly decreased invasion and migration abilities of cancer cells. In addition, this compound showed a strong inhibitory effect on anchorage-independent growth of the cells. These results reveal that renieramycin M induced lung cancer cells apoptosis through p53-dependent pathway and the compound may inhibit progression and metastasis of lung cancer cells.

  16. [Effect of Polydatin on Epithelial-Mesenchymal Transition of Human Alveolar Epithelium A549 Cells Induced by TGF-β1].

    Science.gov (United States)

    Yang, Jun-chao; Xu, Lu; Song, Kang; Wang, Yuan; Gao, Run-di; Chen, Rui-lin; Cao, Yu

    2016-04-01

    To explore the effect of polydatin on the growth of TGF-β₁induced humanalveolar epithelium A549 cells and the mechanism of polydatin for inhibiting the process of epithelial-mesenchymal transition (EMT). A549 cells in vitro cultured were randomly divided into five groups, i.e., the blank group, the control group, the low dose polydatin group, the middle dose polydatin group, the high dose polydatin group. Common culture fluid was added in A549 cells of the blank group. Five ng/mLTGF-β₁contained culture fluid was added in A549 cells of the control group. 50, 100, and 150 μmol/mL of polydatin plus 5 ng/mL TGF-β₁contained culture fluid was added in A549 cells of low, middle, and high dosepolydatin groups, respectively. Morphological changes were observed and recorded at different time points. The optimal concentration of polydatin was determined by MTT method. Protein and mRNA expressions of E-cad epithelial cell marker) and Vimentin (mesenchymal cell marker) were detected by Western blot and Real-time PCR. Under inverted phase contrast microscope, A549 cells turned from previous pebble shape to fusiform shape after intervened by polydatin and TGF-β1. The intercellular space was enlargedand the intercellular connection became loose. These phenomena were more obviously seen in the control group. A549 cells were more satiated in low, middle, and high dose polydatin groups than in the control group. The EMT inhibition was most obviously seen in the middle dose polydatin group at 48 h. Protein and mRNA expressions of E-cad showed an overall descending tendency after intervened by polydatin and TGF-β1 (P A549 cells time- and dose-dependently. It also played roles in inhibiting pulmonary fibrosis.

  17. Novel functional view of the crocidolite asbestos-treated A549 human lung epithelial transcriptome reveals an intricate network of pathways with opposing functions

    Directory of Open Access Journals (Sweden)

    Stevens John R

    2008-08-01

    Full Text Available Abstract Background Although exposure to asbestos is now regulated, patients continue to be diagnosed with mesothelioma, asbestosis, fibrosis and lung carcinoma because of the long latent period between exposure and clinical disease. Asbestosis is observed in approximately 200,000 patients annually and asbestos-related deaths are estimated at 4,000 annually1. Although advances have been made using single gene/gene product or pathway studies, the complexity of the response to asbestos and the many unanswered questions suggested the need for a systems biology approach. The objective of this study was to generate a comprehensive view of the transcriptional changes induced by crocidolite asbestos in A549 human lung epithelial cells. Results A statistically robust, comprehensive data set documenting the crocidolite-induced changes in the A549 transcriptome was collected. A systems biology approach involving global observations from gene ontological analyses coupled with functional network analyses was used to explore the effects of crocidolite in the context of known molecular interactions. The analyses uniquely document a transcriptome with function-based networks in cell death, cancer, cell cycle, cellular growth, proliferation, and gene expression. These functional modules show signs of a complex interplay between signaling pathways consisting of both novel and previously described asbestos-related genes/gene products. These networks allowed for the identification of novel, putative crocidolite-related genes, leading to several new hypotheses regarding genes that are important for the asbestos response. The global analysis revealed a transcriptome that bears signatures of both apoptosis/cell death and cell survival/proliferation. Conclusion Our analyses demonstrate the power of combining a statistically robust, comprehensive dataset and a functional network genomics approach to 1 identify and explore relationships between genes of known importance

  18. Eukaryotic translation initiation factor 2 subunit α (eIF2α) inhibitor salubrinal attenuates paraquat-induced human lung epithelial-like A549 cell apoptosis by regulating the PERK-eIF2α signaling pathway.

    Science.gov (United States)

    Wang, Rui; Sun, Da-Zhuang; Song, Chun-Qing; Xu, Yong-Min; Liu, Wei; Liu, Zhi; Dong, Xue-Song

    2018-02-01

    Paraquat (PQ), as one of the most widely used herbicides in the world, can cause severe lung damage in humans and animals. This study investigated the underlying molecular mechanism of PQ-induced lung cell damage and the protective role of salubrinal. Human lung epithelial-like A549 cells were treated with PQ for 24h and were pre-incubated with salubrinal for 2h, followed by 500μM of PQ treatment. Silencing eIF2α gene of the A549 cells with siRNA interference method was conducted. Cell morphology, cell viability, apoptosis and caspase-3 activity were assessed by different assays accordingly thereafter. The expression of PERK, p-PERK, ATF6, c-ATF6, IRE1α, p-IRE1α, CHOP, GRP78, p-eIF2α and β-actin was assayed by western blot. The data showed that PQ significantly reduced A549 cell viability, changed cell morphology, induced cell apoptosis and significantly upregulated the levels of GRP78, CHOP, p-PERK, c-ATF6 and p-IRE1α. However, 30μM salubrinal could attenuate the effects of PQ on damages to A549 cells through upregulating p-eIF2α. In contrast, knocking down eIF2α gene inhabited the effects of salubrinal. These results suggest that PQ-induced A549 cell apoptosis involved endoplasmic reticulum (ER) stress, specially the PERK-eIF2α pathway. Salubrinal attenuated A549 cells from PQ-induced damages through regulation of the PERK-eIF2α signaling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Resveratrol raisesin vitroanticancer effects of paclitaxel in NSCLC cell line A549 through COX-2 expression.

    Science.gov (United States)

    Kong, Fanhua; Zhang, Runqi; Zhao, Xudong; Zheng, Guanlin; Wang, Zhou; Wang, Peng

    2017-09-01

    The aim of this study was to determine the raising anticancer effects of resveratrol (Res) on paclitaxel (PA) in non-small cell lung cancer (NSCLC) cell line A549. The 10 µg/ml of Res had no effect on human fetal lung fibroblast MRC-5 cells or on A549 cancer cells and the 5 or 10 µg/ml of PA also had no effect on MRC-5 normal cells. PA-L (5 µg/ml) and PA-H (10 µg/ml) had the growth inhibitory effects in NSCLC cell line A549, and Res increased these growth inhibitory effects. By flow cytometry experiment, after Res (5 µg/ml)+PA-H (10 µg/ml) treatment, the A549 cells showed the most apoptosic cells compared to other group treatments, and after additional treatment with Res, the apoptosic cells of both two PA concentrations were raised. Res+PA could reduce the mRNA and protein expressions of COX-2, and Res+PA could reduce the COX-2 related genes of VEGF, MMP-1, MMP-2, MMP-9, NF-κB, Bcl-2, Bcl-xL, procollagen I, collagen I, collagen III and CTGF, TNF-α, IL-1β, iNOS and raise the TIMP-1, TIMP-2, TIMP-3, IκB-α, p53, p21, caspase-3, caspase-8, caspase-9, Bax genes compared to the control cells and the PA treated cells. From these results, it can be suggested that Res could raise the anticancer effects of PA in A549 cells, thus Res might be used as a good sensitizing agent for PA.

  20. MicroRNA-429 induces tumorigenesis of human non-small cell lung cancer cells and targets multiple tumor suppressor genes

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Yaoguo; Xu, Shidong; Ma, Jianqun; Wu, Jun [Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang 150081 (China); Jin, Shi; Cao, Shoubo [Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang 150081 (China); Yu, Yan, E-mail: yuyan@hrbmu.edu.cn [Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang 150081 (China)

    2014-07-18

    Highlights: • MiR-429 expression is upregulated in non-small cell lung cancer (NSCLC). • MiR-429 inhibits PTEN, RASSF8 and TIMP2 expression. • MiR-429 promotes metastasis and proliferation. • We report important regulatory mechanisms involved in NSCLC progression. • MiR-429 is a potential therapeutic target and diagnostic marker. - Abstract: Lung cancer is the major cause of cancer death globally. MicroRNAs are evolutionally conserved small noncoding RNAs that are critical for the regulation of gene expression. Aberrant expression of microRNA (miRNA) has been implicated in cancer initiation and progression. In this study, we demonstrated that the expression of miR-429 are often upregulated in non-small cell lung cancer (NSCLC) compared with normal lung tissues, and its expression level is also increased in NSCLC cell lines compared with normal lung cells. Overexpression of miR-429 in A549 NSCLC cells significantly promoted cell proliferation, migration and invasion, whereas inhibition of miR-429 inhibits these effects. Furthermore, we demonstrated that miR-429 down-regulates PTEN, RASSF8 and TIMP2 expression by directly targeting the 3′-untranslated region of these target genes. Taken together, our results suggest that miR-429 plays an important role in promoting the proliferation and metastasis of NSCLC cells and is a potential target for NSCLC therapy.

  1. Salvianolic acid A reverses cisplatin resistance in lung cancer A549 cells by targeting c-met and attenuating Akt/mTOR pathway.

    Science.gov (United States)

    Tang, Xia-Li; Yan, Li; Zhu, Ling; Jiao, De-Min; Chen, Jun; Chen, Qing-Yong

    2017-09-01

    Drug resistance is one of the leading causes of chemotherapy failure in non-small cell lung cancer (NSCLC) treatment. The purpose of this study was to investigate the role of c-met in human lung cancer cisplatin resistance cell line (A549/DDP) and the reversal mechanism of salvianolic acid A (SAA), a phenolic active compound extracted from Salvia miltiorrhiza. In this study, we found that A549/DDP cells exert up-regulation of c-met by activating the Akt/mTOR signaling pathway. We also show that SAA could increase the chemotherapeutic efficacy of cisplatin, suggesting a synergistic effect of SAA and cisplatin. Moreover, we revealed that SAA enhanced sensitivity to cisplatin in A549/DDP cells mainly through suppression of the c-met/AKT/mTOR signaling pathway. Knockdown of c-met revealed similar effects as that of SAA in A549/DDP cells. In addition, SAA effectively prevented multidrug resistance associated protein1 (MDR1) up-regulation in A549/DDP cells. Taken together, our results indicated that SAA suppressed c-met expression and enhanced the sensitivity of lung adenocarcinoma A549 cells to cisplatin through AKT/mTOR signaling pathway. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  2. A methoxyflavanone derivative from the Asian medicinal herb (Perilla frutescens) induces p53-mediated G2/M cell cycle arrest and apoptosis in A549 human lung adenocarcinoma.

    Science.gov (United States)

    Abd El-Hafeez, Amer Ali; Fujimura, Takashi; Kamei, Rikiya; Hirakawa, Noriko; Baba, Kenji; Ono, Kazuhisa; Kawamoto, Seiji

    2017-07-14

    Perilla frutescens is an Asian dietary herb consumed as an essential seasoning in Japanese cuisine as well as used for a Chinese medicine. Here, we report that a newly found methoxyflavanone derivative from P. frutescens (Perilla-derived methoxyflavanone, PDMF; 8-hydroxy-5,7-dimethoxyflavanone) shows carcinostatic activity on human lung adenocarcinoma, A549. We found that treatment with PDMF significantly inhibited cell proliferation and decreased viability through induction of G 2 /M cell cycle arrest and apoptosis. The PDMF stimulation induces phosphorylation of tumor suppressor p53 on Ser15, and increases its protein amount in conjunction with up-regulation of downstream cyclin-dependent kinase inhibitor p21 Cip1/Waf1 and proapoptotic caspases, caspase-9 and caspase-3. We also found that small interfering RNA knockdown of p53 completely abolished the PDMF-induced G 2 /M cell cycle arrest, and substantially abrogated its proapoptotic potency. These results suggest that PDMF represents a useful tumor-preventive phytochemical that triggers p53-driven G 2 /M cell cycle arrest and apoptosis.

  3. Identification of a Short Cell-Penetrating Peptide from Bovine Lactoferricin for Intracellular Delivery of DNA in Human A549 Cells.

    Science.gov (United States)

    Liu, Betty R; Huang, Yue-Wern; Aronstam, Robert S; Lee, Han-Jung

    2016-01-01

    Cell-penetrating peptides (CPPs) have been shown to deliver cargos, including protein, DNA, RNA, and nanomaterials, in fully active forms into live cells. Most of the CPP sequences in use today are based on non-native proteins that may be immunogenic. Here we demonstrate that the L5a CPP (RRWQW) from bovine lactoferricin (LFcin), stably and noncovalently complexed with plasmid DNA and prepared at an optimal nitrogen/phosphate ratio of 12, is able to efficiently enter into human lung cancer A549 cells. The L5a CPP delivered a plasmid containing the enhanced green fluorescent protein (EGFP) coding sequence that was subsequently expressed in cells, as revealed by real-time PCR and fluorescent microscopy at the mRNA and protein levels, respectively. Treatment with calcium chloride increased the level of gene expression, without affecting CPP-mediated transfection efficiency. Zeta-potential analysis revealed that positively electrostatic interactions of CPP/DNA complexes correlated with CPP-mediated transport. The L5a and L5a/DNA complexes were not cytotoxic. This biomimetic LFcin L5a represents one of the shortest effective CPPs and could be a promising lead peptide with less immunogenic for DNA delivery in gene therapy.

  4. Biodegradable Alginate-Chitosan Hollow Nanospheres for Codelivery of Doxorubicin and Paclitaxel for the Effect of Human Lung Cancer A549 Cells

    Directory of Open Access Journals (Sweden)

    Liu Tao

    2018-01-01

    Full Text Available A biodegradable alginate coated chitosan hollow nanosphere (ACHN was prepared by a hard template method and used for codelivery of doxorubicin (DOX and paclitaxel (PTX to investigate the effect on human lung cancer A549 cells. PTX was loaded into the nanometer hollow structure of ACHN through adsorption method. DOX was coated on surface of ACHN through electrostatic interaction. Drug release studies exhibited a sustained-release effect. According to X-ray diffraction patterns (XRD, differential scanning calorimetry (DSC, and Fourier transform infrared spectroscopy (FT-IR analysis, DOX structure in the loading samples (DOX-PTX-ACHN was of amorphous state while PTX was microcrystalline. Cytotoxicity experiments showed ACHN was nontoxic as carrier material and the combination of DOX and PTX in DOX-PTX-ACHN exhibited a good inhibiting effect on cell proliferation. Cell uptake experiments demonstrated that DOX-PTX-ACHN accumulated in the cytoplasm. Degradation experiments illustrated that ACHN was a biodegradable material. In summary, these results clearly indicate that ACHN can be utilized as a potential biomaterial to transport multiple drugs to be used in combination therapy.

  5. Physicochemical characterization of ambient PM2.5in Tehran air and its potential cytotoxicity in human lung epithelial cells (A549).

    Science.gov (United States)

    MohseniBandpi, Anoushiravan; Eslami, Akbar; Shahsavani, Abbas; Khodagholi, Fariba; Alinejad, Abdolazim

    2017-09-01

    As air pollution is a major problem in Tehran, this study aimed to investigate the physicochemical characterization of the water-soluble and organic contents of ambient PM 2.5 in Tehran and determine its in vitro toxicological impact on human lung epithelial cells (A549). A total of 11 sampling stations were selected, including three categories: traffic, urban, and suburban. All sampling was carried out in the spring and summer of 2015. Ion chromatography (IC), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and GC-MS were used to analyze ionic compounds, heavy metals, and polycyclic aromatic hydrocarbons (PAHs), respectively, and an ELISA reader was used for cytotoxicity analysis. The most prevalent ionic species found for all three categories was SO 4 2- . PAH concentrations were 43.45±32.71, 50.51±37.27, and 29.13±33.29ng/m 3 for traffic, urban, and suburban stations, respectively. For all sampling stations, Al and Fe had the highest values among the investigated heavy metals. Cell viability measurements, carried out using the MTT assay, showed that all three categories of samples cause cytotoxicity, although the urban station samples showed higher cytotoxicity than those from the other stations (p˂0.05). Based on the results of the present study, organic compounds and insoluble particles could be the main causes of cytotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line

    Science.gov (United States)

    Palaniappan, P.; Sathishkumar, G.; Sankar, R.

    2015-03-01

    The present study reports, green synthesis of bioactive silver nanoparticles (AgNPs) under different temperature (60 °C, room temperature and 4° refrigerator) using the aqueous extract of sea grass Cymodocea serrulata as a potential bioreductant. Increased temperature fabricates more AgNPs compare to room temperature and refrigerator condition. At first the reduction of Ag+ ions were confirmed through color change which produces an absorbance spectra at 420 nm in UV-Visible spectrophotometer. Additionally various exclusive instrumentations such as X-ray diffraction (XRD), Dynamic light scattering (DLS), scanning electron microscope (SEM) analysis and Transmission electron microscope (TEM) were authorizes the biosynthesis and physio-chemical characterization of AgNPs. From Fourier transform infrared spectroscopy (FTIR) analysis, it was identified that the water soluble fractions of the sea grass mainly responsible for reduction of ionic silver (Ag+) into (Ag0) nano-ranged particles and also they act as stabilizing agent to sustain the durability of NPs for long period of time. Further, synthesized AgNPs shows potential cytotoxicity against human lung cancer A549 cells (LD50-100 μg/ml). The overall results suggest that C. serrulata is a valuable bioresource to generate rapid and eco-friendly bioactive AgNPs towards cancer therapy.

  7. Long noncoding RNA LINC00961 inhibits cell invasion and metastasis in human non-small cell lung cancer.

    Science.gov (United States)

    Jiang, Bin; Liu, Jing; Zhang, Yu-Hong; Shen, Dong; Liu, Shaoping; Lin, Feng; Su, Jun; Lin, Qing-Feng; Yan, Shuai; Li, Yong; Mao, Wei-Dong; Liu, Zhi-Li

    2018-01-01

    Long noncoding RNAs (LncRNAs) expression has been found to be misregulated in multiple human cancers, and a growing number of studies have revealed that lncRNAs can function as important oncogenes or tumor suppressors. In this study, we identified a lncRNA-LINC00961, which was significantly down-regulated in human non-small cell lung cancer tissues. Decreased LINC00961 was associated with NSCLC patients advanced clinical stage, lymph node metastasis, and shorter survival time. Further experiments demonstrated that LSD1 could directly bind to LINC00961 promoter regions and epigenetically repress its transcription in NSCLC cells. Moreover, MTT assays showed that LINC00961 had no influence on NSCLC cell proliferation. Ectopic overexpression of LINC00961 inhibits NSCLC cell migration, invasion in vitro and metastasis in vivo. Finally, qRT-PCR and western blot assays revealed that LINC00961 could act as a tumor suppressor partially via affecting β-catenin expression. Collectively, decreased LINC00961 might play a key role in NSCLC progression, and may serve as a novel prognostic marker in human NSCLC. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Chalepin: A Compound from Ruta angustifolia L. Pers Exhibits Cell Cycle Arrest at S phase, Suppresses Nuclear Factor-Kappa B (NF-κB) Pathway, Signal Transducer and Activation of Transcription 3 (STAT3) Phosphorylation and Extrinsic Apoptotic Pathway in Non-small Cell Lung Cancer Carcinoma (A549).

    Science.gov (United States)

    Richardson, Jaime Stella Moses; Aminudin, Norhaniza; Abd Malek, Sri Nurestri

    2017-10-01

    Plants have been a major source of inspiration in developing novel drug compounds in the treatment of various diseases that afflict human beings worldwide. Ruta angustifolia L. Pers known locally as Garuda has been conventionally used for various medicinal purposes such as in the treatment of cancer. A dihydrofuranocoumarin named chalepin, which was isolated from the chloroform extract of the plant, was tested on its ability to inhibit molecular pathways of human lung carcinoma (A549) cells. Cell cycle analysis and caspase 8 activation were conducted using a flow cytometer, and protein expressions in molecular pathways were determined using Western blot technique. Cell cycle analysis showed that cell cycle was arrested at the S phase. Further studies using Western blotting technique showed that cell cycle-related proteins such as cyclins, cyclin-dependent kinases (CDKs), and inhibitors of CDKs correspond to a cell cycle arrest at the S phase. Chalepin also showed inhibition in the expression of inhibitors of apoptosis proteins. Nuclear factor-kappa B (NF-κB) pathway, signal transducer and activation of transcription 3 (STAT-3), cyclooxygenase-2, and c-myc were also downregulated upon treatment with chalepin. Chalepin was found to induce extrinsic apoptotic pathway. Death receptors 4 and 5 showed a dramatic upregulation at 24 h. Analysis of activation of caspase 8 with the flow cytometer showed an increase in activity in a dose- and time-dependent manner. Activation of caspase 8 induced cleavage of BH3-interacting domain death agonist, which initiated a mitochondrial-dependent or -independent apoptosis. Chalepin causes S phase cell cycle arrest, NF-κB pathway inhibition, and STAT-3 inhibition, induces extrinsic apoptotic pathway, and could be an excellent chemotherapeutic agent. This study reports the capacity of an isolated bioactive compound known as chalepin to suppress the nuclear factor kappa-light-chain-enhancer of activated B cells pathway, signal

  9. Etoposide (VP-16) sensitizes p53-deficient human non-small cell lung cancer cells to caspase-7-mediated apoptosis.

    Science.gov (United States)

    Chiu, C-C; Lin, C-H M Y; Fang, K

    2005-05-01

    Human non-small-cell-lung-cancer (NSCLC) cells of (p)53-null genotype were exposed to low-dosage topoisomearse II inhibitor etoposide (VP-16). The cellular proliferation rate could be effectively inhibited by VP-16 in dose-dependent manner. The effective drug concentration for growth inhibition could be as low as 0.5 microM and the apoptotic phenotype became evident 48 h later. In H1299 cells, VP-16-induced cytotoxic effect was demonstrated associated with apoptosis that disappeared when restored with wild-type p53. Cell cycle analysis revealed that, upon VP-16 induction, cell death began with growth arrest by accumulating cells at the G(2)-M phase. The cells at sub-G(1) phase increased at the expense of those at G(2)-M transition state. To assess the regulation of cell cycle modulators, western blot analysis of H1299 cell lysates showed the release of apoptosis initiator, cytochrome c and apaf-1 hours following drug induction. The cleavage of downstream effectors, procaspase-9 and procaspase-7, but not procaspase-3, was accompanied with proteolysis of poly-(ADP-ribose) polymerase (PARP). VP-16-activated procaspase-7 cleavage was abrogated in cells with ectopically expressed p53. On the other hand, the inhibited procaspase-7 fragmentation by caspase-specific inhibitor reversed apoptotic phenotype caused by drug induction. Thus, VP-16-induced apoptotic cell death was contributed by caspase-7 activation in(p)53-deficient human NSCLC cells.

  10. Kaempferol modulates the metastasis of human non-small cell lung cancer cells by inhibiting epithelial-mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Meng Hang

    2015-06-01

    Full Text Available The present study was done to determine whether kaempferol, a natural polyphenol of the flavonoid family, affects Epithelial-Mesenchymal Transition (EMT in non-small cell lung cancer cells. Kaempferol not only inhibited cancer cell proliferation and migration in a dose-dependent manner but also modulated the expression of EMT-related proteins E-cadherin and vimentin which are indispensible to cellular motility, invasiveness and metastasis. These results indicate that kaempferol suppresses non-small cell lung cancer migration by modulating the expression of EMT proteins. Therefore, kaempferol may be useful as a potential anticancer agent for non-small cell lung cancer.

  11. Curcumin Promoted the Apoptosis of Cisplain-resistant Human Lung Carcinoma Cells A549/DDP through Down-regulating miR-186*

    Directory of Open Access Journals (Sweden)

    Jian ZHANG

    2010-04-01

    Full Text Available Background and objective Curcumin, a natural compound, is derived from the rthizom of Curcuma longa. In vitro and in vivo preclinical studies have shown its anti-inflammatory, antioxidant, anticancer activities and so on. miR-186*, which was found by microarray technology, was highly expressed in lung carcinoma cells A549/DDP. The aim of this study is to illustrate whether Curcumin could promote the apoptosis of A549/DDP cells through regulating the expression of miR-186*. Methods An oligonucleotide microarray chip was used to profile microRNA (miRNA expressions in A549/DDP cells treated with and without Curcumin. The significantly differentially expressed miRNA, which was selected from microarray chip, validated by quantitative real-time PCR. Ultimately, the remarkably expressed miRNA modulated the apoptosis assaying by flow cytometry expriments and the survival rate was measured by MTT method. Results The microarray chip results demonstrated: Curcumin altered the expression level of miRNAs compared with untreated control in A549/DDP cell line, miR-186* was significantly down-regulated after Curcumin treatment, which confirmed by quantitative real-time PCR. Downregulation of miR-186* expression by curcumin elevated the apoptosis, and the survival rate of A549/DDP cells decreased; but up-regulation of miR-186* expression by transfection its mimics restrained the apoptosis, the survival rate of A549/DDP cells increased, which were assayed by flow cytometry expriments and MTT method. Conclusion Modulation of miRNAs expression may be an important mechanism underlying the biological roles of Curcumin.

  12. Nimesulide acts synergistically with ionizing radiation against A549 human lung cancer cells through the activation of caspase-8 and caspase-3

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Hee; Kim, Byeong Mo; Maeng, Kyung Ah [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-05-15

    Radiotherapy is important in the treatment of non-small cell lung cancer, but very few malignancies have been cured using single modalities of radiotherapy. Therefore, molecules that can target specific pathophysiological or molecular pathways have been investigated for use as radiation sensitizers. Cyclooxygenase (COX)-2 inhibitors have been shown to enhance the radioresponse of cultured human cancer cell lines and immunodeficient mice. However, little is known about the molecular and biochemical mechanisms by which COX-2-selective non-steroidal anti-inflammatory drugs (NSAIDs) enhance the radioresponse of tumor cells. In some types of cancer, radiation is thought to work by inducing apoptosis, and effective anticancer radiotherapy is frequently associated with increased levels of apoptosis markers in vitro and in vivo.

  13. Association of advanced glycation end products with A549 cells, a human pulmonary epithelial cell line, is mediated by a receptor distinct from the scavenger receptor family and RAGE.

    Science.gov (United States)

    Nakano, Nahoko; Fukuhara-Takaki, Kaori; Jono, Tadashi; Nakajou, Keisuke; Eto, Nobuaki; Horiuchi, Seikoh; Takeya, Motohiro; Nagai, Ryoji

    2006-05-01

    Cellular interactions with advanced glycation end products (AGE)-modified proteins are known to induce several biological responses, not only endocytic uptake and degradation, but also the induction of cytokines and growth factors, combined responses that may be linked to the development of diabetic vascular complications. In this study we demonstrate that A549 cells, a human pulmonary epithelial cell line, possess a specific binding site for AGE-modified bovine serum albumin (AGE-BSA) (K(d) = 27.8 nM), and additionally for EN-RAGE (extracellular newly identified RAGE binding protein) (K(d) = 118 nM). Western blot and RT-PCR analysis showed that RAGE (receptor for AGE) is highly expressed on A549 cells, while the expression of other known AGE-receptors such as galectin-3 and SR-A (class A scavenger receptor), are below the level of detection. The binding of (125)I-AGE-BSA to these cells is inhibited by unlabeled AGE-BSA, but not by EN-RAGE. In contrast, the binding of (125)I-EN-RAGE is significantly inhibited by unlabeled EN-RAGE and soluble RAGE, but not by AGE-BSA. Our results indicate that A549 cells possess at least two binding sites, one specific for EN-RAGE and the other specific for AGE-BSA. The latter receptor on A549 cells is distinct from the scavenger receptor family and RAGE.

  14. Quinacrine Inhibits ICAM-1 Transcription by Blocking DNA Binding of the NF-κB Subunit p65 and Sensitizes Human Lung Adenocarcinoma A549 Cells to TNF-α and the Fas Ligand.

    Science.gov (United States)

    Harada, Misuzu; Morimoto, Kyoko; Kondo, Tetsuya; Hiramatsu, Reiko; Okina, Yuji; Muko, Ryo; Matsuda, Iyo; Kataoka, Takao

    2017-12-02

    Quinacrine has been used for therapeutic drugs in some clinical settings. In the present study, we demonstrated that quinacrine decreased the expression of intercellular adhesion molecule-1 (ICAM-1) induced by tumor necrosis factor (TNF)-α and interleukin-1 (IL-1) α in human lung adenocarcinoma A549 cells. Quinacrine inhibited ICAM-1 mRNA expression and nuclear factor κB (NF-κB)-responsive luciferase reporter activity following a treatment with TNF-α and IL-1α. In the NF-κB signaling pathway, quinacrine did not markedly affect the TNF-α-induced degradation of the inhibitor of NF-κB or the TNF-α-induced phosphorylation of the NF-κB subunit, p65, at Ser-536 and its subsequent translocation to the nucleus. In contrast, a chromatin immunoprecipitation assay showed that quinacrine prevented the binding of p65 to the ICAM-1 promoter following TNF-α stimulation. Moreover, TNF-α and the Fas ligand effectively reduced the viability of A549 cells in the presence of quinacrine only. Quinacrine down-regulated the constitutive and TNF-α-induced expression of c-FLIP and Mcl-1 in A549 cells. These results revealed that quinacrine inhibits ICAM-1 transcription by blocking the DNA binding of p65 and sensitizes A549 cells to TNF-α and the Fas ligand.

  15. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Chen, Jyh-Cheng; Wang, Tai-Jing; Zheng, Hao-Yu; Chen, Wen-Ching; Chang, Po-Yuan; Lin, Yun-Wei

    2016-04-01

    Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects, including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination, and studies show that chemo-resistant carcinomas exhibit high levels of Rad51 expression. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Astaxanthin treatment (2.5-20 μM) decreased Rad51 expression and phospho-AKT(Ser473) protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector rescued the decreased Rad51 mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 or wortmannin) further decreased the Rad51 expression in astaxanthin-exposed A549 and H1703 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA or cotreatment with LY294002 further enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Additionally, mitomycin C (MMC) as an anti-tumor antibiotic is widely used in clinical NSCLC chemotherapy. Combination of MMC and astaxanthin synergistically resulted in cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced phospho-AKT(Ser473) level and Rad51 expression. Overexpression of AKT-CA or Flag-tagged Rad51 reversed the astaxanthin and MMC-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in astaxanthin and MMC co-treated cells. In conclusion, astaxanthin enhances MMC-induced cytotoxicity by decreasing Rad51 expression and AKT activation. These findings may provide rationale to combine astaxanthin with MMC for the treatment of NSCLC. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Smad2/3-Regulated Expression of DLX2 Is Associated with Radiation-Induced Epithelial-Mesenchymal Transition and Radioresistance of A549 and MDA-MB-231 Human Cancer Cell Lines

    Science.gov (United States)

    Choi, Yeo-Jin; Baek, Ga-Young; Park, Hae-Ran; Jo, Sung-Kee; Jung, Uhee

    2016-01-01

    The control of radioresistance and metastatic potential of surviving cancer cells is important for improving cancer eradication by radiotheraphy. The distal-less homeobox2 (DLX2) gene encodes for a homeobox transcription factor involved in morphogenesis and its deregulation was found in human solid tumors and hematologic malignancies. Here we investigated the role of DLX2 in association with radiation-induced epithelial to mesenchymal transition (EMT) and stem cell-like properties and its regulation by Smad2/3 signaling in irradiated A549 and MDA-MB-231 human cancer cell lines. In irradiated A549 and MDA-MB-231 cells, EMT was induced as demonstrated by EMT marker expression, phosphorylation of Smad2/3, and migratory and invasive ability. Also, irradiated A549 and MDA-MB-231 cells showed increased cancer stem cells (CSCs) marker. Interestingly, DLX2 was overexpressed upon irradiation. Therefore, we examined the role of DLX2 in radiation-induced EMT and radioresistance. The overexpression of DLX2 alone induced EMT, migration and invasion, and CSC marker expression. The reduced colony-forming ability in irradiated cells was partially restored by DLX2 overexpression. On the other hand, the depletion of DLX2 using si-RNA abolished radiation-induced EMT, CSC marker expression, and phosphorylation of Smad2/3 in irradiated A549 and MDA-MB-231 cells. Also, depletion of DLX2 increased the radiation sensitivity in both cell lines. Moreover, knockdown of Smad2/3, a key activator of TGF-β1 pathway, abrogated the radiation-induced DLX2 expression, indicating that radiation-induced DLX2 expression is dependent on Smad2/3 signaling. These results demonstrated that DLX2 plays a crucial role in radioresistance, radiation-induced EMT and CSC marker expression, and the expression of DLX2 is regulated by Smad2/3 signaling in A549 and MDA-MB-231 cell lines. PMID:26799321

  17. Genotoxic effects of three selected black toner powders and their dimethyl sulfoxide extracts in cultured human epithelial A549 lung cells in vitro.

    Science.gov (United States)

    Gminski, Richard; Decker, Katharina; Heinz, Christina; Seidel, Albrecht; Könczöl, Mathias; Goldenberg, Ella; Grobéty, Bernard; Ebner, Winfried; Gieré, Reto; Mersch-Sundermann, Volker

    2011-05-01

    Until now, the adverse effects of toner powders on humans have been considered to be minimal. However, several recent reports have suggested possible significant adverse health effects from toner dust inhalation. The aim of this study was to evaluate the genotoxic potential of black toner powders in vitro. For the study of DNA damage, A549 cells were exposed to toner-powder suspensions and to their DMSO extracts, and then subjected to the comet assay and to the in-vitro cytokinesis block micronucleus test (CB-MNvit). Cytotoxic effects of the toner samples were assessed by the erythrosin B assay. Furthermore, size, shape, and composition of the toner powders were investigated. None of the three toner powders or their DMSO extracts reduced cell viability; however, they did induce DNA damage and formed micronuclei at concentrations from 80 to 400 μg cm(-2) , although to a varying extent. All toner powders contain considerable amounts of the pigments carbon black and magnetite (Fe(3) O(4) ) as well as small amounts of polycyclic aromatic hydrocarbons (PAHs). The overall results of our in-vitro study suggest that the investigated toner-powder samples are not cytotoxic but genotoxic. From the results of the physical and chemical characterization, we conclude that metals and metalloids as components of magnetite, or PAHs as components of the carbon-bearing material, are responsible for the genotoxic effects. Further research is necessary to determine the relevance of these in-vitro observations for private and occupational toner powder exposure. Copyright © 2010 Wiley-Liss, Inc.

  18. Investigations on cytotoxic and genotoxic effects of laser printer emissions in human epithelial A549 lung cells using an air/liquid exposure system.

    Science.gov (United States)

    Tang, Tao; Gminski, Richard; Könczöl, Mathias; Modest, Christoph; Armbruster, Benedikt; Mersch-Sundermann, Volker

    2012-03-01

    Exposure to emissions from laser printers during the printing process is commonplace worldwide, both in the home and workplace environment. In the present study, cytotoxic and genotoxic effects of the emission from five low to medium-throughput laser printers were investigated with respect to the release of ozone (O(3) ), volatile organic compounds (VOC), particulate matter (PM), and submicrometer particles (SMP) during standby and operation. Experiments were conducted in a 1 m(3) emission chamber connected to a Vitrocell® exposure system. Cytotoxicity was determined by the WST-1 assay and genotoxicity by the micronucleus test in human A549 lung cells. The five laser printers emitted varying but generally small amounts of O(3) , VOC, and PM. VOC emissions included 13 compounds with total VOC concentrations ranging from 95 to 280 μg/m(3) (e.g., 2-butanone, hexanal, m,p-xylene, and o-xylene). Mean PM concentrations were below 2.4 μg/m(3). SMP number concentration levels during standby ranged from 9 to 26 particles/cm(3). However, three of the printers generated a 90 to 16 × 10(3) -fold increase of SMP during the printing process (maximum 294,460 particles/cm(3)). Whereas none of the printer emissions were found to cause cytotoxicity, emissions from two printers induced formation of micronuclei (P printers. Because laser printing technology is widely used, studies with additional cytogenetic endpoints are necessary to confirm the DNA-damaging potency and to identify emission components responsible for genotoxicity. Copyright © 2011 Wiley-Liss, Inc.

  19. LW6, a hypoxia-inducible factor 1 inhibitor, selectively induces apoptosis in hypoxic cells through depolarization of mitochondria in A549 human lung cancer cells.

    Science.gov (United States)

    Sato, Mariko; Hirose, Katsumi; Kashiwakura, Ikuo; Aoki, Masahiko; Kawaguchi, Hideo; Hatayama, Yoshiomi; Akimoto, Hiroyoshi; Narita, Yuichiro; Takai, Yoshihiro

    2015-09-01

    Hypoxia‑inducible factor 1 (HIF‑1) activates the transcription of genes that act upon the adaptation of cancer cells to hypoxia. LW6, an HIF‑1 inhibitor, was hypothesized to improve resistance to cancer therapy in hypoxic tumors by inhibiting the accumulation of HIF‑1α. A clear anti‑tumor effect under low oxygen conditions would indicate that LW6 may be an improved treatment strategy for cancer in hypoxia. In the present study, the HIF‑1 inhibition potential of LW6 on the growth and apoptosis of A549 lung cancer cells in association with oxygen availability was evaluated. LW6 was observed to inhibit the expression of HIF‑1α induced by hypoxia in A549 cells at 20 mM, independently of the von Hippel‑Lindau protein. In addition, at this concentration, LW6 induced hypoxia‑selective apoptosis together with a reduction in the mitochondrial membrane potential. The intracellular reactive oxygen species levels increased in LW6‑treated hypoxic A549 cells and LW6 induced a hypoxia‑selective increase of mitochondrial O2•‑. In conclusion, LW6 inhibited the growth of hypoxic A549 cells by affecting the mitochondria. The inhibition of the mitochondrial respiratory chain is suggested as a potentially effective strategy to target apoptosis in cancer cells.

  20. TNF-α increases Staphylococcus aureus-induced death of human alveolar epithelial cell line A549 associated with RIP3-mediated necroptosis.

    Science.gov (United States)

    Wen, Shun-Hang; Lin, Luo-Na; Wu, Hu-Jun; Yu, Lu; Lin, Li; Zhu, Li-Li; Li, Hai-Yan; Zhang, Hai-Lin; Li, Chang-Chong

    2018-02-15

    To explore the role of tumor necrosis factor-alpha (TNF-α) on Staphylococcus aureus-induced necroptosis in alveolar epithelial cells. The A549 alveolar epithelial cell line was pretreated with small interfering RNA (siRNA) against receptor interacting protein-3 (RIP3) and then stimulated by S. aureus, where some cells were pretreated with TNF-α or TNF-α with anti-TNF-α antibody simultaneously. A549 cell death was assessed using lactate dehydrogenase (LDH) leakage and flow cytometry analyses. The protein expressions of RIP1, RIP3, cleaved caspase-1, and cleaved caspase-8 were analyzed by western blot. S. aureus-induced LDH release was increased significantly by TNF-α. In addition, flow cytometry showed that TNF-α increased A549 cell apoptosis and necrosis in S. aureus-infected cell cultures. Levels of RIP3 and cleaved caspase-1 protein in A549 cells infected with S. aureus increased at 12 h post-infection, as shown by western blot. Significant additional increases in RIP3 expression were observed following the addition of TNF-α. Decreasing RIP3 levels by siRNA significantly suppressed the release of LDH induced by TNF-α and S. aureus. RIP3 siRNA also significantly suppressed A549 cell necrosis induced by S. aureus and TNF-α at 6 and 12 h post-infection as shown by flow cytometry analysis. TNF-α enhances the damage of S. aureus on lung epithelial cells, and its mechanism is associated with RIP3 mediated necroptosis. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Role of Hypoxia-inducible factor-1 and its target genes in human lung adenocarcinoma cells after photon- versus carbon ion irradiation; Expression HIF-1-abhaengiger Gene in humanen Lungenadenokarzinom (A549)-Zellen und deren Regulation nach Photonen- und Schwerionenbestrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Bill, Verena Maria

    2013-11-26

    Exposed to hypoxia tumor cells are notably resistant to photon irradiation. The hypoxiainducible transcription factor 1α (HIF-1α) seems to play a fundamental role in this resistance, while its role after heavy-ion beam remains unknown. The intention of this study was to determine how A549-cells (non-small-cell lung carcinoma) react in different oxygenation states after irradiation with photons or heavy ions, particularly in regards to their expression of HIF-1 target genes. Resistance of hypoxic A549 cells after photon irradiation was documented by cellular and clonogenic survival. In contrast, cellular survival after heavy-ion irradiation in hypoxic cells was not elevated to normoxic cells. Among the oxygen dependent regulation of HIF-1 target genes, gene expression analyses showed an increased expression of GLUT-1, LDH-A, PDK-1 and VEGF after photon irradiation but not after heavy-ion irradiation after 48 hours in normoxic cells. As expected, CDKN1A as inhibitor of cell cycle progression showed higher expression after both radiation forms; interestingly CDKN1A was also in an oxygen dependent manner lightly upregulated. In western blot analyses we demonstrated a significant increase of HIF-1 and GLUT-1 caused by hypoxia, but only a tendency of increased protein level in hypoxia after photon irradiation and no changes after heavy-ion irradiation. Significantly higher protein level of secreted VEGF-A could be measured 72 hours after photon irradiation in normoxic cells by ELISA analyses. Controversially discussed, I could not detect an association between HIF-1 and SCF or Trx-1 in A549-cells in this study. Whereas Trx-1-expression was neither influenced by changed oxygen partial pressure nor irradiation, I could show increased SCF mRNA by quantitative Real Time-PCR and secreted protein level by ELISA after photon irradiation independent of oxygen state. In summary, this study showed that HIF-1 and its target genes (GLUT-1, LDHA; PDK, VEGF) and also SCF was

  2. Inhibition of proliferation, migration and invasion of human non ...

    African Journals Online (AJOL)

    Purpose: To determine the effect of phlomisoside F (PMF) on the proliferation, migration and invasion of human non-small cell lung cancer cell line A549 and explore the possible mechanisms. Methods: The anti-proliferative effect of PMF on A549 cells was determined by CCK-8. Subsequently, migration and invasion were ...

  3. Detection of E2A-PBX1 fusion transcripts in human non-small-cell lung cancer.

    Science.gov (United States)

    Mo, Min-Li; Chen, Zhao; Zhou, Hai-Meng; Li, Hui; Hirata, Tomomi; Jablons, David M; He, Biao

    2013-05-20

    E2A-PBX1 fusion gene caused by t(1;19)(q23;p13), has been well characterized in acute lymphoid leukemia (ALL). There is no report on E2A-PBX1 fusion transcripts in non-small-cell lung cancer (NSCLC). We used polymerase chain reaction (PCR) to detect E2A-PBX1 fusion transcripts in human NSCLC tissue specimens and cell lines. We analyzed correlation of E2A-PBX1 fusion transcripts with clinical outcomes in 76 patients with adenocarcinoma in situ (AIS) and other subgroups. We compared mutation status of k-ras, p53 and EGFR in 22 patients with E2A-PBX1 fusion transcripts. We detected E2A-PBX1 transcripts in 23 of 184 (12.5%) NSCLC tissue specimens and 3 of 13 (23.1%) NSCLC cell lines. Presence of E2A-PBX1 fusion transcripts correlated with smoking status in female patients (P=0.048), AIS histology (P=0.006) and tumor size (P=0.026). The overall survival was associated with gender among AIS patients (P=0.0378) and AIS patients without E2A-PBX1 fusion transcripts (P=0.0345), but not among AIS patients with E2A-PBX1 fusion transcripts (P=0.6401). The overall survival was also associated with status of E2A-PBX1 fusion transcripts among AIS stage IA patients (P=0.0363) and AIS stage IA female patients (P=0.0174). In addition, among the 22 patients with E2A-PBX1 fusion transcripts, 12 (54.5%) patients including all four non-smokers, showed no common mutations in k-ras, p53 and EGFR. E2A-PBX1 fusion gene caused by t(1;19)(q23;p13) may be a common genetic change in AIS and a survival determinant for female AIS patients at early stage.

  4. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T. [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Aftab, Blake T. [Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Rudin, Charles M. [Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Tran, Phuoc T. [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Hales, Russell K., E-mail: rhales1@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States)

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.

  5. Antitumor activity of erlotinib (OSI-774, Tarceva) alone or in combination in human non-small cell lung cancer tumor xenograft models.

    Science.gov (United States)

    Higgins, Brian; Kolinsky, Kenneth; Smith, Melissa; Beck, Gordon; Rashed, Mohammad; Adames, Violeta; Linn, Michael; Wheeldon, Eric; Gand, Laurent; Birnboeck, Herbert; Hoffmann, Gerhard

    2004-06-01

    Our objective was the preclinical assessment of the pharmacokinetics, monotherapy and combined antitumor activity of the epidermal growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor erlotinib in athymic nude mice bearing non-small cell lung cancer (NSCLC) xenograft models. Immunohistochemistry determined the HER1/EGFR status of the NSCLC tumor models. Pharmacokinetic studies assessed plasma drug concentrations of erlotinib in tumor- and non-tumor-bearing athymic nude mice. These were followed by maximum tolerated dose (MTD) studies for erlotinib and each chemotherapy. Erlotinib was then assessed alone and in combination with these chemotherapies in the NSCLC xenograft models. Complete necropsies were performed on most of the animals in each study to further assess antitumor or toxic effects. Erlotinib monotherapy dose-dependently inhibited tumor growth in the H460a tumor model, correlating with circulating levels of drug. There was antitumor activity at the MTD with each agent tested in both the H460a and A549 tumor models (erlotinib 100 mg/kg: 71 and 93% tumor growth inhibition; gemcitabine 120 mg/kg: 93 and 75% tumor growth inhibition; cisplatin 6 mg/kg: 81 and 88% tumor growth inhibition). When each compound was given at a fraction of the MTD, tumor growth inhibition was suboptimal. Combinations of gemcitabine or cisplatin with erlotinib were assessed at 25% of the MTD to determine efficacy. In both NSCLC models, doses of gemcitabine (30 mg/kg) or cisplatin (1.5 mg/kg) with erlotinib (25 mg/kg) at 25% of the MTD were well tolerated. For the slow growing A549 tumor, there was significant tumor growth inhibition in the gemcitabine/erlotinib and cisplatin/erlotinib combinations (above 100 and 98%, respectively), with partial regressions. For the faster growing H460a tumor, there was significant but less remarkable tumor growth inhibition in these same combinations (86 and 53% respectively). These results show that in NSCLC xenograft tumors with similar

  6. K9(C4H4FN2O2)2Nd(PW11O39)2·25H2O induces apoptosis in human lung cancer A549 cells.

    Science.gov (United States)

    Xia, Rong-Yao; Zhang, Ran-Ran; Jiang, Zhe; Sun, Ya-Jiao; Liu, Jing; Chen, Fu-Hui

    2017-03-01

    Lung cancer is the leading cause of cancer-associated mortality worldwide. The present study investigated the effects of K 9 (C 4 H 4 FN 2 O 2 ) 2 Nd(PW 11 O 39 ) 2 ·25H 2 O (FNdPW), a chemically synthesized polyoxometalate that contains rare earth elements, on lung cancer growth, and explored the mechanism underlying its actions. The effects of FNdPW on the cell viability and apoptosis of human lung cancer A549 cells were measured using MTT assay, acridine orange/ethidium bromide staining and electron microscopy. The expression of apoptosis-related proteins, including B-cell lymphoma (Bcl)-2-associated death promoter (Bad), phosphorylated (p)-Bad, X-linked inhibitor of apoptosis (XIAP), apoptosis-inducing factor (AIF), Bcl-2-associated X protein (Bax) and Bcl-2, was determined by western blotting. Caspase-3 activity was measured using a caspase-3 activity kit. After 72 h of incubation, FNdPW reduced cell viability and induced apoptosis in A549 cells in a concentration- and time-dependent manner. FNdPW upregulated the pro-apoptotic Bad and Bax proteins, and downregulated the anti-apoptotic p-Bad, Bcl-2 and XIAP proteins. Furthermore, FNdPW also enhanced caspase-3 activity and increased the protein level of AIF in A549 cells, which was independent of the caspase-3 pathway. These events were associated with the regulation exerted by FNdPW on multiple targets involved in A549 cell proliferation. Therefore, FNdPW may be a novel drug for the treatment of lung cancer.

  7. Telmisartan Exerts Anti-Tumor Effects by Activating Peroxisome Proliferator-Activated Receptor-γ in Human Lung Adenocarcinoma A549 Cells

    Directory of Open Access Journals (Sweden)

    Juan Li

    2014-03-01

    Full Text Available Telmisartan, a member of the angiotensin II type 1 receptor blockers, is usually used for cardiovascular diseases. Recent studies have showed that telmisartan has the property of PPARγ activation. Meanwhile, PPARγ is essential for tumor proliferation, invasion and metastasis. In this work we explore whether telmisartan could exert anti-tumor effects through PPARγ activation in A549 cells. MTT and trypan blue exclusion assays were included to determine the survival rates and cell viabilities. RT-PCR and western blotting were used to analyze the expression of ICAM-1, MMP-9 and PPARγ. DNA binding activity of PPARγ was evaluated by EMSA. Our data showed that the survival rates and cell viabilities of A549 cells were all reduced by telmisartan in a time- and concentration-dependent manner. Meanwhile, our results also demonstrated that telmisartan dose-dependently inhibited the expression of ICAM-1 and MMP-9. Moreover, the cytotoxic and anti-proliferative effects, ICAM-1 and MMP-9 inhibitive properties of telmisartan were totally blunted by the PPARγ antagonist GW9662. Our findings also showed that the expression of PPARγ was up-regulated by telmisartan in a dose dependent manner. And, the EMSA results also figured out that DNA binding activity of PPARγ was dose-dependently increased by telmisartan. Additionally, our data also revealed that telmisartan-induced PPARγ activation was abrogated by GW9662. Taken together, our results indicated that telmisartan inhibited the expression of ICAM-1 and MMP-9 in A549 cells, very likely through the up-regulation of PPARγ synthesis.

  8. [Effects of microRNA-146a on Fas-associated factor 2 and inflammatory factors in human lung adenocarcinoma A549 cells under the stimulation of cigarette smoke extract].

    Science.gov (United States)

    Li, Wenting; Liu, Zhen; Jia, Chiyu; Yin, Bin; Shu, Bin

    2016-02-01

    Under the premise of smoke inhalation injury, to explore the effects of microRNA-146a on Fas-associated factor 2 (FAF-2) and inflammatory factors in human lung adenocarcinoma A549 cells under the stimulation of cigarette smoke extract (CSE). (1) The pMIR-FAF-2 recombinant plasmid and the pMIR-FAF-2 recombinant mutated plasmid were constructed. Human embryonic kidney 293 (HEK-293) cells of the third passage were divided into 3 groups according to the random number table, with 5 wells in each group. Cells in plasmid+ microRNA control group were transfected with pMIR-FAF-2 recombinant plasmid, pRL-TK plasmid, and microRNA control; cells in plasmid+ microRNA-146a group were transfected with pMIR-FAF-2 recombinant plasmid, pRL-TK plasmid, and microRNA-146a mimics; cells in mutated plasmid+ microRNA-146a group were transfected with pMIR-FAF-2 recombinant mutated plasmid, pRL-TK plasmid, and microRNA-146a inhibitor. After culture for 24 h, the relative luciferase activity in cells was assessed by dual-luciferase reporter gene assay. (2) Human lung adenocarcinoma A549 cells of the third passage were divided into 3 groups according to the random number table, with 4 wells in each group. Cells in microRNA control group were transfected with microRNA control; cells in microRNA-146a enhancement group were transfected with microRNA-146a mimics; cells in microRNA-146a inhibition group were transfected with microRNA-146a inhibitor. After culture for 24 h, the mRNA expression levels of microRNA-146a and FAF-2 in cells were determined with real-time fluorescent quantitative reverse transcription-PCR. (3) A549 cells of the third passage were stimulated by 0.8% CSE for 24 h after being divided and treated with the same method used in experiment (2). The mRNA expression levels of FAF-2, IL-8, monocyte chemotactic protein-1 (MCP-1), and growth-regulated oncogene-α (GRO-α) in cells were determined with real-time fluorescent quantitative reverse transcription-PCR. The protein

  9. Clinical relevance and functional implications for human leucocyte antigen-g expression in non-small-cell lung cancer

    OpenAIRE

    Lin, A; Zhu, C-C; Chen, H-X; Chen, B-F; Zhang, X; Zhang, J-G; Wang, Q; Zhou, W-J; Hu, W; Yang, H-H; Xu, H-H; Yan, W-H

    2009-01-01

    Abstract HLA-G has been documented both in establishment of anti-tumour immune responses and in tumour evasion. To investigate the clinical relevance of HLA-G in non-small-cell lung cancer (NSCLC), expression status and potential significance of HLA-G in NSCLC were analysed. In this study, HLA-G expression in 101 NSCLC primary lesions and plasma soluble HLA-G (sHLA-G) from 91 patients were analysed with immunohistochemistry and ELISA, respectively. Correlations between HLA-G status and variou...

  10. Expression and Significance of IKBKB in Pulmonary Adenocarcinoma A549 Cells and Its Cisplatin-resistant Variant A549/DDP

    Directory of Open Access Journals (Sweden)

    Kang QI

    2014-05-01

    Full Text Available Background and objective Cisplatin-resistance in Lung cancer cells is widespread in the clinical treatment, seriously affecting the effects of the treatment of lung cancer. Therefore, the research of mechanisms of cisplain-resistance has significant meaning for developing new chemotherapeutic drug and solving the cisplain-resistance in clinic treatment. IKBKB is one of the most important catalytic subunits of IKK complexes. It plays an important regulatory role in activation of NF-κB. The aim of this study is to investigate the differential expression of IKBKB gene in human lung adenocarcinoma cells line A549 and the cisplatin-resistant variant A549/DDP and the mechanisms of cisplain-resistance induced by IKBKB gene. Methods MTT assay was employed to determine the sensitivity of A549 and A549/DDP cells line to cisplatin and the effect of IKBKB gene on A549 cell lines’ sensitivity to cisplatin. The mRNA level of IKBKB was determined by real-time PCR. Dual luciferase reporter gene experiment was employed to determine the activity of the NF-κB. Apoptosis rate of lung adenocarcinoma cells was determined by flow cytometry. Results Apoptosis rate and IC50 were significantly different in A549 and A549/DDP cells, the expression of mRNA level of IKBKB gene in A549/DDP was significantly higher than that in A549. Compared with control group, IKBKB gene was able to reduce the cisplain sensitivity of A549 cells. After A549 was transfected with pcDNA3.1/IKBKB plasmid, mRNA level of IKBKB was significantly increased, the sensitivity of cisplain was decreased, the IC50 was increased 2.85 fold, the apoptosis rate was decreased 59%, the activity of NF-κB has been greatly increased. Conclusion IKBKB inhibits cisplatin-induced apoptosis via the activation of NF-κB pathway. It will be helpful in the development of new anticancer drug and solving the challenge of cisplatin-resistance.

  11. [Expression and significance of IKBKB in pulmonary adenocarcinoma A549 cells and its cisplatin-resistant variant A549/DDP].

    Science.gov (United States)

    Qi, Kang; Li, Yang; Li, Xuebing; Zhang, Fang; Shao, Yi; Zhou, Qinghua

    2014-05-01

    Cisplatin-resistance in Lung cancer cells is widespread in the clinical treatment, seriously affecting the effects of the treatment of lung cancer. Therefore, the research of mechanisms of cisplain-resistance has significant meaning for developing new chemotherapeutic drug and solving the cisplain-resistance in clinic treatment. IKBKB is one of the most important catalytic subunits of IKK complexes. It plays an important regulatory role in activation of NF-κB. The aim of this study is to investigate the differential expression of IKBKB gene in human lung adenocarcinoma cells line A549 and the cisplatin-resistant variant A549/DDP and the mechanisms of cisplain-resistance induced by IKBKB gene. MTT assay was employed to determine the sensitivity of A549 and A549/DDP cells line to cisplatin and the effect of IKBKB gene on A549 cell lines' sensitivity to cisplatin. The mRNA level of IKBKB was determined by real-time PCR. Dual luciferase reporter gene experiment was employed to determine the activity of the NF-κB. Apoptosis rate of lung adenocarcinoma cells was determined by flow cytometry. Apoptosis rate and IC50 were significantly different in A549 and A549/DDP cells, the expression of mRNA level of IKBKB gene in A549/DDP was significantly higher than that in A549. Compared with control group, IKBKB gene was able to reduce the cisplain sensitivity of A549 cells. After A549 was transfected with pcDNA3.1/IKBKB plasmid, mRNA level of IKBKB was significantly increased, the sensitivity of cisplain was decreased, the IC50 was increased 2.85 fold, the apoptosis rate was decreased 59%, the activity of NF-κB has been greatly increased. IKBKB inhibits cisplatin-induced apoptosis via the activation of NF-κB pathway. It will be helpful in the development of new anticancer drug and solving the challenge of cisplatin-resistance.

  12. Minocycline enhances mitomycin C-induced cytotoxicity through down-regulating ERK1/2-mediated Rad51 expression in human non-small cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Wang, Tai-Jing; Chang, Po-Yuan; Syu, Jhan-Jhang; Chen, Jyh-Cheng; Chen, Chien-Yu; Jian, Yun-Ting; Jian, Yi-Jun; Zheng, Hao-Yu; Chen, Wen-Ching; Lin, Yun-Wei

    2015-10-01

    Minocycline is a semisynthetic tetracycline derivative; it has anti-inflammatory and anti-cancer effects distinct from its antimicrobial function. However, the molecular mechanism of minocycline-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination and high levels of Rad51 expression are observed in chemo- or radioresistant carcinomas. Our previous studies have shown that the MKK1/2-ERK1/2 signal pathway maintains the expression of Rad51 in NSCLC cells. In this study, minocycline treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1975. Treatment with minocycline decreased Rad51 mRNA and protein levels through MKK1/2-ERK1/2 inactivation. Furthermore, expression of constitutively active MKK1 (MKK1-CA) vectors significantly rescued the decreased Rad51 protein and mRNA levels in minocycline-treated NSCLC cells. However, combined treatment with MKK1/2 inhibitor U0126 and minocycline further decreased the Rad51 expression and cell viability of NSCLC cells. Knocking down Rad51 expression by transfection with small interfering RNA of Rad51 enhanced the cytotoxicity and cell growth inhibition of minocycline. Mitomycin C (MMC) is typically used as a first or second line regimen to treat NSCLC. Compared to a single agent alone, MMC combined with minocycline resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells, accompanied with reduced activation of phospho-ERK1/2, and reduced Rad51 protein levels. Overexpression of MKK1-CA or Flag-tagged Rad51 could reverse the minocycline and MMC-induced synergistic cytotoxicity. These findings may have implications for the rational design of future drug regimens incorporating minocycline and MMC for the treatment of NSCLC. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Ginsenoside Rg3 sensitizes human non-small cell lung cancer cells to γ-radiation by targeting the nuclear factor-κB pathway.

    Science.gov (United States)

    Wang, Lei; Li, Xiankui; Song, Yi-Min; Wang, Bin; Zhang, Fu-Rui; Yang, Rui; Wang, Hua-Qi; Zhang, Guo-Jun

    2015-07-01

    At present, it is elusive how non-small cell lung cancer (NSCLC) develops resistance to γ-radiation; however, the transcription factor nuclear factor-κB (NF-κB) and NF-κB-regulated gene products have been proposed as mediators. Ginsenoside Rg3 is a steroidal saponin, which was isolated from Panax ginseng. Ginsenoside Rg3 possesses high pharmacological activity and has previously been shown to suppress NF-κB activation in various types of tumor cell. Therefore, the present study aimed to determine whether Rg3 could suppress NF-κB activation in NSCLC cells and sensitize NSCLC to γ-radiation, using an NSCLC cell line and NSCLC xenograft. A clone formation assay and lung tumor xenograft experiment were used to assess the radiosensitizing effects of ginsenoside Rg3. NF-κB/inhibitor of NF-κB (IκB) modulation was ascertained using an electrophoretic mobility shift assay and western blot analysis. NF-κB-regulated gene products were monitored by western blot analysis. The present study demonstrated that ginsenoside Rg3 was able to sensitize A549 and H1299 lung carcinoma cells to γ-radiation and significantly enhance the efficacy of radiation therapy in C57BL/6 mice bearing a Lewis lung carcinoma cell xenograft tumor. Furthermore, ginsenoside Rg3 suppressed NF-κB activation, phosphorylation of IκB protein and expression of NF-κB-regulated gene products (cyclin D1, c-myc, B-cell lymphoma 2, cyclooxygenase-2, matrix metalloproteinase-9 and vascular endothelial growth factor), a number of which were induced by radiation therapy and mediate radioresistance. In conclusion, the results of the present study suggested that ginsenoside Rg3 may potentiate the antitumor effects of radiation therapy in NSCLC by suppressing NF-κB activity and NF-κB-regulated gene products, leading to the inhibition of tumor progression.

  14. (S)-crizotinib induces apoptosis in human non-small cell lung cancer cells by activating ROS independent of MTH1.

    Science.gov (United States)

    Dai, Xuanxuan; Guo, Guilong; Zou, Peng; Cui, Ri; Chen, Weiqian; Chen, Xi; Yin, Changtian; He, Wei; Vinothkumar, Rajamanickam; Yang, Fan; Zhang, Xiaohua; Liang, Guang

    2017-09-07

    Non-small cell lung cancer (NSCLC) accounts for approximately 80-85% of all lung cancers and is usually diagnosed at an advanced stage with poor prognosis. Targeted therapy has produced unprecedented outcomes in patients with NSCLC as a number of oncogenic drivers have been found. Crizotinib, a selective small-molecule inhibitor, has been widely used for the treatment of NSCLC patients with ALK gene rearrangements. A recent study has also shown that (S)-enantiomer of crizotinib exhibits anticancer activity by targeting the protein mutT homologue (MTH1). Since this discovery, contradictory studies have cast a doubt on MTH1 as a therapeutic target of (S)-crizotinib. NCI-H460, H1975, and A549 cells and immunodeficient mice were chosen as a model to study the (S)-crizotinib treatment. The changes induced by (S)-crizotinib treatment in cell viability, apoptosis as well as ROS, and endoplasmic reticulum stress pathway in the cells were analyzed by MTT assay, FACSCalibur, Western blotting, ROS imaging and electron microscopy. Here, we report that MTH1 does not affect survival of NSCLC cells. We found that (S)-crizotinib induces lethal endoplasmic reticulum stress (ER) response in cultured NSCLC cells by increasing intracellular levels of reactive oxygen species (ROS). Blockage of ROS production markedly reversed (S)-crizotinib-induced ER stress and cell apoptosis, independent of MTH1. We confirmed these findings in NSCLC xenograft studies and showed that (S)-crizotinib-induced ER stress and cell apoptosis. Our results reveal a novel antitumor mechanism of (S)-crizotinib in NSCLC which involves activation of ROS-dependent ER stress apoptotic pathway and is independent of MTH1 inhibition.

  15. Src mediates extracellular signal-regulated kinase 1/2 activation and autophagic cell death induced by cardiac glycosides in human non-small cell lung cancer cell lines.

    Science.gov (United States)

    Wang, Yan; Zhan, Yuechen; Xu, Rong; Shao, Rongguang; Jiang, Jiandong; Wang, Zhen

    2015-06-01

    Aberrant Na(+) /K(+) -ATPases (NKA) expression is closely related to the incidence and development of cancer, making NKA targeted cancer therapy more intriguing. Cardiac glycosides (CGs) belong to NKA inhibitors and possess potent anti-cancer properties in many cancers. Our previous work demonstrates that CGs family member digoxin or ouabain induces autophagic cell death in human non-small cell lung cancer (NSCLC) cell lines through regulation of both mammalian target of rapamycin and extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. However, what acts as an upstream regulator of ERK1/2 activation during autophagy induction remains obscure. In the present study, the role of Src in the ERK1/2 signaling pathway as well as autophagic cell death induced by either digoxin or ouabain was examined in A549 and H460 cells. Src is significantly activated simultaneously with mitogen-activated protein kinase kinase 1/2 (MEK1/2) and ERK1/2 activation upon the drug treatment. Moreover, Src inhibitor PP2 could block either drug induced MEK1/2 and ERK1/2 phosphorylation, together with autophagic phenotypes in the cells. Knockdown of Src with siRNA causes the similar effect as PP2, both of which markedly alleviate the drugs' cytotoxicity. In addition, increased levels of intracellular reactive oxygen species (ROS) are found to be involved in Src mediated autophagy. Together, this work provides evidences showing that Src mediates MEK1/2 and ERK1/2 pathway as well as ROS generation, and regulates autophagic cell death induced by the cardiac glycosides. These observations may further help understand the molecular mechanisms of autophagy induced by NKA inhibitors in NSCLC cells. © 2014 Wiley Periodicals, Inc.

  16. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhenhai, E-mail: tomsyu@163.com [Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031 (China); Huang, Liangqian [Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine -SJTUSM, Shanghai, 200025 (China); Qiao, Pengyun; Jiang, Aifang; Wang, Li; Yang, Tingting [Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031 (China); Tang, Shengjian; Zhang, Wei [Plastic Surgery Institute of Weifang Medical University, Weifang, Shandong, 261041 (China); Ren, Chune, E-mail: ren@wfmc.edu.cn [Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031 (China)

    2016-05-13

    Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. These findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer.

  17. An important role for peroxiredoxin II in survival of A549 lung cancer cells resistant to gefitinib

    Science.gov (United States)

    Kwon, Taeho; Kyung Rho, Jin; Cheol Lee, Jae; Park, Young-Ho; Shin, Hye-Jun; Cho, Sunwha; Kang, Yong-Kook; Kim, Bo-Yeon; Yoon, Do-Young; Yu, Dae-Yeul

    2015-01-01

    Redox adaptation is an important concept that explains the mechanisms by which cancer cells survive under persistent endogenous oxidative stress and become resistant to certain anticancer agents. To investigate this concept, we determined the expression levels of peroxiredoxins (Prxs), antioxidant enzymes in drug-resistant non-small cell lung carcinoma cells. Prx II was remarkably increased only in A549/GR (gefitinib-resistant) cells compared with A549 cells, consistent with methylation/demethylation. Prx II was highly methylated in the A549 cells but was demethylated in the A549/GR cells. The elevated expression of Prx II resulted in the downregulation of reactive oxygen species (ROS) and cell death and upregulation of cell cycle progression in the A549/GR cells. When Prx II mRNA in the A549/GR cells was knocked down, the levels of ROS and apoptosis were significantly recovered to the levels of the controls. In addition, signaling molecules involved in apoptosis were increased in the A549/GR-shPrx II cells. There was no difference in the expression of MAPK/ERK between the A549/GR cells and A549/GR-shPrx II cells, but the phosphorylation of JNK was increased in the A549/GR cells and was markedly decreased in the A549/GR-shPrx II cells. Colony number and tumor growth were significantly decreased in the A549/GR-shPrx II cells compared with the A549/GR cells. Our findings suggest that Prx II has an important role in cancer cell survival via the modulation of signaling molecules involved in apoptosis and the phosphorylation of JNK by the downregulation of ROS levels in A549/GR cells. PMID:26021759

  18. Overexpression of SAMD9 suppresses tumorigenesis and progression during non small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qing; Yu, Tao; Ren, Yao-Yao; Gong, Ting; Zhong, Dian-Sheng, E-mail: zhongdsyx@126.com

    2014-11-07

    Highlights: • SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). • Knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro. • Overexpression of SAMD9 suppressed proliferation and invasion in A549 cells in vitro. • Depletion of SAMD9 increases tumor formation in vivo. - Abstract: The Sterile Alpha Motif Domain-containing 9 (SAMD9) gene has been recently emphasized during the discovery that it is expressed at a lower level in aggressive fibromatosis and some cases of breast and colon cancer, however, the underlying mechanisms are poorly understood. Here, we found that SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). Furthermore, knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro and overexpression of SAMD9 suppressed proliferation and invasion in A549 cells. Finally, depletion of SAMD9 increases tumor formation in vivo. Our results may provide a strategy for blocking NSCLC tumorigenesis and progression.

  19. Antitumor and apoptotic effects of cucurbitacin a in A-549 lung ...

    African Journals Online (AJOL)

    Background: The main aim of this study was to demonstrate the antitumor potential of cucurbitacin A on A-549 NSCLC (non-small cell lung cancer cells). The effects of Cucurbitacin A on apoptotic induction, cell physic, cell cycle failure and m-TOR/PI3K/Akt signalling pathway were also investigated in the present study.

  20. Application of a lipid-coated hollow calcium phosphate nanoparticle in synergistic co-delivery of doxorubicin and paclitaxel for the treatment of human lung cancer A549 cells

    Directory of Open Access Journals (Sweden)

    Wu C

    2017-10-01

    Full Text Available Chao Wu, Jie Xu, Yanna Hao, Ying Zhao, Yang Qiu, Jie Jiang, Tong Yu, Peng Ji, Ying Liu Pharmacy School, Jinzhou Medical University, Jinzhou, China Abstract: In this study, we developed a lipid-coated hollow calcium phosphate (LCP nanoparticle for the combined application of two chemotherapeutic drugs to human lung cancer A549 cells. Hydrophilic doxorubicin (DOX was incorporated into the hollow structure of hollow calcium phosphate (HCP, and a lipid bilayer containing hydrophobic paclitaxel (PTX was subsequently coated on the surface of HCP. The study on combinational effects demonstrated that the combination of DOX and PTX at a mass ratio of 12:1 showed a synergistic effect against A549 cells. The particle size, zeta potential, and encapsulation efficiency were measured to obtain optimal values: particle size was 335.0 3.2 nm, zeta potential -41.1 mV, and encapsulation efficiency 80.40%±2.24%. An in vitro release study indicated that LCP produced a sustained drug release. A549 cells had a better uptake of LCP with good biocompatibility. Furthermore, in vitro cytotoxicity experiment, apoptosis analysis, in vivo anti-tumor efficacy and protein expression analysis of Bax, Bcl-2, and Caspase-3 demonstrated that the co-delivery system based on LCP had significant synergistic anti-tumor activity. All conclusions suggested that LCP is a promising platform for co-delivery of multiple anti-tumor drugs. Keywords: doxorubicin, paclitaxel, co-delivery, lipid, hollow calcium phosphate, lung cancer cell

  1. Evaluation of angiogenesis with the expression of VEGF and CD34 in human non-small cell lung cancer.

    Science.gov (United States)

    Inda, A M; Andrini, L B; García, M N; García, A L; Fernández Blanco, A; Furnus, C C; Galletti, S M; Prat, G D; Errecalde, A L

    2007-09-01

    Angiogenesis is an essential process in the progression of malignant tumors and the most potent angiogenic factor is the vascular endothelial growth factor (VEGF). On the other hand, the CD34 is an endothelial antigen that has been used to highlight the microvasculature vessel density (MVD) as a direct marker of the degree of neoangiogenesis. In the present study we report the VEGF expression and its relationship with MVD, measured by CD34, in two lineages of non-small cell lung cancer (NSCL): low differentiated adenocarcinomas and epidermoid carcinomas, in order to consider the possibility of using the correlation between both antibodies as a prognostic factor. Tumor sections were stained by immunohistochemistry for CD34 and VEGF. The results showed that the mean value of VEGF for adenocarcinoma was significantly higher than the one for epidermoid carcinoma (p < 0.001). However, the mean of MVD did not show significant differences between both types of tumors. The conventional factors taken into consideration (age over 60, sex, and presence of lymph nodes) was not significantly related to the angiogenic factors examined. In conclusion, we could affirm that CD34 is a better prognostic marker of neoangiogenesis in NSCLC, because both types of tumors have the same clinical prognosis, and so we expected the same behaviour from both markers.

  2. Eosinophil Granulocytes Account for Indoleamine 2,3-Dioxygenase-Mediated Immune Escape in Human Non Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Simonetta Astigiano

    2005-04-01

    Full Text Available Indoleamine 2,3-dioxygenase (IDO, a catabolizing enzyme of tryptophan, is supposed to play a role in tumor immune escape. Its expression in solid tumors has not yet been well elucidated: IDO can be expressed by the tumor cells themselves, or by ill-defined infiltrating cells, possibly depending on tumor type. We have investigated IDO expression in 25 cases of non small cell lung cancer (NSCLC. Using histochemistry and immunohistochemistry, we found that IDO was expressed not by tumor cells, but by normal cells infiltrating the peritumoral stroma. These cells were neither macrophages nor dendritic cells, and were identified as eosinophil granulocytes. The amount of IDO-positive eosinophils varied in different cases, ranging from a few cells to more than 50 per field at x200 magnification. IDO protein in NSCLC was enzymatically active. Therefore, at least in NSCLC cases displaying a large amount of these cells in the inflammatory infiltrate, IDO-positive eosinophils could exert an effective immunosuppressive action. On analyzing the 17 patients with adequate follow-up, a significant relationship was found between the amount of IDO-positive infiltrate and overall survival. This finding suggests that the degree of IDO-positive infiltrate could be a prognostic marker in NSCLC.

  3. Effect of Paclitaxel-Mesoporous Silica Nanoparticles with a Core-Shell Structure on the Human Lung Cancer Cell Line A549

    Science.gov (United States)

    Wang, Tieliang; Liu, Ying; Wu, Chao

    2017-01-01

    A nanodrug delivery system of paclitaxel-mesoporous silica nanoparticles with a core-shell structure (PAC-csMSN) was used to increase the dissolution of paclitaxel (PAC) and improve its treatment of lung cancer. PAC was loaded into the core-shell mesoporous silica nanoparticles (csMSN) by the adsorption equilibrium method and was in an amorphous state in terms of its mesoporous structure. In vitro and in vivo studies showed that csMSN increased the dissolution rate of PAC and improved its lung absorption. The area under concentration-time curve (AUC) value of PAC-csMSN used for pulmonary delivery in rabbits was 2.678-fold higher than that obtained with the PAC. After continuous administration for 3 days, a lung biopsy showed no signs of inflammation. Cell apoptosis results obtained by flow cytometry indicated that PAC-csMSN was more potent than pure PAC in promoting cell apoptosis. An absorption investigation of PAC-csMSN in A549 cells was carried out by transmission electron microscopy (TEM) and laser scanning confocal microscopy (LSCM). The obtained results indicated that the cellular uptake was time-dependent and csMSN was uptaken into the cytoplasm. All these results demonstrate that csMSN have the potential to achieve pulmonary inhalation administration of poorly water-soluble drugs for the treatment of lung cancer.

  4. TGF-β1 downregulates COX-2 expression leading to decrease of PGE2 production in human lung cancer A549 cells, which is involved in fibrotic response to TGF-β1.

    Directory of Open Access Journals (Sweden)

    Erina Takai

    Full Text Available Transforming growth factor-ß1 (TGF-β1 is a multifunctional cytokine that is involved in various pathophysiological processes, including cancer progression and fibrotic disorders. Here, we show that treatment with TGF-β1 (5 ng/mL induced downregulation of cyclooxygenase-2 (COX-2, leading to reduced synthesis of prostaglandin E2 (PGE2, in human lung cancer A549 cells. Treatment of cells with specific inhibitors of COX-2 or PGE2 receptor resulted in growth inhibition, indicating that the COX-2/PGE2 pathway contributes to proliferation in an autocrine manner. TGF-β1 treatment induced growth inhibition, which was attenuated by exogenous PGE2. TGF-β1 is also a potent inducer of epithelial mesenchymal transition (EMT, a phenotype change in which epithelial cells differentiate into fibroblastoid cells. Supplementation with PGE2 or PGE2 receptor EP4 agonist PGE1-alcohol, as compared with EP1/3 agonist sulprostone, inhibited TGF-β1-induced expression of fibronectin and collagen I (extracellular matrix components. Exogenous PGE2 or PGE2 receptor agonists also suppressed actin remodeling induced by TGF-β1. These results suggest that PGE2 has an anti-fibrotic effect. We conclude that TGF-β1-induced downregulation of COX-2/PGE2 signaling is involved in facilitation of fibrotic EMT response in A549 cells.

  5. Induction of human microsomal prostaglandin E synthase 1 by activated oncogene RhoA GTPase in A549 human epithelial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hye Jin [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Lee, Dong-Hyung [Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University, Busan (Korea, Republic of); Park, Seong-Hwan; Kim, Juil; Do, Kee Hun [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); An, Tae Jin; Ahn, Young Sup; Park, Chung Berm [Department of Herbal Crop Research, NIHHS, RDA, Eumseong (Korea, Republic of); Moon, Yuseok, E-mail: moon@pnu.edu [Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Medical Research Institute and Research Institute for Basic Sciences, Pusan National University, Busan (Korea, Republic of)

    2011-09-30

    Highlights: {yields} As a target of oncogene RhoA-linked signal, a prostaglandin metabolism is assessed. {yields} RhoA activation increases PGE{sub 2} levels and its metabolic enzyme mPGES-1. {yields} RhoA-activated NF-{kappa}B and EGR-1 are positively involved in mPGES-1 induction. -- Abstract: Oncogenic RhoA GTPase has been investigated as a mediator of pro-inflammatory responses and aggressive carcinogenesis. Among the various targets of RhoA-linked signals, pro-inflammatory prostaglandin E{sub 2} (PGE{sub 2}), a major prostaglandin metabolite, was assessed in epithelial cancer cells. RhoA activation increased PGE{sub 2} levels and gene expression of the rate-limiting PGE{sub 2} producing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase 1 (mPGES-1). In particular, human mPGES-1 was induced by RhoA via transcriptional activation in control and interleukin (IL)-1{beta}-activated cancer cells. To address the involvement of potent signaling pathways in RhoA-activated mPGES-1 induction, various signaling inhibitors were screened for their effects on mPGES-1 promoter activity. RhoA activation enhanced basal and IL-1{beta}-mediated phosphorylated nuclear factor-{kappa}B and extracellular signal-regulated kinase1/2 proteins, all of which were positively involved in RhoA-induced gene expression of mPGES-1. As one potent down-stream transcription factor of ERK1/2 signals, early growth response gene 1 product also mediated RhoA-induced gene expression of mPGES-1 by enhancing transcriptional activity. Since oncogene-triggered PGE{sub 2} production is a critical modulator of epithelial tumor cells, RhoA-associated mPGES-1 represents a promising chemo-preventive or therapeutic target for epithelial inflammation and its associated cancers.

  6. Small ubiquitin-like modifier 1 modification of pyruvate kinase M2 promotes aerobic glycolysis and cell proliferation in A549 human lung cancer cells

    Directory of Open Access Journals (Sweden)

    An S

    2018-04-01

    overall survival rate (P=0.017 and disease-free survival rate (P=0.027 compared with those with low PKM2 expression. SUMO1 promoted PKM2-dependent glycolysis. Western blotting analysis showed that SUMO1 knockdown in A549 cells led to a significant decrease in PKM2 protein expression. PKM2 could be covalently modified by SUMO1 at K336 (Lys336 site. SUMO1 modification of PKM2 at Lys-336 site increased glycolysis and promoted its cofactor functions. Moreover, PKM2 SUMO1 modification promoted the proliferation of A549 cells in vitro.Conclusion: This information is important in elucidating a new mechanism of regulation of PKM2, and suggested that SUMO1 modification of PKM2 could be a potential therapeutic target in lung cancer. Keywords: Pyruvate Kinase M2, SUMO1 modification, glycolysis, cell proliferation, cancer

  7. The combined effects of physicochemical properties of size-fractionated ambient particulate matter on in vitro toxicity in human A549 lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Umme S. Akhtar

    2014-01-01

    Full Text Available Epidemiological and toxicological studies have suggested that the health effects associated with exposure to particulate matter (PM are related to the different physicochemical properties of PM. These effects occur through the initiation of differential cellular responses including: the induction of antioxidant defenses, proinflammatory responses, and ultimately cell death. The main objective of this study was to investigate the effects of size-fractionated ambient PM on epithelial cells in relation to their physicochemical properties. Concentrated ambient PM was collected on filters for three size fractions: coarse (aerodynamic diameter [AD] 2.5–10 μm, fine (0.15–2.5 μm, and quasi-ultrafine (<0.2 μm, near a busy street in Toronto, Ontario, Canada. Filters were extracted and analyzed for chemical composition and redox activity. Chemical analyses showed that the coarse, fine, and quasi-ultrafine particles were comprised primarily of metals, water-soluble species, and organic compounds, respectively. The highest redox activity was observed for fine PM. After exposure of A549 cells to PM (10–100 μg/ml for 4 h, activation of antioxidant, proinflammatory and cytotoxic responses were assessed by determining the expression of heme oxygenase (HMOX-1, mRNA, interleukin-8 (IL-8, mRNA, and metabolic activity of the cells, respectively. All three size fractions induced mass-dependent antioxidant, proinflammatory, and cytotoxic responses to different degrees. Quasi-ultrafine PM caused significant induction of HMOX-1 at the lowest exposure dose. Correlation analyses with chemical components suggested that the biological responses correlated mainly with transition metals and organic compounds for coarse and fine PM and with organic compounds for quasi-ultrafine PM. Overall, the observed biological responses appeared to be related to the combined effects of size and chemical composition and thus both of these physicochemical properties should be

  8. Overexpression of the hydatidiform mole-related gene F10 inhibits apoptosis in A549 cells through downregulation of BCL2-associated X protein and caspase-3

    OpenAIRE

    SONG, YALI; ZHANG, GONG; ZHU, XIULAN; PANG, ZHANJUN; XING, FUQI; QUAN, SONG

    2012-01-01

    The aim of this study was to investigate how the overexpression of the hydatidiform mole-related gene F10 affects apoptosis in human lung cancer A549 cells. A549 cells were transfected with pEGFP-N1-F10 (A549-F10) or pEGFP-N1 empty vector (A549-empty). Untransfected A549, A549-F10 or A549-empty cells were examined using the MTT cell proliferation assay and the TUNEL-FITC/Hoechst 33258 apoptosis assay. Western blotting was used to examine the expression levels of the pro-apoptotic genes, BCL2-...

  9. Sp1 inhibition-mediated upregulation of VEGF 165 b induced by rh-endostatin enhances antiangiogenic and anticancer effect of rh-endostatin in A549.

    Science.gov (United States)

    Li, Zhen-yu; Zhu, Fang; Hu, Jian-li; Peng, Gang; Chen, Jing; Zhang, Sheng; Chen, Xu; Zhang, Rui-guang; Chen, Ling-juan; Liu, Pian; Luo, Ming; Sun, Zhi-hua; Ren, Jing-hua; Huang, Li-li; Wu, Gang

    2011-08-01

    Recombinant human endostatin (rh-endostatin), a potential antiangiogenic agent, is used in non-small cell lung carcinoma treatment and represses vascular endothelial cell growth factor (VEGF) levels in tumor cell. However, precise affection of rh-endostatin on the proangiogenic VEGF isoforms (VEGF(165)) or antiangiogenic VEGF isoforms (VEGF(165)b) is not clear. We therefore tested the hypothesis that rh-endostatin could alter expression of these isoforms to regulate tumor growth. A549 cells were exposed to rh-endostatin, and the expression of VEGF(165) and VEGF(165)b was detected. The role of SP1 as a regulator of isoform expression was investigated. We then examined the anticancer and antiangiogenic efficacy of rh-endostatin in combination with exogenous VEGF(165)b against A549 cells, EA.HY 926 cells and xenograft model of human lung cancer. rh-Endostatin reduced VEGF(165) and induced VEGF(165)b as well as inhibited SP1 in A549 cells. SP1 inhibitor (betulinic acid) also developed those changes. VEGF(165)b-rh-endostatin combination was highly synergistic and inhibited growth, survival, and migration of A549 cells, VEGF-mediated VEGFR2 phosphorylation in EA.HY 926 cells, and tumor growth in xenograft model of human lung cancer. rh-Endostatin downregulates proangiogenic vascular endothelial growth factor A (VEGFA) isoform and upregulates antiangiogenic VEGFA isoform, possibly through inhibition of SP1. Furthermore, VEGF(165)b sensitizes A549 to rh-endostatin treatment and enhances the anticancer effect of rh-endostatin.

  10. Human RNA polymerase II associated factor 1 complex promotes tumorigenesis by activating c-MYC transcription in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Xiuyi [Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053 (China); Giroux-Leprieur, Etienne [ER2 GRC UPMC04 Theranoscan, Pierre et Marie Curie University, Tenon Hospital, 4 Rue de La Chine, 75020, Paris (France); Respiratory Diseases and Thoracic Oncology Department, Ambroise Pare Hospital – APHP, Versailles Saint Quentin en Yvelines University, 9 Avenue Charles de Gaulle, 92100, Boulogne-Billancourt (France); Wislez, Marie [ER2 GRC UPMC04 Theranoscan, Pierre et Marie Curie University, Tenon Hospital, 4 Rue de La Chine, 75020, Paris (France); Hu, Mu; Zhang, Yi [Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053 (China); Shi, Huaiyin [Department of Pathology, Chinese PLA General Hospital, Fu-xing Road #28, Beijing, 100853 (China); Du, Kaiqi, E-mail: kaiqidu_zhejiang@163.com [Department of Cardiothoracic Surgery, Chinese People' s Armed Police Force, Zhejiang Corps Hospital, Jiaxing, Zhejiang Province (China); Wang, Lei, E-mail: leiwang_hebei@163.com [Department of Human Anatomy, Hebei Medical University, Hebei Province (China)

    2015-10-02

    Human RNA polymerase II (RNAPII)-associated factor 1 complex (hPAF1C) plays a crucial role in protein-coding gene transcription. Overexpression of hPAF1C has been implicated in the initiation and progression of various human cancers. However, the molecular pathways involved in tumorigenesis through hPAF1C remain to be elucidated. The current study suggested hPAF1C expression as a prognostic biomarker for early stage non-small cell lung cancer (NSCLC) and patients with low hPAF1C expression levels had significantly better overall survival. Furthermore, the expression of hPAF1C was found to be positively correlated with c-MYC expression in patient tumor samples and in cancer cell lines. Mechanistic studies indicated that hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription. These results demonstrated the prognostic value of hPAF1C in early-stage NSCLC and the role of hPAF1C in the transcriptional regulation of c-MYC oncogene during NSCLC tumorigenesis. - Highlights: • hPAF1C expression is a prognostic biomarker for early stage non-small cell lung cancer. • The expression of hPAF1C was positively correlated with c-MYC in tumor samples of patients and in several NSCLC cell lines. • hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription.

  11. Human RNA polymerase II associated factor 1 complex promotes tumorigenesis by activating c-MYC transcription in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Zhi, Xiuyi; Giroux-Leprieur, Etienne; Wislez, Marie; Hu, Mu; Zhang, Yi; Shi, Huaiyin; Du, Kaiqi; Wang, Lei

    2015-01-01

    Human RNA polymerase II (RNAPII)-associated factor 1 complex (hPAF1C) plays a crucial role in protein-coding gene transcription. Overexpression of hPAF1C has been implicated in the initiation and progression of various human cancers. However, the molecular pathways involved in tumorigenesis through hPAF1C remain to be elucidated. The current study suggested hPAF1C expression as a prognostic biomarker for early stage non-small cell lung cancer (NSCLC) and patients with low hPAF1C expression levels had significantly better overall survival. Furthermore, the expression of hPAF1C was found to be positively correlated with c-MYC expression in patient tumor samples and in cancer cell lines. Mechanistic studies indicated that hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription. These results demonstrated the prognostic value of hPAF1C in early-stage NSCLC and the role of hPAF1C in the transcriptional regulation of c-MYC oncogene during NSCLC tumorigenesis. - Highlights: • hPAF1C expression is a prognostic biomarker for early stage non-small cell lung cancer. • The expression of hPAF1C was positively correlated with c-MYC in tumor samples of patients and in several NSCLC cell lines. • hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription.

  12. MiR-200a enhances the migrations of A549 and SK-MES-1 cells by ...

    Indian Academy of Sciences (India)

    2013-07-14

    Jul 14, 2013 ... The relative levels of mature miR-200a in different lung cancer cell lines and normal lung cells. A549, SK-MES-1: non- small cell lung cancer (NSCLC) cells, HELF: normal lung cells. The value of miRNA-200a in HELF cells was designated as 1. MiR-200a enhances migrations of A549 and SK-MES-1 cells.

  13. Inhibition of RalA signaling pathway in treatment of non-small cell lung cancer.

    Science.gov (United States)

    Male, Heather; Patel, Vijay; Jacob, Mark A; Borrego-Diaz, Emma; Wang, Kun; Young, Derek A; Wise, Amanda L; Huang, Chao; Van Veldhuizen, Peter; O'Brien-Ladner, Amy; Williamson, Stephen K; Taylor, Sarah A; Tawfik, Ossama; Esfandyari, Tuba; Farassati, Faris

    2012-08-01

    Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and relatively resistant to chemotherapy. The most prevalent molecular abnormality in NSCLC is the overactivation of K-Ras proto-oncogene; therefore, elucidating down-stream Ras signaling in NSCLC is significantly important in developing novel therapies against this malignancy. Our work indicates that RalA, an important effector of Ras, is activated in NSCLC cell lines. While RalA was also overactivated in fetal human broncho-epithelial cells, RalBP1 (Ral binding protein-1), an important down-stream effector of RalA, was expressed at higher levels in cancer cell lines. Aurora kinase-A (AKA), an upstream activator of RalA, was also found to be active only in malignant cells. The outcome of inhibition of RalA (by gene specific silencing using a lentivirus) on the malignant phenotype of A549 cells was also studied. While proliferation and invasiveness of A549 cells were reduced upon silencing RalA, apoptosis and necrosis were elevated in such conditions. Additionally, the in vivo tumorigenesis of A549 cells was reduced upon partial inhibition of RalA and AKA using pharmacological inhibitors. Finally, we were interested in evaluating the level of active RalA in the fraction of NSCLC cells expressing cancer stem cell markers. For this purpose cells with increased expression of CD44 were separated from A549 cells and compared with cells with low level of expression of this marker and an unsorted population. A significant enhancement of RalA activation in high CD44+ cells was found as potential evidence for involvement of RalA signaling in initiation of the neoplastic procedure and an important contributor for tumor maintenance in NSCLC. Further studies can reveal therapeutic, preventive and diagnostic value of RalA pathway in this deadly disease. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Luteoloside induces G0/G1 arrest and pro-death autophagy through the ROS-mediated AKT/mTOR/p70S6K signalling pathway in human non-small cell lung cancer cell lines.

    Science.gov (United States)

    Zhou, Menglu; Shen, Shuying; Zhao, Xin; Gong, Xingguo

    2017-12-09

    Autophagy has attracted a great deal of interest in tumour therapy research in recent years. However, the anticancer effect of luteoloside, a naturally occurring flavonoid isolated from the medicinal plant Gentiana macrophylla, on autophagy remains poorly understood in human lung cells. In the present study, we have investigated the anticancer effects of luteoloside on non-small cell lung cancer (NSCLC) cells and demonstrated that luteoloside effectively inhibited cancer cell proliferation, inducing G 0 /G 1 phase arrest associated with reduced expression of CyclinE, CyclinD1 and CDK4; we further found that treatment with luteoloside did not strongly result in apoptotic cell death in NSCLC (A549 and H292) cells. Interestingly, luteoloside induced autophagy in lung cancer cells, which was correlated with the formation of autophagic vacuoles, breakdown of p62, and the overexpression of Beclin-1 and LC3-II, but not in a human bronchial epithelial cell line (BEAS-2B). Notably, pretreatment of cancer cells with 3-MA, an autophagy inhibitor, protected against autophagy and promoted cell viability but not apoptosis. To further clarify whether luteoloside-induced autophagy depended on the PI3K/AKT/mTOR/p70S6K signalling pathway, a major autophagy-suppressive cascade, cells were treated with a combination of AKT inhibitor (LY294002) and mTOR inhibitor (Rap). These results demonstrated that luteoloside induced autophagy in lung cancer cell lines by inhibiting the pathway at p-Akt (Ser473), p-mTOR and p-p70S6K (Thr389). Moreover, we observed that luteoloside-induced cell autophagy was correlated with production of reactive oxygen species (ROS). NAC-mediated protection against ROS clearly implicated ROS in the activation of autophagy and cell death. In addition, the results showed that ROS served as an upstream effector of the PI3K/AKT/mTOR/p70S6K pathway. Taken together, the present study provides new insights into the molecular mechanisms underlying luteoloside-mediated cell

  15. Griffipavixanthone from Garcinia oblongifolia champ induces cell apoptosis in human non-small-cell lung cancer H520 cells in vitro.

    Science.gov (United States)

    Shi, Jun-Min; Huang, Hui-Juan; Qiu, Sheng-Xiang; Feng, Shi-Xiu; Li, Xu-E

    2014-01-27

    Griffipavixanthone (GPX) is a dimeric xanthone which was isolated in a systematic investigation of Garcinia oblongifolia Champ. In this study, we investigate the effect of GPX on cell proliferation and apoptosis on human Non-small-cell lung cancer (NSCLC) cells in vitro and determine the mechanisms of its action. GPX inhibited the growth of H520 cells in dose- and time-dependent manners, with IC50 values of 3.03 ± 0.21 μM at 48 h. The morphologic characteristics of apoptosis and apoptotic bodies were observed by fluorescence microscope and transmission electron microscope. In addition, Annexin V/PI double staining assay revealed that cells in early stage of apoptosis were significantly increased upon GPX treatment dose-dependently. Rh123 staining assay indicated that GPX reduced the mitochondrial membrane potential. DCFH-DA staining revealed that intracellular ROS increased with GPX treatment. Moreover, GPX cleaved and activated caspase-3. In summary, this study showed that GPX inhibited H520 cell proliferation in dose- and time-dependent manner. Further mechanistic study indicated that GPX induced cell apoptosis through mitochondrial apoptotic pathway accompanying with ROS production. Our results demonstrate the potential application of GPX as an anti-non-small cell lung cancer agent.

  16. Cytokine-Induced Killer Cells Modulates Resistance to Cisplatin in the A549/DDP Cell Line.

    Science.gov (United States)

    Yang, Lili; Du, Chunjuan; Wu, Lei; Yu, Jinpu; An, Xiumei; Yu, Wenwen; Cao, Shui; Li, Hui; Ren, Xiubao

    2017-01-01

    Background Cytokine-induced killer (CIK) cells can potentially enhance the tumor-killing activity of chemotherapy. Objective This study aimed to evaluate the effects of CIK cells on cisplatin (DDP) resistance in the human lung adenocarcinoma cell line A549/DDP. Methods The detect resistance index, drug resistance related-genes and cytokine secretion of A549/DDP co-cultured with CIK cells were assayed in vitro . Results After A549/DDP co-culture with CIK cells, the DDP resistance of A549/DDP significantly decreased in a time-dependent manner. The DDP resistance of A549/DDP co-cultured with CIK cells for 20 h decreased 4.93-fold compared with that of A549/DDP cells cultured alone ( P A549/DDP significantly decreased after co-culture with CIK cells ( P A549/DDP with CIK cells. The expression of GST-π was restored by adding the neutralizing IFN-γ. Conclusion CIK cells can reverse the drug resistance of A549/DDP in a time-dependent manner by reducing GST-π expression to increase the accumulation of DDP. The effect of CIK cells on re-sensitizing lung cancer cells to the chemotherapy drug was partially dependent on the secretion of IFN-γ.

  17. Extracellular HSP70 Activates ERK1/2, NF-kB and Pro-Inflammatory Gene Transcription Through Binding with RAGE in A549 Human Lung Cancer Cells.

    Science.gov (United States)

    Somensi, Nauana; Brum, Pedro Ozorio; de Miranda Ramos, Vitor; Gasparotto, Juciano; Zanotto-Filho, Alfeu; Rostirolla, Diana Carolina; da Silva Morrone, Maurilio; Moreira, José Claudio Fonseca; Pens Gelain, Daniel

    2017-01-01

    Heat shock protein 70 (HSP70) has been recently described with extracellular actions, where it is actively released in inflammatory conditions. Acting as DAMPs (damage associated molecular pattern), extracellular HSP70 (eHSP70) interacts with membrane receptors and activates inflammatory pathways. At this context, the receptor for advanced glycation endproducts (RAGE) emerges as a possible candidate for interaction with eHSP70. RAGE is a pattern-recognition receptor and its expression is increased in several diseases related to a chronic pro-inflammatory state. One of the main consequences of RAGE ligand-binding is the ERK1/2 (extracellular signal-regulated kinases)-dependent activation of NF-kB (nuclear factor kappa B), which leads to expression of TNF-α (tumor necrosis factor alpha) and other cytokines. The purpose of this work is to elucidate if eHSP70 is able to evoke RAGE-dependent signaling using A549 human lung cancer cells, which constitutively express RAGE. Immunoprecipitation and protein proximity assay were utilized to demonstrate the linkage between RAGE and eHSP70. To investigate RAGE relevance on cell response to eHSP70, siRNA was used to knockdown the receptor expression. Signaling pathways activation were evaluated by western blotting, gene reporter luciferase and real time quantitative PCR. Protein eHSP70 shown to be interacting physically with the receptor RAGE in our cell model. Treatment with eHSP70 caused ERK1/2 activation and NF-κB transactivation impaired by RAGE knockdown. Moreover, the stimulation of pro-inflammatory cytokines expression by eHSP70 was inhibited in RAGE-silenced cells. Finally, conditioned medium of eHSP70-treated A549 cells caused differential effects in monocytes cytokine expression when A549 RAGE expression is inhibited. Our results evidence eHSP70 as a novel RAGE agonist capable of influence the cross-talk between cancer and immune system cells. © 2017 The Author(s). Published by S. Karger AG, Basel.

  18. Anti-tumor effect of 131I labeled 17-allylamino-17-demethoxygeldanamycin on human non-small cell lung cancer in xenograft-bearing nude mice

    International Nuclear Information System (INIS)

    Sun Jin; Liu Lu; Zhu Xiaoli; Chen Daozhen; Gao Wen; Jiang Xinyu; Huang Ying

    2008-01-01

    Objective: 17-allylamino-17-demethoxygeldanamycin (17-AAG) has been developed as a novel heat shock protein 90 (HSP90) inhibitor being used in clinical trials. HSP90 is known as a molecular target for tumor therapy. The goal of this study was to investigate the inhibitive effects of 131 I labeled 17-AAG on human non-small cell lung cancer in xenograft-bearing nude mice. Methods: 17-AAG was labeled with 131 I. Twenty-eight BALB/c nude mice bearing H460 human non-small cell lung carcinoma tumor xenograft were randomly divided into seven groups, one control group and six treatment groups according to the route of administration (via tail vein injection or intratumoral injection) and the doses of injected radio-activity (5.5 MBq x 2 with 8 d interval, 11.0 MBq and 5.5 MBq). Two additional mice were treated with intratumoral injection of Na 131 I solution that was served as seintigraphic imaging controls. In each group two mice underwent scintigraphy at 2 h, 6 h, 24 h, 2 d, 3 d, 7 d, 10 d and 16 d. After 16 d the tumor inhibition rate was calculated. Then all of the mice were sacrificed and the tumor tissues were obtained for histological examination and immunohistochemical assay. Results: Persistent accumulation of 131 I-17-AAG in the tumors was seen on seintigraphic images. Tumor inhibiting effect was demonstrated in all treatment groups with varying degrees. The highest tumor inhibition rate (86.77 ± 4.57)% was shown in the group with interval intratumoral injection (5.5 MBq x 2). There was no significant difference of tumor inhibition rates between 5.5 MBq x 2 group (via tail vein injection) and 11.0 MBq group( via tail vein injection, q=1.67, P>0.05). While among the other treatment groups, there was significant difference in tumor inhibition rates( q=3.16-24.34, all P 131 I-17-AAG may effectively inhibit the tumor growth and expression of HSP90α antigen expression in non-small cell lung cancer bearing nude mice. The more prominent anti-tumor effect may be

  19. Polygonatum odoratum lectin induces apoptosis and autophagy by regulation of microRNA-1290 and microRNA-15a-3p in human lung adenocarcinoma A549 cells.

    Science.gov (United States)

    Wu, Lei; Liu, Tao; Xiao, Yan; Li, Xin; Zhu, Yanan; Zhao, Yan; Bao, Jinku; Wu, Chuanfang

    2016-04-01

    Polygonatum odoratum lectin (POL), a mannose-binding specific Galanthus nivalis agglutinin (GNA)-related lectin has been reported with remarkable anti-proliferative and apoptosis-inducing effects against several tumor cells. Our previous research revealed that POL can induce apoptosis and autophagy in A549 cells. However, whether microRNAs (miRNAs) are involved in POL-induced apoptosis and autophagy in A549 cells has not been investigated. The aim of this study was to evaluate whether miRNAs were involved in POL-induced apoptosis and autophagy in A549 cells. In the present study, we performed microarray analysis on A549 cells to identify altered miRNAs after POL treatment. We found that miR-1290 was down-regulated after POL treatment and down-regulated miR-1290 amplifies POL-induced apoptosis in A549 cells. Moreover, we revealed that glycogen synthase kinase-3β (GSK3β) was a direct target of miR-1290 and POL treatment could result in Wnt pathway down regulation. We also found that miR-15a-3p was up-regulated after POL treatment and over-expression of miR-15a-3p resulted in A549 cells apoptosis and autophagy. In addition, we confirmed that a miR-15a-3p mediated ROS-p53 pathway was involved in POL-induced apoptosis and autophagy in A549 cells. Taken together, these data provide evidence that POL induces A549 cells apoptosis and autophagy by regulation of miR-1290 and miR-15a-3p. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. PED interacts with Rac1 and regulates cell migration/invasion processes in human non-small cell lung cancer cells.

    Science.gov (United States)

    Zanca, Ciro; Cozzolino, Flora; Quintavalle, Cristina; Di Costanzo, Stefania; Ricci-Vitiani, Lucia; Santoriello, Margherita; Monti, Maria; Pucci, Piero; Condorelli, Gerolama

    2010-10-01

    PED (phosphoprotein enriched in diabetes) is a 15 kDa protein involved in many cellular pathways and human diseases including type II diabetes and cancer. We recently reported that PED is overexpressed in human cancers and mediates resistance to induced apoptosis. To better understand its role in cancer, we investigated on PED interactome in non-small cell lung cancer (NSCLC). By the Tandem Affinity Purification (TAP), we identified and characterized among others, Rac1, a member of mammalian Rho GTPase protein family, as PED-interacting protein. In this study we show that PED coadiuvates Rac1 activation by regulating AKT mediated Rac1-Ser(71) phosphorylation. Furthermore, we show that the expression of a constitutively active Rac, affected PED-Ser(104) phosphorylation, which is important for PED-regulated ERK 1/2 nuclear localization. Through specific Rac1-siRNA or its pharmacological inhibition, we demonstrate that PED augments migration and invasion in a Rac1-dependent manner in NSCLC. In conclusion, we show for the first time that PED and Rac1 interact and that this interaction modulates cell migration/invasion processes in cancer cells through ERK1/2 pathway. (c) 2010 Wiley-Liss, Inc.

  1. Relationship between intercellular communication and adriamycin resistance in non-small cell lung cancer.

    Science.gov (United States)

    Bradley, C; Freshney, R I; Pitts, J

    1994-01-01

    The adriamycin chemosensitivity and extent of gap junctional intercellular communication were assessed in a panel of seven human non-small cell lung cancer (NSCLC) cell lines. Communication was assessed by autoradiographic detection of transfer of 3H uridine nucleotides between coupled cells. The strength of coupling varied widely between the cell lines and they could be separated into 3 groups: those which exhibited strong coupling, L-DAN and A549; those which exhibited weak coupling, SK-MES-1, Calu-3 and NCI-H125; and an intermediate group, WIL and NCI-H23. Adriamycin chemosensitivity was assessed by both clonogenic and MTT assays. The range of IC50 values as measured by either assay was extremely narrow, with no important differences between the lines. Thus, despite the wide spectrum of intercellular communication observed in these lines, this did not correlate with their adriamycin resistance.

  2. Depletion of end-binding protein 1 (EB1) promotes apoptosis of human non-small-cell lung cancer cells via reactive oxygen species and Bax-mediated mitochondrial dysfunction.

    Science.gov (United States)

    Kim, Min-Jung; Yun, Hong Shik; Hong, Eun-Hee; Lee, Su-Jae; Baek, Jeong-Hwa; Lee, Chang-Woo; Yim, Ji-Hye; Kim, Jae-Sung; Park, Jong Kuk; Um, Hong-Duck; Hwang, Sang-Gu

    2013-10-01

    Although end-binding protein 1 (EB1) is well known to regulate microtubule dynamics, the role of EB1 in apoptosis of non-small cell lung cancer (NSCLC) is poorly understood. Here, we investigated the molecular mechanism by which EB1 regulates apoptosis in H460, A549, and H1299 cells. Depletion of EB1 in A549 and H1299 cells, which express high levels of EB1, induced cell death in a p53-independent manner through over-production of reactive oxygen species (ROS) and Bax induction. This phenomenon was potentiated in radiation-treated EB1-knockdown cells and was largely blocked by N-acetyl-L-cysteine, a scavenger of ROS. ROS accelerated the activation of nuclear factor-kappa B (NF-κB) to promote transcriptional activity of Bax, an action that was accompanied by cytochrome c translocation and apoptosis-inducing factor (AIF) release. The NF-κB inhibitor, BAY 11-7082, potently inhibited the apoptosis induced by EB1 knockdown and radiation treatment, in association with diminished activity of the mitochondrial death pathway. Conversely, ectopic overexpression of EB1 in H460 cells, which express low levels of EB1, remarkably abrogated radiation-induced apoptosis and NF-κB-mediated mitochondrial dysfunction. Our data provide the first demonstration that down-regulation of EB1 promotes NSCLC cell death by inducing ROS-mediated, NF-κB-dependent Bax signaling cascades, a process in which cytochrome c and AIF play important roles, indicating a potential therapeutic benefit of EB1 in lung cancer. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  3. Comparative Cytotoxicity of Glycyrrhiza glabra Roots from Different Geographical Origins Against Immortal Human Keratinocyte (HaCaT), Lung Adenocarcinoma (A549) and Liver Carcinoma (HepG2) Cells.

    Science.gov (United States)

    Basar, Norazah; Oridupa, Olayinka Ayotunde; Ritchie, Kenneth J; Nahar, Lutfun; Osman, Nashwa Mostafa M; Stafford, Angela; Kushiev, Habibjon; Kan, Asuman; Sarker, Satyajit D

    2015-06-01

    Glycyrrhiza glabra L. (Fabaceae), commonly known as 'liquorice', is a well-known medicinal plant. Roots of this plant have long been used as a sweetening and flavouring agent in food and pharmaceutical products, and also as a traditional remedy for cough, upper and lower respiratory ailments, kidney stones, hepatitis C, skin disorder, cardiovascular diseases, diabetes, gastrointestinal ulcers and stomach ache. Previous pharmacological and clinical studies have revealed its antitussive, antiinflammatory, antiviral, antimicrobial, antioxidant, immunomodulatory, hepatoprotective and cardioprotective properties. While glycyrrhizin, a sweet-tasting triterpene saponin, is the principal bioactive compound, several bioactive flavonoids and isoflavonoids are also present in the roots of this plant. In the present study, the cytotoxicity of the methanol extracts of nine samples of the roots of G. glabra, collected from various geographical origins, was assessed against immortal human keratinocyte (HaCaT), lung adenocarcinoma (A549) and liver carcinoma (HepG2) cell lines using the in vitro 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazoliumbromide cell toxicity/viability assay. Considerable variations in levels of cytotoxicity were observed among various samples of G. glabra. Copyright © 2015 John Wiley & Sons, Ltd.

  4. The impact of anticancer activity upon Beta vulgaris extract mediated biosynthesized silver nanoparticles (ag-NPs) against human breast (MCF-7), lung (A549) and pharynx (Hep-2) cancer cell lines.

    Science.gov (United States)

    Venugopal, K; Ahmad, H; Manikandan, E; Thanigai Arul, K; Kavitha, K; Moodley, M K; Rajagopal, K; Balabhaskar, R; Bhaskar, M

    2017-08-01

    The present study tried for a phyto-synthetic method of producing silver nanoparticles (Ag-NPs) with size controlled as and eco-friendly route that can lead to their advanced production with decorative tranquil morphology. By inducing temperature fluctuation of the reaction mixture from 25 to 80°C the plasmon resonance band raised slowly which had an ultimate effect on size and shape of Ag-NPs as shown by UV-visible spectroscopy and TEM results. The biosynthesized nanoparticles showed good cytotoxic impact against MCF-7, A549 and Hep2 cells compared to normal cell lines. Compared to control plates, the percentage of cell growth inhibition was found to be high with as concentrations of Ag-NPs becomes more as determined by MTT assay. The AO/EtBr staining observations demonstrated that the mechanism of cell death induced by Ag-NPs was due to apoptosis in cancer cells. These present results propose that the silver nanoparticles (Ag-NPs) may be utilized as anticancer agents for the treatment of various cancer types. However, there is a need for study of in vivo examination of these nanoparticles to find their role and mechanism inside human body. Further, studies we plan to do biomarker fabrication from the green synthesized plant extract nanoparticles like silver, gold and copper nanoparticles with optimized shape and sizes and their enhancement of these noble nanoparticles. Copyright © 2017. Published by Elsevier B.V.

  5. Expression of human MutT homologue (hMTH1) protein in primary non-small-cell lung carcinomas and histologically normal surrounding tissue.

    Science.gov (United States)

    Kennedy, Christopher H; Pass, Harvey I; Mitchell, James B

    2003-06-01

    In situ, oxidation of deoxyguanosine yields 8-hydroxy-2'-deoxyguanosine (8-oxo-dG), which is mutation prone and results in a G:C --> T:A transversion following DNA replication. Another pathway to the formation of DNA containing 8-oxo-dG is by the misincorporation of 8-oxo-dGTP via DNA polymerase. Human MutT homologue (hMTH1), an 8-oxo-dGTPase, prevents misincorporation of this oxidized nucleotide by hydrolyzing 8-oxo-dGTP to 8-oxo-dGMP. Previous studies have shown that hMTH1 mRNA is overexpressed in human renal cell carcinomas and breast tumors. Elevated levels of hMTH1 protein have also been detected in brain tumors. In the current study, we determined whether hMTH1 protein is overexpressed in primary non-small-cell lung carcinomas as compared to adjacent histologically normal lung tissue. Twenty matched human lung tumor/normal pairs were examined by Western analysis for expression of hMTH1 protein. Overexpression in the tumors was detected in 4/8 (50%) adenocarcinomas, 4/4 (100%) adenocarcinomas with bronchioalveolar (BAC) features, 2/2 (100%) BACs, and 3/6 (50%) squamous cell carcinomas. The data from Western analysis were validated by immunohistochemical staining for hMTH1 protein. The results of this study indicate that hMTH1 protein may be a potential marker for the detection of persistent oxidative stress in lung cancer.

  6. In vitro synergistic anticancer activity of the combination of T-type calcium channel blocker and chemotherapeutic agent in A549 cells.

    Science.gov (United States)

    Byun, Joon Seok; Sohn, Joo Mi; Leem, Dong Gyu; Park, Byeongyeon; Nam, Ji Hye; Shin, Dong Hyun; Shin, Ji Sun; Kim, Hyoung Ja; Lee, Kyung-Tae; Lee, Jae Yeol

    2016-02-01

    As a result of our continuous research, new 3,4-dihydroquinazoline derivative containing ureido group, KCP10043F was synthesized and evaluated for T-type Ca(2+) channel (Cav3.1) blockade, cytotoxicity, and cell cycle arrest against human non-small cell lung (A549) cells. KCP10043F showed both weaker T-type Ca(2+) channel blocking activity and less cytotoxicity against A549 cells than parent compound KYS05090S [4-(benzylcarbamoylmethyl)-3-(4-biphenylyl)-2-(N,N',N'-trimethyl-1,5-pentanediamino)-3,4-dihydroquinazoline 2 hydrochloride], but it exhibited more potent G1-phase arrest than KYS05090S in A549 cells. This was found to be accompanied by the downregulations of cyclin-dependent kinase (CDK) 2, CDK4, CDK6, cyclin D2, cyclin D3, and cyclin E at the protein levels. However, p27(KIP1) as a CDK inhibitor was gradually upregulated at the protein levels and increased recruitment to CDK2, CDK4 and CDK6 after KCP10043F treatment. Based on the strong G1-phase cell cycle arrest of KCP10043F in A549 cells, the combination of KCP10043F with etoposide (or cisplatin) resulted in a synergistic cell death (combination index=0.2-0.8) via the induction of apoptosis compared with either agent alone. Taken together with these overall results and the favorable in vitro ADME (absorption, distribution, metabolism, and excretion) profiles of KCP10043F, therefore, it could be used as a potential agent for the combination therapy on human lung cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Mitochondrial DNA-depleted A549 cells are resistant to bleomycin

    Science.gov (United States)

    Brar, Sukhdev S.; Meyer, Joel N.; Bortner, Carl D.; Van Houten, Bennett

    2012-01-01

    Alveolar epithelial cells are considered to be the primary target of bleomycin-induced lung injury, leading to interstitial fibrosis. The molecular mechanisms by which bleomycin causes this damage are poorly understood but are suspected to involve generation of reactive oxygen species and DNA damage. We studied the effect of bleomycin on mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) in human alveolar epithelial A549 cells. Bleomycin caused an increase in reactive oxygen species production, DNA damage, and apoptosis in A549 cells; however, bleomycin induced more mtDNA than nDNA damage. DNA damage was associated with activation of caspase-3, cleavage of poly(ADP-ribose) polymerase, and cleavage and activation of protein kinase D1 (PKD1), a newly identified mitochondrial oxidative stress sensor. These effects appear to be mtDNA-dependent, because no caspase-3 or PKD1 activation was observed in mtDNA-depleted (ρ0) A549 cells. Survival rate after bleomycin treatment was higher for A549 ρ0 than A549 cells. These results suggest that A549 ρ0 cells are more resistant to bleomycin toxicity than are parent A549 cells, likely in part due to the depletion of mtDNA and impairment of mitochondria-dependent apoptotic pathways. PMID:22773697

  8. Characterization of the effects of cyclooxygenase-2 inhibition in the regulation of apoptosis in human small and non-small cell lung cancer cell lines.

    LENUS (Irish Health Repository)

    Alam, Mahmood

    2012-02-03

    BACKGROUND: Cyclooxygenase-2 enzyme (COX-2) is overexpressed in human non-small cell lung cancer (NSCLC) but is not expressed in small cell lung cancer. Selective COX-2 inhibitors have been shown to induce apoptosis in NSCLC cells, an effect which is associated with the regulation of intracellular MAP kinase (MAPK) signal pathways. Our aims were to characterize the effects of COX-2 inhibition by rofecoxib on apoptosis in human NSCLC and small cell lung cancer cell lines. METHODS: The human NSCLC cell line NCI-H2126 and small cell lung cancer cell line DMS-79 were used. Constitutive COX-2 protein levels were first determined by Western blot test. Levels of apoptosis were evaluated by using propidium iodide staining on FACScan analysis after incubation of NCI-H2126 and DMS-79 with p38 MAPK inhibitor SB202190 (25 ?microM), NF-kappaB inhibitor SN50 (75 microg\\/mL), and rofecoxib at 100 and 250 microM. All statistical analysis was performed by analysis of variance. RESULTS: Western blot test confirmed the presence of COX-2 enzyme in NCI-H2126 and absence in DMS-79. Interestingly, rofecoxib treatment demonstrated a dose-dependent increase in apoptosis in both cell lines. Given this finding, the effect of rofecoxib on NF-kappaB and p38 MAPK pathways was also examined. Apoptosis in both cell lines was unaltered by SN50, either alone or in combination with rofecoxib. A similar phenomenon was observed in NCI-H2126 cells treated with SB202190, either alone or in combination with rofecoxib. In contrast, p38 MAPK inhibition greatly upregulated DMS-79 apoptosis in a manner that was unaltered by the addition of rofecoxib. CONCLUSIONS: Rofecoxib led to a dose-dependent increase in apoptosis in both tumor cell lines. This effect occurred independently of COX-2, NF-kappaB, and p38 MAPK pathways in DMS-79 cells. As such, rofecoxib must act on alternative pathways to regulate apoptosis in human small cell lung cancer cells.

  9. Nimesulide has a role of radio-sensitizer against lung carcinoma A549 cells

    Energy Technology Data Exchange (ETDEWEB)

    Won, Joo Yoon; Park, Jong Kuk; Hong, Sung Hee [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2006-07-01

    Cyclooxygenases (COX) are key enzymes in the prostaglandin synthesis. There are two isoforms of the COX enzyme, COX-1 and COX-2. COX-2 expression is associated with carcinogenesis in variety of cancers and to render cells resistant to apoptotic stimuli. Increased expression of COX-2 is shown in non-small cell lung cancer (NSCLC), specifically in adenocarcinomas. Radiotherapy has been the important treatment for NSCLC. In recent studies, newer molecules that target specific pathophysiology or molecular pathways have been tested for the radiation sensitizers. COX-2 inhibitors are shown to enhanced radioresponse of cultured human cancer cell lines and immunodeficient mice. However, little is known about the molecular and biochemical mechanisms how NSAIDs enhance radioresponse of tumor cells. Nimesulide (methanesulfonamide, N-(4-nitro-2- phenoxyphenyl)), selective COX-2 inhibitors, is a drug with anti-inflammatory, anti-pyretic and analgesic properties. Nimesulide has the specific affinity to inhibit the inducible form of cyclooxygenase (COX-2) rather than the constitutive form (COX-1), and is well tolerated by adult, elderly and pediatric patients. Nimesulide was found also to have a chemopreventive activity against colon, urinary bladder, breast, tongue, and liver carcinogenesis. In this study, we examined whether nimesulide can increase radiation induced cell death and its mechanism in NSCLC cells A549.

  10. Endogenous microRNA-424 predicts clinical outcome and its inhibition acts as cancer suppressor in human non-small cell lung cancer.

    Science.gov (United States)

    Wang, Yu; Lv, Zhenyang; Fu, Junfeng; Wang, Ze; Fan, Zhe; Lei, Ting

    2017-05-01

    We examined the expression, clinical correlation and functional mechanisms of endogenous microRNA-424 (miR-424) in human non-small cell lung cancer (NSCLC). Expression pattern of endogenous miR-424 was examined by qRT-PCR in clinical samples obtained from 233 NSCLC patients. Correlations between differential miR-424 expression level (low vs. high) and NSCLC patients' clinicopathological parameters or survival were statistically examined. In in vitro NSCLC H596 and SW900 cells, miR-424 was either upregulated or downregulation by lentiviral transduction. Their effects on cancer cell viability, proliferation, and cell-cycle transition were also examined. MiR-424 expression was not different between NSCLC tumors and healthy lung tissues. However, it is much upregulated in NSCLC tumors associated with patients at advanced clinical stages. Statistical analyses demonstrated that high endogenous miR-424 expression in NSCLC tumors was significantly correlated with patients' advanced clinical stages, aggressive tumor metastasis, and short survival. In addition, Cox regression model predicted that endogenous miR-424 might be an independent prognostic marker in NSCLC. In in vitro NSCLC cell lines, miR-424 downregulation had a significant suppressing effect on cancer proliferation and G1 to S phase cell-cycle transition. On the other hand, miR-424 upregulation had no effect on NSCLC in vitro. High endogenous miR-424 expression in tumors may predict poor prognosis of patients with NSCLC. Inhibiting endogenous miR-424 may also serve an effective cancer suppressor in NSCLC. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Zebularine inhibits the growth of A549 lung cancer cells via cell cycle arrest and apoptosis.

    Science.gov (United States)

    You, Bo Ra; Park, Woo Hyun

    2014-11-01

    Zebularine (Zeb) is a DNA methyltransferase (DNMT) inhibitor to that has an anti-tumor effect. Here, we evaluated the anti-growth effect of Zeb on A549 lung cancer cells in relation to reactive oxygen species (ROS) levels. Zeb inhibited the growth of A549 cells with an IC50 of approximately 70 µM at 72 h. Cell cycle analysis indicated that Zeb induced an S phase arrest in A549 cells. Zeb also induced A549 cell death, which was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm ), Bcl-2 decrease, Bax increase, p53 increase and activation of caspase-3 and -8. In contrast, Zeb mildly inhibited the growth of human pulmonary fibroblast (HPF) normal cells and lead to a G1 phase arrest. Zeb did not induce apoptosis in HPF cells. In relation to ROS level, Zeb increased ROS level in A549 cells and induced glutathione (GSH) depletion. The well-known antioxidant, N-acetyl cysteine (NAC) prevented the death of Zeb-treated A549 cells. Moreover, Zeb increased the level of thioredoxin reductase 1 (TrxR1) in A549 cells. While the overexpression of TrxR1 attenuated death and ROS level in Zeb-treated A549 cells, the downregulation of TrxR1 intensified death and ROS level in these cells. In conclusion, Zeb inhibited the growth of A549 lung cancer cells via cell cycle arrest and apoptosis. The inhibition was influenced by ROS and TrxR1 levels. © 2013 Wiley Periodicals, Inc.

  12. Hypoxia Potentiates the Radiation-Sensitizing Effect of Olaparib in Human Non-Small Cell Lung Cancer Xenografts by Contextual Synthetic Lethality

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yanyan; Verbiest, Tom; Devery, Aoife M.; Bokobza, Sivan M.; Weber, Anika M.; Leszczynska, Katarzyna B.; Hammond, Ester M.; Ryan, Anderson J., E-mail: anderson.ryan@oncology.ox.ac.uk

    2016-06-01

    Purpose: Poly(ADP-ribose) polymerase (PARP) inhibitors potentiate radiation therapy in preclinical models of human non-small cell lung cancer (NSCLC) and other types of cancer. However, the mechanisms underlying radiosensitization in vivo are incompletely understood. Herein, we investigated the impact of hypoxia on radiosensitization by the PARP inhibitor olaparib in human NSCLC xenograft models. Methods and Materials: NSCLC Calu-6 and Calu-3 cells were irradiated in the presence of olaparib or vehicle under normoxic (21% O{sub 2}) or hypoxic (1% O{sub 2}) conditions. In vitro radiosensitivity was assessed by clonogenic survival assay and γH2AX foci assay. Established Calu-6 and Calu-3 subcutaneous xenografts were treated with olaparib (50 mg/kg, daily for 3 days), radiation (10 Gy), or both. Tumors (n=3/group) were collected 24 or 72 hours after the first treatment. Immunohistochemistry was performed to assess hypoxia (carbonic anhydrase IX [CA9]), vessels (CD31), DNA double strand breaks (DSB) (γH2AX), and apoptosis (cleaved caspase 3 [CC3]). The remaining xenografts (n=6/group) were monitored for tumor growth. Results: In vitro, olaparib showed a greater radiation-sensitizing effect in Calu-3 and Calu-6 cells in hypoxic conditions (1% O{sub 2}). In vivo, Calu-3 tumors were well-oxygenated, whereas Calu-6 tumors had extensive regions of hypoxia associated with down-regulation of the homologous recombination protein RAD51. Olaparib treatment increased unrepaired DNA DSB (P<.001) and apoptosis (P<.001) in hypoxic cells of Calu-6 tumors following radiation, whereas it had no significant effect on radiation-induced DNA damage response in nonhypoxic cells of Calu-6 tumors or in the tumor cells of well-oxygenated Calu-3 tumors. Consequently, olaparib significantly increased radiation-induced growth inhibition in Calu-6 tumors (P<.001) but not in Calu-3 tumors. Conclusions: Our data suggest that hypoxia potentiates the radiation-sensitizing effects of

  13. Residual tumor after laser ablation of human non-small-cell lung cancer demonstrated by ex vivo staining: correlation with invasive temperature measurements.

    Science.gov (United States)

    Hoffmann, Christian Oliver Martin; Rosenberg, Christian; Linder, Albert; Hosten, Norbert

    2012-02-01

    Histology is the gold standard for confirming thermally induced necrosis. Generally, however, no specimen is obtained from thermal ablation therapy for pathological examination. The aim of this study was to provide evidence for the relationship between temperatures reached and resulting tissue coagulation during laser ablation in a near-physiological ex vivo lung tumor model by combining viability staining and direct temperature measurement. In all, 17 human lung specimens with primary non-small-cell lung cancer (NSCLC) were examined in this study. Organs were resected with curative intent from patients of either gender (5 female, 12 male) with an average age of 65 years (51-78). Here, 11/17 specimens were subjected to interstitial laser thermal ablation in an ex vivo lung perfusion and ventilation model after surgery. A control group of 6/17 specimens was tested for viability without laser ablation. Tissue temperature was measured invasively in real-time during the ablation process using thermocouples. Afterwards, representative slices of all 17 specimens were tested for viability with triphenyltetrazolium chloride (TTC). Maximum tissue temperature Tmax[°C] measured at a distance of 10 and 20 mm from the laser tip and time of temperature exposure were correlated with the diameter of the induced coagulation as ascertained with viability staining. CH evaluated the results. Mean maximum temperature was 75.9°C ± 14.4°C at a distance of 10 mm from the laser tip and 50.3°C ± 14.6°C at a distance of 20 mm, respectively. The mean distance between the coagulation margin and the laser tip was 17.8 mm ± 7.3 mm. We found that coagulation size correlated positively with temperature. There was a clear trend towards the correlation of time over 44°C and ablation depth. Maximum temperatures did not significantly correlate with coagulation size. Laser ablation of lung tumors using the IHLP (isolated human lung perfusion) model represents a possible method for evaluating

  14. Synergistic activity of vorinostat combined with gefitinib but not with sorafenib in mutant KRAS human non-small cell lung cancers and hepatocarcinoma

    Directory of Open Access Journals (Sweden)

    Jeannot V

    2016-11-01

    apoptosis. The sorafenib and vorinostat combination sustained the IGF-1R-, AKT-, and mitogen-activated protein kinase-dependent signaling pathways. These results showed that there was synergistic cytotoxicity when vorinostat was combined with gefitinib for both lung adenocarcinoma and hepatocarcinoma with mutant KRAS in vitro and in vivo but that the combination of vorinostat with sorafenib did not show any benefit. These findings highlight the important role of the IGF-1R/AKT pathway in the resistance to targeted therapies and support the use of histone deacetylase inhibitors in combination with EGFR-tyrosine kinase inhibitors, especially for treating patients with mutant KRAS resistant to other treatments. Keywords: targeted therapy, combined treatments, non-small cell lung cancer, hepatocarcinoma

  15. [Mechanism of Chlorogenic Acid in Apoptotic Regulation through Notch1 
Pathway in Non-small Cell Lung Carcinoma in Animal Level].

    Science.gov (United States)

    Li, Wei; Liu, Xu; Zhang, Guoqian; Zhang, Linlin

    2017-08-20

    It has been proven that chlorogenic acids can produce anticancer effects by regulating cell cycle, inducing apoptosis, inhibiting cell growth, Notch signaling pathways are closely related to many human tumors. The aim of this study is to study the mechanism of chlorogenic acid on apoptosis of non-small lung cancer through Notch1 pathway in animal level, and hope to provide theory basis on clinical treatment and research aimed at targeting Notch1 signaling in non-small cell carcinoma (NSCLC). MTT assay was used to evaluate the A549 cell proliferation under the treatment of chlorogenic acid. The effect of chlorogenic acid on apoptotic and cell cycle were detected by flow cytometry. The animal model of A549 cell transplanted in nude was established, tumer size and weight were detected. The mRNA level of Notch1 signal pathway related facter were detected by RT-PCR; the expression of Notch1 signal pathway related facter in tumor tissue was detected by western blot. Chlorogenic acid inhibited the A549 cell proliferation. incresed cell apoptotic and cell percentagein G2/M (Pchlorogenic. The expression of Notch1 were decreaced, PTEN, p-PTEN, p-AKT were increced significantly in tumor tissue which treated with chlorogenic (PChlorogenic acid can regulate theapoptosis of non-small lung cancer through Notch pathway in animal level, which may be associated with the down-regulating the expression of VEGF and Delta4. Notch pathway may cross talk with PI3K/AKT pathway through PTEN in NSCLC.

  16. Ski prevents TGF-β-induced EMT and cell invasion by repressing SMAD-dependent signaling in non-small cell lung cancer.

    Science.gov (United States)

    Yang, Haiping; Zhan, Lei; Yang, Tianjie; Wang, Longqiang; Li, Chang; Zhao, Jun; Lei, Zhe; Li, Xiangdong; Zhang, Hong-Tao

    2015-07-01

    Epithelial-mesenchymal transition (EMT) is a key event in cancer metastasis, which confers cancer cells with increased motility and invasiveness, and EMT is characterized by loss of epithelial marker E-cadherin and gain of mesenchymal marker N-cadherin. Transforming growth factor-β (TGF-β) signaling is a crucial inducer of EMT in various types of cancer. Ski is an important negative regulator of TGF-β signaling, which interacts with SMADs to repress TGF-β signaling activity. Although there is accumulating evidence that Ski functions as a promoter or suppressor in human types of cancer, the molecular mechanisms by which Ski affects TGF-β-induced EMT and invasion in non-small cell lung cancer (NSCLC) are not largely elucidated. In the present study, we investigated the mechanistic role of Ski in NSCLC metastasis. Ski was significantly reduced in metastatic NSCLC cells or tissues when compared with non-metastatic NSCLC cells or tissues. Moreover, following TGF-β stimulation Ski-silenced A549 cells had more significant features of EMT and a higher invasive activity when compared with A549 cells overexpressing Ski. Mechanistically, Ski-silenced and overexpressed A549 cells showed an increase and a reduction in the SMAD3 phosphorylation level, respectively. This was supported by plasminogen activator inhibitor-1 (PAI-1) promoter activity obtained in Ski-silenced and overexpressed A549 cells. However, after treatment of SIS3 (inhibitor of SMAD3 phosphorylation) followed by TGF-β1 stimulation, we did not observe any effect of Ski on TGF-β-induced EMT, and invasion in Ski-silenced and overexpressed A549 cells. In conclusion, our findings suggest that Ski represses TGF-β-induced EMT and invasion by inhibiting SMAD-dependent signaling in NSCLC.

  17. miR-138 inhibits proliferation by targeting 3-phosphoinositide-dependent protein kinase-1 in non-small cell lung cancer cells.

    Science.gov (United States)

    Ye, Xian-wei; Yu, Hong; Jin, Yan-kun; Jing, Xiao-ting; Xu, Mei; Wan, Zi-fen; Zhang, Xiang-yan

    2015-01-01

    Underlying mechanisms of non-small cell lung cancer (NSCLC) development remain poorly understood. miR-138 and 3-phosphoinositide-dependent protein kinase-1 (PDK1) have been reported to be involved in the genesis of NSCLC. The aim of this study was to investigate the role and mechanisms of miR-138 and PDK1 in human NSCLC cells. The effect of miR-138 on proliferation of A549 lung cancer cells was first examined using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay. The expression of PDK1 in A549 lung cancer cells was assessed by real-time polymerase chain reaction further. A luciferase reporter activity assay was conducted to confirm target association between miR-138 and 3' untranslated region (3'-UTR) of PDK1. Finally, the role of PDK1 on proliferation of A549 cells was evaluated by transefection of PDK1 small interfering RNA (siRNA). Proliferation of A549 lung cancer cells was suppressed by miR-138 in a concentration-dependent manner. Furthermore, miR-138 can bind to the 3'-UTR of PDK1 and downregulate expression of PDK1 at both mRNA and protein levels. Knockdown of PDK1 by siRNA significantly inhibits the proliferation of A549 lung cancer cells. These findings suggest that miR-138 as a potential tumor suppressor could inhibit cell proliferation by targeting PDK1 in NSCLC cells, which could be employed as a potential therapeutic target for miRNA-based NSCLC therapy. © 2014 John Wiley & Sons Ltd.

  18. Enhanced Replication of Hepatitis E Virus Strain 47832c in an A549-Derived Subclonal Cell Line.

    Science.gov (United States)

    Schemmerer, Mathias; Apelt, Silke; Trojnar, Eva; Ulrich, Rainer G; Wenzel, Jürgen J; Johne, Reimar

    2016-09-29

    Hepatitis E virus (HEV) is a human pathogen with increasing importance. The lack of efficient cell culture systems hampers systematic studies on its replication cycle, virus neutralization and inactivation. Here, several cell lines were inoculated with the HEV genotype 3c strain 47832c, previously isolated from a chronically infected transplant patient. At 14 days after inoculation the highest HEV genome copy numbers were found in A549 cells, followed by PLC/PRF/5 cells, whereas HepG2/C3A, Huh-7 Lunet BLR and MRC-5 cells only weakly supported virus replication. Inoculation of A549-derived subclone cell lines resulted in most cases in reduced HEV replication. However, the subclone A549/D3 was susceptible to lower virus concentrations and resulted in higher virus yields as compared to parental A549 cells. Transcriptome analysis indicated a downregulation of genes for carcinoembryonic antigen-related cell adhesion molecules ( CEACAM ) 5 and 6 , and an upregulation of the syndecan 2 ( SDC2 ) gene in A549/D3 cells compared to A549 cells. However, treatment of A549/D3 cells or A549 cells with CEACAM- or syndecan 2-specific antisera did not influence HEV replication. The results show that cells supporting more efficient HEV replication can be selected from the A549 cell line. The specific mechanisms responsible for the enhanced replication remain unknown.

  19. Hesperidin suppresses the migration and invasion of non-small cell lung cancer cells by inhibiting the SDF-1/CXCR-4 pathway.

    Science.gov (United States)

    Xia, Rongmu; Xu, Gang; Huang, Yue; Sheng, Xin; Xu, Xianlin; Lu, Hongling

    2018-03-28

    of CXCR-4. Subsequent RT-qPCR and western blot analyses also confirmed that hesperidin had a significant effect on the expression of EMT-related proteins, including MMP-9, CK-19 and Vimentin, in A549 cells. In summary, we demonstrated that hesperidin inhibited the migratory and invasive capabilities of A549 human non-small cell lung cancer cells by the mediation of the SDF-1/CXCR-4 signaling cascade, thus providing the foundation for the development of hesperidin as a safer and more effective anticancer drug for non-small cell lung cancer. Copyright © 2017. Published by Elsevier Inc.

  20. Acrylamide-derived cytotoxic, anti-proliferative, and apoptotic effects on A549 cells.

    Science.gov (United States)

    Kacar, S; Vejselova, D; Kutlu, H M; Sahinturk, V

    2017-01-01

    Acrylamide is a very common compound even reaching up to our daily foods. It has been studied in a wealth of cell lines on which it proved to have various toxic effects. Among these cell lines, human lung adenocarcinoma cell line (A549) is one of that on which acrylamide's toxicity has not been studied well yet. We intended to determine the half maximal inhibitory concentration (IC 50 ) dose of acrylamide and to investigate its cytotoxic, anti-proliferative and apoptotic effects on A549 cells. We determined the IC 50 dose by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Then, the mode of cell death was evaluated by flow cytometry using Annexin-V fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining. Next, we performed transmission electron microscopy (TEM) and confocal microscopy analyses for morphological alterations and apoptotic indices. According to the MTT assay results, A549 cell viability decreases proportionally with increasing acrylamide concentrations and IC 50 for A549 was 4.6 mM for 24 h. Annexin-V FITC/PI assay results indicated that acrylamide induces apoptosis in 64% of the A549 cells. TEM and confocal microscopy analyses showed nuclear condensations, fragmentations, cytoskeleton laceration, and membrane blebbing, which are morphological characteristics of apoptosis. Our research suggests that acrylamide causes cytotoxic, anti-proliferative, and apoptotic effects on A549 cells at 4.6 mM IC 50 dose in 24 h.

  1. [Impact of Cystic Fibrosis Transmembrane Conductance Regulator on Malignant
 Properties of KRAS Mutant Lung Adenocarcinoma A549 Cells].

    Science.gov (United States)

    Li, Hui; Wang, Ying; Yang, Jiali; Liu, Xiaoming; Shi, Juan

    2018-02-20

    The incidence of lung cancer is gradually increased, and the cystic fibrosis transmembrane conductance regulator (CFTR) has recently demonstrated to have an implication in the deoncogenesis and malignant transformation of many types of cancers. The aim of this study is to investigate impacts of CFTR on the malignant features of lung adenocarcinoma A549 cells. The capacity of cell proliferation, migration, invasion and clonogenicity of non-small cell lung cancer A549 cells were detected by CCK8 cell proliferation assay, cell scratch assay, Transwell cell invasion assay and clone formation assay, respectively. Meanwhile, the effect of CFTR gene on the expression of cancer stem cell related transcriptional factors was also detected by immunoblotting (Western blot) assay. An overexpression of CFTR gene in A549 cells significantly inhibited the malignant capacity of A549 cells, including potencies of cell proliferation, migration, invasion and colony formation; while knockdown of CFTR gene expression by RNA interference in A549 cells resulted in an opposite effect seen in above cells overexpressing CFTR gene. Mechanistically, immunoblotting assay further revealed that the ectopic expression of CFTR gene led an inhibitory expression of stem cell-related transcriptional factors SOX2 and OCT3/4, and cancer stem cell surface marker CD133 in A549 cells, while a knockdown of CFTR expression yielded a moderately increased expression of these gene. However, an alteration of CFTR gene expression had neither effect on the expression of putative lung cancer stem cell marker aldehyde dehydrogenase1 (ALDH1), nor the frequency of ALDH1A-positive cells in A549 cells, as ascertained by the immunoblotting assay and cytometry analysis, respectively. The CFTR exhibited an inhibitory role in the malignancy of lung adenocarcinoma A549 cells, suggesting that it may be a novel potential target for lung cancer treatment. However, its functions in other lung adenocarcinoma cell lines and its

  2. Role of gambogic acid and NaI131in A549/DDP cells.

    Science.gov (United States)

    Huang, Jing; Zhu, Xiaoli; Wang, Huan; Han, Shuhua; Liu, Lu; Xie, Yan; Chen, Daozhen; Zhang, Qiang; Zhang, Li; Hu, Yue

    2017-01-01

    Resistance to platinum in tumor tissue is a considerable barrier against effective lung cancer treatment. Radionuclide therapy is the primary adjuvant treatment, however, the toxic side effects limit its dosage in the clinical setting. Therefore, the present study aimed to determine whether an NaI 131 radiosensitizer could help reduce the toxic side effects of radionuclide therapy. In vitro experiments were conducted to determine whether NaI 131 can inhibit platinum resistance in A549/DDP cells, which are cisplatin-resistant non-small cell lung cancer cells, and whether gambogic acid (GA) is an effective NaI 131 radiosensitizer. Cell proliferation following drug intervention was analyzed using MTT and isobolographic analysis. Apoptosis was assessed by flow cytometry. In addition, the mechanisms of drug intervention were analyzed by measuring the expression of P-glycoprotein (P-gP), B cell lymphoma 2 (Bcl-2), Bcl2-associated X protein (Bax) and P53 using western blot analysis and immunocytochemistry. According to isobolographic analysis, a low concentration of NaI 131 combined with GA had a synergistic effect on the inhibition of A549/DDP cell proliferation, which was consistent with an increased rate of apoptosis. Furthermore, the overexpression of Bax, and the downregulation of P-gP, P53 and Bcl-2 observed demonstrated the potential mechanism(s) of NaI 131 and GA intervention. NaI 131 may induce apoptosis in A549/DDP cells by regulating apoptosis-related proteins. A low concentration combination of NaI 131 and GA was able to significantly inhibit A549/DDP cell proliferation and induce cell apoptosis. Thus, the two drugs appear to have a synergistic effect on apoptosis of A549/DDP cells.

  3. Long noncoding nature brain-derived neurotrophic factor antisense is associated with poor prognosis and functional regulation in non-small cell lung caner.

    Science.gov (United States)

    Shen, MingJing; Xu, Zhonghua; Jiang, Kanqiu; Xu, Weihua; Chen, Yongbin; Xu, ZhongHeng

    2017-05-01

    In this study, we evaluated the prognostic potential and functional regulation of human nature antisense, brain-derived neurotrophic factor antisense, in non-small cell lung cancer. Non-small cell lung cancer carcinoma and adjacent non-carcinoma lung tissues were extracted from 151 patients. Their endogenous brain-derived neurotrophic factor antisense expression levels were compared by quantitative reverse transcription polymerase chain reaction. Clinical relevance between endogenous brain-derived neurotrophic factor antisense expression level and patients' clinicopathological variances or overall survival was analyzed. The potential of brain-derived neurotrophic factor antisense being an independent prognostic factor in non-small cell lung cancer was also evaluated. In in vitro non-small cell lung cancer cell lines, brain-derived neurotrophic factor antisense was upregulated through forced overexpression. The effects of brain-derived neurotrophic factor antisense upregulation on non-small cell lung cancer in vitro survival, proliferation, and migration were evaluated by viability, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, and transwell assays. Brain-derived neurotrophic factor antisense is lowly expressed in non-small cell lung cancer carcinoma tissues and further downregulated in late-stage carcinomas. Brain-derived neurotrophic factor antisense downregulation was closely associated with non-small cell lung cancer patients' advanced tumor, lymph node, metastasis stage, and positive status of lymph node metastasis, and confirmed to be an independent prognostic factor for patients' poor overall survival. In non-small cell lung cancer A549 and H226 cell lines, forced overexpression of brain-derived neurotrophic factor antisense did not alter cancer cell viability but had significantly tumor suppressive effect in inhibiting in vitro non-small cell lung cancer proliferation and migration. Endogenous brain-derived neurotrophic factor antisense in

  4. Downregulated TIPE2 is associated with poor prognosis and promotes cell proliferation in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuexia [Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China); Li, Xiaohui [Department of Cardiovascular Surgery, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003 (China); Liu, Gang; Sun, Rongqing; Wang, Lirui [Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China); Wang, Jing, E-mail: jing_wang1980@163.com [Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China); Wang, Hongmin, E-mail: hmwangzz@126.com [Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China)

    2015-01-30

    Highlights: • TIPE2 is down-regulated in NSCLC tissues. • TIPE2 inhibits NSCLC cell proliferation, colony formation and invasion. • TIPE2 reduces the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. - Abstract: The present study aims to investigate the expression pattern of TIPE2 protein and its clinical significance in human non-small cell lung cancer (NSCLC). We investigated the expression levels of TIPE2 in 96 NSCLC tumor samples by immunohistochemistry and then analyzed its clinical significance. Furthermore, the role of TIPE2 on the biological properties of the NSCLC cell line H1299 and A549 was experimentally tested in vitro and in vivo. We found that the expression level of TIPE2 was significantly higher in normal lung tissues compared with NSCLC tissues (P < 0.001), and TIPE2 downregulation was significantly correlated with advanced TNM stage (P = 0.006). TIPE2 expression was lower in lung cancer cell lines than normal bronchial cell line HBE. Transfection of TIPE2 plasmid was performed in H1299 and A549 cells. TIPE2 overexpression inhibited lung cancer cell proliferation, colony formation and cell invasive in vitro, and prevented lung tumor growth in vivo. In addition, TIPE2 transfection reduced the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. Taken together, our results demonstrate that TIPE2 might serve as a tumor suppressor in NSCLC progression.

  5. Downregulated TIPE2 is associated with poor prognosis and promotes cell proliferation in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Li, Yuexia; Li, Xiaohui; Liu, Gang; Sun, Rongqing; Wang, Lirui; Wang, Jing; Wang, Hongmin

    2015-01-01

    Highlights: • TIPE2 is down-regulated in NSCLC tissues. • TIPE2 inhibits NSCLC cell proliferation, colony formation and invasion. • TIPE2 reduces the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. - Abstract: The present study aims to investigate the expression pattern of TIPE2 protein and its clinical significance in human non-small cell lung cancer (NSCLC). We investigated the expression levels of TIPE2 in 96 NSCLC tumor samples by immunohistochemistry and then analyzed its clinical significance. Furthermore, the role of TIPE2 on the biological properties of the NSCLC cell line H1299 and A549 was experimentally tested in vitro and in vivo. We found that the expression level of TIPE2 was significantly higher in normal lung tissues compared with NSCLC tissues (P < 0.001), and TIPE2 downregulation was significantly correlated with advanced TNM stage (P = 0.006). TIPE2 expression was lower in lung cancer cell lines than normal bronchial cell line HBE. Transfection of TIPE2 plasmid was performed in H1299 and A549 cells. TIPE2 overexpression inhibited lung cancer cell proliferation, colony formation and cell invasive in vitro, and prevented lung tumor growth in vivo. In addition, TIPE2 transfection reduced the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. Taken together, our results demonstrate that TIPE2 might serve as a tumor suppressor in NSCLC progression

  6. Mast cells and histamine enhance the proliferation of non-small cell lung cancer cells.

    Science.gov (United States)

    Stoyanov, Evgeniy; Uddin, Mohib; Mankuta, David; Dubinett, Steven M; Levi-Schaffer, Francesca

    2012-01-01

    Non-small cell lung cancer (NSCLC) is the most common form of lung cancer with an extremely low survival rate. It is characterized by a chronic inflammatory process with intense mast cell infiltrate that is associated with reduced survival. The aim of this study was to test the hypothesis that mast cells have an enhancing effect on NSCLC proliferation. To assess the tumor-promoting potential of mast cells, we used the human alveolar basal adenocarcinoma (A549) and the mouse Lewis lung carcinoma (LLC) cell lines, umbilical cord blood-derived mast cells (CBMC) and the mast cell-deficient mouse Sash model. The proliferation rate of A549/LLC cells was markedly increased by mast cells and histamine. Histamine proliferating activity was mediated via H(1), H(2) and H(4) receptors and caused ERK phosphorylation. LLC induced in Sash mice or in wild-type mice treated with the mast cell stabilizer nedocromil sodium displayed an accelerated growth (number of metastic colonies in the lungs, total lung area and lung/total mice weight ratio). In summary, we have shown a significant effect of mast cells and histamine in enhancing NSCLC/LLCX growth in vitro, while in a mouse LLC model in vivo we have found that mast cells are important negative regulators of cancer development. Therefore our results would indicate a pro-tumorogenic effect of the mast cells in vitro on established lung tumor cell lines, and anti-tumorogenic effect in mice at lung cancer induction. In conclusion, mast cell/anti-histamine targeted therapies should carefully consider this dual effect. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Enhanced DNA double-strand break repair of microbeam targeted A549 lung carcinoma cells by adjacent WI38 normal lung fibroblast cells via bi-directional signaling.

    Science.gov (United States)

    Kobayashi, Alisa; Tengku Ahmad, Tengku Ahbrizal Farizal; Autsavapromporn, Narongchai; Oikawa, Masakazu; Homma-Takeda, Shino; Furusawa, Yoshiya; Wang, Jun; Konishi, Teruaki

    2017-10-01

    Understanding the mechanisms underlying the radiation-induced bystander effect (RIBE) and bi-directional signaling between irradiated carcinoma cells and their surrounding non-irradiated normal cells is relevant to cancer radiotherapy. The present study investigated propagation of RIBE signals between human lung carcinoma A549 cells and normal lung fibroblast WI38 cells in bystander cells, either directly or indirectly contacting irradiated A549 cells. We prepared A549-GFP/WI38 co-cultures and A549-GFP/A549 co-cultures, in which A549-GFP cells stably expressing H2BGFP were co-cultured with either A549 cells or WI38 cells, respectively. Using the SPICE-NIRS microbeam, only the A549-GFP cells were irradiated with 500 protons per cell. The level of γ-H2AX, a marker for DNA double-strand breaks (DSB), was subsequently measured for up to 24h post-irradiation in three categories of cells: (1) "targeted"/irradiated A549-GFP cells; (2) "neighboring"/non-irradiated cells directly contacting the "targeted" cells; and (3) "distant"/non-irradiated cells, which were not in direct contact with the "targeted" cells. We found that DSB repair in targeted A549-GFP cells was enhanced by co-cultured WI38 cells. The bystander response in A549-GFP/A549 cell co-cultures, as marked by γ-H2AX levels at 8h post-irradiation, showed a decrease to non-irradiated control level when approaching 24h, while the neighboring/distant bystander WI38 cells in A549-GFP/WI38 co-cultures was maintained at a similar level until 24h post-irradiation. Surprisingly, distant A549-GFP cells in A549-GFP/WI38 co-cultures showed time dependency similar to bystander WI38 cells, but not to distant cells in A549-GFP/A549 co-cultures. These observations indicate that γ-H2AX was induced in WI38 cells as a result of RIBE. WI38 cells were not only involved in rescue of targeted A549, but also in the modification of RIBE against distant A549-GFP cells. The present results demonstrate that radiation-induced bi

  8. Elevated pressure, a novel cancer therapeutic tool for sensitizing cisplatin-mediated apoptosis in A549

    International Nuclear Information System (INIS)

    Oh, Sangnam; Kim, Yanghee; Kim, Joonhee; Kwon, Daeho; Lee, Eunil

    2010-01-01

    Research highlights: → Sensitized apoptosis in cancer cells stimulated by EP precondition with p53 dependence. → EP attenuates several CDDP-resistance mechanisms. → No harmful effect of EP on normal fibroblasts. -- Abstract: Intensive cancer therapy strategies have thus far focused on sensitizing cancer cells to anticancer drug-mediated apoptosis to overcome drug resistance, and this strategy has led to more effective cancer therapeutics. Cisplatin (cis-diamminedichloroplatinum(II), CDDP) is an effective anticancer drug used to treat many types of cancer, including non-small cell lung carcinoma (NSCLC), and can be used in combination with various chemicals to enhance cancer cell apoptosis. Here, we introduce the use of elevated pressure (EP) in combination with CDDP for cancer treatment and explore the effects of EP on CDDP-mediated apoptosis in NSCLC cells. Our findings demonstrate that preconditioning NSCLC cells with EP sensitizes cells for CDDP-induced apoptosis. Enhanced apoptosis was dependent on p53 and HO-1 expression, and was associated with increased DNA damage and down-regulation of genes involved in nucleotide excision repair. The transcriptional levels of transporter proteins indicated that the mechanism by which EP-induced CDDP sensitization was intracellular drug accumulation. The protein levels of some antioxidants, such as hemeoxygenase-1 (HO-1), glutathione (GSH) and glutathione peroxidase (Gpx), were decreased in A549 cells exposed to EP via the down-regulation of the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf-2). Furthermore, normal human fibroblasts were resistant to EP treatment, with no elevated DNA damage or apoptosis. Collectively, these data show that administration of EP is a potential adjuvant tool for CDDP-based chemosensitivity of lung cancer cells that may reduce drug resistance.

  9. MicroRNA-126 Targeting PIK3R2 Inhibits NSCLC A549 Cell Proliferation, Migration, and Invasion by Regulation of PTEN/PI3K/AKT Pathway.

    Science.gov (United States)

    Song, Lei; Li, Dan; Gu, Yue; Wen, Zhong-Mei; Jie, Jing; Zhao, Dan; Peng, Li-Ping

    2016-09-01

    Our study explored whether the microRNA-126 (miR-126)-mediated PTEN/PI3K/AKT (phosphatase and tensin homology deleted on chromosome 10/phosphatidylinositol 3-kinase regulatory subunit-β/AKT) signaling pathway by targeting PIK3R2 affects the proliferation, migration, and invasion of non-small-cell lung cancer (NSCLC) A549 cells. Quantitative real-time polymerase chain reaction was used to measure the expression of miR-126 in A549 cells. The MTT (methyl thiazolyl tetrazolium) assay, cell scratch test, Transwell assay, and Western blot were used to detect the proliferation, migration, and invasion of A549 cells and protein expression in A549 cells, respectively. The expression of miR-126 decreased and the expression of PIK3R2 increased in A549 cells (P A549 cells, the downregulation of the expression of PIK3R2, PI3K, and phosphorylated Akt (p-Akt) protein, and the upregulation of PTEN expression (P A549 cells increased, and the expression of these 3 proteins was upregulated with downregulation of miR-126 (P A549 cells (P A549 cells can reduce the expression of the target gene PIK3R2 and influence the PTEN/PI3K/AKT signaling pathway, suppressing the proliferation, migration, and invasive abilities of A549 cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Role of Smac in apoptosis of lung cancer cells A549 induced by Taxol.

    Science.gov (United States)

    Zhang, Ying; Hao, Yingtao; Sun, Qifeng; Peng, Chuanliang

    2015-01-01

    A series of structurally unique second mitochondria-derived activators of caspase (Smac) that act as antagonists of inhibitor of apoptosis proteins (IAPs) directly have been discovered and have been shown to promote chemotherapy-induced apoptosis. In this study, we investigate the role of Smac in Taxol-induced apoptosis of lung cancer cell in vitro. PcDNA3.1/Smac recombinants were transfected into the non-small cell lung cancer cell line A549. Smac expression was detected by RT-PCR and Western blot. The invasive ability of cells was examined. Flow cytometry was used to analyze apoptosis of cells induced by Taxol with Annexin V/PI double staining technique. Smac expression was significantly higher in the PcDNA3.1/Smac recombinant group than in the untransfected group at mRNA and protein level (p Smac group. There were significant differences compared to the empty vector group and control group. The apoptosis rate was significantly higher in PcDNA3.1/Smac + Taxol group than in other groups (p Smac can enhance the chemosensitivity of the non-small cell lung cancer cell line A549 to Taxol.

  11. Cathepsin L upregulation-induced EMT phenotype is associated with the acquisition of cisplatin or paclitaxel resistance in A549 cells.

    Science.gov (United States)

    Han, Mei-Ling; Zhao, Yi-Fan; Tan, Cai-Hong; Xiong, Ya-Jie; Wang, Wen-Juan; Wu, Feng; Fei, Yao; Wang, Long; Liang, Zhong-Qin

    2016-12-01

    Cathepsin L (CTSL), a lysosomal acid cysteine protease, is known to play important roles in tumor metastasis and chemotherapy resistance. In this study we investigated the molecular mechanisms underlying the regulation of chemoresistance by CTSL in human lung cancer cells. Human lung cancer A549 cells, A549/PTX (paclitaxel-resistant) cells and A549/DDP (cisplatin-resistant) cells were tested. The resistance to cisplatin or paclitaxel was detected using MTT and the colony-formation assays. Actin remodeling was observed with FITC-Phalloidin fluorescent staining or immunofluorescence. A wound-healing assay or Transwell assay was used to assess the migration or invasion ability. The expression of CTSL and epithelial and mesenchymal markers was analyzed with Western blotting and immunofluorescence. The expression of EMT-associated transcription factors was measured with Western blotting or q-PCR. BALB/c nude mice were implanted subcutaneously with A549 cells overexpressing CTSL, and the mice were administered paclitaxel (10, 15 mg/kg, ip) every 3 d for 5 times. Cisplatin or paclitaxel treatment (10-80 ng/mL) induced CTSL expression in A549 cells. CTSL levels were much higher in A549/PTX and A549/DDP cells than in A549 cells. Silencing of CTSL reversed the chemoresistance in A549/DDP and A549/TAX cells, whereas overexpression of CTSL attenuated the sensitivity of A549 cells to cisplatin or paclitaxel. Furthermore, A549/DDP and A549/TAX cells underwent morphological and cytoskeletal changes with increased cell invasion and migration abilities, accompanied by decreased expression of epithelial markers (E-cadherin and cytokeratin-18) and increased expression of mesenchymal markers (N-cadherin and vimentin), as well as upregulation of EMT-associated transcription factors Snail, Slug, ZEB1 and ZEB2. Silencing of CTSL reversed EMT in A549/DDP and A549/TAX cells; In contrast, overexpression of CTSL induced EMT in A549 cells. In xenograft nude mouse model, the mice implanted

  12. Src Promotes Metastasis of Human Non-Small Cell Lung Cancer Cells through Fn14-Mediated NF-κB Signaling.

    Science.gov (United States)

    Wang, Wei; Liu, Feiyu; Wang, Chaoyang; Wang, Chengde; Tang, Yijun; Jiang, Zhongmin

    2018-03-03

    BACKGROUND Src and Fn14 are implicated in the aggressiveness of non-small cell lung cancer (NSCLC) cells, yet the molecular mechanism is not fully understood. MATERIAL AND METHODS The proliferation, migration, and invasion of HCC827 cells with Src knockdown were examined in vitro. The expression of Fn14 and the activation of NF-κB signaling pathway in Src-silenced HCC827 cells were detected by western blot. The role of Fn14 in Src-regulated cell migration/invasion and activation of NF-κB signaling was investigated by overexpressing Fn14 in Src knockdown NSCLC cells. Furthermore, the pro-metastatic role of Src was validated in a NSCLC metastasis mouse model. RESULTS Knockdown of Src inhibited the proliferation, migration, and invasion of HCC827 cells, which was associated with reduced levels of Fn14, p-IκBα, p-IKKβ, and nuclear NF-κB p65. Overexpression of Fn14 restored the potential of migration and invasion as well as the activation of NF-κB signaling in Src-silenced NSCLC cells. In addition, silencing of Src suppressed lung metastasis of HCC827 cells in mice, and inhibited the expression of Fn14 and nuclear translocation of NF-κB p65 in vivo. CONCLUSIONS The data demonstrated that the Src/Fn14/NF-κB axis plays a critical role in NSCLC metastasis.

  13. Chaetocin induces endoplasmic reticulum stress response and leads to death receptor 5-dependent apoptosis in human non-small cell lung cancer cells.

    Science.gov (United States)

    Liu, Xianfang; Guo, Sen; Liu, Xiangguo; Su, Ling

    2015-11-01

    Epigenetic abnormalities are associated with non-small cell lung cancer (NSCLC) initiation and progression. Epigenetic drugs are being studied and in clinical trials. However, the molecular mechanism underlying the apoptosis by the epigenetic agents remains unclear. SUV39H1 is an important methyl-transferase for lysine 9 on histone H3 and usually related to gene transcriptional suppression, and chaetocin acts as the inhibitor of SUV39H1. We demonstrated here that chaetocin effectively suppressed the growth of multiple lung cancer cells through inducing apoptosis in a death receptor 5 (DR5)-dependent manner. Chaetocin treatment activated endoplasmic reticulum (ER) stress which gave rise to the up-regulation of ATF3 and CHOP. Furthermore, ATF3 and CHOP contributed to the induction of DR5 and subsequent apoptosis. When SUV39H1 was silenced with siRNA, the expression of ATF3, CHOP and DR5 was elevated. Thereafter, knockdown of SUV39H1 induced apoptosis in NSCLC cells. In summary, chaetocin pharmacologically inhibits the activity of SUV39H1 which provokes ER stress and results in up-regulation of ATF3 and CHOP, leading to DR5-dependent apoptosis eventually. These findings provide a novel interpretation on the anti-neoplastic activity of epigenetic drugs as a new therapeutic approach in NSCLC.

  14. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    Science.gov (United States)

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells.

  15. Lung cancer - non-small cell

    Science.gov (United States)

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk depends on the number of cigarettes ...

  16. Re-188 Enhances the Inhibitory Effect of Bevacizumab in Non-Small-Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jie Xiao

    2016-09-01

    Full Text Available The malignant behaviors of solid tumors such as growth, infiltration and metastasis are mainly nourished by tumor neovascularization. Thus, anti-angiogenic therapy is key to controlling tumor progression. Bevacizumab, a humanized anti-vascular endothelial growth factor (VEGF antibody, plus chemotherapy or biological therapy can prolong survival for cancer patients, but treatment-related mortality is a concern. To improve inhibitory effect and decrease side-effects on non-small-cell lung cancer (NSCLC, we used Re-188, which is a β emitting radionuclide, directly labeled with bevacizumab for radioimmunotherapy in a human A549 tumor model. Cytotoxic assay data showed that, after 188ReO4− or 188Re-bevacizumab at different concentration for 4 and 24 h, a time- and radioactivity does-dependent reduction in cell viability occurred. Also, an apoptosis assay conformed great apoptosis in the 188Re-bevacizumab group compared with controls and other treatment groups. In vivo, tumor volumes in the 188Re-bevacizumab (11.1 MBq/mice group were not reduced but growth was delayed compared with other groups. Thus, 188Re-bevacizumab enhanced the therapeutic effect of bevacizumab, suggesting a potential therapeutic strategy for NSCLC treatment.

  17. Tamoxifen enhances erlotinib-induced cytotoxicity through down-regulating AKT-mediated thymidine phosphorylase expression in human non-small-cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Chiu, Hsien-Chun; Syu, Jhan-Jhang; Jian, Yi-Jun; Chen, Chien-Yu; Jian, Yun-Ting; Huang, Yi-Jhen; Wo, Ting-Yu; Lin, Yun-Wei

    2014-03-01

    Tamoxifen is a triphenylethylene nonsteroidal estrogen receptor (ER) antagonist used worldwide as an adjuvant hormone therapeutic agent in the treatment of breast cancer. However, the molecular mechanism of tamoxifen-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Thymidine phosphorylase (TP) is an enzyme of the pyrimidine salvage pathway which is upregulated in cancers. In this study, tamoxifen treatment inhibited cell survival in two NSCLC cells, H520 and H1975. Treatment with tamoxifen decreased TP mRNA and protein levels through AKT inactivation. Furthermore, expression of constitutively active AKT (AKT-CA) vectors significantly rescued the decreased TP protein and mRNA levels in tamoxifen-treated NSCLC cells. In contrast, combination treatment with PI3K inhibitors (LY294002 or wortmannin) and tamoxifen further decreased the TP expression and cell viability of NSCLC cells. Knocking down TP expression by transfection with small interfering RNA of TP enhanced the cytotoxicity and cell growth inhibition of tamoxifen. Erlotinib (Tarceva, OSI-774), an orally available small molecular inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, is approved for clinical treatment of NSCLC. Compared to a single agent alone, tamoxifen combined with erlotinib resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells, accompanied with reduced activation of phospho-AKT and phospho-ERK1/2, and reduced TP protein levels. These findings may have implications for the rational design of future drug regimens incorporating tamoxifen and erlotinib for the treatment of NSCLC. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression.

    Science.gov (United States)

    Zhang, E-b; Yin, D-d; Sun, M; Kong, R; Liu, X-h; You, L-h; Han, L; Xia, R; Wang, K-m; Yang, J-s; De, W; Shu, Y-q; Wang, Z-x

    2014-05-22

    Recently, a novel class of transcripts, long non-coding RNAs (lncRNAs), is being identified at a rapid pace. These RNAs have critical roles in diverse biological processes, including tumorigenesis. Here we report that taurine-upregulated gene 1 (TUG1), a 7.1-kb lncRNA, recruiting and binding to polycomb repressive complex 2 (PRC2), is generally downregulated in non-small cell lung carcinoma (NSCLC) tissues. In a cohort of 192 NSCLC patients, the lower expression of TUG1 was associated with a higher TNM stage and tumor size, as well as poorer overall survival (PTUG1 expression serves as an independent predictor for overall survival (PTUG1 expression was induced by p53, and luciferase and chromatin immunoprecipitation (ChIP) assays confirmed that TUG1 was a direct transcriptional target of p53. TUG1 knockdown significantly promoted the proliferation in vitro and in vivo. Moreover, the lncRNA-mediated regulation of the expression of HOX genes in tumorigenesis and development has been recently receiving increased attention. Interestingly, inhibition of TUG1 could upregulate homeobox B7 (HOXB7) expression; ChIP assays demonstrated that the promoter of HOXB7 locus was bound by EZH2 (enhancer of zeste homolog 2), a key component of PRC2, and was H3K27 trimethylated. This TUG1-mediated growth regulation is in part due to specific modulation of HOXB7, thus participating in AKT and MAPK pathways. Together, these results suggest that p53-regulated TUG1 is a growth regulator, which acts in part through control of HOXB7. The p53/TUG1/PRC2/HOXB7 interaction might serve as targets for NSCLC diagnosis and therapy.

  19. Roles of PI3K/Akt and c-Jun signaling pathways in human papillomavirus type 16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis in non-small cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Erying Zhang

    Full Text Available Human papillomavirus (HPV-16 infection may be related to non-smoking associated lung cancer. Our previous studies have found that HPV-16 oncoproteins promoted angiogenesis via enhancing hypoxia-inducible factor-1α (HIF-1α, vascular endothelial growth factor (VEGF, and interleukin-8 (IL-8 expression in non-small cell lung cancer (NSCLC cells. In this study, we further investigated the roles of PI3K/Akt and c-Jun signaling pathways in it.Human NSCLC cell lines, A549 and NCI-H460, were stably transfected with pEGFP-16 E6 or E7 plasmids. Western blotting was performed to analyze the expression of HIF-1α, p-Akt, p-P70S6K, p-P85S6K, p-mTOR, p-JNK, and p-c-Jun proteins. VEGF and IL-8 protein secretion and mRNA levels were determined by ELISA and Real-time PCR, respectively. The in vitro angiogenesis was observed by human umbilical vein endothelial cells (HUVECs tube formation assay. Co-immunoprecipitation was performed to analyze the interaction between c-Jun and HIF-1α.HPV-16 E6 and E7 oncoproteins promoted the activation of Akt, P70S6K, P85S6K, mTOR, JNK, and c-Jun. LY294002, a PI3K inhibitor, inhibited HPV-16 oncoprotein-induced activation of Akt, P70S6K, and P85S6K, expression of HIF-1α, VEGF, and IL-8, and in vitro angiogenesis. c-Jun knockdown by specific siRNA abolished HPV-16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis. Additionally, HPV-16 oncoproteins promoted HIF-1α protein stability via blocking proteasome degradation pathway, but c-Jun knockdown abrogated this effect. Furthermore, HPV-16 oncoproteins increased the quantity of c-Jun binding to HIF-1α.PI3K/Akt signaling pathway and c-Jun are involved in HPV-16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis. Moreover, HPV-16 oncoproteins promoted HIF-1α protein stability possibly through enhancing the interaction between c-Jun and HIF-1α, thus making a contribution to angiogenesis in NSCLC cells.

  20. Sulforaphane epigenetically demethylates the CpG sites of the miR-9-3 promoter and reactivates miR-9-3 expression in human lung cancer A549 cells.

    Science.gov (United States)

    Gao, Linbo; Cheng, David; Yang, Jie; Wu, Renyi; Li, Wenji; Kong, Ah-Ng

    2018-02-09

    Increasing evidence suggests that epigenetic aberrations contribute to the development and progression of cancers such as lung cancer. The promoter region of miR-9-3 was recently found to be hypermethylated in lung cancer, resulting in down-regulation of miR-9-3 and poor patient prognosis. Sulforaphane (SFN), a natural compound that is obtained from cruciferous vegetables, has potent anticancer activities. In this study, we aimed to investigate the effect of SFN on restoring the miR-9-3 level in lung cancer A549 cells through epigenetic regulation. DNA methylation of the miR-9-3 promoter was examined using bisulfite genomic sequencing and methylated DNA immunoprecipitation analysis. The expression levels of miR-9-3 and several epigenetic modifying enzymes were measured using quantitative real-time polymerase chain reaction and Western blotting, respectively. The transcriptional activity of the miR-9-3 promoter was evaluated by patch methylation, and histone modifications were analyzed using chromatin immunoprecipitation (ChIP) assays. We found that CpG methylation was reduced in the miR-9-3 promoter and that miR-9-3 expression was increased after 5 days of treatment with SFN. In vitro methylation analysis showed that the methylated recombinant construct exhibited lower luciferase reporter activity than the unmethylated counterpart. ChIP assays revealed that SFN treatment increased H3K4me1 enrichment at the miR-9-3 promoter. Furthermore, SFN treatment attenuated enzymatic DNMT activity and DNMT3a, HDAC1, HDAC3, HDAC6 and CDH1 protein expression. Taken together, these findings indicate that SFN may exert its chemopreventive effects partly through epigenetic demethylation and restoration of miR-9-3. Copyright © 2017. Published by Elsevier Inc.

  1. Synergistic activity of vorinostat combined with gefitinib but not with sorafenib in mutant KRAS human non-small cell lung cancers and hepatocarcinoma.

    Science.gov (United States)

    Jeannot, Victor; Busser, Benoit; Vanwonterghem, Laetitia; Michallet, Sophie; Ferroudj, Sana; Cokol, Murat; Coll, Jean-Luc; Ozturk, Mehmet; Hurbin, Amandine

    2016-01-01

    Development of drug resistance limits the efficacy of targeted therapies. Alternative approaches using different combinations of therapeutic agents to inhibit several pathways could be a more effective strategy for treating cancer. The effects of the approved epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (gefitinib) or a multi-targeted kinase inhibitor (sorafenib) in combination with a histone deacetylase inhibitor (vorinostat) on cell proliferation, cell cycle distribution, apoptosis, and signaling pathway activation in human lung adenocarcinoma and hepatocarcinoma cells with wild-type EGFR and mutant KRAS were investigated. The effects of the synergistic drug combinations were also studied in human lung adenocarcinoma and hepatocarcinoma cells in vivo. The combination of gefitinib and vorinostat synergistically reduced cell growth and strongly induced apoptosis through inhibition of the insulin-like growth factor-1 receptor/protein kinase B (IGF-1R/AKT)-dependent signaling pathway. Moreover, the gefitinib and vorinostat combination strongly inhibited tumor growth in mice with lung adenocarcinoma or hepatocarcinoma tumor xenografts. In contrast, the combination of sorafenib and vorinostat did not inhibit cell proliferation compared to a single treatment and induced G 2 /M cell cycle arrest without apoptosis. The sorafenib and vorinostat combination sustained the IGF-1R-, AKT-, and mitogen-activated protein kinase-dependent signaling pathways. These results showed that there was synergistic cytotoxicity when vorinostat was combined with gefitinib for both lung adenocarcinoma and hepatocarcinoma with mutant KRAS in vitro and in vivo but that the combination of vorinostat with sorafenib did not show any benefit. These findings highlight the important role of the IGF-1R/AKT pathway in the resistance to targeted therapies and support the use of histone deacetylase inhibitors in combination with EGFR-tyrosine kinase inhibitors, especially for

  2. Genistein mediates the selective radiosensitizing effect in NSCLC A549 cells via inhibiting methylation of the keap1 gene promoter region.

    Science.gov (United States)

    Liu, Xiongxiong; Sun, Chao; Liu, Bingtao; Jin, Xiaodong; Li, Ping; Zheng, Xiaogang; Zhao, Ting; Li, Feifei; Li, Qiang

    2016-05-10

    Non-small cell lung cancer (NSCLC) cells often possess a hypermethylated Keap1 promoter, which decreases Keap1 mRNA and protein expression levels, thus impairing the Nrf2-Keap1 pathway and thereby leading to chemo- or radio-resistance. In this study, we showed that genistein selectively exhibited a radiosensitizing effect on NSCLC A549 cells but not on normal lung fibroblast MRC-5 cells. Genistein caused oxidative stress in A549 cells rather than MRC-5 cells, as determined by the oxidation of the ROS-sensitive probe DCFH-DA and oxidative damage marked by MDA, PCO or 8-OHdG content. In A549 instead of MRC-5 cells, genistein reduced the level of methylation in the Keap1 promoter region, leading to an increased mRNA expression, thus effectively inhibited the transcription of Nrf2 to the nucleus, which suppressed the Nrf2-dependent antioxidant and resulted in the upregulation of ROS. Importantly, when combined with radiation, genistein further increased the ROS levels in A549 cells whereas decreasing the radiation-induced oxidative stress in MRC-5 cells, possibly via increasing the expression levels of Nrf2, GSH and HO-1. Moreover, radiation combined with genistein significantly increased cell apoptosis in A549 but not MRC-5 cells. Together, the results herein show that the intrinsic difference in the redox status of A549 and MRC-5 cells could be the target for genistein to selectively sensitize A549 cells to radiation, thereby leading to an increase in radiosensitivity for A549 cells.

  3. MiR-122 Induces Radiosensitization in Non-Small Cell Lung Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Debin Ma

    2015-09-01

    Full Text Available MiR-122 is a novel tumor suppresser and its expression induces cell cycle arrest, or apoptosis, and inhibits cell proliferation in multiple cancer cells, including non-small cell lung cancer (NSCLC cells. Radioresistance of cancer cell leads to the major drawback of radiotherapy for NSCLC and the induction of radiosensitization could be a useful strategy to fix this problem. The present work investigates the function of miR-122 in inducing radiosensitization in A549 cell, a type of NSCLC cells. MiR-122 induces the radiosensitization of A549 cells. MiR-122 also boosts the inhibitory activity of ionizing radiation (IR on cancer cell anchor-independent growth and invasion. Moreover, miR-122 reduced the expression of its targeted genes related to tumor-survival or cellular stress response. These results indicate that miR-122 would be a novel strategy for NSCLC radiation-therapy.

  4. miR-1297 Promotes Cell Proliferation of Non-Small Cell Lung Cancer Cells: Involving in PTEN/Akt/Skp2 Signaling Pathway.

    Science.gov (United States)

    Bu, Wenjin; Luo, Tianyou

    2017-11-01

    Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a lipid and protein phosphatase and possesses an antitumor effect in lung cancers. miRNAs are reportedly abnormally expressed in human lung cancers. However, whether miRNA contributes to PTEN expression in non-small cell lung cancers (NSCLCs) has not been clearly clarified. In the present study, we found that miR-1297 probably binds with 3'UTR sequence of PTEN and negatively regulated the levels of PTEN in NSCLC cells. First, the expression levels of PTEN and Skp2 were detected by western blotting in NSCLC specimens and paired normal tissue specimens. The results showed that decreased levels of PTEN were detected in NSCLC tissues, compared with paired control tissues (**p PTEN were conversely correlated with the levels of Skp2 in clinical NSCLC specimens and NSCLC cell line. Transfection with miR-1297 mimic significantly promoted cell viability of A549 cells and NCI-H460 cells by downregulating the level of PTEN and upregulating the expression of Skp2. Interestingly, knockdown of Skp2 did not affect the expression of PTEN in A549 cells. Thus, miR-1297 might work as an oncogene by regulating PTEN/Akt/Skp2 signaling pathway in NSCLC cells. PTEN and Skp2 might be the potential targets in the clinical therapy of lung cancers.

  5. Downregulation of Cyclophilin A by siRNA diminishes non-small cell lung cancer cell growth and metastasis via the regulation of matrix metallopeptidase 9

    Directory of Open Access Journals (Sweden)

    Qian Zhe

    2012-10-01

    Full Text Available Abstract Background Cyclophilin A (CypA is a cytosolic protein possessing peptidyl-prolyl isomerase activity that was recently reported to be overexpressed in several cancers. Here, we explored the biology and molecular mechanism of CypA in non-small cell lung cancer (NSCLC. Methods The expression of CypA in human NSCLC cell lines was detected by real-time reverse transcription PCR. The RNA interference-mediated knockdown of CypA was established in two NSCLC cell lines (95C and A549. 239836 CypA inhibitor was also used to suppress CypA activity. Tumorigenesis was assessed based on cellular proliferation, colony formation assays, and anchorage-independent growth assays; metastasis was assessed based on wound healing and transwell assays. Results Suppression of CypA expression inhibited the cell growth and colony formation of A549 and 95C cells. CypA knockdown resulted in the inhibition of cell motility and invasion. Significantly, we show for the first time that CypA increased NSCLC cell invasion by regulating the activity of secreted matrix metallopeptidase 9 (MMP9. Likewise, suppression of CypA with 239836 CypA inhibitor decreased cell proliferation and MMP9 activity. Conclusions The suppression of CypA expression was correlated with decreased NSCLC cell tumorigenesis and metastasis.

  6. Down-regulated βIII-tubulin Expression Can Reverse Paclitaxel Resistance in A549/Taxol Cells Lines

    Directory of Open Access Journals (Sweden)

    Yinling ZHUO

    2014-08-01

    Full Text Available Background and objective Chemotherapy drug resistance is the primary causes of death in patients with pulmonary carcinoma which make tumor recurrence or metastasis. β-tubulin is the main cell targets of anti-microtubule drug. Increased expression of βIII-tubulin has been implicated in non-small cell lung cancer (NSCLC cell lines. To explore the relationship among the expression level of βIII-tubulin and the sensitivity of A549/Taxolcell lines to Taxol and cell cycles and cell apoptosis by RNA interference-mediated inhibition of βIII-tubulin in A549/Taxol cells. Methods Three pairs of siRNA targetd βIII-tubulin were designed and prepared, which were transfected into A549/Taxol cells using LipofectamineTM 2000. We detected the expression of βIII-tubulin mRNA using Real-time fluorescence qRT-PCR. Tedhen we selected the most efficient siRNA by the expression of βIII-tubulin mRNA in transfected group. βIII-tubulin protein level were mesured by Western blot. The taxol sensitivity in transfected group were evaluated by MTT assay. And the cell apoptosis and cell cycles were determined by flow cytometry. Results βIII-tubulin mRNA levels in A549/Taxol cells were significantly decreased in transfected grop by Real-time qRT-PCR than control groups. And βIII-tubulin siRNA-1 sequence showed the highest transfection efficiency, which was (87.73±4.87% (P<0.01; Western blot results showed that the expressional level of BIII tublin protein was significantly down-reulated in the transfectant cells than thant in the control cells. By MTT assay, we showed that the inhibition ratio of Taxol to A549/Taxol cells transfeced was higher than that of control group (51.77±4.60% (P<0.01. The early apoptosis rate of A549/Taxol cells in transfected group were significantly higher than that of control group (P<0.01; G2-M content in taxol group obviously increased than untreated samples by the cell cycle (P<0.05. Conclusion βIII-tubulin down-regulated significantly

  7. In vitro cytotoxic effects of PM{sub 2.5} from the city of Abidjan (Ivory Coast) on human A549 lung cells; Effets cytotoxiques in vitro des PM{sub 2,} {sub 5} de la ville d'Abidjan (Cote-d'Ivoire) sur des cellules pulmonaires humaines

    Energy Technology Data Exchange (ETDEWEB)

    Kouassi, Kouakou-Serge [Universite Lille Nord de France, Lille (France); Unite de Chimie Environnementale et Interactions sur le Vivant, EA 4492 MREI, Universite du Littoral Cote d' Opale, Dunkerque (France); Universite Cocody-Abidjan et Institut Pasteur, Abidjan (Cote d' Ivoire); Billet, Sylvain; Garcon, Guillaume; Verdin, Anthony; Courcot, Dominique; Shirali, Pirouz [Universite Lille Nord de France, Lille (France); Unite de Chimie Environnementale et Interactions sur le Vivant, EA 4492 MREI, Universite du Littoral Cote d' Opale, Dunkerque (France); Diouf, Amadou [Laboratoire de Toxicologie, Faculte de Medecine Pharmacologie Odontologie, Universite Cheikh Anta Diop, Dakar (Senegal); Cazier, Fabrice [Universite Lille Nord de France, Lille (France); Centre Commun de Mesures, MREI 1, Universite du Littoral Cote d' Opale, Dunkerque (France); Djaman, Joseph [Universite Cocody-Abidjan et Institut Pasteur, Abidjan (Cote d' Ivoire)

    2012-01-15

    Epidemiological studies associate air pollution, especially particulate, increased morbidity and mortality from respiratory and cardiovascular origin . Africa, which has an urbanization rate among the highest in the world, is particularly exposed. The 'Initiative on the air quality in Sub-Saharan Africa' showed the importance of atmospheric concentrations of certain pollutants such as nitrogen oxides, sulfur dioxide and particulate matter (PM{sub 10}). Like the great capitals of Africa, Abidjan, economic capital and most industrialized city of Ivory Coast is facing an air pollution from industrial-urban and health consequences for its population of nearly 6 million inhabitants. To better understand the mechanisms of action resulting from pulmonary exposure to particulate atmospheric aerosols, we proposed: (i) to collect atmospheric particles (PM{sub 2.5}) using high volume cascade impaction in the District of Abidjan in three influences (rural, urban or industrial), (ii) to determine their main physicochemical, (iii) assess their cytotoxicity and their role in the induction of oxidative damage in a model of human lung cells (A549) in culture. The chemical composition of the atmospheric particles revealed their heterogeneity, and many inorganic (e.g. Al, Ca, Fe, Mn, Zn, Ni, Cr, Cu, Pb, Mg) and organic compounds (e.g. paraffins) were quantified at the three sites. Their effect concentrations (EC) to 10 and 50% on the A549 were as follows: influence rural: EC{sub 10} = 5.91 {mu}g/cm{sup 2} and EC{sub 50} 29.55 {mu}g/cm{sup 2}, urban influence: EC{sub 10} = 5 .45 {mu}g/cm{sup 2} and EC{sub 50} = 27.23 {mu}g/cm{sup 2}, and industrial influence: EC{sub 10} = 6.86 {mu}g/cm{sup 2} and EC{sub 50} = 34.29 {mu}g/cm{sup 2}. Exposure of A549 cells to Abidjan city's PM samples for 24, 48 or 72 hours to their EC{sub 10} or EC{sub 50} induced oxidative damage, as demonstrated by the formation of malon-dialdehyde, changes in enzyme activity of superoxide dismutase

  8. KCa3.1 channel inhibition leads to an ICAM-1 dependent increase of cell-cell adhesion between A549 lung cancer and HMEC-1 endothelial cells

    Science.gov (United States)

    Bulk, Etmar; Kramko, Nadzeya; Liashkovich, Ivan; Glaser, Felix; Schillers, Hermann; Schnittler, Hans-Joachim; Oberleithner, Hans; Schwab, Albrecht

    2017-01-01

    Early metastasis leads to poor prognosis of lung cancer patients, whose 5-year survival rate is only 15%. We could recently show that the Ca2+ sensitive K+ channel KCa3.1 promotes aggressive behavior of non-small cell lung cancer (NSCLC) cells and that it can serve as a prognostic marker in NSCLC. Since NSCLC patients die of metastases, we investigated whether KCa3.1 channels contribute to poor patient prognosis by regulating distinct steps of the metastatic cascade. We investigated the extravasation of NSCLC cells and focused on their adhesion to endothelial cells and on transendothelial migration. We quantified the adhesion forces between NSCLC cells and endothelial cells by applying single cell force spectroscopy, and we monitored transendothelial migration using live-cell imaging. Inhibition of KCa3.1 channels with senicapoc or KCa3.1 silencing increases the adhesion force of A549 lung cancer cells to human microvascular endothelial cells (HMEC-1). Western blotting, immunofluorescence staining and biotinylation assays indicate that the elevated adhesion force is due to increased expression of ICAM-1 in both cell lines when KCa3.1 channels are downregulated. Consistent with this interpretation, an anti-ICAM-1 blocking antibody abolishes the KCa3.1-dependent increase in adhesion. Senicapoc inhibits transendothelial migration of A549 cells by 50%. Selectively silencing KCa3.1 channels in either NSCLC or endothelial cells reveals that transendothelial migration depends predominantly on endothelial KCa3.1 channels. In conclusion, our findings disclose a novel function of KCa3.1 channels in cancer. KCa3.1 channels regulate ICAM-1 dependent cell-cell adhesion between endothelial and cancer cells that affects the transmigration step of the metastatic cascade. PMID:29348824

  9. Effect of three fatty acids from the leaf extract of Tiliacora triandra on P-glycoprotein function in multidrug-resistant A549RT-eto cell line.

    Science.gov (United States)

    Kaewpiboon, Chutima; Winayanuwattikun, Pakorn; Yongvanich, Tikamporn; Phuwapraisirisan, Preecha; Assavalapsakul, Wanchai

    2014-08-01

    Cancer cells have the ability to develop resistance to chemotherapy drugs, which then leads to a reduced effectiveness and success of the treatment. Multidrug resistance (MDR) involves the resistance in the same cell/tissue to a diverse range of drugs of different structures. One of the characteristics of MDR is an overexpression of P-glycoprotein (P-gp), which causes the efflux of the accumulated drug out of the cell. The MDR human non-small cell lung carcinoma cell line with a high P-gp expression level (A549RT-eto) was used to investigate the bioactive compounds capable of reversing the etoposide resistance in this cell line. The leaves of Tiliacora triandra were sequentially extracted with hexane, dichloromethane, methanol and water. Only the hexane extract reduced the etoposide resistance of the A549RT-eto cell line, and was further fractionated by column chromatography using the TLC-pattern and the restoration of etoposide sensitivity as the selection criteria. The obtained active fraction (F22) was found by nuclear magnetic resonance and gas chromatography-mass spectroscopy analyses to be comprised of a 49.5:19.6:30.9 (w/w/w) mixture of hexadecanoic: octadecanoic acid: (Z)-6-octadecenoic acids. This stoichiometric mixture was recreated using pure fatty acids (MSFA) and gave a similar sensitization to etoposide and enhanced the relative rate of rhodamine-123 accumulation to a similar extent as F22, supporting the action via reducing P-gp activity. In contrast, the fatty acids alone did not show this effect. This is the first report of the biological activity from the leaves of T. triandra as a potential source of a novel chemosensitizer.

  10. Vorinostat increases carboplatin and paclitaxel activity in non-small cell lung cancer cells

    OpenAIRE

    Owonikoko, Taofeek K.; Ramalingam, Suresh S.; Kanterewicz, Beatriz; Balius, Trent; Belani, Chandra P.; Hershberger, Pamela A.

    2010-01-01

    We observed a 53% response rate in non-small cell lung cancer (NSCLC) patients treated with vorinostat plus paclitaxel/carboplatin in a Phase I trial. Studies were undertaken to investigate the mechanism (s) underlying this activity. Growth inhibition was assessed in NSCLC cells by MTT assay after 72 h of continuous drug exposure. Vorinostat (1 µM) inhibited growth by: 17±7% in A549, 28±6% in 128-88T, 39±8% in Calu1, and 41±7% in 201T cells. Vorinostat addition to carboplatin or paclitaxel le...

  11. Effects of gene F10 over-expression on the tumorigenicity of A549 cells

    OpenAIRE

    Ya-li SONG; Gong ZHANG; Zhan-jun PANG; Xiu-lan ZHU; Xiao-ping YANG; Ya-fang LI; Song QUAN; Fu-qi XING

    2012-01-01

    Objective To explore the effects and mechanism of gene F10 over-expression on the tumorigenicity of A549 cells in nude mice. Methods Eighteen SPF nude mice (4-5weeks of age) were randomly equally divided into the three groups: A549-WT (vaccination with wild-type strain A549), Mock-A549 (vaccination with controlled cells Mock-A549 transfected by blank vectors) and F10+A549 (vaccination with F10+A549 cells which overexpressed F10 gene) according to their vaccination and then revaccinated into t...

  12. Overexpression of the lung cancer-prognostic miR-146b microRNAs has a minimal and negative effect on the malignant phenotype of A549 lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Patnaik

    Full Text Available INTRODUCTION: Expression levels of miR-146b-5p and -3p microRNAs in human non-small cell lung cancer (NSCLC are associated with recurrence of the disease after surgery. To understand this, the effect of miR-146b overexpression was studied in A549 human lung cancer cells. METHODS: A549 cells, engineered with lentiviruses to overexpress the human pre-miR-146b precursor microRNA, were examined for proliferation, colony formation on plastic surface and in soft agar, migration and invasiveness in cell culture and in vivo in mice, chemosensitivity to cisplatin and doxorubicin, and global gene expression. miR-146b expressions were assessed in microdissected stroma and epithelia of human NSCLC tumors. Association of miR-146b-5p and -3p expression in early stage NSCLC with recurrence was analyzed. PRINCIPAL FINDINGS: A549 pre-miR-146b-overexpressors had 3-8-fold higher levels of both miR-146b microRNAs than control cells. Overexpression did not alter cellular proliferation, chemosensitivity, migration, or invasiveness; affected only 0.3% of the mRNA transcriptome; and, reduced the ability to form colonies in vitro by 25%. In human NSCLC tumors, expression of both miR-146b microRNAs was 7-10-fold higher in stroma than in cancerous epithelia, and higher miR-146b-5p but lower -3p levels were predictive of recurrence. CONCLUSIONS: Only a minimal effect of pre-miR-146b overexpression on the malignant phenotype was seen in A549 cells. This could be because of opposing effects of miR-146b-5p and -3p overexpression as suggested by the conflicting recurrence-predictive values of the two microRNAs, or because miR-146b expression changes in non-cancerous stroma and not cancerous epithelia of tumors are responsible for the prognostic value of miR-146b.

  13. Molecular, biological characterization and drug sensitivity of chidamide-resistant non-small cell lung cancer cells

    Science.gov (United States)

    Luo, Song'e; Ma, Kai; Zhu, Hongxia; Wang, Shuren; Liu, Mei; Zhang, Weina; Liang, Shufang; Xu, Ningzhi

    2017-01-01

    Chidamide, a histone deacetylase (HDAC) inhibitor, has been applied in clinical trials for various types of hematological and solid tumors. Although acquired resistance is common in chemotherapy, the mechanism of resistance to chidamide is poorly characterized. The goal of the present study was to explore, in detail, the mechanism for the induced resistance to chidamide, and investigate a potential cross-resistance to other chemotherapeutic drugs. A549 cells were exposed to gradually increasing chidamide concentrations to establish a chidamide-resistant non-small cell lung cancer cell line (A549-CHI-R). The IC50 for chidamide, the proliferation inhibition rate, the total HDAC activity and the HDAC protein level were determined by an MTT assay, colony formation, a fluorometric HDAC activity assay and western blotting, respectively. Overexpression of the HDAC1 gene and HDAC1 gene-knockdown were achieved via plasmid transfection. A549-CHI-R cells demonstrated increased resistance to chidamide (8.6-fold). HDAC1 protein degradation was inhibited and HDAC activity was significantly higher in the A549-CHI-R cells relative to the parental A549 cells. A549-CHI-R cells demonstrated cross-resistance to paclitaxel, vinorelbine and gemcitabine, but not to cisplatin (CDDP) or 5-fluorouracil (5-FU). These results indicated that HDAC1 may be associated with resistance to chidamide, and HDAC1 may therefore be a predictive marker for chidamide sensitivity in cancer. In addition, A549-CHI-R cells remained sensitive to 5-FU and CDDP, indicating a potential strategy for cancer therapy. PMID:29344124

  14. G4-Tetra DNA Duplex Induce Lung Cancer Cell Apoptosis in A549 Cells

    Science.gov (United States)

    Xu, Xiaobo; Zhao, YiZhuo; Lu, Hu; Fu, Cuiping; Li, Xiao; Jiang, Liyan; Li, Shanqun

    2016-10-01

    The specific DNA is typically impermeable to the plasma membrane due to its natural characters, but DNA tetra structures (DTNs) can be readily uptake by cells in the absence of transfection agents, providing a new strategy to deliver DNA drugs. In this research, the delivery efficiency of tetrahedral DNA nanostructures was measured on adenocarcinomic human alveolar basal epithelial (A549) cells via delivering AS1411 (G4). The DNA tetra-AS1411 complex was rapidly and abundantly uptake by A549 cells, and the induced apoptosis was enhanced. Furthermore, biodistribution in mouse proved the rapid clearance from non-targeted organs in vivo. This study improved the understanding of potential function in DNA-based drug delivery and proved that DTNs-AS1411 could be potentially useful for the treatment of lung cancer.

  15. Sulforaphane Induced Apoptosis via Promotion of Mitochondrial Fusion and ERK1/2-Mediated 26S Proteasome Degradation of Novel Pro-survival Bim and Upregulation of Bax in Human Non-Small Cell Lung Cancer Cells.

    Science.gov (United States)

    Geng, Yang; Zhou, Yan; Wu, Sai; Hu, Yabin; Lin, Kai; Wang, Yalin; Zheng, Zhongnan; Wu, Wei

    2017-01-01

    Previous studies in our laboratory showed that sulforaphane (SFN) induced apoptosis by sustained activation of extracellular regulated protein kinases 1/2 (ERK1/2). However, the underlying mechanisms associated with SFN-induced apoptosis and downstream cascades which are modulated by ERK1/2 were not elucidated. Herein we demonstrated for the first time that alteration of mitochondrial dynamics contributed to SFN-induced apoptosis in human non-small cell lung cancer (NSCLC) cells. Reports showed that protein Bim not only induced apoptosis but also promoted proliferation under certain circumstances. We found that Bim was related to cell growth in NSCLC cells. Pro-survival Bim downregulation was shown to induce apoptosis in response to SFN. Further, Using the ERK1/2 inhibitor, PD98059, we found that SFN upregulated Bax and downregulated Bim through the ERK1/2-dependent signaling pathway. Furthermore, SFN activated ERK1/2 to increase 26S proteasome activity to degrade Bim, while the proteasome inhibitor MG132 reversed this effect. Therefore, SFN phosphorylated ERK1/2 and activated the proteasome system leading to the degradation of Bim, which contributed to apoptosis in NSCLC cells. These findings provided a novel insight into SFN-related therapeutics in cancer treatment.

  16. Co-expression of ILT4/HLA-G in human non-small cell lung cancer correlates with poor prognosis and ILT4-HLA-G interaction activates ERK signaling.

    Science.gov (United States)

    Zhang, Yanwen; Zhao, Jianqiang; Qiu, Lijun; Zhang, Pei; Li, Juan; Yang, Dong; Wei, Xiaojuan; Han, Yali; Nie, Siyue; Sun, Yuping

    2016-08-01

    Non-small cell lung cancer (NSCLC) is the most common malignant tumor in the world, of which prognosis is generally poor due to insufficient mechanistic understanding. To explore the molecular pathogenesis of NSCLC, the co-expression of immunoglobulin-like transcript 4 (ILT4) and its ligand human leukocyte antigen G (HLA-G) in NSCLC tissues and cells were investigated. Here, we detected the expression of ILT4 and HLA-G in 81 tumor specimens from primary NSCLC patients, and we found that co-expression of ILT4/HLA-G was significantly associated with regional lymph node involvement, advanced stages, and the overall survival of patients. In NSCLC cell lines, HLA-G expression increased/decreased accordingly when ILT4 was up-/down-regulated, and ILT4 expression increased in a concentration-dependent manner via the stimulation of HLA-G fusion protein. Interestingly, HLA-G fusion protein could also up-regulate the phospho-ERK1/2 expression, which means the activation of extracellular signal-regulated kinase (ERK) signaling. All in all, our results indicate that the ILT4-HLA-G interaction might play an important role in NSCLC progression. Identification of ILT4 and HLA-G expression may provide an indicator to predict prognosis and guide prevention and treatment of NSCLC.

  17. [Nickel exposure to A549 cell damage and L-ascorbic acid interference effect].

    Science.gov (United States)

    Fu, Yao; Wang, Yue; Dan, Han; Zhang, Lin; Ma, Wenhan; Pan, Yulin; Wu, Yonghui

    2015-05-01

    Studying different concentrations of nickel smelting smoke subjects of human lung adenocarcinoma cells (A549) carcinogenic effects, discusses the influence of L-ascorbic acid protection. The A549 cells were divided into experimental and L-ascorbic acid in the intervention group. Plus exposure group concentration of nickel refining dusts were formulated 0.00, 6.25, 12.50, 25.00, 50.00, 100.00 µg/ml suspension, the intervention group on the basis of the added exposure group containing L-ascorbic acid (100 mmol/L), contact 24 h. Detection of cell viability by MTT assay. When the test substance concentration select 0.00, 25.00, 50.00, 100.00 µg/ml experiment for internal Flou-3 fluorescent probe to detect cell Ca²⁺ concentration, within DCFH-DA detect intracellular reactive oxygen (ROS) content, real-time quantitative PCR (real time, in the RT-PCR) was used to detect cell HIF-1α gene expression. With the increase of concentration, subjects increased cell growth inhibition rate, intracellular Ca²⁺ concentration increases, ROS content increased, HIF-1α gene expression increased, differences were statistically significant (P nickel exposure damage to cells. With subjects following exposure to nickel concentration increased, its effect on A549 cell damage increases, L-ascorbic acid cell damage caused by nickel has certain protective effect.

  18. Transforming growth factor-β impairs glucocorticoid activity in the A549 lung adenocarcinoma cell line.

    Science.gov (United States)

    Salem, S; Harris, T; Mok, J S L; Li, M Y S; Keenan, C R; Schuliga, M J; Stewart, A G

    2012-08-01

    The lung adenocarcinoma cell line, A549, undergoes epithelial-mesenchymal cell transition (EMT) in response to TGF-β. Glucocorticoids do not prevent the EMT response, but TGF-β induced resistance to the cytokine-regulatory action of glucocorticoids. We sought to characterize the impairment of glucocorticoid response in A549 cells. A549 cells were exposed to TGF-β for up to 96 h before glucocorticoid treatment and challenge with IL-1α to assess glucocorticoid regulation of IL-6 and CXCL8 production. Nuclear localization of the glucocorticoid receptor α (GRα) was ascertained by immunofluorescence and Western blotting. Transactivation of the glucocorticoid response element (GRE) was measured with a transfected GRE-secreted human placental alkaline phosphatase reporter. TGF-β (40-400 pM) reduced the maximum inhibitory effect of dexamethasone on IL-1α-induced IL-6 and CXCL8 production. The impaired glucocorticoid response was detected with 4 h of TGF-β (40 pM) exposure (and 4 h IL-1α to induce CXCL8 expression) and therefore was not secondary to EMT, a process that requires longer incubation periods and higher concentrations of TGF-β. TGF-β also impaired dexamethasone regulation of granulocyte-macrophage colony-stimulating factor in thrombin-stimulated BEAS-2B epithelial cells. Impaired regulation of CXCL8 was associated with markedly reduced GRE transactivation and reduced induction of mRNA for IκBα, the glucocorticoid-inducible leucine zipper and the epithelial sodium channel (SCNN1A). The expression, cellular levels and nuclear localization of GRα were reduced by TGF-β. We have identified mechanisms underlying the impairment of responses to glucocorticoids by TGF-β in the A549 and BEAS-2B cell lines. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  19. Oligomeric proanthocyanidins protects A549 cells against H2O2-induced oxidative stress via the Nrf2-ARE pathway.

    Science.gov (United States)

    Sun, Chao; Jin, Weiguo; Shi, Hongcan

    2017-06-01

    Oxidative signaling and oxidative stress contribute to aging, cancer and diseases resulting from lung fibrosis. In this study, we explored the anti-oxidative potential of oligomeric proanthocyanidins (OPCs), natural flavonoid compounds. We examined the protective effects of OPCs against hydrogen peroxide (H2O2)-induced oxidative stress in non-small cell lung cancer cells (A549). We demonstrated that OPC markedly attenuated H2O2-induced A549 cell viability, as shown by by 3-[4,5-dimethylthiazol-2-yl)]-2,5-diphenyl-tetrazolium bromide (MTT) assay. At the same time, OPC inhibited H2O2-induced oxidative stress by significantly increasing the activities of superoxide dismutase, catalase and glutathione, and reducing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA). Treatment of the A549 cells with OPC significantly promoted the nuclear translocation of NF-E2-related factor 2 (Nrf2) and significantly enhanced the expression of its target genes [heme oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO1) and thioredoxin reductase 1 (TXNRD1)] with different fold change values at both the mRNA and protein level. The knockout of Nrf2 using CRISPR/Cas9 technology attenuated OPC-mediated ARE gene transcription, and almost abolished the OPC-mediated protective effects against H2O2-induced oxidative stress. On the whole, our study suggests that OPC plays an important role in controlling the antioxidant response of A549 cells via the Nrf2-ARE pathway.

  20. Clozapine Induces Autophagic Cell Death in Non-Small Cell Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chun Yin

    2015-02-01

    Full Text Available Background/Aims: Previous studies have shown that patients with schizophrenia have a lower incidence of cancer than the general population, and several antipsychotics have been demonstrated to have cytotoxic effects on cancer cells. However, the mechanisms underlying these results remain unclear. The present study aimed to investigate the effect of clozapine, which is often used to treat patients with refractory schizophrenia, on the growth of non-small cell lung carcinoma cell lines and to examine whether autophagy contributes to its effects. Methods: A549 and H1299 cells were treated with clozapine, and cell cytotoxicity, cell cycle and autophagy were then assessed. The autophagy inhibitor bafilomycin A1 and siRNA-targeted Atg7 were used to determine the role of autophagy in the effect of clozapine. Results: Clozapine inhibited A549 and H1299 proliferation and increased p21 and p27 expression levels, leading to cell cycle arrest. Clozapine also induced a high level of autophagy, but not apoptosis, in both cell lines, and the growth inhibitory effect of clozapine was blunted by treatment with the autophagy inhibitor bafilomycin A1 or with an siRNA targeting atg7. Conclusions: Clozapine inhibits cell proliferation by inducing autophagic cell death in two non-small cell lung carcinoma cell lines. These findings may provide insights into the relationship between clozapine use and the lower incidence of lung cancer among patients with schizophrenia.

  1. Gefitinib and Erlotinib Lead to Phosphorylation of Eukaryotic Initiation Factor 2 Alpha Independent of Epidermal Growth Factor Receptor in A549 Cells.

    Science.gov (United States)

    Koyama, Satoshi; Omura, Tomohiro; Yonezawa, Atsushi; Imai, Satoshi; Nakagawa, Shunsaku; Nakagawa, Takayuki; Yano, Ikuko; Matsubara, Kazuo

    2015-01-01

    Gefitinib and erlotinib are anticancer agents, which inhibit epidermal growth factor receptor (EGFR) tyrosine kinase. Interstitial lung disease (ILD) occurs in patients with non-small cell lung cancer receiving EGFR inhibitors. In the present study, we examined whether gefitinib- and erlotinib-induced lung injury related to ILD through endoplasmic reticulum (ER) stress, which is a causative intracellular mechanism in cytotoxicity caused by various chemicals in adenocarcinomic human alveolar basal epithelial cells. These two EGFR inhibitors increased Parkinson juvenile disease protein 2 and C/EBP homologous protein mRNA expressions, and activated the eukaryotic initiation factor (eIF) 2α/activating transcription factor 4 pathway without protein kinase R-like ER kinase activation in A549 cells. Gefitinib and erlotinib caused neither ER stress nor cell death; however, these agents inhibited cell growth via the reduction of cyclin-D1 expression. Tauroursodeoxycholic acid, which is known to suppress eIF2α phosphorylation, cancelled the effects of EGFR inhibitors on cyclin-D1 expression and cell proliferation in a concentration-dependent manner. The results of an EGFR-silencing study using siRNA showed that gefitinib and erlotinib affected eIF2α phosphorylation and cyclin-D1 expression independent of EGFR inhibition. Therefore, the inhibition of cell growth by these EGFR inhibitors might equate to impairment of the alveolar epithelial cell repair system via eIF2α phosphorylation and reduced cyclin-D1 expression.

  2. Acid-sensing ion channels contribute to the effect of extracellular acidosis on proliferation and migration of A549 cells.

    Science.gov (United States)

    Wu, Yu; Gao, Bo; Xiong, Qiu-Ju; Wang, Yu-Chan; Huang, Da-Ke; Wu, Wen-Ning

    2017-06-01

    Acid-sensing ion channels, a proton-gated cation channel, can be activated by low extracellular pH and involved in pathogenesis of some tumors such as glioma and breast cancer. However, the role of acid-sensing ion channels in the growth of lung cancer cell is unclear. In this study, we investigated the expression of acid-sensing ion channels in human lung cancer cell line A549 and their possible role in proliferation and migration of A549 cells. The results show that acid-sensing ion channel 1, acid-sensing ion channel 2, and acid-sensing ion channel 3 are expressed in A549 cells at the messenger RNA and protein levels, and acid-sensing ion channel-like currents were elicited by extracellular acid stimuli. Moreover, we found that acidic extracellular medium or overexpressing acid-sensing ion channel 1a promotes proliferation and migration of A549 cells. In addition psalmotoxin 1, a specific acid-sensing ion channel 1a inhibitor, or acid-sensing ion channel 1a knockdown can abolish the effect of acid stimuli on A549 cells. In addition, acid-sensing ion channels mediate increase of [Ca 2+ ] i induced by low extracellular pH in A549 cells. All these results indicate that acid-sensing ion channel-calcium signal mediate lung cancer cell proliferation and migration induced by extracellular acidosis, and acid-sensing ion channels may serve as a prognostic marker and a therapeutic target for lung cancer.

  3. Potentiation of in vitro and in vivo antitumor efficacy of doxorubicin by cyclin-dependent kinase inhibitor P276-00 in human non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Rathos, Maggie J; Khanwalkar, Harshal; Joshi, Kavita; Manohar, Sonal M; Joshi, Kalpana S

    2013-01-01

    In the present study, we show that the combination of doxorubicin with the cyclin-dependent kinase inhibitor P276-00 was synergistic at suboptimal doses in the non-small cell lung carcinoma (NSCLC) cell lines and induces extensive apoptosis than either drug alone in H-460 human NSCLC cells. Synergistic effects of P276-00 and doxorubicin on growth inhibition was studied using the Propidium Iodide (PI) assay. The doses showing the best synergistic effect was determined and these doses were used for further mechanistic studies such as western blotting, cell cycle analysis and RT-PCR. The in vivo efficacy of the combination was evaluated using the H-460 xenograft model. The combination of 100 nM doxorubicin followed by 1200 nM P276-00 showed synergistic effect in the p53-positive and p53-mutated cell lines H-460 and H23 respectively as compared to the p53-null cell line H1299. Abrogation of doxorubicin-induced G2/M arrest and induction of apoptosis was observed in the combination treatment. This was associated with induction of tumor suppressor protein p53 and reduction of anti-apoptotic protein Bcl-2. Furthermore, doxorubicin alone greatly induced COX-2, a NF-κB target and Cdk-1, a target of P276-00, which was downregulated by P276-00 in the combination. Doxorubicin when combined with P276-00 in a sequence-specific manner significantly inhibited tumor growth, compared with either doxorubicin or P276-00 alone in H-460 xenograft model. These findings suggest that this combination may increase the therapeutic index over doxorubicin alone and reduce systemic toxicity of doxorubicin most likely via an inhibition of doxorubicin-induced chemoresistance involving NF-κB signaling and inhibition of Cdk-1 which is involved in cell cycle progression

  4. Expression of peroxisome proliferator activated receptor-gamma (PPAR-γ) in human non-small cell lung carcinoma: correlation with clinicopathological parameters, proliferation and apoptosis related molecules and patients' survival.

    Science.gov (United States)

    Giaginis, Costantinos; Politi, Ekaterini; Alexandrou, Paraskevi; Sfiniadakis, John; Kouraklis, Gregory; Theocharis, Stamatios

    2012-10-01

    Peroxisome proliferator-activated receptor-γ (PPAR-γ) has currently been considered as molecular target for the treatment of human metabolic disorders. PPAR-γ has also been implicated in the pathogenesis and progression of several types of cancer, being associated with cell differentiation, growth and apoptosis. The present study aimed to evaluate the clinical significance of PPAR-γ expression in non-small cell lung carcinoma (NSCLC). PPAR-γ protein expression was assessed immunohistochemically in tumoral samples of 67 NSCLC patients and was statistically analyzed in relation to clinicopathological parameters, proliferation and apoptosis related molecules and patients' survival. Positive PPAR-γ expression was prominent in 30 (45 %) out of 67 NSCLC cases. PPAR-γ positivity was more frequently observed in squamous cell lung carcinoma cases compared to lung adenocarcinoma ones (p = 0.048). PPAR-γ positivity was significantly associated with bcl-2 positivity (p = 0.016) and borderline with c-myc positivity (p = 0.052), whereas non associations with grade of differentiation, TNM stage, Ki-67, p53, bax proteins' expression and patients' survival were noted. In the subgroup of squamous cell lung carcinoma cases, PPAR-γ positivity was significantly associated with tumor size (p = 0.038), while in lung adenocarcinoma ones with histopathological grade of differentiation (p = 0.026). The present study supported evidence for possible participation of PPAR-γ in the biological mechanisms underlying the carcinogenic evolution of the lung. Although the survival prediction using PPAR-γ expression as a marker seems uncertain, the observed correlation with apoptosis related proteins reinforces the potential utility of PPAR-γ ligands as cell cycle modulators in future therapeutic approaches in lung cancer.

  5. Ephrin (Eph) receptor A1, A4, A5 and A7 expression in human non-small cell lung carcinoma: associations with clinicopathological parameters, tumor proliferative capacity and patients' survival.

    Science.gov (United States)

    Giaginis, Constantinos; Tsoukalas, Nikolaos; Bournakis, Evangelos; Alexandrou, Paraskevi; Kavantzas, Nikolaos; Patsouris, Efstratios; Theocharis, Stamatios

    2014-02-04

    Ephrin (Eph) receptors are frequently overexpressed in a wide variety of human malignant tumors, being associated with tumor growth, invasion, metastasis and angiogenesis. The present study aimed to evaluate the clinical significance of EphA1, A4, A5 and A7 protein expression in non-small cell lung carcinoma (NSCLC). EphA1, A4, A5 and A7 protein expression was assessed immunohistochemically in tissue microarrays of 88 surgically resected NSCLC and was analyzed in relation with clinicopathological characteristics and patients' survival. Elevated EphA4 expression was significantly associated with low histopathological stage and presence of inflammation (p = 0.047 and p = 0.026, respectively). Elevated EphA7 expression was significantly associated with older patients' age, presence of fibrosis and smaller tumor size (p = 0.036, p = 0.029 and p = 0.018, respectively). EphA1, A5 and A7 expression were positively associated with tumor proliferative capacity (p = 0.047, p = 0.002 and p = 0.046, respectively). Elevated EphA4, A5 and A7 expression were identified as predictors of favourable patients' survival at both univariate (Log-rank test, 0 = 0.019, p = 0.006 and p = 0.012, respectively) and multivariate levels (Cox-regression analysis, p = 0.029, p = 0.068 and p = 0.044, respectively). The present study supported evidence that Ephs may be involved in lung cancer progression, reinforcing their utility as clinical biomarkers for patients' management and prognosis, as also as potential targets for future therapeutic interventions.

  6. Establishment of a radioresistant human lung cancer cell subline and its mechanism of radioresistance

    International Nuclear Information System (INIS)

    Zhao Wei; Wang Qiong; Liu Li; Shi Xing; Ding Qian; Wu Gang

    2008-01-01

    Objective: To establish a radioresistant cell subline from a human A549 lung cancer cell line and investigate the mechanism of radioresistance. Methods: Two proposals were applied for the non-small cell lung cancer A549 cells irradiated with X-rays: A group of A549 cell line was irradiated five times, the fractionated dose was 600 cGy, and the other group was exposed 15 times, the fractionated dose was 200 cGy. After the completion of irradiation, two monoclones were obtained from the survival of cells and named the subline A549-S1 and A549-S2. The radiosensitivity and cell cycle distribution of these two clones, together with its parental A549 cells were measured by clone formation assay and flow cytometry. The mRNA and protein levels of Notchl in A549 cell line and the sublines were determined by RT-PCR and Western-blots. Results: Compared with the parental A549 cells, A549-S1 cells showed significant resistance to radiation with D 0 , D q and N values increased, and a broader initial shoulder as well as 1.38-fold increased value of SF 2 . The A549-S1 subline also showed higher percentage of cells in S phase and G 2 /M phase, but lower percentages in G 1 /G 1 phase (P 0 , D q and N values decreased and a curve initial shoulder. The ratio of cells in S and G 0 /G 1 phase ratio was lower than that in parental A549 cells, but that in G 2 /M phase ratio was higher significantly (P<0.05). The expression of Notchl had no marked change compared to A549 cell. Conclusions: The radioresistance of the A549 cell subline is correlated with the irradiation program. The cell subline shows a different cell cycle distribution from their parental line. The cell cycle distribution has a close correlaiton with the expression of Notchl. (authors)

  7. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein

    International Nuclear Information System (INIS)

    Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro; Ogihara, Takuo

    2016-01-01

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. -- Highlights: •Adenovirus vector infection induced P-gp mRNA expression in three NSCLC cell lines. •Adenovirus vector infection enhanced P-gp-mediated doxorubicin efflux from the cells. •The increase of P-gp was not mediated by nuclear receptors (PXR, CAR) or COX-2.

  8. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Tomono, Takumi [Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan); Kajita, Masahiro [Laboratory of Molecular Pharmaceutics and Technology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan); Yano, Kentaro [Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan); Ogihara, Takuo, E-mail: togihara@takasaki-u.ac.jp [Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan)

    2016-08-05

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. -- Highlights: •Adenovirus vector infection induced P-gp mRNA expression in three NSCLC cell lines. •Adenovirus vector infection enhanced P-gp-mediated doxorubicin efflux from the cells. •The increase of P-gp was not mediated by nuclear receptors (PXR, CAR) or COX-2.

  9. 3,4-Dihydroxybenzalactone Suppresses Human Non-Small Cell Lung Carcinoma Cells Metastasis via Suppression of Epithelial to Mesenchymal Transition, ROS-Mediated PI3K/AKT/MAPK/MMP and NFκB Signaling Pathways.

    Science.gov (United States)

    Chao, Wei; Deng, Jeng-Shyan; Li, Pei-Ying; Liang, Yu-Chia; Huang, Guan-Jhong

    2017-03-28

    3,4-Dihydroxybenzalactone (DBL) was isolated from Phellinus linteus (PL), which is a folk medicine possessing various physiological effects. In this study, we used highly metastatic A549 cells to investigate efficacy of DBL inhibition of cancer metastasis and possible mechanisms. The results revealed DBL inhibited migratory and invasive abilities of cancer cells at noncytotoxic concentrations. We found DBL suppressed enzymatic activities, protein expression, and RNA levels of matrix metalloproteinase (MMP)-2 and MMP-9. Western blot results showed DBL decreased phosphoinositide 3-kinase (PI3K)/AKT, phosphorylation status of mitogen-activated protein kinases (MAPKs), and focal adhesion kinase (FAK)/paxillin, which correlated with cell migratory ability. DBL also affected epithelial to mesenchymal transition (EMT)-related biomarkers. In addition, DBL enhanced cytoprotective effects through elevated antioxidant enzymes including heme oxygenase 1 (HO-1), catalase, glutathione peroxidase (GPx), and superoxide dismutase (SOD). Moreover, DBL influenced the nuclear translocation of nuclear factor κB (NFκB), nuclear factor erythroid 2-related factor 2 (Nrf2), Snail, and Slug in A549 cells. Taken together, these results suggested that treatment with DBL may act as a potential candidate to inhibit lung cancer metastasis by inhibiting MMP-2 and -9 via affecting PI3K/AKT, MAPKs, FAK/paxillin, EMT/Snail and Slug, Nrf2/antioxidant enzymes, and NFκB signaling pathways.

  10. Overexpression of both platelet-derived growth factor-BB and vascular endothelial growth factor-C and its association with lymphangiogenesis in primary human non-small cell lung cancer.

    Science.gov (United States)

    Liu, Jiannan; Liu, Chuanyong; Qiu, Liyun; Li, Juan; Zhang, Pei; Sun, Yuping

    2014-06-27

    Metastatic spread of tumor through lymphatic vasculature is an important adverse prognostic factor in a variety of human cancer and tumor lymphangiogenesis requires the interplay of several growth factors. Platelet-derived growth factor (PDGF)-BB and vascular endothelial growth factor (VEGF)-C are two important molecules involving in tumor metastasis and lymphangiogenesis. Therefore, the aim of this study was to investigate the coexpression of PDGF-BB and VEGF-C in primary human non-small cell lung cancer (NSCLC) and its association with lymphangiogenesis. Using immunohistochemical staining, PDGF-BB and VEGF-C expression were detected in 109 primary NSCLC tissues, while the lymphatic micro-vessel density (LMVD) was counted. Of 109 cases, PDGF-BB and VEGF-C overexpression was 66.97% (73/109) and 65.14% (71/109), respectively. 52 (47.7%) had overexpression of both PDGF-BB and VEGF-C (P+V+), 21 (19.3%) overexpression of PDGF-BB but low expression of VEGF-C (P+V-), 19(17.4%) overexpression of VEGF-C but low expression of PDGF-BB (P-V+) and 17(15.6%) low expression of both PDGF-BB and VEGF-C (P-V-). PDGF-BB expression was positively related to that of VEGF-C (r=0.451, p=0.034). LMVD in cases with P+V+was much higher than those with P-V- (p=0.004). In addition, the patients with P+V+were younger and also had larger tumor size, more likely lymph node metastasis and worse histological differentiation than those with P-V-. Moreover, the overall survival (OS) of patients with P+V+was shorter than those with P-V- (p=0.015). Coexpression of both PDGF-BB and VEGF-C was associated with lymphangiogenesis and poor prognosis in NSCLC, and might play a critical role in NSCLC progression. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2261801312571320.

  11. [Construction of A eukaryotic expression vector carrying the iNOS gene and its effect on A549 lung cancer cells].

    Science.gov (United States)

    Ye, Sujuan; Yang, Weihan; Wang, Yu; Ou, Wenjing; Ma, Qingping; Zhu, Wen

    2012-05-01

    The iNOS gene is associated with NO-mediated antitumor effects. The aims of this study are to construct a eukaryotic expression plasmid that carries the iNOS gene and to detect the expression levels and antitumor effects of the iNOS gene on A549 lung cancer cells. A DNA fragment of the human iNOS coding sequence was amplified using reverse transcription polymerase chain reaction (RT-PCR). The DNA fragment was subsequently cloned into the multiple cloning sites of the eukaryotic expression vector pVAX. The recombinant plasmid was confirmed using restriction enzyme treatment, PCR, and sequencing and was then transfected into A549 lung cancer cells. The expression of the iNOS gene in the A549 lung cancer cells after transfection was verified by RT-PCR and Western blot analysis. The effects of iNOS on cell apoptosis, proliferation, and migration were identified by staining with Hoechst 3235, an MTT assay, and a scratch assay, respectively. The results of the restriction enzyme digestion, PCR, and sequencing verified the successful construction of the eukaryotic expression plasmid pVAX-iNOS. The iNOS gene expression level was increased in the transfected A549 cells. Further experiments also showed increased cell apoptosis among the A549 lung cancer cells transfected with pVAX-iNOS. Meanwhile, the proliferation and migration of A549 cells were significantly inhibited by the enhanced iNOS gene expression. The recombinant eukaryotic expression vector pVAX-iNOS was successfully constructed and transfected into A549 cells. The enhanced iNOS gene expression significantly promoted cell apoptosis, whereas the proliferation and migration of A549 cells were inhibited. These findings contribute to the development of novel and effective gene therapies for lung cancer.

  12. TRAIL-coated lipid-nanoparticles overcome resistance to soluble recombinant TRAIL in non-small cell lung cancer cells

    Science.gov (United States)

    De Miguel, Diego; Gallego-Lleyda, Ana; María Ayuso, José; Erviti-Ardanaz, Sandra; Pazo-Cid, Roberto; del Agua, Celia; José Fernández, Luis; Ochoa, Ignacio; Anel, Alberto; Martinez-Lostao, Luis

    2016-05-01

    Purpose. Non-small cell lung cancer (NSCLC) is one the types of cancer with higher prevalence and mortality. Apo2-Ligand/TRAIL is a TNF family member able to induce apoptosis in tumor cells but not in normal cells. It has been tested in clinical trials against different types of human cancer including NSCLC. However, results of clinical trials have shown a limited efficacy of TRAIL-based therapies. Recently we have demonstrated that artificial lipid nanoparticles coated with bioactive Apo2L/TRAIL (LUV-TRAIL) greatly improved TRAIL cytotoxic ability being capable of killing chemoresistant hematological cancer cells. In the present work we have extended the study to NSCLC. Methods/patients. LUV-TRAIL-induced cytotoxicity was assessed on different NSCLC cell lines with different sensitivity to soluble TRAIL and on primary human tumor cells from three patients suffering from NSCLC cancer. We also tested LUV-TRAIL-cytotoxic ability in combination with several anti-tumor agents. Results. LUV-TRAIL exhibited a greater cytotoxic effect compared to soluble TRAIL both in A549 cells and primary human NSCLC cells. LUV-TRAIL-induced cell death was dependent on caspase-8 and caspase-3 activation. Moreover, combination of LUV-TRAIL with other anti-tumor agents such as flavopiridol, and SNS-032 clearly enhanced LUV-TRAIL-induced cytotoxicity against NSCLC cancer cells. Conclusion. The novel formulation of TRAIL based on displaying it on the surface of lipid nanoparticles greatly increases its anti-tumor activity and has clinical potential in cancer treatment.

  13. TRAIL-coated lipid-nanoparticles overcome resistance to soluble recombinant TRAIL in non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    De Miguel, Diego; Gallego-Lleyda, Ana; Erviti-Ardanaz, Sandra; Anel, Alberto; Martinez-Lostao, Luis; Ayuso, José María; Fernández, Luis José; Ochoa, Ignacio; Pazo-Cid, Roberto; Del Agua, Celia

    2016-01-01

    Purpose. Non-small cell lung cancer (NSCLC) is one the types of cancer with higher prevalence and mortality. Apo2-Ligand/TRAIL is a TNF family member able to induce apoptosis in tumor cells but not in normal cells. It has been tested in clinical trials against different types of human cancer including NSCLC. However, results of clinical trials have shown a limited efficacy of TRAIL-based therapies. Recently we have demonstrated that artificial lipid nanoparticles coated with bioactive Apo2L/TRAIL (LUV-TRAIL) greatly improved TRAIL cytotoxic ability being capable of killing chemoresistant hematological cancer cells. In the present work we have extended the study to NSCLC. Methods/patients. LUV-TRAIL-induced cytotoxicity was assessed on different NSCLC cell lines with different sensitivity to soluble TRAIL and on primary human tumor cells from three patients suffering from NSCLC cancer. We also tested LUV-TRAIL-cytotoxic ability in combination with several anti-tumor agents. Results. LUV-TRAIL exhibited a greater cytotoxic effect compared to soluble TRAIL both in A549 cells and primary human NSCLC cells. LUV-TRAIL-induced cell death was dependent on caspase-8 and caspase-3 activation. Moreover, combination of LUV-TRAIL with other anti-tumor agents such as flavopiridol, and SNS-032 clearly enhanced LUV-TRAIL-induced cytotoxicity against NSCLC cancer cells. Conclusion. The novel formulation of TRAIL based on displaying it on the surface of lipid nanoparticles greatly increases its anti-tumor activity and has clinical potential in cancer treatment. (paper)

  14. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus

    Science.gov (United States)

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells. PMID:26345201

  15. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus.

    Science.gov (United States)

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.

  16. AZD5438, an Inhibitor of Cdk1, 2, and 9, Enhances the Radiosensitivity of Non-Small Cell Lung Carcinoma Cells

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, Pavithra; Tumati, Vasu; Yu Lan [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Chan, Norman [Departments of Medical Biophysics and Radiation Oncology, Princess Margaret Hospital, University Health Network, University of Toronto, Ontario (Canada); Tomimatsu, Nozomi [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Burma, Sandeep [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Simmons Comprehensive Cancer Center, Dallas, Texas (United States); Bristow, Robert G. [Departments of Medical Biophysics and Radiation Oncology, Princess Margaret Hospital, University Health Network, University of Toronto, Ontario (Canada); Saha, Debabrata, E-mail: debabrata.saha@utsouthwestern.edu [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Simmons Comprehensive Cancer Center, Dallas, Texas (United States)

    2012-11-15

    Purpose: Radiation therapy (RT) is one of the primary modalities for treatment of non-small cell lung cancer (NSCLC). However, due to the intrinsic radiation resistance of these tumors, many patients experience RT failure, which leads to considerable tumor progression including regional lymph node and distant metastasis. This preclinical study evaluated the efficacy of a new-generation cyclin-dependent kinase (Cdk) inhibitor, AZD5438, as a radiosensitizer in several NSCLC models that are specifically resistant to conventional fractionated RT. Methods and Materials: The combined effect of ionizing radiation and AZD5438, a highly specific inhibitor of Cdk1, 2, and 9, was determined in vitro by surviving fraction, cell cycle distribution, apoptosis, DNA double-strand break (DSB) repair, and homologous recombination (HR) assays in 3 NSCLC cell lines (A549, H1299, and H460). For in vivo studies, human xenograft animal models in athymic nude mice were used. Results: Treatment of NSCLC cells with AZD5438 significantly augmented cellular radiosensitivity (dose enhancement ratio rangeing from 1.4 to 1.75). The degree of radiosensitization by AZD5438 was greater in radioresistant cell lines (A549 and H1299). Radiosensitivity was enhanced specifically through inhibition of Cdk1, prolonged G{sub 2}-M arrest, inhibition of HR, delayed DNA DSB repair, and increased apoptosis. Combined treatment with AZD5438 and irradiation also enhanced tumor growth delay, with an enhancement factor ranging from 1.2-1.7. Conclusions: This study supports the evaluation of newer generation Cdk inhibitors, such as AZD5438, as potent radiosensitizers in NSCLC models, especially in tumors that demonstrate variable intrinsic radiation responses.

  17. Novel drug-resistance mechanisms of pemetrexed-treated non-small cell lung cancer.

    Science.gov (United States)

    Tanino, Ryosuke; Tsubata, Yukari; Harashima, Nanae; Harada, Mamoru; Isobe, Takeshi

    2018-03-30

    Pemetrexed (PEM) improves the overall survival of patients with advanced non-small cell lung cancer (NSCLC) when administered as maintenance therapy. However, PEM resistance often appears during the therapy. Although thymidylate synthase is known to be responsible for PEM resistance, no other mechanisms have been investigated in detail. In this study, we explored new drug resistance mechanisms of PEM-treated NSCLC using two combinations of parental and PEM-resistant NSCLC cell lines from PC-9 and A549. PEM increased the apoptosis cells in parental PC-9 and the senescent cells in parental A549. However, such changes were not observed in the respective PEM-resistant cell lines. Quantitative RT-PCR analysis revealed that, besides an increased gene expression of thymidylate synthase in PEM-resistant PC-9 cells, the solute carrier family 19 member1 ( SLC19A1) gene expression was markedly decreased in PEM-resistant A549 cells. The siRNA-mediated knockdown of SLC19A1 endowed the parental cell lines with PEM resistance. Conversely, PEM-resistant PC-9 cells carrying an epidermal growth factor receptor (EGFR) mutation acquired resistance to a tyrosine kinase inhibitor erlotinib. Although erlotinib can inhibit the phosphorylation of EGFR and Erk, it is unable to suppress the phosphorylation of Akt in PEM-resistant PC-9 cells. Additionally, PEM-resistant PC-9 cells were less sensitive to the PI3K inhibitor LY294002 than parental PC-9 cells. These results indicate that SLC19A1 negatively regulates PEM resistance in NSCLC, and that EGFR-tyrosine-kinase-inhibitor resistance was acquired with PEM resistance through Akt activation in NSCLC harboring EGFR mutations.

  18. Nrf2 mediates redox adaptation in NOX4-overexpressed non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qipeng; Yao, Bei; Li, Ning; Ma, Lei; Deng, Yanchao; Yang, Yang; Zeng, Cheng; Yang, Zhicheng [Department of Clinical Pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Liu, Bing, E-mail: liubing520@gdpu.edu.cn [Department of Clinical Pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006 (China)

    2017-03-15

    The redox adaptation mechanisms in cancer cells are very complex and remain largely unclear. Our previous studies have confirmed that NADPH oxidase 4 (NOX4) is abundantly expressed in non-small cell lung cancer (NSCLC) and confers apoptosis resistance on NSCLC cells. However, the comprehensive mechanisms for NOX4-mediated oxidative resistance of cancer cells remain still undentified. The present study found that NOX4-derived H{sub 2}O{sub 2} enhanced the nuclear factor erythroid 2-related factor 2 (Nrf2) stability via disruption of redox-dependent proteasomal degradation and stimulated its activity through activation of PI3K signaling. Specifically, the results showed that ectopic NOX4 expression did not induce apoptosis of A549 cells; however, inhibition of Nrf2 resulted in obvious apoptotic death of NOX4-overexpressed A549 cells, accompanied by a significant increase in H{sub 2}O{sub 2} level and decrease in GSH content. Besides, inhibition of Nrf2 could suppress cell growth and efficiently reverse the enhancement effect of NOX4 on cell growth. The in vivo data confirmed that inhibition of Nrf2 could interfere apoptosis resistance in NOX4-overexpressed A549 tumors and led to cell growth inhibition. In conclusion, these results reveal that Nrf2 is critically involved in redox adaptation regulation in NOX4-overexpressed NSCLC cells. Therefore, NOX4 and Nrf2 may be promising combination targets against malignant progression of NSCLC. - Highlights: • NOX4-derived H{sub 2}O{sub 2} upregulates Nrf2 expression and activity in NSCLC. • Nrf2 confers apoptosis resistance in NOX4-overexpressed NSCLC cells. • Inhibition of Nrf2 reverses the enhancement effect of NOX4 on cell growth.

  19. Nrf2 mediates redox adaptation in NOX4-overexpressed non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Wu, Qipeng; Yao, Bei; Li, Ning; Ma, Lei; Deng, Yanchao; Yang, Yang; Zeng, Cheng; Yang, Zhicheng; Liu, Bing

    2017-01-01

    The redox adaptation mechanisms in cancer cells are very complex and remain largely unclear. Our previous studies have confirmed that NADPH oxidase 4 (NOX4) is abundantly expressed in non-small cell lung cancer (NSCLC) and confers apoptosis resistance on NSCLC cells. However, the comprehensive mechanisms for NOX4-mediated oxidative resistance of cancer cells remain still undentified. The present study found that NOX4-derived H 2 O 2 enhanced the nuclear factor erythroid 2-related factor 2 (Nrf2) stability via disruption of redox-dependent proteasomal degradation and stimulated its activity through activation of PI3K signaling. Specifically, the results showed that ectopic NOX4 expression did not induce apoptosis of A549 cells; however, inhibition of Nrf2 resulted in obvious apoptotic death of NOX4-overexpressed A549 cells, accompanied by a significant increase in H 2 O 2 level and decrease in GSH content. Besides, inhibition of Nrf2 could suppress cell growth and efficiently reverse the enhancement effect of NOX4 on cell growth. The in vivo data confirmed that inhibition of Nrf2 could interfere apoptosis resistance in NOX4-overexpressed A549 tumors and led to cell growth inhibition. In conclusion, these results reveal that Nrf2 is critically involved in redox adaptation regulation in NOX4-overexpressed NSCLC cells. Therefore, NOX4 and Nrf2 may be promising combination targets against malignant progression of NSCLC. - Highlights: • NOX4-derived H 2 O 2 upregulates Nrf2 expression and activity in NSCLC. • Nrf2 confers apoptosis resistance in NOX4-overexpressed NSCLC cells. • Inhibition of Nrf2 reverses the enhancement effect of NOX4 on cell growth.

  20. Silencing of TGIF attenuates the tumorigenicity of A549 cells in vitro and in vivo.

    Science.gov (United States)

    Wang, Yadong; Pan, Teng; Wang, Haiyu; Li, Li; Li, Jiangmin; Zhang, Congke; Yang, Haiyan

    2016-09-01

    The aim of this study was to investigate the effects of the silencing of the TG-interacting factor (TGIF) on the tumorigenicity of A549 cells in vitro and in vivo. Stable TGIF-silenced A549 cells were established by infecting shRNA lentiviral particles. Western blotting analysis was used to detect the expression of proteins. Cell cycle was detected by flow cytometry. Soft agar assay and tumor formation assay in nude mice were applied. The silencing of TGIF inhibited A549 cell proliferation, colony formation in vitro, growth of tumor xenograft in vivo, and arrested the cell cycle in the G1 phase. The expression of CDK4, cyclin D1, and phospho-Rb was markedly decreased in the A549-shTGIF cells compared with the A549-shcon cells, and p21 was markedly increased in the A549-shTGIF cells compared with the A549-shcon cells. A lower level of β-Catenin protein expression was observed in the A549-shTGIF cells than that in the A549-shcon cells. The silencing of TGIF attenuates the tumorigenicity of A549 cells in vitro and in vivo.

  1. Clinical Translation and Validation of a Predictive Biomarker for Patritumab, an Anti-human Epidermal Growth Factor Receptor 3 (HER3) Monoclonal Antibody, in Patients With Advanced Non-small Cell Lung Cancer.

    Science.gov (United States)

    Mendell, Jeanne; Freeman, Daniel J; Feng, Wenqin; Hettmann, Thore; Schneider, Matthias; Blum, Sabine; Ruhe, Jens; Bange, Johannes; Nakamaru, Kenji; Chen, Shuquan; Tsuchihashi, Zenta; von Pawel, Joachim; Copigneaux, Catherine; Beckman, Robert A

    2015-03-01

    During early clinical development, prospective identification of a predictive biomarker and validation of an assay method may not always be feasible. Dichotomizing a continuous biomarker measure to classify responders also leads to challenges. We present a case study of a prospective-retrospective approach for a continuous biomarker identified after patient enrollment but defined prospectively before the unblinding of data. An analysis of the strengths and weaknesses of this approach and the challenges encountered in its practical application are also provided. HERALD (NCT02134015) was a double-blind, phase 2 study in patients with non-small cell lung cancer (NSCLC) randomized to erlotinib with placebo or with high or low doses of patritumab, a monoclonal antibody targeted against human epidermal growth factor receptor 3 (HER3). While the primary objective was to assess safety and progression-free survival (PFS), a secondary objective was to determine a single predictive biomarker hypothesis to identify subjects most likely to benefit from the addition of patritumab. Although not identified as the primary biomarker in the study protocol, on the basis of preclinical results from 2 independent laboratories, expression levels of the HER3 ligand heregulin (HRG) were prospectively declared the predictive biomarker before data unblinding but after subject enrollment. An assay to measure HRG mRNA was developed and validated. Other biomarkers, such as epidermal growth factor receptor (EGFR) mutation status, were also evaluated in an exploratory fashion. The cutoff value for high vs. low HRG mRNA levels was set at the median delta threshold cycle. A maximum likelihood analysis was performed to evaluate the provisional cutoff. The relationship of HRG values to PFS hazard ratios (HRs) was assessed as a measure of internal validation. Additional NSCLC samples were analyzed to characterize HRG mRNA distribution. The subgroup of patients with high HRG mRNA levels ("HRG

  2. [Knockdown of SIRT1 enhances the sensitivity to cisplatin by inhibiting autophagy in A549 cells].

    Science.gov (United States)

    Peng, Wenhong; Mei, Chunxia; Wang, Bing; Liang, Zhengmin

    2017-12-01

    Objective To inhibit cisplatin-induced autophagy and improve the cisplatin sensitivity of A549 cells by knockdown the silent information regulator of transcription 1 (SIRT1). Methods Both mRNA and protein levels of SIRT1 in BEAS-2B, A549 and A549/DDP cells were detected by real-time quantitative PCR and Western blotting. After cisplatin treatment, the protein levels of SIRT1, LC3, P62 and beclin-1 in A549 cells were detected by Western blotting. A549 cells were transfected by siRNA to silence SIRT1 expression. Then, the apoptotic morphology was observed by fluorescence microscopy with Hoechst33258 staining. The apoptotic rate was analyzed by flow cytometry. The expressions of SIRT1, LC3, P62, cleaved caspase-3 and poly(ADP-ribose)polymerase (PARP) were measured by Western blotting. Results Both mRNA and protein levels of SIRT1 in A549 cells and A549/DDP cells were significantly higher than those in BEAS-2B cells, and they were higher in A549/DDP cells than in A549 cells. After cisplatin treatment, the protein levels of SIRT1, LC3 and beclin-1 in A549 cells increased, while P62 decreased. After transfected with SIRT1-siRNA, the expression of SIRT1 in A549 cells decreased. Compared with cisplatin group, the number of the apoptotic cells increased with the obvious occurrence of pyknosis and nuclear fragmentation in cisplatin plus SIRT1-siRNA group. Moreover, the expressions of P62, cleaved caspase-3 and PARP were up-regulated accompanied with LC3 decrease. Conclusion SIRT1 is highly expressed in A549 cells. The sensitivity of A549 cells to cisplatin can be improved by inhibiting the cisplatin-induced autophagy through knockdown of SIRT1.

  3. Cytotoxicity of semiconductor nanoparticles in A549 cells is attributable to their intrinsic oxidant activity

    Science.gov (United States)

    Escamilla-Rivera, Vicente; Uribe-Ramirez, Marisela; Gonzalez-Pozos, Sirenia; Velumani, Subramaniam; Arreola-Mendoza, Laura; De Vizcaya-Ruiz, Andrea

    2016-04-01

    Copper indium gallium diselenide (CIGS) and cadmium sulfide (CdS) nanoparticles (NP) are next generation semiconductors used in photovoltaic cells (PV). They possess high quantum efficiency, absorption coefficient, and cheaper manufacturing costs compared to silicon. Due to their potential for an industrial development and the lack of information about the risk associated in their use, we investigated the influence of the physicochemical characteristics of CIGS (9 nm) and CdS (20 nm) in relation to the induction of cytotoxicity in human alveolar A549 cells through ROS generation and mitochondrial dysfunction. CIGS induced cytotoxicity in a dose dependent manner in lower concentrations than CdS; both NP were able to induce ROS in A549. Moreover, CIGS interact directly with mitochondria inducing depolarization that leads to the induction of apoptosis compared to CdS. Antioxidant pretreatment significantly prevented the loss of mitochondrial membrane potential and cytotoxicity, suggesting ROS generation as the main cytotoxic mechanism. These results demonstrate that semiconductor characteristics of NP are crucial for the type and intensity of the cytotoxic effects. Our work provides relevant information that may help guide the production of a safer NP-based PV technologies, and would be a valuable resource on future risk assessment for a safer use of nanotechnology in the development of clean sources of renewable energy.

  4. Cytotoxicity of semiconductor nanoparticles in A549 cells is attributable to their intrinsic oxidant activity

    Energy Technology Data Exchange (ETDEWEB)

    Escamilla-Rivera, Vicente; Uribe-Ramirez, Marisela [Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Departamento de Toxicología (Mexico); Gonzalez-Pozos, Sirenia [CINVESTAV-IPN, Unidad de Microscopia Electrónica (LaNSE) (Mexico); Velumani, Subramaniam [CINVESTAV-IPN, Departamento de Ingeniería Eléctrica (Mexico); Arreola-Mendoza, Laura [Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo del Instituto Politécnico Nacional (CIIEMAD-IPN), Departamento de Biociencias e Ingeniería (Mexico); Vizcaya-Ruiz, Andrea De, E-mail: avizcaya@cinvestav.mx [Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Departamento de Toxicología (Mexico)

    2016-04-15

    Copper indium gallium diselenide (CIGS) and cadmium sulfide (CdS) nanoparticles (NP) are next generation semiconductors used in photovoltaic cells (PV). They possess high quantum efficiency, absorption coefficient, and cheaper manufacturing costs compared to silicon. Due to their potential for an industrial development and the lack of information about the risk associated in their use, we investigated the influence of the physicochemical characteristics of CIGS (9 nm) and CdS (20 nm) in relation to the induction of cytotoxicity in human alveolar A549 cells through ROS generation and mitochondrial dysfunction. CIGS induced cytotoxicity in a dose dependent manner in lower concentrations than CdS; both NP were able to induce ROS in A549. Moreover, CIGS interact directly with mitochondria inducing depolarization that leads to the induction of apoptosis compared to CdS. Antioxidant pretreatment significantly prevented the loss of mitochondrial membrane potential and cytotoxicity, suggesting ROS generation as the main cytotoxic mechanism. These results demonstrate that semiconductor characteristics of NP are crucial for the type and intensity of the cytotoxic effects. Our work provides relevant information that may help guide the production of a safer NP-based PV technologies, and would be a valuable resource on future risk assessment for a safer use of nanotechnology in the development of clean sources of renewable energy.

  5. High-throughput quantitative proteomic analysis of dengue virus type 2 infected A549 cells.

    Directory of Open Access Journals (Sweden)

    Han-Chen Chiu

    Full Text Available Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC in combination with high-throughput mass spectrometry (MS. Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection.

  6. Gefitinib in Non Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Raffaele Costanzo

    2011-01-01

    Full Text Available Gefitinib is an oral, reversible, tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR that plays a key role in the biology of non small cell lung cancer (NSCLC. Phase I studies indicated that the recommended dose of gefitinib was 250 mg/day. Rash, diarrhea, and nausea were the most common adverse events. The positive results obtained in early phase 2 clinical trials with gefitinib were not confirmed in large phase 3 trials in unselected patients with advanced NSCLC. The subsequent discovery that the presence of somatic mutations in the kinase domain of EGFR strongly correlates with increased responsiveness to EGFR tyrosine kinase inhibitors prompted phase 2 and 3 trials with gefitinib in the first line-treatment of EGFR-mutated NSCLC. The results of these trials have demonstrated the efficacy of gefitinib that can be now considered as the standard first-line treatment of patients with advanced NSCLC harbouring activating EGFR mutations.

  7. Potent proapoptotic actions of dihydroartemisinin in gemcitabine-resistant A549 cells.

    Science.gov (United States)

    Zhao, Chubiao; Qin, Guiqi; Gao, Weijie; Chen, Jingqin; Liu, Hongyu; Xi, Gaina; Li, Tan; Wu, Shengnan; Chen, Tongsheng

    2014-10-01

    Our recent studies have demonstrated the key roles of reactive oxygen species (ROS)-mediated caspase-8- and Bax-dependent apoptotic pathways in dihydroartemisinin (DHA)-induced apoptosis of A549 cells. This report is designed to investigate the proapoptotic mechanisms of DHA in gemcitabine (Gem)-resistant A549 (A549GR) cells. A549GR cells exhibited lower basal antioxidant capacity, higher level of basal ROS and intracellular Fe(2+) than Gem-sensitive A549 (A549) cells. In contrast to the sluggish ROS generation induced by Gem, DHA induced a rapid ROS generation within 30min. Moreover, Gem induced similar ROS generation in both cell lines, while DHA induced more ROS generation in A549GR cells than in A549 cells. More importantly, after treatment with DHA, A549GR cells showed more potent induction in Bax activation, loss of mitochondrial membrane potential (ΔΨm), caspase activation and apoptosis than A549 cells. Furthermore, NAC pretreatment potently prevented DHA-induced ROS generation and loss of ΔΨm as well as apoptosis, and silencing Bax by shRNA or inhibition of one of caspase-3, -8 and -9 also significantly prevented DHA-induced apoptosis in both cell lines, indicating the key roles of ROS and Bax as well as the caspases. Collectively, DHA presents more potent proapoptotic actions in A549GR cells preferentially over normal A549 cells via ROS-dependent apoptotic pathway, in which Bax and caspases are involved. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. High throughput determination of TGFβ1/SMAD3 targets in A549 lung epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yingze Zhang

    Full Text Available BACKGROUND: Transforming growth factor beta 1 (TGFβ1 plays a major role in many lung diseases including lung cancer, pulmonary hypertension, and pulmonary fibrosis. TGFβ1 activates a signal transduction cascade that results in the transcriptional regulation of genes in the nucleus, primarily through the DNA-binding transcription factor SMAD3. The objective of this study is to identify genome-wide scale map of SMAD3 binding targets and the molecular pathways and networks affected by the TGFβ1/SMAD3 signaling in lung epithelial cells. METHODOLOGY: We combined chromatin immunoprecipitation with human promoter region microarrays (ChIP-on-chip along with gene expression microarrays to study global transcriptional regulation of the TGFβ1/SMAD3 pathway in human A549 alveolar epithelial cells. The molecular pathways and networks associated with TGFβ1/SMAD3 signaling were identified using computational approaches. Validation of selected target gene expression and direct binding of SMAD3 to promoters were performed by quantitative real time RT-PCR and electrophoretic mobility shift assay on A549 and human primary lung epithelial cells. RESULTS AND CONCLUSIONS: Known TGFβ1 target genes such as SERPINE1, SMAD6, SMAD7, TGFB1 and LTBP3, were found in both ChIP-on-chip and gene expression analyses as well as some previously unrecognized targets such as FOXA2. SMAD3 binding of FOXA2 promoter and changed expression were confirmed. Computational approaches combining ChIP-on-chip and gene expression microarray revealed multiple target molecular pathways affected by the TGFβ1/SMAD3 signaling. Identification of global targets and molecular pathways and networks associated with TGFβ1/SMAD3 signaling allow for a better understanding of the mechanisms that determine epithelial cell phenotypes in fibrogenesis and carcinogenesis as does the discovery of the direct effect of TGFβ1 on FOXA2.

  9. Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer

    Directory of Open Access Journals (Sweden)

    Khan M

    2016-03-01

    Full Text Available Merajuddin Khan,1 Mujeeb Khan,1 Abdulhadi H Al-Marri,1 Abdulrahman Al-Warthan,1 Hamad Z Alkhathlan,1 Mohammed Rafiq H Siddiqui,1 Vadithe Lakshma Nayak,2 Ahmed Kamal,2 Syed F Adil1 1Department of Chemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia; 2Department of Medicinal Chemistry and Pharmacology, CSIR – Indian Institute of Chemical Technology, Hyderabad, India Abstract: Recently, graphene and graphene-based materials have been increasingly used for various biological applications due to their extraordinary physicochemical properties. Here, we demonstrate the anticancer properties and apoptosis-inducing ability of silver doped highly reduced graphene oxide nanocomposites synthesized by employing green approach. These nano­composites (PGE-HRG-Ag were synthesized by using Pulicaria glutinosa extract (PGE as a reducing agent and were evaluated for their anticancer properties against various human cancer cell lines with tamoxifen as the reference drug. A correlation between the amount of Ag nanoparticles on the surface of highly reduced graphene oxide (HRG and the anticancer activity of nanocomposite was observed, wherein an increase in the concentration of Ag nanoparticles on the surface of HRG led to the enhanced anticancer activity of the nanocomposite. The nanocomposite PGE-HRG-Ag-2 exhibited more potent cytotoxicity than standard drug in A549 cells, a human lung cancer cell line. A detailed investigation was undertaken and Fluorescence activated cell sorting (FACS analysis demonstrated that the nanocomposite PGE-HRG-Ag-2 showed G0/G1 phase cell cycle arrest and induced apoptosis in A549 cells. Studies such as, measurement of mitochondrial membrane potential, generation of reactive oxygen species (ROS and Annexin V-FITC staining assay suggested that this compound induced apoptosis in human lung cancer cells. Keywords: plant extract, graphene/silver nanocomposites, anticancer, apoptosis

  10. Cytotoxicity and gene array analysis of alveolar epithelial A549 cells exposed to paraquat.

    Science.gov (United States)

    Mitsopoulos, Panagiotis; Suntres, Zacharias E

    2010-12-05

    Paraquat (PQ), a commonly used herbicide, is highly toxic to humans and animals. The primary injury occurs in the lung, where PQ is actively taken up by alveolar epithelial cells and consequently produces damaging reactive oxygen species (ROS) via redox cycling. ROS have also been shown to induce expression of several early response genes and to activate transcription factors, which may contribute to the inflammatory response associated with PQ injury. In order to further elucidate the mechanism(s) of PQ injury, we investigated its effects on the cellular status and gene expression profile of immortalized human alveolar epithelial A549 cells in vitro. Incubation of cells with PQ resulted in concentration- and time-dependent PQ uptake, which correlated with increases in intracellular ROS levels and decreases in intracellular glutathione content, mitochondrial membrane potential, and cell viability. Gene array analysis showed differential expression in response to PQ exposure over time, particularly increases in: (i) the expression of growth arrest and cell cycle-related genes (e.g. CDKN1A, DDIT3 GADD45A, GDF15, MDM2, EGR1, CASP10, CASP8) and (ii) the expression of pro-inflammatory genes (e.g. IL1A, IL6, IL18, NFKB1, SERPINE1), which correlated with increases in the secretion of pro-inflammatory cytokines (e.g. IL-8, IL-6). These data suggest that uptake of PQ by A549 cells altered the cellular redox status and the expression of several early response genes, including the inflammatory response, all of which might contribute to the overall cytotoxicity of PQ. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. miR-126 inhibits non-small cell lung cancer cells proliferation by targeting EGFL7

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yanqin; Bai, Yifeng; Zhang, Fan; Wang, Yu [Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Guo, Ying, E-mail: guohanjing001@163.com [Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Guo, Linlang, E-mail: linlangg@yahoo.com [Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou (China)

    2010-01-15

    MicroRNAs (miRNAs) represent an abundant group of small non-coding RNAs that regulate gene expression, and have been demonstrated to play roles as tumor suppressor genes (oncogenes), and affect homeostatic processes such as development, cell proliferation, and cell death. Subsequently, epidermal growth factor-like domain 7 (EGFL7), which is confirmed to be involved in cellular responses such as cell migration and blood vessel formation, is identified as a potential miR-126 target by bioinformatics. However, there is still no evidence showing EGFL7's relationship with miR-126 and the proliferation of lung cancer cells. The aim of this work is to investigate whether miR-126, together with EGFL7, have an effect on non-small cell lung cancer (NSCLC) cells' proliferation. Therefore, we constructed overexpressed miR-126 plasmid to target EGFL7 and transfected them into NSCLC cell line A549 cells. Then, we used methods like quantitative RT-PCR, Western blot, flow cytometry assay, and immunohistochemistry staining to confirm our findings. The result was that overexpression of miR-126 in A549 cells could increase EGFL7 expression. Furthermore, the most notable finding by cell proliferation related assays is that miR-126 can inhibit A549 cells proliferation in vitro and inhibit tumor growth in vivo by targeting EGFL7. As a result, our study demonstrates that miR-126 can inhibit proliferation of non-small cell lung cancer cells through one of its targets, EGFL7.

  12. MicroRNA-223 Promotes Tumor Progression in Lung Cancer A549 Cells via Activation of the NF-κB Signaling Pathway.

    Science.gov (United States)

    Huang, Li; Li, Fang; Deng, Pengbo; Hu, Chengping

    2016-10-27

    Our study aimed to investigate the role of microRNA-223 (miR-223) in lung cancer A549 cells and to further elucidate its possible regulatory mechanism. The expression levels of normal human lung epithelial cell line BEAS-2B and human lung cancer cell line A549 were investigated by quantitative real-time PCR. The A549 cells were transfected with miR-223 inhibitor and miR-223 scramble. Afterward, the effects of miR-223 inhibition on cell viability, invasion, and apoptosis, as well as the expression levels of nuclear factor-κB (NF-κB) and its downstream proteins, were detected. In addition, the NF-κB inhibitor JSH-23 was used to detect the relationship between NF-κB and miR-223. miR-223 was upregulated in human lung cancer A549 cells when compared with BEAS-2B cells. In addition, miR-223 expression was successfully inhibited by the miR-223 inhibitor. Suppression of miR-223 significantly decreased cell viability, inhibited invasion, and induced apoptosis of lung cancer A549 cells. Suppression of miR-223 resulted in a significant decrease in the expression levels of NF-κB and its downstream proteins P-IKBα and P-IKKα/β. After treatment with the NF-κB inhibitor, the inhibitory effects of miR-233 inhibitor on cell invasion, as well as the expression levels of NF-κB and p-p65, were enhanced. Our findings indicate that miR-223 may increase proliferation, promote invasion, and inhibit apoptosis of lung cancer A549 cells via activation of the NF-κB signaling pathway. miR-223 may serve as a potential therapeutic target in lung cancer.

  13. Interaction of airway epithelial cells (A549) with spores and mycelium of Aspergillus fumigatus

    NARCIS (Netherlands)

    Zhang, ZH; Liu, RY; Noordhoek, JA; Kauffman, HF

    2005-01-01

    Objective. To study the interaction of airway epithelial cell line A549 with fragments of mycelium, spores of Aspergitlus fumigatus in vitro and to determine if toll-like receptors (TLRs) are involved in the process. Methods. A549 cells were exposed to fragments of A. fumigatus mycelium, zymosan and

  14. KDR gene silencing inhibits proliferation of A549 cells and enhances their sensitivity to docetaxel.

    Science.gov (United States)

    Wei, R; Zang, J-P

    2015-11-23

    We investigated the effects of kinase-domain insert containing receptor (KDR) gene silencing on the proliferation of A549 cells and their sensitivity to docetaxel. After designing and synthesizing the KDR siRNA sequence, the sequence was transfected into A549 cells using Lipofectamine 2000. The expression of KDR mRNA and protein after KDR gene silencing was detected by reverse transcription-polymerase chain reaction and western blotting; A549 cell cycle was detected by flow cytometry. An MTT assay and colony formation was performed to determine the sensitivity of A549 cells to docetaxel after KDR gene silencing. After 48-h KDR gene silencing, KDR gene and protein expression significantly decreased (P A549 cell cycle was significantly arrested in G0/G1 phase, and the number of cells in S phase was reduced; the difference was statistically significant (P A549 cells to docetaxel showed a significant enhancement (P A549 cells, inhibit the proliferation of A549 cells, and enhance their sensitivity to docetaxel.

  15. Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells.

    Science.gov (United States)

    Chen, Bo; Tan, Yaoxi; Liang, Yan; Li, Yan; Chen, Lei; Wu, Shuangshuang; Xu, Wei; Wang, Yan; Zhao, Weihong; Wu, Jianqing

    2017-01-01

    Period2 (Per2) is a key mammalian circadian clock protein, and additionally has a tumor suppressive function. The present study aimed to investigate its role in drug resistance in A549/cisplatin (DDP) lung adenocarcinoma cells. Per2 knockdown and overexpression in A549/DDP cells were used to compare cell proliferation (by MTT assay), apoptosis (active-caspase 3 western blot) and clone forming assay. The activation of AKT/mechanistic target of rapamycin (mTOR) was investigated by a western blot assay. The Per2 expression level was decreased in A549/DDP cells compared with A549 cells. Per2 knockdown by short hairpin RNA protects A549/DDP cells from apoptosis, and promotes proliferation and migration. Per2 knockdown results in increased activation of the phosphoinositide 3-kinase (PI3K)/AKT/mTOR signaling pathway. Overexpression of Per2 in A549/DDP cells may reduce the activity of the PI3K/AKT/mTOR signaling pathway, and promote apoptosis of A549 cells. The results of the present study suggest that Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells.

  16. MicroRNA-146 protects A549 and H1975 cells from LPS-induced ...

    Indian Academy of Sciences (India)

    The presentstudy explored the protective effects of miR-146 overexpression on lipopolysaccharide (LPS)-mediated injury in A549 andH1975 cells. In this study, A549 and H1975 cells were transfected with miR-146 mimic or inhibitor, and then weresubjected with LPS. Thereafter, cell viability, colony formation capacity, ...

  17. Overexpression of miR-30a in lung adenocarcinoma A549 cell line inhibits migration and invasion via targeting EYA2

    Science.gov (United States)

    Yuan, Yuncang; Zheng, Shangyong; Li, Qian; Xiang, Xudong; Gao, Tangxin; Ran, Pengzhan; Sun, Lijuan; Huang, Qionglin; Xie, Fei; Du, Jing; Xiao, Chunjie

    2016-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs and closely related to the pathogenesis of cancers. Increasing evidence indicates that miR-30a plays a profound role during the development of cancers. However, the functions of miR-30a in non-small-cell lung cancer (NSCLC) are still ambiguous. Here we found that miR-30a was decreased in lung adenocarcinoma A549 cells and in tissue samples from 14 patients by qRT-PCR, and also found that overexpression of miR-30a in A549 cells inhibited migration and invasion but not cell proliferation and cell cycle progression by wound-healing assay, matrigel invasion assay, MTS-based cell proliferation assay, and flow cytometry-based cell cycle analysis, respectively. We further explored the potential mechanism of miR-30a-mediated gene regulation in lung adenocarcinoma cell lines. EYA2 is a predicted target of miR-30a, and it has been found that EYA2 expression is inhibited by miR-30a in breast cancer cells. We demonstrated that EYA2 is a direct target of miR-30a by using the dual-luciferase reporter assay in A549 cells and showed that EYA2 protein levels are inversely correlated with miR-30a expression in A549 and BEAS-2B cells. In addition, we also confirmed the rescue effects of EYA2 overexpression in A549 cells by cotransfection with EYA2 expression vector and miR-30a mimics. Taken together, our results demonstrate that overexpression of miR-30a in lung adenocarcinoma A549 cells can inhibit cell migration and invasion, which is partially attributed to the decrease of EYA2 expression. Our findings suggest that miR-30a may be used as a new potential target for the treatment of lung adenocarcinoma in the future. PMID:26837415

  18. Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest

    Science.gov (United States)

    Kalayda, Ganna V.; Mannewitz, Mareike; Cinatl, Jindrich; Rothweiler, Florian; Michaelis, Martin; Saafan, Hisham; Ritter, Christoph A.; Jaehde, Ulrich

    2017-01-01

    The efficacy of cisplatin-based chemotherapy in cancer is limited by the occurrence of innate and acquired drug resistance. In order to better understand the mechanisms underlying acquired cisplatin resistance, we have compared the adenocarcinoma-derived non-small cell lung cancer (NSCLC) cell line A549 and its cisplatin-resistant sub-line A549rCDDP2000 with regard to cisplatin resistance mechanisms including cellular platinum accumulation, DNA-adduct formation, cell cycle alterations, apoptosis induction and activation of key players of DNA damage response. In A549rCDDP2000 cells, a cisplatin-induced G2/M cell cycle arrest was lacking and apoptosis was reduced compared to A549 cells, although equitoxic cisplatin concentrations resulted in comparable platinum-DNA adduct levels. These differences were accompanied by changes in the expression of proteins involved in DNA damage response. In A549 cells, cisplatin exposure led to a significantly higher expression of genes coding for proteins mediating G2/M arrest and apoptosis (mouse double minute 2 homolog (MDM2), xeroderma pigmentosum complementation group C (XPC), stress inducible protein (SIP) and p21) compared to resistant cells. This was underlined by significantly higher protein levels of phosphorylated Ataxia telangiectasia mutated (pAtm) and p53 in A549 cells compared to their respective untreated control. The results were compiled in a preliminary model of resistance-associated signaling alterations. In conclusion, these findings suggest that acquired resistance of NSCLC cells against cisplatin is the consequence of altered signaling leading to reduced G2/M cell cycle arrest and apoptosis. PMID:28746345

  19. Fibroblast α11β1 Integrin Regulates Tensional Homeostasis in Fibroblast/A549 Carcinoma Heterospheroids

    Science.gov (United States)

    Lu, Ning; Karlsen, Tine V.; Reed, Rolf K.; Kusche-Gullberg, Marion; Gullberg, Donald

    2014-01-01

    We have previously shown that fibroblast expression of α11β1 integrin stimulates A549 carcinoma cell growth in a xenograft tumor model. To understand the molecular mechanisms whereby a collagen receptor on fibroblast can regulate tumor growth we have used a 3D heterospheroid system composed of A549 tumor cells and fibroblasts without (α11+/+) or with a deletion (α11-/-) in integrin α11 gene. Our data show that α11-/-/A549 spheroids are larger than α11+/+/A549 spheroids, and that A549 cell number, cell migration and cell invasion in a collagen I gel are decreased in α11-/-/A549 spheroids. Gene expression profiling of differentially expressed genes in fibroblast/A549 spheroids identified CXCL5 as one molecule down-regulated in A549 cells in the absence of α11 on the fibroblasts. Blocking CXCL5 function with the CXCR2 inhibitor SB225002 reduced cell proliferation and cell migration of A549 cells within spheroids, demonstrating that the fibroblast integrin α11β1 in a 3D heterospheroid context affects carcinoma cell growth and invasion by stimulating autocrine secretion of CXCL5. We furthermore suggest that fibroblast α11β1 in fibroblast/A549 spheroids regulates interstitial fluid pressure by compacting the collagen matrix, in turn implying a role for stromal collagen receptors in regulating tensional hemostasis in tumors. In summary, blocking stromal α11β1 integrin function might thus be a stroma-targeted therapeutic strategy to increase the efficacy of chemotherapy. PMID:25076207

  20. Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins.

    Science.gov (United States)

    Zuchowska, Agnieszka; Kwiatkowski, Piotr; Jastrzebska, Elzbieta; Chudy, Michal; Dybko, Artur; Brzozka, Zbigniew

    2016-02-01

    PDMS is a very popular material used for fabrication of Lab-on-a-Chip systems for biological applications. Although PDMS has numerous advantages, it is a highly hydrophobic material, which inhibits adhesion and proliferation of the cells. PDMS surface modifications are used to enrich growth of the cells. However, due to the fact that each cell type has specific adhesion, it is necessary to optimize the parameters of these modifications. In this paper, we present an investigation of normal (MRC-5) and carcinoma (A549) human lung cell adhesion and proliferation on modified PDMS surfaces. We have chosen these cell types because often they are used as models for basic cancer research. To the best of our knowledge, this is the first presentation of this type of investigation. The combination of a gas-phase processing (oxygen plasma or ultraviolet irradiation) and wet chemical methods based on proteins' adsorption was used in our experiments. Different proteins such as poly-l-lysine, fibronectin, laminin, gelatin, and collagen were incubated with the activated PDMS samples. To compare with other works, here, we also examined how ratio of prepolymer to curing agent (5:1, 10:1, and 20:1) influences PDMS hydrophilicity during further modifications. The highest adhesion of the tested cells was observed for the usage of collagen, regardless of PDMS ratio. However, the MRC-5 cell line demonstrated better adhesion than A549 cells. This is probably due to the difference in their morphology and type (normal/cancer). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A genome-wide siRNA screen for regulators of tumor suppressor p53 activity in human non-small cell lung cancer cells identifies components of the RNA splicing machinery as targets for anticancer treatment.

    Science.gov (United States)

    Siebring-van Olst, Ellen; Blijlevens, Maxime; de Menezes, Renee X; van der Meulen-Muileman, Ida H; Smit, Egbert F; van Beusechem, Victor W

    2017-05-01

    Reinstating wild-type tumor suppressor p53 activity could be a valuable option for the treatment of cancer. To contribute to development of new treatment options for non-small cell lung cancer (NSCLC), we performed genome-wide siRNA screens for determinants of p53 activity in NSCLC cells. We identified many genes not previously known to be involved in regulating p53 activity. Silencing p53 pathway inhibitor genes was associated with loss of cell viability. The largest functional gene cluster influencing p53 activity was mRNA splicing. Prominent p53 activation was observed upon silencing of specific spliceosome components, rather than by general inhibition of the spliceosome. Ten genes were validated as inhibitors of p53 activity in multiple NSCLC cell lines: genes encoding the Ras pathway activator SOS1, the zinc finger protein TSHZ3, the mitochondrial membrane protein COX16, and the spliceosome components SNRPD3, SF3A3, SF3B1, SF3B6, XAB2, CWC22, and HNRNPL. Silencing these genes generally increased p53 levels, with distinct effects on CDKN1A expression, induction of cell cycle arrest and cell death. Silencing spliceosome components was associated with alternative splicing of MDM4 mRNA, which could contribute to activation of p53. In addition, silencing splice factors was particularly effective in killing NSCLC cells, albeit in a p53-independent manner. Interestingly, silencing SNRPD3 and SF3A3 exerted much stronger cytotoxicity to NSCLC cells than to lung fibroblasts, suggesting that these genes could represent useful therapeutic targets. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  2. Hu-antigen receptor (HuR) and cyclooxygenase-2 (COX-2) expression in human non-small-cell lung carcinoma: associations with clinicopathological parameters, tumor proliferative capacity and patients' survival.

    Science.gov (United States)

    Giaginis, Constantinos; Alexandrou, Paraskevi; Tsoukalas, Nikolaos; Sfiniadakis, Ioannis; Kavantzas, Nikolaos; Agapitos, Emmanuel; Patsouris, Efstratios; Theocharis, Stamatios

    2015-01-01

    Hu-antigen R (HuR) is considered to play a central role in tumor formation, growth, and metastasis by binding to messenger RNAs (mRNAs) encoding proteins such as cyclooxygenase-2 (COX-2) and inducing their expression via mRNA stabilization and/or altered translation. The present study aimed to evaluate the clinical significance of HuR and COX-2 protein expression in non-small-cell lung carcinoma (NSCLC). HuR and COX-2 expression was assessed immunohistochemically on tissue microarrays of 81 surgically resected NSCLC and was analyzed in relation with clinicopathological characteristics and patients' survival. Enhanced total HuR expression was significantly associated with tumor histological type and presence of lymph node metastases, as well as with increased tumor proliferative capacity and poor patients' outcome (p = 0.039, p = 0.017, p = 0.033, and p = 0.022, respectively). Enhanced COX-2 expression was significantly associated with the presence of lymphovascular invasion and increased tumor proliferative capacity (p = 0.031 and p = 0.023, respectively). Concomitant elevated HuR/COX-2 expression levels were significantly associated with tumor histological type and increased proliferative capacity (p = 0.002 and p = 0.045, respectively). Enhanced total HuR expression, as well as its cytoplasmic localization, was significantly associated with increased COX-2 expression (p = 0.015 and p = 0.001, respectively). The present study supported evidence that HuR may participate in malignant transformation of NSCLC, reinforcing its usefulness as potential therapeutic target in this type of neoplasia.

  3. Tanshinone IIA combined with adriamycin inhibited malignant biological behaviors of NSCLC A549 cell line in a synergistic way.

    Science.gov (United States)

    Xie, Jun; Liu, Jia-Hui; Liu, Heng; Liao, Xiao-Zhong; Chen, Yuling; Lin, Mei-Gui; Gu, Yue-Yu; Liu, Tao-Li; Wang, Dong-Mei; Ge, Hui; Mo, Sui-Lin

    2016-11-18

    The study was designed to develop a platform to verify whether the extract of herbs combined with chemotherapy drugs play a synergistic role in anti-tumor effects, and to provide experimental evidence and theoretical reference for finding new effective sensitizers. Inhibition of tanshinone IIA and adriamycin on the proliferation of A549, PC9 and HLF cells were assessed by CCK8 assays. The combination index (CI) was calculated with the Chou-Talalay method, based on the median-effect principle. Migration and invasion ability of A549 cells were determined by wound healing assay and transwell assay. Flow cytometry was used to detect the cell apoptosis and the distribution of cell cycles. TUNEL staining was used to detect the apoptotic cells. Immunofluorescence staining was used to detect the expression of Cleaved Caspase-3. Western blotting was used to detect the proteins expression of relative apoptotic signal pathways. CDOCKER module in DS 2.5 was used to detect the binding modes of the drugs and the proteins. Both tanshinone IIA and adriamycin could inhibit the growth of A549, PC9, and HLF cells in a dose- and time-dependent manner, while the proliferative inhibition effect of tanshinone IIA on cells was much weaker than that of adriamycin. Different from the cancer cells, HLF cells displayed a stronger sensitivity to adriamycin, and a weaker sensitivity to tanshinone IIA. When tanshinone IIA combined with adriamycin at a ratio of 20:1, they exhibited a synergistic anti-proliferation effect on A549 and PC9 cells, but not in HLF cells. Tanshinone IIA combined with adriamycin could synergistically inhibit migration, induce apoptosis and arrest cell cycle at the S and G2 phases in A549 cells. Both groups of the single drug treatment and the drug combination up-regulated the expressions of Cleaved Caspase-3 and Bax, but down-regulated the expressions of VEGF, VEGFR2, p-PI3K, p-Akt, Bcl-2, and Caspase-3 protein. Compared with the single drug treatment groups, the drug

  4. β-Escin sodium inhibits inducible nitric oxide synthase expression via downregulation of the JAK/STAT pathway in A549 cells.

    Science.gov (United States)

    Ji, Deng Bo; Xu, Bo; Liu, Jing Tao; Ran, Fu Xiang; Cui, Jing Rong

    2011-12-01

    β-escin, a triterpene saponin, is one of the major active compounds extracted from horse chestnut (Aesculus hippocastanum) seed. Previous work has found that β-escin sodium has antiinflammatory and antitumor effects. In the present study, we investigated its effect on cell proliferation and inducible nitric-oxide synthase (iNOS) expression in human lung carcinoma A549 cells. β-escin sodium (5-40 µg/mL) inhibited cytokine mixture (CM)-induced nitric oxide (NO) production in A549 cells by reducing the expression of iNOS. β-escin sodium suppressed phosphorylation and nuclear translocation of STAT1 (Tyr701) and STAT3 (Tyr705) induced by CM but did not affect the activation of c-Jun and NF-κB. β-escin sodium inhibited the activation of protein tyrosine kinase JAK2. Pervanadate treatment reversed the β-escin sodium-induced downregulation of STAT3 and STAT1. β-escin sodium treatment enhanced an activating phosphorylation of the phosphatase SHP2. Small interfering RNA-mediated knockdown of SHP2 inhibited β-escin sodium-induced phospho-STAT dephosphorylation. Moreover β-escin sodium reduced the activation of p38 MAPK. Finally, β-escin sodium inhibited the proliferation of A549 cells, did not change the cell membrane's permeability, nuclear morphology and size and the mitochondria's transmembrane potential of A549 cells. Taken together, these results demonstrate that β-escin sodium could downregulate iNOS expression through inhibiting JAK/STAT signaling and p38 MAPK activation in A549 cells. β-escin sodium has a marked antiproliferative effect on A549 cells at least in part by inhibiting the JAK/STAT signaling pathway, but not by a cytotoxic effect. β-escin sodium would be useful as a chemopreventive agent or a therapeutic against inflammatory-associated tumor. © 2011 Wiley Periodicals, Inc. Copyright © 2011 Wiley Periodicals, Inc.

  5. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus

    Directory of Open Access Journals (Sweden)

    Chang HB

    2015-08-01

    Full Text Available Hong-Bin Chang,1 Bing-Huei Chen1,21Department of Food Science, 2Graduate Institute of Medicine, Fu Jen Catholic University, Taipei, TaiwanAbstract: The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell was selected for comparison. A high-performance liquid chromatography (HPLC method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 µg/mL, demethoxycurcumin (1,147.4 µg/mL, and bisdemethoxycurcumin (190.2 µg/mL. A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 µg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.Keywords: curcuminoid extract, curcuminoid nanoemulsion, Curcuma longa Linnaeus, lung cancer cell, cell cycle, apoptosis mechanism

  6. ABCC4 is required for cell proliferation and tumorigenesis in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Zhao X

    2014-02-01

    Full Text Available Xiaoting Zhao, Yinan Guo, Wentao Yue, Lina Zhang, Meng Gu, Yue Wang Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China Background: Multidrug resistance protein 4 (MRP4, also known as ATP-cassette binding protein 4 (ABCC4, is a member of the MRP/ABCC subfamily of ATP-binding cassette transporters, which are capable of pumping a wide variety of drugs out of the cell. However, little is known about the function of ABCC4 in the proliferation of lung cancer cells. Methods: ABCC4 mRNA and protein levels in lung cancer cell lines were measured by real-time polymerase chain reaction and Western blot, respectively. A lentivirus-mediated RNA interference technique was used to inhibit ABCC4 mRNA expression in A549 and 801D cells. The function of ABCC4 in cell growth was investigated by MTS and colony formation assays. The role of ABCC4 in cell cycle progression was evaluated by flow cytometry and Western blot analysis. ABCC4 mRNA levels in 30 pairs of tumors and corresponding matched adjacent normal tissues from non-small cell lung cancer patients were detected by real-time polymerase chain reaction. Results: ABCC4 was highly expressed in lung cancer cell lines. ABCC4 expression was markedly downregulated in A549 and 801D cells using the RNA interference technique. Suppression of ABCC4 expression inhibited cell growth. The percentage of cells in G1 phase was increased when ABCC4 expression was suppressed. Phosphorylation of retinoblastoma protein was weakened, originating in the downregulation of ABCC4. ABCC4 mRNA was highly expressed in lung cancer tissue and lung cancer cell lines. Conclusion: ABCC4 may play an important role in the control of A549 and 801D cell growth. ABCC4 is a potential target for lung cancer therapy. Keywords: ABCC4, cell proliferation, lung cancer, cell cycle

  7. Phoyunnanin E inhibits migration of non-small cell lung cancer cells via suppression of epithelial-to-mesenchymal transition and integrin αv and integrin β3.

    Science.gov (United States)

    Petpiroon, Nareerat; Sritularak, Boonchoo; Chanvorachote, Pithi

    2017-12-29

    The conversion of the epithelial phenotype of cancer cells into cells with a mesenchymal phenotype-so-called epithelial-mesenchymal transition (EMT)-has been shown to enhance the capacity of the cells to disseminate throughout the body. EMT is therefore becoming a potential target for anti-cancer drug discovery. Here, we showed that phoyunnanin E, a compound isolated from Dendrobium venustum, possesses anti-migration activity and addressed its mechanism of action. The cytotoxic and proliferative effects of phoyunnanin E on human non-small cell lung cancer-derived H460, H292, and A549 cells and human keratinocyte HaCaT cells were investigated by MTT assay. The effect of phoyunnanin E on EMT was evaluated by determining the colony formation and EMT markers. The migration and invasion of H460, H292, A549 and HaCaT cells was evaluated by wound healing assay and transwell invasion assay, respectively. EMT markers, integrins and migration-associated proteins were examined by western blot analysis. Phoyunnanin E at the concentrations of 5 and 10 μM, which are non-toxic to H460, H292, A549 and HaCaT cells showed good potential to inhibit the migratory activity of three types of human lung cancer cells. The anti-migration effect of phoyunnanin E was shown to relate to the suppressed EMT phenotypes, including growth in anchorage-independent condition, cell motility, and EMT-specific protein markers (N-cadherin, vimentin, slug, and snail). In addition to EMT suppression, we found that phoyunnanin E treatment with 5 and 10 μM could decrease the cellular level of integrin αv and integrin β3, these integrins are frequently up-regulated in highly metastatic tumor cells. We further characterized the regulatory proteins in cell migration and found that the cells treated with phoyunnanin E exhibited a significantly lower level of phosphorylated focal adhesion kinase (p-FAK) and phosphorylated ATP-dependent tyrosine kinase (p-AKT), and their downstream effectors (including

  8. Enhanced Replication of Hepatitis E Virus Strain 47832c in an A549-Derived Subclonal Cell Line

    OpenAIRE

    Schemmerer, Mathias; Apelt, Silke; Trojnar, Eva; Ulrich, Rainer G.; Wenzel, J?rgen J.; Johne, Reimar

    2016-01-01

    Hepatitis E virus (HEV) is a human pathogen with increasing importance. The lack of efficient cell culture systems hampers systematic studies on its replication cycle, virus neutralization and inactivation. Here, several cell lines were inoculated with the HEV genotype 3c strain 47832c, previously isolated from a chronically infected transplant patient. At 14 days after inoculation the highest HEV genome copy numbers were found in A549 cells, followed by PLC/PRF/5 cells, whereas HepG2/C3A, Hu...

  9. MiR-9 enhances the sensitivity of A549 cells to cisplatin by inhibiting autophagy.

    Science.gov (United States)

    Zhang, Yan; Meng, Xia; Li, Cheng; Tan, Zhoulin; Guo, Xinwei; Zhang, Zhiting; Xi, Tao

    2017-07-01

    To demonstrate that miR-9 inhibits autophagy by down-regulating Beclin1 and thus enhances the sensitivity of A549 cells to cisplatin. MiR-9 inhibited Beclin1 expression by binding to its 3'UTR. The inhibition decreased the cisplatin-induced autophagy in A549 cells, evidenced by the decreased expression of LC3II and GFP-LC3 puncta and the increased expression of P62. Upregulation of miR-9 level enhanced the sensibility of A549 cells to cisplatin and increased the cisplatin-induced apoptosis. Overexpression of Beclin1 reversed above effects of miR-9 mimics, cisplatin-induced autophagy was increased and apoptosis was decreased. MiR-9 inhibits autophagy via targeting Beclin1 3'UTR and thus enhances cisplatin sensitivity in A549 cells.

  10. Antiproliferative and apoptotic effects of diffractaic acid in A549 and AGS cancer cells

    Science.gov (United States)

    Kızıl, Hamit Emre; Aǧar, Güleray

    2017-04-01

    In this study, we determined the antiproliferative and apoptotic effects of diffractaic acid by measuring the gene expression changes of topo II α, caspase-3 and p53 on A549 and AGS cancer cells. Real time PCR assay was used to measure the change folds. It was determined that concentrations of 12,5, 50 and 100 µg / ml were antiproliferative and apoptotic for the A549 cancer cell line and 50 µg / ml for the AGS cell line.

  11. [Effect of paraquat on the expression of a disintegrin and metalloproteinase-17 in A549 cells].

    Science.gov (United States)

    Fang, W Y; Lin, C W; Wang, B F; Feng, S G

    2018-01-20

    Objective: Construct a paraquat (PQ) cell fibrosis model in vitro, observe the effect of PQ on the expression of a disintegrin and metalloproteinase-17 (ADAM17) in A549 cells, and explore the role of ADAM17 in the pulmonary fibrosis induced by PQ poisoning. Methods: A549 cells are divided into normal control group, different concentration of PQ groups, CCK-8 is used to detect cell viability, screening concentration and time of PQ, cell morphology is observed under microscope; Enzyme-linked immunosorbent assay (ELISA) detectes fibrosis markers of collagen type I (Col I) and fibronectin (FN) expression. Establishment of cell model of fibrosis; distribution by immunocytochemical detection of ADAM17 in A549 cells, Reverse transcription-polymerase chain reaction and Western blot are used to detect the expression of ADAM17 mRNA and protein. Results: 1. With the increase of PQ concentration and the prolongation of the action time, the activity of A549 cells decreased ( P A549 cells fusion is paving stone growth and arranged more closely. After PQ induction, the cell arrangement was loose, the intercellular connection became loose, and some cells dissolved and died. 3.ELISA showed that with the increase of PQ concentration, the expression of Col I and FN increased ( P A549 cells. 5. RT-PCR and Western blot showed that the expression of ADAM17 mRNA and protein increased significantly with the increase of PQ concentration ( P A549 cells. ADAM17 is overexpressed in the A549 cells induced by PQ and may be involved in the process of pulmonary fibrosis induced by paraquat.

  12. MicroRNA-146 protects A549 and H1975 cells from LPS-induced ...

    Indian Academy of Sciences (India)

    Qiang Wang

    2017-10-26

    Oct 26, 2017 ... nicotine adenine dinucleotide (NAD)-dependent deacetylase. Figure 4. Expression of miR-146 and the release of pro-inflammatory cytokines in A549 and H1975 cells. A549 and H1975 cells were transfected with miR-146 mimic, miR-146 inhibitor, or negative control (NC) and were subjected with 10 μg/mL ...

  13. Toxicity of ZnO nanoparticles (NPs) to A549 cells and A549 epithelium in vitro: Interactions with dipalmitoyl phosphatidylcholine (DPPC).

    Science.gov (United States)

    He, Tong; Long, Jimin; Li, Juan; Liu, Liangliang; Cao, Yi

    2017-12-01

    Once inhaled, nanoparticles (NPs) will first interact with lung surfactant system, which may influence the colloidal aspects of NPs and consequently the toxic potential of NPs to pulmonary cells. In this study, we investigated the effects of dipalmitoyl phosphatidylcholine (DPPC), the major component in lung surfactant, on stability and toxicity of ZnO NPs. The presence of DPPC increased the UV-vis spectra, hydrodynamic size, Zeta potential and dissolution rate of ZnO NPs, which indicates that DPPC might interact with NPs and affect the colloidal stability of NPs. Exposure to ZnO NPs induced cytotoxicity associated with increased intracellular Zn ions but not superoxide in A549 cells. In A549 epithelium model, exposure to ZnO NPs induced cytotoxicity and decreased the release of interleukin 6 (IL-6) without a significant effect on epithelial permeability rate. Co-exposure of A549 cells or A549 epithelium model to DPPC and ZnO NPs induced a higher release of lactate dehydrogenase (LDH) and interleukin-6 (IL-6) compared with the exposure of ZnO NPs alone. We concluded that the presence of DPPC could influence the colloidal stability of ZnO NPs and increase the damage of NPs to membrane probably due to the increased positive surface charge. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Plant Isoquinoline Alkaloid Berberine Exhibits Chromatin Remodeling by Modulation of Histone Deacetylase To Induce Growth Arrest and Apoptosis in the A549 Cell Line.

    Science.gov (United States)

    Kalaiarasi, Arunachalam; Anusha, Chidambaram; Sankar, Renu; Rajasekaran, Subbiah; John Marshal, Jayaraj; Muthusamy, Karthikeyan; Ravikumar, Vilwanathan

    2016-12-21

    Histone deacetylases (HDACs) are a group of epigenetic enzymes that control gene expression through their repressive influence on histone deacetylation transcription. HDACs are probable therapeutic targets for cancer treatment, spurring the progress of different types of HDAC inhibitors. Further, natural-source-based derived bioactive compounds possess HDAC inhibitor property. In this way, we hypothesized that plant isoquinoline alkaloid berberine (BBR) could be a HDAC inhibitor in the human lung cancer A549 cell line. BBR represses total HDAC and also class I, II, and IV HDAC activity through hyperacetylation of histones. Furthermore, BBR triggers positive regulation of the sub-G 0 /G 1 cell cycle progression phase in A549 cells. Moreover, BBR-induced A549 cell growth arrest and morphological changes were confirmed using different fluorescence-dye-based microscope techniques. Additionally, BBR downregulates oncogenes (TNF-α, COX-2, MMP-2, and MMP-9) and upregulates tumor suppressor genes (p21 and p53) mRNA and protein expressions. Besides, BBR actively regulates Bcl-2/Bax family proteins and also triggered the caspase cascade apoptotic pathway in A549 cells. Our finding suggests that BBR mediates epigenetic reprogramming by HDAC inhibition, which may be the key mechanism for its antineoplastic activity.

  15. Inactivation of Src-to-Ezrin Pathway: A Possible Mechanism in the Ouabain-Mediated Inhibition of A549 Cell Migration

    Directory of Open Access Journals (Sweden)

    Hye Kyoung Shin

    2015-01-01

    Full Text Available Ouabain, a cardiac glycoside found in plants, is primarily used in the treatment of congestive heart failure and arrhythmia because of its ability to inhibit Na+/K+-ATPase pump. Recently ouabain has been shown to exert anticancer effects but the underlying mechanism is not clear. Here, we explored the molecular mechanism by which ouabain exerts anticancer effects in human lung adenocarcinoma. Employing proteomic techniques, we found 7 proteins downregulated by ouabain in A549 including p-ezrin, a protein associated with pulmonary cancer metastasis in a dose-dependent manner. In addition, when the relative phosphorylation levels of 39 intracellular proteins were compared between control and ouabain-treated A549 cells, p-Src (Y416 was also found to be downregulated by ouabain. Furthermore, western blot revealed the ouabain-mediated downregulation of p-FAK (Y925, p-paxillin (Y118, p130CAS, and Na+/K+-ATPase subunits that have been shown to be involved in the migration of cancer cells. The inhibitory effect of ouabain and Src inhibitor PP2 on the migration of A549 cells was confirmed by Boyden chamber assay. Anticancer effects of ouabain in A549 cells appear to be related to its ability to regulate and inactivate Src-to-ezrin signaling, and proteins involved in focal adhesion such as Src, FAK, and p130CAS axis are proposed here.

  16. Erlotinib in previously treated non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Smrdel, U.; Kovac, V.

    2006-01-01

    Background. Erlotinib is a novel biological anti-tumour agent in the treatment of advanced non small cell lung cancer. It represents the molecularly-targeted therapy which has been studied extensively. Case report. We present a case of a patient who suffered from advanced non-small-cell lung cancer. After the progress of disease following a prior chemotherapy he was treated with erlotinib with remarkable effect which was shown at chest x ray and symptoms were quite reduced. Conclusions. In selected patients with advanced non-small-cell lung cancer Erlotinib improves survival and symptom control as it results in presented case. (author)

  17. The reduction of l-cystine to l-cysteine in the supernatant of A549 cell culture causes imipenem inactivation.

    Science.gov (United States)

    Takemura, Hiromu; Terakubo, Shigemi; Okamura, Ninyo; Nakashima, Hideki

    2018-02-26

    In the course of measuring the intracellular antibacterial activity of antibiotics using a human alveolar epithelial cell line A549, we discovered that the antimicrobial activity of several carbapenems (CPs) decreased in the supernatant of the cells cultured with fetal calf serum (FCS)-free RPMI1640 medium (RPMI). Further investigation revealed A549 culture supernatant inhibited the antibacterial activity of CPs but did not inactivate other types of antibiotics. CE-TOFMS and LC-TOFMS metabolomics analysis of the supernatant revealed the presence of l-cysteine (Cys), which is not an original component in RPMI. Cys is known to hydrolyze and inactivate CPs in a time- and concentration-dependent manner. In this study, the inactivating effects of A549 culture supernatant on the imipenem (IPM) were examined. Antimicrobial activity of 100 μg/mL IPM decreased to 25% with two-fold dilution of A549 supernatant incubated for 3 h. l-Cystine (CS), the Cys oxide, and an original component in RPMI did not inactivate IPM. However, the inactivating effects of A549 supernatant on IPM corresponds with the Cys concentration and depends on the CS content of the culture medium. Addition of FCS to the culture medium decreased the Cys concentration and reduced inactivation of IPM in a dose-dependent manner. Our data suggest that IPM were inactivated by Cys reduced from CS, and this CS-to-Cys conversion must be considered when evaluating the antimicrobial activity of CPs in cell culture. Further studies are needed to understand if the same inactivation occurs around the cells in the human body. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  18. The synthetic peptide CIGB-300 modulates CK2-dependent signaling pathways affecting the survival and chemoresistance of non-small cell lung cancer cell lines.

    Science.gov (United States)

    Cirigliano, Stéfano M; Díaz Bessone, María I; Berardi, Damián E; Flumian, Carolina; Bal de Kier Joffé, Elisa D; Perea, Silvio E; Farina, Hernán G; Todaro, Laura B; Urtreger, Alejandro J

    2017-01-01

    Lung cancer is the most frequently diagnosed cancer and the leading cause of cancer-related deaths worldwide. Up to 80% of cancer patients are classified as non-small-cell lung cancer (NSCLC) and cisplatin remains as the gold standard chemotherapy treatment, despite its limited efficacy due to both intrinsic and acquired resistance. The CK2 is a Ser/Thr kinase overexpressed in various types of cancer, including lung cancer. CIGB-300 is an antitumor peptide with a novel mechanism of action, since it binds to CK2 substrates thus preventing the enzyme activity. The aim of this work was to analyze the effects of CIGB-300 treatment targeting CK2-dependent signaling pathways in NSCLC cell lines and whether it may help improve current chemotherapy treatment. The human NSCLC cell lines NCI-H125 and NIH-A549 were used. Tumor spheroids were obtained through the hanging-drop method. A cisplatin resistant A549 cell line was obtained by chronic administration of cisplatin. Cell viability, apoptosis, immunoblotting, immunofluorescence and luciferase reporter assays were used to assess CIGB-300 effects. A luminescent assay was used to monitor proteasome activity. We demonstrated that CIGB-300 induces an anti-proliferative response both in monolayer- and three-dimensional NSCLC models, presenting rapid and complete peptide uptake. This effect was accompanied by the inhibition of the CK2-dependent canonical NF-κB pathway, evidenced by reduced RelA/p65 nuclear levels and NF-κB protein targets modulation in both lung cancer cell lines, as well as conditionally reduced NF-κB transcriptional activity. In addition, NF-κB modulation was associated with enhanced proteasome activity, possibly through its α7/C8 subunit. Neither the peptide nor a classical CK2 inhibitor affected cytoplasmic β-CATENIN basal levels. Given that NF-κB activation has been linked to cisplatin-induced resistance, we explored whether CIGB-300 could bring additional therapeutic benefits to the standard

  19. Dithiolethione modified valproate and diclofenac increase E-cadherin expression and decrease proliferation of non-small cell lung cancer cells

    OpenAIRE

    Moody, Terry W.; Switzer, Christopher; Santana-Flores, Wilmarie; Ridnour, Lisa A.; Berna, Marc; Thill, Michelle; Jensen, Robert T.; Sparatore, Anna; Del Soldato, Piero; Yeh, Grace C; Roberts, David D.; Giaccone, Giuseppe; Wink, David A.

    2009-01-01

    The effects of dithiolethione-modified valproate, diclofenac and sulindac on non-small cell lung cancer (NSCLC) cells were investigated. Sulfur(S)-valproate and S-diclofenac at 1 μg/ml concentrations significantly reduced prostaglandin (PG)E2 levels in NSCLC cell lines A549 and NCI-H1299 as did the COX-2 inhibitor DuP-697. In vitro, S-valproate, S-diclofenac and S-sulindac half-maximally inhibited the clonal growth of NCI-H1299 cells at 6, 6 and 15 μg/ml, respectively. Using the MTT assay, 10...

  20. Activation of paracrine growth factors by heparan sulphate induced by glucocorticoid in A549 lung carcinoma cells.

    Science.gov (United States)

    Yevdokimova, N; Freshney, R I

    1997-01-01

    Alkaline phosphatase, a marker of differentiation in the human alveolar adenocarcinoma cell line A549, is inducible by conditioned medium from lung fibroblasts and by cytokines including oncostatin M and interleukin 6, but only in the presence of a glucocorticoid, dexamethasone. Dexamethasone was shown to induce incorporation of [3H]glucosamine into three fractions of medium and cell trypsinate from subconfluent A549 cells, eluting from DEAE ion-exchange chromatography. The first peak did not correspond to any of the unlabelled glycosaminoglycans and was not characterized further. Induction was seen in two other peaks, corresponding to hyaluronic acid and heparan sulphate. Of these, heparan sulphate, eluting as one well-defined peak (referred to as HS1) and another of lower activity and less well defined (HS2), was selected as the most likely to interact with growth factors and cytokines and was isolated from the eluate, concentrated and desalted, and used in alkaline phosphatase induction experiments in place of dexamethasone. HS1 isolated from the medium (HS1m) of subconfluent A549 cells was shown to replace dexamethasone in induction experiments with fibroblast-conditioned medium, oncostatin M and interleukin 6. HS1 from the cell trypsinate and HS2 from the medium and trypsinate were inactive. As the activity of HS1m could be abolished by heparinase and heparitinase but not by chondroitinase ABC, it was concluded that HS1m was a fraction of heparan sulphate involved in the regulation of paracrine growth factor activity in lung fibroblast-conditioned medium, and in the regulation of other growth factors with potential roles in the paracrine control of cell differentiation.

  1. Nickel decreases cellular iron level and converts cytosolic aconitase to iron-regulatory protein 1 in A549 cells

    International Nuclear Information System (INIS)

    Chen Haobin; Davidson, Todd; Singleton, Steven; Garrick, Michael D.; Costa, Max

    2005-01-01

    Nickel (Ni) compounds are well-established carcinogens and are known to initiate a hypoxic response in cells via the stabilization and transactivation of hypoxia-inducible factor-1 alpha (HIF-1α). This change may be the consequence of nickel's interference with the function of several Fe(II)-dependent enzymes. In this study, the effects of soluble nickel exposure on cellular iron homeostasis were investigated. Nickel treatment decreased both mitochondrial and cytosolic aconitase (c-aconitase) activity in A549 cells. Cytosolic aconitase was converted to iron-regulatory protein 1, a form critical for the regulation of cellular iron homeostasis. The increased activity of iron-regulatory protein 1 after nickel exposure stabilized and increased transferrin receptor (Tfr) mRNA and antagonized the iron-induced ferritin light chain protein synthesis. The decrease of aconitase activity after nickel treatment reflected neither direct interference with aconitase function nor obstruction of [4Fe-4S] cluster reconstitution by nickel. Exposure of A549 cells to soluble nickel decreased total cellular iron by about 40%, a decrease that likely caused the observed decrease in aconitase activity and the increase of iron-regulatory protein 1 activity. Iron treatment reversed the effect of nickel on cytosolic aconitase and iron-regulatory protein 1. To assess the mechanism for the observed effects, human embryonic kidney (HEK) cells over expressing divalent metal transporter-1 (DMT1) were compared to A549 cells expressing only endogenous transporters for inhibition of iron uptake by nickel. The inhibition data suggest that nickel can enter via DMT1 and compete with iron for entry into the cell. This disturbance of cellular iron homeostasis by nickel may have a great impact on the ability of the cell to regulate a variety of cell functions, as well as create a state of hypoxia in cells under normal oxygen tension. These effects may be very important in how nickel exerts phenotypic

  2. Radiosensitization of non-small cell lung cancer by kaempferol.

    Science.gov (United States)

    Kuo, Wei-Ting; Tsai, Yuan-Chung; Wu, His-Chin; Ho, Yung-Jen; Chen, Yueh-Sheng; Yao, Chen-Han; Yao, Chun-Hsu

    2015-11-01

    The aim of the present study was to determine whether kaempferol has a radiosensitization potential for lung cancer in vitro and in vivo. The in vitro radio-sensitization activity of kaempferol was elucidated in A-549 lung cancer cells by using an MTT (3-(4 5-dimethylthiazol-2-yl)-25-diphenyl-tetrazolium bromide) assay, cell cycle analysis and clonogenic assay. The in vivo activity was evaluated in the BALB/c nude mouse xenograft model of A-549 cells by hematoxylin and eosin staining and immunohistochemistry, and the tumor volume was recorded. Protein levels of the apoptotic pathway were detected by western blot analysis. Treatment with kaempferol inhibited the growth of A-549 cells through activation of apoptotic pathway. However, the same doses did not affect HFL1 normal lung cell growth. Kaempferol induced G2/M cell cycle arrest and the enhancement of radiation-induced death and clonogenic survival inhibition. The in vivo data showed that kaempferol increased tumor cell apoptosis and killing of radiation. In conclusion, the findings demonstrated that kaempferol increased tumor cell killing by radiation in vitro and in vivo through inhibition of the AKT/PI3K and ERK pathways and activation of the mitochondria apoptosis pathway. The results of the present study provided solid evidence that kaempferol is a safe and potential radiosensitizer.

  3. Albendazole inhibits HIF-1α-dependent glycolysis and VEGF expression in non-small cell lung cancer cells.

    Science.gov (United States)

    Zhou, Fang; Du, Jin; Wang, Jianjun

    2017-04-01

    Albendazole (ABZ) has an anti-tumor ability and inhibits HIF-1α activity. HIF-1α is associated with glycolysis and vascular endothelial cell growth factor (VEGF) expression, which plays an important role in cancer progression. These clues indicate that ABZ exerts an anti-cancer effect by regulating glycolysis and VEGF expression. The aim of this study is to clarify the effects of ABZ on non-small cell lung cancer (NSCLC) cells and explore the underlying molecular mechanisms. The expression levels of HIF-1α and VEGF were detected using western blot analysis, and the effect of ABZ on glycolysis was evaluated by measuring the relative activities of hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) and detecting the production of lactate in A549 and H1299 cells. The results showed that ABZ decreased the expression levels of HIF-1α and VEGF and suppressed glycolysis in under hypoxia, but not normoxic condition. Inhibiting HIF-1α also suppressed glycolysis and VEGF expression. Additionally, ABZ inhibited the volume and weight, decreased the relative activities of HK, PK, and LDH, and reduced the levels of HIF-1α and VEGF of A549 xenografts in mouse models. In conclusion, ABZ inhibited growth of NSCLC cells by suppressing HIF-1α-dependent glycolysis and VEGF expression.

  4. FOXD3 suppresses tumor growth and angiogenesis in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jun-Hai; Zhao, Chun-Liu [Department of Respiratory Medicine, Luwan Branch of Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 20020 (China); Ding, Lan-Bao [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Zhou, Xi, E-mail: modelmap@139.com [Department of Respiratory Medicine, Luwan Branch of Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 20020 (China)

    2015-10-09

    The transcription factor forkhead box D3 (FOXD3), widely studied as a transcriptional repressor in embryogenesis, participates in the carcinogenesis of many cancers. However, the expression pattern and role of FOXD3 in non-small cell lung cancer (NSCLC) have not been well characterized. We report that FOXD3 is significantly downregulated in NSCLC cell lines and clinical tissues. FOXD3 overexpression significantly inhibits cell growth and results in G1 cell cycle arrest in NSCLC A549 and H1299 cells. In a xenograft tumor model, FOXD3 overexpression inhibits tumor growth and angiogenesis. Remarkably, expression of vascular endothelial growth factor (VEGF) was reduced in FOXD3 overexpression models both in vitro and in vivo. These findings suggest that FOXD3 plays a potential tumor suppressor role in NSCLC progression and represents a promising clinical prognostic marker and therapeutic target for this disease. - Highlights: • FOXD3 is downregulated in NSCLC cell lines and tissues. • FOXD3 overexpression inhibited cell proliferation in NSCLC cells. • FOXD3 overexpression led to decreased angiogenesis in NSCLC cells in vitro and in vivo.

  5. FOXD3 suppresses tumor growth and angiogenesis in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Yan, Jun-Hai; Zhao, Chun-Liu; Ding, Lan-Bao; Zhou, Xi

    2015-01-01

    The transcription factor forkhead box D3 (FOXD3), widely studied as a transcriptional repressor in embryogenesis, participates in the carcinogenesis of many cancers. However, the expression pattern and role of FOXD3 in non-small cell lung cancer (NSCLC) have not been well characterized. We report that FOXD3 is significantly downregulated in NSCLC cell lines and clinical tissues. FOXD3 overexpression significantly inhibits cell growth and results in G1 cell cycle arrest in NSCLC A549 and H1299 cells. In a xenograft tumor model, FOXD3 overexpression inhibits tumor growth and angiogenesis. Remarkably, expression of vascular endothelial growth factor (VEGF) was reduced in FOXD3 overexpression models both in vitro and in vivo. These findings suggest that FOXD3 plays a potential tumor suppressor role in NSCLC progression and represents a promising clinical prognostic marker and therapeutic target for this disease. - Highlights: • FOXD3 is downregulated in NSCLC cell lines and tissues. • FOXD3 overexpression inhibited cell proliferation in NSCLC cells. • FOXD3 overexpression led to decreased angiogenesis in NSCLC cells in vitro and in vivo.

  6. Radiation-Induced Bystander Effects in A549 Cells Exposed to 6 MV X-rays.

    Science.gov (United States)

    Yang, Shuning; Xu, Jing; Shao, Weixian; Geng, Chong; Li, Jia; Guo, Feng; Miao, Hui; Shen, Wenbin; Ye, Tao; Liu, Yazhou; Xu, Haiting; Zhang, Xuguang

    2015-07-01

    The aim of the study is to explore the bystander effects in A549 cells that have been exposed to 6MV X-ray. Control group, irradiated group, irradiated conditioned medium (ICM)-received group, and fresh medium group were designed in this study. A549 cells in the logarithmic growth phase were irradiated with 6MV X-ray at 0, 0.5, 1, 1.5, and 2. In ICM-received group, post-irradiation A549 cells were cultured for 3 h and were transferred into non-irradiated A549 cells for further cultivation. Clone forming test was applied to detect the survival fraction of cells. Annexin V-FITC/PI double-staining assay was used to detect the apoptosis of A549 cells 24, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation, and the curves of apoptosis were drawn. The changes in the cell cycles 4, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation were detected using PI staining flow cytometry. With the increase of irradiation dose, the survival fraction of A549 cells after the application of 0.5 Gy irradiation was decreasing continuously. In comparison to the control group, the apoptosis rate of the ICM-received group was increased in a time-dependent pattern, with the highest apoptosis rate observed at 72 h (p X-ray irradiation can induce bystander effect on A549 cells, which reaches a peak at 72 h.

  7. Biosynthesis of gold nanoparticles and related cytotoxicity evaluation using A549 cells.

    Science.gov (United States)

    Sathishkumar, M; Pavagadhi, S; Mahadevan, A; Balasubramanian, R

    2015-04-01

    Biosynthesis of gold nanoparticles (AuNPs) has become an attractive area of research as it is environmentally benign. The toxicity of AuNPs synthesized by chemical routes has been widely studied. However, little is known about the toxicity associated with the biological synthesis of AuNPs. The present study was carried out to synthesize AuNPs using star anise (Illicium verum; a commercially available spice in abundance)and evaluate its toxicity using human epithelial lung cells (A549) in comparison with AuNPs synthesized by the traditional chemical methods (using sodium citrate and sodium borohydride). Apart from cell viability, markers of oxidative stress (reduced glutathione) and cell death (caspases) were also evaluated to understand the mechanisms of toxicity. Cell viability was observed to be 65.7 percent and 72.3 percent in cells exposed to chemically synthesized AuNPs at the highest dose (200nM) as compared to 80.2 percent for biologically synthesized AuNPs. Protective coating/capping of AuNPs by various polyphenolic compounds present in star anise extract appears to be a major contributor to lower toxicity observed in biologically synthesized AuNPs. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Proteomic analysis of cellular response induced by multi-walled carbon nanotubes exposure in A549 cells.

    Directory of Open Access Journals (Sweden)

    Li Ju

    Full Text Available The wide application of multi-walled carbon nanotubes (MWCNT has raised serious concerns about their safety on human health and the environment. However, the potential harmful effects of MWCNT remain unclear and contradictory. To clarify the potentially toxic effects of MWCNT and to elucidate the associated underlying mechanisms, the effects of MWCNT on human lung adenocarcinoma A549 cells were examined at both the cellular and the protein level. Cytotoxicity and genotoxicity were examined, followed by a proteomic analysis (2-DE coupled with LC-MS/MS of the cellular response to MWCNT. Our results demonstrate that MWCNT induces cytotoxicity in A549 cells only at relatively high concentrations and longer exposure time. Within a relatively low dosage range (30 µg/ml and short time period (24 h, MWCNT treatment does not induce significant cytotoxicity, cell cycle changes, apoptosis, or DNA damage. However, at these low doses and times, MWCNT treatment causes significant changes in protein expression. A total of 106 proteins show altered expression at various time points and dosages, and of these, 52 proteins were further identified by MS. Identified proteins are involved in several cellular processes including proliferation, stress, and cellular skeleton organization. In particular, MWCNT treatment causes increases in actin expression. This increase has the potential to contribute to increased migration capacity and may be mediated by reactive oxygen species (ROS.

  9. MicroRNA-9 functions as a tumor suppressor and enhances radio-sensitivity in radio-resistant A549 cells by targeting neuropilin 1.

    Science.gov (United States)

    Xiong, Kai; Shao, Li Hong; Zhang, Hai Qin; Jin, Linlin; Wei, Wei; Dong, Zhuo; Zhu, Yue Quan; Wu, Ning; Jin, Shun Zi; Xue, Li Xiang

    2018-03-01

    Radiotherapy is commonly used to treat lung cancer but may not kill all cancer cells, which may be attributed to the radiotherapy resistance that often occurs in non-small cell lung cancer (NSCLC). At present, the molecular mechanism of radio-resistance remains unclear. Neuropilin 1 (NRP1), a co-receptor for vascular endothelial growth factor (VEGF), was demonstrated to be associated with radio-resistance of NSCLC cells via the VEGF-phosphoinositide 3-kinase-nuclear factor-κB pathway in our previous study. It was hypothesized that certain microRNAs (miRs) may serve crucial functions in radio-sensitivity by regulating NRP1. Bioinformatics predicted that NRP1 was a potential target of miR-9, and this was validated by luciferase reporter assays. Functionally, miR-9-transfected A549 cells exhibited a decreased proliferation rate, increased apoptosis rate and attenuated migratory and invasive abilities. Additionally, a high expression of miR-9 also significantly enhanced the radio-sensitivity of A549 cells in vitro and in vivo . These data improve understanding of the mechanisms of cell radio-resistance, and suggest that miR-9 may be a molecular target for the prediction of radio-sensitivity in NSCLC.

  10. Artemisinin induces A549 cell apoptosis dominantly via a reactive oxygen species-mediated amplification activation loop among caspase-9, -8 and -3.

    Science.gov (United States)

    Gao, Weijie; Xiao, Fenglian; Wang, Xiaoping; Chen, Tongsheng

    2013-10-01

    This report is designed to explore the roles of caspase-8, -9 and -3 in artemisinin (ARTE)-induced apoptosis in non-small cell lung cancer cells (A549 cells). ARTE induced reactive oxygen species (ROS)-mediated apoptosis in dose- and time-dependent fashion. Although ARTE treatment did not induce Bid cleavage and significant loss of mitochondrial membrane potential, it induced release of Smac and AIF but not cytochrome c from mitochondria, and silencing of Bak but not Bax significantly prevented ARTE-induced cytotoxicity. Moreover, ARTE treatment induced ROS-dependent activation of caspase-9, -8 and -3. Of the utmost importance, silencing or inhibiting any one of caspase-8, -9 and -3 almost completely prevented ARTE-induced activation of all the three caspases and remarkably abrogated the cytotoxicity of ARTE, suggesting that ARTE triggered an amplification activation loop among caspase-9, -8 and -3. Collectively, our data demonstrate that ARTE induces a ROS-mediated amplification activation loop among caspase-9, -8 and -3 to dominantly mediate the apoptosis of A549 cells.

  11. Matrine reduces the proliferation of A549 cells via the p53/p21/PCNA/eIF4E signaling pathway.

    Science.gov (United States)

    Lu, Zhiyan; Xiao, Youzhang; Liu, Xing; Zhang, Zaipeng; Xiao, Feng; Bi, Yongyi

    2017-05-01

    The aim of the present study was to investigate how matrine affects the proliferation of A549 human lung adenocarcinoma cells via the p53/p21/proliferating cell nuclear antigen (PCNA)/eukaryotic translation initiation factor 4E (eIF4E) signaling pathway. The effect of different concentrations of matrine on the proliferation of A549 cells was investigated using a 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assay. The migration of A549 cells following exposure to varied concentrations of matrine was detected using a Transwell cell migration assay. The effect of 240 mg/l matrine on the apoptotic rate of A549 cells was determined using flow cytometry. The change in the mRNA and protein expression levels of p53, p21, PCNA and eIF4E following exposure to matrine were detected using reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. The increase of matrine from 60‑240 mg/l led to reduced cell migration and inhibition of A549 cell proliferation. The apoptotic rate of A549 cells when treated with 240 mg/l matrine was significantly different when compared with the untreated control. The mRNA expression levels of p53 and p21 in the group treated with 240 mg/l matrine were significantly higher compared with the control group. The mRNA expression levels of PCNA and eIF4E were significantly lower in the 240 mg/l matrine‑treated group compared with the control. The protein expression levels of p53 and p21 were significantly higher in the 240 mg/l matrine group compared with the control group. Treatment with 240 mg/l matrine reduced the protein expression levels of PCNA and eIF4E. Matrine also reduced the migration ability of A549 cells and inhibited their proliferation, which may be associated with the overexpression of p53 and p21, and the reduction of PCNA and eIF4E expression levels.

  12. Long Term Culture of the A549 Cancer Cell Line Promotes Multilamellar Body Formation and Differentiation towards an Alveolar Type II Pneumocyte Phenotype.

    Science.gov (United States)

    Cooper, James Ross; Abdullatif, Muhammad Bilal; Burnett, Edward C; Kempsell, Karen E; Conforti, Franco; Tolley, Howard; Collins, Jane E; Davies, Donna E

    2016-01-01

    Pulmonary research requires models that represent the physiology of alveolar epithelium but concerns with reproducibility, consistency and the technical and ethical challenges of using primary or stem cells has resulted in widespread use of continuous cancer or other immortalized cell lines. The A549 'alveolar' cell line has been available for over four decades but there is an inconsistent view as to its suitability as an appropriate model for primary alveolar type II (ATII) cells. Since most work with A549 cells involves short term culture of proliferating cells, we postulated that culture conditions that reduced proliferation of the cancer cells would promote a more differentiated ATII cell phenotype. We examined A549 cell growth in different media over long term culture and then used microarray analysis to investigate temporal regulation of pathways involved in cell cycle and ATII differentiation; we also made comparisons with gene expression in freshly isolated human ATII cells. Analyses indicated that long term culture in Ham's F12 resulted in substantial modulation of cell cycle genes to result in a quiescent population of cells with significant up-regulation of autophagic, differentiation and lipidogenic pathways. There were also increased numbers of up- and down-regulated genes shared with primary cells suggesting adoption of ATII characteristics and multilamellar body (MLB) development. Subsequent Oil Red-O staining and Transmission Electron Microscopy confirmed MLB expression in the differentiated A549 cells. This work defines a set of conditions for promoting ATII differentiation characteristics in A549 cells that may be advantageous for studies with this cell line.

  13. [Metabotropic glutamate receptor 8 activation promotes the apoptosis of lung carcinoma A549 cells in vitro].

    Science.gov (United States)

    Li, Tian-Jiao; Huang, Yan-Hong; Chen, Xi; Zhou, Zhou; Luo, Si-Wei; Feng, Dan-Dan; Han, Jian-Zhong; Luo, Zi-Qiang

    2015-10-25

    This study aims to detect the expression of metabotropic glutamate receptors (mGluRs) in lung carcinoma A549 cells, and to investigate the effects of mGluR8 and mGluR4 activation on the growth of A549 cells in vitro. The mRNA expression levels of the 8 subtypes of mGluRs in A549 cells were determined by real-time PCR. Immunohistochemistry was used to analyze the protein expression of mGluR4 and mGluR8 in A549 cells and lung tissue sections obtained from lung adenocarcinoma patients. To observe the effects of mGluR8 and mGluR4 activation on the growth of A549 cells, the cultured cells were treated with (S)-3,4-DCPG (an agonist of mGluR8) and VU0155041 (an agonist of mGluR4), respectively, and then the cell viability was analyzed by CCK-8 kit, the percentage of DNA synthesis was detected by EdU incorporation, and the apoptosis of the cells was measured by hoechst 33258 staining and flow cytometry. The results showed that there were low expressions of mGluR1, mGluR5, mGluR6, mGluR7 mRNA, no expression of mGluR2 and mGluR3 mRNA, and high expressions of mGluR8 and mGluR4 mRNA in A549 cells. Accordingly, there were also mGluR4 and mGluR8 protein expressions in the A549 cells and the lung adenocarcinoma tissue sections. VU0155041 had no effect on the growth of A549 cells, but (S)-3,4-DCPG significantly decreased the cells' growth in a dose-dependent manner and increased the apoptosis of the cells. The results revealed a role of mGluR8 in the growth and apoptosis of A549 cells and suggested a potential target for clinical treatment of lung cancer.

  14. [Cancer-associated-fibroblasts regulate the chemoresistance of lung cancer cell line A549 via SDF-1 secretion].

    Science.gov (United States)

    Zou, F; Zhang, Z H; Zhang, Y T; Zhao, J Q; Zhang, X L; Wen, C L; Song, X Y; Zhou, W M

    2017-05-23

    Objective: To investigate whether cancer-associated- fibroblasts (CAF), the key component of tumor microenvironment, regulate the chemoresistant capacity of lung cancer cell line A549 through SDF-1 secretion. Methods: Primary cell isolation techniques was used to isolate cancer-associated-fibroblasts from lung cancer patients. MTT assay was applied to determine the proliferation and chemoresistance of A549 cells. Quantative PCR was used to detect the mRNA changes of Bcl-xL. Western blotting was used to detect the protein expression of Bcl-xL. ELISA was applied to detect the SDF-1 secretion from normal fibroblasts (NF) and CAF. Results: CAF promoted the proliferation of A549 cells, while NF had no significant effect on them. After 72 hrs incubation, the absorbance value of A549+ CAF medium group was 0.814±0.006, significantly different from the 0.753±0.006 of the A549+ NF medium group ( P A549 group, A549+ NF medium group and A549+ CAF medium group were 1.00±0.11, 1.10±0.09 and 3.50±0.30, respectively, showing a significant difference between the A549+ NF medium group and A549+ CAF medium group ( P A549 group, A549+ NF medium group and A549+ CAF medium group were 1.00±0.08, 1.10±0.12 and 3.10±0.25, respectively, with a significant difference between the A549+ NF medium group and A549+ CAF medium group ( P A549+ NF medium group and A549+ CAF medium group were 3.23±0.02 and 9.53±0.10, respectively, significantly different from each other ( P A549 group, A549+ AMD3100 group, A549+ NF medium group, A549+ NF medium+ AMD3100 group, A549+ CAF medium and A549+ CA Fmedium+ AMD3100 group were 0.43±0.03, 0.25±0.02, 0.48±0.03, 0.31±0.03, 0.72±0.06 and 0.45±0.03, respectively. The data of A549+ NF medium group was significantly different from that of A549+ CAF medium group ( P A549 cells through SDF-1 secretion, upregulating the expression level of Bcl-xL through interaction with CXCR4. Our study not only illustrates that tumor microenvironment is able to enhance

  15. Polyurethane dispersion containing quaternized ammonium groups: An efficient nanosize gene delivery carrier for A549 cancer cell line transfection.

    Science.gov (United States)

    Yousefpour Marzbali, Mahsa; Yari Khosroushahi, Ahmad; Movassaghpour, AliAkbar; Yeganeh, Hamid

    2016-01-25

    A novel polyurethane containing cationic ammonium groups (QPU) was synthesized and used as vector for gene therapy and cancer gene targeting. The synthesized QPU was characterized by Fourier transform infrared and nuclear magnetic resonance spectroscopy methods. An agarose gel retardation electrophoresis assay was conducted to verify the complete complex formation between QPU and pDNA. The particles size and zeta potential of neat polymers, plasmid DNA, polymers/DNA polyplexes were determined by the dynamic light scattering technique. The polyplexes cytotoxicity was determined using [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and its transfection efficiency was examined qualitatively by fluorescent microscopy and quantitatively by flow cytometery methods. The gel retardation assay, particle size and zeta potential measurements were confirmed that the synthesized cationic polymer could condense DNA efficiently in the physiologic condition. QPU polyplexes showed a significantly lower cytotoxicity compared to Polyfect polyplexes in the examined human cancerous (A549) or normal cells (KDR). Based on our findings, the transfection efficiency by QPU was 2.2 fold higher than Polyfect in the A549 cells whereas in the KDR cells, the cell transfection by Polyfect was 18.1 fold higher than QPU. Due to low cytotoxicity for normal cells and high transfection efficiency in cancer cells, the potential applicability of designed QPU as a non-viral gene carrier for targeting of cancer gene therapy was confirmed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Chemosensitivity of irradiated resistant cells of multicellular spheroids in A549 lung adenocarcinoma

    International Nuclear Information System (INIS)

    Shi Degang; Shi Genming; Huang Gang

    2006-01-01

    Objective: To investigate the chemosensitivity of irradiated resistant cells of multicellular spheroids in A549 lung adenocarcinoma. Methods: The A549 irradiated resistant cells were the 10th regrowth generations after irradiated with 2.5 Gy of 6 MV X-ray, the control groups were A549 parent cells and MCFY/VCR resistant cells. The 6 kinds of chemotherapeutic drugs were DDP, VDS, 5-FU, HCP, MMC and ADM respectively, with verapamil (VPL) as reverse agent. The treatment effect was compared with MTT assay, and the multidrug resistant gene expressions of mdrl and MRP were measured with RT-PCR method. Results: A549 cells and irradiated resistant cells were resistant to DDP, but sensitivity to VDS,5-FU, HCP, MMC and ADM. The inhibitory rates of VPL to the above two cells were 98% and 25% respectively(P 2 -MG and MRP/β 2 -MG of all A549 cells were about 0 and 0.7 respectively, and those of MCFT/VCR cells were 35 and 4.36. Conclusion: The chemosensitivity of A549 irradiated resistant cells had not changed markedly, the decreased sensitivity to VPL could not be explained by the gene expression of mdrl and MRP. It is conferred that some kinds of changes in the cell membrane and decreased regrowth ability to result in resistance. Unlike multidrug resistance induced by chemotherapy, VPL may be not an ideal reverser to irradiated resistant cells. The new kinds of biological preparation should be sought to combine chemotherapy to treat recurring tumor with irradiated resistance. (authors)

  17. Mechanism of modulation through PI3K-AKT pathway about Nepeta cataria L.’s extract in non-small cell lung cancer

    Science.gov (United States)

    Meng, Xiansheng; Wang, Shuai; Li, Tianjiao; Chang, Xin; Yang, Guanlin; Bo, Tao

    2017-01-01

    Non-small cell lung cancer (NSCLC) is regarded as one of the major intractable diseases, which was cured mainly by chemotherapeutics in the clinical treatment at present. But it is still a vital mission for the current medical and researchers that hunting a natural medicine which have little side effects and high-efficiency against the NSCLC on account of the shortcomings on current drugs. Nepeta cataria L. plays an important role in anti-cancer treatment according to the reports which was recorded in the Chinese Pharmacopoeia of version 2015 and belongs to one of the Traditional Chinese medicine (TCM). Microfluidic chip technology is widely used in scientific research field due to its high-throughput, high sensitivity and low cost with the continuous progress of science and technology. In this study, we investigate the effect of total flavonoid extracted from Nepeta cataria L. (TFS) through human lung cancer cell line A549 based on the microfluidic device and Flow Cytometry. So we detected the mRNA expression of MicroRNA-126 (miR-126), VEGF, PI3K, PTEN and proteins expression respectively to explore the partial PI3K-AKT pathway molecular mechanisms through Quantitative Real-time PCR (qRT-PCR) and Western Blot. The results showed that TFS can disturb the expression of miR-126 and regulate the PI3K-AKT signaling pathway to meet the effect of anti-cancer. Taking all these results into consideration we can draw a conclusion that TFS may be used as a novel therapeutic agent for NSCLC in the near future. PMID:28404902

  18. Mechanism of modulation through PI3K-AKT pathway about Nepeta cataria L.'s extract in non-small cell lung cancer.

    Science.gov (United States)

    Fan, Jiaxin; Bao, Yongrui; Meng, Xiansheng; Wang, Shuai; Li, Tianjiao; Chang, Xin; Yang, Guanlin; Bo, Tao

    2017-05-09

    Non-small cell lung cancer (NSCLC) is regarded as one of the major intractable diseases, which was cured mainly by chemotherapeutics in the clinical treatment at present. But it is still a vital mission for the current medical and researchers that hunting a natural medicine which have little side effects and high-efficiency against the NSCLC on account of the shortcomings on current drugs. Nepeta cataria L. plays an important role in anti-cancer treatment according to the reports which was recorded in the Chinese Pharmacopoeia of version 2015 and belongs to one of the Traditional Chinese medicine (TCM). Microfluidic chip technology is widely used in scientific research field due to its high-throughput, high sensitivity and low cost with the continuous progress of science and technology. In this study, we investigate the effect of total flavonoid extracted from Nepeta cataria L. (TFS) through human lung cancer cell line A549 based on the microfluidic device and Flow Cytometry. So we detected the mRNA expression of MicroRNA-126 (miR-126), VEGF, PI3K, PTEN and proteins expression respectively to explore the partial PI3K-AKT pathway molecular mechanisms through Quantitative Real-time PCR (qRT-PCR) and Western Blot. The results showed that TFS can disturb the expression of miR-126 and regulate the PI3K-AKT signaling pathway to meet the effect of anti-cancer. Taking all these results into consideration we can draw a conclusion that TFS may be used as a novel therapeutic agent for NSCLC in the near future.

  19. Luteolin Inhibits Tumorigenesis and Induces Apoptosis of Non-Small Cell Lung Cancer Cells via Regulation of MicroRNA-34a-5p

    Directory of Open Access Journals (Sweden)

    Ze-Qun Jiang

    2018-02-01

    Full Text Available Luteolin (LTL exerts remarkable tumor suppressive activity on various types of cancers, including non-small cell lung cancer (NSCLC. However, it is not completely understood whether the mechanism of its action against NSCLC is related to microRNAs (miRNAs. In the present study, we investigated the anti-tumor effects of LTL on NSCLC in vitro and in vivo. The results revealed that LTL could inhibit cell proliferation and induce apoptosis in both A549 and H460 cells. In a H460 xenograft tumor model of nude mice, LTL significantly suppressed tumor growth, inhibited cell proliferation, and induced apoptosis. miRNA microarray and quantitative PCR (qPCR analysis indicated that miR-34a-5p was dramatically upregulated upon LTL treatment in tumor tissues. Furthermore, MDM4 was proved to be a direct target of miR-34a-5p by luciferase reporter gene assay. LTL treatment was associated with increased p53 and p21 protein expressions and decreased MDM4 protein expression in both NSCLC cells and tumor tissues. When miR-34a-5p was inhibited in vitro, the protein expressions of Bcl-2 and MDM4 were recovered, while that of p53, p21, and Bax were attenuated. Moreover, caspase-3 and caspase-9 activation induced by LHL treatment in vitro were also suppressed by miR-34a-5p inhibition. Overall, LTL could inhibit tumorigenesis and induce apoptosis of NSCLC cells by upregulation of miR-34a-5p via targeting MDM4. These findings provide novel insight into the molecular functions of LTL that suggest its potential as a therapeutic agent for human NSCLC.

  20. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells.

    Science.gov (United States)

    Zu, Yuangang; Yu, Huimin; Liang, Lu; Fu, Yujie; Efferth, Thomas; Liu, Xia; Wu, Nan

    2010-04-30

    Ten essential oils, namely, mint (Mentha spicata L., Lamiaceae), ginger (Zingiber officinale Rosc., Zingiberaceae), lemon (Citrus limon Burm.f., Rutaceae), grapefruit (Citrus paradisi Macf., Rutaceae), jasmine (Jasminum grandiflora L., Oleaceae), lavender (Mill., Lamiaceae), chamomile (Matricaria chamomilla L., Compositae), thyme (Thymus vulgaris L., Lamiaceae), rose (Rosa damascena Mill., Rosaceae) and cinnamon (Cinnamomum zeylanicum N. Lauraceae) were tested for their antibacterial activities towards Propionibacterium acnes and in vitro toxicology against three human cancer cell lines. Thyme, cinnamon and rose essential oils exhibited the best antibacterial activities towards P. acnes, with inhibition diameters of 40 +/- 1.2 mm, 33.5 +/- 1.5 mm and 16.5 +/- 0.7 mm, and minimal inhibitory concentrations of 0.016% (v/v), 0.016% (v/v) and 0.031% (v/v), respectively. Time-kill dynamic procedures showed that thyme, cinnamon, rose, and lavender essential oils exhibited the strongest bactericidal activities at a concentration of 0.25% (v/v), and P. acnes was completely killed after 5 min. The thyme essential oil exhibited the strongest cytotoxicity towards three human cancer cells. Its inhibition concentration 50% (IC(50)) values on PC-3, A549 and MCF-7 tumor cell lines were 0.010% (v/v), 0.011% (v/v) and 0.030% (v/v), respectively. The cytotoxicity of 10 essential oils on human prostate carcinoma cell (PC-3) was significantly stronger than on human lung carcinoma (A549) and human breast cancer (MCF-7) cell lines.

  1. Activities of Ten Essential Oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yuangang Zu

    2010-04-01

    Full Text Available Ten essential oils, namely, mint (Mentha spicata L.,Lamiaceae, ginger (Zingiber officinaleRosc.,Zingiberaceae, lemon (Citrus limon Burm.f.,Rutaceae, grapefruit (Citrus paradisi Macf., Rutaceae, jasmine (Jasminum grandiflora L.,Oleaceae, lavender (Mill.,Lamiaceae, chamomile (Matricaria chamomilla L., Compositae, thyme (Thymus vulgaris L., Lamiaceae, rose (Rosa damascena Mill.,Rosaceae and cinnamon (Cinnamomum zeylanicumN. Lauraceae were tested for their antibacterial activities towards Propionibacterium acnes and in vitro toxicology against three human cancer cell lines. Thyme, cinnamon and rose essential oils exhibited the best antibacterial activities towards P. acnes, with inhibition diameters of 40 ± 1.2 mm, 33.5 ± 1.5 mm and 16.5 ± 0.7 mm, and minimal inhibitory concentrations of 0.016% (v/v, 0.016% (v/v and 0.031% (v/v, respectively. Time-kill dynamic procedures showed that thyme, cinnamon, rose, and lavender essential oils exhibited the strongest bactericidal activities at a concentration of 0.25% (v/v, and P. acnes was completely killed after 5 min. The thyme essential oil exhibited the strongest cytotoxicity towards three human cancer cells. Its inhibition concentration 50% (IC50 values on PC-3, A549 and MCF-7 tumor cell lines were 0.010% (v/v, 0.011% (v/v and 0.030% (v/v, respectively. The cytotoxicity of 10 essential oils on human prostate carcinoma cell (PC-3 was significantly stronger than on human lung carcinoma (A549 and human breast cancer (MCF-7 cell lines.

  2. STIM1 silencing inhibits the migration and invasion of A549 cells

    OpenAIRE

    Wang, Yadong; Wang, Haiyu; Pan, Teng; Li, Li; Li, Jiangmin; Yang, Haiyan

    2017-01-01

    The present study aimed to explore the effects of stromal interaction molecule 1 (STIM1) knockdown on the migration, invasion and metastasis of A549 cells in vitro and in vivo. Western blotting and immunohistochemistry were used to detect protein expression levels. Wound healing and Transwell invasion assays were used to assess the migratory and invasive abilities of A549 cells transfected with STIM1-specific short hairpin (sh)RNA (shSTIM1). In addition, a tail vein metastatic assay was perfo...

  3. Hypoxia-inducible transcription factor-1α promotes hypoxia-induced A549 apoptosis via a mechanism that involves the glycolysis pathway

    International Nuclear Information System (INIS)

    Luo, FengMing; Liu, XiaoJing; Yan, NaiHong; Li, ShuangQing; Cao, GuiQun; Cheng, QingYing; Xia, QingJie; Wang, HongJing

    2006-01-01

    Hypoxia-inducible transcription factor-1α (HIF-1α), which plays an important role in controlling the hypoxia-induced glycolysis pathway, is a 'master' gene in the tissue hypoxia response during tumor development. However, its role in the apoptosis of non-small cell lung cancer remains unknown. Here, we have studied the effects of HIF-1α on apoptosis by modulating HIF-1α gene expression in A549 cells through both siRNA knock-down and over-expression. A549 cells were transfected with a HIF-1α siRNA plasmid or a HIF-1α expression vector. Transfected cells were exposed to a normoxic or hypoxic environment in the presence or absence of 25 mM HEPES and 2-deoxyglucose (2-DG) (5 mM). The expression of three key genes of the glycolysis pathway, glucose transporter type 1(GLUT1), phosphoglycerate kinase 1(PGK1), and hexokinase 1(HK1), were measured using real-time RT-PCR. Glycolysis was monitored by measuring changes of pH and lactate concentration in the culture medium. Apoptosis was detected by TUNEL assay and flow cytometry. Knocking down expression of HIF-1α inhibited the glycolysis pathway, increased the pH of the culture medium, and protected the cells from hypoxia-induced apoptosis. In contrast, over-expression of HIF-1α accelerated glycolysis in A549 cells, decreased the pH of the culture medium, and enhanced hypoxia-induced apoptosis. These effects of HIF-1α on glycolysis, pH of the medium, and apoptosis were reversed by treatment with the glycolytic inhibitor, 2-DG. Apoptosis induced by HIF-1α over-expression was partially inhibited by increasing the buffering capacity of the culture medium by adding HEPES. During hypoxia in A549 cells, HIF-1α promotes activity of the glycolysis pathway and decreases the pH of the culture medium, resulting in increased cellular apoptosis

  4. Knockdown of c‑Myc activates Fas-mediated apoptosis and sensitizes A549 cells to radiation.

    Science.gov (United States)

    Zhang, Jing; Zhou, Ling; Nan, Zhaodi; Yuan, Qing; Wen, Jie; Xu, Maolei; Li, Youjie; Li, Baosheng; Wang, Pingyu; Liu, Changmin; Ma, Ying; Chen, Shaoshui; Xie, Shuyang

    2017-10-01

    Several studies have demonstrated that cancer radiosensitivity is associated with the deregulation of c‑Myc, but the relationship between c‑Myc and Fas in radioresistance of lung adenocarcinoma remains unclear. In this study, we established radiation-resistant A549 cell model (A549/R), and investigated the roles of c‑Myc and Fas in radiation-induced cytotoxicity of A549 cells. Apoptosis detection showed that there were fewer apoptotic cells in A549/R cells treated with radiation than in A549 cells. Western blotting results demonstrated the inverse expression pattern of c‑Myc and Fas in A549 and A549/R cells. Suppression of c‑Myc expression by small interfering RNA (siRNA) displayed enhancement of Fas-mediated apoptosis in A549/R cells, accompanying a significant decrease of Bid, Bcl‑2, pro‑caspase‑8, -9 and -3 and increase of Bax. In contrast, Fas-mediated apoptosis was attenuated while Fas expression was suppressed by ectopic expression of c‑Myc in A549 cells. Moreover, decreased cell viability and increased induction of apoptosis were observed in A549/R cells followed by combinational treatment of c‑Myc siRNA and irradiation, whereas, upregulation of c‑Myc reduced the sensitivity of A549 cells to irradiation. These results indicated that c‑Myc and Fas regulated the sensitivity of A549 cells to irradiation by regulating caspase‑8-mediated Bid activation and the subsequent association with the mitochondrial pathway of apoptosis.

  5. Punica granatum (pomegranate) leaves extract induces apoptosis through mitochondrial intrinsic pathway and inhibits migration and invasion in non-small cell lung cancer in vitro.

    Science.gov (United States)

    Li, Yali; Yang, Fangfang; Zheng, Weidong; Hu, Mingxing; Wang, Juanxiu; Ma, Sisi; Deng, Yuanle; Luo, Yi; Ye, Tinghong; Yin, Wenya

    2016-05-01

    Most conventional treatments on non-small cell lung carcinoma always accompany with awful side effects, and the incidence and mortality rates of this cancer are increasing rapidly worldwide. The objective of this study was to examine the anticancer effects of extract of Punica granatum (pomegranate) leaves extract (PLE) on the non-small cell lung carcinoma cell line A549, H1299 and mouse Lewis lung carcinoma cell line LL/2 in vitro, and explore its mechanisms of action. Our results have shown that PLE inhibited cell proliferation in non-small cell lung carcinoma cell line in a concentration- and time-dependent manner. Flow cytometry (FCM) assay showed that PLE affected H1299 cell survival by arresting cell cycle progression in G2/M phase in a dose-dependent manner and inducing apoptosis. Moreover, PLE could also decrease the reactive oxygen species (ROS) and the mitochondrial membrane potential (ΔYm), indicating that PLE may induce apoptosis via mitochondria-mediated apoptotic pathway. Furthermore, PLE blocked H1299 cell migration and invasion, and the reduction of matrix metalloproteinase (MMP) MMP-2 and MMP-9 expression were also observed in vitro. These results suggested that PLE could be an effective and safe chemotherapeutic agent in non-small cell lung carcinoma treatment by inhibiting proliferation, inducing apoptosis, cell cycle arrest and impairing cell migration and invasion. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Suitable parameter choice on quantitative morphology of A549 cell in epithelial–mesenchymal transition

    Science.gov (United States)

    Ren, Zhou-Xin; Yu, Hai-Bin; Li, Jian-Sheng; Shen, Jun-Ling; Du, Wen-Sen

    2015-01-01

    Evaluation of morphological changes in cells is an integral part of study on epithelial to mesenchymal transition (EMT), however, only a few papers reported the changes in quantitative parameters and no article compared different parameters for demanding better parameters. In the study, the purpose was to investigate suitable parameters for quantitative evaluation of EMT morphological changes. A549 human lung adenocarcinoma cell line was selected for the study. Some cells were stimulated by transforming growth factor-β1 (TGF-β1) for EMT, and other cells were as control without TGF-β1 stimulation. Subsequently, cells were placed in phase contrast microscope and three arbitrary fields were captured and saved with a personal computer. Using the tools of Photoshop software, some cells in an image were selected, segmented out and exchanged into unique hue, and other part in the image was shifted into another unique hue. The cells were calculated with 29 morphological parameters by Image Pro Plus software. A parameter between cells with or without TGF-β1 stimulation was compared statistically and nine parameters were significantly different between them. Receiver operating characteristic curve (ROC curve) of a parameter was described with SPSS software and F-test was used to compare two areas under the curves (AUCs) in Excel. Among them, roundness and radius ratio were the most AUCs and were significant higher than the other parameters. The results provided a new method with quantitative assessment of cell morphology during EMT, and found out two parameters, roundness and radius ratio, as suitable for quantification. PMID:26182364

  7. Characterization of indoor dust from Brazil and evaluation of the cytotoxicity in A549 lung cells.

    Science.gov (United States)

    Deschamps, E; Weidler, P G; Friedrich, F; Weiss, C; Diabaté, S

    2014-04-01

    Over the past decade, ambient air particulate matter (PM) has been clearly associated with adverse health effects. In Brazil, small and poor communities are exposed to indoor dust derived from both natural sources, identified as blowing soil dust, and anthropogenic particles from mining activities. This study investigates the physicochemical and mineralogical composition of indoor PM10 dust samples collected in Minas Gerais, Brazil, and evaluates its cytotoxicity and inflammatory potential. The mean PM10 mass concentration was 206 μg/m(3). The high dust concentration in the interior of the residences is strongly related to blowing soil dust. The chemical and mineralogical compositions were determined by ICP-OES and XRD, and the most prominent minerals were clays, Fe-oxide, quartz, feldspars, Al(hydr)oxides, zeolites, and anatase, containing the transition metals Fe, Cr, V, Ni, Cu, Zn, Ti, and Mn as well as the metalloid As. The indoor dust samples presented a low water solubility of about 6 %. In vitro experiments were carried out with human lung alveolar carcinoma cells (A549) to study the toxicological effects. The influence of the PM10 dust samples on cell viability, intracellular formation of reactive oxygen species (ROS), and release of the pro-inflammatory cytokine IL-8 was analysed. The indoor dust showed little effects on alamarBlue reduction indicating unaltered mitochondrial activity. However, significant cell membrane damage, ROS production, and IL-8 release were detected in dependence of dose and time. This study will support the implementation of mitigation actions in the investigated area in Brazil.

  8. Cold stress increases reactive oxygen species formation via TRPA1 activation in A549 cells.

    Science.gov (United States)

    Sun, Wenwu; Wang, Zhonghua; Cao, Jianping; Cui, Haiyang; Ma, Zhuang

    2016-03-01

    Reactive oxygen species (ROS) are responsible for lung damage during inhalation of cold air. However, the mechanism of the ROS production induced by cold stress in the lung is still unclear. In this work, we measured the changes of ROS and the cytosolic Ca(2+) concentration ([Ca(2+)]c) in A549 cell. We observed that cold stress (from 20 to 5 °C) exposure of A549 cell resulted in an increase of ROS and [Ca(2+)]c, which was completely attenuated by removing Ca(2+) from medium. Further experiments showed that cold-sensing transient receptor potential subfamily member 1 (TRPA1) agonist (allyl isothiocyanate, AITC) increased the production of ROS and the level of [Ca(2+)]c in A549 cell. Moreover, HC-030031, a TRPA1 selective antagonist, significantly inhibited the enhanced ROS and [Ca(2+)]c induced by AITC or cold stimulation, respectively. Taken together, these data demonstrated that TRPA1 activation played an important role in the enhanced production of ROS induced by cold stress in A549 cell.

  9. Evaluation of a549 as a new vaccine cell substrate: digging deeper with massively parallel sequencing.

    Science.gov (United States)

    Shabram, Paul; Kolman, John L

    2014-01-01

    In the past three decades, the use of tumorigenic cell substrates has been the topic of five Vaccine and Related Biological Products Advisory Committee (VRBPAC) meetings, including a review of the A549 cell line in September 2012. Over that period of time, major technological advances in biotechnology have improved our ability to assess the risk associated with using a tumorigenic cell line. As part of the September 2012 review, we assessed the history of A549 cells and evaluated the probable transforming event based on patterns of mutations to cancer genes. In addition, massively parallel sequencing was used to first screen then augment the characterization of A549 cells by searching for the presence of hidden viral threats using sequencing of the entire cellular transcriptome and comparing sequences to a curated viral sequence database. Based upon the combined results of next-generation sequencing technology along with standard cell characterization as outlined in published regulatory guidances, we believe that A549 cells pose no more risk than any other cell substrate for the manufacture of vaccines. © PDA, Inc. 2014.

  10. Enhanced Anti-Tumor Efficacy of Lipid-Modified Platinum Derivatives in Combination with Survivin Silencing siRNA in Resistant Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Mattheolabakis, George; Ling, Dandan; Ahmad, Gulzar; Amiji, Mansoor

    2016-12-01

    Cisplatin, is recognized as a first line therapeutic for the treatment of non-small cell lung cancer (NSCLC). Cisplatin resistance is identified as the most detrimental complication during treatment and has been associated with upregulation of several genes, such as the anti-apoptotic gene survivin. In this study, we have evaluated the cytotoxic activity of lipid (C6 and C8)-modified platinum compounds in combination with a survivin-silencing siRNA against cisplatin resistant tumors. We synthesized and characterized several lipid-modified platinum compounds and evaluated their cytotoxic activity alone or in combination with survivin-silencing siRNA in vitro and in vivo against A549 DDP cells and in vivo in tumor xenograft model. The lipid-modified compounds exhibited significantly stronger cytotoxic activity in vitro compared to cisplatin, with CDDP-C6 and CDDP-C8 producing the most pronounced effect, in both A549 and A549 DDP cells. Pre-treatment of the A549 DDP cells with survivin-silencing siRNA enhanced the cytotoxic activity of these compounds. In vivo, the co-treatment of the survivin-silencing siRNA and CDDP-C8 produced the strongest tumor growth inhibition effect (64.5%, p cancer mouse model of chemoresistant lung cancer. In contrast, cisplatin treatment exhibited no significant tumor growth inhibition (4.5%, no p). Co-treatment of lipid-modified compounds and survivin-silencing siRNA can constitute a reliable alternative to cisplatin treatment for cisplatin-resistant lung tumors that merit further evaluation.

  11. Elevated expression of SLC34A2 inhibits the viability and invasion of A549 cells

    Science.gov (United States)

    YANG, WEIHAN; WANG, YU; PU, QIANG; YE, SUJUAN; MA, QINGPING; REN, JIANG; ZHONG, GUOXING; LIU, LUNXU; ZHU, WEN

    2014-01-01

    Abnormal expression of solute carrier family 34 (sodium phosphate), member 2 (SLC34A2) in the lung may induce abnormal alveolar type II (AT II) cells to transform into lung adenocarcinoma cells, and may also be important in biological process of lung adenocarcinoma. However, at present, the effects and molecular mechanisms of SLC34A2 in the initiation and progression of lung cancer remain to be elucidated. To the best of our knowledge, the present study revealed for the first time that the expression levels of SLC34A2 were downregulated in the A549 and H1299 lung adenocarcinoma cell lines. Further investigation demonstrated that the elevated expression of SLC34A2 in A549 cells was able to significantly inhibit cell viability and invasion in vitro. In addition, 10 upregulated genes between the A549-P-S cell line stably expressing SLC34A2 and the control cell line A549-P were identified by microarray analysis and quantitative polymerase chain reaction, including seven tumor suppressor genes and three complement genes. Furthermore, the upregulation of complement gene C3 and complement 4B preproprotein (C4b) in A549-P-S cells was confirmed by ELISA analysis and was identified to be correlated with recovering Pi absorption in A549 cells by the phosphomolybdic acid method by enhancing the expression of SLC34A2. Therefore, it was hypothesized that the mechanisms underlying the effect of SLC34A2 on A549 cells might be associated with the activation of the complement alternative pathway (C3 and C4b) and upregulation of the expression of selenium binding protein 1, thioredoxin-interacting protein, PDZK1-interacting protein 1 and dual specificity protein phosphatase 6. Downregulation of SLC34A2 may primarily cause abnormal AT II cells to escape from complement-associated immunosurveillance and abnormally express certain tumor-suppressor genes inducing AT II cells to develop into lung adenocarcinoma. The present study further elucidated the effects and mechanisms of SLC34A2 in

  12. Tracking the Evolution of Non-Small-Cell Lung Cancer

    DEFF Research Database (Denmark)

    Jamal-Hanjani, Mariam; Wilson, Gareth A.; McGranahan, Nicholas

    2017-01-01

    Background Among patients with non-small-cell lung cancer (NSCLC), data on intratumor heterogeneity and cancer genome evolution have been limited to small retrospective cohorts. We wanted to prospectively investigate intratumor heterogeneity in relation to clinical outcome and to determine the cl...

  13. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.

    Science.gov (United States)

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-07-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non-small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1-induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1-mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1-mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1-induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1-mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1-induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1-induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. ANTITUMOR AND APOPTOTIC EFFECTS OF CUCURBITACIN A IN A-549 LUNG CARCINOMA CELLS IS MEDIATED VIA G2/M CELL CYCLE ARREST AND M-TOR/PI3K/AKT SIGNALLING PATHWAY.

    Science.gov (United States)

    Wang, Wen-Dong; Liu, Yan; Su, Yuan; Xiong, Xian-Zhi; Shang, Dan; Xu, Juan-Juan; Liu, Hong-Ju

    2017-01-01

    The main aim of this study was to demonstrate the antitumor potential of cucurbitacin A on A-549 NSCLC (non-small cell lung cancer cells). The effects of Cucurbitacin A on apoptotic induction, cell physic, cell cycle failure and m-TOR/PI3K/Akt signalling pathway were also investigated in the present study. MTT assay and clonogenic assay were carried out to study effects of this compound on cell cytotoxicity and colony forming tendency in A-549 cells. Moreover, phase and fluorescence microscopic techniques were used to examine the effects on cell morphology and induction of apoptosis. The effects on cell cycle phase distribution were investigated by flow cytometry and effects on m-TOR/PI3K/Akt signalling proteins were assessed by western blot analysis. Results showed that cucurbitacin A induced dose-dependent cytotoxic effects along with suppressing the colony forming tendency in these cells. Cucurbitacin A also induced morphological changes in these cells featuring chromatin condensation, cell shrinkage and apoptotic body formation. G2/M phase cell cycle collapse was also induced by Cucurbitacin A along with inhibition of expression levels of m-TOR/PI3K/Akt proteins. In conclusion, cucurbitacin A inhibits cancer growth in A-549 NSCLC cells by inducing apoptosis, targeting m-TOR/PI3K/Akt signalling pathway and G2/M cell cycle.

  15. Development of Novel Bis(indolyl)-hydrazide-Hydrazone Derivatives as Potent Microtubule-Targeting Cytotoxic Agents against A549 Lung Cancer Cells.

    Science.gov (United States)

    Das Mukherjee, Dipanwita; Kumar, N Maruthi; Tantak, Mukund P; Das, Amlan; Ganguli, Arnab; Datta, Satabdi; Kumar, Dalip; Chakrabarti, Gopal

    2016-05-31

    The biological significance of microtubules makes them a validated target of cancer therapy. In this study, we have utilized indole, an important pharmacological scaffold, to synthesize novel bis(indolyl)-hydrazide-hydrazone derivatives (NMK-BH compounds) and recognized NMK-BH3 as the most effective one in inhibiting A549 cell proliferation and assembly of tissue-purified tubulin. Cell viability experiments showed that NMK-BH3 inhibited proliferation of human lung adenocarcinoma (A549) cells, normal human lung fibroblasts (WI38) and peripheral blood mononuclear cells (PBMC) with IC50 values of ∼2, 48.5, and 62 μM, respectively. Thus, the relatively high cytotoxicity of NMK-BH3 toward lung carcinoma (A549) cells over normal lung fibroblasts (WI38) and PBMC confers a therapeutic advantage of reduced host toxicity. Flow cytometry, Western blot, and immunofluorescence studies in the A549 cell line revealed that NMK-BH3 induced G2/M arrest, mitochondrial depolarization, and apoptosis by depolymerizing the cellular interphase and spindle microtubules. Consistent with these observations, study in cell free system revealed that NMK-BH3 inhibited the microtubule assembly with an IC50 value of ∼7.5 μM. The tubulin-ligand interaction study using fluorescence spectroscopy indicated that NMK-BH3 exhibited strong and specific tubulin binding with a dissociation constant of ∼1.4 μM at a single site, very close to colchicine site, on β-tubulin. Collectively, these findings explore the cytotoxic potential of NMK-BH3 by targeting the microtubules and inspire its development as a potential candidate for lung cancer chemotherapy.

  16. Pirfenidone inhibits TGF-β1-induced over-expression of collagen type I and heat shock protein 47 in A549 cells

    Directory of Open Access Journals (Sweden)

    Hisatomi Keiko

    2012-06-01

    Full Text Available Abstract Background Pirfenidone is a novel anti-fibrotic and anti-inflammatory agent that inhibits the progression of fibrosis in animal models and in patients with idiopathic pulmonary fibrosis (IPF. We previously showed that pirfenidone inhibits the over-expression of collagen type I and of heat shock protein (HSP 47, a collagen-specific molecular chaperone, in human lung fibroblasts stimulated with transforming growth factor (TGF-β1 in vitro. The increased numbers of HSP47-positive type II pneumocytes as well as fibroblasts were also diminished by pirfenidone in an animal model of pulmonary fibrosis induced by bleomycin. The present study evaluates the effects of pirfenidone on collagen type I and HSP47 expression in the human alveolar epithelial cell line, A549 cells in vitro. Methods The expression of collagen type I, HSP47 and E-cadherin mRNAs in A549 cells stimulated with TGF-β1 was evaluated by Northern blotting or real-time PCR. The expression of collagen type I, HSP47 and fibronectin proteins was assessed by immunocytochemical staining. Results TGF-β1 stimulated collagen type I and HSP47 mRNA and protein expression in A549 cells, and pirfenidone significantly inhibited this process. Pirfenidone also inhibited over-expression of the fibroblast phenotypic marker fibronectin in A549 cells induced by TGF-β1. Conclusion We concluded that the anti-fibrotic effects of pirfenidone might be mediated not only through the direct inhibition of collagen type I expression but also through the inhibition of HSP47 expression in alveolar epithelial cells, which results in reduced collagen synthesis in lung fibrosis. Furthermore, pirfenidone might partially inhibit the epithelial-mesenchymal transition.

  17. Synergistic anticancer effects of andrographolide and paclitaxel against A549 NSCLC cells.

    Science.gov (United States)

    Yuan, Huihui; Sun, Bo; Gao, Feng; Lan, Minbo

    2016-11-01

    Paclitaxel (PTX) is widely used in chemotherapy for cancer treatment; however, it has some serious side effects. Andrographolide (Andro) is a potential cancer therapeutic agent isolated from Andrographis paniculata (Burm. f.) Nees (Acanthaceae). The objective of this study is to evaluate the effects of PTX combined with Andro against A549 cells. The effects of 24-48 h treatment with 0.48-60.75 nM PTX and 5.10-328.0 μM Andro on cellular proliferation, apoptosis, cell cycle and intracellular reactive oxygen species (ROS) were determined by sulphorhodamine B assay, Annexin V-FITC/PI apoptosis detection, PI staining and ROS assay, respectively. Synergy was determined using combination index. The antitumour efficacy of 20 mg/kg PTX with 100 mg/kg Andro was studied in a xenograft murine model. IC 50 value of the PTX combined with Andro against A549 cells was 0.5-7.4 nM, which was significantly lower than that of PTX (15.9 nM). PTX with 10 μM Andro caused (1.22-1.27)-fold apoptosis and 1.7-fold ROS accumulation compared with PTX alone. N-Acetylcysteine, a ROS scavenger, blocked this synergy in vitro. In contrast, G2/M phase cell cycle arrest resulting from PTX was not potentiated by Andro. Moreover, PTX in combination with Andro inhibited the growth of A549 transplanted tumours by 98%. The results indicate that the combination of PTX and Andro exert significant synergistic anticancer effect on A549 cells in vitro and in vivo. The synergy may be the result of the accumulation of ROS. The combination of Andro and PTX represents a potential strategy for the treatment of A549 cells.

  18. TSPYL5 is involved in cell growth and the resistance to radiation in A549 cells via the regulation of p21WAF1/Cip1 and PTEN/AKT pathway

    International Nuclear Information System (INIS)

    Kim, Eun Jin; Lee, So Yong; Kim, Tae Rim; Choi, Soo Im; Cho, Eun Wie; Kim, Kug Chan; Kim, In Gyu

    2010-01-01

    TSPYL5, encoding testis-specific Y-like protein, has been postulated to be a tumor suppressor gene, and its hypermethylation is often associated with human disease, especially cancer. In this study, we report that the TSPYL5 gene was less methylated (30%) in A549 lung adenocarcinoma cells, which are relatively resistant to γ-radiation, than in H460 lung cancer cells, in which the TSPYL5 gene was hypermethylated (95%); thus, the expression level of TSPYL5 is much higher in A549 cells than in H460 cells. We showed that TSPYL5 suppression with silencing RNA in A549 cells up-regulated cellular PTEN, followed by down-regulation of AKT activation. Therefore, blockage of TSPYL5 sensitized A549 cells to cytotoxic agents such as γ-radiation. In addition, TSPYL5 suppression also showed an increased level of p21 WAF1/Cip1 and subsequently induced inhibition of cell growth in A549 cells. The overexpression of TSPYL5 in H460 cells showed the opposite effects. This study provides the first demonstration that TSPYL5 modulates cell growth and sensitization of cells to the detrimental effects of damaging agents via regulation of p21 WAF1/Cip1 and PTEN/AKT pathway.

  19. TSPYL5 is involved in cell growth and the resistance to radiation in A549 cells via the regulation of p21{sup WAF1/Cip1} and PTEN/AKT pathway

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Jin; Lee, So Yong; Kim, Tae Rim; Choi, Soo Im [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon 305-600 (Korea, Republic of); Cho, Eun Wie [Systemic Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, P.O. Box 115, Yuseong, Daejeon 305-333 (Korea, Republic of); Kim, Kug Chan [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon 305-600 (Korea, Republic of); Kim, In Gyu, E-mail: igkim@kaeri.re.kr [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon 305-600 (Korea, Republic of)

    2010-02-12

    TSPYL5, encoding testis-specific Y-like protein, has been postulated to be a tumor suppressor gene, and its hypermethylation is often associated with human disease, especially cancer. In this study, we report that the TSPYL5 gene was less methylated (30%) in A549 lung adenocarcinoma cells, which are relatively resistant to {gamma}-radiation, than in H460 lung cancer cells, in which the TSPYL5 gene was hypermethylated (95%); thus, the expression level of TSPYL5 is much higher in A549 cells than in H460 cells. We showed that TSPYL5 suppression with silencing RNA in A549 cells up-regulated cellular PTEN, followed by down-regulation of AKT activation. Therefore, blockage of TSPYL5 sensitized A549 cells to cytotoxic agents such as {gamma}-radiation. In addition, TSPYL5 suppression also showed an increased level of p21{sup WAF1/Cip1} and subsequently induced inhibition of cell growth in A549 cells. The overexpression of TSPYL5 in H460 cells showed the opposite effects. This study provides the first demonstration that TSPYL5 modulates cell growth and sensitization of cells to the detrimental effects of damaging agents via regulation of p21{sup WAF1/Cip1} and PTEN/AKT pathway.

  20. Targeted therapies in development for non-small cell lung cancer

    OpenAIRE

    Reungwetwattana, Thanyanan; Dy, Grace Kho

    2013-01-01

    The iterative discovery in various malignancies during the past decades that a number of aberrant tumorigenic processes and signal transduction pathways are mediated by "druggable" protein kinases has led to a revolutionary change in drug development. In non-small cell lung cancer (NSCLC), the ErbB family of receptors (e.g., EGFR [epidermal growth factor receptor], HER2 [human epidermal growth factor receptor 2]), RAS (rat sarcoma gene), BRAF (v-raf murine sarcoma viral oncogene homolog B1), ...

  1. Effects of kinase insert domain receptor (KDR) gene silencing on the sensitivity of A549 cells to erlotinib.

    Science.gov (United States)

    Zhu, W L; Liu, Y H

    2015-11-25

    We investigated the effects of kinase insert domain receptor (KDR) gene silencing on the proliferation of A549 cells and their sensitivity to erlotinib. A KDR small interfering RNA (siRNA) sequence was designed and synthesized; then, it was transfected into A549 cells using Lipofectamine(TM) 2000. KDR mRNA and protein expression after KDR gene silencing was detected by reverse transcription polymerase chain reaction and western blotting; the A549 cell cycle was detected by flow cytometry. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and colony formation assay were performed to determine the sensitivity of A549 cells to erlotinib after KDR gene silencing. After 48h of KDR gene silencing, there was a significant decrease in KDR gene and protein expression (P A549 cell cycle was arrested at the G0/G1 phase, and the number of cells in the S phase decreased; the difference was statistically significant (P A549 cells to erlotinib was significantly enhanced (P A549 cells, inhibit the proliferation of A549 cells, and enhance their sensitivity to erlotinib.

  2. Approach for oligometastasis in non-small cell lung cancer.

    Science.gov (United States)

    Suzuki, Hidemi; Yoshino, Ichiro

    2016-04-01

    Non-small cell lung cancer (NSCLC) harboring a limited number of distant metastases, referred to as the oligometastatic state, has been indicated for surgery for the past several decades. However, whether the strategy of surgical treatment results in a survival benefit for such patients remains controversial. Experientially, however, thoracic surgeons often encounter long-term survivors among surgically resected oligometastatic NSCLC patients. In this article, the current situation of surgical approach and potential future perspective for oligometastatic NSCLC are reviewed.

  3. A negative regulation loop of long noncoding RNA HOTAIR and p53 in non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Zhai N

    2016-09-01

    Full Text Available Nailiang Zhai,1 Yongfu Xia,1 Rui Yin,2 Jinping Liu,3 Fuquan Gao1 1Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, 2Department of Respiratory Medicine, People’s Hospital of Binzhou City, 3Department of Pharmacology, Binzhou Medical University, Binzhou, Shandong, People’s Republic of China Abstract: Non-small-cell lung cancer (NSCLC is one of the leading causes of cancer-related death worldwide, and the 5-year survival rate is still low despite advances in diagnosis and therapeutics. A long noncoding RNA (lncRNA HOX antisense intergenic RNA (HOTAIR has been revealed to play important roles in NSCLC carcinogenesis but the detailed mechanisms are still unclear. In the current study, we aimed to investigate the regulation between the lncRNA HOTAIR and p53 in the NSCLC patient samples and cell lines. Our results showed that HOTAIR expression was significantly higher in the cancer tissues than that in the adjacent normal tissue, and was negatively correlated with p53 functionality rather than expression. When p53 was overexpressed in A549 cells, the lncRNA HOTAIR expression was downregulated, and the cell proliferation rate and cell invasion capacity decreased as a consequence. We identified two binding sites of p53 on the promoter region of HOTAIR, where the p53 protein would bind to and suppress the HOTAIR mRNA transcription. Inversely, overexpression of lncRNA HOTAIR inhibited the expression of p53 in A549 cells. Mechanistic studies revealed that HOTAIR modified the promoter of p53 and enhanced histone H3 lysine 27 trimethylation (H3K27me3. These studies identified a specific negative regulation loop of lncRNA HOTAIR and p53 in NSCLC cells, which revealed a new understanding of tumorigenesis in p53 dysfunction NSCLC cells. Keywords: NSCLC, LncRNA HOTAIR, p53, negative loop

  4. Low-Dose Acetylsalicylic Acid in Treating Patients With Stage I-III Non-Small Cell Lung Cancer

    Science.gov (United States)

    2017-06-29

    Adenocarcinoma of the Lung; Recurrent Non-small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  5. Frizzled-8 receptor is activated by the Wnt-2 ligand in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Bravo, Dawn T; Yang, Yi-Lin; Kuchenbecker, Kristopher; Hung, Ming-Szu; Xu, Zhidong; Jablons, David M; You, Liang

    2013-01-01

    Wnt-2 plays an oncogenic role in cancer, but which Frizzled receptor(s) mediates the Wnt-2 signaling pathway in lung cancer remains unclear. We sought to (1) identify and evaluate the activation of Wnt-2 signaling through Frizzled-8 in non-small cell lung cancer, and (2) test whether a novel expression construct dominant negative Wnt-2 (dnhWnt-2) reduces tumor growth in a colony formation assay and in a xenograft mouse model. Semi-quantitative RT-PCR was used to identify the expression of Wnt-2 and Frizzled-8 in 50 lung cancer tissues from patients. The TCF reporter assay (TOP/FOP) was used to detect the activation of the Wnt canonical pathway in vitro. A novel dnhWnt-2 construct was designed and used to inhibit activation of Wnt-2 signaling through Frizzled-8 in 293T, 293, A549 and A427 cells and in a xenograft mouse model. Statistical comparisons were made using Student’s t-test. Among the 50 lung cancer samples, we identified a 91% correlation between the transcriptional increase of Wnt-2 and Frizzled-8 (p<0.05). The Wnt canonical pathway was activated when both Wnt-2 and Frizzled-8 were co-expressed in 293T, 293, A549 and A427 cells. The dnhWnt-2 construct we used inhibited the activation of Wnt-2 signaling in 293T, 293, A549 and A427 cells, and reduced the colony formation of NSCLC cells when β-catenin was present (p<0.05). Inhibition of Wnt-2 activation by the dnhWnt-2 construct further reduced the size and mass of tumors in the xenograft mouse model (p<0.05). The inhibition also decreased the expression of target genes of Wnt signaling in these tumors. We demonstrated an activation of Wnt-2 signaling via the Frizzled-8 receptor in NSCLC cells. A novel dnhWnt-2 construct significantly inhibits Wnt-2 signaling, reduces colony formation of NSCLC cells in vitro and tumor growth in a xenograft mouse model. The dnhWnt-2 construct may provide a new therapeutic avenue for targeting the Wnt pathway in lung cancer

  6. Effects of tanshinone nanoemulsion and extract on inhibition of lung cancer cells A549

    Science.gov (United States)

    Lee, W. D.; Liang, Y. J.; Chen, B. H.

    2016-12-01

    Danshen (Salvia miltiorrhiza), a Chinese medicinal herb, consists of several functional components including tanshinones responsible for prevention of several chronic diseases. This study intends to prepare tanshinone extract and nanoemulsion from danshen and determine their inhibition effect on lung cancer cells A549. A highly stable tanshinone nanoemulsion composed of Capryol 90, Tween 80, ethanol and deionized water with the mean particle size of 14.2 nm was successfully prepared. Tanshinone nanoemulsion was found to be more effective in inhibiting A549 proliferation than tanshinone extract. Both nanoemulsion and extract could penetrate into cytoplasm through endocytosis, with the former being more susceptible than the latter. A dose-dependent response in up-regulation of p-JNK, p53 and p21 and down-regulation of CDK2, cyclin D1 and cyclin E1 expressions was observed with the cell cycle arrested at G0/G1 phase. The cellular microcompartment change of A549 was also investigated. The study demonstrated that tanshinone nanoemulsion may be used as a botanic drug for treatment of lung cancer.

  7. Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells

    International Nuclear Information System (INIS)

    Teng, Ying; Wang, Xiuwen; Wang, Yawei; Ma, Daoxin

    2010-01-01

    Wnt/β-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that β-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of β-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of β-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/β-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.

  8. Cordycepin regulates the malignant biological behaviors of lung cancer cell lines A549

    Directory of Open Access Journals (Sweden)

    Ning Shi

    2017-03-01

    Full Text Available Objective: To study the effect of cordycepin on proliferation, apoptosis and invasion-related molecule expression in lung cancer cell lines A549. Methods: Lung cancer cell lines A549 were cultured and treated with different doses of cordycepin (0, 0.25, 0.5, 1.0, 2.0 and 4.0 ng/mL for 24 h, and then the proliferation, apoptosis and invasion-related molecule mRNA expression in cells were detected. Results: After 0.25, 0.5, 1.0, 2.0 and 4.0 ng/mL cordycepin treatment, Caspase-3, Caspase-8, NOX1 and LATS1 mRNA expression were significantly higher than those after 0 ng/mL cordycepin treatment (P<0.05 while CyclinD1, Bcl-2, c-Myc, c-FLIP, TRAF6, N-cadherin and Vimentin mRNA expression were significantly lower than those after 0 ng/mL cordycepin treatment (P<0.05. The greater the cordycepin dosage, the higher the Caspase-3, Caspase-8, NOX1 and LATS1 mRNA expression, and the lower the CyclinD1, Bcl-2, c-Myc, c-FLIP, TRAF6, N-cadherin and Vimentin mRNA expression. Conclusions: Cordycepin can promote pro-apoptosis gene expression and inhibit proproliferation and pro-invasion gene expression in lung cancer cell lines A549.

  9. A549 and MRC-5 cell aggregation in a microfluidic Lab-on-a-chip system.

    Science.gov (United States)

    Zuchowska, A; Jastrzebska, E; Zukowski, K; Chudy, M; Dybko, A; Brzozka, Z

    2017-03-01

    In this paper, we present a culture of A549 and MRC-5 spheroids in a microfluidic system. The aim of our work was to develop a good lung cancer model for the evaluation of drug cytotoxicity. Our research was focused on determining the progress of cell aggregation depending on such factors as the depth of culture microwells in the microdevices, a different flow rate of the introduced cell suspensions, and the addition of collagen to cell suspensions. We showed that these factors had a significant influence on spheroid formation. It was found that both MRC-5 and A549 cells exhibited higher aggregation in 500  μ m microwells. We also noticed that collagen needs to be added to A549 cells to form the spheroids. Optimizing the mentioned parameters allowed us to form 3D lung tissue models in the microfluidic system during the 10-day culture. This study indicates how important an appropriate selection of the specified parameters is (e.g., geometry of the microwells in the microsystem) to obtain the spheroids characterized by high viability in the microfluidic system.

  10. Evaluation of somatostatin and nucleolin receptors for therapeutic delivery in non-small cell lung cancer stem cells applying the somatostatin-analog DOTATATE and the nucleolin-targeting aptamer AS1411

    DEFF Research Database (Denmark)

    Holmboe, Sif; Hansen, Pernille Lund; Thisgaard, Helge

    2017-01-01

    . Somatostatin receptor 2 and nucleolin are known to be overexpressed by various cancer types, which have elicited comprehensive efforts to explore their therapeutic utilization. Here, we evaluated somatostatin receptor 2 targeting and nucleolin targeting for therapeutic delivery to cancer stem cells from lung...... cancer. Nucleolin is expressed highly but not selectively, while somatostatin receptor 2 is expressed selectively but not highly by cancer cells. The non-small cell lung cancer cell lines A549 and H1299, displayed average levels of both surface molecules as judged based on analysis of a larger cell line...... panel. H1299 compared to A549 cells showed significantly elevated sphere-forming capacity, indicating higher cancer stem cell content, thus qualifying as suitable test system. Nucleolin-targeting 57Co-DOTA-AS1411 aptamer showed efficient internalization by cancer cells and, remarkably, at even higher...

  11. Attenuation of hedgehog acyltransferase-catalyzed sonic Hedgehog palmitoylation causes reduced signaling, proliferation and invasiveness of human carcinoma cells

    DEFF Research Database (Denmark)

    Konitsiotis, Antonios D; Chang, Shu-Chun; Jovanović, Biljana

    2014-01-01

    ) cell line PANC-1 and transfected HEK293a cells Hhat localized to the endoplasmic reticulum. siRNA knockdown showed that Hhat is required for Sonic hedgehog (Shh) palmitoylation, for its assembly into high molecular weight extracellular complexes and for functional activity. Hhat knockdown inhibited Hh...... autocrine and juxtacrine signaling, and inhibited PDAC cell growth and invasiveness in vitro. In addition, Hhat knockdown in a HEK293a cell line constitutively expressing Shh and A549 human non-small cell lung cancer cells inhibited their ability to signal in a juxtacrine/paracrine fashion to the reporter...

  12. Silencing long non-coding RNA ROR improves sensitivity of non-small-cell lung cancer to cisplatin resistance by inhibiting PI3K/Akt/mTOR signaling pathway.

    Science.gov (United States)

    Shi, Hui; Pu, Jin; Zhou, Xiao-Li; Ning, Yun-Ye; Bai, Chong

    2017-05-01

    This study aimed to investigate the effects of long non-coding RNA ROR (regulator of reprogramming) on cisplatin (DDP) resistance in patients with non-small-cell lung cancer by regulating PI3K/Akt/mTOR signaling pathway. Human cisplatin-resistant A549/DDP cell lines were selected and divided into control group, negative control group, si-ROR group, ROR over-expression group, Wortmannin group, and ROR over-expression + Wortmannin group. MTT assay was used to determine the optimum inhibitory concentration of DDP. Quantitative real-time polymerase chain reaction and western blotting were applied to detect expressions of long non-coding RNA ROR, PI3K, Akt, and mTOR. Colony-forming assay, scratch test, Transwell assay, and flow cytometry were conducted to detect cell proliferation, migration, invasion, and apoptosis, respectively. Tumor-formation assay was performed to detect the growth of transplanted tumors. Long non-coding RNA ROR expression was high in human A549/DDP cell lines. Compared with the control and negative control groups, the mRNA and protein expressions of PI3K, Akt, mTOR, and bcl-2 decreased, whereas the mRNA and protein expression of bax and the sensitivity of cells to DDP significantly increased. Cell proliferation, migration, and invasion abilities decreased in the si-ROR and Wortmannin groups. In comparison with control and negative control groups, the mRNA and protein expressions of PI3K, Akt, mTOR, and bcl-2 increased, whereas the mRNA and protein expressions of bax decreased, the sensitivity of cells to DDP significantly increased, and cell proliferation, migration, and invasion abilities decreased in the ROR over-expression group. For nude mice in tumor-formation assay, compared with control and negative control groups, the tumor weight was found to be lighter (1.03 ± 0.15) g, the protein expressions of PI3K, Akt, mTOR, and bcl-2 decreased, and the protein expression of bax increased in the si-ROR group. Long non-coding RNA ROR may affect

  13. Knocking down Dp71 expression in A549 cells reduces its malignancy in vivo and in vitro.

    Science.gov (United States)

    Tan, Sichuang; Tan, Sipin; Chen, Zhikang; Cheng, Ke; Chen, Zhicao; Wang, Wenmei; Wen, Qiaocheng; Zhang, Weilin

    2016-01-01

    Dp71 is one of the most ubiquitously expressed isoforms of dystrophin, the pathological genes of DMD. In order to find whether the alteration of Dp71 can affect the phenotypes of cell other than PC12, an A549 cell line with stably transfected Dp71 siRNA plasmids was set up and named A549-Dp71AS cell. It is demonstrated for the first time that the A549-Dp71AS cell line displayed decreased invasion capabilities, reduced migration ability, decreased proliferation rate, and lessened clonogenic formation. Cisplatin-induced apoptosis was also increased in A549-Dp71AS cell line via enhancing the Caspase 3, Caspase 8, and Caspase 9 activities. Knocking down Dp71 expression can significantly inhibit the A549 xenograft tumor growth in nude mice. The A549-Dp71AS cells and xenograft tumor tissues displayed reduced lamin B1, Bcl-2, and MMP2 protein expression, which accounts for the reduced malignancy of A549-Dp71AS cells in vivo and in vitro.

  14. Oxidative injury induced by cadmium sulfide nanoparticles in A549 cells and rat lungs.

    Science.gov (United States)

    Wang, Junfeng; Jiang, Chunyang; Alattar, Mohamed; Hu, Xiaoli; Ma, Dong; Liu, Huibin; Meng, Chunyan; Cao, Fuyuan; Li, Weihong; Li, Qingzhao

    2015-01-01

    Rod-shaped cadmium sulfide nanoparticles (CdS NPs) are becoming increasingly important in many industrial fields, but their potential hazards remain unknown. This study aimed to explore the patterns and mechanisms of lung injury induced by CdS NPs. A549 cells and rats were exposed to two types of CdS NPs with a same diameter of 20-30 nm but different lengths, CdS1 (80-100 nm) and CdS2 (110-130 nm). The using doses were included 10 μg/ml and 20 μg/ml two types of CdS NPs for cellular experiments and five times dose of 20 mg/kg body weight for rats' exposure. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) and trypan blue staining were used to detect the A549 cell mortality percentage. The levels of reactive oxygen species (ROS) were determined in A549 cell. The vigor of superoxide dismutase (SOD) and the contents of catalase (CAT) and malondialdehyde (MDA) were detected both in A549 cells and in rats' serum and lung tissues. The cellular morphological changes were observed under transmission electron microscopy (TEM) and the pathological changes were observed in rats' lung tissue. CdS NPs significantly increased A549 cell mortality percentage. The CdS NPs also increased the levels of ROS and MDA content, whereas they decreased SOD and CAT activities. In parallel, similar changes of the contents of MDA, SOD and CAT were also observed in the sera and lung tissues of CdS NP-treated rats. The cellular TEM detection revealed that two types of CdS nanorods appeared as orderly arranged rounded fat droplets separately and leading to nucleus condensation (CdS1). These cellular and rats' tissues changes in the group treated with CdS1 were more significant than the CdS2 groups. Furthermore, CdS NPs induced many pathological changes, including emphysematous changes in rat lung tissue. Especially visible lung consolidation can be observed in the CdS1 group. CdS NPs induce oxidative injury in the respiratory system, and their toxic effects may be related to grain length.

  15. Radiosensitizing Effects of Ectopic miR-101 on Non-Small-Cell Lung Cancer Cells Depend on the Endogenous miR-101 Level

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Susie; Wang Hongyan; Ng, Wooi Loon; Curran, Walter J. [Department of Radiation Oncology, School of Medicine and the Winship Cancer Institute, Emory University, Atlanta, GA (United States); Wang Ya, E-mail: ywang94@emory.edu [Department of Radiation Oncology, School of Medicine and the Winship Cancer Institute, Emory University, Atlanta, GA (United States)

    2011-12-01

    Purpose: Previously, we showed that ectopic miR-101 could sensitize human tumor cells to radiation by targeting ATM and DNA-PK catalytic subunit (DNA-PKcs) to inhibit DNA repair, as the endogenous miR-101 levels are low in tumors in general. However, the heterogeneity of human cancers may result in an exception. The purpose of this study was to test the hypothesis that a few tumor cell lines with a high level of endogenous miR-101 would prove less response to ectopic miR-101. Methods and Materials: Fourteeen non-small-cell lung cancer (NSCLC) cell lines and one immortalized non-malignant lung epithelial cell line (NL20) were used for comparing endogenous miR-101 levels by real-time reverse transcription-polymerase chain reaction. Based on the different miR-101 levels, four cell lines with different miR-101 levels were chosen for transfection with a green fluorescent protein-lentiviral plasmid encoding miR-101. The target protein levels were measured by using Western blotting. The radiosensitizing effects of ectopic miR-101 on these NSCLC cell lines were determined by a clonogenic assay and xenograft mouse model. Results: The endogenous miR-101 level was similar or lower in 13 NSCLC cell lines but was 11-fold higher in one cell line (H157) than in NL20 cells. Although ectopic miR-101 efficiently decreased the ATM and DNA-PKcs levels and increased the radiosensitization level in H1299, H1975, and A549 cells, it did not change the levels of the miR-101 targets or radiosensitivity in H157 cells. Similar results were observed in xenograft mice. Conclusions: A small number of NSCLC cell lines could have a high level of endogenous miR-101. The ectopic miR-101 was able to radiosensitize most NSCLC cells, except for the NSCLC cell lines that had a much higher endogenous miR-101 level. These results suggest that when we choose one miRNA as a therapeutic tool, the endogenous level of the miRNA in each tumor should be considered.

  16. Oligometastatic non-small-cell lung cancer: current treatment strategies

    Directory of Open Access Journals (Sweden)

    Richard PJ

    2016-11-01

    Full Text Available Patrick J Richard, Ramesh Rengan Department of Radiation Oncology, University of Washington, Seattle, WA, USA Abstract: The oligometastatic disease theory was initially described in 1995 by Hellman and Weichselbaum. Since then, much work has been performed to investigate its existence in many solid tumors. This has led to subclassifications of stage IV cancer, which could redefine our treatment approaches and the therapeutic outcomes for this historically “incurable” entity. With a high incidence of stage IV disease, non-small-cell lung cancer (NSCLC remains a difficult cancer to treat and cure. Recent work has proven the existence of an oligometastatic state in NSCLC in terms of properly selecting patients who may benefit from aggressive therapy and experience long-term overall survival. This review discusses the current treatment approaches used in oligometastatic NSCLC and provides the evidence and rationale for each approach. The prognostic factors of many trials are discussed, which can be used to properly select patients for aggressive treatment regimens. Future advances in both molecular profiling of NSCLC to find targetable mutations and investigating patient selection may increase the number of patients diagnosed with oligometastatic NSCLC. As this disease entity increases, it is of utmost importance for oncologists treating NSCLC to be aware of the current treatment strategies that exist and the potential advantages/disadvantages of each. Keywords: oligometastatic, non-small-cell lung cancer, oligoprogressive, treatment

  17. Dithiolethione modified valproate and diclofenac increase E-cadherin expression and decrease proliferation of non-small cell lung cancer cells.

    Science.gov (United States)

    Moody, Terry W; Switzer, Christopher; Santana-Flores, Wilmarie; Ridnour, Lisa A; Berna, Marc; Thill, Michelle; Jensen, Robert T; Sparatore, Anna; Del Soldato, Piero; Yeh, Grace C; Roberts, David D; Giaccone, Giuseppe; Wink, David A

    2010-05-01

    The effects of dithiolethione modified valproate, diclofenac and sulindac on non-small cell lung cancer (NSCLC) cells were investigated. Sulfur(S)-valproate and S-diclofenac at 1 microg/ml concentrations significantly reduced prostaglandin (PG)E(2) levels in NSCLC cell lines A549 and NCI-H1299 as did the COX-2 inhibitor DuP-697. In vitro, S-valproate, S-diclofenac and S-sulindac half-maximally inhibited the clonal growth of NCI-H1299 cells at 6, 6 and 15 microg/ml, respectively. Using the MTT assay, 10 microg/ml S-valproate, NO-aspirin and Cay10404, a selective COX-2 inhibitor, but not SC-560, a selective COX-1 inhibitor, inhibited the growth of A549 cells. In vivo, 18mg/kg i.p. of S-valproate and S-diclofenac, but not S-sulindac, significantly inhibited A549 or NCI-H1299 xenograft proliferation in nude mice, but had no effect on the nude mouse body weight. The mechanism by which S-valproate and S-diclofenac inhibited the growth of NSCLC cells was investigated. Nitric oxide-aspirin but not S-valproate caused apoptosis of NSCLC cells. By Western blot, S-valproate and S-diclofenac increased E-cadherin but reduced vimentin and ZEB1 (a transcriptional suppressor of E-cadherin) protein expression in NSCLC cells. Because S-valproate and S-diclofenac inhibit the growth of NSCLC cells and reduce PGE(2) levels, they may prove beneficial in the chemoprevention and/or therapy of NSCLC. Published by Elsevier Ireland Ltd.

  18. In vitro and in vivo inhibitory effect of the combination of Wenxia Changfu formula [see text] with cisplatin in non-small cell lung cancer.

    Science.gov (United States)

    Ji, Xu-ming; Ouyang, Bing; Liu, Heng; Liu, Guo-wei; Wu, Zhi-chun; Yu, Hua-yun; Wang, Chun-yan; Wang, Zhong-xia; Wang, Wen-ping

    2011-12-01

    To observe the effect of the combination of Wenxia Changfu Formula ([see text], WCF) with cisplatin (CDDP) on inhibiting non-small cell lung cancer (NSCLC) in vitro and In Vivo and explore its mechanism from its effect on cell cycle. In vitro, WCF-containing serum was prepared and the rhubarb b1, emodin, and aconitine were detected qualitatively by high-performance liquid chromatogram (HPLC). A549 cell lines were treated with blank control (dimethyl sulfoxide), normal serum, normal serum with CDDP (1.25, 2.5, and 5.0 μg/mL, respectively), WCF-containing serum plus different doses of CDDP (1.25, 2.5, and 5.0 μg/mL, respectively). The inhibitory effect was detected by 3-(4,5)-dimethylthiazo(-zy1)-3,5-diphenylterazolium bromide (MTT). The cell cycle was detected by flow cytometry. The protein and mRNA expressions of cyclin D1, proliferating cell nuclear antigen (PCNA), retinoblastoma (Rb), and p16 were observed with immunofluorescence and RT-PCR, respectively. In Vivo, nude mice xenograft model was established and grouped into the control, CDDP, WCF, and combination groups. The combination's inhibition of tumor growth and influence on the weight, spleen, and thymus gland were observed. The inhibitory rate of the combination against A549 cell lines excelled the CDDP alone significantly (P effect (Q=1.19). Compared with the monotherapy, the combination increased the cell percentage in G(0)/G(1) phase and decreased the cell percentage in S phase significantly (P effectively the atrophy of the immune organ caused by chemotherapy. The combination inhibited overproliferation of A549 cell lines by arresting the G(0) /G(1) phase of cell cycle and affecting the protein and mRNA expressions of cell cycle-related proteins, cyclin D1, etc.

  19. Blocking NF-κB sensitizes non-small cell lung cancer cells to histone deacetylase inhibitor induced extrinsic apoptosis through generation of reactive oxygen species.

    Science.gov (United States)

    Karthik, Selvaraju; Sankar, Renu; Varunkumar, Krishnamoorthy; Anusha, Chidambaram; Ravikumar, Vilwanathan

    2015-02-01

    NF-κB signalling is one of the main cell survival pathways that attenuate the anticancer efficacy of therapeutic drugs. Previous studies demonstrated that the histone deacetylase (HDAC) inhibitor induces apoptosis in some malignancies through multiple mechanisms including up-regulation of death receptors, disruption of Hsp90 function and generation of reactive oxygen species (ROS). However, HDAC inhibitor also induces a cell survival signal through NF-κB activation. In this report, we found that romidepsin, a class I HDAC inhibitor, induces NF-κB activation in A549 non-small-cell lung cancer (NSCLC) cells. We also found that inhibition of A549 cells with bortezomib (proteasome inhibitor) has blocked IκB degradation that leads to the loss of NF-κB activation and translocation which enhanced the romidepsin induced mitochondrial injury and sensitizes NSCLC cells to apoptosis. Romidepsin significantly enhances NF-κB reporter gene transcription and these effects were inhibited by bortezomib as determined by reporter gene assay. Consistently, the combined exposure of romidepsin and bortezomib reversed the effects on IκB degradation as evident with IL-8, p50 and p65 (NF-κB) expression. Apoptosis was markedly sensitized with greater ROS generation and more cell death in A549 cell lines. These events are most closely related in that bortezomib prevents the romidepsin mediated RelA acetylation and NF-κB activation, resulting in caspase activation. A strategy of blocking NF-κB activation to enhance HDAC inhibitor activity warrants further attention in NSCLC cells. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Cisplatin treatment increases stemness through upregulation of hypoxia-inducible factors by interleukin-6 in non-small cell lung cancer.

    Science.gov (United States)

    Zhang, Fuquan; Duan, Shanzhou; Tsai, Ying; Keng, Peter C; Chen, Yongbing; Lee, Soo Ok; Chen, Yuhchyau

    2016-06-01

    Cisplatin-resistant A549 and H157 (A549CisR and H157CisR) non-small cell lung cancer cells show increased stemness of cancer stem cells (CSCs) compared to their parental cells. We investigated whether interleukin-6 (IL-6) signaling contributes to this increased stemness in cisplatin-resistant cells. When A549CisR and H157CisR cells were treated with neutralizing IL-6 antibody, decreased cisplatin resistance was observed, whereas IL-6 treatment of parental cells resulted in increased cisplatin resistance. Expression of the CSC markers was significantly upregulated in IL-6-expressing scramble cells (in vitro) and scramble cell-derived tumor tissues (in vivo) after cisplatin treatment, but not in IL-6 knocked down (IL-6si) (in vitro) cells and in IL-6si cell-derived tumor tissues (in vivo), suggesting the importance of IL-6 signaling in triggering increased stemness during cisplatin resistance development. Hypoxia inducible factors (HIFs) were upregulated by IL-6 and responsible for the increased CSC stemness on cisplatin treatment. Mechanism dissection studies found that upregulation of HIFs by IL-6 was through transcriptional control and inhibition of HIF degradation. Treatment of HIF inhibitor (FM19G11) abolished the upregulation of CSC markers and increased sphere formations in IL-6 expressing cells on cisplatin treatment. In all, IL-6-mediated HIF upregulation is important in increasing stemness during cisplatin resistance development, and we suggest that the strategies of inhibiting IL-6 signaling or its downstream HIF molecules can be used as future therapeutic approaches to target CSCs after cisplatin treatment for lung cancer. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  1. Monocyte to macrophage differentiation-associated (MMD) targeted by miR-140-5p regulates tumor growth in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weina, E-mail: liweina228@163.com [Department of Biomedical Engineering, Fourth Military Medical University, Xi’an 710032 (China); He, Fei, E-mail: hesili1027@163.com [Department of Hepatic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032 (China)

    2014-07-18

    Highlights: • Expression of MMD is increased in lung cancer tissues. • Knockdown of MMD inhibits growth of A549 and LLC cells in vitro and in vivo. • MMD is a direct functional target of miR-140-5p. • MiR-140-5p/MMD axis regulates Erk1/2 signaling. - Abstract: Monocyte to macrophage differentiation-associated (MMD) is identified in macrophages as a gene associated with the differentiation from monocytes to macrophages. Recent microarray analysis for non-small cell lung cancer (NSCLC) suggests that MMD is an important signature associated with relapse and survival among patients with NSCLC. Therefore, we speculate that MMD likely plays a role in lung cancer. In this study, we found that the protein level of MMD was increased in lung cancer compared to benign lung tissues, and knockdown of MMD inhibited the growth of A549 and Lewis lung cancer cells (LLC) in vitro and in vivo. Integrated analysis demonstrated that MMD was a direct functional target of miR-140-5p. Furthermore, we found that miR-140-5p/MMD axis could affect the cell proliferation of lung cancer cells by regulating Erk signaling. Together, our results highlight the significance of miR-140-5p/MMD axis in lung cancer, and miR-140-5p/MMD axis could serve as new molecular targets for the therapy against lung cancer.

  2. Progesterone receptor (PR) polyproline domain (PPD) mediates inhibition of epidermal growth factor receptor (EGFR) signaling in non-small cell lung cancer cells.

    Science.gov (United States)

    Kawprasertsri, Sornsawan; Pietras, Richard J; Marquez-Garban, Diana C; Boonyaratanakornkit, Viroj

    2016-05-01

    Recent evidence has suggested a possible role for progesterone receptor (PR) in the progression of non-small cell lung cancer (NSCLC). However, little is known concerning roles of PR in NSCLC. PR contains a polyproline domain (PPD), which directly binds to the SH3 domain of signaling molecules. Because PPD-SH3 interactions are essential for EGFR signaling, we hypothesized that the presence of PR-PPD interfered with EGFR-mediated signaling and cell proliferation. We examined the role of PR-PPD in cell proliferation and signaling by stably expressing PR-B, or PR-B with disrupting mutations in the PPD (PR-BΔSH3), from a tetracycline-regulated promoter in A549 NSCLC cells. PR-B dose-dependently inhibited cell growth in the absence of ligand, and progestin (R5020) treatment further suppressed the growth. Treatment with RU486 abolished PR-B- and R5020-mediated inhibition of cell proliferation. Expression of PR-BΔSH3 and treatment with R5020 or RU486 had no effect on cell proliferation. Furthermore, PR-B expression but not PR-BΔSH3 expression reduced EGF-induced A549 proliferation and activation of ERK1/2, in the absence of ligand. Taken together, our data demonstrated the significance of PR extranuclear signaling through PPD interactions in EGFR-mediated proliferation and signaling in NSCLC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Cytokines and Growth Factors Stimulate Hyaluronan Production: Role of Hyaluronan in Epithelial to Mesenchymal-Like Transition in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Geraldine Chow

    2010-01-01

    Full Text Available In this study, we investigated the role of hyaluronan (HA in non-small cell lung cancer (NSCLC since close association between HA level and malignancy has been reported. HA is an abundant extracellular matrix component and its synthesis is regulated by growth factors and cytokines that include epidermal growth factor (EGF and interleukin-1β (IL-1β. We showed that treatment with recombinant EGF and IL-1β, alone or in combination with TGF-β, was able to stimulate HA production in lung adenocarcinoma cell line A549. TGF-β/IL-1β treatment induced epithelial to mesenchymal-like phenotype transition (EMT, changing cell morphology and expression of vimentin and E-cadherin. We also overexpressed hyaluronan synthase-3 (HAS3 in epithelial lung adenocarcinoma cell line H358, resulting in induced HA expression, EMT phenotype, enhanced MMP9 and MMP2 activities and increased invasion. Furthermore, adding exogenous HA to A549 cells and inducing HA H358 cells resulted in increased resistance to epidermal growth factor receptor (EGFR inhibitor, Iressa. Together, these results suggest that elevated HA production is able to induce EMT and increase resistance to Iressa in NSCLC. Therefore, regulation of HA level in NSCLC may be a new target for therapeutic intervention.

  4. p0071 interacts with E-cadherin in the cytoplasm so as to promote the invasion and metastasis of non-small cell lung cancer.

    Science.gov (United States)

    Zhao, Huanyu; Zhang, Di; Yang, Lianhe; Wang, Enhua

    2018-01-01

    As a member of the p120-catenin (p120ctn) subfamily, the p0071 study in tumor is very limited. We demonstrated the clinicopathological significance of p0071 in non-small cell lung cancer (NSCLC), as well as E-cadherin. Co-immunoprecipitation was used to detect the interaction of p0071 with E-cadherin in A549 and SPC cells (E-cadherin is mainly expressed in the cytoplasm of these cells). p0071 cytoplasmic expression was knocked down by siRNA in these cells and this effect on the RhoA activity and cell invasion and migration ability were measured. p0071 overexpression in the cytoplasm of tumor cell was correlated with lymphatic metastase and poor prognosis of NSCLC. The patients with both abnormal expression of p0071 and E-cadherin (cytoplasmic expression) had a statistically significant shorter survival than the patients without both abnormal expression (P  E-cadherin in NSCLC tissues. p0071 interacted with E-cadherin in the cytoplasm of A549 and SPC cell lines. Treatment with siRNA-p0071 inhibited the invasion and migration ability of NSCLC cells. Above results confirmed that p0071 interacted with E-cadherin in the cytoplasm so as to promote the invasion and metastasis of NSCLC. © 2017 Wiley Periodicals, Inc.

  5. Induced-Decay of Glycine Decarboxylase Transcripts as an Anticancer Therapeutic Strategy for Non-Small-Cell Lung Carcinoma

    Dire