WorldWideScience

Sample records for a53t-alpha-synuclein overexpression impairs

  1. A53T-alpha-synuclein overexpression impairs dopamine signaling and striatal synaptic plasticity in old mice.

    Directory of Open Access Journals (Sweden)

    Alexander Kurz

    2010-07-01

    Full Text Available Parkinson's disease (PD, the second most frequent neurodegenerative disorder at old age, can be caused by elevated expression or the A53T missense mutation of the presynaptic protein alpha-synuclein (SNCA. PD is characterized pathologically by the preferential vulnerability of the dopaminergic nigrostriatal projection neurons.Here, we used two mouse lines overexpressing human A53T-SNCA and studied striatal dysfunction in the absence of neurodegeneration to understand early disease mechanisms. To characterize the progression, we employed young adult as well as old mice. Analysis of striatal neurotransmitter content demonstrated that dopamine (DA levels correlated directly with the level of expression of SNCA, an observation also made in SNCA-deficient (knockout, KO mice. However, the elevated DA levels in the striatum of old A53T-SNCA overexpressing mice may not be transmitted appropriately, in view of three observations. First, a transcriptional downregulation of the extraneural DA degradation enzyme catechol-ortho-methytransferase (COMT was found. Second, an upregulation of DA receptors was detected by immunoblots and autoradiography. Third, extensive transcriptome studies via microarrays and quantitative real-time RT-PCR (qPCR of altered transcript levels of the DA-inducible genes Atf2, Cb1, Freq, Homer1 and Pde7b indicated a progressive and genotype-dependent reduction in the postsynaptic DA response. As a functional consequence, long term depression (LTD was absent in corticostriatal slices from old transgenic mice.Taken together, the dysfunctional neurotransmission and impaired synaptic plasticity seen in the A53T-SNCA overexpressing mice reflect early changes within the basal ganglia prior to frank neurodegeneration. As a model of preclinical stages of PD, such insights may help to develop neuroprotective therapeutic approaches.

  2. Impaired baroreflex function in mice overexpressing alpha-synuclein

    Directory of Open Access Journals (Sweden)

    Sheila eFleming

    2013-07-01

    Full Text Available Cardiovascular autonomic dysfunction, such as orthostatic hypotension consequent to baroreflex failure and cardiac sympathetic denervation, is frequently observed in the synucleinopathy Parkinson’s disease (PD. In the present study, the baroreceptor reflex was assessed in mice overexpressing human wildtype alpha-synuclein (Thy1-aSyn, a genetic mouse model of synucleinopathy. The beat-to-beat change in heart rate, computed from R-R interval, in relation to blood pressure was measured in anesthetized and conscious mice equipped with arterial blood pressure telemetry transducers during transient bouts of hypertension and hypotension. Compared to wildtype, tachycardia following nitroprusside-induced hypotension was significantly reduced in Thy1-aSyn mice. Thy1-aSyn mice also showed an abnormal cardiovascular response (i.e., diminished tachycardia to muscarinic blockade with atropine. We conclude that Thy1-aSyn mice have impaired basal and dynamic range of sympathetic and parasympathetic-mediated changes in heart rate and will be a useful model for long-term study of cardiovascular autonomic dysfunction associated with PD.

  3. A Swedish family with de novo alpha-synuclein A53T mutation: evidence for early cortical dysfunction

    DEFF Research Database (Denmark)

    Puschmann, Andreas; Ross, Owen A; Vilariño-Güell, Carles

    2009-01-01

    A de novo alpha-synuclein A53T (p.Ala53 Th; c.209G > A) mutation has been identified in a Swedish family with autosomal dominant Parkinson's disease (PD). Two affected individuals had early-onset (before 31 and 40 years), severe levodopa-responsive PD with prominent dysphasia, dysarthria, and cog......A de novo alpha-synuclein A53T (p.Ala53 Th; c.209G > A) mutation has been identified in a Swedish family with autosomal dominant Parkinson's disease (PD). Two affected individuals had early-onset (before 31 and 40 years), severe levodopa-responsive PD with prominent dysphasia, dysarthria......) and the Greek-American Family H kindreds. One unaffected family member carried the mutation haplotype without the c.209A mutation, strongly suggesting its de novo occurrence within this family. Furthermore, a novel mutation c.488G > A (p.Arg163His; R163H) in the presenilin-2 (PSEN2) gene was detected...

  4. Alpha-synuclein A53T mutation is not frequent on a sample of Brazilian Parkinson’s disease patients

    Directory of Open Access Journals (Sweden)

    Gabriela S. Longo

    2015-06-01

    Full Text Available Introduction The pathogenesis of Parkinson’s disease (PD involves both genetic susceptibility and environmental factors, with focus on the mutation in the alpha-synuclein gene (SNCA.Objective To analyse the polymorphism SNCA-A53T in patients with familial PD (FPD and sporadic PD (SPD.Method A total of 294 individuals were studied, regardless of sex and with mixed ethnicity. The study group with 154 patients with PD, and the control group included 140 individuals without PD. The genotyping of SNCA-A53T was performed by PCR/RFLP. Significance level was p < 0.05.Results Among all patients, 37 (24% had FPD and 117 (75.9% had SPD. The absence of SNCA-A53T mutation was observed in all individuals.Conclusion SPD is notably observed in patients. However, the SNCA-A53T mutation was absent in all individuals, which does not differ controls from patients. This fact should be confirmed in a Brazilian study case with a more numerous and older population.

  5. Alpha-synuclein mutations impair axonal regeneration in models of Parkinson´s disease

    Directory of Open Access Journals (Sweden)

    Lars eTönges

    2014-09-01

    Full Text Available The dopaminergic (DAergic nigrostriatal tract has an intrinsic regenerative capacity which can be impaired in Parkinson’s disease (PD. Alpha-synuclein (aSyn is a major pathogenic component in PD but its impact on DAergic axonal regeneration is largely unknown. In this study, we expressed pathogenic variants of human aSyn by means of recombinant adeno-associated viral vectors in experimental paradigms of DAergic regeneration. In a scratch lesion model in vitro, both aSyn(A30P and aSyn(A53T significantly reduced DAergic neurite regeneration and induced loss of TH-immunopositive cells while aSyn(WT showed only minor cellular neurotoxic effects. The striatal density of TH-immunopositive axons in the striatal 6-OHDA lesion mouse model was attenuated only by aSyn(A30P. However, striatal expression levels of the regeneration marker GAP-43 in TH-immunopositive fibers were reduced by both aSyn(A30P and aSyn(A53T, but not by aSyn(WT which was associated with an activation of the ROCK signaling pathway. Nigral DAergic cell loss was only mildly enhanced by additional overexpression of aSyn variants. Our findings indicate that mutations of aSyn have a strong impact on the regenerative capacity of DAergic neurons, which may contribute to their pathogenic effects.

  6. 17-AAG induces cytoplasmic alpha-synuclein aggregate clearance by induction of autophagy.

    Science.gov (United States)

    Riedel, Michael; Goldbaum, Olaf; Schwarz, Lisa; Schmitt, Sebastian; Richter-Landsberg, Christiane

    2010-01-18

    The accumulation and aggregation of alpha-synuclein in nerve cells and glia are characteristic features of a number of neurodegenerative diseases termed synucleinopathies. alpha-Synuclein is a highly soluble protein which in a nucleation dependent process is capable of self-aggregation. The causes underlying aggregate formation are not yet understood, impairment of the proteolytic degradation systems might be involved. In the present study the possible aggregate clearing effects of the geldanamycin analogue 17-AAG (17-(Allylamino)-17-demethoxygeldanamycin) was investigated. Towards this, an oligodendroglial cell line (OLN-93 cells), stably expressing human alpha-synuclein (A53T mutation) was used. In these cells small punctate aggregates, not staining with thioflavine S, representing prefibrillary aggregates, occur characteristically. Our data demonstrate that 17-AAG attenuated the formation of alpha-synuclein aggregates by stimulating macroautophagy. By blocking the lysosomal compartment with NH(4)Cl the aggregate clearing effects of 17-AAG were abolished and alpha-synuclein deposits were enlarged. Analysis of LC3-II immunoreactivity, which is an indicator of autophagosome formation, further revealed that 17-AAG led to the recruitment of LC3-II and to the formation of LC3 positive puncta. This effect was also observed in cultured oligodendrocytes derived from the brains of newborn rats. Inhibition of macroautophagy by 3-methyladenine prevented 17-AAG induced occurrence of LC3 positive puncta as well as the removal of alpha-synuclein aggregates in OLN-A53T cells. Our data demonstrate for the first time that 17-AAG not only causes the upregulation of heat shock proteins, but also is an effective inducer of the autophagic pathway by which alpha-synuclein can be removed. Hence geldanamycin derivatives may provide a means to modulate autophagy in neural cells, thereby ameliorating pathogenic aggregate formation and protecting the cells during disease and aging.

  7. Striatal dopamine transmission is subtly modified in human A53Tα-synuclein overexpressing mice.

    Directory of Open Access Journals (Sweden)

    Nicola J Platt

    Full Text Available Mutations in, or elevated dosage of, SNCA, the gene for α-synuclein (α-syn, cause familial Parkinson's disease (PD. Mouse lines overexpressing the mutant human A53Tα-syn may represent a model of early PD. They display progressive motor deficits, abnormal cellular accumulation of α-syn, and deficits in dopamine-dependent corticostriatal plasticity, which, in the absence of overt nigrostriatal degeneration, suggest there are age-related deficits in striatal dopamine (DA signalling. In addition A53Tα-syn overexpression in cultured rodent neurons has been reported to inhibit transmitter release. Therefore here we have characterized for the first time DA release in the striatum of mice overexpressing human A53Tα-syn, and explored whether A53Tα-syn overexpression causes deficits in the release of DA. We used fast-scan cyclic voltammetry to detect DA release at carbon-fibre microelectrodes in acute striatal slices from two different lines of A53Tα-syn-overexpressing mice, at up to 24 months. In A53Tα-syn overexpressors, mean DA release evoked by a single stimulus pulse was not different from wild-types, in either dorsal striatum or nucleus accumbens. However the frequency responsiveness of DA release was slightly modified in A53Tα-syn overexpressors, and in particular showed slight deficiency when the confounding effects of striatal ACh acting at presynaptic nicotinic receptors (nAChRs were antagonized. The re-release of DA was unmodified after single-pulse stimuli, but after prolonged stimulation trains, A53Tα-syn overexpressors showed enhanced recovery of DA release at old age, in keeping with elevated striatal DA content. In summary, A53Tα-syn overexpression in mice causes subtle changes in the regulation of DA release in the striatum. While modest, these modifications may indicate or contribute to striatal dysfunction.

  8. The different faces of the p. A53T alpha-synuclein mutation: A screening of Greek patients with parkinsonism and/or dementia.

    Science.gov (United States)

    Breza, Marianthi; Koutsis, Georgios; Karadima, Georgia; Potagas, Constantin; Kartanou, Chrisoula; Papageorgiou, Sokratis G; Paraskevas, George P; Kapaki, Elisabeth; Stefanis, Leonidas; Panas, Marios

    2018-04-13

    The p. A53T mutation in the alpha-synuclein (SNCA) gene is a rare cause of autosomal dominant Parkinson's disease (PD). Although generally rare, it is particularly common in the Greek population due to a founder effect. A53T-positive PD patients often develop dementia during disease course and may very rarely present with dementia. We screened for the p. A53T SNCA mutation a total of 347 cases of Greek origin with parkinsonism and/or dementia, collected over 15 years at the Neurogenetics Unit, Eginition Hospital, University of Athens. Cases were classified into: "pure parkinsonism", "pure dementia" and "parkinsonism plus dementia". In total, 4 p. A53T SNCA mutation carriers were identified. All had autosomal dominant family history and early onset. Screening of the "pure parkinsonism" category revealed 2 cases with typical PD. The other two mutation carriers were identified in the "parkinsonism plus dementia" category. One had a diagnosis of PD dementia and the other of behavioral variant frontotemporal dementia. Screening of patients with "pure dementia" failed to identify any further A53T-positive cases. Our results confirm that the p. A53T SNCA mutation is relatively common in Greek patients with PD or PD plus dementia, particularly in cases with early onset and/or autosomal dominant family history. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Mice with deleted multimerin 1 and alpha-synuclein genes have impaired platelet adhesion and impaired thrombus formation that is corrected by multimerin 1.

    Science.gov (United States)

    Reheman, Adili; Tasneem, Subia; Ni, Heyu; Hayward, Catherine P M

    2010-05-01

    Multimerin 1 is a stored platelet and endothelial cell adhesive protein that shows significant conservation. In vitro, multimerin 1 supports platelet adhesion and it also binds to collagen and enhances von Willebrand factor-dependent platelet adhesion to collagen. As selective, multimerin 1 deficient mice have not been generated, we investigated multimerin 1 effects on platelet adhesion using a subpopulation of C57BL/6J mice with tandem deletion of the genes for multimerin 1 and alpha-synuclein, a protein that inhibits alpha-granule release in vitro. We postulated that multimerin 1/alpha-synuclein deficient mice might show impaired platelet adhesive function from multimerin 1 deficiency and increased alpha-granule release from alpha-synuclein deficiency. Platelet function was assessed by intravital microscopy, after ferric chloride injury, using untreated and human multimerin 1-transfused multimerin 1/alpha-synuclein deficient mice, and by in vitro assays of adhesion, aggregation and thrombin-induced P-selectin release. Multimerin 1/alpha-synuclein deficient mice showed impaired platelet adhesion and their defective thrombus formation at sites of vessel injury improved with multimerin 1 transfusion. Although multimerin 1/alpha-synuclein deficient platelets showed increased P-selectin release at low thrombin concentrations, they also showed impaired adhesion to collagen, and attenuated aggregation with thrombin, that improved with added multimerin 1. Our data suggest that multimerin 1 supports platelet adhesive functions and thrombus formation, which will be important to verify by generating and testing selective multimerin 1 deficient mice. Copyright (c) 2010. Published by Elsevier Ltd.

  10. Alpha-synuclein levels in blood plasma decline with healthy aging.

    Directory of Open Access Journals (Sweden)

    Niklas K U Koehler

    Full Text Available There is unequivocal evidence that alpha-synuclein plays a pivotal pathophysiological role in neurodegenerative diseases, and in particular in synucleinopathies. These disorders present with a variable extent of cognitive impairment and alpha-synuclein is being explored as a biomarker in CSF, blood serum and plasma. Considering key events of aging that include proteostasis, alpha-synuclein may not only be useful as a marker for differential diagnosis but also for aging per se. To explore this hypothesis, we developed a highly specific ELISA to measure alpha-synuclein. In healthy males plasma alpha-synuclein levels correlated strongly with age, revealing much lower concentrations in older (avg. 58.1 years compared to younger (avg. 27.6 years individuals. This difference between the age groups was enhanced after acidification of the plasmas (p<0.0001, possibly reflecting a decrease of alpha-synuclein-antibody complexes or chaperone activity in older individuals. Our results support the concept that alpha-synuclein homeostasis may be impaired early on, possibly due to disturbance of the proteostasis network, a key component of healthy aging. Thus, alpha-synuclein may be a novel biomarker of aging, a factor that should be considered when analyzing its presence in biological specimens.

  11. Mutant alpha-synuclein causes age-dependent neuropathology in monkey brain.

    Science.gov (United States)

    Yang, Weili; Wang, Guohao; Wang, Chuan-En; Guo, Xiangyu; Yin, Peng; Gao, Jinquan; Tu, Zhuchi; Wang, Zhengbo; Wu, Jing; Hu, Xintian; Li, Shihua; Li, Xiao-Jiang

    2015-05-27

    Parkinson's disease (PD) is an age-dependent neurodegenerative disease that often occurs in those over age 60. Although rodents and small animals have been used widely to model PD and investigate its pathology, their short life span makes it difficult to assess the aging-related pathology that is likely to occur in PD patient brains. Here, we used brain tissues from rhesus monkeys at 2-3, 7-8, and >15 years of age to examine the expression of Parkin, PINK1, and α-synuclein, which are known to cause PD via loss- or gain-of-function mechanisms. We found that α-synuclein is increased in the older monkey brains, whereas Parkin and PINK1 are decreased or remain unchanged. Because of the gain of toxicity of α-synuclein, we performed stereotaxic injection of lentiviral vectors expressing mutant α-synuclein (A53T) into the substantia nigra of monkeys and found that aging also increases the accumulation of A53T in neurites and its associated neuropathology. A53T also causes more extensive reactive astrocytes and axonal degeneration in monkey brain than in mouse brain. Using monkey brain tissues, we found that A53T interacts with neurofascin, an adhesion molecule involved in axon subcellular targeting and neurite outgrowth. Aged monkey brain tissues show an increased interaction of neurofascin with A53T. Overexpression of A53T causes neuritic toxicity in cultured neuronal cells, which can be attenuated by transfected neurofascin. These findings from nonhuman primate brains reveal age-dependent pathological and molecular changes that could contribute to the age-dependent neuropathology in PD. Copyright © 2015 the authors 0270-6474/15/358345-14$15.00/0.

  12. Alpha-synuclein levels in blood plasma decline with healthy aging.

    Science.gov (United States)

    Koehler, Niklas K U; Stransky, Elke; Meyer, Mirjam; Gaertner, Susanne; Shing, Mona; Schnaidt, Martina; Celej, Maria S; Jovin, Thomas M; Leyhe, Thomas; Laske, Christoph; Batra, Anil; Buchkremer, Gerhard; Fallgatter, Andreas J; Wernet, Dorothee; Richartz-Salzburger, Elke

    2015-01-01

    There is unequivocal evidence that alpha-synuclein plays a pivotal pathophysiological role in neurodegenerative diseases, and in particular in synucleinopathies. These disorders present with a variable extent of cognitive impairment and alpha-synuclein is being explored as a biomarker in CSF, blood serum and plasma. Considering key events of aging that include proteostasis, alpha-synuclein may not only be useful as a marker for differential diagnosis but also for aging per se. To explore this hypothesis, we developed a highly specific ELISA to measure alpha-synuclein. In healthy males plasma alpha-synuclein levels correlated strongly with age, revealing much lower concentrations in older (avg. 58.1 years) compared to younger (avg. 27.6 years) individuals. This difference between the age groups was enhanced after acidification of the plasmas (phealthy aging. Thus, alpha-synuclein may be a novel biomarker of aging, a factor that should be considered when analyzing its presence in biological specimens.

  13. Long-term polarization of microglia upon alpha-synuclein overexpression in nonhuman primates

    DEFF Research Database (Denmark)

    Barkholt, Pernille; Sanchez-Guajardo, Vanesa Maria; Kirik, Denis

    2012-01-01

    We have previously shown that persistent ﰇ-sy- nuclein overexpression in ventral midbrain of marmoset leads to a distinctive neurodegenerative process and motor defects. The neurodegeneration was confined to caudate putamen dopaminergic fibers in animals overexpressing wild-type (wt) ﰇ-synuclein....

  14. The temporal expression pattern of alpha-synuclein modulates olfactory neurogenesis in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Sebastian R Schreglmann

    Full Text Available Adult neurogenesis mirrors the brain´s endogenous capacity to generate new neurons throughout life. In the subventricular zone/ olfactory bulb system adult neurogenesis is linked to physiological olfactory function and has been shown to be impaired in murine models of neuronal alpha-Synuclein overexpression. We analyzed the degree and temporo-spatial dynamics of adult olfactory bulb neurogenesis in transgenic mice expressing human wild-type alpha-Synuclein (WTS under the murine Thy1 (mThy1 promoter, a model known to have a particularly high tg expression associated with impaired olfaction.Survival of newly generated neurons (NeuN-positive in the olfactory bulb was unchanged in mThy1 transgenic animals. Due to decreased dopaminergic differentiation a reduction in new dopaminergic neurons within the olfactory bulb glomerular layer was present. This is in contrast to our previously published data on transgenic animals that express WTS under the control of the human platelet-derived growth factor β (PDGF promoter, that display a widespread decrease in survival of newly generated neurons in regions of adult neurogenesis, resulting in a much more pronounced neurogenesis deficit. Temporal and quantitative expression analysis using immunofluorescence co-localization analysis and Western blots revealed that in comparison to PDGF transgenic animals, in mThy1 transgenic animals WTS is expressed from later stages of neuronal maturation only but at significantly higher levels both in the olfactory bulb and cortex.The dissociation between higher absolute expression levels of alpha-Synuclein but less severe impact on adult olfactory neurogenesis in mThy1 transgenic mice highlights the importance of temporal expression characteristics of alpha-Synuclein on the maturation of newborn neurons.

  15. Alpha-Synuclein Toxicity in the Early Secretory Pathway: How it Drives Neurodegeneration in Parkinsons Disease

    Directory of Open Access Journals (Sweden)

    Ting eWang

    2015-11-01

    Full Text Available Alpha-synuclein is a predominant player in the pathogenesis of Parkinson’s Disease. However, despite extensive study for two decades, its physiological and pathological mechanisms remain poorly understood. Alpha-synuclein forms a perplexing web of interactions with lipids, trafficking machinery, and other regulatory factors. One emerging consensus is that synaptic vesicles are likely the functional site for alpha-synuclein, where it appears to facilitate vesicle docking and fusion. On the other hand, the disfunctions of alpha-synuclein are more dispersed and numerous; when mutated or over-expressed, alpha-synuclein affects several membrane trafficking and stress pathways, including exocytosis, ER-to-Golgi transport, ER stress, Golgi homeostasis, endocytosis, autophagy, oxidative stress and others. Here we examine recent developments in alpha-synuclein’s toxicity in the early secretory pathway placed in the context of emerging themes from other affected pathways to help illuminate its underlying pathogenic mechanisms in neurodegeneration.

  16. DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice.

    Science.gov (United States)

    Wang, Degui; Yu, Tianyu; Liu, Yongqiang; Yan, Jun; Guo, Yingli; Jing, Yuhong; Yang, Xuguang; Song, Yanfeng; Tian, Yingxia

    2016-12-02

    Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Towards a Non-Human Primate Model of Alpha-Synucleinopathy for Development of Therapeutics for Parkinson's Disease: Optimization of AAV1/2 Delivery Parameters to Drive Sustained Expression of Alpha Synuclein and Dopaminergic Degeneration in Macaque.

    Directory of Open Access Journals (Sweden)

    James B Koprich

    Full Text Available Recent failures in clinical trials for disease modification in Parkinson's disease have highlighted the need for a non-human primate model of the synucleinopathy underpinning dopaminergic neuron degeneration. The present study was defined to begin the development of such a model in cynomolgus macaque. We have validated surgical and vector parameters to define a means to provide a robust over-expression of alpha-synuclein which is associated with Lewy-like pathology and robust degeneration of the nigrostriatal pathway. Thus, an AAV1/2 vector incorporating strong transcription and transduction regulatory elements was used to deliver the gene for the human A53T mutation of alpha-synuclein. When injected into 4 sites within each substantia nigra (7 μl per site, 1.7 x 1012 gp/ml, this vector provided expression lasting at least 4 months, and a 50% loss of nigral dopaminergic neurons and a 60% reduction in striatal dopamine. Further studies will be required to develop this methodology into a validated model of value as a drug development platform.

  18. Alpha-synuclein in cutaneous small nerve fibers

    Directory of Open Access Journals (Sweden)

    Siepmann T

    2016-10-01

    Full Text Available Timo Siepmann,1 Ben Min-Woo Illigens,2 Kristian Barlinn1 1Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; 2Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA Abstract: Despite progression in the development of pharmacological therapy, treatment of alpha synucleinopathies, such as Parkinson’s disease (PD and some atypical parkinsonism syndromes, is still challenging. To date, our knowledge of the mechanisms whereby the pathological form of alpha-synuclein causes structural and functional damage to the nervous system is limited and, consequently, there is a lack of specific diagnostic tools to evaluate pathology in these patients and differentiate PD from other neurodegenerative proteinopathies. Recent studies indicated that alpha-synuclein deposition in cutaneous small nerve fibers assessed by skin biopsies might be a valid disease marker of PD and facilitate early differentiation of PD from atypical parkinsonism syndromes. This observation is relevant since early diagnosis may enable timely treatment and improve quality of life. However, challenges include the necessity of standardizing immunohistochemical analysis techniques and the identification of potential distinct patterns of intraneural alpha-synuclein deposition among synucleinopathies. In this perspective, we explore the scientific and clinical opportunities arising from alpha-synuclein assessment using skin biopsies. These include elucidation of the peripheral nervous system pathology of PD and other synucleinopathies, identification of novel targets to study response to neuroprotective treatment, and improvement of clinical management. Furthermore, we discuss future challenges in exploring the diagnostic value of skin biopsy assessment for alpha-synuclein deposition and implementing the technique in clinical practice. Keywords: Parkinson’s disease, diagnosis, skin

  19. Proteasome impairment by α-synuclein.

    Directory of Open Access Journals (Sweden)

    Lisa Zondler

    Full Text Available Parkinson's disease (PD is the second most prevalent neurodegenerative disorder worldwide and characterized by the loss of dopaminergic neurons in the patients' midbrains. Both the presence of the protein α-synuclein in intracellular protein aggregates in surviving neurons and the genetic linking of the α-synuclein encoding gene point towards a major role of α-synuclein in PD etiology. The exact pathogenic mechanisms of PD development are not entirely described to date, neither is the specific role of α-synuclein in this context. Previous studies indicate that one aspect of α-synuclein-related cellular toxicity might be direct proteasome impairment. The 20/26S proteasomal machinery is an important instrument of intracellular protein degradation. Thus, direct proteasome impairment by α-synuclein might explain or at least contribute to the formation of intracellular protein aggregates. Therefore this study investigates direct proteasomal impairment by α-synuclein both in vitro using recombinant α-synuclein and isolated proteasomes as well as in living cells. Our experiments demonstrate that the impairment of proteasome activity by α-synuclein is highly dependent upon the cellular background and origin. We show that recombinant α-synuclein oligomers and fibrils scarcely affect 20S proteasome function in vitro, neither does transient α-synuclein expression in U2OS ps 2042 (Ubi(G76V-GFP cells. However, stable expression of both wild-type and mutant α-synuclein in dopaminergic SH-SY5Y and PC12 cells results in a prominent impairment of the chymotrypsin-like 20S/26S proteasomal protein cleavage. Thus, our results support the idea that α-synuclein in a specific cellular environment, potentially present in dopaminergic cells, cannot be processed by the proteasome and thus contributes to a selective vulnerability of dopaminergic cells to α-synuclein pathology.

  20. ALPHA-SYNUCLEIN STRUCTURE, AGGREGATION AND MODULATORS

    Directory of Open Access Journals (Sweden)

    Pinakin K. Makwana

    2016-06-01

    Full Text Available Alpha-synuclein is an intrinsically unstructured protein, involved in various neurodegenerative disorders. In vitro/in vivo experiments, as well as genetic mutation studies establish a direct link between alphasynuclein and synucleinopathies. Due to its natively unfolded state, alpha synuclein can adopt numerous conformations upon interaction with its partners and cellular factors, offering explanation for its diverse interactions. Aggregated form of alpha-synuclein has been observed in the brain of patients with synucleinopathies, a hallmark of neurodegeneration, and cell death has been attributed to aggregation induced toxicity. The process of aggregation involves nucleation, followed by intermediate oligomeric states, and finally the fibrillar amyloids. Of the various conformations/species that alpha-synuclein assumes before it transforms into mature amyloid fibrils, the oligomeric species is the most toxic. Thus, an effective way to limit disease progression is by modifying/slowing down protein aggregation/deposition in the brain. Various small natural products, synthetic chemicals, peptides and antibodies specific to alpha-synuclein have been designed/identified to reduce its rate of aggregation. Unfortunately, not even a handful of the molecules have cleared the clinical trials. Even today, medications available for Parkinson’s patients are mostly the drugs that adjust for loss of dopamine in the brain, and hence do not stop the progression of the disease or cure the symptoms. Thus, more molecular level studies are warranted to fully elucidate the process of alpha-synuclein aggregation, which in turn could help in identifying novel therapeutics and preventives. The present review summarizes the insights gained into the structure, in vitro aggregation and inhibitors/modulators of alpha-synuclein aggregation, that can be used to design better and effective inhibitors against the diseases.

  1. Site-specific perturbations of alpha-synuclein fibril structure by the Parkinson's disease associated mutations A53T and E46K.

    Directory of Open Access Journals (Sweden)

    Luisel R Lemkau

    Full Text Available Parkinson's disease (PD is pathologically characterized by the presence of Lewy bodies (LBs in dopaminergic neurons of the substantia nigra. These intracellular inclusions are largely composed of misfolded α-synuclein (AS, a neuronal protein that is abundant in the vertebrate brain. Point mutations in AS are associated with rare, early-onset forms of PD, although aggregation of the wild-type (WT protein is observed in the more common sporadic forms of the disease. Here, we employed multidimensional solid-state NMR experiments to assess A53T and E46K mutant fibrils, in comparison to our recent description of WT AS fibrils. We made de novo chemical shift assignments for the mutants, and used these chemical shifts to empirically determine secondary structures. We observe significant perturbations in secondary structure throughout the fibril core for the E46K fibril, while the A53T fibril exhibits more localized perturbations near the mutation site. Overall, these results demonstrate that the secondary structure of A53T has some small differences from the WT and the secondary structure of E46K has significant differences, which may alter the overall structural arrangement of the fibrils.

  2. DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice

    International Nuclear Information System (INIS)

    Wang, Degui; Yu, Tianyu; Liu, Yongqiang; Yan, Jun; Guo, Yingli; Jing, Yuhong; Yang, Xuguang; Song, Yanfeng; Tian, Yingxia

    2016-01-01

    Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. - Highlights: • This study explore contribution of DNA damage to neurodegeneration in Parkinson's disease mice. • A53T-α-Syn MEF cells show a prolonged DNA damage repair process and senescense phenotype. • DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice. • DNA damage decrease the number of nigrostriatal dopaminergic neurons. • Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages.

  3. Co-ordinate transcriptional regulation of dopamine synthesis genes by alpha-synuclein in human neuroblastoma cell lines.

    Science.gov (United States)

    Baptista, Melisa J; O'Farrell, Casey; Daya, Sneha; Ahmad, Rili; Miller, David W; Hardy, John; Farrer, Matthew J; Cookson, Mark R

    2003-05-01

    Abnormal accumulation of alpha-synuclein in Lewy bodies is a neuropathological hallmark of both sporadic and familial Parkinson's disease (PD). Although mutations in alpha-synuclein have been identified in autosomal dominant PD, the mechanism by which dopaminergic cell death occurs remains unknown. We investigated transcriptional changes in neuroblastoma cell lines transfected with either normal or mutant (A30P or A53T) alpha-synuclein using microarrays, with confirmation of selected genes by quantitative RT-PCR. Gene products whose expression was found to be significantly altered included members of diverse functional groups such as stress response, transcription regulators, apoptosis-inducing molecules, transcription factors and membrane-bound proteins. We also found evidence of altered expression of dihydropteridine reductase, which indirectly regulates the synthesis of dopamine. Because of the importance of dopamine in PD, we investigated the expression of all the known genes in dopamine synthesis. We found co-ordinated downregulation of mRNA for GTP cyclohydrolase, sepiapterin reductase (SR), tyrosine hydroxylase (TH) and aromatic acid decarboxylase by wild-type but not mutant alpha-synuclein. These were confirmed at the protein level for SR and TH. Reduced expression of the orphan nuclear receptor Nurr1 was also noted, suggesting that the co-ordinate regulation of dopamine synthesis is regulated through this transcription factor.

  4. Inducible alpha-synuclein overexpression affects human Neural Stem Cells behavior

    OpenAIRE

    Conti, Luciano; Zasso, Jacopo; Cutarelli, Alessandro; Ahmed, Mastad

    2018-01-01

    Converging evidence suggest that levels of alpha-Synuclein (aSyn) expression play a critical role in Parkinson's disease (PD). Several mutations of the SNCA gene, encoding for aSyn have been associated to either the familial or the sporadic forms of PD. Nonetheless, the mechanism underlying wild type aSyn-mediated neurotoxicity in neuronal cells as well as its specific driving role in PD pathogenesis has yet to be fully clarified. In this view, the development of proper in vitro cellular syst...

  5. Drp-1 dependent mitochondrial fragmentation and protective autophagy in dopaminergic SH-SY5Y cells overexpressing alpha-synuclein.

    Science.gov (United States)

    Martinez, Jimena Hebe; Alaimo, Agustina; Gorojod, Roxana Mayra; Porte Alcon, Soledad; Fuentes, Federico; Coluccio Leskow, Federico; Kotler, Mónica Lidia

    2018-04-01

    Parkinson's disease is a neurodegenerative movement disorder caused by the loss of dopaminergic neurons from substantia nigra. It is characterized by the accumulation of aggregated α-synuclein as the major component of the Lewy bodies. Additional common features of this disease are the mitochondrial dysfunction and the activation/inhibition of autophagy both events associated to the intracellular accumulation of α-synuclein. The mechanism by which these events contribute to neural degeneration remains unknown. In the present work we investigated the effect of α-synuclein on mitochondrial dynamics and autophagy/mitophagy in SH-SY5Y cells, an in vitro model of Parkinson disease. We demonstrated that overexpression of wild type α-synuclein causes moderated toxicity, ROS generation and mitochondrial dysfunction. In addition, α-synuclein induces the mitochondrial fragmentation on a Drp-1-dependent fashion. Overexpression of the fusion protein Opa-1 prevented both mitochondrial fragmentation and cytotoxicity. On the other hand, cells expressing α-synuclein showed activated autophagy and particularly mitophagy. Employing a genetic strategy we demonstrated that autophagy is triggered in order to protect cells from α-synuclein-induced cell death. Our results clarify the role of Opa-1 and Drp-1 in mitochondrial dynamics and cell survival, a controversial α-synuclein research issue. The findings presented point to the relevance of mitochondrial homeostasis and autophagy in the pathogenesis of PD. Better understanding of the molecular interaction between these processes could give rise to novel therapeutic methods for PD prevention and amelioration. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Curcumin inhibits aggregation of alpha-synuclein.

    Science.gov (United States)

    Pandey, Neeraj; Strider, Jeffrey; Nolan, William C; Yan, Sherry X; Galvin, James E

    2008-04-01

    Aggregation of amyloid-beta protein (Abeta) is a key pathogenic event in Alzheimer's disease (AD). Curcumin, a constituent of the Indian spice Turmeric is structurally similar to Congo Red and has been demonstrated to bind Abeta amyloid and prevent further oligomerization of Abeta monomers onto growing amyloid beta-sheets. Reasoning that oligomerization kinetics and mechanism of amyloid formation are similar in Parkinson's disease (PD) and AD, we investigated the effect of curcumin on alpha-synuclein (AS) protein aggregation. In vitro model of AS aggregation was developed by treatment of purified AS protein (wild-type) with 1 mM Fe3+ (Fenton reaction). It was observed that the addition of curcumin inhibited aggregation in a dose-dependent manner and increased AS solubility. The aggregation-inhibiting effect of curcumin was next investigated in cell culture utilizing catecholaminergic SH-SY5Y cell line. A model system was developed in which the red fluorescent protein (DsRed2) was fused with A53T mutant of AS and its aggregation examined under different concentrations of curcumin. To estimate aggregation in an unbiased manner, a protocol was developed in which the images were captured automatically through a high-throughput cell-based screening microscope. The obtained images were processed automatically for aggregates within a defined dimension of 1-6 microm. Greater than 32% decrease in mutant alpha-synuclein aggregation was observed within 48 h subsequent to curcumin addition. Our data suggest that curcumin inhibits AS oligomerization into higher molecular weight aggregates and therefore should be further explored as a potential therapeutic compound for PD and related disorders.

  7. Triptolide Promotes the Clearance of α-Synuclein by Enhancing Autophagy in Neuronal Cells.

    Science.gov (United States)

    Hu, Guanzheng; Gong, Xiaoli; Wang, Le; Liu, Mengru; Liu, Yang; Fu, Xia; Wang, Wei; Zhang, Ting; Wang, Xiaomin

    2017-04-01

    Parkinson's disease (PD) is an aging-associated neurodegenerative disease with a characteristic feature of α-synuclein accumulation. Point mutations (A53T, A30P) that increase the aggregation propensity of α-synuclein result in familial early onset PD. The abnormal metabolism of α-synuclein results in aberrant level changes of α-synuclein in PD. In pathological conditions, α-synuclein is degraded mainly by the autophagy-lysosome pathway. Triptolide (T10) is a monomeric compound isolated from a traditional Chinese herb. Our group demonstrated for the first time that T10 possesses potent neuroprotective properties both in vitro and in vivo PD models. In the present study, we reported T10 as a potent autophagy inducer in neuronal cells, which helped to promote the clearance of various forms of α-synuclein in neuronal cells. We transfected neuronal cells with A53T mutant (A53T) or wild-type (WT) α-synuclein plasmids and found T10 attenuated the cytotoxicity induced by pathogenic A53T α-synuclein overexpression. We observed that T10 significantly reduced both A53T and WT α-synuclein level in neuronal cell line, as well as in primary cultured cortical neurons. Excluding the changes of syntheses, secretion, and aggregation of α-synuclein, we further added autophagy inhibitor or proteasome inhibitor with T10, and we noticed that T10 promoted the clearance of α-synuclein mainly by the autophagic pathway. Lastly, we observed increased autophagy marker LC3-II expression and autophagosomes by GFP-LC3-II accumulation and ultrastructural characterization. However, the lysosome activity and cell viability were not modulated by T10. Our study revealed that T10 could induce autophagy and promote the clearance of both WT and A53T α-synuclein in neurons. These results provide evidence of T10 as a promising mean to treat PD and other neurodegenerative diseases by reducing pathogenic proteins in neurons.

  8. The L444P Gba1 mutation enhances alpha-synuclein induced loss of nigral dopaminergic neurons in mice

    Science.gov (United States)

    Migdalska-Richards, Anna; Wegrzynowicz, Michal; Rusconi, Raffaella; Deangeli, Giulio; Di Monte, Donato A; Spillantini, Maria G; Schapira, Anthony H V

    2017-01-01

    Abstract Mutations in glucocerebrosidase 1 (GBA1) represent the most prevalent risk factor for Parkinson’s disease. The molecular mechanisms underlying the link between GBA1 mutations and Parkinson’s disease are incompletely understood. We analysed two aged (24-month-old) Gba1 mouse models, one carrying a knock-out mutation and the other a L444P knock-in mutation. A significant reduction of glucocerebrosidase activity was associated with increased total alpha-synuclein accumulation in both these models. Gba1 mutations alone did not alter the number of nigral dopaminergic neurons nor striatal dopamine levels. We then investigated the effect of overexpression of human alpha-synuclein in the substantia nigra of aged (18 to 21-month-old) L444P Gba1 mice. Following intraparenchymal injections of human alpha-synuclein carrying viral vectors, pathological accumulation of phosphorylated alpha-synuclein occurred within the transduced neurons. Stereological counts of nigral dopaminergic neurons revealed a significantly greater cell loss in Gba1-mutant than wild-type mice. These results indicate that Gba1 deficiency enhances neuronal vulnerability to neurodegenerative processes triggered by increased alpha-synuclein expression. PMID:28969384

  9. A Focus on the Beneficial Effects of Alpha Synuclein and a Re-Appraisal of Synucleinopathies.

    Science.gov (United States)

    Ryskalin, Larisa; Busceti, Carla L; Limanaqi, Fiona; Biagioni, Francesca; Gambardella, Stefano; Fornai, Francesco

    2018-01-01

    Alpha synuclein (α-syn) belongs to a class of proteins which are commonly considered to play a detrimental role in neuronal survival. This assumption is based on the occurrence of a severe neuronal degeneration in patients carrying a multiplication of the α-syn gene (SNCA) and in a variety of experimental models, where overexpression of α-syn leads to cell death and neurological impairment. In these conditions, a higher amount of normally structured α-syn produces a damage, which is even worse compared with that produced by α-syn owning an abnormal structure (as occurring following point gene mutations). In line with this, knocking out the expression of α-syn is reported to protect from specific neurotoxins such as 1-methyl, 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP). In the present review we briefly discuss these well-known detrimental effects but we focus on findings showing that, in specific conditions α-syn is beneficial for cell survival. This occurs during methamphetamine intoxication which is counteracted by endogenous α-syn. Similarly, the dysfunction of the chaperone cysteine-string protein- alpha leads to cell pathology which is counteracted by over-expressing α-syn. In line with this, an increased expression of α-syn protects against oxidative damage produced by dopamine. Remarkably, when the lack of α-syn is combined with a depletion of β- and γ- synucleins, alterations in brain structure and function occur. This review tries to balance the evidence showing a beneficial effect with the bulk of data reporting a detrimental effect of endogenous α-syn. The specific role of α-syn as a chaperone protein is discussed to explain such a dual effect. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Characterization of cognitive deficits in rats overexpressing human alpha-synuclein in the ventral tegmental area and medial septum using recombinant adeno-associated viral vectors.

    Science.gov (United States)

    Hall, Hélène; Jewett, Michael; Landeck, Natalie; Nilsson, Nathalie; Schagerlöf, Ulrika; Leanza, Giampiero; Kirik, Deniz

    2013-01-01

    Intraneuronal inclusions containing alpha-synuclein (a-syn) constitute one of the pathological hallmarks of Parkinson's disease (PD) and are accompanied by severe neurodegeneration of A9 dopaminergic neurons located in the substantia nigra. Although to a lesser extent, A10 dopaminergic neurons are also affected. Neurodegeneration of other neuronal populations, such as the cholinergic, serotonergic and noradrenergic cell groups, has also been documented in PD patients. Studies in human post-mortem PD brains and in rodent models suggest that deficits in cholinergic and dopaminergic systems may be associated with the cognitive impairment seen in this disease. Here, we investigated the consequences of targeted overexpression of a-syn in the mesocorticolimbic dopaminergic and septohippocampal cholinergic pathways. Rats were injected with recombinant adeno-associated viral vectors encoding for either human wild-type a-syn or green fluorescent protein (GFP) in the ventral tegmental area and the medial septum/vertical limb of the diagonal band of Broca, two regions rich in dopaminergic and cholinergic neurons, respectively. Histopathological analysis showed widespread insoluble a-syn positive inclusions in all major projections areas of the targeted nuclei, including the hippocampus, neocortex, nucleus accumbens and anteromedial striatum. In addition, the rats overexpressing human a-syn displayed an abnormal locomotor response to apomorphine injection and exhibited spatial learning and memory deficits in the Morris water maze task, in the absence of obvious spontaneous locomotor impairment. As losses in dopaminergic and cholinergic immunoreactivity in both the GFP and a-syn expressing animals were mild-to-moderate and did not differ from each other, the behavioral impairments seen in the a-syn overexpressing animals appear to be determined by the long term persisting neuropathology in the surviving neurons rather than by neurodegeneration.

  11. Alpha-synuclein suppression by targeted small interfering RNA in the primate substantia nigra.

    Directory of Open Access Journals (Sweden)

    Alison L McCormack

    Full Text Available The protein alpha-synuclein is involved in the pathogenesis of Parkinson's disease and other neurodegenerative disorders. Its toxic potential appears to be enhanced by increased protein expression, providing a compelling rationale for therapeutic strategies aimed at reducing neuronal alpha-synuclein burden. Here, feasibility and safety of alpha-synuclein suppression were evaluated by treating monkeys with small interfering RNA (siRNA directed against alpha-synuclein. The siRNA molecule was chemically modified to prevent degradation by exo- and endonucleases and directly infused into the left substantia nigra. Results compared levels of alpha-synuclein mRNA and protein in the infused (left vs. untreated (right hemisphere and revealed a significant 40-50% suppression of alpha-synuclein expression. These findings could not be attributable to non-specific effects of siRNA infusion since treatment of a separate set of animals with luciferase-targeting siRNA produced no changes in alpha-synuclein. Infusion with alpha-synuclein siRNA, while lowering alpha-synuclein expression, had no overt adverse consequences. In particular, it did not cause tissue inflammation and did not change (i the number and phenotype of nigral dopaminergic neurons, and (ii the concentrations of striatal dopamine and its metabolites. The data represent the first evidence of successful anti-alpha-synuclein intervention in the primate substantia nigra and support further development of RNA interference-based therapeutics.

  12. Bimolecular Fluorescence Complementation of Alpha-synuclein Demonstrates its Oligomerization with Dopaminergic Phenotype in Mice

    Directory of Open Access Journals (Sweden)

    Waijiao Cai

    2018-03-01

    Full Text Available Alpha-synuclein (αSyn is encoded by the first causal gene identified in Parkinson's disease (PD and is the main component of Lewy bodies, a pathological hallmark of PD. aSyn-based animal models have contributed to our understanding of PD pathophysiology and to the development of therapeutics. Overexpression of human wildtype αSyn by viral vectors in rodents recapitulates the loss of dopaminergic neurons from the substantia nigra, another defining pathological feature of the disease. The development of a rat model exhibiting bimolecular fluorescence complementation (BiFC of αSyn by recombinant adeno-associated virus facilitates detection of the toxic αSyn oligomers species. We report here neurochemical, neuropathological and behavioral characterization of BiFC of αSyn in mice. Overexpression and oligomerization of αSyn through BiFC is detected by conjugated fluorescence. Reduced striatal dopamine and loss of nigral dopaminergic neurons are accompanied neuroinflammation and abnormal motor activities. Our mouse model may provide a valuable tool to study the role of αSyn in PD and to explore therapeutic approaches. Keywords: Parkinson's disease, Alpha-synuclein, Mouse model, Oligomers, Neuroinflammation

  13. Analysis of alpha-synuclein in malignant melanoma - development of a SRM quantification assay.

    Directory of Open Access Journals (Sweden)

    Charlotte Welinder

    Full Text Available Globally, malignant melanoma shows a steady increase in the incidence among cancer diseases. Malignant melanoma represents a cancer type where currently no biomarker or diagnostics is available to identify disease stage, progression of disease or personalized medicine treatment. The aim of this study was to assess the tissue expression of alpha-synuclein, a protein implicated in several disease processes, in metastatic tissues from malignant melanoma patients. A targeted Selected Reaction Monitoring (SRM assay was developed and utilized together with stable isotope labeling for the relative quantification of two target peptides of alpha-synuclein. Analysis of alpha-synuclein protein was then performed in ten metastatic tissue samples from the Lund Melanoma Biobank. The calibration curve using peak area ratio (heavy/light versus concentration ratios showed linear regression over three orders of magnitude, for both of the selected target peptide sequences. In support of the measurements of specific protein expression levels, we also observed significant correlation between the protein and mRNA levels of alpha-synuclein in these tissues. Investigating levels of tissue alpha-synuclein may add novel aspect to biomarker development in melanoma, help to understand disease mechanisms and ultimately contribute to discriminate melanoma patients with different prognosis.

  14. Long-lasting pathological consequences of overexpression-induced α-synuclein spreading in the rat brain.

    Science.gov (United States)

    Rusconi, Raffaella; Ulusoy, Ayse; Aboutalebi, Helia; Di Monte, Donato A

    2018-04-01

    Increased expression of α-synuclein can initiate its long-distance brain transfer, representing a potential mechanism for pathology spreading in age-related synucleinopathies, such as Parkinson's disease. In this study, the effects of overexpression-induced α-synuclein transfer were assessed over a 1-year period after injection of viral vectors carrying human α-synuclein DNA into the rat vagus nerve. This treatment causes targeted overexpression within neurons in the dorsal medulla oblongata and subsequent diffusion of the exogenous protein toward more rostral brain regions. Protein advancement and accumulation in pontine, midbrain, and forebrain areas were contingent upon continuous overexpression, because death of transduced medullary neurons resulted in cessation of spreading. Lack of sustained spreading did not prevent the development of long-lasting pathological changes. Particularly remarkable were findings in the locus coeruleus, a pontine nucleus with direct connections to the dorsal medulla oblongata and greatly affected by overexpression-induced transfer in this model. Data revealed progressive degeneration of catecholaminergic neurons that proceeded long beyond the time of spreading cessation. Neuronal pathology in the locus coeruleus was accompanied by pronounced microglial activation and, at later times, astrocytosis. Interestingly, microglial activation was also featured in another region reached by α-synuclein transfer, the central amygdala, even in the absence of frank neurodegeneration. Thus, overexpression-induced spreading, even if temporary, causes long-lasting pathological consequences in brain regions distant from the site of overexpression but anatomically connected to it. Neurodegeneration may be a consequence of severe protein burden, whereas even a milder α-synuclein accumulation in tissues affected by protein transfer could induce sustained microglial activation. © 2018 The Authors. Aging Cell published by the Anatomical Society and

  15. C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging.

    Directory of Open Access Journals (Sweden)

    Tjakko J van Ham

    2008-03-01

    Full Text Available Inclusions in the brain containing alpha-synuclein are the pathological hallmark of Parkinson's disease, but how these inclusions are formed and how this links to disease is poorly understood. We have developed a C. elegans model that makes it possible to monitor, in living animals, the formation of alpha-synuclein inclusions. In worms of old age, inclusions contain aggregated alpha- synuclein, resembling a critical pathological feature. We used genome-wide RNA interference to identify processes involved in inclusion formation, and identified 80 genes that, when knocked down, resulted in a premature increase in the number of inclusions. Quality control and vesicle-trafficking genes expressed in the ER/Golgi complex and vesicular compartments were overrepresented, indicating a specific role for these processes in alpha-synuclein inclusion formation. Suppressors include aging-associated genes, such as sir-2.1/SIRT1 and lagr-1/LASS2. Altogether, our data suggest a link between alpha-synuclein inclusion formation and cellular aging, likely through an endomembrane-related mechanism. The processes and genes identified here present a framework for further study of the disease mechanism and provide candidate susceptibility genes and drug targets for Parkinson's disease and other alpha-synuclein related disorders.

  16. Alpha-synuclein gene deletion decreases brain palmitate uptake and alters the palmitate metabolism in the absence of alpha-synuclein palmitate binding

    DEFF Research Database (Denmark)

    Golovko, Mikhail Y; Færgeman, Nils J.; Cole, Nelson B

    2005-01-01

    Alpha-synuclein is an abundant protein in the central nervous system that is associated with a number of neurodegenerative disorders, including Parkinson's disease. Its physiological function is poorly understood, although recently it was proposed to function as a fatty acid binding protein. To b......, alpha-synuclein has effects on 16:0 uptake and metabolism similar to those of an FABP, but unlike FABP, it does not directly bind 16:0; hence, the mechanism underlying these effects is different from that of a classical FABP....

  17. Overexpression of IL-7R alpha provides a competitive advantage during early T-cell development.

    Science.gov (United States)

    Laouar, Yasmina; Crispe, I Nicholas; Flavell, Richard A

    2004-03-15

    Critical checkpoints controlling early thymic T-cell development and homeostasis are set by the proper signaling function of the interleukin 7 receptor (IL-7R) and the pre-T-cell antigen receptor. Although alpha beta T-cell development is observed in IL-7- and IL-7R alpha-deficient mice, the number of thymocytes is significantly reduced, implying a role for the IL-7R in controlling the size of the thymic T-cell compartment. Here, we report the overexpression of IL-7R alpha that occurs in the early T-cell compartment from AKR/J mice, animals that are highly susceptible to the spontaneous development of thymoma. Increased IL-7R alpha was revealed by surface staining, and increased IL-7R alpha mRNA was documented by using reverse transcriptase-polymerase chain reaction (RT-PCR). This resulted in increased survival of AKR/J early thymocytes, shown by the decreased frequency of TUNEL(+) (terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate [dUTP]-fluorescein nick end labeling) cells. In an in vivo thymocyte repopulation model, AKR/J thymocytes had a selective advantage over healthy thymocytes. This advantage occurred at early stages of T-cell development. Our findings support the model that overexpression of growth factor receptors can contribute to proliferation and malignancy.

  18. Clearing Extracellular Alpha-Synuclein from Cerebrospinal Fluid: A New Therapeutic Strategy in Parkinson’s Disease

    Science.gov (United States)

    Padilla-Zambrano, Huber S.; Tomás-Zapico, Cristina; García, Benjamin Fernández

    2018-01-01

    This concept article aims to show the rationale of targeting extracellular α-Synuclein (α-Syn) from cerebrospinal fluid (CSF) as a new strategy to remove this protein from the brain in Parkinson’s disease (PD). Misfolding and intracellular aggregation of α-synuclein into Lewy bodies are thought to be crucial in the pathogenesis of PD. Recent research has shown that small amounts of monomeric and oligomeric α-synuclein are released from neuronal cells by exocytosis and that this extracellular alpha-synuclein contributes to neurodegeneration, progressive spreading of alpha-synuclein pathology, and neuroinflammation. In PD, extracellular oligomeric-α-synuclein moves in constant equilibrium between the interstitial fluid (ISF) and the CSF. Thus, we expect that continuous depletion of oligomeric-α-synuclein in the CSF will produce a steady clearance of the protein in the ISF, preventing transmission and deposition in the brain. PMID:29570693

  19. Inhibiting α-synuclein oligomerization by stable cell-penetrating β-synuclein fragments recovers phenotype of Parkinson's disease model flies.

    Directory of Open Access Journals (Sweden)

    Ronit Shaltiel-Karyo

    Full Text Available The intracellular oligomerization of α-synuclein is associated with Parkinson's disease and appears to be an important target for disease-modifying treatment. Yet, to date, there is no specific inhibitor for this aggregation process. Using unbiased systematic peptide array analysis, we identified molecular interaction domains within the β-synuclein polypeptide that specifically binds α-synuclein. Adding such peptide fragments to α-synuclein significantly reduced both amyloid fibrils and soluble oligomer formation in vitro. A retro-inverso analogue of the best peptide inhibitor was designed to develop the identified molecular recognition module into a drug candidate. While this peptide shows indistinguishable activity as compared to the native peptide, it is stable in mouse serum and penetrates α-synuclein over-expressing cells. The interaction interface between the D-amino acid peptide and α-synuclein was mapped by Nuclear Magnetic Resonance spectroscopy. Finally, administering the retro-inverso peptide to a Drosophila model expressing mutant A53T α-synuclein in the nervous system, resulted in a significant recovery of the behavioral abnormalities of the treated flies and in a significant reduction in α-synuclein accumulation in the brains of the flies. The engineered retro-inverso peptide can serve as a lead for developing a novel class of therapeutic agents to treat Parkinson's disease.

  20. Explorations of the application of cyanine dyes for quantitative alpha-synuclein detection

    NARCIS (Netherlands)

    Volkova, Kateryna D; Kovalska, V B; Segers-Nolten, G M J; Veldhuis, G.; Subramaniam, V; Yarmoluk, S M

    We examined the practical aspects of using fluorescent mono (T-284) and trimethinecyanine (SH-516) dyes for detecting and quantifying fibrillar alpha-synuclein (ASN). We studied the interaction of cyanine dyes with fibrillar proteins using fluorescence spectroscopy and atomic force microscopy. The

  1. Behavioral characterization of A53T mice reveals early and late stage deficits related to Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Katrina L Paumier

    Full Text Available Parkinson's disease (PD pathology is characterized by the formation of intra-neuronal inclusions called Lewy bodies, which are comprised of alpha-synuclein (α-syn. Duplication, triplication or genetic mutations in α-syn (A53T, A30P and E46K are linked to autosomal dominant PD; thus implicating its role in the pathogenesis of PD. In both PD patients and mouse models, there is increasing evidence that neuronal dysfunction occurs before the accumulation of protein aggregates (i.e., α-syn and neurodegeneration. Characterization of the timing and nature of symptomatic dysfunction is important for understanding the impact of α-syn on disease progression. Furthermore, this knowledge is essential for identifying pathways and molecular targets for therapeutic intervention. To this end, we examined various functional and morphological endpoints in the transgenic mouse model expressing the human A53T α-syn variant directed by the mouse prion promoter at specific ages relating to disease progression (2, 6 and 12 months of age. Our findings indicate A53T mice develop fine, sensorimotor, and synaptic deficits before the onset of age-related gross motor and cognitive dysfunction. Results from open field and rotarod tests show A53T mice develop age-dependent changes in locomotor activity and reduced anxiety-like behavior. Additionally, digigait analysis shows these mice develop an abnormal gait by 12 months of age. A53T mice also exhibit spatial memory deficits at 6 and 12 months, as demonstrated by Y-maze performance. In contrast to gross motor and cognitive changes, A53T mice display significant impairments in fine- and sensorimotor tasks such as grooming, nest building and acoustic startle as early as 1-2 months of age. These mice also show significant abnormalities in basal synaptic transmission, paired-pulse facilitation and long-term depression (LTD. Combined, these data indicate the A53T model exhibits early- and late-onset behavioral and synaptic

  2. Threonine 53 in α-synuclein is conserved in long-living non-primate animals

    DEFF Research Database (Denmark)

    Larsen, Knud; Hedegaard, Claus; Bertelsen, Mads Frost

    2009-01-01

    α-Synuclein is the main constituent of Lewy bodies in familial and sporadic cases of Parkinson's disease (PD). Autosomal dominant point mutations, gene duplications or triplications in the α-synuclein (SNCA) gene cause hereditary forms of PD. One of the α-synuclein point mutations, Ala53Thr, is a...... that 53Thr is not a molecular adaptation for long-living animals to minimize the risk of developing PD...

  3. Behavioral Characterization of A53T Mice Reveals Early and Late Stage Deficits Related to Parkinson’s Disease

    Science.gov (United States)

    Paumier, Katrina L.; Sukoff Rizzo, Stacey J.; Berger, Zdenek; Chen, Yi; Gonzales, Cathleen; Kaftan, Edward; Li, Li; Lotarski, Susan; Monaghan, Michael; Shen, Wei; Stolyar, Polina; Vasilyev, Dmytro; Zaleska, Margaret; D. Hirst, Warren; Dunlop, John

    2013-01-01

    Parkinson's disease (PD) pathology is characterized by the formation of intra-neuronal inclusions called Lewy bodies, which are comprised of alpha-synuclein (α-syn). Duplication, triplication or genetic mutations in α-syn (A53T, A30P and E46K) are linked to autosomal dominant PD; thus implicating its role in the pathogenesis of PD. In both PD patients and mouse models, there is increasing evidence that neuronal dysfunction occurs before the accumulation of protein aggregates (i.e., α-syn) and neurodegeneration. Characterization of the timing and nature of symptomatic dysfunction is important for understanding the impact of α-syn on disease progression. Furthermore, this knowledge is essential for identifying pathways and molecular targets for therapeutic intervention. To this end, we examined various functional and morphological endpoints in the transgenic mouse model expressing the human A53T α-syn variant directed by the mouse prion promoter at specific ages relating to disease progression (2, 6 and 12 months of age). Our findings indicate A53T mice develop fine, sensorimotor, and synaptic deficits before the onset of age-related gross motor and cognitive dysfunction. Results from open field and rotarod tests show A53T mice develop age-dependent changes in locomotor activity and reduced anxiety-like behavior. Additionally, digigait analysis shows these mice develop an abnormal gait by 12 months of age. A53T mice also exhibit spatial memory deficits at 6 and 12 months, as demonstrated by Y-maze performance. In contrast to gross motor and cognitive changes, A53T mice display significant impairments in fine- and sensorimotor tasks such as grooming, nest building and acoustic startle as early as 1–2 months of age. These mice also show significant abnormalities in basal synaptic transmission, paired-pulse facilitation and long-term depression (LTD). Combined, these data indicate the A53T model exhibits early- and late-onset behavioral and synaptic impairments

  4. Features of alpha-synuclein that could explain the progression and irreversibility of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Scarlet eGallegos

    2015-03-01

    Full Text Available Alpha-synuclein is a presynaptic protein expressed throughout the central nervous system, and it is the main component of Lewy bodies, one of the histopathological features of Parkinson’s disease (PD which is a progressive and irreversible neurodegenerative disorder. The conformational flexibility of α-synuclein allows it to adopt different conformations, i.e. bound to membranes or form aggregates, the oligomers are believed to be the more toxic species. In this review, we will focus on two major features of α-synuclein, transmission and toxicity that could help to understand the pathological characteristics of PD. One important feature of α-synuclein is its ability to be transmitted from neuron to neuron using mechanisms such as endocytosis, plasma membrane penetration or through exosomes, thus propagating the Lewy body pathology to different brain regions thereby contributing to the progressiveness of PD. The second feature of α-synuclein is that it confers cytotoxicity to recipient cells, principally when it is in an oligomeric state. This form causes mitochondrial dysfunction, endoplasmic reticulum stress, oxidative stress, proteasome impairment, disruption of plasma membrane and pore formation, and lead to apoptosis pathway activation and consequent cell death. The complexity of α-synuclein oligomerization and formation of toxic species could be a major factor for the irreversibility of PD and could also explain the lack of successful therapies to halt the disease.

  5. Tauopathic changes in the striatum of A53T α-synuclein mutant mouse model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Jonathan Wills

    2011-03-01

    Full Text Available Tauopathic pathways lead to degenerative changes in Alzheimer's disease and there is evidence that they are also involved in the neurodegenerative pathology of Parkinson's disease [PD]. We have examined tauopathic changes in striatum of the α-synuclein (α-Syn A53T mutant mouse. Elevated levels of α-Syn were observed in striatum of the adult A53T α-Syn mice. This was accompanied by increases in hyperphosphorylated Tau [p-Tau], phosphorylated at Ser202, Ser262 and Ser396/404, which are the same toxic sites also seen in Alzheimer's disease. There was an increase in active p-GSK-3β, hyperphosphorylated at Tyr216, a major and primary kinase known to phosphorylate Tau at multiple sites. The sites of hyperphosphorylation of Tau in the A53T mutant mice were similar to those seen in post-mortem striata from PD patients, attesting to their pathophysiological relevance. Increases in p-Tau were not due to alterations on protein phosphatases in either A53T mice or in human PD, suggesting lack of involvement of these proteins in tauopathy. Extraction of striata with Triton X-100 showed large increases in oligomeric forms of α-Syn suggesting that α-Syn had formed aggregates the mutant mice. In addition, increased levels of p-GSK-3β and pSer396/404 were also found associated with aggregated α-Syn. Differential solubilization to measure protein binding to cytoskeletal proteins demonstrated that p-Tau in the A53T mutant mouse were unbound to cytoskeletal proteins, consistent with dissociation of p-Tau from the microtubules upon hyperphosphorylation. Interestingly, α-Syn remained tightly bound to the cytoskeleton, while p-GSK-3β was seen in the cytoskeleton-free fractions. Immunohistochemical studies showed that α-Syn, pSer396/404 Tau and p-GSK-3β co-localized with one another and was aggregated and accumulated into large inclusion bodies, leading to cell death of Substantia nigral neurons. Together, these data demonstrate an elevated state of

  6. Significant Changes in Plasma Alpha-Synuclein and Beta-Synuclein Levels in Male Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Wilaiwan Sriwimol

    2018-01-01

    Full Text Available Alpha-synuclein (α-synuclein and beta-synuclein (β-synuclein are presynaptic proteins playing important roles in neuronal plasticity and synaptic vesicle regulation. To evaluate the association of these two proteins and autism spectrum disorder (ASD, we investigated the plasma α-synuclein and β-synuclein levels in 39 male children with ASD (2 subgroups: 25 autism and 14 pervasive developmental disorder-not otherwise specified (PDD-NOS comparing with 29 sex- and age-matched controls by using enzyme-linked immunosorbent assay (ELISA. We first determined the levels of these two proteins in the ASD subgroups and found that there were no significant differences in both plasma α-synuclein and β-synuclein levels in the autism and PDD-NOS groups. Thus, we could combine the 2 subgroups into one ASD group. Interestingly, the mean plasma α-synuclein level was significantly lower (P<0.001 in the ASD children (10.82±6.46 ng/mL than in the controls (29.47±18.62 ng/mL, while the mean plasma β-synuclein level in the ASD children (1344.19±160.26 ng/mL was significantly higher (P<0.05 than in the controls (1219.16±177.10 ng/mL. This is the first study examining the associations between α-synuclein and β-synuclein and male ASD patients. We found that alterations in the plasma α-synuclein and β-synuclein levels might be implicated in the association between synaptic abnormalities and ASD pathogenesis.

  7. Αlpha-Synuclein as a Mediator in the Interplay between Aging and Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Wojciech Bobela

    2015-10-01

    Full Text Available Accumulation and misfolding of the alpha-synuclein protein are core mechanisms in the pathogenesis of Parkinson’s disease. While the normal function of alpha-synuclein is mainly related to the control of vesicular neurotransmission, its pathogenic effects are linked to various cellular functions, which include mitochondrial activity, as well as proteasome and autophagic degradation of proteins. Remarkably, these functions are also affected when the renewal of macromolecules and organelles becomes impaired during the normal aging process. As aging is considered a major risk factor for Parkinson’s disease, it is critical to explore its molecular and cellular implications in the context of the alpha-synuclein pathology. Here, we discuss similarities and differences between normal brain aging and Parkinson’s disease, with a particular emphasis on the nigral dopaminergic neurons, which appear to be selectively vulnerable to the combined effects of alpha-synuclein and aging.

  8. Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Eric J Benner

    2008-01-01

    Full Text Available The neuropathology of Parkinson's disease (PD includes loss of dopaminergic neurons in the substantia nigra, nitrated alpha-synuclein (N-alpha-Syn enriched intraneuronal inclusions or Lewy bodies and neuroinflammation. While the contribution of innate microglial inflammatory activities to disease are known, evidence for how adaptive immune mechanisms may affect the course of PD remains obscure. We reasoned that PD-associated oxidative protein modifications create novel antigenic epitopes capable of peripheral adaptive T cell responses that could affect nigrostriatal degeneration.Nitrotyrosine (NT-modified alpha-Syn was detected readily in cervical lymph nodes (CLN from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP intoxicated mice. Antigen-presenting cells within the CLN showed increased surface expression of major histocompatibility complex class II, initiating the molecular machinery necessary for efficient antigen presentation. MPTP-treated mice produced antibodies to native and nitrated alpha-Syn. Mice immunized with the NT-modified C-terminal tail fragment of alpha-Syn, but not native protein, generated robust T cell proliferative and pro-inflammatory secretory responses specific only for the modified antigen. T cells generated against the nitrated epitope do not respond to the unmodified protein. Mice deficient in T and B lymphocytes were resistant to MPTP-induced neurodegeneration. Transfer of T cells from mice immunized with N-alpha-Syn led to a robust neuroinflammatory response with accelerated dopaminergic cell loss.These data show that NT modifications within alpha-Syn, can bypass or break immunological tolerance and activate peripheral leukocytes in draining lymphoid tissue. A novel mechanism for disease is made in that NT modifications in alpha-Syn induce adaptive immune responses that exacerbate PD pathobiology. These results have implications for both the pathogenesis and treatment of this disabling neurodegenerative disease.

  9. α-Synuclein overexpression increases dopamine toxicity in BE(2-M17 cells

    Directory of Open Access Journals (Sweden)

    Miller David W

    2010-03-01

    Full Text Available Abstract Background Oxidative stress has been proposed to be involved in the pathogenesis of Parkinson's disease (PD. A plausible source of oxidative stress in nigral dopaminergic neurons is the redox reactions that specifically involve dopamine and produce various toxic molecules, i.e., free radicals and quinone species. α-Synuclein, a protein found in Lewy bodies characteristic of PD, is also thought to be involved in the pathogenesis of PD and point mutations and multiplications in the gene coding for α-synuclein have been found in familial forms of PD. Results We used dopaminergic human neuroblastoma BE(2-M17 cell lines stably transfected with WT or A30P mutant α-synuclein to characterize the effect of α-synuclein on dopamine toxicity. Cellular toxicity was analyzed by lactate dehydrogenase assay and by fluorescence-activated cell sorter analysis. Increased expression of either wild-type or mutant α-synuclein enhances the cellular toxicity induced by the accumulation of intracellular dopamine or DOPA. Conclusions Our results suggest that an interplay between dopamine and α-synuclein can cause cell death in a neuron-like background. The data presented here are compatible with several models of cytotoxicity, including the formation of α-synuclein oligomers and impairment of the lysosomal degradation.

  10. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration.

    Science.gov (United States)

    Mor, Danielle E; Tsika, Elpida; Mazzulli, Joseph R; Gould, Neal S; Kim, Hanna; Daniels, Malcolm J; Doshi, Shachee; Gupta, Preetika; Grossman, Jennifer L; Tan, Victor X; Kalb, Robert G; Caldwell, Kim A; Caldwell, Guy A; Wolfe, John H; Ischiropoulos, Harry

    2017-11-01

    Parkinson's disease (PD) is defined by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated both dopamine levels and α-synuclein expression. Nigrally targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine levels without damaging neurons in non-transgenic mice. In contrast, raising dopamine levels in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable Caenorhabditis elegans models, expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. These data suggest that a unique mechanism links two cardinal features of PD: dopaminergic cell death and α-synuclein aggregation.

  11. LARGE ANIMAL PARKINSONS DISEASE MODELS USING VIRAL VECTORS AND INOCULATION OF PREFORMED FIBRILS TO MEDIATE ALPHA-SYNUCLEIN OVEREXPRESSION AND MISFOLDING IN THE GOTTINGEN MINIPIG CNS

    DEFF Research Database (Denmark)

    Glud, Andreas Nørgaard; Landau, A.M.; Johnsen, Erik Lisbjerg

    2015-01-01

    Animal models towards understanding and treating Parkinson’s disease (PD) are important translational steps toward clinical applications. The Göttingen minipig(GM), fits progressional neurological models due to an relative low adult weight between 20-40 kg, and has a large gyrencephalic brain (6x...... such as antiaggreganttreatment, induced pluripotent stem cells or immunotherapy and development of novel radioligands for early diagnosis and assess disease progression....... x 4 cm) that can be examined at sufficient resolution using both conventional clinical scanning modalities and preclinical testing of deep brain stimulation, stem cell grafting and other neuromodulatory devices. Aim: Using inoculating of human or pig alpha-synuclein(aSYN) fibrils or overexpressing a......SYN using Lenti virus(LV) and Adeno Assosiated Virus(AAV) vectors in the nigrostriatal system, we hope to create a new porcine model for PD. Methods: Using conventional human-intended stereotaxic neurosurgery methods, we apply aSYN in the catecholamine nigrostriatal system of 13 GM. The changes...

  12. Cellular prion protein and γ-synuclein overexpression in LS 174T colorectal cancer cell drives endothelial proliferation-to-differentiation switch

    Directory of Open Access Journals (Sweden)

    Sing-Hui Ong

    2018-03-01

    Full Text Available Background Tumor-induced angiogenesis is an imperative event in pledging new vasculature for tumor metastasis. Since overexpression of neuronal proteins gamma-synuclein (γ-Syn and cellular prion protein (PrPC is always detected in advanced stages of cancer diseases which involve metastasis, this study aimed to investigate whether γ-Syn or PrPC overexpression in colorectal adenocarcinoma, LS 174T cells affects angiogenesis of endothelial cells, EA.hy 926 (EA. Methods EA cells were treated with conditioned media (CM of LS 174T-γ-Syn or LS 174T-PrP, and their proliferation, invasion, migration, adhesion and ability to form angiogenic tubes were assessed using a range of biological assays. To investigate plausible background mechanisms in conferring the properties of EA cells above, nitrite oxide (NO levels were measured and the expression of angiogenesis-related factors was assessed using a human angiogenesis antibody array. Results EA proliferation was significantly inhibited by LS 174T-PrP CM whereas its telomerase activity was reduced by CM of LS 174T-γ-Syn or LS 174T-PrP, as compared to EA incubated with LS 174T CM. Besides, LS 174T-γ-Syn CM or LS 174T-PrP CM inhibited EA invasion and migration in Boyden chamber assay. Furthermore, LS 174T-γ-Syn CM significantly inhibited EA migration in scratch wound assay. Gelatin zymography revealed reduced secretion of MMP-2 and MMP-9 by EA treated with LS 174T-γ-Syn CM or LS 174T-PrP CM. In addition, cell adhesion assay showed lesser LS 174T-γ-Syn or LS 174T-PrP cells adhered onto EA, as compared to LS 174T. In tube formation assay, LS 174T-γ-Syn CM or LS 174T-PrP CM induced EA tube formation. Increased NO secretion by EA treated with LS 174T-γ-Syn CM or LS 174T-PrP CM was also detected. Lastly, decreased expression of pro-angiogenic factors like CXCL16, IGFBP-2 and amphiregulin in LS 174T-γ-Syn CM or LS 174T-PrP CM was detected using the angiogenesis antibody array. Discussion These results

  13. In vivo silencing of alpha-synuclein using naked siRNA

    OpenAIRE

    Charisse Klaus; Toudjarska Ivanka; Kent Caroline; Hinkle Kelly; Ogholikhan Sina; He Zhen; Braithwaite Adam; Lincoln Sarah; Zehr Cynthia; Hope Andrew; Bumcrot David; Melrose Heather; Lewis Jada; Braich Ravi; Pandey Rajendra K

    2008-01-01

    Abstract Background Overexpression of α-synuclein (SNCA) in families with multiplication mutations causes parkinsonism and subsequent dementia, characterized by diffuse Lewy Body disease post-mortem. Genetic variability in SNCA contributes to risk of idiopathic Parkinson's disease (PD), possibly as a result of overexpression. SNCA downregulation is therefore a valid therapeutic target for PD. Results We have identified human and murine-specific siRNA molecules which reduce SNCA in vitro. As a...

  14. Dermal phospho-alpha-synuclein deposits confirm REM sleep behaviour disorder as prodromal Parkinson's disease

    NARCIS (Netherlands)

    Doppler, Kathrin; Jentschke, Hanna-Maria; Schulmeyer, Lena; Vadasz, David; Janzen, Annette; Luster, Markus; Höffken, Helmut; Mayer, Geert; Brumberg, Joachim; Booij, Jan; Musacchio, Thomas; Klebe, Stephan; Sittig-Wiegand, Elisabeth; Volkmann, Jens; Sommer, Claudia; Oertel, Wolfgang H.

    2017-01-01

    Phosphorylated alpha-synuclein (p-alpha-syn) deposits, one of the neuropathological hallmarks of Parkinson's disease (PD), have recently been detected in dermal nerve fibres in PD patients with good specificity and sensitivity. Here, we studied whether p-alpha-syn may serve as a biomarker in

  15. Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo.

    Directory of Open Access Journals (Sweden)

    Elodie Angot

    Full Text Available Several people with Parkinson's disease have been treated with intrastriatal grafts of fetal dopaminergic neurons. Following autopsy, 10-22 years after surgery, some of the grafted neurons contained Lewy bodies similar to those observed in the host brain. Numerous studies have attempted to explain these findings in cell and animal models. In cell culture, α-synuclein has been found to transfer from one cell to another, via mechanisms that include exosomal transport and endocytosis, and in certain cases seed aggregation in the recipient cell. In animal models, transfer of α-synuclein from host brain cells to grafted neurons has been shown, but the reported frequency of the event has been relatively low and little is known about the underlying mechanisms as well as the fate of the transferred α-synuclein. We now demonstrate frequent transfer of α-synuclein from a rat brain engineered to overexpress human α-synuclein to grafted dopaminergic neurons. Further, we show that this model can be used to explore mechanisms underlying cell-to-cell transfer of α-synuclein. Thus, we present evidence both for the involvement of endocytosis in α-synuclein uptake in vivo, and for seeding of aggregation of endogenous α-synuclein in the recipient neuron by the transferred α-synuclein. Finally, we show that, at least in a subset of the studied cells, the transmitted α-synuclein is sensitive to proteinase K. Our new model system could be used to test compounds that inhibit cell-to-cell transfer of α-synuclein and therefore might retard progression of Parkinson neuropathology.

  16. Interaction between viologen-phosphorus dendrimers and {alpha}-synuclein

    Energy Technology Data Exchange (ETDEWEB)

    Milowska, Katarzyna, E-mail: milowska@biol.uni.lodz.pl [Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz (Poland); Grochowina, Justyna [Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz (Poland); Katir, Nadia [Laboratoire de Chimie de Coordination CNRS, 205 route de Narbonne, 31077 Toulouse (France); El Kadib, Abdelkrim [Institute of Nanomaterials and Nanotechnology (INANOTECH)-MAScIR (Moroccan Foundation for Advanced Science, Innovation and Research), ENSET, Avenue de I' Armee Royale, Madinat El Irfane, 10100 Rabat (Morocco); Majoral, Jean-Pierre [Laboratoire de Chimie de Coordination CNRS, 205 route de Narbonne, 31077 Toulouse (France); Bryszewska, Maria; Gabryelak, Teresa [Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz (Poland)

    2013-02-15

    In this study the interaction between viologen-phosphorus dendrimers and {alpha}-synuclein (ASN) was examined. Polycationic viologen-phosphorus dendrimers (two positive charges per viologen unit) are novel compounds with relatively unknown properties. The influence of these viologen dendrimers on ASN was tested using fluorimetric and circular dichroism methods. ASN contains four tyrosine residues; therefore, the influence of dendrimers on protein molecular conformation by measuring the changes in the ASN fluorescence in the presence of dendrimers was evaluated. The interaction of dendrimers with free L-tyrosine was also monitored. Results show that viologen-phosphorus dendrimers interact with ASN; they quenched the fluorescence of ASN as well as free tyrosine by dynamic and static ways. However, the quenching was not accompanied by modifications in the ASN secondary structure. - Highlights: Black-Right-Pointing-Pointer Interaction between viologen-phosphorus dendrimers and {alpha}-synuclein (ASN) was investigated. Black-Right-Pointing-Pointer Viologen-phosphorus dendrimers can quench the fluorescence of tyrosine in ASN. Black-Right-Pointing-Pointer Dendrimers caused red-shift in maximum of fluorescence. Black-Right-Pointing-Pointer Viologen-phosphorus dendrimers did not change the secondary structure of ASN.

  17. Alpha-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases.

    Science.gov (United States)

    Desplats, Paula; Spencer, Brian; Coffee, Elizabeth; Patel, Pruthul; Michael, Sarah; Patrick, Christina; Adame, Anthony; Rockenstein, Edward; Masliah, Eliezer

    2011-03-18

    DNA methylation is a major epigenetic modification that regulates gene expression. Dnmt1, the maintenance DNA methylation enzyme, is abundantly expressed in the adult brain and is mainly located in the nuclear compartment, where it has access to chromatin. Hypomethylation of CpG islands at intron 1 of the SNCA gene has recently been reported to result in overexpression of α-synuclein in Parkinson disease (PD) and related disorders. We therefore investigated the mechanisms underlying altered DNA methylation in PD and dementia with Lewy bodies (DLB). We present evidence of reduction of nuclear Dnmt1 levels in human postmortem brain samples from PD and DLB patients as well as in the brains of α-synuclein transgenic mice models. Furthermore, sequestration of Dnmt1 in the cytoplasm results in global DNA hypomethylation in human and mouse brains, involving CpG islands upstream of SNCA, SEPW1, and PRKAR2A genes. We report that association of Dnmt1 and α-synuclein might mediate aberrant subcellular localization of Dnmt1. Nuclear Dnmt1 levels were partially rescued by overexpression of Dnmt1 in neuronal cell cultures and in α-synuclein transgenic mice brains. Our results underscore a novel mechanism for epigenetic dysregulation in Lewy body diseases, which might underlie the decrease in DNA methylation reported for PD and DLB.

  18. Molecular cloning, characterization and developmental expression of porcine β-synuclein

    DEFF Research Database (Denmark)

    Larsen, Knud; Frandsen, Pernille Munk; Madsen, Lone Bruhn

    2010-01-01

    The synuclein family includes three known proteins: alpha-synuclein, beta-synuclein and gamma-synuclein. beta-Synuclein inhibits the aggregation of alpha-synuclein, a protein involved in Parkinson's disease. We have cloned and characterized the cDNA sequence for porcine beta-synuclein (SNCB) from...

  19. Rasagiline ameliorates olfactory deficits in an alpha-synuclein mouse model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Géraldine H Petit

    Full Text Available Impaired olfaction is an early pre-motor symptom of Parkinson's disease. The neuropathology underlying olfactory dysfunction in Parkinson's disease is unknown, however α-synuclein accumulation/aggregation and altered neurogenesis might play a role. We characterized olfactory deficits in a transgenic mouse model of Parkinson's disease expressing human wild-type α-synuclein under the control of the mouse α-synuclein promoter. Preliminary clinical observations suggest that rasagiline, a monoamine oxidase-B inhibitor, improves olfaction in Parkinson's disease. We therefore examined whether rasagiline ameliorates olfactory deficits in this Parkinson's disease model and investigated the role of olfactory bulb neurogenesis. α-Synuclein mice were progressively impaired in their ability to detect odors, to discriminate between odors, and exhibited alterations in short-term olfactory memory. Rasagiline treatment rescued odor detection and odor discrimination abilities. However, rasagiline did not affect short-term olfactory memory. Finally, olfactory changes were not coupled to alterations in olfactory bulb neurogenesis. We conclude that rasagiline reverses select olfactory deficits in a transgenic mouse model of Parkinson's disease. The findings correlate with preliminary clinical observations suggesting that rasagiline ameliorates olfactory deficits in Parkinson's disease.

  20. A role of BAG3 in regulating SNCA/α-synuclein clearance via selective macroautophagy.

    Science.gov (United States)

    Cao, Yu-Lan; Yang, Ya-Ping; Mao, Cheng-Jie; Zhang, Xiao-Qi; Wang, Chen-Tao; Yang, Jing; Lv, Dong-Jun; Wang, Fen; Hu, Li-Fang; Liu, Chun-Feng

    2017-12-01

    Many studies reveal that BAG3 plays a critical role in the regulation of protein degradation via macroautophagy. However, it remains unknown whether BAG3 affects the quality control of α-synuclein (SNCA), a Parkinson's disease-related protein. In this study, we demonstrated the increases of BAG3 expression in the ventral midbrain of SNCA A53T transgenic mice and also in MG132-treated PC12 cells overexpressing wild-type SNCA (SNCA WT -PC12). Moreover, we showed that BAG3 overexpression was sufficient to enhance the autophagy activity while knockdown of Bag3 reduced it in SNCA WT -PC12 cells. Immunoprecipitation revealed that BAG3 interacted with heat shock protein 70 and sequestosome 1. The immunostaining also showed the perinuclear accumulation and colocalization of BAG3 with these 2 proteins, as well as with LC3 dots in tyrosine hydroxylase-positive neurons in the midbrain of SNCA A53T mice. BAG3 overexpression was able to modulate SNCA degradation via macroautophagy which was prevented by Atg5 knockdown. Taken together, these results indicate that BAG3 plays a relevant role in regulating SNCA clearance via macroautophagy, and the heat shock protein 70-BAG3-sequestosome 1 complex may be involved in this process. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. P53 overexpression and outcome of radiation therapy in head and neck cancers

    International Nuclear Information System (INIS)

    Kim, In Ah; Choi, Ihl Bhong; Kang, Ki Mun; Jang, Ji Young; Kim, Kyung Mi; Park, Kyung Shin; Kim, Young Shin; Kang, Chang Suk; Cho, Seung Ho; Kim, Hyung Tae

    1999-01-01

    Experimental studies have implicated the wild type p53 in cellular response to radiation. Whether altered p53 function can lead to changes in clinical radiocurability remains an area of ongoing study. This study was performed to investigate whether any correlation between change of p53 and outcome of curative radiation therapy in patients with head and neck cancers. Immunohistochemical analysis with a mouse monoclonal antibody (D0-7) specific for human p53 was used to detect to overexpression of protein in formalin fixed, paraffin-embedded tumor sample from 55 head and neck cancer patients treated with curative radiation therapy (median dose of 7020 cGy) from February 1988 to March 1996 at St. Mary's Hospital. Overexpression of p53 was correlated with locoregional control and survival using Kaplan-Meier method. A Cox regression multivariate analysis was performed that included all clinical variables and status of p53 expression. Thirty-seven (67.2%) patients showed overexpression of p53 by immunohistochemical staining in their tumor. One hundred percent of oral cavity, 76% of laryngeal, 66.7% of oropharyngeal, 66.7% of hypopharyngeal cancer showed p53 overexpression (p=0.05). The status of p53 had significant relationship with stage of disease (p=0.03) and history of smoking (p=0.001). The overexpression of p53 was not predictive of response rate to radiation therapy. The locoregional control was not significantly affected by p53 status. Overexpression of p53 didn't have any prognostic implication for disease free survival and overall survival. Primary site and stage of disease were significant prognostic factors for survival. The p53 overexpression as detected by immunohistochemical staining had significant correlation with stage, primary site of disease and smoking habit of patients. The p53 overexpression didn't have any predictive value for outcome of curative radiation therapy in a group of head and neck cancers

  2. P53 overexpression and outcome of radiation therapy in head and neck cancers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Ah; Choi, Ihl Bhong; Kang, Ki Mun; Jang, Ji Young; Kim, Kyung Mi; Park, Kyung Shin; Kim, Young Shin; Kang, Chang Suk; Cho, Seung Ho; Kim, Hyung Tae [College of Medicine, The Catholic Univ., Seoul (Korea, Republic of)

    1999-03-01

    Experimental studies have implicated the wild type p53 in cellular response to radiation. Whether altered p53 function can lead to changes in clinical radiocurability remains an area of ongoing study. This study was performed to investigate whether any correlation between change of p53 and outcome of curative radiation therapy in patients with head and neck cancers. Immunohistochemical analysis with a mouse monoclonal antibody (D0-7) specific for human p53 was used to detect to overexpression of protein in formalin fixed, paraffin-embedded tumor sample from 55 head and neck cancer patients treated with curative radiation therapy (median dose of 7020 cGy) from February 1988 to March 1996 at St. Mary's Hospital. Overexpression of p53 was correlated with locoregional control and survival using Kaplan-Meier method. A Cox regression multivariate analysis was performed that included all clinical variables and status of p53 expression. Thirty-seven (67.2%) patients showed overexpression of p53 by immunohistochemical staining in their tumor. One hundred percent of oral cavity, 76% of laryngeal, 66.7% of oropharyngeal, 66.7% of hypopharyngeal cancer showed p53 overexpression (p=0.05). The status of p53 had significant relationship with stage of disease (p=0.03) and history of smoking (p=0.001). The overexpression of p53 was not predictive of response rate to radiation therapy. The locoregional control was not significantly affected by p53 status. Overexpression of p53 didn't have any prognostic implication for disease free survival and overall survival. Primary site and stage of disease were significant prognostic factors for survival. The p53 overexpression as detected by immunohistochemical staining had significant correlation with stage, primary site of disease and smoking habit of patients. The p53 overexpression didn't have any predictive value for outcome of curative radiation therapy in a group of head and neck cancers.

  3. Polychlorinated biphenyls alter expression of alpha-synuclein, synaptophysin and parkin in the rat brain

    DEFF Research Database (Denmark)

    Malkiewicz, Katarzyna; Mohammed, Roma; Folkesson, Ronnie

    2006-01-01

    Polychlorinated Biphenyls (PCBs)-induced changes in synaptic transmission are one of the effects of their neurotoxicity but the mechanism remains unknown. We assessed the in vivo effects of the PCBs mixture, Aroclor 1254 on the expression of neuronal proteins that are involved in the synaptic...... function and/or are associated with neurodegeneration. Wistar rats were treated orally with repeated doses of Aroclor 1254 and the levels of soluble alpha-synuclein, parkin, synaptophysin and amyloid precursor protein (APP) in the brain were determined by Western blotting. The results showed that Aroclor...... did not cause changes in the expression and processing of APP but at a dose 100 microg/g/day repeated for 6 days caused a decrease in the expression of alpha-synuclein in the cerebellum, cortex, hippocampus and hypothalamus of the animals sacrificed 2 days after treatment. The decrease in alpha...

  4. Progressive neurodegenerative and behavioural changes induced by AAV-mediated overexpression of α-synuclein in midbrain dopamine neurons

    DEFF Research Database (Denmark)

    Decressac, M; Mattsson, Bente; Lundblad, M

    2012-01-01

    -synuclein, we have now been able to achieve increased levels of α-synuclein in the transduced midbrain dopamine neurons sufficient to induce profound deficits in motor function, accompanied by reduced expression of proteins involved in dopamine neurotransmission and a time-dependent loss of nigral dopamine......Parkinson's disease (PD) is characterised by the progressive loss of nigral dopamine neurons and the presence of synucleinopathy. Overexpression of α-synuclein in vivo using viral vectors has opened interesting possibilities to model PD-like pathology in rodents. However, the attempts made so far...... have failed to show a consistent behavioural phenotype and pronounced dopamine neurodegeneration. Using a more efficient adeno-associated viral (AAV) vector construct, which includes a WPRE enhancer element and uses the neuron-specific synapsin-1 promoter to drive the expression of human wild-type α...

  5. Alpha-synuclein, epigenetics, mitochondria, metabolism, calcium traffic, & circadian dysfunction in Parkinson's disease. An integrated strategy for management.

    Science.gov (United States)

    Phillipson, Oliver T

    2017-11-01

    The motor deficits which characterise the sporadic form of Parkinson's disease arise from age-related loss of a subset of dopamine neurons in the substantia nigra. Although motor symptoms respond to dopamine replacement therapies, the underlying disease process remains. This review details some features of the progressive molecular pathology and proposes deployment of a combination of nutrients: R-lipoic acid, acetyl-l-carnitine, ubiquinol, melatonin (or receptor agonists) and vitamin D3, with the collective potential to slow progression of these features. The main nutrient targets include impaired mitochondria and the associated oxidative/nitrosative stress, calcium stress and impaired gene transcription induced by pathogenic forms of alpha- synuclein. Benefits may be achieved via nutrient influence on epigenetic signaling pathways governing transcription factors for mitochondrial biogenesis, antioxidant defences and the autophagy-lysosomal pathway, via regulation of the metabolic energy sensor AMP activated protein kinase (AMPK) and the mammalian target of rapamycin mTOR. Nutrients also benefit expression of the transcription factor for neuronal survival (NR4A2), trophic factors GDNF and BDNF, and age-related calcium signals. In addition a number of non-motor related dysfunctions in circadian control, clock genes and associated metabolic, endocrine and sleep-wake activity are briefly addressed, as are late-stage complications in respect of cognitive decline and osteoporosis. Analysis of the network of nutrient effects reveals how beneficial synergies may counter the accumulation and promote clearance of pathogenic alpha-synuclein. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  6. Changes in interfacial properties of alpha-synuclein preceding its aggregation

    Czech Academy of Sciences Publication Activity Database

    Paleček, Emil; Ostatná, Veronika; Masařík, Michal; Bertoncini, C.W.; Jovin, T.

    2008-01-01

    Roč. 133, - (2008), s. 76-84 ISSN 0003-2654 R&D Projects: GA AV ČR(CZ) KAN400310651; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : alpha-synuclein * Parkinson's disease Subject RIV: BO - Biophysics Impact factor: 3.761, year: 2008

  7. Differential expression of alpha-synuclein in hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Katsutoshi Taguchi

    Full Text Available α-Synuclein is the major pathological component of synucleinopathies including Parkinson's disease and dementia with Lewy bodies. Recent studies have demonstrated that α-synuclein also plays important roles in the release of synaptic vesicles and synaptic membrane recycling in healthy neurons. However, the precise relationship between the pathogenicity and physiological functions of α-synuclein remains to be elucidated. To address this issue, we investigated the subcellular localization of α-synuclein in normal and pathological conditions using primary mouse hippocampal neuronal cultures. While some neurons expressed high levels of α-synuclein in presynaptic boutons and cell bodies, other neurons either did not or only very weakly expressed the protein. These α-synuclein-negative cells were identified as inhibitory neurons by immunostaining with specific antibodies against glutamic acid decarboxylase (GAD, parvalbumin, and somatostatin. In contrast, α-synuclein-positive synapses were colocalized with the excitatory synapse marker vesicular glutamate transporter-1. This expression profile of α-synuclein was conserved in the hippocampus in vivo. In addition, we found that while presynaptic α-synuclein colocalizes with synapsin, a marker of presynaptic vesicles, it is not essential for activity-dependent membrane recycling induced by high potassium treatment. Exogenous supply of preformed fibrils generated by recombinant α-synuclein was shown to promote the formation of Lewy body (LB -like intracellular aggregates involving endogenous α-synuclein. GAD-positive neurons did not form LB-like aggregates following treatment with preformed fibrils, however, exogenous expression of human α-synuclein allowed intracellular aggregate formation in these cells. These results suggest the presence of a different mechanism for regulation of the expression of α-synuclein between excitatory and inhibitory neurons. Furthermore, α-synuclein expression

  8. Curcumin Treatment Improves Motor Behavior in α-Synuclein Transgenic Mice

    Science.gov (United States)

    Spinelli, Kateri J.; Osterberg, Valerie R.; Meshul, Charles K.; Soumyanath, Amala; Unni, Vivek K.

    2015-01-01

    The curry spice curcumin plays a protective role in mouse models of neurodegenerative diseases, and can also directly modulate aggregation of α-synuclein protein in vitro, yet no studies have described the interaction of curcumin and α-synuclein in genetic synucleinopathy mouse models. Here we examined the effect of chronic and acute curcumin treatment in the Syn-GFP mouse line, which overexpresses wild-type human α-synuclein protein. We discovered that curcumin diet intervention significantly improved gait impairments and resulted in an increase in phosphorylated forms of α-synuclein at cortical presynaptic terminals. Acute curcumin treatment also caused an increase in phosphorylated α-synuclein in terminals, but had no direct effect on α-synuclein aggregation, as measured by in vivo multiphoton imaging and Proteinase-K digestion. Using LC-MS/MS, we detected ~5 ng/mL and ~12 ng/mL free curcumin in the plasma of chronic or acutely treated mice, with a glucuronidation rate of 94% and 97%, respectively. Despite the low plasma levels and extensive metabolism of curcumin, these results show that dietary curcumin intervention correlates with significant behavioral and molecular changes in a genetic synucleinopathy mouse model that mimics human disease. PMID:26035833

  9. Olfactory dysfunction of human α-synucleinA53T transgenic mice in simulation of early symptoms of Parkinson's disease%模拟帕金森病的表达人α-synucleinA53T转基因小鼠的早期嗅觉功能观察

    Institute of Scientific and Technical Information of China (English)

    章素芳; 李丽喜; 倪俊; 乐卫东

    2012-01-01

    Objective To examine the olfactory function of human α-synucleinA53T transgenic mice, and establish a model for olfactory dysfunction of early Parkinson's disease. Methods Human α-synuclein transgenic (TG) mice of different ages and their wildtype ( WT) littermates were selected. Rotarod test was used to examine the voluntary motion of TG mice aged 10 months, and DAB method was employed to observe the dopaminergic neurons in substantia nigra in mice aged 10 months for identification of motor function. Odor discrimination and habituation tests were used to observe the short-term memory and habituation of familiar scents and identification of novel scents in mice. Long-term memory test with varied intervals was employed to examine the memory of exposed scents. Besides, buried pellet test was used to investigate the perception on scents of food, which reflected the odor threshold. Results Rotarod test and observation of dopaminergic neurons indicated that the voluntary motion in TG mice aged 10 months did not change. TG mice aged 6 months exhibited subtle deficit in odor discrimination, and there was no significant difference between the time of discrimination of novel scents and that of familiar scents (P=0. 120). TG mice aged 10 months exhibited more significant deficit in discrimination of scents ( P =0. 295) . The time for finding food in TG mice aged 6 months was longer than that in WT mice ( P =0. 015). The short memory and habituation of mice of different ages were normal, while TG mice aged 9 months exhibited decrease in long-term memory (60 min, 80 min and 100 min of test intervals). Conclusion Human α-synucleinA53T transgenic mice exhibit deficiency in olfaction before motion function alterations, including the aspects of discrimination, memory and perception of scents, which can well simulate the early olfactory disfunction in Parkinson's disease.%目的 通过对表达人α-synucleinA53T

  10. Acyl-CoA synthetase activity links wild-type but not mutant a-Synuclein to brain arachidonate metabolism

    DEFF Research Database (Denmark)

    Golovko, Mikhail; Rosenberger, Thad; Færgeman, Nils J.

    2006-01-01

    Because alpha-synuclein (Snca) has a role in brain lipid metabolism, we determined the impact that the loss of alpha-synuclein had on brain arachidonic acid (20:4n-6) metabolism in vivo using Snca-/- mice. We measured [1-(14)C]20:4n-6 incorporation and turnover kinetics in brain phospholipids using......, our data demonstrate that alpha-synuclein has a major role in brain 20:4n-6 metabolism through its modulation of endoplasmic reticulum-localized acyl-CoA synthetase activity, although mutant forms of alpha-synuclein fail to restore this activity....

  11. In vivo silencing of alpha-synuclein using naked siRNA

    Directory of Open Access Journals (Sweden)

    Charisse Klaus

    2008-11-01

    Full Text Available Abstract Background Overexpression of α-synuclein (SNCA in families with multiplication mutations causes parkinsonism and subsequent dementia, characterized by diffuse Lewy Body disease post-mortem. Genetic variability in SNCA contributes to risk of idiopathic Parkinson's disease (PD, possibly as a result of overexpression. SNCA downregulation is therefore a valid therapeutic target for PD. Results We have identified human and murine-specific siRNA molecules which reduce SNCA in vitro. As a proof of concept, we demonstrate that direct infusion of chemically modified (naked, murine-specific siRNA into the hippocampus significantly reduces SNCA levels. Reduction of SNCA in the hippocampus and cortex persists for a minimum of 1 week post-infusion with recovery nearing control levels by 3 weeks post-infusion. Conclusion We have developed naked gene-specific siRNAs that silence expression of SNCA in vivo. This approach may prove beneficial toward our understanding of the endogenous functional equilibrium of SNCA, its role in disease, and eventually as a therapeutic strategy for α-synucleinopathies resulting from SNCA overexpression.

  12. In vivo silencing of alpha-synuclein using naked siRNA

    Science.gov (United States)

    Lewis, Jada; Melrose, Heather; Bumcrot, David; Hope, Andrew; Zehr, Cynthia; Lincoln, Sarah; Braithwaite, Adam; He, Zhen; Ogholikhan, Sina; Hinkle, Kelly; Kent, Caroline; Toudjarska, Ivanka; Charisse, Klaus; Braich, Ravi; Pandey, Rajendra K; Heckman, Michael; Maraganore, Demetrius M; Crook, Julia; Farrer, Matthew J

    2008-01-01

    Background Overexpression of α-synuclein (SNCA) in families with multiplication mutations causes parkinsonism and subsequent dementia, characterized by diffuse Lewy Body disease post-mortem. Genetic variability in SNCA contributes to risk of idiopathic Parkinson's disease (PD), possibly as a result of overexpression. SNCA downregulation is therefore a valid therapeutic target for PD. Results We have identified human and murine-specific siRNA molecules which reduce SNCA in vitro. As a proof of concept, we demonstrate that direct infusion of chemically modified (naked), murine-specific siRNA into the hippocampus significantly reduces SNCA levels. Reduction of SNCA in the hippocampus and cortex persists for a minimum of 1 week post-infusion with recovery nearing control levels by 3 weeks post-infusion. Conclusion We have developed naked gene-specific siRNAs that silence expression of SNCA in vivo. This approach may prove beneficial toward our understanding of the endogenous functional equilibrium of SNCA, its role in disease, and eventually as a therapeutic strategy for α-synucleinopathies resulting from SNCA overexpression. PMID:18976489

  13. Modification of C Terminus Provides New Insights into the Mechanism of alpha-Synuclein Aggregation

    Czech Academy of Sciences Publication Activity Database

    Afitska, Kseniia; Fučíková, A.; Shvadchak, Volodymyr V.; Yushchenko, Dmytro A.

    2017-01-01

    Roč. 113, č. 10 (2017), s. 2182-2191 ISSN 0006-3495 Institutional support: RVO:61388963 Keywords : alpha-synuclein * aggregation * kinetics Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 3.656, year: 2016

  14. Brain region-dependent differential expression of alpha-synuclein.

    Science.gov (United States)

    Taguchi, Katsutoshi; Watanabe, Yoshihisa; Tsujimura, Atsushi; Tanaka, Masaki

    2016-04-15

    α-Synuclein, the major constituent of Lewy bodies (LBs), is normally expressed in presynapses and is involved in synaptic function. Abnormal intracellular aggregation of α-synuclein is observed as LBs and Lewy neurites in neurodegenerative disorders, such as Parkinson's disease (PD) or dementia with Lewy bodies. Accumulated evidence suggests that abundant intracellular expression of α-synuclein is one of the risk factors for pathological aggregation. Recently, we reported differential expression patterns of α-synuclein between excitatory and inhibitory hippocampal neurons. Here we further investigated the precise expression profile in the adult mouse brain with special reference to vulnerable regions along the progression of idiopathic PD. The results show that α-synuclein was highly expressed in the neuronal cell bodies of some early PD-affected brain regions, such as the olfactory bulb, dorsal motor nucleus of the vagus, and substantia nigra pars compacta. Synaptic expression of α-synuclein was mostly accompanied by expression of vesicular glutamate transporter-1, an excitatory presynaptic marker. In contrast, expression of α-synuclein in the GABAergic inhibitory synapses was different among brain regions. α-Synuclein was clearly expressed in inhibitory synapses in the external plexiform layer of the olfactory bulb, globus pallidus, and substantia nigra pars reticulata, but not in the cerebral cortex, subthalamic nucleus, or thalamus. These results suggest that some neurons in early PD-affected human brain regions express high levels of perikaryal α-synuclein, as happens in the mouse brain. Additionally, synaptic profiles expressing α-synuclein are different in various brain regions. © 2015 Wiley Periodicals, Inc.

  15. Alpha-Synuclein: From Early Synaptic Dysfunction to Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Veronica Ghiglieri

    2018-05-01

    Full Text Available Over the last two decades, many experimental and clinical studies have provided solid evidence that alpha-synuclein (α-syn, a small, natively unfolded protein, is closely related to Parkinson’s disease (PD pathology. To provide an overview on the different roles of this protein, here we propose a synopsis of seminal and recent studies that explored the many aspects of α-syn. Ranging from the physiological functions to its neurodegenerative potential, the relationship with the possible pathogenesis of PD will be discussed. Close attention will be paid on early cellular and molecular alterations associated with the presence of α-syn aggregates.

  16. Antibodies against alpha-synuclein reduce oligomerization in living cells.

    Directory of Open Access Journals (Sweden)

    Thomas Näsström

    Full Text Available Recent research implicates soluble aggregated forms of α-synuclein as neurotoxic species with a central role in the pathogenesis of Parkinson's disease and related disorders. The pathway by which α-synuclein aggregates is believed to follow a step-wise pattern, in which dimers and smaller oligomers are initially formed. Here, we used H4 neuroglioma cells expressing α-synuclein fused to hemi:GFP constructs to study the effects of α-synuclein monoclonal antibodies on the early stages of aggregation, as quantified by Bimolecular Fluorescence Complementation assay. Widefield and confocal microscopy revealed that cells treated for 48 h with monoclonal antibodies internalized antibodies to various degrees. C-terminal and oligomer-selective α-synuclein antibodies reduced the extent of α-synuclein dimerization/oligomerization, as indicated by decreased GFP fluorescence signal. Furthermore, ELISA measurements on lysates and conditioned media from antibody treated cells displayed lower α-synuclein levels compared to untreated cells, suggesting increased protein turnover. Taken together, our results propose that extracellular administration of monoclonal antibodies can modify or inhibit early steps in the aggregation process of α-synuclein, thus providing further support for passive immunization against diseases with α-synuclein pathology.

  17. The influence of N-terminal acetylation on micelle-induced conformational changes and aggregation of α-Synuclein.

    Directory of Open Access Journals (Sweden)

    David Ruzafa

    Full Text Available The biological function of α-Synuclein has been related to binding to lipids and membranes but these interactions can also mediate α-Synuclein aggregation, which is associated to Parkinson's disease and other neuropathologies. In brain tissue α-Synuclein is constitutively N-acetylated, a modification that plays an important role in its conformational propensity, lipid and membrane binding, and aggregation propensity. We studied the interactions of the lipid-mimetic SDS with N-acetylated and non-acetylated α-Synuclein, as well as their early-onset Parkinson's disease variants A30P, E46K and A53T. At low SDS/protein ratios α-Synuclein forms oligomeric complexes with SDS micelles with relatively low α-helical structure. These micellar oligomers can efficiently nucleate aggregation of monomeric α-Synuclein, with successive formation of oligomers, protofibrils, curly fibrils and mature amyloid fibrils. N-acetylation reduces considerably the rate of aggregation of WT α-Synuclein. However, in presence of any of the early-onset Parkinson's disease mutations the protective effect of N-acetylation against micelle-induced aggregation becomes impaired. At higher SDS/protein ratios, N-acetylation favors another conformational transition, in which a second type of α-helix-rich, non-aggregating oligomers become stabilized. Once again, the Parkinson's disease mutations disconnect the influence of N-acetylation in promoting this transition. These results suggest a cooperative link between the N-terminus and the region of the mutations that may be important for α-Synuclein function.

  18. Dose-dependent striatal changes in dopaminergic terminals and alpha-synuclein reactivity in a porcine model of progressive Parkinson’s disease

    DEFF Research Database (Denmark)

    Nielsen, Mette Slot; Glud, Andreas Nørgaard; Møller, Arne

    2011-01-01

    to discover effective compounds halting PD progression have so far failed in clinical trials, perhaps because current animal models do not imitate the neuropathological progression of PD well enough. We recently established a progressive large animal PD model in Göttingen minipigs based on chronic infusion......Parkinson disease (PD) is a common neurodegenerative disorder, resulting from a progressive dopaminergic neuron loss in the substantia nigra (SN). Alpha-synuclein positive neuronal inclusion bodies and progressive loss of dopaminergic striatal terminals is also well described in PD. Attempts...... the SN were paraffin embedded and immunohistochemically stained for tyrosine hydroxylase (TH) and alpha-synuclein. Stereological examination of the SN showed progressive nigral neuron loss with increased MPTP dosages. Occasional neuronal staining confined to the cytoplasm and cell membrane was observed...

  19. Accumulation of phosphorylated alpha-synuclein (p129S) and retinal pathology in a mouse model of Parkinson's disease

    Science.gov (United States)

    Aims: Parkinson's disease (PD) is a neurodegenerative disorder characterized by accumulation of misfolded alpha-synuclein within the CNS. Although non-motor clinical phenotypes of PD such as visual dysfunction have become increasingly apparent, retinal pathology associated with PD is not well under...

  20. Parkinson's disease: acid-glucocerebrosidase activity and alpha-synuclein clearance.

    Science.gov (United States)

    Blanz, Judith; Saftig, Paul

    2016-10-01

    The role of mutations in the gene GBA1 encoding the lysosomal hydrolase β-glucocerebrosidase for the development of synucleinopathies, such as Parkinson's disease and dementia with Lewy bodies, was only very recently uncovered. The knowledge obtained from the study of carriers or patients suffering from Gaucher disease (a common lysosomal storage disorder because of GBA1 mutations) is of particular importance for understanding the role of the enzyme and its catabolic pathway in the development of synucleinopathies. Decreased activity of β-glucocerebrosidase leads to lysosomal dysfunction and the accumulation of its substrate glucosylceramide and related lipid derivatives. Glucosylceramide is suggested to stabilize toxic oligomeric forms of α-synuclein that negatively influence the activity of β-glucocerebrosidase and to partially block export of newly synthesized β-glucocerebrosidase from the endoplasmic reticulum to late endocytic compartments, amplifying the pathological effects of α-synuclein and ultimately resulting in neuronal cell death. This pathogenic molecular feedback loop and most likely other factors (such as impaired endoplasmic reticulum-associated degradation, activation of the unfolded protein response and dysregulation of calcium homeostasis induced by misfolded GC mutants) are involved in shifting the cellular homeostasis from monomeric α-synuclein towards oligomeric neurotoxic and aggregated forms, which contribute to Parkinson's disease progression. From a therapeutic point of view, strategies aiming to increase either the expression, stability or delivery of the β-glucocerebrosidase to lysosomes are likely to decrease the α-synuclein burden and may be useful for an in depth evaluation at the organismal level. Lysosomes are critical for protein and lipid homeostasis. Recent research revealed that dysfunction of this organelle contributes to the development of neurodegenerative diseases such as Parkinson's disease (PD). Mutations in the

  1. Genetic variants of the alpha-synuclein gene SNCA are associated with multiple system atrophy.

    Directory of Open Access Journals (Sweden)

    Ammar Al-Chalabi

    Full Text Available BACKGROUND: Multiple system atrophy (MSA is a progressive neurodegenerative disorder characterized by parkinsonism, cerebellar ataxia and autonomic dysfunction. Pathogenic mechanisms remain obscure but the neuropathological hallmark is the presence of alpha-synuclein-immunoreactive glial cytoplasmic inclusions. Genetic variants of the alpha-synuclein gene, SNCA, are thus strong candidates for genetic association with MSA. One follow-up to a genome-wide association of Parkinson's disease has identified association of a SNP in SNCA with MSA. METHODOLOGY/FINDINGS: We evaluated 32 SNPs in the SNCA gene in a European population of 239 cases and 617 controls recruited as part of the Neuroprotection and Natural History in Parkinson Plus Syndromes (NNIPPS study. We used 161 independently collected samples for replication. Two SNCA SNPs showed association with MSA: rs3822086 (P = 0.0044, and rs3775444 (P = 0.012, although only the first survived correction for multiple testing. In the MSA-C subgroup the association strengthened despite more than halving the number of cases: rs3822086 P = 0.0024, OR 2.153, (95% CI 1.3-3.6; rs3775444 P = 0.0017, OR 4.386 (95% CI 1.6-11.7. A 7-SNP haplotype incorporating three SNPs either side of rs3822086 strengthened the association with MSA-C further (best haplotype, P = 8.7 x 10(-4. The association with rs3822086 was replicated in the independent samples (P = 0.035. CONCLUSIONS/SIGNIFICANCE: We report a genetic association between MSA and alpha-synuclein which has replicated in independent samples. The strongest association is with the cerebellar subtype of MSA. TRIAL REGISTRATION: ClinicalTrials.gov NCT00211224.

  2. Alpha-synuclein oligomers - neurotoxic molecules in Parkinson’s disease and other Lewy body disorders

    Directory of Open Access Journals (Sweden)

    Martin Ingelsson

    2016-09-01

    Full Text Available Adverse intra- and extracellular effects of toxic α-synuclein are believed to be central to the pathogenesis in Parkinson’s disease and other disorders with Lewy body pathology in the nervous system. One of the physiological roles of α-synuclein relates to the regulation of neurotransmitter release at the presynapse, although it is still unclear whether this mechanism depends on the action of monomers or smaller oligomers. As for the pathogenicity, accumulating evidence suggest that prefibrillar species, rather than the deposits per se, are responsible for the toxicity in affected cells. In particular, larger oligomers or protofibrils of α-synuclein have been shown to impair protein degradation as well as the function of several organelles, such as the mitochondria and the endoplasmic reticulum. Accumulating evidence further suggest that oligomers/protofibrils may have a toxic effect on the synapse, which may lead to disrupted electrophysiological properties. In addition, recent data indicate that oligomeric α-synuclein species can spread between cells, either as free-floating proteins or via extracellular vesicles, and thereby act as seeds to propagate disease between interconnected brain regions. Taken together, several lines of evidence suggest that α-synuclein have neurotoxic properties and therefore should be an appropriate molecular target for therapeutic intervention in Parkinson’s disease and other disorders with Lewy pathology. In this context, immunotherapy with monoclonal antibodies against α-synuclein oligomers/protofibrils should be a particularly attractive treatment option.

  3. Tobacco, alcohol, and p53 overexpression in early colorectal neoplasia

    International Nuclear Information System (INIS)

    Terry, Mary Beth; Neugut, Alfred I; Mansukhani, Mahesh; Waye, Jerome; Harpaz, Noam; Hibshoosh, Hanina

    2003-01-01

    The p53 tumor suppressor gene is commonly mutated in colorectal cancer. While the effect of p53 mutations on colorectal cancer prognosis has been heavily studied, less is known about how epidemiologic risk factors relate to p53 status, particularly in early colorectal neoplasia prior to clinically invasive colorectal cancer (including adenomas, carcinoma in situ (CIS), and intramucosal carcinoma). We examined p53 status, as measured by protein overexpression, in 157 cases with early colorectal neoplasia selected from three New York City colonoscopy clinics. After collecting paraffin-embedded tissue blocks, immunohistochemistry was performed using an anti-p53 monoclonal mouse IgG 2 a [BP53-12-1] antibody. We analyzed whether p53 status was different for risk factors for colorectal neoplasia relative to a polyp-free control group (n = 508). p53 overexpression was found in 10.3%, 21.7%, and 34.9%, of adenomatous polyps, CIS, and intramucosal cases, respectively. Over 90% of the tumors with p53 overexpression were located in the distal colon and rectum. Heavy cigarette smoking (30+ years) was associated with cases not overexpressing p53 (OR = 1.8, 95% CI = 1.1–2.9) but not with those cases overexpressing p53 (OR = 1.0, 95% CI = 0.4–2.6). Heavy beer consumption (8+ bottles per week) was associated with cases overexpressing p53 (OR = 4.0, 95% CI = 1.3–12.0) but not with cases without p53 overexpression (OR = 1.6, 95% CI = 0.7–3.7). Our findings that p53 overexpression in early colorectal neoplasia may be positively associated with alcohol intake and inversely associated with cigarette smoking are consistent with those of several studies of p53 expression and invasive cancer, and suggest that there may be relationships of smoking and alcohol with p53 early in the adenoma to carcinoma sequence

  4. Inducible alpha-synuclein expression affects human Neural Stem Cell behavior.

    Science.gov (United States)

    Zasso, Jacopo; Mastad, Ahmed; Cutarelli, Alessandro; Conti, Luciano

    2018-04-19

    Converging evidence suggest that levels of alpha-Synuclein (aSyn) expression play a critical role in Parkinson's disease (PD). Several mutations of the SNCA gene, encoding for aSyn have been associated to either the familial or the sporadic forms of PD. Nonetheless, the mechanism underlying wild type aSyn-mediated neurotoxicity in neuronal cells as well as its specific driving role in PD pathogenesis has yet to be fully clarified. In this view, the development of proper in vitro cellular systems is a crucial step. Here we present a novel human Tet-on hNSC cell line, in which aSyn timing and level of expression can be tightly experimentally tuned. Induction of aSyn in self-renewing hNSCs leads to progressive formation of aSyn aggregates and impairs their proliferation and cell survival. Furthermore, aSyn induction during the neuronal differentiation process results in reduced neuronal differentiation and increased number astrocytes and undifferentiated cells in culture. Finally, acute aSyn induction in hNSC-derived dopaminergic neuronal cultures results in cell toxicity. This novel conditional in vitro cell model system may be a valuable tool for dissecting of aSyn pathogenic effects in hNSCs and neurons and in developing new potential therapeutic strategies.

  5. In parkinsonian substantia nigra, alpha-synuclein is modified by acrolein, a lipid-peroxidation product, and accumulates in the dopamine neurons with inhibition of proteasome activity.

    Science.gov (United States)

    Shamoto-Nagai, M; Maruyama, W; Hashizume, Y; Yoshida, M; Osawa, T; Riederer, P; Naoi, M

    2007-01-01

    alpha-Synuclein (alphaSYN) plays a central role in the neural degeneration of Parkinson's disease (PD) through its conformational change. In PD, alphaSYN, released from the membrane, accumulates in the cytoplasm and forms Lewy body. However, the mechanism behind the translocation and conformational change of alphaSYN leading to the cell death has not been well elucidated. This paper reports that in the dopamine neurons of the substantia nigra containing neuromelanin from PD patients, alphaSYN was modified with acrolein (ACR), an aldehyde product of lipid peroxidation. Histopathological observation confirmed the co-localization of protein immunoreactive to anti-alphaSYN and ACR antibody. By Western blot analyses of samples precipitated with either anti-alphaSYN or anti-ACR antibody, increase in ACR-modified alphaSYN was confirmed in PD brain. Modification of recombinant alphaSYN by ACR enhanced its oligomerization, and at higher ACR concentrations alphaSYN was fragmented and polymerized forming a smear pattern in SDS-PAGE. ACR reduced 20S proteasome activity through the direct modification of the proteasome proteins and the production of polymerized ACR-modified proteins, which inhibited proteasome activity in vitro. These results suggest that ACR may initiate vicious cycle of modification and aggregation of proteins, including alphaSYN, and impaired proteolysis system, to cause neuronal death in PD.

  6. Sensitive electrochemical detection of native and aggregated alpha-synuclein protein involved in Parkinson's disease

    Czech Academy of Sciences Publication Activity Database

    Masařík, Michal; Stobiecka, A.; Kizek, René; Jelen, František; Pechan, Zdeněk; Hoyer, W.; Jovin, T.; Subramaniam, V.; Paleček, Emil

    2004-01-01

    Roč. 16, 13-14 (2004), s. 1172-1181 ISSN 1040-0397 R&D Projects: GA ČR GA204/03/0566 Institutional research plan: CEZ:AV0Z5004920 Keywords : electrochemistry of proteins * alpha-synuclein aggregation * adsorptive transfer stripping Subject RIV: BO - Biophysics Impact factor: 2.038, year: 2004

  7. Photobiomodulation Suppresses Alpha-Synuclein-Induced Toxicity in an AAV-Based Rat Genetic Model of Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Abid Oueslati

    Full Text Available Converging lines of evidence indicate that near-infrared light treatment, also known as photobiomodulation (PBM, may exert beneficial effects and protect against cellular toxicity and degeneration in several animal models of human pathologies, including neurodegenerative disorders. In the present study, we report that chronic PMB treatment mitigates dopaminergic loss induced by unilateral overexpression of human α-synuclein (α-syn in the substantia nigra of an AAV-based rat genetic model of Parkinson's disease (PD. In this model, daily exposure of both sides of the rat's head to 808-nm near-infrared light for 28 consecutive days alleviated α-syn-induced motor impairment, as assessed using the cylinder test. This treatment also significantly reduced dopaminergic neuronal loss in the injected substantia nigra and preserved dopaminergic fibers in the ipsilateral striatum. These beneficial effects were sustained for at least 6 weeks after discontinuing the treatment. Together, our data point to PBM as a possible therapeutic strategy for the treatment of PD and other related synucleinopathies.

  8. Mechanisms of alpha-Synuclein Aggregation and Toxicity

    Science.gov (United States)

    2006-09-01

    Alegre, J., Gomez-Esteban, J.C., Lezcano, E., Ros, R., Ampuero, I., Vidal, L., Hoenicka, J., Rodriguez, O., Atares , B., Llorens, V., Tortosa, E.G...192 (2005) 244–250 245chromosome 17. The tau isoforms prevalent in the sarkosyl- insoluble fraction, and the physical characteristics of the tau...Similarities between a-synuclein, tau, and b-amyloid. Tau and a-synuclein share many physical and biochemical properties (Dickson, 1999; Lee et al., 2004

  9. Ambroxol effects in glucocerebrosidase and α‐synuclein transgenic mice

    Science.gov (United States)

    Migdalska‐Richards, Anna; Daly, Liam; Bezard, Erwan

    2016-01-01

    Objective Gaucher disease is caused by mutations in the glucocerebrosidase 1 gene that result in deficiency of the lysosomal enzyme glucocerebrosidase. Both homozygous and heterozygous glucocerebrosidase 1 mutations confer an increased risk for developing Parkinson disease. Current estimates indicate that 10 to 25% of Parkinson patients carry glucocerebrosidase 1 mutations. Ambroxol is a small molecule chaperone that has been shown to increase glucocerebrosidase activity in vitro. This study investigated the effect of ambroxol treatment on glucocerebrosidase activity and on α‐synuclein and phosphorylated α‐synuclein protein levels in mice. Methods Mice were treated with ambroxol for 12 days. After the treatment, glucocerebrosidase activity was measured in the mouse brain lysates. The brain lysates were also analyzed for α‐synuclein and phosphorylated α‐synuclein protein levels. Results Ambroxol treatment resulted in increased brain glucocerebrosidase activity in (1) wild‐type mice, (2) transgenic mice expressing the heterozygous L444P mutation in the murine glucocerebrosidase 1 gene, and (3) transgenic mice overexpressing human α‐synuclein. Furthermore, in the mice overexpressing human α‐synuclein, ambroxol treatment decreased both α‐synuclein and phosphorylated α‐synuclein protein levels. Interpretation Our work supports the proposition that ambroxol should be further investigated as a potential novel disease‐modifying therapy for treatment of Parkinson disease and neuronopathic Gaucher disease to increase glucocerebrosidase activity and decrease α‐synuclein and phosphorylated α‐synuclein protein levels. Ann Neurol 2016;80:766–775 PMID:27859541

  10. Normalization of Overexpressed α-Synuclein Causing Parkinson's Disease By a Moderate Gene Silencing With RNA Interference

    Directory of Open Access Journals (Sweden)

    Masaki Takahashi

    2015-01-01

    Full Text Available The α-synuclein (SNCA gene is a responsible gene for Parkinson's disease (PD; and not only nucleotide variations but also overexpression of SNCA appears to be involved in the pathogenesis of PD. A specific inhibition against mutant SNCA genes carrying nucleotide variations may be feasible by a specific silencing such as an allele-specific RNA interference (RNAi; however, there is no method for restoring the SNCA overexpression to a normal level. Here, we show that an atypical RNAi using small interfering RNAs (siRNAs that confer a moderate level of gene silencing is capable of controlling overexpressed SNCA genes to return to a normal level; named “expression-control RNAi” (ExCont-RNAi. ExCont-RNAi exhibited little or no significant off-target effects in its treated PD patient's fibroblasts that carry SNCA triplication. To further assess the therapeutic effect of ExCont-RNAi, PD-model flies that carried the human SNCA gene underwent an ExCont-RNAi treatment. The treated PD-flies demonstrated a significant improvement in their motor function. Our current findings suggested that ExCont-RNAi might be capable of becoming a novel therapeutic procedure for PD with the SNCA overexpression, and that siRNAs conferring a moderate level of gene silencing to target genes, which have been abandoned as useless siRNAs so far, might be available for controlling abnormally expressed disease-causing genes without producing adverse effects.

  11. Alpha synuclein in Parkinson's disease

    DEFF Research Database (Denmark)

    Kragh, Christine Lund; Romero-Ramos, Marina; Halliday, Glenda M

    2014-01-01

    The perception of Parkinson’s disease (PD) as a disease centered on dopaminergic striatonigral neurodegeneration has changed fundamentally since 1997 when the first mutation in the SNCA gene (PARK1) encoding a-synuclein was discovered (Polymeropoulos et al. 1997). This discovery formed the basis...

  12. Novel Dimer Compounds That Bind α-Synuclein Can Rescue Cell Growth in a Yeast Model Overexpressing α-Synuclein. A Possible Prevention Strategy for Parkinson's Disease.

    Science.gov (United States)

    Kakish, Joe; Allen, Kevin J H; Harkness, Troy A; Krol, Ed S; Lee, Jeremy S

    2016-12-21

    The misfolding of α-synuclein is a critical event in the death of dopaminergic neurons and the progression of Parkinson's disease. Previously, it was suggested that drugs, which bind to α-synuclein and form a loop structure between the N- and C-termini, tend to be neuroprotective, whereas others, which cause a more compact structure, tend to be neurotoxic. To improve the binding to α-synuclein, eight novel compounds were synthesized from a caffeine scaffold attached to (R,S)-1-aminoindan, (R,S)-nicotine, and metformin, and their binding to α-synuclein determined through nanopore analysis and isothermal titration calorimetry. The ability of the dimers to interact with α-synuclein in a cell system was assayed in a yeast model of PD which expresses an AS-GFP (α-synuclein-Green Fluorescent Protein) construct under the control of a galactose promoter. In 5 mM galactose this yeast strain will not grow and large cytoplasmic foci are observed by fluorescent microscopy. Two of the dimers, C 8 -6-I and C 8 -6-N, at a concentration of 0.1 μM allowed the yeast to grow normally in 5 mM galactose and the AS-GFP became localized to the periphery of the cell. Both dimers were superior when compared to the monomeric compounds. The presence of the dimers also caused the disappearance of preformed cytoplasmic foci. Nanopore analysis of C 8 -6-I and C 8 -6-N were consistent with simultaneous binding to both the N- and C-terminus of α-synuclein but the binding constants were only 10 5 M -1 .

  13. Transient β-hairpin formation in α-synuclein monomer revealed by coarse-grained molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hang; Ma, Wen [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Han, Wei [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Schulten, Klaus, E-mail: kschulte@ks.uiuc.edu [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-12-28

    Parkinson’s disease, originating from the intrinsically disordered peptide α-synuclein, is a common neurodegenerative disorder that affects more than 5% of the population above age 85. It remains unclear how α-synuclein monomers undergo conformational changes leading to aggregation and formation of fibrils characteristic for the disease. In the present study, we perform molecular dynamics simulations (over 180 μs in aggregated time) using a hybrid-resolution model, Proteins with Atomic details in Coarse-grained Environment (PACE), to characterize in atomic detail structural ensembles of wild type and mutant monomeric α-synuclein in aqueous solution. The simulations reproduce structural properties of α-synuclein characterized in experiments, such as secondary structure content, long-range contacts, chemical shifts, and {sup 3}J(H{sub N}H{sub C{sub α}})-coupling constants. Most notably, the simulations reveal that a short fragment encompassing region 38-53, adjacent to the non-amyloid-β component region, exhibits a high probability of forming a β-hairpin; this fragment, when isolated from the remainder of α-synuclein, fluctuates frequently into its β-hairpin conformation. Two disease-prone mutations, namely, A30P and A53T, significantly accelerate the formation of a β-hairpin in the stated fragment. We conclude that the formation of a β-hairpin in region 38-53 is a key event during α-synuclein aggregation. We predict further that the G47V mutation impedes the formation of a turn in the β-hairpin and slows down β-hairpin formation, thereby retarding α-synuclein aggregation.

  14. Inflammation kinase PKR phosphorylates α-synuclein and causes α-synuclein-dependent cell death

    DEFF Research Database (Denmark)

    Reimer, Lasse; Lund, Louise Buur; Betzer, Cristine

    2018-01-01

    , and acute brain slices), while overexpression of constitutively active PKR increases Ser129 α-syn phosphorylation. Treatment with pre-formed α-synuclein fibrils, proteostatic stress-promoting MG-132 and known PKR activators, herpes simplex virus-1-∆ICP34.5 and LPS, as well as PKR inducer, IFN-β-1b, lead...... on Ser129. Although the inflammation-associated serine-threonine kinase, PKR (EIF2AK2), promotes cellular protection against infection, we demonstrate a pro-degenerative role of activated PKR in an α-synuclein-dependent cell model of multiple system atrophy, where inhibition and silencing of PKR decrease...

  15. Neuropathology in mice expressing mouse alpha-synuclein.

    Directory of Open Access Journals (Sweden)

    Claus Rieker

    Full Text Available α-Synuclein (αSN in human is tightly linked both neuropathologically and genetically to Parkinson's disease (PD and related disorders. Disease-causing properties in vivo of the wildtype mouse ortholog (mαSN, which carries a threonine at position 53 like the A53T human mutant version that is genetically linked to PD, were never reported. To this end we generated mouse lines that express mαSN in central neurons at levels reaching up to six-fold compared to endogenous mαSN. Unlike transgenic mice expressing human wildtype or mutant forms of αSN, these mαSN transgenic mice showed pronounced ubiquitin immunopathology in spinal cord and brainstem. Isoelectric separation of mαSN species revealed multiple isoforms including two Ser129-phosphorylated species in the most severely affected brain regions. Neuronal Ser129-phosphorylated αSN occurred in granular and small fibrillar aggregates and pathological staining patterns in neurites occasionally revealed a striking ladder of small alternating segments staining either for Ser129-phosphorylated αSN or ubiquitin but not both. Axonal degeneration in long white matter tracts of the spinal cord, with breakdown of myelin sheaths and degeneration of neuromuscular junctions with loss of integrity of the presynaptic neurofilament network in mαSN transgenic mice, was similar to what we have reported for mice expressing human αSN wildtype or mutant forms. In hippocampal neurons, the mαSN protein accumulated and was phosphorylated but these neurons showed no ubiquitin immunopathology. In contrast to the early-onset motor abnormalities and muscle weakness observed in mice expressing human αSN, mαSN transgenic mice displayed only end-stage phenotypic alterations that manifested alongside with neuropathology. Altogether these findings show that increased levels of wildtype mαSN does not induce early-onset behavior changes, but drives end-stage pathophysiological changes in murine neurons that are

  16. Alpha-synuclein aggregates activate calcium pump SERCA leading to calcium dysregulation

    DEFF Research Database (Denmark)

    Betzer, Cristine; Lassen, Louise Berkhoudt; Olsen, Anders

    2018-01-01

    Aggregation of α-synuclein is a hallmark of Parkinson's disease and dementia with Lewy bodies. We here investigate the relationship between cytosolic Ca2+and α-synuclein aggregation. Analyses of cell lines and primary culture models of α-synuclein cytopathology reveal an early phase with reduced ...

  17. Seeking a Mechanism for the Toxicity of Oligomeric α-Synuclein

    Directory of Open Access Journals (Sweden)

    Hazel L. Roberts

    2015-03-01

    Full Text Available In a number of neurological diseases including Parkinson’s disease (PD, α‑synuclein is aberrantly folded, forming abnormal oligomers, and amyloid fibrils within nerve cells. Strong evidence exists for the toxicity of increased production and aggregation of α-synuclein in vivo. The toxicity of α-synuclein is popularly attributed to the formation of “toxic oligomers”: a heterogenous and poorly characterized group of conformers that may share common molecular features. This review presents the available evidence on the properties of α-synuclein oligomers and the potential molecular mechanisms of their cellular disruption. Toxic α-synuclein oligomers may impact cells in a number of ways, including the disruption of membranes, mitochondrial depolarization, cytoskeleton changes, impairment of protein clearance pathways, and enhanced oxidative stress. We also examine the relationship between α-synuclein toxic oligomers and amyloid fibrils, in the light of recent studies that paint a more complex picture of α-synuclein toxicity. Finally, methods of studying and manipulating oligomers within cells are described.

  18. Explorations of the application of cyanine dyes for quantitative alpha-synuclein detection

    NARCIS (Netherlands)

    Volkova, K.D.; Kovalska, V.B.; Segers-Nolten, Gezina M.J.; Veldhuis, G.; Veldhuis, G.J.; Subramaniam, Vinod; Yarmoluk, S.M.

    2009-01-01

    We examined the practical aspects of using fluorescent mono (T-284) and trimethinecyanine (SH-516) dyes for detecting and quantifying fibrillar α-synuclein (ASN). We studied the interaction of cyanine dyes with fibrillar proteins using fluorescence spectroscopy and atomic force microscopy. The

  19. Dynamic Changes in Striatal mGluR1 But Not mGluR5 during Pathological Progression of Parkinson's Disease in Human Alpha-Synuclein A53T Transgenic Rats: A Multi-PET Imaging Study.

    Science.gov (United States)

    Yamasaki, Tomoteru; Fujinaga, Masayuki; Kawamura, Kazunori; Furutsuka, Kenji; Nengaki, Nobuki; Shimoda, Yoko; Shiomi, Satoshi; Takei, Makoto; Hashimoto, Hiroki; Yui, Joji; Wakizaka, Hidekatsu; Hatori, Akiko; Xie, Lin; Kumata, Katsushi; Zhang, Ming-Rong

    2016-01-13

    Parkinson's disease (PD) is a prevalent degenerative disorder affecting the CNS that is primarily characterized by resting tremor and movement deficits. Group I metabotropic glutamate receptor subtypes 1 and 5 (mGluR1 and mGluR5, respectively) are important targets for investigation in several CNS disorders. In the present study, we investigated the in vivo roles of mGluR1 and mGluR5 in chronic PD pathology by performing longitudinal positron emission tomography (PET) imaging in A53T transgenic (A53T-Tg) rats expressing an abnormal human α-synuclein (ASN) gene. A53T-Tg rats showed a dramatic decline in general motor activities with age, along with abnormal ASN aggregation and striatal neuron degeneration. In longitudinal PET imaging, striatal nondisplaceable binding potential (BPND) values for [(11)C]ITDM (N-[4-[6-(isopropylamino) pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methyl-4-[(11)C]methylbenzamide), a selective PET ligand for mGluR1, temporarily increased before PD symptom onset and dramatically decreased afterward with age. However, striatal BPND values for (E)-[(11)C]ABP688 [3-(6-methylpyridin-2-ylethynyl)-cyclohex-2-enone-(E)-O-[(11)C]methyloxime], a specific PET ligand for mGluR5, remained constant during experimental terms. The dynamic changes in striatal mGluR1 BPND values also showed a high correlation in pathological decreases in general motor activities. Furthermore, declines in mGluR1 BPND values were correlated with decreases in BPND values for [(18)F]FE-PE2I [(E)-N-(3-iodoprop-2E-enyl)-2β-carbo-[(18)F]fluoroethoxy-3β-(4-methylphenyl) nortropane], a specific PET ligand for the dopamine transporter, a biomarker for dopaminergic neurons. In conclusion, our results have demonstrated for the first time that dynamic changes occur in mGluR1, but not mGluR5, that accompany pathological progression in a PD animal model. Synaptic signaling by glutamate, the principal excitatory neurotransmitter in the brain, is modulated by group I metabotropic glutamate

  20. α-Synuclein expression in the mouse cerebellum is restricted to VGluT1 excitatory terminals and is enriched in unipolar brush cells.

    Science.gov (United States)

    Lee, Sun Kyong; Sillitoe, Roy V; Silva, Coralie; Martina, Marco; Sekerkova, Gabriella

    2015-10-01

    α-Synuclein has a crucial role in synaptic vesicle release and synaptic membrane recycling. Although its general expression pattern has been described in the cerebellum, the precise cerebellar structures where α-synuclein is localized are poorly understood. To address this question, we used α-synuclein immunohistochemistry in adult mice cerebellar sections. We found that α-synuclein labels glutamatergic but not glycinergic and GABAergic synaptic terminals in the molecular and granule cell layers. α-Synuclein was preferentially expressed in parallel and mossy fiber synaptic terminals that also express vesicular glutamate transporter 1 (VGluT1), while it was not detected in VGluT2-positive climbing fibers. α-Synuclein was particularly enriched in lobules IX and X, a region known to contain a high density of unipolar brush cells (UBCs). To elucidate whether the α-synuclein-positive mossy fibers belong to UBCs, we double-labeled cerebellar sections with antibodies to α-synuclein and UBC-type-specific markers (calretinin for type I and metabotropic glutamate receptor 1α (mGluR1α) for type II UBCs) and took advantage of organotypic cerebellar cultures (in which all mossy fibers are UBC axons) and moonwalker mice (in which almost all UBCs are ablated) and found that both type I and type II UBCs express α-synuclein. In moonwalker mutant cerebella, the α-synuclein/VGluT1 immunolabeling showed a dramatic decrease in the vestibulocerebellum that correlated with the absence of UBC. α-Synuclein appears to be an excellent marker for intrinsic mossy fibers of the VGluT1 subset in conjunction with UBCs of both subtypes.

  1. Structural and functional characterization of two alpha-synuclein strains

    Science.gov (United States)

    Bousset, Luc; Pieri, Laura; Ruiz-Arlandis, Gemma; Gath, Julia; Jensen, Poul Henning; Habenstein, Birgit; Madiona, Karine; Olieric, Vincent; Böckmann, Anja; Meier, Beat H.; Melki, Ronald

    2013-10-01

    α-synuclein aggregation is implicated in a variety of diseases including Parkinson’s disease, dementia with Lewy bodies, pure autonomic failure and multiple system atrophy. The association of protein aggregates made of a single protein with a variety of clinical phenotypes has been explained for prion diseases by the existence of different strains that propagate through the infection pathway. Here we structurally and functionally characterize two polymorphs of α-synuclein. We present evidence that the two forms indeed fulfil the molecular criteria to be identified as two strains of α-synuclein. Specifically, we show that the two strains have different structures, levels of toxicity, and in vitro and in vivo seeding and propagation properties. Such strain differences may account for differences in disease progression in different individuals/cell types and/or types of synucleinopathies.

  2. Alpha-synuclein gene ablation increases docosahexaenoic acid incorporation and turnover in brain phospholipids

    DEFF Research Database (Denmark)

    Golovko, Mikhail Y; Rosenberger, Thad A; Feddersen, Søren

    2007-01-01

    Previously, we demonstrated that ablation of alpha-synuclein (Snca) reduces arachidonate (20:4n-6) turnover in brain phospholipids through modulation of an endoplasmic reticulum-localized acyl-CoA synthetase (Acsl). The effect of Snca ablation on docosahexaenoic acid (22:6n-3) metabolism is unknown...... and turnover in ethanolamine glycerophospholipid, phosphatidylserine, and phosphatidylinositol pools. Increased 22:6n-3-CoA mass was not the result of altered Acsl activity, which was unaffected by the absence of Snca. While Snca bound 22:6n-3, Kd = 1.0 +/- 0.5 micromol/L, it did not bind 22:6n-3-Co...

  3. Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis.

    Directory of Open Access Journals (Sweden)

    David Freeman

    Full Text Available α-synuclein dysregulation is a critical aspect of Parkinson's disease pathology. Recent studies have observed that α-synuclein aggregates are cytotoxic to cells in culture and that this toxicity can be spread between cells. However, the molecular mechanisms governing this cytotoxicity and spread are poorly characterized. Recent studies of viruses and bacteria, which achieve their cytoplasmic entry by rupturing intracellular vesicles, have utilized the redistribution of galectin proteins as a tool to measure vesicle rupture by these organisms. Using this approach, we demonstrate that α-synuclein aggregates can induce the rupture of lysosomes following their endocytosis in neuronal cell lines. This rupture can be induced by the addition of α-synuclein aggregates directly into cells as well as by cell-to-cell transfer of α-synuclein. We also observe that lysosomal rupture by α-synuclein induces a cathepsin B dependent increase in reactive oxygen species (ROS in target cells. Finally, we observe that α-synuclein aggregates can induce inflammasome activation in THP-1 cells. Lysosomal rupture is known to induce mitochondrial dysfunction and inflammation, both of which are well established aspects of Parkinson's disease, thus connecting these aspects of Parkinson's disease to the propagation of α-synuclein pathology in cells.

  4. An Efficient Procedure for Removal and Inactivation of Alpha-Synuclein Assemblies from Laboratory Materials.

    Science.gov (United States)

    Bousset, Luc; Brundin, Patrik; Böckmann, Anja; Meier, Beat; Melki, Ronald

    2016-01-01

    Preformed α-synuclein fibrils seed the aggregation of soluble α-synuclein in cultured cells and in vivo. This, and other findings, has kindled the idea that α-synuclein fibrils possess prion-like properties. As α-synuclein fibrils should not be considered as innocuous, there is a need for decontamination and inactivation procedures for laboratory benches and non-disposable laboratory material. We assessed the effectiveness of different procedures designed to disassemble α-synuclein fibrils and reduce their infectivity. We examined different commercially available detergents to remove α-synuclein assemblies adsorbed on materials that are not disposable and that are most found in laboratories (e.g. plastic, glass, aluminum or stainless steel surfaces). We show that methods designed to decrease PrP prion infectivity neither effectively remove α-synuclein assemblies adsorbed to different materials commonly used in the laboratory nor disassemble the fibrillar form of the protein with efficiency. In contrast, both commercial detergents and SDS detached α-synuclein assemblies from contaminated surfaces and disassembled the fibrils. We describe three cleaning procedures that effectively remove and disassemble α-synuclein seeds. The methods rely on the use of detergents that are compatible with most non-disposable tools in a laboratory. The procedures are easy to implement and significantly decrease any potential risks associated to handling α-synuclein assemblies.

  5. The G209A mutation in the alpha-synuclein gene in Brazilian families with Parkinson's disease Mutação G209A no gene da alfa-sinucleína em famílias brasileiras com doença de Parkinson

    Directory of Open Access Journals (Sweden)

    Hélio A.G. Teive

    2001-09-01

    Full Text Available A missense G209A mutation of the alpha-synuclein gene was recently described in a large Contursi kindred with Parkinson's disease (PD. The objective of this study is to determine if the mutation G209A of the alpha-synuclein gene was present in 10 Brazilian families with PD. PD patients were recruited from movement disorders clinics of Brazil. A family history with two or more affected in relatives was the inclusion criterion for this study. The alpha-synuclein G209A mutation assay was made using polymerase chain reaction and the restriction enzyme Tsp45I. Ten patients from 10 unrelated families were studied. The mean age of PD onset was 42.7 years old. We did not find the G209A mutation in our 10 families with PD. Our results suggest that alpha-synuclein mutation G209A is uncommon in Brazilian PD families.Recentemente foi detectada mutação missense G209A no gene da alfa-sinucleína em uma grande família com doença de Parkinson (DP de Contursi, Itália. Este estudo tem o objetivo de determinar se a mutação G209A está presente em 10 famílias brasileiras com DP. Pacientes com DP foram recrutados em clínicas de distúrbio do movimento no Brasil. O critério de inclusão no estudo foi à presença de dois ou mais familiares acometidos pela DP. A mutação G209A do gene da alfa-sinucleína foi pesquisada usando a técnica de reação em cadeia de polimerase e a enzima de restrição Tsp45I. Foram estudados 10 pacientes de famílias não-relacionadas. A idade média do início dos sintomas da DP foi 42,7 anos. Não encontramos a mutação estudada neste grupo de pacientes. Nossos resultados sugerem que a mutação G209A é incomum em famílias brasileiras com DP.

  6. Overexpression of phosphomimic mutated OsWRKY53 leads to enhanced blast resistance in rice.

    Directory of Open Access Journals (Sweden)

    Tetsuya Chujo

    Full Text Available WRKY transcription factors and mitogen-activated protein kinase (MAPK cascades have been shown to play pivotal roles in the regulation of plant defense responses. We previously reported that OsWRKY53-overexpressing rice plants showed enhanced resistance to the rice blast fungus. In this study, we identified OsWRKY53 as a substrate of OsMPK3/OsMPK6, components of a fungal PAMP-responsive MAPK cascade in rice, and analyzed the effect of OsWRKY53 phosphorylation on the regulation of basal defense responses to a virulence race of rice blast fungus Magnaporthe oryzae strain Ina86-137. An in vitro phosphorylation assay revealed that the OsMPK3/OsMPK6 activated by OsMKK4 phosphorylated OsWRKY53 recombinant protein at its multiple clustered serine-proline residues (SP cluster. When OsWRKY53 was coexpressed with a constitutively active mutant of OsMKK4 in a transient reporter gene assay, the enhanced transactivation activity of OsWRKY53 was found to be dependent on phosphorylation of the SP cluster. Transgenic rice plants overexpressing a phospho-mimic mutant of OsWRKY53 (OsWRKY53SD showed further-enhanced disease resistance to the blast fungus compared to native OsWRKY53-overexpressing rice plants, and a substantial number of defense-related genes, including pathogenesis-related protein genes, were more upregulated in the OsWRKY53SD-overexpressing plants compared to the OsWRKY53-overexpressing plants. These results strongly suggest that the OsMKK4-OsMPK3/OsMPK6 cascade regulates transactivation activity of OsWRKY53, and overexpression of the phospho-mimic mutant of OsWRKY53 results in a major change to the rice transcriptome at steady state that leads to activation of a defense response against the blast fungus in rice plants.

  7. Overexpression of Phosphomimic Mutated OsWRKY53 Leads to Enhanced Blast Resistance in Rice

    Science.gov (United States)

    Ogawa, Satoshi; Masuda, Yuka; Shimizu, Takafumi; Kishi-Kaboshi, Mitsuko; Takahashi, Akira; Nishizawa, Yoko; Minami, Eiichi; Nojiri, Hideaki; Yamane, Hisakazu; Okada, Kazunori

    2014-01-01

    WRKY transcription factors and mitogen-activated protein kinase (MAPK) cascades have been shown to play pivotal roles in the regulation of plant defense responses. We previously reported that OsWRKY53-overexpressing rice plants showed enhanced resistance to the rice blast fungus. In this study, we identified OsWRKY53 as a substrate of OsMPK3/OsMPK6, components of a fungal PAMP-responsive MAPK cascade in rice, and analyzed the effect of OsWRKY53 phosphorylation on the regulation of basal defense responses to a virulence race of rice blast fungus Magnaporthe oryzae strain Ina86-137. An in vitro phosphorylation assay revealed that the OsMPK3/OsMPK6 activated by OsMKK4 phosphorylated OsWRKY53 recombinant protein at its multiple clustered serine-proline residues (SP cluster). When OsWRKY53 was coexpressed with a constitutively active mutant of OsMKK4 in a transient reporter gene assay, the enhanced transactivation activity of OsWRKY53 was found to be dependent on phosphorylation of the SP cluster. Transgenic rice plants overexpressing a phospho-mimic mutant of OsWRKY53 (OsWRKY53SD) showed further-enhanced disease resistance to the blast fungus compared to native OsWRKY53-overexpressing rice plants, and a substantial number of defense-related genes, including pathogenesis-related protein genes, were more upregulated in the OsWRKY53SD-overexpressing plants compared to the OsWRKY53-overexpressing plants. These results strongly suggest that the OsMKK4-OsMPK3/OsMPK6 cascade regulates transactivation activity of OsWRKY53, and overexpression of the phospho-mimic mutant of OsWRKY53 results in a major change to the rice transcriptome at steady state that leads to activation of a defense response against the blast fungus in rice plants. PMID:24892523

  8. p53 functional impairment and high p21waf1/cip1 expression in human T-cell lymphotropic/leukemia virus type I-transformed T cells.

    Science.gov (United States)

    Cereseto, A; Diella, F; Mulloy, J C; Cara, A; Michieli, P; Grassmann, R; Franchini, G; Klotman, M E

    1996-09-01

    Human T-cell lymphotropic/leukemia virus type I (HTLV-I) is associated with T-cell transformation both in vivo and in vitro. Although some of the mechanisms responsible for transformation remain unknown, increasing evidence supports a direct role of viral as well as dysregulated cellular proteins in transformation. We investigated the potential role of the tumor suppressor gene p53 and of the p53-regulated gene, p21waf1/cip1 (wild-type p53 activated fragment 1/cycling dependent kinases [cdks] interacting protein 1), in HTLV-I-infected T cells. We have found that the majority of HTLV-I-infected T cells have the wild-type p53 gene. However, its function in HTLV-I-transformed cells appears to be impaired, as shown by the lack of appropriate p53-mediated responses to ionizing radiation (IR). Interestingly, the expression of the p53 inducible gene, p21waf1/cip1, is elevated at the messenger ribonucleic acid and protein levels in all HTLV-I-infected T-cell lines examined as well as in Taxl-1, a human T-cell line stably expressing Tax. Additionally, Tax induces upregulation of a p21waf1/cip1 promoter-driven luciferase gene in p53 null cells, and increases p21waf1/cip1 expression in Jurkat T cells. These findings suggest that the Tax protein is at least partially responsible for the p53-independent expression of p21waf1/cip1 in HTLV-I-infected cells. Dysregulation of p53 and p21waf1/cip1 proteins regulating cell-cycle progression, may represent an important step in HTLV-I-induced T-cell transformation.

  9. Human T-cell lymphotropic virus type 1-infected T lymphocytes impair catabolism and uptake of glutamate by astrocytes via Tax-1 and tumor necrosis factor alpha.

    Science.gov (United States)

    Szymocha, R; Akaoka, H; Dutuit, M; Malcus, C; Didier-Bazes, M; Belin, M F; Giraudon, P

    2000-07-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of a chronic progressive myelopathy called tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). In this disease, lesions of the central nervous system (CNS) are associated with perivascular infiltration by lymphocytes. We and others have hypothesized that these T lymphocytes infiltrating the CNS may play a prominent role in TSP/HAM. Here, we show that transient contact of human or rat astrocytes with T lymphocytes chronically infected by HTLV-1 impairs some of the major functions of brain astrocytes. Uptake of extracellular glutamate by astrocytes was significantly decreased after transient contact with infected T cells, while the expression of the glial transporters GLAST and GLT-1 was decreased. In two-compartment cultures avoiding direct cell-to-cell contact, similar results were obtained, suggesting possible involvement of soluble factors, such as cytokines and the viral protein Tax-1. Recombinant Tax-1 and tumor necrosis factor alpha (TNF-alpha) decreased glutamate uptake by astrocytes. Tax-1 probably acts by inducing TNF-alpha, as the effect of Tax-1 was abolished by anti-TNF-alpha antibody. The expression of glutamate-catabolizing enzymes in astrocytes was increased for glutamine synthetase and decreased for glutamate dehydrogenase, the magnitudes of these effects being correlated with the level of Tax-1 transcripts. In conclusion, Tax-1 and cytokines produced by HTLV-1-infected T cells impair the ability of astrocytes to manage the steady-state level of glutamate, which in turn may affect neuronal and oligodendrocytic functions and survival.

  10. SMG1 identified as a regulator of Parkinson's disease-associated alpha-synuclein through siRNA screening.

    Directory of Open Access Journals (Sweden)

    Adrienne Henderson-Smith

    Full Text Available Synucleinopathies are a broad class of neurodegenerative disorders characterized by the presence of intracellular protein aggregates containing α-synuclein protein. The aggregated α-synuclein protein is hyperphosphorylated on serine 129 (S129 compared to the unaggregated form of the protein. While the precise functional consequences of S129 hyperphosphorylation are still being clarified, numerous in vitro and in vivo studies suggest that S129 phosphorylation is an early event in α-synuclein dysfunction and aggregation. Identifying the kinases and phosphatases that regulate this critical phosphorylation event may ultimately prove beneficial by allowing pharmacological mitigation of synuclein dysfunction and toxicity in Parkinson's disease and other synucleinopathies. We report here the development of a high-content, fluorescence-based assay to quantitate levels of total and S129 phosphorylated α-synuclein protein. We have applied this assay to conduct high-throughput loss-of-function screens with siRNA libraries targeting 711 known and predicted human kinases and 206 phosphatases. Specifically, knockdown of the phosphatidylinositol 3-kinase related kinase SMG1 resulted in significant increases in the expression of pS129 phosphorylated α-synuclein (p-syn. Moreover, SMG1 protein levels were significantly reduced in brain regions with high p-syn levels in both dementia with Lewy bodies (DLB and Parkinson's disease with dementia (PDD. These findings suggest that SMG1 may play an important role in increased α-synuclein pathology during the course of PDD, DLB, and possibly other synucleinopathies.

  11. Microglia acquire distinct activation profiles depending on the degree of alpha-synuclein neuropathology in a rAAV based model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Vanesa Sanchez-Guajardo

    Full Text Available Post-mortem analysis of brains from Parkinson's disease (PD patients strongly supports microglia activation and adaptive immunity as factors contributing to disease progression. Such responses may be triggered by alpha-synuclein (alpha-syn, which is known to be the main constituent of the aggregated proteins found in Lewy bodies in the brains of PD patients. To investigate this we used a recombinant viral vector to express human alpha-syn in rat midbrain at levels that induced neuronal pathology either in the absence or the presence of dopaminergic cell death, thereby mimicking early or late stages of the disease. Microglia activation was assessed by stereological quantification of Mac1+ cells, as well as the expression patterns of CD68 and MCH II. In our study, when alpha-syn induced neuronal pathology but not cell death, a fast transient increase in microglia cell numbers resulted in the long-term induction of MHC II+ microglia, denoting antigen-presenting ability. On the other hand, when alpha-syn induced both neuronal pathology and cell death, there was a delayed increase in microglia cell numbers, which correlated with long-lasting CD68 expression and a morphology reminiscent of peripheral macrophages. In addition T-lymphocyte infiltration, as judged by the presence of CD4+ and CD8+ cells, showed distinct kinetics depending on the degree of neurodegeneration, and was significantly higher when cell death occurred. We have thus for the first time shown that the microglial response differs depending on whether alpha-syn expression results on cell death or not, suggesting that microglia may play different roles during disease progression. Furthermore, our data suggest that the microglial response is modulated by early events related to alpha-syn expression in substantia nigra and persists at the long term.

  12. Mitochondrial Dysfunction: The Road to Alpha-Synuclein Oligomerization in PD

    Directory of Open Access Journals (Sweden)

    A. R. Esteves

    2011-01-01

    Full Text Available While the etiology of Parkinson's disease remains largely elusive, there is accumulating evidence suggesting that mitochondrial dysfunction occurs prior to the onset of symptoms in Parkinson's disease. Mitochondria are remarkably primed to play a vital role in neuronal cell survival since they are key regulators of energy metabolism (as ATP producers, of intracellular calcium homeostasis, of NAD+/NADH ratio, and of endogenous reactive oxygen species production and programmed cell death. In this paper, we focus on mitochondrial dysfunction-mediated alpha-synuclein aggregation. We highlight some of the findings that provide proof of evidence for a mitochondrial metabolism control in Parkinson's disease, namely, mitochondrial regulation of microtubule-dependent cellular traffic and autophagic lysosomal pathway. The knowledge that microtubule alterations may lead to autophagic deficiency and may compromise the cellular degradation mechanisms that culminate in the progressive accumulation of aberrant protein aggregates shields new insights to the way we address Parkinson's disease. In line with this knowledge, an innovative window for new therapeutic strategies aimed to restore microtubule network may be unlocked.

  13. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity

    DEFF Research Database (Denmark)

    Decressac, Mickael; Mattsson, Bengt; Weikop, Pia

    2013-01-01

    that the PD-like neurodegenerative changes induced by excess cellular levels of α-synuclein in nigral dopamine neurons are closely linked to a progressive decline in markers of lysosome function, accompanied by cytoplasmic retention of transcription factor EB (TFEB), a major transcriptional regulator...... in both A9 and A10 dopamine neurons. Delayed activation of TFEB function through inhibition of mammalian target of rapamycin blocked α-synuclein induced neurodegeneration and further disease progression. The results provide a mechanistic link between α-synuclein toxicity and impaired TFEB function......The aggregation of α-synuclein plays a major role in Parkinson disease (PD) pathogenesis. Recent evidence suggests that defects in the autophagy-mediated clearance of α-synuclein contribute to the progressive loss of nigral dopamine neurons. Using an in vivo model of α-synuclein toxicity, we show...

  14. Biophysical Characterization of α-Synuclein and Rotenone Interaction

    Directory of Open Access Journals (Sweden)

    Anthony L. Fink

    2013-09-01

    Full Text Available Previous studies revealed that pesticides interact with α-synuclein and accelerate the rate of fibrillation. These results are consistent with the prevailing hypothesis that the direct interaction of α-synuclein with pesticides is one of many suspected factors leading to α-synuclein fibrillation and ultimately to Parkinson’s disease. In this study, the biophysical properties and fibrillation kinetics of α-synuclein in the presence of rotenone were investigated and, more specifically, the effects of rotenone on the early-stage misfolded forms of α-synuclein were considered. The thioflavine T (ThT fluorescence assay studies provide evidence that early-phase misfolded α-synuclein forms are affected by rotenone and that the fibrillation process is accelerated. Further characterization by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR shows that rotenone increases the amount of ordered secondary structure in this intrinsically disordered protein. Morphological characterization by transmission electron microscopy (TEM and atomic force microscopy (AFM provide visualization of the differences in the aggregated α-synuclein species developing during the early kinetics of the fibrillation process in the absence and presence of rotenone. We believe that these data provide useful information for a better understanding of the molecular basis of rotenone-induced misfolding and aggregation of α-synuclein.

  15. KLK6 proteolysis is implicated in the turnover and uptake of extracellular alpha-synuclein species.

    Science.gov (United States)

    Pampalakis, Georgios; Sykioti, Vasia-Samantha; Ximerakis, Methodios; Stefanakou-Kalakou, Ioanna; Melki, Ronald; Vekrellis, Kostas; Sotiropoulou, Georgia

    2017-02-28

    KLK6 is a serine protease highly expressed in the nervous system. In synucleinopathies, including Parkinson disease, the levels of KLK6 inversely correlate with α-synuclein in CSF. Recently, we suggested that recombinant KLK6 mediates the degradation of extracellular α-synuclein directly and via a proteolytic cascade that involves unidentified metalloproteinase(s). Here, we show that recombinant and naturally secreted KLK6 can readily cleave α-synuclein fibrils that have the potential for cell-to-cell propagation in "a prion-like mechanism". Importantly, KLK6-deficient primary cortical neurons have increased ability for α-synuclein fibril uptake. We also demonstrate that KLK6 activates proMMP2, which in turn can cleave α-synuclein. The repertoire of proteases activated by KLK6 in a neuronal environment was analyzed by degradomic profiling, which also identified ADAMTS19 and showed that KLK6 has a limited number of substrates indicating specific biological functions such as the regulation of α-synuclein turnover. We generated adenoviral vectors for KLK6 delivery and demonstrated that the levels of extracellular α-synuclein can be reduced by neuronally secreted KLK6. Our findings open the possibility to exploit KLK6 as a novel therapeutic target for Parkinson disease and other synucleinopathies.

  16. Nanotized PPARα Overexpression Targeted to Hypertrophied Myocardium Improves Cardiac Function by Attenuating the p53-GSK3β-Mediated Mitochondrial Death Pathway.

    Science.gov (United States)

    Rana, Santanu; Datta, Ritwik; Chaudhuri, Ratul Datta; Chatterjee, Emeli; Chawla-Sarkar, Mamta; Sarkar, Sagartirtha

    2018-05-09

    Metabolic remodeling of cardiac muscles during pathological hypertrophy is characterized by downregulation of fatty acid oxidation (FAO) regulator, peroxisome proliferator-activated receptor alpha (PPARα). Thereby, we hypothesized that a cardiac-specific induction of PPARα might restore the FAO-related protein expression and resultant energy deficit. In the present study, consequences of PPARα augmentation were evaluated for amelioration of chronic oxidative stress, myocyte apoptosis, and cardiac function during pathological cardiac hypertrophy. Nanotized PPARα overexpression targeted to myocardium was done by a stearic acid-modified carboxymethyl-chitosan (CMC) conjugated to a 20-mer myocyte-targeted peptide (CMCP). Overexpression of PPARα ameliorated pathological hypertrophy and improved cardiac function. Augmented PPARα in hypertrophied myocytes revealed downregulated p53 acetylation (lys 382), leading to reduced apoptosis. Such cells showed increased binding of PPARα with p53 that in turn reduced interaction of p53 with glycogen synthase kinase-3β (GSK3β), which upregulated inactive phospho-GSK3β (serine [Ser]9) expression within mitochondrial protein fraction. Altogether, the altered molecular milieu in PPARα-overexpressed hypertrophy groups restored mitochondrial structure and function both in vitro and in vivo. Cardiomyocyte-targeted overexpression of a protein of interest (PPARα) by nanotized plasmid has been described for the first time in this study. Our data provide a novel insight towards regression of pathological hypertrophy by ameliorating mitochondrial oxidative stress in targeted PPARα-overexpressed myocardium. PPARα-overexpression during pathological hypertrophy showed substantial betterment of mitochondrial structure and function, along with downregulated apoptosis. Myocardium-targeted overexpression of PPARα during pathological cardiac hypertrophy led to an overall improvement of cardiac energy deficit and subsequent cardiac

  17. High frequency of HIF-1 alpha overexpression in BRCA1 related breast cancer

    NARCIS (Netherlands)

    van der Groep, Petra; Bouter, Alwin; Menko, Fred H.; van der Wall, Elsken; van Diest, Paul J.

    2008-01-01

    Hypoxia is a hallmark of cancer. Hypoxia inducible factor-1 alpha (HIF-1 alpha) is the key regulator of the hypoxia response. HIF-1 alpha is overexpressed during sporadic breast carcinogenesis and correlated with poor prognosis. Little is known on the role of HIF-1 alpha in hereditary breast

  18. Foil deposition alpha collector probe for TFTR's D-T phase

    International Nuclear Information System (INIS)

    Hermann, H.W.; Darrow, D.S.; Timberlake, J.; Zweben, S.J.; Chong, G.P.; Pitcher, C.S.; Macaulay-Newcombe, R.G.

    1995-03-01

    A new foil deposition alpha collector sample probe has been developed for TFTR's D-T phase. D-T fusion produced alpha particles escaping from the plasma are implanted in nickel foils located in a series of collimating ports on the detector. The nickel foils are removed from the tokamak after exposure to one or more plasma discharges and analyzed for helium content. This detector is intended to provide improved alpha particle energy resolution and pitch angle coverage over existing lost alpha detectors, and to provide an absolutely calibrated cross-check with these detectors. The ability to resolve between separate energy components of alpha particle loss is estimated to be ∼ 20%. A full 360 degree of pitch angle coverage is provided for by 8 channels having an acceptance range of ∼ 53 degree per channel. These detectors will be useful in characterizing classical and anomalous alpha losses and any collective alpha instabilities that may be excited during the D-T campaign of TFTR

  19. P53 overexpression in head and neck carcinoma and radiotherapy results

    International Nuclear Information System (INIS)

    Awwad, Saif; Jaros, Evelyn; Somes, James; Lunec, John

    1996-01-01

    Purpose: P53 gene mutations are the common genetic changes encountered in human cancers, and there is extensive evidence that the P53 status may determine tumor response to therapy. This study was carried out to investigate whether there is any correlation between accumulation (overexpression) of P53 protein and poor prognosis in patients with head and neck carcinomas treated with radical radiotherapy. Methods and Materials: Seventy-nine patients with head and neck carcinomas who were diagnosed and treated in 1989-90 with curative radiotherapy were studied retrospectively. Paraffin sections from archival material were studied using immunohistochemical staining (IHC) with mouse monoclonal antibodies (D0-7) to human P53 protein. Univariate and multivariate analysis of loco-regional tumor control and patient survival were performed on possible prognostic factors. Results: Forty-two (53%) patients showed positive IHC staining in their tumors. Fifty-three percent of the laryngeal, 64% of the oropharyngeal, and 43% of the oral cavity carcinomas showed P53 overexpression. All tumor specimens with vascular, lymphatic, and/or sarcolemmal invasion showed P53 overexpression. The proportion of tumor-stained nuclei was higher in the poorly differentiated than in the well and moderately differentiated tumors (p < 0.05), but there was no correlation with the patient overall or disease-free 5-year actuarial survival. There was no difference in the 5-year actuarial survival and disease-free survival between patients with P53 immunostaining in their tumors and those with no immunostaining (59% vs. 65% and 57% vs. 51%, respectively). The TNM tumor stage was the most significant prognostic factor with 5-year actuarial survival of 87% for early and 14% for late stages (p << 0.0001). There was a significant correlation between immunostaining and history of smoking (p = 0.02). Conclusion: The data demonstrate that the P53 accumulation as detected by immunohistochemical staining in a

  20. The Anticholinesterase Phenserine and Its Enantiomer Posiphen as 5′Untranslated-Region-Directed Translation Blockers of the Parkinson’s Alpha Synuclein Expression

    Directory of Open Access Journals (Sweden)

    Sohan Mikkilineni

    2012-01-01

    Full Text Available There is compelling support for limiting expression of alpha-synuclein (α-syn in the brains of Parkinson’s disease (PD patients. An increase of SNCA gene copy number can genetically cause familial PD where increased dose of this pathogenic protein correlates with severity of symptoms (triplication of the SNCA gene causes dementia in PD patients. Gene promoter polymorphisms were shown to increase α-synuclein expression as a risk for PD. Cholinesterase inhibitors can clinically slow cognitive decline in the later stages of PD etiology similar to their widespread use in Alzheimer’s disease (AD. Pertinent to this, we identified that the well-tolerated anticholinesterase, phenserine, blocked neural SNCA mRNA translation and tested for targeting via its 5′untranslated region (5′UTR in a manner similar to its action to limit the expression of the AD-specific amyloid precursor protein (APP. Posiphen, its better-tolerated (+ enantiomer (devoid of anticholinesterase action, repressed neural α-synuclein translation. Primary metabolic analogs of posiphen were, likewise, characterized using primary fetal neurons grown ex vivo from the brains of Parkinson’s transgenic mice expressing the human SNCA gene.

  1. Multiple system atrophy: genetic risks and alpha-synuclein mutations [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Heather T Whittaker

    2017-11-01

    Full Text Available Multiple system atrophy (MSA is one of the few neurodegenerative disorders where we have a significant understanding of the clinical and pathological manifestations but where the aetiology remains almost completely unknown. Research to overcome this hurdle is gaining momentum through international research collaboration and a series of genetic and molecular discoveries in the last few years, which have advanced our knowledge of this rare synucleinopathy. In MSA, the discovery of α-synuclein pathology and glial cytoplasmic inclusions remain the most significant findings. Families with certain types of α-synuclein mutations develop diseases that mimic MSA, and the spectrum of clinical and pathological features in these families suggests a spectrum of severity, from late-onset Parkinson’s disease to MSA. Nonetheless, controversies persist, such as the role of common α-synuclein variants in MSA and whether this disorder shares a common mechanism of spreading pathology with other protein misfolding neurodegenerative diseases. Here, we review these issues, specifically focusing on α-synuclein mutations.

  2. Structural variation of alpha-synuclein with temperature by a coarse-grained approach with knowledge-based interactions

    Directory of Open Access Journals (Sweden)

    Peter Mirau

    2015-09-01

    Full Text Available Despite enormous efforts, our understanding the structure and dynamics of α-synuclein (ASN, a disordered protein (that plays a key role in neurodegenerative disease is far from complete. In order to better understand sequence-structure-property relationships in α-SYNUCLEIN we have developed a coarse-grained model using knowledge-based residue-residue interactions and used it to study the structure of free ASN as a function of temperature (T with a large-scale Monte Carlo simulation. Snapshots of the simulation and contour contact maps show changes in structure formation due to self-assembly as a function of temperature. Variations in the residue mobility profiles reveal clear distinction among three segments along the protein sequence. The N-terminal (1-60 and C-terminal (96-140 regions contain the least mobile residues, which are separated by the higher mobility non-amyloid component (NAC (61-95. Our analysis of the intra-protein contact profile shows a higher frequency of residue aggregation (clumping in the N-terminal region relative to that in the C-terminal region, with little or no aggregation in the NAC region. The radius of gyration (Rg of ASN decays monotonically with decreasing the temperature, consistent with the finding of Allison et al. (JACS, 2009. Our analysis of the structure function provides an insight into the mass (N distribution of ASN, and the dimensionality (D of the structure as a function of temperature. We find that the globular structure with D ≈ 3 at low T, a random coil, D ≈ 2 at high T and in between (2 ≤ D ≤ 3 at the intermediate temperatures. The magnitudes of D are in agreement with experimental estimates (J. Biological Chem 2002.

  3. Overexpression of p53, MDM2 proteins in some atr radiation-induced skin ulcers

    International Nuclear Information System (INIS)

    Gu Qingyang; Gao Yabing; Wang Dewen; Cui Yufang; Zhao Po; Yang Zhixiang; Zhou Jie

    2000-01-01

    An animal model of radiation-induced skin ulcer was set up with 140 rats, which were locally irradiated with 35-55 Gy γ-rays. The pathological changes were observed for 1 year. Immunohistochemical studies were performed in 72 rat radiation skin ulcer specimens using anti-p53 and anti-MDM2 proteins polyclonal antibodies. The results showed that the positive rate for overexpression of p53 protein was 9.7%, and for that of MDM2 was 19.4%. The overexpression of p53 was mainly seen in the nuclei of activated squamous epithelial cells, and in fibroblasts, endotheliocytes in deeper part of the skin ulcers. The overexpression of MDM2 had the same localizations. It is suggested that the changes of p53 and MDM2, genes and proteins, may be related to the cancer transformation and poor healing of radiation-induced skin ulcers

  4. α-Synuclein Immunotherapy Blocks Uptake and Templated Propagation of Misfolded α-Synuclein and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Hien T. Tran

    2014-06-01

    Full Text Available Accumulation of misfolded alpha-synuclein (α-syn into Lewy bodies (LBs and Lewy neurites (LNs is a major hallmark of Parkinson’s disease (PD and dementia with LBs (DLB. Recent studies showed that synthetic preformed fibrils (pffs recruit endogenous α-syn and induce LB/LN pathology in vitro and in vivo, thereby implicating propagation and cell-to-cell transmission of pathological α-syn as mechanisms for the progressive spread of LBs/LNs. Here, we demonstrate that α-syn monoclonal antibodies (mAbs reduce α-syn pff-induced LB/LN formation and rescue synapse/neuron loss in primary neuronal cultures by preventing both pff uptake and subsequent cell-to-cell transmission of pathology. Moreover, intraperitoneal (i.p. administration of mAb specific for misfolded α-syn into nontransgenic mice injected intrastriatally with α-syn pffs reduces LB/LN pathology, ameliorates substantia nigra dopaminergic neuron loss, and improves motor impairments. We conclude that α-syn antibodies could exert therapeutic effects in PD/DLB by blocking entry of pathological α-syn and/or its propagation in neurons.

  5. NMR of alpha-synuclein-polyamine complexes elucidates the mechanism and kinetics of induced aggregation

    NARCIS (Netherlands)

    Fernández, Claudio O.; Hoyer, Wolfgang; Zweckstetter, Markus; Jares-Erijman, Elizabeth A.; Subramaniam, Vinod; Griesinger, Christian; Jovin, Thomas M.

    2004-01-01

    The aggregation of α-synuclein is characteristic of Parkinson's disease (PD) and other neurodegenerative synucleinopathies. The 140-aa protein is natively unstructured; thus, ligands binding to the monomeric form are of therapeutic interest. Biogenic polyamines promote the aggregation of α-synuclein

  6. Piceatannol and Other Wine Stilbenes: A Pool of Inhibitors against α-Synuclein Aggregation and Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Hamza Temsamani

    2016-06-01

    Full Text Available The aggregation of α-synuclein is one on the key pathogenic events in Parkinson’s disease. In the present study, we investigated the inhibitory capacities of stilbenes against α-synuclein aggregation and toxicity. Thioflavin T fluorescence, transmission electronic microscopy, and SDS-PAGE analysis were performed to investigate the inhibitory effects of three stilbenes against α-synuclein aggregation: piceatannol, ampelopsin A, and isohopeaphenol. Lipid vesicle permeabilization assays were performed to screen stilbenes for protection against membrane damage induced by aggregated α-synuclein. The viability of PC12 cells was examined using an MTT assay to assess the preventive effects of stilbenes against α-synuclein-induced toxicity. Piceatannol inhibited the formation of α synuclein fibrils and was able to destabilize preformed filaments. It seems to induce the formation of small soluble complexes protecting membranes against α-synuclein-induced damage. Finally, piceatannol protected cells against α-synuclein-induced toxicity. The oligomers tested (ampelopsin A and hopeaphenol were less active.

  7. Exogenous Alpha-Synuclein Alters Pre- and Post-Synaptic Activity by Fragmenting Lipid Rafts

    Directory of Open Access Journals (Sweden)

    Marco Emanuele

    2016-05-01

    Full Text Available Alpha-synuclein (αSyn interferes with multiple steps of synaptic activity at pre-and post-synaptic terminals, however the mechanism/s by which αSyn alters neurotransmitter release and synaptic potentiation is unclear. By atomic force microscopy we show that human αSyn, when incubated with reconstituted membrane bilayer, induces lipid rafts' fragmentation. As a consequence, ion channels and receptors are displaced from lipid rafts with consequent changes in their activity. The enhanced calcium entry leads to acute mobilization of synaptic vesicles, and exhaustion of neurotransmission at later stages. At the post-synaptic terminal, an acute increase in glutamatergic transmission, with increased density of PSD-95 puncta, is followed by disruption of the interaction between N-methyl-d-aspartate receptor (NMDAR and PSD-95 with ensuing decrease of long term potentiation. While cholesterol loading prevents the acute effect of αSyn at the presynapse; inhibition of casein kinase 2, which appears activated by reduction of cholesterol, restores the correct localization and clustering of NMDARs.

  8. The impairment of learning and memory and synaptic loss in mouse after chronic nitrite exposure.

    Science.gov (United States)

    Chen, Yongfang; Cui, Zhanjun; Wang, Lai; Liu, Hongliang; Fan, Wenjuan; Deng, Jinbo; Deng, Jiexin

    2016-12-01

    The objective of this study is to understand the impairment of learning and memory in mouse after chronic nitrite exposure. The animal model of nitrite exposure in mouse was created with the daily intubation of nitrite in adult healthy male mice for 3 months. Furthermore, the mouse's learning and memory abilities were tested with Morris water maze, and the expression of Synaptophysin and γ-Synuclein was visualized with immunocytochemistry and Western blot. Our results showed that nitrite exposure significantly prolonged the escape latency period (ELP) and decreased the values of the frequency across platform (FAP) as well as the accumulative time in target quadrant (ATITQ) compared to control, in dose-dependent manner. In addition, after nitrite exposure, synaptophysin (SYN) positive buttons in the visual cortex was reduced, in contrast the increase of γ-synuclein positive cells. The results above were supported by Western blot as well. We conclude that nitrite exposure could lead to a decline in mice's learning and memory. The overexpression of γ-synuclein contributed to the synaptic loss, which is most likely the cause of learning and memory impairment. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1720-1730, 2016. © 2015 Wiley Periodicals, Inc.

  9. FTY720/Fingolimod Reduces Synucleinopathy and Improves Gut Motility in A53T Mice: CONTRIBUTIONS OF PRO-BRAIN-DERIVED NEUROTROPHIC FACTOR (PRO-BDNF) AND MATURE BDNF.

    Science.gov (United States)

    Vidal-Martínez, Guadalupe; Vargas-Medrano, Javier; Gil-Tommee, Carolina; Medina, David; Garza, Nathan T; Yang, Barbara; Segura-Ulate, Ismael; Dominguez, Samantha J; Perez, Ruth G

    2016-09-23

    Patients with Parkinson's disease (PD) often have aggregated α-synuclein (aSyn) in enteric nervous system (ENS) neurons, which may be associated with the development of constipation. This occurs well before the onset of classic PD motor symptoms. We previously found that aging A53T transgenic (Tg) mice closely model PD-like ENS aSyn pathology, making them appropriate for testing potential PD therapies. Here we show that Tg mice overexpressing mutant human aSyn develop ENS pathology by 4 months. We then evaluated the responses of Tg mice and their WT littermates to the Food and Drug Administration-approved drug FTY720 (fingolimod, Gilenya) or vehicle control solution from 5 months of age. Long term oral FTY720 in Tg mice reduced ENS aSyn aggregation and constipation, enhanced gut motility, and increased levels of brain-derived neurotrophic factor (BDNF) but produced no significant change in WT littermates. A role for BDNF was directly assessed in a cohort of young A53T mice given vehicle, FTY720, the Trk-B receptor inhibitor ANA-12, or FTY720 + ANA-12 from 1 to 4 months of age. ANA-12-treated Tg mice developed more gut aSyn aggregation as well as constipation, whereas FTY720-treated Tg mice had reduced aSyn aggregation and less constipation, occurring in part by increasing both pro-BDNF and mature BDNF levels. The data from young and old Tg mice revealed FTY720-associated neuroprotection and reduced aSyn pathology, suggesting that FTY720 may also benefit PD patients and others with synucleinopathy. Another finding was a loss of tyrosine hydroxylase immunoreactivity in gut neurons with aggregated aSyn, comparable with our prior findings in the CNS. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Overexpression of protein tyrosine phosphatase-alpha (PTP-alpha) but not PTP-kappa inhibits translocation of GLUT4 in rat adipose cells

    DEFF Research Database (Denmark)

    Cong, L N; Chen, H; Li, Y

    1999-01-01

    Protein tyrosine phosphatases (PTPases) are likely to play important roles in insulin action. We recently demonstrated that the nontransmembrane PTPase PTP1B can act as a negative modulator of insulin-stimulated translocation of GLUT4. We now examine the role of PTP-alpha and PTP-kappa (two...... of cell surface GLUT4 in response to insulin and a threefold decrease in insulin sensitivity when compared with control cells expressing only tagged GLUT4. Co-overexpression of PTP-alpha and PTP1B did not have additive effects, suggesting that these PTPases share common substrates. Cells overexpressing...

  11. Nanomolar oligomerization and selective co-aggregation of α-synuclein pathogenic mutants revealed by single-molecule fluorescence

    Science.gov (United States)

    Sierecki, Emma; Giles, Nichole; Bowden, Quill; Polinkovsky, Mark E.; Steinbeck, Janina; Arrioti, Nicholas; Rahman, Diya; Bhumkar, Akshay; Nicovich, Philip R.; Ross, Ian; Parton, Robert G.; Böcking, Till; Gambin, Yann

    2016-01-01

    Protein aggregation is a hallmark of many neurodegenerative diseases, notably Alzheimer’s and Parkinson’s disease. Parkinson’s disease is characterized by the presence of Lewy bodies, abnormal aggregates mainly composed of α-synuclein. Moreover, cases of familial Parkinson’s disease have been linked to mutations in α-synuclein. In this study, we compared the behavior of wild-type (WT) α-synuclein and five of its pathological mutants (A30P, E46K, H50Q, G51D and A53T). To this end, single-molecule fluorescence detection was coupled to cell-free protein expression to measure precisely the oligomerization of proteins without purification, denaturation or labelling steps. In these conditions, we could detect the formation of oligomeric and pre-fibrillar species at very short time scale and low micromolar concentrations. The pathogenic mutants surprisingly segregated into two classes: one group forming large aggregates and fibrils while the other tending to form mostly oligomers. Strikingly, co-expression experiments reveal that members from the different groups do not generally interact with each other, both at the fibril and monomer levels. Together, this data paints a completely different picture of α-synuclein aggregation, with two possible pathways leading to the development of fibrils. PMID:27892477

  12. Inhibition of cyclobutane pyrimidine dimer formation in epidermal p53 gene of UV-irradiated mice by alpha-tocopherol

    International Nuclear Information System (INIS)

    Chen, W.; Barthelman, M.; Martinez, J.; Alberts, D.; Gensler, H.L.

    1997-01-01

    Mutations or alterations in the p53 gene have been observed in 50-100% of ultraviolet light (UV)-induced squamous cell carcinoma in humans and animals. Most of the mutations occurred at dipyrimidine sequences, suggesting that pyrimidine dimers in the p53 gene play a role in the pathogenesis of cutaneous squamous cell carcinoma. We previously showed that topical alpha-tocopherol prevents UV-induced skin carcinogenesis in the mouse. In the present study we asked whether topical alpha-tocopherol reduces the level of UV-induced cyclobutane pyrimidine dimers in the murine epidermal p53 gene. Mice received six dorsal applications of 25 mg each of alpha-tocopherol, on alternate days, before exposure to 500 J/m2 of UV-B irradiation. Mice were killed at selected times after irradiation. The level of dimers in the epidermal p53 gene was measured using the T4 endonuclease V assay with quantitative Southern hybridization. Topical alpha-tocopherol caused a 55% reduction in the formation of cyclobutane pyrimidine dimers in the epidermal p53 gene. The rate of reduction of pyrimidine dimers between 1 and 10 hours after irradiation was similar in UV-irradiated mice, regardless of alpha-tocopherol treatment. Therefore, the lower level of cyclobutane pyrimidine dimers in UV-irradiated mice treated with alpha-tocopherol than in control UV-irradiated mice resulted from the prevention of formation of the dimers, and not from enhanced repair of these lesions. Our results indicate that alpha-tocopherol acts as an effective sunscreen in vivo, preventing the formation of premutagenic DNA lesions in a gene known to be important in skin carcinogenesis

  13. The p53 inhibitor, pifithrin-{alpha}, suppresses self-renewal of embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Abdelalim, Essam Mohamed, E-mail: essam_abdelalim@yahoo.com [Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522 (Egypt); Tooyama, Ikuo [Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer We determine the role of p53 in ES cells under unstressful conditions. Black-Right-Pointing-Pointer PFT-{alpha} suppresses ES cell proliferation. Black-Right-Pointing-Pointer PFT-{alpha} induces ES cell cycle arrest. Black-Right-Pointing-Pointer PFT-{alpha} downregulates Nanog and cyclin D1. -- Abstract: Recent studies have reported the role of p53 in suppressing the pluripotency of embryonic stem (ES) cells after DNA damage and blocking the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. However, to date no evidence has been presented to support the function of p53 in unstressed ES cells. In this study, we investigated the effect of pifithrin (PFT)-{alpha}, an inhibitor of p53-dependent transcriptional activation, on self-renewal of ES cells. Our results revealed that treatment of ES cells with PFT-{alpha} resulted in the inhibition of ES cell propagation in a dose-dependent manner, as indicated by a marked reduction in the cell number and colony size. Also, PFT-{alpha} caused a cell cycle arrest and significant reduction in DNA synthesis. In addition, inhibition of p53 activity reduced the expression levels of cyclin D1 and Nanog. These findings indicate that p53 pathway in ES cells rather than acting as an inactive gene, is required for ES cell proliferation and self-renewal under unstressful conditions.

  14. The T alpha 2 nuclear protein binding site from the human T cell receptor alpha enhancer functions as both a T cell-specific transcriptional activator and repressor

    OpenAIRE

    1990-01-01

    T cell-specific expression of the human T cell receptor alpha (TCR- alpha) gene is regulated by the interaction of variable region promoter elements with a transcriptional enhancer that is located 4.5 kb 3' of the TCR-alpha constant region (C alpha) gene segment. The minimal TCR- alpha enhancer is composed of two nuclear protein binding sites, T alpha 1 and T alpha 2, that are both required for the T cell-specific activity of the enhancer. The T alpha 1 binding site contains a consensus cAMP ...

  15. Cdk5 phosphorylates non-genotoxically overexpressed p53 following inhibition of PP2A to induce cell cycle arrest/apoptosis and inhibits tumor progression

    Directory of Open Access Journals (Sweden)

    Kumari Ratna

    2010-07-01

    Full Text Available Abstract Background p53 is the most studied tumor suppressor and its overexpression may or may not cause cell death depending upon the genetic background of the cells. p53 is degraded by human papillomavirus (HPV E6 protein in cervical carcinoma. Several stress activated kinases are known to phosphorylate p53 and, among them cyclin dependent kinase 5 (Cdk5 is one of the kinase studied in neuronal cell system. Recently, the involvement of Cdk5 in phosphorylating p53 has been shown in certain cancer types. Phosphorylation at specific serine residues in p53 is essential for it to cause cell growth inhibition. Activation of p53 under non stress conditions is poorly understood. Therefore, the activation of p53 and detection of upstream kinases that phosphorylate non-genotoxically overexpressed p53 will be of therapeutic importance for cancer treatment. Results To determine the non-genotoxic effect of p53; Tet-On system was utilized and p53 inducible HPV-positive HeLa cells were developed. p53 overexpression in HPV-positive cells did not induce cell cycle arrest or apoptosis. However, we demonstrate that overexpressed p53 can be activated to upregulate p21 and Bax which causes G2 arrest and apoptosis, by inhibiting protein phosphatase 2A. Additionally, we report that the upstream kinase cyclin dependent kinase 5 interacts with p53 to phosphorylate it at Serine20 and Serine46 residues thereby promoting its recruitment on p21 and bax promoters. Upregulation and translocation of Bax causes apoptosis through intrinsic mitochondrial pathway. Interestingly, overexpressed activated p53 specifically inhibits cell-growth and causes regression in vivo tumor growth as well. Conclusion Present study details the mechanism of activation of p53 and puts forth the possibility of p53 gene therapy to work in HPV positive cervical carcinoma.

  16. Glucose Metabolism and AMPK Signaling Regulate Dopaminergic Cell Death Induced by Gene (α-Synuclein)-Environment (Paraquat) Interactions.

    Science.gov (United States)

    Anandhan, Annadurai; Lei, Shulei; Levytskyy, Roman; Pappa, Aglaia; Panayiotidis, Mihalis I; Cerny, Ronald L; Khalimonchuk, Oleh; Powers, Robert; Franco, Rodrigo

    2017-07-01

    While environmental exposures are not the single cause of Parkinson's disease (PD), their interaction with genetic alterations is thought to contribute to neuronal dopaminergic degeneration. However, the mechanisms involved in dopaminergic cell death induced by gene-environment interactions remain unclear. In this work, we have revealed for the first time the role of central carbon metabolism and metabolic dysfunction in dopaminergic cell death induced by the paraquat (PQ)-α-synuclein interaction. The toxicity of PQ in dopaminergic N27 cells was significantly reduced by glucose deprivation, inhibition of hexokinase with 2-deoxy-D-glucose (2-DG), or equimolar substitution of glucose with galactose, which evidenced the contribution of glucose metabolism to PQ-induced cell death. PQ also stimulated an increase in glucose uptake, and in the levels of glucose transporter type 4 (GLUT4) and Na + -glucose transporters isoform 1 (SGLT1) proteins, but only inhibition of GLUT-like transport with STF-31 or ascorbic acid reduced PQ-induced cell death. Importantly, while autophagy protein 5 (ATG5)/unc-51 like autophagy activating kinase 1 (ULK1)-dependent autophagy protected against PQ toxicity, the inhibitory effect of glucose deprivation on cell death progression was largely independent of autophagy or mammalian target of rapamycin (mTOR) signaling. PQ selectively induced metabolomic alterations and adenosine monophosphate-activated protein kinase (AMPK) activation in the midbrain and striatum of mice chronically treated with PQ. Inhibition of AMPK signaling led to metabolic dysfunction and an enhanced sensitivity of dopaminergic cells to PQ. In addition, activation of AMPK by PQ was prevented by inhibition of the inducible nitric oxide syntase (iNOS) with 1400W, but PQ had no effect on iNOS levels. Overexpression of wild type or A53T mutant α-synuclein stimulated glucose accumulation and PQ toxicity, and this toxic synergism was reduced by inhibition of glucose metabolism

  17. Validation of a commercially available enzyme-linked immunoabsorbent assay for the quantification of human α-Synuclein in cerebrospinal fluid.

    Science.gov (United States)

    Kruse, Niels; Mollenhauer, Brit

    2015-11-01

    The quantification of α-Synuclein in cerebrospinal fluid (CSF) as a biomarker has gained tremendous interest in the last years. Several commercially available immunoassays are emerging. We here describe the full validation of one commercially available ELISA assay for the quantification of α-Synuclein in human CSF (Covance alpha-Synuclein ELISA kit). The study was conducted within the BIOMARKAPD project in the European initiative Joint Program for Neurodegenerative Diseases (JPND). We investigated the effect of several pre-analytical and analytical confounders: i.e. (1) need for centrifugation of freshly drawn CSF, (2) sample stability, (3) delay of freezing, (4) volume of storage aliquots, (5) freeze/thaw cycles, (6) thawing conditions, (7) dilution linearity, (8) parallelism, (9) spike recovery, and (10) precision. None of these confounders influenced the levels of α-Synuclein in CSF significantly. We found a very high intra-assay precision. The inter-assay precision was lower than expected due to different performances of kit lots used. Overall the validated immunoassay is useful for the quantification of α-Synuclein in human CSF. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Select overexpression of homer1a in dorsal hippocampus impairs spatial working memory

    Directory of Open Access Journals (Sweden)

    Tansu Celikel

    2007-10-01

    Full Text Available Long Homer proteins forge assemblies of signaling components involved in glutamate receptor signaling in postsynaptic excitatory neurons, including those underlying synaptic transmission and plasticity. The short immediate-early gene (IEG Homer1a can dynamically uncouple these physical associations by functional competition with long Homer isoforms. To examine the consequences of Homer1amediated uncoupling for synaptic plasticity and behavior, we generated forebrain-specific tetracycline (tet controlled expression of Venus-tagged Homer1a (H1aV in mice. We report that sustained overexpression of H1aV impaired spatial working but not reference memory. Most notably, a similar impairment was observed when H1aV expression was restricted to the dorsal hippocampus (HP, which identifies this structure as the principal cortical area for spatial working memory. Interestingly, H1aV overexpression also abolished maintenance of CA3-CA1 long-term potentiation (LTP. These impairments, generated by sustained high Homer1a levels, identify a requirement for long Homer forms in synaptic plasticity and temporal encoding of spatial memory.

  19. Specific pesticide-dependent increases in α-synuclein levels in human neuroblastoma (SH-SY5Y) and melanoma (SK-MEL-2) cell lines.

    Science.gov (United States)

    Chorfa, Areski; Bétemps, Dominique; Morignat, Eric; Lazizzera, Corinne; Hogeveen, Kevin; Andrieu, Thibault; Baron, Thierry

    2013-06-01

    Epidemiological studies indicate a role of genetic and environmental factors in Parkinson's disease involving alterations of the neuronal α-synuclein (α-syn) protein. In particular, a relationship between Parkinson's disease and occupational exposure to pesticides has been repeatedly suggested. Our objective was to precisely assess changes in α-syn levels in human neuroblastoma (SH-SY5Y) and melanoma (SK-MEL-2) cell lines following acute exposure to pesticides (rotenone, paraquat, maneb, and glyphosate) using Western blot and flow cytometry. These human cell lines express α-syn endogenously, and overexpression of α-syn (wild type or mutated A53T) can be obtained following recombinant adenoviral transduction. We found that endogenous α-syn levels in the SH-SY5Y neuroblastoma cell line were markedly increased by paraquat, and to a lesser extent by rotenone and maneb, but not by glyphosate. Rotenone also clearly increased endogenous α-syn levels in the SK-MEL-2 melanoma cell line. In the SH-SY5Y cell line, similar differences were observed in the α-syn adenovirus-transduced cells, with a higher increase of the A53T mutated protein. Paraquat markedly increased α-syn in the SK-MEL-2 adenovirus-transduced cell line, similarly for the wild-type or A53T proteins. The observed differences in the propensities of pesticides to increase α-syn levels are in agreement with numerous reports that indicate a potential role of exposure to certain pesticides in the development of Parkinson's disease. Our data support the hypothesis that pesticides can trigger some molecular events involved in this disease and also in malignant melanoma that consistently shows a significant but still unexplained association with Parkinson's disease.

  20. Association of Cerebrospinal Fluid β-Amyloid 1-42, T-tau, P-tau181, and α-Synuclein Levels With Clinical Features of Drug-Naive Patients With Early Parkinson Disease

    Science.gov (United States)

    Kang, Ju-Hee; Irwin, David J.; Chen-Plotkin, Alice S.; Siderowf, Andrew; Caspell, Chelsea; Coffey, Christopher S.; Waligórska, Teresa; Taylor, Peggy; Pan, Sarah; Frasier, Mark; Marek, Kenneth; Kieburtz, Karl; Jennings, Danna; Simuni, Tanya; Tanner, Caroline M.; Singleton, Andrew; Toga, Arthur W.; Chowdhury, Sohini; Mollenhauer, Brit; Trojanowski, John Q.; Shaw, Leslie M.

    2014-01-01

    Importance We observed a significant correlation between cerebrospinal fluid (CSF) levels of tau proteins and α-synuclein, but not β-amyloid 1–42 (Aβ1–42), and lower concentration of CSF biomarkers, as compared with healthy controls, in a cohort of entirely untreated patients with Parkinson disease (PD) at the earliest stage of the disease studied so far. Objective To evaluate the baseline characteristics and relationship to clinical features of CSF biomarkers (Aβ1–42, total tau [T-tau], tau phosphorylated at threonine 181 [P-tau181], and α-synuclein) in drug-naive patients with early PD and demographically matched healthy controls enrolled in the Parkinson’s Progression Markers Initiative (PPMI) study. Design, Setting, and Participants Cross-sectional study of the initial 102 research volunteers (63 patients with PD and 39 healthy controls) of the PPMI cohort. Main Outcomes and Measures The CSF biomarkers were measured by INNO-BIA AlzBio3 immunoassay (Aβ1–42, T-tau, and P-tau181; Innogenetics Inc) or by enzyme-linked immunosorbent assay (α-synuclein). Clinical features including diagnosis, demographic characteristics, motor, neuropsychiatric, and cognitive assessments, and DaTscan were systematically assessed according to the PPMI study protocol. Results Slightly, but significantly, lower levels of Aβ1–42, T-tau, P-tau181, α-synuclein, and T-tau/Aβ1–42 were seen in subjects with PD compared with healthy controls but with a marked overlap between groups. Using multivariate regression analysis, we found that lower Aβ1–42 and P-tau181 levels were associated with PD diagnosis and that decreased CSF T-tau and α-synuclein were associated with increased motor severity. Notably, when we classified patients with PD by their motor phenotypes, lower CSF Aβ1–42 and P-tau181 concentrations were associated with the postural instability–gait disturbance–dominant phenotype but not with the tremor-dominant or intermediate phenotype. Finally, we

  1. Twinkle overexpression prevents cardiac rupture after myocardial infarction by alleviating impaired mitochondrial biogenesis.

    Science.gov (United States)

    Inoue, Takahiro; Ikeda, Masataka; Ide, Tomomi; Fujino, Takeo; Matsuo, Yuka; Arai, Shinobu; Saku, Keita; Sunagawa, Kenji

    2016-09-01

    Cardiac rupture is a fatal complication after myocardial infarction (MI). However, the detailed mechanism underlying cardiac rupture after MI remains to be fully elucidated. In this study, we investigated the role of mitochondrial DNA (mtDNA) and mitochondria in the pathophysiology of cardiac rupture by analyzing Twinkle helicase overexpression mice (TW mice). Twinkle overexpression increased mtDNA copy number approximately twofold and ameliorated ischemic cardiomyopathy at day 28 after MI. Notably, Twinkle overexpression markedly prevented cardiac rupture and improved post-MI survival, accompanied by the suppression of MMP-2 and MMP-9 in the MI border area at day 5 after MI when cardiac rupture frequently occurs. Additionally, these cardioprotective effects of Twinkle overexpression were abolished in transgenic mice overexpressing mutant Twinkle with an in-frame duplication of amino acids 353-365, which resulted in no increases in mtDNA copy number. Furthermore, although apoptosis and oxidative stress were induced and mitochondria were damaged in the border area, these injuries were improved in TW mice. Further analysis revealed that mitochondrial biogenesis, including mtDNA copy number, transcription, and translation, was severely impaired in the border area at day 5 In contrast, Twinkle overexpression maintained mtDNA copy number and restored the impaired transcription and translation of mtDNA in the border area. These results demonstrated that Twinkle overexpression alleviated impaired mitochondrial biogenesis in the border area through maintained mtDNA copy number and thereby prevented cardiac rupture accompanied by the reduction of apoptosis and oxidative stress, and suppression of MMP activity. Copyright © 2016 the American Physiological Society.

  2. Overexpression of 15-lipoxygenase-1 induces growth arrest through phosphorylation of p53 in human colorectal cancer cells.

    Science.gov (United States)

    Kim, Jong-Sik; Baek, Seung Joon; Bottone, Frank G; Sali, Tina; Eling, Thomas E

    2005-09-01

    To investigate the function of 15-lipoxygenase-1 (15-LOX-1) in human colorectal cancer, we overexpressed 15-LOX-1 in HCT-116 human colorectal cancer cells. Clones expressing the highest levels of 15-LOX-1 displayed reduced viability compared with the HCT-116-Vector control cells. Further, by cell cycle gene array analyses, the cyclin-dependent kinase inhibitor p21WAF1/CIP1 and MDM2 genes were up-regulated in 15-LOX-1-overexpressing cells. The induction of p21(WAF1/CIP1) and MDM2 were linked to activation of p53 by 15-LOX-1, as there was a dramatic induction of phosphorylated p53 (Ser15) in 15-LOX-1-overesxpressing cells. However, the 15-LOX-1 metabolites 13(S)-hydroxyoctadecadienoic acid and 15(S)-hydroxyeicosatetraenoic acid failed to induce phosphorylation of p53 at Ser15, and the 15-LOX-1 inhibitor PD146176 did not inhibit the phosphorylation of p53 at Ser15 in 15-LOX-1-overexpressing cells. Nonetheless, the growth-inhibitory effects of 15-LOX-1 were p53 dependent, as 15-LOX-1 overexpression had no effect on cell growth in p53 (-/-) HCT-116 cells. Finally, treatment of HCT-116-15-LOX-1 cells with different kinase inhibitors suggested that the effects of 15-LOX-1 on p53 phosphorylation and activation were due to effects on DNA-dependent protein kinase. Collectively, these findings suggest a new mechanism to explain the biological activity of 15-LOX-1, where 15-LOX plays a stoichiometric role in activating a DNA-dependent protein kinase-dependent pathway that leads to p53-dependent growth arrest.

  3. Slower EEG alpha generation, synchronization and "flow"-possible biomarkers of cognitive impairment and neuropathology of minor stroke.

    Science.gov (United States)

    Petrovic, Jelena; Milosevic, Vuk; Zivkovic, Miroslava; Stojanov, Dragan; Milojkovic, Olga; Kalauzi, Aleksandar; Saponjic, Jasna

    2017-01-01

    We investigated EEG rhythms, particularly alpha activity, and their relationship to post-stroke neuropathology and cognitive functions in the subacute and chronic stages of minor strokes. We included 10 patients with right middle cerebral artery (MCA) ischemic strokes and 11 healthy controls. All the assessments of stroke patients were done both in the subacute and chronic stages. Neurological impairment was measured using the National Institute of Health Stroke Scale (NIHSS), whereas cognitive functions were assessed using the Montreal Cognitive Assessment (MoCA) and MoCA memory index (MoCA-MIS). The EEG was recorded using a 19 channel EEG system with standard EEG electrode placement. In particular, we analyzed the EEGs derived from the four lateral frontal (F3, F7, F4, F8), and corresponding lateral posterior (P3, P4, T5, T6) electrodes. Quantitative EEG analysis included: the group FFT spectra, the weighted average of alpha frequency (αAVG), the group probability density distributions of all conventional EEG frequency band relative amplitudes (EEG microstructure), the inter- and intra-hemispheric coherences, and the topographic distribution of alpha carrier frequency phase potentials (PPs). Statistical analysis was done using a Kruskal-Wallis ANOVA with a post-hoc Mann-Whitney U two-tailed test, and Spearman's correlation. We demonstrated transient cognitive impairment alongside a slower alpha frequency ( α AVG) in the subacute right MCA stroke patients vs. the controls. This slower alpha frequency showed no amplitude change, but was highly synchronized intra-hemispherically, overlying the ipsi-lesional hemisphere, and inter-hemispherically, overlying the frontal cortex. In addition, the disturbances in EEG alpha activity in subacute stroke patients were expressed as a decrease in alpha PPs over the frontal cortex and an altered "alpha flow", indicating the sustained augmentation of inter-hemispheric interactions. Although the stroke induced slower alpha was a

  4. Synucleins: are they two-edged swords?

    Science.gov (United States)

    Surguchov, Andrei

    2013-02-01

    The synuclein family consists of three distinct highly homologous genes, α-synuclein, β-synuclein, and γ-synuclein, which have so far been found only in vertebrates. Proteins encoded by these genes are characterized by an acidic C-terminal region and five or six imperfect repeat motifs (KTKEGV) distributed throughout the highly conserved N-terminal region. Numerous data demonstrate that synucleins are implicated in two groups of the most devastating human disorders, i.e., neurodegenerative diseases (NDDs) and cancer. Mutations in the α-synuclein gene are associated with familial forms of Parkinson's disease (PD), and accumulation of α-synuclein inclusions is a hallmark of this disorder. In breast cancer, increased expression of γ-synuclein correlates with disease progression. Conversely, some results indicate that the members of the synuclein family may have a protective effect. How might these small proteins combine such controversial properties? We present evidence that synuclein's features are basically regulated by two mechanisms, i.e., posttranslational modifications (PTMs) and the level of their expression. We also discuss a new, emerging area of investigation of synucleins, namely, their role in the cell-to-cell propagation of pathology. Copyright © 2012 Wiley Periodicals, Inc.

  5. BAK overexpression mediates p53-independent apoptosis inducing effects on human gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2004-07-01

    Full Text Available Abstract Background BAK (Bcl-2 homologous antagonist/killer is a novel pro-apoptotic gene of the Bcl-2 family. It has been reported that gastric tumors have reduced BAK levels when compared with the normal mucosa. Moreover, mutations of the BAK gene have been identified in human gastrointestinal cancers, suggesting that a perturbation of BAK-mediated apoptosis may contribute to the pathogenesis of gastric cancer. In this study, we explored the therapeutic effects of gene transfer mediated elevations in BAK expression on human gastric cancer cells in vitro. Methods Eukaryotic expression vector for the BAK gene was constructed and transferred into gastric cancer cell lines, MKN-45 (wild-type p53 and MKN-28 (mutant-type p53. RT-PCR and Western Blotting detected cellular BAK gene expression. Cell growth activities were detected by MTT colorimetry and flow cytometry, while apoptosis was assayed by electronic microscopy and TUNEL. Western Blotting and colorimetry investigated cellular caspase-3 activities. Results BAK gene transfer could result in significant BAK overexpression, decreased in vitro growth, cell cycle G0/G1 arrest, and induced apoptosis in gastric cancer cells. In transferred cells, inactive caspase-3 precursor was cleaved into the active subunits p20 and p17, during BAK overexpression-induced apoptosis. In addition, this process occurred equally well in p53 wild-type (MKN-45, or in p53 mutant-type (MKN-28 gastric cancer cells. Conclusions The data presented suggests that overexpression of the BAK gene can lead to apoptosis of gastric cancer cells in vitro, which does not appear to be dependent on p53 status. The action mechanism of BAK mediated apoptosis correlates with activation of caspase-3. This could be served as a potential strategy for further development of gastric cancer therapies.

  6. BAK overexpression mediates p53-independent apoptosis inducing effects on human gastric cancer cells

    International Nuclear Information System (INIS)

    Tong, Qiang-Song; Zheng, Li-Duan; Wang, Liang; Liu, Jun; Qian, Wei

    2004-01-01

    BAK (Bcl-2 homologous antagonist/killer) is a novel pro-apoptotic gene of the Bcl-2 family. It has been reported that gastric tumors have reduced BAK levels when compared with the normal mucosa. Moreover, mutations of the BAK gene have been identified in human gastrointestinal cancers, suggesting that a perturbation of BAK-mediated apoptosis may contribute to the pathogenesis of gastric cancer. In this study, we explored the therapeutic effects of gene transfer mediated elevations in BAK expression on human gastric cancer cells in vitro. Eukaryotic expression vector for the BAK gene was constructed and transferred into gastric cancer cell lines, MKN-45 (wild-type p53) and MKN-28 (mutant-type p53). RT-PCR and Western Blotting detected cellular BAK gene expression. Cell growth activities were detected by MTT colorimetry and flow cytometry, while apoptosis was assayed by electronic microscopy and TUNEL. Western Blotting and colorimetry investigated cellular caspase-3 activities. BAK gene transfer could result in significant BAK overexpression, decreased in vitro growth, cell cycle G 0 /G 1 arrest, and induced apoptosis in gastric cancer cells. In transferred cells, inactive caspase-3 precursor was cleaved into the active subunits p20 and p17, during BAK overexpression-induced apoptosis. In addition, this process occurred equally well in p53 wild-type (MKN-45), or in p53 mutant-type (MKN-28) gastric cancer cells. The data presented suggests that overexpression of the BAK gene can lead to apoptosis of gastric cancer cells in vitro, which does not appear to be dependent on p53 status. The action mechanism of BAK mediated apoptosis correlates with activation of caspase-3. This could be served as a potential strategy for further development of gastric cancer therapies

  7. Chaperone-like activities of α-synuclein: α-Synuclein assists enzyme activities of esterases

    International Nuclear Information System (INIS)

    Ahn, Misun; Kim, SeungBum; Kang, Mira; Ryu, Yeonwoo; Doohun Kim, T.

    2006-01-01

    α-Synuclein, a major constituent of Lewy bodies (LBs), has been implicated to play a critical role in the pathogenesis of Parkinson's disease (PD), although the physiological function of α-synuclein has not yet been known. Here we have shown that α-synuclein, which has no well-defined secondary or tertiary structure, can protect the enzyme activity of microbial esterases against stress conditions such as heat, pH, and organic solvents. In particular, the flexibility of α-synuclein and its C-terminal region seems to be important for complex formation, but the structural integrity of the C-terminal region may not be required for stabilization of enzyme activity. In addition, atomic force microscopy (AFM) and in vivo enzyme assays showed highly specific interactions of esterases with α-synuclein. Our results indicate that α-synuclein not only protects the enzyme activity of microbial esterases in vitro, but also can stabilize the active conformation of microbial esterases in vivo

  8. Mdm2 is a novel activator of ApoCIII promoter which is antagonized by p53 and SHP inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhihong; Zhang, Yuxia [Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132 (United States); Wang, Li, E-mail: l.wang@hsc.utah.edu [Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132 (United States)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Mdm2 enhances HNF4{alpha} activation of the ApoCIII promoter via interaction with HNF4{alpha}. Black-Right-Pointing-Pointer p53 antagonizes the effect of Mdm2 activation of the ApoCIII promoter. Black-Right-Pointing-Pointer SHP strengthens p53 inhibition but abolishes Mdm2 activation of the ApoCIII promoter. Black-Right-Pointing-Pointer Mdm2 alters the enrichment of HNF4{alpha}, p53 and SHP to the ApoCIII promoter. -- Abstract: We examined the effect of Mdm2 on regulation of the ApoCIII promoter and its cross-talk with p53 and nuclear receptor SHP. Overexpression of Mdm2 markedly enhanced ApoCIII promoter activity by HNF4{alpha}. A direct association of Mdm2 protein with the HNF4{alpha} protein was observed by co-immunoprecipitation. Ectopic expression of p53 decreased HNF4{alpha} activation of the ApoCIII promoter and antagonized the effect of Mdm2. Co-expression of SHP further strengthened p53 inhibition and abolished Mdm2 activation of the ApoCIII promoter. Mdm2 inhibited p53-mediated enrichment of HNF4{alpha} to the ApoCIII promoter while simultaneously reducing p53 binding and increasing recruitment of SHP to the ApoCIII promoter. The results from this study implicate a potentially important function of Mdm2 in regulation of lipoprotein metabolism.

  9. SM22{alpha}-induced activation of p16{sup INK4a}/retinoblastoma pathway promotes cellular senescence caused by a subclinical dose of {gamma}-radiation and doxorubicin in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Rim; Lee, Hee Min; Lee, So Yong; Kim, Eun Jin; Kim, Kug Chan [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Paik, Sang Gi [Department of Biology, School of Biosciences and Biotechnology, Chungnam National University, Daejeon (Korea, Republic of); Cho, Eun Wie, E-mail: ewcho@kribb.re.kr [Daejeon-KRIBB-FHCRC Cooperation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Kim, In Gyu, E-mail: igkim@kaeri.re.kr [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-09-10

    Research highlights: {yields} SM22{alpha} overexpression in HepG2 cells leads cells to a growth arrest state, and the treatment of a subclinical dose of {gamma}-radiation or doxorubicin promotes cellular senescence. {yields} SM22{alpha} overexpression elevates p16{sup INK4a} followed by pRB activation, but there are no effects on p53/p21{sup WAF1/Cip1} pathway. {yields} SM22{alpha}-induced MT-1G activates p16{sup INK4a}/pRB pathway, which promotes cellular senescence by damaging agents. -- Abstract: Smooth muscle protein 22-alpha (SM22{alpha}) is known as a transformation- and shape change-sensitive actin cross-linking protein found in smooth muscle tissue and fibroblasts; however, its functional role remains uncertain. We reported previously that SM22{alpha} overexpression confers resistance against anti-cancer drugs or radiation via induction of metallothionein (MT) isozymes in HepG2 cells. In this study, we demonstrate that SM22{alpha} overexpression leads cells to a growth arrest state and promotes cellular senescence caused by treatment with a subclinical dose of {gamma}-radiation (0.05 and 0.1 Gy) or doxorubicin (0.01 and 0.05 {mu}g/ml), compared to control cells. Senescence growth arrest is known to be controlled by p53 phosphorylation/p21{sup WAF1/Cip1} induction or p16{sup INK4a}/retinoblastoma protein (pRB) activation. SM22{alpha} overexpression in HepG2 cells elevated p16{sup INK4a} followed by pRB activation, but did not activate the p53/p21{sup WAF1/Cip1} pathway. Moreover, MT-1G, which is induced by SM22{alpha} overexpression, was involved in the activation of the p16{sup INK4a}/pRB pathway, which led to a growth arrest state and promoted cellular senescence caused by damaging agents. Our findings provide the first demonstration that SM22{alpha} modulates cellular senescence caused by damaging agents via regulation of the p16{sup INK4a}/pRB pathway in HepG2 cells and that these effects of SM22{alpha} are partially mediated by MT-1G.

  10. Mitochondria and α-Synuclein: Friends or Foes in the Pathogenesis of Parkinson's Disease?

    Science.gov (United States)

    Faustini, Gaia; Bono, Federica; Valerio, Alessandra; Pizzi, Marina; Spano, PierFranco; Bellucci, Arianna

    2017-12-08

    Parkinson's disease (PD) is a movement disorder characterized by dopaminergic nigrostriatal neuron degeneration and the formation of Lewy bodies (LB), pathological inclusions containing fibrils that are mainly composed of α-synuclein. Dopaminergic neurons, for their intrinsic characteristics, have a high energy demand that relies on the efficiency of the mitochondria respiratory chain. Dysregulations of mitochondria, deriving from alterations of complex I protein or oxidative DNA damage, change the trafficking, size and morphology of these organelles. Of note, these mitochondrial bioenergetics defects have been related to PD. A series of experimental evidence supports that α-synuclein physiological action is relevant for mitochondrial homeostasis, while its pathological aggregation can negatively impinge on mitochondrial function. It thus appears that imbalances in the equilibrium between the reciprocal modulatory action of mitochondria and α-synuclein can contribute to PD onset by inducing neuronal impairment. This review will try to highlight the role of physiological and pathological α-synuclein in the modulation of mitochondrial functions.

  11. Propagated but Topologically Distributed Forebrain Neurons Expressing Alpha-Synuclein in Aged Macaques.

    Directory of Open Access Journals (Sweden)

    Katsuo Kimura

    Full Text Available In neurodegenerative disorders, such as Parkinson's disease (PD, alpha-synuclein (α-syn accumulates to induce cell death and/or form a cytoplasmic inclusion called Lewy body (LB. This α-syn-related pathology is termed synucleinopathy. It remains unclear how α-syn accumulation expands during the progress of synucleinopathy in the human brain. In our study, we investigated the patterns of distribution and propagation of forebrain neurons expressing α-syn in aged macaques. It was found that the occurrence of α-syn-positive neurons proceeded topologically based on the midbrain dopamine pathways arising from the substantia nigra and the ventral tegmental area where they were primarily observed. In the nigrostriatal or mesolimbic dopamine pathway, the age-dependent increase in α-syn-positive neurons was evident in the striatum or the nucleus accumbens, respectively. Concerning the nigrostriatal pathway, a mediolateral or rostrocaudal gradient was seen in the substantia nigra or the striatum, respectively, and a compensatory increase in dopamine transporter occurred in the striatum regardless of the decreased dopamine level. In the mesocortical dopamine pathway, α-syn-positive neurons appeared in the prefrontal and then motor areas of the frontal lobe. Given that neither LB formation nor clinical phenotype manifestation was detected in any of the monkeys examined in the present study, aged macaques may be useful as a potential presymptomatic model for PD and LB-related neuropsychiatric disorders.

  12. Covalent α-synuclein dimers: chemico-physical and aggregation properties.

    Directory of Open Access Journals (Sweden)

    Micaela Pivato

    Full Text Available The aggregation of α-synuclein into amyloid fibrils constitutes a key step in the onset of Parkinson's disease. Amyloid fibrils of α-synuclein are the major component of Lewy bodies, histological hallmarks of the disease. Little is known about the mechanism of aggregation of α-synuclein. During this process, α-synuclein forms transient intermediates that are considered to be toxic species. The dimerization of α-synuclein could represent a rate-limiting step in the aggregation of the protein. Here, we analyzed four covalent dimers of α-synuclein, obtained by covalent link of the N-terms, C-terms, tandem cloning of two sequences and tandem juxtaposition in one protein of the 1-104 and 29-140 sequences. Their biophysical properties in solution were determined by CD, FT-IR and NMR spectroscopies. SDS-induced folding was also studied. The fibrils formation was analyzed by ThT and polarization fluorescence assays. Their morphology was investigated by TEM and AFM-based quantitative morphometric analysis. All dimers were found to be devoid of ordered secondary structure under physiological conditions and undergo α-helical transition upon interaction with SDS. All protein species are able to form amyloid-like fibrils. The reciprocal orientation of the α-synuclein monomers in the dimeric constructs affects the kinetics of the aggregation process and a scale of relative amyloidogenic propensity was determined. Structural investigations by FT IR spectroscopy, and proteolytic mapping of the fibril core did not evidence remarkable difference among the species, whereas morphological analyses showed that fibrils formed by dimers display a lower and diversified level of organization in comparison with α-synuclein fibrils. This study demonstrates that although α-synuclein dimerization does not imply the acquisition of a preferred conformation by the participating monomers, it can strongly affect the aggregation properties of the molecules. The results

  13. Amyloid formation and disaggregation of α-synuclein and its tandem repeat (α-TR)

    International Nuclear Information System (INIS)

    Bae, Song Yi; Kim, Seulgi; Hwang, Heejin; Kim, Hyun-Kyung; Yoon, Hyun C.; Kim, Jae Ho; Lee, SangYoon; Kim, T. Doohun

    2010-01-01

    Research highlights: → Formation of the α-synuclein amyloid fibrils by [BIMbF 3 Im]. → Disaggregation of amyloid fibrils by epigallocatechin gallate (EGCG) and baicalein. → Amyloid formation of α-synuclein tandem repeat (α-TR). -- Abstract: The aggregation of α-synuclein is clearly related to the pathogenesis of Parkinson's disease. Therefore, detailed understanding of the mechanism of fibril formation is highly valuable for the development of clinical treatment and also of the diagnostic tools. Here, we have investigated the interaction of α-synuclein with ionic liquids by using several biochemical techniques including Thioflavin T assays and transmission electron microscopy (TEM). Our data shows a rapid formation of α-synuclein amyloid fibrils was stimulated by 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BIMbF 3 Im], and these fibrils could be disaggregated by polyphenols such as epigallocatechin gallate (EGCG) and baicalein. Furthermore, the effect of [BIMbF 3 Im] on the α-synuclein tandem repeat (α-TR) in the aggregation process was studied.

  14. Low CSF levels of both α-synuclein and the α-synuclein cleaving enzyme neurosin in patients with synucleinopathy.

    Directory of Open Access Journals (Sweden)

    Malin Wennström

    Full Text Available Neurosin is a protease that in vitro degrades α-synuclein, the main constituent of Lewy bodies found in brains of patients with synucleinopathy including Parkinson's disease (PD and dementia with Lewy bodies (DLB. Several studies have reported reduced cerebrospinal fluid (CSF levels of α-synuclein in synucleinopathy patients and recent data also proposes a significant role of α-synuclein in the pathophysiology of Alzheimer's disease (AD. To investigate potential links between neurosin and its substrate α-synuclein in vivo we used a commercially available sandwich ELISA and an in-house developed direct ELISA to quantify CSF levels of α-synuclein and neurosin in patients diagnosed with DLB, PD and PD dementia (PDD versus AD patients and non-demented controls. We found that patients with synucleinopathy displayed lower CSF levels of neurosin and α-synuclein compared to controls and AD patients. In contrast, AD patients demonstrated significantly increased CSF α-synuclein but similar neurosin levels compared to non-demented controls. Further, CSF neurosin and α-synuclein concentrations were positively associated in controls, PD and PDD patients and both proteins were highly correlated to CSF levels of phosphorylated tau in all investigated groups. We observed no effect of gender or presence of the apolipoprotein Eε4 allele on neither neurosin or α-synuclein CSF levels. In concordance with the current literature our study demonstrates decreased CSF levels of α-synuclein in synucleinopathy patients versus AD patients and controls. Importantly, decreased α-synuclein levels in patients with synucleinopathy appear linked to low levels of the α-synuclein cleaving enzyme neurosin. In contrast, elevated levels of α-synuclein in AD patients were not related to any altered CSF neurosin levels. Thus, altered CSF levels of α-synuclein and neurosin in patients with synucleinopathy versus AD may not only mirror disease-specific neuropathological

  15. Brain propagation of transduced α-synuclein involves non-fibrillar protein species and is enhanced in α-synuclein null mice.

    Science.gov (United States)

    Helwig, Michael; Klinkenberg, Michael; Rusconi, Raffaella; Musgrove, Ruth E; Majbour, Nour K; El-Agnaf, Omar M A; Ulusoy, Ayse; Di Monte, Donato A

    2016-03-01

    Aggregation and neuron-to-neuron transmission are attributes of α-synuclein relevant to its pathogenetic role in human synucleinopathies such as Parkinson's disease. Intraparenchymal injections of fibrillar α-synuclein trigger widespread propagation of amyloidogenic protein species via mechanisms that require expression of endogenous α-synuclein and, possibly, its structural corruption by misfolded conformers acting as pathological seeds. Here we describe another paradigm of long-distance brain diffusion of α-synuclein that involves inter-neuronal transfer of monomeric and/or oligomeric species and is independent of recruitment of the endogenous protein. Targeted expression of human α-synuclein was induced in the mouse medulla oblongata through an injection of viral vectors into the vagus nerve. Enhanced levels of intra-neuronal α-synuclein were sufficient to initiate its caudo-rostral diffusion that likely involved at least one synaptic transfer and progressively reached specific brain regions such as the locus coeruleus, dorsal raphae and amygdala in the pons, midbrain and forebrain. Transfer of human α-synuclein was compared in two separate lines of α-synuclein-deficient mice versus their respective wild-type controls and, interestingly, lack of endogenous α-synuclein expression did not counteract diffusion but actually resulted in a more pronounced and advanced propagation of exogenous α-synuclein. Self-interaction of adjacent molecules of human α-synuclein was detected in both wild-type and mutant mice. In the former, interaction of human α-synuclein with mouse α-synuclein was also observed and might have contributed to differences in protein transmission. In wild-type and α-synuclein-deficient mice, accumulation of human α-synuclein within recipient axons in the pons, midbrain and forebrain caused morphological evidence of neuritic pathology. Tissue sections from the medulla oblongata and pons were stained with different antibodies recognizing

  16. Impaired CD40L signaling is a cause of defective IL-12 and TNF-alpha production in Sézary syndrome: circumvention by hexameric soluble CD40L.

    Science.gov (United States)

    French, Lars E; Huard, Bertrand; Wysocka, Maria; Shane, Ryan; Contassot, Emmanuel; Arrighi, Jean-François; Piguet, Vincent; Calderara, Silvio; Rook, Alain H

    2005-01-01

    Sézary syndrome (SzS) is an advanced form of cutaneous T-cell lymphoma characterized by peripheral blood involvement, impaired cell-mediated immunity, and T-helper 1 (TH1) cytokine production. To understand the mechanism of these defects, we studied the expression and function of CD40L in peripheral blood mononuclear cells (PBMCs) of patients with SzS. We found that PBMCs of patients with SzS have a defect in interleukin-12 (IL-12) and tumor necrosis factor-alpha (TNF-alpha) production upon anti-CD3 stimulation and that tumor CD4+ T lymphocytes have a specific defect in CD40L induction after anti-CD3 ligation in vitro. This defect may explain the poor IL-12 production, because IL-12 production by anti-CD3-stimulated PBMCs was dependent on CD40L in healthy donors. The observed defect in tumor cell CD40L expression appears to be due to inappropriate T-cell signaling upon CD3 ligation, because expression of other T-cell activation antigens such as CD25, and to a lesser extent CD69, are also impaired on tumor cells. Importantly however, the inability of SzS PBMCs to appropriately produce IL-12 and TNF-alpha could be restored by recombinant hexameric CD40L. Taken together, our results demonstrate that impaired IL-12 and TNF-alpha production in SzS is associated with defective CD4+ T lymphocyte CD40L induction and indicate that CD40L may have therapeutic potential in SzS.

  17. Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease.

    Science.gov (United States)

    Masliah, Eliezer; Rockenstein, Edward; Mante, Michael; Crews, Leslie; Spencer, Brian; Adame, Anthony; Patrick, Christina; Trejo, Margarita; Ubhi, Kiren; Rohn, Troy T; Mueller-Steiner, Sarah; Seubert, Peter; Barbour, Robin; McConlogue, Lisa; Buttini, Manuel; Games, Dora; Schenk, Dale

    2011-04-29

    Dementia with Lewy bodies (DLB) and Parkinson's Disease (PD) are common causes of motor and cognitive deficits and are associated with the abnormal accumulation of alpha-synuclein (α-syn). This study investigated whether passive immunization with a novel monoclonal α-syn antibody (9E4) against the C-terminus (CT) of α-syn was able to cross into the CNS and ameliorate the deficits associated with α-syn accumulation. In this study we demonstrate that 9E4 was effective at reducing behavioral deficits in the water maze, moreover, immunization with 9E4 reduced the accumulation of calpain-cleaved α-syn in axons and synapses and the associated neurodegenerative deficits. In vivo studies demonstrated that 9E4 traffics into the CNS, binds to cells that display α-syn accumulation and promotes α-syn clearance via the lysosomal pathway. These results suggest that passive immunization with monoclonal antibodies against the CT of α-syn may be of therapeutic relevance in patients with PD and DLB.

  18. Pigmentation, Melanocyte Colonization, and p53 Status in Basal Cell Carcinoma

    International Nuclear Information System (INIS)

    Frey, L. M.; Houben, R.; Brocker, E. B.

    2011-01-01

    Basal cell carcinoma (BCC) is the most common neoplasm in the Caucasian population. Only a fraction of BCC exhibits pigmentation. Lack of melanocyte colonization has been suggested to be due to p53-inactivating mutations in the BCC cells interfering with the p53-proopiomelanocortin pathway and the production of alpha melanocyte-stimulating hormone in the tumor. To evaluate this, we determined tumor pigmentation as well as expression of melan-A and of p53 in 49 BCC tissues by means of immunohistochemistry. As expected, we observed a positive relation between tumor pigmentation and melan-A positive intra-tumoral melanocytes. Melanocyte colonization and, to a lesser extent, p53 overexpression showed intraindividual heterogeneity in larger tumors. p53 overexpression, which is indicative of p53 mutations, was not correlated to melanocyte colonization of BCC. Sequencing of exon 5-8 of the p53 gene in selected BCC cases revealed that colonization by melanocytes and BCC pigmentation is neither ablated by p53 mutations nor generally present in BCCs with wild-type p53.

  19. Slower EEG alpha generation, synchronization and “flow”—possible biomarkers of cognitive impairment and neuropathology of minor stroke

    Directory of Open Access Journals (Sweden)

    Jelena Petrovic

    2017-09-01

    Full Text Available Background We investigated EEG rhythms, particularly alpha activity, and their relationship to post-stroke neuropathology and cognitive functions in the subacute and chronic stages of minor strokes. Methods We included 10 patients with right middle cerebral artery (MCA ischemic strokes and 11 healthy controls. All the assessments of stroke patients were done both in the subacute and chronic stages. Neurological impairment was measured using the National Institute of Health Stroke Scale (NIHSS, whereas cognitive functions were assessed using the Montreal Cognitive Assessment (MoCA and MoCA memory index (MoCA-MIS. The EEG was recorded using a 19 channel EEG system with standard EEG electrode placement. In particular, we analyzed the EEGs derived from the four lateral frontal (F3, F7, F4, F8, and corresponding lateral posterior (P3, P4, T5, T6 electrodes. Quantitative EEG analysis included: the group FFT spectra, the weighted average of alpha frequency (αAVG, the group probability density distributions of all conventional EEG frequency band relative amplitudes (EEG microstructure, the inter- and intra-hemispheric coherences, and the topographic distribution of alpha carrier frequency phase potentials (PPs. Statistical analysis was done using a Kruskal–Wallis ANOVA with a post-hoc Mann–Whitney U two-tailed test, and Spearman’s correlation. Results We demonstrated transient cognitive impairment alongside a slower alpha frequency (αAVG in the subacute right MCA stroke patients vs. the controls. This slower alpha frequency showed no amplitude change, but was highly synchronized intra-hemispherically, overlying the ipsi-lesional hemisphere, and inter-hemispherically, overlying the frontal cortex. In addition, the disturbances in EEG alpha activity in subacute stroke patients were expressed as a decrease in alpha PPs over the frontal cortex and an altered “alpha flow”, indicating the sustained augmentation of inter-hemispheric interactions

  20. Mechanisms of α-Synuclein Induced Synaptopathy in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Jessika C. Bridi

    2018-02-01

    Full Text Available Parkinson's disease (PD is characterized by intracellular inclusions of aggregated and misfolded α-Synuclein (α-Syn, and the loss of dopaminergic (DA neurons in the brain. The resulting motor abnormalities mark the progression of PD, while non-motor symptoms can already be identified during early, prodromal stages of disease. Recent studies provide evidence that during this early prodromal phase, synaptic and axonal abnormalities occur before the degenerative loss of neuronal cell bodies. These early phenotypes can be attributed to synaptic accumulation of toxic α-Syn. Under physiological conditions, α-Syn functions in its native conformation as a soluble monomer. However, PD patient brains are characterized by intracellular inclusions of insoluble fibrils. Yet, oligomers and protofibrils of α-Syn have been identified to be the most toxic species, with their accumulation at presynaptic terminals affecting several steps of neurotransmitter release. First, high levels of α-Syn alter the size of synaptic vesicle pools and impair their trafficking. Second, α-Syn overexpression can either misregulate or redistribute proteins of the presynaptic SNARE complex. This leads to deficient tethering, docking, priming and fusion of synaptic vesicles at the active zone (AZ. Third, α-Syn inclusions are found within the presynaptic AZ, accompanied by a decrease in AZ protein levels. Furthermore, α-Syn overexpression reduces the endocytic retrieval of synaptic vesicle membranes during vesicle recycling. These presynaptic alterations mediated by accumulation of α-Syn, together impair neurotransmitter exocytosis and neuronal communication. Although α-Syn is expressed throughout the brain and enriched at presynaptic terminals, DA neurons are the most vulnerable in PD, likely because α-Syn directly regulates dopamine levels. Indeed, evidence suggests that α-Syn is a negative modulator of dopamine by inhibiting enzymes responsible for its synthesis. In

  1. Rapid Self-assembly of alpha-Synuclein Observed by In Situ Atomic Force Microscopy

    NARCIS (Netherlands)

    Hoyer, Wolfgang; Cherny, Dmitry; Subramaniam, Vinod; Jovin, Thomas M.

    2004-01-01

    Self-assembly of α-synuclein resulting in protein aggregates of diverse morphology has been implicated in the pathogenesis of Parkinson's disease and other neurodegenerative disorders known as synucleinopathies. Apart from its biomedical relevance, this aggregation process is representative of the

  2. Structural Investigations of on-pathway Oligomers of α-Synuclein

    DEFF Research Database (Denmark)

    Pedersen, Martin Nors; Horvath, Istvan; Weise, Christoph F.

    Academy of Sciences of the United States of America 108(8): 3246-3251. Horvath, I., et al. (2012). "Mechanisms of protein oligomerization: In-hibitor of functional amyloids templates a-synuclein fibrilla-tion." Journal of the American Chemical Society. Spillantini, M. G., et al. (1997). "[alpha...... by decomposition of SAXS data from the evolving fibrillating solution (Giehm et al. 2011). NMR data have furthermore suggested that the C-terminal is exposed on oligomers obtained by incubation with the ligand FN075 (Horvath et al. 2012). In this study we aim at obtaining SAXS data from isolated stabilized...... oligomer (MAX-lab, May 2012); data analysis is in progress. ITC experiments are furthermore planned to more accurately determine the stoichiometry between α-synuclein and FN075. Horvath and co-workers have already shown that the FN075 stabilized oligomer is on pathway. We have shown that the in...

  3. Lysosomal impairment in Parkinson's disease.

    Science.gov (United States)

    Dehay, Benjamin; Martinez-Vicente, Marta; Caldwell, Guy A; Caldwell, Kim A; Yue, Zhenyue; Cookson, Mark R; Klein, Christine; Vila, Miquel; Bezard, Erwan

    2013-06-01

    Impairment of autophagy-lysosomal pathways (ALPs) is increasingly regarded as a major pathogenic event in neurodegenerative diseases, including Parkinson's disease (PD). ALP alterations are observed in sporadic PD brains and in toxic and genetic rodent models of PD-related neurodegeneration. In addition, PD-linked mutations and post-translational modifications of α-synuclein impair its own lysosomal-mediated degradation, thereby contributing to its accumulation and aggregation. Furthermore, other PD-related genes, such as leucine-rich repeat kinase-2 (LRRK2), parkin, and phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), have been mechanistically linked to alterations in ALPs. Conversely, mutations in lysosomal-related genes, such as glucocerebrosidase (GBA) and lysosomal type 5 P-type ATPase (ATP13A2), have been linked to PD. New data offer mechanistic molecular evidence for such a connection, unraveling a causal link between lysosomal impairment, α-synuclein accumulation, and neurotoxicity. First, PD-related GBA deficiency/mutations initiate a positive feedback loop in which reduced lysosomal function leads to α-synuclein accumulation, which, in turn, further decreases lysosomal GBA activity by impairing the trafficking of GBA from the endoplasmic reticulum-Golgi to lysosomes, leading to neurodegeneration. Second, PD-related mutations/deficiency in the ATP13A2 gene lead to a general lysosomal impairment characterized by lysosomal membrane instability, impaired lysosomal acidification, decreased processing of lysosomal enzymes, reduced degradation of lysosomal substrates, and diminished clearance of autophagosomes, collectively contributing to α-synuclein accumulation and cell death. According to these new findings, primary lysosomal defects could potentially account for Lewy body formation and neurodegeneration in PD, laying the groundwork for the prospective development of new neuroprotective/disease-modifying therapeutic strategies

  4. Viologen-Phosphorus Dendrimers Inhibit α-Synuclein Fibrillation.

    Science.gov (United States)

    Milowska, Katarzyna; Grochowina, Justyna; Katir, Nadia; El Kadib, Abdelkrim; Majoral, Jean-Pierre; Bryszewska, Maria; Gabryelak, Teresa

    2013-03-04

    Inhibition of α-synuclein (ASN) fibril formation is a potential therapeutic strategy in Parkinson's disease and other synucleinopathies. The aim of this study was to examine the role of viologen-phosphorus dendrimers in the α-synuclein fibrillation process and to assess the structural changes in α-synuclein under the influence of dendrimers. ASN interactions with phosphonate and pegylated surface-reactive viologen-phosphorus dendrimers were examined by measuring the zeta potential, which allowed determining the number of dendrimer molecules that bind to the ASN molecule. The fibrillation kinetics and the structural changes were examined using ThT fluorescence and CD spectroscopy. Depending on the concentration of the used dendrimer and the nature of the reactive groups located on the surface, ASN fibrillation kinetics can be significantly reduced, and even, in the specific case of phosphonate dendrimers, the fibrillation can be totally inhibited at low concentrations. The presented results indicate that viologen-phosphorus dendrimers are able to inhibit ASN fibril formation and may be used as fibrillar regulating agents in neurodegenerative disorders.

  5. The Parkinson disease-related protein DJ-1 counteracts mitochondrial impairment induced by the tumour suppressor protein p53 by enhancing endoplasmic reticulum-mitochondria tethering.

    Science.gov (United States)

    Ottolini, Denis; Calì, Tito; Negro, Alessandro; Brini, Marisa

    2013-06-01

    DJ-1 was first identified as an oncogene. More recently, mutations in its gene have been found causative for autosomal recessive familial Parkinson disease. Numerous studies support the DJ-1 role in the protection against oxidative stress and maintenance of mitochondria structure; however, the mechanism of its protective function remains largely unknown. We investigated whether mitochondrial Ca(2+) homeostasis, a key parameter in cell physiology, could be a target for DJ-1 action. Here, we show that DJ-1 modulates mitochondrial Ca(2+) transients induced upon cell stimulation with an 1,4,5-inositol-tris-phosphate agonist by favouring the endoplasmic reticulum (ER)-mitochondria tethering. A reduction of DJ-1 levels results in mitochondria fragmentation and decreased mitochondrial Ca(2+) uptake in stimulated cells. To functionally couple these effects with the well-recognized cytoprotective role of DJ-1, we investigated its action in respect to the tumour suppressor p53. p53 overexpression in HeLa cells impairs their ability to accumulate Ca(2+) in the mitochondrial matrix, causes alteration of the mitochondrial morphology and reduces ER-mitochondria contact sites. Mitochondrial impairments are independent from Drp1 activation, since the co-expression of the dominant negative mutant of Drp1 failed to abolish them. DJ-1 overexpression prevents these alterations by re-establishing the ER-mitochondria tethering. Similarly, the co-expression of the pro-fusion protein Mitofusin 2 blocks the effects induced by p53 on mitochondria, confirming that the modulation of the ER-mitochondria contact sites is critical to mitochondria integrity. Thus, the impairment of ER-mitochondria communication, as a consequence of DJ-1 loss-of-function, may be detrimental for mitochondria-related processes and be at the basis of mitochondrial dysfunction observed in Parkinson disease.

  6. Effects of Trehalose on Thermodynamic Properties of Alpha-synuclein Revealed through Synchrotron Radiation Circular Dichroism

    Directory of Open Access Journals (Sweden)

    Paolo Ruzza

    2015-05-01

    Full Text Available Many neurodegenerative diseases, including Huntington’s, Alzheimer’s and Parkinson’s diseases, are characterized by protein misfolding and aggregation. The capability of trehalose to interfere with protein misfolding and aggregation has been recently evaluated by several research groups. In the present work, we studied, by means of synchrotron radiation circular dichroism (SRCD spectroscopy, the dose-effect of trehalose on α-synuclein conformation and/or stability to probe the capability of this osmolyte to interfere with α-synuclein’s aggregation. Our study indicated that a low trehalose concentration stabilized α-synuclein folding much better than at high concentration by blocking in vitro α-synuclein’s polymerisation. These results suggested that trehalose could be associated with other drugs leading to a new approach for treating Parkinson’s and other brain-related diseases.

  7. Exploring the structural diversity in inhibitors of α-synuclein amyloidogenic folding, aggregation and neurotoxicity

    Science.gov (United States)

    Das, Sukanya; Pukala, Tara L.; Smid, Scott D.

    2018-05-01

    Aggregation of α-Synuclein (αS) protein to amyloid fibrils is a neuropathological hallmark of Parkinson’s disease (PD). Growing evidence suggests that extracellular αS aggregation plays a pivotal role in neurodegeneration found in PD in addition to the intracellular αS aggregates in Lewy bodies (LB). Here, we identified and compared a diverse set of molecules capable of mitigating protein aggregation and exogenous toxicity of αSA53T, a more aggregation-prone αS mutant found in familial PD. For the first time, we investigated the αS anti-amyloid activity of semi-synthetic flavonoid 2', 3', 4' trihydroxyflavone or 2-D08, which was compared with natural flavones myricetin and transilitin, as well as such structurally diverse polyphenols as honokiol and punicalagin. Additionally, two novel synthetic compounds with a dibenzyl imidazolidine scaffold, Compound 1 and Compound 2, were also investigated as they exhibited favourable binding with αSA53T. All seven compounds inhibited αSA53T aggregation as demonstrated by Thioflavin T fluorescence assays, with modified fibril morphology observed by transmission electron microscopy. Ion mobility-mass spectrometry (IM-MS) was used to monitor the structural conversion of native αSA53T into amyloidogenic conformations and all seven compounds preserved the native unfolded conformations of αSA53T following 48 hrs incubation. The presence of each test compound in a 1:2 molar ratio was also shown to inhibit the neurotoxicity of preincubated αSA53T using phaeochromocytoma (PC12) cell viability assays. Among the seven tested compounds 2-D08, honokiol and the synthetic Compound 2 demonstrated the highest inhibition of aggregation, coupled with neuroprotection from preincubated αSA53T in vitro. Molecular docking predicted that all compounds bound near the lysine-rich region of the N-terminus of αSA53T, where the flavonoids and honokiol predominantly interacted with Lys 23. Overall, these findings highlight that i

  8. Overexpression of SIRT1 in mouse forebrain impairs lipid/glucose metabolism and motor function.

    Directory of Open Access Journals (Sweden)

    Dongmei Wu

    Full Text Available SIRT1 plays crucial roles in glucose and lipid metabolism, and has various functions in different tissues including brain. The brain-specific SIRT1 knockout mice display defects in somatotropic signaling, memory and synaptic plasticity. And the female mice without SIRT1 in POMC neuron are more sensitive to diet-induced obesity. Here we created transgenic mice overexpressing SIRT1 in striatum and hippocampus under the control of CaMKIIα promoter. These mice, especially females, exhibited increased fat accumulation accompanied by significant upregulation of adipogenic genes in white adipose tissue. Glucose tolerance of the mice was also impaired with decreased Glut4 mRNA levels in muscle. Moreover, the SIRT1 overexpressing mice showed decreased energy expenditure, and concomitantly mitochondria-related genes were decreased in muscle. In addition, these mice showed unusual spontaneous physical activity pattern, decreased activity in open field and rotarod performance. Further studies demonstrated that SIRT1 deacetylated IRS-2, and upregulated phosphorylation level of IRS-2 and ERK1/2 in striatum. Meanwhile, the neurotransmitter signaling in striatum and the expression of endocrine hormones in hypothalamus and serum T3, T4 levels were altered. Taken together, our findings demonstrate that SIRT1 in forebrain regulates lipid/glucose metabolism and motor function.

  9. Estrogen-Related Receptor Alpha Confers Methotrexate Resistance via Attenuation of Reactive Oxygen Species Production and P53 Mediated Apoptosis in Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Peng Chen

    2014-01-01

    Full Text Available Osteosarcoma (OS is a malignant tumor mainly occurring in children and adolescents. Methotrexate (MTX, a chemotherapy agent, is widely used in treating OS. However, treatment failures are common due to acquired chemoresistance, for which the underlying molecular mechanisms are still unclear. In this study, we report that overexpression of estrogen-related receptor alpha (ERRα, an orphan nuclear receptor, promoted cell survival and blocked MTX-induced cell death in U2OS cells. We showed that MTX induced ROS production in MTX-sensitive U2OS cells while ERRα effectively blocked the ROS production and ROS associated cell apoptosis. Our further studies demonstrated that ERRα suppressed ROS induction of tumor suppressor P53 and its target genes NOXA and XAF1 which are mediators of P53-dependent apoptosis. In conclusion, this study demonstrated that ERRα plays an important role in the development of MTX resistance through blocking MTX-induced ROS production and attenuating the activation of p53 mediated apoptosis signaling pathway, and points to ERRα as a novel target for improving osteosarcoma therapy.

  10. Co-ordinate regulation of the cytoskeleton in 3T3 cells overexpressing thymosin-beta4.

    Science.gov (United States)

    Golla, R; Philp, N; Safer, D; Chintapalli, J; Hoffman, R; Collins, L; Nachmias, V T

    1997-01-01

    In several cell types, short-term increases in the concentration of the G-actin-sequestering peptide thymosin-beta4 (Tbeta4) cause the disassembly of F-actin bundles. To determine the extent of cell adaptability to these reductions in F-actin, we overexpressed Tbeta4 in NIH 3T3 cells. In cell lines with Tbeta4 levels twice those of vector controls, G-actin increased approximately twofold as expected. However, F-actin did not decrease as in short-term experiments but rather also increased approximately twofold so that the G-F ratio remained constant. Surprisingly, the cytoskeletal proteins myosin IIA, alpha-actinin, and tropomyosin also increased nearly twofold. These increases were specific; DNA, total protein, lactic dehydrogenase, profilin, and actin depolymerizing factor levels were unchanged in the overexpressing cells. The Tbeta4 lines spread more fully and adhered to the dish more strongly than vector controls; this altered phenotype correlated with a twofold increase in talin and alpha5-integrin and a nearly threefold increase in vinculin. Focal adhesions, detected by indirect immunofluorescence with antivinculin, were increased in size over the controls. Northern blotting showed that mRNAs for both beta-actin and vinculin were increased twofold in the overexpressing lines. We conclude that 1) NIH 3T3 cells adapt to increased levels of G-actin sequestered by increased Tbeta4 by increasing their total actin so that the F-actin/G-actin ratio remains constant; 2) these cells coordinately increase several cytoskeletal and adhesion plaque proteins; and 3) at least for actin and vinculin, this regulation is at the transcriptional level. We therefore propose that the proteins of this multimember interacting complex making up the actin-based cytoskeleton, are coordinately regulated by factors that control the expression of several proteins. The mechanism may bear similarities to the control of synthesis of another multimember interacting complex, the myofibril of

  11. Palmitic acid induces neurotoxicity and gliatoxicity in SH-SY5Y human neuroblastoma and T98G human glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Yee-Wen Ng

    2018-04-01

    Full Text Available Background Obesity-related central nervous system (CNS pathologies like neuroinflammation and reactive gliosis are associated with high-fat diet (HFD related elevation of saturated fatty acids like palmitic acid (PA in neurons and astrocytes of the brain. Methods Human neuroblastoma cells SH-SY5Y (as a neuronal model and human glioblastoma cells T98G (as an astrocytic model, were treated with 100–500 µM PA, oleic acid (OA or lauric acid (LA for 24 h or 48 h, and their cell viability was assessed by 3-(4,5-dimetylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. The effects of stable overexpression of γ-synuclein (γ-syn, a neuronal protein recently recognized as a novel regulator of lipid handling in adipocytes, and transient overexpression of Parkinson’s disease (PD α-synuclein [α-syn; wild-type (wt and its pathogenic mutants A53T, A30P and E46K] in SH-SY5Y and T98G cells, were also evaluated. The effects of co-treatment of PA with paraquat (PQ, a Parkinsonian pesticide, and leptin, a hormone involved in the brain-adipose axis, were also assessed. Cell death mode and cell cycle were analyzed by Annexin V/PI flow cytometry. Reactive oxygen species (ROS level was determined using 2′,7′-dichlorofluorescien diacetate (DCFH-DA assay and lipid peroxidation level was determined using thiobarbituric acid reactive substances (TBARS assay. Results MTT assay revealed dose- and time-dependent PA cytotoxicity on SH-SY5Y and T98G cells, but not OA and LA. The cytotoxicity was significantly lower in SH-SY5Y-γ-syn cells, while transient overexpression of wt α-syn or its PD mutants (A30P and E46K, but not A53T modestly (but still significantly rescued the cytotoxicity of PA in SH-SY5Y and T98G cells. Co-treatment of increasing concentrations of PQ exacerbated PA’s neurotoxicity. Pre-treatment of leptin, an anti-apoptotic adipokine, did not successfully rescue SH-SY5Y cells from PA-induced cytotoxicity—suggesting a mechanism of PA

  12. The p16INK4alpha/p19ARF gene mutations are infrequent and are mutually exclusive to p53 mutations in Indian oral squamous cell carcinomas.

    Science.gov (United States)

    Kannan, K; Munirajan, A K; Krishnamurthy, J; Bhuvarahamurthy, V; Mohanprasad, B K; Panishankar, K H; Tsuchida, N; Shanmugam, G

    2000-03-01

    Eighty-seven untreated primary oral squamous cell carcinomas (SCCs) associated with betel quid and tobacco chewing from Indian patients were analysed for the presence of mutations in the commonly shared exon 2 of p16INK4alpha/p19ARF genes. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and sequencing analysis were used to detect mutations. SSCP analysis indicated that only 9% (8/87) of the tumours had mutation in p16INK4alpha/p19ARF genes. Seventy-two tumours studied here were previously analysed for p53 mutations and 21% (15/72) of them were found to have mutations in p53 gene. Only one tumour was found to have mutation at both p53 and p16INK4alpha/p19ARF genes. Thus, the mutation rates observed were 21% for p53, 9% for p16INK4alpha/p19ARF, and 1% for both. Sequencing analysis revealed two types of mutations; i) G to C (GCAG to CCAG) transversion type mutation at intron 1-exon 2 splice junction and ii) another C to T transition type mutation resulting in CGA to TGA changing arginine to a termination codon at p16INK4alpha gene codon 80 and the same mutation will alter codon 94 of p19ARF gene from CCG to CTG (proline to leucine). These results suggest that p16INK4alpha/p19ARF mutations are less frequent than p53 mutations in Indian oral SCCs. The p53 and p16INK4alpha/p19ARF mutational events are independent and are mutually exclusive suggesting that mutational inactivation of either p53 or p16INK4alpha/p19ARF may alleviate the need for the inactivation of the other gene.

  13. Low-level overexpression of p53 promotes warfarin-induced calcification of porcine aortic valve interstitial cells by activating Slug gene transcription.

    Science.gov (United States)

    Gao, Li; Ji, Yue; Lu, Yan; Qiu, Ming; Shen, Yejiao; Wang, Yaqing; Kong, Xiangqing; Shao, Yongfeng; Sheng, Yanhui; Sun, Wei

    2018-03-09

    The most frequently used oral anti-coagulant warfarin has been implicated in inducing calcification of aortic valve interstitial cells (AVICs), whereas the mechanism is not fully understood. The low-level activation of p53 is found to be involved in osteogenic transdifferentiation and calcification of AVICs. Whether p53 participates in warfarin-induced AVIC calcification remains unknown. In this study, we investigated the role of low-level p53 overexpression in warfarin-induced porcine AVIC (pAVIC) calcification. Immunostaining, quantitative PCR, and Western blotting revealed that p53 was expressed in human and pAVICs and that p53 expression was slightly increased in calcific human aortic valves compared with non-calcific valves. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling staining indicated that apoptosis slightly increased in calcific aortic valves than in non-calcific valves. Warfarin treatment led to a low-level increase of p53 mRNA and protein in both pAVICs and mouse aortic valves. Low-level overexpression of p53 in pAVICs via an adenovirus vector did not affect pAVIC apoptosis but promoted warfarin-induced calcium deposition and expression of osteogenic markers. shRNA-mediated p53 knockdown attenuated the pAVIC calcium deposition and osteogenic marker expression. Moreover, ChIP and luciferase assays showed that p53 was recruited to the slug promoter and activated slug expression in calcific pAVICs. Of note, overexpression of Slug increased osteogenic marker Runx2 expression, but not pAVIC calcium deposition, and Slug knockdown attenuated pAVIC calcification and p53-mediated pAVIC calcium deposition and expression of osteogenic markers. In conclusion, we found that p53 plays an important role in warfarin induced pAVIC calcification, and increased slug transcription by p53 is required for p53-mediated pAVIC calcification. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Overexpression of RBBP6, alone or combined with mutant TP53, is predictive of poor prognosis in colon cancer.

    Directory of Open Access Journals (Sweden)

    Jian Chen

    Full Text Available Retinoblastoma binding protein 6 (RBBP6 plays an important role in chaperone-mediated ubiquitination and interacts with TP53 in carcinogenesis. However, the clinicopathologic significance of RBBP6 expression in colon cancer is unknown; in particular, the prognostic value of RBBP6 combined with TP53 expression has not been explored. Therefore, quantitative real-time PCR and western blot analyses were performed to detect RBBP6 expression in colon cancer tissues. RBBP6 and TP53 expression were assessed by immunohistochemistry in a tissue microarray format, in which the primary colon cancer tissue was paired with noncancerous tissue. Tissue specimens were obtained from 203 patients. We found that RBBP6 was overexpressed in colon tumorous tissues and was significantly associated with clinical stage, depth of tumor invasion, lymph node metastasis (LNM, distant metastasis, and histologic grade. Further studies revealed that a corresponding correlation between RBBP6 overexpression and mutant TP53 was evident in colon cancer (r = 0.450; P<0.001. RBBP6 expression was an independent prognostic factor for overall survival (OS and disease free survival (DFS. Interestingly, patients with tumors that had both RBBP6 overexpression and mutant TP53 protein accumulation relapsed and died within a significantly short period after surgery (P<0.001. Multivariate analysis showed that patients with LNM and patients with both RBBP6- and TP53-positive tumors had extremely poor OS (HR 6.75; 95% CI 2.63-17.35; P<0.001 and DFS (HR 8.08; 95% CI 2.80-23.30; P<0.001. These clinical findings indicate that the assessment of both RBBP6 and mutant TP53 expression will be helpful in predicting colon cancer prognosis.

  15. Estrogen receptor alpha and risk for cognitive impairment in postmenopausal women

    DEFF Research Database (Denmark)

    Olsen, Line; Rasmussen, Henrik B; Hansen, Thomas

    2006-01-01

    The estrogen receptor alpha (ESR1) gene has been implicated in the process of cognitive impairment in elderly women. In a paired case-control study, we tested whether two ESR1 gene polymorphisms (the XbaI and PvuII sites) are risk factors for cognitive impairment as measured by the six-item Orien......The estrogen receptor alpha (ESR1) gene has been implicated in the process of cognitive impairment in elderly women. In a paired case-control study, we tested whether two ESR1 gene polymorphisms (the XbaI and PvuII sites) are risk factors for cognitive impairment as measured by the six......-item Orientation-Memory-Concentration test in postmenopausal Danish women. Hormone replacement therapy, age and executive cognitive ability were examined as covariates for ESR1 gene effects on cognitive impairment. The XbaI polymorphism showed a marginal effect on cognitive abilities (P=0.054) when adjusted...... cognitive ability. These data support that the ESR1 gene variants affect cognitive functioning in postmenopausal women....

  16. 5-HT2A Receptor Binding in the Frontal Cortex of Parkinson's Disease Patients and Alpha-Synuclein Overexpressing Mice

    DEFF Research Database (Denmark)

    Rasmussen, Nadja Bredo; Olesen, Mikkel Vestergaard; Brudek, Tomasz

    2016-01-01

    The receptor is highly involved in aspects of cognition and executive function and seen to be affected in neurodegenerative diseases like Alzheimer’s disease and related to the disease pathology. Even though Parkinson’s disease (PD) is primarily a motor disorder, reports of impaired executive...

  17. End-to-end Structural Restriction of α-Synuclein and Its Influence on Amyloid Fibril Formation

    International Nuclear Information System (INIS)

    Hong, Chul Suk; Park, Jae Hyung; Choe, Young Jun; Paik, Seung R.

    2014-01-01

    Relationship between molecular freedom of amyloidogenic protein and its self-assembly into amyloid fibrils has been evaluated with α-synuclein, an intrinsically unfolded protein related to Parkinson's disease, by restricting its structural plasticity through an end-to-end disulfide bond formation between two newly introduced cysteine residues on the N- and C-termini. Although the resulting circular form of α-synuclein exhibited an impaired fibrillation propensity, the restriction did not completely block the protein's interactive core since co-incubation with wild-type α-synuclein dramatically facilitated the fibrillation by producing distinctive forms of amyloid fibrils. The suppressed fibrillation propensity was instantly restored as the structural restriction was unleashed with β-mercaptoethanol. Conformational flexibility of the accreting amyloidogenic protein to pre-existing seeds has been demonstrated to be critical for fibrillar extension process by exerting structural adjustment to a complementary structure for the assembly

  18. End-to-end Structural Restriction of α-Synuclein and Its Influence on Amyloid Fibril Formation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Chul Suk; Park, Jae Hyung; Choe, Young Jun; Paik, Seung R. [Seoul National University, Seoul (Korea, Republic of)

    2014-09-15

    Relationship between molecular freedom of amyloidogenic protein and its self-assembly into amyloid fibrils has been evaluated with α-synuclein, an intrinsically unfolded protein related to Parkinson's disease, by restricting its structural plasticity through an end-to-end disulfide bond formation between two newly introduced cysteine residues on the N- and C-termini. Although the resulting circular form of α-synuclein exhibited an impaired fibrillation propensity, the restriction did not completely block the protein's interactive core since co-incubation with wild-type α-synuclein dramatically facilitated the fibrillation by producing distinctive forms of amyloid fibrils. The suppressed fibrillation propensity was instantly restored as the structural restriction was unleashed with β-mercaptoethanol. Conformational flexibility of the accreting amyloidogenic protein to pre-existing seeds has been demonstrated to be critical for fibrillar extension process by exerting structural adjustment to a complementary structure for the assembly.

  19. Structure of the T cell receptor in a Ti alpha V beta 2, alpha V beta 8-positive T cell line

    DEFF Research Database (Denmark)

    Hou, X; Dietrich, J; Kuhlmann, J

    1994-01-01

    not known; however, it has been suggested that each TcR contains two Ti dimers. To gain insight into the structure of the TcR we constructed a Ti alpha V beta 2, alpha V beta 8-positive T cell line which expressed the endogenous human TiV beta 8 and the transfected mouse TiV beta 2 both in association......The T cell receptor (TcR) is composed of at least six different polypeptide chains consisting of the clonotypic Ti heterodimer (Ti alpha beta or Ti gamma delta) and the noncovalently associated CD3 chains (CD3 gamma delta epsilon zeta). The exact number of subunits constituting the TcR is still...... with the endogenous Ti alpha and CD3 chains at the cell surface. Preclearing experiments with radioiodinated cell lysate prepared with digitonin lysis buffer demonstrated that depleting the lysate of Ti alpha V beta 8 by immunoprecipitation with anti V beta 8 monoclonal antibody (mAb) did not reduce the amount of Ti...

  20. Over-expression of two different forms of the alpha-secretase ADAM10 affects learning and memory in mice.

    Science.gov (United States)

    Schmitt, Ulrich; Hiemke, Christoph; Fahrenholz, Falk; Schroeder, Anja

    2006-12-15

    Members of the ADAM family (adisintegrin and metalloprotease) are the main candidates for physiologically relevant alpha-secretases. The alpha-secretase cleaves in the non-amyloidogenic pathway the amyloid precursor protein within the region of the Abeta peptides preventing their aggregation in the brain. The increase of alpha-secretase activity in the brain provides a plausible strategy to prevent Abeta formation. Concerning this possibility two transgenic mouse lines (FVB/N) have been created: mice over-expressing the bovine form of the alpha-secretase (ADAM10) and mice over-expressing an inactive form of the alpha-secretase (ADAM10-E348A-HA; ADAM10-dn). For behavioral examination a F1 generation of transgenic mice (C57Bl/6 x FVB/N (tg)) was generated and compared to wild type F1 generation (C57Bl/6 x FVB/N). Behavior was characterized in the following tasks: standard open field, enriched open field, elevated plus-maze, and the Morris water maze hidden platform task. Concerning basal activity, exploration, and anxiety, transgenic mice behaved similar to controls. With respect to learning and memory both transgenic lines showed a significant deficit compared to controls. ADAM10 mice however, showed thigmotaxis with passive floating behavior in the Morris water maze indicating differences in motivation, whereas, ADAM10-dn mice displayed an inconspicuous but limited goal-directed search pattern. Thus variation of the enzymatic activity of alpha-secretase ADAM10 alters learning and memory differentially. Nevertheless, it could be concluded that both, ADAM10 and ADAM10-dn mice are suitable control mice for the assessment of alpha-secretase-related effects in animal models of Alzheimer's disease.

  1. γ-Synuclein antibodies have neuroprotective potential on neuroretinal cells via proteins of the mitochondrial apoptosis pathway.

    Directory of Open Access Journals (Sweden)

    Corina Wilding

    Full Text Available The family of synuclein proteins (α, β and γ are related to neurodegenerative disease e.g. Parkinson disease and Morbus Alzheimer. Additionally, a connection between γ-synuclein and glaucoma, a neurodegenerative disease characterized by a progressive loss of retinal ganglion cells, which finally leads to blindness, exists. The reason for the development of glaucoma is still unknown. Recent studies evaluating the participation of immunological components, demonstrate complex changed antibody reactivities in glaucoma patients in comparison to healthy people, showing not only up-regulations (e.g. alpha-fodrin antibody but also down-regulations (e.g. γ-synuclein antibody of antibodies in glaucoma patients. Up-regulated antibodies could be auto-aggressive, but the role of down-regulated antibodies is still unclear. Previous studies show a significant influence of the serum and the antibodies of glaucoma patients on protein expression profiles of neuroretinal cells. The aim of this study was to investigate the effect of γ-synuclein antibody on the viability and reactive oxygen species levels of a neuroretinal cell line (RGC-5 as well as their interaction with cellular proteins. We found a protective effect of γ-synuclein antibody resulting in an increased viability (up to 15% and decreased reactive oxygen species levels (up to -12% of glutamate and oxidative stressed RGC-5. These can be traced back to anti-apoptotic altered protein expressions in the mitochondrial apoptosis pathway indicated by mass spectrometry and validated by microarray analysis such as active caspase 3, bcl-2 associated-x-protein, S100A4, voltage-dependent anion channel, extracellular-signal-regulated-kinase (down-regulated and baculoviral IAP repeat-containing protein 6, phosphorylated extracellular-signal-regulated-kinase (up-regulated. These changed protein expression are triggered by the γ-synuclein antibody internalization of RGC-5 we could see in immunohistochemical

  2. Potential Modes of Intercellular α-Synuclein Transmission

    Directory of Open Access Journals (Sweden)

    Dario Valdinocci

    2017-02-01

    Full Text Available Intracellular aggregates of the α-synuclein protein result in cell loss and dysfunction in Parkinson’s disease and atypical Parkinsonism, such as multiple system atrophy and dementia with Lewy bodies. Each of these neurodegenerative conditions, known collectively as α-synucleinopathies, may be characterized by a different suite of molecular triggers that initiate pathogenesis. The mechanisms whereby α-synuclein aggregates mediate cytotoxicity also remain to be fully elucidated. However, recent studies have implicated the cell-to-cell spread of α-synuclein as the major mode of disease propagation between brain regions during disease progression. Here, we review the current evidence for different modes of α-synuclein cellular release, movement and uptake, including exocytosis, exosomes, tunneling nanotubes, glymphatic flow and endocytosis. A more detailed understanding of the major modes by which α-synuclein pathology spreads throughout the brain may provide new targets for therapies that halt the progression of disease.

  3. Potential Modes of Intercellular α-Synuclein Transmission.

    Science.gov (United States)

    Valdinocci, Dario; Radford, Rowan A W; Siow, Sue Maye; Chung, Roger S; Pountney, Dean L

    2017-02-22

    Intracellular aggregates of the α-synuclein protein result in cell loss and dysfunction in Parkinson's disease and atypical Parkinsonism, such as multiple system atrophy and dementia with Lewy bodies. Each of these neurodegenerative conditions, known collectively as α-synucleinopathies, may be characterized by a different suite of molecular triggers that initiate pathogenesis. The mechanisms whereby α-synuclein aggregates mediate cytotoxicity also remain to be fully elucidated. However, recent studies have implicated the cell-to-cell spread of α-synuclein as the major mode of disease propagation between brain regions during disease progression. Here, we review the current evidence for different modes of α-synuclein cellular release, movement and uptake, including exocytosis, exosomes, tunneling nanotubes, glymphatic flow and endocytosis. A more detailed understanding of the major modes by which α-synuclein pathology spreads throughout the brain may provide new targets for therapies that halt the progression of disease.

  4. Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Tsukasaki, Masayuki [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Suzuki, Dai [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Aizawa, Ryo [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Miyazono, Agasa [Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Miyamoto, Yoichi; Suzawa, Tetsuo; Takami, Masamichi; Yoshimura, Kentaro [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Morimura, Naoko [Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Yamamoto, Matsuo [Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Kamijo, Ryutaro [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan)

    2011-07-15

    Highlights: {yields} TNF-{alpha} inhibits POEM gene expression. {yields} Inhibition of POEM gene expression is caused by NF-{kappa}B activation by TNF-{alpha}. {yields} Over-expression of POEM recovers inhibition of osteoblast differentiation by TNF-{alpha}. -- Abstract: POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-{alpha} (TNF-{alpha}), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-{alpha}-induced down-regulation of POEM gene expression occurred in both time- and dose-dependent manners through the nuclear factor kappa B (NF-{kappa}B) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-{alpha} in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-{alpha}-induced inhibition of osteoblast differentiation. These results suggest that TNF-{alpha} inhibits POEM expression through the NF-{kappa}B signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-{alpha}.

  5. Comparative study of TGF-alpha and P53 markers′ expression in odontogenic keratocyst and orthokeratinaized odontogenic cyst

    Directory of Open Access Journals (Sweden)

    Parviz Deyhimi

    2012-01-01

    Full Text Available Background: Odontogenic keratocyst (OKC is an aggressive cyst and its recurrence is higher than other odontogenic cysts, orthokeratinized odontogenic cyst (OOC is a cyst with moderate biological behavior in comparison with OKC, but with the probability of carcinomatous changes. The present study aims to evaluate the quantity and intensity of the expression of P53 protein and transforming growth factor alpha (TGF-alpha in OKC and OOC in order to compare the biologic behavior of these two cysts. Materials and Methods: This is a cross-sectional study. The samples include 30 cysts (15 OKC and 15 OOC, all stained immunohistochemically for P53 protein and TGF-alpha by the Novolinke polymer method. Then, all the cases were examined with an optical microscope with Χ400 magnification and the stained cells were counted in the basal and parabasal layers. Finally the results were analyzed by the Mann–and Wilcoxon tests (P value < 0.05. Results: The difference between the expression of P53 protein in the basal layer in OKC and OOC was not statistically significant (P value = 0.076. The difference between the expression of P53 protein in the parabasal layer in OKC and OOC was statistically significant (P value = 0.003; moreover, the difference between the expression of TGF-alpha in the basal layer in OKC and OOC was not statistically significant (P value = 0.284. The difference between the expression of TGF-alpha in the parabasal layer in OKC and OOC was statistically significant (P value = 0.015. Conclusion: Since there was a higher expression of P53 protein and TGF-alpha in OKC compared to those in OOC, the probability of carcinomatous changes was at least theoretically higher in OKC than in OOC.

  6. Agrochemicals, α-synuclein, and Parkinson's disease.

    Science.gov (United States)

    Silva, Blanca A; Breydo, Leonid; Fink, Anthony L; Uversky, Vladimir N

    2013-04-01

    Epidemiological, population-based case-control, and experimental studies at the molecular, cellular, and organism levels revealed that exposure to various environmental agents, including a number of structurally different agrochemicals, may contribute to the pathogenesis of Parkinson's disease (PD) and several other neurodegenerative disorders. The role of genetic predisposition in PD has also been increasingly acknowledged, driven by the identification of a number of disease-related genes [e.g., α-synuclein, parkin, DJ-1, ubiquitin C-terminal hydrolase isozyme L1 (UCH-L1), and nuclear receptor-related factor 1]. Therefore, the etiology of this multifactorial disease is likely to involve both genetic and environmental factors. Various neurotoxicants, including agrochemicals, have been shown to elevate the levels of α-synuclein expression in neurons and to promote aggregation of this protein in vivo. Many agrochemicals physically interact with α-synuclein and accelerate the fibrillation and aggregation rates of this protein in vitro. This review analyzes some of the aspects linking α-synuclein to PD, provides brief structural and functional descriptions of this important protein, and represents some data connecting exposure to agrochemicals with α-synuclein aggregation and PD pathogenesis.

  7. Interaction between subclinical doses of the Parkinson's disease associated gene, α-synuclein, and the pesticide, rotenone, precipitates motor dysfunction and nigrostriatal neurodegeneration in rats.

    Science.gov (United States)

    Naughton, Carol; O'Toole, Daniel; Kirik, Deniz; Dowd, Eilís

    2017-01-01

    In most patients, Parkinson's disease is thought to emerge after a lifetime of exposure to, and interaction between, various genetic and environmental risk factors. One of the key genetic factors linked to this condition is α-synuclein, and the α-synuclein protein is pathologically associated with idiopathic cases. However, α-synuclein pathology is also present in presymptomatic, clinically "normal" individuals suggesting that environmental factors, such as Parkinson's disease-linked agricultural pesticides, may be required to precipitate Parkinson's disease in these individuals. In this context, the aim of this study was to assess the behavioural and neuropathological impact of exposing rats with a subclinical load of α-synuclein to subclinical doses of the organic pesticide, rotenone. Rats were randomly assigned to two groups for intra-nigral infusion of AAV 2/5- GFP or AAV 2/5 -α-synuclein. Post viral motor function was assessed at 8, 10 and 12 weeks in the Corridor, Stepping and Whisker tests of lateralised motor function. At week 12, animals were performance-matched to receive a subsequent intra-striatal challenge of the organic pesticide rotenone (or its vehicle) to yield four final groups (Control, Rotenone, AAV 2/5 -α-synuclein and Combined). Behavioural testing resumed one week after rotenone surgery and continued for 5 weeks. We found that, when administered alone, neither intra-nigral AAV-α-synuclein nor intra-striatal rotenone caused sufficient nigrostriatal neurodegeneration to induce a significant motor impairment in their own right. However, when these were administered sequentially to the same rats, the interaction between the two Parkinsonian challenges significantly exacerbated nigrostriatal neurodegeneration which precipitated a pronounced impairment in motor function. These results indicate that exposing rats with a subclinical α-synuclein-induced pathology to the pesticide, rotenone, profoundly exacerbates their Parkinsonian

  8. Significance of Aurora B overexpression in hepatocellular carcinoma. Aurora B Overexpression in HCC

    International Nuclear Information System (INIS)

    Lin, Zhong-Zhe; Jeng, Yung-Ming; Hu, Fu-Chang; Pan, Hung-Wei; Tsao, Hsin-Wei; Lai, Po-Lin; Lee, Po-Huang; Cheng, Ann-Lii; Hsu, Hey-Chi

    2010-01-01

    To investigate the significance of Aurora B expression in hepatocellular carcinoma (HCC). The Aurora B and Aurora A mRNA level was measured in 160 HCCs and the paired nontumorous liver tissues by reverse transcription-polymerase chain reaction. Mutations of the p53 and β-catenin genes were analyzed in 134 and 150 tumors, respectively, by direct sequencing of exon 2 to exon 11 of p53 and exon 3 of β-catenin. Anticancer effects of AZD1152-HQPA, an Aurora B kinase selective inhibitor, were examined in Huh-7 and Hep3B cell lines. Aurora B was overexpressed in 98 (61%) of 160 HCCs and in all 7 HCC cell lines examined. The overexpression of Aurora B was associated with Aurora A overexpression (P = 0.0003) and p53 mutation (P = 0.002) and was inversely associated with β-catenin mutation (P = 0.002). Aurora B overexpression correlated with worse clinicopathologic characteristics. Multivariate analysis confirmed that Aurora B overexpression was an independent poor prognostic factor, despite its interaction with Aurora A overexpression and mutations of p53 and β-catenin. In Huh-7 and Hep3B cells, AZD1152-HQPA induced proliferation blockade, histone H3 (Ser10) dephosphorylation, cell cycle disturbance, and apoptosis. Aurora B overexpression is an independent molecular marker predicting tumor invasiveness and poor prognosis of HCC. Aurora B kinase selective inhibitors are potential therapeutic agents for HCC treatment

  9. Application of MALDI-TOF mass spectrometry for study on fibrillar and oligomeric aggregates of alpha-synuclein

    NARCIS (Netherlands)

    Severinovskaya, O. V.; Kovalska, V B; Losytskyy, M Yu; Cherepanov, V. V.; Subramaniam, V.; Yarmoluk, S M

    2014-01-01

    Aim. To study the α-synuclein (ASN) aggregates of different structural origin, namely amyloid fibrils and spherical oligomers, in comparison with a native protein. Methods. MALDI TOF mass spectrometry and atomic force microscopy (AFM). Results. The mass spectra of native and fibrillar ASN have

  10. MicroRNA181a Is Overexpressed in T-Cell Leukemia/Lymphoma and Related to Chemoresistance

    Directory of Open Access Journals (Sweden)

    Zi-Xun Yan

    2015-01-01

    Full Text Available MicroRNAs (miRs play an important role in tumorogenesis and chemoresistance in lymphoid malignancies. Comparing with reactive hyperplasia, miR181a was overexpressed in 130 patients with T-cell leukemia/lymphoma, including acute T-cell lymphoblastic leukemia (n=32, T-cell lymphoblastic lymphoma (n=16, peripheral T-cell lymphoma, not otherwise specified (n=45, anaplastic large cell lymphoma (n=15, and angioimmunoblastic T-cell lymphoma (n=22. Irrespective to histological subtypes, miR181a overexpression was associated with increased AKT phosphorylation. In vitro, ectopic expression of miR181a in HEK-293T cells significantly enhanced cell proliferation, activated AKT, and conferred cell resistance to doxorubicin. Meanwhile, miR181a expression was upregulated in Jurkat cells, along with AKT activation, during exposure to chemotherapeutic agents regularly applied to T-cell leukemia/lymphoma treatment, such as doxorubicin, cyclophosphamide, cytarabine, and cisplatin. Isogenic doxorubicin-resistant Jurkat and H9 cells were subsequently developed, which also presented with miR181a overexpression and cross-resistance to cyclophosphamide and cisplatin. Meanwhile, specific inhibition of miR181a enhanced Jurkat and H9 cell sensitivity to chemotherapeutic agents, further indicating that miR181a was involved in acquired chemoresistance. Collectively, miR181a functioned as a biomarker of T-cell leukemia/lymphoma through modulation of AKT pathway. Related to tumor cell chemoresistance, miR181a could be a potential therapeutic target in treating T-cell malignancies.

  11. An alpha-synuclein MRM assay with diagnostic potential for Parkinson's disease and monitoring disease progression

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li [Department of Pathology, University of Washington, Seattle WA USA; Stewart, Tessandra [Department of Pathology, University of Washington, Seattle WA USA; Shi, Min [Department of Pathology, University of Washington, Seattle WA USA; Pottiez, Gwenael [Department of Pathology, University of Washington, Seattle WA USA; Dator, Romel [Department of Pathology, University of Washington, Seattle WA USA; Wu, Rui [Department of Pathology, University of Washington, Seattle WA USA; Department of Pathology, No. 3 Hospital of Beijing University, Beijing China; Aro, Patrick [Department of Pathology, University of Washington, Seattle WA USA; Schuster, Robert J. [Department of Pathology, University of Washington, Seattle WA USA; Ginghina, Carmen [Department of Pathology, University of Washington, Seattle WA USA; Pan, Catherine [Department of Pathology, University of Washington, Seattle WA USA; Gao, Yuqian [Pacific Northwest National Laboratory, Richland WA USA; Qian, Weijun [Pacific Northwest National Laboratory, Richland WA USA; Zabetian, Cyrus P. [Parkinson' s Disease Research and Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle WA USA; Department of Neurology, University of Washington School of Medicine, Seattle WA USA; Hu, Shu-Ching [Department of Neurology, University of Washington School of Medicine, Seattle WA USA; Quinn, Joseph F. [Department of Neurology, Oregon Health and Science University, Portland OR USA; Zhang, Jing [Department of Pathology, University of Washington, Seattle WA USA; Department of Pathology, Peking University Health Science Centre and Third Hospital, Beijing 100083 China

    2017-04-19

    Aim: The alpha-synuclein (α-syn) level in human cerebrospinal fluid (CSF), as measured by immunoassays, is promising as a Parkinson’s disease (PD) biomarker. However, the levels of total α-syn are inconsistent among studies with large cohorts and different measurement platforms. Total α-syn level also does not correlate with disease severity or progression. Here, we developed a highly sensitive Multiple Reaction Monitoring (MRM) method to measure absolute CSF α-syn peptide concentrations without prior enrichment or fractionation, aiming to discover new candidate biomarkers. Results: Six peptides covering 73% of protein sequence were reliably identified, and two were consistently quantified in cross-sectional and longitudinal cohorts. Absolute concentration of α-syn in human CSF was determined to be 2.1ng/mL. A unique α-syn peptide, TVEGAGSIAAATGFVK (81-96), displayed excellent correlation with previous immunoassay results in two independent PD cohorts (p < 0.001), correlated with disease severity, and its changes significantly tracked the disease progression longitudinally. Conclusions: An MRM assay to quantify human CSF α-syn was developed and optimized. Sixty clinical samples from cross-sectional and longitudinal PD cohorts were analyzed with this approach. Although further larger-scale validation is needed, the results suggest that α-syn peptide could serve as a promising biomarker in PD diagnosis and progression.

  12. Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo.

    Science.gov (United States)

    Rockenstein, Edward; Nuber, Silke; Overk, Cassia R; Ubhi, Kiren; Mante, Michael; Patrick, Christina; Adame, Anthony; Trejo-Morales, Margarita; Gerez, Juan; Picotti, Paola; Jensen, Poul H; Campioni, Silvia; Riek, Roland; Winkler, Jürgen; Gage, Fred H; Winner, Beate; Masliah, Eliezer

    2014-05-01

    In Parkinson's disease and dementia with Lewy bodies, α-synuclein aggregates to form oligomers and fibrils; however, the precise nature of the toxic α-synuclein species remains unclear. A number of synthetic α-synuclein mutations were recently created (E57K and E35K) that produce species of α-synuclein that preferentially form oligomers and increase α-synuclein-mediated toxicity. We have shown that acute lentiviral expression of α-synuclein E57K leads to the degeneration of dopaminergic neurons; however, the effects of chronic expression of oligomer-prone α-synuclein in synapses throughout the brain have not been investigated. Such a study could provide insight into the possible mechanism(s) through which accumulation of α-synuclein oligomers in the synapse leads to neurodegeneration. For this purpose, we compared the patterns of neurodegeneration and synaptic damage between a newly generated mThy-1 α-synuclein E57K transgenic mouse model that is prone to forming oligomers and the mThy-1 α-synuclein wild-type mouse model (Line 61), which accumulates various forms of α-synuclein. Three lines of α-synuclein E57K (Lines 9, 16 and 54) were generated and compared with the wild-type. The α-synuclein E57K Lines 9 and 16 were higher expressings of α-synuclein, similar to α-synuclein wild-type Line 61, and Line 54 was a low expressing of α-synuclein compared to Line 61. By immunoblot analysis, the higher-expressing α-synuclein E57K transgenic mice showed abundant oligomeric, but not fibrillar, α-synuclein whereas lower-expressing mice accumulated monomeric α-synuclein. Monomers, oligomers, and fibrils were present in α-synuclein wild-type Line 61. Immunohistochemical and ultrastructural analyses demonstrated that α-synuclein accumulated in the synapses but not in the neuronal cells bodies, which was different from the α-synuclein wild-type Line 61, which accumulates α-synuclein in the soma. Compared to non-transgenic and lower-expressing mice, the

  13. Hypermethylation of the 5′ CpG island of the p14ARF flanking exon 1β in human colorectal cancer displaying a restricted pattern of p53 overexpression concomitant with increased MDM2 expression

    Directory of Open Access Journals (Sweden)

    Nyiraneza Christine

    2012-06-01

    Full Text Available Abstract Background It has been suggested that inactivation of p14ARF, a tumor suppressor central to regulating p53 protein stability through interaction with the MDM2 oncoprotein, abrogates p53 activity in human tumors retaining the wild-type TP53 gene. Differences in expression of tumor suppressor genes are frequently associated with cancer. We previously reported on a pattern of restricted p53 immunohistochemical overexpression significantly associated with microsatellite instability (MSI, low TP53 mutation frequency, and MDM2 overexpression in colorectal cancers (CRCs. In this study, we investigated whether p14ARF alterations could be a mechanism for disabling the p53 pathway in this subgroup of CRCs. Results Detailed maps of the alterations in the p14ARF gene were determined in a cohort of 98 CRCs to detect both nucleotide and copy-number changes. Methylation-specific PCR combined with bisulfite sequencing was used to evaluate the prevalence and distribution of p14ARF methylation. p14ARF alterations were then correlated with MSI status, TP53 mutations, and immunohistochemical expression of p53 and MDM2. The frequency of p14ARF mutations was extremely low (1/98; 1%, whereas coexistence of methylated and unmethylated alleles in both tumors and normal colon mucosa was common (91/98; 93%. Only seven of ninety-eight tumors (7% had a distinct pattern of methylation compared with normal colon mucosa. Evaluation of the prevalence and distribution of p14ARF promoter methylation in a region containing 27 CpG sites in 35 patients showed a range of methylated CpG sites in tumors (0 to 25 (95% CI 1 to 13 versus 0 to 17 (95% CI 0 to 2 in adjacent colon mucosa (P = 0.004. Hypermethylation of the p14ARF promoter was significantly correlated with the restricted p53 overexpression pattern (P = 0.03, and MDM2 overexpression (P = 0.02, independently of MSI phenotype. Although no significant correlation between p14ARF methylation and TP53 mutational

  14. Applying chaperones to protein-misfolding disorders: molecular chaperones against α-synuclein in Parkinson's disease.

    Science.gov (United States)

    Chaari, Ali; Hoarau-Véchot, Jessica; Ladjimi, Moncef

    2013-09-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the accumulation of a protein called α-synuclein (α-syn) into inclusions known as lewy bodies (LB) within neurons. This accumulation is also due to insufficient formation and activity of dopamine produced in certain neurons within the substantia nigra. Lewy bodies are the pathological hallmark of the idiopathic disorder and the cascade that allows α-synuclein to misfold, aggregate and form these inclusions has been the subject of intensive research. Targeting these early steps of oligomerization is one of the main therapeutic approaches in order to develop neurodegenerative-modifying agents. Because the folding and refolding of alpha synuclein is the key point of this cascade, we are interested in this review to summarize the role of some molecular chaperones proteins such as Hsp70, Hsp90 and small heat shock proteins (sHsp) and Hsp 104. Hsp70 and its co-chaperone, Hsp70 and small heat shock proteins can prevent neurodegeneration by preventing α-syn misfolding, oligomerization and aggregation in vitro and in Parkinson disease animal models. Hsp104 is able to resolve disordered protein aggregates and cross beta amyloid conformers. Together, these chaperones have a complementary effect and can be a target for therapeutic intervention in PD. Published by Elsevier B.V.

  15. Overexpression of a transcription factor LYL1 induces T- and B-cell lymphoma in mice.

    Science.gov (United States)

    Zhong, Y; Jiang, L; Hiai, H; Toyokuni, S; Yamada, Y

    2007-10-18

    LYL1, a member of the class II basic helix-loop-helix transcription factors, is aberrantly expressed in a fraction of human T-cell acute lymphoblastic leukemia. Here, we generated transgenic mice ubiquitously overexpressing LYL1 using a construct expressing full-length cDNA driven by a human elongation factor 1alpha promoter. Four independent lines exhibiting high LYL1 expression were established. Of these transgenic mice, 96% displayed loss of hair with a short kinked tail. Furthermore, 30% of them developed malignant lymphoma, with an average latent period of 352 days. In these mice, histological examination revealed tumor cell infiltration in multiple organs and immunohistochemical analysis showed that the infiltrated tumor cells were either CD3 or CD45R/B220-positive; fluorescence-activated cell sorter analysis indicated that each tumor consisted either of mainly CD4, CD8 double-positive T cells or mature B cells; the clonality of LYL1-induced lymphoma was confirmed by T-cell receptor rearrangement and immunoglobulin heavy-chain gene rearrangement analyses. Mammalian two-hybrid analysis and luciferase assay suggested that excess LYL1 blocked the dimerization of E2A and thus inhibited the regulatory activity of E2A on the CD4 promoter. Reverse transcription-polymerase chain reaction results showed that the expression of certain E2A/HEB target genes was downregulated. Taken together, our results provide direct evidence that aberrant expression of LYL1 plays a role in lymphomagenesis.

  16. The Neuroprotective Role of Protein Quality Control in Halting the Development of Alpha-Synuclein Pathology

    Directory of Open Access Journals (Sweden)

    Destiny-Love Manecka

    2017-09-01

    Full Text Available Synucleinopathies are a family of neurodegenerative disorders that comprises Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Each of these disorders is characterized by devastating motor, cognitive, and autonomic consequences. Current treatments for synucleinopathies are not curative and are limited to improvement of quality of life for affected individuals. Although the underlying causes of these diseases are unknown, a shared pathological hallmark is the presence of proteinaceous inclusions containing the α-synuclein (α-syn protein in brain tissue. In the past few years, it has been proposed that these inclusions arise from the self-templated, prion-like spreading of misfolded and aggregated forms of α-syn throughout the brain, leading to neuronal dysfunction and death. In this review, we describe how impaired protein homeostasis is a prominent factor in the α-syn aggregation cascade, with alterations in protein quality control (PQC pathways observed in the brains of patients. We discuss how PQC modulates α-syn accumulation, misfolding and aggregation primarily through chaperoning activity, proteasomal degradation, and lysosome-mediated degradation. Finally, we provide an overview of experimental data indicating that targeting PQC pathways is a promising avenue to explore in the design of novel neuroprotective approaches that could impede the spreading of α-syn pathology and thus provide a curative treatment for synucleinopathies.

  17. Establishment and evaluation of a transgenic mouse model of arthritis induced by overexpressing human tumor necrosis factor alpha

    Directory of Open Access Journals (Sweden)

    Ge Li

    2016-04-01

    Full Text Available Tumor necrosis factor alpha (TNFα plays a key role in the pathogenesis of rheumatoid arthritis (RA. Blockade of TNFα by monoclonal antibody has been widely used for the therapy of RA since the 1990s; however, its mechanism of efficacy, and potential safety concerns of the treatment are still not fully understood. This study sought to establish a transgenic arthritic mouse model by overexpressing human TNFα (hTNFα and to apply this model as a means to evaluate therapeutic consequences of TNFα inhibitors. The transgenic mouse line (TgTC with FVB background was generated by incorporating 3′-modified hTNFα gene sequences. A progressively erosive polyarthritis developed in the TgTC mice, with many characteristics observed in human rheumatoid arthritis, including polyarticular swelling, impairment of movement, synovial hyperplasia, and cartilage and bone erosion. Gene expression analysis demonstrated that hTNFα is not only expressed in hyperplastic synovial membrane, but also in tissues without lesions, including brain, lung and kidney. Treatment of the TgTC mice with anti-hTNFα monoclonal antibodies (mAb significantly decreased the level of hTNFα in the diseased joint and effectively prevented development of arthritis in a dose-dependent response fashion. Our results indicated that the TgTC mice represent a genetic model which can be used to comprehensively investigate the pathogenesis and therapeutics of TNFα-related diseases.

  18. α-Synuclein aggregation, seeding and inhibition by scyllo-inositol

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Tarek [Biological Sciences, Sunnybrook Research Institute (Canada); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M4N 3M5, ON (Canada); McLaurin, JoAnne, E-mail: jmclaurin@sri.utoronto.ca [Biological Sciences, Sunnybrook Research Institute (Canada); Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M4N 3M5, ON (Canada)

    2016-01-15

    Recent literature demonstrates the accelerated aggregation of α-synuclein, a protein implicated in the pathogenesis of Parkinson's disease (PD), by the presence of preformed fibrillar conformers in vitro. Furthermore, these preformed fibrillar seeds are suggested to accelerate pathological induction in vivo when injected into the brains of mice. Variation in the results of in vivo studies is proposed to be caused by α-synuclein conformational variants. To investigate the impact of amino acid sequence on seeding efficiency, human and mouse α-synuclein seeds, which vary at 7 amino acid residues, were generated and cross-seeding kinetics studied. Using transmission electron microscopy (TEM), we confirmed that mouse α-synuclein aggregated more rapidly than human α-synuclein. Subsequently, we determined that seeding of human and mouse α-synuclein was more rapid in the presence of seeds generated from the same species. In addition, an established amyloid inhibitor, scyllo-inositol, was examined for potential inhibitory effects on α-synuclein aggregation. TEM analysis of protein:inhibitor assays demonstrated that scyllo-inositol inhibits the aggregation of α-synuclein, suggesting the therapeutic potential of the small molecule in PD. - Highlights: • Mouse α-syn fibrillizes in a significantly shorter timeframe than human α-syn. • Seeding of monomers is more efficient when seeds originate from the same species. • scyllo-Inositol has anti-aggregation effects on mouse and human α-syn.

  19. Study of the biologic behavior of odontogenic keratocyst and orthokeratinaized odontogenic cyst using TGF-alpha and P53 markers.

    Science.gov (United States)

    Deyhimi, Parviz; Hashemzadeh, Zahra

    2014-04-01

    Odontogenic keratocyst (OKC) is an aggressive cyst, and its recurrence rate is higher than that of other odontogenic cysts. Orthokeratinized odontogenic cyst (OOC) is less aggressive than OKC, but bears the probability of carcinomatous changes. In this study, we evaluated the expression and intensity of P53 and TGF-alpha in order to compare the biologic behavior or probable carcinomatous changes of these two cysts. In this cross-sectional study, 15 OKC and 15 OOC were stained immunohistochemically for P53 and TGF-alpha using the Novolink polymer method. Then, all slides were examined by an optical microscope with 400× magnification, and the stained cells in the basal and parabasal layers were counted. Finally, the results were analyzed by the Mann-Whitney and Wilcoxon tests (P-value0.05), but the expression of P53 and TGF-alpha in the parabasal layer in OKC was statistically higher compared to OOC (P<0.05). Considering the known role of P53 and TGF-alpha in malignant changes and the higher expression of P53 and TGF-alpha in OKC compared to those in OOC, the probability of carcinomatous changes was higher in OKC than in OOC. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Chorionic gonadotropin regulates the transcript level of VHL, p53, and HIF-2alpha in human granulosa lutein cells.

    Science.gov (United States)

    Herr, D; Keck, C; Tempfer, C; Pietrowski, Detlef

    2004-12-01

    The ovarian corpus luteum plays a critical role in reproduction being the primary source of circulating progesterone. After ovulation the corpus luteum is build by avascular granulosa lutein cells through rapid vascularization regulated by gonadotropic hormones. The present study was performed to investigate whether this process might be influenced by the human chorionic gonadotropin (hCG)-dependent expression of different tumor suppressor genes and hypoxia dependent transcription factors. RNA was isolated from cultured granulosa lutein cells, transcribed into cDNA, and the transcript level of following genes were determined: RB-1, VHL, NF-1, NF-2, Wt-1, p53, APC, and hypoxia inducible factor-1 (HIF-1), -2, and -3alpha. Additionally, the influence of hCG on the expression of VHL, p53, and HIf2alpha were investigated. We demonstrate that in human granulosa lutein cells the tumor suppressor genes RB-1, VHL, NF-1, NF-2, Wt-1, p53, and APC and the hypoxia dependent transcription factors HIF-1alpha, -2alpha, and -3alpha are expressed. In addition, we showed that hCG regulates the expression of p53, VHL, and HIF-2alpha. Our results indicate that hCG may determine the growth and development of the corpus luteum by mediating hypoxic and apoptotic pathways in human granulosa lutein cells. Copyright 2004 Wiley-Liss, Inc.

  1. [Rat cardiomyocyte remodeling after neonatal cryptosporidiosis. II. Elongation, excessive polyploidization and HIF-1alpha overexpression].

    Science.gov (United States)

    Anatskaia, O V; Sidorenko, N V; Matveev, I V; Kropotov, A V; Vinogradov, A E

    2012-01-01

    Retrospective epidemyological studies evidence that infant diseases leave survivors with an increased susceptibility to cardiovascular diseases in later life. At the same time, the mechanisms of this link remain poorly understood. Based on medical statistics reporting that infectious gastroenteritis is the most common cause of maladies in babies, infants and children, we analysed the effects of moderate cryptosporidial gastroenteritis on the heart and ventricular cardiomyocyte remodelling in rats of the first month of life. The disease was challenged by a worldwide human protozoic pathogen Cryptosporidium parvum (Apicomplexa, Sporozoa). The main symptoms manifested in the growth retardation moderate diarrhea. Using real-time PCR, cytophotometry, confocal microscopy and image analysis, we indicated that cryptosporidiosis was associated, with the atrophy heart and the elongation, narrowing, protein content decrease and hyperpolyploidization of cardiomyocytes and the moderate overexpression of hypoxia inducible factor 1alpha (HIF-1alpha) mRNA. Cardiomyocyte shape remodeling and heart atrophy presented in all age groups. The severity of these changes, hovewer, declined gradually from younger to older groups. In contrast, hyperpolyploidization and HIF-1alpha mRNA overexpression were registered mainly among animals aged between 6 and 13 days, and were barely detected and non-significant in older age groups. In the rat the time period covering 6-13 days after birth is known to coincide with the intensive cardiomyocyte polyploidization and the switch from proliferation to hypertrophy. Thus, our data indicate that neonatal cryptosporidiosis may be potential cardiovascular diseases risk factor and that one of the critical time windows for the growing heart covers the time period when cardiomyocyte undergo polyploidization.

  2. Pre-fibrillar α-synuclein variants with impaired β-structure increase neurotoxicity in Parkinson's disease models

    NARCIS (Netherlands)

    Karpinar, D.P.; Giller, K.; Becker, S.; Baldus, M.

    2009-01-01

    The relation of -synuclein (S) aggregation to Parkinson's disease (PD) has long been recognized, but the mechanism of toxicity, the pathogenic species and its molecular properties are yet to be identified. To obtain insight into the function different aggregated S species have in neurotoxicity in

  3. SV40 large T-p53 complex: evidence for the presence of two immunologically distinct forms of p53

    International Nuclear Information System (INIS)

    Milner, J.; Gamble, J.

    1985-01-01

    The transforming protein of SV40 is the large T antigen. Large T binds a cellular protein, p53, which is potentially oncogenic by virtue of its functional involvement in the control of cell proliferation. This raises the possibility that p53 may mediate, in part, the transforming function of SV40 large T. Two immunologically distinct forms of p53 have been identified in normal cells: the forms are cell-cycle dependent, one being restricted to nondividing cells (p53-Go) and the second to dividing cells (p53-G divided by). The authors have now dissociated and probed the multimeric complex of SV40 large T-p53 for the presence of immunologically distinct forms of p53. Here they present evidence for the presence of p53-Go and p53-G divided by complexed with SV40 large T

  4. Deuterium isotope shifts for backbone {sup 1}H, {sup 15}N and {sup 13}C nuclei in intrinsically disordered protein {alpha}-synuclein

    Energy Technology Data Exchange (ETDEWEB)

    Maltsev, Alexander S.; Ying Jinfa; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2012-10-15

    Intrinsically disordered proteins (IDPs) are abundant in nature and characterization of their potential structural propensities remains a widely pursued but challenging task. Analysis of NMR secondary chemical shifts plays an important role in such studies, but the output of such analyses depends on the accuracy of reference random coil chemical shifts. Although uniform perdeuteration of IDPs can dramatically increase spectral resolution, a feature particularly important for the poorly dispersed IDP spectra, the impact of deuterium isotope shifts on random coil values has not yet been fully characterized. Very precise {sup 2}H isotope shift measurements for {sup 13}C{sup {alpha}}, {sup 13}C{sup {beta}}, {sup 13}C Prime , {sup 15}N, and {sup 1}H{sup N} have been obtained by using a mixed sample of protonated and uniformly perdeuterated {alpha}-synuclein, a protein with chemical shifts exceptionally close to random coil values. Decomposition of these isotope shifts into one-bond, two-bond and three-bond effects as well as intra- and sequential residue contributions shows that such an analysis, which ignores conformational dependence, is meaningful but does not fully describe the total isotope shift to within the precision of the measurements. Random coil {sup 2}H isotope shifts provide an important starting point for analysis of such shifts in structural terms in folded proteins, where they are known to depend strongly on local geometry.

  5. Identification of p53 unbound to T-antigen in human cells transformed by simian virus 40 T-antigen.

    Science.gov (United States)

    O'Neill, F J; Hu, Y; Chen, T; Carney, H

    1997-02-27

    In several clones of SV40-transformed human cells, we investigated the relative amounts of large T-Antigen (T-Ag) and p53 proteins, both unbound and associated within complexes, with the goal of identifying changes associated with transformation and immortalization. Cells were transformed by wild type (wt) T-Ag, a functionally temperature sensitive T-Ag (tsA58) and other T-Ag variants. Western analysis showed that while most of the T-Ag was ultimately bound by p53, most of the p53 remained unbound to T-Ag. Unbound p53 remained in the supernatant after a T-Ag immunoprecipitation and p53 was present in two to fourfold excess of T-Ag. In one transformant there was five to tenfold more p53 than T-Ag. p53 was present in transformants in amounts at least 200-fold greater than in untransformed human cells. In wt and variant T-Ag transformants, including those generated with tsA58 T-Ag, large amounts of unbound p53 were present in both pre-crisis and immortal cells and when the cells were grown at permissive or non-permissive temperatures. We also found that in transformants produced by tsA58, an SV40/JCV chimeric T-Ag and other variants, T-Ag appeared to form a complex with p53 slowly perhaps because one or both proteins matured slowly. The presence in transformed human cells of large amounts of unbound p53 and in excess of T-Ag suggests that sequestration of p53 by T-Ag, resulting from complex formation, is required neither for morphological transformation nor immortalization of human cells. Rather, these results support the proposal that high levels of p53, the T-Ag/p53 complexes, or other biochemical event(s), lead to transformation and immortalization of human cells by T-Ag.

  6. Alpha-synuclein is present in dental calculus but not altered in Parkinson's disease patients in comparison to controls.

    Science.gov (United States)

    Schmid, Sabrina; Goldberg-Bockhorn, Eva; Schwarz, Silke; Rotter, Nicole; Kassubek, Jan; Del Tredici, Kelly; Pinkhardt, Elmar; Otto, Markus; Ludolph, Albert C; Oeckl, Patrick

    2018-06-01

    In autopsy cases staged for sporadic Parkinson's disease (PD), the neuropathology is characterized by a preclinical phase that targets the enteric nervous system of the gastrointestinal tract (GIT). Therefore, the ENS might be a source of potential (presymptomatic) PD biomarkers. In this clinically based study, we examined the alpha-synuclein (αSyn) concentration in an easily accessible protein storage medium of the GIT, dental calculus, in 21/50 patients with PD and 28/50 age- and gender-matched controls using ELISA. αSyn was detectable in dental calculus and the median concentration in the control patients was 8.6 pg/mg calculus (interquartile range 2.6-13.1 pg/mg). αSyn concentrations were significantly influenced by blood contamination and samples with a hemoglobin concentration of > 4000 ng/mL were excluded. There was no significant difference of αSyn concentrations in the dental calculus of PD patients (5.76 pg/mg, interquartile range 2.91-9.74 pg/mg) compared to those in controls (p = 0.40). The total αSyn concentration in dental calculus is not a suitable biomarker for sporadic PD. Disease-related variants such as oligomeric or phosphorylated αSyn in calculus might prove to be more specific.

  7. Measurements of auto-antibodies to α-synuclein in the serum and cerebral spinal fluids of patients with Parkinson's disease.

    Science.gov (United States)

    Akhtar, Rizwan S; Licata, Joseph P; Luk, Kelvin C; Shaw, Leslie M; Trojanowski, John Q; Lee, Virginia M-Y

    2018-03-03

    Biomarkers for α-synuclein are needed for diagnosis and prognosis in Parkinson's disease (PD). Endogenous auto-antibodies to α-synuclein could serve as biomarkers for underlying synucleinopathy, but previous assessments of auto-antibodies have shown variability and inconsistent clinical correlations. We hypothesized that auto-antibodies to α-synuclein could be diagnostic for PD and explain its clinical heterogeneity. To test this hypothesis, we developed an enzyme-linked immunosorbent assay for measuring α-synuclein auto-antibodies in human samples. We evaluated 69 serum samples (16 healthy controls (HC) and 53 PD patients) and 145 CSF samples (52 HC and 93 PD patients) from our Institution. Both serum and CSF were available for 24 participants. Males had higher auto-antibody levels than females in both fluids. CSF auto-antibody levels were significantly higher in PD patients as compared to HC, whereas serum levels were not significantly different. CSF auto-antibody levels did not associate with amyloid-β 1-42 , total tau, or phosphorylated tau. CSF auto-antibody levels correlated with performance on the Montreal Cognitive Assessment, even when controlled for CSF amyloidβ 1-42 . CSF hemoglobin levels, as a proxy for contamination of CSF by blood during lumbar puncture, did not influence these observations. Using recombinant α-synuclein with N- and C-terminal truncations, we found that CSF auto-antibodies target amino acids 100 through 120 of α-synuclein. We conclude that endogenous CSF auto-antibodies are significantly higher in PD patients as compared to HC, suggesting that they could indicate the presence of underlying synucleinopathy. These auto-antibodies associate with poor cognition, independently of CSF amyloidβ 1-42 ., and target a select C-terminal region of α-synuclein. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Solt, Anna C; Henríquez-Roldán, Carlos; Torres-Jardón, Ricardo; Nuse, Bryan; Herritt, Lou; Villarreal-Calderón, Rafael; Osnaya, Norma; Stone, Ida; García, Raquel; Brooks, Diane M; González-Maciel, Angelica; Reynoso-Robles, Rafael; Delgado-Chávez, Ricardo; Reed, William

    2008-02-01

    Air pollution is a serious environmental problem. We investigated whether residency in cities with high air pollution is associated with neuroinflammation/neurodegeneration in healthy children and young adults who died suddenly. We measured mRNA cyclooxygenase-2, interleukin-1beta, and CD14 in target brain regions from low (n = 12) or highly exposed residents (n = 35) aged 25.1 +/- 1.5 years. Upregulation of cyclooxygenase-2, interleukin-1beta, and CD14 in olfactory bulb, frontal cortex, substantia nigrae and vagus nerves; disruption of the blood-brain barrier; endothelial activation, oxidative stress, and inflammatory cell trafficking were seen in highly exposed subjects. Amyloid beta42 (Abeta42) immunoreactivity was observed in 58.8% of apolipoprotein E (APOE) 3/3 < 25 y, and 100% of the APOE 4 subjects, whereas alpha-synuclein was seen in 23.5% of < 25 y subjects. Particulate material (PM) was seen in olfactory bulb neurons, and PM < 100 nm were observed in intraluminal erythrocytes from lung, frontal, and trigeminal ganglia capillaries. Exposure to air pollution causes neuroinflammation, an altered brain innate immune response, and accumulation of Abeta42 and alpha-synuclein starting in childhood. Exposure to air pollution should be considered a risk factor for Alzheimer's and Parkinson's diseases, and carriers of the APOE 4 allele could have a higher risk of developing Alzheimer's disease if they reside in a polluted environment.

  9. 14-3-3theta protects against neurotoxicity in a cellular Parkinson's disease model through inhibition of the apoptotic factor Bax.

    Directory of Open Access Journals (Sweden)

    Sunny R Slone

    Full Text Available Disruption of 14-3-3 function by alpha-synuclein has been implicated in Parkinson's disease. As 14-3-3s are important regulators of cell death pathways, disruption of 14-3-3s could result in the release of pro-apoptotic factors, such as Bax. We have previously shown that overexpression of 14-3-3θ reduces cell loss in response to rotenone and MPP(+ in dopaminergic cell culture and reduces cell loss in transgenic C. elegans that overexpress alpha-synuclein. In this study, we investigate the mechanism for 14-3-3θ's neuroprotection against rotenone toxicity. While 14-3-3s can inhibit many pro-apoptotic factors, we demonstrate that inhibition of one factor in particular, Bax, is important to 14-3-3s' protection against rotenone toxicity in dopaminergic cells. We found that 14-3-3θ overexpression reduced Bax activation and downstream signaling events, including cytochrome C release and caspase 3 activation. Pharmacological inhibition or shRNA knockdown of Bax provided protection against rotenone, comparable to 14-3-3θ's neuroprotective effects. A 14-3-3θ mutant incapable of binding Bax failed to protect against rotenone. These data suggest that 14-3-3θ's neuroprotective effects against rotenone are at least partially mediated by Bax inhibition and point to a potential therapeutic role of 14-3-3s in Parkinson's disease.

  10. Contribution to the study of the diffusion {alpha}-proton for {alpha} particles of 3,1 and 5,3 MeV; Contribution a l'etude de la diffusion {alpha}-proton pour des particules {alpha} d'energie comprise entre 3,1 et 5,3 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Ruhla, C [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1953-07-01

    The diffusion of the particles has by the light cores that present a weak gate of potential, must permit the survey of the nuclear strengths. Some authors, studying the distribution in energy of the protons given out by a hydrogenated target submitted to a bombardment has variable energy, signal that this distribution has a structure of groups. We tried to reproduce experiences of diffusion {alpha}-proton, in order to verify the existence of the groups of signaled protons in the previous works. However in spite of finer experimental conditions, we had recovered any group structures in the distribution of the protons. This work permits to conclude that there is not a resonance in the {alpha}-proton diffusion for included energies between 3,1 and 5,3 MeV. The absence of resonances confirms the existence of the fundamental level of {sup 5}Li above in the neighborhood of 1,8 MeV {sup 4}He + {sup 1}H. (M.B.) [French] La diffusion des particules a par les noyaux legers qui presentent une faible barriere de potentiel, doit permettre l'etude des forces nucleaires. certains auteurs, etudiant la distribution en energie des protons emis par une cible hydrogenee soumise a un bombardement a d'energie variable, signalent que cette distribution a une structure de groupes. Nous avons essaye de reproduire les experiences du type diffusion {alpha}-proton, afin de verifier l'existence des groupes de protons signales dans les travaux anterieurs. Cependant malgre des conditions experimentales plus fines, nous n'avons retrouve aucunce structure de groupe dans la distribution des protons. Ce travail permet de conclure qu'il n'y a pas de resonance dans la diffusion {alpha}-proton pour des energies comprises entre 3,1 et 5,3 MeV. L'absence de resonances confirme l'existence du niveau fondamental de {sup 5}Li au voisinage de 1,8 MeV au-dessus de {sup 4}He + {sup 1}H. (M.B.)

  11. HIF1-alpha overexpression indicates a good prognosis in early stage squamous cell carcinomas of the oral floor

    International Nuclear Information System (INIS)

    Fillies, Thomas; Werkmeister, Richard; Diest, Paul J van; Brandt, Burkhard; Joos, Ulrich; Buerger, Horst

    2005-01-01

    Hypoxia-inducible factor 1 (HIF-1) is a transcription factor, which plays a central role in biologic processes under hypoxic conditions, especially concerning tumour angiogenesis. HIF-1α is the relevant, oxygen-dependent subunit and its overexpression has been associated with a poor prognosis in a variety of malignant tumours. Therefore, HIF-1α expression in early stage oral carcinomas was evaluated in relation to established clinico-pathological features in order to determine its value as a prognostic marker. 85 patients with histologically proven surgically treated T1/2 squamous cell carcinoma (SCC) of the oral floor were eligible for the study. Tumor specimens were investigated by means of tissue micro arrays (TMAs) and immunohistochemistry for the expression of HIF-1. Correlations between clinical features and the expression of HIF-1 were evaluated by Kaplan-Meier curves, log-rank tests and multivariate Cox regression analysis. HIF-1α was frequently overexpressed in a probably non-hypoxia related fashion. The expression of HIF-1α was related with a significantly improved 5-year survival rate (p < 0.01) and a significantly increased disease free period (p = 0.01) independent from nodal status and tumour size. In primary node negative T1/T2 SCC of the oral floor, absence of HIF-1α expression specified a subgroup of high-risk patients (p < 0.05). HIF-1α overexpression is an indicator of favourable prognosis in T1 and T2 SCC of the oral floor. Node negative patients lacking HIF-1α expression may therefore be considered for adjuvant radiotherapy

  12. A surrogate p53 reporter in Drosophila reveals the interaction of eIF4E and p53

    International Nuclear Information System (INIS)

    Corujo, G.; Campagno, R.; Rivera Pomar, R.; Ferrero, P.; Lu, W.J.

    2011-01-01

    eIF4E promotes translation upon binding the mRNA 5'cap and it is required for cell proliferation. p53 is a proapoptotic protein which is activated in response to DNA damage. There is evidence that suggests that eIF4E and p53 are connected in a mechanism that regulates their function. We propose a model for that such a mechanism to explain the equilibrium between apoptosis and cell proliferation. Our data shows a correlation between the overexpression of eIF4E and the suppression of apoptosis triggered by the overexpression of p53 in Drosophila imaginal discs. We also studied a reporter transgene which expresses GFP in response to p53 activation by gamma radiation. We could confirm that this p53 surrogate works in imaginal discs as well as in embryos. This provided us a tool to quantify the effect on the GFP signal by overexpression of eIF4E to confirm how these two proteins could interact in vivo. Our results suggest that p53 and eIF4E are indeed in an equilibrium that decides if a cell shall proliferate or die. (authors)

  13. The human T-cell leukemia virus type-1 p30II protein activates p53 and induces the TIGAR and suppresses oncogene-induced oxidative stress during viral carcinogenesis.

    Science.gov (United States)

    Romeo, Megan; Hutchison, Tetiana; Malu, Aditi; White, Averi; Kim, Janice; Gardner, Rachel; Smith, Katie; Nelson, Katherine; Bergeson, Rachel; McKee, Ryan; Harrod, Carolyn; Ratner, Lee; Lüscher, Bernhard; Martinez, Ernest; Harrod, Robert

    2018-05-01

    In normal cells, aberrant oncogene expression leads to the accumulation of cytotoxic metabolites, including reactive oxygen species (ROS), which can cause oxidative DNA-damage and apoptosis as an intrinsic barrier against neoplastic disease. The c-Myc oncoprotein is overexpressed in many lymphoid cancers due to c-myc gene amplification and/or 8q24 chromosomal translocations. Intriguingly, p53 is a downstream target of c-Myc and hematological malignancies, such as adult T-cell leukemia/lymphoma (ATL), frequently contain wildtype p53 and c-Myc overexpression. We therefore hypothesized that p53-regulated pro-survival signals may thwart the cell's metabolic anticancer defenses to support oncogene-activation in lymphoid cancers. Here we show that the Tp53-induced glycolysis and apoptosis regulator (TIGAR) promotes c-myc oncogene-activation by the human T-cell leukemia virus type-1 (HTLV-1) latency-maintenance factor p30 II , associated with c-Myc deregulation in ATL clinical isolates. TIGAR prevents the intracellular accumulation of c-Myc-induced ROS and inhibits oncogene-induced cellular senescence in ATL, acute lymphoblastic leukemia, and multiple myeloma cells with elevated c-Myc expression. Our results allude to a pivotal role for p53-regulated antioxidant signals as mediators of c-Myc oncogenic functions in viral and non-viral lymphoid tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. p25alpha relocalizes in oligodendroglia from myelin to cytoplasmic inclusions in multiple system atrophy

    DEFF Research Database (Denmark)

    Song, Yun Ju C; Lundvig, Ditte M S; Huang, Yue

    2007-01-01

    cytoplasmic inclusions. Overall, the data indicate that changes in the cellular interactions between MBP and p25alpha occur early in MSA and contribute to abnormalities in myelin and subsequent alpha-synuclein aggregation and the ensuing neuronal degeneration that characterizes this disease....

  15. Mesenchymal Stem Cells Inhibit Transmission of α-Synuclein by Modulating Clathrin-Mediated Endocytosis in a Parkinsonian Model

    Directory of Open Access Journals (Sweden)

    Se Hee Oh

    2016-02-01

    Full Text Available Ample evidence suggests that α-synuclein is released from cells and propagated from one area of the brain to others via cell-to-cell transmission. In terms of their prion-like behavior, α-synuclein propagation plays key roles in the pathogenesis and progression of α-synucleinopathies. Using α-synuclein-enriched models, we show that mesenchymal stem cells (MSCs inhibited α-synuclein transmission by blocking the clathrin-mediated endocytosis of extracellular α-synuclein via modulation of the interaction with N-methyl-D-aspartate receptors, which led to a prosurvival effect on cortical and dopaminergic neurons with functional improvement of motor deficits in α-synuclein-enriched models. Furthermore, we identify that galectin-1, a soluble factor derived from MSCs, played an important role in the transmission control of aggregated α-synuclein in these models. The present data indicated that MSCs exert neuroprotective properties through inhibition of extracellular α-synuclein transmission, suggesting that the property of MSCs may act as a disease-modifying therapy in subjects with α-synucleinopathies.

  16. Diffusion Kurtosis Imaging Detects Microstructural Alterations in Brain of alfa-Synuclein Overexpressing Transgenic Mouse Model of Parkinson’s Disease: A Pilot Study

    Czech Academy of Sciences Publication Activity Database

    Khainar, A.; Latta, P.; Dražanová, Eva; Rudá-Kučerová, J.; Szabó, N.; Arab, A.; Hutter-Paier, B.; Havas, D.; Windisch, M.; Šulcová, A.; Starčuk jr., Zenon; Rektorová, I.

    2015-01-01

    Roč. 28, č. 4 (2015), 281-289 ISSN 1029-8428 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : diffusion kurtosis imaging * alfa-Synuclein * TNWT-61 * Parkinson’s disease * Transgenic mice * TBSS Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.140, year: 2015

  17. Overexpression of the catalytically impaired Taspase1 T234V or Taspase1 D233A variants does not have a dominant negative effect in T(4;11 leukemia cells.

    Directory of Open Access Journals (Sweden)

    Carolin Bier

    Full Text Available BACKGROUND: The chromosomal translocation t(4;11(q21;q23 is associated with high-risk acute lymphoblastic leukemia of infants. The resulting AF4•MLL oncoprotein becomes activated by Taspase1 hydrolysis and is considered to promote oncogenic transcriptional activation. Hence, Taspase1's proteolytic activity is a critical step in AF4•MLL pathophysiology. The Taspase1 proenzyme is autoproteolytically processed in its subunits and is assumed to assemble into an αββα-heterodimer, the active protease. Therefore, we investigated here whether overexpression of catalytically inactive Taspase1 variants are able to interfere with the proteolytic activity of the wild type enzyme in AF4•MLL model systems. METHODOLOGY/FINDINGS: The consequences of overexpressing the catalytically dead Taspase1 mutant, Taspase1(T234V, or the highly attenuated variant, Taspase1(D233A, on Taspase1's processing of AF4•MLL and of other Taspase1 targets was analyzed in living cancer cells employing an optimized cell-based assay. Notably, even a nine-fold overexpression of the respective Taspase1 mutants neither inhibited Taspase1's cis- nor trans-cleavage activity in vivo. Likewise, enforced expression of the α- or β-subunits showed no trans-dominant effect against the ectopically or endogenously expressed enzyme. Notably, co-expression of the individual α- and β-subunits did not result in their assembly into an enzymatically active protease complex. Probing Taspase1 multimerization in living cells by a translocation-based protein interaction assay as well as by biochemical methods indicated that the inactive Taspase1 failed to assemble into stable heterocomplexes with the wild type enzyme. CONCLUSIONS: Collectively, our results demonstrate that inefficient heterodimerization appears to be the mechanism by which inactive Taspase1 variants fail to inhibit wild type Taspase1's activity in trans. Our work favours strategies targeting Taspase1's catalytic activity

  18. Minnelide/Triptolide Impairs Mitochondrial Function by Regulating SIRT3 in P53-Dependent Manner in Non-Small Cell Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    Full Text Available Minnelide/Triptolide (TL has recently emerged as a potent anticancer drug in non-small cell lung cancer (NSCLC. However, the precise mechanism of its action remains ambiguous. In this study, we elucidated the molecular basis for TL-induced cell death in context to p53 status. Cell death was attributed to dysfunction of mitochondrial bioenergetics in p53-deficient cells, which was characterized by decreased mitochondrial respiration, steady-state ATP level and membrane potential, but augmented reactive oxygen species (ROS. Increased ROS production resulted in oxidative stress in TL-treated cells. This was exhibited by elevated nuclear levels of a redox-sensitive transcriptional factor, NF-E2-related factor-2 (NRF2, along with diminished cellular glutathione (GSH content. We further demonstrated that in the absence of p53, TL blunted the expression of mitochondrial SIRT3 triggering increased acetylation of NDUAF9 and succinate dehydrogenase, components of complexes I and II of the electron transport chain (ETC. TL-mediated hyperacetylation of complexes I and II proteins and these complexes displayed decreased enzymatic activities. We also provide the evidence that P53 regulate steady-state level of SIRT3 through Proteasome-Pathway. Finally, forced overexpression of Sirt3, but not deacetylase-deficient mutant of Sirt3 (H243Y, restored the deleterious effect of TL on p53-deficient cells by rescuing mitochondrial bioenergetics. On contrary, Sirt3 deficiency in the background of wild-type p53 triggered TL-induced mitochondrial impairment that echoed TL effect in p53-deficeint cells. These findings illustrate a novel mechanism by which TL exerts its potent effects on mitochondrial function and ultimately the viability of NSCLC tumor.

  19. A Dual Role of P53 in Regulating Colistin-Induced Autophagy in PC-12 Cells

    Directory of Open Access Journals (Sweden)

    Ziyin Lu

    2017-10-01

    Full Text Available This study aimed to investigate the mechanism of p53 in regulating colistin-induced autophagy in PC-12 cells. Importantly, cells were treated with 125 μg/ml colistin for 12 and 24 h after transfection with p53 siRNA or recombinant plasmid. The hallmarks of autophagy and apoptosis were examined by real-time PCR and western blot, fluorescence/immunofluorescence microscopy, and electron microscopy. The results showed that silencing of p53 leads to down-regulation of Atg5 and beclin1 for 12 h while up-regulation at 24 h and up-regulation of p62 noted. The ratio of LC3-II/I and autophagic vacuoles were significantly increased at 24 h, but autophagy flux was blocked. The cleavage of caspase3 and PARP (poly ADP-ribose polymerase were enhanced, while PC-12-sip53 cells exposed to 3-MA showed down-regulation of apoptosis. By contrast, the expression of autophagy-related genes and protein reduced in p53 overexpressing cells following a time dependent manner. Meanwhile, there was an increase in the expression of activated caspase3 and PARP, condensed and fragmented nuclei were evident. Conclusively, the data supported that silencing of p53 promotes impaired autophagy, which acts as a pro-apoptotic induction factor in PC-12 cells treated with colistin for 24 h, and overexpression of p53 inhibits autophagy and accelerates apoptosis. Hence, it has been suggested that p53 could not act as a neuro-protective target in colistin-induced neurotoxicity.

  20. HIF1-alpha overexpression indicates a good prognosis in early stage squamous cell carcinomas of the oral floor

    Directory of Open Access Journals (Sweden)

    Joos Ulrich

    2005-07-01

    Full Text Available Abstract Background Hypoxia-inducible factor 1 (HIF-1 is a transcription factor, which plays a central role in biologic processes under hypoxic conditions, especially concerning tumour angiogenesis. HIF-1α is the relevant, oxygen-dependent subunit and its overexpression has been associated with a poor prognosis in a variety of malignant tumours. Therefore, HIF-1α expression in early stage oral carcinomas was evaluated in relation to established clinico-pathological features in order to determine its value as a prognostic marker. Methods 85 patients with histologically proven surgically treated T1/2 squamous cell carcinoma (SCC of the oral floor were eligible for the study. Tumor specimens were investigated by means of tissue micro arrays (TMAs and immunohistochemistry for the expression of HIF-1. Correlations between clinical features and the expression of HIF-1 were evaluated by Kaplan-Meier curves, log-rank tests and multivariate Cox regression analysis. Results HIF-1α was frequently overexpressed in a probably non-hypoxia related fashion. The expression of HIF-1α was related with a significantly improved 5-year survival rate (p Conclusion HIF-1α overexpression is an indicator of favourable prognosis in T1 and T2 SCC of the oral floor. Node negative patients lacking HIF-1α expression may therefore be considered for adjuvant radiotherapy.

  1. Impaired c-Fos and polo-like kinase 2 induction in the limbic system of fear-conditioned α-synuclein transgenic mice.

    Directory of Open Access Journals (Sweden)

    Heinrich Schell

    Full Text Available α-Synuclein (αSYN is genetically and neuropathologically linked to a spectrum of neurodegenerative diseases including Parkinson's disease, dementia with Lewy bodies, and related disorders. Cognitive impairment is recapitulated in several αSYN transgenic mouse lines. However, the mechanisms of dysfunction in affected neurons are largely unknown. Here we measured neuronal activity induced gene products in the limbic system of αSYN transgenic mice upon fear conditioning (FC. Induction of the synaptic plasticity marker c-Fos was significantly reduced in the amygdala and hippocampus of (Thy1-h[A30P]αSYN transgenic mice in an age-dependent manner. Similarly, the neuronal activity inducible polo-like kinase 2 (Plk2 that can phosphorylate αSYN at the pathological site serine-129 was up-regulated in both brain regions upon FC. Plk2 inductions were also significantly impaired in aged (Thy1-h[A30P]αSYN transgenic mice, both in the amygdala and hippocampus. Plk2 inductions in the amygdala after FC were paralleled by a small but significant increase in the number of neuronal cell bodies immunopositive for serine-129 phosphorylated αSYN in young but not aged (Thy1-h[A30P]αSYN transgenic mice. In addition, we observed in the aged hippocampus a distinct type of apparently unmodified transgenic αSYN profiles resembling synaptic accumulations of αSYN. Thus, the cognitive decline observed in aged αSYN transgenic mice might be due to impairment of neurotransmission and synaptic plasticity in the limbic system by distinct αSYN species.

  2. Mechanisms of the p(He 6,He 5)d, p(He 6,{alpha})t and p(He 6,t){alpha} reactions

    Energy Technology Data Exchange (ETDEWEB)

    Heiberg-Andersen, Henning

    2002-07-01

    This work was devoted to nucleon induced transfer reactions having the potential to probe the sub-cluster structures of the benchmark halo nucleus He 6, without the question marks the necessarily omitted exchange effects tend to put behind the CRC results when both collision partners are composite systems. Still, the exchange complications entered the analysis in an ironic way: The high Q-value of the p(He 6,{alpha})t and p(He 6, t){alpha} reactions caused sensitivity to the t - {alpha} optical potential at small radii, where the one-nucleon exchange effects are strongest. Since the attempt to throw them out of the extracted tau - {alpha} potential failed, it was necessary to extend the model space to avoid a too difficult modelling of the local equivalent t - {alpha} potential. By this step, all the complications originating from antisymmetrization within a larger model space entered the analysis. However, the persistent failures of the two-channel calculations of this and previous works can hardly be due to incorrect treatment of exchange effects only, so the loss of simplicity is probably illusory. Even at small angles, where the surface processes dominate, none of the two-channel calculations with various choices of t - {alpha} optical potentials managed to reproduce the p(He 6, {alpha})t (p(He 6,t){alpha}) data. This motivated inclusion of sequential transfers through the d + He 5 channel, where the sequential triton transfer process, included just for consistency in the coupling scheme of the four-channel calculation, turned out to be more influent than expected. The satisfactory reproduction of both the p(He 6, He 5)d and the p(He 6,{alpha})t (p(He 6,t){alpha}) data by the four-channel approach and the required re-normalization the real part of the p - He 6 optical potential are strong indications of substantial contributions from sequential transfer of the halo neutrons at this energy. The conclusions that can be drawn from this work are limited by the

  3. Amyloid β Is Not the Major Factor Accounting for Impaired Adult Hippocampal Neurogenesis in Mice Overexpressing Amyloid Precursor Protein

    Directory of Open Access Journals (Sweden)

    Hongyu Pan

    2016-10-01

    Full Text Available Adult hippocampal neurogenesis was impaired in several Alzheimer's disease models overexpressing mutant human amyloid precursor protein (hAPP. However, the effects of wild-type hAPP on adult neurogenesis and whether the impaired adult hippocampal neurogenesis was caused by amyloid β (Aβ or APP remained unclear. Here, we found that neurogenesis was impaired in the dentate gyrus (DG of adult mice overexpressing wild-type hAPP (hAPP-I5 compared with controls. However, the adult hippocampal neurogenesis was more severely impaired in hAPP-I5 than that in hAPP-J20 mice, which express similar levels of hAPP mRNA but much higher levels of Aβ. Furthermore, reducing Aβ levels did not affect the number of doublecortin-positive cells in the DG of hAPP-J20 mice. Our results suggested that hAPP was more likely an important factor inhibiting adult neurogenesis, and Aβ was not the major factor affecting neurogenesis in the adult hippocampus of hAPP mice.

  4. New roles of glycosaminoglycans in α-synuclein aggregation in a cellular model of Parkinson disease.

    Directory of Open Access Journals (Sweden)

    Sonia Lehri-Boufala

    Full Text Available The causes of Parkinson disease (PD remain mysterious, although some evidence supports mitochondrial dysfunctions and α-synuclein accumulation in Lewy bodies as major events. The abnormal accumulation of α-synuclein has been associated with a deficiency in the ubiquitin-proteasome system and the autophagy-lysosomal pathway. Cathepsin D (cathD, the major lysosomal protease responsible of α-synuclein degradation was described to be up-regulated in PD model. As glycosaminoglycans (GAGs regulate cathD activity, and have been recently suggested to participate in PD physiopathology, we investigated their role in α-synuclein accumulation by their intracellular regulation of cathD activity. In a classical neuroblastoma cell model of PD induced by MPP+, the genetic expression of GAGs-biosynthetic enzymes was modified, leading to an increase of GAGs amounts whereas intracellular level of α-synuclein increased. The absence of sulfated GAGs increased intracellular cathD activity and limited α-synuclein accumulation. GAGs effects on cathD further suggested that specific sequences or sulfation patterns could be responsible for this regulation. The present study identifies, for the first time, GAGs as new regulators of the lysosome degradation pathway, regulating cathD activity and affecting two main biological processes, α-synuclein aggregation and apoptosis. Finally, this opens new insights into intracellular GAGs functions and new fields of investigation for glycobiological approaches in PD and neurobiology.

  5. Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes.

    Science.gov (United States)

    Abounit, Saïda; Bousset, Luc; Loria, Frida; Zhu, Seng; de Chaumont, Fabrice; Pieri, Laura; Olivo-Marin, Jean-Christophe; Melki, Ronald; Zurzolo, Chiara

    2016-10-04

    Synucleinopathies such as Parkinson's disease are characterized by the pathological deposition of misfolded α-synuclein aggregates into inclusions throughout the central and peripheral nervous system. Mounting evidence suggests that intercellular propagation of α-synuclein aggregates may contribute to the neuropathology; however, the mechanism by which spread occurs is not fully understood. By using quantitative fluorescence microscopy with co-cultured neurons, here we show that α-synuclein fibrils efficiently transfer from donor to acceptor cells through tunneling nanotubes (TNTs) inside lysosomal vesicles. Following transfer through TNTs, α-synuclein fibrils are able to seed soluble α-synuclein aggregation in the cytosol of acceptor cells. We propose that donor cells overloaded with α-synuclein aggregates in lysosomes dispose of this material by hijacking TNT-mediated intercellular trafficking. Our findings thus reveal a possible novel role of TNTs and lysosomes in the progression of synucleinopathies. © 2016 The Authors.

  6. Regulation of Id2 expression in EL4 T lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Weigent, Douglas A

    2009-01-01

    In previous studies, we have shown that overexpression of growth hormone (GH) in cells of the immune system upregulates proteins involved in cell growth and protects from apoptosis. Here, we report that overexpression of GH in EL4 T lymphoma cells (GHo) also significantly increased levels of the inhibitor of differentiation-2 (Id2). The increase in Id2 was suggested in both Id2 promoter luciferase assays and by Western analysis for Id2 protein. To identify the regulatory elements that mediate transcriptional activation by GH in the Id2 promoter, promoter deletion analysis was performed. Deletion analysis revealed that transactivation involved a 301-132bp region upstream to the Id2 transcriptional start site. The pattern in the human GHo Jurkat T lymphoma cell line paralleled that found in the mouse GHo EL4 T lymphoma cell line. Significantly less Id2 was detected in the nucleus of GHo EL4 T lymphoma cells compared to vector alone controls. Although serum increased the levels of Id2 in control vector alone cells, no difference was found in the total levels of Id2 in GHo EL4 T lymphoma cells treated with or without serum. The increase in Id2 expression in GHo EL4 T lymphoma cells measured by Id2 promoter luciferase expression and Western blot analysis was blocked by the overexpression of a dominant-negative mutant of STAT5. The results suggest that in EL4 T lymphoma cells overexpressing GH, there is an upregulation of Id2 protein that appears to involve STAT protein activity.

  7. Neuroprotective effects of lentivirus-mediated cystathionine-beta-synthase overexpression against 6-OHDA-induced parkinson's disease rats.

    Science.gov (United States)

    Yin, Wei-Lan; Yin, Wei-Guo; Huang, Bai-Sheng; Wu, Li-Xiang

    2017-09-14

    Parkinson's disease (PD) is age-related neurodegenerative disorder by a progressive loss of dopaminergic(DA) neurons in the substantia nigra (SN) and striatum, which is at least partly associated with α-synuclein protein accumulation in these neurons. Hydrogen sulfide (H 2 S) plays an important role in the nervous system. Studies have shown that H 2 S has a protective effect on PD. However, as a kind of gas molecules, H 2 S is lively, volatile, and not conducive to scientific research and clinical application. Cystathionine-beta-synthase(CBS) is the main enzymes of synthesis of H 2 S in the brain. In order to examine the neuroprotective effects of CBS on PD, we detected the effects of CBS overexpression on 6-Hydroxydopamine (6-OHDA)-lesioned PD rats using lentivirus-mediated gene transfection techniques. In the injured SN of 6-OHDA-induced PD rats, the CBS expression and the endogenous H 2 S level markedly decreased, while administration of lentivirus-mediated CBS overexpression increased the CBS expression and the endogenous H 2 S production.CBS overexpression dramatically reversed apomorphine-induced rotation of the 6-OHDA model rats, decreased the number of TUNEL-positive neurons and the loss of the nigral DA neurons,specifically inhibited 6-OHDA-induced oxidase stress injury, and down-regulated the expression of α-synuclein(α-SYN) in the injured SN. NaHS (an H 2 S donor) had similar effects to CBS overexpression, while Amino-oxyacetate(AOAA, a CBS inhibitor) had opposite effects on PD rats. In summary, we demonstrated that CBS overexpression was able to provide neuroprotective on PD rats and improving the expression of CBS may be a potential therapeutic method for PD. Copyright © 2017. Published by Elsevier B.V.

  8. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    International Nuclear Information System (INIS)

    Guo, Hongsheng; Wu, Fenping; Wang, Yan; Yan, Chong; Su, Wenmei

    2014-01-01

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management

  9. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongsheng [Department of Histology and Embryology, Guangdong Medical College, Dongguan 523808, Guangdong (China); Wu, Fenping [The 7th People’s Hospital of Chengdu, Chengdu 610041, Sichuan (China); Wang, Yan [The Second School of Clinical Medicine, Guangdong Medical College, Dongguan 523808, Guangdong (China); Yan, Chong [School of Pharmacy, Guangdong Medical College, Dongguan 523808, Guangdong (China); Su, Wenmei, E-mail: wenmeisutg@126.com [Oncology of Affiliated Hospital Guangdong Medical College, Zhanjiang 524000, Guangdong (China)

    2014-08-08

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.

  10. Alpha spectral power and coherence in the patients with mild cognitive impairment during a three-level working memory task

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: The functional relationship between calculated alpha band spectral power and inter-/intra-hemispheric coherence during a three-level working memory task of patients with mild cognitive impairment (MCI) was investigated. Methods:Subjects included 35 MCI patients according to the DSM-Ⅳ criteria (mean age: 62.3, SD: 6.5) and 34 healthy controls (mean age:57.4, SD: 4.0) were selected from the community at large. All subjects performed a simple calculation and recall task with three levels of working memory load while electroencephalograph (EEG) signal was recorded. The spectral EEG power was computed over alphal (8.0~10.0 Hz) and alpha2 (10.5~13.0 Hz) frequency bands and was compared between rest stage and working memory processing stage by two-way ANOVA. Post hoc testing analyzed the differences between each two levels of working memory load during task processing. The inter-hemisphere EEG coherence of frontal (F3-F4), central (C3-C4), parietal (P3-P4), temporal (T5-T6) as well as occipital (O1-O2) was compared between MCI patients and normal controls. The EEG signals from F3-C3,F4-C4, C3-P3, C4-P4, P3-O1, P4-O2, T5-C3, T6-C4, T5-P3 and T6-P4 electrode pairs resulted from the intra-hemispheric action for alphal and alpha2 frequency bands. Result: There was significantly higher EEG power from MCI patients than from normal controls both at rest and during working memory processing. Significant differences existed between rest condition and three-level working memory tasks (P<0.001). The inter- and intra-hemispheric coherence during working memory tasks showed a "drop to rise" tendency compared to that at rest condition. There was significantly higher coherence in MCI patients than in the controls.When task difficulties increased, the cortical connectivity of intra-hemispheric diminished while the inter-hemispheric connectivity dominantly maintained the cognitive processing in MCI patients. Conclusion: The results of the present study indicate that the

  11. Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides.

    Science.gov (United States)

    Di Scala, Coralie; Yahi, Nouara; Flores, Alessandra; Boutemeur, Sonia; Kourdougli, Nazim; Chahinian, Henri; Fantini, Jacques

    2016-02-01

    Growing evidence supports a role for brain gangliosides in the pathogenesis of neurodegenerative diseases including Alzheimer's and Parkinson's. Recently we deciphered the ganglioside-recognition code controlling specific ganglioside binding to Alzheimer's β-amyloid (Aβ1-42) peptide and Parkinson's disease-associated protein α-synuclein. Cracking this code allowed us to engineer a short chimeric Aβ/α-synuclein peptide that recognizes all brain gangliosides. Here we show that ganglioside-deprived neural cells do no longer sustain the formation of zinc-sensitive amyloid pore channels induced by either Aβ1-42 or α-synuclein, as assessed by single-cell Ca(2+) fluorescence microscopy. Thus, amyloid channel formation, now considered a key step in neurodegeneration, is a ganglioside-dependent process. Nanomolar concentrations of chimeric peptide competitively inhibited amyloid pore formation induced by Aβ1-42 or α-synuclein in cultured neural cells. Moreover, this peptide abrogated the intracellular calcium increases induced by Parkinson's-associated mutant forms of α-synuclein (A30P, E46K and A53T). The chimeric peptide also prevented the deleterious effects of Aβ1-42 on synaptic vesicle trafficking and decreased the Aβ1-42-induced impairment of spontaneous activity in rat hippocampal slices. Taken together, these data show that the chimeric peptide has broad anti-amyloid pore activity, suggesting that a common therapeutic strategy based on the prevention of amyloid-ganglioside interactions is a reachable goal for both Alzheimer's and Parkinson's diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport

    Science.gov (United States)

    Freundt, Eric C.; Maynard, Nate; Clancy, Eileen K.; Roy, Shyamali; Bousset, Luc; Sourigues, Yannick; Covert, Markus; Melki, Ronald; Kirkegaard, Karla; Brahic, Michel

    2012-01-01

    Objective The lesions of Parkinson's disease spread through the brain in a characteristic pattern that corresponds to axonal projections. Previous observations suggest that misfolded α-synuclein could behave as a prion, moving from neuron to neuron and causing endogenous α-synuclein to misfold. Here, we characterized and quantified the axonal transport of α-synuclein fibrils and showed that fibrils could be transferred from axons to second-order neurons following anterograde transport. Methods We grew primary cortical mouse neurons in microfluidic devices to separate soma from axonal projections in fluidically isolated microenvironments. We used live-cell imaging and immunofluorescence to characterize the transport of fluorescent α-synuclein fibrils and their transfer to second-order neurons. Results Fibrillar α-synuclein was internalized by primary neurons and transported in axons with kinetics consistent with slow component-b of axonal transport (fast axonal transport with saltatory movement). Fibrillar α-synuclein was readily observed in the cell bodies of second-order neurons following anterograde axonal transport. Axon-to-soma transfer appeared not to require synaptic contacts. Interpretation These results support the hypothesis that the progression of Parkinson's disease can be caused by neuron-to-neuron spread of α-synuclein aggregates and that the anatomical pattern of progression of lesions between axonally connected areas results from the axonal transport of such aggregates. That the transfer did not appear to be transsynaptic gives hope that α-synuclein fibrils could be intercepted by drugs during the extra-cellular phase of their journey. PMID:23109146

  13. Investigation of intramolecular dynamics and conformations of α-, β- and γ-synuclein.

    Directory of Open Access Journals (Sweden)

    Vanessa C Ducas

    Full Text Available The synucleins are a family of natively unstructured proteins consisting of α-, β-, and γ-synuclein which are primarily expressed in neurons. They have been linked to a wide variety of pathologies, including neurological disorders, such as Parkinson's disease (α-synuclein and dementia with Lewy bodies (α- and β-synuclein, as well as various types of cancers (γ-synuclein. Self-association is a key pathological feature of many of these disorders, with α-synuclein having the highest propensity to form aggregates, while β-synuclein is the least prone. Here, we used a combination of fluorescence correlation spectroscopy and single molecule Förster resonance energy transfer to compare the intrinsic dynamics of different regions of all three synuclein proteins to investigate any correlation with putative functional or dysfunctional interactions. Despite a relatively high degree of sequence homology, we find that individual regions sample a broad range of diffusion coefficients, differing by almost a factor of four. At low pH, a condition that accelerates aggregation of α-synuclein, on average smaller diffusion coefficients are measured, supporting a hypothesis that slower intrachain dynamics may be correlated with self-association. Moreover, there is a surprising inverse correlation between dynamics and bulkiness of the segments. Aside from this observation, we could not discern any clear relationship between the physico-chemical properties of the constructs and their intrinsic dynamics. This work suggests that while protein dynamics may play a role in modulating self-association or interactions with other binding partners, other factors, particularly the local cellular environment, may be more important.

  14. Alternative splicing of T cell receptor (TCR) alpha chain transcripts containing V alpha 1 or V alpha 14 elements.

    Science.gov (United States)

    Mahotka, C; Hansen-Hagge, T E; Bartram, C R

    1995-10-01

    Human acute lymphoblastic leukemia cell lines represent valuable tools to investigate distinct steps of the complex regulatory pathways underlying T cell receptor recombination and expression. A case in point are V delta 2D delta 3 and subsequent V delta 2D delta 3J alpha rearrangements observed in human leukemic pre-B cells as well as in normal lymphopoiesis. The functional expression of these unusual (VD) delta (JC) alpha hybrids is almost exclusively prevented by alternative splicing events. In this report we show that alternative splicing at cryptic splice donor sites within V elements is not a unique feature of hybrid TCR delta/alpha transcripts. Among seven V alpha families analyzed by RT-PCR, alternatively spliced products were observed in TCR alpha recombinations containing V alpha 1 or V alpha 14 elements. In contrast to normal peripheral blood cells and thymocytes, the leukemia cell line JM expressing functional V alpha 1J alpha 3C alpha transcripts lacked evidence of aberrant TCR alpha RNA species.

  15. Nitric Oxide Synthase Type III Overexpression By Gene Therapy Exerts Antitumoral Activity In Mouse Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Raúl González

    2015-08-01

    Full Text Available Hepatocellular carcinoma develops in cirrhotic liver. The nitric oxide (NO synthase type III (NOS-3 overexpression induces cell death in hepatoma cells. The study developed gene therapy designed to specifically overexpress NOS-3 in cultured hepatoma cells, and in tumors derived from orthotopically implanted tumor cells in fibrotic livers. Liver fibrosis was induced by CCl4 administration in mice. Hepa 1-6 cells were used for in vitro and in vivo experiments. The first generation adenovirus was designed to overexpress NOS-3 (or GFP and luciferase cDNA under the regulation of murine alpha-fetoprotein (AFP and Rous Sarcoma Virus (RSV promoters, respectively. Both adenoviruses were administered through the tail vein two weeks after orthotopic tumor cell implantation. AFP-NOS-3/RSV-Luciferase increased oxidative-related DNA damage, p53, CD95/CD95L expression and caspase-8 activity in cultured Hepa 1-6 cells. The increased expression of CD95/CD95L and caspase-8 activity was abolished by l-NAME or p53 siRNA. The tail vein infusion of AFP-NOS- 3/RSV-Luciferase adenovirus increased cell death markers, and reduced cell proliferation of established tumors in fibrotic livers. The increase of oxidative/nitrosative stress induced by NOS-3 overexpression induced DNA damage, p53, CD95/CD95L expression and cell death in hepatocellular carcinoma cells. The effectiveness of the gene therapy has been demonstrated in vitro and in vivo.

  16. Evidence for Intramolecular Antiparallel Beta-Sheet Structure in Alpha-Synuclein Fibrils from a Combination of Two-Dimensional Infrared Spectroscopy and Atomic Force Microscopy

    Science.gov (United States)

    Roeters, Steven J.; Iyer, Aditya; Pletikapić, Galja; Kogan, Vladimir; Subramaniam, Vinod; Woutersen, Sander

    2017-01-01

    The aggregation of the intrinsically disordered protein alpha-synuclein (αS) into amyloid fibrils is thought to play a central role in the pathology of Parkinson’s disease. Using a combination of techniques (AFM, UV-CD, XRD, and amide-I 1D- and 2D-IR spectroscopy) we show that the structure of αS fibrils varies as a function of ionic strength: fibrils aggregated in low ionic-strength buffers ([NaCl] ≤ 25 mM) have a significantly different structure than fibrils grown in higher ionic-strength buffers. The observations for fibrils aggregated in low-salt buffers are consistent with an extended conformation of αS molecules, forming hydrogen-bonded intermolecular β-sheets that are loosely packed in a parallel fashion. For fibrils aggregated in high-salt buffers (including those prepared in buffers with a physiological salt concentration) the measurements are consistent with αS molecules in a more tightly-packed, antiparallel intramolecular conformation, and suggest a structure characterized by two twisting stacks of approximately five hydrogen-bonded intermolecular β-sheets each. We find evidence that the high-frequency peak in the amide-I spectrum of αS fibrils involves a normal mode that differs fundamentally from the canonical high-frequency antiparallel β-sheet mode. The high sensitivity of the fibril structure to the ionic strength might form the basis of differences in αS-related pathologies.

  17. Conformational Ensembles of α-Synuclein Derived Peptide with Different Osmolytes from Temperature Replica Exchange Sampling

    Directory of Open Access Journals (Sweden)

    Salma Jamal

    2017-12-01

    Full Text Available Intrinsically disordered proteins (IDP are a class of proteins that do not have a stable three-dimensional structure and can adopt a range of conformations playing various vital functional role. Alpha-synuclein is one such IDP which can aggregate into toxic protofibrils and has been associated largely with Parkinson's disease (PD along with other neurodegenerative diseases. Osmolytes are small organic compounds that can alter the environment around the proteins by acting as denaturants or protectants for the proteins. In the present study, we have conducted a series of replica exchange molecular dynamics simulations to explore the role of osmolytes, urea which is a denaturant and TMAO (trimethylamine N-oxide, a protecting osmolyte, in aggregation and conformations of the synuclein peptide. We observed that both the osmolytes have significantly distinct impacts on the peptide and led to transitions of the conformations of the peptide from one state to other. Our findings highlighted that urea attenuated peptide aggregation and resulted in the formation of extended peptide structures whereas TMAO led to compact and folded forms of the peptide.

  18. Expression and functional importance of collagen-binding integrins, alpha 1 beta 1 and alpha 2 beta 1, on virus-activated T cells

    DEFF Research Database (Denmark)

    Andreasen, Susanne Ø; Thomsen, Allan R; Koteliansky, Victor E

    2003-01-01

    decreased responses were seen upon transfer of alpha(1)-deficient activated/memory T cells. Thus, expression of alpha(1)beta(1) and alpha(2)beta(1) integrins on activated T cells is directly functionally important for generation of inflammatory responses within tissues. Finally, the inhibitory effect......Adhesive interactions are crucial to cell migration into inflammatory sites. Using murine lymphocytic choriomeningitis virus as an Ag model system, we have investigated expression and function of collagen-binding integrins, alpha(1)beta(1) and alpha(2)beta(1), on activated and memory T cells. Using...... this system and MHC tetramers to define Ag-specific T cells, we demonstrate that contrary to being VLAs, expression of alpha(1)beta(1) and alpha(2)beta(1) can be rapidly induced on acutely activated T cells, that expression of alpha(1)beta(1) remains elevated on memory T cells, and that expression of alpha(1...

  19. Membrane curvature induction and tubulation are common features of synucleins and apolipoproteins

    DEFF Research Database (Denmark)

    Varkey, Jobin; Isas, Jose Mario; Mizuno, Naoko

    2010-01-01

    Synucleins and apolipoproteins have been implicated in a number of membrane and lipid trafficking events. Lipid interaction for both types of proteins is mediated by 11 amino acid repeats that form amphipathic helices. This similarity suggests that synucleins and apolipoproteins might have...... of amphipathic helices alone. Moreover, we frequently observed that a-synuclein caused membrane structures that had the appearance of nascent budding vesicles. The ability to function as a minimal machinery for vesicle budding agrees well with recent findings that a-synuclein plays a role in vesicle trafficking...

  20. Presença da Proteína p53 como Prognóstico de Recidiva/Progressão de Neoplasia Intra-epitelial Vulvar III p53 Protein Overexpression as a Prognostic Marker for Vulvar Intraepithelial Neoplasia III Recurrence/Progression

    Directory of Open Access Journals (Sweden)

    Isabel Cristina Chulvis do Val Guimarães

    2002-01-01

    Full Text Available Objetivo: avaliar o valor da presença da proteína p53 nos casos de recidiva/progressão da neoplasia intra-epitelial vulvar (VIN III. Métodos: foram selecionadas 20 pacientes com VIN III indiferenciada, seguidas semestralmente por período de até quatro anos, divididas em dois grupos: quatorze sem e seis com recidiva/progressão da lesão. Os casos de recidiva/progressão foram distribuídos da seguinte forma: em três pacientes a recidiva ocorreu uma única vez, em duas, houve dupla recorrência e apenas uma evoluiu para carcinoma escamoso. Em ambos os grupos foram avaliados o sítio vulvar acometido e a presença da proteína p53 com análise do padrão de marcação imunohistoquímica. Estudo semelhante foi realizado nos casos de recidiva/progressão além da análise do intervalo de tempo para o surgimento de recidiva/progressão. Resultados: observou-se recidiva da VIN III em 25% dos casos e, em 5%, progressão para carcinoma. O tempo médio de recidiva foi de 24,5 meses. A localização multifocal da lesão primária foi a mais freqüente (50% em ambos os grupos. Na maioria dos casos (87,5%, a recidiva/progressão ocorreu na mesma localização da lesão vulvar primária. A presença da proteína p53 mostrou-se positiva em 50% das lesões primárias de VIN III e em 75% dos casos de recidiva/progressão. Conclusões: a presença da proteína p53 parece desempenhar papel importante na gênese e na predição do curso clínico das VIN III. As recidivas/progressão das VIN III tendem a ocorrer na mesma área da doença inicial, sugerindo a presença de campo molecular alterado.Purpose: to evaluate p53 overexpression value in vulvar intraepithelial neoplasia (VIN III recurrence/progression. Methods: twenty patients with undifferentiated VIN III were selected and followed up every six months for four years and divided into two groups: fourteen without and six with recurrence/progression lesion. The recurrence/progression cases were

  1. The role of alpha-synuclein in melanin synthesis in melanoma and dopaminergic neuronal cells.

    Directory of Open Access Journals (Sweden)

    Tianhong Pan

    Full Text Available The relatively high co-occurrence of Parkinson's disease (PD and melanoma has been established by a large number of epidemiological studies. However, a clear biological explanation for this finding is still lacking. Ultra-violet radiation (UVR-induced skin melanin synthesis is a defense mechanism against UVR-induced damage relevant to the initiation of melanoma, whereas, increased neuromelanin (NM, the melanin synthesized in dopaminergic neurons, may enhance the susceptibility to oxidative stress-induced neuronal injury relevant to PD. SNCA is a PD-causing gene coding for alpha-Synuclein (α-Syn that expresses not only in brain, but also in skin as well as in tumors, such as melanoma. The findings that α-Syn can interact with tyrosinase (TYR and inhibit tyrosine hydroxylase (TH, both of which are enzymes involved in the biosynthesis of melanin and dopamine (DA, led us to propose that α-Syn may participate in the regulation of melanin synthesis. In this study, by applying ultraviolet B (UVB light, a physiologically relevant stimulus of melanogenesis, we detected melanin synthesis in A375 and SK-MEL-28 melanoma cells and in SH-SY5Y and PC12 dopaminergic neuronal cells and determined effects of α-Syn on melanin synthesis. Our results showed that UVB light exposure increased melanin synthesis in all 4 cell lines. However, we found that α-Syn expression reduced UVB light-induced increase of melanin synthesis and that melanin content was lower when melanoma cells were expressed with α-Syn, indicating that α-Syn may have inhibitory effects on melanin synthesis in melanoma cells. Different from melanoma cells, the melanin content was higher in α-Syn-over-expressed dopaminergic neuronal SH-SY5Y and PC12 cells, cellular models of PD, than that in non-α-Syn-expressed control cells. We concluded that α-Syn could be one of the points responsible for the positive association between PD and melanoma via its differential roles in melanin synthesis in

  2. Overexpression of p53 activated by small activating RNA suppresses the growth of human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Ge Q

    2016-01-01

    Full Text Available Qiangqiang Ge,1,* Chenghe Wang,2,* Yajun Ruan,1,* Zhong Chen,1 Jihong Liu,1 Zhangqun Ye1 1Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 2Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Previous research has reported that a particular double-stranded RNA, named dsP53-285, has the capacity to induce expression of the tumor suppressor gene TP53 in chimpanzee cells by targeting its promoter. Usually, it is the wild-type p53 protein, rather than mutants, which exhibits potent cancer-inhibiting effects. In addition, nonhuman primates, such as chimpanzees, share almost identical genome sequences with humans. This prompted us to speculate whether dsP53-285 can trigger wild-type p53 protein expression in human prostate cancer (PCa cells and consequently suppress cell growth. The human PCa cell lines LNCaP and DU145 were transfected with dsP53-285 for 72 hours. Compared with the dsControl and mock transfection groups, expression of both p53 messenger RNA and p53 protein was significantly enhanced after dsP53-285 transfection, and this enhancement was followed by upregulation of p21, which indirectly indicated that dsP53-285 induced wild-type p53 expression. Moreover, overexpression of wild-type p53 mediated by dsP53-285 downregulated the expression of Cyclin D1 and cyclin-dependent kinase 4/6, thereby inducing PCa cell cycle arrest in G0/G1 phase and then inhibiting cell proliferation and clonogenicity. More importantly, dsP53-285 suppressed PCa cells mainly by modulating wild-type p53 expression. In conclusion, our study provides evidence that dsP53-285 can significantly stimulate wild-type p53 expression in the human PCa cell lines LNCaP and DU145 and can exert potent antitumor effects. Keywords: p53, small activating RNA, prostate

  3. v-erbA overexpression is required to extinguish c-erbA function in erythroid cell differentiation and regulation of the erbA target gene CAII

    DEFF Research Database (Denmark)

    Disela, C; Glineur, C; Bugge, T

    1991-01-01

    The v-erbA oncoprotein represents a retrovirus-transduced oncogenic version of the thyroid hormone (T3/T4) receptor c-erbA (type alpha). It contributes to virus-induced erythroleukemia by efficiently arresting differentiation of red cell progenitors and by suppressing transcription of erythrocyte...... of this CAII reporter construct could only be suppressed by very high amounts of v-erbA. Our results suggest that overexpression of v-erbA is required for its function as an oncoprotein....

  4. Oxidative stress induces nuclear translocation of C-terminus of α-synuclein in dopaminergic cells

    International Nuclear Information System (INIS)

    Xu Shengli; Zhou Ming; Yu Shun; Cai Yanning; Zhang Alex; Ueda, Kenji; Chan Piu

    2006-01-01

    Growing evidence suggests that oxidative stress is involved in the neuronal degeneration and can promote the aggregation of α-synuclein. However, the role of α-synuclein under physiological and pathological conditions remains poorly understood. In the present study, we examined the possible interaction between the α-synuclein and oxidative stress. In a dopaminergic cell line MES23.5, we have found that the 200 μM H 2 O 2 treatment induced the translocation of α-synuclein from cytoplasm to nuclei at 30 min post-treatment. The immunoactivity of α-synuclein became highly intensive in the nuclei after 2 h treatment. The protein translocated to nucleus was a 10 kDa fragment of C-terminus region of α-synuclein, while full-length α-synuclein remained in cytoplasm. Thioflavine-S staining suggested that the C-terminal fragment in the nuclei has no β-sheet structures. Our present results indicated that 200 μM H 2 O 2 treatment induces the intranuclear accumulation of the C-terminal fragment of α-synuclein in dopaminergic neurons, whose role remains to be investigated

  5. Onjisaponin B derived from Radix Polygalae enhances autophagy and accelerates the degradation of mutant α-synuclein and huntingtin in PC-12 cells.

    Science.gov (United States)

    Wu, An-Guo; Wong, Vincent Kam-Wai; Xu, Su-Wei; Chan, Wai-Kit; Ng, Choi-In; Liu, Liang; Law, Betty Yuen-Kwan

    2013-11-15

    Emerging evidence indicates important protective roles being played by autophagy in neurodegenerative disorders through clearance of aggregate-prone or mutant proteins. In the current study, we aimed to identify autophagy inducers from Chinese medicinal herbs as a potential neuroprotective agent that enhances the clearance of mutant huntingtin and α-synuclein in PC-12 cells. Through intensive screening using the green fluorescent protein-light chain 3 (GFP-LC3) autophagy detection platform, we found that the ethanol extracts of Radix Polygalae (Yuan Zhi) were capable of inducing autophagy. Further investigation showed that among three single components derived from Radix Polygalae--i.e., polygalacic acid, senegenin and onjisaponin B--onjisaponin B was able to induce autophagy and accelerate both the removal of mutant huntingtin and A53T α-synuclein, which are highly associated with Huntington disease and Parkinson disease, respectively. Our study further demonstrated that onjisaponin B induces autophagy via the AMPK-mTOR signaling pathway. Therefore, findings in the current study provide detailed insights into the protective mechanism of a novel autophagy inducer, which is valuable for further investigation as a new candidate agent for modulating neurodegenerative disorders through the reduction of toxicity and clearance of mutant proteins in the cellular level.

  6. Tumor necrosis factor alpha selectively sensitizes human immunodeficiency virus-infected cells to heat and radiation

    International Nuclear Information System (INIS)

    Wong, G.H.; McHugh, T.; Weber, R.; Goeddel, D.V.

    1991-01-01

    We report here that infection of the human T-cell line HUT-78 with human immunodeficiency virus (HIV) increases its sensitivity to heat and radiation toxicity. A possible explanation for this result may be the reduced expression of manganous superoxide dismutase (MnSOD) in HIV-infected cells compared to uninfected cells. Tumor necrosis factor alpha (TNF-alpha) further sensitizes HIV-infected cells but not uninfected cells to heat and radiation. This is consistent with the ability of TNF-alpha to induce the expression of MnSOD in uninfected but not in HIV-infected cells. HIV-infected HUT-78 cell lines engineered to overexpress MnSOD are more resistant to heat and radiation than HIV-infected cells that do not overexpress MnSOD. However, treatment with TNF-alpha still sensitizes these cells to heat and radiation

  7. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield.

    Science.gov (United States)

    Ma, Lin; Li, Tian; Hao, Chenyang; Wang, Yuquan; Chen, Xinhong; Zhang, Xueyong

    2016-05-01

    Grain size is a dominant component of grain weight in cereals. Earlier studies have shown that OsGS5 plays a major role in regulating both grain size and weight in rice via promotion of cell division. In this study, we isolated TaGS5 homoeologues in wheat and mapped them on chromosomes 3A, 3B and 3D. Temporal and spatial expression analysis showed that TaGS5 homoeologues were preferentially expressed in young spikes and developing grains. Two alleles of TaGS5-3A, TaGS5-3A-T and TaGS5-3A-G were identified in wheat accessions, and a functional marker was developed to discriminate them. Association analysis revealed that TaGS5-3A-T was significantly correlated with larger grain size and higher thousand kernel weight. Biochemical assays showed that TaGS5-3A-T possesses a higher enzymatic activity than TaGS5-3A-G. Transgenic rice lines overexpressing TaGS5-3A-T also exhibited larger grain size and higher thousand kernel weight than TaGS5-3A-G lines, and the transcript levels of cell cycle-related genes in TaGS5-3A-T lines were higher than those in TaGS5-3A-G lines. Furthermore, systematic evolution analysis in diploid, tetraploid and hexaploid wheat showed that TaGS5-3A underwent strong artificial selection during wheat polyploidization events and the frequency changes of two alleles demonstrated that TaGS5-3A-T was favoured in global modern wheat cultivars. These results suggest that TaGS5-3A is a positive regulator of grain size and its favoured allele TaGS5-3A-T exhibits a larger potential application in wheat high-yield breeding. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Conditional expression of constitutively active estrogen receptor {alpha} in chondrocytes impairs longitudinal bone growth in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazuhiro [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Tsukui, Tohru [Experimental Animal Laboratory, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Imazawa, Yukiko; Horie-Inoue, Kuniko [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Conditional transgenic mice expressing constitutively active estrogen receptor {alpha} (caER{alpha}) in chondrocytes were developed. Black-Right-Pointing-Pointer Expression of caER{alpha} in chondrocytes impaired longitudinal bone growth in mice. Black-Right-Pointing-Pointer caER{alpha} affects chondrocyte proliferation and differentiation. Black-Right-Pointing-Pointer This mouse model is useful for understanding the physiological role of ER{alpha}in vivo. -- Abstract: Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caER{alpha}{sup ColII}, expressing constitutively active mutant estrogen receptor (ER) {alpha} in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caER{alpha}{sup ColII} mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caER{alpha}{sup ColII} mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caER{alpha}{sup ColII} mice. These results suggest that ER{alpha} is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.

  9. α-Synuclein oligomers induced by docosahexaenoic acid affect membrane integrity.

    Directory of Open Access Journals (Sweden)

    Chiara Fecchio

    Full Text Available A key feature of Parkinson disease is the aggregation of α-synuclein and its intracellular deposition in fibrillar form. Increasing evidence suggests that the pathogenicity of α-synuclein is correlated with the activity of oligomers formed in the early stages of its aggregation process. Oligomers toxicity seems to be associated with both their ability to bind and affect the integrity of lipid membranes. Previously, we demonstrated that α-synuclein forms oligomeric species in the presence of docosahexaenoic acid and that these species are toxic to cells. Here we studied how interaction of these oligomers with membranes results in cell toxicity, using cellular membrane-mimetic and cell model systems. We found that α-synuclein oligomers are able to interact with large and small unilamellar negatively charged vesicles acquiring an increased amount of α-helical structure, which induces small molecules release. We explored the possibility that oligomers effects on membranes could be due to pore formation, to a detergent-like effect or to fibril growth on the membrane. Our biophysical and cellular findings are consistent with a model where α-synuclein oligomers are embedded into the lipid bilayer causing transient alteration of membrane permeability.

  10. Estrogen receptor alpha and risk for cognitive impairment in postmenopausal women

    DEFF Research Database (Denmark)

    Olsen, Line; Rasmussen, Henrik B; Hansen, Thomas

    2006-01-01

    -item Orientation-Memory-Concentration test in postmenopausal Danish women. Hormone replacement therapy, age and executive cognitive ability were examined as covariates for ESR1 gene effects on cognitive impairment. The XbaI polymorphism showed a marginal effect on cognitive abilities (P=0.054) when adjusted......The estrogen receptor alpha (ESR1) gene has been implicated in the process of cognitive impairment in elderly women. In a paired case-control study, we tested whether two ESR1 gene polymorphisms (the XbaI and PvuII sites) are risk factors for cognitive impairment as measured by the six...... for executive cognitive ability. Using a dominant genetic model for the X allele, we found an elevated risk (executive cognitive ability adjusted P=0.033) for cognitive impairment. Hormone replacement therapy also had a borderline effect on cognitive ability (P=0.049) and this effect was reflected in executive...

  11. Human α4β2 nicotinic acetylcholine receptor as a novel target of oligomeric α-synuclein.

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    Full Text Available Cigarette smoking is associated with a decreased incidence of Parkinson disease (PD through unknown mechanisms. Interestingly, a decrease in the numbers of α4β2 nicotinic acetylcholine receptors (α4β2-nAChRs in PD patients suggests an α4β2-nAChR-mediated cholinergic deficit in PD. Although oligomeric forms of α-synuclein have been recognized to be toxic and involved in the pathogenesis of PD, their direct effects on nAChR-mediated cholinergic signaling remains undefined. Here, we report for the first time that oligomeric α-synuclein selectively inhibits human α4β2-nAChR-mediated currents in a dose-dependent, non-competitive and use-independent manner. We show that pre-loading cells with guanyl-5'-yl thiophosphate fails to prevent this inhibition, suggesting that the α-synuclein-induced inhibition of α4β2-nAChR function is not mediated by nAChR internalization. By using a pharmacological approach and cultures expressing transfected human nAChRs, we have shown a clear effect of oligomeric α-synuclein on α4β2-nAChRs, but not on α4β4- or α7-nAChRs, suggesting nAChR subunit selectivity of oligomeric α-synuclein-induced inhibition. In addition, by combining the size exclusion chromatography and atomic force microscopy (AFM analyses, we find that only large (>4 nm oligomeric α-synuclein aggregates (but not monomeric, small oligomeric or fibrillar α-synuclein aggregates exhibit the inhibitory effect on human α4β2-nAChRs. Collectively, we have provided direct evidence that α4β2-nAChR is a sensitive target to mediate oligomeric α-synuclein-induced modulation of cholinergic signaling, and our data imply that therapeutic strategies targeted toward α4β2-nAChRs may have potential for developing new treatments for PD.

  12. Study of ({alpha}, {sup 3}He) and ({alpha}, t) reactions on {sup 28}Si at 45 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Darshan, V.P.; Sathyavathiamma, M.P.; Ramaswamy, C.R.; Raja Rao, M.; Puttaswamy, N.G.; Banerjee, S.R.; Chintalapudi, S.N. [Dept. of Phys., Bangalore Univ. (India)

    1995-03-01

    The {sup 28}Si({alpha}, {sup 3}He){sup 29}Si, {sup 28}Si({alpha}, t){sup 29}P and Si({alpha}, {alpha})Si reactions were studied at E{sub {alpha}} = 45 MeV. Exact finite-range (EFR) DWBA analysis was carried out for the transitions to the ground state and to five excited states in {sup 29}Si and {sup 29}P. Spectroscopic strengths G were extracted for all the states and were compared with the predictions from shell-model and quasi-particle core-coupling calculations. Similar EFR-DWBA analyses were carried out from available (unpublished) data for the {sup 28}Si({alpha}, {sup 3}He){sup 29}Si reaction at E{sub {alpha}} = 64.9 and 120 MeV, and for the {sup 28}Si({alpha}, t){sup 29}P reaction at E{sub {alpha}} = 50 and 64.9 MeV. The comparison of experimental and theoretical values of G are provided. (author)

  13. Prolongation of chemically-induced methemoglobinemia in mice lacking α-synuclein: A novel pharmacologic and toxicologic phenotype

    Directory of Open Access Journals (Sweden)

    Yien-Ming Kuo

    2015-01-01

    Full Text Available The protein α-synuclein is considered central to the pathogenesis of Parkinson disease (PD on genetic and histopathological grounds. It is widely expressed in fetal life and continues to be highly expressed in adult neural tissues, red blood cells and platelets, while the remainder of adult tissues are reported to have little or no expression. Despite cellular and molecular evidence for a role in neuronal function including synaptic vesicle trafficking, neurotransmitter release, mitochondrial function, lipid metabolism, neurogenesis, neuroprotection, and neuromelanin biosynthesis, mice ablated for the gene encoding α-synuclein (Snca have little or no neurological phenotype. Thus, nearly 20 years of intensive study have yet to reveal conclusively what the normal function of this highly abundant protein is in the nervous system. Interestingly, α-synuclein has also been shown to have enzymatic activity as a ferrireductase capable of reducing Fe+3 to Fe+2. Given its abundant expression in red blood cells, we set out to explore the role of α-synuclein in converting chemically-induced Fe+3 methemoglobin to normal Fe+2 hemoglobin. Initial in vivo experiments with the potent methemoglobin inducer, para-aminopropiophenone and its active metabolite, 4-hydroxy para-aminopropiophenone, demonstrated significantly greater and more prolonged methemoglobinemia in Snca−/− mice compared to Snca+/+ mice. In vitro experiments with red blood cells, however, and in vivo experiments in genetically engineered mouse strains that differ in their α-synuclein expression in various tissues, including the nervous system, red blood cells and liver, revealed that contrary to the initial hypothesis, a lack of expression of α-synuclein in red blood cells did not correlate with higher levels or more prolonged duration of methemoglobinemia. Instead, the greater sensitivity to chemically induced methemoglobinemia correlated with the absence of hepatic α-synuclein

  14. Immunohistochemical study of DNA topoisomerase I, DNA topoisomerase II alpha, p53, and Ki-67 in oral preneoplastic lesions and oral squamous cell carcinomas.

    Science.gov (United States)

    Hafian, Hilal; Venteo, Lydie; Sukhanova, Alyona; Nabiev, Igor; Lefevre, Benoît; Pluot, Michel

    2004-06-01

    Human DNA topoisomerase I (topo I) is the molecular target of the camptothecin group of anticancer drugs. Laboratory studies have shown that the cellular response to topo I-targeted drugs depends on the topo I expression and DNA replication rate and the apoptotic pathway activity. In this study, we tested potential indicators of the sensitivity of topo I-targeted drugs in 36 cases of oral squamous cell carcinoma (OSCC). Formalin-fixed, paraffin-embedded tissue sections were immunostained with monoclonal antibodies against Ki-67, p53, and topo I, and with polyclonal antibodies against DNA topoisomerase II-alpha (topo II-alpha). These markers were also tested in 18 epithelial hyperplastic lesions and 18 mild dysplasias. Immunostaining was quantified by the percentage of stained nuclei in each sample (the labeling index); 200 immunoreactive epithelial nuclei were counted per case for each antibody. The results support the possibility of using topo II-alpha staining for assessing the proliferative activity. High expression of topo II-alpha and topo I in OSCCs suggests that they may serve as potential indicators of sensitivity to topo I inhibitors. However, the apoptotic pathway assessed by p53 immunostaining was found to be uninformative. Analysis of the relationship between immunohistochemical results and clinical and pathologic parameters (the T and N stages and differentiation) showed that only the differentiation parameter correlated with the topo I expression rate. Thus, significant increase in the topo I expression in the poorly differentiated OSCCs suggests their higher sensitivity to drug treatment.

  15. α-Synuclein inclusions in the skin of Parkinson's disease and parkinsonism.

    Science.gov (United States)

    Rodríguez-Leyva, Ildefonso; Calderón-Garcidueñas, Ana Laura; Jiménez-Capdeville, María E; Rentería-Palomo, Ana Arely; Hernandez-Rodriguez, Héctor Gerardo; Valdés-Rodríguez, Rodrigo; Fuentes-Ahumada, Cornelia; Torres-Álvarez, Bertha; Sepúlveda-Saavedra, Julio; Soto-Domínguez, Adolfo; Santoyo, Martha E; Rodriguez-Moreno, José Ildefonso; Castanedo-Cázares, Juan Pablo

    2014-07-01

    The presence in the brain of α-synuclein containing Lewy neurites, or bodies, is the histological hallmark of Parkinson's disease (PD). The discovery of α-synuclein aggregates in nerve endings of the heart, digestive tract, and skin has lent support to the concept of PD as a systemic disease. Our goals were, first, to demonstrate the presence of α-synuclein inclusions in the skin and, second, to detect quantitative differences between patients with PD and atypical parkinsonism (AP). Skin biopsies were taken from 67 patients and 20 controls. The biopsies underwent immunohistochemistry (IHC) and immunofluorescence (IF) testing for α-synuclein, whereupon its presence was quantified as the percentage of positive cells. Patients were divided into those with PD and those with AP. AP patients included AP with neurodegenerative disease (proteinopathies) and secondary AP. Sixty-seven patients (34 with PD) and 20 controls were recruited. In the PD group, α-synuclein was detected in 58% of the cells in the spinous cell layer (SCL), 62% in the pilosebaceous unit (PSU), and 58% in the eccrine glands (EG). The AP-proteinopathies group showed 7%, 7%, and 0% expression of α-synuclein, respectively. No expression was found in the skin of the control group. The expression of α-synuclein in the skin was relatively high in the PD group, scarce in AP, and null for the individuals in the control group. While these findings require further confirmation, this minimally invasive technique may aid in the improvement of the accuracy of PD diagnoses.

  16. miR-34 and p53: New Insights into a Complex Functional Relationship.

    Directory of Open Access Journals (Sweden)

    Francisco Navarro

    Full Text Available miR-34, a tumor suppressor miRNA family transcriptionally activated by p53, is considered a critical mediator of p53 function. However, knockout of the mouse miR-34 family has little or no effect on the p53 response. The relative contribution of different miR-34 family members to p53 function or how much p53 relies on miR-34 in human cells is unclear. Here we show that miR-34a has a complex effect on the p53 response in human cells. In HCT116 cells miR-34a overexpression enhances p53 transcriptional activity, but the closely related family members, miR-34b and miR-34c, even when over-expressed, have little effect. Both TP53 itself and MDM4, a strong p53 transactivation inhibitor, are direct targets of miR-34a. The genes regulated by miR-34a also include four other post-translational inhibitors of p53. miR-34a overexpression leads to variable effects on p53 levels in p53-sufficient human cancer cell lines. In HCT116, miR-34a overexpression increases p53 protein levels and stability. About a quarter of all mRNAs that participate in the human p53 network bind to biotinylated miR-34a, suggesting that many are direct miR-34a targets. However, only about a fifth of the mRNAs that bind to miR-34a also bind to miR-34b or miR-34c. Two human cell lines knocked out for miR-34a have unimpaired p53-mediated responses to genotoxic stress, like mouse cells. The complex positive and negative effects of miR-34 on the p53 network suggest that rather than simply promoting the p53 response, miR-34a might act at a systems level to stabilize the robustness of the p53 response to genotoxic stress.

  17. Altered α-synuclein, parkin, and synphilin isoform levels in multiple system atrophy brains

    DEFF Research Database (Denmark)

    Brudek, Tomasz; Winge, Kristian; Rasmussen, Nadja Bredo

    2016-01-01

    Together with Parkinson's disease (PD) and dementia with Lewy bodies, multiple system atrophy (MSA) is a member of a diverse group of neurodegenerative disorders termed α-synucleinopathies. Previously, it has been shown that α-synuclein, parkin, and synphilin-1 display disease-specific transcript......Together with Parkinson's disease (PD) and dementia with Lewy bodies, multiple system atrophy (MSA) is a member of a diverse group of neurodegenerative disorders termed α-synucleinopathies. Previously, it has been shown that α-synuclein, parkin, and synphilin-1 display disease......-specific transcription patterns in frontal cortex in PD, dementia with Lewy bodies, and MSA, and thus may mediate the development of α-synucleinopathies. In this study, the differential expression of α-synuclein isoforms on transcriptional and translational levels was ascertained in MSA patients in comparison with PD......-synuclein in the brain. We report differential expression of α-synuclein, parkin, and synphilin-1 isoforms in multiple system atrophy (MSA) versus Parkinson's disease and normal control brains. We have focused on brain regions that are severely affected by α-synuclein pathology and neurodegeneration in MSA. The reported...

  18. Structural and dynamical insights into the membrane-bound α-synuclein.

    Directory of Open Access Journals (Sweden)

    Neha Jain

    Full Text Available Membrane-induced disorder-to-helix transition of α-synuclein, a presynaptic protein, has been implicated in a number of important neuronal functions as well as in the etiology of Parkinson's disease. In order to obtain structural insights of membrane-bound α-synuclein at the residue-specific resolution, we took advantage of the fact that the protein is devoid of tryptophan and incorporated single tryptophan at various residue positions along the sequence. These tryptophans were used as site-specific markers to characterize the structural and dynamical aspects of α-synuclein on the negatively charged small unilamellar lipid vesicles. An array of site-specific fluorescence readouts, such as the spectral-shift, quenching efficiency and anisotropy, allowed us to discern various features of the conformational rearrangements occurring at different locations of α-synuclein on the lipid membrane. In order to define the spatial localization of various regions of the protein near the membrane surface, we utilized a unique and sensitive indicator, namely, red-edge excitation shift (REES, which originates when a fluorophore is located in a highly ordered micro-environment. The extent of REES observed at different residue positions allowed us to directly identify the residues that are localized at the membrane-water interface comprising a thin (∼ 15 Å layer of motionally restrained water molecules and enabled us to construct a dynamic hydration map of the protein. The combination of site-specific fluorescence readouts allowed us to unravel the intriguing molecular details of α-synuclein on the lipid membrane in a direct model-free fashion. Additionally, the combination of methodologies described here are capable of distinguishing subtle but important structural alterations of α-synuclein bound to different negatively charged lipids with varied head-group chemistry. We believe that the structural modulations of α-synuclein on the membrane could

  19. Comparison of independent screens on differentially vulnerable motor neurons reveals alpha-synuclein as a common modifier in motor neuron diseases.

    Science.gov (United States)

    Kline, Rachel A; Kaifer, Kevin A; Osman, Erkan Y; Carella, Francesco; Tiberi, Ariana; Ross, Jolill; Pennetta, Giuseppa; Lorson, Christian L; Murray, Lyndsay M

    2017-03-01

    The term "motor neuron disease" encompasses a spectrum of disorders in which motor neurons are the primary pathological target. However, in both patients and animal models of these diseases, not all motor neurons are equally vulnerable, in that while some motor neurons are lost very early in disease, others remain comparatively intact, even at late stages. This creates a valuable system to investigate the factors that regulate motor neuron vulnerability. In this study, we aim to use this experimental paradigm to identify potential transcriptional modifiers. We have compared the transcriptome of motor neurons from healthy wild-type mice, which are differentially vulnerable in the childhood motor neuron disease Spinal Muscular Atrophy (SMA), and have identified 910 transcriptional changes. We have compared this data set with published microarray data sets on other differentially vulnerable motor neurons. These neurons were differentially vulnerable in the adult onset motor neuron disease Amyotrophic Lateral Sclerosis (ALS), but the screen was performed on the equivalent population of neurons from neurologically normal human, rat and mouse. This cross species comparison has generated a refined list of differentially expressed genes, including CELF5, Col5a2, PGEMN1, SNCA, Stmn1 and HOXa5, alongside a further enrichment for synaptic and axonal transcripts. As an in vivo validation, we demonstrate that the manipulation of a significant number of these transcripts can modify the neurodegenerative phenotype observed in a Drosophila line carrying an ALS causing mutation. Finally, we demonstrate that vector-mediated expression of alpha-synuclein (SNCA), a transcript decreased in selectively vulnerable motor neurons in all four screens, can extend life span, increase weight and decrease neuromuscular junction pathology in a mouse model of SMA. In summary, we have combined multiple data sets to identify transcripts, which are strong candidates for being phenotypic modifiers

  20. α-Synuclein-induced dopaminergic neurodegeneration in a rat model of Parkinson's disease occurs independent of ATP13A2 (PARK9).

    Science.gov (United States)

    Daniel, Guillaume; Musso, Alessandra; Tsika, Elpida; Fiser, Aris; Glauser, Liliane; Pletnikova, Olga; Schneider, Bernard L; Moore, Darren J

    2015-01-01

    Mutations in the ATP13A2 (PARK9) gene cause early-onset, autosomal recessive Parkinson's disease (PD) and Kufor-Rakeb syndrome. ATP13A2 mRNA is spliced into three distinct isoforms encoding a P5-type ATPase involved in regulating heavy metal transport across vesicular membranes. Here, we demonstrate that three ATP13A2 mRNA isoforms are expressed in the normal human brain and are modestly increased in the cingulate cortex of PD cases. ATP13A2 can mediate protection toward a number of stressors in mammalian cells and can protect against α-synuclein-induced toxicity in cellular and invertebrate models of PD. Using a primary cortical neuronal model combined with lentiviral-mediated gene transfer, we demonstrate that human ATP13A2 isoforms 1 and 2 display selective neuroprotective effects toward toxicity induced by manganese and hydrogen peroxide exposure through an ATPase-independent mechanism. The familial PD mutations, F182L and G504R, abolish the neuroprotective effects of ATP13A2 consistent with a loss-of-function mechanism. We further demonstrate that the AAV-mediated overexpression of human ATP13A2 is not sufficient to attenuate dopaminergic neurodegeneration, neuropathology, and striatal dopamine and motoric deficits induced by human α-synuclein expression in a rat model of PD. Intriguingly, the delivery of an ATPase-deficient form of ATP13A2 (D513N) to the substantia nigra is sufficient to induce dopaminergic neuronal degeneration and motor deficits in rats, potentially suggesting a dominant-negative mechanism of action. Collectively, our data demonstrate a distinct lack of ATP13A2-mediated protection against α-synuclein-induced neurotoxicity in the rat nigrostriatal dopaminergic pathway, and limited neuroprotective capacity overall, and raise doubts about the potential of ATP13A2 as a therapeutic target for PD. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Overexpressed of RAD51 suppresses recombination defects: a possible mechanism to reverse genomic instability

    Energy Technology Data Exchange (ETDEWEB)

    Schild, David; Wiese, Claudia

    2009-10-15

    RAD51, a key protein in the homologous recombinational DNA repair (HRR) pathway, is the major strand-transferase required for mitotic recombination. An important early step in HRR is the formation of single-stranded DNA (ss-DNA) coated by RPA (a ss-DNA binding protein). Displacement of RPA by RAD51 is highly regulated and facilitated by a number of different proteins known as the 'recombination mediators'. To assist these recombination mediators, a second group of proteins also is required and we are defining these proteins here as 'recombination co-mediators'. Defects in either recombination mediators or comediators, including BRCA1 and BRCA2, lead to impaired HRR that can genetically be complemented for (i.e. suppressed) by overexpression of RAD51. Defects in HRR have long been known to contribute to genomic instability leading to tumor development. Since genomic instability also slows cell growth, precancerous cells presumably require genomic restabilization to gain a growth advantage. RAD51 is overexpressed in many tumors, and therefore, we hypothesize that the complementing ability of elevated levels of RAD51 in tumors with initial HRR defects limits genomic instability during carcinogenic progression. Of particular interest, this model may also help explain the high frequency of TP53 mutations in human cancers, since wild-type p53 represses RAD51.

  2. Double-stranded DNA Stimulates the Fibrillation of alpha-Synuclein in vitro and is Associated with the Mature Fibrils: An Electron Microscopy Study

    NARCIS (Netherlands)

    Cherny, Dmitry; Hoyer, Wolfgang; Subramaniam, Vinod; Jovin, Thomas M.

    2004-01-01

    Filamentous aggregates formed by α-synuclein are a prominent and presumably key etiological factor in Parkinson's and other neurodegenerative diseases characterized by motor disorders. Numerous studies have demonstrated that various environmental and intracellular factors affect the fibrillation

  3. Biological activity and safety of adenoviral vector-expressed wild-type p53 after intratumoral injection in melanoma and breast cancer patients with p53-overexpressing tumors

    NARCIS (Netherlands)

    Dummer, R; Bergh, J; Karlsson, Y; Horovitz, JA; Mulder, NH; Huinin, DT; Burg, G; Hofbauer, G; Osanto, S

    p53 mutations are common genetic alterations in human cancer. Gene transfer of a wild-type (wt) p53 gene reverses the loss of normal p53 function in vitro and in vivo. A phase I dose escalation study of single intratumoral (i.t.) injection of a replication-defective adenoviral expression vector

  4. Derivation of mouse embryonic stem cell lines from tyrosine hydroxylase reporter mice crossed with a human SNCA transgenic mouse model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Margarita Chumarina

    2017-03-01

    Full Text Available Mouse embryonic stem cell (mESC lines were derived by crossing heterozygous transgenic (tg mice expressing green fluorescent protein (GFP under the control of the rat tyrosine hydroxylase (TH promoter, with homozygous alpha-synuclein (aSYN mice expressing human mutant SNCAA53T under the control of the mouse Prion promoter (MoPrP, or wildtype (WT mice. The expression of GFP and human aSYN was validated by immunocytochemistry in midbrain neuron cultures upon differentiation of mESC lines using stromal cell-derived inducing activity. These mESC lines can help to study the impact of human aSYN expression in neurons and oligodendrocytes, and also trace GFP-expressing midbrain neurons.

  5. Overexpression, purification, and partial characterization of ADP-ribosyltransferases modA and modB of bacteriophage T4.

    Science.gov (United States)

    Tiemann, B; Depping, R; Rüger, W

    1999-01-01

    There is increasing experimental evidence that ADP-ribosylation of host proteins is an important means to regulate gene expression of bacteriophage T4. Surprisingly, this phage codes for three different ADP-ribosyltransferases, gene products Alt, ModA, and ModB, modifying partially overlapping sets of host proteins. While gene product Alt already has been isolated as a recombinant protein and its action on host RNA polymerases and transcription regulation have been studied, the nucleotide sequences of the two mod genes was published only recently. Their mode of action in the course of the infection cycle and the consequences of the ADP-ribosylations catalyzed by these enzymes remain to be investigated. Here we describe the cloning of the genes, the overexpression, purification, and partial characterization of ADP-ribosyltransferases ModA and ModB. Both proteins seem to act independently, and the ADP-ribosyl moieties are transferred to different sets of host proteins. While gene product ModA, similarly to the Alt protein, acts also on the alpha-subunit of host RNA polymerase, the ModB activity serves another set of proteins, one of which was identified as the S1 protein associated with the 30S subunit of the E. coli ribosomes.

  6. Role of macrophage inflammatory protein-1alpha in T-cell-mediated immunity to viral infection

    DEFF Research Database (Denmark)

    Madsen, Andreas N; Nansen, Anneline; Christensen, Jan P

    2003-01-01

    The immune response to lymphocytic choriomeningitis virus in mice lacking macrophage inflammatory protein-1alpha (MIP-1alpha) was evaluated. Generation of virus-specific effector T cells is unimpaired in MIP-1alpha-deficient mice. Furthermore, MIP-1alpha is not required for T-cell-mediated virus...... control or virus-induced T-cell-dependent inflammation. Thus, MIP-1alpha is not mandatory for T-cell-mediated antiviral immunity....

  7. Wildtype p53-specific Antibody and T-Cell Responses in Cancer Patients

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Stryhn, Anette; Justesen, Sune

    2011-01-01

    patients. Detection of antibodies against wt p53 protein has been used as a diagnostic and prognostic marker and discovery of new T-cell epitopes has enabled design of cancer vaccination protocols with promising results. Here, we identified wt p53-specific antibodies in various cancer patients......(264-272) in breast cancer patients and against HLA-A*01:01 binding peptide wt p53(226-234) and HLA-B*07:02 binding peptide wt p53(74-82) in renal cell cancer and breast cancer patients, respectively. Finally, we analyzed antibody and T-cell responses against wt p53 15-mer peptides in patients with metastatic renal...

  8. MIDBRAIN CATECHOLAMINERGIC NEURONS CO-EXPRESS α-SYNUCLEIN AND TAU IN PROGRESSIVE SUPRANUCLEAR PALSY

    Directory of Open Access Journals (Sweden)

    María Elena eErro Aguirre

    2015-03-01

    Full Text Available Objective: To analyze the frequency and distribution of α-synuclein deposits in progressive supranuclear palsy (PSP.Methods: The brains of 25 cases of pathologically confirmed PSP were evaluated with immunohistochemistry for α-synuclein and tau. Multiple immunofluorescent stains were applied to analyze the expression of tau and α-synuclein aggregates in catecholaminergic neurons. Patients’ clinical symptoms were retrospectively recorded. Results: Deposits α-synuclein in the form of typical Lewy bodies (LBs were only found in two PSP cases (8% that fulfilled the clinical subtype of PSP known as Richardson’s syndrome (RS. LBs were present in the locus ceruleus, substantia nigra pars compacta, basal forebrain, amygdala and cingulated cortex in a distribution mimicking that of Parkinson’s disease. Triple-immunolabeling revealed co-expression of α-synuclein and tau proteins in some tyrosine hydroxilase-positive neurons of the locus ceruleus and substantia nigra pars compacta.Conclusions: There is no apparent clinical correlation between the presence of LBs in PSP. Tau protein co-aggregate with α-synuclein in catecholaminergic neurons of PSP brains suggesting a synergistic interaction between the two proteins. This is in keeping with the current view of neurodegenerative disorders as ‘misfolded protein diseases’.

  9. Study of transfer reactions ({alpha},t), ({alpha},{sup 3}He) in the f-p shell: mechanism and spectroscopic use; Etude des reactions de transfert ({alpha},t), ({alpha},{sup 3}He) dans la couche f-p mecanisme et utilisation spectroscopique

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-05-01

    We describe an experimental study of ({alpha},t), ({alpha},{sup 3}He) reactions at 44 MeV using a solid-state identifier, on the target-nuclei {sup 54}Fe and {sup 58,60,62,64}Ni. A critical study of optical model and of disturbed wave analysis has been performed. We show the complementarity of different transfer-reactions, the ambiguity of spectroscopic factors, the importance of the problem of the reaction mechanism. (author) [French] On decrit une etude experimentale des reactions ({alpha},t), ({alpha},{sup 3}He) a 44 MeV utilisant un systeme identificateur de particules sur les noyaux-cibles {sup 54}Fe et {sup 58,60,62,64}Ni. Une etude critique de modele optique et d'analyse en ondes deformees (D.W.B.A.) a ete entreprise. On montre la complementarite des differentes reactions de transfert, l'ambiguite des facteurs spectroscopiques, l'importance du probleme du mecanisme. (auteur)

  10. dp53 Restrains ectopic neural stem cell formation in the Drosophila brain in a non-apoptotic mechanism involving Archipelago and cyclin E.

    Directory of Open Access Journals (Sweden)

    Yingshi Ouyang

    Full Text Available Accumulating evidence suggests that tumor-initiating stem cells or cancer stem cells (CSCs possibly originating from normal stem cells may be the root cause of certain malignancies. How stem cell homeostasis is impaired in tumor tissues is not well understood, although certain tumor suppressors have been implicated. In this study, we use the Drosophila neural stem cells (NSCs called neuroblasts as a model to study this process. Loss-of-function of Numb, a key cell fate determinant with well-conserved mammalian counterparts, leads to the formation of ectopic neuroblasts and a tumor phenotype in the larval brain. Overexpression of the Drosophila tumor suppressor p53 (dp53 was able to suppress ectopic neuroblast formation caused by numb loss-of-function. This occurred in a non-apoptotic manner and was independent of Dacapo, the fly counterpart of the well-characterized mammalian p53 target p21 involved in cellular senescence. The observation that dp53 affected Edu incorporation into neuroblasts led us to test the hypothesis that dp53 acts through regulation of factors involved in cell cycle progression. Our results show that the inhibitory effect of dp53 on ectopic neuroblast formation was mediated largely through its regulation of Cyclin E (Cyc E. Overexpression of Cyc E was able to abrogate dp53's ability to rescue numb loss-of-function phenotypes. Increasing Cyc E levels by attenuating Archipelago (Ago, a recently identified transcriptional target of dp53 and a negative regulator of Cyc E, had similar effects. Conversely, reducing Cyc E activity by overexpressing Ago blocked ectopic neuroblast formation in numb mutant. Our results reveal an intimate connection between cell cycle progression and NSC self-renewal vs. differentiation control, and indicate that p53-mediated regulation of ectopic NSC self-renewal through the Ago/Cyc E axis becomes particularly important when NSC homeostasis is perturbed as in numb loss-of-function condition. This has

  11. Estrogen receptor positive breast tumors resist chemotherapy by the overexpression of P53 in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Fatma Ashour

    2018-06-01

    Full Text Available Background and Objectives: Breast cancer (BC is classified according to estrogen receptor (ER status into ER+ and ER− tumors. ER+ tumors have a worse response to chemotherapy compared to ER− tumors. BCL-2, TP53, BAX and NF-ΚB are involved in drug resistance in the ER+ tumors. Recently it was shown that Cancer Stem Cells (CSCs play an important role in drug resistance. In this study we tested the hypothesis that CSCs of the ER+ tumors resist drug through the overexpression of BCL-2, TP53, BAX and NF-ΚB. Methods: CSCs were isolated by anoikis resistance assay from MCF7 (ER+ and MDA-MB-231 (ER− cell lines. Isolated CSCs were treated with doxorubicin (DOX and the mRNA expression levels of BCL-2, TP53, BAX and NFKB were investigated by quantitative real time PCR (qPCR with and without treatment. Results: BCL-2, BAX and NF-ΚB showed decreased expression in MCF7 bulk cancer cells after DOX treatment whereas only BCL-2 and BAX showed decreased expression in MDA-MB-231 bulk cancer cells. Interestingly TP53 was the only gene showed a considerable increase in its expression in CSCs of the ER+ MCF7 cell line compared to bulk cancer cells. Moreover, TP53 was the only gene showing exceptionally higher level of expression in MCF7-CSCs compared to MDA-MB-231-CSCs. Conclusion: Our results suggest that CSCs in the ER+ cells escape the effect of DOX treatment by the elevation of p53 expression. Keywords: Breast cancer, Cancer Stem Cells, Drug resistance, Estrogen receptors

  12. Detection of hyperphosphorylated tau protein and α-synuclein in spinal cord of patients with Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Guo YJ

    2016-02-01

    Full Text Available Yanjun Guo,1,2 Luning Wang,2 Mingwei Zhu,2 Honghong Zhang,3 Yazhuo Hu,3 Zhitao Han,3 Jia Liu,4 Weiqin Zhao,1 Dexin Wang11Department of Neurology, Beijing Friendship Hospital, Capital Medical University, 2Department of Geriatric Neurology, PLA General Hospital, 3Institute of Geriatrics, Chinese PLA General Hospital & Chinese PLA Medical Academy, 4Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of ChinaAbstract: The aim of this study was to investigate the neuropathological features of the spinal cord in patients suffering with Alzheimer’s disease (AD. Spinal cord tissue collected from three AD patients and eight controls was selected for the study. Data were collected at T2, T8, T10, L4, and S2 spinal levels. The sections were subjected to hematoxylin and eosin and Gallyas–Braak staining methods and then were immunostained with antibodies such as phosphorylated tau protein (AT8, α-synuclein, Aβ, amyloid precursor protein , ubiquitin, and TDP-43. Pathological changes exhibited by the biomarkers were detected by microscopy. Neurofibrillary tangles (NFTs were detectable in spinal anterior horn motor neurons in two of the three AD patients. AT8-positive axons or axon-like structures and AT8 expression in glial cells were detected in all three AD cases. Hyperphosphorylation of tau protein was detected in spinal anterior horn cells, glial cells, and axons, and its severity was associated with NFTs in the brain tissue. α-Synuclein-positive Lewy bodies and scattered Lewy-like neuritis were detected in the medial horn of the thoracic spinal cord and ventral sacral gray matter, respectively, in one patient who had AD with Lewy bodies. Neither amyloid deposition nor amyloid precursor protein and TDP-43 expression was detected in the spinal cord of AD patients. Spinal cord of AD patients was observed to contain phosphorylated tau protein and α-synuclein immunoreactive structures, which may play a

  13. Acquisition of T regulatory function in cathepsin L-inhibited T cells by eye-derived CTLA-2alpha during inflammatory conditions.

    Science.gov (United States)

    Sugita, Sunao; Horie, Shintaro; Nakamura, Orie; Maruyama, Kazuichi; Takase, Hiroshi; Usui, Yoshihiko; Takeuchi, Masaru; Ishidoh, Kazumi; Koike, Masato; Uchiyama, Yasuo; Peters, Christoph; Yamamoto, Yoshimi; Mochizuki, Manabu

    2009-10-15

    Pigment epithelium isolated from the eye possesses immunosuppressive properties such as regulatory T (Treg) cell induction; e.g., cultured retinal pigment epithelium (RPE) converts CD4(+) T cells into Treg cells in vitro. RPE constitutively expresses a novel immunosuppressive factor, CTLA-2alpha, which is a cathepsin L (CathL) inhibitor, and this molecule acts via RPE to induce Treg cells. To clarify CTLA-2alpha's role in the T cell response to RPE in ocular inflammation, we used the experimental autoimmune uveitis (EAU) animal model to examine this new immunosuppressive property of RPE. In EAU models, TGF-beta, but not IFN-gamma inflammatory cytokines, promotes the up-regulation of the expression of CTLA-2alpha in RPE. Similarly, CTLA-2alpha via RPE was able to promote TGF-beta production by the CD4(+) T cells. The RPE-exposed T cells (RPE-induced Treg cells) greatly produced TGF-beta and suppressed bystander effector T cells. There was less expression of CathL by the RPE-exposed T cells, and CathL-inhibited T cells were able to acquire the Treg phenotype. Moreover, CathL-deficient mice spontaneously produced Treg cells, with the increase in T cells potentially providing protection against ocular inflammation. More importantly, CD4(+) T cells from EAU in CathL knockout mice or rCTLA-2alpha from EAU animals were found to contain a high population of forkhead box p3(+) T cells. In both EAU models, there was significant suppression of the ocular inflammation. These results indicate that RPE secretes CTLA-2alpha, thereby enabling the bystander T cells to be converted into Treg cells via TGF-beta promotion.

  14. Evaluating the relationship between amyloid-β and α-synuclein phosphorylated at Ser129 in dementia with Lewy bodies and Parkinson’s disease

    OpenAIRE

    Swirski, Marta; Miners, J Scott; de Silva, Rohan; Lashley, Tammaryn; Ling, Helen; Holton, Janice; Revesz, Tamas; Love, Seth

    2014-01-01

    Introduction Lewy body and Alzheimer-type pathologies often co-exist. Several studies suggest a synergistic relationship between amyloid-β (Aβ) and α-synuclein (α-syn) accumulation. We have explored the relationship between Aβ accumulation and the phosphorylation of α-syn at serine-129 (pSer129 α-syn), in post-mortem human brain tissue and in SH-SY5Y neuroblastoma cells transfected to overexpress human α-syn. Methods We measured levels of Aβ40, Aβ42, α-syn and pSer129 α-syn by sandwich enzyme...

  15. Targeting the intrinsically disordered structural ensemble of α-synuclein by small molecules as a potential therapeutic strategy for Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Gergely Tóth

    Full Text Available The misfolding of intrinsically disordered proteins such as α-synuclein, tau and the Aβ peptide has been associated with many highly debilitating neurodegenerative syndromes including Parkinson's and Alzheimer's diseases. Therapeutic targeting of the monomeric state of such intrinsically disordered proteins by small molecules has, however, been a major challenge because of their heterogeneous conformational properties. We show here that a combination of computational and experimental techniques has led to the identification of a drug-like phenyl-sulfonamide compound (ELN484228, that targets α-synuclein, a key protein in Parkinson's disease. We found that this compound has substantial biological activity in cellular models of α-synuclein-mediated dysfunction, including rescue of α-synuclein-induced disruption of vesicle trafficking and dopaminergic neuronal loss and neurite retraction most likely by reducing the amount of α-synuclein targeted to sites of vesicle mobilization such as the synapse in neurons or the site of bead engulfment in microglial cells. These results indicate that targeting α-synuclein by small molecules represents a promising approach to the development of therapeutic treatments of Parkinson's disease and related conditions.

  16. Cytotoxic T-lymphocyte clones, established by stimulation with the HLA-A2 binding p5365-73 wild type peptide loaded on dendritic cells In vitro, specifically recognize and lyse HLA-A2 tumour cells overexpressing the p53 protein

    DEFF Research Database (Denmark)

    Barfoed, Annette Malene; Petersen, T R; Kirkin, A F

    2000-01-01

    of recognizing p53 derived wild type (self) peptides. Furthermore, the capacity of R9V specific T cell clones to exert HLA restricted cytotoxicity, argues that the R9V peptide is naturally presented on certain cancer cells. This supports the view that p53 derived wild type peptides might serve as candidate......Mutations in the tumour suppressor gene p53 are among the most frequent genetic alterations in human malignancies, often associated with an accumulation of the p53 protein in the cytoplasm. We have generated a number of cytotoxic T lymphocyte (CTL) clones that specifically recognize the HLA-A*0201...

  17. Cerebral ischemic injury decreases α-synuclein expression in brain tissue and glutamate-exposed HT22 cells.

    Science.gov (United States)

    Koh, Phil-Ok

    2017-09-01

    α-Synuclein is abundantly expressed in neuronal tissue, plays an essential role in the pathogenesis of neurodegenerative disorders, and exerts a neuroprotective effect against oxidative stress. Cerebral ischemia causes severe neurological disorders and neuronal dysfunction. In this study, we examined α-synuclein expression in middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury and neuronal cells damaged by glutamate treatment. MCAO surgical operation was performed on male Sprague-Dawley rats, and brain samples were isolated 24 hours after MCAO. We confirmed neurological behavior deficit, infarction area, and histopathological changes following MCAO injury. A proteomic approach and Western blot analysis demonstrated a decrease in α-synuclein in the cerebral cortices after MCAO injury. Moreover, glutamate treatment induced neuronal cell death and decreased α-synuclein expression in a hippocampal-derived cell line in a dose-dependent manner. It is known that α-synuclein regulates neuronal survival, and low levels of α-synuclein expression result in cytotoxicity. Thus, these results suggest that cerebral ischemic injury leads to a reduction in α-synuclein and consequently causes serious brain damage.

  18. Myocyte specific overexpression of myoglobin impairs angiogenesis after hind-limb ischemia.

    Science.gov (United States)

    Hazarika, Surovi; Angelo, Michael; Li, Yongjun; Aldrich, Amy J; Odronic, Shelley I; Yan, Zhen; Stamler, Jonathan S; Annex, Brian H

    2008-12-01

    In preclinical models of peripheral arterial disease the angiogenic response is typically robust, though it can be impaired in conditions such as hypercholesterolemia and diabetes where the endothelium is dysfunctional. Myoglobin (Mb) is expressed exclusively in striated muscle cells. We hypothesized that myocyte specific overexpression of myoglobin attenuates ischemia-induced angiogenesis even in the presence of normal endothelium. Mb overexpressing transgenic (MbTg, n=59) and wild-type (WT, n=56) C57Bl/6 mice underwent unilateral femoral artery ligation/excision. Perfusion recovery was monitored using Laser Doppler. Ischemia-induced changes in muscle were assessed by protein and immunohistochemistry assays. Nitrite/nitrate and protein-bound NO, and vasoreactivity was measured. Vasoreactivity was similar between MbTg and WT. In ischemic muscle, at d14 postligation, MbTg increased VEGF-A, and activated eNOS the same as WT mice but nitrate/nitrite were reduced whereas protein-bound NO was higher. MbTg had attenuated perfusion recovery at d21 (0.37+/-0.03 versus 0.47+/-0.02, P<0.05), d28 (0.40+/-0.03 versus 0.50+/-0.04, P<0.05), greater limb necrosis (65.2% versus 15%, P<0.001), a lower capillary density, and greater apoptosis versus WT. Increased Mb expression in myocytes attenuates angiogenesis after hind-limb ischemia by binding NO and reducing its bioavailability. Myoglobin can modulate the angiogenic response to ischemia even in the setting of normal endothelium.

  19. Differential up-regulation of striatal dopamine transporter and α-synuclein by the pyrethroid insecticide permethrin

    International Nuclear Information System (INIS)

    Gillette, Jeffrey S.; Bloomquist, Jeffrey R.

    2003-01-01

    The effects of permethrin on striatal dopaminergic biomarkers were assessed in this study. Retired breeder male C57 B1/6 mice were given an ip dose of permethrin (0.1-200 mg/kg) at 7-day intervals, over a 2-week period (Days 0, 7, and 14). Animals were then sacrificed 1 day (t = 1), 14 days (t 14), or 28 days after the last treatment (t = 28). Dopamine transporter (DAT) protein as assayed by Western blotting was increased to 115% in the 0.8 mg/kg group over that of control mice at t = 1 (P 3 H]GBR 12935, used to assay DAT binding, followed the same trend as that for the Western blotting data for 0.8 and 1.5 mg/kg doses of permethrin over the 4 weeks posttreatment. At 200 mg/kg permethrin, DAT protein was unchanged vs controls (t = 1), but had significantly increased by t = 14 and continued to increase at t = 28, suggesting that the reduced dopamine transport at this dose was due to nerve terminal stress and that recovery had occurred. The protein α-synuclein was also significantly induced at the 1.5 mg/kg dose at t = 1; however, unlike DAT up-regulation, this effect had declined to control values by t 14. Maximal induction of α-synuclein protein occurred at a dose of 50 mg/kg permethrin. These data provide evidence that the pyrethroid class of insecticides can modulate the dopaminergic system at low doses, in a persistent manner, which may render neurons more vulnerable to toxicant injury

  20. Skp2B overexpression alters a prohibitin-p53 axis and the transcription of PAPP-A, the protease of insulin-like growth factor binding protein 4.

    Directory of Open Access Journals (Sweden)

    Harish Chander

    Full Text Available We previously reported that the degradation of prohibitin by the SCF(Skp2B ubiquitin ligase results in a defect in the activity of p53. We also reported that MMTV-Skp2B transgenic mice develop mammary gland tumors that are characterized by an increased proteolytic cleavage of the insulin-like growth factor binding protein 4 (IGFBP-4, an inhibitor of IGF signaling. However, whether a link exists between a defect in p53 activity and proteolysis of IGFBP-4 was not established.We analyzed the levels of pregnancy-associated plasma protein A (PAPP-A, the protease of IGFBP-4, in MMTV-Skp2B transgenic mice and found that PAPP-A levels are elevated. Further, we found a p53 binding site in intron 1 of the PAPP-A gene and that both wild type and mutant p53 bind to this site. However, binding of wild type p53 results in the transcriptional repression of PAPP-A, while binding of mutant p53 results in the transcriptional activation of PAPP-A. Since MMTV-Skp2B mice express wild type p53 and yet show elevated levels of PAPP-A, at first, these observations appeared contradictory. However, further analysis revealed that the defect in p53 activity in Skp2B overexpressing cells does not only abolish the activity of wild type of p53 but actually mimics that of mutant p53. Our results suggest that in absence of prohibitin, the half-life of p53 is increased and like mutant p53, the conformation of p53 is denatured.These observations revealed a novel function of prohibitin as a chaperone of p53. Further, they suggest that binding of denatured p53 in intron 1 causes an enhancer effect and increases the transcription of PAPP-A. Therefore, these findings indicate that the defect in p53 function and the increased proteolysis of IGFBP-4, we had observed, represent two components of the same pathway, which contributes to the oncogenic function of Skp2B.

  1. EEG UPPER/LOW ALPHA FREQUENCY POWER RATIO RELATES TO TEMPORO-PARIETAL BRAIN ATROPHY AND MEMORY PERFORMANCES IN MILD COGNITIVE IMPAIRMENT

    Directory of Open Access Journals (Sweden)

    Davide Vito Moretti

    2013-10-01

    Full Text Available Objective: temporo-parietal cortex thinning is associated to mild cognitive impairment (MCI due to Alzheimer disease (AD. The increase of EEG upper/low alpha power ratio has been associated with AD-converter MCI subjects. We investigated the association of alpha3/alpha2 ratio with patterns of cortical thickness in MCI.Methods: 74 adult subjects with MCI underwent clinical and neuropsychological evaluation, electroencephalogram (EEG recording and high resolution 3D magnetic resonance imaging (MRI. Alpha3/alpha2 power ratio as well as cortical thickness was computed for each subject. Three MCI groups were detected according to increasing tertile values of upper/low alpha power ratio . Difference of cortical thikness among the groups was estimated. Pearson’s r was used to assess the topography of the correlation between cortical thinning and memory impairment.Results: High upper/low alpha power ratio group had total cortical grey matter (CGM volume reduction of 471 mm2 than low upper/low alpha power ratio group (p

  2. Alpha-Synuclein Pathology in Sensory Nerve Terminals of the Upper Aerodigestive Tract of Parkinson's Disease Patients.

    Science.gov (United States)

    Mu, Liancai; Chen, Jingming; Sobotka, Stanislaw; Nyirenda, Themba; Benson, Brian; Gupta, Fiona; Sanders, Ira; Adler, Charles H; Caviness, John N; Shill, Holly A; Sabbagh, Marwan; Samanta, Johan E; Sue, Lucia I; Beach, Thomas G

    2015-08-01

    Dysphagia is common in Parkinson's disease (PD) and causes significant morbidity and mortality. PD dysphagia has usually been explained as dysfunction of central motor control, much like other motor symptoms that are characteristic of the disease. However, PD dysphagia does not correlate with severity of motor symptoms nor does it respond to motor therapies. It is known that PD patients have sensory deficits in the pharynx, and that impaired sensation may contribute to dysphagia. However, the underlying cause of the pharyngeal sensory deficits in PD is not known. We hypothesized that PD dysphagia with sensory deficits may be due to degeneration of the sensory nerve terminals in the upper aerodigestive tract (UAT). We have previously shown that Lewy-type synucleinopathy (LTS) is present in the main pharyngeal sensory nerves of PD patients, but not in controls. In this study, the sensory terminals in UAT mucosa were studied to discern the presence and distribution of LTS. Whole-mount specimens (tongue-pharynx-larynx-upper esophagus) were obtained from 10 deceased human subjects with clinically diagnosed and neuropathologically confirmed PD (five with dysphagia and five without) and four age-matched healthy controls. Samples were taken from six sites and immunostained for phosphorylated α-synuclein (PAS). The results showed the presence of PAS-immunoreactive (PAS-ir) axons in all the PD subjects and in none of the controls. Notably, PD patients with dysphagia had more PAS-ir axons in the regions that are critical for initiating the swallowing reflex. These findings suggest that Lewy pathology affects mucosal sensory axons in specific regions of the UAT and may be related to PD dysphagia.

  3. Copper(II) Binding Sites in N-Terminally Acetylated α-Synuclein: A Theoretical Rationalization.

    Science.gov (United States)

    Ramis, Rafael; Ortega-Castro, Joaquín; Vilanova, Bartolomé; Adrover, Miquel; Frau, Juan

    2017-08-03

    The interactions between N-terminally acetylated α-synuclein and Cu(II) at several binding sites have been studied with DFT calculations, specifically with the M06 hybrid functional and the ωB97X-D DFT-D functional. In previous experimental studies, Cu(II) was shown to bind several α-synuclein residues, including Met1-Asp2 and His50, forming square planar coordination complexes. Also, it was determined that a low-affinity binding site exists in the C-terminal domain, centered on Asp121. However, in the N-terminally acetylated protein, present in vivo, the Met1 site is blocked. In this work, we simplify the representation of the protein by modeling each experimentally found binding site as a complex between an N-terminally acetylated α-synuclein dipeptide (or several independent residues) and a Cu(II) cation, and compare the results with a number of additional, structurally analogous sites not experimentally found. This way of representing the binding sites, although extremely simple, allows us to reproduce experimental results and to provide a theoretical rationale to explain the preference of Cu(II) for certain sites, as well as explicit geometrical structures for the complexes formed. These results are important to understand the interactions between α-synuclein and Cu(II), one of the factors inducing structural changes in the protein and leading to aggregated forms of it which may play a role in neurodegeneration.

  4. FLZ Attenuates α-Synuclein-Induced Neurotoxicity by Activating Heat Shock Protein 70.

    Science.gov (United States)

    Bao, Xiu-Qi; Wang, Xiao-Liang; Zhang, Dan

    2017-01-01

    Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. The pathology of PD is caused by progressive degeneration of dopaminergic neurons and is characterized by the presence of intracellular inclusions known as Lewy bodies, composed mainly of α-synuclein. Heat shock proteins (HSPs) are crucial in protein quality control in cells. HSP70 in particular prevents the aggregation of protein aggregation, such as α-synuclein, providing a degree of protection against PD. The compound FLZ has been shown to protect several PD models in previous studies and was reported as an HSP inducer to protect against MPP + -induced neurotoxicity, but the mechanism remains unclear. In this study, we investigated the effects of FLZ-mediated HSP70 induction in α-synuclein transgenic mice and cells. FLZ treatment alleviated motor dysfunction and improved dopaminergic neuronal function in α-synuclein transgenic mice. HSP70 protein expression and transcriptional activity were increased by FLZ treatment, eliciting a reduction of α-synuclein aggregation and associated toxicity. The inhibition of HSP70 by quercetin or HSP70 siRNA markedly attenuated the neuroprotective effects of FLZ, confirming that FLZ exerted a neuroprotective effect through HSP70. We revealed that FLZ directly bound to and increased the expression of Hip, a cochaperone of HSP70, which in turn enhanced HSP70 activity. In conclusion, we defined a critical role for HSP70 and its cochaperones activated by FLZ in preventing neurodegeneration and proposed that targeting the HSP70 system may represent a potential therapy for α-synuclein-related diseases, such as PD.

  5. Brain-wide slowing of spontaneous alpha rhythms in mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Pilar eGarcés

    2013-12-01

    Full Text Available The neurophysiological changes associated with Alzheimer’s Disease (AD and Mild Cognitive Impairment (MCI include an increase in low frequency activity, as measured with electroencephalography or magnetoencephalography (MEG. A relevant property of spectral measures is the alpha peak, which corresponds to the dominant alpha rhythm. Here we studied the spatial distribution of MEG resting state alpha peak frequency and amplitude values in a sample of 27 MCI patients and 24 age-matched healthy controls. Power spectra were reconstructed in source space with linearly constrained minimum variance beamformer. Then, 88 Regions of Interest (ROIs were defined and an alpha peak per ROI and subject was identified. Statistical analyses were performed at every ROI, accounting for age, sex and educational level. Peak frequency was significantly decreased (p< 0.05 in MCIs in many posterior ROIs. The average peak frequency over all ROIs was 9.68±0.71 Hz for controls and 9.05±0.90 Hz for MCIs and the average normalized amplitude was (2.57±0.59•10-2 for controls and (2.70±0.49•10-2 for MCIs. Age and gender were also found to play a role in the alpha peak, since its frequency was higher in females than in males in posterior ROIs and correlated negatively with age in frontal ROIs. Furthermore, we examined the dependence of peak parameters with hippocampal volume, which is a commonly used marker of early structural AD-related damage. Peak frequency was positively correlated with hippocampal volume in many posterior ROIs. Overall, these findings indicate a pathological alpha slowing in MCI.

  6. Activation of p53 pathway by Nutlin-3a inhibits the expression of the therapeutic target alpha 5 integrin in colon cancer cells

    Czech Academy of Sciences Publication Activity Database

    Janoušková, Hana; Ray, A.M.; Noulet, F.; Lelong-Rebel, I.; Choulier, L.; Schaffner, F.; Lehmann, M.; Martin, S.; Teisinger, Jan; Dontenwill, M.

    2013-01-01

    Roč. 336, č. 2 (2013), s. 307-318 ISSN 0304-3835 Institutional support: RVO:67985823 Keywords : colon cancer * integrin alpha 5 beta 1 * p53 * Nutlin-3a Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.016, year: 2013

  7. Transgenic overexpression of ADAM12 suppresses muscle regeneration and aggravates dystrophy in aged mdx mice

    DEFF Research Database (Denmark)

    Jørgensen, Louise Helskov; Jensen, Charlotte Harken; Wewer, Ulla M

    2007-01-01

    mice (ADAM12(+)) after a knife cut lesion and observed that the regeneration process was significantly impaired. ADAM12 seemed to inhibit the satellite cell response and delay myoblast differentiation. These results discourage long-term therapeutic use of ADAM12. They also point to impaired...... effect of ADAM12 was suggested to be mediated via a membrane-stabilizing up-regulation of utrophin, alpha7B integrin, and dystroglycans. Ectopic ADAM12 expression in normal mouse skeletal muscle also improved regeneration after freeze injury, presumably by the same mechanism. Hence, it was suggested...... overexpressing ADAM12 (ADAM12(+)/mdx mice), even though their utrophin levels were mildly elevated compared with age-matched controls. Thus, membrane stabilization was not sufficient to provide protection during prolonged disease. Consequently, we reinvestigated skeletal muscle regeneration in ADAM12 transgenic...

  8. The chaperone-like activity of α-synuclein attenuates aggregation of its alternatively spliced isoform, 112-synuclein in vitro: plausible cross-talk between isoforms in protein aggregation.

    Directory of Open Access Journals (Sweden)

    Krishna Madhuri Manda

    Full Text Available Abnormal oligomerization and aggregation of α-synuclein (α-syn/WT-syn has been shown to be a precipitating factor in the pathophysiology of Parkinson's disease (PD. Earlier observations on the induced-alternative splicing of α-syn by Parkinsonism mimetics as well as identification of region specific abnormalities in the transcript levels of 112-synuclein (112-syn in diseased subjects underscores the role of 112-syn in the pathophysiology of PD. In the present study, we sought to identify the aggregation potential of 112-syn in the presence or absence of WT-syn to predict its plausible role in protein aggregation events. Results demonstrate that unlike WT-syn, lack of 28 aa in the C-terminus results in the loss of chaperone-like activity with a concomitant gain in vulnerability to heat-induced aggregation and time-dependent fibrillation. The effects were dose and time-dependent and a significant aggregation of 112-syn was evident at as low as 45 °C following 10 min of incubation. The heat-induced aggregates were found to be ill-defined structures and weakly positive towards Thioflavin-T (ThT staining as compared to clearly distinguishable ThT positive extended fibrils resulting upon 24 h of incubation at 37 °C. Further, the chaperone-like activity of WT-syn significantly attenuated heat-induced aggregation of 112-syn in a dose and time-dependent manner. On contrary, WT-syn synergistically enhanced fibrillation of 112-syn. Overall, the present findings highlight a plausible cross-talk between isoforms of α-syn and the relative abundance of these isoforms may dictate the nature and fate of protein aggregates.

  9. Evaluation of the synuclein-y (SNCG) gene as a PPARy target in murine adipocytes, dorsal root ganglia somatosensory neurons, and human adipose tissue

    Science.gov (United States)

    Synuclein-gamma is highly expressed in both adipocytes and peripheral nervous system (PNS) somatosensory neurons. Its mRNA is induced during adipogenesis, increased in obese human white adipose tissue (WAT), may be coordinately regulated with leptin, and is decreased following treatment of murine 3T...

  10. Secretion of alpha 2-plasmin inhibitor is impaired by amino acid deletion in a small region of the molecule.

    Science.gov (United States)

    Toyota, S; Hirosawa, S; Aoki, N

    1994-02-01

    Alpha 2-plasmin inhibitor (alpha 2PI) deficiency Okinawa results from defective secretion of the inhibitor from the liver and appears to be a direct consequence of the deletion of Glu137 in the amino acid sequence of alpha 2PI. To examine the effects of replacing the amino acid occupying position 137 or deleting its neighboring amino acid on alpha 2PI secretion, we used oligonucleotide-directed mutagenesis of alpha 2PI cDNA to change the codon specifying Glu137 or delete a codon specifying its neighboring amino acid. The effects were determined by pulse-chase experiments and by enzyme-linked immunosorbent assay of media from transiently transfected COS-7 cells. Replacement of Glu137 with an amino acid other than Cys had little effect on alpha 2PI secretion. In contrast, deletion of an amino acid in a region spanning a sequence of less than 30 amino acids including positions 127 and 137 severely impaired the secretion. The results suggest that structural integrity of the region, rather than its component amino acids, is important for the intracellular transport and secretion of alpha 2PI.

  11. alpha(4)beta(7) independent pathway for CD8(+) T cell-mediated intestinal immunity to rotavirus.

    Science.gov (United States)

    Kuklin, N A; Rott, L; Darling, J; Campbell, J J; Franco, M; Feng, N; Müller, W; Wagner, N; Altman, J; Butcher, E C; Greenberg, H B

    2000-12-01

    Rotavirus (RV), which replicates exclusively in cells of the small intestine, is the most important cause of severe diarrhea in young children worldwide. Using a mouse model, we show that expression of the intestinal homing integrin alpha(4)ss(7) is not essential for CD8(+) T cells to migrate to the intestine or provide immunity to RV. Mice deficient in ss7 expression (ss7(-/-)) and unable to express alpha(4)ss(7) integrin were found to clear RV as quickly as wild-type (wt) animals. Depletion of CD8(+) T cells in ss7(-/-) animals prolonged viral shedding, and transfer of immune ss7(-/-) CD8(+) T cells into chronically infected Rag-2-deficient mice resolved RV infection as efficiently as wt CD8(+) T cells. Paradoxically, alpha(4)ss(7)(hi) memory CD8(+) T cells purified from wt mice that had been orally immunized cleared RV more efficiently than alpha(4)ss(7)(low) CD8(+) T cells. We explained this apparent contradiction by demonstrating that expression of alpha(4)ss(7) on effector CD8(+) T cells depends upon the site of initial antigen exposure: oral immunization generates RV-specific CD8(+) T cells primarily of an alpha(4)ss(7)(hi) phenotype, but subcutaneous immunization yields both alpha(4)ss(7)(hi) and alpha(4)ss(7)(low) immune CD8(+) T cells with anti-RV effector capabilities. Thus, alpha(4)ss(7) facilitates normal intestinal immune trafficking to the gut, but it is not required for effective CD8(+) T cell immunity.

  12. MFTF-. cap alpha. + T progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, W.D. (ed.)

    1985-04-01

    Early in FY 1983, several upgrades of the Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory (LLNL) were proposed to the fusion community. The one most favorably received was designated MFTF-..cap alpha..+T. The engineering design of this device, guided by LLNL, has been a principal activity of the Fusion Engineering Design Center during FY 1983. This interim progress report represents a snapshot of the device design, which was begun in FY 1983 and will continue for several years. The report is organized as a complete design description. Because it is an interim report, some parts are incomplete; they will be supplied as the design study proceeds. As described in this report, MFTF-..cap alpha..+T uses existing facilities, many MFTF-B components, and a number of innovations to improve on the physics parameters of MFTF-B. It burns deuterium-tritium and has a central-cell Q of 2, a wall loading GAMMA/sub n/ of 2 MW/m/sup 2/ (with a central-cell insert module), and an availability of 10%. The machine is fully shielded, allows hands-on maintenance of components outside the vacuum vessel 24 h after shutdown, and has provisions for repair of all operating components.

  13. α-Synuclein oligomers and clinical implications for Parkinson disease

    Science.gov (United States)

    Kalia, Lorraine V.; Kalia, Suneil K.; McLean, Pamela J.; Lozano, Andres M.; Lang, Anthony E.

    2012-01-01

    Protein aggregation within the central nervous system has been recognized as a defining feature of neurodegenerative diseases since the early 20th century. Since that time, there has been a growing list of neurodegenerative disorders, including Parkinson disease, which are characterized by inclusions of specific pathogenic proteins. This has led to the long-held dogma that these characteristic protein inclusions, which are composed of large insoluble fibrillar protein aggregates and visible by light microscopy, are responsible for cell death in these diseases. However, the correlation between protein inclusion formation and cytotoxicity is inconsistent suggesting another form of the pathogenic proteins may be contributing to neurodegeneration. There is emerging evidence implicating soluble oligomers, smaller protein aggregates not detectable by conventional microscopy, as potential culprits in the pathogenesis of neurodegenerative diseases. The protein α-synuclein is well recognized to contribute to the pathogenesis of Parkinson disease and is the major component of Lewy bodies and Lewy neurites. However, α-synuclein also forms oligomeric species with certain conformations being toxic to cells. The mechanisms by which these α-synuclein oligomers cause cell death are being actively investigated as they may provide new strategies for diagnosis and treatment of Parkinson disease and related disorders. Here we review the possible role of α-synuclein oligomers in cell death in Parkinson disease and discuss the potential clinical implications. PMID:23225525

  14. Recent advances in α-synuclein functions, advanced glycation, and toxicity: implications for Parkinson's disease.

    Science.gov (United States)

    Guerrero, Erika; Vasudevaraju, P; Hegde, Muralidhar L; Britton, G B; Rao, K S

    2013-04-01

    The toxicity of α-synuclein in the neuropathology of Parkinson's disease which includes its hallmark aggregation has been studied scrupulously in the last decade. Although little is known regarding the normal functions of α-synuclein, its association with membrane phospholipids suggests its potential role in signaling pathways. Following extensive evidences for its nuclear localization, we and others recently demonstrated DNA binding activity of α-synuclein that modulates its conformation as well as aggregation properties. Furthermore, we also underscored the similarities among various amyloidogenic proteins involved in neurodegenerative diseases including amyloid beta peptides and tau. Our more recent studies show that α-synuclein is glycated and glycosylated both in vitro and in neurons, significantly affecting its folding, oligomeric, and DNA binding properties. Glycated α-synuclein causes increased genome damage both via its direct interaction with DNA and by increased generation of reactive oxygen species as glycation byproduct. In this review, we discuss the mechanisms of glycation and other posttranslational modifications of α-synuclein, including phosphorylation and nitration, and their role in neuronal death in Parkinson's disease.

  15. Monitoring in real time the effect of TLX overexpression on proliferation and migration of C6 cells.

    Science.gov (United States)

    Li, G L; Fang, S H; Xu, B

    2017-01-01

    Orphan nuclear receptor TLX has been shown to play an essential role in regulating the self-renewal and proliferation of neural stem cells (NSCs). However, TLX overexpression in NSCs induces long-term NSC expansion and further leads to glioma initiation in mouse when combined with p53 mutations. Whether overexpression of TLX plays a role in glioma stem cell (GSC) proliferation and migration still remains largely unknown. In this study, we infected C6 cells, a special glioma cell line which is mainly composed of cancer stem cells(CSCs), with lentiviruses expressing GFP(LV-GFP) or GFP-T2A-TLX(LV-TLX) and then monitored cell proliferation and migration using the real-time analyzer system (RTCA, xCELLigence, Roche). We found that the cell index (CI) observed for the TLX overexpressing C6 cells showed a lower value than that of the LV-GFP transduced cells. And the MTT results correlated highly with the RTCA proliferation assessments. Furthermore, the expression of p21 was decreased while other downstream genes PTEN and p53 were not significantly changed in TLX overexpressing C6 cells . These findings strongly indicate that TLX overexpression has the ability to decrease the proliferating and migratory properties of C6 cells by targeting p21. Further, our results suggest that TLX overexpression may also have a similar inhibitory effect on GSC proliferation and migration.

  16. ZFAT plays critical roles in peripheral T cell homeostasis and its T cell receptor-mediated response

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Keiko [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute of Life Sciences for the Next Generation of Women Scientists, Fukuoka University, Fukuoka (Japan); Fujimoto, Takahiro [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Okamura, Tadashi [Division of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo (Japan); Ogawa, Masahiro [Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Tanaka, Yoko [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Mototani, Yasumasa; Goto, Motohito [Division of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo (Japan); Ota, Takeharu; Matsuzaki, Hiroshi [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Kuroki, Masahide [Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Tsunoda, Toshiyuki [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Sasazuki, Takehiko [Institute for Advanced Study, Kyushu University, Fukuoka (Japan); Shirasawa, Senji, E-mail: sshirasa@fukuoka-u.ac.jp [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer We generated Cd4-Cre-mediated T cell-specific Zfat-deficient mice. Black-Right-Pointing-Pointer Zfat-deficiency leads to reduction in the number of the peripheral T cells. Black-Right-Pointing-Pointer Impaired T cell receptor-mediated response in Zfat-deficient peripheral T cells. Black-Right-Pointing-Pointer Decreased expression of IL-7R{alpha}, IL-2R{alpha} and IL-2 in Zfat-deficient peripheral T cells. Black-Right-Pointing-Pointer Zfat plays critical roles in peripheral T cell homeostasis. -- Abstract: ZFAT, originally identified as a candidate susceptibility gene for autoimmune thyroid disease, has been reported to be involved in apoptosis, development and primitive hematopoiesis. Zfat is highly expressed in T- and B-cells in the lymphoid tissues, however, its physiological function in the immune system remains totally unknown. Here, we generated the T cell-specific Zfat-deficient mice and demonstrated that Zfat-deficiency leads to a remarkable reduction in the number of the peripheral T cells. Intriguingly, a reduced expression of IL-7R{alpha} and the impaired responsiveness to IL-7 for the survival were observed in the Zfat-deficient T cells. Furthermore, a severe defect in proliferation and increased apoptosis in the Zfat-deficient T cells following T cell receptor (TCR) stimulation was observed with a reduced IL-2R{alpha} expression as well as a reduced IL-2 production. Thus, our findings reveal that Zfat is a critical regulator in peripheral T cell homeostasis and its TCR-mediated response.

  17. Transplantation of mesenchymal stem cells overexpressing IL10 attenuates cardiac impairments in rats with myocardial infarction.

    Science.gov (United States)

    Meng, Xin; Li, Jianping; Yu, Ming; Yang, Jian; Zheng, Minjuan; Zhang, Jinzhou; Sun, Chao; Liang, Hongliang; Liu, Liwen

    2018-01-01

    Mesenchymal stem cell (MSC) has been well known to exert therapeutic potential for patients with myocardial infarction (MI). In addition, interleukin-10 (IL10) could attenuate MI through suppressing inflammation. Thus, the combination of MSC implantation with IL10 delivery may extend health benefits to ameliorate cardiac injury after MI. Here we established overexpression of IL10 in bone marrow-derived MSC through adenoviral transduction. Cell viability, apoptosis, and IL10 secretion under ischemic challenge in vitro were examined. In addition, MSC was transplanted into the injured hearts in a rat model of MI. Four weeks after the MI induction, MI, cardiac functions, apoptotic cells, and inflammation cytokines were assessed. In response to in vitro oxygen-glucose deprivation (OGD), IL10 overexpression in MSC (Ad.IL10-MSC) enhanced cell viability, decreased apoptosis, and increased IL10 secretion. Consistently, the implantation of Ad.IL10-MSCs into MI animals resulted in more reductions in myocardial infarct size, cardiac impairment, and cell apoptosis, compared to the individual treatments of either MSC or IL10 administration. Moreover, the attenuation of both systemic and local inflammations was most prominent for Ad.IL10-MSC treatment. IL10 overexpression and MSC may exert a synergistic anti-inflammatory effect to alleviate cardiac injury after MI. © 2017 Wiley Periodicals, Inc.

  18. A polymorphic variant in the human electron transfer flavoprotein alpha-chain (alpha-T171) displays decreased thermal stability and is overrepresented in very-long-chain acyl-CoA dehydrogenase-deficient patients with mild childhood presentation

    DEFF Research Database (Denmark)

    Bross, P; Pedersen, P; Nyholm, M

    1999-01-01

    The consequences of two amino acid polymorphisms of human electron transfer flavoprotein (alpha-T/I171 in the alpha-subunit and beta-M/T154 in the beta-subunit) on the thermal stability of the enzyme are described. The alpha-T171 variant displayed a significantly decreased thermal stability, wher....... This is compatible with a negative modulating effect of the less-stable alpha-T171 ETF variant in this group of VLCAD patients that harbor missense mutations in at least one allele and therefore potentially display residual levels of VLCAD enzyme activity. Udgivelsesdato: 1999-Jun...

  19. Cytotoxic T-Lymphocyte Antigen-2 alpha participates in axial ...

    African Journals Online (AJOL)

    Cytotoxic T-lymphocyte antigen-2 alpha (CTLA-2α) has been discovered and expressed in mouse activated T-cells and mast cells. Structurally, it is homologous to the proregion of mouse cathepsin L, a lysosomal cystein proteinase. Expressed recombinant CTLA-2α is shown to exhibit selective inhibition to cathepsin L and ...

  20. P53 family members modulate the expression of PRODH, but not PRODH2, via intronic p53 response elements.

    Directory of Open Access Journals (Sweden)

    Ivan Raimondi

    Full Text Available The tumor suppressor p53 was previously shown to markedly up-regulate the expression of the PRODH gene, encoding the proline dehydrogenase (PRODH enzyme, which catalyzes the first step in proline degradation. Also PRODH2, which degrades 4-hydroxy-L-proline, a product of protein (e.g. collagen catabolism, was recently described as a p53 target. Here, we confirmed p53-dependent induction of endogenous PRODH in response to genotoxic damage in cell lines of different histological origin. We established that over-expression of TAp73β or TAp63β is sufficient to induce PRODH expression in p53-null cells and that PRODH expression parallels the modulation of endogenous p73 by genotoxic drugs in several cell lines. The p53, p63, and p73-dependent transcriptional activation was linked to specific intronic response elements (REs, among those predicted by bioinformatics tools and experimentally validated by a yeast-based transactivation assay. p53 occupancy measurements were validated in HCT116 and MCF7 human cell lines. Conversely, PRODH2 was not responsive to p63 nor p73 and, at best, could be considered a weak p53 target. In fact, minimal levels of PRODH2 transcript induction by genotoxic stress was observed exclusively in one of four p53 wild-type cell lines tested. Consistently, all predicted p53 REs in PRODH2 were poor matches to the p53 RE consensus and showed very weak responsiveness, only to p53, in the functional assay. Taken together, our results highlight that PRODH, but not PRODH2, expression is under the control of p53 family members, specifically p53 and p73. This supports a deeper link between proteins of the p53-family and metabolic pathways, as PRODH modulates the balance of proline and glutamate levels and those of their derivative alpha-keto-glutarate (α-KG under normal and pathological (tumor conditions.

  1. Reduced TH expression and α-synuclein accumulation contribute towards nigrostriatal dysfunction in experimental hepatic encephalopathy.

    Science.gov (United States)

    Suárez, Isabel; Bodega, Guillermo; Rubio, Miguel; Fernández, Benjamín

    2017-01-01

    The present work examines α-synuclein expression in the nigrostriatal system of a rat chronic hepatic encephalopathy model induced by portacaval anastomosis (PCA). There is evidence that dopaminergic dysfunction in disease conditions is strongly associated with such expression. Possible relationships among dopaminergic neurons, astroglial cells and α-synuclein expression were sought. Brain tissue samples from rats at 1 and 6 months post-PCA, and controls, were analysed immunohistochemically using antibodies against tyrosine hydroxylase (TH), α-synuclein, glial fibrillary acidic protein (GFAP) and ubiquitin (Ub). In the control rats, TH immunoreactivity was detected in the neuronal cell bodies and processes in the substantia nigra pars compacta (SNc). A dense TH-positive network of neurons was also seen in the striatum. In the PCA-exposed rats, however, a reduction in TH-positive neurons was seen at both 1 and 6 months in the SNc, as well as a reduction in TH-positive fibres in the striatum. This was coincident with the appearance of α-synuclein-immunoreactive neurons in the SNc; some of the TH-positive neurons also showed α-synuclein immunoreactivity. In addition, α-synuclein accumulation was seen in the SNc and striatum at both 1 and 6 months post-PCA, whereas α-synuclein was only mildly expressed in the nigrostriatal pathway of the controls. Astrogliosis was also seen following PCA, as revealed by increased GFAP expression from 1 month to 6 months post-PCA in both the SN and striatum. The astroglial activation level in the SN paralleled the reduced neuronal expression of TH throughout PCA exposure. α-synuclein accumulation following PCA may induce dopaminergic dysfunction via the downregulation of TH, as well as astroglial activation.

  2. Cholesterol facilitates interactions between α-synuclein oligomers and charge-neutral membranes

    DEFF Research Database (Denmark)

    van Maarschalkerweerd, Andreas; Vetri, Valeria; Vestergaard, Bente

    2015-01-01

    composed of anionic lipids, while the more physiologically relevant zwitterionic lipids remain intact. We present experimental evidence for significant morphological changes in zwitterionic membranes containing cholesterol, induced by α-synuclein oligomers. Depending on the lipid composition, model...... of cholesterol for mediating interactions between physiologically relevant membranes and α-synuclein....

  3. DRAGO (KIAA0247), a new DNA damage-responsive, p53-inducible gene that cooperates with p53 as oncosuppressor. [Corrected].

    Science.gov (United States)

    Polato, Federica; Rusconi, Paolo; Zangrossi, Stefano; Morelli, Federica; Boeri, Mattia; Musi, Alberto; Marchini, Sergio; Castiglioni, Vittoria; Scanziani, Eugenio; Torri, Valter; Broggini, Massimo

    2014-04-01

    p53 influences genomic stability, apoptosis, autophagy, response to stress, and DNA damage. New p53-target genes could elucidate mechanisms through which p53 controls cell integrity and response to damage. DRAGO (drug-activated gene overexpressed, KIAA0247) was characterized by bioinformatics methods as well as by real-time polymerase chain reaction, chromatin immunoprecipitation and luciferase assays, time-lapse microscopy, and cell viability assays. Transgenic mice (94 p53(-/-) and 107 p53(+/-) mice on a C57BL/6J background) were used to assess DRAGO activity in vivo. Survival analyses were performed using Kaplan-Meier curves and the Mantel-Haenszel test. All statistical tests were two-sided. We identified DRAGO as a new p53-responsive gene induced upon treatment with DNA-damaging agents. DRAGO is highly conserved, and its ectopic overexpression resulted in growth suppression and cell death. DRAGO(-/-) mice are viable without macroscopic alterations. However, in p53(-/-) or p53(+/-) mice, the deletion of both DRAGO alleles statistically significantly accelerated tumor development and shortened lifespan compared with p53(-/-) or p53(+/-) mice bearing wild-type DRAGO alleles (p53(-/-), DRAGO(-/-) mice: hazard ratio [HR] = 3.25, 95% confidence interval [CI] = 1.7 to 6.1, P < .001; p53(+/-), DRAGO(-/-) mice: HR = 2.35, 95% CI = 1.3 to 4.0, P < .001; both groups compared with DRAGO(+/+) counterparts). DRAGO mRNA levels were statistically significantly reduced in advanced-stage, compared with early-stage, ovarian tumors, but no mutations were found in several human tumors. We show that DRAGO expression is regulated both at transcriptional-through p53 (and p73) and methylation-dependent control-and post-transcriptional levels by miRNAs. DRAGO represents a new p53-dependent gene highly regulated in human cells and whose expression cooperates with p53 in tumor suppressor functions.

  4. Tubulin Polymerization-promoting Protein (TPPP/p25α) Promotes Unconventional Secretion of α-Synuclein through Exophagy by Impairing Autophagosome-Lysosome Fusion

    DEFF Research Database (Denmark)

    Ejlerskov, Patrick; Rasmussen, Izabela; Nielsen, Troels Tolstrup

    2013-01-01

    increase in the basal level of α-synuclein secreted into the medium. Secretion was strictly dependent on autophagy and could be up-regulated (trehalose and Rab1A) or down-regulated (3-methyladenine and ATG5 shRNA) by enhancers or inhibitors of autophagy or by modulating minus-end-directed (HDAC6 sh...

  5. Alpha-Synuclein Pathology in Sensory Nerve Terminals of the Upper Aerodigestive Tract of Parkinson’s Disease Patients

    Science.gov (United States)

    Mu, Liancai; Chen, Jingming; Sobotka, Stanislaw; Nyirenda, Themba; Benson, Brian; Gupta, Fiona; Sanders, Ira; Adler, Charles H.; Caviness, John N.; Shill, Holly A.; Sabbagh, Marwan; Samanta, Johan E.; Sue, Lucia I.; Beach, Thomas G.

    2015-01-01

    Dysphagia is common in Parkinson’s disease (PD) and causes significant morbidity and mortality. PD dysphagia has usually been explained as dysfunction of central motor control, much like other motor symptoms that are characteristic of the disease. However, PD dysphagia does not correlate with severity of motor symptoms nor does it respond to motor therapies. It is known that PD patients have sensory deficits in the pharynx, and that impaired sensation may contribute to dysphagia. However, the underlying cause of the pharyngeal sensory deficits in PD is not known. We hypothesized that PD dysphagia with sensory deficits may be due to degeneration of the sensory nerve terminals in the upper aerodigestive tract (UAT). We have previously shown that Lewy-type synucleinopathy (LTS) is present in the main pharyngeal sensory nerves of PD patients, but not in controls. In this study, the sensory terminals in UAT mucosa were studied to discern the presence and distribution of LTS. Whole-mount specimens (tongue-pharynx-larynx-upper esophagus) were obtained from 10 deceased human subjects with clinically diagnosed and neuropathologically confirmed PD (five with dysphagia and five without) and four age-matched healthy controls. Samples were taken from six sites and immunostained for phosphorylated α-synuclein (PAS). The results showed the presence of PAS-immunoreactive (PAS-ir) axons in all the PD subjects and in none of the controls. Notably, PD patients with dysphagia had more PAS-ir axons in the regions that are critical for initiating the swallowing reflex. These findings suggest that Lewy pathology affects mucosal sensory axons in specific regions of the UAT and may be related to PD dysphagia. PMID:26041249

  6. Phosphorylated α-Synuclein-Copper Complex Formation in the Pathogenesis of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Juan Antonio Castillo-Gonzalez

    2017-01-01

    Full Text Available Parkinson’s disease is the second most important neurodegenerative disorder worldwide. It is characterized by the presence of Lewy bodies, which are mainly composed of α-synuclein and ubiquitin-bound proteins. Both the ubiquitin proteasome system (UPS and autophagy-lysosomal pathway (ALS are altered in Parkinson’s disease, leading to aggregation of proteins, particularly α-synuclein. Interestingly, it has been observed that copper promotes the protein aggregation process. Additionally, phosphorylation of α-synuclein along with copper also affects the protein aggregation process. The interrelation among α-synuclein phosphorylation and its capability to interact with copper, with the subsequent disruption of the protein degradation systems in the neurodegenerative process of Parkinson’s disease, will be analyzed in detail in this review.

  7. Electrophilic trifluoromethyl-thiolation reaction and synthesis of radioligand for medicinal PET imaging of l'α-synuclein

    International Nuclear Information System (INIS)

    Alazet, Sebastien

    2015-01-01

    Part 1: More and more applications for fluorinated molecules are being found in various fields, from materials to life sciences. In recent years, a growing interest has emerged in the association of the trifluoromethyl group with heteroatoms such as CF3O or CF3S. The CF3S moiety is of particular interest, because of its high hydrophobicity parameter (π=1.44). Consequently compounds bearing this group are important targets for various applications, in particular in medicinal chemistry and agrochemistry. However, the majority of previous methods described in the literature use toxic reagents under harsh conditions. Trifluoromethane-sulfenamides (1. and 2. generation) have demonstrated their potential in the electrophilic trifluoromethyl-thiolations. Because of their interesting reactivity, these two generations of shelf-stable reagents are now in the toolbox of organic chemists for the trifluoromethyl-thiolation of molecules, providing a convenient method to pursue less toxic pathways. Part 2: α-synuclein aggregation is a neuro-pathological hallmark of many neuro-degenerative diseases including Parkinson's disease (PD) and dementia with Lewy bodies (DLB), collectively termed synucleinopathies. PET imaging can reflect the amount and distribution of alpha-synuclein aggregates in the brain and would be advantageous to use for specific diagnosis of synucleinopathies in pre-symptomatic stages of disease. We focused our interest onto benzimidazole derivatives as small, planar and π-delocalized compounds to design radiotracers of synuclein aggregates. Compounds based on the association of benzimidazole moiety, rigid linker (alkyne and triazole) and another aromatic part have been designed. The radiolabeling could be performed by nucleophilic substitution with K18F during the last step. With this convergent strategy, we could have access to a large series of molecules to be evaluated. (author)

  8. Coordinated balancing of muscle oxidative metabolism through PGC-1{alpha} increases metabolic flexibility and preserves insulin sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Summermatter, Serge [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland); Troxler, Heinz [Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University Children' s Hospital, University of Zurich, Steinwiesstrasse 75, CH-8032 Zurich (Switzerland); Santos, Gesa [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland); Handschin, Christoph, E-mail: christoph.handschin@unibas.ch [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland)

    2011-04-29

    Highlights: {yields} PGC-1{alpha} enhances muscle oxidative capacity. {yields} PGC-1{alpha} promotes concomitantly positive and negative regulators of lipid oxidation. {yields} Regulator abundance enhances metabolic flexibility and balances oxidative metabolism. {yields} Balanced oxidation prevents detrimental acylcarnitine and ROS generation. {yields} Absence of detrimental metabolites preserves insulin sensitivity -- Abstract: The peroxisome proliferator-activated receptor {gamma} coactivator 1{alpha} (PGC-1{alpha}) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1{alpha} on metabolic control and generation of insulin desensitizing agents in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1{alpha} in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1{alpha} induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1{alpha} enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1{alpha} boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1{alpha} coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1{alpha} does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1{alpha} mimic the beneficial effects of endurance training

  9. α-Synuclein deficiency and efferent nerve degeneration in the mouse cochlea: a possible cause of early-onset presbycusis.

    Science.gov (United States)

    Park, S N; Back, S A; Choung, Y H; Kim, H L; Akil, O; Lustig, L R; Park, K H; Yeo, S W

    2011-11-01

    Efferent nerves under the outer hair cells (OHCs) play a role in the protection of these cells from loud stimuli. Previously, we showed that cochlear α-synuclein expression is localized to efferent auditory synapses at the base of the OHCs. To prove our hypothesis that α-synuclein deficiency and efferent auditory deficit might be a cause of hearing loss, we compared the morphology of efferent nerve endings and α-synuclein expression within the cochleae of two mouse models of presbycusis. Comparative animal study of presbycusis. The C57BL/6J(C57) mouse strain, a well-known model of early-onset hearing loss, and the CBA mouse strain, a model of relatively late-onset hearing loss, were examined. Auditory brainstem responses and distortion product otoacoustic emissions were recorded, and cochlear morphology with efferent nerve ending was compared. Western blotting was used to examine α-synuclein expression in the cochlea. Compared with CBA mice, C57 mice showed earlier onset high-frequency hearing loss and decreased function in OHCs, especially within high-frequency regions. C57 mice demonstrated more severe pathologic changes within the cochlea, particularly within the basal turn, than CBA mice of the same age. Weaker α-synuclein and synaptophysin expression in the efferent nerve endings and cochlear homogenates in C57 mice was observed. Our results support the hypothesis that efferent nerve degeneration, possibly due to differential α-synuclein expression, is a potential cause of early-onset presbycusis. Further studies at the cellular level are necessary to verify our results. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  10. Defined α-synuclein prion-like molecular assemblies spreading in cell culture.

    Science.gov (United States)

    Aulić, Suzana; Le, Tran Thanh Nhat; Moda, Fabio; Abounit, Saïda; Corvaglia, Stefania; Casalis, Loredana; Gustincich, Stefano; Zurzolo, Chiara; Tagliavini, Fabrizio; Legname, Giuseppe

    2014-06-04

    α-Synuclein (α-syn) plays a central role in the pathogenesis of synucleinopathies, a group of neurodegenerative disorders that includes Parkinson disease, dementia with Lewy bodies and multiple system atrophy. Several findings from cell culture and mouse experiments suggest intercellular α-syn transfer. Through a methodology used to obtain synthetic mammalian prions, we tested whether recombinant human α-syn amyloids can promote prion-like accumulation in neuronal cell lines in vitro. A single exposure to amyloid fibrils of human α-syn was sufficient to induce aggregation of endogenous α-syn in human neuroblastoma SH-SY5Y cells. Remarkably, endogenous wild-type α-syn was sufficient for the formation of these aggregates, and overexpression of the protein was not required. Our results provide compelling evidence that endogenous α-syn can accumulate in cell culture after a single exposure to exogenous α-syn short amyloid fibrils. Importantly, using α-syn short amyloid fibrils as seed, endogenous α-syn aggregates and accumulates over several passages in cell culture, providing an excellent tool for potential therapeutic screening of pathogenic α-syn aggregates.

  11. Intracellular formation of α-synuclein oligomers and the effect of heat shock protein 70 characterized by confocal single particle spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Johannes [Department of Neurology, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich (Germany); German Center for Neurodegenerative Diseases – DZNE, Site Munich, Feodor-Lynen-Str. 17, 81377 Munich (Germany); Hillmer, Andreas S. [Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich (Germany); Högen, Tobias [Department of Neurology, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich (Germany); McLean, Pamela J. [Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 (United States); Giese, Armin, E-mail: armin.giese@med.uni-muenchen.de [Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich (Germany)

    2016-08-12

    Synucleinopathies such as dementia with Lewy bodies or Parkinson’s disease are characterized by intracellular deposition of pathologically aggregated α-synuclein. The details of the molecular pathogenesis of PD and especially the conditions that lead to intracellular aggregation of α-synuclein and the role of these aggregates in cell death remain unknown. In cell free in vitro systems considerable knowledge about the aggregation processes has been gathered. In comparison, the knowledge about these aggregation processes in cells is far behind. In cells α-synuclein aggregates can be toxic. However, the crucial particle species responsible for decisive steps in pathogenesis such as seeding a continuing aggregation process and triggering cell death remain to be identified. In order to understand the complex nature of intracellular α-synuclein aggregate formation, we analyzed fluorescent particles formed by venus and α-synuclein-venus fusion proteins and α-synuclein-hemi-venus fusion proteins derived from gently lyzed cells. With these techniques we were able to identify and characterize α-synuclein oligomers formed in cells. Especially the use of α-synuclein-hemi-venus fusion proteins enabled us to identify very small α-synuclein oligomers with high sensitivity. Furthermore, we were able to study the molecular effect of heat shock protein 70, which is known to inhibit α-synuclein aggregation in cells. Heat shock protein 70 does not only influence the size of α-synuclein oligomers, but also their quantity. In summary, this approach based on fluorescence single particle spectroscopy, that is suited for high throughput measurements, can be used to detect and characterize intracellularly formed α-synuclein aggregates and characterize the effect of molecules that interfere with α-synuclein aggregate formation. - Highlights: • Single particle spectroscopy detects intracellular formed α-synuclein aggregates. • Fusion proteins allow detection of protein

  12. Estradiol upregulates calcineurin expression via overexpression of estrogen receptor alpha gene in systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Hui-Li Lin

    2011-04-01

    Full Text Available Systemic lupus erythematosus (SLE is an autoimmune disease primarily affecting women (9:1 compared with men. To investigate the influence of female sex hormone estrogen on the development of female-biased lupus, we compared the expression of estrogen receptor alpha (ERα gene and protein levels as well as expression of T-cell activation gene calcineurin in response to estrogen in peripheral blood lymphocytes (PBLs from SLE patients and normal controls. PBLs were isolated from 20 female SLE patients and 6 normal female controls. The amount of ERα protein in PBL was measured by flow cytometry. The expression of ERα and calcineurin messenger RNA was measured by semi-quantitative reverse transcription-polymerase chain reaction. Calcineurin phosphatase activity was measured by calcineurin assay kit. The expression of ERα messenger RNA and ERα protein was significantly increased (p=0.001 and p=0.023, respectively in PBL from SLE patients compared with that from normal controls. In addition, the basal calcineurin in PBL from SLE patients was significantly higher (p=0.000 than that from normal controls, and estrogen-induced expression of calcineurin was increased (p=0.007 in PBL from SLE patients compared with that from normal controls, a 3.15-fold increase. This increase was inhibited by the ERα antagonism ICI 182,780. The effects of ER antagonism were also found in calcineurin activity. These data suggest that overexpression of ERα gene and enhanced activation of calcineurin in response to estrogen in PBL may contribute to the pathogenesis of female dominant in SLE.

  13. Pure versus combined Merkel cell carcinomas: immunohistochemical evaluation of cellular proteins (p53, Bcl-2, and c-kit) reveals significant overexpression of p53 in combined tumors.

    Science.gov (United States)

    Lai, Jonathan H; Fleming, Kirsten E; Ly, Thai Yen; Pasternak, Sylvia; Godlewski, Marek; Doucette, Steve; Walsh, Noreen M

    2015-09-01

    Merkel cell polyomavirus is of oncogenic significance in approximately 80% of Merkel cell carcinomas. Morphological subcategories of the tumor differ in regard to viral status, the rare combined type being uniformly virus negative and the predominant pure type being mainly virus positive. Indications that different biological subsets of the tumor exist led us to explore this diversity. In an Eastern Canadian cohort of cases (75 patients; mean age, 76 years [range, 43-91]; male/female ratio, 43:32; 51 [68%] pure and 24 [34%] combined tumors), we semiquantitatively compared the immunohistochemical expression of 3 cellular proteins (p53, Bcl-2, and c-kit) in pure versus combined groups. Viral status was known in a subset of cases. The significant overexpression of p53 in the combined group (mean [SD], 153.8 [117.8] versus 121.6 [77.9]; P = .01) and the increased epidermal expression of this protein (p53 patches) in the same group lend credence to a primary etiologic role for sun damage in these cases. Expression of Bcl-2 and c-kit did not differ significantly between the 2 morphological groups. A relative increase in c-kit expression was significantly associated with a virus-negative status (median [interquartile range], 100 [60-115] versus 70 [0-100]; P = .03). Emerging data reveal divergent biological pathways in Merkel cell carcinoma, each with a characteristic immunohistochemical profile. Virus-positive tumors (all pure) exhibit high retinoblastoma protein and low p53 expression, whereas virus-negative cases (few pure and all combined) show high p53 and relatively high c-kit expression. The potential biological implications of this dichotomy call for consistent stratification of these tumors in future studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Evidence of native α-synuclein conformers in the human brain.

    Science.gov (United States)

    Gould, Neal; Mor, Danielle E; Lightfoot, Richard; Malkus, Kristen; Giasson, Benoit; Ischiropoulos, Harry

    2014-03-14

    α-Synuclein aggregation is central to the pathogenesis of several brain disorders. However, the native conformations and functions of this protein in the human brain are not precisely known. The native state of α-synuclein was probed by gel filtration coupled with native gradient gel separation, an array of antibodies with non-overlapping epitopes, and mass spectrometry. The existence of metastable conformers and stable monomer was revealed in the human brain.

  15. Persistent short-term memory defects following sleep deprivation in a drosophila model of Parkinson disease.

    Science.gov (United States)

    Seugnet, Laurent; Galvin, James E; Suzuki, Yasuko; Gottschalk, Laura; Shaw, Paul J

    2009-08-01

    Parkinson disease (PD) is the second most common neurodegenerative disorder in the United States. It is associated with motor deficits, sleep disturbances, and cognitive impairment. The pathology associated with PD and the effects of sleep deprivation impinge, in part, upon common molecular pathways suggesting that sleep loss may be particularly deleterious to the degenerating brain. Thus we investigated the long-term consequences of sleep deprivation on shortterm memory using a Drosophila model of Parkinson disease. Transgenic strains of Drosophila melanogaster. Using the GAL4-UAS system, human alpha-synuclein was expressed throughout the nervous system of adult flies. Alpha-synuclein expressing flies (alpha S flies) and the corresponding genetic background controls were sleep deprived for 12 h at age 16 days and allowed to recover undisturbed for at least 3 days. Short-term memory was evaluated using aversive phototaxis suppression. Dopaminergic systems were assessed using mRNA profiling and immunohistochemistry. MEASURMENTS AND RESULTS: When sleep deprived at an intermediate stage of the pathology, alpha S flies showed persistent short-term memory deficits that lasted > or = 3 days. Cognitive deficits were not observed in younger alpha S flies nor in genetic background controls. Long-term impairments were not associated with accelerated loss of dopaminergic neurons. However mRNA expression of the dopamine receptors dDA1 and DAMB were significantly increased in sleep deprived alpha S flies. Blocking D1-like receptors during sleep deprivation prevented persistent shortterm memory deficits. Importantly, feeding flies the polyphenolic compound curcumin blocked long-term learning deficits. These data emphasize the importance of sleep in a degenerating/reorganizing brain and shows that pathological processes induced by sleep deprivation can be dissected at the molecular and cellular level using Drosophila genetics.

  16. Overexpression of PTPN2 in Visceral Adipose Tissue Ameliorated Atherosclerosis via T Cells Polarization Shift in Diabetic Apoe-/- Mice

    Directory of Open Access Journals (Sweden)

    Ya Li

    2018-03-01

    Full Text Available Background/Aims: Dysregulated inflammation in adipose tissue, marked by increased pro-inflammatory T-cell accumulation and reduced regulatory T cells (Treg, contributes to diabetes-associated insulin resistance and atherosclerosis. However, the molecular mechanisms underlying T-cell-mediated inflammation in adipose tissue remain largely unknown. Methods: Sixty apolipoprotein E (ApoE-/- mice were randomly divided into chow and diabetes groups. Diabetes was induced by a high-fat and high-sugar diet combined with low-dose streptozotocin. Then we transferred a recombinant adenovirus carrying the protein tyrosine phosphatase non-receptor type 2 (PTPN2 gene into epididymal white adipose tissue (EWAT of ApoE-/- mice. After transfection, all mice were euthanized to evaluate the effects of PTPN2 on T cells polarization and atherosclerosis. Results: PTPN2 was downregulated in EWAT of diabetic ApoE-/- mice. PTPN2 overexpression in EWAT reversed the high Th1/Treg and Th17/Treg ratios in EWAT of diabetic mice. In addition, PTPN2 overexpression in EWAT could significantly reduce macrophages infiltration, the ratio of M1/M2 macrophages and the expression of pro-inflammatory cytokines in EWAT, improving insulin resistance. In aortic root lesions, the vulnerability index were significantly decreased by overexpression of PTPN2 in EWAT. Conclusion: These data suggested that PTPN2 overexpression in EWAT would inhibit systemic inflammation and increase the plaque stability via T cells polarization shift in diabetic mice.

  17. Association of TP53 and MDM2 polymorphisms with survival in bladder cancer patients treated with chemoradiotherapy

    International Nuclear Information System (INIS)

    Shinohara, Asano; Sakano, Shigeru; Hinoda, Yuji; Nishijima, Jun; Kawai, Yoshihisa; Misumi, Taku; Nagao, Kazuhiro; Hara, Takahiko; Matsuyama, Hideyasu

    2009-01-01

    Platinum-based chemoradiotherapy (CRT) as bladder conservation therapy has shown promising results for muscle-invasive bladder cancer. However, CRT might diminish survival as a result of the delay in cystectomy for some patients with non-responding bladder tumors. Because the p53 tumor suppression pathway, including its MDM2 counterpart, is important in chemotherapy- and radiotherapy-associated effects, functional polymorphisms in the TP53 and MDM2 genes could influence the response to treatment and the prognosis following CRT. We investigated associations between two such polymorphisms, and p53 overexpression, and response or survival in bladder cancer patients treated with CRT. The study group comprised 96 patients who underwent CRT for transitional cell carcinoma of the bladder. Single nucleotide polymorphisms (SNPs) in TP53 (codon 72, arginine>proline) and MDM2 (SNP3O9, T>G) were genotyped using polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP), and nuclear expression levels of p53 were examined using immunohistochemistry. None of the genotypes or p53 overexpression was significantly associated with response to CRT. However, patients with MDM2 T/G+G/G genotypes had improved cancer-specific survival rates after CRT (P=0.009). In multivariate analysis, the MDM2 T/G+G/G genotypes, and more than two of total variant alleles in TP53 and MDM2, were independently associated with improved cancer-specific survival (P=0.031 and P=0.015, respectively). In addition, MDM2 genotypes were significantly associated with cystectomy-free survival (P=0.030). These results suggest that the TP53 and MDM2 genotypes might be useful prognostic factors following CRT in bladder cancer, helping patient selection for bladder conservation therapy. (author)

  18. Theta and Alpha Alterations in Amnestic Mild Cognitive Impairment in Semantic Go/NoGo Tasks

    Directory of Open Access Journals (Sweden)

    Lydia T. Nguyen

    2017-05-01

    Full Text Available Growing evidence suggests that cognitive control processes are impaired in amnestic mild cognitive impairment (aMCI; however the nature of these alterations needs further examination. The current study examined differences in electroencephalographic theta and alpha power related to cognitive control processes involving response execution and response inhibition in 22 individuals with aMCI and 22 age-, sex-, and education-matched cognitively normal controls. Two Go/NoGo tasks involving semantic categorization were used. In the basic categorization task, Go/NoGo responses were made based on exemplars of a single car (Go and a single dog (NoGo. In the superordinate categorization task, responses were made based on multiple exemplars of objects (Go and animals (NoGo. Behavioral data showed that the aMCI group had more false alarms during the NoGo trials compared to controls. The EEG data revealed between group differences related to response type in theta (4–7 Hz and low-frequency alpha (8–10 Hz power. In particular, the aMCI group differed from controls in theta power during the NoGo trials at frontal and parietal electrodes, and in low-frequency alpha power during Go trials at parietal electrodes. These results suggest that alterations in theta power converge with behavioral deterioration in response inhibition, whereas alterations in low-frequency alpha power appear to precede behavioral changes in response execution. Both behavioral and electrophysiological correlates combined provide a more comprehensive characterization of cognitive control deficits in aMCI.

  19. Oncoprotein MDM2 Overexpression is Associated with Poor Prognosis in Distinct Non-Hodgkin's Lymphoma Entities

    DEFF Research Database (Denmark)

    Møller, Michael Boe; Nielsen, O; Pedersen, Niels Tinggaard

    1999-01-01

    MDM2 is an oncoprotein involved in the regulation of p53. MDM2 exerts its tumorigenic potential through p53-dependent and -independent mechanisms. It is frequently overexpressed in various malignancies. Little is known about the prognostic value of MDM2 expression in non-Hodgkin's lymphomas (NHL...... overexpression was present in 42 (22%) of 188 cases. The frequency was highest in aggressive/very aggressive NHL (P lymphomas, MDM2 overexpression was associated with higher-grade disease (P = .008). MDM2 overexpression was not related to a phenotype indicating...... altered p53. In univariate analysis MDM2 overexpression associated with short survival in follicle center lymphomas (P = .0256), extranodal marginal zone lymphomas (P lymphomas (P = .0047). The relation to poor prognosis was maintained in a Cox regression analysis including known...

  20. Mechanistic study of the inhibitory activity of Geum urbanum extract against α-Synuclein fibrillation

    DEFF Research Database (Denmark)

    Lobbens, Eva Stephanie; Breydo, Leonid; Pedersen, Thomas Skamris

    2016-01-01

    microscopy. Since the extract is a complex mixture, structure-function relationships could not be determined. Under the experimental conditions investigated, Geum urbanum was found to inhibit α-Synuclein fibrillation in a concentration dependent way, and to partly disintegrate preformed α-Synuclein fibrils...

  1. Overexpression of thyroid hormone beta1 nuclear receptor is associated with an increased proliferation of human hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, K; Lin, Y; McPhie, P [Chang-Gung College of Medicine and Technology, Graduate Institute of Clinical Medicine, Taoyuan (Taiwan, Province of China); Cheng, S [National Cancer Inst., Bethesda, MD (United States)

    1994-12-31

    It is evaluated the expression of thyroid hormone nuclear receptors (TRs) and their possible roles in the carcinogenesis of human hepatocarcinoma. The expression of TR{beta}1 and TR{alpha} genes was evaluated at both the mRNA and protein levels. The expression of TR{beta}1 and TR{alpha}1 mRNAs is similar to those found in normal liver. However, the expression of TR isoform proteins depends on the cell-type. The expression of TRaplha1 protein is low in all cell lines examined. However, TR{Beta}1 protein is overexpressed in Mahlavu, SK-Hep-1, and HA22T, moderately expressed in J5, J7, and J328 and is very low HepG2, Hep3B, and PLC/PRF/5 cells. The proliferation of cells in which TR{beta}1 is overexpressed is stimulated by the thyroid hormone, 3,3`,5- triiodo-L-thyronine. These results suggest that TR{beta}1, not TR{alpha}1, is probably involved in the prolifaration of hepatoma cells.

  2. Urea and thiourea modified polypropyleneimine dendrimers clear intracellular α-synuclein aggregates in a human cell line

    DEFF Research Database (Denmark)

    Laumann, Kristoffer; Boas, Ulrik; Larsen, Hjalte Martin

    2015-01-01

    Synucleinopathies are neurodegenerative pathologies in which disease progression is closely correlated to brain accumulation of insoluble α-synuclein, a small protein abundantly expressed in neural tissue. Here, two types of modified polypropyleneimine (PPI) dendrimers having either urea or methy......Synucleinopathies are neurodegenerative pathologies in which disease progression is closely correlated to brain accumulation of insoluble α-synuclein, a small protein abundantly expressed in neural tissue. Here, two types of modified polypropyleneimine (PPI) dendrimers having either urea...

  3. Sensitive Electrochemical Detection of Native and Aggregated x-Synuclein Protein Involved in Parkinson's Disease

    NARCIS (Netherlands)

    Masarik, Michal; Stobiecka, Agata; Kizek, René; Jelen, Frantisek; Pechan, Zdenk; Hoyer, Wolfgang; Subramaniam, Vinod; Palecek, Emil

    2004-01-01

    The aggregation of α-synuclein, a 14 kDa protein, is involved in several human neurodegenerative disorders, including Parkinson's disease. We studied native and in vitro aggregated α-synuclein by circular dichroism (CD), atomic force microscopy (AFM) and electrochemical methods. We used constant

  4. Frequent alteration of MDM2 and p53 in the molecular progression of recurring non-Hodgkin's lymphoma

    DEFF Research Database (Denmark)

    Møller, Michael Boe; Nielsen, O; Pedersen, Niels Tinggaard

    2002-01-01

    -Hodgkin's lymphoma. METHODS AND RESULTS: We have analysed sequential biopsies from 42 non-Hodgkin's lymphoma patients immunohistochemically for p53 alterations (based on p53 and p21Waf1 expression), as well as for expression of MDM2, p27Kip1 and cyclin D3. Relapse of follicle centre lymphoma was associated with p53...... alterations as 5/6 (83%) follicle centre lymphomas with normal p53 at diagnosis showed p53 alterations at relapse. Of these cases, three showed transformation to diffuse large B-cell lymphoma. p53 alteration was also associated with relapse of de novo diffuse large B-cell lymphoma and T-cell non......-Hodgkin's lymphoma, as 2/5 (40%) diffuse large B-cell lymphomas and 3/9 (33%) T-cell non-Hodgkin's lymphomas with normal p53 at diagnosis showed p53 alterations at relapse. No indolent non-Hodgkin's lymphoma case showed MDM2 over-expression at diagnosis, whereas 4/5 (80%) transformed diffuse large B-cell lymphomas...

  5. Small heat shock proteins protect against α-synuclein-induced toxicity and aggregation

    International Nuclear Information System (INIS)

    Outeiro, Tiago Fleming; Klucken, Jochen; Strathearn, Katherine E.; Liu Fang; Nguyen, Paul; Rochet, Jean-Christophe; Hyman, Bradley T.; McLean, Pamela J.

    2006-01-01

    Protein misfolding and inclusion formation are common events in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD) or Huntington's disease (HD). α-Synuclein (aSyn) is the main protein component of inclusions called Lewy bodies (LB) which are pathognomic of PD, Dementia with Lewy bodies (DLB), and other diseases collectively known as LB diseases. Heat shock proteins (HSPs) are one class of the cellular quality control system that mediate protein folding, remodeling, and even disaggregation. Here, we investigated the role of the small heat shock proteins Hsp27 and αB-crystallin, in LB diseases. We demonstrate, via quantitative PCR, that Hsp27 messenger RNA levels are ∼2-3-fold higher in DLB cases compared to control. We also show a corresponding increase in Hsp27 protein levels. Furthermore, we found that Hsp27 reduces aSyn-induced toxicity by ∼80% in a culture model while αB-crystallin reduces toxicity by ∼20%. In addition, intracellular inclusions were immunopositive for endogenous Hsp27, and overexpression of this protein reduced aSyn aggregation in a cell culture model

  6. A blood-brain barrier (BBB) disrupter is also a potent α-synuclein (α-syn) aggregation inhibitor: a novel dual mechanism of mannitol for the treatment of Parkinson disease (PD).

    Science.gov (United States)

    Shaltiel-Karyo, Ronit; Frenkel-Pinter, Moran; Rockenstein, Edward; Patrick, Christina; Levy-Sakin, Michal; Schiller, Abigail; Egoz-Matia, Nirit; Masliah, Eliezer; Segal, Daniel; Gazit, Ehud

    2013-06-14

    The development of disease-modifying therapy for Parkinson disease has been a main drug development challenge, including the need to deliver the therapeutic agents to the brain. Here, we examined the ability of mannitol to interfere with the aggregation process of α-synuclein in vitro and in vivo in addition to its blood-brain barrier-disrupting properties. Using in vitro studies, we demonstrated the effect of mannitol on α-synuclein aggregation. Although low concentration of mannitol inhibited the formation of fibrils, high concentration significantly decreased the formation of tetramers and high molecular weight oligomers and shifted the secondary structure of α-synuclein from α-helical to a different structure, suggesting alternative potential pathways for aggregation. When administered to a Parkinson Drosophila model, mannitol dramatically corrected its behavioral defects and reduced the amount of α-synuclein aggregates in the brains of treated flies. In the mThy1-human α-synuclein transgenic mouse model, a decrease in α-synuclein accumulation was detected in several brain regions following treatment, suggesting that mannitol promotes α-synuclein clearance in the cell bodies. It appears that mannitol has a general neuroprotective effect in the transgenic treated mice, which includes the dopaminergic system. We therefore suggest mannitol as a basis for a dual mechanism therapeutic agent for the treatment of Parkinson disease.

  7. The Exosomal/Total α-Synuclein Ratio in Plasma Is Associated With Glucocerebrosidase Activity and Correlates With Measures of Disease Severity in PD Patients

    Directory of Open Access Journals (Sweden)

    Silvia Cerri

    2018-05-01

    Full Text Available Intensive research efforts in the field of Parkinson’s disease (PD are focusing on identifying reliable biomarkers which possibly help physicians in predicting disease onset, diagnosis, and progression as well as evaluating the response to disease-modifying treatments. Given that abnormal alpha-synuclein (α-syn accumulation is a primary component of PD pathology, this protein has attracted considerable interest as a potential biomarker for PD. Alpha-synuclein can be detected in several body fluids, including plasma, where it can be found as free form or in association with exosomes, small membranous vesicles secreted by virtually all cell types. Together with α-syn accumulation, lysosomal dysfunctions seem to play a central role in the pathogenesis of PD, given the crucial role of lysosomes in the α-syn degradation. In particular, heterozygous mutations in the GBA1 gene encoding lysosomal enzyme glucocerebrosidase (GCase are currently considered as the most important risk factor for PD. Different studies have found that GCase deficiency leads to accumulation of α-syn; whereas at the same time, increased α-syn may inhibit GCase function, thus inducing a bidirectional pathogenic loop. In this study, we investigated whether changes in plasma total and exosome-associated α-syn could correlate with disease status and clinical parameters in PD and their relationship with GCase activity. We studied 39 PD patients (mean age: 65.2 ± 8.9; men: 25, without GBA1 mutations, and 33 age-matched controls (mean age: 61.9 ± 6.2; men: 15. Our results showed that exosomes from PD patients contain a greater amount of α-syn compared to healthy subjects (25.2 vs. 12.3 pg/mL, p < 0.001 whereas no differences were found in plasma total α-syn levels (15.7 vs. 14.8 ng/mL, p = 0.53. Moreover, we highlighted a significant increase of plasma exosomal α-syn/total α-syn ratio in PD patients (1.69 vs. 0.89, p < 0.001, which negatively correlates with disease

  8. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways.

    Science.gov (United States)

    Stępiński, Dariusz

    2016-08-01

    Rapid growth and division of cells, including tumor ones, is correlated with intensive protein biosynthesis. The output of nucleoli, organelles where translational machineries are formed, depends on a rate of particular stages of ribosome production and on accessibility of elements crucial for their effective functioning, including substrates, enzymes as well as energy resources. Different factors that induce cellular stress also often lead to nucleolar dysfunction which results in ribosome biogenesis impairment. Such nucleolar disorders, called nucleolar or ribosomal stress, usually affect cellular functioning which in fact is a result of p53-dependent pathway activation, elicited as a response to stress. These pathways direct cells to new destinations such as cell cycle arrest, damage repair, differentiation, autophagy, programmed cell death or aging. In the case of impaired nucleolar functioning, nucleolar and ribosomal proteins mediate activation of the p53 pathways. They are also triggered as a response to oncogenic factor overexpression to protect tissues and organs against extensive proliferation of abnormal cells. Intentional impairment of any step of ribosome biosynthesis which would direct the cells to these destinations could be a strategy used in anticancer therapy. This review presents current knowledge on a nucleolus, mainly in relation to cancer biology, which is an important and extremely sensitive element of the mechanism participating in cellular stress reaction mediating activation of the p53 pathways in order to counteract stress effects, especially cancer development.

  9. Immunotherapy targeting α-synuclein, with relevance for future treatment of Parkinson's disease and other Lewy body disorders.

    Science.gov (United States)

    Lindström, Veronica; Ihse, Elisabet; Fagerqvist, Therese; Bergström, Joakim; Nordström, Eva; Möller, Christer; Lannfelt, Lars; Ingelsson, Martin

    2014-01-01

    Immunotherapy targeting α-synuclein has evolved as a potential therapeutic strategy for neurodegenerative diseases, such as Parkinson's disease, and initial studies on cellular and animal models have shown promising results. α-synuclein vaccination of transgenic mice reduced the number of brain inclusions, whereas passive immunization studies demonstrated that antibodies against the C-terminus of α-synuclein can pass the blood-brain barrier and affect the pathology. In addition, preliminary evidence suggests that transgenic mice treated with an antibody directed against α-synuclein oligomers/protofibrils resulted in reduced levels of such species in the CNS. The underlying mechanisms of immunotherapy are not yet fully understood, but may include antibody-mediated clearance of pre-existing aggregates, prevention of protein propagation between cells and microglia-dependent protein clearance. Thus, immunotherapy targeting α-synuclein holds promise, but needs to be further developed as a future disease-modifying treatment in Parkinson's disease and other α-synucleinopathies.

  10. Sirt1 overexpression suppresses fluoride-induced p53 acetylation to alleviate fluoride toxicity in ameloblasts responsible for enamel formation.

    Science.gov (United States)

    Suzuki, Maiko; Ikeda, Atsushi; Bartlett, John D

    2018-03-01

    Low-dose fluoride is an effective caries prophylactic, but high-dose fluoride is an environmental health hazard that causes skeletal and dental fluorosis. Treatments to prevent fluorosis and the molecular pathways responsive to fluoride exposure remain to be elucidated. Previously we showed that fluoride activates SIRT1 as an adaptive response to protect cells. Here, we demonstrate that fluoride induced p53 acetylation (Ac-p53) [Lys379], which is a SIRT1 deacetylation target, in ameloblast-derived LS8 cells in vitro and in enamel organ in vivo. Here we assessed SIRT1 function on fluoride-induced Ac-p53 formation using CRISPR/Cas9-mediated Sirt1 knockout (LS8 Sirt/KO ) cells or CRISPR/dCas9/SAM-mediated Sirt1 overexpressing (LS8 Sirt1/over ) cells. NaF (5 mM) induced Ac-p53 formation and increased cell cycle arrest via Cdkn1a/p21 expression in Wild-type (WT) cells. However, fluoride-induced Ac-p53 was suppressed by the SIRT1 activator resveratrol (50 µM). Without fluoride, Ac-p53 persisted in LS8 Sirt/KO cells, whereas it decreased in LS8 Sirt1/over . Fluoride-induced Ac-p53 formation was also suppressed in LS8 Sirt1/over cells. Compared to WT cells, fluoride-induced Cdkn1a/p21 expression was elevated in LS8 Sirt/KO and these cells were more susceptible to fluoride-induced growth inhibition. In contrast, LS8 Sirt1/over cells were significantly more resistant. In addition, fluoride-induced cytochrome-c release and caspase-3 activation were suppressed in LS8 Sirt1/over cells. Fluoride induced expression of the DNA double strand break marker γH2AX in WT cells and this was augmented in LS8 Sirt1/KO cells, but was attenuated in LS8 Sirt1/over cells. Our results suggest that SIRT1 deacetylates Ac-p53 to mitigate fluoride-induced cell growth inhibition, mitochondrial damage, DNA damage and apoptosis. This is the first report implicating Ac-p53 in fluoride toxicity.

  11. Fusion performances and alpha heating in future JET D-T plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Balet, B; Cordey, J G; Gibson, A; Lomas, P; Stubberfield, P M; Thomas, P [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    The new pump divertor installed at JET should allow high performance pulses of a few seconds duration by both preventing the impurity influx and controlling the density evolution. The TRANSP code has been used in a predictive mode to assess the possible fusion performance of such plasmas fuelled with a 50:50 mixture of D and T, and the effect of alpha particles heating on Te and Ti. Several cases are considered: 50:50 D-T mix; 50:50 D-T mix, no C bloom; 50:50 D-T mix, VH phase, density control; 50:50 D-T mix, VH phase, density control, 6 Ma. The predictions show that if the the bloom and MHD instabilities can be controlled at higher plasma currents using a higher toroidal field to keep a reasonable beta value, then a higher fusion performance steady state plasma with Q{sub DT} superior to 2.5 should be possible. The alpha heating power of 4.9 MW would lead to a 74% increase in Te. 4 refs., 4 figs., 1 tab.

  12. The critical role of Nramp1 in degrading α-synuclein oligomers in microglia under iron overload condition.

    Science.gov (United States)

    Wu, Kuo-Chen; Liou, Horng-Huei; Kao, Yu-Han; Lee, Chih-Yu; Lin, Chun-Jung

    2017-08-01

    Oligomeric α-synuclein is a key mediator in the pathogenesis of Parkinson's disease (PD) and is mainly cleared by autophagy-lysosomal pathway, whose dysfunction results in the accumulation and cell-to-cell transmission of α-synuclein. In this study, concomitant with the accumulation of iron and oligomeric α-synuclein, higher expression of a lysosomal iron transporter, natural resistance-associated macrophage protein-1 (Nramp1), was observed in microglia in post-mortem striatum of sporadic PD patients. Using Nramp1-deficient macrophage (RAW264.7) and microglial (BV-2) cells as in-vitro models, iron exposure significantly reduced the degradation rate of the administered human α-synuclein oligomers, which can be restored by the expression of the wild-type, but not mutant (D543N), Nramp1. Likewise, under iron overload condition, mice with functional Nramp1 (DBA/2 and C57BL/6 congenic mice carrying functional Nramp1) had a better ability to degrade infused human α-synuclein oligomers than mice with nonfunctional Nramp1 (C57BL/6) in the brain and microglia. The interplay between iron and Nramp1 exhibited parallel effects on the clearance of α-synuclein and the activity of lysosomal cathepsin D in vitro and in vivo. Collectively, these findings suggest that the function of Nramp1 contributes to microglial degradation of oligomeric α-synuclein under iron overload condition and may be implicated in the pathogenesis of PD. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. In vivo regulation of gene transcription by alpha- and gamma-Tocopherol in murine T lymphocytes

    Science.gov (United States)

    Of the 8 different analogues (alpha-, beta-, gamma-, delta-tocopherols and tocotrienols) designated as vitamin E, alpha-tocopherol (a-T) has been mostly studied, together with gamma-tocopherol (g-T) which is abundant in the US diet. We compared the effect of dietary supplementation with adequate or ...

  14. p53 functions as a cell cycle control protein in osteosarcomas.

    OpenAIRE

    Diller, L; Kassel, J; Nelson, C E; Gryka, M A; Litwak, G; Gebhardt, M; Bressac, B; Ozturk, M; Baker, S J; Vogelstein, B

    1990-01-01

    Mutations in the p53 gene have been associated with a wide range of human tumors, including osteosarcomas. Although it has been shown that wild-type p53 can block the ability of E1a and ras to cotransform primary rodent cells, it is poorly understood why inactivation of the p53 gene is important for tumor formation. We show that overexpression of the gene encoding wild-type p53 blocks the growth of osteosarcoma cells. The growth arrest was determined to be due to an inability of the transfect...

  15. Bacterial lipoprotein-induced tolerance is reversed by overexpression of IRAK-1.

    LENUS (Irish Health Repository)

    Li, Chong Hui

    2012-03-01

    Tolerance to bacterial cell wall components including bacterial lipoprotein (BLP) represents an essential regulatory mechanism during bacterial infection. Reduced Toll-like receptor 2 (TLR2) and IL-1 receptor-associated kinase 1 (IRAK-1) expression is a characteristic of the downregulated TLR signaling pathway observed in BLP-tolerised cells. In this study, we attempted to clarify whether TLR2 and\\/or IRAK-1 are the key molecules responsible for BLP-induced tolerance. Transfection of HEK293 cells and THP-1 cells with the plasmid encoding TLR2 affected neither BLP tolerisation-induced NF-κB deactivation nor BLP tolerisation-attenuated pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) production, indicating that BLP tolerance develops despite overexpression of TLR2 in these cells. In contrast, overexpression of IRAK-1 reversed BLP-induced tolerance, as transfection of IRAK-1 expressing vector resulted in a dose-dependent NF-κB activation and TNF-α release in BLP-tolerised cells. Furthermore, BLP-tolerised cells exhibited markedly repressed NF-κB p65 phosphorylation and impaired binding of p65 to several pro-inflammatory cytokine gene promoters including TNF-α and interleukin-6 (IL-6). Overexpression of IRAK-1 restored the nuclear transactivation of p65 at both TNF-α and IL-6 promoters. These results indicate a crucial role for IRAK-1 in BLP-induced tolerance, and suggest IRAK-1 as a potential target for manipulation of the TLR-mediated inflammatory response during microbial sepsis.

  16. A case of alpha-fetoprotein-producing esophageal adenocarcinoma.

    Science.gov (United States)

    Chen, Yi-Yu; Hsu, Wen-Hung; Hu, Huang-Ming; Wu, Deng-Chyang; Lin, Wen-Yi

    2013-02-01

    Alpha-fetoprotein is a well-known tumor marker in the screening and follow-up of hepatocellular carcinoma. In Taiwanese society, a high prevalence of hepatitis and hepatoma and elevation of alpha-fetoprotein associated with liver function impairment usually suggested clinics undertake further examination for liver or genital tumor. We report the case of 45-year-old man who was found to have an alpha-fetoprotein-producing esophageal adenocarcinoma with an initial presentation of liver function impairment and rapid elevation of alpha-fetoprotein. Esophageal cancer was diagnosed via endoscope and a biopsy proved the presence of adenocarcinoma. A small endoscopic biopsy specimen failed to identify the alpha-fetoprotein positive tumor cell. Esophagectomy was performed and histopathological study of surgical specimen revealed grade II adenocarcinoma with regional metastatic lymphadenopathy. Immunohistochemical study was focal positive for alpha-fetoprotein. Serum alpha-fetoprotein declined transiently after esophagectomy and fluctuation of alpha-fetoprotein level was noted during the treatment with adjuvant chemotherapy. Finally, 19 months after the operation, the patient died due to multiple organ metastases with multiple organ failure. Thus, a small specimen for upper endoscopy may not be sufficient in the presence of alpha-fetoprotein-producing adenocarcinoma. Monitoring of serum alpha-fetoprotein may be useful in the evaluation and follow-up of esophageal alpha-fetoprotein-producing adenocarcinoma. Copyright © 2012. Published by Elsevier B.V.

  17. First evidence of collective alpha particle effect on TAE modes in the TFTR D-T experiment

    International Nuclear Information System (INIS)

    Wong, K.L.; Schmidt, G.; Batha, S.H.

    1995-08-01

    The alpha particle effect on the excitation of toroidal Alfven eigenmodes (TAE) was investigated in deuterium-tritium (d-t) plasmas in the Tokamak Fusion Test Reactor (TFTR). RF power was used to position the plasma near the instability threshold, and the alpha particle effect was inferred from the reduction of RF power threshold for TAE instability in d-t plasmas. Initial calculations indicate that the alpha particles contribute 10--30% of the total drive in a d-t plasma with 3 MW of peak fusion power

  18. Transgenic up-regulation of alpha-CaMKII in forebrain leads to increased anxiety-like behaviors and aggression

    Directory of Open Access Journals (Sweden)

    Hasegawa Shunsuke

    2009-03-01

    Full Text Available Abstract Background Previous studies have demonstrated essential roles for alpha-calcium/calmodulin-dependent protein kinase II (alpha-CaMKII in learning, memory and long-term potentiation (LTP. However, previous studies have also shown that alpha-CaMKII (+/- heterozygous knockout mice display a dramatic decrease in anxiety-like and fearful behaviors, and an increase in defensive aggression. These findings indicated that alpha-CaMKII is important not only for learning and memory but also for emotional behaviors. In this study, to understand the roles of alpha-CaMKII in emotional behavior, we generated transgenic mice overexpressing alpha-CaMKII in the forebrain and analyzed their behavioral phenotypes. Results We generated transgenic mice overexpressing alpha-CaMKII in the forebrain under the control of the alpha-CaMKII promoter. In contrast to alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in anxiety-like behaviors in open field, elevated zero maze, light-dark transition and social interaction tests, and a decrease in locomotor activity in their home cages and novel environments; these phenotypes were the opposite to those observed in alpha-CaMKII (+/- heterozygous knockout mice. In addition, similarly with alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in aggression. However, in contrast to the increase in defensive aggression observed in alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in offensive aggression. Conclusion Up-regulation of alpha-CaMKII expression in the forebrain leads to an increase in anxiety-like behaviors and offensive aggression. From the comparisons with previous findings, we suggest that the expression levels of alpha-CaMKII are associated with the state of emotion; the expression level of alpha-CaMKII positively correlates with the anxiety state and strongly affects

  19. Overexpression of Insulin-like Growth Factor-1 Receptor Is Associated With Penile Cancer Progression.

    Science.gov (United States)

    Ball, Mark W; Bezerra, Stephania M; Chaux, Alcides; Faraj, Sheila F; Gonzalez-Roibon, Nilda; Munari, Enrico; Sharma, Rajni; Bivalacqua, Trinity J; Netto, George J; Burnett, Arthur L

    2016-06-01

    To evaluate insulin-like growth factor-1 receptor (IGF1R) expression in penile cancer and its association with oncologic outcomes. Tissue microarrays were constructed from 53 patients treated at our institution. Expression of IGF1R was evaluated using a Her2-like scoring system. Overexpression was defined as 1+ or greater membranous staining. Association of IGF1R expression with pathologic features was assessed with comparative statistics, and association with local recurrence, progression to nodal or distance metastases, or death was assessed with Kaplan-Meier survival analysis and Cox proportional hazard regression models. Overall, IGF1R overexpression was seen in 33 (62%) cases. With a median follow-up of 27.8 months, IGF1R overexpression was associated with inferior progression-free survival (PFS) (P  =  .003). In a multivariable model controlling for grade, T stage, perineural invasion, and lymphovascular invasion, IGF1R expression was independently associated with disease progression (hazard ratio 2.3, 95% confidence interval 1.1-5.1, P  =  .03. Comparing patients without IGF1R overexpression to those with overexpression, 5-year PFS was 94.1% vs 45.8%. IGF1R overexpression was associated with inferior PFS in penile cancer. Drugs that target IGF1R and downstream messengers may have a therapeutic benefit in patients that exhibit IGF1R overexpression. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Modulation of α-synuclein fibrillization by ring-fused 2-pyridones: templation and inhibition involve oligomers with different structure.

    Science.gov (United States)

    Horvath, Istvan; Sellstedt, Magnus; Weise, Christoph; Nordvall, Lina-Maria; Krishna Prasad, G; Olofsson, Anders; Larsson, Göran; Almqvist, Fredrik; Wittung-Stafshede, Pernilla

    2013-04-15

    In a recent study we discovered that a ring-fused 2-pyridone compound triggered fibrillization of a key protein in Parkinson's disease, α-synuclein. To reveal how variations in compound structure affect protein aggregation, we now prepared a number of strategic analogs and tested their effects on α-synuclein amyloid fiber formation in vitro. We find that, in contrast to the earlier templating effect, some analogs inhibit α-synuclein fibrillization. For both templating and inhibiting compounds, the key species formed in the reactions are α-synuclein oligomers that contain compound. Despite similar macroscopic appearance, the templating and inhibiting oligomers are distinctly different in secondary structure content. When the inhibitory oligomers are added in seed amounts, they inhibit fresh α-synuclein aggregation reactions. Our study demonstrates that small chemical changes to the same central fragment can result in opposite effects on protein aggregation. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Characterization of fibrillation process of α-synuclein at the initial stage

    International Nuclear Information System (INIS)

    Tashiro, Mitsuru; Kojima, Masaki; Kihara, Hiroshi; Kasai, Kouki; Kamiyoshihara, Tomoaki; Ueda, Kenji; Shimotakahara, Sakurako

    2008-01-01

    α-Synuclein is the major component of the filamentous Lewy bodies and Lewy-related neurites, neuropathological hallmarks of Parkinson's disease. Although numerous studies on α-synuclein fibrillation have been reported, the molecular mechanisms of aggregation and fibrillation at the initial stage are still unclear. In the present study, structural properties and propensities to form fibrils of α-synuclein at the initial stage were investigated using 2D 1 H- 15 N NMR spectroscopy, electron microscope, and small angle X-ray scattering (SAXS). Observation of the 2D 1 H- 15 N HSQC spectra indicated significant attenuation of many cross peak intensities in the regions of KTKEGV-type repeats and the non-Aβ component of Alzheimer's disease amyloid (NAC), suggesting that these regions contributed fibril formation. Oligomerization comprising heptamer was successfully monitored at the initial stage using the time-dependent SAXS measurements

  2. T-DM1, a novel antibody–drug conjugate, is highly effective against primary HER2 overexpressing uterine serous carcinoma in vitro and in vivo

    International Nuclear Information System (INIS)

    English, Diana P; Bellone, Stefania; Schwab, Carlton L; Bortolomai, Ileana; Bonazzoli, Elena; Cocco, Emiliano; Buza, Natalia; Hui, Pei; Lopez, Salvatore; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Rutherford, Thomas J; Santin, Alessandro D

    2014-01-01

    Amplification of c-erbB2 has been reported in over 30% of uterine serous carcinoma (USC) and found to confer poor survival because of high proliferation and increased resistance to therapy. In this study, we evaluated for the first time Trastuzumab emtansine (T-DM1), a novel antibody–drug conjugate, against multiple epidermal growth factor receptor-2 (HER2)-positive USC cells in vitro followed by developing a supportive in vivo model. Fifteen primary USC cell lines were assessed by immunohistochemistry (IHC) and flow cytometry for HER2 protein expression. C-erbB2 gene amplification was evaluated using fluorescent in situ hybridization. Sensitivity to T-DM1 and trastuzumab (T)-induced antibody-dependent cell-mediated cytotoxicity was evaluated in 5-h chromium release assays. T-DM1 and T cytostatic and apoptotic activities were evaluated using flow-cytometry-based proliferation assays. In vivo activity of T-DM1 versus T in USC xenografts in SCID mice was also evaluated. High levels of HER2 protein overexpression and HER2 gene amplification were detected in 33% of USC cell lines. T-DM1 was considerably more effective than trastuzumab in inhibiting cell proliferation and in causing apoptosis (P = 0.004) of USC showing HER2 overexpression. Importantly, T-DM1 was highly active at reducing tumor formation in vivo in USC xenografts overexpressing HER2 (P = 0.04) and mice treated with TDM-1 had significantly longer survival when compared to T-treated mice and control mice (P ≤ 0.0001). T-DM1 shows promising antitumor effect in HER2-positive USC cell lines and USC xenografts and its activity is significantly higher when compared to T. T-DM1 may represent a novel treatment option for HER2-positive USC patients with disease refractory to trastuzumab and traditional chemotherapy

  3. Overexpression of a bacterial mercury transporter MerT in Arabidopsis enhances mercury tolerance.

    Science.gov (United States)

    Xu, Sheng; Sun, Bin; Wang, Rong; He, Jia; Xia, Bing; Xue, Yong; Wang, Ren

    2017-08-19

    The phytoremediation by using of green plants in the removal of environmental pollutant is an environment friendly, green technology that is cost effective and energetically inexpensive. By using Agrobacterium-mediated gene transfer, we generated transgenic Arabidopsis plants ectopically expressing mercuric transport protein gene (merT) from Pseudomonas alcaligenes. Compared with wild-type (WT) plants, overexpressing PamerT in Arabidopsis enhanced the tolerance to HgCl 2 . Further results showed that the enhanced total activities or corresponding transcripts of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (POD) were observed in transgenic Arabidopsis under HgCl 2 stress. These results were confirmed by the alleviation of oxidative damage, as indicated by the decrease of thiobarbituric acid reactive substances (TBARS) contents and reactive oxygen species (ROS) accumulation. In addition, localization analysis of PaMerT in Arabidopsis protoplast showed that it is likely to be associated with vacuole. In all, PamerT increased mercury (Hg) tolerance in transgenic Arabidopsis, and decreased production of Hg-induced ROS, thereby protecting plants from oxidative damage. The present study has provided further evidence that bacterial MerT plays an important role in the plant tolerance to HgCl 2 and in reducing the production of ROS induced by HgCl 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Olfaction in three genetic and two MPTP-induced Parkinson's disease mouse models.

    Directory of Open Access Journals (Sweden)

    Stefan Kurtenbach

    Full Text Available Various genetic or toxin-induced mouse models are frequently used for investigation of early PD pathology. Although olfactory impairment is known to precede motor symptoms by years, it is not known whether it is caused by impairments in the brain, the olfactory epithelium, or both. In this study, we investigated the olfactory function in three genetic Parkinson's disease (PD mouse models and mice treated with MPTP intraperitoneally and intranasally. To investigate olfactory function, we performed electro-olfactogram recordings (EOGs and an olfactory behavior test (cookie-finding test. We show that neither a parkin knockout mouse strain, nor intraperitoneal MPTP treated animals display any olfactory impairment in EOG recordings and the applied behavior test. We also found no difference in the responses of the olfactory epithelium to odorants in a mouse strain over-expressing doubly mutated α-synuclein, while this mouse strain was not suitable to test olfaction in a cookie-finding test as it displays a mobility impairment. A transgenic mouse expressing mutated α-synuclein in dopaminergic neurons performed equal to control animals in the cookie-finding test. Further we show that intranasal MPTP application can cause functional damage of the olfactory epithelium.

  5. Structural and functional properties of prefibrillar α-synuclein oligomers.

    Science.gov (United States)

    Pieri, Laura; Madiona, Karine; Melki, Ronald

    2016-04-14

    The deposition of fibrillar alpha-synuclein (α-syn) within inclusions (Lewy bodies and Lewy neurites) in neurons and glial cells is a hallmark of synucleinopathies. α-syn populates a variety of assemblies ranging from prefibrillar oligomeric species to fibrils whose specific contribution to neurodegeneration is still unclear. Here, we compare the specific structural and biological properties of distinct soluble prefibrillar α-syn oligomers formed either spontaneously or in the presence of dopamine and glutaraldehyde. We show that both on-fibrillar assembly pathway and distinct dopamine-mediated and glutaraldehyde-cross-linked α-syn oligomers are only slightly effective in perturbing cell membrane integrity and inducing cytotoxicity, while mature fibrils exhibit the highest toxicity. In contrast to low-molecular weight and unstable oligomers, large stable α-syn oligomers seed the aggregation of soluble α-syn within reporter cells although to a lesser extent than mature α-syn fibrils. These oligomers appear elongated in shape. Our findings suggest that α-syn oligomers represent a continuum of species ranging from unstable low molecular weight particles to mature fibrils via stable elongated oligomers composed of more than 15 α-syn monomers that possess seeding capacity.

  6. S100A4 interacts with p53 in the nucleus and promotes p53 degradation.

    Science.gov (United States)

    Orre, L M; Panizza, E; Kaminskyy, V O; Vernet, E; Gräslund, T; Zhivotovsky, B; Lehtiö, J

    2013-12-05

    S100A4 is a small calcium-binding protein that is commonly overexpressed in a range of different tumor types, and it is widely accepted that S100A4 has an important role in the process of cancer metastasis. In vitro binding assays has shown that S100A4 interacts with the tumor suppressor protein p53, indicating that S100A4 may have additional roles in tumor development. In the present study, we show that endogenous S100A4 and p53 interact in complex samples, and that the interaction increases after inhibition of MDM2-dependent p53 degradation using Nutlin-3A. Further, using proximity ligation assay, we show that the interaction takes place in the cell nucleus. S100A4 knockdown experiments in two p53 wild-type cell lines, A549 and HeLa, resulted in stabilization of p53 protein, indicating that S100A4 is promoting p53 degradation. Finally, we demonstrate that S100A4 knockdown leads to p53-dependent cell cycle arrest and increased cisplatin-induced apoptosis. Thus, our data add a new layer to the oncogenic properties of S100A4 through its inhibition of p53-dependent processes.

  7. Effect of curcumin analogs onα-synuclein aggregation and cytotoxicity

    Science.gov (United States)

    Jha, Narendra Nath; Ghosh, Dhiman; Das, Subhadeep; Anoop, Arunagiri; Jacob, Reeba S.; Singh, Pradeep K.; Ayyagari, Narasimham; Namboothiri, Irishi N. N.; Maji, Samir K.

    2016-01-01

    Alpha-synuclein (α-Syn) aggregation into oligomers and fibrils is associated with dopaminergic neuron loss occurring in Parkinson’s disease (PD) pathogenesis. Compounds that modulate α-Syn aggregation and interact with preformed fibrils/oligomers and convert them to less toxic species could have promising applications in the drug development efforts against PD. Curcumin is one of the Asian food ingredient which showed promising role as therapeutic agent against many neurological disorders including PD. However, the instability and low solubility makes it less attractive for the drug development. In this work, we selected various curcumin analogs and studied their toxicity, stability and efficacy to interact with different α-Syn species and modulation of their toxicity. We found a subset of curcumin analogs with higher stability and showed that curcumin and its various analogs interact with preformed fibrils and oligomers and accelerate α-Syn aggregation to produce morphologically different amyloid fibrils in vitro. Furthermore, these curcumin analogs showed differential binding with the preformed α-Syn aggregates. The present data suggest the potential role of curcumin analogs in modulating α-Syn aggregation. PMID:27338805

  8. Neural Protein Synuclein Gamma (SNCG) in Breast Cancer Progression

    National Research Council Canada - National Science Library

    Jiang, Yangfu

    2002-01-01

    Synucleins are emerging as a central player in the fundamental neural processes and in the formation of pathologically insoluble deposits characteristic of Alzheimer's (AD) and Parkinson's (PD) diseases...

  9. The expression of GST isoenzymes and p53 in non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    MĂźzeyyen Ozhavzali

    2010-06-01

    Full Text Available This study investigated the immunohistochemical staining characteristics of glutathione-S-transferase alpha, pi, mu, theta and p53 in non-small cell lung carcinoma and normal lung tissue from 50 patients. The relationships between expressions of the Glutathione-S-transferase isoenzymes and some clinicopathological features were also examined. Expression of glutathione-S-transferase pi, mu, alpha, theta and p53 was assessed by immunohistochemistry for primary lung carcinomas of 50 patients from the Sanitarium Education and Research Hospital, Ankara lung cancer collection. The relationships between expression of the glutathione-S-transferase isoenzymes, p53 in normal and tumor tissue by Student T test and the clinicopathological data were also examined by Spearman Rank tests. When the normal and tumor tissue of these cases were compared according to their staining intensity and percentage of positive staining, glutathione-S-transferase alpha, pi, mu, theta expressions in tumor cells was significantly higher than normal cells (p<0.05. There was no significant difference in the expression of p53 between normal and tumor cells (p>0.05. When the immunohistochemical results of glutathione-S-transferase isoenzymes and p53 were correlated with the clinical parameters, there were no significant associations between glutathione-S-transferases and p53 expressions and tumor stage, tumor grade and smoking status (p>0.05.

  10. Mitochondrial Dysfunction and α-Synuclein Synaptic Pathology in Parkinson’s Disease: Who’s on First?

    Directory of Open Access Journals (Sweden)

    Michela Zaltieri

    2015-01-01

    Full Text Available Parkinson’s disease (PD is the most common neurodegenerative movement disorder. Its characteristic neuropathological features encompass the loss of dopaminergic neurons of the nigrostriatal system and the presence of Lewy bodies and Lewy neurites. These are intraneuronal and intraneuritic proteinaceous insoluble aggregates whose main constituent is the synaptic protein α-synuclein. Compelling lines of evidence indicate that mitochondrial dysfunction and α-synuclein synaptic deposition may play a primary role in the onset of this disorder. However, it is not yet clear which of these events may come first in the sequel of processes leading to neurodegeneration. Here, we reviewed data supporting either that α-synuclein synaptic deposition precedes and indirectly triggers mitochondrial damage or that mitochondrial deficits lead to neuronal dysfunction and α-synuclein synaptic accumulation. The present overview shows that it is still difficult to establish the exact temporal sequence and contribution of these events to PD.

  11. The role of α-synuclein and tau hyperphosphorylation-mediated autophagy and apoptosis in lead-induced learning and memory injury.

    Science.gov (United States)

    Zhang, Jianbin; Cai, Tongjian; Zhao, Fang; Yao, Ting; Chen, Yaoming; Liu, Xinqin; Luo, Wenjing; Chen, Jingyuan

    2012-01-01

    Lead (Pb) is a well-known heavy metal in nature. Pb can cause pathophysiological changes in several organ systems including central nervous system. Especially, Pb can affect intelligence development and the ability of learning and memory of children. However, the toxic effects and mechanisms of Pb on learning and memory are still unclear. To clarify the mechanisms of Pb-induced neurotoxicity in hippocampus, and its effect on learning and memory, we chose Sprague-Dawley rats (SD-rats) as experimental subjects. We used Morris water maze to verify the ability of learning and memory after Pb treatment. We used immunohistofluorescence and Western blotting to detect the level of tau phosphorylation, accumulation of α-synuclein, autophagy and related signaling molecules in hippocampus. We demonstrated that Pb can cause abnormally hyperphosphorylation of tau and accumulation of α-synuclein, and these can induce hippocampal injury and the ability of learning and memory damage. To provide the new insight into the underlying mechanisms, we showed that Grp78, ATF4, caspase-3, autophagy-related proteins were induced and highly expressed following Pb-exposure. But mTOR signaling pathway was suppressed in Pb-exposed groups. Our results showed that Pb could cause hyperphosphorylation of tau and accumulation of α-synuclein, which could induce ER stress and suppress mTOR signal pathway. These can enhance type II program death (autophgy) and type I program death (apoptosis) in hippocampus, and impair the ability of learning and memory of rats. This is the first evidence showing the novel role of autophagy in the neurotoxicity of Pb.

  12. Variability and repertoire size of T-cell receptor V alpha gene segments.

    Science.gov (United States)

    Becker, D M; Pattern, P; Chien, Y; Yokota, T; Eshhar, Z; Giedlin, M; Gascoigne, N R; Goodnow, C; Wolf, R; Arai, K

    The immune system of higher organisms is composed largely of two distinct cell types, B lymphocytes and T lymphocytes, each of which is independently capable of recognizing an enormous number of distinct entities through their antigen receptors; surface immunoglobulin in the case of the former, and the T-cell receptor (TCR) in the case of the latter. In both cell types, the genes encoding the antigen receptors consist of multiple gene segments which recombine during maturation to produce many possible peptides. One striking difference between B- and T-cell recognition that has not yet been resolved by the structural data is the fact that T cells generally require a major histocompatibility determinant together with an antigen whereas, in most cases, antibodies recognize antigen alone. Recently, we and others have found that a series of TCR V beta gene sequences show conservation of many of the same residues that are conserved between heavy- and light-chain immunoglobulin V regions, and these V beta sequences are predicted to have an immunoglobulin-like secondary structure. To extend these studies, we have isolated and sequenced eight additional alpha-chain complementary cDNA clones and compared them with published sequences. Analyses of these sequences, reported here, indicate that V alpha regions have many of the characteristics of V beta gene segments but differ in that they almost always occur as cross-hybridizing gene families. We conclude that there may be very different selective pressures operating on V alpha and V beta sequences and that the V alpha repertoire may be considerably larger than that of V beta.

  13. A gut-homing, oligoclonal CD4+ T cell population in severe-combined immunodeficient mice expressing a rearranged, transgenic class I-restricted alpha beta T cell receptor

    DEFF Research Database (Denmark)

    Reimann, J; Rudolphi, A; Spiess, S

    1995-01-01

    We studied the peripheral T cell compartment of H-2b severe combined immunodeficient (scid) mice that express a transgenic (tg) alpha beta T cell receptor (TcR) specific for the H-Y (male) epitope presented by the H-2 class I Db molecule. Large populations of CD3+ NK1.1-TCR beta T+ T cells were...

  14. p53 Over-expression and p53 mutations in colon carcinomas: Relation to dietary risk factors

    NARCIS (Netherlands)

    Voskuil, D.W.; Kampman, E.; Kraats, A.A. van; Balder, H.F.; Muijen, G.N.P. van; Goldbohm, R.A.; Veer, P. van 't

    1999-01-01

    Epidemiological studies have suggested that dietary factors may differently affect p53-dependent and p53-independent pathways to colon cancer. Results of such studies may depend on the method used to assess p53 status. This case-control study of 185 colon-cancer cases and 259 controls examines this

  15. α-synuclein assemblies sequester neuronal α3-Na+/K+-ATPase and impair Na+ gradient

    Science.gov (United States)

    Shrivastava, Amulya Nidhi; Redeker, Virginie; Fritz, Nicolas; Pieri, Laura; Almeida, Leandro G; Spolidoro, Maria; Liebmann, Thomas; Bousset, Luc; Renner, Marianne; Léna, Clément; Aperia, Anita; Melki, Ronald; Triller, Antoine

    2015-01-01

    Extracellular α-synuclein (α-syn) assemblies can be up-taken by neurons; however, their interaction with the plasma membrane and proteins has not been studied specifically. Here we demonstrate that α-syn assemblies form clusters within the plasma membrane of neurons. Using a proteomic-based approach, we identify the α3-subunit of Na+/K+-ATPase (NKA) as a cell surface partner of α-syn assemblies. The interaction strength depended on the state of α-syn, fibrils being the strongest, oligomers weak, and monomers none. Mutations within the neuron-specific α3-subunit are linked to rapid-onset dystonia Parkinsonism (RDP) and alternating hemiplegia of childhood (AHC). We show that freely diffusing α3-NKA are trapped within α-syn clusters resulting in α3-NKA redistribution and formation of larger nanoclusters. This creates regions within the plasma membrane with reduced local densities of α3-NKA, thereby decreasing the efficiency of Na+ extrusion following stimulus. Thus, interactions of α3-NKA with extracellular α-syn assemblies reduce its pumping activity as its mutations in RDP/AHC. PMID:26323479

  16. Adrenergic stimulation promotes T-wave alternans and arrhythmia inducibility in a TNF-alpha genetic mouse model of congestive heart failure.

    Science.gov (United States)

    Shusterman, Vladimir; McTiernan, Charles F; Goldberg, Anna; Saba, Samir; Salama, Guy; London, Barry

    2010-02-01

    T-wave alternans (TWA) is a proarrhythmic repolarization instability that is common in congestive heart failure (CHF). Although transgenic mice are commonly used to study the mechanisms of arrhythmogenesis in CHF, little is known about the dynamics of TWA in these species. We hypothesized that TWA is present in a TNF-alpha model of CHF and can be further promoted by adrenergic stimulation. We studied 16 TNF-alpha mice and 12 FVB controls using 1) in vivo intracardiac electrophysiological testing and 2) ambulatory telemetry during 30 min before and after an intraperitoneal injection of isoproterenol. TWA was examined using both linear and nonlinear filtering applied in the time domain. In addition, changes in the mean amplitude of the T wave and area under the T wave were computed. During intracardiac electrophysiological testing, none of the animals had TWA or inducible arrhythmias before the injection of isoproterenol. After the injection, sustained TWA and inducible ventricular tachyarrhythmias were observed in TNF-alpha mice but not in FVB mice. In ambulatory telemetry, before the isoproterenol injection, the cardiac cycle length (CL) was longer in TNF-alpha mice than in FVB mice (98 +/- 9 and 88 +/- 3 ms, P = 0.04). After the injection of isoproterenol, the CL became 8% and 6% shorter in TNF-alpha and FVB mice (P mice, the magnitude of TWA was 1.5-2 times greater than in FVB mice both before and after the isoproterenol injection. The magnitude of TWA increased significantly after the isoproterenol injection compared with the baseline in TNF-alpha mice (P = 0.003) but not in FVB mice. The mean amplitude of the T wave and area under the T wave increased 60% and 80% in FVB mice (P = 0.006 and 0.009) but not in TNF-alpha mice. In conclusion, TWA is present in a TNF-alpha model of CHF and can be further promoted by adrenergic stimulation, along with the enhanced susceptibility for ventricular arrhythmias.

  17. p53 inactivation in chewing tobacco-induced oral cancers and leukoplakias from India.

    Science.gov (United States)

    Saranath, D; Tandle, A T; Teni, T R; Dedhia, P M; Borges, A M; Parikh, D; Sanghavi, V; Mehta, A R

    1999-05-01

    The inactivation of p53 tumour suppressor gene vis-á-vis point mutation, overexpression and degradation due to Human Papilloma virus (HPV) 16/18 infection, was examined in chewing tobacco-associated oral cancers and oral leukoplakias from India. The analysis of mutations was assessed by polymerase chain reaction (PCR) with single strand conformation polymorphism (PCR-SSCP) of exons 5-9 on DNA from 83 oral cancer cases, and the mutations confirmed by direct nucleotide sequencing of the PCR products. p53 protein expression was evaluated by immunohistochemical analysis on paraffin-embedded sections of 62 representative oral cancer biopsies and 22 leukoplakias, using p53-specific monoclonal antibody DO-7. The presence of HPV16/18 was detected in the 83 oral cancer cases by PCR analysis using HPV L1 consensus sequences, followed by Southern hybridization with type-specific oligonucleotide probes. Forty-six per cent (38/83) of oral cancer tumours showed p53 alterations, with 17% (14/83) showing point mutations, 37% (23/62) with overexpression and 25% (21/83) with presence of HPV16 wherein the E6 HPV16 protein degrades p53. HPV18 was not detected in any of the samples. Ninety-two per cent concordance was observed between missense point mutations and overexpression of p53 protein. A significant correlation was not observed between p53 alterations in oral cancer and clinico-pathological profile of the patients. Twenty-seven per cent (6/22) of oral leukoplakias showed p53 overexpression. The overall p53 alterations in oral cancer tissues and oral lesions are comparable to data from the oral cancers reported in the Western countries with smoking and alcohol-associated oral cancers, and suggest a critical role for p53 gene in a significant proportion of oral cancers from India. The overexpression of p53 protein in leukoplakias may serve as a valuable biomarker for identifying individuals at high risk of transformation to malignant phenotype.

  18. Expression of the neuronal adaptor protein X11alpha protects against memory dysfunction in a transgenic mouse model of Alzheimer's disease.

    LENUS (Irish Health Repository)

    Mitchell, Jacqueline C

    2010-01-01

    X11alpha is a neuronal-specific adaptor protein that binds to the amyloid-beta protein precursor (AbetaPP). Overexpression of X11alpha reduces Abeta production but whether X11alpha also protects against Abeta-related memory dysfunction is not known. To test this possibility, we crossed X11alpha transgenic mice with AbetaPP-Tg2576 mice. AbetaPP-Tg2576 mice produce high levels of brain Abeta and develop age-related defects in memory function that correlate with increasing Abeta load. Overexpression of X11alpha alone had no detectable adverse effect upon behavior. However, X11alpha reduced brain Abeta levels and corrected spatial reference memory defects in aged X11alpha\\/AbetaPP double transgenics. Thus, X11alpha may be a therapeutic target for Alzheimer\\'s disease.

  19. Overexpression of Oct4 suppresses the metastatic potential of breast cancer cells via Rnd1 downregulation.

    Science.gov (United States)

    Shen, Long; Qin, Kunhua; Wang, Dekun; Zhang, Yan; Bai, Nan; Yang, Shengyong; Luo, Yunping; Xiang, Rong; Tan, Xiaoyue

    2014-11-01

    Although Oct4 is known as a critical transcription factor involved in maintaining "stemness", its role in tumor metastasis is still controversial. Herein, we overexpressed and silenced Oct4 expression in two breast cancer cell lines, MDA-MB-231 and 4T1, separately. Our data showed that ectopic overexpression of Oct4 suppressed cell migration and invasion in vitro and the formation of metastatic lung nodules in vivo. Conversely, Oct4 downregulation increased the metastatic potential of breast cancer cells both in vitro and in vivo. Furthermore, we identified Rnd1 as the downstream target of Oct4 by ribonucleic acid sequencing (RNA-seq) analysis, which was significantly downregulated upon Oct4 overexpression. Chromatin immunoprecipitation assays revealed the binding of Oct4 to the promoter region of Rnd1 by ectopic overexpression of Oct4. Dual luciferase assays indicated that Oct4 overexpression suppressed transcriptional activity of the Rnd1 promoter. Moreover, overexpression of Rnd1 partially rescued the inhibitory effects of Oct4 on the migration and invasion of breast cancer cells. Overexpression of Rnd1 counteracted the influence of Oct4 on the formation of cell adhesion and lamellipodia, which implied a potential underlying mechanism involving Rnd1. In addition, we also found that overexpression of Oct4 led to an elevation of E-cadherin expression, even in 4T1 cells that possess a relatively high basal level of E-cadherin. Rnd1 overexpression impaired the promoting effects of Oct4 on E-cadherin expression in MDA-MB-231 cells. These results suggest that Oct4 affects the metastatic potential of breast cancer cells through Rnd1-mediated effects that influence cell motility and E-cadherin expression. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Mutations in p53, p53 protein overexpression and breast cancer survival

    Czech Academy of Sciences Publication Activity Database

    Rössner ml., Pavel; Gammon, M. D.; Zhang, Y.J.; Terry, M. B.; Hibshoosh, H.; Memeo, L.; Mansukhani, M.; Long, CH.M.; Gabrowski, G.; Agrawal, M.; Kalra, T.S.; Teitelbaum, S. L.; Neugut, A. I.; Santella, R. M.

    2009-01-01

    Roč. 13, č. 9B (2009), s. 3847-3857 ISSN 1582-1838 Institutional research plan: CEZ:AV0Z50390512 Keywords : Breast cancer * p53 mutations * Survival Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 5.228, year: 2009

  1. Aged Lewis rats exposed to low and moderate doses of rotenone are a good model for studying the process of protein aggregation and its effects upon central nervous system cell physiology

    Directory of Open Access Journals (Sweden)

    Michael F. Almeida

    Full Text Available ABSTRACT Cell physiology is impaired before protein aggregation and this may be more relevant than inclusions themselves for neurodegeneration. The present study aimed to characterize an animal model to enable the analysis of the cell biology before and after protein aggregation. Ten-month-old Lewis rats were exposed either to 1 or 2 mg/kg/day of rotenone, delivered subcutaneously through mini-pumps, for one month. Hyperphosphorylated TAU, alpha-synuclein, amyloid-beta peptide and protein carbonylation (indicative of oxidative stress were evaluated in the hippocampus, substantia nigra and locus coeruleus through immunohistochemistry or western blot. It was found that 2 mg/kg/day rotenone increased amyloid-beta peptide, hyperphosphorylation of TAU and alpha-synuclein. Rotenone at 1mg/kg/day did not alter protein levels. Protein carbonylation remained unchanged. This study demonstrated that aged Lewis rats exposed to a low dose of rotenone is a useful model to study cellular processes before protein aggregation, while the higher dose makes a good model to study the effects of protein inclusions.

  2. Cross-seeding of prions by aggregated α-synuclein leads to transmissible spongiform encephalopathy.

    Directory of Open Access Journals (Sweden)

    Elizaveta Katorcha

    2017-08-01

    Full Text Available Aggregation of misfolded proteins or peptides is a common feature of neurodegenerative diseases including Alzheimer's, Parkinson's, Huntington's, prion and other diseases. Recent years have witnessed a growing number of reports of overlap in neuropathological features that were once thought to be unique to only one neurodegenerative disorder. However, the origin for the overlap remains unclear. One possibility is that diseases with mixed brain pathologies might arise from cross-seeding of one amyloidogenic protein by aggregated states of unrelated proteins. In the current study we examined whether prion replication can be induced by cross-seeding by α-synuclein or Aβ peptide. We found that α-synuclein aggregates formed in cultured cells or in vitro display cross-seeding activity and trigger misfolding of the prion protein (PrPC in serial Protein Misfolding Cyclic Amplification reactions, producing self-replicating PrP states characterized by a short C-terminal proteinase K (PK-resistant region referred to as PrPres. Non-fibrillar α-synuclein or fibrillar Aβ failed to cross-seed misfolding of PrPC. Remarkably, PrPres triggered by aggregated α-synuclein in vitro propagated in animals and, upon serial transmission, produced PrPSc and clinical prion disease characterized by spongiosis and astrocytic gliosis. The current study demonstrates that aggregated α-synuclein is potent in cross-seeding of prion protein misfolding and aggregation in vitro, producing self-replicating states that can lead to transmissible prion diseases upon serial passaging in wild type animals. In summary, the current work documents direct cross-seeding between unrelated amyloidogenic proteins associated with different neurodegenerative diseases. This study suggests that early interaction between unrelated amyloidogenic proteins might underlie the etiology of mixed neurodegenerative proteinopathies.

  3. iASPP is over-expressed in human non-small cell lung cancer and regulates the proliferation of lung cancer cells through a p53 associated pathway

    International Nuclear Information System (INIS)

    Chen, Jinfeng; Xie, Fei; Zhang, Lijian; Jiang, Wen G

    2010-01-01

    iASPP is a key inhibitor of tumour suppressor p53 and is found to be up-regulated in certain malignant conditions. The present study investigated the expression of iASPP in clinical lung cancer, a leading cancer type in the world, and the biological impact of this molecule on lung cancer cells. iASPP protein levels in lung cancer tissues were evaluated using an immunohistochemical method. In vitro, iASPP gene expression was suppressed with a lentvirus-mediated shRNA method and the biological impact after knocking down iASSP on lung cancer cell lines was investigated in connection with the p53 expression status. We showed here that the expression of iASPP was significantly higher in lung cancer tissues compared with the adjacent normal tissues. iASPP shRNA treatment resulted in a down-regulation of iASPP in lung cancer cells. There was a subsequent reduction of cell proliferation of the two lung tumour cell lines A459 and 95D both of which had wild-type p53 expression. In contrast, reduction of iASPP in H1229 cells, a cell with little p53 expression, had no impact on its growth rate. iASPP regulates the proliferation and motility of lung cancer cells. This effect is intimately associated with the p53 pathway. Together with the pattern of the over-expression in clinical lung cancers, it is concluded that iASPP plays an pivotal role in the progression of lung cancer and is a potential target for lung cancer therapy

  4. Synaptotagmin 3 deficiency in T cells impairs recycling of the chemokine receptor CXCR4 and thereby inhibits CXCL12 chemokine-induced migration.

    Science.gov (United States)

    Masztalerz, Agnieszka; Zeelenberg, Ingrid S; Wijnands, Yvonne M; de Bruijn, Rosalie; Drager, Angelika M; Janssen, Hans; Roos, Ed

    2007-01-15

    Synaptotagmins regulate vesicle trafficking and fusion of vesicles with membranes - processes that have been implicated in cell migration. We therefore hypothesized that synaptotagmins play a role in T-cell migration. Amongst synaptotagmins 1-11, we found synaptotagmin 3 (SYT3) to be the only one that is expressed in T cells. CXCR4-triggered migration was inhibited by antisense synaptotagmin 3 mRNA and by the isolated C2B domain, known to impair oligomerization of all synaptotagmins, but not by a C2B mutant that binds Ca(2+) but does not block oligomerization. The C2B domain also blocked CXCR4-triggered actin polymerization and invasion. However, CXCR4-dependent adhesion in flow was not affected. Surprisingly, we found that little or no SYT3 is present near the plasma membrane but that it is mainly localized in multivesicular bodies, which also contained much of the CXCR4. Impaired SYT3 function blocked CXCR4 recycling and thus led to reduced surface levels of CXCR4. Migration was restored by overexpression of CXCR4. We conclude that STT3 is essential for CXCR4 recycling in T cells and thereby for the maintenance of high CXCR4 surface levels required for migration.

  5. Nras Overexpression Results in Granulocytosis, T-Cell Expansion and Early Lethality in Mice

    DEFF Research Database (Denmark)

    Lassen, Louise Berkhoudt; Gonzalez, Borja Ballarin; Schmitz, Alexander

    2012-01-01

    NRAS is a proto-oncogene involved in numerous myeloid malignancies. Here, we report on a mouse line bearing a single retroviral long terminal repeat inserted into Nras. This genetic modification resulted in an increased level of wild type Nras mRNA giving the possibility of studying the function ...... the increment in immature myeloid cells detected in these mice. The short latency period indicates that Nras overexpression alone is sufficient to cause dose-dependent granulocytosis and T-cell expansion....

  6. Selective effects of alpha interferon on human T-lymphocyte subsets during mixed lymphocyte cultures

    DEFF Research Database (Denmark)

    Hokland, M; Hokland, P; Heron, I

    1983-01-01

    Mixed lymphocyte reaction (MLR) cultures of human lymphocyte subsets with or without the addition of physiological doses of human alpha interferon (IFN-alpha) were compared with respect to surface marker phenotypes and proliferative capacities of the responder cells. A selective depression on the T...... T4 cells and decreased numbers of T4 cells harvested from IFN MLRs (days 5-6 of culture). In contrast, it was shown that the T8 (cytotoxic/suppressor) subset in MLRs was either not affected or slightly stimulated by the addition of IFN. The depression of the T4 cells by IFN was accompanied...... by a decrease in the number of activated T cells expressing Ia antigens. On the other hand, IFN MLRs contained greater numbers of cells expressing the T10 differentiation antigen. In experiments with purified T-cell subsets the IFN effect was exerted directly on the T4 cells and not mediated by either T8...

  7. Nanomechanical properties of distinct fibrillar polymorphs of the protein α-synuclein

    Science.gov (United States)

    Makky, Ali; Bousset, Luc; Polesel-Maris, Jérôme; Melki, Ronald

    2016-11-01

    Alpha-synuclein (α-Syn) is a small presynaptic protein of 140 amino acids. Its pathologic intracellular aggregation within the central nervous system yields protein fibrillar inclusions named Lewy bodies that are the hallmarks of Parkinson’s disease (PD). In solution, pure α-Syn adopts an intrinsically disordered structure and assembles into fibrils that exhibit considerable morphological heterogeneity depending on their assembly conditions. We recently established tightly controlled experimental conditions allowing the assembly of α-Syn into highly homogeneous and pure polymorphs. The latter exhibited differences in their shape, their structure but also in their functional properties. We have conducted an AFM study at high resolution and performed a statistical analysis of fibrillar α-Syn shape and thermal fluctuations to calculate the persistence length to further assess the nanomechanical properties of α-Syn polymorphs. Herein, we demonstrated quantitatively that distinct polymorphs made of the same protein (wild-type α-Syn) show significant differences in their morphology (height, width and periodicity) and physical properties (persistence length, bending rigidity and axial Young’s modulus).

  8. A Small Ras-like protein Ray/Rab1c modulates the p53-regulating activity of PRPK

    International Nuclear Information System (INIS)

    Abe, Yasuhito; Takeuchi, Takashi; Imai, Yoshinori; Murase, Ryuichi; Kamei, Yoshiaki; Fujibuchi, Taketsugu; Matsumoto, Suguru; Ueda, Norifumi; Ogasawara, Masahito; Shigemoto, Kazuhiro; Kito, Katsumi

    2006-01-01

    PRPK phosphorylates serine-15 residue of p53 and enhances transcriptional activity. PRPK possesses a bipartite nuclear localization signal and localizes in nucleus when over-expressed in cells. However, intrinsic PRPK localizes mainly in the cytosol in situ. While studying the mechanisms in the distribution of intrinsic PRPK, we identified a PRPK binding protein, an ubiquitously expressed Small Ras-like GTPase, Rab1c, also named Ray or Rab35. The over-expressed Ray was distributed in the nucleus, cytosol, and cell membrane. Both Ray wild type and GTP-restrictively binding mutant Ray-Q67L, but not guanine nucleotide unstable binding mutant Ray-N120I, partially distributed the over-expressed PRPK to the cytosol and also suppressed the PRPK-induced p53-transcriptional activity profoundly. A Small Ras-like GTPase protein Ray was thus indicated to modulate p53 transcriptional activity of PRPK

  9. Tumour necrosis factor-alpha (TNF-alpha) transcription and translation in the CD4+ T cell-transplanted scid mouse model of colitis

    DEFF Research Database (Denmark)

    Williams, A M; Whiting, C V; Bonhagen, K

    1999-01-01

    The adoptive transfer of activated CD4+ alpha/beta T cell blasts from the spleens of immunocompetent C.B-17+/+ or BALB/cdm2 mice into C.B-17scid/scid (scid) mice induces a colitis in the scid recipient within 8 weeks, which progresses to severe disease within 16 weeks. T cells isolated from......-labelled riboprobes were used. The prominent myeloid cell infiltrate in diseased tissues comprised F4/80+, Mac-l+ macrophages, neutrophils, dendritic cells and activated macrophages. TNF-alpha transcription and translation were associated with activated macrophages in the lamina propria. Activated macrophages...

  10. Zinc finger protein 219-like (ZNF219L) and Sox9a regulate synuclein-γ2 (sncgb) expression in the developing notochord of zebrafish.

    Science.gov (United States)

    Lien, Huang-Wei; Yang, Chung-Hsiang; Cheng, Chia-Hsiung; Liao, Yung-Feng; Han, Yu-San; Huang, Chang-Jen

    2013-12-13

    Zebrafish synuclein-γ2 (sncgb) has been reported to be expressed specifically in the notochord. However, the mechanism by which the sncgb gene promoter is regulated has not been described. In this paper, we demonstrate that Zinc finger protein 219-like (ZNF219L) and sox9a are involved in the regulation of sncgb gene expression. Furthermore, we observed that over-expression of both ZNF219L and Sox9a resulted in increased sncgb expression. In addition, ZNF219L is physically associated with Sox9a, and simultaneous morpholino knockdown of znf219L and sox9a caused a synergistic decrease of sncgb expression in the notochord. Taken together, our results reveal that coordination of ZNF219L with Sox9a is involved in the regulation of notochord-specific expression of sncgb. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  11. MILD COGNITIVE IMPAIRMENT: STRUCTURAL, METABOLICAL AND NEUROPHYSIOLOGICAL EVIDENCE OF A NOVEL EEG BIOMARKER

    Directory of Open Access Journals (Sweden)

    Davide Vito Moretti

    2015-07-01

    Full Text Available Background: recent studies demonstrate that the alpha 3/alpha 2 power ratio correlates with cortical atrophy, regional hypoperfusion and memory impairment in subjects with mild cognitive impairment (MCI.Methods: evidences were reviewed in subjects with MCI who underwent EEG recording, Magnetic Resonance Imaging (MRI scans and memory evaluation. Alpha3/alpha2 power ratio (alpha2 8.9–10.9 Hz range; alpha3 10.9–12.9 Hz range, cortical thickness, linear EEG coherence and memory impairment have been evaluated in a large group of 74 patients. A subset of 27 subjects within the same group underwent also Single Photon Emission Computed Tomography (SPECT evaluation. Results: in MCI subjects with higher EEG upper/low alpha power ratio a greater temporo-parietal and hippocampal atrophy was found as well as a decrease in regional blood perfusion and memory impairment. In this group, an increase of theta oscillations is associated with a greater interhemispheric coupling between temporal areas. Conclusion: the increase of alpha3/alpha2 power ratio is a promising novel biomarker in identifying MCI subjects at risk for Alzheimer’s disease

  12. Overexpression of the NR2A subunit in the forebrain impairs long-term social recognition and non-social olfactory memory.

    Science.gov (United States)

    Jacobs, S A; Tsien, J Z

    2014-04-01

    Animals must recognize and remember conspecifics and potential mates, and distinguish these animals from potential heterospecific competitors and predators. Despite its necessity, aged animals are known to exhibit impaired social recognition memory. As the brain ages, the ratio of NR2A:NR2B in the brain increases over time and has been postulated to underlie the cognitive decline observed during the aging process. Here, we test the hypothesis that an increased NR2A:NR2B subunit ratio underlies long-term social recognition memory. Using transgenic overexpression of NR2A in the forebrain regions, we investigated the ability of these mice to learn and remember male and female conspecifics, mice of another strain and animals of another rodent species, the rat. Furthermore, due to the importance of olfaction in social recognition, we tested the olfactory memory in the NR2A transgenic mice. Our series of behavioral experiments revealed significant impairments in the NR2A transgenic mice in long-term social memory of both male and female conspecifics. Additionally, the NR2A transgenic mice are unable to recognize mice of another strain or rats. The NR2A transgenic mice also exhibited long-term memory impairments in the olfactory recognition task. Taken together, our results provide evidence that an increased NR2A:NR2B ratio in the forebrain leads to reduced long-term memory function, including the ethologically important memories such as social recognition and olfactory memory.

  13. Flavonoids-induced accumulation of hypoxia-inducible factor (HIF)-1alpha/2alpha is mediated through chelation of iron.

    Science.gov (United States)

    Park, Sung-Soo; Bae, Insoo; Lee, Yong J

    2008-04-15

    Hypoxia-inducible factor-1 alpha (HIF-1alpha) is the regulatory subunit of the heterodimeric transcription factor HIF-1 that is the key regulator of cellular response to low oxygen tension. Under normoxic conditions, HIF-1alpha is continuously degraded by the ubiquitin-proteasome pathway through pVHL (von Hippel-Lindau tumor suppressor protein). Under hypoxic conditions, HIF-1alpha is stabilized and induces the transcription of HIF-1 target genes. Quercetin, a flavonoid with anti-oxidant, anti-inflammatory, and kinase modulating properties, has been found to induce HIF-1alpha accumulation and VEGF secretion in normoxia. In this study, the molecular mechanisms of quercetin-mediated HIF-1alpha accumulation were investigated. Previous studies have shown that, in addition to being induced by hypoxia, HIF-1alpha can be induced through the phosphatidylinositol 3-kinase (PI3K)/Akt and p53 signaling pathways. But our study revealed, through p53 mutant-type as well as p53 null cell lines, that neither the PI3K/Akt nor the p53 signaling pathway is required for quercetin-induced HIF-1alpha accumulation. And we observed that HIF-1alpha accumulated by quercetin is not ubiquitinated and the interaction of HIF-1alpha with pVHL is reduced, compared with HIF-1alpha accumulated by the proteasome inhibitor MG132. The use of quercetin's analogues showed that only quercetin and galangin induce HIF-1/2alpha accumulation and this effect is completely reversed by additional iron ions. This is because quercetin and galangin are able to chelate cellular iron ions that are cofactors of HIF-1/2alpha proline hydroxylase (PHD). These data suggest that quercetin inhibits the ubiquitination of HIF-1/2alpha in normoxia by hindering PHD through chelating iron ions.

  14. Survivin inhibits anti-growth effect of p53 activated by aurora B

    International Nuclear Information System (INIS)

    Jung, Ji-Eun; Kim, Tae-Kyung; Lee, Joong-Seob; Oh, Se-Yeong; Kwak, Sungwook; Jin, Xun; Sohn, Jin-Young; Song, Min-Keun; Sohn, Young-Woo; Lee, Soo-Yeon; Pian, Xumin; Lee, Jang-Bo; Chung, Yong Gu; Choi, Young Ki; You, Seungkwon; Kim, Hyunggee

    2005-01-01

    Genomic instability and apoptosis evasion are hallmarks of cancer, but the molecular mechanisms governing these processes remain elusive. Here, we found that survivin, a member of the apoptosis-inhibiting gene family, and aurora B kinase, a chromosomal passenger protein, were co-overexpressed in the various glioblastoma cell lines and tumors. Notably, exogenous introduction of the aurora B in human BJ cells was shown to decrease cell growth and increase the senescence-associated β-galactosidase activity by activation of p53 tumor suppressor. However, aurora B overexpression failed to inhibit cell proliferation in BJ and U87MG cells transduced with dominant-negative p53 as well as in p53 -/- mouse astrocytes. Aurora B was shown to increase centrosome amplification in the p53 -/- astrocytes. Survivin was shown to induce anchorage-independent growth and inhibit anti-proliferation and drug-sensitive apoptosis caused by aurora B. Overexpression of both survivin and aurora B further accelerated the proliferation of BJ cells. Taken together, the present study indicates that survivin should accelerate tumorigenesis by inhibiting the anti-proliferative effect of p53 tumor suppressor that is activated by aurora B in normal and glioblastoma cells containing intact p53

  15. RKIP phosphorylation–dependent ERK1 activation stimulates adipogenic lipid accumulation in 3T3-L1 preadipocytes overexpressing LC3

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Jong Ryeal [Department of Internal Medicine, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Ahmed, Mahmoud [Department of Biochemistry and Convergence Medical Science, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Kim, Deok Ryong, E-mail: drkim@gnu.ac.kr [Department of Biochemistry and Convergence Medical Science, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of)

    2016-09-09

    3T3-L1 preadipocytes undergo adipogenesis in response to treatment with dexamethaxone, 1-methyl-3-isobutylxanthine, and insulin (DMI) through activation of several adipogenic transcription factors. Many autophagy-related proteins are also highly activated in the earlier stages of adipogenesis, and the LC3 conjugation system is required for formation of lipid droplets. Here, we investigated the effect of overexpression of green fluorescent protein (GFP)-LC3 fusion protein on adipogenesis. Overexpression of GFP-LC3 in 3T3-L1 preadipocytes using poly-L-lysine-assisted adenoviral GFP-LC3 transduction was sufficient to produce intracellular lipid droplets. Indeed, GFP-LC3 overexpression stimulated expression of some adipogenic transcription factors (e.g., C/EBPα or β, PPARγ, SREBP2). In particular, SREBP2 was highly activated in preadipocytes transfected with adenoviral GFP-LC3. Also, phosphorylation of Raf kinase inhibitory protein (RKIP) at serine 153, consequently stimulating extracellular-signal regulated kinase (ERK)1 activity, was significantly increased during adipogenesis induced by either poly-L-lysine-assisted adenoviral GFP-LC3 transduction or culture in the presence of dexamethasone, 1-methyl-3-isobutylxanthine, and insulin. Furthermore, RKIP knockdown promoted ERK1 and PPARγ activation, and significantly increased the intracellular accumulation of triacylglycerides in DMI-induced adipogenesis. In conclusion, GFP-LC3 overexpression in 3T3-L1 preadipocytes stimulates adipocyte differentiation via direct modulation of RKIP-dependent ERK1 activity. - Highlights: • Overexpression of GFP-LC3 in 3T3-L1 cells produces intracellular lipid droplets. • SREBP2 is highly activated in preadipocytes transfected with adenoviral GFP-LC3. • RKIP phosphorylation at serine 153 is significantly increased during adipogenesis. • RKIP knockdown promotes ERK1 and PPARγ activation during adipogenesis. • RKIP-dependent ERK1 activation increases triacylglycerides in

  16. Development of thin foil Faraday collector as a lost alpha particle diagnostic for high yield D-T tokamak fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Van Belle, P; Jarvis, O N; Sadler, G J [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Cecil, F E [Colorado School of Mines, Golden, CO (United States)

    1994-07-01

    Alpha particle confinement is necessary for ignition of a D-T tokamak fusion plasma and for first wall protection. Due to high radiation backgrounds and temperatures, scintillators and semiconductor detectors may not be used to study alpha particles which are lost to the first wall during the D-T programs on JET and ITER. An alternative method of charged particle spectrometry capable of operation in these harsh environments, is proposed: it consists of thin foils of electrically isolated conductors with the flux of alpha particles determined by the positive current flowing from the foils. 2 refs., 3 figs.

  17. NUMB does not impair growth and differentiation status of experimental gliomas

    International Nuclear Information System (INIS)

    Euskirchen, Philipp; Skaftnesmo, Kai-Ove; Huszthy, Peter C.; Brekkå, Narve; Bjerkvig, Rolf; Jacobs, Andreas H.; Miletic, Hrvoje

    2011-01-01

    The cell fate determinant NUMB orchestrates asymmetric cell division in flies and mammals and has lately been suggested to have a tumor suppressor function in breast and lung cancer. Here, we studied NUMB in the context of malignant gliomas. We used ectopic expression of NUMB in order to inhibit proliferation and induce differentiation in glioma cells by alteration of Notch, Hedgehog and p53 signaling. We found that NUMB is consistently expressed in glioma biopsies with predominance of NUMB2/4 isoforms as determined by isoform-specific real-time PCR and Western blotting. Upon lentiviral overexpression, in vitro proliferation rate and the grade of differentiation as assessed by morphology and expression of neural and glial markers remained unchanged. Orthotopic xenografts of NUMB-transduced human U87 glioma cells could be established in nude rats without impairing engraftment or causing significant changes in morphology based on magnetic resonance imaging (MRI). The previously reported alteration of Hedgehog and p53 signaling by NUMB could not be recapitulated in glioma cells. We thus show that in experimental gliomas, NUMB overexpression most likely does not exert a tumor suppressor function such as seen in epithelial cancers.

  18. alpha-Globin genes: thalassemic and structural alterations in a Brazilian population

    Directory of Open Access Journals (Sweden)

    M.R.S.C. Wenning

    2000-09-01

    Full Text Available Seven unrelated patients with hemoglobin (Hb H disease and 27 individuals with alpha-chain structural alterations were studied to identify the alpha-globin gene mutations present in the population of Southeast Brazil. The -alpha3.7, --MED and -(alpha20.5 deletions were investigated by PCR, whereas non-deletional alpha-thalassemia (alphaHphalpha, alphaNcoIalpha, aaNcoI, alphaIcalpha and alphaTSaudialpha was screened with restriction enzymes and by nested PCR. Structural alterations were identified by direct DNA sequencing. Of the seven patients with Hb H disease, all of Italian descent, two had the -(alpha20.5/-alpha3.7 genotype, one had the --MED/-alpha3.7 genotype, one had the --MED/alphaHphalpha genotype and three showed interaction of the -alpha3.7 deletion with an unusual, unidentified form of non-deletional alpha-thalassemia [-alpha3.7/(aaT]. Among the 27 patients with structural alterations, 15 (of Italian descent had Hb Hasharon (alpha47Asp->His associated with the -alpha3.7 deletion, 4 (of Italian descent were heterozygous for Hb J-Rovigo (alpha53Ala->Asp, 4 (3 Blacks and 1 Caucasian were heterozygous for Hb Stanleyville-II (alpha78Asn->Lys associated with the alpha+-thalassemia, 1 (Black was heterozygous for Hb G-Pest (alpha74Asp->Asn, 1 (Caucasian was heterozygous for Hb Kurosaki (alpha7Lys->Glu, 1 (Caucasian was heterozygous for Hb Westmead (alpha122His->Gln, and 1 (Caucasian was the carrier of a novel silent variant (Hb Campinas, alpha26Ala->Val. Most of the mutations found reflected the Mediterranean and African origins of the population. Hbs G-Pest and Kurosaki, very rare, and Hb Westmead, common in southern China, were initially described in individuals of ethnic origin differing from those of the carriers reported in the present study and are the first cases to be reported in the Brazilian population.

  19. Recombinant human growth-regulated oncogene-alpha induces T lymphocyte chemotaxis. A process regulated via IL-8 receptors by IFN-gamma, TNF-alpha, IL-4, IL-10, and IL-13

    DEFF Research Database (Denmark)

    Jinquan, T; Frydenberg, Jane; Mukaida, N

    1995-01-01

    receptors on the cells. This process can be augmented by IFN-gamma and TNF-alpha, and inhibited by IL-4, IL-10, and IL-13. In addition, we also document that on T lymphocytes there exist IL-8 receptors that can be up-regulated by IFN-gamma, TNF-alpha, and IL-2. Our results demonstrate that rhGRO-alpha gene...

  20. Transgenic overexpression of adenine nucleotide translocase 1 protects ischemic hearts against oxidative stress.

    Science.gov (United States)

    Klumpe, Inga; Savvatis, Konstantinos; Westermann, Dirk; Tschöpe, Carsten; Rauch, Ursula; Landmesser, Ulf; Schultheiss, Heinz-Peter; Dörner, Andrea

    2016-06-01

    Ischemia impairs the adenine nucleotide translocase (ANT), which transports ADP and ATP across the inner mitochondrial membrane. We investigated whether ANT1 overexpression has protective effects on ischemic hearts. Myocardial infarction was induced in wild-type (WT) and heart-specific ANT1-transgenic (ANT1-TG) rats, and hypoxia was set in isolated cardiomyocytes. ANT1 overexpression reduced the myocardial infarct area and increased the survival rate of infarcted rats. Reduced ANT1 expression and increased 4-hydroxynonenal modification of ANT paralleled to impaired ANT function in infarcted WT hearts. ANT1 overexpression improved ANT expression and function. This was accompanied by reduced mitochondrial cytochrome C release and caspase-3 activation. ANT1-TG hearts suffered less from oxidative stress, as shown by lower protein carbonylation and 4-hydroxynonenal modification of ANT. ANT1 overexpression also increased cell survival of hypoxic cardiomyocytes and attenuated reactive oxygen species (ROS) production. This was linked to higher stability of mitochondrial membrane potential and lower activity of ROS detoxifying catalase. ANT1-TG cardiomyocytes also showed higher resistance against H2O2 treatment, which was independent of catalase activity. In conclusion, ANT1 overexpression compensates impaired ANT activity under oxygen-restricted conditions. It reduces ROS production and oxidative stress, stabilizes mitochondrial integrity, and increases survival, making ANT1 a component in ROS management and heart protection during ischemia. ANT1 overexpression reduces infarct size and increases survival after infarction. ANT1 overexpression compensates restricted ANT expression and function in infarcted hearts. Increased ANT1 expression enhances mitochondrial integrity. ANT1-overexpressing hearts reduce oxidative stress by decreasing ROS generation. ANT1 is a component in ROS management and heart protection.

  1. Somatotropinomas, but not nonfunctioning pituitary adenomas, maintain a functional apoptotic RET/Pit1/ARF/p53 pathway that is blocked by excess GDNF.

    Science.gov (United States)

    Diaz-Rodriguez, Esther; Garcia-Rendueles, Angela R; Ibáñez-Costa, Alejandro; Gutierrez-Pascual, Ester; Garcia-Lavandeira, Montserrat; Leal, Alfonso; Japon, Miguel A; Soto, Alfonso; Venegas, Eva; Tinahones, Francisco J; Garcia-Arnes, Juan A; Benito, Pedro; Angeles Galvez, Maria; Jimenez-Reina, Luis; Bernabeu, Ignacio; Dieguez, Carlos; Luque, Raul M; Castaño, Justo P; Alvarez, Clara V

    2014-11-01

    Acromegaly is caused by somatotroph cell adenomas (somatotropinomas [ACROs]), which secrete GH. Human and rodent somatotroph cells express the RET receptor. In rodents, when normal somatotrophs are deprived of the RET ligand, GDNF (Glial Cell Derived Neurotrophic Factor), RET is processed intracellularly to induce overexpression of Pit1 [Transcription factor (gene : POUF1) essential for transcription of Pituitary hormones GH, PRL and TSHb], which in turn leads to p19Arf/p53-dependent apoptosis. Our purpose was to ascertain whether human ACROs maintain the RET/Pit1/p14ARF/p53/apoptosis pathway, relative to nonfunctioning pituitary adenomas (NFPAs). Apoptosis in the absence and presence of GDNF was studied in primary cultures of 8 ACROs and 3 NFPAs. Parallel protein extracts were analyzed for expression of RET, Pit1, p19Arf, p53, and phospho-Akt. When GDNF deprived, ACRO cells, but not NFPAs, presented marked level of apoptosis that was prevented in the presence of GDNF. Apoptosis was accompanied by RET processing, Pit1 accumulation, and p14ARF and p53 induction. GDNF prevented all these effects via activation of phospho-AKT. Overexpression of human Pit1 (hPit1) directly induced p19Arf/p53 and apoptosis in a pituitary cell line. Using in silico studies, 2 CCAAT/enhancer binding protein alpha (cEBPα) consensus-binding sites were found to be 100% conserved in mouse, rat, and hPit1 promoters. Deletion of 1 cEBPα site prevented the RET-induced increase in hPit1 promoter expression. TaqMan qRT-PCR (real time RT-PCR) for RET, Pit1, Arf, TP53, GDNF, steroidogenic factor 1, and GH was performed in RNA from whole ACRO and NFPA tumors. ACRO but not NFPA adenomas express RET and Pit1. GDNF expression in the tumors was positively correlated with RET and negatively correlated with p53. In conclusion, ACROs maintain an active RET/Pit1/p14Arf/p53/apoptosis pathway that is inhibited by GDNF. Disruption of GDNF's survival function might constitute a new therapeutic route in

  2. Dysferlin, annexin A1, and mitsugumin 53 are upregulated in muscular dystrophy and localize to longitudinal tubules of the T-system with stretch.

    Science.gov (United States)

    Waddell, Leigh B; Lemckert, Frances A; Zheng, Xi F; Tran, Jenny; Evesson, Frances J; Hawkes, Joanne M; Lek, Angela; Street, Neil E; Lin, Peihui; Clarke, Nigel F; Landstrom, Andrew P; Ackerman, Michael J; Weisleder, Noah; Ma, Jianjie; North, Kathryn N; Cooper, Sandra T

    2011-04-01

    Mutations in dysferlin cause an inherited muscular dystrophy because of defective membrane repair. Three interacting partners of dysferlin are also implicated in membrane resealing: caveolin-3 (in limb girdle muscular dystrophy type 1C), annexin A1, and the newly identified protein mitsugumin 53 (MG53). Mitsugumin 53 accumulates at sites of membrane damage, and MG53-knockout mice display a progressive muscular dystrophy. This study explored the expression and localization of MG53 in human skeletal muscle, how membrane repair proteins are modulated in various forms of muscular dystrophy, and whether MG53 is a primary cause of human muscle disease. Mitsugumin 53 showed variable sarcolemmal and/or cytoplasmic immunolabeling in control human muscle and elevated levels in dystrophic patients. No pathogenic MG53 mutations were identified in 50 muscular dystrophy patients, suggesting that MG53 is unlikely to be a common cause of muscular dystrophy in Australia. Western blot analysis confirmed upregulation of MG53, as well as of dysferlin, annexin A1, and caveolin-3 to different degrees, in different muscular dystrophies. Importantly, MG53, annexin A1, and dysferlin localize to the t-tubule network and show enriched labeling at longitudinal tubules of the t-system in overstretch. Our results suggest that longitudinal tubules of the t-system may represent sites of physiological membrane damage targeted by this membrane repair complex.

  3. MDM2 SNP309 promoter polymorphism and p53 mutations in urinary bladder carcinoma stage T1

    Directory of Open Access Journals (Sweden)

    Olsson Hans

    2013-01-01

    Full Text Available Abstract Background Urinary bladder carcinoma stage T1 is an unpredictable disease that in some cases has a good prognosis with only local or no recurrence, but in others can appear as a more aggressive tumor with progression to more advanced stages. The aim here was to investigate stage T1 tumors regarding MDM2 promoter SNP309 polymorphism, mutations in the p53 gene, and expression of p53 and p16 measured by immunohistochemistry, and subsequently relate these changes to tumor recurrence and progression. We examined a cohort of patients with primary stage T1 urothelial carcinoma of the bladder and their tumors. Methods After re-evaluation of the original slides and exclusions, the study population comprised 141 patients, all with primary stage T1 urothelial carcinoma of the bladder. The hospital records were screened for clinical parameters and information concerning presence of histologically proven recurrence and progression. The paraffin-embedded tumor material was evaluated by immunohistochemistry. Any mutations found in the p53 gene were studied by single-strand conformation analysis and Sanger sequencing. The MDM2 SNP309 polymorphism was investigated by pyrosequencing. Multivariate analyses concerning association with prognosis were performed, and Kaplan-Meier analysis was conducted for a combination of changes and time to progression. Results Of the 141 patients, 82 had at least one MDM2 SNP309 G allele, and 53 had a mutation in the p53 gene, but neither of those anomalies was associated with a worse prognosis. A mutation in the p53 gene was associated with immunohistochemically visualized p53 protein expression at a cut-off value of 50%. In the group with p53 mutation Kaplan-Meier analysis showed higher rate of progression and shorter time to progression in patients with immunohistochemically abnormal p16 expression compared to them with normal p16 expression (p = 0.038. Conclusions MDM2 SNP309 promoter polymorphism and mutations in

  4. A Chimeric Protein PTEN-L-p53 Enters U251 Cells to Repress Proliferation and Invasion.

    Science.gov (United States)

    Xiao, Man; An, Yang; Wang, Fengling; Yao, Chao; Zhang, Chu; Xin, Junfang; Duan, Yongjian; Zhao, Xiaofang; Fang, Na; Ji, Shaoping

    2018-05-23

    PTEN, a well-known tumor suppressor, dephosphorylates PIP3 and inhibits AKT activity. A translational variant of PTEN has been identified and termed PTEN-Long (PTEN-L). The additional 173 amino acids (PTEN-L leader) at the N-terminal constitute a potential signal peptide. Differing from canonical PTEN, PTEN-L is secreted into the extracellular fluid and re-enters recipient cells, playing the similar roles as PTEN in vivo and in vitro. This character confers the PTEN-L a therapeutic ability via directly protein delivering instead of traditional DNA and RNA vector options. In the present study, we employed PTEN-L leader to assemble a fusion protein, PTEN-L-p53, inosculated with the transcriptional regulator TP53, which is another powerful tumor suppressor. We overexpressed PTEN-L-p53 in HEK293T cells and detected it in both the cytoplasm and nucleus. Subsequently, we found that PTEN-L-p53 was secreted outside of the cells and detected in the culture media by immunoblotting. Furthermore, we demonstrated that PTEN-L-p53 freely entered the cells and suppressed the viability of U251cells (p53 R273H , a cell line with p53 R273H-mutation). PTEN-L-p53 is composed of endogenous protein/peptide bearing low immunogenicity, and only the junction region between PTEN-L leader and p53 can act as a new immune epitope. Accordingly, this fusion protein can potentially be used as a therapeutic option for TP53-abnormality cancers. Copyright © 2018. Published by Elsevier Inc.

  5. p53 functions as a cell cycle control protein in osteosarcomas.

    Science.gov (United States)

    Diller, L; Kassel, J; Nelson, C E; Gryka, M A; Litwak, G; Gebhardt, M; Bressac, B; Ozturk, M; Baker, S J; Vogelstein, B

    1990-11-01

    Mutations in the p53 gene have been associated with a wide range of human tumors, including osteosarcomas. Although it has been shown that wild-type p53 can block the ability of E1a and ras to cotransform primary rodent cells, it is poorly understood why inactivation of the p53 gene is important for tumor formation. We show that overexpression of the gene encoding wild-type p53 blocks the growth of osteosarcoma cells. The growth arrest was determined to be due to an inability of the transfected cells to progress into S phase. This suggests that the role of the p53 gene as an antioncogene may be in controlling the cell cycle in a fashion analogous to the check-point control genes in Saccharomyces cerevisiae.

  6. p53 functions as a cell cycle control protein in osteosarcomas.

    Science.gov (United States)

    Diller, L; Kassel, J; Nelson, C E; Gryka, M A; Litwak, G; Gebhardt, M; Bressac, B; Ozturk, M; Baker, S J; Vogelstein, B

    1990-01-01

    Mutations in the p53 gene have been associated with a wide range of human tumors, including osteosarcomas. Although it has been shown that wild-type p53 can block the ability of E1a and ras to cotransform primary rodent cells, it is poorly understood why inactivation of the p53 gene is important for tumor formation. We show that overexpression of the gene encoding wild-type p53 blocks the growth of osteosarcoma cells. The growth arrest was determined to be due to an inability of the transfected cells to progress into S phase. This suggests that the role of the p53 gene as an antioncogene may be in controlling the cell cycle in a fashion analogous to the check-point control genes in Saccharomyces cerevisiae. Images PMID:2233717

  7. Immunohistochemical study of p53 overexpression in radiation-induced colon cancers

    International Nuclear Information System (INIS)

    Minami, Kazunori; Hayashi, Nobuyuki; Mokarim, A.; Matsuzaki, Sumihiro; Ito, Masahiro; Sekine, Ichiro.

    1998-01-01

    The expressions of p53 and proliferating cell nuclear antigen (PCNA) were studied immunohistochemically from paraffin sections of 7 cases (9 lesions) of radiation-induced colon cancer and 42 cases of spontaneous colon cancer. Age distribution of radiation-induced and spontaneous colon cancer were 68.1 years (range, 56 to 77 years) and 67.4 years (range, 31 to 85 years), respectively. Among the radiation-induced colon cancers, there were 3 lesions of mucinous carcinoma (33%), a much higher than found for spontaneous mucinous cancer. Immunohistochemically, p53 protein expression was detected in 7/9 (78%) of radiation-induced cancers and in 23/42 (55%) of spontaneous colon cancers. χ 2 analysis found no significant differences between radiation-induced and spontaneous colon cancers in age distribution or p53-positive staining for frequency, histopathology, or Dukes'' classification. In radiation colitis around the cancers including aberrant crypts, spotted p53 staining and abnormal and scattered PCNA-positive staining were observed. In histologically normal cells, p53 staining was almost absent and PCNA-positive staining was regularly observed in the lower half of the crypt. In radiation colitis including aberrant glands, cellular proliferation increased and spotted p53 expression was observed. This study suggests that radiation colitis and aberrant glands might possess malignant potential and deeply associate with carcinogenesis of radiation-induced colon cancer. (author)

  8. Alpha-particle diagnostics for the D-T phase

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, S.W.; Bergsaker, H.; Coad, J.P.; Jarvis, O.N.; Marcus, F.B.; Sadler, G.; Belle, P. van (Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking); McCracken, G.M.; Pitts, R.A. (AEA Fusion, Culham (United Kingdom)); Zhu, J. (Sussex Univ., Brighton (United Kingdom))

    1991-01-01

    Diagnostics to examine the lost [alpha] particle flux at JET during the D-T phase are under development. A passive [sup 3]He collector probe has been tested during [sup 3]He NBI and RF heated discharges. [sup 3]He ions with energies of at least 100 keV have been detected; their source is probably due to the metastable component of the [sup 3]He NBI. A code has been developed to model the charged particle fluxes at the wall. (author) 5 refs., 4 figs.

  9. The p53-MDM2 network: from oscillations to apoptosis

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Apoptosis; cancer; cell cycle; MDM2 overexpression; tumour suppressor .... model of the p53-MDM2 negative feedback loop included an .... MDM2 overexpression, when subjected to nutlin-3 treatment. Some aspects of the model are similar to those ... A family of proteases termed caspases .... Implications for therapy; Proc.

  10. E2F-1-Induced p53-independent apoptosis in transgenic mice

    DEFF Research Database (Denmark)

    Holmberg, Christian Henrik; Helin, K.; Sehested, M.

    1998-01-01

    The E2F transcription factors are key targets for the retinoblastoma protein, pRB. By inactivation of E2Fs, pRB prevents progression to the S phase. To test proliferative functions of E2F, we generated transgenic mice expressing human E2F-1 and/or human DP-1. When the hydroxymethyl glutaryl...... involving increased apoptosis in the germinal epithelium. This effect was potentiated by simultaneous overexpression of DP-1. Testicular atrophy as a result of overexpression of E2F-1 and DP-1 is independent of functional p53, since p53-nullizygous transgenic mice overexpressing E2F-1 and DP-1 also suffered...

  11. Robust Central Nervous System Pathology in Transgenic Mice following Peripheral Injection of α-Synuclein Fibrils.

    Science.gov (United States)

    Ayers, Jacob I; Brooks, Mieu M; Rutherford, Nicola J; Howard, Jasie K; Sorrentino, Zachary A; Riffe, Cara J; Giasson, Benoit I

    2017-01-15

    Misfolded α-synuclein (αS) is hypothesized to spread throughout the central nervous system (CNS) by neuronal connectivity leading to widespread pathology. Increasing evidence indicates that it also has the potential to invade the CNS via peripheral nerves in a prion-like manner. On the basis of the effectiveness following peripheral routes of prion administration, we extend our previous studies of CNS neuroinvasion in M83 αS transgenic mice following hind limb muscle (intramuscular [i.m.]) injection of αS fibrils by comparing various peripheral sites of inoculations with different αS protein preparations. Following intravenous injection in the tail veins of homozygous M83 transgenic (M83 +/+ ) mice, robust αS pathology was observed in the CNS without the development of motor impairments within the time frame examined. Intraperitoneal (i.p.) injections of αS fibrils in hemizygous M83 transgenic (M83 +/- ) mice resulted in CNS αS pathology associated with paralysis. Interestingly, injection with soluble, nonaggregated αS resulted in paralysis and pathology in only a subset of mice, whereas soluble Δ71-82 αS, human βS, and keyhole limpet hemocyanin (KLH) control proteins induced no symptoms or pathology. Intraperitoneal injection of αS fibrils also induced CNS αS pathology in another αS transgenic mouse line (M20), albeit less robustly in these mice. In comparison, i.m. injection of αS fibrils was more efficient in inducing CNS αS pathology in M83 mice than i.p. or tail vein injections. Furthermore, i.m. injection of soluble, nonaggregated αS in M83 +/- mice also induced paralysis and CNS αS pathology, although less efficiently. These results further demonstrate the prion-like characteristics of αS and reveal its efficiency to invade the CNS via multiple routes of peripheral administration. The misfolding and accumulation of α-synuclein (αS) inclusions are found in a number of neurodegenerative disorders and is a hallmark feature of Parkinson

  12. Human HMGA2 protein overexpressed in mice induces precursor T-cell lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Efanov, A; Zanesi, N; Coppola, V; Nuovo, G; Bolon, B; Wernicle-Jameson, D; Lagana, A; Hansjuerg, A; Pichiorri, F; Croce, C M

    2014-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a neoplasia of thymocytes characterized by the rapid accumulation of the precursors of T lymphocytes. HMGA2 (high-mobility group AT-hook 2) gene expression is extremely low in normal adult tissues, but it is overexpressed in many tumors. To identify the biological function of HMGA2, we generated transgenic mice carrying the human HMGA2 gene under control of the V H promoter/Eμ enhancer. Approximately 90% of Eμ-HMGA2 transgenic mice became visibly sick between 4 and 8 months due to the onset and progression of a T-ALL-like disease. Characteristic features included severe alopecia (30% of mice); enlarged lymph nodes and spleen; and profound immunological abnormalities (altered cytokine levels, hypoimmunoglobulinemia) leading to reduced immune responsiveness. Immunophenotyping showed accumulation of CD5+CD4+, CD5+CD8+ or CD5+CD8+CD4+ T-cell populations in the spleens and bone marrow of sick animals. These findings show that HMGA2-driven leukemia in mice closely resembles spontaneous human T-ALL, indicating that HMGA2 transgenic mice should serve as an important model for investigating basic mechanisms and potential new therapies of relevance to human T-ALL

  13. Impaired quality of the hepatitis B virus (HBV)-specific T-cell response in human immunodeficiency virus type 1-HBV coinfection.

    Science.gov (United States)

    Chang, J Judy; Sirivichayakul, Sunee; Avihingsanon, Anchalee; Thompson, Alex J V; Revill, Peter; Iser, David; Slavin, John; Buranapraditkun, Supranee; Marks, Pip; Matthews, Gail; Cooper, David A; Kent, Stephen J; Cameron, Paul U; Sasadeusz, Joe; Desmond, Paul; Locarnini, Stephen; Dore, Gregory J; Ruxrungtham, Kiat; Lewin, Sharon R

    2009-08-01

    Hepatitis B virus (HBV)-specific T cells play a key role both in the control of HBV replication and in the pathogenesis of liver disease. Human immunodeficiency virus type 1 (HIV-1) coinfection and the presence or absence of HBV e (precore) antigen (HBeAg) significantly alter the natural history of chronic HBV infection. We examined the HBV-specific T-cell responses in treatment-naïve HBeAg-positive and HBeAg-negative HIV-1-HBV-coinfected (n = 24) and HBV-monoinfected (n = 39) Asian patients. Peripheral blood was stimulated with an overlapping peptide library for the whole HBV genome, and tumor necrosis factor alpha and gamma interferon cytokine expression in CD8+ T cells was measured by intracellular cytokine staining and flow cytometry. There was no difference in the overall magnitude of the HBV-specific T-cell responses, but the quality of the response was significantly impaired in HIV-1-HBV-coinfected patients compared with monoinfected patients. In coinfected patients, HBV-specific T cells rarely produced more than one cytokine and responded to fewer HBV proteins than in monoinfected patients. Overall, the frequency and quality of the HBV-specific T-cell responses increased with a higher CD4+ T-cell count (P = 0.018 and 0.032, respectively). There was no relationship between circulating HBV-specific T cells and liver damage as measured by activity and fibrosis scores, and the HBV-specific T-cell responses were not significantly different in patients with either HBeAg-positive or HBeAg-negative disease. The quality of the HBV-specific T-cell response is impaired in the setting of HIV-1-HBV coinfection and is related to the CD4+ T-cell count.

  14. Involvement of hGLD-2 in cytoplasmic polyadenylation of human p53 mRNA

    DEFF Research Database (Denmark)

    Glahder, Jacob-Andreas Harald; Norrild, Bodil

    2011-01-01

    Cytoplasmic polyadenylation is a post-transcriptional mechanism regulating mRNA stability and translation. The human p53 3'-untranslated region (3'-UTR) contains two regions similar to cytoplasmic polyadenylation elements (CPEs) just upstream of the poly(A) hexanucleotide. Evaluation of the p53 CPE......-like elements was performed by luciferase reporter assays, qPCR, and poly(A) assays. Herein, we report the down regulation of a luciferase reporter fused to the p53 3'-UTR, when human CPE-binding protein 1 (hCPEB1) is overexpressed. This inhibition is partially rescued when hCPEB1fused to hGLD-2 [a human...... cytoplasmic poly(A) polymerase] is overexpressed instead. The stability of a luciferase mRNA containing the p53 3'-UTR downstream, is decreased when hCPEB1 is overexpressed as seen by qPCR. Expression of hGLD-2 restores the mRNA stability. This is due to elongation of the poly(A) tail as seen by a PCR...

  15. Enzyme replacement therapy for alpha-mannosidosis

    DEFF Research Database (Denmark)

    Borgwardt, Line Gutte; Dali, Christine I.; Fogh, J

    2013-01-01

    Alpha-mannosidosis (OMIM 248500) is a rare lysosomal storage disease (LSD) caused by alpha-mannosidase deficiency. Manifestations include intellectual disabilities, facial characteristics and hearing impairment. A recombinant human alpha-mannosidase (rhLAMAN) has been developed for weekly...

  16. Impaired Autophagy and Defective T Cell Homeostasis in Mice with T Cell-Specific Deletion of Receptor for Activated C Kinase 1

    Directory of Open Access Journals (Sweden)

    Guihua Qiu

    2017-05-01

    Full Text Available Autophagy plays a central role in maintaining T cell homeostasis. Our previous study has shown that hepatocyte-specific deficiency of receptor for activated C kinase 1 (RACK1 leads to lipid accumulation in the liver, accompanied by impaired autophagy, but its in vivo role in T cells remains unclear. Here, we report that mice with T cell-specific deletion of RACK1 exhibit normal intrathymic development of conventional T cells and regulatory T (Treg cells but reduced numbers of peripheral CD4+ and CD8+ T cells. Such defects are cell intrinsic with impaired mitochondrial clearance, increased sensitivity to cell death, and decreased proliferation that could be explained by impaired autophagy. Furthermore, RACK1 is essential for invariant natural T cell development. In vivo, T cell-specific loss of RACK1 dampens concanavalin A-induced acute liver injury. Our data suggest that RACK1 is a key regulator of T cell homeostasis.

  17. High circulating levels of tumor necrosis factor-alpha in centenarians are not associated with increased production in T lymphocytes

    DEFF Research Database (Denmark)

    Sandmand, Marie; Bruunsgaard, Helle; Kemp, Kåre

    2003-01-01

    BACKGROUND: Aging is characterized by increased inflammatory activity reflected by increased plasma levels of proinflammatory cytokines, concomitant with an altered cytokine profile of T lymphocytes. High plasma levels of tumor necrosis factor (TNF)-alpha are strongly associated with morbidity...... and mortality in elderly humans. However, the cellular source and mechanisms for the increased circulating TNF-alpha levels are unknown. OBJECTIVE: The aim of the present study was to investigate if high plasma levels of TNF-alpha are associated with increased production of TNF-alpha by T lymphocytes in elderly...... humans. METHODS: TNF-alpha production by CD4+ and CD8+ T lymphocytes was measured by flow cytometry following stimulation with phorbol 12-myristate 13-acetate and ionomycin in 28 young controls, 14, 81-year-olds and 25 centenarians. RESULTS: Plasma levels of TNF-alpha increased with increasing age...

  18. Analysis of T cell receptor alpha beta variability in lymphocytes infiltrating melanoma primary tumours and metastatic lesions

    DEFF Research Database (Denmark)

    Schøller, J; thor Straten, P; Jakobsen, Annette Birck

    1994-01-01

    The T cell receptor (TCR) alpha beta variable (V) gene family usage of tumour-infiltrating lymphocytes (TIL) in four different primary human malignant melanomas and their corresponding metastatic lesions was characterized using a recently developed method based on the reverse-transcription-couple......The T cell receptor (TCR) alpha beta variable (V) gene family usage of tumour-infiltrating lymphocytes (TIL) in four different primary human malignant melanomas and their corresponding metastatic lesions was characterized using a recently developed method based on the reverse...... usage of the TCR V gene families V alpha 4, V alpha 5, V alpha 22 and V beta 8, whereas the V beta 3 gene family appeared to be expressed together with HLA-A1. Other highly expressed V gene families, apparently not restricted to either HLA-A1 or -A2, were V alpha 1 (expressed in three of four primary...... tumours) and V alpha 21 (expressed in two of four tumours). We found no evidence suggesting any correlations between the haplotypes HLA-A1 and -A2 and preferential V gene family expression in the metastatic lesions, and the only common feature was V alpha 8, which was found to be highly expressed in two...

  19. Familial knockin mutation of LRRK2 causes lysosomal dysfunction and accumulation of endogenous insoluble α-synuclein in neurons.

    Science.gov (United States)

    Schapansky, Jason; Khasnavis, Saurabh; DeAndrade, Mark P; Nardozzi, Jonathan D; Falkson, Samuel R; Boyd, Justin D; Sanderson, John B; Bartels, Tim; Melrose, Heather L; LaVoie, Matthew J

    2018-03-01

    Missense mutations in the multi-domain kinase LRRK2 cause late onset familial Parkinson's disease. They most commonly with classic proteinopathy in the form of Lewy bodies and Lewy neurites comprised of insoluble α-synuclein, but in rare cases can also manifest tauopathy. The normal function of LRRK2 has remained elusive, as have the cellular consequences of its mutation. Data from LRRK2 null model organisms and LRRK2-inhibitor treated animals support a physiological role for LRRK2 in regulating lysosome function. Since idiopathic and LRRK2-linked PD are associated with the intraneuronal accumulation of protein aggregates, a series of critical questions emerge. First, how do pathogenic mutations that increase LRRK2 kinase activity affect lysosome biology in neurons? Second, are mutation-induced changes in lysosome function sufficient to alter the metabolism of α-synuclein? Lastly, are changes caused by pathogenic mutation sensitive to reversal with LRRK2 kinase inhibitors? Here, we report that mutation of LRRK2 induces modest but significant changes in lysosomal morphology and acidification, and decreased basal autophagic flux when compared to WT neurons. These changes were associated with an accumulation of detergent-insoluble α-synuclein and increased neuronal release of α-synuclein and were reversed by pharmacologic inhibition of LRRK2 kinase activity. These data demonstrate a critical and disease-relevant influence of native neuronal LRRK2 kinase activity on lysosome function and α-synuclein homeostasis. Furthermore, they also suggest that lysosome dysfunction, altered neuronal α-synuclein metabolism, and the insidious accumulation of aggregated protein over decades may contribute to pathogenesis in this late-onset form of familial PD. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Aging impairs recipient T cell intrinsic and extrinsic factors in response to transplantation.

    Directory of Open Access Journals (Sweden)

    Hua Shen

    Full Text Available As increasing numbers of older people are listed for solid organ transplantation, there is an urgent need to better understand how aging modifies alloimmune responses. Here, we investigated whether aging impairs the ability of donor dendritic cells or recipient immunity to prime alloimmune responses to organ transplantation.Using murine experimental models, we found that aging impaired the host environment to expand and activate antigen specific CD8(+ T cells. Additionally, aging impaired the ability of polyclonal T cells to induce acute allograft rejection. However, the alloimmune priming capability of donor dendritic cells was preserved with aging.Aging impairs recipient responses, both T cell intrinsic and extrinsic, in response to organ transplantation.

  1. Neurofibromin 1 Impairs Natural Killer T-Cell-Dependent Antitumor Immunity against a T-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Jianyun Liu

    2018-01-01

    Full Text Available Neurofibromin 1 (NF1 is a tumor suppressor gene encoding a Ras GTPase that negatively regulates Ras signaling pathways. Mutations in NF1 are linked to neurofibromatosis type 1, juvenile myelomonocytic leukemia and Watson syndrome. In terms of antitumor immunity, CD1d-dependent natural killer T (NKT cells play an important role in the innate antitumor immune response. Generally, Type-I NKT cells protect (and Type-II NKT cells impair host antitumor immunity. We have previously shown that CD1d-mediated antigen presentation to NKT cells is regulated by cell signaling pathways. To study whether a haploinsufficiency in NF1 would affect CD1d-dependent activation of NKT cells, we analyzed the NKT-cell population as well as the functional expression of CD1d in Nf1+/− mice. Nf1+/− mice were found to have similar levels of NKT cells as wildtype (WT littermates. Interestingly, however, reduced CD1d expression was observed in Nf1+/− mice compared with their WT littermates. When inoculated with a T-cell lymphoma in vivo, Nf1+/− mice survived longer than their WT littermates. Furthermore, blocking CD1d in vivo significantly enhanced antitumor activity in WT, but not in Nf1+/− mice. In contrast, a deficiency in Type-I NKT cells increased antitumor activity in Nf1+/− mice, but not in WT littermates. Therefore, these data suggest that normal NF1 expression impairs CD1d-mediated NKT-cell activation and antitumor activity against a T-cell lymphoma.

  2. Mannose 6-Phosphate Receptor Is Reduced in -Synuclein Overexpressing Models of Parkinsons Disease

    DEFF Research Database (Denmark)

    Matrone, Carmela; Dzamko, Nicolas; Madsen, Peder

    2016-01-01

    Increasing evidence points to defects in autophagy as a common denominator in most neurodegenerative conditions. Progressive functional decline in the autophagy-lysosomal pathway (ALP) occurs with age, and the consequent impairment in protein processing capacity has been associated with a higher ...... reported in PD and pinpoint MRP300 as a potential biomarker for PD....

  3. T-cell receptor V sub. alpha. and C sub. alpha. alleles associated with multiple sclerosis and myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Oksenberg, J.R.; Cavalli-Sforza, L.L.; Steinman, L. (Stanford Univ., CA (USA)); Sherritt, M.; Bernard, C.C. (LaTrobe Univ., Victoria (Australia)); Begovich, A.B.; Erlich, H.A. (Cetus Corporation, Emeryville, CA (USA))

    1989-02-01

    Polymorphic markers in genes encoding the {alpha} chain of the human T-cell receptor (TcR) have been detected by Southern blot analysis in Pss I digests. Polymorphic bands were observed at 6.3 and 2.0 kilobases (kb) with frequencies of 0.30 and 0.44, respectively, in the general population. Using the polymerase chain reaction (PCR) method, the authors amplified selected sequences derived from the full-length TcR {alpha} cDNA probe. These PcR products were used as specific probes to demonstrate that the 6.3-kb polymorphic fragment hybridizes to the variable (V)-region probe and the 2.0-kb fragment hybridizes to the constant (C)-region probe. Segregation of the polymorphic bands was analyzed in family studies. To look for associations between these markers and autoimmune diseases, the authors have studied the restriction fragment length polymorphism distribution of the Pss I markers in patients with multiple sclerosis, myasthenia gravis, and Graves disease. Significant differences in the frequency of the polymorphic V{sub {alpha}} and C{sub {alpha}} markers were identified between patients and healthy individuals.

  4. Effect of tumor necrosis factor-alpha infusion on the incretin effect in healthy volunteers

    DEFF Research Database (Denmark)

    Nielsen, Signe Tellerup; Lehrskov-Schmidt, Louise; Krogh-Madsen, Rikke

    2013-01-01

    Type 2 diabetes mellitus (T2DM) is associated with peripheral insulin resistance, impaired incretin effect, and increased plasma levels of tumor necrosis factor-alpha (TNF-α). Whereas TNF-α infusion at a dose that induces systemic inflammation in healthy volunteers has been demonstrated to induce...

  5. tPA variant tPA-A296-299 Prevents impairment of cerebral autoregulation and necrosis of hippocampal neurons after stroke by inhibiting upregulation of ET-1.

    Science.gov (United States)

    Armstead, William M; Hekierski, Hugh; Yarovoi, Serge; Higazi, Abd Al-Roof; Cines, Douglas B

    2018-01-01

    Tissue-type plasminogen activator (tPA) is neurotoxic and exacerbates uncoupling of cerebral blood flow (CBF) and metabolism after stroke, yet it remains the sole FDA-approved drug for treatment of ischemic stroke. Upregulation of c-Jun-terminal kinase (JNK) after stroke contributes to tPA-mediated impairment of autoregulation, but the role of endothelin-1 (ET-1) is unknown. Based on the Glasgow Coma Scale, impaired autoregulation is linked to adverse outcomes after TBI, but correlation with hippocampal histopathology after stroke has not been established. We propose that given after stroke, tPA activates N-Methyl-D-Aspartate receptors (NMDA-Rs) and upregulates ET-1 in a JNK dependent manner, imparing autoregulation and leading to histopathology. After stroke, CBF was reduced in the hippocampus and reduced further during hypotension, which did not occur in hypotensive sham pigs, indicating impairment of autoregulation. Autoregulation and necrosis of hippocampal CA1 and CA3 neurons were further impaired by tPA, but were preserved by the ET-1 antagonist BQ 123 and tPA-A, 296-299 a variant that is fibrinolytic but does not bind to NMDA-Rs. Expression of ET-1 was increased by stroke and potentiated by tPA but returned to sham levels by tPA-A 296-299 and the JNK antagonist SP600125. Results show that JNK releases ET-1 after stroke. Tissue-type plasminogen activator -A 296-299 prevents impairment of cerebral autoregulation and histopathology after stroke by inhibiting upregulation of ET-1. © 2017 Wiley Periodicals, Inc.

  6. Mitofusin 2 Promotes Apoptosis of CD4+ T Cells by Inhibiting Autophagy in Sepsis

    Directory of Open Access Journals (Sweden)

    Lan Ying

    2017-01-01

    Full Text Available Apoptosis of CD4+ T cells is a primary pathophysiological mechanism of immune dysfunction in the pathogenesis of sepsis. Mitofusin 2 (Mfn2, an integral mitochondrial outer membrane protein, has been confirmed to be associated with cellular metabolism, proliferation, and apoptosis. The function of Mfn2 in CD4+ T cell apoptosis in sepsis is poorly understood. Here, we discovered increased in vivo Mfn2 expression, autophagy deficiency, and elevated cell apoptosis in murine splenic CD4+ T cells after cecal ligation and puncture (CLP. We also observed almost identical results in splenic CD4+ T cells upon lipopolysaccharide (LPS stimulation in vitro. Furthermore, overexpression of Mfn2 resulted in impaired autophagy and increased apoptosis in Jurkat cells. Pharmacological inhibition of autophagy with 3-methyladenine enhanced Mfn2 overexpression-induced cell apoptosis. In addition, overexpression of Mfn2 downregulated phorbol myristate acetate (PMA/ionomycin-, rapamycin- and starvation-induced autophagy in Jurkat T cells. Taken together, these data indicate a critical role of Mfn2 in CD4+ T cell apoptosis in sepsis and the underlying mechanism of autophagy deficiency.

  7. Over-expression of Stat5b confers protection against diabetes in the non-obese diabetic (NOD) mice via up-regulation of CD4{sup +}CD25{sup +} regulatory T cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yulan; Purohit, Sharad [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); Department of Pathology, Medical College of Georgia, Georgia Health Sciences University, GA (United States); Chen, Xueqin; Yi, Bing [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); She, Jin-Xiong, E-mail: jshe@georgiahealth.edu [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); Department of Pathology, Medical College of Georgia, Georgia Health Sciences University, GA (United States)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer This is the first study to provide direct evidence of the role of Stat5b in NOD mice. Black-Right-Pointing-Pointer Over-expression of wild type Stat5b transgene protects NOD mice against diabetes. Black-Right-Pointing-Pointer This protection may be mediated by the up-regulation of CD4{sup +}CD25{sup +} Tregs. -- Abstract: The signal transducers and activators of transcription (STAT) family of proteins play a critical role in cytokine signaling required for fine tuning of immune regulation. Previous reports showed that a mutation (L327M) in the Stat5b protein leads to aberrant cytokine signaling in the NOD mice. To further elaborate the role of Stat5b in diabetes, we established a NOD transgenic mouse that over-expresses the wild type Stat5b gene. The incidences of spontaneous diabetes as well as cyclophosphamide-induced diabetes were significantly reduced and delayed in the Stat5b transgenic NOD mice compared to their littermate controls. The total cell numbers of CD4{sup +} T cells and especially CD8{sup +} T cells in the spleen and pancreatic lymph node were increased in the Stat5b transgenic NOD mice. Consistent with these findings, CD4{sup +} and CD8{sup +} T cells from the Stat5b transgenic NOD mice showed a higher proliferation capacity and up-regulation of multiple cytokines including IL-2, IFN-{gamma}, TNF-{alpha} and IL-10 as well as anti-apoptotic gene Bcl-xl. Furthermore, the number and proportion of CD4{sup +}CD25{sup +} regulatory T cells were significantly increased in transgenic mice although in vitro suppression ability of the regulatory T-cells was not affected by the transgene. Our results suggest that Stat5b confers protection against diabetes in the NOD mice by regulating the numbers and function of multiple immune cell types, especially by up-regulating CD4{sup +}CD25{sup +} regulatory T cells.

  8. ADAM12 overexpression does not improve outcome in mice with laminin alpha2-deficient muscular dystrophy

    DEFF Research Database (Denmark)

    Guo, Ling T; Shelton, G Diane; Wewer, Ulla M

    2005-01-01

    We have recently shown that overexpression of ADAM12 results in increased muscle regeneration and significantly reduced pathology in mdx, dystrophin deficient mice. In the present study, we tested the effect of overexpressing ADAM12 in dy(W) laminin-deficient mice. dy mice have a very severe...... clinical phenotype and would be expected to benefit greatly from enhanced regeneration. We found that dy(W) mice overexpressing ADAM12 indeed have increased muscle regeneration, as evidenced by increased numbers of muscle fibers expressing fetal myosin. However, overexpression of ADAM12 had no significant...

  9. Increased frequency of CD4{sup -}8{sup -}T cells bearing T-cell receptor {alpha}{beta} chains in peripheral blood of atomic bomb survivors exposed to high doses

    Energy Technology Data Exchange (ETDEWEB)

    Yoichiro Kusunoki; Seishi Kyoizumi; Yuko Hirai; Shoichiro Fujita; Mitoshi Akiyama [Radiation Effects Research Foundation, Hiroshima (Japan)

    1994-07-01

    A rare T-cell subpopulation, CD4{sup -z}8{sup -}{alpha}{beta} cells, may be differentiated through a pathway (or pathways) different from the pathway(s) of conventional CD4+ or CD8+ cells. In the present study, the frequencies of CD4{sup -}8{sup -} T cells in peripheral-blood {alpha}{beta} T cells in 409 atomic bomb survivors were determined to investigate late effects of radiation on the composition of human T-cell subpopulations. The frequency of CD4{sup -}8{sup -}{alpha}{beta} T-cell decreased significantly with the subject`s age and was higher in females than males. A significant increase in the frequency was found in the survivors exposed to more than 1.5Gy, suggesting that the previous radiation exposure altered differentiation and development of T cells. 25 refs., 4 figs., 3 tabs.

  10. Overexpression of synuclein-γ predicts lack of benefit from radiotherapy for breast cancer patients

    International Nuclear Information System (INIS)

    Min, Li; Zhang, Cheng; Ma, Ruolan; Li, Xiaofan; Yuan, Hua; Li, Yihao; Chen, Ruxuan; Liu, Caiyun; Guo, Jianping; Qu, Like; Shou, Chengchao

    2016-01-01

    Although radiotherapy following mastectomy was demonstrated to reduce the recurring risk and improve the prognosis of patients with breast cancer, it is also notorious for comprehensive side effects, hence only a selected group of patients can benefit. Therefore, the screening of molecular markers capable of predicting the efficacy of radiotherapy is essential. We have established a cohort of 454 breast cancer cases and selected 238 patients with indications for postoperative radiotherapy. Synuclein-γ (SNCG) protein levels were assessed by immunohistochemistry, and SNCG status was retrospectively correlated with clinical features and survival in patients treated or not treated with radiotherapy. Gene Set Enrichment Analysis (GSEA) and survival analysis for online datasets were also performed for further validation. Among patients that received radiotherapy (82/238), those demonstrating positive SNCG expression had a 55.0 month shorter median overall survival (OS) in comparison to those demonstrating negative SNCG expression (78.4 vs. 133.4 months, log rank χ 2 = 16.13; p < 0.001). Among the patients that received no radiotherapy (156/238), SNCG status was not correlated with OS (log rank χ 2 = 2.40; p = 0.121). A COX proportional hazard analysis confirmed SNCG as an independent predictor of OS, only for patients who have received radiotherapy. Similar results were also obtained for distant metastasis-free survival (DMFS). A GSEA analysis indicated that SNCG was strongly associated with genes related to a radiation stress response. A survival analysis was performed with online databases consisting of breast cancer, lung cancer, and glioblastoma and further confirmed SNCG’s significance in predicting the survival of patients that have received radiotherapy. A positive SNCG may serve as a potential marker to identify breast cancer patients who are less likely to benefit from radiotherapy and may also be extended to other types of cancer. However, the role of SNCG

  11. p53 Dependent Centrosome Clustering Prevents Multipolar Mitosis in Tetraploid Cells

    Science.gov (United States)

    Yi, Qiyi; Zhao, Xiaoyu; Huang, Yun; Ma, Tieliang; Zhang, Yingyin; Hou, Heli; Cooke, Howard J.; Yang, Da-Qing; Wu, Mian; Shi, Qinghua

    2011-01-01

    Background p53 abnormality and aneuploidy often coexist in human tumors, and tetraploidy is considered as an intermediate between normal diploidy and aneuploidy. The purpose of this study was to investigate whether and how p53 influences the transformation from tetraploidy to aneuploidy. Principal Findings Live cell imaging was performed to determine the fates and mitotic behaviors of several human and mouse tetraploid cells with different p53 status, and centrosome and spindle immunostaining was used to investigate centrosome behaviors. We found that p53 dominant-negative mutation, point mutation, or knockout led to a 2∼ 33-fold increase of multipolar mitosis in N/TERT1, 3T3 and mouse embryonic fibroblasts (MEFs), while mitotic entry and cell death were not significantly affected. In p53-/- tetraploid MEFs, the ability of centrosome clustering was compromised, while centrosome inactivation was not affected. Suppression of RhoA/ROCK activity by specific inhibitors in p53-/- tetraploid MEFs enhanced centrosome clustering, decreased multipolar mitosis from 38% to 20% and 16% for RhoA and ROCK, respectively, while expression of constitutively active RhoA in p53+/+ tetraploid 3T3 cells increased the frequency of multipolar mitosis from 15% to 35%. Conclusions p53 could not prevent tetraploid cells entering mitosis or induce tetraploid cell death. However, p53 abnormality impaired centrosome clustering and lead to multipolar mitosis in tetraploid cells by modulating the RhoA/ROCK signaling pathway. PMID:22076149

  12. LaaA, a novel high-active alkalophilic alpha-amylase from deep-sea bacterium Luteimonas abyssi XH031(T).

    Science.gov (United States)

    Song, Qinghao; Wang, Yan; Yin, Chong; Zhang, Xiao-Hua

    2016-08-01

    Alpha-amylase is a kind of broadly used industrial enzymes, most of which have been exploited from terrestrial organism. Comparatively, alpha-amylase from marine environment was largely undeveloped. In this study, a novel alkalophilic alpha-amylase with high activity, Luteimonas abyssi alpha-amylase (LaaA), was cloned from deep-sea bacterium L. abyssi XH031(T) and expressed in Escherichia coli BL21. The gene has a length of 1428bp and encodes 475 amino acids with a 35-residue signal peptide. The specific activity of LaaA reached 8881U/mg at the optimum pH 9.0, which is obvious higher than other reported alpha-amylase. This enzyme can remain active at pH levels ranging from 6.0 to 11.0 and temperatures below 45°C, retaining high activity even at low temperatures (almost 38% residual activity at 10°C). In addition, 1mM Na(+), K(+), and Mn(2+) enhanced the activity of LaaA. To investigate the function of potential active sites, R227G, D229K, E256Q/H, H327V and D328V mutants were generated, and the results suggested that Arg227, Asp229, Glu256 and Asp328 were total conserved and essential for the activity of alpha-amylase LaaA. This study shows that the alpha-amylase LaaA is an alkali-tolerant and high-active amylase with strong potential for use in detergent industry. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Murine elongation factor 1 alpha (EF-1 alpha) is posttranslationally modified by novel amide-linked ethanolamine-phosphoglycerol moieties. Addition of ethanolamine-phosphoglycerol to specific glutamic acid residues on EF-1 alpha

    International Nuclear Information System (INIS)

    Whiteheart, S.W.; Shenbagamurthi, P.; Chen, L.; Cotter, R.J.; Hart, G.W.

    1989-01-01

    Elongation Factor 1 alpha (EF-1 alpha), an important eukaryotic translation factor, transports charged aminoacyl-tRNA from the cytosol to the ribosomes during poly-peptide synthesis. Metabolic radiolabeling with [ 3 H] ethanolamine shows that, in all cells examined, EF-1 alpha is the major radiolabeled protein. Radiolabeled EF-1 alpha has an apparent Mr = 53,000 and a basic isoelectric point. It is cytosolic and does not contain N-linked oligosaccharides. Trypsin digestion of murine EF-1 alpha generated two major [ 3 H]ethanolamine-labeled peptides. Three peptides were sequenced and were identical to two distinct regions of the human EF-1 alpha protein. Blank sequencing cycles coinciding with glutamic acid in the human cDNA-derived sequence were also found to release [ 3 H]ethanolamine, and compositional analysis of these peptides confirmed the presence of glutamic acid. Dansylation analysis demonstrates that the amine group of the ethanolamine is blocked. These results indicate that EF-1 alpha is posttranslationally modified by the covalent attachment of ethanolamine via an amide bond to at least two specific glutamic acid residues (Glu-301 and Glu-374). The hydroxyl group of the attached ethanolamine was shown by mass spectrometry and compositional analysis, to be further modified by the addition of a phosphoglycerol unit. This novel posttranslational modification may represent an important alteration of EF-1 alpha, comparable to the regulatory effects of posttranslational methylation of EF-1 alpha lysine residues

  14. Inhibition of p53 acetylation by INHAT subunit SET/TAF-Iβ represses p53 activity.

    Science.gov (United States)

    Kim, Ji-Young; Lee, Kyu-Sun; Seol, Jin-Ee; Yu, Kweon; Chakravarti, Debabrata; Seo, Sang-Beom

    2012-01-01

    The tumor suppressor p53 responds to a wide variety of cellular stress signals. Among potential regulatory pathways, post-translational modifications such as acetylation by CBP/p300 and PCAF have been suggested for modulation of p53 activity. However, exactly how p53 acetylation is modulated remains poorly understood. Here, we found that SET/TAF-Iβ inhibited p300- and PCAF-mediated p53 acetylation in an INHAT (inhibitor of histone acetyltransferase) domain-dependent manner. SET/TAF-Iβ interacted with p53 and repressed transcription of p53 target genes. Consequently, SET/TAF-Iβ blocked both p53-mediated cell cycle arrest and apoptosis in response to cellular stress. Using different apoptosis analyses, including FACS, TUNEL and BrdU incorporation assays, we also found that SET/TAF-Iβ induced cellular proliferation via inhibition of p53 acetylation. Furthermore, we observed that apoptotic Drosophila eye phenotype induced by either dp53 overexpression or UV irradiation was rescued by expression of dSet. Inhibition of dp53 acetylation by dSet was observed in both cases. Our findings provide new insights into the regulation of stress-induced p53 activation by HAT-inhibiting histone chaperone SET/TAF-Iβ.

  15. Aurora-A overexpression and aneuploidy predict poor outcome in serous ovarian carcinoma.

    Science.gov (United States)

    Lassus, Heini; Staff, Synnöve; Leminen, Arto; Isola, Jorma; Butzow, Ralf

    2011-01-01

    Aurora-A is a potential oncogene and therapeutic target in ovarian carcinoma. It is involved in mitotic events and overexpression leads to centrosome amplification and chromosomal instability. The objective of this study was to evaluate the clinical significance of Aurora-A and DNA ploidy in serous ovarian carcinoma. Serous ovarian carcinomas were analysed for Aurora-A protein by immunohistochemistry (n=592), Aurora-A copy number by CISH (n=169), Aurora-A mRNA by real-time PCR (n=158) and DNA ploidy by flowcytometry (n=440). Overexpression of Aurora-A was found in 27% of the tumors, cytoplasmic overexpression in 11% and nuclear in 17%. The cytoplasmic and nuclear overexpression were nearly mutually exclusive. Both cytoplasmic and nuclear overexpression were associated with shorter survival, high grade, high proliferation index and aberrant p53. Interestingly, only cytoplasmic expression was associated with aneuploidy and expression of phosphorylated Aurora-A. DNA ploidy was associated with poor patient outcome as well as aggressive clinicopathological parameters. In multivariate analysis, Aurora-A overexpression appeared as an independent prognostic factor for disease-free survival, together with grade, stage and ploidy. Aurora-A protein expression is strongly linked with poor patient outcome and aggressive disease characteristics, which makes Aurora-A a promising biomarker and a potential therapeutic target in ovarian carcinoma. Cytoplasmic and nuclear Aurora-A protein may have different functions. DNA aneuploidy is a strong predictor of poor prognosis in serous ovarian carcinoma. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. FGF1 protects neuroblastoma SH-SY5Y cells from p53-dependent apoptosis through an intracrine pathway regulated by FGF1 phosphorylation

    Science.gov (United States)

    Pirou, Caroline; Montazer-Torbati, Fatemeh; Jah, Nadège; Delmas, Elisabeth; Lasbleiz, Christelle; Mignotte, Bernard; Renaud, Flore

    2017-01-01

    Neuroblastoma, a sympathetic nervous system tumor, accounts for 15% of cancer deaths in children. In contrast to most human tumors, p53 is rarely mutated in human primary neuroblastoma, suggesting impaired p53 activation in neuroblastoma. Various studies have shown correlations between fgf1 expression levels and both prognosis severity and tumor chemoresistance. As we previously showed that fibroblast growth factor 1 (FGF1) inhibited p53-dependent apoptosis in neuron-like PC12 cells, we initiated the study of the interaction between the FGF1 and p53 pathways in neuroblastoma. We focused on the activity of either extracellular FGF1 by adding recombinant rFGF1 in media, or of intracellular FGF1 by overexpression in human SH-SY5Y and mouse N2a neuroblastoma cell lines. In both cell lines, the genotoxic drug etoposide induced a classical mitochondrial p53-dependent apoptosis. FGF1 was able to inhibit p53-dependent apoptosis upstream of mitochondrial events in SH-SY5Y cells by both extracellular and intracellular pathways. Both rFGF1 addition and etoposide treatment increased fgf1 expression in SH-SY5Y cells. Conversely, rFGF1 or overexpressed FGF1 had no effect on p53-dependent apoptosis and fgf1 expression in neuroblastoma N2a cells. Using different FGF1 mutants (that is, FGF1K132E, FGF1S130A and FGF1S130D), we further showed that the C-terminal domain and phosphorylation of FGF1 regulate its intracrine anti-apoptotic activity in neuroblastoma SH-SY5Y cells. This study provides the first evidence for a role of an intracrine growth factor pathway on p53-dependent apoptosis in neuroblastoma, and could lead to the identification of key regulators involved in neuroblastoma tumor progression and chemoresistance. PMID:29048426

  17. Partial suppression of the respiratory defect of qrs1/her2 glutamyl-tRNA amidotransferase mutants by overexpression of the mitochondrial pentatricopeptide Msc6p.

    Science.gov (United States)

    Moda, Bruno S; Ferreira-Júnior, José Ribamar; Barros, Mario H

    2016-08-01

    Recently, a large body of evidences indicates the existence in the mitochondrial matrix of foci that contain different proteins involved in mitochondrial RNA metabolism. Some of these proteins have a pentatricopeptide repeat motif that constitutes their RNA-binding structures. Here we report that MSC6, a mitochondrial pentatricopeptide protein of unknown function, is a multi copy suppressor of mutations in QRS1/HER2 a component of the trimeric complex that catalyzes the transamidation of glutamyl-tRNAQ to glutaminyl-tRNAQ. This is an essential step in mitochondrial translation because of the lack of a specific mitochondrial aminoacyl glutaminyl-tRNA synthetase. MSC6 over-expression did not abolish translation of an aberrant variant form of Cox2p detected in QRS1/HER2 mutants, arguing against a suppression mechanism that bypasses Qrs1p function. A slight decrement of the mitochondrial translation capacity as well as diminished growth on respiratory carbon sources media for respiratory activity was observed in the msc6 null mutant. Additionally, the msc6 null mutant did not display any impairment in RNA transcription, processing or turnover. We concluded that Msc6p is a mitochondrial matrix protein and further studies are required to indicate the specific function of Msc6p in mitochondrial translation.

  18. Genetic impairment of AMPK{alpha}2 signaling does not reduce muscle glucose uptake during treadmill exercise in mice

    DEFF Research Database (Denmark)

    Maarbjerg, Stine Just; Jørgensen, Sebastian Beck; Rose, Adam John

    2009-01-01

    and female mice over-expressing kinase-dead alpha2-AMPK (AMPK-KD) in skeletal and heart muscles. Wildtype and AMPK-KD mice were exercised at the same absolute intensity and the same relative intensity (30% and 70% of individual maximal running speed) to correct for reduced exercise capacity of the AMPK......-KD mouse. Muscle glucose clearance was measured using [3H]-2-deoxy-glucose as tracer. In wildtype mice glucose clearance was increased at 30% and 70% of maximal running speed by 40% and 350% in the quadriceps muscle, and by 120% and 380% in gastrocnemius muscle, respectively. Glucose clearance...

  19. Synthesis and antimicrobial evaluation of new 3-alkyl/aryl-2-[((alpha,alpha-diphenyl-alpha-hydroxy)acetyl)hydrazono]-5-methyl-4-thiazolidinones.

    Science.gov (United States)

    Güzeldemirci, Nuray Ulusoy; Ilhan, Eser; Küçükbasmaci, Omer; Satana, Dilek

    2010-01-01

    New 4-thiazolidinone derivatives of benzilic acid (alpha,alpha-diphenyl-alpha-hydroxyacetic acid) have been synthesized and evaluated for antibacterial and antifungal activities. The reaction of 1- (alpha,alpha-diphenyl-alpha-hydroxy)acetyl-4-alkyl/arylthiosemicarbazides with ethyl 2-bromopropionate gave 3-alkyl/aryl-2-[((alpha,alpha-diphenyl-alpha-hydroxy)acetyl)hydrazono]-5-methyl-4-thiazolidinone derivatives. Their antibacterial and antifungal activities were evaluated against S. aureus ATCC 29213, P. aeruginosa ATCC 27853, E. coli ATCC 25922, C. albicans ATCC 10231, C. parapsilosis ATCC 22019, C. krusei ATCC 6258, T. mentagrophytes var. erinacei NCPF 375, M. gypseum NCPF 580 and T. tonsurans NCPF 245. 3e, 3f, 3g and 3h showed the highest antibacterial activity. Particularly 3a and 3e showed the highest antifungal activities against C. parapsilosis ATCC 22019, T. tonsurans NCPF 245 and M. gypseum NCPF 580.

  20. Cytosolic phospholipase A2 activation correlates with HER2 overexpression and mediates estrogen-dependent breast cancer cell growth.

    LENUS (Irish Health Repository)

    Caiazza, Francesco

    2010-05-01

    Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) catalyzes the hydrolysis of membrane glycerol-phospholipids to release arachidonic acid as the first step of the eicosanoid signaling pathway. This pathway contributes to proliferation in breast cancer, and numerous studies have demonstrated a crucial role of cyclooxygenase 2 and prostaglandin E(2) release in breast cancer progression. The role of cPLA(2)alpha activation is less clear, and we recently showed that 17beta-estradiol (E2) can rapidly activate cPLA(2)alpha in MCF-7 breast cancer cells. Overexpression or gene amplification of HER2 is found in approximately 30% of breast cancer patients and correlates with a poor clinical outcome and resistance to endocrine therapy. This study reports the first evidence for a correlation between cPLA(2)alpha enzymatic activity and overexpression of the HER2 receptor. The activation of cPLA(2)alpha in response to E2 treatment was biphasic with the first phase dependent on trans-activation through the matrix metalloproteinase-dependent release of heparin-bound epidermal growth factor. EGFR\\/HER2 heterodimerization resulted in downstream signaling through the ERK1\\/2 cascade to promote cPLA(2)alpha phosphorylation at Ser505. There was a correlation between HER2 and cPLA(2)alpha expression in six breast cancer cell lines examined, and inhibition of HER2 activation or expression in the SKBR3 cell line using herceptin or HER2-specific small interfering RNA, respectively, resulted in decreased activation and expression of cPLA(2)alpha. Pharmacological blockade of cPLA(2)alpha using a specific antagonist suppressed the growth of both MCF-7 and SKBR3 cells by reducing E2-induced proliferation and by stimulating cellular apoptosis and necrosis. This study highlights cPLAalpha(2) as a potential target for therapeutic intervention in endocrine-dependent and endocrine-independent breast cancer.

  1. Prognostic implications of molecular and immunohistochemical profiles of the Rb and p53 cell cycle regulatory pathways in primary non-small cell lung carcinoma.

    LENUS (Irish Health Repository)

    Burke, Louise

    2012-02-03

    PURPOSE: Many studies have highlighted the aberrant expression and prognostic significance of individual proteins in either the Rb (particularly cyclin D1, p16INK4A, and pRb) or the p53 (p53 and p21Waf1) pathways in non-small cell lung cancer. We hypothesize that cumulative abnormalities within each and between these pathways would have significant prognostic potential regarding survival. EXPERIMENTAL DESIGN: Our study population consisted of 106 consecutive surgically resected cases of predominantly early-stage non-small cell lung cancer from the National Cancer Institute-Mayo Clinic series, and assessment of proteins involved both immunohistochemical (cyclin D1, p21Waf1, pRb, p16INK4A, and p53) and mutational analysis (p53) in relationship to staging and survival. RESULTS: Cyclin D1 overexpression was noted in 48% of the tumors, p16INK4A negative in 53%, pRb negative in 17%, p53 immunopositive in 50%, p53 mutation frequency in 48%, and p21(Waf1) overexpression in 47%, none with prognostic significance. Cyclin D1 overexpression in pRb-negative tumors revealed a significantly worse prognosis with a mean survival of 2.3 years (P = 0.004). A simultaneous p53 mutation dramatically reduced the mean survival time to 0.9 years (P = 0.007). Cyclin D1 overexpression with either a p53 mutation or a p53 overexpression was also associated with a significantly poorer prognosis (P = 0.0033 and 0.0063, respectively). CONCLUSIONS: Some cumulative abnormalities in the Rb and p53 pathways (e.g., cyclin D1 overexpression and p53 mutations) significantly cooperate to predict a poor prognosis; however, the complexity of the cell cycle protein interaction in any given tumor warrants caution in interpreting survival results when specific protein abnormalities are taken in isolation.

  2. Alterations in mGluR5 expression and signaling in Lewy body disease and in transgenic models of alpha-synucleinopathy--implications for excitotoxicity.

    Directory of Open Access Journals (Sweden)

    Diana L Price

    2010-11-01

    Full Text Available Dementia with Lewy bodies (DLB and Parkinson's Disease (PD are neurodegenerative disorders of the aging population characterized by the abnormal accumulation of alpha-synuclein (alpha-syn. Previous studies have suggested that excitotoxicity may contribute to neurodegeneration in these disorders, however the underlying mechanisms and their relationship to alpha-syn remain unclear. For this study we proposed that accumulation of alpha-syn might result in alterations in metabotropic glutamate receptors (mGluR, particularly mGluR5 which has been linked to deficits in murine models of PD. In this context, levels of mGluR5 were analyzed in the brains of PD and DLB human cases and alpha-syn transgenic (tg mice and compared to age-matched, unimpaired controls, we report a 40% increase in the levels of mGluR5 and beta-arrestin immunoreactivity in the frontal cortex, hippocampus and putamen in DLB cases and in the putamen in PD cases. In the hippocampus, mGluR5 was more abundant in the CA3 region and co-localized with alpha-syn aggregates. Similarly, in the hippocampus and basal ganglia of alpha-syn tg mice, levels of mGluR5 were increased and mGluR5 and alpha-syn were co-localized and co-immunoprecipitated, suggesting that alpha-syn interferes with mGluR5 trafficking. The increased levels of mGluR5 were accompanied by a concomitant increase in the activation of downstream signaling components including ERK, Elk-1 and CREB. Consistent with the increased accumulation of alpha-syn and alterations in mGluR5 in cognitive- and motor-associated brain regions, these mice displayed impaired performance in the water maze and pole test, these behavioral alterations were reversed with the mGluR5 antagonist, MPEP. Taken together the results from study suggest that mGluR5 may directly interact with alpha-syn resulting in its over activation and that this over activation may contribute to excitotoxic cell death in select neuronal regions. These results highlight the

  3. Differential modulation of a radiation-induced bystander effect in glioblastoma cells by pifithrin-alpha and wortmannin

    Energy Technology Data Exchange (ETDEWEB)

    Shao Chunlin, E-mail: clshao@shmu.edu.c [Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032 (China); Zhang Jianghong [Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032 (China); Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Lisburn Road, Belfast BT9 7AB (United Kingdom)

    2010-03-15

    The implication of radiation-induced bystander effect (RIBE) for both radiation protection and radiotherapy has attracted significant attention, but a key question is how to modulate the RIBE. The present study found that, when a fraction of glioblastoma cells in T98G population were individually targeted with precise helium particles through their nucleus, micronucleus (MN) were induced and its yield increased non-linearly with radiation dose. After co-culturing with irradiated cells, additional MN could be induced in the non-irradiated bystander cells and its yield was independent of irradiation dose, giving direct evidence of a RIBE. Further results showed that the RIBE could be eliminated by pifithrin-alpha (p53 inhibitor) but enhanced by wortmannin (PI3K inhibitor). Moreover, it was found that nitric oxide (NO) contributed to this RIBE, and the levels of NO of both irradiated cells and bystander cells could be extensively diminished by pifithrin-alpha but insignificantly reduced by wortmannin. Our results indicate that RIBE can be modulated by p53 and PI3K through a NO-dependent and NO-independent pathway, respectively.

  4. Early thymic T cell development in young transgenic mice overexpressing human Cu/Zn superoxide dismutase, a model of Down syndrome.

    Science.gov (United States)

    Laurent, Julien; Paly, Evelyne; Marche, Patrice N; London, Jacqueline

    2006-06-01

    Previous studies have shown that transgenic mice overexpressing Cu/Zn superoxide dismutase, a model of Down syndrome, exhibit premature thymic involution. We have performed a flow cytometry analysis of the developing thymus in these homozygous transgenic mice (hSOD1/hSOD1: Tg-SOD). Longitudinal follow-up analysis from day 3 to day 280 showed an early thymic development in Tg-SOD mice compared with controls. This early thymic development was associated with an increased migration of mature T cells to peripheral lymphoid organs. BrdU labeling showed no difference between Tg-SOD and control mice, confirming that the greater number of peripheral T cells in Tg-SOD mice was not due to extensive proliferation of these cells but rather to a greater pool of emigrant T cells in Tg-SOD.

  5. Interaction between viologen-phosphorus dendrimers and α-synuclein

    International Nuclear Information System (INIS)

    Milowska, Katarzyna; Grochowina, Justyna; Katir, Nadia; El Kadib, Abdelkrim; Majoral, Jean-Pierre; Bryszewska, Maria; Gabryelak, Teresa

    2013-01-01

    In this study the interaction between viologen-phosphorus dendrimers and α-synuclein (ASN) was examined. Polycationic viologen-phosphorus dendrimers (two positive charges per viologen unit) are novel compounds with relatively unknown properties. The influence of these viologen dendrimers on ASN was tested using fluorimetric and circular dichroism methods. ASN contains four tyrosine residues; therefore, the influence of dendrimers on protein molecular conformation by measuring the changes in the ASN fluorescence in the presence of dendrimers was evaluated. The interaction of dendrimers with free L-tyrosine was also monitored. Results show that viologen-phosphorus dendrimers interact with ASN; they quenched the fluorescence of ASN as well as free tyrosine by dynamic and static ways. However, the quenching was not accompanied by modifications in the ASN secondary structure. - Highlights: ► Interaction between viologen-phosphorus dendrimers and α-synuclein (ASN) was investigated. ► Viologen-phosphorus dendrimers can quench the fluorescence of tyrosine in ASN. ► Dendrimers caused red-shift in maximum of fluorescence. ► Viologen-phosphorus dendrimers did not change the secondary structure of ASN.

  6. Clinical significance of altered nm23-H1, EGFR, RB and p53 expression in bilharzial bladder cancer

    International Nuclear Information System (INIS)

    Khaled, Hussein M; Bahnassy, Abeer A; Raafat, Amira A; Zekri, Abdel-Rahman N; Madboul, Maha S; Mokhtar, Nadia M

    2009-01-01

    Clinical characterization of bladder carcinomas is still inadequate using the standard clinico-pathological prognostic markers. We assessed the correlation between nm23-H1, Rb, EGFR and p53 in relation to the clinical outcome of patients with muscle invasive bilharzial bladder cancer (MI-BBC). nm23-H1, Rb, EGFR and p53 expression was assessed in 59 MI-BBC patients using immunohistochemistry and reverse transcription (RT-PCR) and was correlated to the standard clinico-pathological prognostic factors, patient's outcome and the overall survival (OS) rate. Overexpression of EGFR and p53 proteins was detected in 66.1% and 35.6%; respectively. Loss of nm23-H1and Rb proteins was detected in 42.4% and 57.6%; respectively. Increased EGFR and loss of nm23-H1 RNA were detected in 61.5% and 36.5%; respectively. There was a statistically significant correlation between p53 and EGFR overexpression (p < 0.0001), nm23 loss (protein and RNA), lymph node status (p < 0.0001); between the incidence of local recurrence and EGFR RNA overexpression (p= 0.003) as well as between the incidence of metastasis and altered Rb expression (p = 0.026), p53 overexpression (p < 0.0001) and mutation (p = 0.04). Advanced disease stage correlated significantly with increased EGFR (protein and RNA) (p = 0.003 & 0.01), reduced nm23-H1 RNA (p = 0.02), altered Rb (p = 0.023), and p53 overexpression (p = 0.004). OS rates correlated significantly, in univariate analysis, with p53 overexpression (p = 0.011), increased EGFR (protein and RNA, p = 0.034&0.031), nm23-H1 RNA loss (p = 0.021) and aberrations of ≥ 2 genes. However, multivariate analysis showed that only high EGFR overexpression, metastatic recurrence, high tumor grade and the combination of ≥ 2 affected markers were independent prognostic factors. nm23-H1, EGFR and p53 could be used as prognostic biomarkers in MI-BBC patients. In addition to the standard pathological prognostic factors, a combination of these markers (≥ 2) has

  7. Mild prenatal protein malnutrition increases alpha 2C-adrenoceptor expression in the rat cerebral cortex during postnatal life.

    Science.gov (United States)

    Sierralta, Walter; Hernández, Alejandro; Valladares, Luis; Pérez, Hernán; Mondaca, Mauricio; Soto-Moyano, Rubén

    2006-05-15

    Mild reduction in the protein content in the diet of pregnant rats from 25 to 8% casein, calorically compensated by carbohydrates, does not alter body and brain weights of rat pups at birth, but results in significant changes of the concentration and release of cortical noradrenaline during postnatal life, together with impaired long-term potentiation and memory formation. Since some central noradrenergic receptors are critically involved in neuroplasticity, the present study evaluated, by utilizing immunohistochemical methods, the effect of mild prenatal protein malnutrition on the alpha 2C-adrenoceptor expression in the frontal and occipital cortices of 8- and 60-day-old rats. At day 8 of postnatal age, prenatally malnourished rats exhibited a three-fold increase of alpha 2C-adrenoceptor expression in both the frontal and the occipital cortices, as compared to well-nourished controls. At 60 days of age, prenatally malnourished rats showed normal expression levels scores of alpha 2C-adrenoceptor in the neocortex. Results suggest that overexpression of neocortical alpha 2C-adrenoceptors during early postnatal life, subsequent to mild prenatal protein malnutrition, could in part be responsible for neural and behavioral disturbances showing prenatally malnourished animals during the postnatal life.

  8. Use of antibodies against the variable regions of the T-cell receptor alpha/beta heterodimer for the study of cutaneous T-cell lymphomas.

    Science.gov (United States)

    Ralfkiaer, E; Wollf-Sneedorff, A; Vejlsgaard, G L

    1991-11-01

    Recent studies have suggested that antibodies against the variable (V) regions of the T-cell antigen receptor (TCR) may be used as markers for clonality and malignancy in T-cell infiltrates. We have investigated this by examining biopsy samples from 45 patients with cutaneous T-cell lymphomas (CTCL) for reactivity with seven antibodies against different V-gene families on the TCR alpha/beta heterodimer, i.e. ICI (V beta 5a), W112 (V beta 5b), OT145 (V beta 6a), 16G8 (V beta 8a), S511 (V beta 12a), F1 (V alpha 2a) and LC4 (alpha beta Va). Serial biopsies were available in 13 patients and a total of 62 samples were studied. The neoplastic cells in five cases were positive for either V beta 5 (one case), V beta 6 (one case), V beta 8 (two cases) or V beta 12 (one case). In the remaining 40 cases, no staining was seen of the neoplastic cells. These findings indicate that while antibodies against the TCR V-regions may be used as clonotypic markers for certain T-cell neoplasms, there is as yet not a sufficient number of anti-TCR V-region antibodies available for the routine diagnosis of these conditions.

  9. Overexpressed TP73 induces apoptosis in medulloblastoma

    International Nuclear Information System (INIS)

    Castellino, Robert C; De Bortoli, Massimiliano; Lin, Linda L; Skapura, Darlene G; Rajan, Jessen A; Adesina, Adekunle M; Perlaky, Laszlo; Irwin, Meredith S; Kim, John YH

    2007-01-01

    Medulloblastoma is the most common malignant brain tumor of childhood. Children who relapse usually die of their disease, which reflects resistance to radiation and/or chemotherapy. Improvements in outcome require a better understanding of the molecular basis of medulloblastoma growth and treatment response. TP73 is a member of the TP53 tumor suppressor gene family that has been found to be overexpressed in a variety of tumors and mediates apoptotic responses to genotoxic stress. In this study, we assessed expression of TP73 RNA species in patient tumor specimens and in medulloblastoma cell lines, and manipulated expression of full-length TAp73 and amino-terminal truncated ΔNp73 to assess their effects on growth. We analyzed medulloblastoma samples from thirty-four pediatric patients and the established medulloblastoma cell lines, Daoy and D283MED, for expression of TP73 RNA including the full-length transcript and the 5'-terminal variants that encode the ΔNp73 isoform, as well as TP53 RNA using quantitative real time-RTPCR. Protein expression of TAp73 and ΔNp73 was quantitated with immunoblotting methods. Clinical outcome was analyzed based on TP73 RNA and p53 protein expression. To determine effects of overexpression or knock-down of TAp73 and ΔNp73 on cell cycle and apoptosis, we analyzed transiently transfected medulloblastoma cell lines with flow cytometric and TUNEL methods. Patient medulloblastoma samples and cell lines expressed full-length and 5'-terminal variant TP73 RNA species in 100-fold excess compared to non-neoplastic brain controls. Western immunoblot analysis confirmed their elevated levels of TAp73 and amino-terminal truncated ΔNp73 proteins. Kaplan-Meier analysis revealed trends toward favorable overall and progression-free survival of patients whose tumors display TAp73 RNA overexpression. Overexpression of TAp73 or ΔNp73 induced apoptosis under basal growth conditions in vitro and sensitized them to cell death in response to

  10. Overexpressed TP73 induces apoptosis in medulloblastoma

    Directory of Open Access Journals (Sweden)

    Perlaky Laszlo

    2007-07-01

    Full Text Available Abstract Background Medulloblastoma is the most common malignant brain tumor of childhood. Children who relapse usually die of their disease, which reflects resistance to radiation and/or chemotherapy. Improvements in outcome require a better understanding of the molecular basis of medulloblastoma growth and treatment response. TP73 is a member of the TP53 tumor suppressor gene family that has been found to be overexpressed in a variety of tumors and mediates apoptotic responses to genotoxic stress. In this study, we assessed expression of TP73 RNA species in patient tumor specimens and in medulloblastoma cell lines, and manipulated expression of full-length TAp73 and amino-terminal truncated ΔNp73 to assess their effects on growth. Methods We analyzed medulloblastoma samples from thirty-four pediatric patients and the established medulloblastoma cell lines, Daoy and D283MED, for expression of TP73 RNA including the full-length transcript and the 5'-terminal variants that encode the ΔNp73 isoform, as well as TP53 RNA using quantitative real time-RTPCR. Protein expression of TAp73 and ΔNp73 was quantitated with immunoblotting methods. Clinical outcome was analyzed based on TP73 RNA and p53 protein expression. To determine effects of overexpression or knock-down of TAp73 and ΔNp73 on cell cycle and apoptosis, we analyzed transiently transfected medulloblastoma cell lines with flow cytometric and TUNEL methods. Results Patient medulloblastoma samples and cell lines expressed full-length and 5'-terminal variant TP73 RNA species in 100-fold excess compared to non-neoplastic brain controls. Western immunoblot analysis confirmed their elevated levels of TAp73 and amino-terminal truncated ΔNp73 proteins. Kaplan-Meier analysis revealed trends toward favorable overall and progression-free survival of patients whose tumors display TAp73 RNA overexpression. Overexpression of TAp73 or ΔNp73 induced apoptosis under basal growth conditions in vitro and

  11. GNB3 overexpression causes obesity and metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Alev Cagla Ozdemir

    Full Text Available The G-protein beta subunit 3 (GNB3 gene has been implicated in obesity risk; however, the molecular mechanism of GNB3-related disease is unknown. GNB3 duplication is responsible for a syndromic form of childhood obesity, and an activating DNA sequence variant (C825T in GNB3 is also associated with obesity. To test the hypothesis that GNB3 overexpression causes obesity, we created bacterial artificial chromosome (BAC transgenic mice that carry an extra copy of the human GNB3 risk allele. Here we show that GNB3-T/+ mice have increased adiposity, but not greater food intake or a defect in satiety. GNB3-T/+ mice have elevated fasting plasma glucose, insulin, and C-peptide, as well as glucose intolerance, indicating type 2 diabetes. Fasting plasma leptin, triglycerides, cholesterol and phospholipids are elevated, suggesting metabolic syndrome. Based on a battery of behavioral tests, GNB3-T/+ mice did not exhibit anxiety- or depressive-like phenotypes. GNB3-T/+ and wild-type animals have similar activity levels and heat production; however, GNB3-T/+ mice exhibit dysregulation of acute thermogenesis. Finally, Ucp1 expression is significantly lower in white adipose tissue (WAT in GNB3-T/+ mice, suggestive of WAT remodeling that could lead to impaired cellular thermogenesis. Taken together, our study provides the first functional link between GNB3 and obesity, and presents insight into novel pathways that could be applied to combat obesity and type 2 diabetes.

  12. GNB3 overexpression causes obesity and metabolic syndrome.

    Science.gov (United States)

    Ozdemir, Alev Cagla; Wynn, Grace M; Vester, Aimee; Weitzmann, M Neale; Neigh, Gretchen N; Srinivasan, Shanthi; Rudd, M Katharine

    2017-01-01

    The G-protein beta subunit 3 (GNB3) gene has been implicated in obesity risk; however, the molecular mechanism of GNB3-related disease is unknown. GNB3 duplication is responsible for a syndromic form of childhood obesity, and an activating DNA sequence variant (C825T) in GNB3 is also associated with obesity. To test the hypothesis that GNB3 overexpression causes obesity, we created bacterial artificial chromosome (BAC) transgenic mice that carry an extra copy of the human GNB3 risk allele. Here we show that GNB3-T/+ mice have increased adiposity, but not greater food intake or a defect in satiety. GNB3-T/+ mice have elevated fasting plasma glucose, insulin, and C-peptide, as well as glucose intolerance, indicating type 2 diabetes. Fasting plasma leptin, triglycerides, cholesterol and phospholipids are elevated, suggesting metabolic syndrome. Based on a battery of behavioral tests, GNB3-T/+ mice did not exhibit anxiety- or depressive-like phenotypes. GNB3-T/+ and wild-type animals have similar activity levels and heat production; however, GNB3-T/+ mice exhibit dysregulation of acute thermogenesis. Finally, Ucp1 expression is significantly lower in white adipose tissue (WAT) in GNB3-T/+ mice, suggestive of WAT remodeling that could lead to impaired cellular thermogenesis. Taken together, our study provides the first functional link between GNB3 and obesity, and presents insight into novel pathways that could be applied to combat obesity and type 2 diabetes.

  13. Impaired embryonic development in mice overexpressing the RNA-binding protein TIAR.

    Directory of Open Access Journals (Sweden)

    Yacine Kharraz

    Full Text Available BACKGROUND: TIA-1-related (TIAR protein is a shuttling RNA-binding protein involved in several steps of RNA metabolism. While in the nucleus TIAR participates to alternative splicing events, in the cytoplasm TIAR acts as a translational repressor on specific transcripts such as those containing AU-Rich Elements (AREs. Due to its ability to assemble abortive pre-initiation complexes coalescing into cytoplasmic granules called stress granules, TIAR is also involved in the general translational arrest observed in cells exposed to environmental stress. However, the in vivo role of this protein has not been studied so far mainly due to severe embryonic lethality upon tiar invalidation. METHODOLOGY/PRINCIPAL FINDINGS: To examine potential TIAR tissue-specificity in various cellular contexts, either embryonic or adult, we constructed a TIAR transgenic allele (loxPGFPloxPTIAR allowing the conditional expression of TIAR protein upon Cre recombinase activity. Here, we report the role of TIAR during mouse embryogenesis. We observed that early TIAR overexpression led to low transgene transmission associated with embryonic lethality starting at early post-implantation stages. Interestingly, while pre-implantation steps evolved correctly in utero, in vitro cultured embryos were very sensitive to culture medium. Control and transgenic embryos developed equally well in the G2 medium, whereas culture in M16 medium led to the phosphorylation of eIF2alpha that accumulated in cytoplasmic granules precluding transgenic blastocyst hatching. Our results thus reveal a differential TIAR-mediated embryonic response following artificial or natural growth environment. CONCLUSIONS/SIGNIFICANCE: This study reports the importance of the tightly balanced expression of the RNA-binding protein TIAR for normal embryonic development, thereby emphasizing the role of post-transcriptional regulations in early embryonic programming.

  14. Pathogenesis of axonal dystrophy and demyelination in alphaA-crystallin-expressing transgenic mice.

    NARCIS (Netherlands)

    Rijk, A. van; Sweers, M.A.; Merkx, G.F.M.; Lammens, M.M.Y.; Bloemendal, H.

    2003-01-01

    We recently described a transgenic mouse strain overexpressing hamster alphaA-crystallin, a small heat shock protein, under direction of the hamster vimentin promoter. As a result myelin was degraded and axonal dystrophy in both central nervous system (especially spinal cord) and peripheral nervous

  15. Defects in mitophagy promote redox-driven metabolic syndrome in the absence of TP53INP1.

    Science.gov (United States)

    Seillier, Marion; Pouyet, Laurent; N'Guessan, Prudence; Nollet, Marie; Capo, Florence; Guillaumond, Fabienne; Peyta, Laure; Dumas, Jean-François; Varrault, Annie; Bertrand, Gyslaine; Bonnafous, Stéphanie; Tran, Albert; Meur, Gargi; Marchetti, Piero; Ravier, Magalie A; Dalle, Stéphane; Gual, Philippe; Muller, Dany; Rutter, Guy A; Servais, Stéphane; Iovanna, Juan L; Carrier, Alice

    2015-06-01

    The metabolic syndrome covers metabolic abnormalities including obesity and type 2 diabetes (T2D). T2D is characterized by insulin resistance resulting from both environmental and genetic factors. A genome-wide association study (GWAS) published in 2010 identified TP53INP1 as a new T2D susceptibility locus, but a pathological mechanism was not identified. In this work, we show that mice lacking TP53INP1 are prone to redox-driven obesity and insulin resistance. Furthermore, we demonstrate that the reactive oxygen species increase in TP53INP1-deficient cells results from accumulation of defective mitochondria associated with impaired PINK/PARKIN mitophagy. This chronic oxidative stress also favors accumulation of lipid droplets. Taken together, our data provide evidence that the GWAS-identified TP53INP1 gene prevents metabolic syndrome, through a mechanism involving prevention of oxidative stress by mitochondrial homeostasis regulation. In conclusion, this study highlights TP53INP1 as a molecular regulator of redox-driven metabolic syndrome and provides a new preclinical mouse model for metabolic syndrome clinical research. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  16. Overexpression of α-catenin increases osteoblastic differentiation in mouse mesenchymal C3H10T1/2 cells

    International Nuclear Information System (INIS)

    Kim, Dohee; Yang, Jae-Yeon; Shin, Chan Soo

    2009-01-01

    α- and β-Catenin link cadherins to the actin-based cytoskeleton at adherens junctions and regulate cell-cell adhesion. Although roles of cadherins and canonical Wnt-/β-catenin-signaling in osteoblastic differentiation have been extensively studied, the role of α-catenin is not known. Murine embryonic mesenchymal stem cells, C3H10T1/2 cells, were transduced with retrovirus encoding α-catenin (MSCV-α-catenin-HA-GFP). In the presence of Wnt-3A conditioned medium or osteogenic medium (β-glycerol phosphate and ascorbic acid), cells overexpressing α-catenin showed enhanced osteoblastic differentiation as measured by alkaline phosphatase (ALP) staining and ALP activity assay compared to cells transduced with empty virus (MSCV-GFP). In addition, mRNA expression of osteocalcin and Runx2 was significantly increased compared to control. Cell aggregation assay revealed that α-catenin overexpression has significantly increased cell-cell aggregation. However, cellular β-catenin levels (total, cytoplasmic-nuclear ratio) and β-catenin-TCF/LEF transcriptional activity did not change by overexpression of α-catenin. Knock-down of α-catenin using siRNA decreased osteoblastic differentiation as measured by ALP assay. These results suggest that α-catenin overexpression increases osteoblastic differentiation by increasing cell-cell adhesion rather than Wnt-/β-catenin-signaling.

  17. The anti-apoptotic activity associated with phosphatidylinositol transfer protein alpha activates the MAPK and Akt/PKB pathway.

    Science.gov (United States)

    Schenning, Martijn; Goedhart, Joachim; Gadella, Theodorus W J; Avram, Diana; Wirtz, Karel W A; Snoek, Gerry T

    2008-10-01

    The conditioned medium (CM) from mouse NIH3T3 fibroblast cells overexpressing phosphatidylinositol transfer protein alpha (PI-TPalpha; SPIalpha cells) demonstrates an increased anti-apoptotic activity compared with CM from wild type NIH3T3 (wtNIH3T3) cells. As previously shown, the anti-apoptotic activity acts by activating a G protein-coupled receptor, most probably a cannabinoid 1 (CB1)-like receptor as the activity was blocked by both pertussis toxin and rimonabant [M. Schenning, C.M. van Tiel, D. Van Manen, J.C. Stam, B.M. Gadella, K.W. Wirtz and G.T. Snoek, Phosphatidylinositol transfer protein alpha regulates growth and apoptosis of NIH3T3 cells: involvement of a cannabinoid 1-like receptor, J. Lipid Res. 45 (2004) 1555-1564]. The CB1 receptor appears to be expressed in mouse fibroblast cells, at levels in the order SPIalpha>wtNIH3T3>SPIbeta cells (i.e. wild type cells overexpressing PI-TPbeta). Upon incubation of SPIbeta cells with the PI-TPalpha-dependent anti-apoptotic factors, both the ERK/MAP kinase and the Akt/PKB pathway are activated in a CB1 receptor dependent manner as shown by Western blotting. In addition, activation of ERK2 was also shown by EYFP-ERK2 translocation to the nucleus, as visualized by confocal laser scanning microscopy. The subsequent activation of the anti-apoptotic transcription factor NF-kappaB is in line with the increased resistance towards UV-induced apoptosis. On the other hand, receptor activation by CM from SPIalpha cells was not linked to phospholipase C activation as the YFP-labelled C2-domain of protein kinase C was not translocated to the plasma membrane of SPIbeta cells as visualized by confocal laser scanning microscopy.

  18. Choline kinase-alpha by regulating cell aggressiveness and drug sensitivity is a potential druggable target for ovarian cancer

    OpenAIRE

    Granata, A; Nicoletti, R; Tinaglia, V; De Cecco, L; Pisanu, M E; Ricci, A; Podo, F; Canevari, S; Iorio, E; Bagnoli, M; Mezzanzanica, D

    2013-01-01

    Background: Aberrant choline metabolism has been proposed as a novel cancer hallmark. We recently showed that epithelial ovarian cancer (EOC) possesses an altered MRS-choline profile, characterised by increased phosphocholine (PCho) content to which mainly contribute over-expression and activation of choline kinase-alpha (ChoK-alpha). Methods: To assess its biological relevance, ChoK-alpha expression was downmodulated by transient RNA interference in EOC in vitro models. Gene expression profi...

  19. Degradation of p53 by human Alphapapillomavirus E6 proteins shows a stronger correlation with phylogeny than oncogenicity.

    Directory of Open Access Journals (Sweden)

    Leiping Fu

    2010-09-01

    Full Text Available Human Papillomavirus (HPV E6 induced p53 degradation is thought to be an essential activity by which high-risk human Alphapapillomaviruses (alpha-HPVs contribute to cervical cancer development. However, most of our understanding is derived from the comparison of HPV16 and HPV11. These two viruses are relatively distinct viruses, making the extrapolation of these results difficult. In the present study, we expand the tested strains (types to include members of all known HPV species groups within the Alphapapillomavirus genus.We report the biochemical activity of E6 proteins from 27 HPV types representing all alpha-HPV species groups to degrade p53 in human cells. Expression of E6 from all HPV types epidemiologically classified as group 1 carcinogens significantly reduced p53 levels. However, several types not associated with cancer (e.g., HPV53, HPV70 and HPV71 were equally active in degrading p53. HPV types within species groups alpha 5, 6, 7, 9 and 11 share a most recent common ancestor (MRCA and all contain E6 ORFs that degrade p53. A unique exception, HPV71 E6 ORF that degraded p53 was outside this clade and is one of the most prevalent HPV types infecting the cervix in a population-based study of 10,000 women. Alignment of E6 ORFs identified an amino acid site that was highly correlated with the biochemical ability to degrade p53. Alteration of this amino acid in HPV71 E6 abrogated its ability to degrade p53, while alteration of this site in HPV71-related HPV90 and HPV106 E6s enhanced their capacity to degrade p53.These data suggest that the alpha-HPV E6 proteins' ability to degrade p53 is an evolved phenotype inherited from a most recent common ancestor of the high-risk species that does not always segregate with carcinogenicity. In addition, we identified an amino-acid residue strongly correlated with viral p53 degrading potential.

  20. Glyoxalase-1 overexpression reduces endothelial dysfunction and attenuates early renal impairment in a rat model of diabetes

    DEFF Research Database (Denmark)

    Brouwers, Olaf; Niessen, Petra M G; Miyata, Toshio

    2014-01-01

    AIMS/HYPOTHESIS: In diabetes, advanced glycation end-products (AGEs) and the AGE precursor methylglyoxal (MGO) are associated with endothelial dysfunction and the development of microvascular complications. In this study we used a rat model of diabetes, in which rats transgenically overexpressed...... the MGO-detoxifying enzyme glyoxalase-I (GLO-I), to determine the impact of intracellular glycation on vascular function and the development of early renal changes in diabetes. METHODS: Wild-type and Glo1-overexpressing rats were rendered diabetic for a period of 24 weeks by intravenous injection...... podocyte number and diabetes-induced elevation of urinary markers albumin, osteopontin, kidney-inflammation-molecule-1 and nephrin) were attenuated by Glo1 overexpression. In line with this, downregulation of Glo1 in cultured endothelial cells resulted in increased expression of inflammation...

  1. Differences in radiosensitivity between three HER2 overexpressing cell lines

    International Nuclear Information System (INIS)

    Steffen, Ann-Charlott; Tolmachev, Vladimir; Stenerloew, Bo; Goestring, Lovisa; Palm, Stig; Carlsson, Joergen

    2008-01-01

    HER2 is a potential target for radionuclide therapy, especially when HER2 overexpressing breast cancer cells are resistant to Herceptin registered treatment. Therefore, it is of interest to analyse whether HER2 overexpressing tumour cells have different inherent radiosensitivity. The radiosensitivity of three often used HER2 overexpressing cell lines, SKOV-3, SKBR-3 and BT-474, was analysed. The cells were exposed to conventional photon irradiation, low linear energy transfer (LET), to characterise their inherent radiosensitivity. The analysis was made with clonogenic survival and growth extrapolation assays. The cells were also exposed to alpha particles, high LET, from 211 At decays using the HER2-binding affibody molecule 211 At-(Z HER2:4 ) 2 as targeting agent. Assays for studies of internalisation of the affibody molecule were applied. SKOV-3 cells were most radioresistant, SKBR-3 cells were intermediate and BT-474 cells were most sensitive as measured with the clonogenic and growth extrapolation assays after photon irradiation. The HER2 dependent cellular uptake of 211 At was qualitatively similar for all three cell lines. However, the sensitivity to the alpha particles from 211 At differed; SKOV-3 was most resistant, SKBR-3 intermediate and BT-474 most sensitive. These differences were unexpected because it is assumed that all types of cells should have similar sensitivity to high-LET radiation. The sensitivity to alpha particle exposure correlated with internalisation of the affibody molecule and with size of the cell nucleus. There can be differences in radiosensitivity, which, if they also exist between patient breast cancer cells, are important to consider for both conventional radiotherapy and for HER2-targeted radionuclide therapy. (orig.)

  2. Identification of the human ApoAV gene as a novel ROR{alpha} target gene

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Ulrika [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Nilsson, Tina [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); McPheat, Jane [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Stroemstedt, Per-Erik [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Bamberg, Krister [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Balendran, Clare [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Kang, Daiwu [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden)

    2005-04-29

    Retinoic acid receptor-related orphan receptor-{alpha} (ROR{alpha}) (NR1F1) is an orphan nuclear receptor with a potential role in metabolism. Previous studies have shown that ROR{alpha} regulates transcription of the murine Apolipoprotein AI gene and human Apolipoprotein CIII genes. In the present study, we present evidence that ROR{alpha} also induces transcription of the human Apolipoprotein AV gene, a recently identified apolipoprotein associated with triglyceride levels. Adenovirus-mediated overexpression of ROR{alpha} increased the endogenous expression of ApoAV in HepG2 cells and ROR{alpha} also enhanced the activity of an ApoAV promoter construct in transiently transfected HepG2 cells. Deletion and mutation studies identified three AGGTCA motifs in the ApoAV promoter that mediate ROR{alpha} transactivation, one of which overlaps with a previously identified binding site for PPAR{alpha}. Together, these results suggest a novel mechanism whereby ROR{alpha} modulates lipid metabolism and implies ROR{alpha} as a potential target for the treatment of dyslipidemia and atherosclerosis.

  3. Increased antigen presentation but impaired T cells priming after upregulation of interferon-beta induced by lipopolysaccharides is mediated by upregulation of B7H1 and GITRL.

    Directory of Open Access Journals (Sweden)

    Fang Wang

    Full Text Available Dendritic cells are able to present Ag-derived peptides on MHC class I and II molecules and induce T cells priming. Lipopolysaccharides (LPS, an activator of Toll-like 4 receptor (TLR4 signaling, has been demonstrated to facilitate Ag-presentation, up-regulate surface molecules expression but impair T cells priming. In this study, we investigated the effect of LPS on nicotine-enhanced DCs-dependent T cells priming and the mechanisms of LPS orchestrating the immunosuppressive program. We could demonstrate that the treatment with LPS resulted in increased surface molecules expression, enhanced Ag-presentation, up-regulated release of TGF-beta, TNF-alpha, IL-6, and IFN-beta. Concomititantly, the upregulation of IFN-beta in DCs induces the up-regulation of coinhibitory molecules B7H1 and GITRL, which cause an impaired activation of naïve Ag-specific T cells and the induction of T cell tolerance by enhancing B7H1-PD-1 interactions and promoting GITRL-GITL facilitated Treg generation, respectively. These data provide a mechanistic basis for the immunomodulatory action of IFN-beta which might open new possibilities in the development of therapeutic approaches aimed at the control of excessive immune response and persistent infection.

  4. Combined cytotoxic effects of tumor necrosis factor-alpha with various cytotoxic agents in tumor cell lines that are drug resistant due to mutated p53

    NARCIS (Netherlands)

    Sleijfer, S; Le, T. K. P.; de Jong, S.; Timmer-Bosscha, H; Withoff, S; Mulder, NH

    Several studies suggest that tumor necrosis factor-alpha (TNF) is able to overcome drug resistance in tumors. Whether TNF is able to do so in tumor cell lines that are drug resistant due to a mutation in the tumor suppressor gene p53 is unclear. Therefore, we studied the in vitro cytotoxic effects

  5. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    Energy Technology Data Exchange (ETDEWEB)

    Kiran, Shashi; Oddi, Vineesha [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Ramakrishna, Gayatri, E-mail: gayatrirama1@gmail.com [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Laboratory of Cancer Cell Biology, Department of Research, Institute of Liver and Biliary Sciences, Delhi 110070 (India)

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  6. Targeting α-synuclein oligomers

    DEFF Research Database (Denmark)

    van Diggelen, Femke

    Parkinson’s Disease (PD) is a complex disease, characterised by degeneration of neocortical, limbic and nigrostriatal neurons. It is unknown what initiates neurodegeneration, but soluble oligomers of the protein α-synuclein (αSn) seem to be particularly toxic, compared to insoluble fibrils...... unique characteristics, e.g. they were recognized by different conformational antibodies and DHA–αSOs also formed a second elongated species in addition to the dominant spherical species. Although further functional testing is needed, this suggests that each species has its own distinct toxic mechanism......+/K+ ATPase, V-type ATPase, VDAC, CaMKII and Rab-3A. The identification of these targets is a first step towards unravelling the toxic pathways which are activated upon synaptic binding of extracellularly added αSOs, and hopefully will contribute to the discovery of new disease modifying compounds, which can...

  7. Chameleon behaviour of α-synuclein: brownian dynamics simulations of protein aggregation

    NARCIS (Netherlands)

    Ilie, Ioana Mariuca

    2015-01-01

    Over the past decades a large number of studies have been carried out in order to determine the physiological function of α-synuclein and its implication in Parkinson's disease. A complementary tool to experiments are computer simulations, which are intensively used for problems for which

  8. α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models.

    Science.gov (United States)

    Mazzulli, Joseph R; Zunke, Friederike; Isacson, Ole; Studer, Lorenz; Krainc, Dimitri

    2016-02-16

    Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by the accumulation of protein aggregates comprised of α-synuclein (α-syn). A major barrier in treatment discovery for PD is the lack of identifiable therapeutic pathways capable of reducing aggregates in human neuronal model systems. Mutations in key components of protein trafficking and cellular degradation machinery represent important risk factors for PD; however, their precise role in disease progression and interaction with α-syn remains unclear. Here, we find that α-syn accumulation reduced lysosomal degradation capacity in human midbrain dopamine models of synucleinopathies through disrupting hydrolase trafficking. Accumulation of α-syn at the cell body resulted in aberrant association with cis-Golgi-tethering factor GM130 and disrupted the endoplasmic reticulum-Golgi localization of rab1a, a key mediator of vesicular transport. Overexpression of rab1a restored Golgi structure, improved hydrolase trafficking and activity, and reduced pathological α-syn in patient neurons. Our work suggests that enhancement of lysosomal hydrolase trafficking may prove beneficial in synucleinopathies and indicates that human midbrain disease models may be useful for identifying critical therapeutic pathways in PD and related disorders.

  9. Chemical Variations on the p53 Reactivation Theme

    Directory of Open Access Journals (Sweden)

    Carlos J. A. Ribeiro

    2016-05-01

    Full Text Available Among the tumor suppressor genes, p53 is one of the most studied. It is widely regarded as the “guardian of the genome”, playing a major role in carcinogenesis. In fact, direct inactivation of the TP53 gene occurs in more than 50% of malignancies, and in tumors that retain wild-type p53 status, its function is usually inactivated by overexpression of negative regulators (e.g., MDM2 and MDMX. Hence, restoring p53 function in cancer cells represents a valuable anticancer approach. In this review, we will present an updated overview of the most relevant small molecules developed to restore p53 function in cancer cells through inhibition of the p53-MDMs interaction, or direct targeting of wild-type p53 or mutated p53. In addition, optimization approaches used for the development of small molecules that have entered clinical trials will be presented.

  10. Pur-Alpha Induces JCV Gene Expression and Viral Replication by Suppressing SRSF1 in Glial Cells.

    Directory of Open Access Journals (Sweden)

    Ilker Kudret Sariyer

    Full Text Available PML is a rare and fatal demyelinating disease of the CNS caused by the human polyomavirus, JC virus (JCV, which occurs in AIDS patients and those on immunosuppressive monoclonal antibody therapies (mAbs. We sought to identify mechanisms that could stimulate reactivation of JCV in a cell culture model system and targeted pathways which could affect early gene transcription and JCV T-antigen production, which are key steps of the viral life cycle for blocking reactivation of JCV. Two important regulatory partners we have previously identified for T-antigen include Pur-alpha and SRSF1 (SF2/ASF. SRSF1, an alternative splicing factor, is a potential regulator of JCV whose overexpression in glial cells strongly suppresses viral gene expression and replication. Pur-alpha has been most extensively characterized as a sequence-specific DNA- and RNA-binding protein which directs both viral gene transcription and mRNA translation, and is a potent inducer of the JCV early promoter through binding to T-antigen.Pur-alpha and SRSF1 both act directly as transcriptional regulators of the JCV promoter and here we have observed that Pur-alpha is capable of ameliorating SRSF1-mediated suppression of JCV gene expression and viral replication. Interestingly, Pur-alpha exerted its effect by suppressing SRSF1 at both the protein and mRNA levels in glial cells suggesting this effect can occur independent of T-antigen. Pur-alpha and SRSF1 were both localized to oligodendrocyte inclusion bodies by immunohistochemistry in brain sections from patients with HIV-1 associated PML. Interestingly, inclusion bodies were typically positive for either Pur-alpha or SRSF1, though some cells appeared to be positive for both proteins.Taken together, these results indicate the presence of an antagonistic interaction between these two proteins in regulating of JCV gene expression and viral replication and suggests that they play an important role during viral reactivation leading to

  11. TP53inp1 Gene Is Implicated in Early Radiation Response in Human Fibroblast Cells

    Directory of Open Access Journals (Sweden)

    Nikolett Sándor

    2015-10-01

    Full Text Available Tumor protein 53-induced nuclear protein-1 (TP53inp1 is expressed by activation via p53 and p73. The purpose of our study was to investigate the role of TP53inp1 in response of fibroblasts to ionizing radiation. γ-Ray radiation dose-dependently induces the expression of TP53inp1 in human immortalized fibroblast (F11hT cells. Stable silencing of TP53inp1 was done via lentiviral transfection of shRNA in F11hT cells. After irradiation the clonogenic survival of TP53inp1 knockdown (F11hT-shTP cells was compared to cells transfected with non-targeting (NT shRNA. Radiation-induced senescence was measured by SA-β-Gal staining and autophagy was detected by Acridine Orange dye and microtubule-associated protein-1 light chain 3 (LC3B immunostaining. The expression of TP53inp1, GDF-15, and CDKN1A and alterations in radiation induced mitochondrial DNA deletions were evaluated by qPCR. TP53inp1 was required for radiation (IR induced maximal elevation of CDKN1A and GDF-15 expressions. Mitochondrial DNA deletions were increased and autophagy was deregulated following irradiation in the absence of TP53inp1. Finally, we showed that silencing of TP53inp1 enhances the radiation sensitivity of fibroblast cells. These data suggest functional roles for TP53inp1 in radiation-induced autophagy and survival. Taken together, we suppose that silencing of TP53inp1 leads radiation induced autophagy impairment and induces accumulation of damaged mitochondria in primary human fibroblasts.

  12. Extracellular overexpression of recombinant Thermobifida fusca cutinase by alpha-hemolysin secretion system in E. coli BL21(DE3

    Directory of Open Access Journals (Sweden)

    Su Lingqia

    2012-01-01

    Full Text Available Abstract Background Extracellular expression of proteins has an absolute advantage in a large-scale industrial production. In our previous study, Thermobifida fusca cutinase, an enzyme mainly utilized in textile industry, was expressed via type II secretory system in Escherichia coli BL21(DE3, and it was found that parts of the expressed protein was accumulated in the periplasmic space. Due to the fact that alpha-hemolysin secretion system can export target proteins directly from cytoplasm across both cell membrane of E. coli to the culture medium, thus in the present study we investigated the expression of cutinase using this alpha-hemolysin secretion system. Results T. fusca cutinase was fused with the specific signal peptide of alpha-hemolysin scretion system and expressed in E. coli BL21(DE3. In addition, HlyB and HlyD, strain-specific translocation components of alpha-hemolysin secretion system, were coexpressed to facilitate the enzyme expression. The cultivation of this engineered cell showed that cutinase activity in the culture medium reached 334 U/ml, which is 2.5 times that from type II secretion pathway under the same culture condition. The recombinant cutinase was further purified. Biochemical characterization of purified enzyme, which had an α-hemolysin secretion pathway signal peptide attached, had substrate specificity, pH and temperature profile, as well as application capability in bioscouring similar to that of wild-type cutinase. Conclusions In the present study, T. fusca cutinase was successfully secreted to the culture media by α-hemolysin secretion system. This is the first report of cutinase being efficiently secreted by this pathway. Due to the limited cases of successful expression of industrial enzyme by E. coli α-hemolysin secretion system, our study further explored the utilization of this pathway in industrial enzymes.

  13. VPS35 Deficiency or Mutation Causes Dopaminergic Neuronal Loss by Impairing Mitochondrial Fusion and Function

    Directory of Open Access Journals (Sweden)

    Fu-Lei Tang

    2015-09-01

    Full Text Available Vacuolar protein sorting-35 (VPS35 is a retromer component for endosomal trafficking. Mutations of VPS35 have been linked to familial Parkinson’s disease (PD. Here, we show that specific deletion of the VPS35 gene in dopamine (DA neurons resulted in PD-like deficits, including loss of DA neurons and accumulation of α-synuclein. Intriguingly, mitochondria became fragmented and dysfunctional in VPS35-deficient DA neurons, phenotypes that could be restored by expressing VPS35 wild-type, but not PD-linked mutant. Concomitantly, VPS35 deficiency or mutation increased mitochondrial E3 ubiquitin ligase 1 (MUL1 and, thus, led to mitofusin 2 (MFN2 degradation and mitochondrial fragmentation. Suppression of MUL1 expression ameliorated MFN2 reduction and DA neuron loss but not α-synuclein accumulation. These results provide a cellular mechanism for VPS35 dysfunction in mitochondrial impairment and PD pathogenesis.

  14. Del-1 overexpression potentiates lung cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng; Kim, Hyesoon [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yun, Chae-Ok [Department of Bioengineering, College of Engineering, Hanyang University, Seoul (Korea, Republic of); Han, Deok-Jong [Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Eun Young, E-mail: choieun@ulsan.ac.kr [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2015-12-04

    Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild type of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells.

  15. Del-1 overexpression potentiates lung cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng; Kim, Hyesoon; Yun, Chae-Ok; Han, Deok-Jong; Choi, Eun Young

    2015-01-01

    Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild type of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells.

  16. Gut-homing CD4+ T cell receptor alpha beta+ T cells in the pathogenesis of murine inflammatory bowel disease

    DEFF Research Database (Denmark)

    Rudolphi, A; Boll, G; Poulsen, S S

    1994-01-01

    reconstituted a CD3+ T cell receptor alpha beta+ CD4+ T cell subset. CD4+ cells of this subset expressed the surface phenotype of mucosa-seeking, memory T cells. In the immunodeficient scid host, this gut-derived CD4+ T cell subset was found in spleen, peritoneal cavity, mesenteric lymph nodes (LN), epithelial...... compartments with CD4+ T cells from normal GALT plays an essential role in the pathogenesis of IBD in an immunodeficient host.......We studied which T cell subsets from the gut-associated lymphoid tissue (GALT) can migrate out of the gut mucosa and repopulate GALT compartments of an immunodeficient (semi)syngeneic host. Many distinct lymphocyte subsets were found in GALT of immunocompetent H-2d (BALB/c, BALB/cdm2, C.B-17...

  17. A Unique Mdm2-Binding Mode of the 3-Pyrrolin-2-one- and 2-Furanone-Based Antagonists of the p53-Mdm2 Interaction

    NARCIS (Netherlands)

    Surmiak, Ewa; Twarda-Clapa, Aleksandra; Zak, Krzysztof M.; Musielak, Bogdan; Tomala, Marcin D.; Kubica, Katarzyna; Grudnik, Przemyslaw; Madej, Mariusz; Jablonski, Mateusz; Potempa, Jan; Kalinowska-Tluscik, Justyna; Dömling, Alexander; Dubin, Grzegorz; Holak, Tad A.

    2016-01-01

    The p53 pathway is inactivated in almost all types of cancer by mutations in the p53 encoding gene or overexpression of the p53 negative regulators, Mdm2 and/or Mdmx. Restoration of the p53 function by inhibition of the p53-Mdm2/Mdmx interaction opens up a prospect for a nongenotoxic anticancer

  18. MET overexpression, gene amplification and relevant clinicopathological features in gastric adenocarcinoma.

    Science.gov (United States)

    Zhang, Jing; Guo, Lei; Liu, Xiuyun; Li, Wenbin; Ying, Jianming

    2017-02-07

    This study was conducted to investigate the expression of MET in Chinese gastric adenocarcinoma cohort, the correlation between MET overexpression and clinical pathological features, HER2 expression and MET gene amplification. A total of 816 gastric adenocarcinoma patients were included and MET and HER2 immunohistochemical (IHC) staining were performed. IHC and dual-color silver in situ hybridization analysis were performed in the tissue microarrays, constructed from the 240 patients who were randomly selected. MET overexpression (IHC 3+) was observed in 6.0% (49/816) of the cohort. MET overexpression rate was higher in patients with poor prognostic factors, such as clinical stages III/IV (p =0.012) and pathologic stages T3/T4 (p =0.027). The HER2 overexpression (IHC 3+) rate was 8.8% (72/816) and MET overexpression rate was higher in HER2 positive patients (9.7%, 7/72). A high concordance rate (94.6%) between MET overexpression and gene amplification was demonstrated. Therefore, MET overexpression could serve as a prognostic biomarker and a potential therapeutic target for gastric cancer.

  19. Disrupted p53 Function as Predictor of Treatment Failure and Poor Prognosis in B- and T-Cell Non-Hodgkin’s Lymphoma

    DEFF Research Database (Denmark)

    Møller, Michael Boe; Gerdes, A M; Skjødt, K

    1999-01-01

    screening for p53 gene mutations as a prognostic marker in a population-based group of B- and T-cell non-Hodgkin's lymphomas (NHLs). On the basis of p53 gene mutation status and immunohistochemically detected p53 and p21Waf1 expression in 34 lymphomas, we established an immunophenotype (delta p53......) correlating with p53 gene mutation. The immunohistochemical analysis was extended to encompass 199 lymphomas from a population-based registry and was correlated with clinical parameters. Delta p53 showed 100% concordance with p53 gene mutation and was detected in 42 cases (21%). Multivariate analysis...... of advanced stage lymphomas showed that delta p53 was independently associated with treatment failure (relative risk, 3.8; P = 0.001). Delta p53 predicted poor survival when analyzing all patients (P = 0.0001), as well as B-cell (P = 0.04) and T-cell NHL (P = 0.000002). In multivariate analysis, delta p53...

  20. Impairment of T-regulatory cells in cord blood of atopic mothers.

    Science.gov (United States)

    Schaub, Bianca; Liu, Jing; Höppler, Sabine; Haug, Severine; Sattler, Christine; Lluis, Anna; Illi, Sabina; von Mutius, Erika

    2008-06-01

    Maternal atopy is a strong predictor for the development of childhood allergic diseases. The underlying mechanisms are ill defined, yet regulatory T (Treg) and T(H)17 cells may play a key role potentially shaping the early immune system toward a proallergic or antiallergic immune regulation. We examined T(H)1/T(H)2, Treg, and T(H)17 cell responses to innate (lipid A/peptidoglycan) and mitogen/adaptive (phytohemagglutinin/Dermatophagoides pteronyssinus 1) immune stimulation in cord blood from offspring of atopic/nonatopic mothers. Cord blood mononuclear cells from 161 healthy neonates (59% nonatopic, 41% atopic mothers) were investigated regarding Treg and T(H)17 cells (mRNA/surface markers), suppressive function, and proliferation/cytokine secretion. Cord blood from offspring of atopic mothers showed fewer innate-induced Treg cells (CD4(+)CD25(+)high), lower mRNA expression of associated markers (glucocorticoid-induced tumor necrosis factor receptor-related protein/lymphocyte activation gene 3; P cell function was impaired in mitogen-induced suppression of T effector cells in cord blood of offspring from atopic mothers (P = .03). Furthermore, IL-10 and IFN-gamma secretion were decreased in innate-stimulated cord blood of offspring from atopic mothers (P = .04/.05). Innate-induced IL-17 was independent of maternal atopy and highly correlated with IL-13 secretion. In offspring of atopic mothers, Treg cell numbers, expression, and function were impaired at birth. T(H)17 cells were correlated with T(H)2 cells, independently of maternal atopy.

  1. ZNF307, a novel zinc finger gene suppresses p53 and p21 pathway

    International Nuclear Information System (INIS)

    Li Jing; Wang Yuequn; Fan Xiongwei; Mo Xiaoyang; Wang Zequn; Li Yongqing; Yin Zhaochu; Deng Yun; Luo Na; Zhu Chuanbing; Liu Mingyao; Ma Qian; Ocorr, Karen; Yuan Wuzhou; Wu Xiushan

    2007-01-01

    We have cloned a novel KRAB-related zinc finger gene, ZNF307, encoding a protein of 545 aa. ZNF307 is conserved across species in evolution and is differentially expressed in human adult and fetal tissues. The fusion protein of EGFP-ZNF307 localizes in the nucleus. Transcriptional activity assays show ZNF307 suppresses transcriptional activity of L8G5-luciferase. Overexpressing ZNF307 in different cell lines also inhibits the transcriptional activities of p53 and p21. Moreover, ZNF307 works by reducing the p53 protein level and p53 protein reduction is achieved by increasing transcription of MDM2 and EP300. ZNF307 might suppress p53-p21 pathway through activating MDM2 and EP300 expression and inducing p53 degradation

  2. Overexpression of AIB1 in nasopharyngeal carcinomas correlates closely with advanced tumor stage.

    Science.gov (United States)

    Liu, Meng-Zhong; Xie, Dan; Mai, Shi-Juan; Tong, Zhu-Ting; Shao, Jian-Yong; Fu, Yong-Shui; Xia, Wen-Jie; Kung, Hsian-Fu; Guan, Xin-Yuan; Zeng, Yi-Xin

    2008-05-01

    AIB1, a candidate oncogene in breast cancer, is commonly amplified and overexpressed in several types of human cancers. In this study, expression and amplification of AIB1 in nasopharyngeal carcinoma (NPC) were studied by immunohistochemical analysis and fluorescence in situ hybridization using tissue microarrays, including 80 specimens of NPC and 20 specimens of nonneoplastic nasopharyngeal mucosa. In this NPC cohort, overexpression and amplification of AIB1 was detected in 36 (51%) of 71 and 3 (7%) of 46 NPCs, respectively. Overexpression of AIB1 was observed more frequently in NPCs in late T stages (T3/T4, 24/35 [69%]) than in earlier stages (T1/T2, 12/36 [33%]; P < .05). In addition, 18 (72%) of 25 NPCs with lymph node metastasis (N1-3) showed overexpression of AIB1; the frequency was significantly higher than that in NPCs without node metastasis (N0, 18/49 [39%]; P < .05). These findings suggest that overexpression of AIB1 in NPCs may be important in the acquisition of an invasive and/or metastatic phenotype.

  3. Cyclophilin B induces chemoresistance by degrading wild type p53 via interaction with MDM2 in colorectal cancer.

    Science.gov (United States)

    Choi, Tae Gyu; Nguyen, Minh Nam; Kim, Jieun; Jo, Yong Hwa; Jang, Miran; Nguyen, Ngoc Ngo Yen; Yun, Hyeong Rok; Choe, Wonchae; Kang, Insug; Ha, Joohun; Tang, Dean G; Kim, Sung Soo

    2018-06-06

    Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Chemoresistance is a major problem for effective therapy in CRC. Here, we investigated the mechanism by which peptidylprolyl isomerase B (PPIB; cyclophilin B, CypB) regulates chemoresistance in CRC. We found that CypB is a novel wild type p53 (p53WT)-inducible gene but a negative regulator of p53WT in response to oxaliplatin treatment. Overexpression of CypB shortens the half-life of p53WT and inhibits oxaliplatin-induced apoptosis in CRC cells, whereas knockdown of CypB lengthens the half-life of p53WT and stimulates p53WT dependent apoptosis. CypB interacts directly with MDM2, and enhances MDM2-dependent p53WT ubiquitination and degradation. Furthermore, we firmly validated using bioinformatics analyses that overexpression of CypB is associated with poor prognosis in CRC progression and chemoresistance. Hence, we suggest a novel mechanism of chemoresistance caused by overexpressed CypB, which may help to develop new anti-cancer drugs. We also propose that CypB may be utilized as a predictive biomarker in CRC patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Dopamine-mediated oxidation of methionine 127 in α-synuclein causes cytotoxicity and oligomerization of α-synuclein.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Nakaso

    Full Text Available Parkinson's disease (PD is a neurodegenerative disorder characterized by the selective loss of dopaminergic neurons and the presence of Lewy bodies. Many recent studies focused on the interaction between α-synuclein (α-syn and dopamine in the pathogenesis of PD, and fluorescent anisotropy suggested that the C-terminal region of α-syn may be a target for modification by dopamine. However, it is not well understood why PD-related pathogenesis occurs selectively in dopaminergic neurons. We investigated the interaction between dopamine and α-syn with regard to cytotoxicity. A soluble oligomer was formed by co-incubating α-syn and dopamine in vitro. To clarify the effect of dopamine on α-syn in cells, we generated PC12 cells expressing human α-syn, as well as the α-syn mutants, M116A, Y125D, M127A, S129A, and M116A/M127A, in a tetracycline-inducible manner (PC12-TetOFF-α-syn. Overexpression of wildtype α-syn in catecholaminergic PC12 cells decreased cell viability in long-term cultures, while a competitive inhibitor of tyrosine hydroxylase blocked this vulnerability, suggesting that α-syn-related cytotoxicity is associated with dopamine metabolism. The vulnerabilities of all mutant cell lines were lower than that of wildtype α-syn-expressing cells. Moreover, α-syn containing dopamine-mediated oxidized methionine (Met(O was detected in PC12-TetOFF-α-syn. Met(O was lower in methionine mutant cells, especially in the M127A or M116A/M127A mutants, but also in the Y125D and S129A mutants. Co-incubation of dopamine and the 125YEMPS129 peptide enhanced the production of H2O2, which may oxidize methionine residues and convert them to Met(O. Y125- or S129-lacking peptides did not enhance the dopamine-related production of H2O2. Our results suggest that M127 is the major target for oxidative modification by dopamine, and that Y125 and S129 may act as enhancers of this modification. These results may describe a mechanism of dopaminergic neuron

  5. Benchmarking the Geant4 full system simulation of an associated alpha-particle detector for use in a D-T neutron generator.

    Science.gov (United States)

    Zhang, Xiaodong; Hayward, Jason P; Cates, Joshua W; Hausladen, Paul A; Laubach, Mitchell A; Sparger, Johnathan E; Donnald, Samuel B

    2012-08-01

    The position-sensitive alpha-particle detector used to provide the starting time and initial direction of D-T neutrons in a fast-neutron imaging system was simulated with a Geant4-based Monte Carlo program. The whole detector system, which consists of a YAP:Ce scintillator, a fiber-optic faceplate, a light guide, and a position-sensitive photo-multiplier tube (PSPMT), was modeled, starting with incident D-T alphas. The scintillation photons, whose starting time follows the distribution of a scintillation decay curve, were produced and emitted uniformly into a solid angle of 4π along the track segments of the alpha and its secondaries. Through tracking all photons and taking into account the quantum efficiency of the photocathode, the number of photoelectrons and their time and position distributions were obtained. Using a four-corner data reconstruction formula, the flood images of the alpha detector with and without optical grease between the YAP scintillator and the fiber-optic faceplate were obtained, which show agreement with the experimental results. The reconstructed position uncertainties of incident alpha particles for both cases are 1.198 mm and 0.998 mm respectively across the sensitive area of the detector. Simulation results also show that comparing with other faceplates composed of 500 μm, 300 μm, and 100 μm fibers, the 10-μm-fiber faceplate is the best choice to build the detector for better position performance. In addition, the study of the background originating inside the D-T generator suggests that for 500-μm-thick YAP:Ce coated with 1-μm-thick aluminum, and very good signal-to-noise ratio can be expected through application of a simple threshold. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. ERAP1 overexpression in HPV-induced malignancies: A possible novel immune evasion mechanism.

    Science.gov (United States)

    Steinbach, Alina; Winter, Jan; Reuschenbach, Miriam; Blatnik, Renata; Klevenz, Alexandra; Bertrand, Miriam; Hoppe, Stephanie; von Knebel Doeberitz, Magnus; Grabowska, Agnieszka K; Riemer, Angelika B

    2017-01-01

    Immune evasion of tumors poses a major challenge for immunotherapy. For human papillomavirus (HPV)-induced malignancies, multiple immune evasion mechanisms have been described, including altered expression of antigen processing machinery (APM) components. These changes can directly influence epitope presentation and thus T-cell responses against tumor cells. To date, the APM had not been studied systematically in a large array of HPV + tumor samples. Therefore in this study, systematic expression analysis of the APM was performed on the mRNA and protein level in a comprehensive collection of HPV16 + cell lines. Subsequently, HPV + cervical tissue samples were examined by immunohistochemistry. ERAP1 (endoplasmic reticulum aminopeptidase 1) was the only APM component consistently altered - namely overexpressed - in HPV16 + tumor cell lines. ERAP1 was also found to be overexpressed in cervical intraepithelial neoplasia and cervical cancer samples; expression levels were increasing with disease stage. On the functional level, the influence of ERAP1 expression levels on HPV16 E7-derived epitope presentation was investigated by mass spectrometry and in cytotoxicity assays with HPV16-specific T-cell lines. ERAP1 overexpression did not cause a complete destruction of any of the HPV epitopes analyzed, however, an influence of ERAP1 overexpression on the presentation levels of certain HPV epitopes could be demonstrated by HPV16-specific CD8 + T-cells. These showed enhanced killing toward HPV16 + CaSki cells whose ERAP1 expression had been attenuated to normal levels. ERAP1 overexpression may thus represent a novel immune evasion mechanism in HPV-induced malignancies, in cases when presentation of clinically relevant epitopes is reduced by overactivity of this peptidase.

  7. α-Synuclein pathology in the cranial and spinal nerves in Lewy body disease.

    Science.gov (United States)

    Nakamura, Keiko; Mori, Fumiaki; Tanji, Kunikazu; Miki, Yasuo; Toyoshima, Yasuko; Kakita, Akiyoshi; Takahashi, Hitoshi; Yamada, Masahito; Wakabayashi, Koichi

    2016-06-01

    Accumulation of phosphorylated α-synuclein in neurons and glial cells is a histological hallmark of Lewy body disease (LBD) and multiple system atrophy (MSA). Recently, filamentous aggregations of phosphorylated α-synuclein have been reported in the cytoplasm of Schwann cells, but not in axons, in the peripheral nervous system in MSA, mainly in the cranial and spinal nerve roots. Here we conducted an immunohistochemical investigation of the cranial and spinal nerves and dorsal root ganglia of patients with LBD. Lewy axons were found in the oculomotor, trigeminal and glossopharyngeal-vagus nerves, but not in the hypoglossal nerve. The glossopharyngeal-vagus nerves were most frequently affected, with involvement in all of 20 subjects. In the spinal nerve roots, Lewy axons were found in all of the cases examined. Lewy axons in the anterior nerves were more frequent and numerous in the thoracic and sacral segments than in the cervical and lumbar segments. On the other hand, axonal lesions in the posterior spinal nerve roots appeared to increase along a cervical-to-sacral gradient. Although Schwann cell cytoplasmic inclusions were found in the spinal nerves, they were only minimal. In the dorsal root ganglia, axonal lesions were seldom evident. These findings indicate that α-synuclein pathology in the peripheral nerves is axonal-predominant in LBD, whereas it is restricted to glial cells in MSA. © 2015 Japanese Society of Neuropathology.

  8. HAMLET triggers apoptosis but tumor cell death is independent of caspases, Bcl-2 and p53.

    Science.gov (United States)

    Hallgren, O; Gustafsson, L; Irjala, H; Selivanova, G; Orrenius, S; Svanborg, C

    2006-02-01

    HAMLET (Human alpha-lactalbumin Made Lethal to Tumor cells) triggers selective tumor cell death in vitro and limits tumor progression in vivo. Dying cells show features of apoptosis but it is not clear if the apoptotic response explains tumor cell death. This study examined the contribution of apoptosis to cell death in response to HAMLET. Apoptotic changes like caspase activation, phosphatidyl serine externalization, chromatin condensation were detected in HAMLET-treated tumor cells, but caspase inhibition or Bcl-2 over-expression did not prolong cell survival and the caspase response was Bcl-2 independent. HAMLET translocates to the nuclei and binds directly to chromatin, but the death response was unrelated to the p53 status of the tumor cells. p53 deletions or gain of function mutations did not influence the HAMLET sensitivity of tumor cells. Chromatin condensation was partly caspase dependent, but apoptosis-like marginalization of chromatin was also observed. The results show that tumor cell death in response to HAMLET is independent of caspases, p53 and Bcl-2 even though HAMLET activates an apoptotic response. The use of other cell death pathways allows HAMLET to successfully circumvent fundamental anti-apoptotic strategies that are present in many tumor cells.

  9. Interaction of Synuclein and Inflammation in Dopaminergic Neurodegeneration

    Science.gov (United States)

    2014-06-01

    induces degeneration of dopaminergic neurons: implications for progression of Parkinson’s disease. Neurotox Res. 19: 63-72, (2011). Kalia, L. V., S...1998). Zhang J, Niu N, Wang M, McNutt MA, Zhang D, Zhang B, Lu S, Liu Y, Liu Z. Neuron-derived IgG protects dopaminergic neurons from insult by 6...AD_________________ Award Number: W81XWH-08-1-0465 TITLE: Interaction of Synuclein and Inflammation in Dopaminergic

  10. Efficacy and mechanism of action of Proellex, an antiprogestin in aromatase overexpressing and Letrozole resistant T47D breast cancer cells.

    Science.gov (United States)

    Gupta, Akash; Mehta, Rajeshwari; Alimirah, Fatouma; Peng, Xinjian; Murillo, Genoveva; Wiehle, Ronald; Mehta, Rajendra G

    2013-01-01

    Aromatase inhibitors (AI) are considered as a first line therapy for ER+PR+ breast cancers. However, many patients acquire resistance to AI. In this study, we determined the response of antiprogestin CDB-4124 (Proellex) on the aromatase overexpressing and Letrozole resistant cell lines and also studies its mechanism of action in inhibition of breast cancer cell proliferation. For these studies we generated aromatase overexpressing T47D (T47Darom) and respective control (T47Dcon) breast cancer cell lines by stable transfection with plasmid containing CYP19A1 gene, or empty vector respectively. Letrozole resistant cell line (T47DaromLR) was generated by incubating T47Darom for 75 weeks in the presence of 10 μM Letrozole. Cell proliferation was determined by MTT or crystal violet assays. Gene expressions were quantified by QRT-PCR whereas proteins were identified by western blot analyses, flow cytometry and immunofluorescence staining. Aromatase activity was determined by estradiol ELISA. The effects of Proellex on the anchorage independent growth were measured by soft agar colony formation. Statistical differences between the various groups were determined by Student's 't' test or ANOVA followed by Bonferroni's post hoc test. Results showed that T47Darom and T47DaromLR cell lines had significantly higher aromatase expression (mRNA; 80-90 fold and protein) and as a result exhibited increased aromatization of testosterone to estradiol as compared to T47Dcon. Both these cell lines showed enhanced growth in the presence of Testosterone (50-60%). In T47DaromLR cells increased PR-B and EGFR expression as compared to T47Dcon cells was observed. Proellex and other known aromatase inhibitors (Letrozole, Anastrozole, and Exemestane) inhibited testosterone induced cell proliferation and anchorage independent growth of T47Darom cells. Cell growth inhibition was significantly greater when cells were treated with Proellex alone or in combination with other AIs as compared to AIs

  11. p53 Represses the Oncogenic Sno-MiR-28 Derived from a SnoRNA.

    Directory of Open Access Journals (Sweden)

    Feng Yu

    Full Text Available p53 is a master tumour repressor that participates in vast regulatory networks, including feedback loops involving microRNAs (miRNAs that regulate p53 and that themselves are direct p53 transcriptional targets. We show here that a group of polycistronic miRNA-like non-coding RNAs derived from small nucleolar RNAs (sno-miRNAs are transcriptionally repressed by p53 through their host gene, SNHG1. The most abundant of these, sno-miR-28, directly targets the p53-stabilizing gene, TAF9B. Collectively, p53, SNHG1, sno-miR-28 and TAF9B form a regulatory loop which affects p53 stability and downstream p53-regulated pathways. In addition, SNHG1, SNORD28 and sno-miR-28 are all significantly upregulated in breast tumours and the overexpression of sno-miR-28 promotes breast epithelial cell proliferation. This research has broadened our knowledge of the crosstalk between small non-coding RNA pathways and roles of sno-miRNAs in p53 regulation.

  12. Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape.

    Science.gov (United States)

    Ferreon, Allan Chris M; Moosa, Mahdi Muhammad; Gambin, Yann; Deniz, Ashok A

    2012-10-30

    Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster resonance energy transfer to test the counteraction hypothesis of counterbalancing effects between the protecting osmolyte trimethylamine-N-oxide (TMAO) and denaturing osmolyte urea for the case of α-synuclein, a Parkinson's disease-linked protein whose monomer exhibits significant disorder. The single-molecule experiments, which avoid complications from protein aggregation, do not exhibit clear solvent-induced cooperative protein transitions for these osmolytes, unlike results from previous studies on globular proteins. Our data demonstrate the ability of TMAO and urea to shift α-synuclein structures towards either more compact or expanded average dimensions. Strikingly, the experiments directly reveal that a 21 [urea][TMAO] ratio has a net neutral effect on the protein's dimensions, a result that holds regardless of the absolute osmolyte concentrations. Our findings shed light on a surprisingly simple aspect of the interplay between urea and TMAO on α-synuclein in the context of intrinsically disordered proteins, with potential implications for the biological roles of such chemical chaperones. The results also highlight the strengths of single-molecule experiments in directly probing the chemical physics of protein structure and disorder in more chemically complex environments.

  13. Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape

    Science.gov (United States)

    Ferreon, Allan Chris M.; Moosa, Mahdi Muhammad; Deniz, Ashok A.

    2012-01-01

    Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster resonance energy transfer to test the counteraction hypothesis of counterbalancing effects between the protecting osmolyte trimethylamine-N-oxide (TMAO) and denaturing osmolyte urea for the case of α-synuclein, a Parkinson’s disease-linked protein whose monomer exhibits significant disorder. The single-molecule experiments, which avoid complications from protein aggregation, do not exhibit clear solvent-induced cooperative protein transitions for these osmolytes, unlike results from previous studies on globular proteins. Our data demonstrate the ability of TMAO and urea to shift α-synuclein structures towards either more compact or expanded average dimensions. Strikingly, the experiments directly reveal that a 2∶1 [urea]∶[TMAO] ratio has a net neutral effect on the protein’s dimensions, a result that holds regardless of the absolute osmolyte concentrations. Our findings shed light on a surprisingly simple aspect of the interplay between urea and TMAO on α-synuclein in the context of intrinsically disordered proteins, with potential implications for the biological roles of such chemical chaperones. The results also highlight the strengths of single-molecule experiments in directly probing the chemical physics of protein structure and disorder in more chemically complex environments. PMID:22826265

  14. Epidermal Overexpression of Xenobiotic Receptor PXR Impairs the Epidermal Barrier and Triggers Th2 Immune Response.

    Science.gov (United States)

    Elentner, Andreas; Schmuth, Matthias; Yannoutsos, Nikolaos; Eichmann, Thomas O; Gruber, Robert; Radner, Franz P W; Hermann, Martin; Del Frari, Barbara; Dubrac, Sandrine

    2018-01-01

    The skin is in daily contact with environmental pollutants, but the long-term effects of such exposure remain underinvestigated. Many of these toxins bind and activate the pregnane X receptor (PXR), a ligand-activated transcription factor that regulates genes central to xenobiotic metabolism. The objective of this work was to investigate the effect of constitutive activation of PXR in the basal layer of the skin to mimic repeated skin exposure to noxious molecules. We designed a transgenic mouse model that overexpresses the human PXR gene linked to the herpes simplex VP16 domain under the control of the keratin 14 promoter. We show that transgenic mice display increased transepidermal water loss and elevated skin pH, abnormal stratum corneum lipids, focal epidermal hyperplasia, activated keratinocytes expressing more thymic stromal lymphopoietin, a T helper type 2/T helper type 17 skin immune response, and increased serum IgE. Furthermore, the cutaneous barrier dysfunction precedes development of the T helper type 2/T helper type 17 inflammation in transgenic mice, thereby mirroring the time course of atopic dermatitis development in humans. Moreover, further experiments suggest increased PXR signaling in the skin of patients with atopic dermatitis when compared with healthy skin. Thus, PXR activation by environmental pollutants may compromise epidermal barrier function and favor an immune response resembling atopic dermatitis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Novel AAV-based rat model of forebrain synucleinopathy shows extensive pathologies and progressive loss of cholinergic interneurons.

    Directory of Open Access Journals (Sweden)

    Patrick Aldrin-Kirk

    Full Text Available Synucleinopathies, characterized by intracellular aggregation of α-synuclein protein, share a number of features in pathology and disease progression. However, the vulnerable cell population differs significantly between the disorders, despite being caused by the same protein. While the vulnerability of dopamine cells in the substantia nigra to α-synuclein over-expression, and its link to Parkinson's disease, is well studied, animal models recapitulating the cortical degeneration in dementia with Lewy-bodies (DLB are much less mature. The aim of this study was to develop a first rat model of widespread progressive synucleinopathy throughout the forebrain using adeno-associated viral (AAV vector mediated gene delivery. Through bilateral injection of an AAV6 vector expressing human wild-type α-synuclein into the forebrain of neonatal rats, we were able to achieve widespread, robust α-synuclein expression with preferential expression in the frontal cortex. These animals displayed a progressive emergence of hyper-locomotion and dysregulated response to the dopaminergic agonist apomorphine. The animals receiving the α-synuclein vector displayed significant α-synuclein pathology including intra-cellular inclusion bodies, axonal pathology and elevated levels of phosphorylated α-synuclein, accompanied by significant loss of cortical neurons and a progressive reduction in both cortical and striatal ChAT positive interneurons. Furthermore, we found evidence of α-synuclein sequestered by IBA-1 positive microglia, which was coupled with a distinct change in morphology. In areas of most prominent pathology, the total α-synuclein levels were increased to, on average, two-fold, which is similar to the levels observed in patients with SNCA gene triplication, associated with cortical Lewy body pathology. This study provides a novel rat model of progressive cortical synucleinopathy, showing for the first time that cholinergic interneurons are vulnerable

  16. FATS is a transcriptional target of p53 and associated with antitumor activity

    Directory of Open Access Journals (Sweden)

    Zhang Xifeng

    2010-09-01

    Full Text Available Abstract Frequent mutations of p53 in human cancers exemplify its crucial role as a tumor suppressor transcription factor, and p21, a transcriptional target of p53, plays a central role in surveillance of cell-cycle checkpoints. Our previous study has shown that FATS stabilize p21 to preserve genome integrity. In this study we identified a novel transcript variant of FATS (GenBank: GQ499374 through screening a cDNA library from mouse testis, which uncovered the promoter region of mouse FATS. Mouse FATS was highly expressed in testis. The p53-responsive elements existed in proximal region of both mouse and human FATS promoters. Functional study indicated that the transcription of FATS gene was activated by p53, whereas such effect was abolished by site-directed mutagenesis in the p53-RE of FATS promoter. Furthermore, the expression of FATS increased upon DNA damage in a p53-dependent manner. FATS expression was silent or downregulated in human cancers, and overexpression of FATS suppressed tumorigenicity in vivo independently of p53. Our results reveal FATS as a p53-regulated gene to monitor genomic stability.

  17. CD70-deficiency impairs effector CD8 T cell generation and viral clearance but is dispensable for the recall response to LCMV

    Science.gov (United States)

    Munitic, Ivana; Kuka, Mirela; Allam, Atef; Scoville, Jonathan P.; Ashwell, Jonathan D.

    2012-01-01

    CD27 interactions with its ligand, CD70, are thought to be necessary for optimal primary and memory adaptive immune responses to a variety of pathogens. Thus far all studies addressing the function of the CD27-CD70 axis have been performed either in mice lacking CD27, overexpressing CD70, or in which these receptors were blocked or mimicked by antibodies or recombinant soluble CD70. Because these methods have in some cases led to divergent results, we generated CD70-deficient mice to directly assess its role in vivo. We find that lack of CD70-mediated stimulation during primary responses to LCMV lowered the magnitude of CD8 antigen-specific T cell response, resulting in impaired viral clearance, without affecting CD4 T cell responses. Unexpectedly, CD70-CD27 costimulation was not needed for memory CD8 T cell generation or the ability to mount a recall response to LCMV. Adoptive transfers of wild type (WT) memory T cells into CD70−/− or WT hosts also showed no need for CD70-mediated stimulation during the course of the recall response. Moreover, CD70-expression by CD8 T cells could not rescue endogenous CD70−/− cells from defective expansion, arguing against a role for CD70-mediated T:T help in this model. Therefore, CD70 appears to be an important factor in the initiation of a robust and effective primary response but dispensable for CD8 T cell memory responses. PMID:23269247

  18. The glycomic effect of N-acetylglucosaminyltransferase III overexpression in metastatic melanoma cells. GnT-III modifies highly branched N-glycans.

    Science.gov (United States)

    Link-Lenczowski, Paweł; Bubka, Monika; Balog, Crina I A; Koeleman, Carolien A M; Butters, Terry D; Wuhrer, Manfred; Lityńska, Anna

    2018-04-01

    N-acetylglucosaminyltransferase III (GnT-III) is known to catalyze N-glycan "bisection" and thereby modulate the formation of highly branched complex structures within the Golgi apparatus. While active, it inhibits the action of other GlcNAc transferases such as GnT-IV and GnT-V. Moreover, GnT-III is considered as an inhibitor of the metastatic potential of cancer cells both in vitro and in vivo. However, the effects of GnT-III may be more diverse and depend on the cellular context. We describe the detailed glycomic analysis of the effect of GnT-III overexpression in WM266-4-GnT-III metastatic melanoma cells. We used MALDI-TOF and ESI-ion-trap-MS/MS together with HILIC-HPLC of 2-AA labeled N-glycans to study the N-glycome of membrane-attached and secreted proteins. We found that the overexpression of GnT-III in melanoma leads to the modification of a broad range of N-glycan types by the introduction of the "bisecting" GlcNAc residue with highly branched complex structures among them. The presence of these unusual complex N-glycans resulted in stronger interactions of cellular glycoproteins with the PHA-L. Based on the data presented here we conclude that elevated activity of GnT-III in cancer cells does not necessarily lead to a total abrogation of the formation of highly branched glycans. In addition, the modification of pre-existing N-glycans by the introduction of "bisecting" GlcNAc can modulate their capacity to interact with carbohydrate-binding proteins such as plant lectins. Our results suggest further studies on the biological function of "bisected" oligosaccharides in cancer cell biology and their interactions with carbohydrate-binding proteins.

  19. Epidemiology Study on P53 (Rs1614984 C>T Mutation in Cigarette Smokers

    Directory of Open Access Journals (Sweden)

    Dilshad Ahmad

    2017-05-01

    Full Text Available ABSTRACT Epidemiology data have established that smoking is a prime threat for the cancers, largely lung cancer. Single-nucleotide polymorphisms (SNPs,P53 SNPs have been found to be associated with the predisposition of different cancers. Their decreased expression is reported in breast and lung cancer patients. p53 (rs1614984 had been reported to be linked with the SNPs found associated with breast cancer. The primary aim of this study to determine the association of p53 variant rs1614984 with the cigarette smokers and smoking related cancers in smokers. Among the smokers, 38% were found with CC genotype, 55% were heterozygous CT and 7% were TT, respectively. The homozygous TT genotype was seen in lower percentage of smokers (7% when compared to non-smokers (8% whereas; Significant difference was not observed when encompassed by CC, CT and TT genotypes (χ2 = 4.892, p=0.087. However, CC vs CT genotype showed a significant difference between smokers and non-smokers (p=0.031, OR 1.447 (1.035-2.025 and the dominant model CC vs CT+TT was also significantly different among smoker and non-smokers (p=0.047, OR 1.39 (1.004-1.924. Furthermore, smokers are at the risk of developing variety of diseases including lung cancer. Our finding suggests a higher percentage of heterozygous CT genotype in smokers when compared to non-smokers. Therefore, this finding gives a clue that the transition mutation of C>T (rs1614984 may leads to the lung diseases including cancer in smokers. However, there will be a need of more extensive and elaborated study to set down the aspect of p53(rs1614984 C>T in lung cancer among smokers.

  20. Neuroprotective and nootropic drug noopept rescues α-synuclein amyloid cytotoxicity.

    Science.gov (United States)

    Jia, Xueen; Gharibyan, Anna L; Öhman, Anders; Liu, Yonggang; Olofsson, Anders; Morozova-Roche, Ludmilla A

    2011-12-16

    Parkinson's disease is a common neurodegenerative disorder characterized by α-synuclein (α-Syn)-containing Lewy body formation and selective loss of dopaminergic neurons in the substantia nigra. We have demonstrated the modulating effect of noopept, a novel proline-containing dipeptide drug with nootropic and neuroprotective properties, on α-Syn oligomerization and fibrillation by using thioflavin T fluorescence, far-UV CD, and atomic force microscopy techniques. Noopept does not bind to a sterically specific site in the α-Syn molecule as revealed by heteronuclear two-dimensional NMR analysis, but due to hydrophobic interactions with toxic amyloid oligomers, it prompts their rapid sequestration into larger fibrillar amyloid aggregates. Consequently, this process rescues the cytotoxic effect of amyloid oligomers on neuroblastoma SH-SY5Y cells as demonstrated by using cell viability assays and fluorescent staining of apoptotic and necrotic cells and by assessing the level of intracellular oxidative stress. The mitigating effect of noopept against amyloid oligomeric cytotoxicity may offer additional benefits to the already well-established therapeutic functions of this new pharmaceutical. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. The association between intra- and juxta-cortical pathology and cognitive impairment in multiple sclerosis by quantitative T2* mapping at 7 T MRI.

    Science.gov (United States)

    Louapre, Céline; Govindarajan, Sindhuja T; Giannì, Costanza; Madigan, Nancy; Nielsen, A Scott; Sloane, Jacob A; Kinkel, Revere P; Mainero, Caterina

    2016-01-01

    Using quantitative T 2 * at 7 Tesla (T) magnetic resonance imaging, we investigated whether impairment in selective cognitive functions in multiple sclerosis (MS) can be explained by pathology in specific areas and/or layers of the cortex. Thirty-one MS patients underwent neuropsychological evaluation, acquisition of 7 T multi-echo T 2 * gradient-echo sequences, and 3 T anatomical images for cortical surfaces reconstruction. Seventeen age-matched healthy subjects served as controls. Cortical T 2 * maps were sampled at various depths throughout the cortex and juxtacortex. Relation between T 2 *, neuropsychological scores and a cognitive index (CI), calculated from a principal component analysis on the whole battery, was tested by a general linear model. Cognitive impairment correlated with T 2 * increase, independently from white matter lesions and cortical thickness, in cortical areas highly relevant for cognition belonging to the default-mode network (p < 0.05 corrected). Dysfunction in different cognitive functions correlated with longer T 2 * in selective cortical regions, most of which showed longer T 2 * relative to controls. For most tests, this association was strongest in deeper cortical layers. Executive dysfunction, however, was mainly related with pathology in juxtameningeal cortex. T 2 * explained up to 20% of the variance of the CI, independently of conventional imaging metrics (adjusted-R 2 : 52-67%, p < 5.10 - 4 ). Location of pathology across the cortical width and mantle showed selective correlation with impairment in differing cognitive domains. These findings may guide studies at lower field strength designed to develop surrogate markers of cognitive impairment in MS.

  2. Selective T-cell Ablation with Bismuth-213 Labeled Anti-TCR Alpha Beta as Nonmyeloablative Conditioning for Allogeneic Canine Marrow Transplantion

    International Nuclear Information System (INIS)

    Bethge, W. A.; Wilbur, D. Scott; Storb, R.; Hamlin, Donald K.; Santos, E. B.; Brechbiel, M. W.; Fisher, Darrell R.; Sandmaier, B. M.

    2003-01-01

    Two major immunological barriers, the host versus graft (HVG) and the graft versus host (GVH) reaction, must be overcome for successful allogeneic hematopoietic stem cell transplantation. T-cells are involved in these barriers in the major histocompatibility complex-identical settings. We hypothesized that selective ablation of T-cells using radioimmunotherapy, together with postgrafting immunosuppression, would ensure stable allogeneic engraftment. We developed a canine model of nonmyeloablative marrow transplantation in which host immune reactions are impaired by a single dose of 2 Gy total body irradiation (TBI), and where both GVH and residual HVG reactions are controlled by postgrafting immunosuppression with mycophenolate mofetil (MMF) and cyclosporine (CSP). We substituted the alpha-emitter bismuth-213 linked to a monoclonal antibody against TCR(alpha,beta)using the metal-binding chelate CHX-A-DTPA, for 2 Gy TBI. Biodistribution studies using a gamma-emitting indium-111-labeled anti-TCR mAb showed uptake primarily in blood, marrow, lymph nodes, spleen and liver. In a dosimetry study, 4 dogs were treated with 0.13-0.46 mg/kg TCR mAb labeled with 3.7-5.6 mCi/kg (137-207 MBq/kg) Bi-213. The treatment was administered in 6 injections on days -3 and -2 followed by transplantion of dog leukocyte antigen-identical marrow on day 0 and postgrafting immunosuppression with MMF and CSP. Therapy was well tolerated except for elevations of transaminases, which were transient in all but one dog. No other organ toxicities or signs of graft-versus-host-disease were noted. The dogs had prompt allogeneic hematopoietic engraftment and achieved stable mixed donor-host hematopoietic chimerism with donor contributions ranging from 5-55 % with >30 weeks follow up

  3. Overexpression of protein kinase A - RIalpha reduces lipofection efficiency of cisplatin-resistant human tumor cells.

    Science.gov (United States)

    Son, K K; Rosenblatt, J

    2001-04-10

    Cisplatin-resistant variant A2780CP/vector cells were 4.0-5.3-fold more transfectable and 7.6-fold more resistant to cisplatin than their parent cisplatin-sensitive human ovarian carcinoma A2780/vector cells. Overexpression of cAMP-dependent protein kinase Type I regulatory alpha subunit (PKA-RIalpha) gene in A2780CP cells significantly reduced (maximum 47.0%) the transfection activity, with a slight reduction (maximum 27.3%) of cisplatin resistance, of A2780CP cells. However, RIalpha-overexpressing A2780CP (A2780CP/RIalpha) cells were still 2.5-to 3.0-fold more transfectable and 5.5-fold more resistant to cisplatin than A2780 cells. This results suggest that gene transfer efficiency is associated with cisplatin resistance, in part, through the PKA-mediated cAMP signal transduction pathway.

  4. Exhaustive Weakly Wandering Sequences and Alpha-type Transformations

    Directory of Open Access Journals (Sweden)

    Stanley Eigen

    2015-12-01

    Full Text Available An increasing sequence of integers, $\\mathbb{B}$, is given for which there exists a family of ergodic, infinite measure preserving transformations $T_\\alpha$, $0 \\leq \\alpha \\leq 1$ so that (1 $T_\\alpha$ is of $\\alpha$-type and (2 $\\mathbb{B}$ is an exhaustive weakly wandering sequence for each $T_\\alpha$.

  5. Selective T-cell Ablation with Bismuth-213 Labeled Anti-TCR Alpha Beta as Nonmyeloablative Conditionaing for Allogeneic Canine Marrow Transplantion

    Energy Technology Data Exchange (ETDEWEB)

    Bethge, W. A.; Wilbur, D. Scott; Storb, R.; Hamlin, Donald K.; Santos, E. B.; Brechbiel, M. W.; Fisher, Darrell R.; Sandmaier, B. M.

    2003-06-15

    Two major immunological barriers, the host versus graft (HVG) and the graft versus host (GVH) reaction, must be overcome for successful allogeneic hematopoietic stem cell transplantation. T-cells are involved in these barriers in the major histocompatibility complex-identical settings. We hypothesized that selective ablation of T-cells using radioimmunotherapy, together with postgrafting immunosuppression, would ensure stable allogeneic engraftment. We developed a canine model of nonmyeloablative marrow transplantation in which host immune reactions are impaired by a single dose of 2 Gy total body irradiation (TBI), and where both GVH and residual HVG reactions are controlled by postgrafting immunosuppression with mycophenolate mofetil (MMF) and cyclosporine (CSP). We substituted the alpha-emitter bismuth-213 linked to a monoclonal antibody against TCR(alpha,beta)using the metal-binding chelate CHX-A”-DTPA, for 2 Gy TBI. Biodistribution studies using a gamma-emitting indium-111-labeled anti-TCR mAb showed uptake primarily in blood, marrow, lymph nodes, spleen and liver. In a dosimetry study, 4 dogs were treated with 0.13-0.46 mg/kg TCR mAb labeled with 3.7-5.6 mCi/kg (137-207 MBq/kg) Bi-213. The treatment was administered in 6 injections on days -3 and -2 followed by transplantion of dog leukocyte antigen-identical marrow on day 0 and postgrafting immunosuppression with MMF and CSP. Therapy was well tolerated except for elevations of transaminases, which were transient in all but one dog. No other organ toxicities or signs of graft-versus-host-disease were noted. The dogs had prompt allogeneic hematopoietic engraftment and achieved stable mixed donor-host hematopoietic chimerism with donor contributions ranging from 5-55 % with >30 weeks follow up.

  6. Phenotypical and functional characterization of double-negative (CD4-CD8-) alpha beta T-cell receptor positive cells from an immunodeficient patient

    DEFF Research Database (Denmark)

    Illum, N; Ralfkiaer, E; Pallesen, G

    1991-01-01

    We have characterized CD4-CD8- double-negative (DN) alpha beta TCR+ T cells from a patient with immunodeficiency, lymphocytosis, lymphadenopathy, and hepatosplenomegaly. The majority of peripheral blood lymphocytes were DN alpha beta TCR+ T cells as evaluated by FACS and biochemical analysis...... (MoAbs) indicated a polyclonal T-cell expansion. Thymic biopsy showed normal histology, whereas lymph node biopsy samples showed altered histological and immunohistological patterns with markedly expanded paracortical areas containing the DN T cells of the same phenotype as found in peripheral blood T...

  7. Prognostic value of p53 in patients with muscle-invasive bladder cancer treated with preoperative radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Catherine S; Pollack, Alan; Czerniak, Bogdan A; Chyle, Valerian; Zagars, Gunar K; Dinney, Colin P; Benedict, William F

    1995-07-01

    Purpose/Objective: The overexpression of mutated and/or wild type p53 has been associated with poorer prognosis in patients with bladder cancer. However, most studies have involved a mixed patient population, including those with superficial and muscle-invasive disease, and some patients treated with adjuvant chemotherapy. In this study we examine the prognostic significance of p53 detected immunohistochemically in a cohort of patients with muscle-invasive transitional cell carcinoma of the bladder treated relatively uniformly with preoperative radiotherapy 4-6 weeks prior to radical cystectomy. Materials and Methods: Of 301 patients treated with preoperative radiotherapy (50 Gy in 25 fractions over 5 weeks) for muscle-invasive bladder cancer between 1960-1983, adequate material for immunohistochemical analysis of p53 was obtained in 107. Formalin-fixed paraffin-embedded archival tissue was stained using monoclonal anti-p53 antibody D01 (Oncogene Science, Manhasset, NY). The immunostaining of p53 was considered positive if greater than 20% of the tumor nuclei were stained. There were 82 men and 25 women with a mean age of 61 yr and no patient received neoadjuvant or adjuvant chemotherapy. All patients were without distant metastasis prior to treatment initiation. The median follow-up for those living (n=32) was 88 mo. The number of patients by clinical stage was 48 for T2, 30 for T3a, and 29 for T3b. Results: Overall, 46% of the patients were p53 positive, with 42% in Stage T2, 57% in Stage T3a, and 41% in Stage T3b. The distributions of potential patient prognostic factors by p53 positivity were investigated and the only association was with lymphatic-vascular invasion (p=0.04, chi-square). No correlation was seen between p53 staining and pathologic complete response (seen in 47%), clinical-to-pathologic downstaging (seen in 69%), clinical stage, tumor grade, tumor morphology, tumor number, tumor size, gender, patient age, pretreatment hemoglobin levels, BUN

  8. Expression of uPA, tPA, and PAI-1 in Calcified Aortic Valves

    Directory of Open Access Journals (Sweden)

    Najlah Kochtebane

    2014-01-01

    Full Text Available Purpose. Our physiopathological assumption is that u-PA, t-PA, and PAI-1 are released by calcified aortic valves and play a role in the calcification of these valves. Methods. Sixty-five calcified aortic valves were collected from patients suffering from aortic stenosis. Each valve was incubated for 24 hours in culture medium. The supernatants were used to measure u-PA, t-PA, and PAI-1 concentrations; the valve calcification was evaluated using biphotonic absorptiometry. Results. Aortic stenosis valves expressed normal plasminogen activators concentrations and overexpressed PAI-1 (u-PA, t-PA, and PAI-1 mean concentrations were, resp., 1.69 ng/mL ± 0.80, 2.76 ng/mL ± 1.33, and 53.27 ng/mL ± 36.39. There was no correlation between u-PA and PAI-1 (r=0.3 but t-PA and PAI-1 were strongly correlated with each other (r=0.6. Overexpression of PAI-1 was proportional to the calcium content of the AS valves. Conclusions. Our results demonstrate a consistent increase of PAI-1 proportional to the calcification. The overexpression of PAI-1 may be useful as a predictive indicator in patients with aortic stenosis.

  9. Parkinson disease: α-synuclein mutational screening and new clinical insight into the p.E46K mutation.

    Science.gov (United States)

    Pimentel, Márcia M G; Rodrigues, Fabíola C; Leite, Marco Antônio A; Campos Júnior, Mário; Rosso, Ana Lucia; Nicaretta, Denise H; Pereira, João S; Silva, Delson José; Della Coletta, Marcus V; Vasconcellos, Luiz Felipe R; Abreu, Gabriella M; Dos Santos, Jussara M; Santos-Rebouças, Cíntia B

    2015-06-01

    Amongst Parkinson's disease-causing genetic factors, missense mutations and genomic multiplications in the gene encoding α-synuclein are well established causes of the disease, although genetic data in populations with a high degree of admixture, such as the Brazilian one, are still scarce. In this study, we conducted a molecular screening of α-synuclein point mutations and copy number variation in the largest cohort of Brazilian patients with Parkinson's disease (n = 549) and also in twelve Portuguese and one Bolivian immigrants. Genomic DNA was isolated from peripheral blood leukocytes or saliva, and the mutational screening was performed by quantitative and qualitative real-time PCR. The only alteration identified was the p.E46K mutation in a 60-year-old man, born in Bolivia, with a familial history of autosomal dominant Parkinson's disease. This is the second family ever reported, in which this rare pathogenic mutation is segregating. The same mutation was firstly described ten years ago in a Spanish family with a neurodegenerative syndrome combining parkinsonism, dementia and visual hallucinations. The clinical condition of our proband reveals a less aggressive phenotype than previously described and reinforces that marked phenotypic heterogeneity is common among patients with Parkinson's disease, even among those carriers sharing the same mutation. Our findings add new insight into the preexisting information about α-synuclein p.E46K, improving our understanding about the endophenotypes associated to this mutation and corroborate that missense alterations and multiplications in α-synuclein are uncommon among Brazilian patients with Parkinson's disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. 2-Azido-( sup 32 P)NAD+, a photoactivatable probe for G-protein structure: Evidence for holotransducin oligomers in which the ADP-ribosylated carboxyl terminus of alpha interacts with both alpha and gamma subunits

    Energy Technology Data Exchange (ETDEWEB)

    Vaillancourt, R.R.; Dhanasekaran, N.; Johnson, G.L.; Ruoho, A.E. (Univ. of Wisconsin Medical School, Madison (USA))

    1990-05-01

    A radioactive and photoactivatable derivative of NAD+, 2-azido-(adenylate-32P)NAD+, has been synthesized and used with pertussis toxin to ADP-ribosylate Cys347 of the alpha subunit (alpha T) of GT, the retinal guanine nucleotide-binding protein. ADP-ribosylation of alpha T followed by light activation of the azide moiety of 2-azido-(adenylate-32P)ADP-ribose produced four crosslinked species involving the alpha and gamma subunits of the GT heterotrimer: an alpha trimer (alpha-alpha-alpha), and alpha-alpha-gamma crosslink, an alpha dimer (alpha-alpha), and an alpha-gamma crosslink. The alpha trimer, alpha-alpha-gamma complex, alpha dimer, and alpha-gamma complexes were immunoreactive with alpha T antibodies. The alpha-alpha-gamma and the alpha-gamma complexes were immunoreactive with antisera recognizing gamma subunits. No evidence was found for crosslinking of alpha T to beta T subunits. Hydrolysis of the thioglycosidic bond between Cys347 and 2-azido-(adenylate-32P)ADP-ribose using mercuric acetate resulted in the transfer of radiolabel from Cys347 of alpha T in the crosslinked oligomers to alpha monomers, indicative of intermolecular photocrosslinking, and to gamma monomers, indicative of either intermolecular crosslinked complexes (between heterotrimers) or intramolecular crosslinked complexes (within the heterotrimer). These results demonstrate that GT exists as an oligomer and that ADP-ribosylated Cys347, which is four residues from the alpha T-carboxyl terminus, is oriented toward and in close proximity to the gamma subunit.

  11. Synergistic influence of phosphorylation and metal ions on tau oligomer formation and coaggregation with α-synuclein at the single molecule level

    Directory of Open Access Journals (Sweden)

    Nübling Georg

    2012-07-01

    Full Text Available Abstract Background Fibrillar amyloid-like deposits and co-deposits of tau and α-synuclein are found in several common neurodegenerative diseases. Recent evidence indicates that small oligomers are the most relevant toxic aggregate species. While tau fibril formation is well-characterized, factors influencing tau oligomerization and molecular interactions of tau and α-synuclein are not well understood. Results We used a novel approach applying confocal single-particle fluorescence to investigate the influence of tau phosphorylation and metal ions on tau oligomer formation and its coaggregation with α-synuclein at the level of individual oligomers. We show that Al3+ at physiologically relevant concentrations and tau phosphorylation by GSK-3β exert synergistic effects on the formation of a distinct SDS-resistant tau oligomer species even at nanomolar protein concentration. Moreover, tau phosphorylation and Al3+ as well as Fe3+ enhanced both formation of mixed oligomers and recruitment of α-synuclein in pre-formed tau oligomers. Conclusions Our findings provide a new perspective on interactions of tau phosphorylation, metal ions, and the formation of potentially toxic oligomer species, and elucidate molecular crosstalks between different aggregation pathways involved in neurodegeneration.

  12. Overexpression of p53 in Nigerian breast cancers and its ...

    African Journals Online (AJOL)

    This study sought to determine the expression of p53 protein as well as the relationship with oestrogen receptor (ER) and progesterone receptor (PR) proteins. Methodology: Formalin-fixed, paraffin-embedded tissue samples of diagnosed invasive breast cancer were obtained from the Department of Anatomic and ...

  13. Early events in copper-ion catalyzed oxidation of α-synuclein

    DEFF Research Database (Denmark)

    Tiwari, Manish Kumar; Leinisch, Fabian; Sahin, Cagla

    2018-01-01

    -synuclein modification using six different molar ratios of Cu2+/H2O2/protein and Cu2+/H2O2/ascorbate/protein resulting in mild to moderate extents of oxidation. For a Cu2+/H2O2/protein molar ratio of 2.3:7.8:1 only low levels of carbonyls were detected (0.078 carbonyls per protein), whereas a molar ratio of 4...

  14. The dependence receptor Ret induces apoptosis in somatotrophs through a Pit-1/p53 pathway, preventing tumor growth.

    Science.gov (United States)

    Cañibano, Carmen; Rodriguez, Noela L; Saez, Carmen; Tovar, Sulay; Garcia-Lavandeira, Montse; Borrello, Maria Grazia; Vidal, Anxo; Costantini, Frank; Japon, Miguel; Dieguez, Carlos; Alvarez, Clara V

    2007-04-18

    Somatotrophs are the only pituitary cells that express Ret, GFRalpha1 and GDNF. This study investigated the effects of Ret in a somatotroph cell line, in primary pituitary cultures and in Ret KO mice. Ret regulates somatotroph numbers by inducing Pit-1 overexpression, leading to increased p53 expression and apoptosis, both of which can be prevented with Ret or Pit-1 siRNA. The Pit-1 overexpression is mediated by sustained activation of PKCdelta, JNK, c/EBPalpha and CREB induced by a complex of Ret, caspase 3 and PKCdelta. In the presence of GDNF, Akt is activated, and the Pit-1 overexpression and resulting apoptosis are blocked. The adenopituitary of Ret KO mice is larger than normal, showing Pit-1 and somatotroph hyperplasia. In normal animals, activation of the Ret/Pit-1/p53 pathway by retroviral introduction of Ret blocked tumor growth in vivo. Thus, somatotrophs have an intrinsic mechanism for controlling Pit-1/GH production through an apoptotic/survival pathway. Ret might be of value for treatment of pituitary adenomas.

  15. Limited role of murine ATM in oncogene-induced senescence and p53-dependent tumor suppression.

    Directory of Open Access Journals (Sweden)

    Alejo Efeyan

    Full Text Available Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability.

  16. Concurrent overexpression of serum p53 mutation related with Helicobacter pylori infection

    Directory of Open Access Journals (Sweden)

    Lorenzo-Peñuelas Antonio

    2010-06-01

    Full Text Available Abstract Background & Aims In the province of Cadiz (Spain, the adjusted mortality rate for gastric cancer in the coastal town of Barbate is 10/100.000 inhabitants, whereas in the inland town of Ubrique, the rate is twice as high. The rate of Helicobacter pylori (H. pylori infection (H. pylori antibodies in the normal population was 54% in Ubrique, but only 32% in Barbate. In the two decades since its original discovery, p53 has found a singularly prominent place in our understanding of human gastric cancer and H. pylori cause accumulation of reactive oxygen species in the mucosa compartment. This study was designed to compare serum levels of p53 in a population characterized by high mortality due to stomach cancer and a high prevalence of H. pylori infection and another population in which mortality from this cause and the prevalence of H. pylori infection are low. Materials and methods 319 subjects from the low mortality population and 308 from the high mortality population were studied, as were 71 patients with stomach cancer. We measured serum immunoglobulin G antibody to H. pylori and serum mutant p53 protein and ceruloplasmin. Results The difference between the two populations in the prevalence of H. pylori infection was significant (p Conclusions There is a significant association between infection with H. pylori, elevated titers of H. pylori antibodies, and positivity for serum mutant p53 protein. Such information can significantly increase our basic knowledge in molecular pathology of gastric cancer and protection against H. pylori infection.

  17. Exogenous α-synuclein hinders synaptic communication in cultured cortical primary rat neurons

    NARCIS (Netherlands)

    Hassink, G. C.; Raiss, C. C.; Segers-Nolten, I. M.J.; Van Wezel, R. J.A.; Subramaniam, V.; Le Feber, J.; Claessens, M. M.A.E.

    2018-01-01

    Amyloid aggregates of the protein a-synuclein (aS) called Lewy Bodies (LB) and Lewy Neurites (LN) are the pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. We have previously shown that high extracellular αS concentrations can be toxic to cells and that neurons take up

  18. Overexpression of osteoprotegerin promotes preosteoblast differentiation to mature osteoblasts

    NARCIS (Netherlands)

    Yu, Hongyou; de Vos, Paul; Ren, Yijin

    OBJECTIVE: The hypothesis of the present study is that overexpression of osteoprotegerin (OPG) promotes preosteoblast maturation. MATERIALS AND METHODS: The preosteoblast cell line MC3T3-E1 was transfected with OPG overexpression. OPG expression was confirmed by enzyme-linked immunosorbent assay

  19. Intraperitoneal implant of recombinant encapsulated cells overexpressing alpha-L-iduronidase partially corrects visceral pathology in mucopolysaccharidosis type I mice.

    Science.gov (United States)

    Baldo, Guilherme; Mayer, Fabiana Quoos; Martinelli, Barbara; Meyer, Fabiola Schons; Burin, Maira; Meurer, Luise; Tavares, Angela Maria Vicente; Giugliani, Roberto; Matte, Ursula

    2012-08-01

    Mucopolysaccharidosis type I (MPS I) is characterized by deficiency of the enzyme alpha-L-iduronidase (IDUA) and storage of glycosaminoglycans (GAG) in several tissues. Current available treatments present limitations, thus the search for new therapies. Encapsulation of recombinant cells within polymeric structures combines gene and cell therapy and is a promising approach for treating MPS I. We produced alginate microcapsules containing baby hamster kidney (BHK) cells overexpressing IDUA and implanted these capsules in the peritoneum of MPS I mice. An increase in serum and tissue IDUA activity was observed at early time-points, as well as a reduction in GAG storage; however, correction in the long term was only partially achieved, with a drop in the IDUA activity being observed a few weeks after the implant. Analysis of the capsules obtained from the peritoneum revealed inflammation and a pericapsular fibrotic process, which could be responsible for the reduction in IDUA levels observed in the long term. In addition, treated mice developed antibodies against the enzyme. The results suggest that the encapsulation process is effective in the short term but improvements must be achieved in order to reduce the immune response and reach a stable correction.

  20. PD-L1 Expression Induced by the 2009 Pandemic Influenza A(H1N1 Virus Impairs the Human T Cell Response

    Directory of Open Access Journals (Sweden)

    Nuriban Valero-Pacheco

    2013-01-01

    Full Text Available PD-L1 expression plays a critical role in the impairment of T cell responses during chronic infections; however, the expression of PD-L1 on T cells during acute viral infections, particularly during the pandemic influenza virus (A(H1N1pdm09, and its effects on the T cell response have not been widely explored. We found that A(H1N1pdm09 virus induced PD-L1 expression on human dendritic cells (DCs and T cells, as well as PD-1 expression on T cells. PD-L1 expression impaired the T cell response against A(H1N1pdm09 by promoting CD8+ T cell death and reducing cytokine production. Furthermore, we found increased PD-L1 expression on DCs and T cells from influenza-infected patients from the first and second 2009 pandemic waves in Mexico City. PD-L1 expression on CD8+ T cells correlated inversely with T cell proportions in patients infected with A(H1N1pdm09. Therefore, PD-L1 expression on DCs and T cells could be associated with an impaired T cell response during acute infection with A(H1N1pdm09 virus.