WorldWideScience

Sample records for a3-mediated germination control

  1. Suicidal germination for parasitic weed control.

    Science.gov (United States)

    Zwanenburg, Binne; Mwakaboko, Alinanuswe S; Kannan, Chinnaswamy

    2016-11-01

    Parasitic weeds of the genera Striga and Orobanche spp. cause severe yield losses in agriculture, especially in developing countries and the Mediterranean. Seeds of these weeds germinate by a chemical signal exuded by the roots of host plants. The radicle thus produced attaches to the root of the host plant, which can then supply nutrients to the parasite. There is an urgent need to control these weeds to ensure better agricultural production. The naturally occurring chemical signals are strigolactones (SLs), e.g. strigol and orobanchol. One option to control these weeds involves the use of SLs as suicidal germination agents, where germination takes place in the absence of a host. Owing to the lack of nutrients, the germinated seeds will die. The structure of natural SLs is too complex to allow multigram synthesis. Therefore, SL analogues are developed for this purpose. Examples are GR24 and Nijmegen-1. In this paper, the SL analogues Nijmegen-1 and Nijmegen-1 Me were applied in the field as suicidal germination agents. Both SL analogues were formulated using an appropriate EC-approved emulsifier (polyoxyethylene sorbitol hexaoleate) and applied to tobacco (Nicotiana tabacum L.) fields infested by Orobanche ramosa L. (hemp broomrape), following a strict protocol. Four out of 12 trials showed a reduction in broomrape of ≥95%, two trials were negative, two showed a moderate result, one was unclear and in three cases there was no Orobanche problem in the year of the trials. The trial plots were ca 2000 m 2 ; half of that area was treated with stimulant emulsion, the other half was not treated. The optimal amount of stimulant was 6.25 g ha -1 . A preconditioning prior to the treatment was a prerequisite for a successful trial. In conclusion, the suicidal germination approach to reducing O. ramosa in tobacco fields using formulated SL analogues was successful. Two other options for weed control are discussed: deactivation of stimulants prior to action and

  2. Microorganisms control during processing of germinated brown rice

    International Nuclear Information System (INIS)

    Suzuki, K.; Maekawa, T.

    1999-01-01

    In order to limit the growth of microorganisms during processing of germinated brown rice (GBR), three kinds of operations for sanitation control were investigated. For a surface-disinfection treatment of brown rice, soaking in 1% of sodium hypochlorite for 10min. and 0.1% of calcium preparation solutions for 10min. at 30°C, resulted in 2log decrease by aerobic plate count in culture water after 1h of the germination processing. Soaking in 10% of sodium hypochlorite for 10min. and 1% of calcium preparation solutions for 10min at 30°C were found to inhibit germination, respectively. During the germination processing, including aeration stage and non-aeration stage, continuous ultraviolet irradiation on the culture water in the water tank resulted in limited bacterial growth in culture water below 102CFU/ml by aerobic plate count. Moreover, the turbidity of the culture water was improved by filtration of the stored water using activated carbon-hollow fiber filter. The filtration by activated carbon-hollow fiber filter during the germination processing was an effective method to eliminate microorganisms and contamination factor during GBR production. It also improved the efficiency of ultraviolet irradiation effect on the culture water

  3. NITRIC OXIDE IMPLICATION IN THE CONTROL OF SEED DORMANCY AND GERMINATION

    Directory of Open Access Journals (Sweden)

    Erwann eArc

    2013-09-01

    Full Text Available Germination ability is regulated by a combination of environmental and endogenous signals with both synergistic and antagonistic effects. Nitric oxide (NO is a potent dormancy-releasing agent in many species, including Arabidopsis, and has been suggested to behave as an endogenous regulator of this physiological blockage. Distinct reports have also highlighted a positive impact of NO on seed germination under sub-optimal conditions. However, its molecular mode of action in the context of seed biology remains poorly documented. This review aims to focus on the implications of this radical in the control of seed dormancy and germination. The consequences of NO chemistry on the investigations on both its signaling and its targets in seeds are discussed. NO-dependant protein post-translational modifications are proposed as a key mechanism underlying NO signalling during early seed germination.

  4. Control of Seed Germination and Plant Development by Carbon and Nitrogen Availability

    Directory of Open Access Journals (Sweden)

    Daniel eOsuna

    2015-11-01

    Full Text Available Little is known about the molecular basis of the influence of external carbon/nitrogen (C/N ratio and other abiotic factors on phytohormones regulation during seed germination and plant developmental processes, and the identification of elements that participate in this response is essential to understand plant nutrient perception and signaling. Sugars (sucrose, glucose and nitrate not only act as nutrients but also as signaling molecules in plant development. A connection between changes in auxin transport and nitrate signal transduction has been reported in Arabidopsis thaliana through the NRT1.1, a nitrate sensor and transporter that also functions as a repressor of lateral root growth under low concentrations of nitrate by promoting auxin transport. Nitrate inhibits the elongation of lateral roots, but this effect is significantly reduced in abscisic acid (ABA-insensitive mutants, what suggests that ABA might mediate the inhibition of lateral root elongation by nitrate. Gibberellin (GA biosynthesis has been also related to nitrate level in seed germination and its requirement is determined by embryonic ABA. These mechanisms connect nutrients and hormones signaling during seed germination and plant development. Thus, the genetic identification of the molecular components involved in nutrients-dependent pathways would help to elucidate the potential crosstalk between nutrients, nitric oxide (NO and phytohormones (ABA, auxins and GAs in seed germination and plant development. In this review we focus on changes in C and N levels and how they control seed germination and plant developmental processes through the interaction with other plant growth regulators, such as phytohormones.

  5. Phytochrome controls achene germination in Bidens pilosa L. (Asteraceae by very low fluence response

    Directory of Open Access Journals (Sweden)

    Adriana Amaral-Baroli

    2001-06-01

    Full Text Available Achene without ornament of the tegument were light insensitive with germination under all tested light conditions. Achene with verrucose ornament of the tegument presented low germination under darkness and high germination under light conditions. By pre-incubation at 36° C for remotion of pre-existing Pfr and by comparison of results of counting of dark germinating achenes at the end of experiment and daily under dim green safe light (0.001mumol m-2 s-1 nm-1 we concluded that germination was controlled by phytochrome through very low fluence response.Aquênios sem ornamento do tegumento são insensíveis à luz com ocorrência de germinação sob todas as condições de luz testadas. Aquênios com ornamento verrucoso do tegumento apresentou baixa germinação sob escuro e alta germinação sob luz. A pré-incubação a 36° C para a remoção de Fve pré-existente e pela comparação dos resultados de contagem no final do experimento de aquênios que germinam no escuro e diárias sob luz verde de segurança (0.001mimol m-2s-1nm-1 concluimos que a germinação de Bidens pilosa é controlada pelo fitocromo através da resposta de fluência baixa.

  6. Molecular Mechanisms Underlying Abscisic Acid/Gibberellin Balance in the Control of Seed Dormancy and Germination in Cereals

    Directory of Open Access Journals (Sweden)

    Pham A. Tuan

    2018-05-01

    Full Text Available Seed dormancy is an adaptive trait that does not allow the germination of an intact viable seed under favorable environmental conditions. Non-dormant seeds or seeds with low level of dormancy can germinate readily under optimal environmental conditions, and such a trait leads to preharvest sprouting, germination of seeds on the mother plant prior to harvest, which significantly reduces the yield and quality of cereal crops. High level of dormancy, on the other hand, may lead to non-uniform germination and seedling establishment. Therefore, intermediate dormancy is considered to be a desirable trait as it prevents the problems of sprouting and allows uniformity of postharvest germination of seeds. Induction, maintenance, and release of seed dormancy are complex physiological processes that are influenced by a wide range of endogenous and environmental factors. Plant hormones, mainly abscisic acid (ABA and gibberellin (GA, are the major endogenous factors that act antagonistically in the control of seed dormancy and germination; ABA positively regulates the induction and maintenance of dormancy, while GA enhances germination. Significant progress has been made in recent years in the elucidation of molecular mechanisms regulating ABA/GA balance and thereby dormancy and germination in cereal seeds, and this review summarizes the current state of knowledge on the topic.

  7. Molecular Mechanisms Underlying Abscisic Acid/Gibberellin Balance in the Control of Seed Dormancy and Germination in Cereals

    Science.gov (United States)

    Tuan, Pham A.; Kumar, Rohit; Rehal, Pawanpuneet K.; Toora, Parneet K.; Ayele, Belay T.

    2018-01-01

    Seed dormancy is an adaptive trait that does not allow the germination of an intact viable seed under favorable environmental conditions. Non-dormant seeds or seeds with low level of dormancy can germinate readily under optimal environmental conditions, and such a trait leads to preharvest sprouting, germination of seeds on the mother plant prior to harvest, which significantly reduces the yield and quality of cereal crops. High level of dormancy, on the other hand, may lead to non-uniform germination and seedling establishment. Therefore, intermediate dormancy is considered to be a desirable trait as it prevents the problems of sprouting and allows uniformity of postharvest germination of seeds. Induction, maintenance, and release of seed dormancy are complex physiological processes that are influenced by a wide range of endogenous and environmental factors. Plant hormones, mainly abscisic acid (ABA) and gibberellin (GA), are the major endogenous factors that act antagonistically in the control of seed dormancy and germination; ABA positively regulates the induction and maintenance of dormancy, while GA enhances germination. Significant progress has been made in recent years in the elucidation of molecular mechanisms regulating ABA/GA balance and thereby dormancy and germination in cereal seeds, and this review summarizes the current state of knowledge on the topic. PMID:29875780

  8. Salt Stress and Ethylene Antagonistically Regulate Nucleocytoplasmic Partitioning of COP1 to Control Seed Germination.

    Science.gov (United States)

    Yu, Yanwen; Wang, Juan; Shi, Hui; Gu, Juntao; Dong, Jingao; Deng, Xing Wang; Huang, Rongfeng

    2016-04-01

    Seed germination, a critical stage initiating the life cycle of a plant, is severely affected by salt stress. However, the underlying mechanism of salt inhibition of seed germination (SSG) is unclear. Here, we report that the Arabidopsis (Arabidopsis thaliana) CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1) counteracts SSG Genetic assays provide evidence that SSG in loss of function of the COP1 mutant was stronger than this in the wild type. A GUS-COP1 fusion was constitutively localized to the nucleus in radicle cells. Salt treatment caused COP1 to be retained in the cytosol, but the addition of ethylene precursor 1-aminocyclopropane-1-carboxylate had the reverse effect on the translocation of COP1 to the nucleus, revealing that ethylene and salt exert opposite regulatory effects on the localization of COP1 in germinating seeds. However, loss of function of the ETHYLENE INSENSITIVE3 (EIN3) mutant impaired the ethylene-mediated rescue of the salt restriction of COP1 to the nucleus. Further research showed that the interaction between COP1 and LONG HYPOCOTYL5 (HY5) had a role in SSG Correspondingly, SSG in loss of function of HY5 was suppressed. Biochemical detection showed that salt promoted the stabilization of HY5, whereas ethylene restricted its accumulation. Furthermore, salt treatment stimulated and ethylene suppressed transcription of ABA INSENSITIVE5 (ABI5), which was directly transcriptionally regulated by HY5. Together, our results reveal that salt stress and ethylene antagonistically regulate nucleocytoplasmic partitioning of COP1, thereby controlling Arabidopsis seed germination via the COP1-mediated down-regulation of HY5 and ABI5. These findings enhance our understanding of the stress response and have great potential for application in agricultural production. © 2016 American Society of Plant Biologists. All Rights Reserved.

  9. DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination

    OpenAIRE

    Graeber, K.; Linkies, A.; Steinbrecher, T.; Tarkowská, D. (Danuše); Turečková, V. (Veronika); Ignatz, M.; Voegele, A.; Urbanová, T. (Terezie); Strnad, M. (Miroslav); Leubner-Metzger, G. (Gerhard)

    2014-01-01

    Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the DELAY OF GERMINATION 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapp...

  10. ABA, GA(3), and nitrate may control seed germination of Crithmum maritimum (Apiaceae) under saline conditions.

    Science.gov (United States)

    Atia, Abdallah; Debez, Ahmed; Barhoumi, Zouhaier; Smaoui, Abderrazak; Abdelly, Chedly

    2009-08-01

    Impaired germination is common among halophyte seeds exposed to salt stress, partly resulting from the salt-induced reduction of the growth regulator contents in seeds. Thus, the understanding of hormonal regulation during the germination process is a main key: (i) to overcome the mechanisms by which NaCl-salinity inhibit germination; and (ii) to improve the germination of these species when challenged with NaCl. In the present investigation, the effects of ABA, GA(3), NO(-)(3), and NH(+)(4) on the germination of the oilseed halophyte Crithmum maritimum (Apiaceae) were assessed under NaCl-salinity (up to 200 mM NaCl). Seeds were collected from Tabarka rocky coasts (N-W of Tunisia). The exogenous application of GA(3), nitrate (either as NaNO(3) or KNO(3)), and NH(4)Cl enhanced germination under NaCl salinity. The beneficial impact of KNO(3) on germination upon seed exposure to NaCl salinity was rather due to NO(-)(3) than to K(+), since KCl failed to significantly stimulate germination. Under optimal conditions for germination (0 mM NaCl), ABA inhibited germination over time in a dose dependent manner, but KNO(3) completely restored the germination parameters. Under NaCl salinity, the application of fluridone (FLU) an inhibitor of ABA biosynthesis, stimulated substantially seed germination. Taken together, our results point out that NO(-)(3) and GA(3) mitigate the NaCl-induced reduction of seed germination, and that NO(-)(3) counteracts the inhibitory effect of ABA on germination of C. maritimum.

  11. Parasitic plants in agriculture: Chemical ecology of germination and host-plant location as targets for sustainable control: A review

    Science.gov (United States)

    Justin B. Runyon; John F. Tooker; Mark C. Mescher; Consuelo M. De Moraes

    2009-01-01

    Parasitic plants are among the most problematic pests of agricultural crops worldwide. Effective means of control are generally lacking, in part because of the close physiological connection between the established parasite and host plant hindering efficient control using traditional methods. Seed germination and host location are critical early-growth stages that...

  12. Germinal Center Optimization Applied to Neural Inverse Optimal Control for an All-Terrain Tracked Robot

    Directory of Open Access Journals (Sweden)

    Carlos Villaseñor

    2017-12-01

    Full Text Available Nowadays, there are several meta-heuristics algorithms which offer solutions for multi-variate optimization problems. These algorithms use a population of candidate solutions which explore the search space, where the leadership plays a big role in the exploration-exploitation equilibrium. In this work, we propose to use a Germinal Center Optimization algorithm (GCO which implements temporal leadership through modeling a non-uniform competitive-based distribution for particle selection. GCO is used to find an optimal set of parameters for a neural inverse optimal control applied to all-terrain tracked robot. In the Neural Inverse Optimal Control (NIOC scheme, a neural identifier, based on Recurrent High Orden Neural Network (RHONN trained with an extended kalman filter algorithm, is used to obtain a model of the system, then, a control law is design using such model with the inverse optimal control approach. The RHONN identifier is developed without knowledge of the plant model or its parameters, on the other hand, the inverse optimal control is designed for tracking velocity references. Applicability of the proposed scheme is illustrated using simulations results as well as real-time experimental results with an all-terrain tracked robot.

  13. Barley germination

    DEFF Research Database (Denmark)

    Daneri-Castro, Sergio N.; Svensson, Birte; Roberts, Thomas H.

    2016-01-01

    germination. Lastly, the application of metabolomics to barley grain germination provides essential data on biochemical processes, including insights into the formation of compounds that contribute to malt quality. To maximize the benefits of the 'omics' revolution to the malting industry, there is a need......Germination of barley grain is central to the malting industry and is a valuable model for cereal grain germination. Our current understanding of the complexity of germination at the molecular level is facilitated by access to genomic, transcriptomic, proteomic and metabolomic data. Here we review...... of germination in the context of industrial malting. For transcriptomics, recent advances in sequencing the barley genome allow next-generation sequencing approaches to reveal novel effects of variety and environment on germination. For proteomics, selection of the source tissue(s) and the protein extraction...

  14. Planteose as a storage carbohydrate required for early stage of germination of Orobanche minor and its metabolism as a possible target for selective control

    Science.gov (United States)

    Wakabayashi, Takatoshi; Joseph, Benesh; Yasumoto, Shuhei; Akashi, Tomoyoshi; Aoki, Toshio; Harada, Kazuo; Muranaka, Satoru; Bamba, Takeshi; Fukusaki, Eiichiro; Takeuchi, Yasutomo; Yoneyama, Koichi; Muranaka, Toshiya; Sugimoto, Yukihiro; Okazawa, Atsushi

    2015-01-01

    Root parasitic weeds in Orobanchaceae cause serious damage to worldwide agriculture. Germination of the parasites requires host-derived germination stimulants, such as strigolactones, as indicators of host roots within reach of the parasite’s radicles. This unique germination process was focused on to identify metabolic pathways required for germination, and to design a selective control strategy. A metabolomic analysis of germinating seeds of clover broomrape, Orobanche minor, was conducted to identify its distinctive metabolites. Consequently, a galactosyl-sucrose trisaccharide, planteose (α-d-galactopyranosyl-(1→6)-β-d-fructofuranosyl-(2→1)-α-d-glucopyranoside), was identified as a metabolite that decreased promptly after reception of the germination stimulant. To investigate the importance of planteose metabolism, the effects of several glycosidase inhibitors were examined, and nojirimycin bisulfite (NJ) was found to alter the sugar metabolism and to selectively inhibit the germination of O. minor. Planteose consumption was similar in NJ-treated seeds and non-treated germinating seeds; however, NJ-treated seeds showed lower consumption of sucrose, a possible intermediate of planteose metabolism, resulting in significantly less glucose and fructose. This inhibitory effect was recovered by adding glucose. These results suggest that planteose is a storage carbohydrate required for early stage of germination of O. minor, and NJ inhibits germination by blocking the supply of essential glucose from planteose and sucrose. Additionally, NJ selectively inhibited radicle elongation of germinated seeds of Orobanchaceae plants (Striga hermonthica and Phtheirospermum japonicum). Thus, NJ will be a promising tool to develop specific herbicides to the parasites, especially broomrapes, and to improve our understanding of the molecular mechanisms of this unique germination. PMID:25821071

  15. Planteose as a storage carbohydrate required for early stage of germination of Orobanche minor and its metabolism as a possible target for selective control.

    Science.gov (United States)

    Wakabayashi, Takatoshi; Joseph, Benesh; Yasumoto, Shuhei; Akashi, Tomoyoshi; Aoki, Toshio; Harada, Kazuo; Muranaka, Satoru; Bamba, Takeshi; Fukusaki, Eiichiro; Takeuchi, Yasutomo; Yoneyama, Koichi; Muranaka, Toshiya; Sugimoto, Yukihiro; Okazawa, Atsushi

    2015-06-01

    Root parasitic weeds in Orobanchaceae cause serious damage to worldwide agriculture. Germination of the parasites requires host-derived germination stimulants, such as strigolactones, as indicators of host roots within reach of the parasite's radicles. This unique germination process was focused on to identify metabolic pathways required for germination, and to design a selective control strategy. A metabolomic analysis of germinating seeds of clover broomrape, Orobanche minor, was conducted to identify its distinctive metabolites. Consequently, a galactosyl-sucrose trisaccharide, planteose (α-d-galactopyranosyl-(1→6)-β-d-fructofuranosyl-(2→1)-α-d-glucopyranoside), was identified as a metabolite that decreased promptly after reception of the germination stimulant. To investigate the importance of planteose metabolism, the effects of several glycosidase inhibitors were examined, and nojirimycin bisulfite (NJ) was found to alter the sugar metabolism and to selectively inhibit the germination of O. minor. Planteose consumption was similar in NJ-treated seeds and non-treated germinating seeds; however, NJ-treated seeds showed lower consumption of sucrose, a possible intermediate of planteose metabolism, resulting in significantly less glucose and fructose. This inhibitory effect was recovered by adding glucose. These results suggest that planteose is a storage carbohydrate required for early stage of germination of O. minor, and NJ inhibits germination by blocking the supply of essential glucose from planteose and sucrose. Additionally, NJ selectively inhibited radicle elongation of germinated seeds of Orobanchaceae plants (Striga hermonthica and Phtheirospermum japonicum). Thus, NJ will be a promising tool to develop specific herbicides to the parasites, especially broomrapes, and to improve our understanding of the molecular mechanisms of this unique germination. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental

  16. Windows of opportunity for germination of riparian species after restoring water level fluctuations: a field experiment with controlled seed banks

    NARCIS (Netherlands)

    Sarneel, J.M.; Janssen, R.H.; Rip, W.J.; Bender, I.; Bakker, E.S.

    2014-01-01

    Restoration activities aiming at increasing vegetation diversity often try to stimulate both dispersal and germination. In wetlands, dispersal and germination are coupled as water and water level fluctuations (WLF) simultaneously influence seed transport and germination conditions (soil moisture).

  17. Factors controlling seedling germination after fire in Mediterranean gorse shrublands. Implications for fire prescription.

    Science.gov (United States)

    De Luis, M; Raventós, J; González-Hidalgo, J C

    2005-07-01

    In Western Mediterranean areas, fires are frequent in forests established on old croplands where woody resprouting species are scarce and post-fire regeneration is limited to obligate-seeder species, such as Mediterranean gorse (Ulex parviflorus), that accumulate a great deal of fine dry fuel, increasing the risk of other severe fires. Under these conditions, fuel control techniques are required in order to prevent fires of high intensity and severity and the subsequent economic and ecological damage. Prescribed fires present an alternative to fuel control, and recent studies demonstrate that, under optimum climatic conditions, fire-line intensity values fall within the limits of those recommended for fire prescription. However, a better understanding of the consequences of fire on the regeneration of vegetation is needed in order to evaluate the suitability of prescribed fires as a technique for fuel reduction in Mediterranean gorse ecosystems. This paper analyses the factors controlling seedling germination after fire to make an evaluation from an ecological perspective of whether fire prescription is a suitable technique for fuel control in mature Mediterranean gorse shrublands. The results show that small differences in the composition of vegetation play a decisive role in fire behaviour, and have a decisive influence on the system's capacity for regeneration. Fire severity is low in mixed Mediterranean gorse communities with a low continuity of dead fine fuel (including Cistus sp., Rosmarinus sp., etc.) and fire creates a wide range of microhabitats where seedling emergence is high. In contrast, where U. parviflorus is more dominant, fire severity is higher and the regeneration of vegetation could be hindered. Our conclusions suggest that detailed studies of the composition of plant communities are required in order to decide whether prescribed burning should be applied.

  18. Biochemical Changes Associated with Germinating Rice Grains and Germination Improvement

    Directory of Open Access Journals (Sweden)

    Subajiny VELUPPILLAI

    2009-09-01

    Full Text Available To determine biochemical changes during the germination of rice grains (Oryza sativa L. subsp. indica var. Mottaikaruppan and to improve germination rate using gibberellic acid and surfactants [sodium dodecyl sulfate (SDS (1.0 g/L and Triton-X−100 (1.0 mL/L], whole rice grains soaked in distilled water for 12 h at 30°C were germinated in the dark at 30°C for five days. The highest germination rate (77.1% was obtained on the 5th day. An increase in the content of reducing sugars from 7.3 to 58.1 mg/g DM (dry matter was observed from the 1st day of germination. Free amino acids and soluble protein contents increased to 3.69 and 5.29 mg/g DM, respectively on the 5th day of germination. Total protein content decreased from 100.5 to 91.0 g/kg DM during germination. Increases in amylolytic (1.1 to 190.0 U/g DM and proteolytic (0 to 0.12 U/g DM activities were observed during germination. Effects of different concentrations of gibberellic acid on the germination of rice grains were evaluated and 0.1 g/L was found to promote germination. When effects of gibberellic acid (0.1 g/L and surfactants were evaluated individually and together, higher germination rate was observed in the control experiment (grains germinated in distilled water, whereas giberellic acid and surfactants decreased the germination rate. Therefore, the flour obtained from the grains germinated for four days using distilled water to obtain high content of soluble materials and enzyme activities can be used in preparation of bakery items.

  19. Role of the lens in controlling physical dormancy break and germination of Delonix regia (Fabaceae: Caesalpinioideae).

    Science.gov (United States)

    Jaganathan, G K; Wu, G-R; Han, Y-Y; Liu, B L

    2017-01-01

    Physical dormancy occurs in all three subfamilies of Fabaceae, namely Mimosoideae, Papilionoideae and Caesalpinioideae, making it one of the largest plant families in terms of number of species with physical dormancy. However, little is known about the water gap structure and germination ecology of species in Caesalpinioideae. Freshly collected seeds of Delonix regia (Caesalpinioideae) did not imbibe water, thus they had physical dormancy. Both dry heat and wet heat were effective in breaking dormancy, however, longer duration was required at 80 °C and shorter duration at 90 °C. Seeds buried in the field for 2 years germinated to 21% and 42% after the first and second summer, respectively, compared with 3% germination in seeds at the time of maturity. Seeds incubated at 15/60 °C in the laboratory (mimicking summer conditions) for 3 months supported this conclusion, as dormancy was relieved in 18% and 24% of seeds stored dry and watered intermediately, respectively. All the dormancy breaking treatments resulted in lifting of palisade layers in the lens region to form a circular lid-like opening, i.e. water gap (Type II simple). Blocking experiments confirmed that water entered only through the lens and no secondary water entry point was observed. No apparent changes in morphology/anatomy of the hilum region were noted in dormant and non-dormant (water permeable) seeds. These results suggest that summer temperatures could open the lens in a proportion of seeds every year and that germination occurs during the subsequent wet season in the tropics. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. COMPARATIVE GERMINATION RESPONSES OF COWPEA AND ...

    African Journals Online (AJOL)

    iya beji

    inadequate soil moisture (25%) in both cowpea and maize with greater effect on ... Of all factors controlling productivity, seed germination and vigour are pre- .... depth and date of first irrigation on seed cane germination of two commercial.

  1. UNIFORM FARM OPERATIONS (UFO ON HEMP BROOM RAPE SEED GERMINATION BY BIOLOGICAL CONTROL MANAGEMENT IN IRAN

    Directory of Open Access Journals (Sweden)

    Behzad SANI

    2014-06-01

    Full Text Available Weeds are a constant problem in agronomy and they not only compete with crops for water, nutrients, sunlight, andspace but also harbor insect and disease pests; clog irrigation and drainage systems; undermine crop quality; anddeposit weed seeds into crop harvests. In order to the microbial herbicide (Orocide influence on seed germinationin Orobancheramosa L., this experiment was conducted in 2011 at Islamic Azad University Shahr-e-Qods Branch inTehran by a completely randomized design with four replications. The factor studied included use of Orocide(0(T1, 2(T2, 4(T3 and 6(T4 percentage. The results showed that the effect of microbial herbicide (Orocide wassignificant on germination percentage of Orobancheramosa. Mean comparison showed that the highest germinationpercentage (79% was achieved by non-application of Orocide and lowest germination percentage (8% wasachieved by application of 4% Orocide.The results of this experiment showed that the use of Orocide can decreasedthe germination in Orobancheramosa L. that is uniform farm operations (UFO very important for weed biologicalcontrol management at Iran.

  2. Using composting for control seed germination of invasive plant (water hyacinth) in Extremadura (Spain)

    Science.gov (United States)

    Labrador, Juana; Gordillo, Judit; Ruiz, Trinidad; Albano, Eva; Moreno, Marta M.

    2016-04-01

    The biotransformation of the invasive water hyacinth (Eichhornia crassipes) by composting has been showed as a viable alternative to offset the economic cost of eliminating an invasive plant giving a value to the by-product; however, as result of the propagative plant capacity, it was necessary to check if the composting process could eliminate the germination seed rate. Despite the high temperatures and the biochemical biotransformation processes of the composting components, in the case of seed water hyacinth, with a recovery rate of 100%, damage was observed in some parts of the seed anatomy such as in the outer teguments; however, other parts of the seed coat and the endosperm maintained their integrity. A microscopic analysis revealed that the embryo was noticeable and this was supported by the rate of seed germination observed (3.5 ± 0.96%). The results indicate that the use of water hyacinth for compost production is not completely safe from an environmental perspective. Keywords: Eichhornia crassipes, water hyacinth, invasive plant, seed anatomy, seed germination rate, compost. References: Ruiz T., Martín de Rodrigo E., Lorenzo G., Albano E., Morán R., Sánchez J.M. 2008. The Water Hyacinth, Eichhornia crassipes: an invasive plant in the Guadiana River Basin (Spain). Aquatic Invasions Volume 3, Issue 1:42-53.

  3. Inference of sigma factor controlled networks by using numerical modeling applied to microarray time series data of the germinating prokaryote.

    Science.gov (United States)

    Strakova, Eva; Zikova, Alice; Vohradsky, Jiri

    2014-01-01

    A computational model of gene expression was applied to a novel test set of microarray time series measurements to reveal regulatory interactions between transcriptional regulators represented by 45 sigma factors and the genes expressed during germination of a prokaryote Streptomyces coelicolor. Using microarrays, the first 5.5 h of the process was recorded in 13 time points, which provided a database of gene expression time series on genome-wide scale. The computational modeling of the kinetic relations between the sigma factors, individual genes and genes clustered according to the similarity of their expression kinetics identified kinetically plausible sigma factor-controlled networks. Using genome sequence annotations, functional groups of genes that were predominantly controlled by specific sigma factors were identified. Using external binding data complementing the modeling approach, specific genes involved in the control of the studied process were identified and their function suggested.

  4. DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination

    Czech Academy of Sciences Publication Activity Database

    Graeber, K.; Linkies, A.; Steinbrecher, T.; Tarkowská, Danuše; Turečková, Veronika; Ignatz, M.; Voegele, A.; Urbanová, Terezie; Strnad, Miroslav; Leubner-Metzger, Gerhard

    2014-01-01

    Roč. 111, č. 34 (2014), E3571-E3580 ISSN 0027-8424 R&D Projects: GA ČR GD522/08/H003; GA MŠk LK21306; GA MŠk(CZ) LO1204; GA ČR GA14-34792S Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional support: RVO:61389030 Keywords : dormancy gene DOG1 * gibberellin metabolism * germination temperature Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.674, year: 2014

  5. PARENTAL EFFECTS IN LYCHNIS-FLOS-CUCULI .1. SEED SIZE, GERMINATION AND SEEDLING PERFORMANCE IN A CONTROLLED ENVIRONMENT

    NARCIS (Netherlands)

    BIERE, A

    1991-01-01

    Selection responses in natural plant populations depend on how the phenotypic variation of traits is composed. The contributions of nuclear genetic, maternal, paternal, environmental and inbreeding effects to variation in time to germination, germination percentage, and seed- and seedling size were

  6. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination.

    Directory of Open Access Journals (Sweden)

    Julien De Giorgi

    2015-12-01

    Full Text Available Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA and abscisic acid (ABA signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties.

  7. Portable Diagnostics and Rapid Germination

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Zachary Spencer [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-12-01

    In the Bioenergy and Defense Department of Sandia National Laboratories, characterization of the BaDx (Bacillus anthracis diagnostic cartridge) was performed and rapid germination chemistry was investigated. BaDx was tested with complex sample matrixes inoculated with Bacillus anthracis, and the trials proved that BaDx will detect Bacillus anthracis in a variety of the medium, such as dirt, serum, blood, milk, and horse fluids. The dimensions of the device were altered to accommodate an E. coli or Listeria lateral flow immunoassay, and using a laser printer, BaDx devices were manufactured to identify E. coli and Listeria. Initial testing with E. coli versions of BaDx indicate that the device will be viable as a portable diagnostic cartridge. The device would be more effective with faster bacteria germination; hence studies were performed the use of rapid germination chemistry. Trials with calcium dipicolinic acid displayed increased cell germination, as shown by control studies using a microplate reader. Upon lyophilization the rapid germination chemistry failed to change growth patterns, indicating that the calcium dipicolinic acid was not solubilized under the conditions tested. Although incompatible with the portable diagnostic device, the experiments proved that the rapid germination chemistry was effective in increasing cell germination.

  8. cGAS-mediated control of blood-stage malaria promotes Plasmodium-specific germinal center responses.

    Science.gov (United States)

    Hahn, William O; Butler, Noah S; Lindner, Scott E; Akilesh, Holly M; Sather, D Noah; Kappe, Stefan Hi; Hamerman, Jessica A; Gale, Michael; Liles, W Conrad; Pepper, Marion

    2018-01-25

    Sensing of pathogens by host pattern recognition receptors is essential for activating the immune response during infection. We used a nonlethal murine model of malaria (Plasmodium yoelii 17XNL) to assess the contribution of the pattern recognition receptor cyclic GMP-AMP synthase (cGAS) to the development of humoral immunity. Despite previous reports suggesting a critical, intrinsic role for cGAS in early B cell responses, cGAS-deficient (cGAS-/-) mice had no defect in the early expansion or differentiation of Plasmodium-specific B cells. As the infection proceeded, however, cGAS-/- mice exhibited higher parasite burdens and aberrant germinal center and memory B cell formation when compared with littermate controls. Antimalarial drugs were used to further demonstrate that the disrupted humoral response was not B cell intrinsic but instead was a secondary effect of a loss of parasite control. These findings therefore demonstrate that cGAS-mediated innate-sensing contributes to parasite control but is not intrinsically required for the development of humoral immunity. Our findings highlight the need to consider the indirect effects of pathogen burden in investigations examining how the innate immune system affects the adaptive immune response.

  9. Effect of industrial pollution on seed germination

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, M.Z.; Qadir, S.A.

    1973-01-01

    The germination behavior of seeds in polluted waters and polluted soil extracts was found to be identical, only a few species behaved differently. Prosopis juliflora, Haloxylon recurvum, Acacia senegal showed best germination in the two conditions but Prosopis juliflora was the most resistant to pollution. In Suaeda fruticosa no germination took place in the control treatment whereas highest germination (70%) was seen in treatment with polluted soil extract of EPLA. Blepharis sindica showed a stimulating effect of polluted water on germination, whereas low germination was observed when their seeds were treated with the soil extract of the same site. 40% germination of Suaeda monoica was seen in polluted water of Carbon and Ribbon Mfg. Co., whereas 30% germination was found in a control treatment. Low percentage of germination was found when the seeds of Cassia holosericea were treated with polluted waters of different industries as compared to soil extract treatments of the same industries. Datura alba showed 50, 30 and 10% seed germination in polluted soil extract of Carbon and Ribbon Mfg. Co., in control and in polluted water of Darbar Soap Works, respectively. 5 references, 1 table.

  10. Improvement of Chia Seeds with Antioxidant Activity, GABA, Essential Amino Acids, and Dietary Fiber by Controlled Germination Bioprocess.

    Science.gov (United States)

    Gómez-Favela, Mario Armando; Gutiérrez-Dorado, Roberto; Cuevas-Rodríguez, Edith Oliva; Canizalez-Román, Vicente Adrián; Del Rosario León-Sicairos, Claudia; Milán-Carrillo, Jorge; Reyes-Moreno, Cuauhtémoc

    2017-12-01

    Chia (Salvia hispanica L.) plant is native from southern Mexico and northern Guatemala. Their seeds are a rich source of bioactive compounds which protect consumers against chronic diseases. Germination improves functionality of the seeds due to the increase in the bioactive compounds and associated antioxidant activity. The purpose of this study was to obtain functional flour from germinated chia seeds under optimized conditions with increased antioxidant activity, phenolic compounds, GABA, essential amino acids, and dietary fiber with respect to un-germinated chia seeds. The effect of germination temperature and time (GT = 20-35 °C, Gt = 10-300 h) on protein, lipid, and total phenolic contents (PC, LC, TPC, respectively), and antioxidant activity (AoxA) was analyzed by response surface methodology as optimization tool. Chia seeds were germinated inside plastic trays with absorbent paper moisturized with 50 mL of 100 ppm sodium hypochlorite dissolution. The sprouts were dried (50 °C/8 h) and ground to obtain germinated chia flours (GCF). The prediction models developed for PC, LC, TPC, and AoxA showed high coefficients of determination, demonstrating their adequacy to explain the variations in experimental data. The highest values of PC, LC, TPC, and AoxA were obtained at two different optimal conditions (GT = 21 °C/Gt = 157 h; GT = 33 °C/Gt = 126 h). Optimized germinated chia flours (OGCF) had higher PC, TPC, AoxA, GABA, essential amino acids, calculated protein efficiency ratio (C-PER), and total dietary fiber (TDF) than un-germinated chia seed flour. The OGCF could be utilized as a natural source of proteins, dietary fiber, GABA, and antioxidants in the development of new functional beverages and foods.

  11. Regulatory-associated protein of TOR (RAPTOR) alters the hormonal and metabolic composition of Arabidopsis seeds, controlling seed morphology, viability and germination potential.

    Science.gov (United States)

    Salem, Mohamed A; Li, Yan; Wiszniewski, Andrew; Giavalisco, Patrick

    2017-11-01

    Target of Rapamycin (TOR) is a positive regulator of growth and development in all eukaryotes, which positively regulates anabolic processes like protein synthesis, while repressing catabolic processes, including autophagy. To better understand TOR function we decided to analyze its role in seed development and germination. We therefore performed a detailed phenotypic analysis using mutants of the REGULATORY-ASSOCIATED PROTEIN OF TOR 1B (RAPTOR1B), a conserved TOR interactor, acting as a scaffold protein, which recruits substrates for the TOR kinase. Our results show that raptor1b plants produced seeds that were delayed in germination and less resistant to stresses, leading to decreased viability. These physiological phenotypes were accompanied by morphological changes including decreased seed-coat pigmentation and reduced production of seed-coat mucilage. A detailed molecular analysis revealed that many of these morphological changes were associated with significant changes of the metabolic content of raptor1b seeds, including elevated levels of free amino acids, as well as reduced levels of protective secondary metabolites and storage proteins. Most of these observed changes were accompanied by significantly altered phytohormone levels in the raptor1b seeds, with increases in abscisic acid, auxin and jasmonic acid, which are known to inhibit germination. Delayed germination and seedling growth, observed in the raptor1b seeds, could be partially restored by the exogenous supply of gibberellic acid, indicating that TOR is at the center of a regulatory hub controlling seed metabolism, maturation and germination. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  12. Factors influencing seed germination in Cerrado grasses

    Directory of Open Access Journals (Sweden)

    Rosana Marta Kolb

    2016-03-01

    Full Text Available Few studies address the ecology of herbs of Cerrado grasslands, which are ecosystems where the long dry season, high temperatures, insolation, fire and invasive grasses greatly influencing germination and the establishment of plants. We assessed germination of 13 species of Poaceae from Cerrado grasslands under nursery conditions or in germination chambers, the latter with i recently collected seeds and seeds after six months storage, ii under constant and alternating temperatures, and iii in the presence and absence of light. Germinability, mean germination time (MGT and required light were quantified to elucidate factors involved in successful germination. Germinability was low for most grasses, probably because of low seed viability. For most species, germinability and MGT were not altered by seed storage. Germination percentages were higher at alternating temperatures and in the presence of light, factors that are more similar to natural environmental situations compared with constant temperature or the absence of light. Our findings indicate that alternating temperatures and light incidence are key factors for germination of species of Poaceae. The maintenance of these environmental factors, which are crucial for the conservation of Cerrado grasslands, depends on appropriate management interventions, such as fire management and the control of biological invasion.

  13. Germination of tropical forage seeds stored for six years in ambient and controlled temperature and humidity conditions in Thailand

    Directory of Open Access Journals (Sweden)

    Michael D. Hare

    2018-01-01

    Full Text Available The germination performances of fresh seed lots were determined for 5 tropical forage species: Mulato II hybrid brachiaria [Urochloa ruziziensis (syn. Brachiaria ruziziensis x U. decumbens (syn. B. decumbens x U. brizantha (syn. B. brizantha], Mombasa guinea [Megathyrsus maximus (syn. Panicum maximum], Tanzania guinea [M. maximus (syn. P. maximum], Ubon paspalum (Paspalum atratum and Ubon stylo (Stylosanthes guianensis, stored under ambient conditions in Thailand (mean monthly temperatures 23‒34 ºC; mean monthly relative humidity 40‒92% or in a cool room (18‒20 ºC and 50% relative humidity for up to 6 years. The first paper of this study showed all seeds, except unscarified Ubon stylo seed, were dead after a single year of storage in ambient conditions. This second paper shows that cool-room storage extended seed viability, but performance varied considerably between species. Germination percentage under laboratory conditions declined to below 50%, after 3 years storage for Mombasa guinea seed and Tanzania guinea seed, 4 years for Ubon paspalum seed and 4‒5 years for Mulato II seed. Ubon stylo seed maintained high germination for 5 years, in both cool-room storage (96% and ambient-room storage (84%. Apparent embryo dormancy in acid-scarified Mulato II seed steadily increased with time in cool-storage and this seed had to be acid-scarified again each year at the time of germination testing to overcome dormancy. Physical dormancy of Mulato II seeds, imposed by the tightly bound lemma and palea in unscarified seed, was not overcome by length of time in cool-storage and these seeds had to be acid-scarified to induce germination. Hardseeded percentage in Ubon stylo seed remained high throughout the study and could be overcome only by acid-scarification. The difficulties of maintaining acceptable seed germination percentages when storing forage seeds in the humid tropics are discussed.

  14. GERMINATION STUDIES ON Tabebuia impetiginosa Mart. SEEDS

    Directory of Open Access Journals (Sweden)

    Edvaldo Aparecido Amaral da Silva

    2004-06-01

    Full Text Available Seed germination and seedling production of native forest tree species are an important step in ex situ conservation programs and in the reforestation with ecological purposes. Therefore, understanding seed germination and its regulation is mandatory for the complete success of the conservation programs and revegetation techniques. Thus, morphological studies, temperature requirements for seed germination and its control by gibberellins (GAs were studied in Tabebuia impetiginosa (“ipê-roxo” seeds. The best temperature for germination under constant light was 30oC. The imbibition of T. impetiginosa seeds followed the common triphasic pattern, with most of the seeds attaining phase II at 24 hours and phase III at 72 hours of imbibition. Visible germination, as radicle elongation, started at 30 hours in water-imbibed seeds and at 24 hours in GA-imbibed seeds. Seeds imbibed in Paclobutrazol, an inhibitor of GA biosynthesis, failed to germinate. However, application of exogenous gibberellins overcame inhibition and allowed germination, suggesting that GAs are regulators of Tabebuia impetiginosa seed germination. The results suggested that germination in Tabebuia impetiginosa seeds is controlled by elongation of the radicle and gibberellins may play an important role in regulating it. The possible role of gibberellins is discussed.

  15. A Germination Simulation.

    Science.gov (United States)

    Hershey, David R.

    1995-01-01

    Presents an activity that involves using sponge seedlings to demonstrate the germination process without the usual waiting period. Discusses epigeous versus hypogeous germination, and cotyledon number and biodiversity. (JRH)

  16. Seed germination behavior of swallow wort

    Directory of Open Access Journals (Sweden)

    amir hosein pahlavani

    2009-06-01

    Full Text Available The exotic plant, Swallow- wort, a twining perennial of the Milkweed family, has become increasingly invasive in some place of Iran, especially orchards. Increased knowledge of wort germination biology would facilitate development of an optimum control program. Germination of Swallow wort seeds as affected by environmental factors was studied under controlled-environment growth chamber conditions. The following studies were conducted in plant Pests & Diseases Research Institute during the years 2003-4: 1- Effect of constant temperature on germination that including 10, 15, 18, 20, 25, 30, 35 and 40˚C; 2- Effect of light on constant germination; 3- Effect of temperature fluctuations on seed germination: 15/7, 20/12, 25/17 and 30/22˚C. All experiments were conducted with 8 replications. Swallow wort seeds showed no dormancy when detachment from mother plant. Seed germination was strongly influenced by temperature. Light did not play a crucial role on seed germination of this weed. Therefore Swallow wort seeds were not photoblastic and temperature fluctuations did not increase seed germination of Swallow wort. The above characteristics are very important in making swallowwort an invasive weed. Having precise information of these traits enables us to a better management and control of this troublesome weed.

  17. Oxygen requirement of germinating flax seeds

    Science.gov (United States)

    Kuznetsov, Oleg A.; Hasenstein, K. H.

    2003-05-01

    Plant experiments in earth orbit are typically prepared on the ground and germinated in orbit to study gravity effects on the developing seedlings. Germination requires the breakdown of storage compounds, and this metabolism depends upon respiration, making oxygen one of the limiting factors in seed germination. In microgravity lack of run-off of excess water requires careful testing of water dispensation and oxygen availability. In preparation for a shuttle experiment (MICRO on STS-107) we studied germination and growth of flax ( Linum usitatissimum L.) seedlings in the developed hardware (Magnetic Field Chamber, MFC). We tested between four to 32 seeds per chamber (air volume = 14 mL) and after 36 h measured the root length. At 90 μl O 2 per seed (32 seeds/chamber), the germination decreased from 94 to 69%, and the root length was reduced by 20%, compared to 8 seeds per chamber. Based on the percent germination and root length obtained in controlled gas mixtures between 3.6 and 21.6% O 2 we determined the lower limit of reliable germination to be 10 vol. % O 2 at atmospheric pressure. Although the oxygen available in the MFC's can support the intended number of seeds, the data show that seed storage and microgravity-related limitations may reduce germination.

  18. Oxygen requirement of germinating flax seeds

    Science.gov (United States)

    Kuznetsov, Oleg A.; Hasenstein, K. H.; Hasentein, K. H. (Principal Investigator)

    2003-01-01

    Plant experiments in earth orbit are typically prepared on the ground and germinated in orbit to study gravity effects on the developing seedlings. Germination requires the breakdown of storage compounds, and this metabolism depends upon respiration, making oxygen one of the limiting factors in seed germination. In microgravity lack of run-off of excess water requires careful testing of water dispensation and oxygen availability. In preparation for a shuttle experiment (MICRO on STS-107) we studied germination and growth of flax (Linum usitatissimum L.) seedlings in the developed hardware (Magnetic Field Chamber, MFC). We tested between four to 32 seeds per chamber (air volume=14 mL) and after 36 h measured the root length. At 90 microliters O2 per seed (32 seeds/chamber), the germination decreased from 94 to 69%, and the root length was reduced by 20%, compared to 8 seeds per chamber. Based on the percent germination and root length obtained in controlled gas mixtures between 3.6 and 21.6% O2 we determined the lower limit of reliable germination to be 10 vol. % O2 at atmospheric pressure. Although the oxygen available in the MFC's can support the intended number of seeds, the data show that seed storage and microgravity-related limitations may reduce germination. c2003 Published by Elsevier Ltd on behalf of COSPAR.

  19. Germination and growth of native and invasive plants on soil associated with biological control of tamarisk (Tamarix spp.)

    Science.gov (United States)

    Sherry, Rebecca A.; Shafroth, Patrick B.; Belnap, Jayne; Ostoja, Steven M.; Reed, Sasha C.

    2016-01-01

    Introductions of biocontrol beetles (tamarisk beetles) are causing dieback of exotic tamarisk in riparian zones across the western United States, yet factors that determine plant communities that follow tamarisk dieback are poorly understood. Tamarisk-dominated soils are generally higher in nutrients, organic matter, and salts than nearby soils, and these soil attributes might influence the trajectory of community change. To assess physical and chemical drivers of plant colonization after beetle-induced tamarisk dieback, we conducted separate germination and growth experiments using soil and litter collected beneath defoliated tamarisk trees. Focal species were two common native (red threeawn, sand dropseed) and two common invasive exotic plants (Russian knapweed, downy brome), planted alone and in combination. Nutrient, salinity, wood chip, and litter manipulations examined how tamarisk litter affects the growth of other species in a context of riparian zone management. Tamarisk litter, tamarisk litter leachate, and fertilization with inorganic nutrients increased growth in all species, but the effect was larger on the exotic plants. Salinity of 4 dS m−1 benefitted Russian knapweed, which also showed the largest positive responses to added nutrients. Litter and wood chips generally delayed and decreased germination; however, a thinner layer of wood chips increased growth slightly. Time to germination was lengthened by most treatments for natives, was not affected in exotic Russian knapweed, and was sometimes decreased in downy brome. Because natives showed only small positive responses to litter and fertilization and large negative responses to competition, Russian knapweed and downy brome are likely to perform better than these two native species following tamarisk dieback.

  20. Germination and elongation of flax in microgravity

    Science.gov (United States)

    Levine, Howard G.; Anderson, Ken; Boody, April; Cox, Dave; Kuznetsov, Oleg A.; Hasenstein, Karl H.

    2003-05-01

    This experiment was conducted as part of a risk mitigation payload aboard the Space Shuttle Atlantis on STS-101. The objectives were to test a newly developed water delivery system, and to determine the optimal combination of water volume and substrate for the imbibition and germination of flax ( Linum usitatissimum) seeds in space. Two different combinations of germination paper were tested for their ability to absorb, distribute, and retain water in microgravity. A single layer of thick germination paper was compared with one layer of thin germination paper under a layer of thick paper. Paper strips were cut to fit snugly into seed cassettes, and seeds were glued to them with the micropyle ends pointing outward. Water was delivered in small increments that traveled through the paper via capillary action. Three water delivery volumes were tested, with the largest (480 μL) outperforming the 400 μL, and 320 μL volumes for percent germination (90.6%) and root growth (mean = 4.1 mm) during the 34-hour spaceflight experiment. The ground control experiment yielded similar results, but with lower rates of germination (84.4%) and shorter root lengths (mean = 2.8 mm). It is not clear if the roots emerged more quickly in microgravity and/or grew faster than the ground controls. The single layer of thick germination paper generally exhibited better overall growth than the two layered option. Significant seed position effects were observed in both the flight and ground control experiments. Overall, the design of the water delivery system, seed cassettes and the germination paper strip concept was validated as an effective method for promoting seed germination and root growth under microgravity conditions.

  1. Germination and elongation of flax in microgravity

    Science.gov (United States)

    Levine, Howard G.; Anderson, Ken; Boody, April; Cox, Dave; Kuznetsov, Oleg A.; Hasenstein, Karl H.

    2003-01-01

    This experiment was conducted as part of a risk mitigation payload aboard the Space Shuttle Atlantis on STS-101. The objectives were to test a newly developed water delivery system, and to determine the optimal combination of water volume and substrate for the imbibition and germination of flax (Linum usitatissimum) seeds in space. Two different combinations of germination paper were tested for their ability to absorb, distribute, and retain water in microgravity. A single layer of thick germination paper was compared with one layer of thin germination paper under a layer of thick paper. Paper strips were cut to fit snugly into seed cassettes, and seeds were glued to them with the micropyle ends pointing outward. Water was delivered in small increments that traveled through the paper via capillary action. Three water delivery volumes were tested, with the largest (480 microliters) outperforming the 400 microliters and 320 microliters volumes for percent germination (90.6%) and root growth (mean=4.1 mm) during the 34-hour spaceflight experiment. The ground control experiment yielded similar results, but with lower rates of germination (84.4%) and shorter root lengths (mean=2.8 mm). It is not clear if the roots emerged more quickly in microgravity and/or grew faster than the ground controls. The single layer of thick germination paper generally exhibited better overall growth than the two layered option. Significant seed position effects were observed in both the flight and ground control experiments. Overall, the design of the water delivery system, seed cassettes and the germination paper strip concept was validated as an effective method for promoting seed germination and root growth under microgravity conditions. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  2. Arabidopsis Histone Demethylases LDL1 and LDL2 Control Primary Seed Dormancy by Regulating DELAY OF GERMINATION 1 and ABA Signaling-Related Genes

    Directory of Open Access Journals (Sweden)

    Ming lei Zhao

    2015-03-01

    Full Text Available Seed dormancy controls germination and plays a critical role in regulating the beginning of the life cycle of plants. Seed dormancy is established and maintained during seed maturation and is gradually broken during dry storage (after-ripening. The plant hormone abscisic acid (ABA and DELAY OF GERMINATION1 (DOG1 protein are essential regulators of seed dormancy. Recent studies revealed that chromatin modifications are also involved in the transcription regulation of seed dormancy. Here, we showed that two Arabidopsis histone demethylases, LYSINESPECIFIC DEMETHYLASE LIKE 1 and 2 (LDL1 and LDL2 act redundantly in repressing of seed dormancy. LDL1 and LDL2 are highly expressed in the early silique developing stage. The ldl1 ldl2 double mutant displays increased seed dormancy, whereas overexpression of LDL1 or LDL2 in Arabidopsis causes reduced dormancy. Furthermore, we showed that LDL1 and LDL2 repress the expression of seed dormancy-related genes, including DOG1, ABA2 and ABI3 during seed dormancy establishment. Furthermore, genetic analysis revealed that the repression of seed dormancy by LDL1 and LDL2 requires DOG1, ABA2 and ABI3. Taken together, our findings revealed that LDL1 and LDL2 play an essential role in seed dormancy.

  3. Mean germination time and germination rate of oat seeds subjected to stationary magnetic field

    International Nuclear Information System (INIS)

    Martinez Ramirez, Elvira; Florez Garcia, Mercedes; Carbonell, Maria Victoria; Amaya Garcia de la Escosura, Jose Manuel

    2007-01-01

    The objective of the present study is to determine and quantify the effect produced by stationary magnetic fields on oat seed germination (Avena sativa, L. var. c obena ) . For this purpose, seeds were exposed to a magnetic field 125 mT of 250 mT during different periods of time: 20 minutes (E1, E5), 1 hour (E2, E6), 24 hours (E3, E7), or in a conic form (E4, E8) during the whole germination process. Germination tests were carried out under laboratory conditions with cylindrical magnets to obtain the magnetic field. For magnetic treatment seed on Petri dishes were placed on magnets during time necessary for each treatment. Seeds without exposition to the magnetic field were used as control group. Parameters used for germination speed analysis were: number of germinated seeds (G), mean germination time (MGT) and necessary time for germination of 1, 10, 25, 50 and 75% of N number of speeds used for each treatment (T1, T10, T25, T50, and T75). These parameters were supplied through the software Seed calculator, as well as the corresponding germination curves. In general, from the results obtained it can be said that the time required to obtain different germination percentages was lower for seeds exposed to the magnetic field (treatments E1 and E8). Reduction in time for E1 treatment stands up with 20 a minutes-exposition-time to 125 mT. MGT obtained for seeds with magnetic treatment E1 was significantly lower (11.48%) than the control group. Parameters T1, T10, T25 were also lower for seeds submitted to treatment, obtaining reductions of 46.62 %, 24.02 % and 13.46 % respectively. Reduction in germination parameters indicates that germination speed is higher. Because parameters T1 and T10 are related to the beginning of germination, this study represents a progress in germination and a reduction in the induction phase in most of the magnetic treatments applied. Previous studies done by authors about the influence of stationary magnetic fields have shown increases in

  4. Germination of beans and snap beans seed

    Directory of Open Access Journals (Sweden)

    Zdravković Milan

    2000-01-01

    Full Text Available The aim of this study was to investigate germination of good bean seed of the variety Galeb and the bad bean seed of the same variety. We were also interested in germination of bean and snap bean seed damaged by grain weevil, and in germination of the seed treated by freezing which was aimed at controlling grain weevil by cold. We also recorded the differences between bean and snap bean seed, which was or was not treated by freezing in laboratory conditions. This investigation was carried out by applying the two factorial block system. The obtained results were evaluated by the variance analysis and x2 test These results suggest that the bean seed of a bad fraction had low levels of germination, but still it was present. Although the seed of good appearance was carefully selected, germination was slightly lower than it should have been. The seed with the large amount of grain weevils performed a high level germination in laboratory conditions. There were no differences in germination between the seed injured by grain weevil either in beans or in snap beans. As for the seed treated or untreated by freezing, there also were no differences between beans and snap beans. .

  5. The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jianjun Guo

    Full Text Available BACKGROUND: The plant hormone abscisic acid (ABA regulates diverse processes of plant growth and development. It has recently been proposed that GCR2 functions as a G-protein-coupled receptor (GPCR for ABA. However, the structural relationships and functionality of GCR2 have been challenged by several independent studies. A central question in this controversy is whether gcr2 mutants are insensitive to ABA, because gcr2 mutants were shown to display reduced sensitivity to ABA under one experimental condition (e.g. 22 degrees C, continuous white light with 150 micromol m(-2 s(-1 but were shown to display wild-type sensitivity under another slightly different condition (e.g. 23 degrees C, 14/10 hr photoperiod with 120 micromol m(-2 s(-1. It has been hypothesized that gcr2 appears only weakly insensitive to ABA because two other GCR2-like genes in Arabidopsis, GCL1 and GCL2, compensate for the loss of function of GCR2. PRINCIPAL FINDINGS: In order to test this hypothesis, we isolated a putative loss-of-function allele of GCL2, and then generated all possible combinations of mutations in each member of the GCR2 gene family. We found that all double mutants, including gcr2 gcl1, gcr2 gcl2, gcl1 gcl2, as well as the gcr2 gcl1 gcl2 triple mutant displayed wild-type sensitivity to ABA in seed germination and early seedling development assays, demonstrating that the GCR2 gene family is not required for ABA responses in these processes. CONCLUSION: These results provide compelling genetic evidence that GCR2 is unlikely to act as a receptor for ABA in the context of either seed germination or early seedling development.

  6. Germination conditions affect physicochemical properties of germinated brown rice flour.

    Science.gov (United States)

    Charoenthaikij, Phantipha; Jangchud, Kamolwan; Jangchud, Anuvat; Piyachomkwan, Kuakoon; Tungtrakul, Patcharee; Prinyawiwatkul, Witoon

    2009-01-01

    Germinated brown rice has been reported to be nutritious due to increased free gamma-aminobutyric acid (GABA). The physicochemical properties of brown rice (BR) and glutinous brown rice (GNBR) after germination as affected by different steeping times (24, 36, 48, and 72 h depending on the rice variety) and pHs of steeping water (3, 5, 7, and as-is) were determined and compared to those of the nongerminated one (control). As the steeping time increased or pH of steeping water decreased, germinated brown rice flours (GBRF) from both BR and GNBR had greater reducing sugar, free GABA and alpha-amylase activity; while the total starch and viscosity were lower than their respective controls. GBRFs from both BR and GNBR prepared after 24-h steeping time at pH 3 contained a high content of free GABA at 32.70 and 30.69 mg/100 g flour, respectively. The peak viscosity of GBRF obtained from both BR and GNBR (7.42 to 228.22 and 4.42 to 58.67 RVU, respectively) was significantly lower than that of their controls (255.46 and 190.17 RVU, respectively). The principal component analysis indicated that the important variables for discriminating among GBRFs, explained by the first 2 components at 89.82% of total explained variance, were the pasting profiles, alpha-amylase activity, and free GABA.

  7. Smoke-induced seed germination in California chaparral

    Science.gov (United States)

    Keeley, J.E.; Fotheringham, C.J.

    1998-01-01

    The California chaparral community has a rich flora of species with different mechanisms for cuing germination to postfire conditions. Heat shock triggers germination of certain species but has no stimulatory effect on a great many other postfire species that are chemically stimulated by combustion products. Previous reports have shown that charred wood will induce germination, and here we report that smoke also induces germination in these same species. Smoke is highly effective, often inducing 100% germination in deeply dormant seed populations with 0% control germination. Smoke induces germination both directly and indirectly by aqueous or gaseous transfer from soil to seeds. Neither nitrate nor ammonium ions were effective in stimulating germination of smoke-stimulated species, nor were most of the quantitatively important gases generated by biomass smoke. Nitrogen dioxide, however, was very effective at inducing germination in Caulanthus heterophyllus (Brassicaceae), Emmenanthe penduliflora (Hydrophyllaceae), Phacelia grandiflora (Hydrophyllaceae), and Silene multinervia (Caryophyllaceae). Three species, Dendromecon rigida (Papaveraceae), Dicentra chrysantha, and Trichostema lanatum (Lamiaceae), failed to germinate unless smoke treatment was coupled with prior treatment of 1 yr soil storage. Smoke-stimulated germination was found in 25 chaparral species, representing 11 families, none of which were families known for heat-shock-stimulated germination. Seeds of smoke-stimulated species have many analogous characteristics that separate them from most heat-shock-stimulated seeds, including: (1) outer seed coats that are highly textured, (2) a poorly developed outer cuticle, (3) absence of a dense palisade tissue in the seed coat, and (4) a subdermal membrane that is semipermeable, allowing water passage but blocking entry of large (molecular mass > 500) solutes. Tentative evidence suggests that permeability characteristics of this subdermal layer are altered by

  8. The oxygen requirement of germinating flax seeds

    Science.gov (United States)

    Kuznetsov, O.; Hasenstein, K.

    Experiments for earth orbit are typically prepared on the ground and often germinated in orbit in order to study gravity effects on developing seedlings. Germination requires the breakdown of storage compounds and respiration. In orbit the formation of a water layer around the seed may further limit oxygen availability. Therefore, the oxygen content of the available gas volume is one of the limiting factors for seed germination. In preparation for an upcoming shuttle experiment (MICRO on STS-107) we studied germination and growth of flax (Linum usitatissimum L.) seedlings in the developed hardware. We tested per seed chamber (gas volume = 14 mL, O2 = 2.9 mL) between 4 to 32 seeds glued to germination paper by 1% (w/v) gum guar. A lexan cover and a gasket hermetically sealed each of the eight chambers. For imbibition of the seeds a previously optimized amount of distilled water was dispensed through sealed inlets. The seedlings were allowed to grow for either 32 to 48 h on a clinostat or without microgravity simulation. Then their root length was measured. With 32 seeds per chamber, four times the intended number of seeds for the flight, the germination rate decreased from 94 to 69%, and the root length was reduced by 20%. Experiments on the germination and root length in controlled atmospheres (5, 10, 15 and 21% O2 ) suggest that germination and growth for two days requires about 200 :l of O (1 mL air) per seed. Our2 experiments correlate oxygen dependency from seed mass and germination temperature, and analyze accumulation of gaseous metabolites (supported by NASA grant NAG10-0190).

  9. Using Oxytetracycline, Amikacin and Erythromycin in Controlling Mycelial Growth and Spore Germination of Rhytisma acerinum as Pathogen in Tar Spot Disease at Acer velutinum Boiss in Vitro

    Directory of Open Access Journals (Sweden)

    Sh. Mehdi Karami

    2017-08-01

    Full Text Available Introduction : There are seven species and sub-species of Acer sp. in the Northern forest of Iran. One of the most important diseases of this tree in all over the world is tar spot. Two species of fungi, which cause this disease, are Rhytisma acerinum and R. punctatum from the category of Ascomycetidae. Studies on the Acer platinum sp. show that causative agent of this disease is R.punctatum which cause the early fall and make leaves turning yellow especially in the plant nurseries and forested areas. Therefore, investigating the use of antibiotics in treating this disease in the forest areas is necessary. The objective of the current research was to use Oxytetracycline, Amikacin and Erythromycin in Controlling mycelial growth and spore germination of R. acerinum as Pathogen in tar spot disease at Acer velutinum Boiss in vitro. Materials and methods: To control the disease of Maple tar spot in the condition of light and darkness, the medium containing oxytetracycline, Amikacin and Erythromycin were used. Four different dosage of 50, 100, 200, 500 microliter, of oxytetracycline 10% in the light and dark conditions in 100cc of distilled water and Amikacin 5% in four different dose of, 100, 200, 400 and 1000 microliter, light and dark conditions in 100 cc of distilled water and for erythromycin 5% four different dose of, 100, 200, 400 and 1000 microliter in 100 cc of distilled water in light and dark conditions each in three repetitions of medium were prepared. In this step, to evaluate the effect of light on the rate of the growth of mycelium and fungal colonies of R. acerinum, for each of the treatments with the different dosage, half of the repetitions were under the light condition and another half in dark condition (incubator. Then, after the growth, radiant growth was measured over one week. To investigate the fungi spore germination, above steps, were performed, as well. Results and Discussion: The results showed that among the mentioned

  10. Effects of graphene on seed germination and seedling growth

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ming; Gao, Bin, E-mail: bg55@ufl.edu [University of Florida, Department of Agricultural and Biological Engineering (United States); Chen, Jianjun [University of Florida, Department of Environmental Horticulture and Mid-Florida Research & Education Center (United States); Li, Yuncong [University of Florida, Soil and Water Science Department Tropical Research & Education Center (United States)

    2015-02-15

    The environmental impact of graphene has recently attracted great attention. In this work, we show that graphene at a low concentration affected tomato seed germination and seedling growth. Graphene-treated seeds germinated much faster than control seeds. Analytical results indicated that graphene penetrated seed husks. The penetration might break the husks to facilitate water uptake, resulting in faster germination and higher germination rates. At the stage of seedling growth, graphene was also able to penetrate root tip cells. Seedlings germinated from graphene-treated seeds had slightly lower biomass accumulation than the control, but exhibited significantly longer stems and roots than the control, which suggests that graphene, in contrast with other nanoparticles, had different effects on seedling growth. Taken together, our results imply that graphene played complicated roles in affecting the initial stage of seed germination and subsequent seedling growth.

  11. Seed dormancy and germination.

    Science.gov (United States)

    Penfield, Steven

    2017-09-11

    Reproduction is a critical time in plant life history. Therefore, genes affecting seed dormancy and germination are among those under strongest selection in natural plant populations. Germination terminates seed dispersal and thus influences the location and timing of plant growth. After seed shedding, germination can be prevented by a property known as seed dormancy. In practise, seeds are rarely either dormant or non-dormant, but seeds whose dormancy-inducing pathways are activated to higher levels will germinate in an ever-narrower range of environments. Thus, measurements of dormancy must always be accompanied by analysis of environmental contexts in which phenotypes or behaviours are described. At its simplest, dormancy can be imposed by the formation of a simple physical barrier around the seed through which gas exchange and the passage of water are prevented. Seeds featuring this so-called 'physical dormancy' often require either scarification or passage through an animal gut (replete with its associated digestive enzymes) to disrupt the barrier and permit germination. In other types of seeds with 'morphological dormancy' the embryo remains under-developed at maturity and a dormant phase exists as the embryo continues its growth post-shedding, eventually breaking through the surrounding tissues. By far, the majority of seeds exhibit 'physiological dormancy' - a quiescence program initiated by either the embryo or the surrounding endosperm tissues. Physiological dormancy uses germination-inhibiting hormones to prevent germination in the absence of the specific environmental triggers that promote germination. During and after germination, early seedling growth is supported by catabolism of stored reserves of protein, oil or starch accumulated during seed maturation. These reserves support cell expansion, chloroplast development and root growth until photoauxotrophic growth can be resumed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  12. Testicular germinal tumors

    International Nuclear Information System (INIS)

    Fresco, R.

    2010-01-01

    This work is about diagnosis, treatment and monitoring of testicular germinal tumors. The presumed diagnosis is based in the anamnesis, clinical examination, testicular ultrasound and tumor markers. The definitive diagnosis is obtained through the inguinal radical orchidectomy

  13. Effects of seed priming and water potential on seed germination and ...

    African Journals Online (AJOL)

    Administrator

    2011-05-23

    May 23, 2011 ... (without seed drying), primed and 12 h drying on seed germination of wheat .... completely with the lower half and the paper were rolled and placed ..... water stress and control of germination: a review. Plant Cell Environ.

  14. Characterization of PDF1 and its interaction with DELAY OF GERMINATION1 (DOG1) in the control of seed dormancy in Arabidopsis thaliana

    OpenAIRE

    Miatton, Emma

    2012-01-01

    Seed dormancy is defined as the incapacity of a viable seed to germinate under favourable conditions. It is established during seed maturation and reaches high levels in mature dry seeds. Dormancy is a complex adaptive trait that assures germination at proper time of the year at the onset of the favourable growing season. This trait is regulated by hormonal and environmental cues such as temperature and light. In Arabidopsis thaliana dormancy can be released by imbibing seeds at cold temperat...

  15. Changes in germination characteristics and seedling growth ...

    African Journals Online (AJOL)

    Yomi

    2012-03-06

    Mar 6, 2012 ... Priming provides controlled hydration of seeds to a level ... water but drying them before complete germination. .... compared with the control, although, this difference was ... membrane damage, and restores germ inability to aged .... lipid per oxidation in bitter gourd seeds and effects of priming and hot.

  16. seed germination and seedlings growth

    African Journals Online (AJOL)

    STORAGESEVER

    2007-12-17

    Dec 17, 2007 ... The role of 20E in plant physiology including seed germination is not studied. ..... GA3, ABA and CKs on lettuce Lactuca sativa seed germination are ..... Practical uses for ecdysteroids in mammals and humans: an update. J.

  17. Tetrazolium chloride as an indicator of pine pollen germinability

    Science.gov (United States)

    Stanton A. Cook; Robert G. Stanley

    1960-01-01

    Controlled pollination in forest tree breeding requires pollen of known germination capacity. Methods of determining pollen viability include germination in a hanging drop, in a moist atmosphere, on agar gel, or in a sugar solution (DUFFIELD, 1954; DILLON et al., 1957). Errors commonly arise in the application of these techniques because maximum...

  18. Tumors of germinal cells

    International Nuclear Information System (INIS)

    Plazas, Ricardo; Avila, Andres

    2002-01-01

    The tumors of germinal cells (TGC) are derived neoplasia of the primordial germinal cells that in the life embryonic migrant from the primitive central nervous system until being located in the gonads. Their cause is even unknown and they represent 95% of the testicular tumors. In them, the intention of the treatment is always healing and the diagnostic has improved thanks to the results of the handling multidisciplinary. The paper includes topics like their incidence and prevalence, epidemiology and pathology, clinic and diagnoses among other topics

  19. The mechanism underlying fast germination of tomato cultivar LA2711.

    Science.gov (United States)

    Yang, Rongchao; Chu, Zhuannan; Zhang, Haijun; Li, Ying; Wang, Jinfang; Li, Dianbo; Weeda, Sarah; Ren, Shuxin; Ouyang, Bo; Guo, Yang-Dong

    2015-09-01

    Seed germination is important for early plant morphogenesis as well as abiotic stress tolerance, and is mainly controlled by the phytohormones abscisic acid (ABA) and gibberellic acid (GA). Our previous studies identified a salt-tolerant tomato cultivar, LA2711, which is also a fast-germinating genotype, compared to its salt-sensitive counterpart, ZS-5. In an effort to further clarify the mechanism underlying this phenomenon, we compared the dynamic levels of ABA and GA4, the transcript abundance of genes involved in their biosynthesis and catabolism as well as signal transduction between the two cultivars. In addition, we tested seed germination sensitivity to ABA and GAs. Our results revealed that insensitivity of seed germination to exogenous ABA and low ABA content in seeds are the physiological mechanisms conferring faster germination rates of LA2711 seeds. SlCYP707A2, which encodes an ABA catabolic enzyme, may play a decisive role in the fast germination rate of LA2711, as it showed a significantly higher level of expression in LA2711 than ZS-5 at most time points tested during germination. The current results will enable us to gain insight into the mechanism(s) regarding seed germination of tomato and the role of fast germination in stress tolerance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Germination phenology determines the propensity for facilitation and competition.

    Science.gov (United States)

    Leverett, Lindsay D

    2017-09-01

    A single plant can interact both positively and negatively with its neighbors through the processes of facilitation and competition, respectively. Much of the variation in the balance of facilitation and competition that individuals experience can be explained by the degree of physical stress and the sizes or ages of plants during the interaction. Germination phenology partly controls both of these factors, but its role in defining the facilitation-competition balance has not been explicitly considered. I performed an experiment in a population of the winter annual Arabidopsis thaliana (Brassicaceae) to test whether germinating during physically stressful periods leads to facilitation while germinating during periods that promote growth and reproduction leads to competition. I manipulated germination and neighbor presence across two years in order to quantify the effects of the local plant community on survival, fecundity, and total fitness as a function of germination phenology. Neighbors increased survival when germination occurred under conditions that were unsuitable for survival, but they reduced fecundity in germinants that were otherwise the most fecund. Later germination was associated with facilitation in the first year but competition in the second year. These episodes of facilitation and competition opposed each other, leading to no net effect of neighbors when averaged over all cohorts. These results indicate that variation in germination timing can explain some of the variation in the facilitation-competition balance in plant communities. © 2017 by the Ecological Society of America.

  1. Phytotoxicity of glyphosate in the germination of and its effect on germinated seedlings

    Directory of Open Access Journals (Sweden)

    Subinoy Mondal

    2017-08-01

    Full Text Available The present study evaluated the effects of glyphosate on Pisum sativum germination as well as its effect on the physiology and biochemistry of germinated seedlings. Different physico-chemical biomarkers, viz., chlorophyll, root and shoot length, total protein and soluble sugar, along with sodium and potassium concentration, were investigated in germinated seedlings at different glyphosate concentrations. This study reports the influence of different concentrations of glyphosate on pea seeds and seedlings. Physicochemical biomarkers were significantly changed by glyphosate exposure after 15 days. The germination of seedlings under control conditions (0 mg/L was 100% after 3 days of treatment but at 3 and 4 mg/L glyphosate, germination was reduced to 55 and 40%, respectively. Physiological parameters like root and shoot length decreased monotonically with increasing glyphosate concentration, at 14 days of observation. Average root and shoot length (n=30 in three replicates were reduced to 14.7 and 17.6%, respectively, at 4 mg/L glyphosate. Leaf chlorophyll content also decreased, with a similar trend to root and shoot length, but the protein content initially decreased and then increased with an increase in glyphosate concentration to 3 mg/L. The study suggests that glyphosate reduces the soluble sugar content significantly, by 21.6% (v/v. But internal sodium and potassium tissue concentrations were significantly altered by glyphosate exposure with increasing concentrations of glyphosate. Biochemical and physiological analysis also supports the inhibitory effect of glyphosate on seed germination and biochemical effects on seedlings.

  2. The biomechanics of seed germination.

    Science.gov (United States)

    Steinbrecher, Tina; Leubner-Metzger, Gerhard

    2017-02-01

    From a biomechanical perspective, the completion of seed (and fruit) germination depends on the balance of two opposing forces: the growth potential of the embryonic axis (radicle-hypocotyl growth zone) and the restraint of the seed-covering layers (endosperm, testa, and pericarp). The diverse seed tissues are composite materials which differ in their dynamic properties based on their distinct cell wall composition and water uptake capacities. The biomechanics of embryo cell growth during seed germination depend on irreversible cell wall loosening followed by water uptake due to the decreasing turgor, and this leads to embryo elongation and eventually radicle emergence. Endosperm weakening as a prerequisite for radicle emergence is a widespread phenomenon among angiosperms. Research into the biochemistry and biomechanics of endosperm weakening has demonstrated that the reduction in puncture force of a seed's micropylar endosperm is environmentally and hormonally regulated and involves tissue-specific expression of cell wall remodelling proteins such as expansins, diverse hydrolases, and the production of directly acting apoplastic reactive oxygen. The endosperm-weakening biomechanics and its underlying cell wall biochemistry differ between the micropylar (ME) and chalazal (CE) endosperm domains. In the ME, they involve cell wall loosening, cell separation, and programmed cell death to provide decreased and localized ME tissue resistance, autolysis, and finally the formation of an ME hole required for radicle emergence. Future work will further unravel the molecular mechanisms, environmental regulation, and evolution of the diverse biomechanical cell wall changes underpinning the control of germination by endosperm weakening. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. EFFECTS OF PRE-GERMINATION TREATMENTS AND STORAGE ON GERMINATION OF Astronium fraxinifolium SCHOTT (ANACARDIACEAE DIASPORES

    Directory of Open Access Journals (Sweden)

    Lílian de Lima Braga

    2014-06-01

    Full Text Available http://dx.doi.org/10.5902/1980509814577The goal of this study was to evaluate the germination and the storage capacity of Astronium fraxinifolium diaspores. Six pre-germination treatments were used in the experiment: control treatment (intact diaspores; diaspores immersed in water at room temperature (25º C for 5 min; diaspores immersed in water at 70° C for 5 min; diaspores immersed in water at 100° C for 5 min; diaspores immersed in sodium hypochlorite solution (1:1000 for 2 min; and diaspores mechanically scarified with sandpaper #80. To evaluate storage conditions, we tested two different types of packaging (permeable paper bag and transparent glass jar and two environmental conditions (cold chamber and room conditions, resulting in four treatments. The germination tests were performed for zero (control and 60, 120, 180, 240, 300 and 360 days after storage. The effects of different treatments on germination and storage of diaspores were evaluated by ANOVA, followed by Tukey test. Regarding to pre-germination treatments, high germination rates were observed in the hypochlorite (98.0 ± 4.22%, control (97.0 ± 4.83%, water at room temperature (96.0 ± 6.99% and water at 70º C (83.0 ± 29.08% treatments. Thus, Astronium fraxinifolium diaspores do not present dormancy. During storage, the diaspores remained viable throughout the study period with high germination rates, except for the treatment in paper bags placed in the cold chamber, in which the diaspores lost their viability in the eighth month of storage. Therefore, this is not a recommended storage method for this species.

  4. The pleiotropic effects of the seed germination inhibitor germostatin.

    Science.gov (United States)

    Ye, Yajin; Zhao, Yang

    2016-01-01

    Seed dormancy and germination are the most important adaptive traits of seed plants, which control the germination in a proper space and time. Internal genetic factors together with environmental cues govern seed dormancy and germination. Abscisic acid (ABA), a key phytohormone induces seed dormancy and inhibits seed germination through its molecular genetic signaling network responding the seed inherent physiological and environmental factors. Recently, auxin has been shown to be another phytohormone that induces seed dormancy. We have recently shown that germonstatin (GS), a small synthetic molecule identified by high through-put chemical genetic screenings, inhibits seed germination through up-regulating auxin signaling and inducing auxin biosynthesis. GERMOSTATIN RESISTANCE LOCUS 1 (GSR1) encodes a plant homeodomain (PHD) finger protein and is responsible for GS seed germination inhibition. Its knockdown mutant gsr1 displays decreased dormancy. In this report, we show that GS is not an ABA analog and provided 2 other GS-resistant mutants related to the chemical's function in seed germination inhibition other than gsr1, suggesting that GS may have pleiotropic effects through targeting different pathway governing seed germination.

  5. Control of bacillus cereus spore germination and outgrowth in cooked rice during chilling by nonorganic and organic appled, orange, and potato peel powders

    Science.gov (United States)

    The inhibition of Bacillus cereus spore germination and outgrowth in cooked rice by nine fruit and vegetable peel powders prepared from store-bought conventional (nonorganic) and organic apples, oranges, and potatoes was investigated. The powders were mixed into rice at 10% (wt/wt) along with heat ...

  6. Comparison of seed priming techniques with regards to germination ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-11-16

    Nov 16, 2016 ... investigate the effects of different priming techniques on seed germination and early seedling growth. The seeds ... methods in which the environment must be controlled for prolonged ..... Guanabara Koogan, Rio de Janeiro ...

  7. Pre-treating Seed to Enhance Germination of Desert Shrubs

    Energy Technology Data Exchange (ETDEWEB)

    W. K. Ostler; D. C. Anderson; D. J. Hansen

    2002-06-01

    Creosotebush [Larrea tridentata (D.C.) Cav.] and white bursage [Ambrosia dumosa (A. Gray) W.W. Payne] seeds were subjected to pre-treatments of rinsing and soaking in water and thiourea to enhance germination in laboratory experiments. The effects of darkness, temperature, seed source, and soil moisture were also evaluated in the laboratory. The best pre-treatment from the laboratory experiments, rinsing with water for 36 hours followed by drying, was field-tested at Fort Irwin, California. Two sites and two seeding dates (early March and mid April) were determined for each site. Five mulch treatments (no mulch, straw, gravel, chemical stabilizer, and plastic) were evaluated in combination with the seed pre-treatments. Field emergence was greatly enhanced with the seed pre-treatment for white bursage during the March (18-42% increase in germination) and April seedings (16-23% increase in germination). Creosotebush showed poor germination during March (2-5%) when soil temperatures averaged 15 C, but germination increased during the April trials (6-43%) when soil temperatures averaged 23 C. The seed pre-treatment during the April trials increased germination from 16-23%. The plastic mulch treatment increased germination dramatically during both the March and April trials. The plastic mulch increased soil temperatures (8-10 C)and maintained high humidity during germination. Both the chemical stabilizer and the gravel mulches improved germination over the control while the straw mulch decreased germination. These results suggest that seed pre-treatments combined with irrigation and mulch are effective techniques to establish these two dominant Mojave Desert species from seed.

  8. Germination et croissance initiale de Neocarya macrophylla (Sabine Prance, une espèce oléagineuse du Niger

    Directory of Open Access Journals (Sweden)

    Dan Guimbo, I.

    2011-01-01

    Full Text Available Germination and Initial Growth of Neocarya macrophylla (Sabine Prance, a oleaginous Species of Niger. The study conducted in parallel in the real environment, nursery and laboratory to better understand the characteristics of germination and seedling development Neocarya macrophylla, a species of oleaginous Niger. The treatments applied to seed have a waiting time shorter than the untreated seeds. The control has a staggered germination (30 days and shelling of nuts influenced seed germination bundled (16 days. Unprocessed nuts are the best germination rate (89.53%. Soaking nuts during 72 h and 120 h is fatal for germination. The shelf life has significant effects on the germination of walnuts and almonds. The observation shows a germinating seed cryptogeal. The low germination rates nuts without water shows that water is a limiting factor to the spread of this tree species. The seedlings are very sensitive to dampingoff and tolerant enough to transplantation with a survival rate of 79%.

  9. Changes in germination characteristics and seedling growth ...

    African Journals Online (AJOL)

    Changes in germination characteristics and seedling growth between storage ... for up to 1 year and the second group was used for un-stored germination test. ... seed germination performance without loss of longevity of tall fescue species, ...

  10. Germination of Afrocarpus usambarensis and Podocarpus ...

    African Journals Online (AJOL)

    ACSS

    farm planting. Seed germination of .... 235. Germination of Afrocarpus usambarensis and Podocarpus milanjianus seeds. Table 2. Mean seed germination of A. usambarensis and P. milanjianus. Species .... National Forestry Authority and District.

  11. Germination and storage of pollen

    NARCIS (Netherlands)

    Visser, T.

    1955-01-01

    Germination of pear pollen markedly improved when boric acid was added to the medium. The pollen was more sensitive to boron in water than in 10 % sugar solution. Supplying weak solutions of boron to pear branches before flowering resulted in a good germination of the pollen in sugar solution

  12. Germination of red alder seed.

    Science.gov (United States)

    M.A. Radwan; D.S. DeBell

    1981-01-01

    Red alder seeds were collected from six locations throughout the natural range of the species. Each seed lot was obtained from a single tree, and the seeds were used to determine germination with and without stratification treatment. Irrespective of treatment, germination varied significantly (P

  13. Ecophysiology of seed germination in Digitaria insularis ((L. Fedde

    Directory of Open Access Journals (Sweden)

    Giovana Soares de Mendonça

    Full Text Available The invasive behaviour of sourgrass (Digitaria insularis in cultivated areas is due to its strategy of aggressive regeneration, which is based on seed germination. Knowledge of the physiological ecology of this species can contribute to the development of management and control strategies. The aim of this research was to understand the effects of provenance, temperature and light on the germination of sourgrass seeds collected in the Brazilian state of São Paulo in the cities of Americana, Botucatu and São José do Rio Preto and in the state of Paraná in the city of São Miguel do Iguaçu. The seeds were left to germinate at temperatures of 15, 25, 35 and 45 °C, both with and without light. The number of normal seedlings was recorded daily from seven to 60 days. After this period, the seeds together with substrate, were transferred to 25 ºC with light, and a daily count was made for all treatments until the end of germination (75 days after sowing. The seeds of D. insularis are positively photoblastic. Seed germination in this species depends on provenance. A temperature of 4 5 °C for germination is lethal to the seeds. The temperature of 35 °C in the presence of light is the most favourable condition for seed germination.

  14. Germination of native understorey species for revegetation of New South Wales coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, M.J.; Bellairs, S.M.; Mulligan, D.R. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Agriculture and Centre for Mined Land Rehabilitation

    1997-06-01

    This project investigates the suitability of a range of native understorey species for rehabilitation at several coal mines in New South Wales. The germination of seeds from 69 species representing 12 families was tested under controlled laboratory conditions. Germination occurred in all but two of the species tested and 50% germination was exceeded by 29 species. Species of the Mimosaceae, Fabaceae and Proteaceae tended to have above average germination; however species representing other families had variable germination results. A pre-germination heat treatment applied to all of the Acacia species increased germination in some but not all species. Seeds of these understorey species which were used in this trial, are native to the New South Wales coal fields and available commercially or are relatively easy to collect. Glasshouse and field trials are now being undertaken to assess establishment and growth on mine soil, spoil and coal reject materials. 9 refs., 5 figs.

  15. Effect of Salinity on Germination and Seedling Growth of Four Medicinal Plants

    Directory of Open Access Journals (Sweden)

    A Dadkhah

    2012-07-01

    Full Text Available This experiment was conducted in germinator in order to study the effects of water potential on seed germination, rate of germination and seedlings growth of four medicinal plants (Coriandrum sativum, Plantago psyllium, Discorinia sophia and Portulaca oleracea. Four water potential inclouding distilled water as control (0, -0.37, -0.59 and –0.81 Mpa which made by different salts (NaCl, CaCl2 and NaCl+CaCl2 in 5 to 1 molar ratio. The experiment was carried out based on completly randomized design with six replications. Results showed that the effects of water potential, type of salt on germination percentage, rate of germination, root and shoot length were significant. With decreasing water potential, germination percentage and rate of germination declined but the response of plant were differ. Germination of Portulaca oleracea was not affected by decreasing water potential where as other significantly decreased. The effect of salt composition was significant on rate and percentage germination. The percentage of germination at lower water potential (–0.37 MPa which made by NaCl + CaCl2 significantly was higher than the same water potential made by only NaCl and CaCl2. Although, percentage and rate germination of Portulaca oleracea were not affected by different water potential, seedling growth of Portulaca oleracea significantly decreased.

  16. Ecophysiology of seed germination in Digitaria insularis ((L.) Fedde)

    OpenAIRE

    Mendonça,Giovana Soares de; Martins,Cibele Chalita; Martins,Dagoberto; Costa,Neumárcio Vilanova da

    2014-01-01

    The invasive behaviour of sourgrass (Digitaria insularis) in cultivated areas is due to its strategy of aggressive regeneration, which is based on seed germination. Knowledge of the physiological ecology of this species can contribute to the development of management and control strategies. The aim of this research was to understand the effects of provenance, temperature and light on the germination of sourgrass seeds collected in the Brazilian state of São Paulo in the cities of Americana, B...

  17. Germination and seedling establishment in orchids: a complex of requirements.

    Science.gov (United States)

    Rasmussen, Hanne N; Dixon, Kingsley W; Jersáková, Jana; Těšitelová, Tamara

    2015-09-01

    Seedling recruitment is essential to the sustainability of any plant population. Due to the minute nature of seeds and early-stage seedlings, orchid germination in situ was for a long time practically impossible to observe, creating an obstacle towards understanding seedling site requirements and fluctuations in orchid populations. The introduction of seed packet techniques for sowing and retrieval in natural sites has brought with it important insights, but many aspects of orchid seed and germination biology remain largely unexplored. The germination niche for orchids is extremely complex, because it is defined by requirements not only for seed lodging and germination, but also for presence of a fungal host and its substrate. A mycobiont that the seedling can parasitize is considered an essential element, and a great diversity of Basidiomycota and Ascomycota have now been identified for their role in orchid seed germination, with fungi identifiable as imperfect Rhizoctonia species predominating. Specificity patterns vary from orchid species employing a single fungal lineage to species associating individually with a limited selection of distantly related fungi. A suitable organic carbon source for the mycobiont constitutes another key requirement. Orchid germination also relies on factors that generally influence the success of plant seeds, both abiotic, such as light/shade, moisture, substrate chemistry and texture, and biotic, such as competitors and antagonists. Complexity is furthermore increased when these factors influence seeds/seedling, fungi and fungal substrate differentially. A better understanding of germination and seedling establishment is needed for conservation of orchid populations. Due to the obligate association with a mycobiont, the germination niches in orchid species are extremely complex and varied. Microsites suitable for germination can be small and transient, and direct observation is difficult. An experimental approach using several

  18. Soybean mother plant exposure to temperature stress and its effect on germination under osmotic stress

    International Nuclear Information System (INIS)

    Khalil, S.K.; Rehman, A.; Khan, A.Z.; Mexal, J.G.; Zubair, M.; Wahab, S.; Khalil, I.H.; Mohammad, F.

    2010-01-01

    High temperature reduces quality of soybean seed developed at different positions on the plant. The objective of this research was to study the quality of seed produced under different temperature regimes located at different position in the canopy. Soybean plants grown in pots were transferred at first pod stage to three growth chambers fixed at 18/10, 25/15 and 32/20 deg. C day/night temperature having 13/11 hrs day/night length. The plants remained in growth chambers until physiological maturity. Seeds harvested from each growth chamber were exposed to osmotic stress having osmotic potential of -0.5 MPa and unstressed control. Both stressed and control treatments were germinated in three growth chambers fixed at 18, 25 and 35 deg. C. Seed developed at lowest temperature (18/10 deg. C day/night) had maximum germination. Germination decreased linearly with increased day/night temperature and lowest germination was recorded at highest temperature of 32/20 deg. C (day/night). Seed developed at bottom position was heaviest and had better germination compared with seed developed at middle and top position. Seed germination was highest at 25 deg. C and took fewer days to 50% germination than 18 and 25 deg. C. Osmotic stress decreased germination and delayed days to 50% germination than control. It can be concluded that optimum temperature for seed development was 18/10 deg. C (day/night) whereas best germination temperature was 25 deg. C. (author)

  19. Germination of Chenopodium Album in Response to Microwave Plasma Treatment

    International Nuclear Information System (INIS)

    Sera, Bozena; Stranak, Vitezslav; Sery, Michal; Spatenka, Petr; Tichy, Milan

    2008-01-01

    The seeds of Lamb's Quarters (Chenopodium album agg.) were stimulated by low-pressure discharge. The tested seeds were exposed to plasma discharge for different time durations (from 6 minutes to 48 minutes). Germination tests were performed under specified laboratory conditions during seven days in five identical and completely independent experiments. Significant differences between the control and plasma-treated seeds were observed. The treated seeds showed structural changes on the surface of the seat coat. They germinated faster and their sprout accretion on the first day of seed germination was longer. Germination rate for the untreated seeds was 15% while it increased approximately three times (max 55%) for seeds treated by plasma from 12 minutes to 48 minutes.

  20. 7 CFR 201.63 - Germination.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Germination. 201.63 Section 201.63 Agriculture... REGULATIONS Tolerances § 201.63 Germination. The following tolerances are applicable to the percentage of germination and also to the sum of the germination plus the hard seed when 400 or more seeds are tested. Mean...

  1. Effect of Estrogen and Progeterone on seed germination

    Directory of Open Access Journals (Sweden)

    Nirmala

    Full Text Available Early pregnancy detection in dairy cattle is an integral part of a successful animal husbandry practice. A simple seed germination technique (Punyakoti test comprises observation of differential seed germination response of wheat seeds to diluted fresh urine samples as reflected by significant inhibition of germination percentage in pregnant cow urine when compared to non pregnant cow urine. Hormone metabolites excreted through urine might affect the seed germination in pregnant cow urine. In the present study an attempt was made to test the effect of hormones (in their natural forms at different concentrations of estrogen (17-ß estradiol and progesterone on wheat and green gram germination. Stock solutions of estrogen and progesterone were prepared in alcohol (1mg/ml and serial dilutions made using distilled water to get the concentrations of T1=10, T2=1, T3=0.1 and T4=0.01 μg/ml respectively in treatment groups. About 15 seeds each of wheat and green gram were taken in sterile Petri dishes into which 15ml of each test preparation was poured. The treatments were compared with distilled water and alcohol controls. The study was conducted for a period of five days during which seed germination was observed after 48 hrs and shoot lengths were also measured by the end of study. The average seed germination and shoot length in treatment groups did not vary significantly (P>0.05 when compared with that of control groups. Thus from the present study, it can be concluded that estrogen and progesterone in their natural form will not affect seed germination and shoot length. [Veterinary World 2008; 1(8.000: 241-242

  2. Aplicação de óleo no controle de Zabrotes subfasciatus e na germinação de Phaseolus vulgaris Oil aplication in the control of Zabrotes subfasciatus and in the germination of Phaseolus vulgaris

    Directory of Open Access Journals (Sweden)

    Maiene de F. C. de Queiroga

    2012-07-01

    Full Text Available Propôs-se, com este trabalho, estudar a qualidade de sementes de feijão carioca (Phaseolus vulgaris L. tratadas com óleos vegetais de mamona, soja e oiticica, durante cinco meses de armazenamento. Mediante os resultados obtidos concluiu-se que os óleos vegetais utilizados no tratamento das sementes de feijão Phaseolus foram eficientes na manutenção da viabilidade e no controle da infestação pelo inseto-praga de armazenamento Zabrotes subfasciatus, nos cinco meses de armazenamento, sendo o óleo de oiticica o que apresentou melhor média de germinação, frente às tratadas com óleo de mamona e soja. O óleo de oiticica também foi o mais eficiente no controle de Z. subfasciatus. Verificou-se, ainda, redução da eficiência dos óleos nas suas menores doses, sendo a dose de 4,5 mL para 500 g de sementes, a mais eficaz para todas as variáveis estudadas.The purpose of this work was to study the quality of bean seeds (Phaseolus vulgaris L. treated with vegetable oils of castor, soybean and 'oiticica' during five months of storage. From the obtained results it was concluded that vegetable oils used in the treatment of seeds of Phaseolus beans were effective in maintaining the viability and control of storage insect pest infestation Zabrotes subfasciatus during the five months of storage, and the 'oiticica' oil presented the best mean germination, compared to those treated with castor oil and soybeans. 'Oiticica' oil was also the most efficient in controlling Z. subfasciatus. Reduced efficiency of the oils was observed in the small doses and the dose of 4.5 mL for 500 g of seeds was the most effective for all variables.

  3. Germination of Aspergillus niger conidia

    OpenAIRE

    Hayer, Kimran

    2014-01-01

    Aspergillus niger is a black-spored filamentous fungus that forms asexual spores called conidospores (‘conidia’). Germination of conidia, leading to the formation of hyphae, is initiated by conidial swelling and mobilisation of endogenous carbon and energy stores, followed by polarisation and emergence of a hyphal germ tube. These morphological and biochemical changes which define the model of germination have been studied with the aim of understanding how conidia sense and utilise different...

  4. Seed germination of three species of Fabaceae typical of seasonally dry forest

    Directory of Open Access Journals (Sweden)

    Daniel Meira Arruda

    2015-06-01

    Full Text Available This study evaluates seeds germination of Anadenanthera colubrina, Acacia polyphylla and Bauhinia cheilantha, typical species of deciduous forests. Seeds were submitted to pre-germination treatments and attack of native insects. The seeds of each species were grouped in: seeds scarified with sandpaper; seeds immersed in water heated to 70 °C, seeds with signs of attack by herbivore insects and the control group. The largest proportion of germinated seeds occurred in the first week of incubation and germination peak, ranged from first to third day. All groups of A. polyphylla and B.cheilantha showed high germination rate (> 90%, being reduced only when seeds were attacked by insects (< 25%. Mechanic scarification was efficient in A. polyphylla by enhancing germination to maximum (100% and accelerating germination. A. colubrina showed no difference among groups, and germination rate was lower (< 50%, which was attributed to infestation by fungi, commonly reported in this species and apparently independent of usual hygiene procedures. Finally, except the fungi infestation in A. colubrina, evaluated species were independent of pre-germination treatment to obtain a high rate of germination.

  5. Seed Hydropriming and Smoke Water Significantly Improve Low-Temperature Germination of Lupinus angustifolius L.

    Directory of Open Access Journals (Sweden)

    Agnieszka Płażek

    2018-03-01

    Full Text Available Seed imbibition under cold temperature is dangerous when dry seeds have relatively low water content. The aim of this study was to investigate germination of 20 lines/cultivars of narrow-leaf lupine at 7 °C (cold and 13 °C (control under the influence of smoke water and following seed hydropriming for 3 h at 20 °C. The efficacy of individual treatments was examined with regard to seed protection during low-temperature germination. Based on seed germination, vigour at cold was evaluated four days after sowing by means of hypocotyl length, the studied lines/cultivars were divided into three groups with low, high and very high germination rates. Germination vigour correlated with cell membrane permeability, dehydrogenase activity and abscisic acid (ABA content and was analysed in the seeds one day after sowing. Gibberellin content did not correlate with germination vigour. The seeds of weakly germinating lines/cultivars had the highest cell permeability and ABA content as well as the lowest amylolytic activity at both studied temperatures. Additionally, the vigour of weakly germinating seeds at 7 °C correlated with dehydrogenase activity. Three-hour hydropriming was the most effective for seed germination under cold due to reduced cell membrane permeability and ABA level. Stimulating effects of smoke water on germination under cold could be explained by enhanced dehydrogenase activity.

  6. Maturation and germination of somatic embryos of Sorghum bicolor (L. Moench cultivar 'CIAP 132R-05'

    Directory of Open Access Journals (Sweden)

    Silvio de J Martínez

    2017-03-01

    Full Text Available In sorghum [Sorghum bicolor (L. Moench], developed protocols for plant regeneration via somatic embryogenesis do not include maturation stage. The present work was carried out with the aim of achieving the maturation and germination of sorghum somatic embryos in cultivar 'CIAP 132R-05'. It were studied four concentrations of sucrose (30, 50, 70 and 90 g l-1, two of abscisic acid (0.25 and 0.5 μM and a control without this growth regulator. Germination initiation (days and number of somatic embryos with complete germination were evaluated in three periods (1 - 7, 8 - 14 and 15 - 21 days of culture. In addition, the effect of 6-BAP (8.9, 17.8 and 26.6 μM on somatic embryo germination was determined. The germination start time (days and after 21 days the number of somatic embryos with complete germination and plants with malformations were determined. The addition of 70 g l-1 sucrose in the culture medium without abscisic acid increased the germination of the somatic embryos to 37.2 plants per embryo group (0.5 g of fresh mass. The highest number of somatic embryos germinated was obtained with 17.78 μM 6-BAP in the germination culture medium. It was demonstrated the need of a maturation stage in the sorghum somatic embryogenesis to increase the germination percentage.   Keywords: somatic embryogenesis, sorghum, sucrose, 6-BAP

  7. Temperature Effects on Cuscuta campestris Yunk. Seed Germination

    Directory of Open Access Journals (Sweden)

    Marija Sarić-Krsmanović

    2013-01-01

    Full Text Available Studies of biological characteristics of seeds and conditions for their germination havea major importance for planning and executing rational measures of weed control. Theaim of this study was to investigate the effect of different temperatures on germinationof C. campestris seeds. Three treatments (T1- storage at room temperature; T2 – exposureto 4°C for 30 days; T3 – scarification by concentrated sulphuric acid differing in manipulationwith seeds before germination were tested at different temperatures (5°C, 10°C, 15°C,20°C, 25°C, 30°C, 35°C, 40°C, 45°C. Germinated seeds were counted daily for ten days andthe length of seedlings was measured on the last day. The results showed that differencesin germination of C. campestris seeds were very prominent between temperatures, as wellas between treatments T1, T2 and T3. Seeds failed to germinate at 5°C and 45°C in all treatments(T1, T2, T3. Germination ranged from 6.25 at 10°C to 96.88%, the highest percentage,achieved at 30°C.

  8. TIME REDUCTION FOR SURINAM GRASS SEED GERMINATION TEST

    Directory of Open Access Journals (Sweden)

    Camila de Aquino Tomaz

    2015-10-01

    Full Text Available ABSTRACTThe period for the germination test of Surinam grass seeds established by the Rules for Seeds Testing is 28 days, considered too lengthy by producers, venders, and seed analysis laboratories. So, the objective of this research was to evaluate the possibility of reducing the time for the germination test of Surinam grass seeds and to establish a method for dormancy breaking and the ideal temperature. Ten seed lots were submitted to the following treatments to overcome seed dormancy: control; substrate moistening with 0.2% KNO3; and scarification with sulfuric acid (98% 36 N for 15 minutes. After the treatments, the lots were submitted to seed water content, germination and tetrazolium tests. During the germination test, conducted with four replicates of 100 seeds per treatment for 28 days, two conditions of alternating temperatures (20-35 °C and 15-35 °C with 8 hours of light were tested. Attempting to determine the test end date, daily counts of the number of normal seedlings were made and for each lot, treatment, and temperature, a growth curve for the evaluation of germination was adjusted. The segmented regression model parameter estimations were calculated for each treatment. The germination test of Braquiaria decumbensseeds may be evaluated in 12 days after sowing using alternating temperatures of 20-35 °C and without any treatment to overcome dormancy.

  9. Omethoate treatment mitigates high salt stress inhibited maize seed germination.

    Science.gov (United States)

    Yang, Kejun; Zhang, Yifei; Zhu, Lianhua; Li, Zuotong; Deng, Benliang

    2018-01-01

    Omethoate (OM) is a highly toxic organophophate insecticide, which is resistant to biodegradation in the environment and is widely used for pest control in agriculture. The effect of OM on maize seed germination was evaluated under salt stress. Salt (800mM) greatly reduced germination of maize seed and this could be reversed by OM. Additionally, H 2 O 2 treatment further improved the effect of OM on seed germination. Higher H 2 O 2 content was measured in OM treated seed compared to those with salt stress alone. Dimethylthiourea (DTMU), a specific scavenger of reactive oxygen species (ROS), inhibited the effect of OM on seed germination, as did IMZ (imidazole), an inhibitor of NADPH oxidase. Abscisic acid (ABA) inhibited the effect of OM on seed germination, whereas fluridone, a specific inhibitor of ABA biosynthesis, enhanced the effect of OM. Taken together, these findings suggest a role of ROS and ABA in the promotion of maize seed germination by OM under salt stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Integration of Auxin and Salt Signals by the NAC Transcription Factor NTM2 during Seed Germination in Arabidopsis1[W

    Science.gov (United States)

    Park, Jungmin; Kim, Youn-Sung; Kim, Sang-Gyu; Jung, Jae-Hoon; Woo, Je-Chang; Park, Chung-Mo

    2011-01-01

    Seed germination is regulated through elaborately interacting signaling networks that integrate diverse environmental cues into hormonal signaling pathways. Roles of gibberellic acid and abscisic acid in germination have been studied extensively using Arabidopsis (Arabidopsis thaliana) mutants having alterations in seed germination. Auxin has also been implicated in seed germination. However, how auxin influences germination is largely unknown. Here, we demonstrate that auxin is linked via the IAA30 gene with a salt signaling cascade mediated by the NAM-ATAF1/2-CUC2 transcription factor NTM2/Arabidopsis NAC domain-containing protein 69 (for NAC with Transmembrane Motif1) during seed germination. Germination of the NTM2-deficient ntm2-1 mutant seeds exhibited enhanced resistance to high salinity. However, the salt resistance disappeared in the ntm2-1 mutant overexpressing the IAA30 gene, which was induced by salt in a NTM2-dependent manner. Auxin exhibited no discernible effects on germination under normal growth conditions. Under high salinity, however, whereas exogenous application of auxin further suppressed the germination of control seeds, the auxin effects were reduced in the ntm2-1 mutant. Consistent with the inhibitory effects of auxin on germination, germination of YUCCA 3-overexpressing plants containing elevated levels of active auxin was more severely influenced by salt. These observations indicate that auxin delays seed germination under high salinity through cross talk with the NTM2-mediated salt signaling in Arabidopsis. PMID:21450938

  11. EFFECT OF DIFFERENT SUBSTRATES ON THE GERMINATION OF SEEDS CEDRELA FISSILIS VELLOZO (MELIACEAE

    Directory of Open Access Journals (Sweden)

    R. Marchezan

    2017-12-01

    Full Text Available The present study was to evaluate the Cedar seed germination and the handling of different substrates to elucidate what is the best condition for the species. The experiment was conducted in the laboratory, without control of incidence of light or temperature, leaving them as much as possible under natural conditions. Treatments consisted of four treatments and four repetitions, each repetition consisted of 10 subrepetitions, totaling 40 units (plastic cups per treatment. Seeds were sown with two seeds per cup. The characteristics evaluated were the percentage of germination and germination speed index (GSI. It is concluded this way that the seeds subjected to the earth and sand worked to conduct tests for germination cedar seeds were those that gave higher percentages of germination and IVG. While the substrates, commercial and land forest were considered unfavorable for conducting germination tests for cedar seeds.

  12. High-Throughput Scoring of Seed Germination.

    Science.gov (United States)

    Ligterink, Wilco; Hilhorst, Henk W M

    2017-01-01

    High-throughput analysis of seed germination for phenotyping large genetic populations or mutant collections is very labor intensive and would highly benefit from an automated setup. Although very often used, the total germination percentage after a nominated period of time is not very informative as it lacks information about start, rate, and uniformity of germination, which are highly indicative of such traits as dormancy, stress tolerance, and seed longevity. The calculation of cumulative germination curves requires information about germination percentage at various time points. We developed the GERMINATOR package: a simple, highly cost-efficient, and flexible procedure for high-throughput automatic scoring and evaluation of germination that can be implemented without the use of complex robotics. The GERMINATOR package contains three modules: (I) design of experimental setup with various options to replicate and randomize samples; (II) automatic scoring of germination based on the color contrast between the protruding radicle and seed coat on a single image; and (III) curve fitting of cumulative germination data and the extraction, recap, and visualization of the various germination parameters. GERMINATOR is a freely available package that allows the monitoring and analysis of several thousands of germination tests, several times a day by a single person.

  13. Arabidopsis MADS-Box Transcription Factor AGL21 Acts as Environmental Surveillance of Seed Germination by Regulating ABI5 Expression.

    Science.gov (United States)

    Yu, Lin-Hui; Wu, Jie; Zhang, Zi-Sheng; Miao, Zi-Qing; Zhao, Ping-Xia; Wang, Zhen; Xiang, Cheng-Bin

    2017-06-05

    Seed germination is a crucial checkpoint for plant survival under unfavorable environmental conditions. Abscisic acid (ABA) signaling plays a vital role in integrating environmental information to regulate seed germination. It has been well known that MCM1/AGAMOUS/DEFICIENS/SRF (MADS)-box transcription factors are key regulators of seed and flower development in Arabidopsis. However, little is known about their functions in seed germination. Here we report that MADS-box transcription factor AGL21 is a negative regulator of seed germination and post-germination growth by controlling the expression of ABA-INSENSITIVE 5 (ABI5) in Arabidopsis. The AGL21-overexpressing plants were hypersensitive to ABA, salt, and osmotic stresses during seed germination and early post-germination growth, whereas agl21 mutants were less sensitive. We found that AGL21 positively regulated ABI5 expression in seeds. Consistently, genetic analyses showed that AGL21 is epistatic to ABI5 in controlling seed germination. Chromatin immunoprecipitation assays further demonstrated that AGL21 could directly bind to the ABI5 promoter in plant cells. Moreover, we found that AGL21 responded to multiple environmental stresses and plant hormones during seed germination. Taken together, our results suggest that AGL21 acts as a surveillance integrator that incorporates environmental cues and endogenous hormonal signals into ABA signaling to regulate seed germination and early post-germination growth. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  14. The allelopathic effects of three crop residues on the germination ...

    African Journals Online (AJOL)

    ... maize inflorescences showed significant differences when compared to the control. No growth was recorded in the radicle until 96 hrs of the experiment in all the extract – treated seeds from the three crop residues while the control germinated at 72 hours. Keywords: Allelopathy, allelochemical, biomolecules, Sphenostylis ...

  15. Ethylene, seed germination, and epinasty.

    Science.gov (United States)

    Stewart, E R; Freebairn, H T

    1969-07-01

    Ethylene activity in lettuce seed (Lactuca satina) germination and tomato (Lycopersicon esculentum) petiole epinasty has been characterized by using heat to inhibit ethylene synthesis. This procedure enabled a separation of the production of ethylene from the effect of ethylene. Ethylene was required in tomato petioles to produce the epinastic response and auxin was found to be active in producing epinasty through a stimulation of ethylene synthesis with the resulting ethylene being responsible for the epinasty. In the same manner, it was shown that gibberellic acid stimulated ethylene synthesis in lettuce seeds. The ethylene produced then in turn stimulated the seeds to germinate. It was hypothesized that ethylene was the intermediate which caused epinasty or seed germination. Auxin and gibberellin primarily induced their response by stimulating ethylene production.

  16. Performance of seeds Crambe exposed to pre-germination treatments

    International Nuclear Information System (INIS)

    Rocha Cardoso, Rebeca; Costa Nobre, Danubia Aparecida; Santos de Souza David, Andreia Marcia; Ribeiro Amaro, Hugo Tiago; Borghetti, Renato Antonio; Costa, Marcia Regina

    2014-01-01

    Encouraging the production and use of biodiesel, seeds of crambe today constitute one of the best options for the supply of raw material, is also an excellent alternative for autumn-winter crop rotation order. The aim of this study was to evaluate the efficiency of combined pre-germination treatments on the seed behavior of Crambe. From a seed sample of FMS Brilhante cultivar, an experimental design completely randomized with a 2 x 5 factorial arrangement was performed. it was formed from combination of two structural conditions, seeds with or without pericarp, and treatments with or without giberelic acid, being: control (no treatment); seeds pre-soaked in distilled water for 24 hours as control; and seeds pre-soaked in gibberellic acid at 4 % at different concentrations (400, 500 and 600 mg.L"-1). Water content, first count germination, germination, seedling emergence and emergence rate index were determined. From these results it is concluded that removal of the pericarp in seed of Crambe, cultivar FMS brilhante, accelerated the germination rate, however, decreased your final percentage. The pre-soaking in gibberellic acid (400, 500 and 600 mg L"-1) for 24 hours, increased the germination and seed vigor crambe with pericarp.

  17. Optimal treatment increased the seed germination of Salvia verticillata L.

    Directory of Open Access Journals (Sweden)

    ALALEH KHAKPOOR

    2015-12-01

    Full Text Available Most seeds of the medicinal species are variable regarding their ecological compatibility with environmental conditions. Therefore, identifying the ecophysiological factors that affect dormancy and create optimal conditions for seed germination of medicinal plants is necessary for their culture and production. To evaluate the effect of different treatments on seed germination of medicinal species of Salvia verticillata, collected in the summer of 2010 in Eastern Azarbaijan, we have performed completely randomized experimental tests with 4 replications. The experimental design of treatment prior to growth included: scrape the skin with sandpaper, treatment with 500 ppm gibberellic acid for 24 and 48 h, treatment with citric acid for 10, 20 and 30 minutes, chilling for 2 and 4 weeks, treatment with warm water at 70°C and control treatment. Results showed that the effect of different treatments was significant on seed germination percent of the medicinal plant Salvia verticillata. Scrape the skin with sandpaper, citric acid treatment for 10, 20 and 30 minutes, and gibberellic acid treatment for 24 hours, increased the germination percentage compared to the control treatment. The most positive impact was observed on the dormancy breaking and germination of medicinal species Salvia verticillata.

  18. Induction of lycopene and lycopene precursors in germinating cottonseedwith the substituted triethylamine compound MPTA

    Science.gov (United States)

    Treatment of dark germinating cottonseed (Gossypium hirsutum Acala cultivar) with 0.72 mM 2(4-methylphenoxy) triethylamine (MPTA) resulted in a 18-fold increase in carotenoid biosynthesis. In comparison to H2O treated control seed germinating in the dark that formed 8.4 ug/g fr wt of lutein and 1.6 ...

  19. Effect of priming with potassium nitrate and dehusking on seed germination of gladiolus (gladiolus alatus)

    International Nuclear Information System (INIS)

    Ramzan, A.; Hafiz, I.A.; Ahmad, T.; Abbasi, N.A.

    2010-01-01

    Gladiolus (Gladiolus alatus), belonging to the family Iridaceae is rated as the most popular flower in the world at commercial scale. The effect of different concentrations of KNO/sub 3/ (1, 2, 3, 4, 5 and 0 %) on seed germination percentage, time required for 50% germination and on mean germination time (MGT) was studied under controlled conditions. Best germination rate of 92% was achieved in T6 (distilled water) followed by 80% in T1 (1% KNO/sub 3/) and 70% in T2 (2% KNO/sub 3/). Minimum time required for 50% germination i.e., 8 days was obtained with T6 (distilled water) and in the same way shortest mean germination time required by seeds was 15 days in T6. Bulb gained maximum weight (0.6467 g) and diameter (9.49 mm) in T3 (3% KNO/sub 3)/. Likewise, this treatment also resulted in an acquisition of 14 cm seedling length and a positive correlation was found between seedling length and growth parameters of bulb i.e., weight and diameter. In another experiment, effect of de husking on seed germination was tested. Seed without husk gave the promising outcome of 74% germination while seeds with husk merely acquired 63% germination after 30 days. (author)

  20. Different modes of hydrogen peroxide action during seed germination

    Directory of Open Access Journals (Sweden)

    Łukasz eWojtyla

    2016-02-01

    Full Text Available Hydrogen peroxide was initially recognized as a toxic molecule that causes damage at different levels of cell organization and thus losses in cell viability. From the 1990s, the role of hydrogen peroxide as a signaling molecule in plants has also been discussed. The beneficial role of H2O2 as a central hub integrating signaling network in response to biotic and abiotic stress and during developmental processes is now well established. Seed germination is the most pivotal phase of the plant life cycle, affecting plant growth and productivity. The function of hydrogen peroxide in seed germination and seed aging has been illustrated in numerous studies; however, the exact role of this molecule remains unknown. This review evaluates evidence that shows that H2O2 functions as a signaling molecule in seed physiology in accordance with the known biology and biochemistry of H2O2. The importance of crosstalk between hydrogen peroxide and a number of signaling molecules, including plant phytohormones such as abscisic acid, gibberellins and ethylene and reactive molecules such as nitric oxide and hydrogen sulfide acting on cell communication and signaling during seed germination, is highlighted. The current study also focuses on the detrimental effects of H2O2 on seed biology, i.e., seed aging that leads to a loss of germination efficiency. The dual nature of hydrogen peroxide as a toxic molecule on one hand and as a signal molecule on the other is made possible through the precise spatial and temporal control of its production and degradation. Levels of hydrogen peroxide in germinating seeds and young seedlings can be modulated via pre-sowing seed priming/conditioning. This rather simple method is shown to be a valuable tool for improving seed quality and for enhancing seed stress tolerance during post-priming germination. In this review, we outline how seed priming/conditioning affects the integrative role of hydrogen peroxide in seed germination and

  1. Describing phytotoxic effects on cumulative germination

    OpenAIRE

    Dias, L.S.

    2001-01-01

    Phytotoxic studies strongly depend on evaluation of germination responses, which implies the need for adequate procedures to account for distinct aspects of the germinative process. For this, indices, comparisons among treatments at various times, and model fitting have been proposed. The objective of this work is to compare the three approaches and select the one providing greater insight and precision. Speed of germination, speed of accumulated germination, the coefficient of the rate of ge...

  2. Methods for assessing Phytophthora ramorum chlamydospore germination

    Science.gov (United States)

    Joyce Eberhart; Elilzabeth Stamm; Jennifer Parke

    2013-01-01

    Germination of chlamydospores is difficult to accurately assess when chlamydospores are attached to remnants of supporting hyphae. We developed two approaches for closely observing and rigorously quantifying the frequency of chlamydospore germination in vitro. The plate marking and scanning method was useful for quantifying germination of large...

  3. 7 CFR 201.20 - Germination.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Germination. 201.20 Section 201.20 Agriculture... REGULATIONS Labeling Agricultural Seeds § 201.20 Germination. The label shall show the percentage of germination each kind, or kind and variety, or kind and type, or kind and hybrid of agricultural seed present...

  4. Influence of hydrogel on germination of lettuce and onion seed at different moisture levels

    Directory of Open Access Journals (Sweden)

    Kateřina Pazderů

    2013-01-01

    Full Text Available The influence of Agrisorb (water solution 1, 3, 5 g/l on lettuce and onion seed germination was tested in different moisture conditions (30 ml and 15 ml of water in germination box. Variants with reduced water level germinated much more slowly (MGT parameter than standard variants, though differences in total germination at the end of the test were insignificant. Treated variants of lettuce seeds showed a statistically significant increase in germination energy (GE on the first day (GE1, both water levels, but a significant decrease on the second day (columns GE2, 15 ml. Higher doses of Agrisorb slowed lettuce seed germination (GE2, 30 ml, dose 5 g significantly, similarly see GE2 (15 ml, doses 1, 3, 5 g. This slowdown was apparent for GE3 (both water amount as well. A similar but insignificant effect was evident for onions. There was an influence of cultivar and seed vigour on sensitivity to water stress. The hydrogel application influenced germination of lettuce and onion seeds. Treated lettuce seeds germinated faster than non-treated control in the beginning of germination process. This effect was not recorded in case of slowly germinated onion seed lots. Although influence of Agrisorb was positive in the beginning, higher doses of hydrogel reduced germination energy of treated seed lots (for example GE2, GE4 of both crops in comparison with non-treated control. Higher doses of hydrogel caused longer MGT of lettuce and onion as well.

  5. Habitat specialization through germination cueing

    DEFF Research Database (Denmark)

    Ten Brink, Dirk-Jan; Hendriksma, Harmen; Bruun, Hans Henrik

    2013-01-01

    This study examined the adaptive association between seed germination ecology and specialization to either forest or open habitats across a range of evolutionary lineages of seed plants, in order to test the hypotheses that (1) species' specialization to open vs. shaded habitats is consistently...

  6. Approaches to the indirect evaluation of germination and vigour

    Directory of Open Access Journals (Sweden)

    Matthews S.

    1998-01-01

    Full Text Available In comparisons of six seed lots of different F1 hybrid cultivars of cauliflower with similarly high laboratory germinations (above 90% separation in germination was achieved after controlled deterioration (C.D. at 24% moisture content (m.c. and 45 0C for 24 hours. This measure of vigour was related to the position of the lots on the seed survival curve and was highly predictive of the longevity of the lots when stored at 15% m.c. and 20 0C for 12 and 16 weeks. When each seed lot was deteriorated at 24% m.c. for increasing times (from 0 to 36 hours a reduction in the subsequent percentage germination was seen, which, using probit transformed percentages, was significantly and linearly related to the leakage of electrolytes into seed soak water over 24 hours. The case is made for an approach to the indirect evaluation of germination and vigour using C.D. followed by measurements of leakage that could be more discerning and rapid than the present laboratory germination test.

  7. Secondary Metabolites Produced during the Germination of Streptomyces coelicolor

    Directory of Open Access Journals (Sweden)

    Matouš Čihák

    2017-12-01

    Full Text Available Spore awakening is a series of actions that starts with purely physical processes and continues via the launching of gene expression and metabolic activities, eventually achieving a vegetative phase of growth. In spore-forming microorganisms, the germination process is controlled by intra- and inter-species communication. However, in the Streptomyces clade, which is capable of developing a plethora of valuable compounds, the chemical signals produced during germination have not been systematically studied before. Our previously published data revealed that several secondary metabolite biosynthetic genes are expressed during germination. Therefore, we focus here on the secondary metabolite production during this developmental stage. Using high-performance liquid chromatography-mass spectrometry, we found that the sesquiterpenoid antibiotic albaflavenone, the polyketide germicidin A, and chalcone are produced during germination of the model streptomycete, S. coelicolor. Interestingly, the last two compounds revealed an inhibitory effect on the germination process. The secondary metabolites originating from the early stage of microbial growth may coordinate the development of the producer (quorum sensing and/or play a role in competitive microflora repression (quorum quenching in their nature environments.

  8. Germination and seedling morphology of four South American Smilax (Smilacaceae

    Directory of Open Access Journals (Sweden)

    Aline Redondo Martins

    2012-03-01

    Full Text Available Species of Smilax, also known as greenbrier, are widely distributed in Brazil and their commercial trades are carried out by the extractivism of native species. We the aim to provide information about the germination and development of seedlings in four Smilax species, different experiments were developed under controlled conditions. We evaluated two germination treatments: temperature (30ºC and 20-30ºC and light (presence/ absence, and for few cases the tetrazolium treatment was applied. A different treatment response was observed among the studied species. Light had a significant influence in S. brasiliensis, with the highest germination rates at 20-30ºC in dark conditions. S. campestris showed significant differences among temperature treatments, but not to light; while S. cissoides showed high germination rates (66-78%, independently of treatment. However, S. polyantha had low germination rates (19-24%. After one year, the expanded leaves showed different characteristics among the studied species. Leaves of S. brasiliensis were ovate, coriaceous, three main veins and prickle-like structures only on the midrib on abaxial face. S. campestris leaves were oblong, coriaceous and prickle-like structures were located at the leaf midrib and margin. S. cissoides had ovate-elliptic, membranaceous leaves, with three main veins with prickle-like structures on the abaxial face. S. polyantha leaves showed ovateelliptic, coriaceous leaves, with three main veins, translucent secondary veins and no prickle-like structures. A seedling identification key was elaborated based on morphological characteristics.

  9. Germination and seedling morphology of four South American Smilax (Smilacaceae).

    Science.gov (United States)

    Martins, Aline Redondo; Soares, Anielca Nascimento; Bombo, Aline Bertolosi; Fidelis, Alessandra; Novembre, Ana Dionisia da Luz Coelho; da Glória, Beatriz Appezzato

    2012-03-01

    Species of Smilax, also known as greenbrier, are widely distributed in Brazil and their commercial trades are carried out by the extractivism of native species. We the aim to provide information about the germination and development of seedlings in four Smilax species, different experiments were developed under controlled conditions. We evaluated two germination treatments: temperature (30 degrees C and 20-30 degrees C) and light (presence/ absence), and for few cases the tetrazolium treatment was applied. A different treatment response was observed among the studied species. Light had a significant influence in S. brasiliensis, with the highest germination rates at 20-30 degrees C in dark conditions. S. campestris showed significant differences among temperature treatments, but not to light; while S. cissoides showed high germination rates (66-78%), independently of treatment. However, S. polyantha had low germination rates (19-24%). After one year, the expanded leaves showed different characteristics among the studied species. Leaves of S. brasiliensis were ovate, coriaceous, three main veins and prickle-like structures only on the midrib on abaxial face. S. campestris leaves were oblong, coriaceous and prickle-like structures were located at the leaf midrib and margin. S. cissoides had ovate-elliptic, membranaceous leaves, with three main veins with prickle-like structures on the abaxial face. S. polyantha leaves showed ovate-elliptic, coriaceous leaves, with three main veins, translucent secondary veins and no prickle-like structures. A seedling identification key was elaborated based on morphological characteristics.

  10. Effects of boarding return satellite on antioxidant enzyme activities during germination of hot pepper seed

    International Nuclear Information System (INIS)

    Li Shuifeng; Wang Bingliang; Guan Xueyu; Zhang Yan

    2006-01-01

    The effect of boarding return satellite on antioxidant enzyme activities during germination of hot pepper seed was studied. The results showed that the germination potentiality and germination rate of hot pepper seed after boarding return satellite were increased by 3.5% and 5.3%, respectively. During seed germination, soluble protein and MDA contents decreased, however, the SOD activities increased. SOD activity of treated seeds was higher than that of the control especially during the initial period of germination, while the content of soluble and MDA contents were much lower than those of control. The activities of SOD, G-POD, APX and CAT in 13d seedlings of treated seeds were increased by 14.29%, 25.23%, 1.84% and 21.52%, respectively. It was concluded that space flight enhanced antioxidant enzyme activities of seeds and seedlings, which were very important to prevent membrane lipid superoxide. (authors)

  11. Mycoflora in Exhumed Seeds of Opuntia tomentosa and Its Possible Role in Seed Germination

    Directory of Open Access Journals (Sweden)

    María Esther Sánchez-Coronado

    2011-01-01

    Full Text Available The funicular cover of the Opuntia tomentosa seed limits imbibition; germination occurs only when the funicle is weakened or the funicular valve is removed. We investigated the role of fungi in funicular weakening and seed germination. Seeds that had been either buried in one of two sites or stored in the laboratory were germinated with and without a valve. Disinfected or nondisinfected seeds and their naked embryos were cultivated on agar or PDA. None of the 11 identified fungal genera grew on the disinfected control seeds or the embryos. The mycoflora present on disinfected and nondisinfected exhumed seeds suggest that the fungal colonization occurred in the soil and differed between the burial sites. Exhumed seeds with and without a valve germinated in high percentages, whereas only the control seeds without a valve germinated. Scanning electron micrographs showed that the hyphae penetrated, cracked, and eroded the funicular envelope of exhumed seeds.

  12. Pre-germination treatments on palm tree seeds

    Directory of Open Access Journals (Sweden)

    Maitê dos Santos Ribeiro

    2015-12-01

    Full Text Available Palm tree seeds present slow and uneven germination. Therefore, the objective of this research was to evaluate the efficiency of pre-germination treatments in promoting germination and early seedling growth of palm tree (Euterpe edulis Martius. Treatments were: control, immersion in GA3 solution, exposure to ethylene, water immersion, H2SO4 immersion, mechanical scarification, stratification for 30 days at 10 °C, and scarification followed by stratification. Soaking seeds in gibberellic acid (GA3; 2000 µL L-1 for 24 h or their exposure to ethylene (1000 µL L-1 for 24 h are effective for promoting emergence, which started 30 days after seed treatment, and for early seedling growth of palm tree.

  13. WATER AND SODIUM CHLORIDE EFFECTS ON Mimosa Tenuiflora (WILLD. POIRET SEED GERMINATION

    Directory of Open Access Journals (Sweden)

    Ivonete Alves Bakke

    2006-01-01

    Full Text Available Water shortage and saline soils of the Brazilian semi-arid northeastern region are limiting factors to the development of many plants. Jurema preta (Mimosa tenuiflora (Willd. Poiret is a small, multiple use tree that abundantly colonizes unfavorable sites, including environments with severe water stress. This work had the objective of investigating the tolerance of jurema preta seeds to water and salt stresses during germination. Seeds germination in polyethylene glycol (PEG-6000 and sodium chloride (NaCl solutions was analyzed under five different osmotic potentials (0.0; -0.3, -0.6, -0.9 and -1.2MPa, in order to simulate water and salt stress, respectively, in four 100-seed replications for each treatment. Seeds were placed into 10cmx10cmx4cm boxes, and germination accomplished in BOD germinator adjusted to 30oC. The number of germinated seeds was monitored every 24 hours, and percentage and speed of seed germination were generated from these data. Mean percentage germination in the control treatment was ~95%, reducing to 63-53% at -0.9 to -1.2-MPa PEG solutions, and to 27- 9.5% at NaCl solutions at equivalent osmotic potentials. Velocity of germination index was more affected, and decreased up to 1/8 of the control, at -0.6 MPa. Jurema preta seeds showed lower tolerance to NaCl than to water stress, and this species can be classified as a glycophyte.

  14. DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds.

    Science.gov (United States)

    Waterworth, Wanda M; Footitt, Steven; Bray, Clifford M; Finch-Savage, William E; West, Christopher E

    2016-08-23

    Genome integrity is crucial for cellular survival and the faithful transmission of genetic information. The eukaryotic cellular response to DNA damage is orchestrated by the DNA damage checkpoint kinases ATAXIA TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR). Here we identify important physiological roles for these sensor kinases in control of seed germination. We demonstrate that double-strand breaks (DSBs) are rate-limiting for germination. We identify that desiccation tolerant seeds exhibit a striking transcriptional DSB damage response during germination, indicative of high levels of genotoxic stress, which is induced following maturation drying and quiescence. Mutant atr and atm seeds are highly resistant to aging, establishing ATM and ATR as determinants of seed viability. In response to aging, ATM delays germination, whereas atm mutant seeds germinate with extensive chromosomal abnormalities. This identifies ATM as a major factor that controls germination in aged seeds, integrating progression through germination with surveillance of genome integrity. Mechanistically, ATM functions through control of DNA replication in imbibing seeds. ATM signaling is mediated by transcriptional control of the cell cycle inhibitor SIAMESE-RELATED 5, an essential factor required for the aging-induced delay to germination. In the soil seed bank, seeds exhibit increased transcript levels of ATM and ATR, with changes in dormancy and germination potential modulated by environmental signals, including temperature and soil moisture. Collectively, our findings reveal physiological functions for these sensor kinases in linking genome integrity to germination, thereby influencing seed quality, crucial for plant survival in the natural environment and sustainable crop production.

  15. Germination conditions affect selected quality of composite wheat-germinated brown rice flour and bread formulations.

    Science.gov (United States)

    Charoenthaikij, Phantipha; Jangchud, Kamolwan; Jangchud, Anuvat; Prinyawiwatkul, Witoon; Tungtrakul, Patcharee

    2010-08-01

    Brown rice has been reported to be more nutritious after germination. Germinated brown rice flours (GBRFs) from different steeping conditions (in distilled water [DI, pH 6.8] or in a buffer solution [pH 3] for either 24 or 48 h at 35 degrees C) were evaluated in this study. GBRF obtained from brown rice steeped at pH 3 for 48 h contained the highest amount of free gamma aminobutyric acid (GABA; 67 mg/100 g flour). The composite flour (wheat-GBRF) at a ratio of 70 : 30 exhibited significantly lower peak viscosity (PV) (56.99 - 132.45 RVU) with higher alpha-amylase activity (SN = 696 - 1826) compared with those of wheat flour (control) (PV = 136.46 RVU and SN = 1976). Bread formulations, containing 30% GBRF, had lower loaf volume and greater hardness (P rice flour (BRF). Acceptability scores for aroma, taste, and flavor of breads prepared with or without GBRFs (30% substitution) were not significantly different, with the mean score ranging from 6.1 (like slightly) to 7 (like moderately). Among the bread formulations containing GBRF, the one with GBRF prepared after 24 h steeping at pH 3 had a slightly higher (though not significant) overall liking score (6.8). This study demonstrated that it is feasible to substitute wheat flour with up to 30% GBRF in bread formulation without negatively affecting sensory acceptance. Practical Application: Our previous study revealed that flours from germinated brown rice have better nutritional properties, particularly gamma-aminobutyric acid (GABA), than the nongerminated one. This study demonstrated feasibility of incorporating up to 30% germinated brown rice flour in a wheat bread formulation without negatively affecting sensory acceptance. In the current United States market, this type of bread may be sold as frozen bread which would have a longer shelf life. Further study is thus needed.

  16. Biosynthesis of germination stimulants of parasitic weeds Striga and Orobanche

    NARCIS (Netherlands)

    Sun, Z.

    2008-01-01

    My research focused on the biosynthetic origin of germination stimulants of the root parasitic plants, Striga spp. and Orobanche spp., which have an increasing impact on cereal and other economically important crops in many regions of the world. The traditional control methods are not sufficient and

  17. Salt stress induced changes in germination, lipid peroxidation and ...

    African Journals Online (AJOL)

    Final germination percentage (FG%) decreased with increasing salinity in GL, Paris Island cos and Isadora varieties, and was annulated at the highest salt concentration in GL, the most sensitive variety. However, in the less sensitive, KS, FG% was decreased by 60% compared to the control at 200 mM. KS and GL varieties ...

  18. Germination Response of Four Alien Congeneric Amaranthus Species to Environmental Factors.

    Science.gov (United States)

    Hao, Jian-Hua; Lv, Shuang-Shuang; Bhattacharya, Saurav; Fu, Jian-Guo

    2017-01-01

    Seed germination is the key step for successful establishment, growth and further expansion of population especially for alien plants with annual life cycle. Traits like better adaptability and germination response were thought to be associated with plant invasion. However, there are not enough empirical studies correlating adaptation to environmental factors with germination response of alien invasive plants. In this study, we conducted congeneric comparisons of germination response to different environmental factors such as light, pH, NaCl, osmotic and soil burials among four alien amaranths that differ in invasiveness and have sympatric distribution in Jiangsu Province, China. The data were used to create three-parameter sigmoid and exponential decay models, which were fitted to cumulative germination and emergence curves. The results showed higher maximum Germination (Gmax), shorter time for 50% germination (G50) and the rapid slope (Grate) for Amaranthus blitum (low-invasive) and A. retroflexus (high-invasive) compare to intermediately invasive A. spinosus and A. viridis in all experimental regimes. It indicated that germination potential does not necessarily constitute a trait that can efficiently distinguish highly invasive and low invasive congeners in four Amaranthus species. However, it was showed that the germination performances of four amaranth species were more or less correlated with their worldwide distribution area. Therefore, the germination performance can be used as a reference indicator, but not an absolute trait for invasiveness. Our results also confirmed that superior germination performance in wide environmental conditions supplementing high seed productivity in highly invasive A. retroflexus might be one of the reasons for its prolific growth and wide distribution. These findings lay the foundation to develop more efficient weed management practice like deep burial of seeds by turning over soil and use of tillage agriculture to control

  19. IMPORTANCE OF STORAGE CONDITIONS AND SEED TREATMENT FOR SUNFLOWER HYBRIDS SEEDS GERMINATION

    Directory of Open Access Journals (Sweden)

    Goran Krizmanić

    2014-12-01

    Full Text Available In this research we have determined germination energy and germination of seeds of sunflower hybrids ‘Luka’ and ‘Apolon’, at the beginning of storage and 6, 12 and 18 months after of storage period (2011-2012 in the floor concrete storage at two different air temperatures and humidity (S-1: air temperature 15-18°C and relative air humidity 65-70% as well as in climate chamber (S-2: air temperature 10-12°C and relative air humidity 60-65%, stored in four treatments (Control: processed-untreated seed; T-1: treated with A.I. metalaxyl-M; T-2: treated with A.I. metalaxyl-M + A.I. imidacloprid and T-3: treated with A.I. metalaxyl-M + A.I. clothianidin. Based on the obtained results we have determined that sunflower hybrid ‘Luka’, compared to hybrid ‘Apolon’, in the given storage conditions and with the same seed treatment has 5-8% higher germination energy and seed germination and that in climate chamber both hybrids have 5-7% higher germination energy. Seed treatment of both sunflower hybrids with A.I. imidacloprid maximally reduced initial germination energy and seed germination in all tested periods and conditions of storage. On the average, natural seed, after 18 months of storage did not have better seed quality compared to seed treated with A.I. metalaxyl-M while other treatments had more significant influence on reduction of germination energy and seed germination, 6-15%. On the average, compared to other variants, seeds treated with A.I. metalaxyl-M after 18 months of storage in both storage conditions had higher germination energy by 4-15%, and seed germination by 2-12%.

  20. A Clostridium difficile-Specific, Gel-Forming Protein Required for Optimal Spore Germination

    Directory of Open Access Journals (Sweden)

    M. Lauren Donnelly

    2017-01-01

    Full Text Available Clostridium difficile is a Gram-positive spore-forming obligate anaerobe that is a leading cause of antibiotic-associated diarrhea worldwide. In order for C. difficile to initiate infection, its aerotolerant spore form must germinate in the gut of mammalian hosts. While almost all spore-forming organisms use transmembrane germinant receptors to trigger germination, C. difficile uses the pseudoprotease CspC to sense bile salt germinants. CspC activates the related subtilisin-like protease CspB, which then proteolytically activates the cortex hydrolase SleC. Activated SleC degrades the protective spore cortex layer, a step that is essential for germination to proceed. Since CspC incorporation into spores also depends on CspA, a related pseudoprotease domain, Csp family proteins play a critical role in germination. However, how Csps are incorporated into spores remains unknown. In this study, we demonstrate that incorporation of the CspC, CspB, and CspA germination regulators into spores depends on CD0311 (renamed GerG, a previously uncharacterized hypothetical protein. The reduced levels of Csps in gerG spores correlate with reduced responsiveness to bile salt germinants and increased germination heterogeneity in single-spore germination assays. Interestingly, asparagine-rich repeat sequences in GerG’s central region facilitate spontaneous gel formation in vitro even though they are dispensable for GerG-mediated control of germination. Since GerG is found exclusively in C. difficile, our results suggest that exploiting GerG function could represent a promising avenue for developing C. difficile-specific anti-infective therapies.

  1. Spore Heat Activation Requirements and Germination Responses Correlate with Sequences of Germinant Receptors and with the Presence of a Specific spoVA2mob Operon in Foodborne Strains of Bacillus subtilis.

    Science.gov (United States)

    Krawczyk, Antonina O; de Jong, Anne; Omony, Jimmy; Holsappel, Siger; Wells-Bennik, Marjon H J; Kuipers, Oscar P; Eijlander, Robyn T

    2017-04-01

    Spore heat resistance, germination, and outgrowth are problematic bacterial properties compromising food safety and quality. Large interstrain variation in these properties makes prediction and control of spore behavior challenging. High-level heat resistance and slow germination of spores of some natural Bacillus subtilis isolates, encountered in foods, have been attributed to the occurrence of the spoVA 2mob operon carried on the Tn 1546 transposon. In this study, we further investigate the correlation between the presence of this operon in high-level-heat-resistant spores and their germination efficiencies before and after exposure to various sublethal heat treatments (heat activation, or HA), which are known to significantly improve spore responses to nutrient germinants. We show that high-level-heat-resistant spores harboring spoVA 2mob required higher HA temperatures for efficient germination than spores lacking spoVA 2mob The optimal spore HA requirements additionally depended on the nutrients used to trigger germination, l-alanine (l-Ala), or a mixture of l-asparagine, d-glucose, d-fructose, and K + (AGFK). The distinct HA requirements of these two spore germination pathways are likely related to differences in properties of specific germinant receptors. Moreover, spores that germinated inefficiently in AGFK contained specific changes in sequences of the GerB and GerK germinant receptors, which are involved in this germination response. In contrast, no relation was found between transcription levels of main germination genes and spore germination phenotypes. The findings presented in this study have great implications for practices in the food industry, where heat treatments are commonly used to inactivate pathogenic and spoilage microbes, including bacterial spore formers. IMPORTANCE This study describes a strong variation in spore germination capacities and requirements for a heat activation treatment, i.e., an exposure to sublethal heat that increases

  2. The Effect of Osmo and Hormone Priming on Germination and Seed Reserve Utilization of Millet Seeds under Drought Stress

    Directory of Open Access Journals (Sweden)

    Maasoumeh Asadi Aghbolaghi

    2014-03-01

    Full Text Available The objective of this research was to evaluate the effect of seed priming with osmo and hormone priming on growth and seed reserve utilization of millet seeds under drought stress. Treatments were combinations of 4 levels of drought stress (0, -4, -8 and -12 bar and 3 levels of seed priming and control with 3 replications. Results showed that with increase in drought stress, germination components such as germination percentage, germination index, mean time to germination, normal seedling percentage, seedling length, seedling dry weight, weight of utilized (mobilized seed and seed reserve utilization efficiency decreased, but seed priming showed lower reduction. The highest germination characteristics and seed reserve utilization was obtained by priming in control conditions. It is concluded that priming results in improvement in germination components of millet in drought stress conditions.

  3. DEVELOPMENT OF AN EFFICIENT METHOD FOR in vitro GERMINATION OF SORGHUM POLLEN

    Directory of Open Access Journals (Sweden)

    José Luis Anaya-López

    2011-10-01

    Full Text Available The in vitro pollen germination of sorghum is useful in viability, physiology and genetic transformation studies of pollen. However, the media reported are not efficient. The aim of this study was to formulate an artificial medium, and to determine the optimal conditions for in vitro pollen germination of sorghum. We used a factorial arrangement of concentrations of sucrose, boric acid and calcium nitrate, also evaluated the effect of pH, relative humidity, the physical state of the medium and the stage of flower development over germination. The conditions described in this paper allowed to obtain up to 51% of in vitro pollen germination from 14 varieties of sorghum. These findings show that for increasing in vitro germination, optimal formulation of the medium is required, as well as control over relative humidity and phonological stage of pollen collection.

  4. Ameliorating influence of sulfur on germination attributes of canola (brassica napus l.) under chromium stress

    International Nuclear Information System (INIS)

    Jahan, S.; Iqbal, S.; Jabeen, K.; Sadaf, S.

    2015-01-01

    An experiment was performed to evaluate the role of sulfur to induce tolerance in Brassica napus L. against chromium stress by estimating the changes in germination parameters. Petriplates were assembled in Randomized Complete Block Design. A total 9 sets of treatments viz., control, chromium treated (40 and 160ppm), sulfur treated (50 and 150ppm) and sulfur (50 and 150ppm) combined with chromium (40 and 160ppm) with three replicates was used. Chromium under both concentrations was responsible for significant decline in germination parameters i.e. germination percentage, germination rate, seedling vigor index, shoot and root length, fresh weight and dry weight of seedlings. Sulfur application under chromium stress resulted in improvement of germination parameters such as germination percentage, germination rate, seedling vigor index, shoot and root length, fresh weight and dry weight of seedlings in contrast to chromium treatment. So, it can be concluded that sulfur in appropriate dose can be used to ameliorate the negative effects of chromium by increasing the germination potential of canola. (author)

  5. Seed germination bioassay using maize seeds for phytoxicity evaluation of different composted materials

    International Nuclear Information System (INIS)

    Haq, T.; Begum, R.; Ali, T.A.

    2014-01-01

    In this paper we evaluated the phytotoxicity of different composts obtained by two different composting methods using seed germination bioassay. Seeds of Zea mays were sown in 1:5 extract of composts and these were compared with the control (100% distilled water) for each type of material. Composting of herbal pharmaceutical solid waste (HPSW) was carried out using both conventional bin and pit method. HPSW was mixed separately with poultry manure, cow-manure and goat manure in three different ratios. Uncomposted and composted HPSW were tested to study the Phytotoxicity on Zea mays seed germination, after composting increase in percent germination as well as germination index (GI) values were observed in all combinations regardless, composted by pit or bin method. The results clearly showed that composting reduced Phytotoxicity. The results showed that use of completely composted organic waste reduces the phytotoxicity and is better than the use of uncomposted waste. It was found that pit method was more suitable than bin method. Herbal waste with goat manure in 1:1 ratio was found to be the most effective combination as compared to other combinations here. Germination was 100% and the germination index was 1.4 whereas uncomposted HPSW showed the lowest percent germination i.e., 77% and germination index 52.31 respectively. (author)

  6. Effect of surfactants and temperature on germination and vegetative growth of Beauveria bassiana

    Directory of Open Access Journals (Sweden)

    Lizzy A. Mwamburi

    2015-03-01

    Full Text Available Three non-ionic surfactants: Tween20, Tween80 and Breakthru® were screened for their effects on spore germination and mycelial growth rates and for their influence on three isolates of Beauveria bassianaspore germination at various temperatures. Tween20 and Tween80 were compatible with all the B. bassiana isolates in the germination studies, but inhibited germination at higher surfactant concentrations, irrespective of the conidial concentrations. Breakthru® had an inhibitory effect on germination even at the lowest concentration of 0.1% on all the B. bassiana isolates. The effects of the surfactants on spore germination did not correspond with their effects on colony growth. Conidial viability within the same formulation declined significantly with increases in temperature, irrespective of the surfactant. The optimal temperature for conidial germination of B. bassiana isolates was approximately 25 °C with an upper limit at 30 °C. Isolate 7320 was identified as the least affected by the different surfactants. This isolate was able to germinate rapidly in a broad temperature range of 25–30 °C after 24 h, this characteristic being an essential factor in controlling house fly populations in poultry houses.

  7. Effect of surfactants and temperature on germination and vegetative growth of Beauveria bassiana.

    Science.gov (United States)

    Mwamburi, Lizzy A; Laing, Mark D; Miller, Ray M

    2015-03-01

    Three non-ionic surfactants: Tween20, Tween80 and Breakthru (®) were screened for their effects on spore germination and mycelial growth rates and for their influence on three isolates of Beauveria bassiana spore germination at various temperatures. Tween20 and Tween80 were compatible with all the B. bassiana isolates in the germination studies, but inhibited germination at higher surfactant concentrations, irrespective of the conidial concentrations . Breakthru (®) had an inhibitory effect on germination even at the lowest concentration of 0.1% on all the B. bassiana isolates. The effects of the surfactants on spore germination did not correspond with their effects on colony growth. Conidial viability within the same formulation declined significantly with increases in temperature, irrespective of the surfactant. The optimal temperature for conidial germination of B. bassiana isolates was approximately 25 °C with an upper limit at 30 °C. Isolate 7320 was identified as the least affected by the different surfactants. This isolate was able to germinate rapidly in a broad temperature range of 25-30 °C after 24 h, this characteristic being an essential factor in controlling house fly populations in poultry houses.

  8. Effect of mutagens on seed germination in chilli (Capsicum annuum L.)

    International Nuclear Information System (INIS)

    Dhamayanthi, K.P.M.; Reddy, V.R.K.

    2002-01-01

    Seeds of chilli variety CO-2 (Coimbatore-2) were irradiated with gamma rays ranging from 10 kR to 35 kR at an interval of 5 kR and the effect on seed germination, seedling survival, percent lethality and seedling injury were studied. Lower doses were stimulative, while higher doses had inhibitory effect on seed germination and seedling survival. The highest percentage of seed germination (37.5) and seedling survival (31.3) was recorded at 10 kR as compared to 28 percent of germination and 3.3 percent seedling survival in control. Percent lethality (9.6%) and seedling injury (6.5%) were comparatively low than the lethality percentage and seedling injury of the higher dose treatments. In chemical mutagen treatments, the maximum seed germination (54.5%) and seedling survival (51.2%), seedling lethality (0.97%) and seedling injury (1.37%) were obtained in the treated seeds of EMS at 0.5% concentration followed by 39.5% seed germination and 30.0% seedling survival, seedling lethality (3.8%) and seedling injury (3.06%) of MMS. The stimulative effect of seed germination is more in chemical mutagens than the physical mutagen. There was a proportionate decrease in germination percentage and seedling survival with an increase in dose/concentration of both the chemicals. (author)

  9. Using In Situ Symbiotic Seed Germination to Restore Over-collected Medicinal Orchids in Southwest China.

    Science.gov (United States)

    Shao, Shi-Cheng; Burgess, Kevin S; Cruse-Sanders, Jennifer M; Liu, Qiang; Fan, Xu-Li; Huang, Hui; Gao, Jiang-Yun

    2017-01-01

    Due to increasing demand for medicinal and horticultural uses, the Orchidaceae is in urgent need of innovative and novel propagation techniques that address both market demand and conservation. Traditionally, restoration techniques have been centered on ex situ asymbiotic or symbiotic seed germination techniques that are not cost-effective, have limited genetic potential and often result in low survival rates in the field. Here, we propose a novel in situ advanced restoration-friendly program for the endangered epiphytic orchid species Dendrobium devonianum , in which a series of in situ symbiotic seed germination trials base on conspecific fungal isolates were conducted at two sites in Yunnan Province, China. We found that percentage germination varied among treatments and locations; control treatments (no inoculum) did not germinate at both sites. We found that the optimal treatment, having the highest in situ seed germination rate (0.94-1.44%) with no significant variation among sites, supported a warm, moist and fixed site that allowed for light penetration. When accounting for seed density, percentage germination was highest (2.78-2.35%) at low densities and did not vary among locations for the treatment that supported optimal conditions. Similarly for the same treatment, seed germination ranged from 0.24 to 5.87% among seasons but also did vary among sites. This study reports on the cultivation and restoration of an endangered epiphytic orchid species by in situ symbiotic seed germination and is likely to have broad application to the horticulture and conservation of the Orchidaceae.

  10. Precocious germination and its regulation in embryos of triticale caryopses

    Directory of Open Access Journals (Sweden)

    Stanisław Weidner

    2014-01-01

    Full Text Available Triticale var. Lasko embryos, isolated from grain gathered at milk ripeness, the beginning of wax ripeness and at full ripeness, were allowed to germinate for 48 h on agar with glucose. The highest incorporation of tritiated adenosine into polyribosomal RNA during germination was found in the ribosome fractions from embryos of grain gathered at full ripeness, lower incorporation was in preparations from embryos of milk ripe grain and the lowest in preparations from embryos of wax ripe grain. Different tendencies were observed in respect to the synthesis of ribosomal proteins. The highest incorporation of 14C-amino acids into ribosomal proteins was found in preparations of ribosome fractions from embryos of milk ripe grain, lower in preparations of embryos from fully ripe grain, the lowest in preparations of embryos from wax ripe grain. ABA (10-4 M completely inhibited the external symptoms of germination of immature embryos, while its inhibition of the synthesis of polyribosomal RNA and ribosomal proteins was greater the more mature the embryos that were germinated. The greatest stimulation of precocious germination by exogenous BA and GA3 was demonstrated in the least mature embryos isolated from milk ripe grain. Under the influence of both stimulators, an increase of the proportion of polyribosomes in the total ribosome fraction occurred in this sample, as did a rise in the intensity of ribosomal protein synthesis. The incorporation of 3H-adenosine into polyribosomal RNA, however, was lower than in the control sample. The results obtained suggest that the regulation of precocious germination of triticale embryos by phyto-hormones is not directly related to transcription.

  11. Seed dormancy and germination

    NARCIS (Netherlands)

    Bentsink, L.; Koornneef, M.

    2002-01-01

    Arabidopsis possesses dormancy, as is the case for many other plant species, which is controlled by environmental factors such as light, temperature and time of dry storage as well as by genetic factors. The use of genetics and molecular genetics in Arabidopsis is starting to shed light on some

  12. The Effect of Accelerated Aging on Germination Characteristics, Seed Reserve Utilization and Malondialdehyde Content of Two Wheat Cultivars

    Directory of Open Access Journals (Sweden)

    Maryam Goodarzian Ghahfarokhi

    2014-05-01

    Full Text Available In this study experiment was conducted to evaluated the effect of accelerated aging on germination characteristics, seed reserve utilization and malondialdehyde of two wheat cultivars. The experiment was conducted in factorial with a randomized complete block design with 3 replications. Results of variance analysis showed that, seed aging had significant effects on germination percentage, germination index, normal seedling percentage, mean time to germination, malondialdehyde content, seedling dry weight, weight of utilized (mobilized seed reserve and electrical conductivity. The highest germination percentage, germination index, normal seedling percentage, seedling dry weight and weight of utilized (mobilized seed reserve and the minimum mean time to germination, electrical conductivity and malondialdehyde content were attained from Verinak cultivar under control conditions (0 day aging. Results indicates that germination percentage, germination index, normal seedling percentage, seedling dry weight, and weight of utilized (mobilized seed reserve decreased significantly as seed aging progressed. But, mean time to germination, electrical conductivity and malondialdehyde content increased significantly as seed aging progressed. Also, the decrease in seed reserve mobilization rate was the cause of decreased other traits.

  13. Insights into the molecular mechanism of RGL2-mediated inhibition of seed germination in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Stamm Petra

    2012-10-01

    Full Text Available Abstract Background Seed germination is of immense significance for agriculture and has been studied for centuries. Yet, our understanding of the molecular mechanisms underlying regulation of dormancy and germination is still in its infancy. Gibberellins are the key phytohormones that promote germination, and the DELLA protein RGL2 is the main signalling intermediate involved in this response. Germination is completely inhibited if functional RGL2 is overexpressed and/or stabilized; however, the molecular mechanisms of RGL2 function are still largely unknown. We therefore attempted to shed light onto some of the genetic events downstream of RGL2. Results Gene ontology of the transcriptome differentially regulated by RGL2, as well as extensive cross-comparison with other available microarray data indicates that RGL2-mediated inhibition of germination causes seeds to enter a state of dormancy. RGL2 also appears to differentially regulate a number of transcription factors, many of which are known to be involved in light- or phytohormone-mediated aspects of germination. A promoter analysis of differentially expressed genes identified an enrichment of several motifs that can be bound by specific transcription factors, for example GAMYB, ARF1, or Dof-type zinc fingers. We show that Dof-binding motifs indeed play a role in RGL2-mediated transcription. Using Chromatin Immunoprecipitation (ChIP, we show that RGL2 directly downregulates at least one cell wall modifying enzyme, which is predicted to constrain cell growth thereby leading to inhibition of seed germination. Conclusions Our results reveal that RGL2 controls various aspects of germination. Through the repression of cell wall modifying enzymes, cell growth is directly constrained to inhibit germination. Furthermore, RGL2 likely interacts with various types of proteins to regulate transcription, and differentially regulates several transcription factors. Collectively, our data indicate that

  14. Germination Ecology of Johnsongrass Seeds (Sorghum halepense (L. PERS.

    Directory of Open Access Journals (Sweden)

    Mehdi Mojab

    2018-01-01

    Full Text Available Introduction Johnsongrass (Sorghum halepense (L. PERS is one of the most controversial and problematic weed. It is damaging at more than 30 different crops in 53 different countries. S. halepense (L. is a perennial weed reproducing by seed and rhizome. Since it produces many seeds and rhizomes, it is difficult to control it. A weed germination plays an important role in attaining a prosper establishment in a typical agri-ecosystem; and this trend is adjusted with some environmental factors such as light, temperature, salinity, pH and soil moisture. If you consider the pattern of germination and emergence of weed species, you will able to provide comprehensive information to develop weed management strategies in the future. Thus, the purpose of current research has been to evaluate the breaking methods of the seed dormancy, effect of constant and alternative temperature, light, salinity and drought stress and burial depth on germination and seedling emergence of Johnsongrass. Materials and Methods Seeds of Johnsongrass (S. halepense L. were collected in June 2013 from plants located at the research farmlands of the Agriculture research centre of Fars province in Zarghan town, Iran. Experimental treatments of Breaking Dormancy consist of six level of scarification with 95-98% acid sulfuric (4, 8, 15, 30, 45 and 60 minutes, in the other one, there were the soaked seeds in the water for 24, 48, 72 and 96 hours, and in the next group the seeds were heated in a 95- 98 boiling water for two and five minutes, and again in the next group, for 15, 30, 45 and 60 days, the seeds were chilled in 3 C, and in the last group, the seeds stored in 3 and 12 months after harvest comparing to control treatment. A number of 25 seeds were transferred to incubators to identify a suitable temperature and light regime for subsequent experiments of germination and determine under alternative day/night temperatures (15/5, 20/10, 30/15 and 35/20 C and constant temperature

  15. [The research of Valeriana amurensis seed germination characteristics].

    Science.gov (United States)

    Liu, Juan; Yang, Chun-Rong; Jiang, Bo; Fang, Min; Du, Juan

    2011-10-01

    To study the effect of different treatments on the Valeriana amurensis seed germination rate. Used different chemical reagents and seed soakings on the routine germination test and the orthogonal test of the Valeriana amurensis seed, calculated the germination rate under different germination condition. Valeriana amurensis treated with different chemical reagends had different germination rate. The suitable immersion time could enhance Valeriana amurensis seed germination rate. Different treatment time, different disposal temperature, different germination temperature would have an impact on the Valeriana amurensis seed germination rate. In order to raise the Valeriana amurensis seed germination rate, use appropriate treatment on the seed before plant seeds; The seed growing must under suitable time and temperature.

  16. The Effect of Seed Priming and Accelerated Aging on Germination and Physiochemical Changes in Milk Thistle (Silybum marianum

    Directory of Open Access Journals (Sweden)

    Ghasem PARMOON

    2013-05-01

    Full Text Available Effects of seed priming and aging on some physiological characteristics of Milk thistle was studied in a factoral experiment based on Complete Randomized Design (CRD. Tratments were included hydro priming (using distilled water, halo priming (0, 1.5, 3, 4.5 and 6% KNO3 and accelerated aging (0, 2, 4 and 6 days under 45°C and 95% humidity in three replications. Determined parameters were germination charactristics including germination percentage, daily germination speed, mean time of germination, seed vigor index, hypocutile length and hypocutile dry weight. Activity of catalase, peroxidase and polyphenol oxidase were determined at 12 hours after imbibition and seedling stage. According to results of this experiment, germination percentage, seed vigor and seedling growth of seeds were increased under all priming treatments. Improving the catalase and peroxidase activity led to decrease the aging damages. Germination characteristics were improved under both priming treatments at the beginning of germination as well as seedling growth. Polyphenol oxidase activity was increased in the pre-treated seeds but decreased in seedling growth stage. Aging treatments led to reduce the germination percentage, daily germination speed, seed vigor and seedling growth while the germination time was increased. Accelerated aging caused to reduce the germination rate and seedling growth of milk thistle that is probably due to increasing the lipid peroxidation, free radical increment and decreasing the antioxidants activity. The greatest and lowest antioxidants activity, the germination percentage, germination speed and seed vigor were respectively observed under priming using 3% KNO3 concentration and control seeds.

  17. Germination in vitro embryo of Walnut (Juglans boliviana

    Directory of Open Access Journals (Sweden)

    Pérez-Guzmán Jheanete

    2015-05-01

    Full Text Available Bolivian Juglans is an important forest species found in the rain forests of Bolivia. The seed of this species is recalcitrant with hardened cover, which hinders germination and propagation of the species. The aim of this study was to determine the culture medium for in vitro germination of mature embryos of Bolivian Juglans. Technique initially scarification and disinfection process was determined. Subsequently in vitro culture was performed using the culture medium Woody Plant Medium (WPM with the addition of plant growth regulators (indole butyric acid and 6-benzyl aminopurine in different concentrations. As control WPM, culture medium was used 100%. Response variables evaluated were percentage of contamination and germination; vitroplant length, number of leaves, number of shoots, number of roots per vitroplant, root length and percentage of survival. The plantlets in vitro germination in treatments and the control in the middle l culture WPM supplemented with 0.15 mg / l of IBA and 1.5 mg / l BAP was 90%; other treatments inhibit the growth of the stem and roots of plantlets.

  18. Salinity Effects on Germination Properties ofPurslane (Portulaca oleracea L.

    Directory of Open Access Journals (Sweden)

    m Kafi

    2011-02-01

    Full Text Available Abstract In order to study seed germination and seedling growth responses of purslane to different levels of salinity, an experiment was conducted in a completely randomized desgin with six levels of salinity (0, 7, 14, 21, 28 and 35 dS/m using NaCl and five replications. Persentage and rate of germination, length and dry weight of radicle and plumule were measured, and ratio radicle to plumule length, mean germination time and seedling vigor index were calculated. The results showed that up to 28 dS/m salinity did not impose any significant different in germination percentage compared with control, but in 35 dS/m salinity it decreased to 19%. germination rate did not show any significant different up to 14 dS/m in comparison with control but beyond this level it significantly decreased with increasing salt stress. Mean germination time up to 21 dS/m did not have significant different in comparison with control, but increased with increasing salinity significantly. Length, fresh and dry weight of radicle and plumule, and seedling vigor index significantly decreased by increasing salinity. Ratio of radicle to plumule length decreased with increasing salt concentration, but there were not significant different among salt levels. According to the results, the germination stage of purslane is remarkably resistant to elevated levels of salinity and it seems that by exerting proper management in farms, it could be established in saline environments. Keywords: Plumule, Radicle, Seedlings of purslane

  19. 7 CFR 201.53 - Source of seeds for germination.

    Science.gov (United States)

    2010-01-01

    ... REGULATIONS Germination Tests in the Administration of the Act § 201.53 Source of seeds for germination. (a) When both purity and germination tests are required, seeds for germination shall be taken from the... to size or appearance. (b) When only a germination test is required and the pure seed is estimated or...

  20. Seed germination of Phillyrea angustifolia L., a species of difficult propagation

    Energy Technology Data Exchange (ETDEWEB)

    Mira, Sara; Arnal, Alberto; Pérez-García, Félix

    2017-11-01

    Aim of study: The purpose was to determine the type of dormancy and the optimal germination conditions of Phillyrea angustifolia (Oleaceae) seeds. Area of study: Germination requirements of P. angustifolia seeds collected from wild plants growing in the province of Ávila (Central Spain) were studied. Materials and methods: Seed water uptake was measured. Seeds with and without an endocarp were germinated at different temperatures, and several treatments were tested. Main results: The lignified endocarp interferes mechanically with the emergence of the radicle, and the treatments that achieved the highest germination percentages were the total removal of the endocarp with pliers (84%) or the immersion in liquid nitrogen for 1 min (97%). Scarification with concentrated sulphuric acid did not significantly increase germination compared to the control seeds, and treatments with dry heat or wet heat were detrimental to seed germination. The optimum temperature for germination was 15 ºC. A pre-sowing treatment of soaking in distilled water for 24 h slightly increased germination speed. Neither cold stratification at 5 ºC nor soaking in a gibberellic acid solution improved seed germination. Research highlights: Phillyrea angustifolia seeds have physiological dormancy – that is, the embryo does not have enough growth potential to overcome the mechanical restriction of the lignified endocarp. The seeds do not exhibit physical dormancy, given their water-permeable lignified endocarp. Our results suggest that the optimum germination protocol for P. angustifolia would be the total removal of the endocarp or immersion in liquid nitrogen for 1 min, followed by immersion in distilled water for 24 h and then seed incubation at 15 ºC in light or darkness.

  1. Comparing seeds germination of some local plant species on two hydroseeding mulches for post mining revegetation

    Directory of Open Access Journals (Sweden)

    M F Anshari

    2018-01-01

    Full Text Available The aims of this study were to determine seed germination rate of some local plant species in two hydroseeding mulches containing different tackifier concentration, as well as to determine the optimal hydroseeding mulch media composition for germinating seeds. This study used seeds of 13 local plant species: two species of Cyperaceae (Cyperus brevifolius, C. javanicus, five species of Leguminosae (Cajanus cajan, Crotalaria pallida, Sesbania grandiflora, S. sesban, Tephrosia purpurea, and six species of Poaceae (Eleusine indica, Paspalum conjugatum, Sorghum timorense, S. bicolor, Sporobolus indicus, Themeda arundinaceae. Two hydroseeding mulch media with different tackifier composition were mixed with seeds of each species and then sowed in pots. Each treatment was repeated three times. Moistened cotton wool was used as control and comparative media for observing seed viability. Seed germination in mulch media was observed during 13 days. The results showed that only 8 of 13 species could be germinated: S. indicus, S. timorense, T. arundinaceae, C. cajan, C. pallida, S. grandiflora, S. sesban, and T. purpurea. The highest germination rate was shown by S. sesban (67% in M2 medium and the lowest one was shown by T. arundinaceae (2% in both media. The fastest germination time was recorded for C. pallida and S. sesban seeds that germinated in 2 days after sowing (DAS in both media, while S. timorense and T. arundinaceae seeds showed the lowest ones in 11 DAS. The fluid M1 medium was optimal for seeds germination of S. sesban (50% and S. grandiflora (35%, while the thicker M2 medium was optimal for seeds germination of S. sesban (67% and S. timorense (50% in 13 DAS. The maximum germination rate was generally reached in 11 DAS.

  2. Zinnia Germination and Lunar Soil Amendment

    Science.gov (United States)

    Reese, Laura

    2017-01-01

    Germination testing was performed to determine the best method for germinating zinnias. This method will be used to attempt to germinate the zinnia seeds produced in space. It was found that seed shape may be critically important in determining whether a seed will germinate or not. The ability of compost and worm castings to remediate lunar regolith simulant for plant growth was tested. It was found that neither treatment effectively improves plant growth in lunar regolith simulant. A potential method of improving lunar regolith simulant by mixing it with arcillite was discovered.

  3. DOES JASMONIC ACID PREVENT THE GERMINATION

    OpenAIRE

    ÇAVUŞOĞLU, Kürşat

    2009-01-01

    Abstract: Effect of jasmonic acid on seed germination and seedling growth of barley (Hordeum vulgare L. cv. Bülbül 89) was investigated in the present study. Jasmonic acid concentrations less than 1500 µM have not inhibited the seed germination, while 1500 and 2000 µM jasmonic acid levels caused atypical germination. The germination was completely inhibited at 3000 µM level of jasmonic acid. However, the seedling growth clearly slowed down with increasing concentrations of jasmonic acid. Furt...

  4. Etude des potentialites germinatives pour une regeneration ...

    African Journals Online (AJOL)

    ... taux de germination a été obtenu avec des graines de petites tailles à la température ambiante (32°C). Le traitement préalable à l'eau de javel à 8% accroît le taux de germination (40% de réponse). La lumière et l'obscurité n'ont aucun effet sur la germination. Mots clés : Neocarya macrophylla, germination, régénération.

  5. Effect of gamma rays doses on pollen germination, polysiphony and pollen tube elongation in Pinus patula Schiede et Deppe

    International Nuclear Information System (INIS)

    Katiyar, S.R.; Chauhan, Y.S.

    1987-01-01

    The present study aimed to study the effects of gamma radiation ( 60 Co) on pollen germination and pollen tube elongation in Pinus patula. Pollen germination and pollen tube elongation are stimulated by low doses of radiation. Although higher doses of radiation inhibit the germination of pollen, pollen tube elongation remains unaffected. Thus in Pinus patula pollen tube elongation is less radiosensitive than pollen germination. Compared to control pollen, irradiated pollen produced more number of long pollen tubes. Therefore pollen tube size can be improved using low doses of radiation. (author). 15 refs., 5 figs., 2 tables

  6. Impact of storage conditions on seed germination and seedling growth of wild oat (Avena fatua L. at different temperatures

    Directory of Open Access Journals (Sweden)

    Marija Sarić-Krsmanović

    2015-12-01

    Full Text Available The influence of seed storage conditions and different temperatures (5˚C, 10˚C, 15˚C, 20˚C, 25˚C, 30˚C and 26˚C/21˚C during germination and seedling development on seed germination, shoot length and germination rate of wild oat (Avena fatua L. was examined. Germinated seeds were counted daily over a period of ten days and shoot length was measured on the last day, while germination rates were calculated from those measurements. The results showed that seed storage under controlled conditions (T1: temperature 24±1°C, humidity 40-50%; T2: temperature 26±1°C, humidity 70-80% and T3: temperature 4˚C for periods of 3 (t1 and 12 (t2 months had a significant influence on germination of wild oat seeds. The percentage of germinated seeds under all examined temperatures was higher when they were stored for 12 months under controlled temperature and humidity. The results also showed that temperature had a significant effect on the percentage of germination and germination rate of A. fatua seeds. The highest total germination occurred at 15˚C temperature (T1: t1 - 41.25%, t2 - 44.37%; T2: t1 - 28.13%, t2 - 34.37%; T3: t1 - 10.63%, t2 - 12.50%. Germination percentage under an alternating day /night photoperiod at 26˚C/21˚C temperature was higher in all treatment variants (T1: t1 - 8.13%, t2 - 10.00%; T2: t1 - 11.87%, t2 - 13.13%; T3: t1 - 2.42%, t2 - 2.70% than germination in the dark at 25˚C, 30˚C and 5˚C.

  7. BIOSECURITY FOR REDUCING OCHRATOXIN A PRODUCTIVITY AND THEIR IMPACT ON GERMINATION AND ULTRASTRUCTURES OF GERMINATED WHEAT GRAINS

    Directory of Open Access Journals (Sweden)

    M.M.

    2012-08-01

    Full Text Available Ochratoxin A (OTA is a secondary metabolite of some fungi that causes very serious problems for plants, animals and humans. Various microorganisms such as bacteria and microscopic fungi have been tested for their abilities to prevent ochratoxin A contamination or detoxify foods. In this study, Saccharomyces cerevisiae and Lactobacillus bulgaricus reduced OTA production by Aspergillus ochraceus to 40.88 µg/ml ( productivity 60.69% and 13.80 µg/ml (productivity 20.48% respectively compared with the control (67.35 µg/ml (productivity 100%. The results clearly indicated that the seed germinibility in the presence of OTA was decreased with increasing concentration, whereas the germinibility was uncompletely ceased at high concentration (67.35 µg/ml of OTA. The maximum amount of germination was observed in control (without OTA treatment and at low concentration (13.80 µg/ml within 4 days. Antioxidant enzymes catalase and peroxidase decreased in germinated grains treated with OTA. Catalase was 18.12 U/ml in grains treated with low concentration (13.80 µg/ml of OTA while at high concentration (67.35 µg/ml, it was 12.23 U/ml compared with the control (20.33 U/ml. On the other hand, peroxidase decreased only in germinated grains treated with high concentration of OTA. The ultrastructural studies indicate that there were dramatic differences between the cells of root system of wheat seedlings of grains treated and untreated with the OTA. Cell ultrastructures of treated grains with OTA showed that the cytoplasmic membrane collapses away from the cell wall. Plasmodesmata threads were appeared in untreated cells but not formed in treated cells.

  8. Substrate water availability and seed water content on niger germination

    Directory of Open Access Journals (Sweden)

    Carla Regina Baptista Gordin

    2015-09-01

    Full Text Available Niger is an oleaginous species whose cultivation has been spreading, but there is not much information on the adverse conditions during its seedling establishment. This study aimed at evaluating the effects of substrate water availability and seed water content on niger germination. Seeds were moistened using the humid atmosphere method for 0; 24; 48; and 72 hours, obtaining the water contents of 7.0 %, 12.8 %, 16.8 % and 32.2 %. Then, they were sown in substrate moistened with PEG 6000 solutions with different osmotic potentials: 0.0 MPa (control, -0.1 MPa, -0.2 MPa, -0.3 MPa and -0.4 MPa. A completely randomized design, in a 4 x 5 factorial scheme (water content x osmotic potential, with four replications of 50 seeds, was used. First count and germination percentage, germination speed index and mean time, shoot and root length and seedlings dry weight were evaluated. The reduction in the substrate osmotic potential decreases the niger seed germination and seedling growth, regardless of water content, but with a higher evidence in seed water contents below 32.2 % and 12.8 %, respectively.

  9. Cellular recycling of proteins in seed dormancy alleviation and germination

    Directory of Open Access Journals (Sweden)

    Krystyna Oracz

    2016-07-01

    Full Text Available Each step of the seed-to-seed cycle of plant development including seed germination is characterized by a specific set of proteins. The continual renewal and/or replacement of these biomolecules are crucial for optimal plant adaptation. As proteins are the main effectors inside the cells, their levels need to be tightly regulated. This is partially achieved by specific proteolytic pathways via multicatalytic protease complexes defined as 20S and 26S proteasomes. In plants, the 20S proteasome is responsible for degradation of carbonylated proteins, while the 26S being a part of ubiquitin-proteasome pathway (UPP is known to be involved in proteolysis of phytohormone signaling regulators. On the other hand, the role of translational control of plant development is also well documented, especially in the context of pollen tube growth and light signaling. Despite the current progress that has been made in seed biology, the sequence of cellular events that determine if the seed can germinate or not are still far from complete understanding. The role and mechanisms of regulation of proteome composition during processes occurring in the plant’s photosynthetic tissues have been well characterized since many years, but in nonphotosynthetic seeds it has emerged as a tempting research task only since the last decade. This review discusses the recent discoveries providing insights into the role of protein turnover in seed dormancy alleviation, and germination, with a focus on the control of translation and proteasomal proteolysis. The presented novel data of translatome profiling in seeds highlighted that post-transcriptional regulation of germination results from a timely regulated initiation of translation. In addition, the importance of 26S proteasome in the degradation of regulatory elements of cellular signaling and that of the 20S complex in proteolysis of specific carbonylated proteins in hormonal- and light-dependent processes occurring in seeds is

  10. Comparative analysis of regulatory elements in different germin-like ...

    African Journals Online (AJOL)

    STORAGESEVER

    INTRODUCTION. Germin and germin-like proteins (GLPs) is a member of ..... analysis of germin-like protein gene 2 promoter from Oryza sativa L. ssp. Indica. ... esculenta Crantz) root proteome: Protein identification and differential expression.

  11. on seed germination and growth of Garcinia kola

    African Journals Online (AJOL)

    SARAH

    2016-07-31

    Jul 31, 2016 ... Seed germination tests: After 72 h of fermentation in plastic bags, seeds were ... Models (GLM) procedure of the R statistical version 9.1 was used to identify traits .... L-1) had accelerated seed germination. Germination rates.

  12. Effects of hormonal priming on seed germination of pigeon pea under cadmium stress

    Directory of Open Access Journals (Sweden)

    LARISSA C. SNEIDERIS

    2015-09-01

    Full Text Available In this work we investigated whether priming with auxin, cytokinin, gibberellin, abscisic acid and ethylene, alters the physiological responses of seeds of pigeon pea germinated under water and cadmium stress. Seeds treated with water or non-treated seeds were used as control. Although compared to non-treated seeds we found that the hormone treatments improve the germination of pigeon pea under cadmium stress, however, these treatments did not differ from water. However, we also observed a trend of tolerance to the effects of cadmium in the presence of ethylene, suggesting that the use of this hormone may be an efficient method to overcome seed germination under metal stress.

  13. Effect of radiation on fruit pollen germination and distant hybridization compatibility

    International Nuclear Information System (INIS)

    Li Jing; Shang Xiaoli

    2006-01-01

    Pollens of Zhouxingshantao peach trees, apricot cultivar Katy and plum cultivar Friar were irradiated by different doses of 60 Co γ-rays and ultraviolet to study the radiation effect on the pollen germination and distant hybridization settings. The germination percentages of the pollen irradiated by 60 Co γ-rays and ultraviolet were lower than those of the controls. The pollens of the tested fruits have different sensitivities of 60 Co γ-rays and ultraviolet: the Friar pollen was the most sensitive to the radiation, and the Katy was the least. With the germinate percentages of the irradiated pollen dropping, the distant hybridization fruit setting percentage also lowered. (authors)

  14. High Pressure Germination of Bacillus subtilis Spores with Alterations in Levels and Types of Germination Proteins

    Science.gov (United States)

    2014-01-01

    1ITLE AND SUBTITLE 5a CONTRACTNUMBER High pressure germination of Bacillus subtilis spores with W911NF-09-l-0286 alterations in levels and types of...A moderate high pressure (mHP) of 150 megaPascals (MPa) triggers germination of Bacillus subtilis spores via germinant receptors (GRs), while...germination by a very high pressure (vHP) of550 MPa is GR-independent. The mHP and vHP germination of Bacillus subtilis spores with different levels ofGRs

  15. Seed germination of Pinus koraiensis Siebold and Zucc. in response to light regimes caused by shading and seed positions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, M.; Zhu, J.; Yan, Q.

    2012-07-01

    Pinus koraiensis Siebold and Zucc. (Korean pine), the dominant tree species in the mixed broadleaved Korean pine forests (regional climax), is severely restricted by its regeneration failure. To determine the effects of light regimes on P. koraiensis regeneration, the seed germination process was examined in shade houses and forest stands (before and after leaf expansion) with various light levels created by shading and seed positions. Despite the large size of P. koraiensis seeds (500-600 mg), both light intensity and quality significantly affected the germination percentage in both shade houses and forests. Substantial changes in light intensity and quality led the majority of seeds (80%) to germinate in leafless forests and shade houses, while only a minority ({<=}20%) germinated after leaf expansion in the forests. Moreover, seed germination in shade houses and leafless forests exhibited similar patterns; they consistently reached a 70% shading degree, which was optimal for the seed germination of P. koraiensis on topsoil. Seed positioning significantly affected germination for each shading degree, especially when litter and soil coverings drastically inhibited germination. In conclusion, (1) when seeds were not stressed by temperature and moisture, light irradiance played a critical role in the seed germination of P. koraiensis; (2) seed positioning, in relation to alterations in light intensity and quality, affected the germination of P. koraiensis; (3) a shade house experiment using neutral cloth provided an applicable and controllable way to monitor the P. koraiensis seed germination in early spring before leaf expansion. The light requirement for the germination of P. koraiensis played a key role in the regeneration of P. koraiensis throughout the temperate secondary forests. (Author) 41 refs.

  16. The effects of achene type and germination time on plant performance in the heterocarpic Anacyclus clavatus (Asteraceae).

    Science.gov (United States)

    Afonso, Ana; Castro, Sílvia; Loureiro, João; Mota, Lucie; Cerca de Oliveira, José; Torices, Rubén

    2014-05-01

    • In heterocarpy, fruits with different morphologies have been associated with alternative strategies of dispersal, germination, dormancy, and seedling competitive ability. In heterocarpic species, it is common to find fruits with competitive or dispersal syndromes. The competitive advantage of nondispersing fruits has been frequently attributed to their larger size, but recent studies have suggested that this could also be mediated by germination time. The main objective of our study was to investigate which factor, fruit type or germination time, most affects plant performance and, consequently, competitive ability, using the heterocarpic species Anacyclus clavatus• To explore the effects of achene type and germination time on plant performance, we followed an innovative experimental approach including two experiments: one allowing for differences in germination time, and the other evaluating the effect of achene type alone by synchronizing germination time.• A significant effect of germination time on several postdispersal life-history traits was observed: Achenes that germinated earlier produced plants with higher biomass and reproductive effort. When germination time was controlled, no significant differences were observed in any of the traits.• The competitive advantage of achenes with different morphologies was mainly mediated by germination time and not by differences in size or other intrinsic traits. The consequences of these results are discussed in light of the dispersal-competition trade-off. Our experimental approach (i.e., the synchronization of germination time) revealed the importance of manipulative experiments for testing the effects of germination time on plant survival and performance. © 2014 Botanical Society of America, Inc.

  17. Inhibition of barley grain germination by light

    NARCIS (Netherlands)

    Roth-Bejerano, N.; Meulen, R.M. van der; Wang, M.

    1996-01-01

    Intact grains of barley (Hordeum distichum cv. Triumph) germinated rapidly in the dark or when exposed to brief daily light breaks in the temperature range 15-25°C, although germination proceeded less rapidly at low temperatures. Prolonged illumination (16 h/day) or continuous light inhibited

  18. Germination and seedlings performance of cashew ( Anacardium ...

    African Journals Online (AJOL)

    The effects of nut-sowing orientations on the germination of cashew nuts and the responses of the resultant seedlings to cotyledon removed were studied in the nursery. While cashew nuts sown flat and those with stylar-end up had highest mean germination of 91.67 % and 92.50 % respectively the nuts sown with ...

  19. Comparative Germination Responses of Cowpea and Maize ...

    African Journals Online (AJOL)

    Germination, emergence and establishment phase are critical to the growth cycle of plant as it determines the density of the stand obtained. However, a number of factors including soil available moisture decrease seed germination and the rate of decline is found to vary with crop species. Pot experiment was therefore ...

  20. 7 CFR 201.6 - Germination.

    Science.gov (United States)

    2010-01-01

    ... REGULATIONS Records for Agricultural and Vegetable Seeds § 201.6 Germination. The complete record shall include the records of all laboratory tests for germination and hard seed for each lot of seed offered for transportation in whole or in part. The record shall show the kind of seed, lot number, date of test, percentage...

  1. Is seed conditioning essential for Orobanche germination?

    Science.gov (United States)

    Plakhine, Dina; Ziadna, Hammam; Joel, Daniel M

    2009-05-01

    Parasitic Orobanchaceae germinate only after receiving a chemical stimulus from roots of potential host plants. A preparatory phase of several days that follows seed imbibition, termed conditioning, is known to be required; thereafter the seeds can respond to germination stimulants. The aim of this study was to examine whether conditioning is essential for stimulant receptivity. Non-conditioned seeds of both Orobanche cumana Wallr. and O. aegyptiaca Pers. [syn. Phelipanche aegyptiaca (Pers.) Pomel] were able to germinate in response to chemical stimulation by GR24 even without prior conditioning. Stimulated seeds reached maximal germination rates about 2 weeks after the onset of imbibition, no matter whether the seeds had or had not been conditioned before stimulation. Whereas the lag time between stimulation and germination response of non-conditioned seeds was longer than for conditioned seeds, the total time between imbibition and germination was shorter for the non-conditioned seeds. Unlike the above two species, O. crenata Forsk. was found to require conditioning prior to stimulation. Seeds of O. cumana and O. aegyptiaca are already receptive before conditioning. Thus, conditioning is not involved in stimulant receptivity. A hypothesis is put forward, suggesting that conditioning includes (a) a parasite-specific early phase that allows the imbibed seeds to overcome the stress caused by failing to receive an immediate germination stimulus, and (b) a non-specific later phase that is identical to the pregermination phase between seed imbibition and actual germination that is typical for all higher plants.

  2. High-throughput scoring of seed germination

    NARCIS (Netherlands)

    Ligterink, Wilco; Hilhorst, Henk W.M.

    2017-01-01

    High-throughput analysis of seed germination for phenotyping large genetic populations or mutant collections is very labor intensive and would highly benefit from an automated setup. Although very often used, the total germination percentage after a nominated period of time is not very

  3. Proteomics of Rice Seed Germination

    Directory of Open Access Journals (Sweden)

    Dongli eHe

    2013-07-01

    Full Text Available Seed is a condensed form of plant. Under suitable environmental conditions, it can resume the metabolic activity from physiological quiescent status, and mobilize the reserves, biosynthesize new proteins, regenerate organelles and cell membrane, eventually protrude the radicle and enter into seedling establishment. So far, how these activities are regulated in a coordinated and sequential manner is largely unknown. With the availability of more and more genome sequence information and the development of mass spectrometry (MS technology, proteomics has been widely applied in analyzing the mechanisms of different biological processes, and proved to be very powerful. Regulation of rice seed germination is critical for rice cultivation. In recent years, a lot of proteomic studies have been conducted in exploring the gene expression regulation, reserves mobilization and metabolisms reactivation, which brings us new insights on the mechanisms of metabolism regulation during this process. Nevertheless, it also invokes a lot of questions. In this mini-review, we summarized the progress in the proteomic studies of rice seed germination. The current challenges and future perspectives were also discussed, which might be helpful for the following studies.

  4. Reduced germination success of temperate grassland seeds sown in dung: consequences for post-dispersal seed fate.

    Science.gov (United States)

    Milotić, T; Hoffmann, M

    2016-11-01

    Endozoochory is one of the main drivers shaping temperate grassland communities by maintaining plant populations of its constituents and enabling plants to colonize new habitats. Successful endozoochorous dispersal implies that seeds not only get consumed and survive the digestive tract but are also able to develop into viable seedlings in a dung environment. We experimentally assessed the germination probability and timing of 15 annual and perennial temperate European grassland species in cattle and horse dung and in different climatic conditions (greenhouse and outdoor conditions). Interspecific variation in germinability and germination timing are found, while life strategy had only an effect on germination timing. We found adverse effects of both cattle and horse dung on the germination characteristics of all tested grassland species, but the effects of cattle dung were more pronounced. In comparison with the control treatment, fewer seeds emerged in dung and more time was needed to germinate. Also, germination metrics clearly differed between the artificial greenhouse and outdoor conditions, with generally a lower germinability in outdoor conditions. According to our results, a large cost seems to be associated with endozoochorous dispersal in this stage of the life cycle, as seed dispersal effectiveness strongly depends on the quality of the deposition site with a lowered survival and germination probability when seeds are deposited in dung. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  5. Role of seed germination in adaptation and reproductive isolation in Arabidopsis lyrata.

    Science.gov (United States)

    Hämälä, Tuomas; Mattila, Tiina M; Leinonen, Päivi H; Kuittinen, Helmi; Savolainen, Outi

    2017-07-01

    Seed germination is an important developmental and life history stage. Yet, the evolutionary impact of germination has mainly been studied in the context of dormancy, or for its role in reproductive isolation between species. Here, we aim to examine multiple consequences of genetic divergence on germination traits between two Arabidopsis lyrata subspecies: ssp. petraea (Eurasia) and ssp. lyrata (North America). Postdormancy germination time, a potentially adaptive trait, showed differentiation between the populations, and quantitative trait loci (QTL) mapping revealed that the trait variation is mainly controlled by two antagonistic loci. These QTL areas contain several candidate genes with known function in postdormancy germination in A. thaliana. The sequence variation of three genes was consistent with differential selection, and they also included fixed nonsynonymous substitutions with potential to account for the phenotypic differentiation. We further show that the divergence between the subspecies has led to a slight but significant reduction in hybrid germination proportions, indicating incipient reproductive isolation. Comparison of reciprocal F 1 and F 2 progenies suggests that Bateson-Dobzhansky-Muller incompatibilities likely act through uniparentally inherited factors. Examination of genomewide transmission ratio distortion further revealed that cytonuclear interactions cause substantial pregermination inviability in the hybrids. These results confirm that seed germination has adaptive potential beyond the dormancy stage and that hybrid seed inviability can be one of the first reproductive barriers to arise during divergence. © 2017 John Wiley & Sons Ltd.

  6. Effect of electron beam irradiation on conidial germination activity and pathogenicity of Botrytis cinerea

    International Nuclear Information System (INIS)

    Zhang Ting; Qiao Yongjin; Chen Zhaoliang

    2011-01-01

    Conidia of Botrytis cinerea were irradiated by electron beam at 0.5, 1.0, 2.0 and 3.0 kGy. The influence of electron beam on the activities of conidial germination and pathogenicity at the temperatures of 5 ℃ and 25 ℃ were tested, respectively. The results showed that the electron beam could inhibit germination of conidia and the length of germ tube of Botrytis cinerea, and delay the germination time. It could also decrease the pathogenicity obviously and higher irradiation dose showed stronger effects. Compared with control, the complete germination time of conidia extended to 5 and 9 d at the cultivate temperatures of 25 ℃ and 5 ℃, after 2 kGy of irradiation, and the germination rate was reduced 46.57% and 33.68%, respectively. The inhibition rates of germ tube were 25.12% and 74.29% when cultured 24 h. The pathogenicity of Botrytis cinerea to strawberry was reduced significantly. After 2.0 kGy irradiation and cultivate at 25 ℃ for 2 d, the disease index was 4.17 and it decreased to 15.28 after cultivation of 5 ℃ for 15 d. Electron beam treatment could inhibit the spore germination and germ tube elongation of Botrytis cinerea significantly, delayed the germination time, and reduced its pathogenicity, the higher the dose, the effect was more obvious. (authors)

  7. The Arabidopsis CROWDED NUCLEI genes regulate seed germination by modulating degradation of ABI5 protein.

    Science.gov (United States)

    Zhao, Wenming; Guan, Chunmei; Feng, Jian; Liang, Yan; Zhan, Ni; Zuo, Jianru; Ren, Bo

    2016-07-01

    In Arabidopsis, the phytohormone abscisic acid (ABA) plays a vital role in inhibiting seed germination and in post-germination seedling establishment. In the ABA signaling pathway, ABI5, a basic Leu zipper transcription factor, has important functions in the regulation of seed germination. ABI5 protein localizes in nuclear bodies, along with AFP, COP1, and SIZ1, and was degraded through the 26S proteasome pathway. However, the mechanisms of ABI5 nuclear body formation and ABI5 protein degradation remain obscure. In this study, we found that the Arabidopsis CROWDED NUCLEI (CRWN) proteins, predicted nuclear matrix proteins essential for maintenance of nuclear morphology, also participate in ABA-controlled seed germination by regulating the degradation of ABI5 protein. During seed germination, the crwn mutants are hypersensitive to ABA and have higher levels of ABI5 protein compared to wild type. Genetic analysis suggested that CRWNs act upstream of ABI5. The observation that CRWN3 colocalizes with ABI5 in nuclear bodies indicates that CRWNs might participate in ABI5 protein degradation in nuclear bodies. Moreover, we revealed that the extreme C-terminal of CRWN3 protein is necessary for its function in the response to ABA in germination. Our results suggested important roles of CRWNs in ABI5 nuclear body organization and ABI5 protein degradation during seed germination. © 2015 Institute of Botany, Chinese Academy of Sciences.

  8. Proteomic dissection of seed germination and seedling establishment in Brassica napus

    Directory of Open Access Journals (Sweden)

    Jianwei Gu

    2016-10-01

    Full Text Available The success of seed germination and the establishment of a normal seedling are key determinants of plant species propagation. At present, only few studies have focused on the genetic control of the seed germination by proteomic approach in Brassica napus. In the present study, the protein expression pattern of seed germination was investigated using differential fluorescence two-dimensional gel electrophoresis (2-D DIGE in B. napus. One hundred thirteen differentially expressed proteins (DEPs, which were mainly involved in storage proteins (23.4%, energy metabolism (18.9%, protein metabolism (16.2%, defense/disease (12.6%, seed maturation (11.7%, carbohydrate metabolism (4.5%, lipid metabolism (4.5%, amino acids metabolism (3.6%, cell growth/division (3.6%, and some unclear proteins (2.7% were observed by proteomic analysis. Seventeen genes corresponding to 11 DEPs were identified within or near the associated linkage disequilibrium regions related to seed germination and vigor quantitative traits reported in B. napus in previous studies. The expression pattern of proteins showed the heterotrophic metabolism could be activated in the process of seed germination and the onset of defense system might start during seed germination. These findings will help us more in-depth understanding of the mobilization of seed storage reserves and regulation mechanisms of germination process in B. napus.

  9. Interference of germination time on chemical composition and antioxidant capacity of white sesame (Sesamum Indicum

    Directory of Open Access Journals (Sweden)

    Luísa Fernandes de Menezes MARES

    2017-12-01

    Full Text Available Abstract The consumption of white sesame has become a healthy option for those who are concerned about health and wish to reduce oxidative stress. The germination has been used an effective method to increase the nutrients availability and thus provide a better nutritional quality of these seeds. Due to the lack of researches about sesame germination the objective of this study was to evaluate the different times of germination on the chemical composition (moisture, fat, protein and ashes, the antioxidant capacity and the phenolic compounds of white sesame. The germination occurred inside a greenhouse with controlled temperature at 30 °C and the variables were analyzed in the times 0, 24, 36 and 48 hours of germination. The process increased the levels of moisture and reduced the levels of fat, protein and ashes. On the other hand, it also increased the antioxidant capacity by two methods and raised the quantity of total phenolic compounds. Based in the present study and in others similar works, it is possible to affirm that the germination process increase the white sesames’ antioxidant capacity, however further studies are needed to evaluate a better environmental condition of germination and others factors that may affect the composition.

  10. HRS1 Acts as a Negative Regulator of Abscisic Acid Signaling to Promote Timely Germination of Arabidopsis Seeds

    Science.gov (United States)

    Wang, Ran; Liu, Hong; Yang, Huixia; Rodriguez, Pedro L.; Qin, Huanju; Liu, Xin; Wang, Daowen

    2012-01-01

    In this work, we conducted functional analysis of Arabidopsis HRS1 gene in order to provide new insights into the mechanisms governing seed germination. Compared with wild type (WT) control, HRS1 knockout mutant (hrs1-1) exhibited significant germination delays on either normal medium or those supplemented with abscisic acid (ABA) or sodium chloride (NaCl), with the magnitude of the delay being substantially larger on the latter media. The hypersensitivity of hrs1-1 germination to ABA and NaCl required ABI3, ABI4 and ABI5, and was aggravated in the double mutant hrs1-1abi1-2 and triple mutant hrs1-1hab1-1abi1-2, indicating that HRS1 acts as a negative regulator of ABA signaling during seed germination. Consistent with this notion, HRS1 expression was found in the embryo axis, and was regulated both temporally and spatially, during seed germination. Further analysis showed that the delay of hrs1-1 germination under normal conditions was associated with reduction in the elongation of the cells located in the lower hypocotyl (LH) and transition zone (TZ) of embryo axis. Interestingly, the germination rate of hrs1-1 was more severely reduced by the inhibitor of cell elongation, and more significantly decreased by the suppressors of plasmalemma H+-ATPase activity, than that of WT control. The plasmalemma H+-ATPase activity in the germinating seeds of hrs1-1 was substantially lower than that exhibited by WT control, and fusicoccin, an activator of this pump, corrected the transient germination delay of hrs1-1. Together, our data suggest that HRS1 may be needed for suppressing ABA signaling in germinating embryo axis, which promotes the timely germination of Arabidopsis seeds probably by facilitating the proper function of plasmalemma H+-ATPase and the efficient elongation of LH and TZ cells. PMID:22545134

  11. The effect of gamma irradiation on the formation of alpha-amylase isoenzymes in germinating wheat

    International Nuclear Information System (INIS)

    Machaiah, J.P.; Vakil, U.K.

    1979-01-01

    The biosynthesis of alpha-amylase during seedling growth commenced after a prolonged lag-period in wheat (cv. Vijay), irradiated at a high dose (200 krad). Also, a different requirement for exogenous gibberellins (GA) to stimulate the enzyme synthesis was noted in control and irradiated seeds. Further, the developmental patterns of three major isoenzymes of alpha-amylase (designated as α 1 , α 2 - and α 3 ) during germination were different. It was observed that α 1 -isoenzyme which appeared on the fourth day of germination of control seeds, was delayed in its development and was undetectable up to 4 days in samples irradiated with 200 krad. However, α 1 -isoenzyme appeared after 6 days or after 4 days in GA-treated samples in germinating seeds exposed to a high dose. These results suggested that two systems differing in their radiosensitivity and response to GA application were operating in germinating wheat for the synthesis of functional alpha-amylase molecules. (author)

  12. Effect of microwave irradiation on germination and seedling growth physiological characteristics of alfalfa seeds after storage

    International Nuclear Information System (INIS)

    Chen Liyu; Zhang Shuqing; Li Jianfeng; Shi Shangli; Huo Pinghui

    2012-01-01

    In order to study the effect of microwave irradiation on germination and growth physiological characteristics of seeds that stored for years, the irradiated alfalfa seeds that stored at room temperature for 2 years were used to conduct the germination and pot culture tests, and the germination rate, radical elongation, growth height, individual nodule, nitrogenase activity, chlorophyll content and chlorophyll fluorescence parameters were measured. On the 15th day of germination, the germination rates of all the treatments are higher than that of the control, which decrease with the elongation of time. On the llst day of germination, the radical length of all the treatments is lower than that of the control. Growth height, individual nodule, fresh weight and dry weight for the 40 s irradiation treatment are higher than that of the control. Nitrogenase activity of all the treatments is lower than that of the control (P < O.05). The chlorophyll content reaches its maximum when being irradiated for 10 s, and the variation for F 0 and F v /F m of all treatments indicates that the light conversion efficiency of the leaves derived from the irradiated alfalfa seeds that stored for 2 a at room temperature is still relatively stressed. (authors)

  13. The effects of Fusarium oxysporum on broomrape (Orobanche egyptiaca) seed germination.

    Science.gov (United States)

    Hasannejad, S; Zad, S Javad; Alizade, H Mohamad; Rahymian, H

    2006-01-01

    Broomrape (Orobanche aegyptiaca L.), one of the most important parasitic weeds in Iran, is a root parasitic plant that can attack several crops such as tobacco, sunflower, tomato and etc. Several methods were used for Orobanche control, however these methods are inefficient and very costly. Biological control is an additional recent tool for the control of parasitic weeds. In order to study of the fungus Fusarium oxysporum (biocontrol agent) effects on broomrape seed germination, two laboratory studies were conducted in Tehran University. In the first experiment, different concentration of GR60 (0, 1, 2 and 5 ppm) as stimulation factor for Orobanche seeds germination were experimented. Results showed that concentrations of GR60 had a significant effect on seed germination. The highest seed germination percent was obtained in 1 ppm. In the second experiment, the effect of Fusarium oxysporum was tested on O. aegyptiaca seeds germination. The fungus Fusarium oxysporum were isolated from infested and juvenile O. aegyptiaca ower stalks in tomato field in karaj. Fungus spores suspension in different concentrations (0 (Control), 10(5) (T1), 10(6) (T2), 10(7) (T3) and 3 x 10(7) (T4)) from potato dextrose agar (PDA) prepared and together with 1ppm of GR60 concentration were tested on O. aegyptiaca seeds. Results show that the highest inhibition of seed germination obtained in 10(5) spores/ml. With increasing of suspension concentrations, inhibition percent was reduced and mortality of seeds germ tube was increased. In this investigation, Fusarium oxysporum can be used to inhibit seed germination, stimulate the "suicidal germination" of seeds and reduce the Orobanche seed bank.

  14. Phytotoxic Activity of Ocimum tenuiflorum Extracts on Germination and Seedling Growth of Different Plant Species

    Directory of Open Access Journals (Sweden)

    A. K. M. Mominul Islam

    2014-01-01

    Full Text Available Phytotoxic activity of Ocimum tenuiflorum (Lamiaceae plant extracts was investigated against the germination and seedling growth of cress (Lepidium sativum, lettuce (Lactuca sativa, alfalfa (Medicago sativa, Italian ryegrass (Lolium multiflorum, barnyard grass (Echinochloa crus-galli, and timothy (Phleum pratense at four different concentrations. The plant extracts at concentrations greater than 30 mg dry weight equivalent extract mL−1 reduced significantly the total germination percent (GP, germination index (GI, germination energy (GE, speed of emergence (SE, seedling vigour index (SVI, and coefficient of the rate of germination (CRG of all test species except barnyard grass and GP of lettuce. In contrast, time required for 50% germination (T50 and mean germination time (MGT were increased at the same or higher than this concentration. The increasing trend of T50 and MGT and the decreasing trend of other indices indicated a significant inhibition or delay of germination of the test species by O. tenuiflorum plant extracts and vice versa. In addition, the shoot and root growth of all test species were significantly inhibited by the extracts at concentrations greater than 10 mg dry weight equivalent extract mL−1. The I50 values for shoot and root growth were ranged from 26 to 104 mg dry weight equivalent extract mL−1. Seedling growth was more sensitive to the extracts compared to seed germination. Results of this study suggest that O. tenuiflorum plant extracts have phytotoxic properties and thus contain phytotoxic substances. Isolation and characterization of those substances from this plant may act as a tool for new natural, biodegradable herbicide development to control weeds.

  15. Generalist dispersers promote germination of an alien fleshy-fruited tree invading natural grasslands.

    Directory of Open Access Journals (Sweden)

    Martín Raúl Amodeo

    Full Text Available Plants with animal-dispersed fruits seem to overcome the barriers that limit their spread into new habitats more easily than other invasive plants and, at the same time, they pose special difficulties for containment, control or eradication. The effects of animals on plant propagules can be very diverse, with positive, neutral or negative consequences for germination and recruitment. Moreover, the environmental conditions where the seeds are deposited and where the post-dispersal processes take place can be crucial for their fate. Prunus mahaleb is a fleshy-fruited tree invading natural grasslands in the Argentine Pampas. In this study, we analyzed the importance of pulp removal, endocarp scarification and the effects of vectors on its germination response, by means of germination experiments both in the laboratory and under semi-natural conditions. Our laboratory results demonstrated that endocarp scarification enhances germination and suggests that vestiges of pulp on the stones have inhibitory effects. Frugivores exert a variety of effects on germination responses and this variation can be explained by their differing influence on pulp removal and endocarp scarification. Most frugivores produced a positive effect on germination under laboratory conditions, in comparison to intact fruits and hand-peeled stones. We observed different degrees of pulp removal from the surface of the stones by the dispersers which was directly correlated to the germination response. On the other hand, all the treatments showed high germination responses under semi-natural conditions suggesting that post-dispersal processes, like seed burial, and the exposure to natural conditions might exert a positive effect on germination response, attenuating the plant's dependence on the dispersers' gut treatment. Our results highlight the need to consider the whole seed dispersal process and the value of combining laboratory and field tests.

  16. Heat shock and plant leachates regulate seed germination of the endangered carnivorous plant Drosophyllum lusitanicum

    Directory of Open Access Journals (Sweden)

    S. Gómez-González

    2018-01-01

    Full Text Available In fire-prone ecosystems, many plant species have specialized mechanisms of seed dormancy that ensure a successful recruitment after fire. A well-documented mechanism is the germination stimulated by fire-related cues, such as heat shock and smoke. However, less is known about the role of inhibitory germination signals (e.g. allelopathy in regulating post-fire recruitment. Plant leachates derived from the unburned vegetation can enforce dormancy by means of allelopathic compounds, acting as a signal of unfavourable (highly competitive niche for germination in pyrophyte species. Here, we assessed the separate effects of heat shock and plant leachates on seed germination of Drosophyllum lusitanicum, an endangered carnivorous plant endemic to Mediterranean fire-prone heathlands. We performed a germination experiment in which seeds were subjected to three treatments: (1 5 min at 100 °C, (2 watering with plant leachate, and (3 control. Germination rate and seed viability was determined after 63 days. Heat shock stimulated seed germination in D. lusitanicum while plant leachates had inhibitory germination effects without reducing seed viability. Thus, both positive and negative signals could be involved in its successful post-fire recruitment. Fire would break seed dormancy and stimulate seed germination of D. lusitanicum through high temperatures, but also by eliminating allelochemical compounds from the soil. These results help to understand the population dynamics patterns found for D. lusitanicum in natural populations, and highlight the role of fire in the ecology and conservation of this endangered species. Seed dormancy imposed by plant-derived leachates as an adaptive mechanism should be considered more in fire ecology theory.

  17. Arabidopsis Glutamate Receptor Homolog3.5 Modulates Cytosolic Ca2+ Level to Counteract Effect of Abscisic Acid in Seed Germination1[OPEN

    Science.gov (United States)

    Kong, Dongdong; Ju, Chuanli; Parihar, Aisha; Kim, So; Cho, Daeshik; Kwak, June M.

    2015-01-01

    Seed germination is a critical step in a plant’s life cycle that allows successful propagation and is therefore strictly controlled by endogenous and environmental signals. However, the molecular mechanisms underlying germination control remain elusive. Here, we report that the Arabidopsis (Arabidopsis thaliana) glutamate receptor homolog3.5 (AtGLR3.5) is predominantly expressed in germinating seeds and increases cytosolic Ca2+ concentration that counteracts the effect of abscisic acid (ABA) to promote germination. Repression of AtGLR3.5 impairs cytosolic Ca2+ concentration elevation, significantly delays germination, and enhances ABA sensitivity in seeds, whereas overexpression of AtGLR3.5 results in earlier germination and reduced seed sensitivity to ABA. Furthermore, we show that Ca2+ suppresses the expression of ABSCISIC ACID INSENSITIVE4 (ABI4), a key transcription factor involved in ABA response in seeds, and that ABI4 plays a fundamental role in modulation of Ca2+-dependent germination. Taken together, our results provide molecular genetic evidence that AtGLR3.5-mediated Ca2+ influx stimulates seed germination by antagonizing the inhibitory effects of ABA through suppression of ABI4. These findings establish, to our knowledge, a new and pivotal role of the plant glutamate receptor homolog and Ca2+ signaling in germination control and uncover the orchestrated modulation of the AtGLR3.5-mediated Ca2+ signal and ABA signaling via ABI4 to fine-tune the crucial developmental process, germination, in Arabidopsis. PMID:25681329

  18. Germination and growth of purple passion fruit seedlings under pre-germination treatments and mycorrhizal inoculation

    Directory of Open Access Journals (Sweden)

    Joaquín Guillermo Ramírez Gil

    2015-09-01

    Full Text Available The cultivation of purple passion fruit plants has increased in Colombia, as a direct result of its well-accepted consumption. Therefore, there is a need for technological solutions aimed at the sustainable growth of its fruit, such as improving seed germination and decreasing phosphorus (P deficiencies, given its low availability in tropical soils. This study aimed to evaluate pre-germination treatments (control, apical and basal seed cuts, alternation of temperature, photoperiod, application of gibberellic acid and immersion in 96 % of H2SO4 and mycorrhizal dependency of purple passion fruit plants, using three levels of P in the soil solution (0.002 mg L-1, 0.02 mg L-1 and 0.2 mg L-1, in 35 combinations with or without the inoculation of the Glomus fasciculatum mycorrhizal fungus. A completely randomized design with five replications per treatment was used. The treatment with the most significant effect for reducing the dormancy of the purple passion fruit seeds is the immersion in 96 % of H2SO4 for 20 minutes. This species shows a high mycorrhizal dependency, when coupled with 0.02 mg L-1 of P in the soil solution.

  19. Studies on the Effect of Type and Solarization Period on Germination Percentage of Four Weed Species

    Directory of Open Access Journals (Sweden)

    J. Rostam

    2011-01-01

    Full Text Available Abstract In order to study the effects of soil solarization on weed control, an experiment with factorial arrangement in a randomized complete block design with four replications was conducted in a fallow farm in Daregaz in 2008. Factors included solarization duration (0, 2, 4 and 6 weeks and soil moisture content (dry and moist. Soil seed bank was sampled (in two depth, 0-10 and 10-20 cm prior to the experiment and immediately after applying treatments, and germination percentage of weed species were determined. Results of this study showed that seed germination percentage in 10 cm soil depth was influenced by soil moisture and solarization and their interactions, while in 20 cm soil depth only solarization period affected the weed seed germination. Germination percentage in moist soil was less than that in dry soil. Seed germination percentage declined more by increasing solarization duration, so that the greatest decline was obtained after 6 weeks solarization. Solarization decreased germination percentage in moist soil more than that in dry soil. Overall, the results of this experiment indicated that solarization of moist soil for 6 weeks was the most effective treatment in controlling common lambsquatres (Chenopodium album, common purslane (Portulaca oleracea, redroot pigweed (Amaranthus retroflexus, and wild mustard (Sinapis arvensis, while solarization of dry soil for 2 weeks was the least effective treatment for weed control. Keywords: Solarization, Soil moisture, Seed bank

  20. Influence of diesel fuel on seed germination

    International Nuclear Information System (INIS)

    Adam, Gillian; Duncan, Harry

    2002-01-01

    The volatile fraction of diesel fuel played a major role in delaying seed emergence and reducing percentage germination. - The use of plant-based systems to remediate contaminated soils has become an area of intense scientific study in recent years and it is apparent that plants which grow well in contaminated soils need to be identified and screened for use in phytoremediation technologies. This study investigated the effect of diesel fuel on germination of selected plant species. Germination response varied greatly with plant species and was species specific, as members of the same plant family showed differential sensitivity to diesel fuel contamination. Differences were also seen within plant subspecies. At relatively low levels of diesel fuel contamination, delayed seed emergence and reduced percentage germination was observed for the majority of plant species investigated. Results suggest the volatile fraction of diesel fuel played an influential role in delaying seed emergence and reducing percentage germination. In addition, the remaining diesel fuel in the soil added to this inhibitory effect on germination by physically impeding water and oxygen transfer between the seed and the surrounding soil environment, thus hindering the germination response

  1. [Study on germination characteristics of Disporum cantoniense].

    Science.gov (United States)

    Huang, Nan; Wang, Hua-Lei; Zhao, Zhi; Liu, Hong-Chang; Luo, Chun-Li; Li, Jin-Ling; Luo, Fu-Lai; Huang, Ming-Jin

    2012-11-01

    To study the seed germination characteristic and optimal germination condition of wild Disporum cantoniense. Used wild Disporum cantoniense seed as the test materials, the rate of water absorption of the seed was determined. The germination rates under different conditions, along a temperature gradient (15, 20, 25 and 30 degres C), in light or dark, on top or between wet filter papers, and keeping or removing the seed coat, were determined respectively using petri dish method. At the same time germination trends were observed. The thousand seed weight was 33.24 g, and the seed water-absorbing reached saturation pot after soaking for 30 h. Higher germination rates were respectively recorded at 25 degrees C, between filter papers, and in dark after 24 h soaking in the pretreatment solution. The optimal condition for the germination of the seed of wild Disporum cantoniense is as follow: keeping testa, seed soaking for 24 h in seed germination agent and being incubated between wet filter papers in dark at 25 degrees C.

  2. Preliminary studies on allelopatic effect of some woody plants on seed germination of rye-grass and tall fescue.

    Science.gov (United States)

    Arouiee, H; Nazdar, T; Mousavi, A

    2010-11-01

    In order to investigation of allelopathic effects of some ornamental trees on seed germination of rye-grass (Lolium prenne) and tall fescue (Festuca arundinaceae), this experiment was conducted in a randomized complete block design with 3 replicates at the laboratory of Horticultural Sciences Department of Ferdowsi University of Mashhad, during 2008. In this research, we studied the effect of aqueous and hydro-alcoholic extracts of Afghanistan pine (Pinus eldarica), arizona cypress (Cupressus arizonica), black locust (Robinia psedue acacia) and box elder (Acer negundo) leaves that prepared in 1:5 ratio on seed germination percent and rate for two grasses. The results showed that all extracts decreased statistically seed germination in compared to control treatment. The highest germination percentage and germination rate of tested grass detected in control treatment. Hydro-alcoholic extracts of all woody plants (15, 30%) were completely inhibited seed germination of rye-grass and tall fescue. Also aqueous extract of arizona cypress was completely inhibited seed germination of tall fescue and had more inhibitory activity than other aqueous extracts on rye-grass. Between aqueous extracts, the highest and lowest seed germination of rye-grass was found in Afghanistan pine and arizona cypress, respectively.

  3. Allelopathic effect of melissa, lemongrass, lavender and rosemary on germination and vigor of lettuce seeds

    Directory of Open Access Journals (Sweden)

    Daniela Aparecida Teixeira

    2014-12-01

    Full Text Available The objective of this study was to evaluate the influence of four herbal plants on the germination and vigor of lettuce seeds, using aqueous preparations and teas of Melissa oficinalis L. (melissa, Rosmarinus oficinalis L. (rosemary, Lavandula angustifolia Mill. (lavender and Cymbopogon citratus (DC. Stapf. (lemongrass. A randomized complete block design was used with 9 treatments and 4 repetitions. The treatments were: Melissa tea, melissa aqueous preparation, rosemary tea, rosemary aqueous preparation, lavender tea, lavender aqueous preparation, lemongrass tea, lemongrass aqueous preparation and control. The variables evaluated were: germination speed index, percentage of abnormal plants, percentage of germinated plants, fresh matter, dry matter, shoot length and radicle length. Lemongrass showed negative allelopathic effects on germination and vigor of L. sativa L. Melissa tea had a stimulatory effect.

  4. Allelopathic effect of melissa, lemongrass, lavender and rosemary on germination and vigor of lettuce seeds

    Directory of Open Access Journals (Sweden)

    Daniela Aparecida Teixeira

    2014-09-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2014v27n4p37 The objective of this study was to evaluate the influence of four herbal plants on the germination and vigor of lettuce seeds, using aqueous preparations and teas of Melissa officinalis L. (melissa, Rosmarinus officinalis L. (rosemary, Lavandula angustifolia Mill. (lavender and Cymbopogon citratus (DC. Stapf. (lemongrass. A randomized complete block design was used with 9 treatments and 4 repetitions. The treatments were: melissa tea, melissa aqueous preparation, rosemary tea, rosemary aqueous preparation, lavender tea, lavender aqueous preparation, lemongrass tea, lemongrass aqueous preparation and control. The variables evaluated were: germination speed index, percentage of abnormal plants, percentage of germinated plants, fresh matter, dry matter, shoot length and radicle length. Lemongrass showed negative allelopathic effects on germination and vigor of L. sativa L. Melissa tea had a stimulatory effect.

  5. Stimulation of lettuce seed germination by ethylene.

    Science.gov (United States)

    Abeles, F B; Lonski, J

    1969-02-01

    Ethylene increased the germination of freshly imbibed lettuce (Lactuca sativa L. var. Grand Rapids) seeds. Seeds receiving either red or far-red light or darkness all showed a positive response to the gas. However, ethylene was apparently without effect on dormant seeds, those which failed to germinate after an initial red or far-red treatment. Carbon dioxide, which often acts as a competitive inhibitor of ethylene, failed to clearly reverse ethylene-enhanced seed germination. While light doubled ethylene production from the lettuce seeds, its effect was not mediated by the phytochrome system since both red and far-red light had a similar effect.

  6. 7 CFR 201.54 - Number of seeds for germination.

    Science.gov (United States)

    2010-01-01

    ... REGULATIONS Germination Tests in the Administration of the Act § 201.54 Number of seeds for germination. At least 400 seeds shall be tested for germination; except that in mixtures, 200 seeds of each of those... 7 Agriculture 3 2010-01-01 2010-01-01 false Number of seeds for germination. 201.54 Section 201.54...

  7. The Potential of Algarrobo ( Prosopis chilensis (Mol.) Stuntz) for Regeneration of Desertified Soils: Assessing Seed Germination Under Saline Conditions

    Science.gov (United States)

    Westphal, Claus; Gachón, Paloma; Bravo, Jaime; Navarrete, Carlos; Salas, Carlos; Ibáñez, Cristian

    2015-07-01

    Due to their multipurpose use, leguminous trees are desirable for the restoration of degraded ecosystems. Our aim was to investigate seed germination of the leguminous tree Prosopis chilensis in response to salinity, one of the major abiotic challenges of desertified soils. Germination percentages of seed from 12 wild P. chilensis populations were studied. Treatments included four aqueous NaCl concentrations (150, 300, 450, and 600 mM). In each population, the highest germination percentage was seen using distilled water (control), followed closely by 150 mM NaCl. At 300 mM NaCl or higher salt concentration, germination was progressively inhibited attaining the lowest value at 450 mM NaCl, while at 600 mM NaCl germination remained reduced but with large variation among group of samples. These results allowed us to allocate the 12 groups from where seeds were collected into three classes. First, the seeds from Huanta-Rivadavia showed the lowest percent germination for each salt condition. The second group was composed of moderately salt-tolerant seeds with 75 % germination at 300 mM NaCl, followed by 50 % germination at 450 mM NaCl and 30 % germination at 600 mM NaCl. The third group from Maitencillo and Rapel areas was the most salt tolerant with an impressive seed germination level of 97 % at 300 mM NaCl, 82 % at 450 mM NaCl, and 42 % at 600 mM NaCl. Our results demonstrate that P. chilensis seeds from these latter localities have an increased germination capability under saline stress, confirming that P. chilensis is an appropriate species to rehabilitate desertified soils.

  8. Arabidopsis IQM4, a Novel Calmodulin-Binding Protein, Is Involved With Seed Dormancy and Germination in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yu Ping Zhou

    2018-06-01

    Full Text Available Seed dormancy and germination are regulated by complex mechanisms controlled by diverse hormones and environmental cues. Abscisic acid (ABA promotes seed dormancy and inhibits seed germination and post-germination growth. Calmodulin (CaM signals are involved with the inhibition of ABA during seed germination and seedling growth. In this study, we showed that Arabidopsis thaliana IQM4 could bind with calmodulin 5 (CaM5 both in vitro and in vivo, and that the interaction was the Ca2+-independent type. The IQM4 protein was localized in the chloroplast and the IQM4 gene was expressed in most tissues, especially the embryo and germinated seedlings. The T-DNA insertion mutants of IQM4 exhibited the reduced primary seed dormancy and lower ABA levels compared with wild type seeds. Moreover, IQM4 plays key roles in modulating the responses to ABA, salt, and osmotic stress during seed germination and post-germination growth. T-DNA insertion mutants exhibited ABA-insensitive and salt-hypersensitive phenotypes during seed germination and post-germination growth, whereas IQM4-overexpressing lines had ABA- and osmotic-hypersensitive, and salt-insensitive phenotypes. Gene expression analyses showed that mutation of IQM4 inhibited the expression of ABA biosynthetic genes NCED6 and NCED9, and seed maturation regulators LEC1, LEC2, ABI3, and ABI5 during the silique development, as well as promoted the expression of WRKY40 and inhibited that of ABI5 in ABA-regulated seed germination. These observations suggest that IQM4 is a novel Ca2+-independent CaM-binding protein, which is positively involved with seed dormancy and germination in Arabidopsis.

  9. Effect of different doses of gamma rays on seed germination of Carthamus L

    International Nuclear Information System (INIS)

    Malik, Anjali; Srivastava, A.K.

    2010-01-01

    Genetic variability is essential for any crop improvement programme. Experimentally induced mutation provides an important source of variability. The ionizing radiation treatment would be useful on account of the total randomness of action of radiation on genetic material as also the fact that an optimal dose radiation produces effect both through gene mutation and chromosomal mutations. The most commonly used ionizing radiation in plant improvement program are γ-rays. The control sets of different accessions/species showed significant variability in the germination pattern. γ-ray alteration in the mean total seed germination frequency of Carthamus accessions/species presently explored, was genotype dependent. However, these could also modify substantially the temporal patterns of the germination as compared to corresponding control sets. The seed lots of different accessions could be supposed to be a mixture of seeds showing differences in the time of induction of germination. That is, seed lots differed in their temporal seed germination pattern. On the basis of the present study it can be inferred that the temporal seed germination could be decided at genotypic and/or biochemical levels. (author)

  10. The effects of free amino acids profiles on seeds germination/dormancy and seedlings development of two genetically different cultivars of Yemeni Pomegranates

    Directory of Open Access Journals (Sweden)

    Alhadi Fatima A.

    2012-04-01

    seeds germination in plant, therefore Khazemi germination capacity was assumed to be regulated more or less by these AAs. In addition, changes in amino acid composition in the germinated Khazemi cultivar during various stages of seeds germination including imbibition, germination, and sprouts stages have been noticed to change in response with germination demands. This suggests that amino acids reserves in dry seeds are major determinant for germination capacity and germination behavior in the following steps of germination. The noticed particular AAs increase/decrease along the time course of Khazemi pomegranate germination till establishment of heterotrophic seedlings were used as cornerstones for elucidation and deduction of putative function and relevant biochemical pathways controlling initiation of seeds germination and seedlings developments. Based on publicly available databases of model plants and literatures surveys, we established correlations between prevailing AAs factors as biochemical parameters actively involved in seeds dormancy-breaking and germination process.

  11. Phytotoxicity of glyphosate in the germination of Pisum sativum and its effect on germinated seedlings

    OpenAIRE

    Mondal, Subinoy; Kumar, Mousumi; Haque, Smaranya; Kundu, Debajyoti

    2017-01-01

    The present study evaluated the effects of glyphosate on Pisum sativum germination as well as its effect on the physiology and biochemistry of germinated seedlings. Different physico-chemical biomarkers, viz., chlorophyll, root and shoot length, total protein and soluble sugar, along with sodium and potassium concentration, were investigated in germinated seedlings at different glyphosate concentrations. This study reports the influence of different concentrations of glyphosate on pea seeds a...

  12. GERMINATOR: a software package for high-throughput scoring and curve fitting of Arabidopsis seed germination.

    Science.gov (United States)

    Joosen, Ronny V L; Kodde, Jan; Willems, Leo A J; Ligterink, Wilco; van der Plas, Linus H W; Hilhorst, Henk W M

    2010-04-01

    Over the past few decades seed physiology research has contributed to many important scientific discoveries and has provided valuable tools for the production of high quality seeds. An important instrument for this type of research is the accurate quantification of germination; however gathering cumulative germination data is a very laborious task that is often prohibitive to the execution of large experiments. In this paper we present the germinator package: a simple, highly cost-efficient and flexible procedure for high-throughput automatic scoring and evaluation of germination that can be implemented without the use of complex robotics. The germinator package contains three modules: (i) design of experimental setup with various options to replicate and randomize samples; (ii) automatic scoring of germination based on the color contrast between the protruding radicle and seed coat on a single image; and (iii) curve fitting of cumulative germination data and the extraction, recap and visualization of the various germination parameters. The curve-fitting module enables analysis of general cumulative germination data and can be used for all plant species. We show that the automatic scoring system works for Arabidopsis thaliana and Brassica spp. seeds, but is likely to be applicable to other species, as well. In this paper we show the accuracy, reproducibility and flexibility of the germinator package. We have successfully applied it to evaluate natural variation for salt tolerance in a large population of recombinant inbred lines and were able to identify several quantitative trait loci for salt tolerance. Germinator is a low-cost package that allows the monitoring of several thousands of germination tests, several times a day by a single person.

  13. Effect of light, temperature and different pretreatments on seed germination of gentiana boissieri schott et kotschy ex boiss. (gentianaceae) and endemic to turkey

    International Nuclear Information System (INIS)

    Erken, S.

    2017-01-01

    This study was undertaken with the aim of determining the germination characteristics of Gentiana boissieri (Gentianaceae), an endemic species. The effects of light, temperature and different pretreatments on the germination of seeds collected from nature were investigated. Two different experiments were run to determine germination characteristics of seeds and the final germination percentage (FGP), mean germination time (MGT) and germination index (GI). The first experiment involved twenty different treatments including soaking in water, soaking in gibberellic acid (GA3), dry stratification, moist cold stratification, moist warm stratification + moist cold stratification, moist cold stratification + soaking in GA3 and control. The germination test was carried out at +20 degree C in dark. The highest final germination percentages were obtained from the treatments of soaking in 500, 750, 1000 ppm GA3, soaking in 250, 500 ppm GA3 + 4 weeks of moist cold stratification (89.00; 95.00; 93.50; 91.33; 94.00%, respectively). In the control group with no pretreatment, the final germination percentage of seeds was found to be 13.50%. In the second experiment, seeds treated with 750 ppm GA3 pretreatment, providing highest germination rate in the first experiment, were germinated under dark and light conditions (12/12 h; dark/light) at 15, 20, 25 and 10/20 degree C. At the end of 28 days under four different temperatures, it was found that light significantly increased the final germination percentage and the highest final germination percentages were found at 15 and 20 degree C (87.00; 89.50%, respectively). (author)

  14. Factors Affecting the Germination of Akinetes of Nodularia spumigena (Cyanobacteriaceae)

    OpenAIRE

    Huber, Ann L.

    1985-01-01

    Nutritional and physical factors which influence the germination of akinetes of Nodularia spumigena (Cyanobacteriaceae) were examined. Low concentrations of phosphorus (45 μM, inhibited germination. Salinities of >20‰ were inhibitory to germination. Optimum temperatures were 22°C or greater. Germination did not take place in the dark, but only very low light intensities (0.5 microeinstein m−2 s−1) were necessary to initiate germination. Red light (620 to 665 nm) was required. More than 24 h o...

  15. Imbibition and germination in the seeds of Heliotropium supinum L.

    Directory of Open Access Journals (Sweden)

    Ramesh C. Bhatia

    2014-01-01

    Full Text Available Imbibition in the seeds of Heliotropium supinum L. varies under different temperatures. The optimum temperatures for imbibition and germination are also different. For germination 39% imbibition is essential, and this capability is achieved by 12-week-old seeds. With duration of dry storage imbibition increases. The imbibition and germination percentages decline on re-dry storage of seeds after embeding in mud. A soil moisture of 44% is optimal for germination. A correlation exists between imbibition and germination.

  16. Investigation of coriander germination (Coriandrum sativum L.

    Directory of Open Access Journals (Sweden)

    Aćimović Milica

    2013-01-01

    Full Text Available Coriander seed yield (Coriandrum sativum L. depends of many factors during vegetation period, and also depend of seed quality. Coriander fruit (Coriandri fructus which is used like spice and in medicinal purpose, and also in food and pharmacy, in the same time is and seed material. Because of that, it is very important to take care about its quality. In this paper is analyzed seed material obtained from field experiments village Mošorin, in 2011, and investigated was conducted in harvest year, and one year later. In harvest year, germination energy in average was 38,21%, and total germination 72,75%. After one year, germination energy was statistically significant smaller - 16,50%, as like total germination which was 67,42%.

  17. Freezing tolerance of conifer seeds and germinants.

    Science.gov (United States)

    Hawkins, B J; Guest, H J; Kolotelo, D

    2003-12-01

    Survival after freezing was measured for seeds and germinants of four seedlots each of interior spruce (Picea glauca x engelmannii complex), lodgepole pine (Pinus contorta Dougl. ex Loud.), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western red cedar (Thuja plicata Donn ex D. Donn). Effects of eight seed treatments on post-freezing survival of seeds and germinants were tested: dry, imbibed and stratified seed, and seed placed in a growth chamber for 2, 5, 10, 15, 20 or 30 days in a 16-h photoperiod and a 22/17 degrees C thermoperiod. Survival was related to the water content of seeds and germinants, germination rate and seedlot origin. After freezing for 3 h at -196 degrees C, dry seed of most seedlots of interior spruce, Douglas-fir and western red cedar had 84-96% germination, whereas lodgepole pine seedlots had 53-82% germination. Freezing tolerance declined significantly after imbibition in lodgepole pine, Douglas-fir and interior spruce seed (western red cedar was not tested), and mean LT50 of imbibed seed of these species was -30, -24.5 and -20 degrees C, respectively. Freezing tolerance continued to decline to a minimum LT50 of -4 to -7 degrees C after 10 days in a growth chamber for interior spruce, Douglas-fir and lodgepole pine, or after 15 days for western red cedar. Minimum freezing tolerance was reached at the stage of rapid hypocotyl elongation. In all species, a slight increase in freezing tolerance of germinants was observed once cotyledons emerged from the seed coat. The decrease in freezing tolerance during the transition from dry to germinating seed correlated with increases in seed water content. Changes in freezing tolerance between 10 and 30 days in the growth chamber were not correlated with seedling water content. Within a species, seedlots differed significantly in freezing tolerance after 2 or 5 days in the growth chamber. Because all seedlots of interior spruce and lodgepole pine germinated quickly, there was no correlation

  18. Seed germination and sowing options [Chapter 8

    Science.gov (United States)

    Tara Luna; Kim Wilkinson; R. Kasten Dumroese

    2009-01-01

    Seeds of many native species are challenging to germinate. One important thing a grower can do is learn as much as possible about the life history, ecology, and habitat of the species they wish to grow.What processes do seeds of this species go through in nature? Any observations will be valuable when trying to germinate and grow species that have little or no...

  19. Oxygen dependency of germinating Brassica seeds

    Science.gov (United States)

    Park, Myoung Ryoul; Hasenstein, Karl H.

    2016-02-01

    Establishing plants in space, Moon or Mars requires adaptation to altered conditions, including reduced pressure and composition of atmospheres. To determine the oxygen requirements for seed germination, we imbibed Brassica rapa seeds under varying oxygen concentrations and profiled the transcription patterns of genes related to early metabolism such as starch degradation, glycolysis, and fermentation. We also analyzed the activity of lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH), and measured starch degradation. Partial oxygen pressure (pO2) greater than 10% resulted in normal germination (i.e., protrusion of radicle about 18 hours after imbibition) but lower pO2 delayed and reduced germination. Imbibition in an oxygen-free atmosphere for three days resulted in no germination but subsequent transfer to air initiated germination in 75% of the seeds and the root growth rate was transiently greater than in roots germinated under ambient pO2. In hypoxic seeds soluble sugars degraded faster but the content of starch after 24 h was higher than at ambient oxygen. Transcription of genes related to starch degradation, α-amylase (AMY) and Sucrose Synthase (SUS), was higher under ambient O2 than under hypoxia. Glycolysis and fermentation pathway-related genes, glucose phosphate isomerase (GPI), 6-phosphofructokinase (PFK), fructose 1,6-bisphosphate aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate decarboxylase (PDC), LDH, and ADH, were induced by low pO2. The activity of LDH and ADH was the highest in anoxic seeds. Germination under low O2 conditions initiated ethanolic fermentation. Therefore, sufficient oxygen availability is important for germination before photosynthesis provides necessary oxygen and the determination of an oxygen carrying capacity is important for uniform growth in space conditions.

  20. Mathematical model of seed germination process

    International Nuclear Information System (INIS)

    Gładyszewska, B.; Koper, R.; Kornarzyński, K.

    1999-01-01

    An analytical model of seed germination process was described. The model based on proposed working hypothesis leads - by analogy - to a law corresponding with Verhulst-Pearl's law, known from the theory of population kinetics. The model was applied to describe the germination kinetics of tomato seeds, Promyk field cultivar, biostimulated by laser treatment. Close agreement of experimental and model data was obtained [pl

  1. Multiple paths to similar germination behavior in Arabidopsis thaliana.

    Science.gov (United States)

    Burghardt, Liana T; Edwards, Brianne R; Donohue, Kathleen

    2016-02-01

    Germination timing influences plant fitness, and its sensitivity to temperature may cause it to change as climate shifts. These changes are likely to be complex because temperatures that occur during seed maturation and temperatures that occur post-dispersal interact to define germination timing. We used the model organism Arabidopsis thaliana to determine how flowering time (which defines seed-maturation temperature) and post-dispersal temperature influence germination and the expression of genetic variation for germination. Germination responses to temperature (germination envelopes) changed as seeds aged, or after-ripened, and these germination trajectories depended on seed-maturation temperature and genotype. Different combinations of genotype, seed-maturation temperature, and after-ripening produced similar germination envelopes. Likewise, different genotypes and seed-maturation temperatures combined to produce similar germination trajectories. Differences between genotypes were most likely to be observed at high and low germination temperatures. The germination behavior of some genotypes responds weakly to maternal temperature but others are highly plastic. We hypothesize that weak dormancy induction could synchronize germination of seeds dispersed at different times. By contrast, we hypothesize that strongly responsive genotypes may spread offspring germination over several possible germination windows. Considering germination responses to temperature is important for predicting phenology expression and evolution in future climates. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Nicotinamidase activity is important for germination.

    Science.gov (United States)

    Hunt, Lee; Holdsworth, Michael J; Gray, Julie E

    2007-08-01

    It has been suggested that nicotinamide must be degraded during germination; however, the enzyme responsible and its physiological role have not been previously studied. We have identified an Arabidopsis gene, NIC2, that is expressed at relatively high levels in mature seed, and encodes a nicotinamidase enzyme with homology to yeast and bacterial nicotinamidases. Seed of a knockout mutant, nic2-1, had reduced nicotinamidase activity, retarded germination and impaired germination potential. nic2-1 germination was restored by after-ripening or moist chilling, but remained hypersensitive to application of nicotinamide or ABA. Nicotinamide is a known inhibitor of NAD-degrading poly(ADP-ribose) polymerases (PARP enzymes) that are implicated in DNA repair. We found reduced poly(ADP)ribosylation levels in nic2-1 seed, which were restored by moist chilling. Furthermore, nic2-1 seed had elevated levels of NAD, and germination was hypersensitive to methyl methanesulphonate (MMS), suggesting that PARP activity and DNA repair responses were impaired. We suggest that nicotinamide is normally metabolized by NIC2 during moist chilling or after-ripening, which relieves inhibition of PARP activity and allows DNA repair to occur prior to germination.

  3. Phylogeny, habitat together with biological and ecological factors can influence germination of 36 subalpine Rhododendron species from the eastern Tibetan Plateau.

    Science.gov (United States)

    Wang, Yongji; Lai, Liming; Du, Hui; Jiang, Lianhe; Wang, Fei; Zhang, Chao; Zhuang, Ping; Zheng, Yuanrun

    2018-04-01

    The reproductive stages of the life cycle are crucial in explaining the distribution patterns of plant species because of their extreme vulnerability to environmental conditions. Despite reported evidence that seed germination is related to habitat macroclimatic characteristics, such as mean annual temperature, the effect of this trait in controlling plant species distribution has not yet been systematically and quantitatively evaluated. To learn whether seed germination can predict species distribution along altitude gradients, we examined germination data of 36 Rhododendron species in southeastern Tibet originating from contrasting altitudes, habitats, plant heights, seed masses, and phylogenies. Germination varied significantly with altitude, habitat, plant height, and phylogeny and was higher in the light than in the dark. Germination percentage was highest at 10:20°C in the light and 15:25°C in the dark. As altitude increased, germination percentages first rose and then decreased, being highest at 3,500-4,000 m. Germination percentage and rate were highest on rocky slopes, increasing as seed mass and plant height rose. Variations in germination percentage and rate were not significant at subgenera, section, and subsection levels, but they were significant at species level. The results suggested that the relationship between germination and altitude may provide insights into species distribution patterns. Further, germination patterns are a result of long-term evolution as well as taxonomic constraints.

  4. Diversity of the Germination Apparatus in Clostridium botulinum Groups I, II, III and IV

    Directory of Open Access Journals (Sweden)

    Jason Brunt

    2016-10-01

    Full Text Available Clostridium botulinum is a highly dangerous pathogen that forms very resistant endospores that are ubiquitous in the environment, and which, under favourable conditions germinate to produce vegetative cells that multiply and form the exceptionally potent botulinum neurotoxin. To improve the control of botulinum neurotoxin-forming clostridia, it is important to understand the mechanisms involved in spore germination. Here we present models for spore germination in C. botulinum based on comparative genomics analyses, with C. botulinum Groups I and III sharing similar pathways, which differ from those proposed for C. botulinum Groups II and IV. All spores germinate in response to amino acids interacting with a germinant receptor, with four types of germinant receptor identified (encoded by various combinations of gerA, gerB and gerC genes (gerX. There are three gene clusters with an ABC-like configuration; ABC gerX1, ABABCB gerX2 and ACxBBB gerX4, and a single CA-B gerX3 gene cluster. Subtypes have been identified for most germinant receptors types, and the individual GerX subunits of each cluster show similar grouping in phylogenetic trees. C. botulinum Group I contained the largest variety of gerX subtypes, with three gerX1, three gerX2 and one gerX3 subtypes, while C. botulinum Group III contained two gerX1 types and one gerX4. C. botulinum Groups II and IV contained a single germinant receptor, gerX3 and gerX1, respectively. It is likely that all four C. botulinum Groups include a SpoVA channel involved in DPA release. The cortex lytic enzymes present in C. botulinum Groups I and III appear to be CwlJ and SleB, while in C. botulinum Groups II and IV, SleC appears to be important.

  5. Influence of pericarp, cotyledon and inhibitory substances on sharp tooth oak (Quercus aliena var. acuteserrata germination.

    Directory of Open Access Journals (Sweden)

    Yan Liu

    Full Text Available In order to explore the mechanism of delayed and uneven germination in sharp tooth oak (Quercus aliena var. acuteserrata (STO, mechanical scarification techniques were used to study STO root and shoot germination and growth. The techniques used were: removing cup scar (RS, removing the pericarp (RP, and cutting off 1/2 (HC and 2/3 (TC cotyledons. Germination percentage and root and shoot length for Chinese cabbage (Beassica pekinensis seeds (CCS were also investigated for CCS cultivated in a Sanyo growth cabinet watered by distilled water and 80% methanol extracts from the acorn embryo, cotyledon and pericarp with concentrations of 1.0 g, 0.8 g, 0.6 g and 0.4 g dry acorn weight per ml methanol. The results showed that the majority of roots and shoots from acorns with RP and HC treatment emerged two weeks earlier, more simultaneously, and their total emergencies were more than 46% and 28% higher, respectively. TC accelerated root and shoot emergence time and root length, but root and shoot germination rate and shoot height had no significant difference from the control. Positive consequences were not observed on all indices of RS treatment. The germination rates of CCS watered by 1.0 g · ml(-1 methanol extracts from the embryo and cotyledon were significantly lower than those from the pericarp, and all concentrations resulted in decreased growth of root and shoot. Methanol extracts from pericarp significantly reduced root length of CCS, but presented little response in germination percentage and shoot length. The inhibitory effect was gradually increased with the increasing concentration of the methanol extract. We conclude that both the mechanical restriction of the pericarp and the presence of germination inhibitors in the embryo, cotyledon and pericarp are the causes for delayed and asynchronous germination of STO acorns.

  6. Influence of environmental factors on the germination of Urena lobata L. and its response to herbicides.

    Directory of Open Access Journals (Sweden)

    Tahir Hussain Awan

    Full Text Available Urena lobata is becoming a noxious and invasive weed in rangelands, pastures, and undisturbed areas in the Philippines. This study determined the effects of seed scarification, light, salt and water stress, amount of rice residue, and seed burial depth on seed germination and emergence of U. lobata; and evaluated the weed's response to post-emergence herbicides. Germination was stimulated by both mechanical and chemical seed scarifications. The combination of the two scarification methods provided maximum (99% seed germination. Germination was slightly stimulated when seeds were placed in light (65% compared with when seeds were kept in the dark (46%. Sodium chloride concentrations ranging from 0 to 200 mM and osmotic potential ranging from 0 to -1.6 MPa affected the germination of U. lobata seeds significantly. The osmotic potential required for 50% inhibition of the maximum germination was -0.1 MPa; however, some seeds germinated at -0.8 MPa, but none germinated at -1.6 MPa. Seedling emergence and biomass increased with increase in rice residue amount up to 4 t ha(-1, but declined beyond this amount. Soil surface placement of weed seeds resulted in the highest seedling emergence (84%, which declined with increase in burial depth. The burial depth required for 50% inhibition of maximum emergence was 2 cm; emergence was greatly reduced (93% at burial depth of 4 cm or more. Weed seedling biomass also decreased with increase in burial depth. Bispyribac-sodium, a commonly used herbicide in rice, sprayed at the 4-leaf stage of the weed, provided 100% control, which did not differ much with 2,4-D (98%, glyphosate (97%, and thiobencarb + 2,4-D (98%. These herbicides reduced shoot and root biomass by 99-100%.

  7. Using In Situ Symbiotic Seed Germination to Restore Over-collected Medicinal Orchids in Southwest China

    Directory of Open Access Journals (Sweden)

    Shi-Cheng Shao

    2017-06-01

    Full Text Available Due to increasing demand for medicinal and horticultural uses, the Orchidaceae is in urgent need of innovative and novel propagation techniques that address both market demand and conservation. Traditionally, restoration techniques have been centered on ex situ asymbiotic or symbiotic seed germination techniques that are not cost-effective, have limited genetic potential and often result in low survival rates in the field. Here, we propose a novel in situ advanced restoration-friendly program for the endangered epiphytic orchid species Dendrobium devonianum, in which a series of in situ symbiotic seed germination trials base on conspecific fungal isolates were conducted at two sites in Yunnan Province, China. We found that percentage germination varied among treatments and locations; control treatments (no inoculum did not germinate at both sites. We found that the optimal treatment, having the highest in situ seed germination rate (0.94-1.44% with no significant variation among sites, supported a warm, moist and fixed site that allowed for light penetration. When accounting for seed density, percentage germination was highest (2.78-2.35% at low densities and did not vary among locations for the treatment that supported optimal conditions. Similarly for the same treatment, seed germination ranged from 0.24 to 5.87% among seasons but also did vary among sites. This study reports on the cultivation and restoration of an endangered epiphytic orchid species by in situ symbiotic seed germination and is likely to have broad application to the horticulture and conservation of the Orchidaceae.

  8. Copper suppresses abscisic acid catabolism and catalase activity, and inhibits seed germination of rice.

    Science.gov (United States)

    Ye, Nenghui; Li, Haoxuan; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Xu, Weifeng; Jing, Yu; Peng, Xinxiang; Zhang, Jianhua

    2014-11-01

    Although copper (Cu) is an essential micronutrient for plants, a slight excess of Cu in soil can be harmful to plants. Unfortunately, Cu contamination is a growing problem all over the world due to human activities, and poses a soil stress to plant development. As one of the most important biological processes, seed germination is sensitive to Cu stress. However, little is known about the mechanism of Cu-induced inhibition of seed germination. In the present study, we investigated the relationship between Cu and ABA which is the predominant regulator of seed germination. Cu at a concentration of 30 µM effectively inhibited germination of rice caryopsis. ABA content in germinating seeds under copper stress was also higher than that under control conditions. Quantitative real-time PCR (qRT-PCR) revealed that Cu treatment reduced the expression of OsABA8ox2, a key gene of ABA catabolism in rice seeds. In addition, both malondialdehyde (MDA) and H2O2 contents were increased by Cu stress in the germinating seeds. Antioxidant enzyme assays revealed that only catalase activity was reduced by excess Cu, which was consistent with the mRNA profile of OsCATa during seed germination under Cu stress. Together, our results demonstrate that suppression of ABA catabolism and catalase (CAT) activity by excess Cu leads to the inhibition of seed germination of rice. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. The guanine nucleotide exchange factor RIC8 regulates conidial germination through Gα proteins in Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Carla J Eaton

    Full Text Available Heterotrimeric G protein signaling is essential for normal hyphal growth in the filamentous fungus Neurospora crassa. We have previously demonstrated that the non-receptor guanine nucleotide exchange factor RIC8 acts upstream of the Gα proteins GNA-1 and GNA-3 to regulate hyphal extension. Here we demonstrate that regulation of hyphal extension results at least in part, from an important role in control of asexual spore (conidia germination. Loss of GNA-3 leads to a drastic reduction in conidial germination, which is exacerbated in the absence of GNA-1. Mutation of RIC8 leads to a reduction in germination similar to that in the Δgna-1, Δgna-3 double mutant, suggesting that RIC8 regulates conidial germination through both GNA-1 and GNA-3. Support for a more significant role for GNA-3 is indicated by the observation that expression of a GTPase-deficient, constitutively active gna-3 allele in the Δric8 mutant leads to a significant increase in conidial germination. Localization of the three Gα proteins during conidial germination was probed through analysis of cells expressing fluorescently tagged proteins. Functional TagRFP fusions of each of the three Gα subunits were constructed through insertion of TagRFP in a conserved loop region of the Gα subunits. The results demonstrated that GNA-1 localizes to the plasma membrane and vacuoles, and also to septa throughout conidial germination. GNA-2 and GNA-3 localize to both the plasma membrane and vacuoles during early germination, but are then found in intracellular vacuoles later during hyphal outgrowth.

  10. The Effects of Storage on Germination Characteristics and Enzyme Activity of Sorghum Seeds

    Directory of Open Access Journals (Sweden)

    Azadi M.S.

    2013-11-01

    Full Text Available Seed moisture content (MC and storage temperature are the most important factors affecting seed longevity and vigor. Exposure to warm, moist air is principally responsible for this. Proper storage and optimum seed moisture content can affect the grain quality significantly. The purpose of this study was to evaluate the different storage treatments on seed quality of sorghum. The seed materials were fresh without any storage period. For storage treatments, 3 seed moisture contents (6, 10, 14 % were stored for 8 month in 0.5 L capacity sealed aluminum foil packet in 0.3 bar inside incubators set at 4 temperatures (5, 15, 25, 35 °C. After storage time, the higher the storage temperature, the lower was the grain quality of sorghum. The highest germination percentage, germination index, normal seedling percentage were achieved in control conditions (0 day of storage. Our results showed that increasing storage duration resulted higher reduction in germination characteristics. Also our results showed that, germination percentage, means time to germination, germination index, normal seedling percentage decrease significantly by storage. Enzyme activity decrease significantly by increased in storage.

  11. Phytotoxic effects of argan shell biochar on salad and barley germination

    Directory of Open Access Journals (Sweden)

    Laila Bouqbis

    2017-08-01

    Full Text Available Biochar produced from argan shells can be contaminated by toxic substances accumulated during the pyrolysis process. To determine the potential impact of toxic substances and salt stress, this study focused on the effect argan shell biochar had on the germination of salad (0%, 0.5%, 1%, 2%, 4% or 8% biochar dry weight in a sand-biochar mixture and barley seeds (0%, 1%, 2.5%, 5% or 10% biochar dry weight in a peat-biochar mixture. No negative salt stress effect of argan biochar on the germination of salad was observed nor on the germination rate and fresh weight of seedlings. Additionally, biochar application increased the germination rate and the fresh biomass weight in all of the treatments. No significant difference was observed from the control with the barley germination rate, fresh and dry weights of barley seedlings, water content and water use efficiency of different mixtures (peat-biochar. Thus, for both the salad and barley germination tests, no negative effects of biochar produced from argan shells were identified, providing a preliminary indication that it could be safely used for agriculture.

  12. A Waking Review: Old and Novel Insights into the Spore Germination in Streptomyces

    Directory of Open Access Journals (Sweden)

    Jan Bobek

    2017-11-01

    Full Text Available The complex development undergone by Streptomyces encompasses transitions from vegetative mycelial forms to reproductive aerial hyphae that differentiate into chains of single-celled spores. Whereas their mycelial life – connected with spore formation and antibiotic production – is deeply investigated, spore germination as the counterpoint in their life cycle has received much less attention. Still, germination represents a system of transformation from metabolic zero point to a new living lap. There are several aspects of germination that may attract our attention: (1 Dormant spores are strikingly well-prepared for the future metabolic restart; they possess stable transcriptome, hydrolytic enzymes, chaperones, and other required macromolecules stabilized in a trehalose milieu; (2 Germination itself is a specific sequence of events leading to a complete morphological remodeling that include spore swelling, cell wall reconstruction, and eventually germ tube emergences; (3 Still not fully unveiled are the strategies that enable the process, including a single cell’s signal transduction and gene expression control, as well as intercellular communication and the probability of germination across the whole population. This review summarizes our current knowledge about the germination process in Streptomyces, while focusing on the aforementioned points.

  13. The Effect of Fungicides for Seed Treatment on Germination of Barley

    Directory of Open Access Journals (Sweden)

    Vesna Stevanović

    2009-01-01

    Full Text Available The application of chemicals, such as fungicides for seed treatment, is one of the most reliable and perhaps most efficient measures for integrated preservation of crops, and its practicing has become a legal obligation for all seed producers. This investigation was carried out in the laboratory for seed quality and phytopathology of the Small Grains Research Center in Kragujevac. The objective was to establish the effect of fungicides on germination energy and seed germinability (determined after treatments. Two varieties were tested due to a possibility of specific sensitivities of some varieties, so that the results acquired on one variety would not necessarily be valid for another one. Fungicides based on active ingredients from the triasol chemical group had different effects on the energy of germination of barley seeds. Applying Raxil S040-FS, the average germination of barley seeds was 79.3% for the variety Record, and 91.3% for the Grand variety. The variety Record achieved a lower value than the minimum for barley seed germination (88% stipulated by the Rules on Seed Quality of Agricultural Crops.Regardless of barley type, the product Raxil S040-FS showed a statistically significant effect on the number of atypical seedlings and increase in the number of non-germinated seeds, compared to the control.

  14. A Waking Review: Old and Novel Insights into the Spore Germination in Streptomyces.

    Science.gov (United States)

    Bobek, Jan; Šmídová, Klára; Čihák, Matouš

    2017-01-01

    The complex development undergone by Streptomyces encompasses transitions from vegetative mycelial forms to reproductive aerial hyphae that differentiate into chains of single-celled spores. Whereas their mycelial life - connected with spore formation and antibiotic production - is deeply investigated, spore germination as the counterpoint in their life cycle has received much less attention. Still, germination represents a system of transformation from metabolic zero point to a new living lap. There are several aspects of germination that may attract our attention: (1) Dormant spores are strikingly well-prepared for the future metabolic restart; they possess stable transcriptome, hydrolytic enzymes, chaperones, and other required macromolecules stabilized in a trehalose milieu; (2) Germination itself is a specific sequence of events leading to a complete morphological remodeling that include spore swelling, cell wall reconstruction, and eventually germ tube emergences; (3) Still not fully unveiled are the strategies that enable the process, including a single cell's signal transduction and gene expression control, as well as intercellular communication and the probability of germination across the whole population. This review summarizes our current knowledge about the germination process in Streptomyces , while focusing on the aforementioned points.

  15. Seed germination in parasitic plants: what insights can we expect from strigolactone research?

    Science.gov (United States)

    Brun, Guillaume; Braem, Lukas; Thoiron, Séverine; Gevaert, Kris; Goormachtig, Sofie; Delavault, Philippe

    2018-04-23

    Obligate root-parasitic plants belonging to the Orobanchaceae family are deadly pests for major crops all over the world. Because these heterotrophic plants severely damage their hosts even before emerging from the soil, there is an unequivocal need to design early and efficient methods for their control. The germination process of these species has probably undergone numerous selective pressure events in the course of evolution, in that the perception of host-derived molecules is a necessary condition for seeds to germinate. Although most of these molecules belong to the strigolactones, structurally different molecules have been identified. Since strigolactones are also classified as novel plant hormones that regulate several physiological processes other than germination, the use of autotrophic model plant species has allowed the identification of many actors involved in the strigolactone biosynthesis, perception, and signal transduction pathways. Nevertheless, many questions remain to be answered regarding the germination process of parasitic plants. For instance, how did parasitic plants evolve to germinate in response to a wide variety of molecules, while autotrophic plants do not? What particular features are associated with their lack of spontaneous germination? In this review, we attempt to illustrate to what extent conclusions from research into strigolactones could be applied to better understand the biology of parasitic plants.

  16. Germination Behaviour of Lawsonia inermis L. as Influenced by Polyethylene Glycol (PEG

    Directory of Open Access Journals (Sweden)

    Enneb Hanen

    2016-11-01

    Full Text Available Tunisian Flora is well known for its richness and diversity of medicinal plants such as henna plant (Lawsonia inermis L. a flowering plant belongs to the family of Lyteraceae, distributed in dry tropical and subtropical zones including North Africa. This plant pertains to continental oases where water shortage, constitute the essential limiting factor of agricultural production. The present study was carried out to evaluate the impact of water stress on the germination of the henna plant (Lawsonia inermis L.. Seeds were germinated under stress of aqueous Polyethylene Glycol (PEG solutions blended to create water potentials of 0, -0.2, -0.4, -0.6, - 0.8 and -1 MPa. Results showed that seeds germinated in PEG solutions exhibited significantly lower cumulative germination rate (CGR than control especially when water potential fell below -0.6 MPa. Mean germination time (MGT was delayed by increasing PEG concentrations, while germination stress tolerance index (GSTI was decreased with the increase in PEG concentrations. The highest percentage of GSTI in stressed condition was 84.13% for PEG (-0.2MPa whereas, the lowest value was 8.37% for PEG (-1MPa.

  17. Germinated Pigeon Pea (Cajanus cajan): a novel diet for lowering oxidative stress and hyperglycemia.

    Science.gov (United States)

    Uchegbu, Nneka N; Ishiwu, Charles N

    2016-09-01

    This work studied the antioxidant activity of extract of germinated pigeon pea (Cajanus cajan) in alloxan-induced diabetic rats. Germination was carried out in a dark chamber under room temperature (28°C). The total phenolic, 1,1,diphenyl-2-picrylhy-drazyl free radical (DPPH) scavenging, the inhibition of α-amylase and α-glucosidase were done in vitro and blood glucose levels of the animal were investigated. Lipid peroxidation (LPO) and reduced glutathione (GSH) were analyzed spectrophotometrically. The total phenolic and DPPH scavenging activity increased by 30% and 63%, respectively, after germinating pigeon pea. Also after germination there was an increase in the inhibitory potential of pigeon pea extract against α-glucosidase compared with the nongerminated pigeon pea extract. There was a significant increase (P pigeon pea extract gave rise to a reduced fasting blood glucose level in diabetic rats. On administration of germinated pigeon pea extract, LPO reduced drastically but there was an increase in the level of GSH. This study concluded that intake of germinated pigeon pea is a good dietary supplement for controlling hyperglycemia and LPO.

  18. Transcriptome analysis of Phelipanche aegyptiaca seed germination mechanisms stimulated by fluridone, TIS108, and GR24.

    Directory of Open Access Journals (Sweden)

    Ya Zhou Bao

    our transcriptome data. The results of this experiment suggest that TIS108 and FL+GA3 could be used to control P. aegyptiaca through suicidal germination.

  19. Transcriptome analysis of Phelipanche aegyptiaca seed germination mechanisms stimulated by fluridone, TIS108, and GR24.

    Science.gov (United States)

    Bao, Ya Zhou; Yao, Zhao Qun; Cao, Xiao Lei; Peng, Jin Feng; Xu, Ying; Chen, Mei Xiu; Zhao, Si Feng

    2017-01-01

    transcriptome data. The results of this experiment suggest that TIS108 and FL+GA3 could be used to control P. aegyptiaca through suicidal germination.

  20. In vitro germination and acclimatization of cambui tree type seedlings

    Directory of Open Access Journals (Sweden)

    Ana da Silva Lédo

    2014-01-01

    Full Text Available There are few reports in literature on the in vitro behavior of cambui tree (Myrciaria tenella O. Berg and acclimatization conditions. The aim of this study was to evaluate the effect of culture media on in vitro germination and the effect of different substrates on the acclimatization of two Myrciaria tenella types. The study was carried out at the Embrapa Tabuleiros Costeiros Laboratory of Plant Tissue Culture, Aracaju, SE. Seeds were extracted from fruits of two Myrciaria tenella types: Orange and Purple Types. The seeds were inoculated in the following culture media: T1 - MS medium + 30g L -1 sucrose, T2 - 1/2 MS medium + 15g L -1 sucrose and T3 - control without MS salts. To study the effect of substrates on acclimatization, seedlings were transferred to plastic containers with capacity of 300cm 3 containing the following sterilized substrates: S1 - soil and powdered coconut husk - SPC (1:1 by volume; S2 - soil, washed sand and powdered coconut husk - SAPC (1:1:1 by volume and S3 - Biomix (r commercial substrate - SC. The medium without MS salts promoted 100% in vitro germination and 1/2 MS medium greater development of seedlings. All substrates studied are suitable for acclimatization of seedlings germinated in vitro. Myrciaria tenella of yellow type showed greater vigor during acclimatization.

  1. Arabidopsis DREB2C modulates ABA biosynthesis during germination.

    Science.gov (United States)

    Je, Jihyun; Chen, Huan; Song, Chieun; Lim, Chae Oh

    2014-09-12

    Plant dehydration-responsive element binding factors (DREBs) are transcriptional regulators of the APETELA2/Ethylene Responsive element-binding Factor (AP2/ERF) family that control expression of abiotic stress-related genes. We show here that under conditions of mild heat stress, constitutive overexpression seeds of transgenic DREB2C overexpression Arabidopsis exhibit delayed germination and increased abscisic acid (ABA) content compared to untransformed wild-type (WT). Treatment with fluridone, an inhibitor of the ABA biosynthesis abrogated these effects. Expression of an ABA biosynthesis-related gene, 9-cis-epoxycarotenoid dioxygenase 9 (NCED9) was up-regulated in the DREB2C overexpression lines compared to WT. DREB2C was able to trans-activate expression of NCED9 in Arabidopsis leaf protoplasts in vitro. Direct and specific binding of DREB2C to a complete DRE on the NCED9 promoter was observed in electrophoretic mobility shift assays. Exogenous ABA treatment induced DREB2C expression in germinating seeds of WT. Vegetative growth of transgenic DREB2C overexpression lines was more strongly inhibited by exogenous ABA compared to WT. These results suggest that DREB2C is a stress- and ABA-inducible gene that acts as a positive regulator of ABA biosynthesis in germinating seeds through activating NCED9 expression. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Germination and initial development of aroeira (Myracrodruon urundeuva seedlings

    Directory of Open Access Journals (Sweden)

    Silvana de Paula Quintão Scalon

    2012-12-01

    Full Text Available Aroeira has great economic importance due to its wood useful, tannins extraction and use in the pharmacology. The aim of this work was to evaluate the germination aspects and initial seedlings development of aroeira, under gibberellins, substrata and shading effects, and for that two experiments were led out. In the first one, seeds were previously soaked for 24 hours in water and in 100 mg.L-1 gibberellin solution and were sowed directly in cells trays in the following substrata: land and sand (1:1 and 1:2 and Plantmax . In the second experiment, 15 cm length seedlings were transplanted to polyethylene sacks filled out land+sand+poultry manure (1:1:1 partly decomposed and they were maintained at greenhouse for 15 days. Soon after, seedlings were transferred for the following conditions: shading (50% and full sun and they were 50 mg.L-1 and 150 mg.L-1 gibberellins solutions pulverized, as control seedlings water pulverized. Aroeira seeds should not be previously water or gibberellins imbibed before being sowed. The best substrata for aroeira seeds germination was Plantmax without germinative treatments to reach higher than 80% of seedlings survival. The seedlings developed better at full sun light and the gibberellin. It was observed increment in height, diameter, foliar area and fresh and dry mass from aerial and root part when compared to shading situation. The gibberellins applications did not influence the aroeira seedlings initial growth characteristics.

  3. Environmental Factors that Interfere in the Germination

    Directory of Open Access Journals (Sweden)

    Lisiane de Souza

    2014-12-01

    Full Text Available This paper refers to the application of experiments with sixth graders of elementary school, aiming motivation, skills development focused on observation, interpersonal relationships in teams, related to the various forms of language skills, as well to identify and resume misconceptions about the external (environmental factors required for seed germination, in order that the contents developed this year refer to the study of the earth, soil, water and air, among others, and that many students do not understand all the concepts and the importance of these factors for the existence of living beings. The experiments were organized in two stages, first to observe the influence of soil and another moment to observe the interference of water, air and light. The temperature impractical activities were conducted, however, during the observation period (three weeks experiments remained in a controlled environment in the science laboratory. For the experiments we used materials easily found in commerce, some recycled; students were organized into six teams, which improved the data collection, the maintenance of the experiments, the calculations of the percentages, and the producing of report. Many of these contents had not yet been studied in other disciplines, but were developed in the discipline of science, respecting prior knowledge and cognitive abilities. The use of experiments was effective for the construction of new knowledge and to develop skills necessary to start the search.

  4. Lab and Field Warming Similarly Advance Germination Date and Limit Germination Rate for High and Low Elevation Provenances of Two Widespread Subalpine Conifers

    Directory of Open Access Journals (Sweden)

    Lara M. Kueppers

    2017-11-01

    Full Text Available Accurately predicting upslope shifts in subalpine tree ranges with warming requires understanding how future forest populations will be affected by climate change, as these are the seed sources for new tree line and alpine populations. Early life history stages are particularly sensitive to climate and are also influenced by genetic variation among populations. We tested the climate sensitivity of germination and initial development for two widely distributed subalpine conifers, using controlled-environment growth chambers with one temperature regime from subalpine forest in the Colorado Rocky Mountains and one 5 °C warmer, and two soil moisture levels. We tracked germination rate and timing, rate of seedling development, and seedling morphology for two seed provenances separated by ~300 m elevation. Warming advanced germination timing and initial seedling development by a total of ~2 weeks, advances comparable to mean differences between provenances. Advances were similar for both provenances and species; however, warming reduced the overall germination rate, as did low soil moisture, only for Picea engelmannii. A three-year field warming and watering experiment planted with the same species and provenances yielded responses qualitatively consistent with the lab trials. Together these experiments indicate that in a warmer, drier climate, P. engelmannii germination, and thus regeneration, could decline, which could lead to declining subalpine forest populations, while Pinus flexilis forest populations could remain robust as a seed source for upslope range shifts.

  5. Germination of Avena fatua under different gaseous environments

    Energy Technology Data Exchange (ETDEWEB)

    Hart, J.W.; Berrie, A.M.M.

    1966-01-01

    The atmosphere in which seeds germinate can profoundly affect the level of germination and dormancy. Seeds were germinated in atmospheres containing various concentrations of carbon dioxide and oxygen. At the same time the effect of light on these systems was examined. The germination of partially dormant populations of wild oat seed is inhibited by white light. This response to light is most apparent when the caryopsis is enclosed in the pales. Investigations into the effect of the ambient atmosphere on germination have indicated that, while oxygen is a necessary factor in the germination of this species, carbon dioxide also has an effect. A lack of carbon dioxide increases the degree of light inhibition of germination; 3% carbon dioxide (by volume) allows germination in light; 20% carbon dioxide inhibits germination in light and darkness at all tested oxygen concentrations.

  6. Effect of aqueous extracts of selected medicinal plants on germination of windgrass [Apera spica-venti (L. P. Beauv.] and lambsquarters (Chenopodium album L. seeds

    Directory of Open Access Journals (Sweden)

    Agnieszka Synowiec

    2016-05-01

    Full Text Available The study aimed to determine the effect of aqueous extracts of medicinal plants (Matricaria chamomilla, Hypericum perforatum, Achillea millefolium, and Urtica dioica containing allelopathic compounds on seed germination in lambsquarters (Chenopodium album and herbicide-resistant windgrass (Apera spica-venti. A Petri-dish experiment was carried out, in which the effects of five concentrations of aqueous extracts on the germination of weeds were assessed for 10 consecutive days. It was found that the dynamics of seed germination are closely related to the type and concentration of aqueous extract of medicinal plants. The 8% U. dioica aqueous extract posed the strongest inhibitory effect, limiting the germination of both lambsquarters and windgrass. Additionally, weed germination was delayed by 12–72 h in the presence of extracts, compared with the control. Summing up, the aqueous extracts of medicinal plants, especially their higher concentrations, pose a desirable inhibiting effect against the germination of lambsquarters and herbicide-resistant windgrass seeds.

  7. Dynamic Proteomics Emphasizes the Importance of Selective mRNA Translation and Protein Turnover during Arabidopsis Seed Germination*

    Science.gov (United States)

    Galland, Marc; Huguet, Romain; Arc, Erwann; Cueff, Gwendal; Job, Dominique; Rajjou, Loïc

    2014-01-01

    During seed germination, the transition from a quiescent metabolic state in a dry mature seed to a proliferative metabolic state in a vigorous seedling is crucial for plant propagation as well as for optimizing crop yield. This work provides a detailed description of the dynamics of protein synthesis during the time course of germination, demonstrating that mRNA translation is both sequential and selective during this process. The complete inhibition of the germination process in the presence of the translation inhibitor cycloheximide established that mRNA translation is critical for Arabidopsis seed germination. However, the dynamics of protein turnover and the selectivity of protein synthesis (mRNA translation) during Arabidopsis seed germination have not been addressed yet. Based on our detailed knowledge of the Arabidopsis seed proteome, we have deepened our understanding of seed mRNA translation during germination by combining two-dimensional gel-based proteomics with dynamic radiolabeled proteomics using a radiolabeled amino acid precursor, namely [35S]-methionine, in order to highlight de novo protein synthesis, stability, and turnover. Our data confirm that during early imbibition, the Arabidopsis translatome keeps reflecting an embryonic maturation program until a certain developmental checkpoint. Furthermore, by dividing the seed germination time lapse into discrete time windows, we highlight precise and specific patterns of protein synthesis. These data refine and deepen our knowledge of the three classical phases of seed germination based on seed water uptake during imbibition and reveal that selective mRNA translation is a key feature of seed germination. Beyond the quantitative control of translational activity, both the selectivity of mRNA translation and protein turnover appear as specific regulatory systems, critical for timing the molecular events leading to successful germination and seedling establishment. PMID:24198433

  8. Effect of low dose irradiation of 60Co γ-rays on seed germination, seedling growth and enzymes activity of Lactuca sativa

    International Nuclear Information System (INIS)

    Liu Xiuqing; Zhang Tie

    2012-01-01

    The seeds of Lactuca sativa were irradiated by different doses (10, 20, 30, 40, 50 Gy) of 60 Co γ-rays. The effects of low dose irradiation on seed germination, seedling growth and enzymes activity were investigated. The results indicated that low dose irradiation could promote germination rate, germinating viability, germination rate in the field, root length and height of seedling. The suitable dosage for low dose irradiation for Lactuca sativa was 30 Gy. POD activity after irradiation treatment in the range of 10 to 50 Gy and CAT activity after irradiation treatment in the range of 20 Gy to 40 Gy was lower than that of control. (authors)

  9. Growth patterns for etiolated soybeans germinated under spaceflight conditions

    Science.gov (United States)

    Levine, Howard G.; Piastuch, William C.

    In the GENEX (GENe EXpression) spaceflight experiment (flown on STS-87), six surface sterilized soybean seeds ( Glycine max cv McCall) were inserted into each of 32 autoclaved plastic seed growth pouches containing an inner germination paper sleeve (for a total of 192 seeds). The pouches were stowed within a mid-deck locker until Mission Flight Day 10, at which time an astronaut added water to initiate the process of seed germination on-orbit and subsequently transferred them to four light-tight aluminum canisters called BRIC-60s (Biological Research In Canisters). We report here on the morphological characteristics of: (1) the recovered flight plants ( N = 177), (2) the corresponding ground control population ( N = 183), plus (3) additional controls grown on the ground under clinostat conditions ( N = 93). No significant morphological differences were found between the flight, ground control and clinorotated treatments for either the cotyledons or hypocotyls. There were, however, significantly longer primary roots produced in the flight population relative to the ground control population, which in turn had significantly longer primary roots than the clinorotated population. This same pattern was observed relative to the production of lateral roots (flight > control > clinorotated). Taken together with previous literature reports, we believe that there is now sufficient evidence to conclude that plants grown under conditions of microgravity will generally exhibit enhanced root production relative to their ground control counterparts. Some causes underlying this phenomenon are speculated on.

  10. Influence of priming on the physiological traits of corn seed germination under drought stress

    Directory of Open Access Journals (Sweden)

    Seyyedeh Roghayyeh KHATAMI

    2015-06-01

    Full Text Available This study was performed to investigate the effect of drought stress and priming on germination of corn seeds (cultivar SC704 as a factorial experiment based on completely randomized design with three replications. Treatments were drought stress in four levels including 0,-3,-6 and -9 bar and priming as control, hydro, osmo, vitamin and hormone priming. Results showed that interaction of two factors was significant on radicle and plumule dry weight, seedling vigor and germination rate. Osmo-priming remained the radicle dry weight and seedling vigor index same to control but germination rate decreased in this treatment about 38% to control. Drought stress at any severity caused seed reservoirs were not use inefficiently. In conclusion, osmo and hormone primings were the best treatments for seed invigoration under severe drought stress.

  11. Seed Germination Behaviors Of Some Aerobic Rice Cultivars Oryza Sativa L After Priming With Polyethylene Glycol-8000 Peg-8000

    Directory of Open Access Journals (Sweden)

    Elkheir H.A

    2015-08-01

    Full Text Available Seed Priming Is Famous Technique To Accelerate Seed Germination Behaviors. This Experiment Was Conducted To Study The Effect Of Polyethylene Glycol-8000 Peg-8000 As Priming Agent On Seed Germination Behavior Of Some Aerobic Rice Cultivars Oryza Sativa L. Experiment Was Carried Out By Using Two-Factor Three Aerobic Rice Cultivars And Peg With Four Replications Which Arranged In Factorial System Design And Conducted With Completely Randomized Design. The Factor Was Varieties Which Were Inpago 8 V1 Ir64 V2 And Situbagendit V3 Combine With 4 Levels Of Peg Concentrations 0100 And 200 Gl-1 And Control With No Treatment. Experiment Was Repeated 4 Times So Total Number Of Experimental Units Were 48. Germination Parameters Measured Were Germination Percentage Germination Index Days Of 50 Germination Seedling Fresh Weight Mg Seedling Shoot Fresh Weight And Root Fresh Weight Mg Seedling Dry Weigh Mg Seedling Shoot Dry Weight And Root Dry Weight Mg ShootRoot Ratio Seedling Length Cm Seedling Root Length Cm And Shoot Length Cm And Seed Vigor Index. The Results Indicated That Seed Priming Significantly Affected Germination Behaviors Compared With Control Depending Upon Varieties. The Highest Germination Was Obtained Under Laboratory And Greenhouse Condition By The Treatment Of Peg 200 G L-1 On The Situbagendit And Ir-64 Variety 90.25 And 93.33 Respectively Compared To Control In Inpago-8 In Both Laboratory 75.75 And Greenhouse 80 . As Implementation To Increase Seed And Seedling Vigor Of Rice It Is A Best Practice To Use Peg Priming With 200 Gl-1 Solutions Depend Upon Varietal Response And We Suggest That More Research About The Effect Of Peg As Seed Priming Techniques On Seed Germination Behavior Of Many Grain Crops Is Needed To Confirm The Methodology.

  12. Cyrtopodium paludicolum germination with two Tulasnella isolates

    Directory of Open Access Journals (Sweden)

    Otieres Cirino de Carvalho

    2017-11-01

    Full Text Available ABSTRACT Symbiosis between orchid seeds and mycorrhizal fungi has been reported to be a determining factor in the success of germination and protocorm development in vitro. The aim of this study was to isolate and identify by molecular analysis the mycorrhizal fungus associated with Cyrtopodium paludicolum, and to evaluate its efficiency in facilitating seed germination and development. Germination experiments were carried out using a fungus isolated from C. paludicolum (CH01 and Epidendrum secundum (M65, which has been successfully used a number of times in symbiotic germination. The experiments were conducted in a completely randomized design with treatments of CH01, M65 as well as under asymbiotic conditions. The mycobiont CH01 was successfully isolated from Cyrtopodium paludicolum and identified as Tulasnella sp. Treatments with both fungi reached a higher germination percentage than under asymbiotic conditions, indicating no specificity in the relationship between Cyrtopodium paludicolum and the fungi. The results presented have the potential to advance research into the propagation and conservation of C. paludicolum, a native of the Cerrado biome.

  13. Combining Ability for Germination Traits in Jatropha curcas L.

    Directory of Open Access Journals (Sweden)

    A. K. M. Aminul Islam

    2013-01-01

    Full Text Available Six parents of Jatropha curcas were crossed in half diallel fashion, and the F1s were evaluated to determine the combining ability for nine germination parameters. The ratio between general combining ability (GCA and specific combining ability (SCA variances indicated preponderance of additive gene action for all the characters except germination percentage, time of 50% germination, seedling length, and seedling vigor index. The parents P1 and P2 were the best general combiner for most of the characters studied. The cross P1×P5 was the best specific combiner for speed of emergence, germination percentage, germination energy, germination index, and seedling vigor index, the cross P2×P5 for mean germination time, time of 50% germination, and seedling length, and the cross P4×P5 for number of days to first germination. The germination percentage varied from 58.06 to 92.76% among the parents and 53.43 to 98.96% among the hybrids. The highest germination (98.96% was observed in hybrid P2×P4, and none of the hybrids or parents showed 100% germination. The highest germination index (GI and seedling vigor index (SVI were found in hybrid P1×P5 and P2×P5, respectively. The results of this study provide clue for the improvement of Jatropha variety through breeding program.

  14. Chickpea seeds germination rational parameters optimization

    Science.gov (United States)

    Safonova, Yu A.; Ivliev, M. N.; Lemeshkin, A. V.

    2018-05-01

    The paper presents the influence of chickpea seeds bioactivation parameters on their enzymatic activity experimental results. Optimal bioactivation process modes were obtained by regression-factor analysis: process temperature - 13.6 °C, process duration - 71.5 h. It was found that in the germination process, the proteolytic, amylolytic and lipolytic enzymes activity increased, and the urease enzyme activity is reduced. The dependences of enzyme activity on chickpea seeds germination conditions were obtained by mathematical processing of experimental data. The calculated data are in good agreement with the experimental ones. This confirms the optimization efficiency based on experiments mathematical planning in order to determine the enzymatic activity of chickpea seeds germination optimal parameters of bioactivated seeds.

  15. Effect of thumus cell injections on germinal center formation in lymphoid tissues of nude (thymusless) mice

    International Nuclear Information System (INIS)

    Jacobson, E.B.; Caporale, L.H.; Thorbecke, G.J.

    1974-01-01

    Nude mice, partially backcrossed to Balb/c or DBA/2, were injected iv with 5 x 10 7 thymus cells from the respective inbred strain. The response of these mice to immunization with Brucella abortus antigen was studied, with respect to both antibody production and the formation of germinal centers in their lymphoid tissues. The results were compared to those obtained with nude mice to which no thymus cells were given, as well as to Balb/c, DBA/2, or +/question litter mate controls. Nude mice formed less 19S as well as 7S antibody than did litter mate controls and completely lacked germinal centers in lymph nodes and gut-associated lymphoid tissue. Those nude mice which had been injected with thymus cells made a much better secondary response, both for 19S and for 7S antibody, and had active germinal centers in their lymph nodes as early as 3 wk after thymus cell injection. Intestinal lymphoid tissue in nude mice showed only slight reconstitution of germinal center activity several months after thymus cell injection and none at earlier times. Irradiated (3000 R) thymus cells appeared as effective as normal cells in facilitating germinal center appearance and 7S antibody production in the nude mice

  16. Use of a germination bioassay to test compost maturity in Tekelan Village

    Science.gov (United States)

    Oktiawan, Wiharyanto; Zaman, Badrus; Purwono

    2018-02-01

    Livestock waste from cattle farms in Tekelan village, Getasan Subdistrict, Semarang Regency can be grouped into three types, namely solid waste, slurry and waste water. Solid waste (cow dung) was processed into compost, while slurry and waste water were used to make liquid fertilizer. This compost was used as a component of planting media in horticultural crops and potted plants production. We evaluated the toxicity (phytochemical and ecotoxicological) test of compost by using germination index (GI). Vigna radiata seeds are sown on filter paper dampened with compost extract for different times. GI was calculated by relative germination (G) and relative radical length (L). The germination index (GI) = G / G0 x L / L0 x 100, where G0 and L0 are values obtained by distilled water as a control. The results showed that germination bioassay and radical length using aquades and groundwater in Tekelan village did not affect the radical length of Vigna radiata . Technically, groundwater in Tekelan village can be used as a germination bioassay control. The cow dung compost substrate appears to have a major influence on compost toxicity. Mature compost was produced on day 14 with a GI of 104.03.

  17. Cypripedium calceolus germination in situ: seed longevity, and dormancy breakage by long incubation and cold winters

    Directory of Open Access Journals (Sweden)

    Hanne N. Rasmussen

    2012-02-01

    Full Text Available A successful in situ germination experiment with Cypripedium calceolus, the European Lady’s slipper, is reported here for the first time. The seeds originated from controlled pollinations within and between two closely related Danish populations. The seeds were sown ripe in seed packets in proximity of mother plants. Germination was first observed after 4.5 y in the ground, following two successive cold and snowy winters, and only in one population. Seedlings expanded through the sides of the broken testa and were hair-less. A corresponding set of seeds, germinated in vitro as asymbiotic controls, responded positively to repeated cold stratifications after long incubation, suggesting that time (leaching? and chilling are dormancy breakage factors.

  18. Autotoxicity of chard and its allelopathic potentiality on germination ...

    African Journals Online (AJOL)

    SERVER

    2008-04-03

    Apr 3, 2008 ... Abbreviation: (W+C), Wheat germinated with chard; (C+W), chard germinated with ..... hull extracts which have inhibitory effect on the growth of barnyardgrass seedlings. .... John Wiley and Sons,. New York, pp. 171-188.

  19. Potential germination and initial growth of Sclerocarya birrea (A ...

    African Journals Online (AJOL)

    SARAH

    2014-04-30

    Apr 30, 2014 ... Methodology: The parameters studied for the germination test were: latency duration, germination capacity .... for family consumption or in the cosmetic industry. (Murray ... the crowns of trees and in the stall of the animals.

  20. Effect of chromium toxicity on germination and early seedling growth ...

    African Journals Online (AJOL)

    USER

    2010-07-19

    Jul 19, 2010 ... germination and early seedling growth of melon (Cucumis melo L.). Chromium ... chromium on seed germination and seedling growth- biomass in early ..... such critical regulatory mechanisms are likely to operate in seeds at ...

  1. on seed germination and growth of Garcinia kola

    African Journals Online (AJOL)

    SARAH

    2016-07-31

    Jul 31, 2016 ... Parameters related to seed germination and seedlings vigour was evaluated. Results indicated that substrate do not affect seed germination and plant vigour. However ..... Annual plant reviews California, USA, pp. 50-. 6.7.

  2. Studies on seed germination and in vitro shoot multiplication of ...

    African Journals Online (AJOL)

    Yomi

    2011-12-21

    Dec 21, 2011 ... vitro seed germination and plantlet regeneration of this plant. ... Key words: Germination, gibberellic acid, growth regulators, node explants, Satureja ..... Abscisic Acid: A. Seed Maturation and Antistress Signal, 3rd ed. Sinauer ...

  3. Effect of EI-treatment in relation to physiological and biochemical traits in rice: delay in germination and its recovery with provision of glucose

    International Nuclear Information System (INIS)

    Inoue, M.; Hasegawa, H.; Hori, S.

    1975-01-01

    Rice seeds treated with 0.2 to 1.2 v/v % of ethyleneimine (EI) demonstrated increasingly delayed germination concomitant with increasing dose. At the time of germination, the release of storage products was slightly inhibited at lower doses and completely reduced at higher doses. With increasing time after germination the development of shoot length, content of reducing sugar and free amino acid, and synthesis of nucleic acid and protein in treated seeds, showed the same response pattern as the control, although at reduced levels in the treated seeds. Consequently, it is interpreted that the delay of germination is due to physiological dormancy, i.e. impaired release of dormancy which would normally yield active forms of enzymes. When treated seeds were cultured in [ 14 C]-glucose medium, the specific activity of [ 14 C]-glucose was higher in late-germinating seeds than in early-germinating seeds. Furthermore, the provision of glucose prevented the delay of germination, resulting in about a 10% increase in germination rate (survival rate), and yet had no effect on subsequent growth. Finally, it is concluded that the damage resulting in delayed germination and reduction of survival differs from the damage leading to inhibition of subsequent growth in that the former can be compensated for by provision of glucose while the latter cannot. (author)

  4. Karrikin-KAI2 signalling provides Arabidopsis seeds with tolerance to abiotic stress and inhibits germination under conditions unfavourable to seedling establishment.

    Science.gov (United States)

    Wang, Lu; Waters, Mark T; Smith, Steven M

    2018-05-04

    The control of seed germination in response to environmental conditions is important for plant success. We investigated the role of the karrikin receptor KARRIKIN INSENSITIVE2 (KAI2) in the response of Arabidopsis seeds to osmotic stress, salinity and high temperature. Germination of the kai2 mutant was examined in response to NaCl, mannitol and elevated temperature. The effect of karrikin on germination of wild-type seeds, hypocotyl elongation and the expression of karrikin-responsive genes was also examined in response to such stresses. The kai2 seeds germinated less readily than wild-type seeds and germination was more sensitive to inhibition by abiotic stress. Karrikin-induced KAI2 signalling stimulated germination of wild-type seeds under favourable conditions, but, surprisingly, inhibited germination in the presence of osmolytes or at elevated temperature. By contrast, GA stimulated germination of wild-type seeds and mutants under all conditions. Karrikin induced expression of DLK2 and KUF1 genes and inhibited hypocotyl elongation independently of osmotic stress. Under mild osmotic stress, karrikin enhanced expression of DREB2A, WRKY33 and ERF5 genes, but not ABA signalling genes. Thus, the karrikin-KAI2 signalling system can protect against abiotic stress, first by providing stress tolerance, and second by inhibiting germination under conditions unfavourable to seedling establishment. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  5. Seeds of Brassicaceae weeds have an inherent or inducible response to the germination stimulant karrikinolide.

    Science.gov (United States)

    Long, Rowena L; Stevens, Jason C; Griffiths, Erin M; Adamek, Markus; Gorecki, Marta J; Powles, Stephen B; Merritt, David J

    2011-10-01

    Karrikinolide (KAR(1)) is a smoke-derived chemical that can trigger seeds to germinate. A potential application for KAR(1) is for synchronizing the germination of weed seeds, thereby enhancing the efficiency of weed control efforts. Yet not all species germinate readily with KAR(1), and it is not known whether seemingly non-responsive species can be induced to respond. Here a major agronomic weed family, the Brassicaceae, is used to test the hypothesis that a stimulatory response to KAR(1) may be present in physiologically dormant seeds but may not be expressed under all circumstances. Seeds of eight Brassicaceae weed species (Brassica tournefortii, Raphanus raphanistrum, Sisymbrium orientale, S. erysimoides, Rapistrum rugosum, Lepidium africanum, Heliophila pusilla and Carrichtera annua) were tested for their response to 1 µm KAR(1) when freshly collected and following simulated and natural dormancy alleviation, which included wet-dry cycling, dry after-ripening, cold and warm stratification and a 2 year seed burial trial. Seven of the eight Brassicaceae species tested were stimulated to germinate with KAR(1) when the seeds were fresh, and the remaining species became responsive to KAR(1) following wet-dry cycling and dry after-ripening. Light influenced the germination response of seeds to KAR(1), with the majority of species germinating better in darkness. Germination with and without KAR(1) fluctuated seasonally throughout the seed burial trial. KAR(1) responses are more complex than simply stating whether a species is responsive or non-responsive; light and temperature conditions, dormancy state and seed lot all influence the sensitivity of seeds to KAR(1), and a response to KAR(1) can be induced. Three response types for generalizing KAR(1) responses are proposed, namely inherent, inducible and undetected. Given that responses to KAR(1) were either inherent or inducible in all 15 seed lots included in this study, the Brassicaceae may be an ideal target for

  6. Effets de dix traitements sur la germination des akènes d'Ambrosia maritima L

    Directory of Open Access Journals (Sweden)

    Schafer, JL.

    1989-01-01

    Full Text Available Effects of ten treatments on the germination of Ambrosia maritima L. seeds. Stratification of Ambrosia maritima seeds at + 10°C for 7 days appeared to be the best practical method to break their embryonic dormancy with 80 % germination occuring 18 days following the treatment, compared to 17 % for the control. This experiment confirms the susceptibility of embryonic dormancy to low temperatures. Treatments with waterat + 80°C or concentrated H2S04 for 15 mn and mechanical treatments eliminating the inhibition effect of seed integuments also gave higher results (43 to 53 % germination rate. However, germination in the control group was significantly higher than in the group of seeds subjected to dry heat. Although the first results obtained on the field from these trials were satisfactory, further research is needed to confirm them.

  7. Factors Defining Field Germination of Oilseed Radish Seeds

    Directory of Open Access Journals (Sweden)

    N.V. Dorofeev

    2013-08-01

    Full Text Available Influence of temperature, depth of crops and granulometric of soil structure on germination speed, laboratory and field germination of oilseed radish seeds were studied. It was established that the period of seed-germination is defined both by temperature and granulometric structure of soil. The highest field germination was marked on sandy loam at depth of crops' seeds at 3 cm and 20°С.

  8. DOG1-imposed dormancy mediates germination responses to temperature cues

    NARCIS (Netherlands)

    Murphey, M.; Kovach, K.; Elnacash, T.; He, H.; Bentsink, L.; Donohue, K.

    2015-01-01

    Seed dormancy and environment-dependent germination requirements interact to determine the timing of germination in natural environments. This study tested the contribution of the dormancy gene Delay Of Germination 1 (DOG1) to primary and secondary dormancy induction in response to environmental

  9. Monte Carlo simulation of the seed germination process

    International Nuclear Information System (INIS)

    Gladyszewska, B.; Koper, R.

    2000-01-01

    Paper presented a mathematical model of seed germination process based on the Monte Carlo method and theoretical premises resulted from the physiology of seed germination suggesting three consecutive stages: physical, biochemical and physiological. The model was experimentally verified by determination of germination characteristics for seeds of ground tomatoes, Promyk cultivar, within broad range of temperatures (from 15 to 30 deg C)

  10. Factors affecting the germination of hybrid rose achenes

    NARCIS (Netherlands)

    Vries, De D.P.; Dubois, L.A.M.

    2015-01-01

    The smooth germination of mature Hybrid rose achenes is hampered by (i) hardseededness (HS), (ii) primary dormancy (PD) and (iii) germination polymorphism (GP). HS is owing to the hard pericarp. PD is, in principle, a natural phenomenon that protects the seeds from precocious germination. For

  11. Biorhythms in conifer seed germination during extended storage

    Science.gov (United States)

    James P. Barnett; N.I. Marnonov

    1989-01-01

    A proportion of sound seeds of conifer species do not germinate during certain periods of the year, even when conditions are favorable. Mamonov et al. (1986) report that the non-germinating seeds have apparently undergone physiological changes that affected germination. This phenomenon may be due to seasonal periodicity, or biorhythms. As early as the mid-1930'...

  12. Comparison of Germination and Viability Tests for Southern Hardwood Seed

    Science.gov (United States)

    F. T. Bonner; J. L. Gammage

    1967-01-01

    This paper summarizes a 3-year evaluation of 10 methods for testing germinability and viability of the seed of six species of southern hardwood. In five of the methods, the seeds were germinated. In the others, visual, biochemical, or physical properties were the criteria. Cutting tests were best for sweetgum and Nuttall oak seed, while cutting or water germination...

  13. Effect of fungicides on Wyoming big sagebrush seed germination

    Science.gov (United States)

    Robert D. Cox; Lance H. Kosberg; Nancy L. Shaw; Stuart P. Hardegree

    2011-01-01

    Germination tests of Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young [Asteraceae]) seeds often exhibit fungal contamination, but the use of fungicides should be avoided because fungicides may artificially inhibit germination. We tested the effect of seed-applied fungicides on germination of Wyoming big sagebrush at 2 different...

  14. Asymbiotic germination of immature embryos of a medicinally ...

    African Journals Online (AJOL)

    H.piri

    La germination no simuotica de las semillas de orquideas. Bol. Real. Soc. Esp. Hist. Nat. 21:250-260. Knudson L (1922). Non–symbiotic germination of orchid seeds. Bot. Gaz. 73:1-25. Knudson L (1925). Physiological study of the asymbiotic germination of orchid seeds. Bot. Gaz. 79:345-379. Lawler LJ (1984). Ethnobotany ...

  15. Practical aspects of temperature intervention in germination and post-germination development of bacterial spores

    International Nuclear Information System (INIS)

    Stastna, J.; Vinter, V.; Babicka, J.

    1974-01-01

    Temperature dependence of germination and post-germination growth was studied in the spores of B a c i l l u s c e r e u s NCIB 8122. It was found that a temperature of 5 0 C slowed down germination, with the cells showing the capacity of synthetizing only a limited amount of proteins. The synthesis of the cellular wall, however, went on for another few hours. Thick-walled, less permeable and less metabolically active cells formed having an altered ultrastructure. A prolonged cultivation at 30 0 C resulted in the reduction of living cells while the low cultivation temperature (5 0 C) was found to have a protective effect. Pre-irradiation with 30g krad of gamma radiation increased the sensitivity of surviving cells to the cultivation conditions. Spores in the post-germination period were found to be much more resistent and alternating use of low and higher temperatures had little effect on growth

  16. Proteomics of Arabidopsis seed germination and priming

    NARCIS (Netherlands)

    Gallardo, K.; Job, C.; Groot, S.P.C.; Puype, M.; Demol, H.; Vandekerckhove, J.; Job, D.

    2003-01-01

    To better understand seed germination, a complex developmental process, we developed a proteome analysis of the model plant Arabidopsis for which complete genome sequence is now available. Among about 1,300 total seed proteins resolved in two-dimensional gels, changes in the abundance (up- and

  17. Seed dormancy and germination : light and nitrate

    NARCIS (Netherlands)

    Hilhorst, H.W.M.

    1990-01-01

    One of the most important aspects of the life cycle of seed plants is the formation and development of seeds on the motherplant and the subsequent dispersal. An equally important element of the survival strategy is the ability of seeds to prevent germination in unfavorable

  18. Unravelling desiccation tolerance in germinated Arabidopsis seeds

    NARCIS (Netherlands)

    Maia de Oliveira, J.

    2014-01-01

    How different organisms survive in the absence or under very limited amounts of water is still an open question. The aim of the research presented in this thesis is to explore the molecular basis of desiccation tolerance in seeds. We investigated the possibilities of using germinated desiccation

  19. Gibberellic and kaurenoic hybrid strigolactone mimics for seed germination of parasitic weeds.

    Science.gov (United States)

    Pereira, Rondinelle G; Cala, Antonio; Fernández-Aparicio, Mónica; Molinillo, José Mg; Boaventura, Maria Ad; Macías, Francisco A

    2017-12-01

    Parasitic weeds are widespread and cause significant losses in important crops. Their germination requires the detection of crop-derived molecules such as strigolactones. Strigolactone mimics are germination-inducing molecules with the potential to apply a suicidal germination strategy for seed bank control of parasitic weeds. The D-ring, which is instrumental in the germination process of seeds of parasitic weeds, was attached to gibberellin (GA 3 ) and kaurenoic acid as the scaffold. It was shown that indeed strigolactone mimics prepared from GA 3 and kaurenoic acid are active as stimulants when a D-ring is present; some of the mimics are as active as GR24. The starting molecules were plant hormones that had previous growth-regulating activity in other organisms and the products showed enhanced activity towards parasitic weeds. The information generated may contribute to a better understanding of the germination biochemistry of the weed species used. Further research is required in this area but it is clear that the results are promising. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Seed Germination and Physiological Response of Sunflower (Helianthus annuus L. Cultivars under Saline Conditions

    Directory of Open Access Journals (Sweden)

    Carmen BEINSAN

    2018-05-01

    Full Text Available The purpose of the experiment was to highlight the germination of sunflower seeds affected by the presence of saline stress and the identification of tolerant genotypes. The biological material was represented by sunflower cvs. (Helianthus annuus L.: Coril, Select, Santiago and Fundulea-206. To simulate the saline conditions, germination solutions of sodium chloride (NaCl were used with concentrations corresponding to the osmotic pressures -6 and -10 atm and the control seed hydration was performed with distilled water. Determination of seed germination, growth of seedling, percentage of plumules dry matter, chlorophyll content and free proline were performed. The experimental data obtained suppose the existence in the assimilation apparatus of sunflowers seedling subjected to stress a competitive chlorophyll/free proline biosynthesis processes. The experimental results regarding the effect of salinity on seed germination and seedling growth revealed important differences between genotypes. The radicle growth in the germination process were strongly affected by saline excess, with significant differences between cultivars. Saline stress results in significant reductions in the amount of chlorophyll, and high levels of free proline. It can be observed that with the increase of the stress level the percentage of the dry matter increases, indicating an accentuated water deficit.

  1. The effect of gamma irradiation on the germination and growth of certain Nigerian agricultural crops

    International Nuclear Information System (INIS)

    Mokobia, C E; Anomohanran, O

    2005-01-01

    Gamma irradiation has been found to be very useful both for sterilisation in medicine and the preservation of food and cereals in nutrition and agriculture. This investigation was carried out to determine the effect of gamma irradiation on the subsequent germination and growth of irradiated seeds. Thirty seeds each of maize, okra and groundnut were irradiated to varying doses of 150, 300, 500, 700, 900, 1000 Gy using the 60 Co gamma cell irradiator facility at the Centre for Energy Research and Development, Obafemi Awolowo University, Ile-Ife. These, as well as the controls (unirradiated seeds), were planted on the same day in an already prepared area of farmland during the rainy season to ensure a constant moisture flow. The times of germination and subsequent growth were monitored. Results show that maize, okra and groundnut seeds needed for planting can be safely stored using gamma irradiation. However, the study reveals that the number of germinated seeds and the growth rate for the crops decrease with increase in the radiation dose the seeds were exposed to. Third-degree polynomial equations were derived which describe the percentage germination of the crops at various levels of exposure. A chart of percentage germination of seeds versus exposure dose is also presented as a quick guide to farmers, policy makers and agricultural institutions. (note)

  2. Membrane damage and solute leakage from germinating pea seed under cadmium stress

    Energy Technology Data Exchange (ETDEWEB)

    Rahoui, Sondes, E-mail: rahoui.sondes@yahoo.fr [Bio-Physiologie Cellulaires, Departement des Sciences de la Vie, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia); Chaoui, Abdelilah, E-mail: cabdelilah1@yahoo.fr [Bio-Physiologie Cellulaires, Departement des Sciences de la Vie, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia); El Ferjani, Ezzeddine, E-mail: ezzferjani2002@yahoo.fr [Bio-Physiologie Cellulaires, Departement des Sciences de la Vie, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia)

    2010-06-15

    Seed germination represents a limiting stage of plant life cycle under heavy metal stress situation. Delay in germination can be associated with disorders in the event chain of germinative metabolism which is a highly complex multistage process, but one of underlying metabolic activities following imbibition of seed is the storage mobilization. The influence of cadmium on carbohydrates and aminoacids export from cotyledon to embryonic axis during germination of pea seed was investigated. Compared to the control, Cd caused a restriction in reserve mobilization as evidenced by the pronounced increase in cotyledon/embryo ratios of total soluble sugars, glucose, fructose and aminoacids. Moreover, the nutrient concentrations, as well as the electrical conductivity of germination medium were determined to quantify the extent of solute leakage. Such nutrients were lost into the imbibition medium at the expense of suitable mobilization to the growing embryonic axis. This was concomitant with an over-accumulation of lipid peroxidation products in Cd-poisoned embryonic tissues. However, the impairment of membrane integrity cannot be due to a stimulation in lipoxygenase activity, since the later was markedly inhibited after Cd exposure.

  3. The development of meat pate with increased the food and biological values with germinated grains lentils

    Directory of Open Access Journals (Sweden)

    L. V. Antipova

    2016-01-01

    Full Text Available One of the important technological trends in food production, balanced on the chemical and amino acid composition is the development of methods for enrichment product protein, vitamins and minerals. The solution to this problem has long been used a method of enrichment of vegetable raw materials to create a nutrient and healthy products available to different social groups. In theory justified the choice of research object – lentils, which have a number of advantages in food systems. Analyzed method of increasing the biological value of the object in the process of germination grains and marked improvement the balance of amino acid composition. Designed meat pate with using germination grains and investigated its main functional-technological (FTC, organoleptic properties and digestibility. In determining, the functional-technological characteristics revealed an increase in FTC-indicators, such as water binding, water holding, fat holding, and emulsifying ability when you add germination lentils. According to the results of organoleptic evaluation revealed improvement in the consistency of meat pate, when replacing 50% of raw meat, germination lentils, and in appearance, color, smell and taste, control and test products are almost identical. The digestibility of the paste was 97%. Proposed different options of using germination grains of lentils to create a products for public and preventive nutrition.

  4. Study of Different Priming Treatments on Germination Traits of Soybean Seed Lots

    Directory of Open Access Journals (Sweden)

    Hossein Reza ROUHI

    2011-03-01

    Full Text Available Oilseeds are more susceptible to deterioration due to membrane disruption, high free fatty acid level in seeds and free radical production. These factors are tended to less vigorous seed. Priming treatments have been used to accelerate the germination and seedling growth in most of the crops under normal and stress conditions. For susceptible and low vigor soybean seed, this technique would be a promising method. At first, in separate experiment, effects of hydropriming for (12, 24, 36 and 48 h with control (none prime were evaluated on germination traits of soybean seed lots cv. �Sari� (include 2 drying method and 3 harvest moisture. Then, next experiment was conducted to determination the best combination of osmopriming in soybean seed lots, hence 3 osmotic potential level (-8, -10 and -12 bar at 4 time (12, 24, 36 and 48 h were compared. Analysis of variance showed that, except for seedling dry weight, the other traits include standard germination, germination rate, seedling length and vigor index were influenced by osmopriming. Hydropriming had no effect on these traits and decreased rate of germination. Finally the best combination of osmopriming were osmotic potential -12 bar at 12 hours for time, that submitted acceptable result in all conditions and recommended for soybean seed lots cv. �Sari�.

  5. Study of Different Priming Treatments on Germination Traits of Soybean Seed Lots

    Directory of Open Access Journals (Sweden)

    Hossein Reza ROUHI

    2011-03-01

    Full Text Available Oilseeds are more susceptible to deterioration due to membrane disruption, high free fatty acid level in seeds and free radical production. These factors are tended to less vigorous seed. Priming treatments have been used to accelerate the germination and seedling growth in most of the crops under normal and stress conditions. For susceptible and low vigor soybean seed, this technique would be a promising method. At first, in separate experiment, effects of hydropriming for (12, 24, 36 and 48 h with control (none prime were evaluated on germination traits of soybean seed lots cv. Sari (include 2 drying method and 3 harvest moisture. Then, next experiment was conducted to determination the best combination of osmopriming in soybean seed lots, hence 3 osmotic potential level (-8, -10 and -12 bar at 4 time (12, 24, 36 and 48 h were compared. Analysis of variance showed that, except for seedling dry weight, the other traits include standard germination, germination rate, seedling length and vigor index were influenced by osmopriming. Hydropriming had no effect on these traits and decreased rate of germination. Finally the best combination of osmopriming were osmotic potential -12 bar at 12 hours for time, that submitted acceptable result in all conditions and recommended for soybean seed lots cv. Sari.

  6. Fire cue effects on seed germination of six species of northwestern Patagonian grasslands

    Science.gov (United States)

    Gonzalez, S. L.; Ghermandi, L.

    2012-09-01

    Postfire recruitment of seedlings has been attributed to a stimulation of germination by fire-related cues. The germination response to heat shock (80 °C - 5 min), smoke (60 min), the combination of both factors and no heat no smoke (control) was studied in six native species (two dominant grasses, two dominant shrubs and two annual fugitive herbs) of northwestern Patagonian grasslands. Seeds of the grasses Festuca pallescens and Stipa speciosa and the shrub Senecio bracteolatus (Asteraceae) germinated when they were exposed to heat shock, whereas seeds of the other shrub, Mulinum spinosum (Apiaceae), were killed by this fire cue. In grasses, probably the glume of caryopsis protected embryos from heat. Possibly, the seed size could explain the different responses of the two shrubs. Heat combined with smoke reduced seed germination for S. speciosa and S. bracteolatus. The heat could have scarified seeds and the longer exposure to smoke could have been toxic for embryos. The same treatment increased germination of the annual fugitive herb Boopis gracilis (Calyceraceae). We concluded that fire differentially affects the seedling recruitment of the studied species in the northwestern Patagonian grasslands.

  7. Sonication of seeds increase germination performance of sesame under low temperature stress

    Directory of Open Access Journals (Sweden)

    Fariborz SHEKARI

    2015-11-01

    Full Text Available A laboratory experiment was conducted to determine the effect of ultrasound (US exposure time on germination behavior of sesame seeds. All tests were carried out at 20 kHz in a water bath ultrasonic device varying two factors, treatment duration (10, 20 and 30 min and germination temperature (15, 20 and 25 ºC. Parallel tests were run in which seeds were soaked in water without sonication in order to eliminate the effect of water from US test results. US treatments enhanced seeds water uptake. At mild exposure time it improved sesame seed germination performance and seedling growth at suboptimal temperatures as indicated by higher germination percentage and germination rate. US applying for 20 min had relatively high superoxide dismutase activity; however, had not significant differences with control and US duration for 10 min. The catalase activity was strongly increased by applying the US for a 10 and 20 min. Among the treatments, application of US vibration for 10 and 20 min reduced both of malondialdehyde and H2O2 contents, however high US duration (30 min increased both of the traits. In general, ultrasonic priming technique can be useful for early planting the sesame seeds, and lead to higher yields.

  8. Membrane damage and solute leakage from germinating pea seed under cadmium stress

    International Nuclear Information System (INIS)

    Rahoui, Sondes; Chaoui, Abdelilah; El Ferjani, Ezzeddine

    2010-01-01

    Seed germination represents a limiting stage of plant life cycle under heavy metal stress situation. Delay in germination can be associated with disorders in the event chain of germinative metabolism which is a highly complex multistage process, but one of underlying metabolic activities following imbibition of seed is the storage mobilization. The influence of cadmium on carbohydrates and aminoacids export from cotyledon to embryonic axis during germination of pea seed was investigated. Compared to the control, Cd caused a restriction in reserve mobilization as evidenced by the pronounced increase in cotyledon/embryo ratios of total soluble sugars, glucose, fructose and aminoacids. Moreover, the nutrient concentrations, as well as the electrical conductivity of germination medium were determined to quantify the extent of solute leakage. Such nutrients were lost into the imbibition medium at the expense of suitable mobilization to the growing embryonic axis. This was concomitant with an over-accumulation of lipid peroxidation products in Cd-poisoned embryonic tissues. However, the impairment of membrane integrity cannot be due to a stimulation in lipoxygenase activity, since the later was markedly inhibited after Cd exposure.

  9. The effect of gamma irradiation on the germination and growth of certain Nigerian agricultural crops

    Energy Technology Data Exchange (ETDEWEB)

    Mokobia, C E; Anomohanran, O [Department of Physics, Delta State University, Abraka, Delta State (Nigeria)

    2005-06-01

    Gamma irradiation has been found to be very useful both for sterilisation in medicine and the preservation of food and cereals in nutrition and agriculture. This investigation was carried out to determine the effect of gamma irradiation on the subsequent germination and growth of irradiated seeds. Thirty seeds each of maize, okra and groundnut were irradiated to varying doses of 150, 300, 500, 700, 900, 1000 Gy using the {sup 60}Co gamma cell irradiator facility at the Centre for Energy Research and Development, Obafemi Awolowo University, Ile-Ife. These, as well as the controls (unirradiated seeds), were planted on the same day in an already prepared area of farmland during the rainy season to ensure a constant moisture flow. The times of germination and subsequent growth were monitored. Results show that maize, okra and groundnut seeds needed for planting can be safely stored using gamma irradiation. However, the study reveals that the number of germinated seeds and the growth rate for the crops decrease with increase in the radiation dose the seeds were exposed to. Third-degree polynomial equations were derived which describe the percentage germination of the crops at various levels of exposure. A chart of percentage germination of seeds versus exposure dose is also presented as a quick guide to farmers, policy makers and agricultural institutions. (note)

  10. Seed priming with antioxidants improves sunflower seed germination and seedling growth under unfavorable germination conditions

    OpenAIRE

    DRAGANIC, Ivana; LEKIC, Slavoljub

    2012-01-01

    The results of studying the effects of sunflower seed priming with an aqueous solution of ascorbic acid (A), tocopherol (T), and glutathione (G) performed prior to accelerated ageing and a cold test are presented in this paper. Germination, the percentage of abnormal seedlings, and the lengths of both roots and shoots were monitored. The results showed that the cold test caused a drastic drop in germination, an adverse effect on the shoot length, an increase in the percentage of abnormal seed...

  11. Hydroquinone; A novel bioactive compound from plant-derived smoke can cue seed germination of lettuce

    Science.gov (United States)

    Kamran, Muhammad; Khan, Abdul L.; Ali, Liaqat; Hussain, Javid; Waqas, Muhammad; Al-Harrasi, Ahmed; Imran, Qari M.; Kim, Yoon-Ha; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2017-05-01

    Plant-derived smoke has been known to play an important role in distribution and growth of vegetation. Using a proficiently designed furnace, we extracted smoke from the leaves of four plant viz. Helianthus annuus, Aloe vera, Ginkgo biloba, and Cymbopogon jwarancusa. Smoke dilutions obtained from these plants were obtained in different concentrations to identify potential lettuce growth promoting smoke solution. Results revealed that smoke obtained from Ginkgo biloba significantly enhanced the lettuce seed germination. This solution was then partitioned into ethyl acetate, dichloromethane, n-hexane, chloroform and ether fractions. Ethyl acetate fraction was found to be potent to enhance seed germination. This fraction was subjected to column chromatography and spectroscopic techniques to obtain compound 1. This compound was identified as hydroquinone using 1D and 2D NMR techniques. At low concentrations (5, 10 and 20 ppm), compound 1 enhanced the lettuce seed germination; however, higher concentrations inhibited its growth as compared to control.

  12. Hydroquinone; A Novel Bioactive Compound from Plant-Derived Smoke Can Cue Seed Germination of Lettuce

    Science.gov (United States)

    Kamran, Muhammad; Khan, Abdul L.; Ali, Liaqat; Hussain, Javid; Waqas, Muhammad; Al-Harrasi, Ahmed; Imran, Qari M.; Kim, Yoon-Ha; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2017-01-01

    Plant-derived smoke has been known to play an important role in distribution and growth of vegetation. Using a proficiently designed furnace, we extracted smoke from the leaves of four plant viz. Helianthus annuus,Aloe vera,Ginkgo biloba, and Cymbopogon jwarancusa. Smoke dilutions obtained from these plants were obtained in different concentrations to identify potential lettuce growth promoting smoke solution. Results revealed that smoke obtained from G. biloba significantly enhanced the lettuce seed germination. This solution was then partitioned into ethyl acetate, dichloromethane, n-hexane, chloroform and ether fractions. Ethyl acetate fraction was found to be potent to enhance seed germination. This fraction was subjected to column chromatography and spectroscopic techniques to obtain compound 1. This compound was identified as hydroquinone using 1D and 2D NMR techniques. At low concentrations (5, 10, and 20 ppm), compound 1 enhanced the lettuce seed germination; however, higher concentrations inhibited its growth as compared to control. PMID:28553632

  13. Influence of mutagens on enzymes of germinating seeds of cotton (Gossypium hirsutum L.)

    International Nuclear Information System (INIS)

    Muthusamy, A.; Jayabalan, N.; Juliana, B.

    2000-01-01

    The activities of the enzymes amylases, protease and phosphatases were studied in cotton during germination. The seeds were treated with 100-500 Gy of gamma rays, 10-50 mM of EMS, CA and SA in two cultivated varieties viz.. MCU 5 and MCU 11. Activity pattern of amylases, protease and phosphatases in treated seeds were significantly altered from controls. The alteration were positively correlated with increasing dose/concentration of mutagens up to 300 Gy of gamma rays and 30 mM of EMS, CA and SA. The present study pave the ways to discuss the importance of the enzymes and mutagens in germination of cotton seeds. (author)

  14. Chemical inhibitors of viviparous germination in the fruit of watermelon.

    Science.gov (United States)

    Kobayashi, Yoshiki; Nabeta, Kensuke; Matsuura, Hideyuki

    2010-09-01

    It is well known that the seeds of watermelon [Citrullus lanatus (Thunb.) Matsum and Nakai] have a high potential to germinate when the fruit has ripened. When removed from the mature fruit, the seeds can germinate under appropriate conditions. However, it is unclear why they cannot germinate in the flesh of the fruit. Here, we show that cis-ABA and its β-D-glucopyranosyl ester (ABA-β-GE) accumulate in the flesh of the fruit at levels high enough to inhibit seed germination. This result indicates the existence of chemical factors that inhibit viviparous seed germination of watermelon.

  15. Effects of gut passage, feces, and seed handling on latency and rate of germination in seeds consumed by capuchins (Cebus capucinus).

    Science.gov (United States)

    Valenta, Kim; Fedigan, Linda M

    2009-04-01

    One of the key measures of the effectiveness of primary seed dispersal by animals is the quality of seed dispersal (Schupp: Plant Ecol 107/108 [1993] 15-29). We present data on quality of seed dispersal by two groups of white-faced capuchins (Cebus capucinus) in Costa Rica to test the hypothesis that capuchin seed handling results in effective primary dispersal for some fruit species they consume. We examined seed handling for 27 plant species, and germination rates of 18 species consumed by capuchins. For five of the most commonly swallowed seed species, we determined germination rates and average time to germination (latency) for seeds ingested and defecated by capuchins and compared these to seeds removed directly from fruit and planted. For the same five species, we compared germination rates and latency for passed seeds planted in capuchin feces to those cleaned of feces and planted in soil. For three of five species, differences in proportion of germinated seeds were significantly higher for gut passed seeds than for controls. For four of five species, germination latency was significantly faster for gut passed seeds than for controls. Feces had either no effect on seed germination rate or precluded germination. Data presented here support the hypothesis that white-faced capuchins are effective primary dispersers.

  16. Antagonism between abscisic acid and gibberellins is partially mediated by ascorbic acid during seed germination in rice.

    Science.gov (United States)

    Ye, Nenghui; Zhang, Jianhua

    2012-05-01

    The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. In the associated study, we investigated the relationship among ABA, reactive oxygen species (ROS), ascorbic acid (ASC) and GA during rice seed germination. ROS production is reduced by ABA, which hence results in decreasing ASC accumulation during imbibition. GA accumulation was also suppressed by a reduced ROS and ASC level, whereas application of exogenous ASC can partially rescue seed germination from ABA treatment. Further results show that production of ASC, which acts as a substrate in GA biosynthesis, was significantly inhibited by lycorine which thus suppressed the accumulation of GA. Consequently, expression of GA biosynthesis genes was suppressed by the low levels of ROS and ASC in ABA-treated seeds. These studies reveal a new role for ASC in mediating the antagonism between ABA and GA during seed germination in rice.

  17. The Biological Effect of Extremely Low Frequency Electromagnetic Fields and Vibrations on Barley Seed Hydration and Germination

    Directory of Open Access Journals (Sweden)

    Armine Amyan

    2004-01-01

    Full Text Available The changes of wet and dry weights and germination of barley seed in different periods of its swelling in nontreated (control, extremely low frequency electromagnetic fields (ELF EMF –treated, and extremely low frequency vibrations (ELFV–treated cold (4°C and warm (20°C distilled water (DW were studied. The metabolic-dependent seed hydration, dry weight dissolving, germination, and water binding in seed were modulated by preliminary EMF- and ELFV-treated DW. Frequency “windows” for the effect of EMF and ELFV on seed hydration, solubility, water binding in seed, and germination were discovered. These “windows” were different for EMF and ELFV, as well as in various phases of seed swelling. It is suggested that EMF-induced water structure modification has a different biological effect on the process of seed hydration, solubility, water binding in seed, and germination compared to ELFV.

  18. A model for quantification of temperature profiles via germination times

    DEFF Research Database (Denmark)

    Pipper, Christian Bressen; Adolf, Verena Isabelle; Jacobsen, Sven-Erik

    2013-01-01

    Current methodology to quantify temperature characteristics in germination of seeds is predominantly based on analysis of the time to reach a given germination fraction, that is, the quantiles in the distribution of the germination time of a seed. In practice interpolation between observed...... time and a specific type of accelerated failure time models is provided. As a consequence the observed number of germinated seeds at given monitoring times may be analysed directly by a grouped time-to-event model from which characteristics of the temperature profile may be identified and estimated...... germination fractions at given monitoring times is used to obtain the time to reach a given germination fraction. As a consequence the obtained value will be highly dependent on the actual monitoring scheme used in the experiment. In this paper a link between currently used quantile models for the germination...

  19. Influence of the testa on seed dormancy, germination and longevity in Arabidopsis

    NARCIS (Netherlands)

    Debeaujon, I.; Léon-Kloosterziel, K.M.; Koornneef, M.

    2000-01-01

    The testa of higher plant seeds protects the embryo against adverse environmental conditions. Its role is assumed mainly by controlling germination through dormancy imposition and by limiting the detrimental activity of physical and biological agents during seed storage. To analyze the function of

  20. Pre-germination treatments for Hymenaea stigonocarpa Mart. ex Hayne seeds

    Directory of Open Access Journals (Sweden)

    Sérgio Roberto Garcia dos Santos

    2016-12-01

    Full Text Available Hymenaea stigonocarpa, known as Jatoba-do-cerrado, belongs to the family Fabaceae (Leguminosae and is included in the category "near threatened with extinction." It occurs in cerrado and cerradão areas, and its seeds have physical dormancy. Because of this characteristic, the aim of this study was to evaluate different pre-germination treatments and control in H. stigonocarpa seeds, namely: immersion in fire, sulfuric acid, hydrochloric acid, acetone, ether and hot water (100°C, and mechanical scarification of the seed coat by roughing with sandpaper or cutting with nail clippers and washing in running water for 2 hours. The parameters analyzed were percentage of germination, germination speed index (GSI and the percentage of hard and firm seeds and dead seeds. The final results were: a germination: boiling water and sulfuric acid were superior to the control; b GSI: boiling water, sulfuric acid, fire and sandpaper were superior to the control and c percentage of dead seeds was not statistically different between the different treatments and control. In conclusion, boiling water and sulfuric acid, were the best treatments, with regard to the parameters examined.

  1. Effects of NaCl stress on seed germination, early seedling growth ...

    African Journals Online (AJOL)

    Effects of salt stress on seed germination, early seedling growth and some physiological characteristics were evaluated for four cauliflower species in seven treatments of salinity including 0 (control), 34, 68, 102, 136, 170 and 204 mM NaCl in a three replicated randomized completely block design (RCBD). This result shows ...

  2. Effect of microwave irradiation on alfalfa seeds germination and nitrogenase activity of endophytic diazotrophs in seeds

    International Nuclear Information System (INIS)

    Zhang Shuqing; Li Jianfeng; Shi Shangli; Huo Pinghui; Zhu Xinqiang; Zhao Wenhan; Tao Rong

    2011-01-01

    Various microwave powers were used to irradiate alfalfa seeds with various time to study the effect of microwave irradiation on nitrogenase activity of endogenous azotobacter and germination of seeds. Germination rate, germination speed and nitrogenase activity of pure cultures that derived from seed-carried azotobacter were tested. The results indicate that : 800 W, 20 s and 500 W, 40 s are found with highest germination rate on the 1 st day, which is 122% and 88.9% times higher than the control group (P th day is 29.8% and 41.9% times longer than the control group, and more sensitive nitrogenase activity is found on condition of various time than various powers. Short time treatments on condition of the two irradiation powers can increase nitrogenase activity conspicuously, and the treatments that treated more than 32 s make nitrogenase activity lower than the control group, conspicuously. Nitrogenase activity is found 104.9% times higher than the control group on condition of 24 s. (authors)

  3. Effect of pulsed electric field on the germination of barley seeds

    DEFF Research Database (Denmark)

    Dymek, Katarzyna; Dejmek, Petr; Panarese, Valentina

    2012-01-01

    This study explores metabolic responses of germinating barley seeds upon the application of pulsed electric fields (PEF). Malting barley seeds were steeped in aerated water for 24 h and PEF-treated at varying voltages (0 (control), 110, 160, 240, 320, 400 and 480 V). The seeds were then allowed...

  4. Effets de vieillissement accéléré sur la germination et l ...

    African Journals Online (AJOL)

    de la performance des graines ou lots de graines pendant la ... conditions extrêmes et ensuite mesurer le taux de germination, un test ..... l'étude, la conservation et la gestion ex situ du matériel végétal. ... Controle de la qualité des céréales et.

  5. Bases génétiques et biochimiques de la capacité germinative des ...

    African Journals Online (AJOL)

    The germination capacity is under the control of internal ..... niveau de l'activité et de la performance des graines ou lots de graines .... mesure pas les hydroperoxydes, mais plutôt le produit de leur ..... de contrôle officiel ou privé de gestion des.

  6. Proteomic analysis during of spore germination of Moniliophthora perniciosa, the causal agent of witches' broom disease in cacao.

    Science.gov (United States)

    Mares, Joise Hander; Gramacho, Karina Peres; Santos, Everton Cruz; da Silva Santiago, André; Santana, Juliano Oliveira; de Sousa, Aurizângela Oliveira; Alvim, Fátima Cerqueira; Pirovani, Carlos Priminho

    2017-08-17

    Moniliophthora perniciosa is a phytopathogenic fungus responsible for witches' broom disease of cacao trees (Theobroma cacao L.). Understanding the molecular events during germination of the pathogen may enable the development of strategies for disease control in these economically important plants. In this study, we determined a comparative proteomic profile of M. perniciosa basidiospores during germination by two-dimensional SDS-PAGE and mass spectrometry. A total of 316 proteins were identified. Molecular changes during the development of the germinative tube were identified by a hierarchical clustering analysis based on the differential accumulation of proteins. Proteins associated with fungal filamentation, such as septin and kinesin, were detected only 4 h after germination (hag). A transcription factor related to biosynthesis of the secondary metabolite fumagillin, which can form hybrids with polyketides, was induced 2 hag, and polyketide synthase was observed 4 hag. The accumulation of ATP synthase, binding immunoglobulin protein (BiP), and catalase was validated by western blotting. In this study, we showed variations in protein expression during the early germination stages of fungus M. perniciosa. Proteins associated with fungal filamentation, and consequently with virulence, were detected in basidiospores 4 hag., for example, septin and kinesin. We discuss these results and propose a model of the germination of fungus M. perniciosa. This research can help elucidate the mechanisms underlying basic processes of host invasion and to develop strategies for control of the disease.

  7. Solid matrix priming with chitosan enhances seed germination and seedling invigoration in mung bean under salinity stress

    Directory of Open Access Journals (Sweden)

    Sujoy SEN

    2016-09-01

    Full Text Available The objective of present study was to evaluate the response of the mung bean seeds of ‘Sonali B1’ variety primed with chitosan in four different concentrations (0, 0.1%, 0.2% and 0.5% under salinity stress of five different concentrations (i.e., 0, 4, 6, 8 and 12 dS*mm-1 and halotolerance pattern by applying Celite as matrix at three different moisture levels (5%, 10% and 20%. Improved germination percentage, germination index, mean germination time, coefficient of velocity of germination along with root and shoot length was observed comparing with control. Germination stress tolerance index (GSI, plant height stress tolerance index (PHSI and root length stress tolerance index (RLSI were used to evaluate the tolerance of the mung bean seeds against salinity stress induced by chitosan. Results of GSI, PHSI, RLSI showing noteworthy inhibitory effect of salinity stress in control set was significantly less pronounced in chitosan treated seedlings. Chitosan can remarkably alleviate the detrimental effect of salinity up to the level of 6 dS*m-1, beyond which no improvement was noticed. In conclusion present investigation revealed that chitosan is an ideal elicitor for enhancing the speed of germination and seedling invigoration that synchronize with emergence of radicle and salinity stress tolerance.

  8. The COP9 Signalosome regulates seed germination by facilitating protein degradation of RGL2 and ABI5.

    Directory of Open Access Journals (Sweden)

    Dan Jin

    2018-02-01

    Full Text Available The control of seed germination and seed dormancy are critical for the successful propagation of plant species, and are important agricultural traits. Seed germination is tightly controlled by the balance of gibberellin (GA and abscisic acid (ABA, and is influenced by environmental factors. The COP9 Signalosome (CSN is a conserved multi-subunit protein complex that is best known as a regulator of the Cullin-RING family of ubiquitin E3 ligases (CRLs. Multiple viable mutants of the CSN showed poor germination, except for csn5b-1. Detailed analyses showed that csn1-10 has a stronger seed dormancy, while csn5a-1 mutants exhibit retarded seed germination in addition to hyperdormancy. Both csn5a-1 and csn1-10 plants show defects in the timely removal of the germination inhibitors: RGL2, a repressor of GA signaling, and ABI5, an effector of ABA responses. We provide genetic evidence to demonstrate that the germination phenotype of csn1-10 is caused by over-accumulation of RGL2, a substrate of the SCF (CRL1 ubiquitin E3 ligase, while the csn5a-1 phenotype is caused by over-accumulation of RGL2 as well as ABI5. The genetic data are consistent with the hypothesis that CSN5A regulates ABI5 by a mechanism that may not involve CSN1. Transcriptome analyses suggest that CSN1 has a more prominent role than CSN5A during seed maturation, but CSN5A plays a more important role than CSN1 during seed germination, further supporting the functional distinction of these two CSN genes. Our study delineates the molecular targets of the CSN complex in seed germination, and reveals that CSN5 has additional functions in regulating ABI5, thus the ABA signaling pathway.

  9. In vitro germination of desert rose varieties(

    Directory of Open Access Journals (Sweden)

    Tatiane Lemos Varella

    2015-08-01

    Full Text Available The drought stress resistance is a characteristic of the desert rose and its estimable beauty flowers, which gave it great relevance in the ornamental market. However, the desert rose production and germination is hampered by possible sterility of their male and female flowers and frequent problems in pollination, so the tissue culture is a promising alternative to the propagation of these plants. This study aimed to evaluate the effect of gibberellic acid on four commercial varieties of desert rose (Adenium obesum cultivated in vitro. The seeds of the varieties ‘Orange Pallet’, ‘Carnation violet’, ‘Diamond ring’ and ‘Vermiliont’ were sterilized and inoculated on Water + Agar (T0, medium MS (T1, ½ MS (T2, MS + 0.25 mg L-1 GA3 (T3, MS + 0.5 mg L-1 GA3 (T4, ½ MS + 0.25 mg L-1 GA3 (T5, ½ MS 0.5 mg L-1 GA3 (T6. The seeds germination of A. obesum was initiated on the fourth day of cultivation and on the tenth day was possible to observe the expansion of the cotyledons and leaf expansion with subsequent development of early secondary root. The ‘Orange pallet’ variety germinated 100% of seeds on water + agar and MS ½ + 0.5 mg L-1 of GA3. For ‘Diamond Ring’ and ‘Carnation violet’ the highest rate of germination occurred in treatments MS ½; 0.25 mg L-1 GA3; MS + 0.5 mg L-1 GA3 MS ½ + 0.5 mg L-1 GA3 averaging 80% and 70%, respectively. For ‘Vermiliont’ the best response was in MS and MS ½ + 0.5 mg L-1 GA3 ranging between 70-90% germinated embryos. It was registered different malformations in all treatments like absence of roots and apexes during seedling development. The concentrations of GA3 did not affect significantly the seed germination.

  10. Effect of Different Levels of Sodium Chloride on Germination Characteristics of 20 Cultivars of Bread and Durum Wheat20 Cultivars of Bread and Durum Wheat

    Directory of Open Access Journals (Sweden)

    E Bijanzadeh

    2011-01-01

    Full Text Available Abstract Salt stress is a major stress influencing wheat seedling establishment. A laboratory experiment was conducted to evaluate the response of 20 cultivars of wheat to two levels of salinity (8 and 16 dS/m NaCl, at the College of Agriculture, Shiraz University, Shiraz, Iran in 2008. Maximum root length was obtained in Dabira (5.73 mm at 16dS/m salinity level. In control, durum wheat cultivars including D81-17, Yavaros, D82-16, D79-15 and Taro3 had the maximum root length compared to bread wheat, however, with increasing salinity level to 16dS/m, minimum root length was observed in D82-16 (0.3 mm. In all cultivars, with increasing salinity level, shoot length was decreased and minimum shoot length was observed in D82-16 and D79-15. Under control conditions, Taro 3 cultivar had maximum seedling dry weight (108.6 mm, however, at 8 and 16 dS/m salinity levels, seedling dry weight of this cultivar was decreased to 92.33 and 78.43 mg, respectively. All seeds (100% were germinated in D82-16, Taro3, Bolani Cross, and Chamran cultivars under 16 dS/m but in Marvdasht cultivar, seed germination percentage under 8 and 16 dS/m reached to 65 and 50%, respectively. Shiraz (10.8 seeds/day, Adl Cross(10 seeds/day, and Bolani Cross (9.1 seeds/day had maximum germination rate under 16 dS/m salinity level. Differences among wheat cultivars also found in germination stress index (germination rate under stress divided by germination rate under control and Shiraz, Adl Cross and Bolani Cross had maximum germination stress index, while Yavaros and D82-16 had minimum germination stress index. Furthermore, with increasing salinity level, different responses were observed among wheat cultivars in root and shoot length, germination rate and germination stress index which demonstrated the genetic diversity among wheat cultivars. It appeared that durum wheat cultivars, compared to bread wheat cultivars, had lower germination stress index and germination rate. Among what

  11. Comparative toxic effects of some xenobiotics on the germination and early seedling growth of jack pine (Pinus banksiana Lamb. ) and white birch (Betula papyrifera Marsh. )

    Energy Technology Data Exchange (ETDEWEB)

    Weinberger, P; Vladut, R

    1981-12-01

    Seeds of jack pine (Pinus banksiana Lamb.) and white birch (Betula papyrifera Marsh.) were germinated in homogeneous emulsions or aqueous tank-mix solutions of fenitrothion or Matacil and their respective adjuvants: Atlox and Aerotex, or diluent oil No. 585 and nonylphenol. Percentage and peak germination values, water uptake, sprout length, ATP content, and morphological modifications were recorded from 0 to 14 or 21 days. Apart from 100 ppm fenitrothion which stimulated germination values, germination in jack pine was only marginally affected by any of the treatments; in contrast, white birch was negatively affected by all treatments. The most sensitive parameters of toxicity were the sprout length and ATP content after 14 days growth. Aberrant hypocotyl/root length ratios were evidenced in pine seeds after exposure to xenobiotic treatments which did not affect the germinative capacity of seeds. ATP content in the 14-day-old pine and birch seedlings was consistently higher than controls in all treatment sets. (Refs. 29).

  12. Influence of lead and the metallic ions of copper, zinc, thorium, beryllium and thallium on the germination of seeds. [Pepidium sativum; Sinapis alba

    Energy Technology Data Exchange (ETDEWEB)

    Dilling, W J

    1926-01-01

    Experiments were performed to determine whether lead salts had any special retarding influence on the germination and early growth of seeds and whether any other metals (Cu, Zn, Th, Be, Tl) possessed the action in more marked degree. The experiments were done chiefly with cress (Pepidium sativum) and mustard (Sinapis alba). Results indicated that lead has a definite inhibiting action on germination and, in strengths of 0.27%, practically checks it, while exercising a deleterious effect on the growth of the seedling. With 0.12% strength, germination is delayed four days and averages 40% below the control with slow and stunted growth. 0.05% lead reduces germination by 20%, delays it by a day, but the young plants make good growth. The results indicated that other metallic ions possess, like lead, the power of inhibiting germination and growth of seeds.

  13. The deuterium depleted water effects on germination, growth and respiration processes in Zea Mays culture

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Fleancu, Monica; Giosanu, Daniela; Iorga-Siman, Ion

    2002-01-01

    The aim of this paper is to study the influence of deuterium depleted water (DDW) on the germination, growth and respiration processes in Zea Mays culture. The DDW is produced by the Institute of Cryogenics and Isotope Separation, Rm. Valcea (Romania). We used moist seeds in three experimental lots: L-1 (control), using distillated water (because the quality of DDW, excepting the deuterium content, is similar to that of distillated water); L-2, using a mixture of DDW and H 2 O in 1:1 proportion; L-3, germination in light water (DDW). Reported to the control lot, the germinative energy was higher in L-2 and L-3, but it was no significant difference between faculty of germination of variants. The length of main root was higher in L-2 and L-3 as compared to control lot. The intensity process of respiration was stimulated when DDW was used in both cases (L-2 or L-3). So, we can remark a favorable influence of light water on some biological processes in Zea mays plants (authors)

  14. Effect of phenol on germination capacity and polyphenol oxidase, peroxidase and catalase activities in lettuce

    Directory of Open Access Journals (Sweden)

    Tadić Vojin

    2014-01-01

    Full Text Available In this study we examined the activities of polyphenol oxidase (PPO and antioxidant enzymes, peroxidase (POX and catalase (CAT during lettuce seed germination at different concentrations of phenol. Out of eleven varieties of lettuce, four were chosen according to their germination tolerance to phenol as follows: plants exhibiting high (Ljubljanska ledenka - LJL and Nansen - N and low toleranace (Little Gem - LG and Majska kraljica - MK. A decrease in germination efficiency after exposure to LD50 of phenol was determined for these four varieties. The effects of phenol treatment on POX, CAT and PPO activities were determined after 4, 5, 6, 7 and 8 days of growth at LD50 concentrations. A trend of increased peroxidase activity was observed in seeds grown on LD50 of phenol compared to control seeds. A significant increase in CAT activity was observed at the beginning of treatment for MK, LG and N in seeds grown on phenol as well as in control seeds. A trend of increased PPO activity was observed in all control seeds. We also investigated the affinity of PPO for two different substrates that were used for the determination of enzyme activity. Our results show that LJL and N are the varieties most tolerant to growth on phenol. Here we report on the activities of their antioxidant enzymes and PPO during seed germination. [Projekat Ministarstva nauke Republike Srbije, br. ON173017

  15. Reduced germination of Orobanche cumana seeds in the presence of Arbuscular Mycorrhizal fungi or their exudates.

    Directory of Open Access Journals (Sweden)

    Johann Louarn

    Full Text Available Broomrapes (Orobanche and Phelipanche spp are parasitic plants responsible for important crop losses, and efficient procedures to control these pests are scarce. Biological control is one of the possible strategies to tackle these pests. Arbuscular Mycorrhizal (AM fungi are widespread soil microorganisms that live symbiotically with the roots of most plant species, and they have already been tested on sorghum for their ability to reduce infestation by witchweeds, another kind of parasitic plants. In this work AM fungi were evaluated as potential biocontrol agents against Orobanche cumana, a broomrape species that specifically attacks sunflower. When inoculated simultaneously with O. cumana seeds, AM fungi could offer a moderate level of protection against the broomrape. Interestingly, this protection did not only rely on a reduced production of parasitic seed germination stimulants, as was proposed in previous studies. Rather, mycorrhizal root exudates had a negative impact on the germination of O. cumana induced by germination stimulants. A similar effect could be obtained with AM spore exudates, establishing the fungal origin of at least part of the active compounds. Together, our results demonstrate that AM fungi themselves can lead to a reduced rate of parasitic seed germination, in addition to possible effects mediated by the mycorrhizal plant. Combined with the other benefits of AM symbiosis, these effects make AM fungi an attractive option for biological control of O. cumana.

  16. Reduced germination of Orobanche cumana seeds in the presence of Arbuscular Mycorrhizal fungi or their exudates.

    Science.gov (United States)

    Louarn, Johann; Carbonne, Francis; Delavault, Philippe; Bécard, Guillaume; Rochange, Soizic

    2012-01-01

    Broomrapes (Orobanche and Phelipanche spp) are parasitic plants responsible for important crop losses, and efficient procedures to control these pests are scarce. Biological control is one of the possible strategies to tackle these pests. Arbuscular Mycorrhizal (AM) fungi are widespread soil microorganisms that live symbiotically with the roots of most plant species, and they have already been tested on sorghum for their ability to reduce infestation by witchweeds, another kind of parasitic plants. In this work AM fungi were evaluated as potential biocontrol agents against Orobanche cumana, a broomrape species that specifically attacks sunflower. When inoculated simultaneously with O. cumana seeds, AM fungi could offer a moderate level of protection against the broomrape. Interestingly, this protection did not only rely on a reduced production of parasitic seed germination stimulants, as was proposed in previous studies. Rather, mycorrhizal root exudates had a negative impact on the germination of O. cumana induced by germination stimulants. A similar effect could be obtained with AM spore exudates, establishing the fungal origin of at least part of the active compounds. Together, our results demonstrate that AM fungi themselves can lead to a reduced rate of parasitic seed germination, in addition to possible effects mediated by the mycorrhizal plant. Combined with the other benefits of AM symbiosis, these effects make AM fungi an attractive option for biological control of O. cumana.

  17. Morpho-anatomy, imbibition, viability and germination of the seed of Anadenanthera colubrina var. cebil (Fabaceae).

    Science.gov (United States)

    Varela, Rodolfo Omar; Albornoz, Patricia Liliana

    2013-09-01

    Seed biology is a relevant aspect of tropical forests because it is central to the understanding of processes of plant establishment, succession and natural regeneration. Anadenanthera colubrina var. cebil is a timber tree from South America that produces large seeds with thin weak teguments, which is uncommon among legumes. This study describes the morphology and anatomy of the seed coat, the viability, imbibition, and germination in this species. Seeds used during the essays came from 10 trees that grow naturally in Horco Molle, province of Tucumán, Argentina. Seed morphology was described from a sample of 20 units. The seed coat surface was examined with a scanning electron microscope. Transverse sections of hydrated and non-hydrated seeds were employed to describe the histological structure of the seed coat. Hydration, viability and germination experiments were performed under laboratory controlled conditions; and the experimental design consisted of 10 replicas of 10 seeds each. Viability and germination tests were conducted using freshly fallen seeds and seeds stored for five months. Morphologically the seeds of A. colubrina var. cebil are circular to subcircular, laterally compressed, smooth, bright brown and have a horseshoe fissure line (= pleurogram) on both sides. The seed coat comprises five tissue layers and a double (external and internal) cuticle. The outer cuticle (on the epidermis) is smooth and interrupted by microcracks and pores of variable depth. The epidermis consists of macroesclereids with non-lignified secondary walls. This layer is separated from the underlying ones during seed hydration. The other layers of internal tissues are comprised of osteosclereids, parenchyma, osteosclereids, and macrosclereids. The percentage of viable seeds was 93%, decreasing to 75% in seeds with five months old. Seed mass increased 76% after the first eight hours of hydration. Germination percentage was 75% after 76 hours. Germination of seeds stored for five

  18. Effects of Germination and Fermentation on the Functionality of Whole Soy Flour

    Directory of Open Access Journals (Sweden)

    Livia Patrascu

    2016-11-01

    Full Text Available Nutritional quality and technological performances of grains can be modulated through germination and controlled fermentation. The aim of the work was to estimate the effect of germination (72 h at 23oC and fermentation on the fundamental rheological properties of the soy flour based suspensions and sourdoughs, and to assess the bread making potential of the whole soy flours by considering the thermo-mechanical functionality of soy in admixture with white wheat flour. Soy flour based sourdough were prepared using three different starter cultures, consisting of mixtures of lactic acid bacteria like Lactobacillus plantarum, Lb. brevis, Lb. rhamnosus, Lb. casei, Lb. acidophilus, Bifidobacterium BB12®, and Streptococcus thermophilus and/or yeast Kluyveromyces marxianus subsp. Marxianus. The rheological behaviour of the suspensions and sourdoughs was influenced by the soy germination and fermentation processes. The stress sweep tests indicated significant narrowing of the linear viscoelastic regions, as well as the decrease of the stress values required for the beginning of flow. The temperature ramp test showed more intense swelling in case of the germinated and fermented samples. Both native and germinated soy flours were used to replace 15% of the wheat flour, and the Mixolab test indicated that the germination process caused the decrease of protein weakening and dough stability. The sourdoughs addition to the wheat flour resulted in significant changes of the thermo-mechanical properties of the dough. Properties related to stability of starch gel during heating, starch gelatinization and retrogradation depended on the type of starter culture used for fermentation.

  19. Germination Characteristics of Marshmallow (Althea officinalis L. as Influenced by Drought and Salinity Stress

    Directory of Open Access Journals (Sweden)

    R Yazdani Biuki

    2012-07-01

    Full Text Available Drought and salinity are two important environmental stresses limiting the crop production. In order to study the influence of drought and salinity stresses on germination characteristics of Marshmallow plant seeds, two separate experiments were conducted based on completely randomized design with four replications in controlled conditions. Drought stress levels were 0, -2, -4, -6 and -8 bar in the first experiment and salinity stress levels were 0, -2, -4, -6, -8 and -10 bar in the second experiment which were accomplished using PEG 6000 and sodium chloride, respectively. The results indicated a decrease in germination rate and percentage, as well as in lengths and fresh and dry weights of both plumules and radicles, as the osmotic potential was reduced in both experiments. Marshmallow seeds showed an overall higher tolerance against salinity stress compared to drought stress, with germination occurring at as low osmotic potentials as -10 bars in salinity treatments, while only until -8 bar drought stress. In osmotic potentials of -2 and -4 bar the decrease in germination percentage was more sever in the salinity stress compared to drought stress; whereas in higher levels of stress (-6 and -8 bar drought stress brought about a higher decrease in germination percentage than did the salinity stress; illustrated by the percentage of germination decrease at -6 bar, i.e. 63% for drought and 80% for salinity treatments. At the treatments of higher potential (-2, -4 and -6 bar the decrease in radicle length was greater in response to salinity than to drought stress, but the length of plumule was more influenced by drought stress and also showed the highest sensitivity to drought, among all measured characteristics.

  20. Polyamine biosynthesis during germination of yeast ascospores.

    Science.gov (United States)

    Brawley, J V; Ferro, A J

    1979-01-01

    The role of the diamine putrescine during germination and outgrowth of ascospores of Saccharomyces cerevisiae was examined. Ornithine decarboxylase activity increased and declined rapidly during germination and outgrowth; peak activity was attained after the cells had proceeded through the G1 interval of the cell cycle, whereas minimal activity was present at the completion of the first cell division. alpha-Methylornithine inhibited both ornithine decarboxylase activity and the in vivo accumulation of putrescine. In the presence of alpha-methylornithireak dormancy and proceed through one cell division. Subsequent cellular growth, however, was retarded but not completely inhibited. The supplementation of Methylglyoxal bis(guanylhydrazone) to sporulation medium greatly inhibited this sexual process. These data suggest that the synthesis of putrescine is not required for the breaking of spore dormancy, but that polyamine biosynthesis may be essential for meiosis and sporulation. PMID:387744

  1. Germination and storage of caranda seeds (Copernicia alba

    Directory of Open Access Journals (Sweden)

    Tathiana Elisa Masetto

    2012-12-01

    Full Text Available Caranda is a Brazilian native palm tree, belonging to Arecaceae family and occurring, predominan,t in the Brazilian Swampland. This work studied the germination and the caranda seeds storage behavior. The germination study was carried out in the temperatures of 25ºC and 30ºC in constant white light and the alternate temperature of 20/30ºC with 10 hours of darkness for the lowest temperature and 14 hours of light for the highest temperature, using paper and paper roll as substratum. At the end of test, the germination percentage, germination speed index, germination medium time and the primary root length were evaluated. After the seeds improvement, it was obtained two sub-samples destined for 30 days storage in two invironments: cold and dry chamber (16ºC/55% UR and freezer (-18ºC. The following tests, water content, germination, germination medium time and primary root length were evaluated. The caranda seeds germination in paper roll and on paper is favored by the temperature of 20/30ºC in paper roll and on paper and paper roll on 30ºC. The freezing and cold camera storage during 30 days are efficient to reduce the germination medium time of caranda seeds and to keep the germination percentage.

  2. In vitro germination of desert rose varieties(

    OpenAIRE

    Tatiane Lemos Varella; Gizelly Mendes Silva; Kaliane Zaira Camacho Maximiliano da Cruz; Andréia Izabel Mikovski; Josué Ribeiro da Silva Nunes; Ilio Fealho Carvalho; Maurecilne Lemes Silva

    2015-01-01

    The drought stress resistance is a characteristic of the desert rose and its estimable beauty flowers, which gave it great relevance in the ornamental market. However, the desert rose production and germination is hampered by possible sterility of their male and female flowers and frequent problems in pollination, so the tissue culture is a promising alternative to the propagation of these plants. This study aimed to evaluate the effect of gibberellic acid on four commercial varieties of dese...

  3. Influence of biostimulants-seed-priming on Ceratotheca triloba germination and seedling growth under low temperatures, low osmotic potential and salinity stress.

    Science.gov (United States)

    Masondo, Nqobile A; Kulkarni, Manoj G; Finnie, Jeffrey F; Van Staden, Johannes

    2018-01-01

    Extreme temperatures, drought and salinity stress adversely affect seed germination and seedling growth in crop species. Seed priming has been recognized as an indispensable technique in the production of stress-tolerant plants. Seed priming increases seed water content, improves protein synthesis using mRNA and DNA and repair mitochondria in seeds prior to germination. The current study aimed to determine the role of biostimulants-seed-priming during germination and seedling growth of Ceratotheca triloba (Bernh.) Hook.f. (an indigenous African leafy vegetable) under low temperature, low osmotic potential and salinity stress conditions. Ceratotheca triloba seeds were primed with biostimulants [smoke-water (SW), synthesized smoke-compound karrikinolide (KAR 1 ), Kelpak ® (commercial seaweed extract), phloroglucinol (PG) and distilled water (control)] for 48h at 25°C. Thereafter, primed seeds were germinated at low temperatures, low osmotic potential and high NaCl concentrations. Low temperature (10°C) completely inhibited seed germination. However, temperature shift to 15°C improved germination. Smoke-water and KAR 1 enhanced seed germination with SW improving seedling growth under different stress conditions. Furthermore, priming seeds with Kelpak ® stimulated percentage germination, while PG and the control treatment improved seedling growth at different PEG and NaCl concentrations. Generally, high concentrations of PEG and NaCl brought about detrimental effects on seed germination and seedling growth. Findings from this study show the potential role of seed priming with biostimulants in the alleviation of abiotic stress conditions during seed germination and seedling growth in C. triloba plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Low power continuous wave-laser seed irradiation effect on Moringa oleifera germination, seedling growth and biochemical attributes.

    Science.gov (United States)

    Urva; Shafique, Hina; Jamil, Yasir; Haq, Zia Ul; Mujahid, Tamveel; Khan, Aman Ullah; Iqbal, Munawar; Abbas, Mazhar

    2017-05-01

    Recently, laser application in agriculture has gained much attention since plant characteristics were improved significantly in response of pre-sowing seed treatment. Pre-sowing laser seed treatment effects on germination, seedling growth and mineral profile were studied in Moringa olifera. M. olifera healthy seeds were exposed to 25, 50, 75mJ low power continuous wave laser light and grown under greenhouse conditions. The seedling growth and biochemical attributes were evaluated from 10-day-old seedlings. The germination parameters (percentage, mean germination time), vigor index, seedling growth (root length, seedling length, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight) enhanced considerably. The laser energy levels used for seed irradiation showed variable effects on germination, seedling growth and mineral profile. The mineral contents were recorded to be higher in seedling raised from laser treated seeds, which were higher in roots versus shoots and leaves. The effect of laser treatment on seedling fat, nitrogen and protein content was insignificant and at higher energy level both nitrogen and protein contents decreased versus control. Results revealed that M. olifera germination, seedling growth and mineral contents were enhanced and optimum laser energy level has more acceleratory effect since at three laser energy levels the responses were significantly different. Overall the laser energy levels effect on germination and seedling growth was found in following order; 75mJ>50mJ>25mJ, where as in case of fat, protein and nitrogen contents the trend was as; 25mJ>50mJ and 75mJ. However, this technique could possibly be used to improve the M. olifera germination, seedling growth, and minerals contents where germination is low due to unfavorable conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Study Some Ecological Characteristics on Germination and Seedling Growth of Milky Thistle (Silybum marianum (L. Gaertn

    Directory of Open Access Journals (Sweden)

    E. Zeidali

    2017-12-01

    Full Text Available Introduction: Milky thistle (Silybum marianum is an annual or biennial plant of the Asteraceae family. Possibly native near the coast of southeast England, it has been widely introduced outside its natural range, for example into North America, Iran, Australia and New Zealand where it is considered an invasive weed. Seed is an important stage of plant life history. Most invasive plants primarily rely on seedling recruitment for population establishment and persistence. The rapid spread of many invasive plants is frequently correlated with special seed traits. Seed trait variations exist not only among species but also within species. Seed traits variations within a species are essential for the seedling establishment at different habitats. Environmental factors, such as temperature, soil solution osmotic potential, solution pH, light quality, management practices and seed location in the soil seedbank, affect weed seed germination and emergence. Fluctuations in temperature can influence seed germination differently than those under constant temperatures; however, such information is not available on Milky thistle. A light requirement for germination is the principal means by which germination can be restricted to an area close to the soil surface, and species requiring light for germination are potentially more likely to be prevalent in no-till and pasture systems. Soil pH affects the development and competitiveness of crops and weeds by affecting the availability of essential minerals, nutrients, the solubility of toxic elements, and soil microflora. Seed burial depth (buried by tillage or other means also affects germination and seedling emergence of several weed species. Better knowledge of the factors that influence seed germination and seedling emergence of Milky thistle could contribute to the development of control measures and help determine its potential for invasion into new areas. The objectives of this study, therefore, were to

  6. Disentangling plant establishment in sandy coastal systems: biotic and abiotic factors that determine Allagoptera arenaria (Arecaceae germination

    Directory of Open Access Journals (Sweden)

    Luis Fernando Tavares de Menezes

    2017-10-01

    Full Text Available ABSTRACT Germination rate and establishment success of plants in harsh environments depend on the ability of seeds to withstand unfavorable environmental conditions and avoid predators. Brazilian coastal plains, known as restinga, are subject to environmental factors that seriously limit plant establishment and survival (e.g. salinity, desiccation, oligotrophy, flooding, high temperature and radiation levels. We tested, both in field and laboratory experiments, conditions for germination and establishment of Allagoptera arenaria, a palm tree often found in restinga ecosystems of southeastern Brazil, and which have a principal role in plant community dynamics. Our results showed that the absence of mesocarp, high radiation exposure, and temperature were the main drivers of seed germination. In the field, the highest germination rate was linked to nude seeds buried in open areas. High temperatures and/or predation damaged seeds that remained on the soil surface, especially if they were close to the mother plant and alongside dung piles made by dispersers. Under controlled conditions, seeds exhibited optimum germination at 35 ºC. Therefore, the germination and establishment of A. arenaria depend as much on environmental conditions as on a network of interactions including vertebrates and invertebrates, which allow this species to colonize harsh, open areas in restinga ecosystems.

  7. The use of transcription inhibitors in the study of the mechanism of abscisic acid action in germinating triticale caryopses

    Directory of Open Access Journals (Sweden)

    Stanisław Weidner

    2014-01-01

    Full Text Available The study was conducted on germinating triticale (var. Grado caryopses. The purpose of the experiments was to compare the effect of selected inhibitors of transcription with the action of abscisic acid during germination of caryopses. The following inhibitors were used: α-amanitin, cordycepin, cycloheximide and 5-fluorouracil. Studied were the synthesis of total and polyribosomal RNA, the process of polyribosome formation and the synthesis of ribosomal proteins. The effect of exogenous ABA, especially in the early stages of germination, was not similar to any of the four above inhibitors of transcription. After 12 h of imbibition at a lowered temperature and 3 h of germination, ABA caused a relatively low level of inhibition of RNA synthesis, whereas all of the inhibitors used halted RNA synthesis in embryos by about 50-60%. After 6 h of germination, the same proportion of polyribosomes in the total ribosome fraction (46% was found in both the embryos from the control sample and treated with ABA. The use of inhibitors brought this figure down to below 40%. The conclusion is drawn that in the early stages of germination, regulation of protein synthesis by ABA in triticale caryopses must occur on a level other than transcription.

  8. EVALUATION OF DIFFERENT PRE-GERMINATIVE METHODS FOR THREE TREE SPECIES OF THE FABACEAE FAMILY IN DIFFERENT ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    R N Costa

    2018-02-01

    Full Text Available The Sesbania virgata (Cav. Pers., Mimosa caesalpiniifolia Benth. and Cassia grandis L.f. species belong to the Fabaceae family, are characterized by their seeds present a dormant state, which limits the germination. The aim of this study was to evaluate the efficiency of pre-germination treatments to overcome dormancy these species. Seeds were collected from matrix trees, located in Agreste of Alagoas and the research developed at the Federal University of Alagoas – Campus de Arapiraca. Overcoming of dormancy was studied in laboratory and greenhouse, where they were employed eight treatments with four replications of 25 seeds, in a completely randomized design: immersion in sulfuric acid (in three periods of immersion, depending on species, scarification with sandpaper, immersion in hot water at 80 °C (2.5 and 5 minutes, imbibition for 24 hours in distilled water and control (seeds without the application of any treatment. The evaluation of the results was made through of germination and emergence percentage; germination and emergence speed index and germination and emergence average time. The pre-germination treatments, mechanical scarification with sandpaper and chemical scarification with sulfuric acid in different immersion times were the most efficient to overcome the seeds dormancy of Sesbania virgata, Mimosa caesalpiniifolia and Cassia grandis Independent of the studied environments.

  9. Translatome profiling in dormant and nondormant sunflower (Helianthus annuus) seeds highlights post-transcriptional regulation of germination.

    Science.gov (United States)

    Layat, Elodie; Leymarie, Juliette; El-Maarouf-Bouteau, Hayat; Caius, José; Langlade, Nicolas; Bailly, Christophe

    2014-12-01

    Seed dormancy, which blocks germination in apparently favourable conditions, is a key regulatory control point of plant population establishment. As germination requires de novo translation, its regulation by dormancy is likely to be related to the association of individual transcripts to polysomes. Here, the polysome-associated mRNAs, that is, the translatome, were fractionated and characterized with microarrays in dormant and nondormant sunflower (Helianthus annuus) embryos during their imbibition at 10°C, a temperature preventing germination of dormant embryos. Profiling of mRNAs in polysomal complexes revealed that the translatome differs between germinating and nongerminating embryos. Association of transcripts with polysomes reached a maximum after 15 h of imbibition; at this time-point 194 polysome-associated transcripts were specifically found in nondormant embryos and 47 in dormant embryos only. The proteins corresponding to the polysomal mRNAs in nondormant embryos appeared to be very pertinent for germination and were involved mainly in transport, regulation of transcription or cell wall modifications. This work demonstrates that seed germination results from a timely regulated and selective recruitment of mRNAs to polysomes, thus opening novel fields of investigation for the understanding of this developmental process. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  10. Effect of Time and Burial Depth on Breaking Seed dormancy and Germination of Weed Seeds

    Directory of Open Access Journals (Sweden)

    marzie mazhari

    2016-02-01

    Full Text Available Introduction: Weeds limit crop growth, development and yield through competing. Seed bank of weeds in field is one of the sources which can affect weed management and their control methods. Environmental conditions during seed maturation and following dispersal interact to influence the germination phenology of many species. Disturbance plays a key role in the maintenance of habitat for many plant species, particularly referrals, for example, fire ephemerals, desert annuals, and arable weeds. Seed germination and emergence depend on endogenous and exogenous factors. Viable seeds are dormant when all environmental conditions are appropriate for germination but seeds fail to germinate. Thus, dormancy plays an important ecological role in preventing seed germination, being a major contributor to seed persistence of some species in soil. Buried seeds of annual weeds are certainly subjected to different soil moisture conditions during their dormancy release season (winter according to the annual rainfall pattern and burial depth. Shallow buried seeds are exposed to soil moisture fluctuations that could affect their dormancy status. Laboratory studies showed that desiccation and subsequent re-hydration of seeds could stimulate germination and modify seed light requirements. Seeds buried in deeper layers of the soil would not be exposed to such fluctuations in soil moisture, but would be exposed to different soil moisture environments depending on weather and soil characteristics. The effects of interactions between temperature, and soil or seed moisture, on seed dormancy changes have been reported for several species. Therefore, the objectives of this study were to determine the effect of time and burial depth treatments on seed germination and seedling emergence of Aegilops cylindrica, Agropyrom repens, Avena fatua, Bromus dantoniae, Cynodon dactylon, Cyprus rotundus, Setaria viridis, Anthriscus sylvestris, Centurea cyanus. Materials and Methods: In

  11. The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature.

    Science.gov (United States)

    Chiu, Rex S; Nahal, Hardeep; Provart, Nicholas J; Gazzarrini, Sonia

    2012-01-27

    Imbibed seeds integrate environmental and endogenous signals to break dormancy and initiate growth under optimal conditions. Seed maturation plays an important role in determining the survival of germinating seeds, for example one of the roles of dormancy is to stagger germination to prevent mass growth under suboptimal conditions. The B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed development and an important node in hormonal interaction networks in Arabidopsis thaliana. Its function has been mainly characterized during embryonic development, where FUS3 is highly expressed to promote seed maturation and dormancy by regulating ABA/GA levels. In this study, we present evidence for a role of FUS3 in delaying seed germination at supraoptimal temperatures that would be lethal for the developing seedlings. During seed imbibition at supraoptimal temperature, the FUS3 promoter is reactivated and induces de novo synthesis of FUS3 mRNA, followed by FUS3 protein accumulation. Genetic analysis shows that FUS3 contributes to the delay of seed germination at high temperature. Unlike WT, seeds overexpressing FUS3 (ML1:FUS3-GFP) during imbibition are hypersensitive to high temperature and do not germinate, however, they can fully germinate after recovery at control temperature reaching 90% seedling survival. ML1:FUS3-GFP hypersensitivity to high temperature can be partly recovered in the presence of fluridone, an inhibitor of ABA biosynthesis, suggesting this hypersensitivity is due in part to higher ABA level in this mutant. Transcriptomic analysis shows that WT seeds imbibed at supraoptimal temperature activate seed-specific genes and ABA biosynthetic and signaling genes, while inhibiting genes that promote germination and growth, such as GA biosynthetic and signaling genes. In this study, we have uncovered a novel function for the master regulator of seed maturation, FUS3, in delaying germination at supraoptimal temperature. Physiologically, this is

  12. The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature

    Directory of Open Access Journals (Sweden)

    Chiu Rex S

    2012-01-01

    Full Text Available Abstract Background Imbibed seeds integrate environmental and endogenous signals to break dormancy and initiate growth under optimal conditions. Seed maturation plays an important role in determining the survival of germinating seeds, for example one of the roles of dormancy is to stagger germination to prevent mass growth under suboptimal conditions. The B3-domain transcription factor FUSCA3 (FUS3 is a master regulator of seed development and an important node in hormonal interaction networks in Arabidopsis thaliana. Its function has been mainly characterized during embryonic development, where FUS3 is highly expressed to promote seed maturation and dormancy by regulating ABA/GA levels. Results In this study, we present evidence for a role of FUS3 in delaying seed germination at supraoptimal temperatures that would be lethal for the developing seedlings. During seed imbibition at supraoptimal temperature, the FUS3 promoter is reactivated and induces de novo synthesis of FUS3 mRNA, followed by FUS3 protein accumulation. Genetic analysis shows that FUS3 contributes to the delay of seed germination at high temperature. Unlike WT, seeds overexpressing FUS3 (ML1:FUS3-GFP during imbibition are hypersensitive to high temperature and do not germinate, however, they can fully germinate after recovery at control temperature reaching 90% seedling survival. ML1:FUS3-GFP hypersensitivity to high temperature can be partly recovered in the presence of fluridone, an inhibitor of ABA biosynthesis, suggesting this hypersensitivity is due in part to higher ABA level in this mutant. Transcriptomic analysis shows that WT seeds imbibed at supraoptimal temperature activate seed-specific genes and ABA biosynthetic and signaling genes, while inhibiting genes that promote germination and growth, such as GA biosynthetic and signaling genes. Conclusion In this study, we have uncovered a novel function for the master regulator of seed maturation, FUS3, in delaying

  13. Effects of Temperature, Light and Pre-Chilling on Seed Germination of Stevia rebaudiana (Bertoni Bertoni Accessions

    Directory of Open Access Journals (Sweden)

    Mario Macchia

    Full Text Available Stevia rebaudiana (Bertoni Bertoni is a perennial shrub of the Asteraceae family native to Paraguay and Brazil where it has been used for several years as a sweetener. It is a short-day species, with a critical light requirement for flowering of roughly 13 hours. In plants whose biological cycle is strongly photoperiod-dependent, latitude is one of the major factors influencing reproduction. Late flowering may adversely affect seed production if this occurs during a season that is unfavorable to pollination. At Italian latitudes, this species often gives scanty seed production, with low germination rate and poor germination energy of seeds produced. In 2001 four accessions have been grown for seed production in a field plot experiment in Central Italy. The various accessions were found to exhibit noticeably different photoperiod requirements, which affected flowering time (from late August to the end of September and consequently also the conditions of achene filling and ripening. Late flowering and seed ripening occurred during autumn season, unfavourable to complete seed formation, leading to an increase in the empty seed percentage recorded for each accession. Detailed germination trials were therefore undertaken using seeds collected from plants of the different accessions in order to assess the quality of the seeds produced. Various germination methods have been tested in a controlled environment adopting four different temperatures (20° C, 25° C constant temperature and 15/25° C, 20/30° C (16/8h alternating temperature in light or darkness with or without pre-chilling. Germination rates varied over an extensive range (germination percentage from 9 to 83%, mainly due to the divergent specific characteristics of the material examined and the different treatments studied. At all temperatures tested, the most earlier accession, showed the higher germination percentages (54-83% while the latest accession was among those with the lowest

  14. The Effect of Temperature and Water Potential on Seed Germination of Asian spiderflower (Cleome viscose L.: As Invasive Weed in Soybean Fields in Golestan Province

    Directory of Open Access Journals (Sweden)

    M. Shirdel

    2016-09-01

    Full Text Available Introduction: Cleome viscose Linn. with a common name as “Asian spiderflower”, belongs to the Capparidacea family. It is an annual, sticky herb found as a common weed all over the tropical regions of the world. It is a very competitive weed of annual crops. This plant is currently introduced as an invasive plant in soybean fields of Golestan province. There is no management recommendation to control Asian spider flower. Thus large quantities of soybean destroyed by this weed every year. Germination and emergence are the two most important stages in the life cycle of plants. Environmental factors such as temperature, light, pH, planting depth and soil moisture are known to affect seed germination and emergence of weeds. An understanding of the germination biology of Asian spider flower would facilitate the development of better management strategies for this weed. Therefore, the purposes of this research were to study the effects of temperature and water potential on Asian spider flower seed germination. Material and Methods: To evaluate the effect of temperature and water potential on seed germination and determination of seed germination cardinal temperatures of Asian spider flower, an experiment was conducted as Factorial Experiment in Completely Randomized Design with 4 replications in Agricultural Research and Natural Resources Center of Golestan Province during 2013. Treatments were included temperatures with seven levels (15, 20, 25, 30, 35, 38 and 400C and water potentials with six levels (0, -2, -4, -6, -8 and -10 bar. Germination was monitored daily until germination discontinued and the number of the germinated seeds was recorded. Seeds were observed twice daily and considered germinated when the radical was approximately >2mm long. To quantify the response of germination rate to temperature and to determine the cardinal temperatures for germination original beta, and modified beta, segmented and dent models were used. Water

  15. Study the effect of salinity levels and seed priming on germination and seedling properties of two medicinal plant species from Asteraceae family

    Directory of Open Access Journals (Sweden)

    M. Kafi

    2016-04-01

    Full Text Available Soil and water sources salinity are important constrains which threat the sustainable agriculture production in Iran. In order to evaluate the effect of different antioxidants and salinity levels on germination and seedling properties of two medicinal species (Cnicus benedictus L., and (Cichorium intybus L., an experiment was conducted using a factorial based on completely randomized design with four replications at Special Crops Laboratory of Ferdowsi University of Mashhad. The studied factor for each plant included: seed priming at 4 levels including control (distilled water, ascorbic acid (40 mM, gibberlic acid (75 mg.lit-1 and salicylic acid (1.5 mM, and five salinity levels according to electrical conductivity by adding NaCl to distilled water (control, 5,10,15 and 20 ds.m-1. According to results, pretreatment with salicylic acid improved all of the germination and seedling properties in Cnicus benedictus L. but gibberlic acid could to improved germination and seedling properties in Cichorium intybus L. species. There were strong correlation between germination rate and radical and caulicle length especially on Cichorium intybus species. Generally, seed priming with gibberlic acid and salicylic acid could improve germination and seedling properties of these two species. Both species showed a reliable tolerance to NaCl salinity at germination stage, and germination was 60% compared with control at 20 ds.m-1 treatment.

  16. Metabolism and the triggering of germination of Bacillus megaterium

    International Nuclear Information System (INIS)

    Scott, I.R.; Ellar, D.J.

    1978-01-01

    L-[2,3- 3 H]Alanine was used to probe for metabolism of alanine during triggering of germination of spores of Bacillus megaterium KM. No detectable incorporation of label into any compound, including water, was found, indicating that any metabolism involving the alanine germinant must be at a very low rate and also that alanine racemase is absent from spores of this strain. Spores were germinated in 3 H 2 0 to find if any of the many metabolic reactions causing irreversible incorporation of 3 H into reaction products took place during triggering og germination. No incorporation was detected until 2-3 min after addition of germinants. It is therefore concluded that a wide variety of metabolic routes, including glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway and amino acid metabolism are either not involved in the reactions causing the triggering of germination or operate at an extremely low rate during this process. (author)

  17. Effect of Low Dose gamma-ray Irradiation on the Germination and Growth in Red Pepper (Capcicum annuum L.)

    International Nuclear Information System (INIS)

    Lee Eun-Kyung; Kim Jae-Sung

    1998-01-01

    This study was conducted to determine the effect of low dose gamma-ray irradiation in red pepper. The germination percentage, plant, the number of flower, chlorophyll contents, leaf length and width were observed from plants grown with red pepper seeds irradiated with various low dose of gamma-ray. The germination percentage of irradiation group treatmented gamma-ray was much higher than that of the control. Specially the germination percentage after sowing red pepper seeds on paper towel was higher than 1,000 and 2,000 rad irradiation group. The height of plants grown with red pepper seeds irradiated with gamma-ray was increased in 100, 200 and 400 rad irradiation group compared to that of the control. The height of plant from 2,400 rad irradiation group, however, was shorter than that of the control. Nutrient contents of leaves of plants grown with red pepper seeds irradiated with various dose of gamma-ray were significantly increased in 800 and 1,200 rad irradiation group. Electric conductivity (EC) of the water used for seed germination was lower irradiation group than control group. Therefore, there was the possibility to increase the germination and plant growth with gamma-ray of adequate low dose

  18. Asymbiotic germination in three Chloraea species (Orchidaceae) from Chile

    OpenAIRE

    PEREIRA, GUILLERMO; ALBORNOZ, VERÓNICA; ROMERO, CHRISTIAN; LARA, SEBASTIÁN; SÁNCHEZ-OLATE, MANUEL; RÍOS, DARCY; ATALA, CRISTIAN

    2017-01-01

    ABSTRACT Orchids require symbiotic fungi and/or specific conditions to germinate. Asymbiotic techniques have been shown successful for orchid germination. In Chile, Chloraea include many endemic, and potentially ornamental, terrestrial orchid species. In this study, individuals of Chloraea crispa, C. gavilu and C. virescens were manually autopollinated. The resulting capsules were sterilized and seeds were aseptically obtained. We evaluated asymbiotic germination in: Agar Water (AW), Knudson ...

  19. Submergence Tolerance and Germination Dynamics of Roegneria nutans Seeds in Water-Level Fluctuation Zones with Different Water Rhythms in the Three Gorges Reservoir.

    Directory of Open Access Journals (Sweden)

    Feng Lin

    Full Text Available The Three Gorges Dam features two water-level fluctuation zones (WLFZs: the preupland drawdown zone (PU-DZ and the preriparian drawdown zone (PR-DZ. To investigate the vegetation potential of Roegneria nutans in WLFZs, we compared the submergence tolerance and germination dynamics in the natural riparian zone (NRZ, PU-DZ and PR-DZ. We found that the NRZ seeds maintained an 81.3% intactness rate and >91% germination rate. The final seed germination rate and germination dynamics were consistent with those of the controls. Meanwhile, the PU-DZ seeds submerged at 5 m, 10 m, 15 m, and 20 m exhibited intactness rates of 70.5%, 79.95%, 40.75%, and 39.87%, respectively, and >75% germination. Furthermore, the PR-DZ seeds exhibited intactness rates of 22.44%, 61.13%, 81.87%, and 15.36% at 5 m, 10 m, 15 m, and 17 m, respectively, and 80% germination. The germination rates of the intact seeds submerged >10 m were >80%. Finally, the intact seeds germinated quickly in all WLFZs. The high proportion of intact seeds, rapid germination capacity, and high germination rate permit R. nutans seeds to adapt to the complicated water rhythms of the PU-DZ and PR-DZ and indicate the potential for their use in vegetation restoration and recovery. Thus, perennial seeds can be used for vegetation restoration in the WLFZs of large reservoirs and in other regions with water rhythms similar to the Three Gorges Reservoir.

  20. Differential Effects of Carbohydrates on Arabidopsis Pollen Germination.

    Science.gov (United States)

    Hirsche, Jörg; García Fernández, José M; Stabentheiner, Edith; Großkinsky, Dominik K; Roitsch, Thomas

    2017-04-01

    Pollen germination as a crucial process in plant development strongly depends on the accessibility of carbon as energy source. Carbohydrates, however, function not only as a primary energy source, but also as important signaling components. In a comprehensive study, we analyzed various aspects of the impact of 32 different sugars on in vitro germination of Arabidopsis pollen comprising about 150 variations of individual sugars and combinations. Twenty-six structurally different mono-, di- and oligosaccharides, and sugar analogs were initially tested for their ability to support pollen germination. Whereas several di- and oligosaccharides supported pollen germination, hexoses such as glucose, fructose and mannose did not support and even considerably inhibited pollen germination when added to germination-supporting medium. Complementary experiments using glucose analogs with varying functional features, the hexokinase inhibitor mannoheptulose and the glucose-insensitive hexokinase-deficient Arabidopsis mutant gin2-1 suggested that mannose- and glucose-mediated inhibition of sucrose-supported pollen germination depends partially on hexokinase signaling. The results suggest that, in addition to their role as energy source, sugars act as signaling molecules differentially regulating the complex process of pollen germination depending on their structural properties. Thus, a sugar-dependent multilayer regulation of Arabidopsis pollen germination is supported, which makes this approach a valuable experimental system for future studies addressing sugar sensing and signaling. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Evolution of 'smoke' induced seed germination in pyroendemic plants

    Science.gov (United States)

    Keeley, J. E.; Pausas, J.G.

    2016-01-01

    Pyroendemics are plants in which seedling germination and successful seedling recruitment are restricted to immediate postfire environments. In many fire-prone ecosystems species cue their germination to immediate postfire conditions. Here we address how species have evolved one very specific mechanism, which is using the signal of combustion products from biomass. This is often termed ‘smoke’ stimulated germination although it was first discovered in studies of charred wood effects on germination of species strictly tied to postfire conditions (pyroendemics). Smoke stimulated germination has been reported from a huge diversity of plant species. The fact that the organic compound karrikin (a product of the degradation of cellulose) is a powerful germination cue in many species has led to the assumption that this compound is the only chemical responsible for smoke-stimulated germination. Here we show that smoke-stimulated germination is a complex trait with different compounds involved. We propose that convergent evolution is a more parsimonious model for smoke stimulated germination, suggesting that this trait evolved multiple times in response to a variety of organic and inorganic chemical triggers in smoke. The convergent model is congruent with the evolution of many other fire-related traits.

  2. Nuclear dynamics during ascospore germination in Sordaria macrospora.

    Science.gov (United States)

    Teichert, Ines

    2017-01-01

    The ascomycete Sordaria macrospora has a long history as a model organism for studying fungal sexual development. Starting from an ascospore, sexual fruiting bodies (perithecia) develop within seven days and discharge new ascospores. Sexual development has been studied in detail, revealing genes required for perithecium formation and ascospore germination. However, the germination process per se has not yet been examined. Here I analyze nuclear dynamics during ascospore germination using a fluorescently labeled histone. Live-cell imaging revealed that nuclei are transported into germination vesicles that form on one side of the spore. Polar growth is established from these vesicles. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Effects of Hydro and Hormonal Seed Priming on Seed Germination of Milk Thistle under Saline Stress Condition

    Directory of Open Access Journals (Sweden)

    Yousef NASIRI

    2014-09-01

    Full Text Available Salinity is an abiotic stress which has harmful effects on germination of many plants. Therefore, high germination rate and vigorous early growth under salty soils is preferred. Seed priming is a way to increase salt tolerance of plants. An experiment was conducted to investigate the effect of seed priming on germination of milk thistle under salinity condition. The treatments were 4 levels of seed priming (no priming, distilled water as hydro priming and 0.5 and 1.0 mM salicylic acid and 5 levels of salinity (0, 40 and 80 mM NaCl and 40 and 80 mM CaCl2. The experiment arranged as a factorial in a completely randomized design (CRD with three replications. Results showed that salinity decreased germination percentage and germination rate to about 16 and 32% in 80 mM CaCl2 level compared to control, respectively. The highest mean germination time (5.7 day were belonged to 80 mM CaCl2. Radicle and plumule length significantly decreased by 80 mM NaCl and 40 and 80 mM CaCl2. The lowest seedling weight and seed stamina observed in 80 mM CaCl2. 0.5 mM salicylic acid improved all traits except mean germination time as compared to control.  Salicylic acid (0.5 mM improved radicle length under 0, 40 and 80 mM NaCl salinity levels as well as increased plumule length at the 0 and 40 mM NaCl salinity conditions.

  4. The pivotal role of abscisic acid signaling during transition from seed maturation to germination.

    Science.gov (United States)

    Yan, An; Chen, Zhong

    2017-05-01

    Seed maturation and germination are two continuous developmental processes that link two distinct generations in spermatophytes; the precise genetic control of these two processes is, therefore, crucially important for the survival of the next generation. Pieces of experimental evidence accumulated so far indicate that a concerted action of endogenous signals and environmental cues is required to govern these processes. Plant hormone abscisic acid (ABA) has been suggested to play a predominant role in directing seed maturation and maintaining seed dormancy under unfavorable environmental conditions until antagonized by gibberellins (GA) and certain environmental cues to allow the commencement of seed germination when environmental conditions are favorable; therefore, the balance of ABA and GA is a major determinant of the timing of seed germination. Due to the advent of new technologies and system biology approaches, molecular studies are beginning to draw a picture of the sophisticated genetic network that drives seed maturation during the past decade, though the picture is still incomplete and many details are missing. In this review, we summarize recent advances in ABA signaling pathway in the regulation of seed maturation as well as the transition from seed maturation to germination, and highlight the importance of system biology approaches in the study of seed maturation.

  5. Effect of seed coat on the seed germination and seedling development of Calophyllum brasiliense Cambess. (Clusiaceae

    Directory of Open Access Journals (Sweden)

    Valquíria Aparecida Mendes de Jesus

    2014-10-01

    Full Text Available This work aimed to study the effect of the Calophyllum brasiliense seed coat on the seed germination process. To this end, three experiments were conducted in laboratory, greenhouse and screenhouse. From a total of six treatments, five are related to the seed coat (mechanical scarification; mechanical scarification followed by 2 hours in water, chemical scarification, hot water immersion and complete seed coat removal and one control. Laboratory and greenhouse experiments were conducted in a completely randomized design (CRD. Screenhouse experiment was conducted in a completely randomized block design (RBD. We evaluated the total percentage, the speed index and the average time of germination or emergence. Data were subjected to analysis of variance and means compared by LSD test, at 5%. Under the conditions of this work, it was possible to infer that, in laboratory, mechanical scarification followed by 2 hours in water increases the proportion and germination speed index (GSI, in the greenhouse, the complete seed coat removal increases the percentage and emergence speed index (ESI, and in the screenhouse, mechanical scarification followed by 2 hours in water and chemical scarification presented the best results. The average germination time was not significantly different in the three experiments evaluated.

  6. Effects of Salinity and Drought Stresses on Germination Characteristics of Milk Thistle (Silybum marianum

    Directory of Open Access Journals (Sweden)

    R. R. Yazdani Biuki

    2011-01-01

    Full Text Available Abstract In order to study the germination and seedling growth responses of Milk Thistle as a medicinal plant to salinity and drought stresses, two separate experiments were conducted based on completely randomised design with four replications. In the first experiment, the effect of drought potential levels (0, -1, -2, -3, -4, -5, -6, -7, -10, -15 and -20 bars due to using polyethilenglycol (PEG 6000 and the second trial evaluated effects of salinity potential (0, 50, 100, 150, 200, 250 and 300 ml/molar caused by NaCl were studied on germination characteristics and seedling growth. The results indicated that salinity and drought stresses showed significant effects on germination and seedling growth of milk thistle. The seeds were able to germinate in 300 ml/molar salinity potential and -20 bar drought potential conditions. The effect of both stresses on length and dry weight of seedlings were significant and with increasing salinity and drought stresses, the length and dry weight of radicles and plumules decreased. Increasing drought level, led to higher plumule length reduction compared to radicle length reduction, which shows that milk thistle plumule is more sensitive to droughtness than radicle. Dry weight of seedling at -3 bar drought potential was 50% of control plants. Keywords: PEG, Drought stress, Sodium chloride, Milk thistle

  7. Improvement of sheep welfare and milk production fed on diet containing hydroponically germinating seeds

    Directory of Open Access Journals (Sweden)

    Antonia Zarrilli

    2010-01-01

    Full Text Available Plasma cortisol and milk production responses of 45 lactating Comisana sheeps (4th- 5th parity, divided into three homogeneous groups of 15 subject each, were used to evaluate the effects of two different levels of partial substitution of a complete feed with hydroponically germinating seeds. Germinated oat was employed after 7 days of hydroponic growth. The three groups received the following diets: Control group (T received only complete feed. The other 2 groups were fed on diet containing different levels of hydroponically germinating oat (1,5 kg – group A; 3 kg – group B. All the subjects have shown to accept the diets because the per capita ration was always completely consumed. In the second month, the A and B groups showed lower average values of cortisol (P<0.01 and a statistically significant increase in milk production as compared to T (P<0.05 and P<0.001. The obtained data induced to conclude that integration with hydroponically germinating oat in partial substitution of the complete feed does not modify biochemical and hematological parameters and seems to produce an improvement in animal welfare and production of milk.

  8. Herbicide impact on Hormosira banksii gametes measured by fluorescence and germination bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Seery, Cliff R. [Institute for Water and Environmental Resource Management, Department of Environmental Sciences, University of Technology, Sydney, Westbourne Street, Gore Hill, 2065 NSW (Australia); Gunthorpe, Leanne [Primary Industries Research Victoria (PIRVic), VIC (Australia); Ralph, Peter J. [Institute for Water and Environmental Resource Management, Department of Environmental Sciences, University of Technology, Sydney, Westbourne Street, Gore Hill, 2065 NSW (Australia)]. E-mail: peter.ralph@uts.edu.au

    2006-03-15

    The innovative bioassay described here involves chlorophyll a fluorescence measurements of gametes from the macroalgae, Hormosira banksii, where gametes (eggs) were exposed to Diuron, Irgarol and Bromacil. Response was assessed as percent inhibition from control of effective quantum yield ({delta}F/Fm') of photosystem II, herein referred to as % PSII Inhibition. This was measured with the dual-channelled pulse amplitude modulated (PAM) fluorometer, ToxY-PAM. The fluorescence bioassay was run simultaneously with an established H. banksii germination bioassay to compare sensitivity, precision, and time-to-result. The fluorescence bioassay gave highly sensitive results evidenced by EC{sub 5}s (% PSII Inhibition) for Diuron, Irgarol and Bromacil being three, four and three orders of magnitude (respectively) lower than EC{sub 5}s generated from the germination bioassays. Precision of the fluorescence bioassay was demonstrated with low coefficient of variations (<30%) for all three toxicants. With regard to time, the fluorescence bioassay gave results within 6 h, as opposed to more than 50 h for the germination bioassay. - Chlorophyll a fluorescence measurements form the basis of a macroalgal bioassay with many advantages over germination-based methods.

  9. Herbicide impact on Hormosira banksii gametes measured by fluorescence and germination bioassays

    International Nuclear Information System (INIS)

    Seery, Cliff R.; Gunthorpe, Leanne; Ralph, Peter J.

    2006-01-01

    The innovative bioassay described here involves chlorophyll a fluorescence measurements of gametes from the macroalgae, Hormosira banksii, where gametes (eggs) were exposed to Diuron, Irgarol and Bromacil. Response was assessed as percent inhibition from control of effective quantum yield (ΔF/Fm') of photosystem II, herein referred to as % PSII Inhibition. This was measured with the dual-channelled pulse amplitude modulated (PAM) fluorometer, ToxY-PAM. The fluorescence bioassay was run simultaneously with an established H. banksii germination bioassay to compare sensitivity, precision, and time-to-result. The fluorescence bioassay gave highly sensitive results evidenced by EC 5 s (% PSII Inhibition) for Diuron, Irgarol and Bromacil being three, four and three orders of magnitude (respectively) lower than EC 5 s generated from the germination bioassays. Precision of the fluorescence bioassay was demonstrated with low coefficient of variations (<30%) for all three toxicants. With regard to time, the fluorescence bioassay gave results within 6 h, as opposed to more than 50 h for the germination bioassay. - Chlorophyll a fluorescence measurements form the basis of a macroalgal bioassay with many advantages over germination-based methods

  10. Effect of salinity on tomato (Lycopersicon esculentum Mill.) during seed germination stage.

    Science.gov (United States)

    Singh, Jogendra; Sastry, E V Divakar; Singh, Vijayata

    2012-01-01

    A study was conducted using ten genetically diverse genotypes along with their 45F1 (generated by diallel mating) under normal and salt stress conditions. Although, tomato (Lycopersicon esculentum Mill.) is moderately sensitive to salinity but more attention to salinity is yet to be required in the production of tomato. In present study, germination rate, speed of germination, dry weight ratio and Na(+)/K(+) ratio in root and shoot, were the parameters assayed on three salinity levels; control, 1.0 % NaCl and 3.0 % NaCl with Hoagland's solution. Increasing salt stress negatively affected growth and development of tomato. When salt concentration increased, germination of tomato seed was reduced and the time needed to complete germination lengthened, root/shoot dry weight ratio was higher and Na(+) content increased but K(+) content decreased. Among the varieties, Sel-7 followed by Arka Vikas and crosses involving them as a parent were found to be the more tolerant genotypes in the present study on the basis of studied parameters.

  11. Temperature and light intensity interaction on Cercospora coffeicola sporulation and conidia germination

    Directory of Open Access Journals (Sweden)

    Marília Goulart da Silva

    2016-04-01

    Full Text Available ABSTRACT Difficulty in obtaining abundant sporulation in culture of many species of Cercospora may be the limiting factor for studies of biology, systematics, and inoculation of the genus. Therefore, it is necessary to understand the nutritional and environmental requirements that influence mycelial growth, sporulation and germination. As it is difficult to obtain conidia of Cercospora coffeicola in vitro, different temperatures (17, 22, 27, and 32 °C and light intensities (80, 160, 240, and 320 μmol m-2 s-1 were evaluated to optimize pathogen sporulation and assess favorable conditions for spore germination, aiming for a strategy of disease control. The dark treatment (0 μmol m-2 s-1 was added for sporulation. A significant interaction was found between temperature and light intensity for both variables. The highest sporulation rate of C. coffeicola occurred at a light intensity of 240 μmol m-2 s-1 and air temperature of 22 °C, reaching 5.9x106 con mL-1. Germination was higher at temperature 17 °C and light intensity of 320 μmol m-2 s-1, reaching 52%. Interaction between light intensity and temperature proved to influence the processes of sporulation and germination of C. coffeicola.

  12. Physiological, cellular and molecular aspects of the desiccation tolerance in Anadenanthera colubrina seeds during germination

    Directory of Open Access Journals (Sweden)

    L. E. Castro

    2017-05-01

    Full Text Available Abstract During germination, orthodox seeds become gradually intolerant to desiccation, and for this reason, they are a good model for recalcitrance studies. In the present work, physiological, biochemical, and ultrastructural aspects of the desiccation tolerance were characterized during the germination process of Anadenanthera colubrina seeds. The seeds were imbibed during zero (control, 2, 8, 12 (no germinated seeds, and 18 hours (germinated seeds with 1 mm protruded radicle; then they were dried for 72 hours, rehydrated and evaluated for survivorship. Along the imbibition, cytometric and ultrastructural analysis were performed, besides the extraction of the heat-stable proteins. Posteriorly to imbibition and drying, the evaluation of ultrastructural damages was performed. Desiccation tolerance was fully lost after root protrusion. There was no increase in 4C DNA content after the loss of desiccation tolerance. Ultrastructural characteristics of cells from 1mm roots resembled those found in the recalcitrant seeds, in both hydrated and dehydrated states. The loss of desiccation tolerance coincided with the reduction of heat-stable proteins.

  13. Effect of Osmotic Stress on Seed Germination Indices of Nigella sativa and Silybum marianum

    Directory of Open Access Journals (Sweden)

    H Balouchi

    2012-04-01

    Full Text Available Evaluation of medicinal plants to drought and salt stress tolerance, in an attempt to plant them under drought and saline regions, is of utmost importance. Environmental stresses, especially drought and salt, reduce the global crop yields more than other factors. Selection of drought tolerant crops at germination stage, usually is, the fast and low cost method. In order to study the effect of osmotic stress on germination indices of black cumin and milk thistle, an experiment carried out in a completely randomized design with four replications at the Seed Technology Laboratoary of Yasouj University in 2008. Treatments were 0 (as control, -2.4, -4.8, -7.2 and -9.4 bar osmotic potentials created by using PEG 6000. Results showed that, decreasing of osmotic potential reduced speed of germination and its percentage, root and shoot lengths and dry matter in these two plants. Black cumin showed higher tolerance, to -4.8 bar osmotic potential, as compared to milk thistle. However, milk thistle showed higher tolerance to drought stress, up to this osmotic potential (-4.8 bar, compared to black cumin. Milk thistle had lower germination speed and percentage at higher drought stress as compared to black cumin. Generally, milk thistle showed better growth and survival than black cumin due to its higher root and shoot length and dry matter.

  14. Effect of ionization radiation (γ-rays 60Co) on germination of cotton

    International Nuclear Information System (INIS)

    Lall, S.B.; Bhute, M.G.

    1974-01-01

    Effect of ionization radiation (γ-rays 60 Co) on germination of cotton varieties viz. AK 235 and 197/3, also B 147 and B 296-7 belonging to Gossypium arboreum and Gossypium hirsutum respectively under field and laboratory conditions were studied. Materials under study were tried in two radiation doses i.e. 10,000 r and 20,000 r in two (R1 and R2) generations. In laboratory and field condition, both doses (10,000r and 20,000r) depressed the germination percentage in R1 generation of radiation to greater degree in almost all the varieties of cotton. Maximum depression was noted under field condition in both the varieties belonging to Gossypium arboreum species in R1 generation under 20,000 r. In R2 generation, depressing effect on germination capacity of seed is reduced to much extent in field condition in almost of all the varieties. The germination percentage has increased over control in R2 generation in both doses in laboratory conditions in all the varieties used in this experiment. (author)

  15. 1-Octanol, a self-inhibitor of spore germination in Penicillium camemberti.

    Science.gov (United States)

    Gillot, Guillaume; Decourcelle, Nicolas; Dauer, Gaëlle; Barbier, Georges; Coton, Emmanuel; Delmail, David; Mounier, Jérôme

    2016-08-01

    Penicillium camemberti is a technologically relevant fungus used to manufacture mold-ripened cheeses. This fungal species produces many volatile organic compounds (VOCs) including ammonia, methyl-ketones, alcohols and esters. Although it is now well known that VOCs can act as signaling molecules, nothing is known about their involvement in P. camemberti lifecycle. In this study, spore germination was shown to be self-regulated by quorum sensing in P. camemberti. This phenomenon, also called "crowding effect", is population-dependent (i.e. observed at high population densities). After determining the volatile nature of the compounds involved in this process, 1-octanol was identified as the main compound produced at high-spore density using GC-MS. Its inhibitory effect was confirmed in vitro and 3 mM 1-octanol totally inhibited spore germination while 100 μM only transiently inhibited spore germination. This is the first time that self-inhibition of spore germination is demonstrated in P. camemberti. The obtained results provide interesting perspectives for better control of mold-ripened cheese processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Characterization of physical and biochemical changes in plasma treated spinach seed during germination

    Science.gov (United States)

    Hye Ji, Sang; Ki, Se Hoon; Kang, Min Ho; Choi, Jin Sung; Park, Yeunsoo; Oh, Jaesung; Kim, Seong Bong; Yoo, Suk Jae; Choi, Eun Ha; Park, Gyungsoon

    2018-04-01

    Despite the accumulating data on the effect of plasma on seed germination, mechanisms of plasma action need more extensive research. In a previous study, we observed that high voltage nanosecond pulsed plasma enhanced the germination of spinach seeds and subsequent seedling growth. As a follow-up study, we investigated the physico-chemical, biochemical, and molecular changes in seed after plasma treatment, focusing on the early germination stage, to elucidate mechanism(s) for the stimulating effects of plasma on seed germination. The primary radicle protruded from seeds exposed to high voltage nanosecond pulsed plasma (one shot) slightly faster than the control seeds. The hydrophilicity of the seed surface significantly increased after treatment with high voltage nanosecond pulsed plasma (one shot). However, a very subtle increase in water uptake by plasma treated seeds was observed. Raman and FTIR spectroscopy analyses on chloroform extract of seed coats demonstrated no significant chemical etching on the surface of plasma treated seeds. This may be related to no dramatic increase in water absorption by seeds. The level of GA hormone and starch hydrolysis inside the plasma treated seeds was significantly elevated within 24 h. Taken together, our results suggest that high voltage nanosecond pulsed plasma may not only enhance hydrophilicity of the seed surface but also stimulate biochemical and molecular processes inside seed, leading to enhanced embryonic development.

  17. Maturation arrest of human oocytes at germinal vesicle stage

    Directory of Open Access Journals (Sweden)

    Zhi Qin Chen

    2010-01-01

    Full Text Available Maturation arrest of human oocytes may occur at various stages of the cell cycle. A total failure of human oocytes to complete meiosis is rarely observed during assisted conception cycles. We describe here a case of infertile couples for whom all oocytes repeatedly failed to mature at germinal vesicle (GV stage during in vitro fertilization/Intra cytoplasmic sperm injection (IVF/ICSI. The patient underwent controlled ovarian stimulation followed by oocyte retrieval and IVF/ICSI. The oocytes were stripped off cumulus cells prior to the ICSI procedure and their maturity status was defined. The oocyte maturation was repeatedly arrested at the GV. Oocyte maturation arrest may be the cause of infertility in this couple. The recognition of oocyte maturation arrest as a specific medical condition may contribute to the characterization of the currently known as "oocyte factor." The cellular and genetic mechanisms causing oocyte maturation arrest should be the subject for further investigation.

  18. Identification of a Novel Lipoprotein Regulator of Clostridium difficile Spore Germination.

    Directory of Open Access Journals (Sweden)

    Kelly A Fimlaid

    2015-10-01

    Full Text Available Clostridium difficile is a Gram-positive spore-forming pathogen and a leading cause of nosocomial diarrhea. C. difficile infections are transmitted when ingested spores germinate in the gastrointestinal tract and transform into vegetative cells. Germination begins when the germinant receptor CspC detects bile salts in the gut. CspC is a subtilisin-like serine pseudoprotease that activates the related CspB serine protease through an unknown mechanism. Activated CspB cleaves the pro-SleC zymogen, which allows the activated SleC cortex hydrolase to degrade the protective cortex layer. While these regulators are essential for C. difficile spores to outgrow and form toxin-secreting vegetative cells, the mechanisms controlling their function have only been partially characterized. In this study, we identify the lipoprotein GerS as a novel regulator of C. difficile spore germination using targeted mutagenesis. A gerS mutant has a severe germination defect and fails to degrade cortex even though it processes SleC at wildtype levels. Using complementation analyses, we demonstrate that GerS secretion, but not lipidation, is necessary for GerS to activate SleC. Importantly, loss of GerS attenuates the virulence of C. difficile in a hamster model of infection. Since GerS appears to be conserved exclusively in related Peptostreptococcaeace family members, our results contribute to a growing body of work indicating that C. difficile has evolved distinct mechanisms for controlling the exit from dormancy relative to B. subtilis and other spore-forming organisms.

  19. Mapping of QTLs for Germination Characteristics under Non-stress and Drought Stress in Rice

    Directory of Open Access Journals (Sweden)

    Zahra MARDANI

    2013-11-01

    Full Text Available Identification of genetic factors controlling traits associated with seed germination under drought stress conditions, leads to identification and development of drought tolerant varieties. Present study by using a population of F2:4 derived from a cross between a drought tolerant variety, Gharib (indica and a drought sensitive variety, Sepidroud (indica, is to identify and compare QTLs associated with germination traits under drought stress and non-stress conditions. Through QTL analysis, using composite interval mapping, regarding traits such as germination rate (GR, germination percentage (GP, radicle length (RL, plumule length (PL, coleorhiza length (COL and coleoptile length (CL, totally 13 QTLs were detected under pole drought stress (−8 MPa poly ethylene glycol 6000 and 9 QTLs under non-stress conditions. Of the QTLs identified under non-stress conditions, QTLs associated with COL (qCOL-5 and GR (qGR-1 explained 21.28% and 19.73% of the total phenotypic variations, respectively. Under drought stress conditions, QTLs associated with COL (qCOL-3 and PL (qPL-5 explained 18.34% and 18.22% of the total phenotypic variations, respectively. A few drought-tolerance-related QTLs identified in previous studies are near the QTLs detected in this study, and several QTLs in this study are novel alleles. The major QTLs like qGR-1, qGP-4, qRL-12 and qCL-4 identified in both conditions for traits GR, GP, RL and CL, respectively, should be considered as the important and stable trait-controlling QTLs in rice seed germination. Those major or minor QTLs could be used to significantly improve drought tolerance by marker-assisted selection in rice.

  20. The role of hull in germination and salinity tolerance in some ...

    African Journals Online (AJOL)

    hulled and dehulled) of sunflower seeds of Opal, Shelly (Confectionary) and Pactol (Oily) were tested to determine the effects of the hull on salinity tolerance during germination. Germination percentage (%), mean germination time (day), root and ...

  1. Effects of salt stress on germination of some maize (Zea mays L ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... Key words: Maize, NaCl, germination percentage, stress tolerance ındex, germination ındex. .... interactions between salt treatments and cultivars. This ..... Hormones and Abiotic Stresses on Germination, Growth and Phos-.

  2. Calculating germination measurements and organizing spreadsheets

    OpenAIRE

    Ranal, Marli A.; Santana, Denise Garcia de; Ferreira, Wanessa Resende; Mendes-Rodrigues, Clesnan

    2009-01-01

    With the objective to minimize difficulties for beginners we are proposing the use of a conventional spreadsheet for the calculations of the main germination (or emergence) measurements, the organization of the final data for the statistical analysis and some electronic commands involved in these steps. Com o objetivo de minimizar as dificuldades dos iniciantes, estamos propondo o uso de planilhas eletrônicas convencionais para o cálculo das principais medidas de germinação (ou emergência)...

  3. Conserved Transcriptional Regulatory Programs Underlying Rice and Barley Germination

    Science.gov (United States)

    Lin, Li; Tian, Shulan; Kaeppler, Shawn; Liu, Zongrang; An, Yong-Qiang (Charles)

    2014-01-01

    Germination is a biological process important to plant development and agricultural production. Barley and rice diverged 50 million years ago, but share a similar germination process. To gain insight into the conservation of their underlying gene regulatory programs, we compared transcriptomes of barley and rice at start, middle and end points of germination, and revealed that germination regulated barley and rice genes (BRs) diverged significantly in expression patterns and/or protein sequences. However, BRs with higher protein sequence similarity tended to have more conserved expression patterns. We identified and characterized 316 sets of conserved barley and rice genes (cBRs) with high similarity in both protein sequences and expression patterns, and provided a comprehensive depiction of the transcriptional regulatory program conserved in barley and rice germination at gene, pathway and systems levels. The cBRs encoded proteins involved in a variety of biological pathways and had a wide range of expression patterns. The cBRs encoding key regulatory components in signaling pathways often had diverse expression patterns. Early germination up-regulation of cell wall metabolic pathway and peroxidases, and late germination up-regulation of chromatin structure and remodeling pathways were conserved in both barley and rice. Protein sequence and expression pattern of a gene change quickly if it is not subjected to a functional constraint. Preserving germination-regulated expression patterns and protein sequences of those cBRs for 50 million years strongly suggests that the cBRs are functionally significant and equivalent in germination, and contribute to the ancient characteristics of germination preserved in barley and rice. The functional significance and equivalence of the cBR genes predicted here can serve as a foundation to further characterize their biological functions and facilitate bridging rice and barley germination research with greater confidence. PMID

  4. Requirement for ethylene synthesis and action during relief of thermoinhibition of lettuce seed germination by combinations of gibberellic acid, kinetin, and carbon dioxide

    International Nuclear Information System (INIS)

    Saini, H.S.; Consolacion, E.D.; Bassi, P.K.; Spencer, M.S.

    1986-01-01

    Application of exogenous ethylene in combination with gibberellic acid (GA 3 ), kinetin (KIN), and/or CO 2 has been reported to induce germination of lettuce seeds at supraoptimal temperatures. However, it is not clear whether endogenous ethylene also plays a mediatory role when germination under these conditions is induced by treatment regimes that do not include ethylene. Therefore, possible involvement of endogenous ethylene during the relief of thermoinhibition of lettuce (Lactuca sativa L. cv Grand Rapids) seed germination at 32°C was investigated. Combinations of GA 3 (0.5 millimolar), KIN (0.05 millimolar), and CO 2 (10%) were used to induce germination. Little germination occurred in controls or upon treatment with ethylene, KIN, or CO 2 . Neither KIN nor CO 2 affected the rate of ethylene production by seeds. Both germination and ethylene production were slightly promoted by GA 3 . Treatments with GA 3 + CO 2 , GA 3 + KIN, or GA 3 + CO 2 + KIN resulted in approximately 10- to 40-fold increases in ethylene production and 50 to 100% promotion of germination as compared to controls. Initial ethylene evolution from the treated seeds was greater than from the controls and a major surge in ethylene evolution occurred at the time of visible germination. Application of 1 millimolar 2-aminoethoxyvinyl glycine (AVG), an inhibitor of ethylene synthesis, in combination with any of above three treatments inhibited the ethylene production to below control levels. This was accompanied by a marked decline in germination percentage. Germination was also inhibited by 2,5-norbornadiene (0.25-2 milliliters per liter), a competitive inhibitor of ethylene action. Application of exogenous ethylene (1-100 microliters per liter) overcame the inhibitory effects of AVG and 2,5-norbornadiene on germination. The results demonstrate that endogenous ethylene synthesis and action are essential for the alleviation of thermoinhibition of lettuce seeds by combinations of GA 3 , KIN, and CO

  5. Requirement for Ethylene Synthesis and Action during Relief of Thermoinhibition of Lettuce Seed Germination by Combinations of Gibberellic Acid, Kinetin, and Carbon Dioxide.

    Science.gov (United States)

    Saini, H S; Consolacion, E D; Bassi, P K; Spencer, M S

    1986-08-01

    Application of exogenous ethylene in combination with gibberellic acid (GA(3)), kinetin (KIN), and/or CO(2) has been reported to induce germination of lettuce seeds at supraoptimal temperatures. However, it is not clear whether endogenous ethylene also plays a mediatory role when germination under these conditions is induced by treatment regimes that do not include ethylene. Therefore, possible involvement of endogenous ethylene during the relief of thermoinhibition of lettuce (Lactuca sativa L. cv Grand Rapids) seed germination at 32 degrees C was investigated. Combinations of GA(3) (0.5 millimolar), KIN (0.05 millimolar), and CO(2) (10%) were used to induce germination. Little germination occurred in controls or upon treatment with ethylene, KIN, or CO(2). Neither KIN nor CO(2) affected the rate of ethylene production by seeds. Both germination and ethylene production were slightly promoted by GA(3). Treatments with GA(3)+CO(2), GA(3)+KIN, or GA(3)+CO(2)+KIN resulted in approximately 10-to 40-fold increases in ethylene production and 50 to 100% promotion of germination as compared to controls. Initial ethylene evolution from the treated seeds was greater than from the controls and a major surge in ethylene evolution occurred at the time of visible germination. Application of 1 millimolar 2-aminoethoxyvinyl glycine (AVG), an inhibitor of ethylene synthesis, in combination with any of above three treatments inhibited the ethylene production to below control levels. This was accompanied by a marked decline in germination percentage. Germination was also inhibited by 2,5-norbornadiene (0.25-2 milliliters per liter), a competitive inhibitor of ethylene action. Application of exogenous ethylene (1-100 microliters per liter) overcame the inhibitory effects of AVG and 2,5-norbornadiene on germination. The results demonstrate that endogenous ethylene synthesis and action are essential for the alleviation of thermoinhibition of lettuce seeds by combinations of GA(3), KIN

  6. Abscisic acid and osmoticum prevent germination of developing alfalfa embryos, but only osmoticum maintains the synthesis of developmental proteins.

    Science.gov (United States)

    Xu, N; Coulter, K M; Derek Bewley, J

    1990-10-01

    germination, their effects on the synthetic capacity of the developing embryo are quite distinct. Since seeds with low endogenous ABA do not germinate, osmotic regulation may be the more important of these two factors in controlling seed development.

  7. Estudio de factores de riesgo para la hemorragia de la matriz germinal del prematuro Risk factors for germinal matrix hemorrhage in preterm infants

    Directory of Open Access Journals (Sweden)

    Gladys P. Arango

    1997-01-01

    Full Text Available Con el propósito de facilitar el diagnóstico clínico de la hemorragia de la matriz germinal del prematuro, se diseñó un estudio de casos (n: 56 y controles (n: 66 para determinar los factores de riesgo de la madre y del niño; también se buscó asociación entre dichos factores y la gravedad del evento. No se halló relación entre los factores de riesgo maternos y la presencia o gravedad de la hemorragia. En cuanto a los niños, la edad gestacional menor de 31 semanas, el uso de ventilación mecánica y la persistencia del ductus arterioso mostraron una relación estadística con el evento (p < 0.05, mientras que la sumatoria de tres o más riesgos la tuvo con la gravedad del mismo (p < 0.05. Se concluye que los mencionados factores de riesgo pueden ser indicativos del desarrollo de la hemorragia de la matriz germinal en el prematuro. To facilitate clinical diagnosis of germinal matrix hemorrhage In preterm infants, a study of cases {n: 56 and controls {n: 66 was carried out. Association was investigated between hemorrhage and maternal and neonatal risk factors; also included was the correlation between such factors and seriousness of the hemorrhagic episode. No correlation was found between maternal risk factors and hemorrhage or its seriousness. Concerning neonatal risks, gestational age under 31 weeks, the use of mechanical ventilation and persistence of ductus arteriosus, independently, showed statistical correlation with the hemorrhage {p < 0.05, whereas the simultaneous presence of three or more risks correlated with intensity of hemorrhage {p < 0.05. We conclude that the abovementioned neonatal risk factors can be suggestive of the development of germinal matrix hemorrhage in preterm Infants.

  8. Effect of thumus cell injections on germinal center formation in lymphoid tissues of nude (thymusless) mice. [X radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, E.B.; Caporale, L.H.; Thorbecke, G.J.

    1974-09-01

    Nude mice, partially backcrossed to Balb/c or DBA/2, were injected iv with 5 x 10/sup 7/ thymus cells from the respective inbred strain. The response of these mice to immunization with Brucella abortus antigen was studied, with respect to both antibody production and the formation of germinal centers in their lymphoid tissues. The results were compared to those obtained with nude mice to which no thymus cells were given, as well as to Balb/c, DBA/2, or +/question litter mate controls. Nude mice formed less 19S as well as 7S antibody than did litter mate controls and completely lacked germinal centers in lymph nodes and gut-associated lymphoid tissue. Those nude mice which had been injected with thymus cells made a much better secondary response, both for 19S and for 7S antibody, and had active germinal centers in their lymph nodes as early as 3 wk after thymus cell injection. Intestinal lymphoid tissue in nude mice showed only slight reconstitution of germinal center activity several months after thymus cell injection and none at earlier times. Irradiated (3000 R) thymus cells appeared as effective as normal cells in facilitating germinal center appearance and 7S antibody production in the nude mice.

  9. The effect of altitude on breaking seed dormancy and stimulation of seed germination of Persian hogweed (Heracleum persicum).

    Science.gov (United States)

    Salehani, M Khajavi; Mahmoudi, J; Mahdavi, S Kh; Habibzadeh, R

    2013-01-01

    Persian hogweed is a perennial herb and aromatic plant which has pharmaceutical and fodder values, and the main propagation method of this species is seed. The goal of this study was to investigate the effect of altitude on breaking dormancy and stimulate seed germination of this species. The study was designed and carried out using the test of seed analysis. For our purpose, seeds were collected from three different altitudes (1700, 2200, 2700 masl) in Kojoor area. After initial purification, germination percent (GP) and speed (GS) of each elevation were determined by cold stratification compared to control. According to results, control seeds did not germinate, showing that the seeds of this species need to be treated. Statistical analysis of results showed that there are significant differences between GP and GS of each elevation, as seeds of higher elevation had slower and less germination in longer periods. So, changes in elevation are an effective factor on seed germination characteristics of this species and this factor has to be considered in seed preparation and restoration with this species.

  10. Effects of low dose gamma-ray radiation on the seed germination and physiological activity of vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Baek, M. H.; Lee, Y. G. [KAERI, Taejon (Korea, Republic of); Jung, K. H. [Kyunghee Univ., Yongin (Korea, Republic of)

    2000-10-01

    To determine the effect of low dose gamma-ray radiation on the germination rate and physiology of germinative seeds of Chinese cabbage(Brassica campestris L. cv. Hanyoreum) and radish(Raphanus sativus L. cv. Chungsukoungzoung). The germination rate of irradiation group was higher than that of the control. Especially it was highest at the early stage of induction. The germination rate of Chinese cabbage increased at 4 Gy-, 10 Gy- and 50 Gy irradiation group and that of radish increased at 2 Gy-, 6 Gy- and 10 Gy irradiation group. The seedling height of Chinese cabbage and radish increased positively in low dose irradiation group. The seedling height of Chinese cabbage was noticeably higher at 4 Gy and 10 Gy irradiation group and that of radish at 6 Gy irradiation group. The protein contents of seeds irradiated with low dose gamma-ray radiation was increased compared to that of the control especially at the early stage of induction. The enzyme activity of seeds irradiated with low dose of gamma-ray radiation was increased at 4 Gy and 10 Gy irradiation group. These results suggest that the germination and physiological activity of old seeds could be stimulated promisingly by the low dose gamma-ray radiation.

  11. Rhizonin A from Burkholderia sp. KCTC11096 and Its Growth Promoting Role in Lettuce Seed Germination

    Directory of Open Access Journals (Sweden)

    Sang-Mo Kang

    2012-07-01

    Full Text Available We isolated and identified a gibberellin-producing Burkholderia sp. KCTC 11096 from agricultural field soils. The culture filtrate of plant growth promoting rhizobacteria (PGPR significantly increased the germination and growth of lettuce and Chinese cabbage seeds. The ethyl acetate extract of the PGPR culture showed significantly higher rate of lettuce seed germination and growth as compared to the distilled water treated control. The ethyl acetate fraction of the Burkholderia sp. was subjected to bioassay-guided isolation and we obtained for the first time from a Burkholderia sp. the plant growth promoting compound rhizonin A (1, which was characterized through NMR and MS techniques. Application of various concentrations of 1 significantly promoted the lettuce seed germination as compared to control.

  12. Comparative seed germination traits in alpine and subalpine grasslands: higher elevations are associated with warmer germination temperatures.

    Science.gov (United States)

    Fernández-Pascual, E; Jiménez-Alfaro, B; Bueno, Á

    2017-01-01

    Seed germination traits in alpine grasslands are poorly understood, despite the sensitivity of these communities to climate change. We hypothesise that germination traits predict species occurrence along the alpine-subalpine elevation gradient. Phylogenetic comparative analyses were performed using fresh seeds of 22 species from alpine and subalpine grasslands (1600-2400 m) of the Cantabrian Mountains, Spain (43° N, 5° W). Laboratory experiments were conducted to characterise germinability, optimum germination temperature and effect of cold and warm stratification on dormancy breaking. Variability in these traits was reduced by phylogenetic principal component analysis (phyl.PCA). Phylogenetic generalised least squares regression (PGLS) was used to fit a model in which species average elevation was predicted from their position on the PCA axes. Most subalpine species germinated in snow-like conditions, whereas most alpine species needed accumulation of warm temperatures. Phylogenetic signal was low. PCA1 ordered species according to overall germinability, whilst PCA2 ordered them according to preference for warm or cold germination. PCA2 significantly predicted species occurrence in the alpine-subalpine gradient, as higher elevation species tended to have warmer germination preferences. Our results show that germination traits in high-mountain grasslands are closely linked to the alpine-subalpine gradient. Alpine species, especially those from stripped and wind-edge communities, prefer warmer germination niches, suggesting that summer emergence prevents frost damage during seedling establishment. In contrast, alpine snowfield and subalpine grassland plants have cold germination niches, indicating that winter emergence may occur under snow to avoid drought stress. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Comparative Study of Pre-Germination Treatments and their Effects ...

    African Journals Online (AJOL)

    FIRST LADY

    of leaves (10.05) respectively. Pre-germination treatments of seeds soaked in running water (SRW) for 24 hours were found to be more effective in seedlings growth and biomass production. Keywords: Tectona grandis, pre-germination treatment, seed dormancy, seedling growth. Introduction. Tectona grandis is one of the ...

  14. Germination phenology of some Great Basin native annual forb species

    Science.gov (United States)

    Tara A. Forbis

    2010-01-01

    Great Basin native plant communities are being replaced by the annual invasive cheatgrass Bromus tectorum. Cheatgrass exhibits a germination syndrome that is characteristic of facultative winter annuals. Although perennials dominate these communities, native annuals are present at many sites. Germination timing is often an important predictor of competitive...

  15. Investigating the Influence of Karrikins on Seed Germination

    Science.gov (United States)

    de Beer, Josef

    2012-01-01

    Recent research has identified a karrikin (a butenolide derative) known as 3-methyl-2H-furo[2,3-c]pyran-2-one, formed from burning cellulose, that stimulates seed germination. Here, I present ideas on how to investigate the influence of karrikins on seed germination in the laboratory.

  16. Proteins induced by salt stress in tomato germinating seeds

    International Nuclear Information System (INIS)

    Torres-Shumann, S.; Godoy, J.A.; del Pozo, O.; Pintor-Toro, J.A.

    1989-01-01

    Salt effects on protein synthesis in tomato germinating seeds were investigated by two-dimensional polyacrilamide gel electrophoresis of proteins labeled in vivo with ( 35 S)-Methionine. Seeds germinating in NaCl were analyzed at three germination stages (4mm long radicals, 15mm long radicles and expanding cotyledons) and compared to those germinating in water. At the first germination stage several basic proteins of M.W. 13Kd, 16Kd, 17Kd and 18Kd were detected in only salt germinating seeds. Other basic proteins of M.W. 12Kd, 50Kd and 54Kd were salt-induced at the second and third stage of germination. One 14Kd acid protein is observed in every assayed stage and shows several phosphorylated forms. The levels of expression of these proteins are directly correlated to assayed NaCl concentrations. All of these proteins, except 17Kd, are also induced by abscisic acid (ABA) in the same germination stages. A cooperative effect on the synthesis of these proteins is observed when both ABA and NaCl are present

  17. Germination of Themeda triandra (Kangaroo grass) as affected by ...

    African Journals Online (AJOL)

    Low rainfall in range areas restricts germination, growth and development of majority of range grasses. However, germination and establishment potential of forage grasses vary and depends on environmental conditions. Themeda triandra is an excellent known grass to grow under different environmental conditions.

  18. Germination of several groundnut cultivars in relation to incidence of ...

    African Journals Online (AJOL)

    This experiment is concerned with the germination of nine cultivars of groundnut grown in Nigeria in relation to incidence of fungi. The cultivars were NHK 5V8, NUTII 288, Samnut 10, 11, 21, 22, 23, 24 and MK 373. Germination potential was assessed after 10 days of planting in petri-dishes. Parameters such as seedling ...

  19. Differentiation inside multicelled macroconidia of Fusarium culmorum during early germination

    NARCIS (Netherlands)

    Chitarra, Gilma S; Breeuwer, Pieter; Rombouts, Frans M; Abee, Tjakko; Dijksterhuis, Jan

    Multicelled conidia are formed by many fungal species, but germination of these spores is scarcely studied. Here, the germination and the effects of antimicrobials on multicompartment macroconidia of Fusarium culmorum were investigated. Germ-tube formation was mostly from apical compartments. The

  20. Differentiation inside multicelled macroconidia of Fusarium culmorum during early germination

    NARCIS (Netherlands)

    Chitarra, G.S.; Breeuwer, P.; Rombouts, F.M.; Abee, T.; Dijksterhuis, J.

    2005-01-01

    Multicelled conidia are formed by many fungal species, but germination of these spores is scarcely studied. Here, the germination and the effects of antimicrobials on multicompartment macroconidia of Fusarium culmorum were investigated. Germ-tube formation was mostly from apical compartments. The

  1. Effect of exogenous gibberellic acid on germination, seedling growth ...

    African Journals Online (AJOL)

    The effect of gibberellic acid on germination and seedling growth of lettuce variety, Vista, under salinity conditions was studied. A reduction in germination percentage, roots and shoots length and fresh weight were observed under salt stress. At the same time, acid phosphatase and phytase activities in roots were reduced ...

  2. Improving the seed germination of little bluestem with selection

    Science.gov (United States)

    Rapid seed germination is an important characteristic when it comes to plant stand establishment under variable environmental conditions. This research was designed to improve the seed germination of six experimental Syn-0 lines of little bluestem [Schizachyrium scoparium (Michx.) Nash]. Two cycle...

  3. Modelling the effect of temperature on seed germination in some ...

    African Journals Online (AJOL)

    The prediction of germination percentage (GP) and germination speed (GS) of the seeds for some cucurbits (watermelon, melon, cucumber, summer squash, pumpkin and winter squash) was investigated by mathematical model based on temperature. The model, D = [a - (b x T) + (c x T2)] of Uzun et al. (2001), was adapted ...

  4. Effects of Sowing Media and Sowing Depth on Germination and ...

    African Journals Online (AJOL)

    This study examines the effect of sowing media and sowing depth on the germination and growth of Lecanodiscus cupanoides (Planch.Ex Benth). The germination of L. cupanoides seed was significantly affected by sowing depth and sowing medium at p=0.05. The result of various sowing media and sowing depth showed ...

  5. Asymbiotic germination of immature embryos of a medicinally ...

    African Journals Online (AJOL)

    The immature embryos (28 weeks after pollination) were inoculated on M (Mitra et al., 1976), and PDA (Potato Dextrose Agar) media, with and without different growth additives. The seeds showed positive germination response in both the nutrient media but the frequency and onset of germination response and associated ...

  6. The effect of different treatments on improving seed germination ...

    African Journals Online (AJOL)

    Creating optimal conditions for germination of medicinal plants seed is essential for their cultivation. Therefore, to evaluate the effect of different treatments on seed germination of two medicinal species, Descurainia sophia and Plantago ovata collected in 2009 from Tehran Province, an experiment with a factorial ...

  7. Full Length Research Paper Seed germination and in vitro plant ...

    African Journals Online (AJOL)

    Parkia biglobosa is an important leguminous forest species which is being threatened of going into extinction in Senegal. To preserve this genetic resource of great economic value, studies on germination were carried out and in vitro conservation option through tissue culture technique was adopted. 100% of germination ...

  8. Effects of animal's rumen juice on seed germination of Vicia ...

    African Journals Online (AJOL)

    To help understand the effects of grazing on seed germination characteristics of Vicia angustifolia L., we conducted a laboratory germination experiment of V. angustifolia L., which is a main companion species of Leguminosae family in alpine grassland of the Qinghai-Tibetan Plateau, using Yak and Tibetan sheep rumen ...

  9. Millipede damage to germinating acorns of northern red oak

    Science.gov (United States)

    Jimmy R. Galford; L. R. Auchmoody; Russell S. Walters; H. Clay. Smith; H. Clay. Smith

    1992-01-01

    Millipedes have not been reported as pests of germinating acorns. Studies in Pennsylvania on the impact of insects on northern red (Quercus rubra L. seedling establishment revealed that the millipede Ptyoiulus impressus (Say) damaged the radicles of germinating acorns. Up to 17 percent of the acorn radicles in areas with heavy acorn crops were damaged in 1'991....

  10. Effects of seed fermentation method on seed germination and vigor ...

    African Journals Online (AJOL)

    The present study was conducted to examine the influence of Lagenaria siceraria seed fermentation method on seed germination and vigor. Three seed fermentation methods (fermented in ambient air, plastic bag stored in ambient or in plastic bag buried) were tested on two cultivars during two years. Seed germination and ...

  11. Allelopathic effect of Jatropha curcas (Lin) leachate on germination ...

    African Journals Online (AJOL)

    Laboratory study was conducted using sterilized petri dishes with double layer of Whatman filter paper at averagely 27oC and 70% humidity. An interval of 24, 48, 76 and 92 hours were recorded on germination studies while radicle and shoot lengths at 92nhours respectively. Decreased in germination percentage, shoot ...

  12. The role of seed priming in improving seed germination and ...

    African Journals Online (AJOL)

    Salinity is considered as a major abiotic stress affecting germination, seedling growth and crop production in arid and semi-arid regions. Many techniques are used to improve tolerance to salinity. Priming is believed to be an effective technique that increases germination, plant growth and improve yield of several ...

  13. IAA production during germination of Orobanche spp. seeds.

    Science.gov (United States)

    Slavov, Slavtcho; van Onckelen, Henry; Batchvarova, Rossitza; Atanassov, Atanas; Prinsen, Els

    2004-07-01

    Broomrapes (Orobanche spp.) are parasitic plants, whose growth and development fully depend on the nutritional connection established between the parasite and the roots of the respective host plant. Phytohormones are known to play a role in establishing the specific Orobanche-host plant interaction. The first step in the interaction is seed germination triggered by a germination stimulant secreted by the host-plant roots. We quantified indole-3-acetic acid (IAA) and abscisic acid (ABA) during the seed germination of tobacco broomrape (Orobanche ramosa) and sunflower broomrape (O. cumana). IAA was mainly released from Orobanche seeds in host-parasite interactions as compared to non-host-parasite interactions. Moreover, germinating seeds of O. ramosa released IAA as early as 24 h after the seeds were exposed to the germination stimulant, even before development of the germ tube. ABA levels remained unchanged during the germination of the parasites' seeds. The results presented here show that IAA production is probably part of a mechanism triggering germination upon the induction by the host factor, thus resulting in seed germination.

  14. Germination potential index of Sindh rice cultivars on biochemical ...

    African Journals Online (AJOL)

    use

    2011-12-14

    Dec 14, 2011 ... Alpha amylase activities were found to be directly correlated with germination percentage. Gradual increase in reducing sugars along with α-amylase activity was observed, while total ... seed vigor and alpha amylase activity along with germination period. .... strates for energy generation for fast and uniform.

  15. Temperature and substrate on Plukenetia volubilis L. seed germination

    Directory of Open Access Journals (Sweden)

    Givanildo Z. da Silva

    Full Text Available ABSTRACT The objective of this work was to evaluate the effect of temperature and substrate on the germination of P. volubilis seeds. Seeds harvested from 25 matrix plants were submitted, in two studies, to conditions of (i sowing in rolled paper towel at the temperatures of 10, 15, 20, 25, 30, 35, 40, and 45 °C, for the evaluation of germination, first count of germination, germination speed index and mean time for germination, and (ii sowing in the substrates paper towel, sand, Bioplant®, Bioplant® and micron, superfine, fine, medium and coarse vermiculite. The same evaluations mentioned in the first study were conducted at the temperature of 30 oC, as well as plant growth. The treatment replicates were distributed in a completely randomized block design and the effects of temperature were compared by polynomial regression analysis. The substrates were compared by the Scott-Knott test at 0.05 probability level. The data show that the ideal range of temperature for the germination of P. volubilis is between 25 and 30 °C. The temperature of 20 °C is the minimum for germination and those above 35 °C are lethal to these seeds. The most favorable substrate for P. volubilis seed germination is micron or fine vermiculite.

  16. Effects of hydropriming on seed germination and seedling growth in ...

    African Journals Online (AJOL)

    The germination of Salvia officinalis L. (sage) seeds is a problem of great concern that may be overcome by employing seed priming techniques. Seed priming is an efficient technique for improvement of seed vigor, increasing germination and seedling growth. Little information has been reported on seedling development ...

  17. Variability of Germinative Potential among Pathogenic Species of Aspergillus

    OpenAIRE

    Araujo, Ricardo; Rodrigues, Acacio Gonçalves

    2004-01-01

    The objective of our study was to evaluate parameters influencing the germination of Aspergillus conidia. Inoculum concentration and age significantly influenced germination. Different incubation temperatures revealed significant differences among Aspergillus species. The internal human milieu provides the ideal conditions for the development of invasive disease by Aspergillus fumigatus but restricts invasion by Aspergillus flavus and Aspergillus niger.

  18. Mapping QTLs for submergence tolerance during germination in rice

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... Key words: Oryza sativa L, anaerobic germination, QTL analysis. INTRODUCTION. Two main ... The study was conducted at NG-01 greenhouse, Genome and. Mapping (GML), the .... ABC transporter family protein ..... differences of germination habits in rice seeds with special reference to plant breeding (in ...

  19. Pollen characteristics and in vitro pollen germination of Cedrus ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... This study aims to determine the germination characteristics, pollen tube developments, effects of germination media and temperature and incubation durations of the pollens obtained from the four clones (11342, 11344, 11345 and 11351) of Cedrus libani A. Rich. (Lebanon Cedrus) obtained from clonal.

  20. Salt tolerance of physalis during germination and seedling growth

    International Nuclear Information System (INIS)

    Yildirim, E.; Karlidag, H.

    2011-01-01

    The study was conducted to evaluate the effect of NaCl salinity on germination and emergence of Physalis ixocarpa and Physalis peruviana. Seeds of P. ixocarpa and P. peruviana were germinated by the use of 0, 30, 60, 90, 120 and 180 mM NaCl solutions in petri dishes. Final germination percentage (FGP) decreased with the increase in NaCl concentration. Both species germinated at the ranges of salinity. P. peruviana gave the greater germination percentages under salt stress than P. ixocarpa. NaCl salinity at different concentrations adversely affected germination rates. For seedling growth, seeds of both species were sown at 10 mm depth in plastic trays filled with peat to determine final emergence percentage (FEP). The trays were irrigated manually to saturation every day with 0, 30, 60, 90, 120, 150 or 180 mM NaCl solutions to maintain the level of salinity. Salinity affected seed emergence and seedlings growth more than seed germination. The study showed that no emergence of Physalis was observed at 90, 120 and 180 mM NaCl salinity. Fresh and dry weights of normal seedlings were also evaluated. Salt stress significantly decreased the plant fresh and dry weight of both species. Based on the results of the experiment, it can be concluded that seedling emergence and growth is more sensitive to salt stress than seed germination in Physalis. (author)

  1. Reinstatement of "germinal epithelium" of the ovary

    Directory of Open Access Journals (Sweden)

    Nishida Naoyo

    2006-08-01

    Full Text Available Abstract Background The existing dogma that the former term ovarian "germinal epithelium" resulted from a mistaken belief that it could give rise to new germ cells is now strongly challenged. Discussion Two years ago, a research group of the University of Tennessee led by Antonin Bukovsky successfully demonstrated the oogenic process from the human ovarian covering epithelium now commonly called the ovarian surface epithelium. They showed the new oocyte with zona pellucida and granulosa cells, both originated from the surface epithelium arising from mesenchymal cells in the tunica albuginea, and stressed that the human ovary could form primary follicles throughout the reproductive period. This gives a big impact not only to the field of reproductive medicine, but also to the oncologic area. The surface epithelium is regarded as the major source of ovarian cancers, and most of the neoplasms exhibit the histology resembling müllerian epithelia. Since the differentiating capability of the surface epithelium has now expanded, the histologic range of the neoplasms in this category may extend to include both germ cell tumors and sex cord-stromal cell tumors. Summary Since the oogenic capability of ovarian surface cells has been proven, it is now believed that the oocytes can originate from them. The term "germinal epithelium", hence, might reasonably be reinstated.

  2. Assessment of salinity tolerance in bell pepper (capsicum annuum l.) genotypes on the basis of germination, emergence and growth attributes

    International Nuclear Information System (INIS)

    Tehseen, S.; Ayyub, C.M.; Amjad, M.

    2016-01-01

    Abiotic stresses are principal threat to crop growth and productivity all over the world. The most devastating one is soil salinity which adversely affects the plants, so a comprehensive study was conducted to categorize different available bell pepper (Capsicum annuum L.) genotypes into salt tolerant, moderately tolerant and sensitive ones on the basis of germination and emergence parameters. Genotypes were exposed to different saline treatments (2, 4, 6 and 8 dS m-1) along with control (0 dS m-1). Germination test, conducted in petri dishes in incubator, revealed that salinity stress significantly decreased final germination percentage, germination index and embryo axis length of tested genotypes. On the other hand, mean germination time and time to 50% seeds germination were increased with the increasing salinity level from 2 to 8 dS m-1. Emergence test of bell pepper genotypes conducted in pots under greenhouse conditions, shown that salinity decreased the seedlings fresh and dry biomass, number of leaves, leaf area and root and shoot length. On the basis of overall percent decrease ranking table, genotypes were grouped into comparatively salt tolerant (Zard, Tasty, Super shimla, Aristotle), moderately tolerant (Capistrano, CW-03, Kaka-01, Orable, Yolo wonder, Crusadar) and sensitive ones (PEP-311, Admiral, Lafayette, Colossol). From these results, it can be extracted that germination and emergence tests are reliable screening tools for evaluating pepper genotypes for salt stress at seedling stage. Moreover, results of this study can be useful for local farmers to utilize their marginal soils by growing relatively salt tolerant bell pepper genotypes. (author)

  3. Cerium enhances germination and shoot growth, and alters mineral nutrient concentration in rice

    Science.gov (United States)

    García-Morales, Soledad; Pérez-Sato, Juan Antonio

    2018-01-01

    Cerium (Ce) belongs to the rare earth elements (REEs), and although it is not essential for plants, it can stimulate growth and other physiological processes. The objective of this research was to evaluate the effect of Ce on seed germination, initial seedling growth, and vegetative growth in rice (Oryza sativa L.) cv. Morelos A-98. During the germination process, the seeds were treated with Ce concentrations of 0, 4, 8, and 12 μM; after 5 d, germination percentage was recorded and after 10 d seedling growth was measured. For vegetative growth, a hydroponic system was established where 14-d-old plants without previous Ce treatment were transferred into nutrient solution. After two weeks of acclimatizing, 0, 25, 50, and 100 μM Ce were added to the nutrient solution for 28 d. Ce significantly increased germination and the initial growth variables of the seedlings. During vegetative growth, Ce increased plant height, number of tillers, root volume, and shoot fresh and dry biomass, without affecting root biomass weight. With low Ce concentrations (25 and 50 μM), the concentrations of chlorophylls and amino acids in the shoots were similar to those in the control, like amino acid concentration in the roots at a concentration of 25 μM Ce. Conversely, the concentration of total sugars increased in the shoot with the application of 25, 50, and 100 μM Ce, and in the roots with the application of 50 μM Ce. Also, Ce did not affect the concentration of macro or micronutrients in the shoots. However, in the roots, the high Ce concentration decreased the concentrations of Ca, Fe, Mn, and Zn, while the Mg concentration increased. Our results indicate that Ce, at the right concentrations, can function as a biostimulant in rice germination and growth. PMID:29579100

  4. The DNA comet assay and the germination test in detection of food treated by ionizing radiation

    International Nuclear Information System (INIS)

    Huachaca, Nelida Simona Marin

    2002-01-01

    Two methods of irradiated food detection, one biochemical, the comet assay and, other biological, the germination test, were applied in bovine meat and fruit samples. The comet assay detects the damage on DNA caused by ionizing radiation. The germination test evaluates the sensitivity to radiation of seeds as for germination ability, shooting and, rooting. The samples were irradiated in gamma font and electron accelerator. For bovine meat samples, the doses were 0.0; 2.5; 4.5 e 7.0 kGy at chilled condition and, 0.0; 2.5; 4.5; 7.0 e 8.5 kGy at frozen conditions. For fruit samples such as melon, watermelon, apple, orange, papaya and, tomato, the doses were: 0.0; 0.5; 0.75; 1.0; 2.0 e 4.0 kGy. The differences between the gamma rays and the electron beam effects on extent of DNA migration and, on shooting and rooting, showed to be similar. The comet assay, under neutral conditions, permitted to discriminate between irradiated and unirradiated bovine meat samples, until one month of storage. Also, it was possible to distinguish, by the comet assay, the control sample with regard to irradiated fruit, at doses as low as 0,5 kGy. In the germination test, the root length was the best parameter to discriminate irradiated and unirradiated samples of melon, watermelon and tomato, while the germination percent was the best parameter for apple and orange. (author)

  5. Seed dormancy and germination in Jeffersonia dubia (Berberidaceae) as affected by temperature and gibberellic acid.

    Science.gov (United States)

    Rhie, Y H; Lee, S Y; Kim, K S

    2015-03-01

    The genus Jeffersonia, which contains only two species, has a trans-Atlantic disjunct distribution. The aims of this study were to determine the requirements for breaking dormancy and germination of J. dubia seeds and to compare its dormancy characteristics with those of the congener in eastern North America. Ripe seeds of J. dubia contain an underdeveloped embryo and were permeable to water. In nature, seeds were dispersed in May, while embryos began to grow in September, and were fully elongated by late November. Germination started in March of the next year, and seeds emerged as seedlings soon after germination. In laboratory experiments, incubation at high temperatures (25 °C, 25/15 °C) for at least 8 weeks was required to initiate embryo growth, while a transfer to moderate temperatures (20/10 °C, 15/6 °C) was needed for the completion of embryo growth. At least 8 weeks at 5 °C was effective in overcoming physiological dormancy and for germination in seeds after the embryos had fully elongated. Thus, both high and low temperatures were essential to break dormancy. Gibberellic acid (GA3 ) treatment could substitute for the high temperature requirement, but not for the low temperature requirement. Based on the dormancy-breaking requirements, it is confirmed that the seeds have deep simple morphophysiological dormancy. This dormancy type is similar to that of seeds of the eastern North American species J. diphylla. Although seeds require 10-11 months from seed dispersal to germination in nature, under controlled conditions they required only 3 months after treatment with 1000 mg·l(-1) GA3 , followed by incubation at 15/6 °C. This represents practical knowledge for propagation of these plants from seed. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Starch bioengineering affects cereal grain germination and seedling establishment

    DEFF Research Database (Denmark)

    Shaik, Shahnoor Sultana; Carciofi, Massimiliano; Martens, Helle Juel

    2014-01-01

    Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule...... structure, and not only the endosperm starch content per se, is important for germination and seedling establishment. For that purpose, wild-type (WT), and specifically engineered degradable hyperphosphorylated (HP) starch and more resistant amylose-only (AO) starch barley lines were used. The transgenics...... showed no severe phenotypes and the WT and HP lines degraded the starch similarly, having 30% residual starch after 12 d of germination. However, the AO line showed significant resistance to degradation, having 57% residual starch. Interestingly, protein and β-glucan (BG) degradation was stimulated...

  7. Germination, carbohydrate composition and vigor of cryopreserved Caesalpinia echinata seeds

    Directory of Open Access Journals (Sweden)

    Rafael Fonsêca Zanotti

    2012-10-01

    Full Text Available The present study investigated the germination and vigor of Caesalpinia echinata (Brazilwood seeds stored at negative temperatures. Recently harvested seeds were cryopreserved at -18º or -196ºC and periodically evaluated for germination, seed vigor and carbohydrate composition. The temperatures did not influence the germination percentages or vigor. The germination percentage decreased from 88% in recently harvested seeds to 60% after 730 days of storage. The different temperature and storage times tested did not affect the vigor seed germination as indicated by the measures of plant growth and survival. The different temperatures used did not cause changes in the carbohydrate composition. The tegument cell walls were rich in lignin, arabinose and xylose. The cytoplasm of the cotyledons and embryos had high levels of glucose, fructose, and sucrose. The cryopreservation technique here presented was effective in the conservation of Brazilwood seeds for the medium term.

  8. Association mapping of soybean seed germination under salt stress.

    Science.gov (United States)

    Kan, Guizhen; Zhang, Wei; Yang, Wenming; Ma, Deyuan; Zhang, Dan; Hao, Derong; Hu, Zhenbin; Yu, Deyue

    2015-12-01

    Soil salinity is a serious threat to agriculture sustainability worldwide. Seed germination is a critical phase that ensures the successful establishment and productivity of soybeans in saline soils. However, little information is available regarding soybean salt tolerance at the germination stage. The objective of this study was to identify the genetic mechanisms of soybean seed germination under salt stress. One natural population consisting of 191 soybean landraces was used in this study. Soybean seeds produced in four environments were used to evaluate the salt tolerance at their germination stage. Using 1142 single-nucleotide polymorphisms (SNPs), the molecular markers associated with salt tolerance were detected by genome-wide association analysis. Eight SNP-trait associations and 13 suggestive SNP-trait associations were identified using a mixed linear model and the TASSEL 4.0 software. Eight SNPs or suggestive SNPs were co-associated with two salt tolerance indices, namely (1) the ratio of the germination index under salt conditions to the germination index under no-salt conditions (ST-GI) and (2) the ratio of the germination rate under salt conditions to the germination rate under no-salt conditions (ST-GR). One SNP (BARC-021347-04042) was significantly associated with these two traits (ST-GI and ST-GR). In addition, nine possible candidate genes were located in or near the genetic region where the above markers were mapped. Of these, five genes, Glyma08g12400.1, Glyma08g09730.1, Glyma18g47140.1, Glyma09g00460.1, and Glyma09g00490.3, were verified in response to salt stress at the germination stage. The SNPs detected could facilitate a better understanding of the genetic basis of soybean salt tolerance at the germination stage, and the marker BARC-021347-04042 could contribute to future breeding for soybean salt tolerance by marker-assisted selection.

  9. Effect of Salinity and Drought Stresses on Germination Stage and Growth of Black Cumin (Bunium Persicum Boiss

    Directory of Open Access Journals (Sweden)

    H. R. Saeedi Goraghani

    2017-06-01

    Full Text Available Introduction Range plants have important and crucial roles in medicinal industry andtogether with scarcity and low quality of the water and soil resources, prevent a quick recovery of the soil plant covering. Because of these restrictions, it is important to consider the use of salt and drought tolerant species for plantation and to preserve plant cover. In this sense, the use of native species such as black cumin (Bunium persicum Boiss may be of interest due to their medicinal characteristics and potential ability to adapt to adverse conditions (dry and saline conditions. Black cumin (B. persicum as a medicinal plant plays a vital role in Iranian medicine so there is a need to know about the factors affecting their growth and propagation. Materials and Methods To investigate the effects of drought and salt stresses on germination and growth in black cumin two separate experiments were conducted. Drought stress was applied through incubation in four different concentrations of PEG 6000 that provide solutions with water potentials ranging from -0.2 to -0.8 MPa (including control and four levels of dryness. Salinity treatments (including control and four levels of salinity were prepared by adding molar concentrations of NaCl to provide a range of salinity from 50 to 300 mM. Germination percentage and speed was calculated by computation of germinated seeds every day. Growth parameters (rootlet, shoot and seedling length total, allometric index and seed vigority were obtained accordingly. Results and Discussion Seeds under both drought and salt stress showed significant reduction in germination percentage, germination rate, radicle length, plumule length, and alometric and seed vigor indices. This trend was much pronounced under high levels of NaCl and low levels of water potentials, so that germination at Ψs = -0.6 MP was completely stopped. Conclusions Assessment of drought and salt stresses on germination and growth in black cumin is very

  10. Response of sunflower to various pre-germination techniques for breaking seed dormancy

    International Nuclear Information System (INIS)

    Nasreen, S.; Khan, M.A.; Uddin, S.

    2015-01-01

    Seed dormancy is considered to be a serious constraint in sunflower seed production. Viable seeds sometimes do not germinate even in the presence of favorable environmental conditions. Such seeds are suspected to be dormant. The study was conducted under controlled/laboratory conditions during spring 2010 at National Agricultural Research Centre, Islamabad. The objective of the study was to evaluate some techniques to convert a seed from dormant to non-dormant germinable state. Dormant seeds of 21 sunflower hybrids were treated with three hot water treatments (100/80 degree C) and four chemicals potassium nitrate, 0.2%, thiourea, 0.5%, ethanol, 25%, acetone, 25% for breaking seed dormancy .The untreated seed was taken as control. Soaking seeds in hot water (80 degree C) for 15 minutes followed by one day dry and seed treatment with acetone were found to be the most effective and successful techniques in converting the seed from dormant to non-dormant state. (author)

  11. Sensitizing Clostridium difficile Spores With Germinants on Skin and Environmental Surfaces Represents a New Strategy for Reducing Spores via Ambient Mechanisms

    Directory of Open Access Journals (Sweden)

    Michelle Marie Nerandzic

    2017-10-01

    Full Text Available Background: Clostridium difficile is a leading cause of healthcare-associated infections worldwide. Prevention of C. difficile transmission is challenging because spores are not killed by alcohol-based hand sanitizers or many commonly used disinfectants. One strategy to control spores is to induce germination, thereby rendering the spores more susceptible to benign disinfection measures and ambient stressors. Methods/Results: C. difficile spores germinated on skin after a single application of cholic acid-class bile salts and co-germinants; for 4 C. difficile strains, recovery of viable spores from skin was reduced by ~0.3 log10CFU to 2 log10CFU after 2 hours and ~1 log10CFU to >2.5 log 10CFU after 24 hours. The addition of taurocholic acid to 70% and 30% ethanol significantly enhanced reduction of viable spores on skin and on surfaces. Desiccation, and to a lesser extent the presence of oxygen, were identified as the stressors responsible for reductions of germinated spores on skin and surfaces. Additionally, germinated spores became susceptible to killing by pH 1.5 hydrochloric acid, suggesting that germinated spores that remain viable on skin and surfaces might be killed by gastric acid after ingestion. Antibiotic-treated mice did not become colonized after exposure to germinated spores, whereas 100% of mice became colonized after exposure to the same quantity of dormant spores. Conclusions: Germination could provide a new approach to reduce C. difficile spores on skin and in the environment and to render surviving spores less capable of causing infection. Our findings suggest that it may be feasible to develop alcohol-based hand sanitizers containing germinants that reduce spores on hands.

  12. An evaluation of physical and mechanical scarification methods on seed germination of Vachellia macracantha (Humb. & Bonpl. ex Willd. Seigler & Ebinger

    Directory of Open Access Journals (Sweden)

    Francisco Maldonado-Arciniegas

    2018-01-01

    Full Text Available The dry Andean forests are ecosystems with a high diversity of flora and fauna and are at high risk of extinction due to the pressure of human activity. V. macracantha is a native species of the dry Andean forest, which has potential for reforestation and also provides benefits in agroforestry systems, due to its nitrogen fixation capacity, the supply of organic matter, the production of shade and wind protection. The multiplication of this species is limited due to the low percentage of seed germination, which present dormancy. The aim of this research was to determine the most effective scarification method for seeds germination of V. macracantha. Two types of methods were tested, the immersion in strong acids (chemical scarification, and the seed bark through filing, cutting and soaking into hot water (physical scarification. A completely randomized block design with 3 replicates was used. For the chemical methods, sulfuric, nitric, and phosphoric acid (50% v/v were used at different exposure times: 5, 10, 15, 20 and 25 minutes, respectively. Three variables were measured as follows: percentage of germination, the number of leaves and the plant height. The chemical methods did not present any significant difference in the percentage of germination. The physical method of seed filing, had achieved the highest percentage of germination with 46%, compared to control treatment, which had achieved 6%. No treatment performed significant differences in the parameters of number of leaves and plant height.

  13. Responses of Seed Germination, Seedling Growth, and Seed Yield Traits to Seed Pretreatment in Maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Yu Tian

    2014-01-01

    Full Text Available A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.. Results indicated that the seeds primed by gibberellins (GA, NaCl, and polyethylene glycol (PEG reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P<0.05. The recommended prime reagents were GA at 10 mg/L, NaCl at 50 mM, and PEG at 15% on account of germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM, or PEG (15% significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method.

  14. Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.).

    Science.gov (United States)

    Tian, Yu; Guan, Bo; Zhou, Daowei; Yu, Junbao; Li, Guangdi; Lou, Yujie

    2014-01-01

    A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.). Results indicated that the seeds primed by gibberellins (GA), NaCl, and polyethylene glycol (PEG) reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM), or PEG (15%) significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method.

  15. Individual electrical conductivity test for the assessment of soybean seed germination.

    OpenAIRE

    MATTIONI, N. M.; MERTZ, L. M.; BARBIERI, A. P. P.; HAESBAERT, F. M.; GIORDANI, W.; LOPES, S. J.

    2015-01-01

    Soybean seed quality is affected by many factors, which may occur during the production, processing, and storage phases. To ensure the quality of seeds, the adoption of fast and efficient methods to estimate seed viability in quality control programs is important. This study aimed to determine a partition point of the individual electrical conductivity test to predict soybean seed germination. Three lots each of five different soybean cultivars (Fundacep 57 RR, BMX Potência RR, BMX Força RR, ...

  16. Salinity on the germination of seed and index of germination speed of three ornamental species

    Directory of Open Access Journals (Sweden)

    Marcos Vieira Ferraz

    2016-09-01

    Full Text Available Salinity is a factor that interferes on seed germination in most species. The objective of this work was to study the effects of different concentrations of NaCl on the emergence and vigor of Petunia x hybrida hort. Vilm E. ex., Torenia fournieri Lind and Tagetes patula L. seedlings. The experimental design was entirely randomized with five treatments (five concentrations of NaCl: zero, 25, 50, 75 and 100 mM and four replications of 50 seeds, for each species. The seeds were germinated in germitest paper at the alternating temperature of 20-30°C. Emergence (% and Emergence Rate (ER were performed daily until 14 days. Salt stress caused negative effects on the emergence and vigor on seedlings of these three ornamentals species.

  17. Effect of Different Germination Conditions on Antioxidative Properties and Bioactive Compounds of Germinated Brown Rice

    Directory of Open Access Journals (Sweden)

    You-Tung Lin

    2015-01-01

    Full Text Available This study investigates antioxidative activity and bioactive compounds of ungerminated brown rice (UBR and germinated brown rice (GBR. We used two rice cultivars (Oryza sativa L., Taiwan Japonica 9 (TJ-9 and Taichung Indica 10 (TCI-10, as the materials in our experiments. The conditions for inducing germination are soaking time in water 24, 48, or 72 h; temperature 26 or 36°C; incubation in light or darkness; and open or closed vessels, in which the antioxidative activities and bioactive compounds of GBR were determined. We found that, in order to maximize antioxidative activity and bioactive compounds, germination should be under higher temperature (36°C, long soaking time (72 h, darkness, and closed vessel. GBR contains much higher levels of antioxidative activity and bioactive compounds than ungerminated brown rice (UBR. We found a strong correlation between antioxidative activities (DPPH radical scavenging ability, reducing power, and Trolox equivalent antioxidant capacity and bioactive compounds (γ-oryzanols, tocopherol, and tocotrienol. Higher temperature (36°C is also conducive to the production of GABA in GBR. These results are considered very useful research references for the development of future functional foods and additives.

  18. Germination induction of dormant Avena fatua caryopses by KAR(1) and GA(3) involving the control of reactive oxygen species (H2O2 and O2(·-)) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers.

    Science.gov (United States)

    Cembrowska-Lech, Danuta; Koprowski, Marek; Kępczyński, Jan

    2015-03-15

    Avena fatua L. caryopses did not germinate at 20 °C in darkness because they were dormant. However, they were able to germinate in the presence of karrikinolide (KAR1), a key bioactive compound present in smoke, and also in the presence of gibberellin A3 (GA3), a commonly known stimulator of seed germination. The aim of this study was to collect information on a possible relationship between the above regulators and abscisic acid (ABA), reactive oxygen species (ROS) and ROS scavenging antioxidants in the regulation of dormant caryopses germination. KAR1 and GA3 caused complete germination of dormant A. fatua caryopses. Hydrogen peroxide (H2O2), compounds generating the superoxide (O2(·-)), i.e. menadione (MN), methylviologen (MV) and an inhibitor of catalase activity, aminotriazole (AT), induced germination of dormant caryopses. KAR1, GA3, H2O2 and AT decreased ABA content in embryos. Furthermore, KAR1, GA3, H2O2, MN, MV and AT increased α-amylase activity in caryopses. The effect of KAR1 and GA3 on ROS (H2O2, O2(·-)) and activities of the superoxide dismutase (SOD) and catalase (CAT) were determined in caryopses, embryos and aleurone layers. SOD was represented by four isoforms and catalase by one. In situ localization of ROS showed that the effect of KAR1 and GA3 was associated with the localization of hydrogen peroxide mainly on the coleorhiza. However, the superoxide was mainly localized on the surface of the scutellum. Superoxide was also detected in the protruding radicle. Germination induction of dormant caryopses by KAR1 and GA3 was related to an increasing content of H2O2, O2(·-)and activities of SOD and CAT in embryos, thus ROS homeostasis was probably required for the germination of dormant caryopses. The above regulators increased the content of ROS in aleurone layers and decreased the activities of SOD and CAT, probably leading to the programmed cell death. The presented data provide new insights into the germination induction of A. fatua dormant

  19. RESEARCHES REGARDING THE EFFECT OF SOME BIOLOGICALLY ACTIVE PRODUCTS UPON THE GERMINATION CAPACITIES OF SMOOTH BROME SEEDS

    Directory of Open Access Journals (Sweden)

    I. PET

    2007-05-01

    Full Text Available The carrying out of uniform forage crops represents an important technological loop for all agricultural species. The uniformity of these crops is caused especially by seed germination capacity, respectively by plant emergence capacity, depending upon the climatic and technological conditions. With regards to the researches carried out in this direction, we present here the influence exerted by some biologically-active products, used through extra-root application during plant vegetation period, upon seeds submitted to germination. The observations performed on smooth brome seeds have led to the conclusion that the per cent of germinated seeds ranges from 82%, in the untreated control variant, to 87.67% in the variant treated with the product Stimupro.

  20. Metabolomes of Potato Root Exudates: Compounds That Stimulate Resting Spore Germination of the Soil-Borne Pathogen Spongospora subterranea.

    Science.gov (United States)

    Balendres, Mark A; Nichols, David S; Tegg, Robert S; Wilson, Calum R

    2016-10-12

    Root exudation has importance in soil chemical ecology influencing rhizosphere microbiota. Prior studies reported root exudates from host and nonhost plants stimulated resting spore germination of Spongospora subterranea, the powdery scab pathogen of potato, but the identities of stimulatory compounds were unknown. This study showed that potato root exudates stimulated S. subterranea resting spore germination, releasing more zoospores at an earlier time than the control. We detected 24 low molecular weight organic compounds within potato root exudates and identified specific amino acids, sugars, organic acids, and other compounds that were stimulatory to S. subterranea resting spore germination. Given that several stimulatory compounds are commonly found in exudates of diverse plant species, we support observations of nonhost-specific stimulation. We provide knowledge of S. subterranea resting spore biology and chemical ecology that may be useful in formulating new disease management strategies.

  1. Effect of vanadium on germination and seedling growth of lettuce (Lactuca sativa L. C. V. salad bowl)

    Energy Technology Data Exchange (ETDEWEB)

    Lepp, N.W.

    1977-01-01

    The effect of vanadium, applied as VOSO/sub 4/, on germination and subsequent seedling growth of Lettuce has been studied. No differences in germination were observed at any of the applied vanadium concentrations, when compared to a vanadium-free control. Subsequent seedling growth, however, was significantly inhibited by all vanadium treatments. Reductions in shoot growth, root growth and fresh weight were apparent. Similar, but less dramatic effects were observed when 3 day old seedlings were transferred to vanadium enriched media. 13 references, 2 tables.

  2. Evolution of nutrient ingredients in tartary buckwheat seeds during germination.

    Science.gov (United States)

    Yiming, Zhou; Hong, Wang; Linlin, Cui; Xiaoli, Zhou; Wen, Tang; Xinli, Song

    2015-11-01

    Evolution of nutrient components and the antioxidative activity of seed sprouts of tartary buckwheat (Fagopyrum tataricum L. Gaertn) were investigated in the course of germination. Results showed that the contents of total flavonoids increased with germination time and leveled off after the third germination day with the changing trend of rutin and quercetin opposite to each other. The decrease of total protein and total sugar contents in the germinated seeds was accompanied respectively by an increase of amino acid and reducing sugar contents. The contents of vitamin C (Vc) and B1(V(B1)) exhibited a minimum with no appreciable changes found for vitamin B(2) (V(B2)) and B(6) (V(B6)). The contents of total chlorophyll, chlorophyll A and B all exhibited a maximum on the fifth germination day. The contents of fatty acids had no regular changing trend with germination time. The free radical-scavenging activities of the seeds increased with germination time and were caused by an increase in their antioxidative activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. [Study on conditions of seed germination of Cistanche].

    Science.gov (United States)

    Qiao, Xue-Yi; Wang, Hua-Lei; Guo, Yu-Hai

    2007-09-01

    To study the effect of fluridone concentration, stimulating period, temperature and salt on the seed germination of three species of Cistanche. The seeds were cultured in Petri dish, and the germination percentage was counted. The highest germination percentage was observed in Cistanche tubulosa, C. deserticola, C. sala seeds pre-treated by 0.1 mg x L(-1) fluridone for 24-29 h. The optimal temperature for the seeds germination of three species of Cistanche was at 20-30 degrees C, and the seeds did not germinate at sub-or supraoptimal temperatures (5 and 35 degrees C). The salt tolerance of C. sala seeds was strong, and the critical value of NaCl concentration was 0.04 mol x L(-1). By contrast, C. tubulosa and C. deserticola seeds were more sensitive to the salt stress, the critical value of NaCl concentration was 0.02 mol x L(-1). The optimal germination condition and the method of testing germination percentage of three species of Cistanche seeds are as follow: the seeds are pre-treated by 0.1 mg x L(-1) fluridone for 24 h and then cultured at 20-30 degrees C in salt solution which concentration is lower than 0.02 mol x L(-1).

  4. [Study on physiological and germination characteristics of Tulipa edulis seed].

    Science.gov (United States)

    Wu, Zhengjun; Zhu, Zaibiao; Guo, Qiaosheng; Ma, Hongliang; Xu, Hongjian; Miao, Yuanyuan

    2012-03-01

    Current study was conducted to investigate the seed physiological characteristics of Tulipa edulis and improve germination rate. Anatomical characteristics was observed. Seed water absorption curve was tested by soaking method. Dynamic of embryo development and germination rate as well as germination index under different conditions were recorded. And the biological test of cabbage seed was used for detecting the germination inhibitors. The embryo rate of newly matured seeds was about 10%, and there was no obstacle of water absorption on testa of T. edulis. The optimum method for embryo development was exposure to 300 mg x L(-1) gibberellin solution for 24 hours, and stratification at 25 degrees C for 70 days followed by stratification at 5 degrees C for 40 days. The germintion rate and germination index of dormancy-broken seeds under the dark environment at 10 degrees C and 15 degrees C were significantly higher than those under other conditions. Additionally, there were some germination inhibitory substances in dry seeds. The seed of T. edulis can be classified as having complex morphophysiological dormancy, and the morphological embryo dormancy played a leading role. Warm and cold stratification resulted in a fast dormancy breaking effect, and a high germination rate more than 90% could be obtained under the optimum conditions.

  5. Optimization of jenipapo in vitro seed germination process

    Directory of Open Access Journals (Sweden)

    Rafaela Ribeiro de Souza

    Full Text Available ABSTRACT The in vitro seed germination is an effective alternative for quickly obtaining explants with sanitary quality. However, jenipapo seeds present slow and uneven germination. Therefore, internal and external factors to seed which directly interfere in the process, they must be identified, in order to adapt better techniques to obtain seedlings. In this sense, this work aimed to optimize the in vitro germination of Genipa americana L. seeds by evaluating different factors (light quality, GA3 treatment, pre-soaking in distilled water, growing media and stratification in the dark. It was found that the seed germination of G. americana was indifferent to light, however, the best results were obtained under conditions of continuous darkness; There was no effect of the application of exogenous GA3; The pre-soaking in distilled water for 48 h contributes to obtaining better germination rates; And the reduction in MS medium salts, and laminating the pretreatment in the dark maximizes the germination potential of seeds.Therefore, the optimal conditions for in vitro germination of G. americana L. seeds requires pre-soaking in distilled water for 48 hours and inoculation into culture media consisting of 1/2 MS + 15 g L-1 sucrose, with stratification in the dark for 16 days, followed by the transfer to growth chambers with lighting provided by white fluorescent lamps.

  6. Nitric oxide is involved in light-specific responses of tomato during germination under normal and osmotic stress conditions.

    Science.gov (United States)

    Piterková, Jana; Luhová, Lenka; Hofman, Jakub; Turecková, Veronika; Novák, Ondrej; Petrivalsky, Marek; Fellner, Martin

    2012-09-01

    Nitric oxide (NO) is involved in the signalling and regulation of plant growth and development and responses to biotic and abiotic stresses. The photoperiod-sensitive mutant 7B-1 in tomato (Solanum lycopersicum) showing abscisic acid (ABA) overproduction and blue light (BL)-specific tolerance to osmotic stress represents a valuable model to study the interaction between light, hormones and stress signalling. The role of NO as a regulator of seed germination and ABA-dependent responses to osmotic stress was explored in wild-type and 7B-1 tomato under white light (WL) and BL. Germination data were obtained from the incubation of seeds on germinating media of different composition. Histochemical analysis of NO production in germinating seeds was performed by fluorescence microscopy using a cell-permeable NO probe, and endogenous ABA was analysed by mass spectrometry. The NO donor S-nitrosoglutathione stimulated seed germination, whereas the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) had an inhibitory effect. Under WL in both genotypes, PTIO strongly suppressed germination stimulated by fluridone, an ABA inhibitor. The stimulatory effect of the NO donor was also observed under osmotic stress for 7B-1 seeds under WL and BL. Seed germination inhibited by osmotic stress was restored by fluridone under WL, but less so under BL, in both genotypes. This effect of fluridone was further modulated by the NO donor and NO scavenger, but only to a minor extent. Fluorescence microscopy using the cell-permeable NO probe DAF-FM DA (4-amino-5-methylamino-2',7'-difluorofluorescein diacetate) revealed a higher level of NO in stressed 7B-1 compared with wild-type seeds. As well as defective BL signalling, the differential NO-dependent responses of the 7B-1 mutant are probably associated with its high endogenous ABA concentration and related impact on hormonal cross-talk in germinating seeds. These data confirm that light-controlled seed germination and

  7. Evaluation of phytotoxicity effect of olive mill wastewater treated by different technologies on seed germination of barley (Hordeum vulgare L.).

    Science.gov (United States)

    Rusan, Munir J M; Albalasmeh, Ammar A; Zuraiqi, Said; Bashabsheh, Mohammad

    2015-06-01

    Olive-mill wastewater (OMW) is a by-product effluent of olive oil extraction process that is produced in large amount in the Mediterranean region. OMW is believed to induce phytotoxic effect on organisms including seed germination and plant growth. The objective of this study was to evaluate the impact of untreated and treated OMW with different techniques on seed germination of barley (Hordeum vulgare L.). The following treatments were investigated: (1) tap water (control); (2) OMW treated by aerobic biological technology in a Jacto Reactor (JR); (3) OMW treated by solar fenton oxidation (SFO); (4) OMW treated by microfiltration followed by nanofiltration (MF+NF); (5) OMW treated by microfiltration followed by reverse osmosis (MF+RO) process; (6) diluted OMW with tap water (25 % OMW); (7) diluted OMW with tap water (50 % OMW); (8) diluted OMW with tap water (75 % OMW); and (9) untreated OMW (100 % OMW). A germination test was conducted in an incubator at temperature of 23 (∘)C. In each petri dish, a filter paper was mounted and ten seeds of barley were placed on the filter paper. Five milliliter of water were added to each petri dish. The seed germination was determined by counting the number of germinated seeds to calculate the percentage of germination (G %). Germination rate index (GRI), seed vigor index (SVI), and phytotoxicity index (PI) were also calculated. Then, the dry weights and lengths of the shoots and the roots of the germinated seeds were measured. The results show that 100, 75, and 50 %OMW were very phytotoxic and completely prohibited seed germination. However, phytotoxicity decreased significantly following treatments of OMW with all techniques investigated and by the 25 % OMW dilution, as results of removing the phenols and other phytotoxic organic compounds from the OMW or by diluting it. This was evidenced by relative enhancement of the dry weights and lengths of shoot and root as well as the G %, GRI, SVG, and PI. It was concluded that if

  8. Germination rate is the significant characteristic determining coconut palm diversity.

    Science.gov (United States)

    Harries, Hugh C

    2012-01-01

    This review comes at a time when in vitro embryo culture techniques are being adopted for the safe exchange and cryo-conservation of coconut germplasm. In due course, laboratory procedures may replace the options that exist among standard commercial nursery germination techniques. These, in their turn, have supplanted traditional methods that are now forgotten or misunderstood. Knowledge of all germination options should help to ensure the safe regeneration of conserved material. This review outlines the many options for commercial propagation, recognizes the full significance of one particular traditional method and suggests that the diversity of modern cultivated coconut varieties has arisen because natural selection and domestic selection were associated with different rates of germination and other morphologically recognizable phenotypic characteristics. The review takes into account both the recalcitrant and the viviparous nature of the coconut. The ripe fruits that fall but do not germinate immediately and lose viability if dried for storage are contrasted with the bunches of fruit retained in the crown of the palm that may, in certain circumstances, germinate to produce seedlings high above ground level. Slow-germinating and quick-germinating coconuts have different patterns of distribution. The former predominate on tropical islands and coastlines that could be reached by floating when natural dispersal originally spread coconuts widely-but only where tides and currents were favourable-and then only to sea-level locations. Human settlers disseminated the domestic types even more widely-to otherwise inaccessible coastal sites not reached by floating-and particularly to inland and upland locations on large islands and continental land masses. This review suggests four regions where diversity has been determined by germination rates. Although recent DNA studies support these distinctions, further analyses of genetic markers related to fruit abscission and

  9. Germination traits of three weed species in Kosovo

    Directory of Open Access Journals (Sweden)

    A. Mehmeti

    2010-02-01

    Full Text Available Amaranthus retroflexus, Echinochloa crus-galli and Datura stramonium are the most important weed species in Kosovo. They cause severe yield depression, contaminate fodder and negatively affect growth and reproduction of other weed species. To counteract these problems, specific strategies need to be developed. Such strategies should consider information on species germination traits. In this context, our study provides information on temperature requirements for germination. Seeds of A. retroflexus, E. crus-galli and D. stramonium were harvested in two sub-regions of Kosovo (western and eastern parts differing in climate and land use. They were set for germination experiments in growth chambers at temperatures ranging from 3 to 35 °C and under field conditions. In both experiments, the germination rate differed between species and provenances. In the growth chamber experiment, germination of all three species was negligible below 15 °C and reached the highest rates between 24 and 30 °C. Seeds originating from the western part of Kosovo had higher germination rates and required a lower temperature for germination than seeds originating from the eastern part. In the field experiment, the time-dependent germination behaviour of D. stramonium differed between provenances. In general, germination started when soil temperature was above 18 °C and continued as long as the soil was moist. The results are discussed in the context of the need to develop weed management strategies against these weeds in Kosovo.

  10. Germination rate is the significant characteristic determining coconut palm diversity

    Science.gov (United States)

    Harries, Hugh C.

    2012-01-01

    Rationale This review comes at a time when in vitro embryo culture techniques are being adopted for the safe exchange and cryo-conservation of coconut germplasm. In due course, laboratory procedures may replace the options that exist among standard commercial nursery germination techniques. These, in their turn, have supplanted traditional methods that are now forgotten or misunderstood. Knowledge of all germination options should help to ensure the safe regeneration of conserved material. Scope This review outlines the many options for commercial propagation, recognizes the full significance of one particular traditional method and suggests that the diversity of modern cultivated coconut varieties has arisen because natural selection and domestic selection were associated with different rates of germination and other morphologically recognizable phenotypic characteristics. The review takes into account both the recalcitrant and the viviparous nature of the coconut. The ripe fruits that fall but do not germinate immediately and lose viability if dried for storage are contrasted with the bunches of fruit retained in the crown of the palm that may, in certain circumstances, germinate to produce seedlings high above ground level. Significance Slow-germinating and quick-germinating coconuts have different patterns of distribution. The former predominate on tropical islands and coastlines that could be reached by floating when natural dispersal originally spread coconuts widely—but only where tides and currents were favourable—and then only to sea-level locations. Human settlers disseminated the domestic types even more widely—to otherwise inaccessible coastal sites not reached by floating—and particularly to inland and upland locations on large islands and continental land masses. This review suggests four regions where diversity has been determined by germination rates. Although recent DNA studies support these distinctions, further analyses of genetic markers

  11. Production and germination of Tussilago farfara (L. diaspores

    Directory of Open Access Journals (Sweden)

    Anna Namur-Ochocka

    2014-01-01

    Full Text Available In the paper the production of generative diaspores in Tussilago farfara (L. was assessed in four different ecological systems. Also their morphological characteristics, as well as their germinability under natural and laboratory conditions were analysed, depending upon the age, density and size of diaspores, as well as sowing depth, substrate type and light conditions. The studies showed that diaspores: 1 were highly germinable under laboratory conditions; 2 did not germinate effectively under natural conditions; 31 were short-lived; 4 were tolerant to unfavourable habitat agents. Tussilago farfara was determined to exhibit high diaspore production only under conditions of suppresed interspecific competition.

  12. Elemental variations in the germinating fungus Phytophthora palmivora

    International Nuclear Information System (INIS)

    Mazzolini, A.P.; Sealock, R.M.; Legge, G.J.F.; Grant, B.R.

    1991-01-01

    We have measured the elemental variations between zoospores and germinating cystospores of the fungus Phytophthora palmivora, using a scanning proton microprobe. Averaged over a number of individual cells, our results indicate that the level of Ca is much lower in germinating cystospores than in zoospores. The levels of S, Cl, and Zn also appear to be lower, and the level of K appears to be higher. The spatial distribution of elements within the germinating cystospore is very similar for P, S, Cl, K, Mn, Fe, and Cu, but significantly different for Ca and Zn. (orig.)

  13. Elemental variations in the germinating fungus Phytophthora palmivora

    Science.gov (United States)

    Mazzolini, A. P.; Grant, B. R.; Sealock, R. M.; Legge, G. J. F.

    1991-03-01

    We have measured the elemental variations between zoospores and germinating cystospores of the fungus Phytophthora palmivora, using a scanning proton microprobe. Averaged over a number of individual cells, our results indicate that the level of Ca is much lower in germinating cystospores than in zoospores. The levels of S, Cl, and Zn also appear to be lower, and the level of K appears to be higher. The spatial distribution of elements within the germinating cystospore is very similar for P, S, Cl, K, Mn, Fe, and Cu, but significantly different for Ca and Zn.

  14. Germination and development of pecan cultivar seedlings by seed stratification

    Directory of Open Access Journals (Sweden)

    Igor Poletto

    2015-12-01

    Full Text Available Abstract: The objective of this work was to evaluate the effect of seed stratification on germination rate, germination speed, and initial development of seedlings of six pecan (Carya illinoinensis cultivars under subtropical climatic conditions in southern Brazil. For stratification, the seeds were placed in boxes with moist sand, in a cold chamber at 4°C, for 90 days. In the fourteenth week after sowing, the emergence speed index, total emergence, plant height, stem diameter, and number of leaves were evaluated. Seed stratification significantly improves the germination potential and morphological traits of the evaluated cultivars.

  15. Effects of seed pretreatment and seed source on germination of five ...

    African Journals Online (AJOL)

    The effects of seed pre-sowing treatment and geographic source of seeds on three germination parameters of five Acacia species (GP = germination percent; GMT = germination mean time (days) and GI = germination index) were studied. Pre-sowing treatment included immersion in concentrated sulphuric acid for 5, 10 and ...

  16. 7 CFR 201.29 - Germination of vegetable seed in containers of 1 pound or less.

    Science.gov (United States)

    2010-01-01

    ... the percentage of germination and date of test. Each variety of vegetable seed which has a germination... 7 Agriculture 3 2010-01-01 2010-01-01 false Germination of vegetable seed in containers of 1 pound... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29 Germination of...

  17. Red fox ( Vulpes vulpes L.) favour seed dispersal, germination and seedling survival of Mediterranean Hackberry ( Celtis australis L.)

    Science.gov (United States)

    Juan, Traba; Sagrario, Arrieta; Jesús, Herranz; Cristina, Clamagirand M.

    2006-07-01

    Seeds of the Mediterranean Hackberry Celtis australis are often encountered in fox faeces. In order to evaluate the effect of gut transit on the size of seeds selected, the rates and speed of germination and on the survival of the seedlings, Mediterranean Hackberry seeds from fox faeces were germinated in a greenhouse. The results were compared with those of seeds taken from ripe, uneaten fruits. Fox-dispersed seeds were smaller and lighter than the control ones and had higher (74% vs. 57%) and more rapid germination (74.5 days vs. 99.2 days). Seedlings from fox-dispersed seeds showed significantly greater survival by the end of the study period (74.1% vs. 43.6%) than the control ones. Survival in seedlings from fox-dispersed seeds was related to germination date, late seedlings showing poorer survival. This relationship was not observed away in the control seedlings. Seed mass did not affect seedling survival. Seedling arising from fox-dispersed seeds grew faster than control ones. These results suggest that fox can play a relevant role as seed disperser of Mediterranean Hackberry.

  18. Effects of plant growth promoting rhizobacteria (PGPR and cover crops on seed germination and early establishment of field dodder (Cuscuta campestris Yunk.

    Directory of Open Access Journals (Sweden)

    Sarić-Krsmanović Marija

    2017-01-01

    Full Text Available Several bacterial cultures: Bacillus licheniformis (MO1, B. pumilus (MO2, and B. amyloliquefaciens (MO3, isolated from manure; B. megatherium ZP6 (MO4 isolated from maize rhizosphere; Azotobacter chroococcum Ps1 (MO5 and Pseudomonas fluorescens (MO6, were used to test the influence of plant growth promoting rhizobacteria (PGPR on seed germination and germination rate of field dodder (Cuscuta campestris Yunk.. Also, to examine the effect of host seeds on germination and initial growth of seedlings of field dodder plants in the dark and under white light, the seeds of four host plants were used (watermelon, red clover, alfalfa and sugar beet. Germinated seeds were counted daily over a ten-day period and the length of seedlings was measured on the final day. The results show that treatments MO3, MO4 and MO6 had inhibitory effects (15%, 65% and 52%, respectively, while treatments MO1, MO2 and MO5 had stimulating effects (3%, 3% and 19%, respectively on seed germination of field dodder. The data for host seeds show that light was a significant initial factor (83-95%, control 95% for stimulating seed germination of field dodder plants, apart from host presence (73-79%, control 80%.

  19. [Effects of salt stress on germination and in vitro growth of pistachio (Pistacia vera L.)].

    Science.gov (United States)

    Benmahioul, Benamar; Daguin, Florence; Kaid-Harche, Meriem

    2009-08-01

    In order to study the salinity tolerance of pistachio (Pistacia vera L.), embryos developed from mature seeds were isolated and cultured in vitro and subjected to different NaCl concentrations (0, 42.8, 85.5, 171.1 and 256.6 mM) for 30 days. The results showed that in vitro germination of embryonic axes was not affected by the salt concentration. However, the germinated embryo survival rates decreased from 100% for the control to 62.9% for the highest salt concentration (256.6 mM). In addition, the plantlet growth (length of aerial and root parts, number of leaf produced per embryo, as well as the production of total fresh and dry matter for both aerial parts and roots) showed significant differences according the various salt concentrations.

  20. [Effects of illumination and seed-soaking reagent on seed germination of Solanum nigrum].

    Science.gov (United States)

    Yang, Chuan-Jie; Wei, Shu-He; Zhou, Qi-Xing; Hu, Ya-Hu; Niu, Rong-Cheng

    2009-05-01

    To explore a rapid seed germination method for hyperaccumulator Solanum nigrum, a germination experiment with different illumination and seed-soaking treatments was conducted in constant temperature box and greenhouse, with filter as burgeon base. Under illumination, the germination rate was about 5 times high of that without illumination (P seed germination of S. nigrum. All test seed-soaking reagents could significantly improve the germination rate of S. nigrum (P seeds treated with H2O2 had the shortest germination time. The germination rate of seeds soaked but without cleaning was 2-3 times as high as that of seeds soaked and cleaned with water.

  1. Allelopathic effect of medicinal plant Cannabis sativa L. on Lactuca sativa L. seed germination

    Directory of Open Access Journals (Sweden)

    Homa MAHMOODZADEH

    2015-11-01

    Full Text Available In order to examine allelopathic effect of Cannabis sativa L. on germination capability and seedling growth of Lactuca sativa L., a study was performed in laboratory conditions. Treatments were set up in randomised block design in four replications for each of four concentration ranges of 25, 50, 75 and 100 % of aqueous extract made of shoot parts and 4 identical extract concentrations made of root of cannabis. Control variant was lettuce seed treated by distilled water. During the studies shoot and seminal root length of lettuce seedlings were measured after treatments with different concentrations of extracts made of root and shoot parts of cannabis, and the obtained values were compared with the control. The obtained results suggest that the extract from the shoot parts of cannabis in high concentrations of 75 and 100 % had inhibiting effect to the germination indices while the extract from the root had no statistically significant effect on germination of lettuce seeds. Extract made of root part of cannabis showed also stimulatory effect to shoot and seminal root length of lettuce seedlings in extract concentrations of 50, 75 and 100 %.

  2. Effects of temperature, light and incubation period on production, germination and bioactivity of Trichoderma atroviride.

    Science.gov (United States)

    Daryaei, A; Jones, E E; Ghazalibiglar, H; Glare, T R; Falloon, R E

    2016-04-01

    The goal was to determine the effect of temperature, light and incubation period on production, germination and bioactivity of Trichoderma atroviride LU132 against Rhizoctonia solani. The incubation temperatures of 20, 25 or 30°C were assessed on the production of T. atroviride conidia under constant light over a 25 and 50 days periods. The resulting conidia were also studied for germination and bioactivity. Conidium production was maximum at 25°C after 20 days. The second peak of conidium production occurred at 45-50 days. Incubation at 25°C after 15 days showed optimum production of T. atroviride LU132. Conidia produced at 30°C gave the greatest germination and bioactivity in comparison with incubation at 20 or 25°C. This study indicates that the temperature at which conidia of T. atroviride are produced affects germination and bioactivity. Formulations based on production of the high conidia yield may not result in optimal bioactivity and there is a trade-off between quantity and quality of T. atroviride LU132 conidia. Conidium production was shown to be a continuous process, and increased under a dark/light regime. This is the first report of bimodal conidium production in a Trichoderma biological control agent (BCA), which is likely to be on 20 days cycle, and is dependent on colony age rather than abiotic factors. Conidia produced after 15 days are likely to be the most suitable for use in commercial production of this strain as a BCA. Most studies on Trichoderma-based BCA have only shown the effect of culture conditions on the high conidia yield regardless of conidium quality. This study is the first report on conidium quality affected by principal culture conditions for Trichoderma biological control formulations. © 2016 The Society for Applied Microbiology.

  3. Constant and alternating temperature effects on germination and early growth of scorzonera

    OpenAIRE

    Dias, A.S.; Dias, L.S.; Pereira, I.P.

    2013-01-01

    Scorzonera is a threatened species in Portugal. Given the role of temperature in germination and seedling recruitment, the performance of total germination, lag of germination, duration of germination, shape of germination, root and hypocotyl length, and relative root growth of scorzonera was investigated under constant and alternating temperatures between 10 and 25ºC. Because of scorzonera’s rarity and threatened status, seeds of cultivated scorzonera were used, providing the framework for h...

  4. Variation of germination of eggplant (Solanum melongena L.) seed during storage life

    OpenAIRE

    Ristić, Nevena; Todorović, Vesna; Adžić, Slađan; Zdravković, Jasmina

    2013-01-01

    Eggplant (Solanum melongena L.) seed is dormant, which means that the maximum germination is achieved after some time. The research was performed on one genotype (Domaci srednje dugi - DSD). The seed, studied for germination rate, originates from year 2007 and the germination variation was studied for period 2007 - 2011. Eggplant seed was dormant after yield in 2007, but the germination increased over the years. The trial was conducted at the standard germination test method, defined in the R...

  5. pre-germination treatments in castor seeds, cultivar IAC 226

    International Nuclear Information System (INIS)

    Costa Nobre, Danubia Aparecida; Gomes Damascena, Joyce; Marcia, Andreia; Santos de Souza, David; Pereira dos Santos, Marlucia; Rodrigues Pereira, Adriana; Goncalves Pereira, Cassio

    2013-01-01

    The present study aimed to evaluate the efficiency of different pre-germination treatments in castor beans, IAC 226. The experimental design was completely randomized in a factorial 4 x 4 (four temperatures and four immersion times), with four replications. Pre-germination treatments were: immersion in water at room temperature (25 Celsius degrade) and immersion in hot water at temperatures of 60, 70 and 80 Celsius degrade for 2, 4, 6 and 8 minutes. Water content of the seeds was determined before treatments. Before and after each treatment, seeds were subjected to germination test; 20-30 Celsius degrade alternating temperature, determining the percentages of normal and abnormal seedlings, dormant and dead seeds. Independent of time, immersion in 70 Celsius degrade, water was the most efficient treatment for accelerating germination of castor bean cultivar IAC 226.

  6. Germination and in vitro multiplication of Helianthemum kahiricum, a ...

    African Journals Online (AJOL)

    aghomotsegin

    2015-03-25

    Mar 25, 2015 ... Seeds of Helianthemum kahiricum have an excellent germination rate ... of H. kahiricum on Murashige and Skoog medium (MS) free growth regulators ... The kinetin had a positive effect on the multiplication and growth, but a.

  7. Germination and In Vitro Regeneration Response of Local Nigerian ...

    African Journals Online (AJOL)

    Prof. Ogunji

    the highest germination percentage of 57.33% and percentage contamination of. 11.11% ... development of in vitro regeneration of the crop from various explant sources. The advent of ..... Effect of variety and plant growth regulators on callus.

  8. A germination test: an easy approach to know the irradiation

    International Nuclear Information System (INIS)

    Khawar, A.; Bhatti, I.A.; Bhatti, H.N.

    2010-01-01

    Food irradiation is an evolving preserving technique that provides a shield against the spoilage and might have a potential to ensure the food safety and security world wide. In the present study, feasibility to apply germination test to distinguish an un-irradiated and irradiated samples of wheat, maize, chickpea and black eye beans was checked. Samples were irradiated to the absorbed doses ranging from 0-10 kGy using Co-60 gamma irradiator and were germinated in plant growth chamber. Root and shoot lengths were measured at 7th day after gamma radiation treatment. In all the irradiated samples root and shoot lengths were decreased with the increase in radiation absorbed doses. The seeds irradiated to the absorbed doses more than 2 kGy were not germinated. Germination test proved as an easy and simple method to detect irradiation in wheat, maize, chickpea and black eye beans irradiated even at low absorbed doses. (author)

  9. Effects of salinity stress on water uptake, germination and early ...

    African Journals Online (AJOL)

    Administrator

    2011-09-07

    Sep 7, 2011 ... Department of Field Crops, Faculty of Agriculture, Namik Kemal University, 59100 Tekirdag, ..... stresses on germination in durum wheat (Triticum durum Desf.) .... transgenic perennial ryegrass (Lolium perenne L.) obtained by.

  10. In vitro pollen quantity, viability and germination tests in quince

    African Journals Online (AJOL)

    use

    2011-11-21

    Nov 21, 2011 ... rootstock pollens were collected in April from the unopened pink balloon-stage flowers on mature trees ..... their pollen characteristics to be used in cross breeding ... viability and germination levels for pistachio and terebinth in.

  11. In vitro pollen germination of five citrus species

    International Nuclear Information System (INIS)

    Khan, S.A.; Perveen, A.

    2014-01-01

    The aim of present study is In vitro germination of the pollen grains of five Citrus species belonging to the family Rutaceae viz., Citrus aurantium L. var., aurantium Hook.f., C. limon (L.) Brum. f., C. paradisii Macfad, C. reticulata Blanco and C. sinensis (L.) Osbeck. using hanging drop technique. The germination was checked up to 48 weeks, for the pollen stored at different temperatures like 4 degree C, -20 degree C, -30 degree C and -60 degree C. The study indicates that low temperature and low relative humidity is better than high temperature and humidity with respect to pollen germination capacity and viability. Freeze dryer (-60 degree C) seems to be the best method to maintain pollen viability of stored pollen grains for a long period of time. Among five species Citrus aurantium, C. limon and C. sinensis showed high percentage of germination as compared to C. reticulata and C. paradisii. (author)

  12. Effects of different NaCl Concentrations on germination and ...

    African Journals Online (AJOL)

    USER

    Salinity refers to the salt content of any given system. By nature, arid .... Effect of varying concentrations of NaCl on seed germination of Amaranthus hybridus in percentages. .... Osmotic differences could explain this phenomenon where by ...

  13. The effect of osmopriming on germination, seedling growth and ...

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... affecting the oxidative metabolism such as increasing superoxide dismutase ... the adverse effect of salinity by improving germination and seedling growth .... osmoregulation by the accumulation of proline. A positive effect of ...

  14. Germination, growth and nodulation of Trigonella foenum graecum ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... In this work, we analyzed the effects of salinity on seed germination, growth and nodulation of fenugreek ..... metabolic activities in function, such as the accumulation .... stress: possible role of trehalose in osmoregulation. Lett.

  15. Desiccation effects on germination and vigor of King palm seeds

    Directory of Open Access Journals (Sweden)

    Martins Cibele C.

    2003-01-01

    Full Text Available The desiccation tolerance of Archontophoenix alexandrae (Wendl. & Drude seeds was determined and the most sensitive vigor test for assessing seed deterioration of this species was identified. Mature fruits were harvested in the palm collection of the Instituto Agronomico in Campinas, Brazil. Depulped fruits were transported in impermeable packages to the Faculdade de Agronomia in Botucatu, where the seeds were dried. As the seed moisture decreased, germination, seedling length, electrical conductivity and moisture were measured. The seeds of A. alexandrae are recalcitrant, with high germination percentage (over 67% when undried (47% seed moisture. Lowering seed moisture below 31.5% reduced the germination rate significantly (<52.5%. Total germination failure was observed when seed moisture reached 15.1%. The electrical conductivity was the most sensitive vigor test to identify seed deterioration.

  16. inhibition of germination and growth behavior of some cowpea

    African Journals Online (AJOL)

    DR. AMIN

    2011-12-02

    Dec 2, 2011 ... COWPEA VARIETIES USING NEEM (AZADIRACTA INDICA) LEAF WATER. EXTRACTS ... Keywords: Neem, Allelopathic effect, Leaf extract, Germination, Growth behavior ... and lotion today, as well as biological insecticide.

  17. Germination Response of Gum Arabic (Acacia senegal L.) Seeds to ...

    African Journals Online (AJOL)

    ... Arabic (Acacia senegal L.) Seeds to Hot Water Pre-Treatment in Maiduguri, ... of Maiduguri under tree shade, to study the effect of hot water pre-treatment duration. ... Germination response, pre-sowing treatment, gum Arabic, orthodox seeds.

  18. Effects of animal's rumen juice on seed germination of Vicia ...

    African Journals Online (AJOL)

    DR TONUKARI NYEROVWO

    2011-08-22

    Aug 22, 2011 ... To help understand the effects of grazing on seed germination characteristics of Vicia angustifolia L., we conducted a ... feed forage seeds or reproduction organs selectively and changes the ... The mean daily air temperature ...

  19. Effects of Seed Size on Germination and Early Morphorlogical and ...

    African Journals Online (AJOL)

    Effects of Seed Size on Germination and Early Morphorlogical and Physiological Characteristics of Gmelina Arborea , Roxb. ... African Research Review ... They were grouped into 3 categories as large seed size (LSS), medium seed size ...

  20. The plasma membrane proteome of germinating barley embryos

    DEFF Research Database (Denmark)

    Hynek, Radovan; Svensson, Birte; Jensen, O.N.

    2009-01-01

    Cereal seed germination involves a complex coordination between different seed tissues. Plasma membranes must play crucial roles in coordination and execution of germination; however, very little is known about seed plasma membrane proteomes due to limited tissue amounts combined...... with amphiphilicity and low abundance of membrane proteins. A fraction enriched in plasma membranes was prepared from embryos dissected from 18 h germinated barley seeds using aqueous two-phase partitioning. Reversed-phase chromatography on C-4 resin performed in micro-spin columns with stepwise elution by 2-propanol...... was used to reduce soluble protein contamination and enrich for hydrophobic proteins. Sixty-one proteins in 14 SDS-PAGE bands were identified by LC-MS/MS and database searches. The identifications provide new insight into the plasma membrane functions in seed germination....

  1. Assessment of Salinity Effect on Germination, Growth and Yield of Solanum lycopersicum (L.

    Directory of Open Access Journals (Sweden)

    Joshua D. BUAH

    2016-09-01

    Full Text Available This study was aimed at unraveling the morphological effect of salinity on germination, growth and yield of S. lycopersicum, through inducement of salinity (0, 4, 6, 8, and 10 g NaCl. All the parameters considered: germination percentage, leaves number, stem girth, plant height and fruit quality, were significantly affected by NaCl treatments (salinity compared with the control (no salinity. 100% germination was recorded only in control and 4 g NaCl concentration, though the percentage of germination was faster in control than within the 4 g NaCl. ‘Tomato UC-83-B’ plants’ growth till maturity, shed leaves, chlorosis and leaf burns around edges occurred due to osmotic imbalance and water deficit caused by salinity, which invariably had effect on leaf area, although the reduction in leaf area varied among tested NaCl concentrations. Fruits yield and quality of ‘Tomato UC-83-B’ treated with NaCl was poor and relative to the degree of saline inducements, with 10 g NaCl treatment producing the least fruits. Chlorophyll contents were also significantly reduced by increasing saline concentrations. Ca and K were the predominant elements found in the digested fruit samples observed under Atomic Absorption Spectrometry (AAS at different NaCl concentrations, while Mg, Na and P were significantly less. Salinity is a major abiotic factor that hampered the overall performance of tomato crop in salient ways and must therefore be curbed in order to meet its increasing global demand.

  2. Hypoxia treatment on germinating faba bean (Vicia faba L. seeds enhances GABA-related protection against salt stress

    Directory of Open Access Journals (Sweden)

    Runqiang Yang

    2015-06-01

    Full Text Available The γ-aminobutyric acid (GABA is a non-protein amino acid with some functional properties for human health. Its content is usually lower in plant seeds. Hypoxia or salt (NaCl stress is an effective way for accumulating GABA during seed germination. However, NaCl stress on GABA accumulation under hypoxia is currently infrequent. The effect of NaCl on GABA accumulation in germinating faba bean (Vicia faba L. under hypoxia was therefore investigated in this study. Faba bean seeds were steeped in citric acid buffer (pH 3.5 containing NaCl with a final O2 concentration of 5.5 mg L-1 and germinated for 5 d. Results showed that 60 mmol L-1 NaCl was the optimum concentration for GABA accumulation in germinating faba beans under hypoxia. Germination for 5 d under hypoxia-NaCl stress was less beneficial for GABA accumulation than only hypoxia (control. Polyamine degradation pathway played a more important role for accumulating GABA in germinating faba bean as an adaptive response to NaCl stress. Removing NaCl significantly increased GABA content, while it decreased glutamate decarboxylase (GAD activity. Simultaneously, polyamine was accumulated, which might be related to the enhancement of physiological activity after recovery. When treated with aminoguanidine (AG for 3 d, GABA content decreased by 29.82%. These results indicated that the tolerance ability of GABA shunt to NaCl stress was weaker than that of polyamine degradation pathway. The NaCl treatment for 3 d under hypoxia could raise the contribution ratio of polyamine degradation pathway for GABA accumulation. The contribution ratio of polyamine degradation pathway for GABA formation was 29.82% when treated for at least 3 d

  3. The Arabidopsis Phytocystatin AtCYS5 Enhances Seed Germination and Seedling Growth under Heat Stress Conditions.

    Science.gov (United States)

    Song, Chieun; Kim, Taeyoon; Chung, Woo Sik; Lim, Chae Oh

    2017-08-01

    Phytocystatins (PhyCYSs) are plant-specific proteinaceous inhibitors that are implicated in protein turnover and stress responses. Here, we characterized a PhyCYS from Arabidopsis thaliana , which was designated AtCYS5. RT-qPCR analysis showed that the expression of AtCYS5 in germinating seeds was induced by heat stress (HS) and exogenous abscisic acid (ABA) treatment. Analysis of the expression of the β -glucuronidase reporter gene under the control of the AtCYS5 promoter showed that AtCYS5 expression during seed germination was induced by HS and ABA. Constitutive overexpression of AtCYS5 driven by the cauliflower mosaic virus 35S promoter led to enhanced HS tolerance in transgenic Arabidopsis , which was characterized by higher fresh weight and root length compared to wild-type (WT) and knockout ( cys5 ) plants grown under HS conditions. The HS tolerance of At-CYS5 -overexpressing transgenic plants was associated with increased insensitivity to exogenous ABA during both seed germination and post-germination compared to WT and cys5 . Although no HS elements were identified in the 5'-flanking region of AtCYS5 , canonical ABA-responsive elements (ABREs) were detected. AtCYS5 was upregulated in ABA-treated protoplasts transiently co-expressing this gene and genes encoding bZIP ABRE-binding factors (ABFs and AREB3). In the absence of ABA, ABF1 and ABF3 directly bound to the ABREs in the AtCYS5 promoter, which activated the transcription of this gene in the presence of ABA. These results suggest that an ABA-dependent pathway plays a positive role in the HS-responsive expression of AtCYS5 during seed germination and post-germination growth.

  4. Memorandum on the effect of ozone on germinating seeds

    Energy Technology Data Exchange (ETDEWEB)

    Micheels, H; De Heen, P

    1906-01-01

    Two experiments are described the purpose of which was to ascertain the effect of ozone on germinating plants. In both experiments the plants which were not exposed to ozone had considerably longer roots and greater average weight. The number of germinations was not affected in one experiment, but was down 10% in the other. A final comment suggests that although the toxicity of ozone is well known, its use as a stimulant should not be ruled out. 2 figures.

  5. Seed and Germination Characteristics of 20 Amazonian Liana Species

    Directory of Open Access Journals (Sweden)

    Mareike Roeder

    2013-01-01

    Full Text Available Lianas are an important component of tropical forests, and may reach their highest densities in disturbed areas. However, information on seed and germination characteristics is scarce. Twenty Amazon liana species were screened for their germination characteristics, including light dependence, tolerance of desiccation and of alternating temperatures; these characteristics are considered important for the germination success in areas with relatively open canopies. Between 31–1,420 seeds per species were available, as 15 species seeds came from one mother plant. We studied seed biometry and conducted germination trials with fresh seeds (12 h light daily, or dark and desiccated seeds at 25 °C. Germination at alternating temperatures (20/30 °C, 15/35 °C was analyzed for nine species. Of the 20 species, eight species with the largest seeds had desiccation sensitive seeds; this is the first record for species of four genera and one family, where only desiccation tolerant seeds are otherwise recorded. Light-dependent germination was found in three species (0.01–0.015 g and is the first record for two; however, results were based on seeds from one plant per species. Alternating temperatures of 15/35 °C decreased final germination of four out of nine species, and response to 20/30 °C cycles varied compared to constant 25 °C. Seed and germination characteristics of the species ranged from pioneer to climax traits indicating that establishment of lianas from seeds may be confined to species specific niches.

  6. Constant temperatures and the rate of seed germination in maize ...

    African Journals Online (AJOL)

    The rate of germination of the NEM cultivar was faster than that of the QPM cultivar at all temperatures. The thermal times for median germination were 46 for QPM and 40.7 oCd for the NEM cultivar. The cardinal temperatures (base, Tb, optimum, To and ceiling, Tc) for the NEM cultivar were Tb: 7, To: 30 and Tc: 48.2 oC.

  7. Mechanism of fluridone-induced seed germination of cistanche tubulosa

    International Nuclear Information System (INIS)

    Chen, Q.L.; Tu, P.

    2016-01-01

    Our previous study disclosed that fluridone, a synthesis inhibitor of abscisic acid (ABA), could stimulate seed germination in the holoparasitic plant Cistanche tubulosa . Nonetheless, the underlying mechanisms have not been thoroughly elucidated. In the present study, an attempt was made to reveal the mechanism of fluridone breaking seed dormancy in C. tubulosa and to determine the contribution of hormones in this process. The ABA level in seeds initially decreased following fluridone treatment and was subsequently maintained at a concentration of 31 ng g/sup -1/ DW (dry weight) three days later. The contents of gibberellins (GAs) initially in creased and subsequently were maintained at a level of 40 ng g-1 DW after ten days. However, the increment of seed germination induced by fluridone was inhibited after the introduction of exogenous ABA or paclobutrazol (a synthesis inhibitor of GAs). Furthermore, inhibition from paclobutrazol was reversed by an additional treatment with exogenous GA3. When the ratio of endogenous GAs to ABA reached 4:3, C. tubulosa seeds initiated germination. By contrast, although the ratio of endogenous GAs to ABA content reached 2:1 by cold stratification, C. tubulosa seeds could not germinate unless exogenous GA3 was added. In summary, our current study revealed that (i) GAs and ABA play key roles for the seed germination of C. tubulosa , (ii) fluridone inhibited ABA biosynthesis but increased the concentration of GAs in seeds, and (iii) fluridone might initiate other processes associated with germination. (author)

  8. Effect of germination and thermal treatments on folates in rye.

    Science.gov (United States)

    Kariluoto, Susanna; Liukkonen, Kirsi-Helena; Myllymäki, Olavi; Vahteristo, Liisa; Kaukovirta-Norja, Anu; Piironen, Vieno

    2006-12-13

    Effects of germination conditions and thermal processes on folate contents of rye were investigated. Total folate contents were determined microbiologically with Lactobacillus rhamnosus (ATCC 7469) as the growth indicator organism, and individual folates were determined by high-performance liquid chromatography after affinity chromatographic purification. Germination increased the folate content by 1.7-3.8-fold, depending on germination temperature, with a maximum content of 250 micro g/100 g dry matter. Hypocotylar roots with their notably high folate concentrations (600-1180 micro g/100 g dry matter) contributed 30-50% of the folate contents of germinated grains. Germination altered the proportions of folates, increasing the proportion of 5-methyltetrahydrofolate and decreasing the proportion of formylated folate compounds. Thermal treatments (extrusion, autoclaving and puffing, and IR and toasting) resulted in significant folate losses. However, folate levels in grains that were germinated and then were heat processed were higher than for native (nongerminated) grains. Opportunities to optimize rye processing to enhance folate levels in rye-based foods are discussed.

  9. The biological role of exogenic factors in broomrape germination

    International Nuclear Information System (INIS)

    Zhelev, N.

    1987-01-01

    The often observed contradictory effect of the substances stimulating broomrape seed germination were assessed and explained. Low and optimal concentrations of these substances had a stimulating effect, while the high concentrations produced an inhibiting effect. For chemically pure mustard oil, phenylisothiocianate and allylisothiocianate such concentrations are 10 -4 to 10 -3 and more. The effectiveness of substances stimulating germination is conditioned in many cases by their watersoluble or gaseous state. The latter state of the stimulating substances is more natural, more economic and more efficient for the fumigation (in low concentrations) of the soil layer penetrated by the roots where parasitic seeds are present. A considerable number of agricultural crops, releasing by their roots essential oils containing glucosides, the hydrolysis of which results in elimination of volatile products of mustard oil type, represent natural stimulators for the germination of broomrape seeds. The effect of gamma-ray irradiation of parasitic seeds depends on their state. Dry seeds endure 80-120 krad, while moist ones - only 40-80 krad. Broomrape (O. ramosa and O. mutella) seeds begin their germination at 10 grad C. The optimal temperature for germination is 18-30 grad C, while 35-40 grad C irreversively discontinues the germination

  10. Enhancement in seed germinability of rice (oryza sativa L.) by pre-sowing seed treatment with nitric oxide (NO) under salt stress

    International Nuclear Information System (INIS)

    Habib, N.; Ashraf, M.; Ahmad, M.S.

    2010-01-01

    The seeds of two fine-rice (Shaheen and PB-95) and two coarse rice (IRRI-6 and KS-282) cultivars were soaked in varying levels of nitric oxide (NO) (0, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 mM) and then exposed to 80 mM NaCl in sand culture. Application of salt stress significantly reduced seed germinability parameters of all four rice cultivars in terms of percent seed germinated, germination index and seedling fresh and dry weights. The toxic effects of salt stress in reducing seed germinability were greater in fine rice cultivars (Shaheen and PB-95) as compared to those in coarse ones (IRRI-6 and KS-282). Although, the application of lower levels of nitric oxide (0.05, 0.1 and 0.2 mM) as pre-sowing seed treatment showed a significant improvement, 0.1 and 0.2 mM NO were found to be the most effective in improving seed germinability under salt stress. With a further increase in NO concentration (0.3 mM) as pre-sowing seed treatment, the seed germinability parameters differed non-significantly from those of control plants, while the highest levels (0.4 and 0.5 mM) showed significant inhibitory effects on seed germination and early seedling growth. It was concluded that lower levels of NO (0.1 and 0.2 mM) could be used to effectively enhance seed germination of rice plants under salt stress. (author)

  11. Gibberellic Acid-Stimulated Arabidopsis6 Serves as an Integrator of Gibberellin, Abscisic Acid, and Glucose Signaling during Seed Germination in Arabidopsis.

    Science.gov (United States)

    Zhong, Chunmei; Xu, Hao; Ye, Siting; Wang, Shiyi; Li, Lingfei; Zhang, Shengchun; Wang, Xiaojing

    2015-11-01

    The DELLA protein REPRESSOR OF ga1-3-LIKE2 (RGL2) plays an important role in seed germination under different conditions through a number of transcription factors. However, the functions of the structural genes associated with RGL2-regulated germination are less defined. Here, we report the role of an Arabidopsis (Arabidopsis thaliana) cell wall-localized protein, Gibberellic Acid-Stimulated Arabidopsis6 (AtGASA6), in functionally linking RGL2 and a cell wall loosening expansin protein (Arabidopsis expansin A1 [AtEXPA1]), resulting in the control of embryonic axis elongation and seed germination. AtGASA6-overexpressing seeds showed precocious germination, whereas transfer DNA and RNA interference mutant seeds displayed delayed seed germination under abscisic acid, paclobutrazol, and glucose (Glc) stress conditions. The differences in germination rates resulted from corresponding variation in cell elongation in the hypocotyl-radicle transition region of the embryonic axis. AtGASA6 was down-regulated by RGL2, GLUCOSE INSENSITIVE2, and ABSCISIC ACID-INSENSITIVE5 genes, and loss of AtGASA6 expression in the gasa6 mutant reversed the insensitivity shown by the rgl2 mutant to paclobutrazol and the gin2 mutant to Glc-induced stress, suggesting that it is involved in regulating both the gibberellin and Glc signaling pathways. Furthermore, it was found that the promotion of seed germination and length of embryonic axis by AtGASA6 resulted from a promotion of cell elongation at the embryonic axis mediated by AtEXPA1. Taken together, the data indicate that AtGASA6 links RGL2 and AtEXPA1 functions and plays a role as an integrator of gibberellin, abscisic acid, and Glc signaling, resulting in the regulation of seed germination through a promotion of cell elongation. © 2015 American Society of Plant Biologists. All Rights Reserved.

  12. Effect of Seed Priming Treatments on Germination Traits of Two Mustard Cultivars (Brassica compestris var. parkland and Goldrash

    Directory of Open Access Journals (Sweden)

    M. Goldani

    2016-02-01

    Full Text Available Introduction: B. campestris is an old plant that commonly grows in arid and semi-arid areas. It has mucilage in the epidermal cells of canola seeds, a considerable variation in growth form and characteristics across the many cultivars. These species have in general, a flat root without an elongated crown, with stems that typically grow 30 to 120 cm tall. The leaves are large, soft, smooth or soft-hairy. The yellow flowers are small, usually less than 2 cm long (24. Seed priming is a procedure in which seed is soaked and then dried back to its original water content. Hydropriming uses only water in the process of controlled imbibitions, but osmopriming simply means soaking seeds in an osmotic solution. Seed priming is a technique of controlled hydration and drying that results in more rapid germination when the seed is reimbibed. Priming can be a valuable process for improving germination and uniformity of heterogeneously matured seed lots. Seed priming has been successfully demonstrated to improve germination and emergence in seeds of many crops, particularly vegetables and small seeded grasses. Seed priming is a presowing strategy for influencing seedling development by modulating pregermination metabolic activity prior to emergence of the radicle and generally enhances germination rate and plant performance. Fast germination and uniform emergence assist the farmer to “catch up” on the time lost to drought (17, 18. This research aimed to study the effect of the best treatments of osmopriming and hydropriming on varieties of mustard seed germination traits was conducted. Materials and Methods: The present research was conducted under laboratory conditions of the Ferdowsi University of Mashhad, Iran, during 2012 to determine the seed priming effects on germination traits of two cultivars of mustard. The experiment was in completely randomized design with six treatments. Seeds of two mustard cultivars including Goldrash and Parkland (Brassica

  13. Enhancement of gama-aminobutyric acid (GABA) and other health-related metabolites in germinated red rice (Oryza sativa L.) by ultrasonication.

    Science.gov (United States)

    Ding, Junzhou; Ulanov, Alexander V; Dong, Mengyi; Yang, Tewu; Nemzer, Boris V; Xiong, Shanbai; Zhao, Siming; Feng, Hao

    2018-01-01

    Red rice (Oryza sativa L.) that has a red (reddish brown) bran layer in de-hulled rice is known to contain rich biofunctional components. Germination is an effective technique to improve the nutritional quality, digestibility, and flavor of de-hulled rice. Ultrasonication, a form of physical stimulation, has been documented as a novel approach to improve the nutritional quality of plant-based food. This study was undertaken to test the use of ultrasound to enhance the nutritional value of red rice. Ultrasonication (5min, 16W/L) was applied to rice during soaking or after 66h germination. Changes of metabolites (amino acids, sugars, and organic acids) in red rice treated by ultrasonication were determined using a GC/MS plant primary metabolomics analysis platform. Differential expressed metabolites were identified through multivariate statistical analysis. Results showed that γ-aminobutyric acid (GABA) and riboflavin (vitamin B 2 ) in red rice significantly increased after germination for 72h, and then experienced a further increase after treatment by ultrasound at different stages during germination. The metabolomics analysis showed that some plant metabolites, i.e. GABA, O-phosphoethanolamine, and glucose-6-phosphate were significantly increased after the ultrasonic treatment (VIP>1.5) in comparison with the untreated germinated rice. The findings of this study showed that controlled germination with ultrasonic stress is an effective method to enhance GABA and other health-promoted components in de-hulled rice. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Phytotoxicity of Chitosan and SiO2 Nanoparticles to Seed Germination of Wheat (Triticum aestivum L. and Barley (Hordeum vulgare L. Plants

    Directory of Open Access Journals (Sweden)

    Faride BEHBOUDI

    2017-06-01

    Full Text Available Plants such as wheat and barley that are strategically important crops need to be considered to develop a comprehensive toxicity profile for nanoparticles (NPs. The present study was aimed to investigate the effects of chitosan and SiO2 NPs on wheat and barley plants. Two factorial experiments (seeds priming and direct exposure were performed based on a completely randomized design in four replications. Results showed that the seeds priming with the NPs had not significant effect on germination parameters such as Germination Percentage (GP, Germination Rate (GR, Germination Value (GV, Mean Germination Time (MGT, Pick Value (PV and Mean Daily Germination (MDG. In contrast, exposure of the seeds to the NPs had significant effects on these parameters. In both experiments, treatments had significant effects on shoot, seedling, root length, fresh and dry weight, as well as vigor indexes as compared to the control. In most traits, the best concentration of NPs was 30 ppm, whereas applications of the NPs with 90 ppm displayed adverse effects on majority of the studied traits. According to these results, selectivity in applications of NPs with suitable concentration and method is essential for different plant species.

  15. Evaluate of Some Germination and Emergence Characteristics of Fennel (foeniculum vulgare Mill Producted from Seeds under Application Organic and Biological Fertilizers

    Directory of Open Access Journals (Sweden)

    M.B Amiri

    2013-04-01

    Full Text Available In order to study the effects of manure and biofertilizers application that were applied on parent plants, on the germination and emergence indices of produced seeds of fennel, two laboratory and greenhouse experiments based on completely randomized design with four replications were conducted in Ferdowsi University of Mashhad, Iran. Treatments were consisted of 11 different seed types that were produced on parent plants fed by: Compost (C, Vermicompost (V, Azotobacter (A, Pseudomonas (P, A+C, C+P, C+V, P+A, P+V, V+A and Control. Results of greenhouse study revealed that most studied treatments were effective on the height of fennel. Moreover, V and C+P treatments were superior in terms of emergence percentage and aerial dry weight, respectively. Results of laboratory experiment showed that C+V treatment were superior to other treatments in terms of germination percentage, germination rate, germination index and mean germination time. Overall, the experimental findings revealed that seed producing by manure and biofertilizers utilization on parent plants is a suitable method for production of organic seeds that have optimal germination and early seedling growth indices.

  16. Impacts of different salt source and concentrations on germination and seedling growth of many pumpkin seeds used as rootstoch in Iran

    Directory of Open Access Journals (Sweden)

    Dadashpour Ahmad

    2012-01-01

    Full Text Available The effects of different salt sources (C Cl2, NaCl, and KCl and concentrations, as measured by electrical conductivity, (0, "control", 1, 3, 5, 7 and 9 dS m-1 on seed germination and seedling growth of “Ferro”, “Obez”, “RS 841” and “Strong Tosa F1” pumpkin varieties used as rootstock were investigated in this study. The results showed that germination rate, root length, shoot length, fresh root weight, dry root weight, fresh shoot weight and dry shoot weights tend to decrease when the electrical conductivity of the solution is higher than 5 dS m-1, independent of salt sources and in all of the varieties. Three days after seeding, a germination ratio of 5 % was obtained from RS 841 variety in all salt source and concentrations, while a germination ratio over 50 % was obtained in “Strong Tosa” variety for the same conditions except CaCl2 salt source. Nevertheless, seeds germinated in medium having high concentrations of CaCl2 had lower germination rate and poor seedling growth, compared to media having the same concentrations of NaCl and KCl. It was concluded that all of the varieties studied were more sensitive to the concentrations prepared using CaCl2 than that of the KCl, and NaCl.

  17. La organización germinal

    Directory of Open Access Journals (Sweden)

    Xavier Soca Filella

    2013-08-01

    Full Text Available Las vicisitudes de estos últimos años en las economías occidentales, y sobre todo en las del arco mediterráneo, han sumido las empresas en un profundo callejón sin salida, dónde tras efectuar reducciones drásticas en sus estructuras ahora ven mermadas sus posibilidades de crecimiento. Surge el interrogante de qué tipo de crecimiento perseguimos y qué organización precisamos para conseguirlo. Vislumbramos a partir de lo acaecido en los últimos dos lustros que las organizaciones preferirán moverse dentro de unos patrones de crecimientos sostenibles, en lugar de las alocadas carreras de inicios de siglo. Este crecimiento sostenible comportará decidir que formas de organización permitirán gestionar mejor este crecimiento. Dentro del abanico de las posibilidades, planteo un tipo de organización en constante cambio que facilite la adaptación a los diversos tipos de mercados que puedan ir surgiendo en el futuro: LA ORGANIZACIÓN GERMINAL.

  18. Germinal and somatic mutations in cancer

    International Nuclear Information System (INIS)

    Knudson, A.G. Jr.

    1977-01-01

    The role of germinal and somatic mutations in carcinogenesis leads to the conclusion that environmental carcinogens probably exert their effects via somatic mutations. Susceptibility to this process may itself be genetically determined, so we may deduce that two groups, one genetic and one non-genetic, are included in the 'environmental' class. Other individuals seem to acquire cancer even in the absence of such environmental agents, and these too may be classified into a genetic and a non-genetic group. It has been estimated that in industrial countries, the environmental groups include 70-80% of all cancer cases, but we are only beginning to know how to separate the genetic and non-genetic subgroups. The genetic subgroup of the 'non-environmental' group is very small, probably of the order of magnitude of 1-2% for cancer as a whole. The remainder, about 25%, comprises a non-genetic, non-environmental subgroup that seems to arise as a consequence of 'spontaneous' somatic mutations. The incidence of these 'background' cancers is what we should combat with preventive and therapeutic measures

  19. Aminopeptidase Activity from Germinated Jojoba Cotyledons 1

    Science.gov (United States)

    Johnson, Russell; Storey, Richard

    1985-01-01

    One major and two minor aminopeptidase activities from germinated jojoba (Simmondsia chinensis) cotyledon extracts were separated by ammonium sulfate precipitation and chromatofocusing. None of the activities were inhibited by 1,10 phenanthroline. The major aminopeptidase, purified 260-fold, showed a pH optimum of 6.9 with leucine-p-nitroanilide as substrate, a molecular weight estimated at 14,200 by electrophoretic analysis, and an isoelectric point of 4.5 according to the chromatofocusing pattern. Activity was inhibited by p-chloromercuribenzoate, slightly stimulated by 1,10 phenanthroline and 2-mercaptoethanol, and not influenced by Mg2+ or diethyl pyrocarbonate. Inhibition by p-chloromercuribenzoate was prevented by the presence of cysteine in the assay. Leucine-p-nitroanilide and leucine-β-naphthylamide were the most rapidly hydrolyzed of 11 carboxy-terminal end blocked synthetic substrates tested. No activity on endopeptidase or carboxypeptidase specific substrates was detected. The major aminopeptidase showed activity on a saline soluble, jojoba seed protein preparation and we suggest a possible physiological role for the enzyme in the concerted degradation of globulin reserve proteins during cotyledon senescence. PMID:16664465

  20. Aminopeptidase activity from germinated jojoba cotyledons.

    Science.gov (United States)

    Johnson, R; Storey, R

    1985-11-01

    One major and two minor aminopeptidase activities from germinated jojoba (Simmondsia chinensis) cotyledon extracts were separated by ammonium sulfate precipitation and chromatofocusing. None of the activities were inhibited by 1,10 phenanthroline.The major aminopeptidase, purified 260-fold, showed a pH optimum of 6.9 with leucine-p-nitroanilide as substrate, a molecular weight estimated at 14,200 by electrophoretic analysis, and an isoelectric point of 4.5 according to the chromatofocusing pattern. Activity was inhibited by p-chloromercuribenzoate, slightly stimulated by 1,10 phenanthroline and 2-mercaptoethanol, and not influenced by Mg(2+) or diethyl pyrocarbonate. Inhibition by p-chloromercuribenzoate was prevented by the presence of cysteine in the assay. Leucine-p-nitroanilide and leucine-beta-naphthylamide were the most rapidly hydrolyzed of 11 carboxy-terminal end blocked synthetic substrates tested. No activity on endopeptidase or carboxypeptidase specific substrates was detected. The major aminopeptidase showed activity on a saline soluble, jojoba seed protein preparation and we suggest a possible physiological role for the enzyme in the concerted degradation of globulin reserve proteins during cotyledon senescence.

  1. Profiling Gene Expression in Germinating Brassica Roots.

    Science.gov (United States)

    Park, Myoung Ryoul; Wang, Yi-Hong; Hasenstein, Karl H

    2014-01-01

    Based on previously developed solid-phase gene extraction (SPGE) we examined the mRNA profile in primary roots of Brassica rapa seedlings for highly expressed genes like ACT7 (actin7), TUB (tubulin1), UBQ (ubiquitin), and low expressed GLK (glucokinase) during the first day post-germination. The assessment was based on the mRNA load of the SPGE probe of about 2.1 ng. The number of copies of the investigated genes changed spatially along the length of primary roots. The expression level of all genes differed significantly at each sample position. Among the examined genes ACT7 expression was most even along the root. UBQ was highest at the tip and root-shoot junction (RS). TUB and GLK showed a basipetal gradient. The temporal expression of UBQ was highest in the MZ 9 h after primary root emergence and higher than at any other sample position. Expressions of GLK in EZ and RS increased gradually over time. SPGE extraction is the result of oligo-dT and oligo-dA hybridization and the results illustrate that SPGE can be used for gene expression profiling at high spatial and temporal resolution. SPGE needles can be used within two weeks when stored at 4 °C. Our data indicate that gene expression studies that are based on the entire root miss important differences in gene expression that SPGE is able to resolve for example growth adjustments during gravitropism.

  2. Effects of Different Treatments on Seed Germination Improvement of Calotropis persica

    Directory of Open Access Journals (Sweden)

    Asghar Farajollahi

    2014-01-01

    Full Text Available The purpose of this study was to investigate the effects of different treatments on seed germination in the desert plant species Calotropis persica (Gand.. This species is known to have long time for seed germination considering arid region condition and short time of access moist. An experiment was performed with 13 treatments and 4 replications in a completely randomized design. Treatments included KNO3 with concentrations of 0.1, 0.2, and 0.3 percent, immersion in hot water for five min, acetylsalicylic acid 100, 200, and 300 mg L−1, ethereal sulfuric acid (60% for 5 and 10 min, thiourea with concentrations of 0.1% and 0.3%, and prechilling for 10 days. Tap water was used as the control. Our findings indicate that KNO3 0.1% and 100 mg L−1 acetylsalicylic acid were the most effective treatments for improvement of seed germination properties in this species. In a comparison of the two mentioned treatment, KNO3 0.1% treatments is the best.

  3. Study on the seed production and germination dynamic of common milkweed (Asclepias syriaca L.).

    Science.gov (United States)

    Sárkány, S E; Lehoczky, E; Nagy, P

    2008-01-01

    The common milkweed causes considerable damages on the agricultural and nature conservation areas. The area occupied by this weed is continuously bigger. The common milkweed is spread over North-America between the 35th and 50th degree of western Latitude and 60th 103rd degree of longitude. Millions of hectares are polluted by this weed in the United States. Important is its spread also in Asia (Iraq), in Europe (Carpathian Basin, Poland, Bulgaria, Switzerland, France, Austria, Germany), as well as in the area of the former Soviet Union (Belorussia, The Baltic Countries, Caucasus, and the Ukraine). Though the basic biological characters of this plant are well known, still its control is a significant problem, the damages increase on the areas occupied by this weed. We collect seed samples from several Hungarian areas in 2007. After the sampling we determined the average sprout length and the number of follicle as well as the average seed numbers in the follicle. We determined also the weight of thousand seeds of the resultant seed samples. At natural circumstances the seedlings appear at a soil temperature of 15 degrees C during the end of April and first week of May. Under Laboratory circumstances the dormancy of the seeds ceases continuously from November on, germinate at a temperature of 20-30 degrees C, the maximum germination can be achieved in the first part of April. At January we started germination examinations with the seeds in Petri dish, among laboratory condition.

  4. Effects Of Drought Stress on Germination in Fourteen Provenances of Pinus Brutia Ten. Seeds in Turkey

    Directory of Open Access Journals (Sweden)

    Hakan Şevik

    2015-02-01

    Full Text Available Pinus brutia Ten., Red pine, known to be tough drought resistant pine specie, could effectively be used for afforestation of disturbed areas. It is of great interest for the afforestation in arid zones. Appropriate seed sources for the specific areas guarantees reforestation success. Away from its native areas Pinus brutia Ten. is planted for its ornamental value and timber production purposes. Selection of drought resistant provenances can very well increase the survival success. In this study, the effects of water potential on germination were studied in fourteen provenances of Pinus brutia Ten. from Turkey. Water potentials between 0 and -8 bars were obtained using polyethylene glycol 6000 (PEG-6000 solutions. Seeds were kept for 35 day at 20 ± 0.5°C. A decrease in water potential produced a marked reduction in germination percentage and germination value. As a result, significant variations between the provenances were found. It was determined that, under a -8 bar water stress, Isparta-Bucak and Mersin-Silifke, respectively corresponding to 58% and 57% of the control group, were the least water stress affected provenances.

  5. Cold tolerance evaluation in Chilean rice genotypes at the germination stage

    Directory of Open Access Journals (Sweden)

    Gabriel Donoso Ñanculao

    2013-03-01

    Full Text Available Low temperature is the most important abiotic stress affecting rice (Oryza sativa L. yield in Chile. Rice in Chile is usually planted when the minimum air temperatures are below 12 °C. This temperature is lower than the optimum needed for normal rice germination. Therefore, the aim of this study was to evaluate cold tolerance in 20 experimental lines from the Rice Breeding Program of the Instituto de Investigaciones Agropecuarias (INIA, Chile, at the germination stage. Coleoptile length reduction (CRED, coleoptile length after cold treatment (CLEN, coleoptile length recovery (CREC, and coleoptile regrowth (CREG were evaluated at 13 °C for 4 d using 'Diamante-INIA' as the cold-tolerant control. To find genotypes with cold tolerance (low CRED value and high CLEN, CREC, and CREG values, genotypes were ranked, a biplot of principal components, and cluster analysis were performed. No differences were found among genotypes in the ranking based on CREC value so this trait was not considered. Analysis showed that only three experimental lines had cold tolerance similar to that of 'Diamante-INIA'; all other experimental lines exhibited intermediate to low cold tolerance. These results showed low cold tolerance of some Chilean genotypes at the germination stage, thus confirming the need to evaluate the rest of the germplasm from the Rice Breeding Program.

  6. Effects of the decomposing liquid of Cladophora oligoclona on Hydrilla verticillata turion germination and seedling growth.

    Science.gov (United States)

    Zhang, Lu; Peng, Xue; Liu, Biyun; Zhang, Yi; Zhou, Qiaohong; Wu, Zhenbin

    2018-08-15

    Excessive proliferation of filamentous green algae (FGA) has been considered an important factor resulting in the poor growth or even decline of submerged macrophytes. However, there is a lack of detailed information regarding the effect of decaying FGA on submerged macrophytes. This study aimed to investigate whether the decomposing liquid from Cladophora oligoclona negatively affects Hydrilla verticillata turion germination and seedling growth. The results showed that the highest concentrations of decomposing liquid treatments inhibited the turion germination rate, which was the lowest than other treatments, at only 84%. The chlorophyll a fluorescence (JIP test) and physiological indicators (chlorophyll a content, soluble sugars, Ca 2+ /Mg 2+ -ATPase and PAL activity) were also measured. The chlorophyll a content in the highest concentration (40% of original decomposing liquid) treatment group decreased by 43.53% than that of the control; however, soluble sugars, Ca 2+ /Mg 2+ -ATPase, and PAL activity increased by 172.46%, 271.19%, and 26.43% respectively. The overall results indicated that FGA decay has a considerable effect on submerged macrophyte turion germination and seedling growth, which could inhibit their expansion and reproduction. This study emphasized the need to focus on effects of FGA decomposition on the early growth stages of submerged macrophytes and offered technological guidance for submerged vegetation restoration in lakes and shallow waters. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Effects of Short-term Hypergravity Exposure on Germination, Growth and Photosynthesis of Triticum aestivum L.

    Science.gov (United States)

    Vidyasagar, Pandit B.; Jagtap, Sagar S.; Dixit, Jyotsana P.; Kamble, Shailendra M.; Dhepe, Aarti P.

    2014-12-01

    Numerous studies have been carried out to investigate the hypergravity effect on plants, where seedlings (4-5 days old) were continuously exposed and grown under hypergravity condition. Here, we have used a novel `shortterm hypergravity exposure experimental method' where imbibed caryopses (instead of seedlings) were exposed to higher hypergravity values ranging from 500 g to 2500 g for a short interval time of 10 minutes and post short-term hypergravity treated caryopses were grown under 1 g conditions for five days. Changing patterns in caryopsis germination and growth, along with various photosynthetic and biochemical parameters were studied. Results revealed the significant inhibition of caryopsis germination and growth in short-term hypergravity treated seeds over control. Photosynthesis parameters such as chlorophyll content, rate of photosynthesis (PN), transpiration rate (Evap) and stomatal conductance (Gs), along with intracellular CO2 concentration (Cint) were found to be affected significantly in 5 days old seedlings exposed to short-term hypergravity treatment. In order to investigate the cause of observed inhibition, we examined the α-amylase activity and antioxidative enzyme activities. α-amylase activity was found to be inhibited, along with the reduction of sugars necessary for germination and earlier growth in short-term hypergravity treated caryopses. The activities of antioxidant enzymes such as catalase and guaiacol peroxidase were increased in short-term hypergravity treated caryopses, suggesting that caryopses might have experienced oxidative stress upon short-term hypergravity exposure.

  8. Cadmium and chromium effects on seed germination and root elongation in lettuce, spinach and Swiss chard

    Directory of Open Access Journals (Sweden)

    Oscar V Bautista

    2013-04-01

    Full Text Available The La Ramada district and the Bogota River are the principal water resources used for horticultural crop production on the Bogota Plateau, which contain channel pollutant materials, including heavy metals due to domestic and industrial activities on the Plateau. These materials have effects on crop production in this zone. The present research, under laboratory conditions, aimed to evaluate the effect of three concentrations (25, 35 and 50 µM L-1 of cadmium (Cd and chromium (Cr on imbibition, seed germination and root elongation in lettuce (Lactuca sativa var. Batavia, Swiss chard (Beta vulgaris var. cicla "White Ribbed", and spinach (Spinacia oleracea Hib. 424, three species widely cultivated on the Plateau. The three species used for evaluation showed a differential susceptibility response to Cd and Cr. In lettuce, fresh weight increase (imbibition was lower with all Cd concentrations at the last day of observation and at 25 µM L-1 of Cd in Swiss chard. Cadmium reduced seed germination by up to 46%, 97% and 8% in Swiss chard, lettuce and spinach, respectively. Also, root elongation decreased in Cd treatments by up to 57%, 89% and 56%, for Swiss chard, lettuce and spinach, respectively. Chromium, which showed fewer negative effects, decreased germination by up to 29% in Swiss chard, 6% in lettuce and 34% in spinach, as compared to the control

  9. Proteomic analysis of lettuce seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by polyethylene glycol fractionation

    DEFF Research Database (Denmark)

    Wang, Wei-Qing; Song, Bin-Yan; Deng, Zhi-Jun

    2015-01-01

    the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination...

  10. Germination of rye brome (Bromus secalinus L. seeds under simulated drought and different thermal conditions

    Directory of Open Access Journals (Sweden)

    Małgorzata Haliniarz

    2014-01-01

    Full Text Available The aim of the present study was to compare the germination of rye brome (Bromus secalinus L. seeds and the initial growth of seedlings under simulated drought and different thermal conditions. The study included two experiments carried out under laboratory conditions in the spring of 2012. The first experiment involved an evaluation of the speed of germination as well as of the biometric characters and weight of seedlings in polyethylene glycol solutions (PEG 8000 in which the water potential was: -0.2; -0.4; -0.65; -0.9 MPa, and in distilled water as the control treatment. The experiment was conducted at the following temperatures: 25/22oC and 18/14oC day/night, at a relative air humidity of 90%. The other experiment, in which lessive soil was used as a germination substrate, was carried out in a plant growth chamber at two levels of air humidity (55–65% and 85–95% and temperature (22/10oC and 16/5oC. The soil moisture content was determined by the gravimetric method and the water potential corresponding to it was as follows: -0.02, -0.07, -0.16, -0.49, -1.55 MPa. The germination capacity and emergence of Bromus secalinus as well as the weight of sprouts produced were significantly dependent on the water potential of the polyethylene glycol solution and on the soil water potential. The emergence of Bromus secalinus was completely inhibited by reducing the soil water potential below -0.16 MPa (the point of strong growth inhibition. The emergence and biometric characters of rye bro- me seedlings were significantly dependent on temperature and air humidity.

  11. Effect of plant growth promoting rhizobia on seed germination and seedling traits in Acacia senegal

    Directory of Open Access Journals (Sweden)

    S.K. Singh

    2011-11-01

    Full Text Available Among arid zone tree species, Acacia senegal and Prosopis cineraria are the most important dryland resources of Western Rajasthan desert ecosystem. Due to ecological, biological and molecular similarities, they are often studied together. The climatic conditions in this region restrict the build-up of soil organic matter and soils are generally deficient in nitrogen. Studies were carried out to isolate and molecularly characterize the diverse group of plant growth promoting rhizobacteria from root nodules of native A. senegal and P. cineraria and their effect on seed germination and seedling traits in two genotypes of A. senegal. The direct sequencing of 16S rDNA region resulted in molecular identification of plant growth promoting rhizobacteria as Bacillus licheniformis, Sinorhizobium saheli isolated from root nodules of A. senegal and S. kostiense and S. saheli isolated from root nodules of P. cineraria. The partial sequences of 16S rDNA were assigned Gen accession numbers HQ738496, HQ738499, HQ738506 and HQ738508. Scarification treatment with sulphuric acid (98% for 15 minutes was able to break the exogenous seed dormancy and enhanced germination percentage in control treatment to 90% and 92.5% in A. senegal in genotypes CAZRI 113AS and CAZRI 35AS, respectively. The treatments with Bacillus licheniformis or S. kostiense, either inoculated individually or as coinoculants, had positive effect on phenotypic traits of germination. Two A. senegal genotypes exhibited significant differences with regard to all the phenotypic traits. On the other hand, treatments with S. saheli isolated from either A. senegal or P. cineraria had negative effects on germination and related phenotypic traits. Values of the coeffivient of determination (R2 over 80% for root length versus shoot length, root/shoot ratio and seedling weight respectively validate that the observed attributes are inter-dependable and linear progression trend can be predicted.

  12. Uptake of various trace elements during germination of wheat, buckwheat and quinoa.

    Science.gov (United States)

    Lintschinger, J; Fuchs, N; Moser, H; Jäger, R; Hlebeina, T; Markolin, G; Gössler, W

    1997-01-01

    The practice of sprouting is widely used to improve the nutritional value of grain seeds. Several nutritive factors such as vitamin concentrations and bioavailability of trace elements and minerals increase during germination. The objective of this work was to study the enrichment of various essential trace elements during germination of wheat (Triticum aestivum), buckwheat (Fagopyrum esculentum), and quinoa (Chenopodium quinoa) seeds in order to improve their nutritional role as a source of bioavailable trace elements. Seeds were sprouted either in distilled- or tap-water and in five different electrolyte solutions to investigate the concentration-dependent uptake. The time-dependence was investigated by analyzing aliquots of the sprouts after certain germination periods. Samples were analyzed after freeze drying for their Li, V, Cr, Fe, Mn, Co, Cu, Zn, Sr, Mo, As and Se concentrations with inductively-coupled plasma mass-spectrometry (ICP-MS). As a control for possible changes in the biochemical metabolism of the sprouts, the biosynthesis of vitamin C was also determined by using reversed-phase ion-pair HPLC. It was shown that quinoa was the most resistant to the applied electrolyte solutions and had the highest uptake rates for almost all elements, followed by buckwheat and wheat. Greatest increases were observed for Co, Sr, and Li. No significant changes in vitamin C biosynthesis were observed between sprouts grown in different electrolyte solutions. The time-dependent uptake for most elements was characterized by a significant absorption during soaking of the seeds, followed by a lag phase during the first day of germination and an increased uptake during the second and third day. Se and As showed distinctly different uptake behaviors.

  13. Role of thioproline on seed germination: interaction ROS-ABA and effects on antioxidative metabolism.

    Science.gov (United States)

    Barba-Espin, Gregorio; Nicolas, Eduardo; Almansa, Maria Soledad; Cantero-Navarro, Elena; Albacete, Alfonso; Hernández, José Antonio; Díaz-Vivancos, Pedro

    2012-10-01

    In this work we investigate the effect of the imbibition of pea seeds with different thioproline (TP) concentrations on the germination percentage and the early growth of the seedlings. The interaction between TP and hydrogen peroxide (H₂O₂) treatments is also analysed in order to test if any synergy in germination and growth occurs. Although the imbibition of pea seeds in the presence of TP did not significantly improve the germination percentage, TP and/or H₂O₂ pre-treatments increased seedlings growth. This increase in seedling growth was reduced by abscisic acid (ABA) addition. Imbibition of pea seeds in the presence of ABA also reduced the endogenous H₂O₂ contents of pea seedlings in control and TP-treated seeds. The incubation of pea seeds with TP and/or H₂O₂ in presence or absence of ABA decreased the activity of H₂O₂-scavenging enzymes. The increase of the endogenous H₂O₂ contents observed in TP and/or H₂O₂ treatments in absence of ABA could be correlated with the decrease in these activities. Finally, the hormone profile of pea seedlings was investigated. The results show that the increase in seedling growth is correlated with a decrease in ABA in samples pre-treated with H₂O₂ and TP + H₂O₂. Nevertheless, no significant differences in endogenous ABA concentration were observed with the TP pre-treatment. This paper suggests a relationship between endogenous H₂O₂ contents and plant growth, so reinforcing the intricate crosstalk between reactive oxygen species (ROS) and plant hormones in seed germination signalling and early seedling development. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. Seed priming with iron and zinc in bread wheat: effects in germination, mitosis and grain yield.

    Science.gov (United States)

    Reis, Sara; Pavia, Ivo; Carvalho, Ana; Moutinho-Pereira, José; Correia, Carlos; Lima-Brito, José

    2018-07-01

    Currently, the biofortification of crops like wheat with micronutrients such as iron (Fe) and zinc (Zn) is extremely important due to the deficiencies of these micronutrients in the human diet and in soils. Agronomic biofortification with Fe and Zn can be done through different exogenous strategies such as soil application, foliar spraying, and seed priming. However, the excess of these micronutrients can be detrimental to the plants. Therefore, in the last decade, a high number of studies focused on the evaluation of their phytotoxic effects to define the best strategies for biofortification of bread wheat. In this study, we investigated the effects of seed priming with different dosages (1 mg L -1 to 8 mg L -1 ) of Fe and/or Zn in germination, mitosis and yield of bread wheat cv. 'Jordão' when compared with control. Overall, our results showed that: micronutrient dosages higher than 4 mg L -1 negatively affect the germination; Fe and/or Zn concentrations higher than 2 mg L -1 significantly decrease the mitotic index and increase the percentage of dividing cells with anomalies; treatments performed with 8 mg L -1 of Fe and/or 8 mg L -1 Zn caused negative effects in germination, mitosis and grain yield. Moreover, seed priming with 2 mg L -1 Fe + 2 mg L -1 Zn has been shown to be non-cytotoxic, ensuring a high rate of germination (80%) and normal dividing cells (90%) as well as improving tillering and grain yield. This work revealed that seed priming with Fe and Zn micronutrients constitutes a useful and alternative approach for the agronomic biofortification of bread wheat.

  15. Effects of Some Environmental Factors on Seed Germination and Spreading Potentials of Silybum marianum Gaertner

    Directory of Open Access Journals (Sweden)

    Pasquale Montemurro

    2007-09-01

    Full Text Available Silybum marianum Gaertner is spreading in many crops of Southern Italy, particularly in durum wheat, sugar beet and some vegetable crops. Information about its biology are useful to set up effective control strategies. Four experiments were carried out at the Crop Science Department of the University of Bari (Southern Italy. Two trials were conducted in Petri dishes and evaluated the effects of different light, temperature and osmotic stress conditions on the seed germination. Another trial evaluated the ability of seedlings to emerge from different depths. The effects of eight different sowing periods on the plant growth were assessed in the fourth experiment. The highest germination rate was found with constant temperatures of 25 °C or 30 °C and with alternating temperatures of 25- 15 °C for 8 and 16 hours respectively. Germination was affected by the light and was significantly decreased at 0.2 Mpa and completely inhibited at -0.8 Mpa. Plant emergence was strongly reduced from a depth of more than 3 cm. The plant size at the first bloom was reduced by postponing the sowing period from October to February. The same decreasing trend was observed in the number of flower heads and in the number of days required for the first bloom. Results can suggest some important strategies to manage this species. False sowing, followed by irrigation, can be recommended in summer, in order to obtain the highest seed germination. Since the emergence of this plant is very scarce from a depth of more than 3 cm, ploughing can be effective to bury seeds in case of strong disseminations in order to reduce the infestation in the following crop.

  16. Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landberg erecta and Shakdara, using a new recombinant inbred line population

    NARCIS (Netherlands)

    Clerkx, E.J.M.; El-Lithy, M.E.M.; Vierling, E.; Ruijs, G.J.; Vries, de M.H.C.; Groot, S.P.C.; Vreugdenhil, D.; Koornneef, M.

    2004-01-01

    Quantitative trait loci (QTL) mapping was used to identify loci controlling various aspects of seed longevity during storage and germination. Similar locations for QTLs controlling different traits might be an indication for a common genetic control of such traits. For this analysis we used a new

  17. Temperature in the seeds germination of pitaya genotypes

    Directory of Open Access Journals (Sweden)

    Alessandro Borini Lone

    2014-09-01

    Full Text Available The optimum temperature for germination of cacti vary with the species. With this work, we aimed to evaluate the seeds germination of pitaya genotypes under different temperatures. The used genotypes were: Hylocereus undatus (PB, H. polyrhizus (PV, Selenicereus megalanthus (PA, H. undatus x H. costaricensis (PH1 and H. costaricensis x H. undatus (PH2. For each genotype we used four replicates of 50 seeds, in a completely randomized design. The sowing was carried out on blotter paper in boxes type Gerbox ®, maintained at temperatures of 15, 20, 25, 30 and 35 oC constant and 15-25, 20-30 and 25-35 oC alternating with photoperiod 12 hours. The test lasted 30 days which were appraised the germination percentage, the germination speed index and the average time of germination. For seeds germination of PB, the result obtained in the temperature of 25 oC didn’t differ of the obtained to 30 and 20-30 oC, however it was superior to the others temperatures. In PV, the result at 25 oC didn’t differ of the obtained to 20 and 30 oC, being superior to the results of the others temperatures. For PA, the best result was obtained to 25 oC. In PH1, the temperatures of 25, 30 and 20-30 oC presented superiors results to the others. For PH2, the result obtained in 15-25oC didn’t differ of the obtained at 25 oC, however it was superior to the others temperatures. The constants temperatures of 25 and 30 °C and alternating 20-30 °C are suitable for germination of H. undatus and for the hybrid H. undatus x H. costaricensis. For H. polyrhizus, constant temperatures of 20, 25 to 30 °C are suitable for seed germination. The constant temperature of 25 °C is the most suitable for the germination of S. megalanthus. For the hybrid H. costaricensis x H. undatus, constant temperature of 25 °C and alternating 15-25°C are suitable for seed germination.

  18. The Germination of Some Species Tropical Legume Seeds

    Directory of Open Access Journals (Sweden)

    Eko Poetri

    2005-09-01

    Full Text Available A study to evaluate the seed germination of Leucaena pallida under climatic and soil conditions in Palu was conducted in village of Taipa, Sub district of North Palu, District of Palu. To compare with other species of legume trees however, this study involved Leucaena leucocephala cv Tarramba, Leucaena leucocephala cv Gumph and Gliricidia maculata. This experiment used completely randomized design with species of tropical tree legumes as treatment.  Each treatment was replicated five times.  Each experimental unit consisted of one tray (size 12.5 x 25 cm and planted by 20 seed.  Each tray was filled with soil while the seeds were planted one cm deep.  All seeds were immersed in warm water (600C for five minutes before planted.  The base of the trays were drilled to create some holes for water to drain out.  The trays were sprayed twice daily (07.00 am and 03.00 pm to keep the soil to be moist using a very smooth sprayer.  The variables recorded included the initiation time of germination, the range time of germination and the percentage of seed germination.  The data obtained were analyses using the Minitab 11. Least significance difference was used to test for possible differences between treatment means. The result revealed that initiation time of germination and the range of germination were not varied (P>0.05 among the seeds tested. The initiation time of germination ranged between 9 to 12 d after sowing.  Gliricidia maculata seed has the shortest period to germinate (12-16 d after sowing, meanwhile Leucaena leucocephala cv. Tarramba appear to be the longest (9-17 d after sowing. The highest seed viability was 60% in Leucaena leucocephala, cv Gump while the lowest was found in Gliricidia maculata (29%. In addition, both Leucaena pallida and Leucaena leucocephala cv Tarramba had medium seed germination (40% and 53% respectively. (Animal Production 7(3: 156-160 (2005Key Words: Seed, Germination, Tropical Leguminous

  19. Evaluation of Effect of Gamma Rays Irradiation for Increasing of Variation in Germination and Agronomic Traits in Oilseed rape (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    R. Momeni

    2012-04-01

    Full Text Available Increasing of genetic diversity is one of primary and basic goals of plant breeding programs. Induction of mutation is a method to increase genetic diversity that can be used in accommodate with selection, recombination and or combination of them in plant breeding. The aim of this study was to investigate the impact of different doses of gamma rays (500, 700, 900, 1100 and 1300 Gry on primary growth characters, such as: rate and percentage of germination, the length of rootlet and stemlet in M1 generation, and on agronomic characters such as: plant height, number of lateral branches, number of pods on main and lateral stem, length of pods and weigth of 1000-seed in M2 generation for two varieties of oilseed rape (Brassica napus, PF and Zarfam. Results of lab experiments showed that for both varieties, the germination percentage, the length of rootlet and the length of stemlet were significantly decreased by mutagen in compare with the control. While germination rate was only significantly affected by mutagen in PF. The estimation of "F" showed that there was significant difference between the variance of treatments for the germination rate and germination percentage in PF cultivar and for germination rate and stemlet length in Zarfam cultivar. In fact, increasing of gamma doses causes considerable enhancement in variance of treatment in compare with the control. The maximum relative coefficient of variation was related to 1300 Gry for germination rate of PF. In M2, all traits of study except number of pods on main stem was decreased by different doses of Gamma rays in PF cultivar. In opposition to other traits, Pods on main stem in PF cultivar was increased in different doses of gamma ray in compare with the control. But in Zarfam cultivar, only 1000-seed weight was significantly affected by Gamma rays.

  20. The effects of pesticides on morphology, viability, and germination of Blackberry (Rubus glaucus Benth.) and Tree tomato (Solanum betaceum Cav.) pollen grains.

    Science.gov (United States)

    Padilla, Flavio; Soria, Norman; Oleas, Abrahan; Rueda, Darwin; Manjunatha, Bangeppagari; Kundapur, Rajesh R; Maddela, Naga Raju; Rajeswari, Bugude

    2017-07-01

    The objective of this study was to determine the effect of application of pesticides on morphology, viability, and germination of pollen grains of Blackberry (Rubus glaucus Benth.) and Tree tomato (Solanum betaceum Cav.). The study was performed at Patate, Tungurahua province, Ecuador and was divided into two phases. Phase one dedicated to the study of morphology, viability, and identification of nutrient solution for better germination of pollen grains and phase two for the analysis of the effect of conventional, organic, and biological pesticides on pollen grain germination and pollen tube length. To study pollen morphology, pollens were extracted by hand pressure and was analyzed by optical and electron microscopy. The viable pollen grains were identified by staining with 1% acetocarmine. Even though Tree tomato and Blackberry pollen grains are morphologically similar, their exine shapes differ. We observed four times increase in pollen germination rate when suspended in nutrient solution (Sucrose with Boric acid) than control (water). Pollen grains under nutrient solution were subjected to different groups of pesticides for the period of 2, 4, and 6 h. With respect to pesticide affect, the Blackberry pollen grain germination followed the following order: Lecaniceb > Beauveb > Metazeb => Myceb > Control. However, the effect on Tree tomato pollen grains was as follows: Lecaniceb > Myceb > Cantus > Bacillus thuringiensis > Kripton > Control. As per as pollen grain germination is concerned, we observed that the chemical pesticides are more harmful than other pesticides. So, it is necessary to perform screening test for different pesticides and their effect on pollen grain germination before applying to the fields.

  1. [Study on influence factors of seed germination and seeding growth of Lonicera macranthoides].

    Science.gov (United States)

    Xu, Jin; Zhang, Ying; Cui, Guang-Lin; She, Yue-Hui; Li, Long-Yun

    2016-01-01

    In order to improve reproductive efficiency and quality standard, the influence factors of seed germination and seeding growth of Lonicera macranthoides werew studied. The fruit and seed morphological characteristics of L. macranthoides were observed, the seed water absorbing capacity was determined, and different wet sand stratification time, temperature and germination bed treatment were set up. The effects of the parameters on seed germination and seedling growth were analysed. There was no obstacles of water absorption on L. macranthoides seed, quantity for 22 h water absorption was close to saturation. In the first 80 d, with the increase of the stratification time, seed initial germination time was shortened, germination rate and germination potential was improved. Stratification for 100 d, germination rate decreased. At 15 ℃, seed germination and seedling growth indicators were the best. The seedling cotyledon width in light was significantly higher than that in dark. Seeds on the top of paper and top of sand germination rate, germination potential, and germination index was significantly higher than that of other germination bed and mildew rate is low. The optimal conditions of seeds germination test was stratified in 4 ℃ wet sand for 80 d, 15 ℃ illuminate culture on the top of paper or top of sand. The first seeding counting time was the 4th day after beginning the test, the final time was the 23th day. The germination potential statistical time was the 13th day after beginning the test. Copyright© by the Chinese Pharmaceutical Association.

  2. Genome-wide association study of salt tolerance at the seed germination stage in rice.

    Science.gov (United States)

    Shi, Yingyao; Gao, Lingling; Wu, Zhichao; Zhang, Xiaojing; Wang, Mingming; Zhang, Congshun; Zhang, Fan; Zhou, Yongli; Li, Zhikang

    2017-05-30

    Improving the salt tolerance of direct-seeding rice at the seed germination stage is a major breeding goal in many Asian rice-growing countries, where seedlings must often establish in soils with a high salt content. Thus, it is important to understand the genetic mechanisms of salt tolerance in rice and to screen for germplasm with salt tolerance at the seed germination stage. Here, we investigated seven seed germination-related traits under control and salt-stress conditions and conducted a genome-wide association study based on the re-sequencing of 478 diverse rice accessions. The analysis used a mixed linear model and was based on 6,361,920 single nucleotide polymorphisms in 478 rice accessions grouped into whole, indica, and non-indica panels. Eleven loci containing 22 significant salt tolerance-associated single nucleotide polymorphisms were identified based on the stress-susceptibility indices (SSIs) of vigor index (VI) and mean germination time (MGT). From the SSI of VI, six major loci were identified, explaining 20.2% of the phenotypic variation. From the SSI of MGT, five major loci were detected, explaining 26.4% of the phenotypic variation. Of these, seven loci on chromosomes 1, 5, 6, 11, and 12 were close to six previously identified quantitative gene loci/genes related to tolerance to salinity or other abiotic stresses. The strongest association region for the SSI of MGT was identified in a ~ 13.3 kb interval (15450039-15,463,330) on chromosome 1, near salt-tolerance quantitative trait loci controlling the Na + : K + ratio, total Na + uptake, and total K + concentration. The strongest association region for the SSI of VI was detected in a ~ 164.2 kb interval (526662-690,854) on chromosome 2 harboring two nitrate transporter family genes (OsNRT2.1 and OsNRT2.2), which affect gene expression under salt stress. The haplotype analysis indicated that OsNRT2.2 was associated with subpopulation differentiation and its minor/rare tolerant haplotype was

  3. Effects of fire and fire intensity on the germination and establishment of Acacia karroo, Acacia nilotica, Acacia luederitzii and Dichrostachys cinerea in the field

    Directory of Open Access Journals (Sweden)

    Somers Michael J

    2004-04-01

    Full Text Available Abstract Background While fire has been used in some instances to control the increase of woody plants, it has also been reported that fire may cause an increase in certain fire-tolerant Acacia tree species. This study investigated germination of Acacia karroo, A. luederitzii and Dichrostachys cinerea, thought to be increasing in density, as well as the historically successful encroaching woody species, A. nilotica, in savanna grassland, Hluhluwe-iMfolozi Park, South Africa. A. karroo is thought to be replacing A. nilotica as the dominant microphyllous species in the park. We tested the hypothesis that observed increases in certain woody plants in a savanna were related to seed germination and seedling establishment. Germination is compared among species for burnt and unburnt seeds on burnt and unburnt plots at three different locations for both hot and cool fires. Results Acacia karroo showed higher germination (A. karroo 5.1%, A. nilotica 1.5% and A. luederitzii 5.0% levels and better establishment (A. karroo 4.9%, A. nilotica 0.4% and A. luederitzii 0.4%. Seeds of the shrub Dichrostachys cinerea did not germinate in the field after fire and it is thought that some other germination cue is needed. On average, burning of A. karroo, A. nilotica and A. luederitzii seeds did not affect germination. There was a significant difference in the germination of burnt seeds on burnt sites (4.5% and burnt seeds on unburnt plots (2.5%. Similarly, unburnt seeds on unburnt sites germinated better (4.9% than unburnt seeds on burnt sites (2.8%. Conclusion We conclude that a combination of factors may be responsible for the success of A. karroo and that fires may not be hot enough or may occur at the wrong time of year to control A. karroo establishment in HiP. Although germination and establishment of A. karroo was higher than for A. nilotica a competitive advantage after fire could not be shown.

  4. Application of germination inhibitors in organic solvents to conifer seeds. Information report No. 0-X-371

    Energy Technology Data Exchange (ETDEWEB)

    Groot, A.

    1985-12-31

    Study to determine whether the germination inhibitors abscisic acid and coumarin could be applied to black spruce and jack pine seed with organic solvents to delay germination. If successful, the treatment would delay field germination of seeds sown in mid to late summer until the following spring, thus reducing the risk of immature plants being affected by late fall frosts. Results were expressed in germination value, peak day, and germination capacity on the basis of a 28-day germination period. Effects of treatment on the variables were examined by means of one-way or two-way analysis of variance with completely randomized designs.

  5. Study of Germination Characteristics of Fenugreek (Trigonella foenum-graecum L. population under Salinity and Drought Stress

    Directory of Open Access Journals (Sweden)

    hassan Farhadi

    2017-10-01

    Full Text Available Introduction: Fenugreek (Trigonalla foenum-graecum L., an annual herbaceous plant belonging to the Coleoidea (Fabaceae family, has numerous medicinal properties such as decreasing blood glucose, laxative, appetizer, mucus, antipyretic and increasing the amount of milk during lactation . Among the most important problems in arid and semi-arid regions, drought stress or water shortage will have negative effects on plant growth. Drought stress occurs mostly because of reducing water availability in the soil. This may be due to excessive water loss or absorption problems, or both of them. One of the major factors limiting germination, which occurs in more arid and semi-arid regions, is salt stress. The study was done to evaluate germination of four Iranian population of fenugreek (Amol, Tabriz, Sari and Mashhad under drought and salinity stresses. Materials and methods: To investigate the effect of salinity and drought stresses on germination and seedling growth characteristics of native landrace fenugreek, two separate experiments were conducted in a Completely Randomized Design with three replications in Seed Laboratory of University of Mashhad in 2014. The experiment treatments consisted of four levels of salinity (0, 60, 120, 180 mM that was induced by different concentrations of sodium chloride and drought stress induced by polyethylene glycol 6000 (PEG 6000 at four levels (0, -3, -6 and -9 Bar with three replications. The drought stress levels were simulation by polyethylene glycol 6000 and using the Michel and Kaufmann formula. Distilled water was applied as control. Iranian seed population of fenugreek were purchased from the city of Amol, Tabriz, Sari and Mashhad then the seeds were washed with sodium hypochlorite (3 % v/v for two minutes for disinfestation and washed three times with distilled water. On the twelfth day of experiment, seedling traits such as plumule and root length and weight in Petri dishes were measured. Results and

  6. OsRACK1 Is Involved in Abscisic Acid- and H2O2-Mediated Signaling to Regulate Seed Germination in Rice (Oryza sativa, L.)

    Science.gov (United States)

    Zhang, Dongping; Chen, Li; Li, Dahong; Lv, Bing; Chen, Yun; Chen, Jingui; XuejiaoYan; Liang, Jiansheng

    2014-01-01

    The receptor for activated C kinase 1 (RACK1) is one member of the most important WD repeat–containing family of proteins found in all eukaryotes and is involved in multiple signaling pathways. However, compared with the progress in the area of mammalian RACK1, our understanding of the functions and molecular mechanisms of RACK1 in the regulation of plant growth and development is still in its infancy. In the present study, we investigated the roles of rice RACK1A gene (OsRACK1A) in controlling seed germination and its molecular mechanisms by generating a series of transgenic rice lines, of which OsRACK1A was either over-expressed or under-expressed. Our results showed that OsRACK1A positively regulated seed germination and negatively regulated the responses of seed germination to both exogenous ABA and H2O2. Inhibition of ABA biosynthesis had no enhancing effect on germination, whereas inhibition of ABA catabolism significantly suppressed germination. ABA inhibition on seed germination was almost fully recovered by exogenous H2O2 treatment. Quantitative analyses showed that endogenous ABA levels were significantly higher and H2O2 levels significantly lower in OsRACK1A-down regulated transgenic lines as compared with those in wildtype or OsRACK1A-up regulated lines. Quantitative real-time PCR analyses showed that the transcript levels of OsRbohs and amylase genes, RAmy1A and RAmy3D, were significantly lower in OsRACK1A-down regulated transgenic lines. It is concluded that OsRACK1A positively regulates seed germination by controlling endogenous levels of ABA and H2O2 and their interaction. PMID:24865690

  7. Seed Germination and Cuttings Growth of Piper Aduncum

    Science.gov (United States)

    Susanto, D.; Sudrajat; Suwinarti, W.; Amirta, R.

    2018-04-01

    Sirih hutan (Piper aduncum L) is one of group shurbs tropical species, has potential to be developed as raw material of biomass based electricity. The aim of this research was to know seed germination and cuttings growth of P. aduncum plant as the first step in cultivation of this plant. Observation of flowers and fruits were done in secondary forest, while seed germination and growth of shoot cuttings were done in the laboratory. The results showed that P. aduncum seeds can be germinated in a relatively short time of 17 to 25 days with a fairly high germination percentage of 90 ± 8.16% and germination rate of 4.7 ± 0.34%. The growth of seedlings at 2 months old was 4.78 ± 0.42 cm, plant height 3.97 ± 0.27 cm, and relative growth rate 0.33 ± 0.14%. The treatment of synthetic growth regulator had significant effect on shoot growth and root number on the plant stem cuttings. Preparation of seedlings ready to plant in a generative and vegetative for cultivation of these plants in the experimental plot.

  8. GERMINATION OF GRASSES DUE TO INOCULATION DIAZOTROPHIC BACTERIA

    Directory of Open Access Journals (Sweden)

    C. D. A. Moreira

    2014-07-01

    Full Text Available The germination of forage grasses suffers from numbness and a natural tendency to low quality. The use of microorganisms inoculated in seeds with the purpose of increasing and meet the demand of some nutrient has been shown to be efficient, but the role of the microorganism in germination and rate of force is still unknown. Therefore the goal as study was to evaluate the germination rate of seeds of three cultivars of Brachiaria brizantha CV. Marandu, b., b. brizantha CV. Xaraés and b. humidícola cv Tupi and a cultivar of millet, P. hybrid cv Massai depending on the bacterium Azospirillum brasilense diazotrofic inoculation (nitrogen-fixing. Germination test was used in seed dispersal to assess the effect of first count (VPC in the treatments with and without inoculation. It was done also conducted further tests of electrical conductivity, weight of thousand seeds and water content. The delineation used was randomized entirely (DIC and the statistical analysis carried out through the analysis of variance and comparison of means using the Tukey test, the 5% probability. Massai grass seeds have the highest rate of force of first count in both treatments. Inoculation of bacterium Azospirillum brasilense did not affect the values of force of first count on seeds of the cultivars Marandu, Xaraés, Tupi and Massai. The seeds of the massai have higher germination speed relative the other cultivars evaluated when inoculated.

  9. Fluridone: a combination germination stimulant and herbicide for problem fields?

    Science.gov (United States)

    Goggin, Danica E; Powles, Stephen B

    2014-09-01

    Problem weeds in agriculture, such as Lolium rigidum Gaud., owe some of their success to their large and dormant seed banks, which permit germination throughout a crop-growing season. Dormant weed seed banks could be greatly depleted by application of a chemical that stimulates early-season germination and then kills the young seedlings. Fluridone, a phytoene desaturase-inhibiting herbicide that can also break seed dormancy, was assessed for its efficacy in this regard. The germination of fluridone-treated Lolium rigidum seeds was stimulated on soils with low organic matter, and almost 100% seedling mortality was observed, while the treatment was only moderately effective on a high-organic-matter potting mix. Seedlings from wheat, canola, common bean and chickpea seeds sown on fluridone-treated sandy loam were bleached and did not survive, but lupins and field peas grew normally. This proof-of-concept study with fluridone suggests that it may be possible to design safe and effective molecules that act as germination stimulants plus herbicides in a range of crop and soil types: a potentially novel way of utilising herbicides to stimulate seed bank germination and a valuable addition to an integrated weed management system. © 2014 Society of Chemical Industry.

  10. Substrates and temperatures in the germination of Eriotheca gracilipes seeds

    Directory of Open Access Journals (Sweden)

    Paulo Alexandre Fernandes Rodrigues de Melo

    Full Text Available ABSTRACT The Eriotheca gracilipes (K. Schum. A. Robyns is a forest specie that belongs to the Bombacaceae family and is considered an endemic specie from the Brazilian savanna. The aim of this study was to evaluate the best substrate and temperature for the vigor and germination test of E. gracilipes seeds. The experiment was carried out in a randomized design with a 4 x 7 factorial, with 28 treatments with the combination of four temperatures (20; 25; 30 and 20-30 ºC and seven substrates (coarse vermiculite, medium vermiculite, sand, Basaplant®, paper towel, on and between filter papers, with 4 repetitions of 25 seeds each. It was assessed germination, first count of germination, and germination speed index. In conclusion, for germination and vigor tests of Eriotheca gracilipes seeds it is recommended the paper roll as substrate at temperatures of 20-30, 25 or 30 ºC, and the Basaplant® and paper roll at the temperature of 30 ºC, respectively.

  11. Evaluation of Oxygen Deficit Stress on Germination Indicators and Seedling

    Directory of Open Access Journals (Sweden)

    F Hoseini

    2012-06-01

    Full Text Available To investigate the relationship oxygen deficit stress on germination indicators and seedling growth of five wheat cultivars in laboratory condition, an experiment with Randomized Complete Block design in factorial arrangement with three replications was conducted in 2008. The treatments consisted of five wheat cultivars (Chamran, Flat, Roshan, Stare and Shole as A factor, and two oxygen level (normal seed and seed under oxygen deficit stress conditions as B factor in each of these figures was done. Results showed that oxygen deficit stress caused to decrease for various cultivars germination percentage, germination rate, allometric coefficient, seed vigor index and other germination indicators. Therefore, this test as a suitable method for determining the quality of various seed lot can be used in the water logging condition. In addition, among different cultivars characterized that Roshan cultivar was more resistant to oxygen deficit stress than Chamran, Flat and Star cultivars. Although Chamran cultivar is common cultivar in Khouzestan, but of look most germination indicators arranged as weak seed class. The highest correlation coefficients among the tested cultivars have been related to seed vigor with seedling length and dry weight of radicle with seedling with 0.92 and 0.90, respectively.

  12. Effects of Atmospheric Pressure Air Plasma Pretreatment on the Seed Germination and Early Growth of Andrographis paniculata

    Energy Technology Data Exchange (ETDEWEB)

    Jiayun, Tong; Rui, He; Xiaoli, Zhang; Ruoting, Zhan; Weiwen, Chen [Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006 (China); Yang Size, E-mail: rayhe618@hotmail.com [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-03-01

    The objective of this paper is to demonstrate whether air plasma can change the seed germination characteristics, seedling emergence, as well as biochemical reactivity, in Andrographis paniculata (A. paniculata) seedlings by modifying the seed coat and finding a beneficial treatment dose. Eight treatment doses and one control were used to conduct electrical conductivity determination, a germination test, a seedling emergence test and a biochemical assay. The results showed that after being treated with air plasma excited at 5950 V for 10 s, the permeability of the seeds was improved significantly, resulting in the acceleration of seed germination and seedling emergence. In the meantime, the catalase activity and catalase isoenzyme expression were also improved, while the malondialdehyde content in the seedlings was decreased (which means greater counteraction with environmental stress). After being treated with 4250 V for 10 s and 5950 V for 20 s, the seed germination was enhanced, but without an obvious change in seedling emergence. However, after treatment with 3400 V for 20 s and 5100 V for 10 s, the permeability of the seeds was decreased, resulting in a delay in seedling emergence. These results indicate that air plasma can change the physiological and biochemical characteristics of Andrographis paniculata seeds by modifying the seed coat, combined with the effects of the active plasma species, and that different treating doses have different effects.

  13. Effects of Atmospheric Pressure Air Plasma Pretreatment on the Seed Germination and Early Growth of Andrographis paniculata

    International Nuclear Information System (INIS)

    Tong Jiayun; He Rui; Zhang Xiaoli; Zhan Ruoting; Chen Weiwen; Yang Size

    2014-01-01

    The objective of this paper is to demonstrate whether air plasma can change the seed germination characteristics, seedling emergence, as well as biochemical reactivity, in Andrographis paniculata (A. paniculata) seedlings by modifying the seed coat and finding a beneficial treatment dose. Eight treatment doses and one control were used to conduct electrical conductivity determination, a germination test, a seedling emergence test and a biochemical assay. The results showed that after being treated with air plasma excited at 5950 V for 10 s, the permeability of the seeds was improved significantly, resulting in the acceleration of seed germination and seedling emergence. In the meantime, the catalase activity and catalase isoenzyme expression were also improved, while the malondialdehyde content in the seedlings was decreased (which means greater counteraction with environmental stress). After being treated with 4250 V for 10 s and 5950 V for 20 s, the seed germination was enhanced, but without an obvious change in seedling emergence. However, after treatment with 3400 V for 20 s and 5100 V for 10 s, the permeability of the seeds was decreased, resulting in a delay in seedling emergence. These results indicate that air plasma can change the physiological and biochemical characteristics of Andrographis paniculata seeds by modifying the seed coat, combined with the effects of the active plasma species, and that different treating doses have different effects

  14. Germination, survival and growth of three vascular plants on biological soil crusts from a Mexican tropical desert.

    Science.gov (United States)

    Godínez-Alvarez, H; Morín, C; Rivera-Aguilar, V

    2012-01-01

    Information about the effects of biological soil crusts (BSC) on germination, seedling survival and growth of vascular plants is controversial because they can have positive, neutral or negative effects. This controversy may be because most studies conducted until now have just analysed one or two recruitment stages independently. To understand the BSC effects on vascular plants, it is necessary to consider each stage of the recruitment process and synthesise all this information. The goal of this study was twofold. First, we analyse germination, seedling survival and growth of three vascular plants (Agave marmorata, Prosopis laevigata and Neobuxbaumia tetetzo) on BSC (cyanobacteria and mixed crust) from a tropical desert region of south-central México. Second, we synthesise the information to determine the total effect of BSC on plant species performance. We conducted experiments under controlled conditions to evaluate the proportion of germinated seeds, proportion of surviving seedlings and seedling dry weight in BSC and bare soil. Results showed that BSC have different effects on germination, seedling survival and growth of plant species. Plant species performance was qualitatively higher on BSC than bare soil. The highest performance of A. marmorata and P. laevigata was observed on cyanobacteria and mixed crusts, respectively. The highest performance of N. tetetzo was on both crust types. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Allelopathic effects of leaf extracts of three agroforestry trees on germination and early seedling growth of wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Abdul Majeed

    2017-06-01

    Full Text Available Understanding of the growth promotory or inhibitory allelopathic effects of agroforestry trees on other plants is necessary for selection of suitable crops to be cultivated in their vicinity. In this experiment, aqueous leaf extracts of three agroforestry trees (Populus deltoides, Melia azedarach and Morus alba were evaluated on germination and seedling growth of wheat applied at concentration 1, 1.5, 2.0 and 2.5 g L-1 while distilled water was used as control treatment. Lower concentration of extracts (1 and 1.5 g L-1 of P. deltoides stimulated percent germination, root and stem height and dry biomass while higher concentration (2 and 2.5 g L-1 had no effect on these parameters. Mean germination time (MGT was not affected by the extract and its concentration. Aqueous extracts of M. azedarach and M. alba at concentration > 1 g L-1 significantly lowered the studied parameters except MGT which was significantly prolonged. Negative allelopathy was more evident at the highest aqueous extract concentration (2.5 g L-1 of the two trees. Extracts of M. alba were found more growth inhibitory than those of M. azedarach. The study suggests that lower concentration of leaf extracts of P. deltoides imparts stimulatory while M. azedarch and M. alba have negative allelopathic effects on wheat germination.

  16. Radiosensitivity study in the germination and growth of the pea Pisum sativum L, with seeds exposed to gamma radiation

    International Nuclear Information System (INIS)

    Ilguan, J.; Carrasco, J.; Marquez, V.

    2016-10-01

    Seeds of Pisum sativum L. were irradiated in a "6"0Co irradiator belonging to the Subsecretaria de Control y Aplicaciones Nucleares del Ecuador (SCAN), the dose rate at the irradiation time was 4.86 Gy/min. The seeds were grouped in packs of 100 units and exposed at doses of 20, 40, 60, 80, 100, 120, 140, 160, 180 and 200 Gy. The number of effective germinations, the days for germination, the main stem thickness, the number of branches and the size of the plant were evaluated. To validate the experimentation, the data were analyzed statistically by tests of homogeneity of variances, way ANOVA and Scheffe analysis to each variable. The number of effective germinations was given to 100% for 20 and 40 Gy then decreases to a higher dose reaching 20% to 200 Gy, being the average of the proof near to 90%. Increased germination stimulation at treatment at 20 Gy with an average of 5.0 days was evidenced. Treatment at doses of 20, 40 and 60 Gy generate a plant size greater than the proof whose mean is 68.30 cm. The mean number of branches of the proof is 5.3 with a standard deviation of 0.675, which is greater at doses of 20 and 40 Gy. In the study, is concluded that better results are obtained when irradiating seeds Pisum sativum L, between 20 and 60 Gy. (Author)

  17. Inhibition of seed germination by extracts of bitter Hawkesbury watermelon containing cucurbitacin, a feeding stimulant for corn rootworm (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Martin, Phyllis A W; Blackburn, Michael

    2003-04-01

    Cucurbitacins are feeding stimulants for corn rootworm used in baits to control the adults of this insect pest. Corn rootworm larvae also feed compulsively on cucurbitacins. Cucurbitacins are reported to be gibberellin antagonists that may preclude their use as seed treatments for these soil-dwelling insects. The crude extract of a bitter Hawkesbury watermelon containing cucurbitacin E-glycoside significantly inhibited germination of watermelon, squash, and tomato seeds. Although the germination of corn seed was not significantly inhibited, root elongation was inhibited by crude extracts, but not by high-performance liquid chromatography-purified cucurbitacin E-glycoside. Therefore, the effects of the major components in the bitter watermelon extract (e.g., sugars) on seed germination and root elongation were determined. Pure sugars (glucose and fructose), at concentrations found in watermelon extract, mimicked the inhibition of seed germination and root elongation seen with the crude bitter Hawkesbury watermelon extract. Removal of these sugars may be necessary to use this extract as a bait for corn rootworm larvae as a seed or root treatment.

  18. Effects of low dose gamma irradiation on the germination and physiological activity of old red pepper (Capsicum annuum L.) seed

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Sung; Back, Myung Hwa; Lee, Hae Youn; Lee, Young Keun [KAERI, Daejeon (Korea, Republic of)

    2001-12-15

    To observe the stimulating effects of low dose gamma radiation on the germination and physiological activity of germinating seeds of old red pepper (Capsicum annuum L. cv, Jokwang and cv. Hongkwang), seeds were irradiated at the dose of 2{approx}50 Gy. The germination rate of irradiation group was higher than that of the control. Especially it was highest at the early stage of induction. The germination rate at 7 days after sowing in Jokwang and Hongkwang cultivar was high as 74% and 11% at 4 Gy and 8 Gy irradiation group, respectively. The seedling height of Jokwang cultivar was noticeably high at 4 Gy irradiation group and that of Hongkwang cultivar at 8 Gy Irradiation group. The protein contents of seedlings from seeds irradiated with low dose gamma radiation of Jokwang cultivar increased at the late stage of induction and that of Hongkwang cultivar at the early stage of induction. Catalase and peroxidase activities of seedlings from seeds irradiated with low dose gamma radiation of Jokwang cultivar increased at 4 Gy irradiation group and that of Hongkwang cultivar at 8 Gy irradiation group.

  19. Study of allelopathic effects of Eucalyptus erythrocorys L. crude extracts against germination and seedling growth of weeds and wheat.

    Science.gov (United States)

    Ben Ghnaya, Asma; Hamrouni, Lamia; Amri, Ismail; Ahoues, Haifa; Hanana, Mohsen; Romane, Abderrahmane

    2016-09-01

    Allelopathic materials inside a tree can produce positive or negative change in the survival, growth, reproduction and behaviour of other organisms if they escape into the environment. To assess these effects, this work was carried out to evaluate the allelopathic impact of Eucalyptus erythrocorys L. on seed germination and seedling growth of two weeds: Sinapis arvensis L. and Phalaris canariensis L.; on one cultivated crop: Triticum durum L. Aqueous; and on ethanolic leaf extracts of E. erythrocorys L. The study was effected using four concentrations (10, 20, 25 and 30 μL/mL) while distilled water was used as a control. The results showed that the E. erythrocorys L. crude extracts had an inhibitory effect on seed germination and seedling growth of both studied weeds and wheat. The inhibition rate was increased by the increase in extract concentration. Only ethanolic extracts of E. erythrocorys L. induced a significant inhibition of seed germination of durum wheat. The effect of E. erythrocorys L. crude extracts was more severe on weeds than on durum wheat. These results indicate that the seedling growth, especially radicle elongation, was the more sensitive indicator to evaluate the effects of extracts than was the seed germination.

  20. Studies of 12C6+ heavy ions irradiation on seed germination and young seedling growth of four crops

    International Nuclear Information System (INIS)

    Sun Landi; Zhang Yingcong; Wu Dali; Liang Kai; Zhang Yanping; Jia Ruiling; Qin Qianqian; Cheng Xi; Qian Pingping; Li Wenjian; Hou Suiwen

    2008-01-01

    Crops of Brassica napus L., Linum usitatissmum L., Allium f istulosum L. and Lens culinaris Medic. were irradiated by 80 MeV/u 12 C 6+ ion beams with doses of 30, 90 and 180 Gy. The germination rates and heights of seedlings of M 1 and M 2 generation of these four plants were studied. The results indicated that germination rates and average heights of the B. napus and L. usitatissmum were improved by appropriate dose treatment, while great suppression was found in the irradiated groups of the A. fistulosum. As far as the L. Culinaris was concerned, little differences was observed on M 1 germination rate, but the 90 Gy irradiation was favorable to growth of plant. The treatments with 30, 90 and 180 Gy were inferior to contrast one on M 2 germination rate of the four species. Seedlings of M 2 generation of the B. napus, L. sitatissmum and L. culinaris under 30 Gy grew better than the other groups, while the best performance of the A. fistulosum was shown by the control group. (authors)