WorldWideScience

Sample records for a2a receptor gene

  1. Adenosine A(2A) receptor gene (ADORA2A) variants may increase autistic symptoms and anxiety in autism spectrum disorder.

    Science.gov (United States)

    Freitag, Christine M; Agelopoulos, Konstantin; Huy, Ellen; Rothermundt, Matthias; Krakowitzky, Petra; Meyer, Jobst; Deckert, Jürgen; von Gontard, Alexander; Hohoff, Christa

    2010-01-01

    Autism spectrum disorders (ASDs) are heterogeneous disorders presenting with increased rates of anxiety. The adenosine A(2A) receptor gene (ADORA2A) is associated with panic disorder and is located on chromosome 22q11.23. Its gene product, the adenosine A(2A) receptor, is strongly expressed in the caudate nucleus, which also is involved in ASD. As autistic symptoms are increased in individuals with 22q11.2 deletion syndrome, and large 22q11.2 deletions and duplications have been observed in ASD individuals, in this study, 98 individuals with ASD and 234 control individuals were genotyped for eight single-nucleotide polymorphisms in ADORA2A. Nominal association with the disorder was observed for rs2236624-CC, and phenotypic variability in ASD symptoms was influenced by rs3761422, rs5751876 and rs35320474. In addition, association of ADORA2A variants with anxiety was replicated for individuals with ASD. Findings point toward a possible mediating role of ADORA2A variants on phenotypic expression in ASD that need to be replicated in a larger sample.

  2. A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep.

    Science.gov (United States)

    Rétey, J V; Adam, M; Khatami, R; Luhmann, U F O; Jung, H H; Berger, W; Landolt, H-P

    2007-05-01

    Caffeine is the most widely used stimulant in Western countries. Some people voluntarily reduce caffeine consumption because it impairs the quality of their sleep. Studies in mice revealed that the disruption of sleep after caffeine is mediated by blockade of adenosine A2A receptors. Here we show in humans that (1) habitual caffeine consumption is associated with reduced sleep quality in self-rated caffeine-sensitive individuals, but not in caffeine-insensitive individuals; (2) the distribution of distinct c.1083T>C genotypes of the adenosine A2A receptor gene (ADORA2A) differs between caffeine-sensitive and -insensitive adults; and (3) the ADORA2A c.1083T>C genotype determines how closely the caffeine-induced changes in brain electrical activity during sleep resemble the alterations observed in patients with insomnia. These data demonstrate a role of adenosine A2A receptors for sleep in humans, and suggest that a common variation in ADORA2A contributes to subjective and objective responses to caffeine on sleep.

  3. A2A receptor ligands: past, present and future trends.

    Science.gov (United States)

    Clementina, Manera; Giuseppe, Saccomanni

    2010-01-01

    The adenosine A(2A) receptor is a member of the G protein-coupled receptor family and mediates multiple physiological effects of adenosine, both at the central nervous system and at peripheral tissues. Increasing evidence relates the A(2A) receptor with several pathological conditions such as neurodegenerative disorders, inflammation, pharmacological stress, and wound healing renewing the interest in A(2A) receptor agonists and antagonists as promising leads for drugs. However some of them initially tested in clinical trials presented several side effects, short half-life, lower solubility, and in some cases a lack of effects, perhaps attributable to receptor desensitization or to low receptor density in the targeted tissue. For these reasons it is evident that additional rational chemical modifications of the existing A(2A) receptor ligands to improve their affinity/selectivity and bioavailability as well as further studies to get new template for A(2A)AR ligands are necessary. The purpose of this review is to analyze and summarize the past and the present aspects related to the medicinal chemistry of A(2A) receptor ligands. Moreover their current and possible therapeutic applications have been also highlighted.

  4. A2A Receptor Antagonism and Dyskinesia in Parkinson's Disease

    Science.gov (United States)

    Morelli, Micaela; Blandini, Fabio; Simola, Nicola; Hauser, Robert A.

    2012-01-01

    Dyskinesia, a major complication of treatment of Parkinson's disease (PD), involves two phases: induction, which is responsible for dyskinesia onset, and expression, which underlies its clinical manifestation. The unique cellular and regional distribution of adenosine A2A receptors in basal ganglia areas that are richly innervated by dopamine, and their antagonistic role towards dopamine receptor stimulation, have positioned A2A receptor antagonists as an attractive nondopaminergic target to improve the motor deficits that characterize PD. In this paper, we describe the biochemical characteristics of A2A receptors and the effects of adenosine A2A antagonists in rodent and primate models of PD on L-DOPA-induced dyskinesia, together with relevant biomarker studies. We also review clinical trials of A2A antagonists as adjuncts to L-DOPA in PD patients with motor fluctuations. These studies have generally demonstrated that the addition of an A2A antagonist to a stable L-DOPA regimen reduces OFF time and mildly increases dyskinesia. However, limited clinical data suggest that the addition of an A2A antagonist along with a reduction of L-DOPA might maintain anti-Parkinsonian benefit and reduce dyskinesia. Whether A2A antagonists might reduce the development of dyskinesia has not yet been tested clinically. PMID:22754707

  5. Adenosine A2A receptors and A2A receptor heteromers as key players in striatal function

    Directory of Open Access Journals (Sweden)

    Sergi eFerre

    2011-06-01

    Full Text Available A very significant density of adenosine adenosine A2A receptors (A2ARs is present in the striatum, where they are preferentially localized postsynaptically in striatopallidal medium spiny neurons (MSNs. In this localization A2ARs establish reciprocal antagonistic interactions with dopamine D2 receptors (D2Rs. In one type of interaction, A2AR and D2R are forming heteromers and, by means of an allosteric interaction, A2AR counteracts D2R-mediated inhibitory modulation of the effects of NMDA receptor stimulation in the striato-pallidal neuron. This interaction is probably mostly responsible for the locomotor depressant and activating effects of A2AR agonist and antagonists, respectively. The second type of interaction involves A2AR and D2R that do not form heteromers and takes place at the level of adenylyl-cyclase (AC. Due to a strong tonic effect of endogenous dopamine on striatal D2R, this interaction keeps A2AR from signaling through AC. However, under conditions of dopamine depletion or with blockade of D2R, A2AR-mediated AC activation is unleashed with an increased gene expression and activity of the striato-pallidal neuron and with a consequent motor depression. This interaction is probably the main mechanism responsible for the locomotor depression induced by D2R antagonists. Finally, striatal A2ARs are also localized presynaptically, in cortico-striatal glutamatergic terminals that contact the striato-nigral MSN. These presynaptic A2ARs heteromerize with A1 receptors (A1Rs and their activation facilitates glutamate release. These three different types of A2ARs can be pharmacologically dissected by their ability to bind ligands with different affinity and can therefore provide selective targets for drug development in different basal ganglia disorders.

  6. PET imaging of adenosine A2A receptors

    NARCIS (Netherlands)

    Zhou, Xiaoyun

    2017-01-01

    This thesis describes the development and evaluation of [11C]preladenant as a novel radioligand for in vivo imaging of adenosine A2A receptors in the brain with positron-emission tomography (PET). The 11C-labeled drug [11C]preladenant was produced with high radiochemical yield and specific activity.

  7. Interactions between Calmodulin, Adenosine A2A, and Dopamine D2 Receptors*

    Science.gov (United States)

    Navarro, Gemma; Aymerich, Marisol S.; Marcellino, Daniel; Cortés, Antoni; Casadó, Vicent; Mallol, Josefa; Canela, Enric I.; Agnati, Luigi; Woods, Amina S.; Fuxe, Kjell; Lluís, Carmen; Lanciego, Jose Luis; Ferré, Sergi; Franco, Rafael

    2009-01-01

    The Ca2+-binding protein calmodulin (CaM) has been shown to bind directly to cytoplasmic domains of some G protein-coupled receptors, including the dopamine D2 receptor. CaM binds to the N-terminal portion of the long third intracellular loop of the D2 receptor, within an Arg-rich epitope that is also involved in the binding to Gi/o proteins and to the adenosine A2A receptor, with the formation of A2A-D2 receptor heteromers. In the present work, by using proteomics and bioluminescence resonance energy transfer (BRET) techniques, we provide evidence for the binding of CaM to the A2A receptor. By using BRET and sequential resonance energy transfer techniques, evidence was obtained for CaM-A2A-D2 receptor oligomerization. BRET competition experiments indicated that, in the A2A-D2 receptor heteromer, CaM binds preferentially to a proximal C terminus epitope of the A2A receptor. Furthermore, Ca2+ was found to induce conformational changes in the CaM-A2A-D2 receptor oligomer and to selectively modulate A2A and D2 receptor-mediated MAPK signaling in the A2A-D2 receptor heteromer. These results may have implications for basal ganglia disorders, since A2A-D2 receptor heteromers are being considered as a target for anti-parkinsonian agents. PMID:19632986

  8. NCS-1 associates with adenosine A2A receptors and modulates receptor function

    Directory of Open Access Journals (Sweden)

    Gemma eNavarro

    2012-04-01

    Full Text Available Modulation of G protein-coupled receptor (GPCR signalling by local changes in intracellular calcium concentration is an established function of Calmodulin which is known to interact with many GPCRs. Less is known about the functional role of the closely related neuronal EF-hand Ca2+-sensor proteins that frequently associate with calmodulin targets with different functional outcome. In the present study we aimed to investigate if a target of calmodulin – the A2A adenosine receptor, is able to associate with two other neuronal calcium binding proteins, namely NCS-1 and caldendrin. Using bioluminescence resonance energy transfer and co-immunoprecipitation experiments we show the existence of A2A - NCS-1 complexes in living cells whereas caldendrin did not associate with A2A receptors under the conditions tested. Interestingly, NCS-1 binding modulated downstream A2A receptor intracellular signalling in a Ca2+-dependent manner. Taken together this study provides further evidence that neuronal Ca2+-sensor proteins play an important role in modulation of GPCR signalling.

  9. Potential Therapeutic Applications of Adenosine A2A Receptor Ligands and Opportunities for A2A Receptor Imaging

    NARCIS (Netherlands)

    van Waarde, Aren; Dierckx, Rudi A. J. O.; Zhou, Xiaoyun; Khanapur, Shivashankar; Tsukada, Hideo; Ishiwata, Kiichi; Luurtsema, Gert; de Vries, Erik F. J.; Elsinga, Philip H.

    Adenosine A2A receptors (A2ARs) are highly expressed in the human striatum, and at lower densities in the cerebral cortex, the hippocampus, and cells of the immune system. Antagonists of these receptors are potentially useful for the treatment of motor fluctuations, epilepsy, postischemic brain

  10. Adenosine A(2A) receptor dynamics studied with the novel fluorescent agonist Alexa488-APEC.

    Science.gov (United States)

    Brand, Frank; Klutz, Athena M; Jacobson, Kenneth A; Fredholm, Bertil B; Schulte, Gunnar

    2008-08-20

    G protein-coupled receptors, such as the adenosine A(2A) receptor, are dynamic proteins, which undergo agonist-dependent redistribution from the cell surface to intracellular membranous compartments, such as endosomes. In order to study the kinetics of adenosine A(2A) receptor redistribution in living cells, we synthesized a novel fluorescent agonist, Alexa488-APEC. Alexa488-APEC binds to adenosine A(2A) (K(i)=149+/-27 nM) as well as A(3) receptors (K(i)=240+/-160 nM) but not to adenosine A(1) receptors. Further, we characterized the dose-dependent increase in Alexa488-APEC-induced cAMP production as well as cAMP response element binding (CREB) protein phosphorylation, verifying the ligand's functionality at adenosine A(2A) but not A(2B) receptors. In live-cell imaging studies, Alexa488-APEC-induced adenosine A(2A) receptor internalization, which was blocked by the competitive reversible antagonist ZM 241385 and hyperosmolaric sucrose. Further, internalized adenosine A(2A) receptors co-localized with clathrin and Rab5, indicating that agonist stimulation promotes adenosine A(2A) receptor uptake through a clathrin-dependent mechanism to Rab5-positive endosomes. The basic characterization of Alexa488-APEC described here showed that it provides a useful tool for tracing adenosine A(2A) receptors in vitro.

  11. Adenosine A2A Receptor Modulates the Activity of Globus Pallidus Neurons in Rats

    Directory of Open Access Journals (Sweden)

    Hui-Ling Diao

    2017-11-01

    Full Text Available The globus pallidus is a central nucleus in the basal ganglia motor control circuit. Morphological studies have revealed the expression of adenosine A2A receptors in the globus pallidus. To determine the modulation of adenosine A2A receptors on the activity of pallidal neurons in both normal and parkinsonian rats, in vivo electrophysiological and behavioral tests were performed in the present study. The extracellular single unit recordings showed that micro-pressure administration of adenosine A2A receptor agonist, CGS21680, regulated the pallidal firing activity. GABAergic neurotransmission was involved in CGS21680-induced modulation of pallidal neurons via a PKA pathway. Furthermore, application of two adenosine A2A receptor antagonists, KW6002 or SCH442416, mainly increased the spontaneous firing of pallidal neurons, suggesting that endogenous adenosine system modulates the activity of pallidal neurons through adenosine A2A receptors. Finally, elevated body swing test (EBST showed that intrapallidal microinjection of adenosine A2A receptor agonist/antagonist induced ipsilateral/contralateral-biased swing, respectively. In addition, the electrophysiological and behavioral findings also revealed that activation of dopamine D2 receptors by quinpirole strengthened KW6002/SCH442416-induced excitation of pallidal activity. Co-application of quinpirole with KW6002 or SCH442416 alleviated biased swing in hemi-parkinsonian rats. Based on the present findings, we concluded that pallidal adenosine A2A receptors may be potentially useful in the treatment of Parkinson's disease.

  12. The importance of the adenosine A(2A) receptor-dopamine D(2) receptor interaction in drug addiction.

    Science.gov (United States)

    Filip, M; Zaniewska, M; Frankowska, M; Wydra, K; Fuxe, K

    2012-01-01

    Drug addiction is a serious brain disorder with somatic, psychological, psychiatric, socio-economic and legal implications in the developed world. Illegal (e.g., psychostimulants, opioids, cannabinoids) and legal (alcohol, nicotine) drugs of abuse create a complex behavioral pattern composed of drug intake, withdrawal, seeking and relapse. One of the hallmarks of drugs that are abused by humans is that they have different mechanisms of action to increase dopamine (DA) neurotransmission within the mesolimbic circuitry of the brain and indirectly activate DA receptors. Among the DA receptors, D(2) receptors are linked to drug abuse and addiction because their function has been proven to be correlated with drug reinforcement and relapses. The recognition that D(2) receptors exist not only as homomers but also can form heteromers, such as with the adenosine (A)(2A) receptor, that are pharmacologically and functionally distinct from their constituent receptors, has significantly expanded the range of potential drug targets and provided new avenues for drug design in the search for novel drug addiction therapies. The aim of this review is to bring current focus on A(2A) receptors, their physiology and pharmacology in the central nervous system, and to discuss the therapeutic relevance of these receptors to drug addiction. We concentrate on the contribution of A(2A) receptors to the effects of different classes of drugs of abuse examined in preclinical behavioral experiments carried out with pharmacological and genetic tools. The consequences of chronic drug treatment on A(2A) receptor-assigned functions in preclinical studies are also presented. Finally, the neurochemical mechanism of the interaction between A(2A) receptors and drugs of abuse in the context of the heteromeric A(2A)-D(2) receptor complex is discussed. Taken together, a significant amount of experimental analyses provide evidence that targeting A(2A) receptors may offer innovative translational strategies

  13. Adenosine A2A receptor antagonists and Parkinson's disease: state of the art and future directions.

    Science.gov (United States)

    Simola, N; Morelli, M; Pinna, A

    2008-01-01

    Adenosine A(2A) receptors present in the central nervous system have been implicated in the modulation of motor functions. Accordingly, adenosine A(2A) receptor antagonists currently constitute an attractive non-dopaminergic option for use in the treatment of Parkinson's disease (PD). The highly enriched distributions of adenosine A(2A) receptors in striatopallidal neurons, and their ability to form functional heteromeric complexes with dopamine D(2) and metabotropic glutamate mGlu5 receptors, render A(2A) receptor antagonists of particular interest in the modulation of motor behavior, whilst at the same time displaying a low predisposition to inducing non-motor side effects. Furthermore, adenosine A(2A) receptor antagonists appear to exert a marked efficacy on PD tremor and in reducing the progress of underlying neurodegeneration and maladaptive neuroplasticity that complicates standard dopamine replacement treatments in PD. Finally, recent evidence has illustrated an improvement of cognitive function as well as enhancement of attention in rodents following administration of A(2A) receptor antagonists. This article is aimed at examining preclinical studies describing these findings as well as reports from clinical trials, in order to provide a comprehensive review of the evidence suggesting that this class of drugs may represent an advance in the treatment of PD.

  14. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    Directory of Open Access Journals (Sweden)

    Felicita Pedata

    2014-01-01

    Full Text Available The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes. Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke.

  15. A2A Receptor Antagonism and Dyskinesia in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Micaela Morelli

    2012-01-01

    Full Text Available Dyskinesia, a major complication of treatment of Parkinson’s disease (PD, involves two phases: induction, which is responsible for dyskinesia onset, and expression, which underlies its clinical manifestation. The unique cellular and regional distribution of adenosine A2A receptors in basal ganglia areas that are richly innervated by dopamine, and their antagonistic role towards dopamine receptor stimulation, have positioned A2A receptor antagonists as an attractive nondopaminergic target to improve the motor deficits that characterize PD. In this paper, we describe the biochemical characteristics of A2A receptors and the effects of adenosine A2A antagonists in rodent and primate models of PD on L-DOPA-induced dyskinesia, together with relevant biomarker studies. We also review clinical trials of A2A antagonists as adjuncts to L-DOPA in PD patients with motor fluctuations. These studies have generally demonstrated that the addition of an A2A antagonist to a stable L-DOPA regimen reduces OFF time and mildly increases dyskinesia. However, limited clinical data suggest that the addition of an A2A antagonist along with a reduction of L-DOPA might maintain anti-Parkinsonian benefit and reduce dyskinesia. Whether A2A antagonists might reduce the development of dyskinesia has not yet been tested clinically.

  16. Involvement of adenosine A2A receptors in depression and anxiety.

    Science.gov (United States)

    Yamada, Koji; Kobayashi, Minoru; Kanda, Tomoyuki

    2014-01-01

    When administered to normal healthy patients, a nonselective adenosine A1/A2A antagonist, caffeine, tended to improve anxiety and depression at low doses and to exacerbate anxiety at high doses. Caffeine also appears to enhance anxiety-related symptoms in patients with panic disorder, and A2A receptor-deficient mice have been reported to exhibit higher anxiety-like behaviors, as well as a lower incidence of depression-like behaviors. Some selective A2A antagonists were reported to ameliorate anxiety-like behaviors in rodents, while others did not affect these behaviors. In addition, most A2A antagonists showed inhibitory effects on depression-like behaviors. The mechanisms underlying the relationship between A2A receptor antagonists and anxiety and depression remain unclear at the present time, although many studies have produced hypotheses. Given that a selective A2A receptor antagonist has recently become available for use in humans, research on the role of A2A receptors in the treatment of mental illness should progress in the near future. © 2014 Elsevier Inc. All rights reserved.

  17. Adenosine A(2A) receptor up-regulates retinal wave frequency via starburst amacrine cells in the developing rat retina.

    Science.gov (United States)

    Huang, Pin-Chien; Hsiao, Yu-Tien; Kao, Shao-Yen; Chen, Ching-Feng; Chen, Yu-Chieh; Chiang, Chung-Wei; Lee, Chien-Fei; Lu, Juu-Chin; Chern, Yijuang; Wang, Chih-Tien

    2014-01-01

    Developing retinas display retinal waves, the patterned spontaneous activity essential for circuit refinement. During the first postnatal week in rodents, retinal waves are mediated by synaptic transmission between starburst amacrine cells (SACs) and retinal ganglion cells (RGCs). The neuromodulator adenosine is essential for the generation of retinal waves. However, the cellular basis underlying adenosine's regulation of retinal waves remains elusive. Here, we investigated whether and how the adenosine A(2A) receptor (A(2A)R) regulates retinal waves and whether A(2A)R regulation of retinal waves acts via presynaptic SACs. We showed that A(2A)R was expressed in the inner plexiform layer and ganglion cell layer of the developing rat retina. Knockdown of A(2A)R decreased the frequency of spontaneous Ca²⁺ transients, suggesting that endogenous A(2A)R may up-regulate wave frequency. To investigate whether A(2A)R acts via presynaptic SACs, we targeted gene expression to SACs by the metabotropic glutamate receptor type II promoter. Ca²⁺ transient frequency was increased by expressing wild-type A(2A)R (A2AR-WT) in SACs, suggesting that A(2A)R may up-regulate retinal waves via presynaptic SACs. Subsequent patch-clamp recordings on RGCs revealed that presynaptic A(2A)R-WT increased the frequency of wave-associated postsynaptic currents (PSCs) or depolarizations compared to the control, without changing the RGC's excitability, membrane potentials, or PSC charge. These findings suggest that presynaptic A(2A)R may not affect the membrane properties of postsynaptic RGCs. In contrast, by expressing the C-terminal truncated A(2A)R mutant (A(2A)R-ΔC) in SACs, the wave frequency was reduced compared to the A(2A)R-WT, but was similar to the control, suggesting that the full-length A(2A)R in SACs is required for A(2A)R up-regulation of retinal waves. A(2A)R up-regulates the frequency of retinal waves via presynaptic SACs, requiring its full-length protein structure. Thus, by

  18. Adenosine A(2A) receptors are necessary and sufficient to trigger memory impairment in adult mice.

    Science.gov (United States)

    Pagnussat, N; Almeida, A S; Marques, D M; Nunes, F; Chenet, G C; Botton, P H S; Mioranzza, S; Loss, C M; Cunha, R A; Porciúncula, L O

    2015-08-01

    Caffeine (a non-selective adenosine receptor antagonist) prevents memory deficits in aging and Alzheimer's disease, an effect mimicked by adenosine A2 A receptor, but not A1 receptor, antagonists. Hence, we investigated the effects of adenosine receptor agonists and antagonists on memory performance and scopolamine-induced memory impairment in mice. We determined whether A2 A receptors are necessary for the emergence of memory impairments induced by scopolamine and whether A2 A receptor activation triggers memory deficits in naïve mice, using three tests to assess short-term memory, namely the object recognition task, inhibitory avoidance and modified Y-maze. Scopolamine (1.0 mg·kg(-1) , i.p.) impaired short-term memory performance in all three tests and this scopolamine-induced amnesia was prevented by the A2 A receptor antagonist (SCH 58261, 0.1-1.0 mg·kg(-1) , i.p.) and by the A1 receptor antagonist (DPCPX, 0.2-5.0 mg·kg(-1) , i.p.), except in the modified Y-maze where only SCH58261 was effective. Both antagonists were devoid of effects on memory or locomotion in naïve rats. Notably, the activation of A2 A receptors with CGS 21680 (0.1-0.5 mg·kg(-1) , i.p.) before the training session was sufficient to trigger memory impairment in the three tests in naïve mice, and this effect was prevented by SCH 58261 (1.0 mg·kg(-1) , i.p.). Furthermore, i.c.v. administration of CGS 21680 (50 nmol) also impaired recognition memory in the object recognition task. These results show that A2 A receptors are necessary and sufficient to trigger memory impairment and further suggest that A1 receptors might also be selectively engaged to control the cholinergic-driven memory impairment. © 2015 The British Pharmacological Society.

  19. Adenosine A2A receptors are necessary and sufficient to trigger memory impairment in adult mice

    Science.gov (United States)

    Pagnussat, N; Almeida, A S; Marques, D M; Nunes, F; Chenet, G C; Botton, P H S; Mioranzza, S; Loss, C M; Cunha, R A; Porciúncula, L O

    2015-01-01

    Background and Purpose Caffeine (a non-selective adenosine receptor antagonist) prevents memory deficits in aging and Alzheimer’s disease, an effect mimicked by adenosine A2A receptor, but not A1 receptor, antagonists. Hence, we investigated the effects of adenosine receptor agonists and antagonists on memory performance and scopolamine-induced memory impairment in mice. Experimental Approach We determined whether A2A receptors are necessary for the emergence of memory impairments induced by scopolamine and whether A2A receptor activation triggers memory deficits in naïve mice, using three tests to assess short-term memory, namely the object recognition task, inhibitory avoidance and modified Y-maze. Key Results Scopolamine (1.0 mg·kg−1, i.p.) impaired short-term memory performance in all three tests and this scopolamine-induced amnesia was prevented by the A2A receptor antagonist (SCH 58261, 0.1–1.0 mg·kg−1, i.p.) and by the A1 receptor antagonist (DPCPX, 0.2–5.0 mg·kg−1, i.p.), except in the modified Y-maze where only SCH58261 was effective. Both antagonists were devoid of effects on memory or locomotion in naïve rats. Notably, the activation of A2A receptors with CGS 21680 (0.1–0.5 mg·kg−1, i.p.) before the training session was sufficient to trigger memory impairment in the three tests in naïve mice, and this effect was prevented by SCH 58261 (1.0 mg·kg−1, i.p.). Furthermore, i.c.v. administration of CGS 21680 (50 nmol) also impaired recognition memory in the object recognition task. Conclusions and Implications These results show that A2A receptors are necessary and sufficient to trigger memory impairment and further suggest that A1 receptors might also be selectively engaged to control the cholinergic-driven memory impairment. PMID:25939452

  20. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors

    DEFF Research Database (Denmark)

    Gnad, Thorsten; Scheibler, Saskia; von Kügelgen, Ivar

    2014-01-01

    Brown adipose tissue (BAT) is specialized in energy expenditure, making it a potential target for anti-obesity therapies. Following exposure to cold, BAT is activated by the sympathetic nervous system with concomitant release of catecholamines and activation of β-adrenergic receptors. Because BAT...... therapies based on cold exposure or β-adrenergic agonists are clinically not feasible, alternative strategies must be explored. Purinergic co-transmission might be involved in sympathetic control of BAT and previous studies reported inhibitory effects of the purinergic transmitter adenosine in BAT from...... receptor is the most abundant adenosine receptor in human and murine BAT. Pharmacological blockade or genetic loss of A2A receptors in mice causes a decrease in BAT-dependent thermogenesis, whereas treatment with A2A agonists significantly increases energy expenditure. Moreover, pharmacological stimulation...

  1. Melatonin Receptor Genes in Vertebrates

    Directory of Open Access Journals (Sweden)

    Hua Dong Yin

    2013-05-01

    Full Text Available Melatonin receptors are members of the G protein-coupled receptor (GPCR family. Three genes for melatonin receptors have been cloned. The MT1 (or Mel1a or MTNR1A and MT2 (or Mel1b or MTNR1B receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype, Mel1c (or MTNR1C, has been identified in fish, amphibians and birds. Another melatonin related orphan receptor, GPR50, which does not bind melatonin, is found exclusively in mammals. The hormone melatonin is secreted primarily by the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone acts systemically in numerous organs. In the brain, it is involved in the regulation of various neural and endocrine processes, and it readjusts the circadian pacemaker, the suprachiasmatic nucleus. This article reviews recent studies of gene organization, expression, evolution and mutations of melatonin receptor genes of vertebrates. Gene polymorphisms reveal that numerous mutations are associated with diseases and disorders. The phylogenetic analysis of receptor genes indicates that GPR50 is an outgroup to all other melatonin receptor sequences. GPR50 may have separated from a melatonin receptor ancestor before the split between MTNR1C and the MTNR1A/B ancestor.

  2. A2A adenosine receptor antagonism enhances synaptic and motor effects of cocaine via CB1 cannabinoid receptor activation.

    Directory of Open Access Journals (Sweden)

    Alessandro Tozzi

    Full Text Available BACKGROUND: Cocaine increases the level of endogenous dopamine (DA in the striatum by blocking the DA transporter. Endogenous DA modulates glutamatergic inputs to striatal neurons and this modulation influences motor activity. Since D2 DA and A2A-adenosine receptors (A2A-Rs have antagonistic effects on striatal neurons, drugs targeting adenosine receptors such as caffeine-like compounds, could enhance psychomotor stimulant effects of cocaine. In this study, we analyzed the electrophysiological effects of cocaine and A2A-Rs antagonists in striatal slices and the motor effects produced by this pharmacological modulation in rodents. PRINCIPAL FINDINGS: Concomitant administration of cocaine and A2A-Rs antagonists reduced glutamatergic synaptic transmission in striatal spiny neurons while these drugs failed to produce this effect when given in isolation. This inhibitory effect was dependent on the activation of D2-like receptors and the release of endocannabinoids since it was prevented by L-sulpiride and reduced by a CB1 receptor antagonist. Combined application of cocaine and A2A-R antagonists also reduced the firing frequency of striatal cholinergic interneurons suggesting that changes in cholinergic tone might contribute to this synaptic modulation. Finally, A2A-Rs antagonists, in the presence of a sub-threshold dose of cocaine, enhanced locomotion and, in line with the electrophysiological experiments, this enhanced activity required activation of D2-like and CB1 receptors. CONCLUSIONS: The present study provides a possible synaptic mechanism explaining how caffeine-like compounds could enhance psychomotor stimulant effects of cocaine.

  3. Adenosine A2A receptor binding profile of two antagonists, ST1535 and KW6002: consideration on the presence of atypical adenosine A2A binding sites

    Directory of Open Access Journals (Sweden)

    Teresa Riccioni

    2010-08-01

    Full Text Available Adenosine A2A receptors seem to exist in typical (more in striatum and atypical (more in hippocampus and cortex subtypes. In the present study, we investigated the affinity of two adenosine A2A receptor antagonists, ST1535 [2 butyl -9-methyl-8-(2H-1,2,3-triazol 2-yl-9H-purin-6-xylamine] and KW6002 [(E-1,3-diethyl-8-(3,4-dimethoxystyryl-7-methyl-3,7-dihydro-1H-purine-2,6,dione] to the “typical” and “atypical” A2A binding sites. Affinity was determined by radioligand competition experiments in membranes from rat striatum and hippocampus. Displacement of the adenosine analog [3H]CGS21680 [2-p-(2-carboxyethylphenethyl-amino-5’-N-ethylcarbox-amidoadenosine] was evaluated in the absence or in the presence of either CSC [8-(3-chlorostyryl-caffeine], an adenosine A2A antagonist that pharmacologically isolates atypical binding sites, or DPCPX (8-cyclopentyl-1,3-dipropylxanthine, an adenosine A1 receptor antagonist that pharmacologically isolates typical binding site. ZM241385 [84-(2-[7-amino-2-(2-furyl [1,2,4]-triazol[2,3-a][1,3,5]triazin-5-yl amino]ethyl phenol] and SCH58261 [(5-amino-7-(β-phenylethyl-2-(8-furylpyrazolo(4,3-e-1,2,4-triazolo(1,5-c pyrimidine], two other adenosine A2A receptor antagonists, which were reported to differently bind to atypical and typical A2A receptors, were used as reference compounds. ST1535, KW6002, ZM241385 and SCH58261 displaced [3H]CGS21680 with higher affinity in striatum than in hippocampus. In hippocampus, no typical adenosine A2A binding was detected, and ST1535 was the only compound that occupied atypical A2A adenosine receptors. Present data are explained in terms of heteromeric association among adenosine A2A, A2B and A1 receptors, rather than with the presence of atypical A2A receptor subtype.

  4. Reduced adenosine A2a receptor-mediated efferent arteriolar vasodilation contributes to diabetes-induced glomerular hyperfiltration.

    Science.gov (United States)

    Persson, Patrik; Hansell, Peter; Palm, Fredrik

    2015-01-01

    Diabetes is associated with increased risk for development of kidney disease, and an increased glomerular filtration rate is an early indication of altered kidney function. Here we determine whether reduced adenosine A2a receptor-mediated vasodilation of the efferent arteriole contributes to the increased glomerular filtration rate in diabetes. The glomerular filtration rate, renal blood flow, and proximal tubular stop flow pressure were investigated in control and streptozotocin-diabetic rats during baseline and after administration of the adenosine A2a receptor antagonist ZM241385 or the adenosine A2a receptor agonist CGS21680. The diabetes-induced glomerular hyperfiltration was reduced by 24% following A2a receptor stimulation but was unaffected by A2a receptor inhibition. Contrarily, glomerular filtration rate in controls increased by 22% after A2a receptor inhibition and was unaffected by A2a stimulation. The increased glomerular filtration rate after A2a receptor inhibition in controls and decreased glomerular filtration rate after A2a receptor activation in diabetics were caused by increased and decreased stop flow pressure, respectively. None of the interventions affected renal blood flow. Thus, the normal adenosine A2a receptor-mediated tonic vasodilation of efferent arterioles is abolished in the diabetic kidney. This causes increased efferent arteriolar resistance resulting in increased filtration fraction and hyperfiltration.

  5. A2A adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase.

    Science.gov (United States)

    Gracia, Eduard; Pérez-Capote, Kamil; Moreno, Estefanía; Barkešová, Jana; Mallol, Josefa; Lluís, Carme; Franco, Rafael; Cortés, Antoni; Casadó, Vicent; Canela, Enric I

    2011-05-01

    A2ARs (adenosine A2A receptors) are highly enriched in the striatum, which is the main motor control CNS (central nervous system) area. BRET (bioluminescence resonance energy transfer) assays showed that A2AR homomers may act as cell-surface ADA (adenosine deaminase; EC 3.5.4.4)-binding proteins. ADA binding affected the quaternary structure of A2ARs present on the cell surface. ADA binding to adenosine A2ARs increased both agonist and antagonist affinity on ligand binding to striatal membranes where these proteins are co-expressed. ADA also increased receptor-mediated ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Collectively, the results of the present study show that ADA, apart from regulating the concentration of extracellular adenosine, may behave as an allosteric modulator that markedly enhances ligand affinity and receptor function. This powerful regulation may have implications for the physiology and pharmacology of neuronal A2ARs.

  6. Adenosine A2A receptor hyperexpression in patients with severe SIRS after cardiopulmonary bypass.

    Science.gov (United States)

    Kerbaul, François; Bénard, Frédéric; Giorgi, Roch; Youlet, By; Carrega, Louis; Zouher, Ibrahim; Mercier, Laurence; Gérolami, Victoria; Bénas, Vincent; Blayac, Dorothée; Gariboldi, Vlad; Collart, Frédéric; Guieu, Régis

    2008-08-01

    Adenosine (ADO) is an endogenous nucleoside, which has been involved in blood pressure failure during severe systemic inflammatory response syndrome (severe SIRS) after cardiac surgery with cardiopulmonary bypass (CPB). Adenosine acts via its receptor subtypes, namely A1, A2A, A2B, or A3. Because A2A receptors are implicated in vascular tone, their expression might contribute to severe SIRS. We compared adenosine plasma levels (APLs) and A2A ADO receptor expression (ie, B, K, and mRNA amount) in patients with or without postoperative SIRS. : This was a prospective comparative observational study. Forty-four patients who underwent cardiac surgery involving CPB. Ten healthy subjects served as controls. Among the patients, 11 presented operative vasoplegia and postoperative SIRS (named complicated patients) and 33 were without vasoplegia or SIRS (named uncomplicated patients). Adenosine plasma levels, K, B, and mRNA amount (mean +/- SD) were measured on peripheral blood mononuclear cells. Adenosine plasma levels, B, and K were significantly higher in complicated patients than in uncomplicated patients (APLs: 2.7 +/- 1.0 vs 1.0 +/- 0.5 micromol l, P SIRS after CPB.

  7. Human Adenosine A2A Receptor: Molecular Mechanism of Ligand Binding and Activation

    Directory of Open Access Journals (Sweden)

    Byron Carpenter

    2017-12-01

    Full Text Available Adenosine receptors (ARs comprise the P1 class of purinergic receptors and belong to the largest family of integral membrane proteins in the human genome, the G protein-coupled receptors (GPCRs. ARs are classified into four subtypes, A1, A2A, A2B, and A3, which are all activated by extracellular adenosine, and play central roles in a broad range of physiological processes, including sleep regulation, angiogenesis and modulation of the immune system. ARs are potential therapeutic targets in a variety of pathophysiological conditions, including sleep disorders, cancer, and dementia, which has made them important targets for structural biology. Over a decade of research and innovation has culminated with the publication of more than 30 crystal structures of the human adenosine A2A receptor (A2AR, making it one of the best structurally characterized GPCRs at the atomic level. In this review we analyze the structural data reported for A2AR that described for the first time the binding of mode of antagonists, including newly developed drug candidates, synthetic and endogenous agonists, sodium ions and an engineered G protein. These structures have revealed the key conformational changes induced upon agonist and G protein binding that are central to signal transduction by A2AR, and have highlighted both similarities and differences in the activation mechanism of this receptor compared to other class A GPCRs. Finally, comparison of A2AR with the recently solved structures of A1R has provided the first structural insight into the molecular determinants of ligand binding specificity in different AR subtypes.

  8. Key modulatory role of presynaptic adenosine A2A receptors in cortical neurotransmission to the striatal direct pathway.

    Science.gov (United States)

    Quiroz, César; Luján, Rafael; Uchigashima, Motokazu; Simoes, Ana Patrícia; Lerner, Talia N; Borycz, Janusz; Kachroo, Anil; Canas, Paula M; Orru, Marco; Schwarzschild, Michael A; Rosin, Diane L; Kreitzer, Anatol C; Cunha, Rodrigo A; Watanabe, Masahiko; Ferré, Sergi

    2009-11-18

    Basal ganglia processing results from a balanced activation of direct and indirect striatal efferent pathways, which are controlled by dopamine D1 and D2 receptors, respectively. Adenosine A2A receptors are considered novel antiparkinsonian targets, based on their selective postsynaptic localization in the indirect pathway, where they modulate D2 receptor function. The present study provides evidence for the existence of an additional, functionally significant, segregation of A2A receptors at the presynaptic level. Using integrated anatomical, electrophysiological, and biochemical approaches, we demonstrate that presynaptic A2A receptors are preferentially localized in cortical glutamatergic terminals that contact striatal neurons of the direct pathway, where they exert a selective modulation of corticostriatal neurotransmission. Presynaptic striatal A2A receptors could provide a new target for the treatment of neuropsychiatric disorders.

  9. Key Modulatory Role of Presynaptic Adenosine A2A Receptors in Cortical Neurotransmission to the Striatal Direct Pathway

    Directory of Open Access Journals (Sweden)

    César Quiroz

    2009-01-01

    Full Text Available Basal ganglia processing results from a balanced activation of direct and indirect striatal efferent pathways, which are controlled by dopamine D1 and D2 receptors, respectively. Adenosine A2A receptors are considered novel antiparkinsonian targets, based on their selective postsynaptic localization in the indirect pathway, where they modulate D2 receptor function. The present study provides evidence for the existence of an additional, functionally significant, segregation of A2A receptors at the presynaptic level. Using integrated anatomical, electrophysiological, and biochemical approaches, we demonstrate that presynaptic A2A receptors are preferentially localized in cortical glutamatergic terminals that contact striatal neurons of the direct pathway, where they exert a selective modulation of corticostriatal neurotransmission. Presynaptic striatal A2A receptors could provide a new target for the treatment of neuropsychiatric disorders.

  10. Role of Microglia Adenosine A2A Receptors in Retinal and Brain Neurodegenerative Diseases

    Science.gov (United States)

    Santiago, Ana R.; Baptista, Filipa I.; Santos, Paulo F.; Cristóvão, Gonçalo; Ambrósio, António F.; Cunha, Rodrigo A.; Gomes, Catarina A.

    2014-01-01

    Neuroinflammation mediated by microglial cells in the brain has been commonly associated with neurodegenerative diseases. Whether this microglia-mediated neuroinflammation is cause or consequence of neurodegeneration is still a matter of controversy. However, it is unequivocal that chronic neuroinflammation plays a role in disease progression and halting that process represents a potential therapeutic strategy. The neuromodulator adenosine emerges as a promising targeting candidate based on its ability to regulate microglial proliferation, chemotaxis, and reactivity through the activation of its G protein coupled A2A receptor (A2AR). This is in striking agreement with the ability of A2AR blockade to control several brain diseases. Retinal degenerative diseases have been also associated with microglia-mediated neuroinflammation, but the role of A2AR has been scarcely explored. This review aims to compare inflammatory features of Parkinson's and Alzheimer's diseases with glaucoma and diabetic retinopathy, discussing the therapeutic potential of A2AR in these degenerative conditions. PMID:25132733

  11. Adenosine A2A Receptor Deletion Blocks the Beneficial Effects of Lactobacillus reuteri in Regulatory T-Deficient Scurfy Mice

    Directory of Open Access Journals (Sweden)

    Baokun He

    2017-12-01

    Full Text Available The lack of a functional Foxp3 transcription factor and regulatory T (Treg cells causes lethal, CD4+ T cell-driven autoimmune diseases in scurfy (SF mice and humans. Recent studies have shown that adenosine A2A receptor activation limits inflammation and tissue damage, thereby playing an anti-inflammatory role. However, the role of the adenosine A2A receptor in the development of disease in SF mice remains unclear. Using a genetic approach, we found that adenosine A2A receptor deletion in SF mice (SF⋅A2A-/- does not affect early life events, the development of a lymphoproliferative disorder, or hyper-production of pro-inflammatory cytokines seen in the Treg-deficiency state. As shown previously, Lactobacillus reuteri DSM 17938 treatment prolonged survival and reduced multiorgan inflammation in SF mice. In marked contrast, A2A receptor deletion completely blocked these beneficial effects of L. reuteri in SF mice. Altogether, these results suggest that although absence of the adenosine A2A receptor does not affect the development of disease in SF mice, it plays a critical role in the immunomodulation by L. reuteri in Treg-deficiency disease. The adenosine A2A receptor and its activation may have a role in treating other Treg dysfunction-mediated autoimmune diseases.

  12. Adenosine A2A Receptor Deletion Blocks the Beneficial Effects of Lactobacillus reuteri in Regulatory T-Deficient Scurfy Mice

    Science.gov (United States)

    He, Baokun; Hoang, Thomas K.; Tran, Dat Q.; Rhoads, Jon Marc; Liu, Yuying

    2017-01-01

    The lack of a functional Foxp3 transcription factor and regulatory T (Treg) cells causes lethal, CD4+ T cell-driven autoimmune diseases in scurfy (SF) mice and humans. Recent studies have shown that adenosine A2A receptor activation limits inflammation and tissue damage, thereby playing an anti-inflammatory role. However, the role of the adenosine A2A receptor in the development of disease in SF mice remains unclear. Using a genetic approach, we found that adenosine A2A receptor deletion in SF mice (SF⋅A2A-/-) does not affect early life events, the development of a lymphoproliferative disorder, or hyper-production of pro-inflammatory cytokines seen in the Treg-deficiency state. As shown previously, Lactobacillus reuteri DSM 17938 treatment prolonged survival and reduced multiorgan inflammation in SF mice. In marked contrast, A2A receptor deletion completely blocked these beneficial effects of L. reuteri in SF mice. Altogether, these results suggest that although absence of the adenosine A2A receptor does not affect the development of disease in SF mice, it plays a critical role in the immunomodulation by L. reuteri in Treg-deficiency disease. The adenosine A2A receptor and its activation may have a role in treating other Treg dysfunction-mediated autoimmune diseases. PMID:29270168

  13. Overexpression of adenosine A2A receptors in rats: effects on depression, locomotion and anxiety

    Directory of Open Access Journals (Sweden)

    Joana E Coelho

    2014-06-01

    Full Text Available Adenosine A2A receptors (A2AR are a sub-type of receptors enriched in basal ganglia, activated by the neuromodulator adenosine, which interact with dopamine D2 receptors. Although this reciprocal antagonistic interaction is well established in motor function, the outcome in dopamine-related behaviors remains uncertain, in particular in depression and anxiety. We have demonstrated an upsurge of A2AR associated to aging and chronic stress. Furthermore, Alzheimer’s disease patients present A2AR accumulation in cortical areas together with depressive signs. We now tested the impact of overexpressing A2AR in forebrain neurons on dopamine related behavior, namely depression. Adult male rats overexpressing human A2AR under the control of CaMKII promoter [Tg(CaMKII-hA2AR] and aged-matched wild-types (WT of the same strain (Sprague-Dawley were studied. The forced swimming test (FST, sucrose preference test (SPT and the open-field test (OFT were performed to evaluate behavioral despair, anhedonia, locomotion and anxiety. Tg(CaMKII-hA2AR animals spent more time floating and less time swimming in the FST and presented a decreased sucrose preference at 48h in the SPT. They also covered higher distances in the OFT and spent more time in the central zone than the WT. The results indicate that Tg(CaMKII-hA2AR rats exhibit depressive-like behavior, hyperlocomotion and altered exploratory behavior. This A2AR overexpression may explain the depressive signs found in aging, chronic stress and Alzheimer’s disease.

  14. Allosteric mechanisms within the adenosine A2A-dopamine D2 receptor heterotetramer

    Science.gov (United States)

    Ferré, Sergi; Bonaventura, Jordi; Tomasi, Dardo; Navarro, Gemma; Moreno, Estefanía; Cortés, Antonio; Lluís, Carme; Casadó, Vicent; Volkow, Nora D.

    2017-01-01

    The structure constituted by a G protein coupled receptor (GPCR) homodimer and a G protein provides a main functional unit and oligomeric entities can be viewed as multiples of dimers. For GPCR heteromers, experimental evidence supports a tetrameric structure, comprised of two different homodimers, each able to signal with its preferred G protein. GPCR homomers and heteromers can act as the conduit of allosteric interactions between orthosteric ligands. The well-known agonist/agonist allosteric interaction in the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer, by which A2AR agonists decrease the affinity of D2R agonists, gave the first rationale for the use of A2AR antagonists in Parkinson’s disease. We review new pharmacological findings that can be explained in the frame of a tetrameric structure of the A2AR-D2R heteromer: first, ligand-independent allosteric modulations by the D2R that result in changes of the binding properties of A2AR ligands; second, differential modulation of the intrinsic efficacy of D2R ligands for G protein-dependent and independent signaling; third, the canonical antagonistic Gs-Gi interaction within the frame of the heteromer; and fourth, the ability of A2AR antagonists, including caffeine, to also exert the same allosteric modulations of D2R ligands than A2AR agonists, while A2AR agonists and antagonists counteract each other’s effects. These findings can have important clinical implications when evaluating the use of A2AR antagonists. They also call for the need of monitoring caffeine intake when evaluating the effect of D2R ligands, when used as therapeutic agents in neuropsychiatric disorders or as probes in imaging studies. PMID:26051403

  15. Overexpression of Adenosine A2A Receptors in Rats: Effects on Depression, Locomotion, and Anxiety

    Science.gov (United States)

    Coelho, Joana E.; Alves, Pedro; Canas, Paula M.; Valadas, Jorge S.; Shmidt, Tatiana; Batalha, Vânia L.; Ferreira, Diana G.; Ribeiro, Joaquim A.; Bader, Michael; Cunha, Rodrigo A.; do Couto, Frederico Simões; Lopes, Luísa V.

    2014-01-01

    Adenosine A2A receptors (A2AR) are a sub-type of receptors enriched in basal ganglia, activated by the neuromodulator adenosine, which interact with dopamine D2 receptors. Although this reciprocal antagonistic interaction is well-established in motor function, the outcome in dopamine-related behaviors remains uncertain, in particular in depression and anxiety. We have demonstrated an upsurge of A2AR associated to aging and chronic stress. Furthermore, Alzheimer’s disease patients present A2AR accumulation in cortical areas together with depressive signs. We now tested the impact of overexpressing A2AR in forebrain neurons on dopamine-related behavior, namely depression. Adult male rats overexpressing human A2AR under the control of CaMKII promoter [Tg(CaMKII-hA2AR)] and aged-matched wild-types (WT) of the same strain (Sprague-Dawley) were studied. The forced swimming test (FST), sucrose preference test (SPT), and the open-field test (OFT) were performed to evaluate behavioral despair, anhedonia, locomotion, and anxiety. Tg(CaMKII-hA2AR) animals spent more time floating and less time swimming in the FST and presented a decreased sucrose preference at 48 h in the SPT. They also covered higher distances in the OFT and spent more time in the central zone than the WT. The results indicate that Tg(CaMKII-hA2AR) rats exhibit depressive-like behavior, hyperlocomotion, and altered exploratory behavior. This A2AR overexpression may explain the depressive signs found in aging, chronic stress, and Alzheimer’s disease. PMID:24982640

  16. GDNF control of the glutamatergic cortico-striatal pathway requires tonic activation of adenosine A2A Receptors

    Science.gov (United States)

    Gomes, Catarina A.R.V.; Simões, Patrícia F.; Canas, Paula M.; Quiroz, César; Sebastião, Ana M.; Ferré, Sergi; Cunha, Rodrigo A.; Ribeiro, Joaquim A.

    2009-01-01

    Glial cell line-derived neurotrophic factor (GDNF) affords neuroprotection in Parkinson’s disease in accordance with its ability to bolster nigrostriatal innervation. We previously found that GDNF facilitates dopamine release in a manner dependent on adenosine A2A receptor activation. Since motor dysfunction also involves modifications of striatal glutamatergic innervation, we now tested if GDNF and its receptor system, Ret (rearranged during transfection) and GFRα1 (GDNF family receptor alpha 1) controlled the cortico-striatal glutamatergic pathway in an A2A receptor-dependent manner. GDNF (10 ng/ml) enhanced (by ≈13%) glutamate release from rat striatal nerve endings, an effect potentiated (up to ≈ 30%) by the A2A receptor agonist CGS 21680 (10 nM) and prevented by the A2A receptor antagonist, SCH 58261 (50 nM). Triple immunocytochemical studies revealed that Ret and GFRα1 were located in 50% of rat striatal glutamatergic terminals (immunopositive for vesicular glutamate transporters-1/2), where they were found to be co-located with A2A receptors. Activation of the glutamatergic system upon in vivo electrical stimulation of the rat cortico-striatal input induced striatal Ret phosphoprylation that was prevented by pre-treatment with the A2A receptor antagonist, MSX-3 (3 mg/kg). The results provide the first functional and morphological evidence that GDNF controls cortico-striatal glutamatergic pathways in a manner largely dependent on the co-activation of adenosine A2A receptors. PMID:19141075

  17. Selective adenosine A2A receptor agonists and antagonists protect against spinal cord injury through peripheral and central effects

    Directory of Open Access Journals (Sweden)

    Esposito Emanuela

    2011-04-01

    Full Text Available Abstract Background Permanent functional deficits following spinal cord injury (SCI arise both from mechanical injury and from secondary tissue reactions involving inflammation. Enhanced release of adenosine and glutamate soon after SCI represents a component in the sequelae that may be responsible for resulting functional deficits. The role of adenosine A2A receptor in central ischemia/trauma is still to be elucidated. In our previous studies we have demonstrated that the adenosine A2A receptor-selective agonist CGS21680, systemically administered after SCI, protects from tissue damage, locomotor dysfunction and different inflammatory readouts. In this work we studied the effect of the adenosine A2A receptor antagonist SCH58261, systemically administered after SCI, on the same parameters. We investigated the hypothesis that the main action mechanism of agonists and antagonists is at peripheral or central sites. Methods Spinal trauma was induced by extradural compression of SC exposed via a four-level T5-T8 laminectomy in mouse. Three drug-dosing protocols were utilized: a short-term systemic administration by intraperitoneal injection, a chronic administration via osmotic minipump, and direct injection into the spinal cord. Results SCH58261, systemically administered (0.01 mg/kg intraperitoneal. 1, 6 and 10 hours after SCI, reduced demyelination and levels of TNF-α, Fas-L, PAR, Bax expression and activation of JNK mitogen-activated protein kinase (MAPK 24 hours after SCI. Chronic SCH58261 administration, by mini-osmotic pump delivery for 10 days, improved the neurological deficit up to 10 days after SCI. Adenosine A2A receptors are physiologically expressed in the spinal cord by astrocytes, microglia and oligodendrocytes. Soon after SCI (24 hours, these receptors showed enhanced expression in neurons. Both the A2A agonist and antagonist, administered intraperitoneally, reduced expression of the A2A receptor, ruling out the possibility that the

  18. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer.

    Science.gov (United States)

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Cortés, Antoni; Volkow, Nora D; Schiffmann, Serge N; Ferré, Sergi; Casadó, Vicent

    2015-07-07

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain.

  19. Striatal Pre- and Postsynaptic Profile of Adenosine A2A Receptor Antagonists

    Science.gov (United States)

    Quiroz, César; Beaumont, Vahri; Goldberg, Steven R.; Lluís, Carme; Cortés, Antoni; Franco, Rafael; Casadó, Vicent; Canela, Enric I.; Ferré, Sergi

    2011-01-01

    Striatal adenosine A2A receptors (A2ARs) are highly expressed in medium spiny neurons (MSNs) of the indirect efferent pathway, where they heteromerize with dopamine D2 receptors (D2Rs). A2ARs are also localized presynaptically in cortico-striatal glutamatergic terminals contacting MSNs of the direct efferent pathway, where they heteromerize with adenosine A1 receptors (A1Rs). It has been hypothesized that postsynaptic A2AR antagonists should be useful in Parkinson's disease, while presynaptic A2AR antagonists could be beneficial in dyskinetic disorders, such as Huntington's disease, obsessive-compulsive disorders and drug addiction. The aim or this work was to determine whether selective A2AR antagonists may be subdivided according to a preferential pre- versus postsynaptic mechanism of action. The potency at blocking the motor output and striatal glutamate release induced by cortical electrical stimulation and the potency at inducing locomotor activation were used as in vivo measures of pre- and postsynaptic activities, respectively. SCH-442416 and KW-6002 showed a significant preferential pre- and postsynaptic profile, respectively, while the other tested compounds (MSX-2, SCH-420814, ZM-241385 and SCH-58261) showed no clear preference. Radioligand-binding experiments were performed in cells expressing A2AR-D2R and A1R-A2AR heteromers to determine possible differences in the affinity of these compounds for different A2AR heteromers. Heteromerization played a key role in the presynaptic profile of SCH-442416, since it bound with much less affinity to A2AR when co-expressed with D2R than with A1R. KW-6002 showed the best relative affinity for A2AR co-expressed with D2R than co-expressed with A1R, which can at least partially explain the postsynaptic profile of this compound. Also, the in vitro pharmacological profile of MSX-2, SCH-420814, ZM-241385 and SCH-58261 was is in accordance with their mixed pre- and postsynaptic profile. On the basis of their preferential

  20. Striatal pre- and postsynaptic profile of adenosine A(2A receptor antagonists.

    Directory of Open Access Journals (Sweden)

    Marco Orru

    2011-01-01

    Full Text Available Striatal adenosine A(2A receptors (A(2ARs are highly expressed in medium spiny neurons (MSNs of the indirect efferent pathway, where they heteromerize with dopamine D(2 receptors (D(2Rs. A(2ARs are also localized presynaptically in cortico-striatal glutamatergic terminals contacting MSNs of the direct efferent pathway, where they heteromerize with adenosine A(1 receptors (A(1Rs. It has been hypothesized that postsynaptic A(2AR antagonists should be useful in Parkinson's disease, while presynaptic A(2AR antagonists could be beneficial in dyskinetic disorders, such as Huntington's disease, obsessive-compulsive disorders and drug addiction. The aim or this work was to determine whether selective A(2AR antagonists may be subdivided according to a preferential pre- versus postsynaptic mechanism of action. The potency at blocking the motor output and striatal glutamate release induced by cortical electrical stimulation and the potency at inducing locomotor activation were used as in vivo measures of pre- and postsynaptic activities, respectively. SCH-442416 and KW-6002 showed a significant preferential pre- and postsynaptic profile, respectively, while the other tested compounds (MSX-2, SCH-420814, ZM-241385 and SCH-58261 showed no clear preference. Radioligand-binding experiments were performed in cells expressing A(2AR-D(2R and A(1R-A(2AR heteromers to determine possible differences in the affinity of these compounds for different A(2AR heteromers. Heteromerization played a key role in the presynaptic profile of SCH-442416, since it bound with much less affinity to A(2AR when co-expressed with D(2R than with A(1R. KW-6002 showed the best relative affinity for A(2AR co-expressed with D(2R than co-expressed with A(1R, which can at least partially explain the postsynaptic profile of this compound. Also, the in vitro pharmacological profile of MSX-2, SCH-420814, ZM-241385 and SCH-58261 was is in accordance with their mixed pre- and postsynaptic profile

  1. Graft versus host disease: New insights into A2A receptor agonist therapy

    Directory of Open Access Journals (Sweden)

    Karlie R. Jones

    2015-01-01

    Full Text Available Allogeneic transplantation can cure many disorders, including sickle cell disease, chronic granulomatous disease (CGD, severe combined immunodeficiency (SCID and many types of cancers. However, there are several associated risks that can result in severe immunological reactions and, in some cases, death. Much of this morbidity is related to graft versus host disease (GVHD [1]. GVHD is an immune mediated reaction in which donor T cells recognize the host as antigenically foreign, causing donor T cells to expand and attack host tissues. The current method of treating recent transplant patients with immunosuppressants to prevent this reaction has met with only partial success, emphasizing a need for new methods of GVHD treatment and prevention. Recently, a novel strategy has emerged targeting adenosine A2A receptors (A2AR through the use of adenosine agonists. These agonists have been shown in vitro to increase the TGFβ-induced generation of FoxP3+ regulatory T cells (Tregs and in vivo to improve weight gain and mortality as well as inhibit the release of pro-inflammatory cytokines in GVHD murine models [2,3]. Positive results involving A2AR agonists in vitro and in vivo are promising, suggesting that A2AR agonists should be a part of the management of clinical GvHD.

  2. LASSBio-897 Reduces Lung Injury Induced by Silica Particles in Mice: Potential Interaction with the A2A Receptor

    Science.gov (United States)

    Carvalho, Vinicius F.; Ferreira, Tatiana P. T.; de Arantes, Ana C. S.; Noël, François; Tesch, Roberta; Sant’Anna, Carlos M. R.; Barreiro, Eliezer J. L.; Fraga, Carlos A. M.; Rodrigues e Silva, Patrícia M.; Martins, Marco A.

    2017-01-01

    Silicosis is a lethal fibro-granulomatous pulmonary disease highly prevalent in developing countries, for which no proper therapy is available. Among a small series of N-acylhydrazones, the safrole-derived compound LASSBio-897 (3-thienylidene-3, 4-methylenedioxybenzoylhydrazide) raised interest due to its ability to bind to the adenosine A2A receptor. Here, we evaluated the anti-inflammatory and anti-fibrotic potential of LASSBio-897, exploring translation to a mouse model of silicosis and the A2A receptor as a site of action. Pulmonary mechanics, inflammatory, and fibrotic changes were assessed 28 days after intranasal instillation of silica particles in Swiss–Webster mice. Glosensor cAMP HEK293G cells, CHO cells stably expressing human adenosine receptors and ligand binding assay were used to evaluate the pharmacological properties of LASSBio-897 in vitro. Molecular docking studies of LASSBio-897 were performed using the genetic algorithm software GOLD 5.2. We found that the interventional treatment with the A2A receptor agonist CGS 21680 reversed silica particle-induced airway hyper-reactivity as revealed by increased responses of airway resistance and lung elastance following aerosolized methacholine. LASSBio-897 (2 and 5 mg/kg, oral) similarly reversed pivotal lung pathological features of silicosis in this model, reducing levels of airway resistance and lung elastance, granuloma formation and collagen deposition. In competition assays, LASSBio-897 decreased the binding of the selective A2A receptor agonist [3H]-CGS21680 (IC50 = 9.3 μM). LASSBio-897 (50 μM) induced modest cAMP production in HEK293G cells, but it clearly synergized the cAMP production by adenosine in a mechanism sensitive to the A2A antagonist SCH 58261. This synergism was also seen in CHO cells expressing the A2A, but not those expressing A2B, A1 or A3 receptors. Based on the evidence that LASSBio-897 binds to A2A receptor, molecular docking studies were performed using the A2A receptor

  3. LASSBio-897 Reduces Lung Injury Induced by Silica Particles in Mice: Potential Interaction with the A2A Receptor

    Directory of Open Access Journals (Sweden)

    Vinicius F. Carvalho

    2017-10-01

    Full Text Available Silicosis is a lethal fibro-granulomatous pulmonary disease highly prevalent in developing countries, for which no proper therapy is available. Among a small series of N-acylhydrazones, the safrole-derived compound LASSBio-897 (3-thienylidene-3, 4-methylenedioxybenzoylhydrazide raised interest due to its ability to bind to the adenosine A2A receptor. Here, we evaluated the anti-inflammatory and anti-fibrotic potential of LASSBio-897, exploring translation to a mouse model of silicosis and the A2A receptor as a site of action. Pulmonary mechanics, inflammatory, and fibrotic changes were assessed 28 days after intranasal instillation of silica particles in Swiss–Webster mice. Glosensor cAMP HEK293G cells, CHO cells stably expressing human adenosine receptors and ligand binding assay were used to evaluate the pharmacological properties of LASSBio-897 in vitro. Molecular docking studies of LASSBio-897 were performed using the genetic algorithm software GOLD 5.2. We found that the interventional treatment with the A2A receptor agonist CGS 21680 reversed silica particle-induced airway hyper-reactivity as revealed by increased responses of airway resistance and lung elastance following aerosolized methacholine. LASSBio-897 (2 and 5 mg/kg, oral similarly reversed pivotal lung pathological features of silicosis in this model, reducing levels of airway resistance and lung elastance, granuloma formation and collagen deposition. In competition assays, LASSBio-897 decreased the binding of the selective A2A receptor agonist [3H]-CGS21680 (IC50 = 9.3 μM. LASSBio-897 (50 μM induced modest cAMP production in HEK293G cells, but it clearly synergized the cAMP production by adenosine in a mechanism sensitive to the A2A antagonist SCH 58261. This synergism was also seen in CHO cells expressing the A2A, but not those expressing A2B, A1 or A3 receptors. Based on the evidence that LASSBio-897 binds to A2A receptor, molecular docking studies were performed using the

  4. Exploring an interaction of adenosine A2A receptor variability with coffee and tea intake in Parkinson's disease.

    Science.gov (United States)

    Tan, E K; Lu, Z Y; Fook-Chong, S M C; Tan, E; Shen, H; Chua, E; Yih, Y; Teo, Y Y; Zhao, Y

    2006-09-05

    Caffeine is an adenosine receptor A1 and A2A receptor antagonist and a putative functional genetic variant of the A2A receptor (2592C > Tins) mediates caffeine-induced anxiety. Here we investigated the potential interaction of this A2A genetic variant with the quantity of coffee and tea intake and their relationship with the risk of PD. A total of 441 subjects consisting of 222 PD and 219 race, gender and age matched controls were included. A multivariate analysis of the variables including the 2592C > Tins A2A genotypes, age of onset, gender, and the quantity of tea and coffee intake, interaction of the A2A genotypes with coffee intake, interaction of A2A genotypes with tea intake demonstrated the quantity of coffee intake to be significantly associated with PD (P coffee and tea intake in modulating the risk of PD. The dose dependent protective effect of coffee intake in PD was independent of the 2592C > Tins A2A genotype suggesting that the pharmacogenetic action of caffeine in PD may be mediated differently from other caffeine-induced neurologic syndromes.

  5. Adenosine A(1) and A(2A) receptors in mouse prefrontal cortex modulate acetylcholine release and behavioral arousal.

    Science.gov (United States)

    Van Dort, Christa J; Baghdoyan, Helen A; Lydic, Ralph

    2009-01-21

    During prolonged intervals of wakefulness, brain adenosine levels rise within the basal forebrain and cortex. The view that adenosine promotes sleep is supported by the corollary that N-methylated xanthines such as caffeine increase brain and behavioral arousal by blocking adenosine receptors. The four subtypes of adenosine receptors are distributed heterogeneously throughout the brain, yet the neurotransmitter systems and brain regions through which adenosine receptor blockade causes arousal are incompletely understood. This study tested the hypothesis that adenosine A(1) and A(2A) receptors in the prefrontal cortex contribute to the regulation of behavioral and cortical arousal. Dependent measures included acetylcholine (ACh) release in the prefrontal cortex, cortical electroencephalographic (EEG) power, and time to waking after anesthesia. Sleep and wakefulness were also quantified after microinjecting an adenosine A(1) receptor antagonist into the prefrontal cortex. The results showed that adenosine A(1) and A(2A) receptors in the prefrontal cortex modulate cortical ACh release, behavioral arousal, EEG delta power, and sleep. Additional dual microdialysis studies revealed that ACh release in the pontine reticular formation is significantly altered by dialysis delivery of adenosine receptor agonists and antagonists to the prefrontal cortex. These data, and early brain transection studies demonstrating that the forebrain is not needed for sleep cycle generation, suggest that the prefrontal cortex modulates EEG and behavioral arousal via descending input to the pontine brainstem. The results provide novel evidence that adenosine A(1) receptors within the prefrontal cortex comprise part of a descending system that inhibits wakefulness.

  6. Singular Location and Signaling Profile of Adenosine A2A-Cannabinoid CB1Receptor Heteromers in the Dorsal Striatum.

    Science.gov (United States)

    Moreno, Estefanía; Chiarlone, Anna; Medrano, Mireia; Puigdellívol, Mar; Bibic, Lucka; Howell, Lesley A; Resel, Eva; Puente, Nagore; Casarejos, María J; Perucho, Juan; Botta, Joaquín; Suelves, Nuria; Ciruela, Francisco; Ginés, Silvia; Galve-Roperh, Ismael; Casadó, Vicent; Grandes, Pedro; Lutz, Beat; Monory, Krisztina; Canela, Enric I; Lluís, Carmen; McCormick, Peter J; Guzmán, Manuel

    2018-04-01

    The dorsal striatum is a key node for many neurobiological processes such as motor activity, cognitive functions, and affective processes. The proper functioning of striatal neurons relies critically on metabotropic receptors. Specifically, the main adenosine and endocannabinoid receptors present in the striatum, ie, adenosine A 2A receptor (A 2A R) and cannabinoid CB 1 receptor (CB 1 R), are of pivotal importance in the control of neuronal excitability. Facilitatory and inhibitory functional interactions between striatal A 2A R and CB 1 R have been reported, and evidence supports that this cross-talk may rely, at least in part, on the formation of A 2A R-CB 1 R heteromeric complexes. However, the specific location and properties of these heteromers have remained largely unknown. Here, by using techniques that allowed a precise visualization of the heteromers in situ in combination with sophisticated genetically modified animal models, together with biochemical and pharmacological approaches, we provide a high-resolution expression map and a detailed functional characterization of A 2A R-CB 1 R heteromers in the dorsal striatum. Specifically, our data unveil that the A 2A R-CB 1 R heteromer (i) is essentially absent from corticostriatal projections and striatonigral neurons, and, instead, is largely present in striatopallidal neurons, (ii) displays a striking G protein-coupled signaling profile, where co-stimulation of both receptors leads to strongly reduced downstream signaling, and (iii) undergoes an unprecedented dysfunction in Huntington's disease, an archetypal disease that affects striatal neurons. Altogether, our findings may open a new conceptual framework to understand the role of coordinated adenosine-endocannabinoid signaling in the indirect striatal pathway, which may be relevant in motor function and neurodegenerative diseases.

  7. Oligomerización del receptor A2A de adenosina: interpretando el receptorsoma

    OpenAIRE

    Gandía Sánchez, Jorge

    2013-01-01

    [spa] Los receptores acoplados a proteína G (GPCR) conforman la familia de receptores de membrana más grande. El numeroso y variado tipo de señales que detectan han otorgado a estos receptores un alto interés farmacológico. Además, las interacciones entre diferentes tipos de GPCR formando complejos oligoméricos dan lugar a complejos con características bioquímicas diferenciadas de los protómeros que los forman. En esta Tesis Doctoral se han estudiado diferentes aspectos derivados este tipo de...

  8. The adenosine A2A receptor agonist CGS 21680 exhibits antipsychotic-like activity in Cebus apella monkeys

    DEFF Research Database (Denmark)

    Andersen, M B; Fuxe, K; Werge, T

    2002-01-01

    The adenosine A2A receptor agonist CGS 21680 has shown effects similar to dopamine antagonists in behavioural assays in rats predictive for antipsychotic activity, without induction of extrapyramidal side-effects (EPS). In the present study, we examined whether this functional dopamine antagonism...

  9. Synthesis and Properties of a New Water-Soluble Prodrug of the Adenosine A2A Receptor Antagonist MSX-2

    Directory of Open Access Journals (Sweden)

    Christa E. Müller

    2008-02-01

    Full Text Available The compound L-valine-3-{8-[(E-2-[3-methoxyphenylethenyl]-7-methyl-1-propargylxanthine-3-yl}propyl ester hydrochloride (MSX-4 was synthesized as an aminoacid ester prodrug of the adenosine A2A receptor antagonist MSX-2. It was found to bestable in artificial gastric acid, but readily cleaved by pig liver esterase.

  10. The neuronal Ca(2+) -binding protein 2 (NECAB2) interacts with the adenosine A(2A) receptor and modulates the cell surface expression and function of the receptor.

    Science.gov (United States)

    Canela, Laia; Luján, Rafael; Lluís, Carme; Burgueño, Javier; Mallol, Josefa; Canela, Enric I; Franco, Rafael; Ciruela, Francisco

    2007-09-01

    Heptaspanning membrane also known as G protein-coupled receptors (GPCR) do interact with a variety of intracellular proteins whose function is regulate receptor traffic and/or signaling. Using a yeast two-hybrid screen, NECAB2, a neuronal calcium binding protein, was identified as a binding partner for the adenosine A(2A) receptor (A(2A)R) interacting with its C-terminal domain. Co-localization, co-immunoprecipitation and pull-down experiments showed a close and specific interaction between A(2A)R and NECAB2 in both transfected HEK-293 cells and also in rat striatum. Immunoelectron microscopy detection of NECAB2 and A(2A)R in the rat striatopallidal structures indicated that both proteins are co-distributed in the same glutamatergic nerve terminals. The interaction of NECAB2 with A(2A)R modulated the cell surface expression, the ligand-dependent internalization and the receptor-mediated activation of the MAPK pathway. Overall, these results show that A(2A)R interacts with NECAB2 in striatal neurones co-expressing the two proteins and that the interaction is relevant for A(2A)R function.

  11. Adenosine A2A receptor-dependent proliferation of pulmonary endothelial cells is mediated through calcium mobilization, PI3-kinase and ERK1/2 pathways

    International Nuclear Information System (INIS)

    Ahmad, Aftab; Schaack, Jerome B.; White, Carl W.; Ahmad, Shama

    2013-01-01

    Highlights: •A 2A receptor-induced pulmonary endothelial growth is mediated by PI3K and ERK1/2. •Cytosolic calcium mobilization is also critical for pulmonary endothelial growth. •Effectors of A 2A receptor, like tyrosine kinases and cAMP increase PI3K/Akt signaling. •Activation of A 2A receptor can contribute to vascular remodeling. -- Abstract: Hypoxia and HIF-2α-dependent A 2A receptor expression and activation increase proliferation of human lung microvascular endothelial cells (HLMVECs). This study was undertaken to investigate the signaling mechanisms that mediate the proliferative effects of A 2A receptor. A 2A receptor-mediated proliferation of HLMVECs was inhibited by intracellular calcium chelation, and by specific inhibitors of ERK1/2 and PI3-kinase (PI3K). The adenosine A 2A receptor agonist CGS21680 caused intracellular calcium mobilization in controls and, to a greater extent, in A 2A receptor-overexpressing HLMVECs. Adenoviral-mediated A 2A receptor overexpression as well as receptor activation by CGS21680 caused increased PI3K activity and Akt phosphorylation. Cells overexpressing A 2A receptor also manifested enhanced ERK1/2 phosphorylation upon CGS21680 treatment. A 2A receptor activation also caused enhanced cAMP production. Likewise, treatment with 8Br-cAMP increased PI3K activity. Hence A 2A receptor-mediated cAMP production and PI3K and Akt phosphorylation are potential mediators of the A 2A -mediated proliferative response of HLMVECs. Cytosolic calcium mobilization and ERK1/2 phosphorylation are other critical effectors of HLMVEC proliferation and growth. These studies underscore the importance of adenosine A 2A receptor in activation of survival and proliferative pathways in pulmonary endothelial cells that are mediated through PI3K/Akt and ERK1/2 pathways

  12. Chronic methamphetamine treatment induces oxytocin receptor up-regulation in the amygdala and hypothalamus via an adenosine A2A receptor-independent mechanism.

    Science.gov (United States)

    Zanos, Panos; Wright, Sherie R; Georgiou, Polymnia; Yoo, Ji Hoon; Ledent, Catherine; Hourani, Susanna M; Kitchen, Ian; Winsky-Sommerer, Raphaelle; Bailey, Alexis

    2014-04-01

    There is mounting evidence that the neuropeptide oxytocin is a possible candidate for the treatment of drug addiction. Oxytocin was shown to reduce methamphetamine self-administration, conditioned place-preference, hyperactivity and reinstatement in rodents, highlighting its potential for the management of methamphetamine addiction. Thus, we hypothesised that the central endogenous oxytocinergic system is dysregulated following chronic methamphetamine administration. We tested this hypothesis by examining the effect of chronic methamphetamine administration on oxytocin receptor density in mice brains with the use of quantitative receptor autoradiographic binding. Saline (4ml/kg/day, i.p.) or methamphetamine (1mg/kg/day, i.p.) was administered daily for 10 days to male, CD1 mice. Quantitative autoradiographic mapping of oxytocin receptors was carried out with the use of [(125)I]-vasotocin in brain sections of these animals. Chronic methamphetamine administration induced a region specific upregulation of oxytocin receptor density in the amygdala and hypothalamus, but not in the nucleus accumbens and caudate putamen. As there is evidence suggesting an involvement of central adenosine A2A receptors on central endogenous oxytocinergic function, we investigated whether these methamphetamine-induced oxytocinergic neuroadaptations are mediated via an A2A receptor-dependent mechanism. To test this hypothesis, autoradiographic oxytocin receptor binding was carried out in brain sections of male CD1 mice lacking A2A receptors which were chronically treated with methamphetamine (1mg/kg/day, i.p. for 10 days) or saline. Similar to wild-type animals, chronic methamphetamine administration induced a region-specific upregulation of oxytocin receptor binding in the amygdala and hypothalamus of A2A receptor knockout mice and no genotype effect was observed. These results indicate that chronic methamphetamine use can induce profound neuroadaptations of the oxytocinergic receptor

  13. Adenosine A2A Receptor Up-Regulates Retinal Wave Frequency via Starburst Amacrine Cells in the Developing Rat Retina

    Science.gov (United States)

    Huang, Pin-Chien; Hsiao, Yu-Tien; Kao, Shao-Yen; Chen, Ching-Feng; Chen, Yu-Chieh; Chiang, Chung-Wei; Lee, Chien-fei; Lu, Juu-Chin; Chern, Yijuang; Wang, Chih-Tien

    2014-01-01

    Background Developing retinas display retinal waves, the patterned spontaneous activity essential for circuit refinement. During the first postnatal week in rodents, retinal waves are mediated by synaptic transmission between starburst amacrine cells (SACs) and retinal ganglion cells (RGCs). The neuromodulator adenosine is essential for the generation of retinal waves. However, the cellular basis underlying adenosine's regulation of retinal waves remains elusive. Here, we investigated whether and how the adenosine A2A receptor (A2AR) regulates retinal waves and whether A2AR regulation of retinal waves acts via presynaptic SACs. Methodology/Principal Findings We showed that A2AR was expressed in the inner plexiform layer and ganglion cell layer of the developing rat retina. Knockdown of A2AR decreased the frequency of spontaneous Ca2+ transients, suggesting that endogenous A2AR may up-regulate wave frequency. To investigate whether A2AR acts via presynaptic SACs, we targeted gene expression to SACs by the metabotropic glutamate receptor type II promoter. Ca2+ transient frequency was increased by expressing wild-type A2AR (A2AR-WT) in SACs, suggesting that A2AR may up-regulate retinal waves via presynaptic SACs. Subsequent patch-clamp recordings on RGCs revealed that presynaptic A2AR-WT increased the frequency of wave-associated postsynaptic currents (PSCs) or depolarizations compared to the control, without changing the RGC's excitability, membrane potentials, or PSC charge. These findings suggest that presynaptic A2AR may not affect the membrane properties of postsynaptic RGCs. In contrast, by expressing the C-terminal truncated A2AR mutant (A2AR-ΔC) in SACs, the wave frequency was reduced compared to the A2AR-WT, but was similar to the control, suggesting that the full-length A2AR in SACs is required for A2AR up-regulation of retinal waves. Conclusions/Significance A2AR up-regulates the frequency of retinal waves via presynaptic SACs, requiring its full

  14. Adenosine A(2A receptor up-regulates retinal wave frequency via starburst amacrine cells in the developing rat retina.

    Directory of Open Access Journals (Sweden)

    Pin-Chien Huang

    Full Text Available BACKGROUND: Developing retinas display retinal waves, the patterned spontaneous activity essential for circuit refinement. During the first postnatal week in rodents, retinal waves are mediated by synaptic transmission between starburst amacrine cells (SACs and retinal ganglion cells (RGCs. The neuromodulator adenosine is essential for the generation of retinal waves. However, the cellular basis underlying adenosine's regulation of retinal waves remains elusive. Here, we investigated whether and how the adenosine A(2A receptor (A(2AR regulates retinal waves and whether A(2AR regulation of retinal waves acts via presynaptic SACs. METHODOLOGY/PRINCIPAL FINDINGS: We showed that A(2AR was expressed in the inner plexiform layer and ganglion cell layer of the developing rat retina. Knockdown of A(2AR decreased the frequency of spontaneous Ca²⁺ transients, suggesting that endogenous A(2AR may up-regulate wave frequency. To investigate whether A(2AR acts via presynaptic SACs, we targeted gene expression to SACs by the metabotropic glutamate receptor type II promoter. Ca²⁺ transient frequency was increased by expressing wild-type A(2AR (A2AR-WT in SACs, suggesting that A(2AR may up-regulate retinal waves via presynaptic SACs. Subsequent patch-clamp recordings on RGCs revealed that presynaptic A(2AR-WT increased the frequency of wave-associated postsynaptic currents (PSCs or depolarizations compared to the control, without changing the RGC's excitability, membrane potentials, or PSC charge. These findings suggest that presynaptic A(2AR may not affect the membrane properties of postsynaptic RGCs. In contrast, by expressing the C-terminal truncated A(2AR mutant (A(2AR-ΔC in SACs, the wave frequency was reduced compared to the A(2AR-WT, but was similar to the control, suggesting that the full-length A(2AR in SACs is required for A(2AR up-regulation of retinal waves. CONCLUSIONS/SIGNIFICANCE: A(2AR up-regulates the frequency of retinal waves via

  15. Role of Adenosine Receptor A2A in Traumatic Optic Neuropathies

    Science.gov (United States)

    2013-12-01

    transient focal ischemia in mice. J. Neurosci. 19, 9192–9200. Collis, M.G., Hourani, S.M., 1993. Adenosine receptor subtypes. Trends Pharmacol. Sci. 14...4 INTRODUCTION Traumatic optic nerve injury is commonly seen in motor vehicle accidents , assaults, and in the theater of war... ischemia , which in turn leads to neuronal cell death (El-Remessy et al., 2006). Under these conditions, normally quiescent microglial cells become

  16. The adenosine A2A receptor agonist CGS 21680 exhibits antipsychotic-like activity in Cebus apella monkeys

    DEFF Research Database (Denmark)

    Andersen, M B; Fuxe, K; Werge, T

    2002-01-01

    The adenosine A2A receptor agonist CGS 21680 has shown effects similar to dopamine antagonists in behavioural assays in rats predictive for antipsychotic activity, without induction of extrapyramidal side-effects (EPS). In the present study, we examined whether this functional dopamine antagonism......-induced behaviours (unrest, stereotypies, arousal) were unaffected. EPS were not observed at any dose. At 0.05 mg/kg CGS 21680 produced vomiting. The two lower doses did not produce observable side-effects. Though the differential effect on amphetamine- and apomorphine-induced behaviours is intriguing, CGS 21680...... showed a functional anti-dopaminergic effect in Cebus apella monkeys without production of EPS. This further substantiates that adenosine A2A receptor agonists may have potential as antipsychotics with atypical profiles....

  17. A Meta-Analysis of Adenosine A2A Receptor Antagonists on Levodopa-Induced Dyskinesia In Vivo

    Directory of Open Access Journals (Sweden)

    Wen-Wen Wang

    2017-12-01

    Full Text Available BackgroundLong-term use of levodopa (l-dopa is inevitably complicated with highly disabling fluctuations and drug-induced dyskinesias, which pose major challenges to the existing drug therapy of Parkinson’s disease.MethodsIn this study, we conducted a systematic review and meta-analysis to assess the efficacy of A2A receptor antagonists on reducing l-dopa-induced dyskinesias (LID.ResultsNine studies with a total of 152 animals were included in this meta-analysis. Total abnormal involuntary movements (AIM score, locomotor activity, and motor disability were reported as outcome measures in 5, 5, and 3 studies, respectively. Combined standardized mean difference (SMD estimates were calculated using a random-effects model. We pooled the whole data and found that, when compared to l-dopa alone, A2A receptor antagonists plus l-dopa treatment showed no effect on locomotor activity (SMD −0.00, 95% confidence interval (CI: −2.52 to 2.52, p = 1.0, superiority in improvement of motor disability (SMD −5.06, 95% CI: −9.25 to −0.87, p = 0.02 and more effective in control of AIM (SMD −1.82, 95% CI: −3.38 to −0.25, p = 0.02.ConclusionTo sum up, these results demonstrated that A2A receptor antagonists appear to have efficacy in animal models of LID. However, large randomized clinical trials testing the effects of A2A receptor antagonists in LID patients are always warranted.

  18. Cholesterol 27-hydroxylase but not apolipoprotein apoE contributes to A2A adenosine receptor stimulated reverse cholesterol transport.

    Science.gov (United States)

    Bingham, Taiese Crystal; Parathath, Saj; Tian, Heather; Reiss, Allison; Chan, Edwin; Fisher, Edward A; Cronstein, Bruce N

    2012-02-01

    Movement of free cholesterol between the cellular compartment and acceptor is governed by cholesterol gradients that are determined by several enzymes and reverse cholesterol transport proteins. We have previously demonstrated that adenosine A(2A) receptors inhibit foam cell formation and stimulate production of cholesterol 27-hydroxylase (CYP27A1), an enzyme involved in the conversion of cholesterol to oxysterols. We therefore asked whether the effect of adenosine A(2A) receptors on foam cell formation in vitro is mediated by CYP27A1 or apoE, a carrier for cholesterol in the serum. We found that specific lentiviral siRNA infection markedly reduced apoE or 27-hydroxylase mRNA in THP-1 cells. Despite diminished apoE expression (p CYP27A1 KD cells (4 ± 2%; pCYP27A1 KD cells but reduced efflux in apoE KD cells. These results demonstrate that adenosine A(2A) receptor occupancy diminishes foam cell formation by increasing expression and function of CYP27A1.

  19. Cardioprotection of controlled and cardiac-specific over-expression of A(2A-adenosine receptor in the pressure overload.

    Directory of Open Access Journals (Sweden)

    Eman A Hamad

    Full Text Available Adenosine binds to three G protein-coupled receptors (R located on the cardiomyocyte (A(1-R, A(2A-R and A(3-R and provides cardiac protection during both ischemic and load-induced stress. While the role of adenosine receptor-subtypes has been well defined in the setting of ischemia-reperfusion, far less is known regarding their roles in protecting the heart during other forms of cardiac stress. Because of its ability to increase cardiac contractility and heart rate, we hypothesized that enhanced signaling through A(2A-R would protect the heart during the stress of transverse aortic constriction (TAC. Using a cardiac-specific and inducible promoter, we selectively over-expressed A(2A-R in FVB mice. Echocardiograms were obtained at baseline, 2, 4, 8, 12, 14 weeks and hearts were harvested at 14 weeks, when WT mice developed a significant decrease in cardiac function, an increase in end systolic and diastolic dimensions, a higher heart weight to body weight ratio (HW/BW, and marked fibrosis when compared with sham-operated WT. More importantly, these changes were significantly attenuated by over expression of the A(2A-R. Furthermore, WT mice also demonstrated marked increases in the hypertrophic genes β-myosin heavy chain (β-MHC, and atrial natriuretic factor (ANF--changes that are mediated by activation of the transcription factor GATA-4. Levels of the mRNAs encoding β-MHC, ANP, and GATA-4 were significantly lower in myocardium from A(2A-R TG mice after TAC when compared with WT and sham-operated controls. In addition, three inflammatory factors genes encoding cysteine dioxygenase, complement component 3, and serine peptidase inhibitor, member 3N, were enhanced in WT TAC mice, but their expression was suppressed in A(2A-R TG mice. A(2A-R over-expression is protective against pressure-induced heart failure secondary to TAC. These cardioprotective effects are associated with attenuation of GATA-4 expression and inflammatory factors. The A(2A

  20. Molecular Evidence of Adenosine Deaminase Linking Adenosine A2A Receptor and CD26 Proteins

    Directory of Open Access Journals (Sweden)

    Estefanía Moreno

    2018-02-01

    Full Text Available Adenosine is an endogenous purine nucleoside that acts in all living systems as a homeostatic network regulator through many pathways, which are adenosine receptor (AR-dependent and -independent. From a metabolic point of view, adenosine deaminase (ADA is an essential protein in the regulation of the total intracellular and extracellular adenosine in a tissue. In addition to its cytosolic localization, ADA is also expressed as an ecto-enzyme on the surface of different cells. Dipeptidyl peptidase IV (CD26 and some ARs act as binding proteins for extracellular ADA in humans. Since CD26 and ARs interact with ADA at opposite sites, we have investigated if ADA can function as a cell-to-cell communication molecule by bridging the anchoring molecules CD26 and A2AR present on the surfaces of the interacting cells. By combining site-directed mutagenesis of ADA amino acids involved in binding to A2AR and a modification of the bioluminescence resonance energy transfer (BRET technique that allows detection of interactions between two proteins expressed in different cell populations with low steric hindrance (NanoBRET, we show direct evidence of the specific formation of trimeric complexes CD26-ADA-A2AR involving two cells. By dynamic mass redistribution assays and ligand binding experiments, we also demonstrate that A2AR-NanoLuc fusion proteins are functional. The existence of this ternary complex is in good agreement with the hypothesis that ADA could bridge T-cells (expressing CD26 and dendritic cells (expressing A2AR. This is a new metabolic function for ecto-ADA that, being a single chain protein, it has been considered as an example of moonlighting protein, because it performs more than one functional role (as a catalyst, a costimulator, an allosteric modulator and a cell-to-cell connector without partitioning these functions in different subunits.

  1. Resetting microbiota by Lactobacillus reuteri inhibits T reg deficiency–induced autoimmunity via adenosine A2A receptors

    Science.gov (United States)

    Hoang, Thomas K.; Tian, Xiangjun; Luo, Meng; Zhou, Jain; Tatevian, Nina; Molina, Jose G.; Blackburn, Michael R.; Gomez, Thomas H.

    2017-01-01

    Regulatory T (T reg) cell deficiency causes lethal, CD4+ T cell–driven autoimmune diseases. Stem cell transplantation is used to treat these diseases, but this procedure is limited by the availability of a suitable donor. The intestinal microbiota drives host immune homeostasis by regulating the differentiation and expansion of T reg, Th1, and Th2 cells. It is currently unclear if T reg cell deficiency–mediated autoimmune disorders can be treated by targeting the enteric microbiota. Here, we demonstrate that Foxp3+ T reg cell deficiency results in gut microbial dysbiosis and autoimmunity over the lifespan of scurfy (SF) mouse. Remodeling microbiota with Lactobacillus reuteri prolonged survival and reduced multiorgan inflammation in SF mice. L. reuteri changed the metabolomic profile disrupted by T reg cell deficiency, and a major effect was to restore levels of the purine metabolite inosine. Feeding inosine itself prolonged life and inhibited multiorgan inflammation by reducing Th1/Th2 cells and their associated cytokines. Mechanistically, the inhibition of inosine on the differentiation of Th1 and Th2 cells in vitro depended on adenosine A2A receptors, which were also required for the efficacy of inosine and of L. reuteri in vivo. These results reveal that the microbiota–inosine–A2A receptor axis might represent a potential avenue for combatting autoimmune diseases mediated by T reg cell dysfunction. PMID:27994068

  2. Distribution of the a2, a3, and a5 nicotinic acetylcholine receptor subunits in the chick brain

    Directory of Open Access Journals (Sweden)

    Torrão A.S.

    1997-01-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are ionotropic receptors comprised of a and ß subunits. These receptors are widely distributed in the central nervous system, and previous studies have revealed specific patterns of localization for some nAChR subunits in the vertebrate brain. In the present study we used immunohistochemical methods and monoclonal antibodies to localize the a2, a3, and a5 nAChR subunits in the chick mesencephalon and diencephalon. We observed a differential distribution of these three subunits in the chick brain, and showed that the somata and neuropil of many central structures contain the a5 nAChR subunit. The a2 and a3 subunits, on the other hand, exhibited a more restricted distribution than a5 and other subunits previously studied, namely a7, a8 and ß2. The patterns of distribution of the different nAChR subunits suggest that neurons in many brain structures may contain several subtypes of nAChRs and that in a few regions one particular subtype may determine the cholinergic nicotinic responses

  3. Up-regulation of striatal adenosine A2A receptors with iron deficiency in rats. Effects on locomotion and cortico-striatal neurotransmission

    Science.gov (United States)

    Quiroz, César; Pearson, Virginia; Gulyani, Seema; Allen, Richard; Earley, Christopher; Ferré, Sergi

    2010-01-01

    Brain iron deficiency leads to altered dopaminergic function in experimental animals, which can provide a mechanistic explanation for iron deficiency-related human sensory-motor disorders, such as Restless Legs Syndrome (RLS). However, mechanisms linking both conditions have not been determined. Considering the strong modulation exerted by adenosine on dopamine signaling, one connection could involve changes in adenosine receptor expression or function. In the striatum, presynaptic A2A receptors are localized in glutamatergic terminals contacting GABAergic dynorphinergic neurons and their function can be analyzed by the ability of A2A receptor antagonists to block the motor output induced by cortical electrical stimulation. Postsynaptic A2A receptors are localized in the dendritic field of GABAergic enkephalinergic neurons and their function can be analyzed by studying the ability of A2A receptor antagonists to produce locomotor activity and to counteract striatal ERK1/2 phosphorylation induced by cortical electrical stimulation. Increased density of striatal A2A receptors was found in rats fed during three weeks with an iron-deficient diet during the post-weaning period. In iron-deficient rats, the selective A2A receptor antagonist MSX-3, at doses of 1 and 3 mg/kg, was more effective at blocking motor output induced by cortical electrical stimulation (presynaptic A2A receptor-mediated effect) and at enhancing locomotor activation and blocking striatal ERK phosphorylation induced by cortical electrical stimulation (postsynaptic A2A receptor-mediated effects). These results indicate that brain iron deficiency induces a functional up-regulation of both striatal pre- and postsynaptic A2A receptor, which could be involved in sensory-motor disorders associated with iron deficiency such as RLS. PMID:20385128

  4. Up-regulation of striatal adenosine A(2A) receptors with iron deficiency in rats: effects on locomotion and cortico-striatal neurotransmission.

    Science.gov (United States)

    Quiroz, César; Pearson, Virginia; Gulyani, Seema; Allen, Richard; Earley, Christopher; Ferré, Sergi

    2010-07-01

    Brain iron deficiency leads to altered dopaminergic function in experimental animals, which can provide a mechanistic explanation for iron deficiency-related human sensory-motor disorders, such as Restless Legs Syndrome (RLS). However, mechanisms linking both conditions have not been determined. Considering the strong modulation exerted by adenosine on dopamine signaling, one connection could involve changes in adenosine receptor expression or function. In the striatum, presynaptic A(2A) receptors are localized in glutamatergic terminals contacting GABAergic dynorphinergic neurons and their function can be analyzed by the ability of A(2A) receptor antagonists to block the motor output induced by cortical electrical stimulation. Postsynaptic A(2A) receptors are localized in the dendritic field of GABAergic enkephalinergic neurons and their function can be analyzed by studying the ability of A(2A) receptor antagonists to produce locomotor activity and to counteract striatal ERK1/2 phosphorylation induced by cortical electrical stimulation. Increased density of striatal A(2A) receptors was found in rats fed during 3 weeks with an iron-deficient diet during the post-weaning period. In iron-deficient rats, the selective A(2A) receptor antagonist MSX-3, at doses of 1 and 3 mg/kg, was more effective at blocking motor output induced by cortical electrical stimulation (presynaptic A(2A) receptor-mediated effect) and at enhancing locomotor activation and blocking striatal ERK phosphorylation induced by cortical electrical stimulation (postsynaptic A(2A) receptor-mediated effects). These results indicate that brain iron deficiency induces a functional up-regulation of both striatal pre- and postsynaptic A(2A) receptor, which could be involved in sensory-motor disorders associated with iron deficiency such as RLS. Copyright 2010. Published by Elsevier Inc.

  5. Selective Activation of Adenosine A2A Receptors on Immune Cells by a CD73-Dependent Prodrug Suppresses Joint Inflammation in Experimental Rheumatoid Arthritis.

    NARCIS (Netherlands)

    Flogel, U.; Burghoff, S.; Lent, P.L.E.M. van; Temme, S.; Galbarz, L.; Ding, Z.; El-Tayeb, A.; Huels, S.; Bonner, F.; Borg, N. van den; Jacoby, C.; Muller, C.E.; Berg, W.B. van den; Schrader, J.

    2012-01-01

    Adenosine A(2A) receptor (A(2A)R) agonists are both highly effective anti-inflammatory agents and potent vasodilators. To separate these two activities, we have synthesized phosphorylated A(2A)R agonists (prodrugs) that require the presence of ecto-5'-nucleotidase (CD73) to become activated. In the

  6. FGF receptor genes and breast cancer susceptibility

    DEFF Research Database (Denmark)

    Agarwal, D; Pineda, S; Michailidou, K

    2014-01-01

    Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying...... was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95% confidence interval=1.02-1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2.Conclusion:Our results suggest...

  7. Role of adenosine A2A receptor signaling in the nicotine-evoked attenuation of reflex cardiac sympathetic control

    International Nuclear Information System (INIS)

    El-Mas, Mahmoud M.; El-gowilly, Sahar M.; Fouda, Mohamed A.; Saad, Evan I.

    2011-01-01

    Baroreflex dysfunction contributes to increased cardiovascular risk in cigarette smokers. Given the importance of adenosinergic pathways in baroreflex control, the hypothesis was tested that defective central adenosinergic modulation of cardiac autonomic activity mediates the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate (HR) to increases or decreases in blood pressure (BP) evoked by i.v. doses (1-16 μg/kg) of phenylephrine (PE) and sodium nitroprusside (SNP), respectively, were constructed in conscious rats; slopes of the curves were taken as measures of baroreflex sensitivity (BRS). Nicotine (25 and 100 μg/kg i.v.) dose-dependently reduced BRS SNP in contrast to no effect on BRS PE . BRS SNP was also attenuated after intracisternal (i.c.) administration of nicotine. Similar reductions in BRS SNP were observed in rats pretreated with atropine or propranolol. The combined treatment with nicotine and atropine produced additive inhibitory effects on BRS, an effect that was not demonstrated upon concurrent exposure to nicotine and propranolol. BRS SNP was reduced in preparations treated with i.c. 8-phenyltheophylline (8-PT, nonselective adenosine receptor antagonist), 8-(3-Chlorostyryl) caffeine (CSC, A 2A antagonist), or VUF5574 (A 3 antagonist). In contrast, BRS SNP was preserved after blockade of A 1 (DPCPX) or A 2B (alloxazine) receptors or inhibition of adenosine uptake by dipyridamole. CSC or 8-PT abrogated the BRS SNP depressant effect of nicotine whereas other adenosinergic antagonists were without effect. Together, nicotine preferentially impairs reflex tachycardia via disruption of adenosine A 2A receptor-mediated facilitation of reflex cardiac sympathoexcitation. Clinically, the attenuation by nicotine of compensatory sympathoexcitation may be detrimental in conditions such as hypothalamic defense response, posture changes, and ventricular rhythms. - Research highlights: → The role of central adenosinergic sites in

  8. Novel Alexa Fluor-488 labeled antagonist of the A(2A) adenosine receptor: Application to a fluorescence polarization-based receptor binding assay.

    Science.gov (United States)

    Kecskés, Miklós; Kumar, T Santhosh; Yoo, Lena; Gao, Zhan-Guo; Jacobson, Kenneth A

    2010-08-15

    Fluorescence polarization (FP) assay has many advantages over the traditional radioreceptor binding studies. We developed an A(2A) adenosine receptor (AR) FP assay using a newly synthesized fluorescent antagonist of the A(2A)AR (MRS5346), a pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine derivative conjugated to the fluorescent dye Alexa Fluor-488. MRS5346 displayed a K(i) value of 111+/-16nM in radioligand binding using [(3)H]CGS21680 and membranes prepared from HEK293 cells stably expressing the human A(2A)AR. In a cyclic AMP functional assay, MRS5346 was shown to be an A(2A)AR antagonist. MRS5346 did not show any effect on A(1) and A(3) ARs in binding or the A(2B)AR in a cyclic AMP assay at 10microM. Its suitability as a fluorescent tracer was indicated in an initial observation of an FP signal following A(2A)AR binding. The FP signal was optimal with 20nM MRS5346 and 150microg protein/mL HEK293 membranes. The association and dissociation kinetic parameters were readily determined using this FP assay. The K(d) value of MRS5346 calculated from kinetic parameters was 16.5+/-4.7nM. In FP competition binding experiments using MRS5346 as a tracer, K(i) values of known AR agonists and antagonists consistently agreed with K(i) values from radioligand binding. Thus, this FP assay, which eliminates using radioisotopes, appears to be appropriate for both routine receptor binding and high-throughput screening with respect to speed of analysis, displaceable signal and precision. The approach used in the present study could be generally applicable to other GPCRs. Published by Elsevier Inc.

  9. Andrographolide protects liver cells from H2O2 induced cell death by upregulation of Nrf-2/HO-1 mediated via adenosine A2a receptor signalling.

    Science.gov (United States)

    Mittal, Smriti P K; Khole, Swati; Jagadish, Nidhi; Ghosh, Debjani; Gadgil, Vijay; Sinkar, Vilas; Ghaskadbi, Saroj S

    2016-11-01

    Andrographolide, principle constituent of Andrographis paniculata Nees is used in traditional medicine in Southeast Asia and is known to exhibit various biological activities. Its antioxidant activity is due to its ability to activate one of the antioxidant enzymes, heme oxygenase-1 (HO-1) which is regulated transcriptionally through Nrf-2. However, molecular mechanism underlying activation of Nrf-2/HO-1 has not yet been clearly understood. Protective effect of andrographolide against H2O2 induced cell death, reactive oxygen species and lipid peroxidation was observed in HepG2 cells. Ability of andrographolide to modulate G-protein coupled receptor (GPCR) mediated signalling was determined using in silico docking and gene expression was analyzed by qRT-PCR, confocal microscopy and western blot analysis. We clearly show that andrographolide via adenosine A2A receptor signalling leads to activation of p38 MAP kinase, resulting in upregulation of Nrf-2, its translocation to nucleus and activation of HO-1. Additionally, it activates adenylate cyclase resulting in cAMP formation which in turn activates protein kinase A leading to inhibition of GSK-3β by phosphorylation. Inactivated GSK-3β leads to retention of Nrf-2 in the nucleus leading to sustained expression of HO-1 by binding to its antioxidant response element (ARE). Thus, andrographolide probably by binding to adenosine A2a receptor activates Nrf-2 transcription and also inhibits its exclusion from the nucleus by inactivating GSK-3β, together resulting in activation of HO-1. We speculate that andrographolide can be used as a therapeutic drug to combat oxidative stress implicated in pathogenesis of various diseases such as diabetes, osteoporosis, neurodegenerative diseases etc. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Adenosine A2A receptor blockade Prevents Rotenone-Induced Motor Impairment in a Rat Model of Parkinsonism

    Directory of Open Access Journals (Sweden)

    Ahmed M Fathalla

    2016-02-01

    Full Text Available Pharmacological studies implicate the blockade of adenosine receptorsas an effective strategy for reducing Parkinson's disease (PD symptoms. The objective of this study is to elucidate the possible protective effects of ZM241385 and 8-cyclopentyl-1,3-dipropylxanthine, two selective A2Aand A1 receptor antagonists, on a rotenone rat model of PD. Rats were split into four groups: vehicle control (1 ml/kg/48 h, rotenone(1.5 mg/kg/48 h, s.c., ZM241385 (3.3 mg/kg/day, i.p and 8-cyclopentyl-1,3-dipropylxanthine (5 mg/kg/day, i.p. After that, animals were subjected to behavioral (stride length and grid walking and biochemical (measuring concentration of dopamine levels using high performance liquid chromatography. In the rotenone group, rats displayed a reduced motor activity and disturbed movement coordination in the behavioral tests and a decreased dopamine concentration as foundby high performance liquid chromatography. The effect of rotenone was partially preventedin the ZM241385 group, but not with 8-cyclopentyl-1,3-dipropylxanthine administration. The administration of ZM241385 has led toan improvement improved of motor function and movement coordination (a partial increase of stride length and partial decrease in the number of foot slips and an increase in dopamine concentration in the rotenone-injected rats. However, the 8-cyclopentyl-1,3-dipropylxanthine and rotenone groups were not significantly different. These results indicate that selective A2Areceptor blockade by ZM241385, but not A1receptor blockadeby 8-cyclopentyl-1,3-dipropylxanthine, may treat PD motor symptoms. This reinforces the potential use of A2A receptor antagonists as a treatment strategy for PD patients.. This may provide a more selective treatment strategy for PD patients.

  11. An A2A adenosine receptor agonist, ATL313, reduces inflammation and improves survival in murine sepsis models

    Directory of Open Access Journals (Sweden)

    Linden Joel

    2008-10-01

    Full Text Available Abstract Background The pathophysiology of sepsis is due in part to early systemic inflammation. Here we describe molecular and cellular responses, as well as survival, in A2A adenosine receptor (AR agonist treated and untreated animals during experimental sepsis. Methods Sepsis was induced in mice by intraperitoneal inoculation of live bacteria (Escherichia coli or Staphylococcus aureus or lipopolysaccharide (LPS. Mice inoculated with live bacteria were treated with an A2A AR agonist (ATL313 or phosphate buffered saline (PBS, with or without the addition of a dose of ceftriaxone. LPS inoculated mice were treated with ATL313 or PBS. Serum cytokines and chemokines were measured sequentially at 1, 2, 4, 8, and 24 hours after LPS was administered. In survival studies, mice were followed until death or for 7 days. Results There was a significant survival benefit in mice infected with live E. coli (100% vs. 20%, p = 0.013 or S. aureus (60% vs. 20%, p = 0.02 when treated with ATL313 in conjunction with an antibiotic versus antibiotic alone. ATL313 also improved survival from endotoxic shock when compared to PBS treatment (90% vs. 40%, p = 0.005. The serum concentrations of TNF-α, MIP-1α, MCP-1, IFN-γ, and IL-17 were decreased by ATL313 after LPS injection (p p p Conclusion Further studies are warranted to determine the clinical utility of ATL313 as a novel treatment for sepsis.

  12. Adenosine A(2A receptors measured with [C]TMSX PET in the striata of Parkinson's disease patients.

    Directory of Open Access Journals (Sweden)

    Masahiro Mishina

    Full Text Available Adenosine A(2A receptors (A2ARs are thought to interact negatively with the dopamine D(2 receptor (D2R, so selective A2AR antagonists have attracted attention as novel treatments for Parkinson's disease (PD. However, no information about the receptor in living patients with PD is available. The purpose of this study was to investigate the relationship between A2ARs and the dopaminergic system in the striata of drug-naïve PD patients and PD patients with dyskinesia, and alteration of these receptors after antiparkinsonian therapy. We measured binding ability of striatal A2ARs using positron emission tomography (PET with [7-methyl-(11C]-(E-8-(3,4,5-trimethoxystyryl-1,3,7-trimethylxanthine ([(11C]TMSX in nine drug-naïve patients with PD, seven PD patients with mild dyskinesia and six elderly control subjects using PET. The patients and eight normal control subjects were also examined for binding ability of dopamine transporters and D2Rs. Seven of the drug-naïve patients underwent a second series of PET scans following therapy. We found that the distribution volume ratio of A2ARs in the putamen were larger in the dyskinesic patients than in the control subjects (p<0.05, Tukey-Kramer post hoc test. In the drug-naïve patients, the binding ability of the A2ARs in the putamen, but not in the head of caudate nucleus, was significantly lower on the more affected side than on the less affected side (p<0.05, paired t-test. In addition, the A2ARs were significantly increased after antiparkinsonian therapy in the bilateral putamen of the drug-naïve patients (p<0.05, paired t-test but not in the bilateral head of caudate nucleus. Our study demonstrated that the A2ARs in the putamen were increased in the PD patients with dyskinesia, and also suggest that the A2ARs in the putamen compensate for the asymmetrical decrease of dopamine in drug-naïve PD patients and that antiparkinsonian therapy increases the A2ARs in the putamen. The A2ARs may play an

  13. Essential Control of the Function of the Striatopallidal Neuron by Pre-coupled Complexes of Adenosine A2A-Dopamine D2 Receptor Heterotetramers and Adenylyl Cyclase

    Directory of Open Access Journals (Sweden)

    Sergi Ferré

    2018-04-01

    Full Text Available The central adenosine system and adenosine receptors play a fundamental role in the modulation of dopaminergic neurotransmission. This is mostly achieved by the strategic co-localization of different adenosine and dopamine receptor subtypes in the two populations of striatal efferent neurons, striatonigral and striatopallidal, that give rise to the direct and indirect striatal efferent pathways, respectively. With optogenetic techniques it has been possible to dissect a differential role of the direct and indirect pathways in mediating “Go” responses upon exposure to reward-related stimuli and “NoGo” responses upon exposure to non-rewarded or aversive-related stimuli, respectively, which depends on their different connecting output structures and their differential expression of dopamine and adenosine receptor subtypes. The striatopallidal neuron selectively expresses dopamine D2 receptors (D2R and adenosine A2A receptors (A2AR, and numerous experiments using multiple genetic and pharmacological in vitro, in situ and in vivo approaches, demonstrate they can form A2AR-D2R heteromers. It was initially assumed that different pharmacological interactions between dopamine and adenosine receptor ligands indicated the existence of different subpopulations of A2AR and D2R in the striatopallidal neuron. However, as elaborated in the present essay, most evidence now indicates that all interactions can be explained with a predominant population of striatal A2AR-D2R heteromers forming complexes with adenylyl cyclase subtype 5 (AC5. The A2AR-D2R heteromer has a tetrameric structure, with two homodimers, which allows not only multiple allosteric interactions between different orthosteric ligands, agonists, and antagonists, but also the canonical Gs-Gi antagonistic interaction at the level of AC5. We present a model of the function of the A2AR-D2R heterotetramer-AC5 complex, which acts as an integrative device of adenosine and dopamine signals that

  14. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress.

    Science.gov (United States)

    Kaster, Manuella P; Machado, Nuno J; Silva, Henrique B; Nunes, Ana; Ardais, Ana Paula; Santana, Magda; Baqi, Younis; Müller, Christa E; Rodrigues, Ana Lúcia S; Porciúncula, Lisiane O; Chen, Jiang Fan; Tomé, Ângelo R; Agostinho, Paula; Canas, Paula M; Cunha, Rodrigo A

    2015-06-23

    The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function.

  15. Inhibition of A2A Adenosine Receptor Signaling in Cancer Cells Proliferation by the Novel Antagonist TP455

    Directory of Open Access Journals (Sweden)

    Stefania Gessi

    2017-12-01

    Full Text Available Several evidences indicate that the ubiquitous nucleoside adenosine, acting through A1, A2A, A2B, and A3 receptor (AR subtypes, plays crucial roles in tumor development. Adenosine has contrasting effects on cell proliferation depending on the engagement of different receptor subtypes in various tumors. The involvement of A2AARs in human A375 melanoma, as well as in human A549 lung and rat MRMT1 breast carcinoma proliferation has been evaluated in view of the availability of a novel A2AAR antagonist, with high affinity and selectivity, named as 2-(2-furanyl-N5-(2-methoxybenzyl[1,3]thiazolo[5,4-d]pyrimidine-5,7-diammine (TP455. Specifically, the signaling pathways triggered in the cancer cells of different origin and the antagonist effect of TP455 were investigated. The A2AAR protein expression was evaluated through receptor binding assays. Furthermore, the effect of A2AAR activation on cell proliferation at 24, 48 and 72 hours was studied. The selective A2AAR agonist 2-p-(2-carboxyethylphenethylamino-5′-N-ethylcarboxamidoadenosine hydrochloride (CGS21680, concentration-dependently induced cell proliferation in A375, A549, and MRMT1 cancer cells and the effect was potently antagonized by the A2AAR antagonist TP455, as well as by the reference A2AAR blocker 4-(2-[7-amino-2-(2-furyl[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethylphenol (ZM241385. As for the signaling pathway recruited in this response we demonstrated that, by using the specific inhibitors of signal transduction pathways, the effect of A2AAR stimulation was induced through phospholipase C (PLC and protein kinase C-delta (PKC-δ. In addition, we evaluated, through the AlphaScreen SureFire phospho(p protein assay, the kinases enrolled by A2AAR to stimulate cell proliferation and we found the involvement of protein kinase B (AKT, extracellular regulated kinases (ERK1/2, and c-Jun N-terminal kinases (JNKs. Indeed, we demonstrated that the CGS21680 stimulatory effect on kinases was

  16. Adenosine A2A Receptors Control Glutamatergic Synaptic Plasticity in Fast Spiking Interneurons of the Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Amber Kerkhofs

    2018-03-01

    Full Text Available Adenosine A2A receptors (A2AR are activated upon increased synaptic activity to assist in the implementation of long-term plastic changes at synapses. While it is reported that A2AR are involved in the control of prefrontal cortex (PFC-dependent behavior such as working memory, reversal learning and effort-based decision making, it is not known whether A2AR control glutamatergic synapse plasticity within the medial PFC (mPFC. To elucidate that, we tested whether A2AR blockade affects long-term plasticity (LTP of excitatory post-synaptic potentials in pyramidal neurons and fast spiking (FS interneurons in layer 5 of the mPFC and of population spikes. Our results show that A2AR are enriched at mPFC synapses, where their blockade reversed the direction of plasticity at excitatory synapses onto layer 5 FS interneurons from LTP to long-term depression, while their blockade had no effect on the induction of LTP at excitatory synapses onto layer 5 pyramidal neurons. At the network level, extracellularly induced LTP of population spikes was reduced by A2AR blockade. The interneuron-specificity of A2AR in controlling glutamatergic synapse LTP may ensure that during periods of high synaptic activity, a proper excitation/inhibition balance is maintained within the mPFC.

  17. Transcriptional profiling of striatal neurons in response to single or concurrent activation of dopamine D2, adenosine A(2A) and metabotropic glutamate type 5 receptors: focus on beta-synuclein expression.

    Science.gov (United States)

    Canela, Laia; Selga, Elisabet; García-Martínez, Juan Manuel; Amaral, Olavo B; Fernández-Dueñas, Víctor; Alberch, Jordi; Canela, Enric I; Franco, Rafael; Noé, Véronique; Lluís, Carme; Ciudad, Carlos J; Ciruela, Francisco

    2012-10-25

    G protein-coupled receptor oligomerization is a concept which is changing the understanding of classical pharmacology. Both, oligomerization and functional interaction between adenosine A(2A,) dopamine D(2) and metabotropic glutamate type 5 receptors have been demonstrated in the striatum. However, the transcriptional consequences of receptors co-activation are still unexplored. We aim here to determine the changes in gene expression of striatal primary cultured neurons upon isolated or simultaneous receptor activation. Interestingly, we found that 95 genes of the total analyzed (15,866 transcripts and variants) changed their expression in response to simultaneous stimulation of all three receptors. Among these genes, we focused on the β-synuclein (β-Syn) gene (SCNB). Quantitative PCR verified the magnitude and direction of change in expression of SCNB. Since β-Syn belongs to the homologous synuclein family and may be considered a natural regulator of α-synuclein (α-Syn), it has been proposed that β-Syn might act protectively against α-Syn neuropathology. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Insulin-Increased L-Arginine Transport Requires A2A Adenosine Receptors Activation in Human Umbilical Vein Endothelium

    Science.gov (United States)

    Guzmán-Gutiérrez, Enrique; Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Pardo, Fabián; Leiva, Andrea; Sobrevia, Luis

    2012-01-01

    Adenosine causes vasodilation of human placenta vasculature by increasing the transport of arginine via cationic amino acid transporters 1 (hCAT-1). This process involves the activation of A2A adenosine receptors (A2AAR) in human umbilical vein endothelial cells (HUVECs). Insulin increases hCAT-1 activity and expression in HUVECs, and A2AAR stimulation increases insulin sensitivity in subjects with insulin resistance. However, whether A2AAR plays a role in insulin-mediated increase in L-arginine transport in HUVECs is unknown. To determine this, we first assayed the kinetics of saturable L-arginine transport (1 minute, 37°C) in the absence or presence of nitrobenzylthioinosine (NBTI, 10 µmol/L, adenosine transport inhibitor) and/or adenosine receptors agonist/antagonists. We also determined hCAT-1 protein and mRNA expression levels (Western blots and quantitative PCR), and SLC7A1 (for hCAT-1) reporter promoter activity. Insulin and NBTI increased the extracellular adenosine concentration, the maximal velocity for L-arginine transport without altering the apparent K m for L-arginine transport, hCAT-1 protein and mRNA expression levels, and SLC7A1 transcriptional activity. An A2AAR antagonist ZM-241385 blocked these effects. ZM241385 inhibited SLC7A1 reporter transcriptional activity to the same extent in cells transfected with pGL3-hCAT-1−1606 or pGL3-hCAT-1−650 constructs in the presence of NBTI + insulin. However, SLC7A1 reporter activity was increased by NBTI only in cells transfected with pGL3-hCAT-1−1606, and the ZM-241385 sensitive fraction of the NBTI response was similar in the absence or in the presence of insulin. Thus, insulin modulation of hCAT-1 expression and activity requires functional A2AAR in HUVECs, a mechanism that may be applicable to diseases associated with fetal insulin resistance, such as gestational diabetes. PMID:22844517

  19. Insulin-increased L-arginine transport requires A(2A adenosine receptors activation in human umbilical vein endothelium.

    Directory of Open Access Journals (Sweden)

    Enrique Guzmán-Gutiérrez

    Full Text Available Adenosine causes vasodilation of human placenta vasculature by increasing the transport of arginine via cationic amino acid transporters 1 (hCAT-1. This process involves the activation of A(2A adenosine receptors (A(2AAR in human umbilical vein endothelial cells (HUVECs. Insulin increases hCAT-1 activity and expression in HUVECs, and A(2AAR stimulation increases insulin sensitivity in subjects with insulin resistance. However, whether A(2AAR plays a role in insulin-mediated increase in L-arginine transport in HUVECs is unknown. To determine this, we first assayed the kinetics of saturable L-arginine transport (1 minute, 37°C in the absence or presence of nitrobenzylthioinosine (NBTI, 10 µmol/L, adenosine transport inhibitor and/or adenosine receptors agonist/antagonists. We also determined hCAT-1 protein and mRNA expression levels (Western blots and quantitative PCR, and SLC7A1 (for hCAT-1 reporter promoter activity. Insulin and NBTI increased the extracellular adenosine concentration, the maximal velocity for L-arginine transport without altering the apparent K(m for L-arginine transport, hCAT-1 protein and mRNA expression levels, and SLC7A1 transcriptional activity. An A2AAR antagonist ZM-241385 blocked these effects. ZM241385 inhibited SLC7A1 reporter transcriptional activity to the same extent in cells transfected with pGL3-hCAT-1(-1606 or pGL3-hCAT-1(-650 constructs in the presence of NBTI + insulin. However, SLC7A1 reporter activity was increased by NBTI only in cells transfected with pGL3-hCAT-1(-1606, and the ZM-241385 sensitive fraction of the NBTI response was similar in the absence or in the presence of insulin. Thus, insulin modulation of hCAT-1 expression and activity requires functional A(2AAR in HUVECs, a mechanism that may be applicable to diseases associated with fetal insulin resistance, such as gestational diabetes.

  20. Quantification of adenosine A2A receptors in the human brain using [11C]TMSX and positron emission tomography

    International Nuclear Information System (INIS)

    Naganawa, Mika; Kimura, Yuichi; Oda, Keiichi; Ishii, Kenji; Ishiwata, Kiichi; Mishina, Masahiro; Manabe, Yoshitsugu; Chihara, Kunihiro

    2007-01-01

    [7-methyl- 11 C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([ 11 C]TMSX) is a positron-emitting adenosine A 2A receptor (A2AR) antagonist for visualisation of A2AR distribution by positron emission tomography (PET). The aims of this paper were to use a kinetic model to analyse the behaviour of [ 11 C]TMSX in the brain and to examine the applicability of the Logan plot. We also studied the applicability of a simplified Logan plot by omitting metabolite correction and arterial blood sampling. The centrum semiovale was used as a reference region on the basis of a post-mortem study showing that it has a negligibly low density of A2ARs. Compartmental analysis was performed in five normal subjects. Parametric images of A2AR binding potential (BP) were also generated using a Logan plot with or without metabolite correction and with or without arterial blood sampling. To omit arterial blood sampling, we applied a method to extract the plasma-related information using independent component analysis (EPICA). The estimated K 1 /k 2 was confirmed to be common in the centrum semiovale and main cortices. The three-compartment model was well fitted to the other regions using the fixed value of K 1 /k 2 estimated from the centrum semiovale. The estimated BPs using the Logan plot matched those derived from compartment analysis. Without the metabolite correction, the estimate of BP underestimated the true value by 5%. The estimated BPs agreed regardless of arterial blood sampling. A three-compartment model with a reference region, the centrum semiovale, describes the kinetic behaviour of [ 11 C]TMSX PET images. A2ARs in the human brain can be visualised as a BP image using [ 11 C]TMSX PET without arterial blood sampling. (orig.)

  1. The Androgen Receptor Gene Mutations Database.

    Science.gov (United States)

    Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1998-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).

  2. METABOTROPIC GLUTAMATE TYPE 5, DOPAMINE D2 AND ADENOSINE A2A RECEPTORS FORM HIGHER-ORDER OLIGOMERS IN LIVING CELLS

    Science.gov (United States)

    Cabello, Nuria; Gandía, Jorge; Bertarelli, Daniela C. G.; Watanabe, Masahiko; Lluís, Carme; Franco, Rafael; Ferré, Sergi; Luján, Rafael; Ciruela, Francisco

    2009-01-01

    G protein-coupled receptors are known to form homo- and heteromers at the plasma membrane, but the stoichiometry of these receptor oligomers are relatively unknown. Here, by using bimolecular fluorescence complementation, we visualized for the first time the occurrence of heterodimers of metabotropic glutamate mGlu5 receptors (mGlu5R) and dopamine D2 receptors (D2R) in living cells. Furthermore, the combination of bimolecular fluorescence complementation and bioluminescence resonance energy transfer techniques, as well as the sequential resonance energy transfer (SRET) technique, allowed us to detect the occurrence receptor oligomers containing more than two protomers, mGlu5R, D2R and adenosine A2A receptor (A2AR). Interestingly, by using high-resolution immunoelectron microscopy we could confirm that the three receptors co-distribute within the extrasynaptic plasma membrane of the same dendritic spines of asymmetrical, putative glutamatergic, striatal synapses. Also, co-immunoprecipitation experiments in native tissue demonstrated the existence of an association of mGlu5R, D2R and A2AR in rat striatum homogenates. Overall, these results provide new insights into the molecular composition of G protein-coupled receptor oligomers in general and the mGlu5R/D2R/A2AR oligomer in particular, a receptor oligomer that might constitute an important target for the treatment of some neuropsychiatric disorders. PMID:19344374

  3. Greater adenosine A2A receptor densities in cardiac and skeletal muscle in endurance-trained men: a [11C]TMSX PET study

    International Nuclear Information System (INIS)

    Mizuno, Masaki; Kimura, Yuichi; Tokizawa, Ken; Ishii, Kenji; Oda, Keiichi; Sasaki, Toru; Nakamura, Yoshio; Muraoka, Isao; Ishiwata, Kiichi

    2005-01-01

    We examined the densities of adenosine A 2A receptors in cardiac and skeletal muscles between untrained and endurance-trained subjects using positron emission tomography (PET) and [7-methyl- 11 C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([ 11 C]TMSX), a newly developed radioligand for mapping adenosine A 2A receptors. Five untrained and five endurance-trained subjects participated in this study. The density of adenosine A 2A receptors was evaluated as the distribution volume of [ 11 C]TMSX in cardiac and triceps brachii muscles in the resting state using PET. The distribution volume of [ 11 C]TMSX in the myocardium was significantly greater than in the triceps brachii muscle in both groups. Further, distribution volumes [ 11 C]TMSX in the trained subjects were significantly grater than those in untrained subjects (myocardium, 3.6±0.3 vs. 3.1±0.4 ml g -1 ; triceps brachii muscle, 1.7±0.3 vs. 1.2±0.2 ml g -1 , respectively). These results indicate that the densities of adenosine A 2A receptors in the cardiac and skeletal muscles are greater in the endurance-trained men than in the untrained men

  4. Lumbar sympathectomy reduces vascular permeability, possibly through decreased adenosine receptor A2a expression in the hind plantar skin of rats.

    Science.gov (United States)

    Zheng, Zhifang; Liu, Yishu; Zhu, Lulu; Tang, Jianbing; Huang, Wenhua; Cheng, Biao

    2018-01-01

    The effect of lumbar sympathectomy for the treatment of lower limb ischemia remains a matter of controversy. Sprague-Dawley rats were subjected to lumbar sympathectomy, after which Evans blue dye was injected into the hind plantar skin. Extravasation of dye was measured and compared with rats undergoing sham operation. Hind plantar skin was processed for HE staining, immunohistochemistry, and Western blot. In sympathectomized rats, blue stained areas in hind plantar skin and concentrations of Evans blue were significantly less than that of sham sympathectomy (control) rats, both 2 weeks and 3 months after surgery. Expression of prostaglandin E2, bradykinin, bradykinin B2 receptor, and adenosine triphosphate were not significantly different between the sympathectomized and control groups. Adenosine receptor A2a expression was significantly reduced in the sympathectomized group both 2 weeks and 3 months after surgery. Vascular permeability in the hind plantar skin of rats decreases following lumbar sympathectomy, possibly via reduced expression of adenosine receptor A2a.

  5. Differential effects of presynaptic versus postsynaptic adenosine A2A receptor blockade on Δ9-tetrahydrocannabinol (THC) self-administration in squirrel monkeys.

    Science.gov (United States)

    Justinová, Zuzana; Redhi, Godfrey H; Goldberg, Steven R; Ferré, Sergi

    2014-05-07

    Different doses of an adenosine A2A receptor antagonist MSX-3 [3,7-dihydro-8-[(1E)-2-(3-ethoxyphenyl)ethenyl]-7 methyl-3-[3-(phosphooxy)propyl-1-(2 propynil)-1H-purine-2,6-dione] were found previously to either decrease or increase self-administration of cannabinoids delta-9-tetrahydrocannabinol (THC) or anandamide in squirrel monkeys. It was hypothesized that the decrease observed with a relatively low dose of MSX-3 was related to blockade of striatal presynaptic A2A receptors that modulate glutamatergic neurotransmission, whereas the increase observed with a higher dose was related to blockade of postsynaptic A2A receptors localized in striatopallidal neurons. This hypothesis was confirmed in the present study by testing the effects of the preferential presynaptic and postsynaptic A2A receptor antagonists SCH-442416 [2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] and KW-6002 [(E)-1, 3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione], respectively, in squirrel monkeys trained to intravenously self-administer THC. SCH-442416 produced a significant shift to the right of the THC self-administration dose-response curves, consistent with antagonism of the reinforcing effects of THC. Conversely, KW-6002 produced a significant shift to the left, consistent with potentiation of the reinforcing effects of THC. These results show that selectively blocking presynaptic A2A receptors could provide a new pharmacological approach to the treatment of marijuana dependence and underscore corticostriatal glutamatergic neurotransmission as a possible main mechanism involved in the rewarding effects of THC.

  6. Growth hormone receptor gene expression in puberty.

    Science.gov (United States)

    Pagani, S; Meazza, C; Gertosio, C; Bozzola, E; Bozzola, M

    2015-07-01

    The mechanisms regulating the synergic effect of growth hormone and other hormones during pubertal spurt are not completely clarified. We enrolled 64 females of Caucasian origin and normal height including 22 prepubertal girls, 26 pubertal girls, and 16 adults to evaluate the role of Growth Hormone/Insulin-like growth factor-I axis (GH/IGF-I) during the pubertal period. In these subjects both serum IGF-I and growth hormone binding protein levels, as well as quantitative growth hormone receptor (GHR) gene expression were evaluated in peripheral lymphocytes of all individuals by real-time PCR. Our results showed significantly lower IGF-I levels in women (148±10 ng/ml) and prepubertal girls (166.34±18.85 ng/ml) compared to pubertal girls (441.95±29.42 ng/ml; p<0.0001). Serum GHBP levels were significantly higher in prepubertal (127.02±20.76 ng/ml) compared to pubertal girls (16.63±2.97 ng/ml; p=0.0001) and adult women (19.95±6.65 ng/ml; p=0.0003). We also found higher GHR gene expression levels in pubertal girls [174.73±80.22 ag (growth hormone receptor)/5×10(5) ag (glyceraldehyde 3-phosphate dehydrogenase)] compared with other groups of subjects [women: 42.52±7.66 ag (growth hormone receptor)/5×10(5) ag (glyceraldehyde 3-phosphate dehydrogenase); prepubertal girls: 58.45±0.18.12 ag (growth hormone receptor)/5×10(5) ag (glyceraldehyde 3-phosphate dehydrogenase)], but the difference did not reach statistical significance. These results suggest that sexual hormones could positively influence GHR action, during the pubertal period, in a dual mode, that is, increasing GHR mRNA production and reducing GHR cleavage leading to GHBP variations. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Crystal structure of the adenosine A2A receptor bound to an antagonist reveals a potential allosteric pocket

    OpenAIRE

    Sun, Bingfa; Bachhawat, Priti; Chu, Matthew Ling-Hon; Wood, Martyn; Ceska, Tom; Sands, Zara A.; Mercier, Joel; Lebon, Florence; Kobilka, Tong Sun; Kobilka, Brian K.

    2017-01-01

    The A2AR is a G protein-coupled receptor (GPCR) that plays important roles in cardiovascular physiology and immune function. The A2AR is also a target for the treatment of Parkinson?s disease, where A2AR antagonists have been shown to enhance signaling through the D2 dopamine receptor. Here we present the crystal structure of the A2AR bound to a novel bitopic antagonist. As a result of structural changes needed to accommodate the bound antagonist, crystals could not be grown in lipidic cubic ...

  8. Correlation between an oestrogen receptor gene and reproductive ...

    African Journals Online (AJOL)

    Correlation between an oestrogen receptor gene and reproductive traits in purebred and crossbred pig populations. ... South African Journal of Animal Science ... The relationship between an oestrogen receptor (ESR) gene and reproductive traits in 11 Large White (LW), 19 Landrace (L), 22 Meishan (MS), 22 Meishan ...

  9. [The regulative effcets of A2a adenosine receptor on expression of SOCS-3 in rats of hypoxic pulmonary hypertension].

    Science.gov (United States)

    Fan, R; Huang, X Y; Du, K Y; Fan, Y F; Wang, L X

    2016-06-01

    To study the regulative effects and mechanism of A2aAR on expression of suppressor of cytokinesignaling-3(SOCS-3) in hypoxic pulmonary hypertension rats. Sprague-Daeley rats were randomly divided into 3 groups: a normal control group, a hypoxia group, and a hypoxia with selective agonists of A2aAR group. Animals in the hypoxia groups were housed in a chamber with 8%- 11% O2 and 1%-3% CO2 for 8 hours (8: 00 AM to 4: 00 PM) daily for 28 days. They were treated intraperitoneally with either 4 ml/kg weight of normal saline or 0.2 mg/kg weight of CGS-21680 30 minutes before exposure to hypoxia. Four weeks later, mean pulmonary artery pressure (mPAP), mean carotid arterial pressure (mCAP) and right ventricular rate [RV/(LV+ S)] were measured. The expression of A2aAR and SOCS-3 in pulmonary arterioles was measured by immunohistochemistry. The expression of A2aAR mRNA and SOCS-3 mRNA in lung tissues were measured by real time RT-PCR. The expression of A2aAR protein and SOCS-3 protein in lung tissues were measured by Western blot. The mPAP in the hypoxia group was [(20.9±3.9)mmHg, 1 mmHg=0.133 kPa], significantly higher than the normal control group [(12.6±6.6)mmHg](Ppulmonary arterioles in the hypoxia group were (0.134±0.034) and (0.119±0.011), both significantly higher than the normal group(Prats further increased the expression levels of A2aAR and SOCS-3 to about 2-fold higher than the normal controls. Furthermore, protein levels of A2aAR and SOCS-3 in the lung tissue were determined using Western blot. A similar increase was observed in hypoxia-induced pulmonary hypertension, and CGS-21680 treatment group showed the highest levels of these 2 proteins. A2aAR activation prevents hypoxia-induced pulmonary hypertension, and its mechanisms are related to the activation of A2aAR SOCS-3 signaling pathway.

  10. Activation of Adenosine Receptor A2A Increases HSC Proliferation and Inhibits Death and Senescence by Down-regulation of p53 and Rb

    Directory of Open Access Journals (Sweden)

    Md. Kaimul eAhsan

    2014-04-01

    Full Text Available Background & Aims: During fibrosis hepatic stellate cells (HSC undergo activation, proliferation and senescence but the regulation of these important processes is poorly understood. The adenosine A2A receptor (A2A is known to be present on HSC, and its activation results in liver fibrosis. In this study, we tested if A2A has a role in the regulation of HSC proliferation, apoptosis, senescence, and the relevant molecular mechanism.Methods: The ability of adenosine to regulate p53 and Rb protein levels, proliferation, apoptosis and senescence was tested in the human HSC cell line LX-2 and rat primary HSC.Results: Adenosine receptor activation down-regulates p53 and Rb protein levels, increases BrdU incorporation and increases cell survival in LX-2 cells and in primary rat HSC. These effects of NECA were reproduced by an adenosine A2A receptor specific agonist (CGS21680 and blocked by a specific antagonist (ZM241385. By day twenty-one of culture primary rat HSC entered senescence and expressed -gal which was significantly inhibited by NECA. Furthermore, NECA induced down regulation of p53 and Rb and Rac1, and decreased phosphorylation of p44-42 MAP Kinase in LX-2 cells and primary rat HSC. These effects were reproduced by the cAMP analog 8-Bromo-cAMP, and the adenylyl cyclase activator forskolin, and were blocked by PKA inhibitors.Conclusions: These results demonstrate that A2A receptor regulates a number of HSC fate decisions and induces greater HSC proliferation, reduces apoptosis and senescence by decreasing p53 and Rb through cAMP-PKA/Rac1/p38 MAPK pathway. This provides a mechanism for adenosine induced HSC regulation and liver fibrosis.

  11. A1 not A2A adenosine receptors play a role in cortical epileptic afterdischarges in immature rats

    Czech Academy of Sciences Publication Activity Database

    Mareš, Pavel

    2014-01-01

    Roč. 121, č. 11 (2014), s. 1329-1336 ISSN 0300-9564 R&D Projects: GA MŠk(CZ) LH11015 Institutional support: RVO:67985823 Keywords : adenosine receptors * epileptic afterdischarges * cerebral cortex * ontogeny * rat Subject RIV: FH - Neurology Impact factor: 2.402, year: 2014

  12. Discovery of indolylpiperazinylpyrimidines with dual-target profiles at adenosine A2A and dopamine D2 receptors for Parkinson's disease treatment.

    Directory of Open Access Journals (Sweden)

    Yi-Ming Shao

    Full Text Available Parkinson's disease (PD is a neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra of the human brain, leading to depletion of dopamine production. Dopamine replacement therapy remains the mainstay for attenuation of PD symptoms. Nonetheless, the potential benefit of current pharmacotherapies is mostly limited by adverse side effects, such as drug-induced dyskinesia, motor fluctuations and psychosis. Non-dopaminergic receptors, such as human A2A adenosine receptors, have emerged as important therapeutic targets in potentiating therapeutic effects and reducing the unwanted side effects. In this study, new chemical entities targeting both human A2A adenosine receptor and dopamine D2 receptor were designed and evaluated. Two computational methods, namely support vector machine (SVM models and Tanimoto similarity-based clustering analysis, were integrated for the identification of compounds containing indole-piperazine-pyrimidine (IPP scaffold. Subsequent synthesis and testing resulted in compounds 5 and 6, which acted as human A2A adenosine receptor binders in the radioligand competition assay (Ki = 8.7-11.2 μM as well as human dopamine D2 receptor binders in the artificial cell membrane assay (EC50 = 22.5-40.2 μM. Moreover, compound 5 showed improvement in movement and mitigation of the loss of dopaminergic neurons in Drosophila models of PD. Furthermore, in vitro toxicity studies on compounds 5 and 6 did not reveal any mutagenicity (up to 100 μM, hepatotoxicity (up to 30 μM or cardiotoxicity (up to 30 μM.

  13. Immune Alterations in CD8+T Cells Are Associated with Neuronal C-C and C-X-C Chemokine Receptor Regulation Through Adenosine A2A Receptor Signaling in a BTBR T+Itpr3tf/J Autistic Mouse Model.

    Science.gov (United States)

    Ahmad, Sheikh F; Ansari, Mushtaq A; Nadeem, Ahmed; Bakheet, Saleh A; Mohammad, Raish; Attia, Sabry M

    2018-03-01

    Associative studies on a range of neurodevelopmental disorders have identified relationships between behavioral deficits and immune system function. The BTBR T + Itpr3 tf /J (BTBR) mouse strain displays aberrant characteristics in its social behavior and immune responses, providing a significant opportunity to examine the relationship between behavior and the immune system. This study investigated the influence of adenosine A2A receptor activity on C-C and C-X-C chemokine receptors involved in autism in the BTBR mouse model. A2A receptors have previously been targeted in clinical trials by potential therapeutics with neuroprotective, immunomodulatory, and analgesic properties. In this study, we examined the effects of A2A receptor antagonist SCH5826 (SCH) and A2A receptor agonist CGS21680 (CGS) on C-C and C-X-C chemokine receptors (CCR3, CCR4, CCR5, CCR6, CCR7, CXCR3, CXCR4, and CXCR5) on splenic CD8 + T cells in the BTBR autistic mouse model. We also assessed the C-C and C-X-C chemokine receptors mRNA levels in brain tissue. Our results showed that CCR3 + , CCR4 + , CCR5 + , CCR6 + , CCR7 + , CXCR3 + , CXCR4 + , and CXCR5 + production in splenic CD8 + T cells decreased significantly in BTBR-CGS-treated mice in comparison with that in BTBR control and BTBR-SCH-treated mice. In addition, RT-PCR analysis revealed decreased gene expression levels for C-C and C-X-C chemokine receptors in the brain tissue of BTBR-CGS-treated mice, whereas these levels were significantly increased in BTBR control and BTBR-SCH-treated mice. Our results suggest that treating BTBR mice with CGS decreases C-C and C-X-C chemokine receptor signaling and might therefore provide a unique avenue for developing future therapies for autism and neuroimmunological disorders.

  14. Leishmania infantum Parasites Subvert the Host Inflammatory Response through the Adenosine A2A Receptor to Promote the Establishment of Infection

    Directory of Open Access Journals (Sweden)

    Mikhael H. F. Lima

    2017-07-01

    Full Text Available Adenosine is an endogenously released purine nucleoside that signals through four widely expressed G protein-coupled receptors: A1, A2A, A2B, and A3. Of these, A2AR is recognized as mediating major adenosine anti-inflammatory activity. During cutaneous leishmaniasis, adenosine induces immunosuppression, which promotes the establishment of infection. Herein, we demonstrated that A2AR signaling is exploited by Leishmania infantum parasites, the etiologic agent that causes Visceral Leishmaniasis, to successfully colonize the vertebrate host. A2AR gene-deleted mice exhibited a well-developed cellular reaction with a strong Th1 immune response in the parasitized organs. An intense infiltration of activated neutrophils into the disease-target organs was observed in A2AR−/− mice. These cells were characterized by high expression of CXCR2 and CD69 on their cell surfaces and increased cxcl1 expression. Interestingly, this phenotype was mediated by IFN-γ on the basis that a neutralizing antibody specific to this cytokine prevented neutrophilic influx into parasitized organs. In evaluating the immunosuppressive effects, we identified a decreased number of CD4+ FOXP3+ T cells and reduced il10 expression in A2AR−/− infected mice. During ex vivo cell culture, A2AR−/− splenocytes produced smaller amounts of IL-10. In conclusion, we demonstrated that the A2AR signaling pathway is detrimental to development of Th1-type adaptive immunity and that this pathway could be associated with the regulatory process. In particular, it promotes parasite surveillance.

  15. Molecular basis for gene-specific transactivation by nuclear receptors

    DEFF Research Database (Denmark)

    Jørgensen, Mads Aagaard; Siersbæk, Rasmus; Mandrup, Susanne

    2010-01-01

    Nuclear receptors (NRs) are key transcriptional regulators of metazoan physiology and metabolism. Different NRs bind to similar or even identical core response elements; however, they regulate transcription in a highly receptor- and gene-specific manner. These differences in gene activation can m...... on the recent advances in the molecular mechanisms responsible for receptor- and gene-specific transcriptional activation. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease....... most likely be accounted for by mechanisms involving receptor-specific interactions with DNA as well as receptor-specific interactions with protein complexes binding to adjacent and distant DNA sequences. Here, we review key molecular aspects of transactivation by NRs with special emphasis...

  16. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    Science.gov (United States)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  17. Update on the olfactory receptor (OR gene superfamily

    Directory of Open Access Journals (Sweden)

    Olender Tsviya

    2008-09-01

    Full Text Available Abstract The olfactory receptor gene (OR superfamily is the largest in the human genome. The superfamily contains 390 putatively functional genes and 465 pseudogenes arranged into 18 gene families and 300 subfamilies. Even members within the same subfamily are often located on different chromosomes. OR genes are located on all autosomes except chromosome 20, plus the X chromosome but not the Y chromosome. The gene:pseudogene ratio is lowest in human, higher in chimpanzee and highest in rat and mouse -- most likely reflecting the greater need of olfaction for survival in the rodent than in the human. The OR genes undergo allelic exclusion, each sensory neurone expressing usually only one odourant receptor allele; the mechanism by which this phenomenon is regulated is not yet understood. The nomenclature system (based on evolutionary divergence of genes into families and subfamilies of the OR gene superfamily has been designed similarly to that originally used for the CYP gene superfamily.

  18. Caffeine and a selective adenosine A2A receptor antagonist induce sensitization and cross-sensitization behavior associated with increased striatal dopamine in mice

    Directory of Open Access Journals (Sweden)

    Hsu Chih W

    2010-01-01

    Full Text Available Abstract Background Caffeine, a nonselective adenosine A1 and A2A receptor antagonist, is the most widely used psychoactive substance in the world. Evidence demonstrates that caffeine and selective adenosine A2A antagonists interact with the neuronal systems involved in drug reinforcement, locomotor sensitization, and therapeutic effect in Parkinson's disease (PD. Evidence also indicates that low doses of caffeine and a selective adenosine A2A antagonist SCH58261 elicit locomotor stimulation whereas high doses of these drugs exert locomotor inhibition. Since these behavioral and therapeutic effects are mediated by the mesolimbic and nigrostriatal dopaminergic pathways which project to the striatum, we hypothesize that low doses of caffeine and SCH58261 may modulate the functions of dopaminergic neurons in the striatum. Methods In this study, we evaluated the neuroadaptations in the striatum by using reverse-phase high performance liquid chromatography (HPLC to quantitate the concentrations of striatal dopamine and its metabolites, dihydroxylphenylacetic acid (DOPAC and homovanilic acid (HVA, and using immunoblotting to measure the level of phosphorylation of tyrosine hydroxylase (TH at Ser31, following chronic caffeine and SCH58261 sensitization in mice. Moreover, to validate further that the behavior sensitization of caffeine is through antagonism at the adenosine A2A receptor, we also evaluate whether chronic pretreatment with a selective adenosine A2A antagonist SCH58261 or a selective adenosine A1 antagonist DPCPX can sensitize the locomotor stimulating effects of caffeine. Results Chronic treatments with low dose caffeine (10 mg/kg or SCH58261 (2 mg/kg increased the concentrations of dopamine, DOPAC and HVA, concomitant with increased TH phosphorylation at Ser31 and consequently enhanced TH activity in the striatal tissues in both caffeine- and SCH58261-sensitized mice. In addition, chronic caffeine or SCH58261 administration induced

  19. Imidazo[2,1-i]purin-5-ones and related tricyclic water-soluble purine derivatives: potent A(2A)- and A(3)-adenosine receptor antagonists.

    Science.gov (United States)

    Müller, Christa E; Thorand, Mark; Qurishi, Ramatullah; Diekmann, Martina; Jacobson, Kenneth A; Padgett, William L; Daly, John W

    2002-08-01

    A series of tricyclic imidazo[2,1-i]purinones and ring-enlarged analogues derived from xanthine derivatives have been prepared as adenosine receptor (AR) antagonists. In comparison with xanthines, the tricyclic compounds exhibit increased water solubility due to a basic nitrogen atom, which can be protonated under physiological conditions. Substituents were introduced that confer high affinity for A(2A) or A(3) ARs, respectively. A new capillary electrophoresis method was developed for the determination of the enantiomeric purity of selected chiral products using native and modified beta-cyclodextrins as chiral discriminators. The compounds were investigated in radioligand binding assays at rat brain A(1) and A(2A) ARs. Selected compounds were additionally investigated in radioligand binding assays at human recombinant A(3) ARs and in functional studies (adenylate cyclase assays) at A(1) ARs of rat fat cell membranes, A(2A) ARs of rat PC 12 cell membranes, and mouse A(2B) ARs of NIH 3T3 cell membranes. Structure-activity relationships were similar to those of corresponding xanthine derivatives. The 2-styrylimidazopurinones were less potent at A(2A) ARs as compared to 8-styrylxanthine derivatives. The most potent compound at A(2A) ARs was (S)-1,4-dimethyl-8-ethyl-2-styryl-imidazo[2,1-i]purinone (S-25) exhibiting a K(i) value of 424 nM at rat A(2A) ARs. The compound was highly selective for A(2A) receptors vs A(1) and A(3) ARs. Selectivity vs A(2B) ARs, however, was low. Among the 1-unsubstituted 2-phenyl-imidazo[2,1-i]purin-5-one derivatives, very potent and highly selective antagonists for human A(3) ARs were identified. The most potent A(3) antagonist of the present series was (R)-4-methyl-8-ethyl-2-phenyl-imidazo[2,1-i]purin-5-one (R-24) exhibiting a K(i) value of 2.3 nM and high selectivity for A(3) receptors vs all other AR subtypes.

  20. Spatiotemporal brain dynamics of emotional face processing modulations induced by the serotonin 1A/2A receptor agonist psilocybin.

    Science.gov (United States)

    Bernasconi, Fosco; Schmidt, André; Pokorny, Thomas; Kometer, Michael; Seifritz, Erich; Vollenweider, Franz X

    2014-12-01

    Emotional face processing is critically modulated by the serotonergic system. For instance, emotional face processing is impaired by acute psilocybin administration, a serotonin (5-HT) 1A and 2A receptor agonist. However, the spatiotemporal brain mechanisms underlying these modulations are poorly understood. Here, we investigated the spatiotemporal brain dynamics underlying psilocybin-induced modulations during emotional face processing. Electrical neuroimaging analyses were applied to visual evoked potentials in response to emotional faces, following psilocybin and placebo administration. Our results indicate a first time period of strength (i.e., Global Field Power) modulation over the 168-189 ms poststimulus interval, induced by psilocybin. A second time period of strength modulation was identified over the 211-242 ms poststimulus interval. Source estimations over these 2 time periods further revealed decreased activity in response to both neutral and fearful faces within limbic areas, including amygdala and parahippocampal gyrus, and the right temporal cortex over the 168-189 ms interval, and reduced activity in response to happy faces within limbic and right temporo-occipital brain areas over the 211-242 ms interval. Our results indicate a selective and temporally dissociable effect of psilocybin on the neuronal correlates of emotional face processing, consistent with a modulation of the top-down control. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Three novel and two known androgen receptor gene mutations ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 95; Issue 4. Three novel and two known androgen receptor gene mutations associated with androgen insensitivity syndrome in sex-reversed XY female patients. BALACHANDRAN SARANYA GUNASEKARAN BHAVANI BRINDHA ARUMUGAM MEENA JAYASHANKAR ...

  2. A Novel Antagonist of the Immune Checkpoint Protein Adenosine A2a Receptor Restores Tumor-Infiltrating Lymphocyte Activity in the Context of the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Melanie Mediavilla-Varela

    2017-07-01

    Full Text Available BACKGROUND: Therapeutic strategies targeting immune checkpoint proteins have led to significant responses in patients with various tumor types. The success of these studies has led to the development of various antibodies/inhibitors for the different checkpoint proteins involved in immune evasion of the tumor. Adenosine present in high concentrations in the tumor microenvironment activates the immune checkpoint adenosine A2a receptor (A2aR, leading to the suppression of antitumor responses. Inhibition of this checkpoint has the potential to enhance antitumor T-cell responsiveness. METHODS: We developed a novel A2aR antagonist (PBF-509 and tested its antitumor response in vitro, in a mouse model, and in non-small cell lung cancer patient samples. RESULTS: Our studies showed that PBF-509 is highly specific to the A2aR as well as inhibitory of A2aR function in an in vitro model. In a mouse model, we found that lung metastasis was decreased after treatment with PBF-509 compared with its control. Furthermore, freshly resected tumor-infiltrating lymphocytes from lung cancer patients showed increased A2aR expression in CD4+ cells and variable expression in CD8+ cells. Ex vivo studies showed an increased responsiveness of human tumor-infiltrating lymphocytes when PBF-509 was combined with anti-PD-1 or anti-PD-L1. CONCLUSIONS: Our studies demonstrate that inhibition of the A2aR using the novel inhibitor PBF-509 could lead to novel immunotherapeutic strategies in non-small cell lung cancer.

  3. The effect of caffeine to increase reaction time in the rat during a test of attention is mediated through antagonism of adenosine A2A receptors.

    Science.gov (United States)

    Higgins, Guy A; Grzelak, Michael E; Pond, Annamarie J; Cohen-Williams, Mary E; Hodgson, Robert A; Varty, Geoffrey B

    2007-12-11

    Caffeine produces effects on cognitive function particularly relating to aspects of attention such as reaction time. Considering the plasma exposure levels following regular caffeine intake, and the affinity of caffeine for known protein targets, these effects are likely mediated by either the adenosine A(1) or A(2A) receptor. In the present studies, two rat strains [Long-Evans (LE) and CD] were trained to asymptote performance in a test of selective attention, the 5-choice serial reaction time task (5-CSRTT). Next, the effects of caffeine were compared to the selective A(2A) antagonists, SCH 412348 and KW-6002 (Istradefylline), and the A(1) antagonist, DPCPX. Further studies compared the psychostimulant effects of each drug. Finally, we tested the A(2A) agonist, CGS-21680, on 5-CSRTT performance and given the antipsychotic potential of this drug class, studied the interaction between CGS-21680 and amphetamine in this task. Caffeine (3-10mg/kg IP) increased reaction time in both LE and CD rats, with no effect on accuracy, an effect replicated by SCH 412348 (0.1-1mg/kg PO) and KW-6002 (1-3mg/kg PO), but not DPCPX (3-30 mg/kg PO). At least with SCH 412348, these effects were at doses that were not overtly psychostimulant. In contrast, CGS-21680 (0.03-0. 3mg/kg IP) slowed reaction speed and increased omissions. Interestingly, at a comparatively low dose of 0.03 mg/kg, CGS-21680 attenuated the increased premature responding produced by amphetamine (1mg/kg IP). The present results suggest that the attention-enhancing effects of caffeine are mediated through A(2A) receptor blockade, and selective A(2A) receptor antagonists may have potential as therapies for attention-related disorders. Furthermore, the improvement in response control in amphetamine-treated rats following CGS-21680 pretreatment supports the view that A(2A) agonists have potential as novel antipsychotics.

  4. Designing exons for human olfactory receptor gene subfamilies ...

    Indian Academy of Sciences (India)

    Prakash

    The loci of olfactory receptors (ORs) in the human genome occur in clusters ranging ... [Hassan Sk S, Choudhury P P, Pal A, Brahmachary R L and Goswami A 2010 Designing exons for human olfactory receptor gene subfamilies using a mathematical .... Acknowledgements. This work was supported by the Department of.

  5. Polymorphism in leptin receptor gene was associated with obesity in ...

    African Journals Online (AJOL)

    Pramudji Hastuti

    2016-01-11

    Jan 11, 2016 ... Abstract Background: Leptin is a hormone that regulates homeostasis energy through the cen- tral–peripheral mechanism as well as regulates hunger and satiety. Leptin receptor is important in leptin signal transduction that is located mainly in the hypothalamus. The mutation in leptin receptor (LEPR) gene ...

  6. Polymorphism in leptin receptor gene was associated with obesity in ...

    African Journals Online (AJOL)

    Background: Leptin is a hormone that regulates homeostasis energy through the central– peripheral mechanism as well as regulates hunger and satiety. Leptin receptor is important in leptin signal transduction that is located mainly in the hypothalamus. The mutation in leptin receptor (LEPR) gene causes splicing ...

  7. Comparative genomics of natural killer cell receptor gene clusters.

    Directory of Open Access Journals (Sweden)

    James Kelley

    2005-08-01

    Full Text Available Many receptors on natural killer (NK cells recognize major histocompatibility complex class I molecules in order to monitor unhealthy tissues, such as cells infected with viruses, and some tumors. Genes encoding families of NK receptors and related sequences are organized into two main clusters in humans: the natural killer complex on Chromosome 12p13.1, which encodes C-type lectin molecules, and the leukocyte receptor complex on Chromosome 19q13.4, which encodes immunoglobulin superfamily molecules. The composition of these gene clusters differs markedly between closely related species, providing evidence for rapid, lineage-specific expansions or contractions of sets of loci. The choice of NK receptor genes is polarized in the two species most studied, mouse and human. In mouse, the C-type lectin-related Ly49 gene family predominates. Conversely, the single Ly49 sequence is a pseudogene in humans, and the immunoglobulin superfamily KIR gene family is extensive. These different gene sets encode proteins that are comparable in function and genetic diversity, even though they have undergone species-specific expansions. Understanding the biological significance of this curious situation may be aided by studying which NK receptor genes are used in other vertebrates, especially in relation to species-specific differences in genes for major histocompatibility complex class I molecules.

  8. Baicalin attenuates chronic hypoxia-induced pulmonary hypertension via adenosine A2A receptor-induced SDF-1/CXCR4/PI3K/AKT signaling.

    Science.gov (United States)

    Huang, Xiaoying; Wu, Peiliang; Huang, Feifei; Xu, Min; Chen, Mayun; Huang, Kate; Li, Guo-Ping; Xu, Manhuan; Yao, Dan; Wang, Liangxing

    2017-08-03

    Baicalin, an important flavonoid in Scutellaria baicalensis Georgi extracts, exerts a variety of pharmacological effects. In this study, we explored the effects of baicalin on chronic hypoxia-induced pulmonary arterial hypertension (PAH) and investigated the mechanism underlying these effects. Moreover, we examined whether the inflammatory response was mediated by the A 2A receptor (A 2A R) and stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4)-induced phosphatidyl inositol-3-kinase (PI3K) signaling in vivo. We established a hypoxia-induced pulmonary hypertension (HPH) mouse model by subjecting wild-type (WT) and A 2A R knockout (A 2A R -/- ) animals to chronic hypoxia, and we examined the effects of a 4-week treatment with baicalin or the A 2A R agonist CGS21680 in these animals. Invasive hemodynamic parameters, the right ventricular hypertrophy index, pulmonary congestion, the pulmonary arterial remodeling index, blood gas parameters, A 2A R expression, and the expression of SDF-1/CXCR4/PI3K/protein kinase B (PKB; AKT) signaling components were measured. Compared with WT mice, A 2A R -/- mice exhibited increased right ventricular systolic pressure (RVSP), right ventricle-to-left ventricle plus septum [RV/(LV + S)] ratio, RV weight-to-body weight (RV/BW) ratio, and lung wet weight-to-body weight (Lung/BW) ratio in the absence of an altered mean carotid arterial pressure (mCAP). These changes were accompanied by increases in pulmonary artery wall area and thickness and reductions in arterial oxygen pressure (P a O 2 ) and hydrogen ion concentration (pH). In the HPH model, A 2A R -/- mice displayed increased CXCR4, SDF-1, phospho-PI3K, and phospho-AKT expression compared with WT mice. Treating WT and A 2A R -/- HPH mice with baicalin or CGS21680 attenuated the hypoxia-induced increases in RVSP, RV/(LV + S) and Lung/BW, as well as pulmonary arterial remodeling. Additionally, baicalin or CGS21680 alone could reverse the hypoxia

  9. Impact of estrogen receptor α gene and oxytocin receptor gene polymorphisms on female sexuality

    Directory of Open Access Journals (Sweden)

    Anastasia K Armeni

    2017-02-01

    Full Text Available Over the past decades, research attention has increasingly been paid to the neurobiological component of sexual behavior. The aim of the present study was to investigate the correlation of estrogen receptor α (ERA gene polymorphism (rs2234693-PvuII (T→C substitution and oxytocin receptor gene polymorphism (rs53576 (G→A substitution with sexuality parameters of young, healthy women. One hundred thirty-three Greek heterosexual women, students in higher education institutions, 20–25 years of age, sexually active, with normal menstrual cycles (28–35 days, were recruited in the study. Exclusion criteria were chronic and/or major psychiatric diseases, use of oral contraceptive pills (OCs, polycystic ovary syndrome (PCOS, thyroid diseases as well as drugs that are implicated in hypothalamus–pituitary–gonadal axis. T allele (wildtype of rs2234693 (PvuII polymorphism of ERA gene was correlated with increased levels of arousal and lubrication, whereas A allele (polymorphic of rs53576 (OXTR polymorphism was correlated with increased arousal levels. The simultaneous presence of both T allele of rs2234693 (PvuII and A allele of rs53576 (OXTR polymorphisms (T + A group was correlated with increased arousal, orgasm levels as well as female sexual function index full score. To our knowledge, this is the first study to investigate the interaction between ERA and OXTR with regard to sexual function in women. Female sexuality is a complex behavioral trait that encompasses both biological and psychological components. It seems that variability in female sexual response stems from genetic variability that characterizes endocrine, neurotransmitter and central nervous system influences.

  10. Characteristics of the mouse genomic histamine H1 receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Isao; Taniuchi, Ichiro; Kitamura, Daisuke [Kyushu Univ., Fukuoka (Japan)] [and others

    1996-08-15

    We report here the molecular cloning of a mouse histamine H1 receptor gene. The protein deduced from the nucleotide sequence is composed of 488 amino acid residues with characteristic properties of GTP binding protein-coupled receptors. Our results suggest that the mouse histamine H1 receptor gene is a single locus, and no related sequences were detected. Interspecific backcross analysis indicated that the mouse histamine H1 receptor gene (Hrh1) is located in the central region of mouse Chromosome 6 linked to microphthalmia (Mitfmi), ras-related fibrosarcoma oncogene 1 (Raf1), and ret proto-oncogene (Ret) in a region of homology with human chromosome 3p. 12 refs., 3 figs.

  11. Association of Interleukin 23 Receptor Gene with Sarcoidosis

    Directory of Open Access Journals (Sweden)

    Hyun Soo Kim

    2011-01-01

    Full Text Available Interleukin 23 receptor (IL23R gene has been reported as a genetic factor strongly associated with inflammatory bowel disease, psoriasis, and ankylosing spondylitis. We investigated the association between IL23R gene single nucleotide polymorphisms (SNPs and susceptibility to sarcoidosis, including the clinical manifestation of uveitis.

  12. Association between steroid hormone receptors and PSA gene ...

    African Journals Online (AJOL)

    The prostate specific antigen (PSA) gene is a member of the human kallikrein gene family and is known that to be tightly regulated by androgens in the male prostate The presence of PSA is strongly associated with presence of steroid hormone receptors. The aim of this research was to show differential expression and ...

  13. Vitamin D receptor gene variants in Parkinson's disease patients ...

    African Journals Online (AJOL)

    Background: Vitamin D plays an important role in neurodegenerative disorders as a crucial neuro-immunomodulator. Accumulating data provide evidences that vitamin D receptor (VDR) gene is a candidate gene for susceptibility to Parkinson's disease (PD). Aim: To find out whether the risk of the development of sporadic ...

  14. Endothelin-receptor gene-expression in rat endotoxemia.

    Science.gov (United States)

    Bucher, Michael; Taeger, Kai

    2002-05-01

    The reduced vascular response to endothelin-1 has focused interest onto the regulation of the endothelin-receptor subtypes ET(A) and ET(B) during severe sepsis. Prospective animal trial followed by a controlled cell culture study in the laboratory of the Department of Anesthesiology. Male Sprague-Dawley rats weighing 200-250 g, aortic vascular smooth muscle cell line A7r5. Rats were injected with lipopolysaccharide to induce severe experimental endotoxemia. ET(A)/ET(B) receptor gene expression was investigated by specific RNase protection assay, and abundance of tumor necrosis factor alpha was determined in the lung and kidney. Aortic vascular smooth muscle cells were incubated with the proinflammatory cytokines interleukin-1beta, tumor necrosis factor alpha, and interferon gamma or with the nitric oxide donor S-nitroso- N-acetylpenicillamine to investigate the regulation of ET(A) receptor gene expression during severe inflammation. ET(A)/ET(B) receptor gene expression was markedly downregulated in the lung but was unchanged in the kidney during endotoxemia. ET(A) receptor gene expression was downregulated in aortic vascular smooth muscle cells by tumor necrosis factor alpha but not by interleukin 1beta, interferon gamma, or nitric oxide. In vivo there seems to be a correlation between the tissue concentration of tumor necrosis factor alpha and gene expression of ET(A) receptors in the lung and kidney. Our data show that sepsis causes downregulation of ET(A) receptors at the level of gene expression, and provide correlative evidence that this effect can be mediated by tumor necrosis factor alpha. This downregulation of ET(A) receptors possibly contributes to the attenuated vascular response to endothelin-1 in the pulmonary circulation.

  15. Prolactin receptor and signal transduction to milk protein genes

    Energy Technology Data Exchange (ETDEWEB)

    Djiane, J.; Daniel, N.; Bignon, C. [Unite d`Endocrinologie Moleculaire, Jouy en Josas (France)] [and others

    1994-06-01

    After cloning of the mammary gland prolactin (PRL) receptor cDNA, a functional assay was established using co-transfection of PRL receptor cDNA together with a milk protein promoter/chloramphenicol acetyl transferase (CAT) construct in Chinese hamster ovary (CHO) cells. Different mutants of the PRL receptor were tested in this CAT assay to delimit the domains in the receptor necessary for signal transduction to milk protein genes. In CHO cells stably transfected with PRL receptor cDNA, high numbers of PRL receptor are expressed. By metabolic labeling and immunoprecipitation, expressed PRL receptor was identified as a single species of 100 kDa. Using these cells, we analyzed the effects of PRL on intracellular free Ca{sup ++} concentration. PRL stimulates Ca{sup ++} entry and induces secondary Ca{sup ++} mobilization. The entry of Ca{sup ++} is a result of an increase in K{sup +} conductance that hyperpolarizes the membranes. We have also analyzed tyrosine phosphorylation induced by PRL. In CHO cells stably transfected with PRL receptor cDNA, PRL induced a very rapid and transient tyrosine phosphorylation of a 100-kDa protein which is most probably the PRL receptor. The same finding was obtained in mammary membranes after PRL injection to lactating rabbits. Whereas tyrosine kinase inhibitors genistein and lavendustin were without effect, PRL stimulation of milk protein gene promoters was partially inhibited by 2 {mu}M herbimycin in CHO cells co-transfected with PRL receptor cDNA and the {Beta} lactoglobulin CAT construct. Taken together these observations indicate that the cytoplasmic domain of the PRL receptor interacts with one or several tyrosine kinases, which may represent early postreceptor events necessary for PRL signal transduction to milk protein genes. 14 refs., 4 figs.

  16. Major dorsoventral differences in the modulation of the local CA1 hippocampal network by NMDA, mGlu5, adenosine A2A and cannabinoid CB1 receptors.

    Science.gov (United States)

    Kouvaros, S; Papatheodoropoulos, C

    2016-03-11

    Recent research points to diversification in the local neuronal circuitry between dorsal (DH) and ventral (VH) hippocampus that may be involved in the large-scale functional segregation along the long axis of the hippocampus. Here, using CA1 field recordings from rat hippocampal slices, we show that activation of N-methyl-d-aspartate receptors (NMDARs) reduced excitatory transmission more in VH than in DH, with an adenosine A1 receptor-independent mechanism, and reduced inhibition and enhanced postsynaptic excitability only in DH. Strikingly, co-activation of metabotropic glutamate receptor-5 (mGluR5) with NMDAR, by CHPG and NMDA respectively, strongly potentiated the effects of NMDAR in DH but had not any potentiating effect in VH. Furthermore, the synergistic actions in DH were occluded by blockade of adenosine A2A receptors (A2ARs) by their antagonist ZM 241385 demonstrating a tonic action of these receptors in DH. Exogenous activation of A2ARs by 4-[2-[[6-amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS 21680) did not change the effects of mGluR5-NMDAR co-activation in either hippocampal pole. Importantly, blockade of cannabinoid CB1 receptors (CB1Rs) by their antagonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide (AM 281) restricted the synergistic actions of mGluR5-NMDARs on excitatory synaptic transmission and postsynaptic excitability and abolished their effect on inhibition. Furthermore, AM 281 increased the excitatory transmission only in DH indicating that CB1Rs were tonically active in DH but not VH. Removing the magnesium ions from the perfusion medium neither stimulated the interaction between mGluR5 and NMDAR in VH nor augmented the synergy of the two receptors in DH. These findings show that the NMDAR-dependent modulation of fundamental parameters of the local neuronal network, by mGluR5, A2AR and CB1R, markedly differs between DH and VH. We

  17. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    Energy Technology Data Exchange (ETDEWEB)

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. (Universite de Bordeaux II (France))

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  18. Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway.

    Science.gov (United States)

    Canas, Paula M; Porciúncula, Lisiane O; Cunha, Geanne M A; Silva, Carla G; Machado, Nuno J; Oliveira, Jorge M A; Oliveira, Catarina R; Cunha, Rodrigo A

    2009-11-25

    Alzheimer's disease (AD) is characterized by memory impairment, neurochemically by accumulation of beta-amyloid peptide (namely Abeta(1-42)) and morphologically by an initial loss of nerve terminals. Caffeine consumption prevents memory dysfunction in different models, which is mimicked by antagonists of adenosine A(2A) receptors (A(2A)Rs), which are located in synapses. Thus, we now tested whether A(2A)R blockade prevents the early Abeta(1-42)-induced synaptotoxicity and memory dysfunction and what are the underlying signaling pathways. The intracerebral administration of soluble Abeta(1-42) (2 nmol) in rats or mice caused, 2 weeks later, memory impairment (decreased performance in the Y-maze and object recognition tests) and a loss of nerve terminal markers (synaptophysin, SNAP-25) without overt neuronal loss, astrogliosis, or microgliosis. These were prevented by pharmacological blockade [5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261); 0.05 mg . kg(-1) . d(-1), i.p.; for 15 d] in rats, and genetic inactivation of A(2A)Rs in mice. Moreover, these were synaptic events since purified nerve terminals acutely exposed to Abeta(1-42) (500 nm) displayed mitochondrial dysfunction, which was prevented by A(2A)R blockade. SCH58261 (50 nm) also prevented the initial synaptotoxicity (loss of MAP-2, synaptophysin, and SNAP-25 immunoreactivity) and subsequent loss of viability of cultured hippocampal neurons exposed to Abeta(1-42) (500 nm). This A(2A)R-mediated control of neurotoxicity involved the control of Abeta(1-42)-induced p38 phosphorylation and was independent from cAMP/PKA (protein kinase A) pathway. Together, these results show that A(2A)Rs play a crucial role in the development of Abeta-induced synaptotoxicity leading to memory dysfunction through a p38 MAPK (mitogen-activated protein kinase)-dependent pathway and provide a molecular basis for the benefits of caffeine consumption in AD.

  19. Gene transfer of MHC-restricted receptors

    NARCIS (Netherlands)

    Kessels, Helmut W. H. G.; Wolkers, Monika C.; Schumacher, Ton N. M.

    2005-01-01

    Adoptive therapy with allogeneic or tumor-specific T-cells has shown substantial clinical effects for several human tumors, but the widespread application of this strategy remains a daunting task. The antigen specificity of T-lymphocytes is solely determined by the T-cell receptor (TCR) alpha and

  20. Killer immunoglobulin receptor genes in spondyloarthritis

    NARCIS (Netherlands)

    Kuijpers, Taco W.; Vendelbosch, Sanne; van den Berg, Merlijn; Baeten, Dominique L. P.

    2016-01-01

    We focus on the role of killer immunoglobulin receptor (KIR) interactions with the human leukocyte antigens (HLA)-B27 ligand and the potential contribution of KIR-expressing natural killer and T cells in spondyloarthritis, more specifically in ankylosing spondylitis (AS). In AS strong

  1. Ex vivo lung perfusion with adenosine A2A receptor agonist allows prolonged cold preservation of lungs donated after cardiac death.

    Science.gov (United States)

    Wagner, Cynthia E; Pope, Nicolas H; Charles, Eric J; Huerter, Mary E; Sharma, Ashish K; Salmon, Morgan D; Carter, Benjamin T; Stoler, Mark H; Lau, Christine L; Laubach, Victor E; Kron, Irving L

    2016-02-01

    Ex vivo lung perfusion has been successful in the assessment of marginal donor lungs, including donation after cardiac death (DCD) donor lungs. Ex vivo lung perfusion also represents a unique platform for targeted drug delivery. We sought to determine whether ischemia-reperfusion injury would be decreased after transplantation of DCD donor lungs subjected to prolonged cold preservation and treated with an adenosine A2A receptor agonist during ex vivo lung perfusion. Porcine DCD donor lungs were preserved at 4°C for 12 hours and underwent ex vivo lung perfusion for 4 hours. Left lungs were then transplanted and reperfused for 4 hours. Three groups (n = 4/group) were randomized according to treatment with the adenosine A2A receptor agonist ATL-1223 or the dimethyl sulfoxide vehicle: Infusion of dimethyl sulfoxide during ex vivo lung perfusion and reperfusion (DMSO), infusion of ATL-1223 during ex vivo lung perfusion and dimethyl sulfoxide during reperfusion (ATL-E), and infusion of ATL-1223 during ex vivo lung perfusion and reperfusion (ATL-E/R). Final Pao2/Fio2 ratios (arterial oxygen partial pressure/fraction of inspired oxygen) were determined from samples obtained from the left superior and inferior pulmonary veins. Final Pao2/Fio2 ratios in the ATL-E/R group (430.1 ± 26.4 mm Hg) were similar to final Pao2/Fio2 ratios in the ATL-E group (413.6 ± 18.8 mm Hg), but both treated groups had significantly higher final Pao2/Fio2 ratios compared with the dimethyl sulfoxide group (84.8 ± 17.7 mm Hg). Low oxygenation gradients during ex vivo lung perfusion did not preclude superior oxygenation capacity during reperfusion. After prolonged cold preservation, treatment of DCD donor lungs with an adenosine A2A receptor agonist during ex vivo lung perfusion enabled Pao2/Fio2 ratios greater than 400 mm Hg after transplantation in a preclinical porcine model. Pulmonary function during ex vivo lung perfusion was not predictive of outcomes after transplantation. Copyright

  2. Integrated olfactory receptor and microarray gene expression databases

    Directory of Open Access Journals (Sweden)

    Crasto Chiquito J

    2007-06-01

    Full Text Available Abstract Background Gene expression patterns of olfactory receptors (ORs are an important component of the signal encoding mechanism in the olfactory system since they determine the interactions between odorant ligands and sensory neurons. We have developed the Olfactory Receptor Microarray Database (ORMD to house OR gene expression data. ORMD is integrated with the Olfactory Receptor Database (ORDB, which is a key repository of OR gene information. Both databases aim to aid experimental research related to olfaction. Description ORMD is a Web-accessible database that provides a secure data repository for OR microarray experiments. It contains both publicly available and private data; accessing the latter requires authenticated login. The ORMD is designed to allow users to not only deposit gene expression data but also manage their projects/experiments. For example, contributors can choose whether to make their datasets public. For each experiment, users can download the raw data files and view and export the gene expression data. For each OR gene being probed in a microarray experiment, a hyperlink to that gene in ORDB provides access to genomic and proteomic information related to the corresponding olfactory receptor. Individual ORs archived in ORDB are also linked to ORMD, allowing users access to the related microarray gene expression data. Conclusion ORMD serves as a data repository and project management system. It facilitates the study of microarray experiments of gene expression in the olfactory system. In conjunction with ORDB, ORMD integrates gene expression data with the genomic and functional data of ORs, and is thus a useful resource for both olfactory researchers and the public.

  3. Rubimetide, humanin, and MMK1 exert anxiolytic-like activities via the formyl peptide receptor 2 in mice followed by the successive activation of DP1, A2A, and GABAA receptors.

    Science.gov (United States)

    Zhao, Hui; Sonada, Soushi; Yoshikawa, Akihiro; Ohinata, Kousaku; Yoshikawa, Masaaki

    2016-09-01

    Rubimetide (Met-Arg-Trp), which had been isolated as an antihypertensive peptide from an enzymatic digest of spinach ribulose-bisphosphate carboxylase/oxygenase (Rubisco), showed anxiolytic-like activity prostaglandin (PG) D2-dependent manner in the elevated plus-maze test after administration at a dose of 0.1mg/kg (ip.) or 1mg/kg (p.o.) in male mice of ddY strain. In this study, we found that rubimetide has weak affinities for the FPR1 and FPR2, subtypes of formyl peptide receptor (FPR). The anxiolytic-like activity of rubimetide (0.1mg/kg, ip.) was blocked by WRW4, an antagonist of FPR2, but not by Boc-FLFLF, an antagonist of FPR1, suggesting that the anxiolytic-like activity was mediated by the FPR2. Humanin, an endogenous agonist peptide of the FPR2, exerted an anxiolytic-like activity after intracerebroventricular (icv) administration, which was also blocked by WRW4. MMK1, a synthetic agonist peptide of the FPR2, also exerted anxiolytic-like activity. Thus, FPR2 proved to mediate anxiolytic-like effect as the first example of central effect exerted by FPR agonists. As well as the anxiolytic-like activity of rubimetide, that of MMK1 was blocked by BW A868C, an antagonist of the DP1-receptor. Furthermore, anxiolytic-like activity of rubimetide was blocked by SCH58251 and bicuculline, antagonists for adenosine A2A and GABAA receptors, respectively. From these results, it is concluded that the anxiolytic-like activities of rubimetide and typical agonist peptides of the FPR2 were mediated successively by the PGD2-DP1 receptor, adenosine-A2A receptor, and GABA-GABAA receptor systems downstream of the FPR2. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Role of Adenosine A2A Receptors in Modulating Synaptic Functions and Brain Levels of BDNF: a Possible Key Mechanism in the Pathophysiology of Huntington's Disease

    Directory of Open Access Journals (Sweden)

    Maria Teresa Tebano

    2010-01-01

    Full Text Available In the last few years, accumulating evidence has shown the existence of an important cross-talk between adenosine A2A receptors (A2ARs and brain-derived neurotrophic factor (BDNF. Not only are A2ARs involved in the mechanism of transactivation of BDNF receptor TrkB, they also modulate the effect of BDNF on synaptic transmission, playing a facilitatory and permissive role. The cAMP-PKA pathway, the main transduction system operated by A2ARs, is involved in such effects. Furthermore, a basal tonus of A2ARs is required to allow the regulation of BDNF physiological levels in the brain, as demonstrated by the reduced protein levels measured in A2ARs KO mice. The crucial role of adenosine A2ARs in the maintenance of synaptic functions and BDNF levels will be reviewed here and discussed in the light of possible implications for Huntington's disease therapy, in which a joint impairment of BDNF and A2ARs seems to play a pathogenetic role.

  5. Projections of nucleus accumbens adenosine A2A receptor neurons in the mouse brain and their implications in mediating sleep-wake regulation

    Directory of Open Access Journals (Sweden)

    Jianping eZhang

    2013-12-01

    Full Text Available Adenosine A2A receptors (A2ARs in the nucleus accumbens (Acb have been demonstrated to play an important role in the arousal effect of adenosine receptor antagonist caffeine, and may be involved in physiological sleep. To better understand the functions of these receptors in sleep, projections of A2AR neurons were mapped utilizing adeno-associated virus (AAV encoding humanized Renilla green fluorescent protein (hrGFP as a tracer for long axonal pathways. The Cre-dependent AAV was injected into the core (AcbC and shell (AcbSh of the Acb in A2AR-Cre mice. Immunohistochemistry was then used to visualize hrGFP, highlighting the perikarya of the A2AR neurons in the injection sites, and their axons in projection regions. The data revealed that A2AR neurons exhibit medium-sized and either round or elliptic perikarya with their processes within the Acb. Moreover, the projections from the Acb distributed to nuclei in the forebrain, diencephalon, and brainstem. In the forebrain, A2AR neurons from all Acb sub-regions jointly projected to the ventral pallidum, the nucleus of the diagonal band, and the substantia innominata. Heavy projections from the AcbC and the ventral AcbSh, and weaker projections from the medial AcbSh, were observed in the lateral hypothalamus and lateral preoptic area. In the brainstem, the Acb projections were found in the ventral tegmental area, while AcbC and ventral AcbSh also projected to the median raphe nucleus, the dorsal raphe nucleus, and the ventrolateral periaqueductal gray. The results supply a solid base for understanding the roles of the A2AR and A2AR neurons in the Acb, especially in the regulation of sleep.

  6. Excitatory effect of the A2A adenosine receptor agonist CGS-21680 on spontaneous and K+-evoked acetylcholine release at the mouse neuromuscular junction.

    Science.gov (United States)

    Palma, A G; Muchnik, S; Losavio, A S

    2011-01-13

    The mechanism of action of the A2A adenosine receptor agonist 2-p-(2-carboxyethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680) in the facilitation of spontaneous (isotonic and hypertonic condition) and K+-evoked acetylcholine (ACh) release was investigated in the mouse diaphragm muscles. At isotonic condition, the CGS-21680-induced excitatory effect on miniature end-plate potential (MEPP) frequency was not modified in the presence of CdCl2 and in a medium free of Ca2+ (0Ca2+-EGTA), but it was abolished after buffering the rise of intracellular Ca2+ with 1,2-bis-(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetra(acetoxy-methyl) (BAPTA-AM) and when the Ca2+-ATPase inhibitor thapsigargin was used to deplete intracellular Ca2+ stores. CGS-21680 did not have a direct effect on the Ca2+-independent neurotransmitter-releasing machinery, since the modulatory effect on the hypertonic response was also occluded by BAPTA-AM and thapsigargin. CGS-21680 facilitation on K+-evoked ACh release was not altered by the P/Q-type voltage-dependent calcium channel (VDCC) blocker ω-Agatoxin IVA, but it was completely prevented by both, the L-type VDCC blocker nitrendipine (which is known to immobilize their gating charges), or thapsigargin, suggesting that the effects of CGS-21680 on L-type VDCC and thapsigargin-sensitive internal stores are associated. We found that the VDCC pore blocker Cd2+ (2 mM Ca2+ or 0Ca2+-EGTA) failed to affect the CGS-21680 effect in high K+ whereas nitrendipine in 0Ca2+-EGTA+Cd2+ occluded its action. The blockade of Ca2+ release from endoplasmic reticulum with ryanodine antagonized the facilitating effect of CGS-21680 in control and high K+ concentration. It is concluded that, at the mouse neuromuscular junction, activation of A2A receptors facilitates spontaneous and K+-evoked ACh release by an external Ca2+-independent mechanism but that involves mobilization of Ca2+ from internal stores: during spontaneous ACh release

  7. Ephrin receptor (Eph) -A1, -A2, -A4 and -A7 expression in mobile tongue squamous cell carcinoma: associations with clinicopathological parameters and patients survival.

    Science.gov (United States)

    Theocharis, Stamatios; Klijanienko, Jerzy; Giaginis, Constantinos; Alexandrou, Paraskevi; Patsouris, Efstratios; Sastre-Garau, Xavier

    2014-04-01

    Ephrin receptors (Ephs) are frequently overexpressed in a wide variety of human malignant tumors, being associated with tumor growth, invasion, metastasis and angiogenesis. The present study aimed to evaluate the clinical significance of Eph-A1, -A2, -A4 and -A7 protein expression in mobile tongue squamous cell carcinoma (SCC). Eph-A1, -A2, -A4 and -A7 protein expression was assessed immunohistochemically on 37 mobile tongue SCC tissue samples and was analyzed in relation with clinicopathological characteristics, overall and disease-free patients' survival. All the examined mobile tongue SCC cases were found positive for Eph-A1, -A2, -A4 and -A7. Significant associations were noted between high Eph-A1, -A4 and -A7 expression and absence of lymph node metastases (p = 0.0263, p = 0.0461 and p = 0.0461, respectively). High Eph-A1, -A2 and -A7 expression was significantly more frequently observed in patients presenting absence of vascular invasion (p = 0.0444), dense stromal inflammatory reaction (p = 0.0063) and female gender (p = 0.0327), respectively. Mobile tongue SCC patients with high Eph-A7 expression presented longer overall and disease-free survival compared to those with low Eph-A7 expression (log-rank test, p = 0.0093 and p = 0.0164, respectively). In multivariate analysis, Eph-A7 expression was identified as independent prognostic factor of overall survival (Cox-regression analysis, p = 0.0426). The present study supported evidence that Ephs may participate in the malignant transformation of mobile tongue SCC, reinforcing their utility as clinical markers for patients' management and prognosis, as also as targets for potential therapeutic intervention in tongue chemoprevention.

  8. Vitamin D receptor and estrogen receptor gene polymorphisms in postmenopausal Danish women

    DEFF Research Database (Denmark)

    Bagger, Y Z; Hassager, C; Heegaard, Anne-Marie

    2000-01-01

    To investigate the polymorphisms of the vitamin D receptor (VDR) and estrogen receptor (ER) genes in relation to biochemical markers of bone turnover (serum osteocalcin and urinary collagen type I degradation products (CrossLaps), and to study ER genotypes in relation to serum lipoproteins, blood...... pressure, or changes in these parameters after 2 years of hormone replacement therapy (HRT) in 499 Danish postmenopausal women....

  9. Three novel and two known androgen receptor gene mutations ...

    Indian Academy of Sciences (India)

    gene mutations associated with androgen insensitivity syndrome in sex-reversed XY female patients. J. Genet. ... signal and a C-terminal. Keywords. androgen insensitivity syndrome; androgen receptor; truncation mutation; N-terminal domain; XY sex reversal. .... and an increased risk of gonadal tumour. Mutations in SRY.

  10. Association between vitamin D receptor gene polymorphism (TaqI)

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 94; Issue 3. Association between vitamin D receptor gene polymorphism (TaqI) and obesity in Chinese population. Hui-Ru Fan Li-Qun Lin Hao Ma Ying Li Chang-Hao Sun. Research Note Volume 94 Issue 3 September 2015 pp 473-478 ...

  11. Genetic diversity of bitter taste receptor gene family in Sichuan ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 95; Issue 3. Genetic diversity of bitter taste receptor gene family in Sichuan domestic and Tibetan chicken populations. YUAN SU DIYAN LI UMA GAUR YAN WANG NAN WU BINLONG CHEN HONGXIAN XU HUADONG YIN YAODONG HU QING ZHU. RESEARCH ARTICLE ...

  12. Genetic diversity of bitter taste receptor gene family in Sichuan ...

    Indian Academy of Sciences (India)

    Abstract. The sense of bitter taste plays a critical role in animals as it can help them to avoid intake of toxic and harmful substances. Previous research had revealed that chicken has only three bitter taste receptor genes (Tas2r1, Tas2r2 and Tas2r7). To better understand the genetic polymorphisms and importance of bitter ...

  13. Association between vitamin D receptor gene polymorphism (TaqI ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 94; Issue 3. Association between vitamin D receptor gene polymorphism (TaqI) and obesity in Chinese population. Hui-Ru Fan Li-Qun Lin Hao Ma Ying Li Chang-Hao Sun. Research Note Volume 94 Issue 3 September 2015 pp 473-478 ...

  14. Gene specific actions of thyroid hormone receptor subtypes.

    Directory of Open Access Journals (Sweden)

    Jean Z Lin

    Full Text Available There are two homologous thyroid hormone (TH receptors (TRs α and β, which are members of the nuclear hormone receptor (NR family. While TRs regulate different processes in vivo and other highly related NRs regulate distinct gene sets, initial studies of TR action revealed near complete overlaps in their actions at the level of individual genes. Here, we assessed the extent that TRα and TRβ differ in target gene regulation by comparing effects of equal levels of stably expressed exogenous TRs +/- T(3 in two cell backgrounds (HepG2 and HeLa. We find that hundreds of genes respond to T(3 or to unliganded TRs in both cell types, but were not able to detect verifiable examples of completely TR subtype-specific gene regulation. TR actions are, however, far from identical and we detect TR subtype-specific effects on global T(3 response kinetics in HepG2 cells and many examples of TR subtype specificity at the level of individual genes, including effects on magnitude of response to TR +/- T(3, TR regulation patterns and T(3 dose response. Cycloheximide (CHX treatment confirms that at least some differential effects involve verifiable direct TR target genes. TR subtype/gene-specific effects emerge in the context of widespread variation in target gene response and we suggest that gene-selective effects on mechanism of TR action highlight differences in TR subtype function that emerge in the environment of specific genes. We propose that differential TR actions could influence physiologic and pharmacologic responses to THs and selective TR modulators (STRMs.

  15. Killer immunoglobulin receptor genes in spondyloarthritis.

    Science.gov (United States)

    Kuijpers, Taco W; Vendelbosch, Sanne; Berg, Merlijn van den; Baeten, Dominique L P

    2016-07-01

    We focus on the role of killer immunoglobulin receptor (KIR) interactions with the human leukocyte antigens (HLA)-B27 ligand and the potential contribution of KIR-expressing natural killer and T cells in spondyloarthritis, more specifically in ankylosing spondylitis (AS). In AS strong epidemiological evidence of significant genetic associations with the major histocompatibility complex was convincingly identified. HLA-B27-positive first-degree relatives of AS cases are 5-16 times more likely to develop disease than HLA-B27-positive carriers in the general community. The GWAS era has enabled rapid progress in identifying non-major histocompatibility complex associations of AS. These findings show a number of important pathways in AS pathogenesis, including the IL-23-IL-17 pathway, aminopeptidases, peptide presentation, and KIR-HLA-B27 interactions. Studies using genetic markers, including KIRs may be used for a risk assessment about whom may benefit most from the various treatment protocols in spondyloarthritis, now that alternative therapeutic options have become feasible.

  16. Blockade of adenosine A2A receptors prevents interleukin-1β-induced exacerbation of neuronal toxicity through a p38 mitogen-activated protein kinase pathway

    Directory of Open Access Journals (Sweden)

    Simões Ana

    2012-08-01

    Full Text Available Abstract Background and purpose Blockade of adenosine A2A receptors (A2AR affords robust neuroprotection in a number of brain conditions, although the mechanisms are still unknown. A likely candidate mechanism for this neuroprotection is the control of neuroinflammation, which contributes to the amplification of neurodegeneration, mainly through the abnormal release of pro-inflammatory cytokines such as interleukin(IL-1β. We investigated whether A2AR controls the signaling of IL-1β and its deleterious effects in cultured hippocampal neurons. Methods Hippocampal neuronal cultures were treated with IL-1β and/or glutamate in the presence or absence of the selective A2AR antagonist, SCH58261 (50 nmol/l. The effect of SCH58261 on the IL-1β-induced phosphorylation of the mitogen-activated protein kinases (MAPKs c-Jun N-terminal kinase (JNK and p38 was evaluated by western blotting and immunocytochemistry. The effect of SCH58261 on glutamate-induced neurodegeneration in the presence or absence of IL-1β was evaluated by nucleic acid and by propidium iodide staining, and by lactate dehydrogenase assay. Finally, the effect of A2AR blockade on glutamate-induced intracellular calcium, in the presence or absence of IL-1β, was studied using single-cell calcium imaging. Results IL-1β (10 to 100 ng/ml enhanced both JNK and p38 phosphorylation, and these effects were prevented by the IL-1 type 1 receptor antagonist IL-1Ra (5 μg/ml, in accordance with the neuronal localization of IL-1 type 1 receptors, including pre-synaptically and post-synaptically. At 100 ng/ml, IL-1β failed to affect neuronal viability but exacerbated the neurotoxicity induced by treatment with 100 μmol/l glutamate for 25 minutes (evaluated after 24 hours. It is likely that this resulted from the ability of IL-1β to enhance glutamate-induced calcium entry and late calcium deregulation, both of which were unaffected by IL-1β alone. The selective A2AR antagonist, SCH58261 (50 nmol

  17. CRDB: database of chemosensory receptor gene families in vertebrate.

    Directory of Open Access Journals (Sweden)

    Dong Dong

    Full Text Available Chemosensory receptors (CR are crucial for animals to sense the environmental changes and survive on earth. The emergence of whole-genome sequences provides us an opportunity to identify the entire CR gene repertoires. To completely gain more insight into the evolution of CR genes in vertebrates, we identified the nearly all CR genes in 25 vertebrates using homology-based approaches. Among these CR gene repertoires, nearly half of them were identified for the first time in those previously uncharacterized species, such as the guinea pig, giant panda and elephant, etc. Consistent with previous findings, we found that the numbers of CR genes vary extensively among different species, suggesting an extreme form of 'birth-and-death' evolution. For the purpose of facilitating CR gene analysis, we constructed a database with the goals to provide a resource for CR genes annotation and a web tool for exploring their evolutionary patterns. Besides a search engine for the gene extraction from a specific chromosome region, an easy-to-use phylogenetic analysis tool was also provided to facilitate online phylogeny study of CR genes. Our work can provide a rigorous platform for further study on the evolution of CR genes in vertebrates.

  18. Structure-Activity Relationships of Truncated C2- or C8-Substituted Adenosine Derivatives as Dual Acting A2A and A3 Adenosine Receptor Ligands

    Science.gov (United States)

    Hou, Xiyan; Majik, Mahesh S.; Kim, Kyunglim; Pyee, Yuna; Lee, Yoonji; Alexander, Varughese; Chung, Hwa-Jin; Lee, Hyuk Woo; Chandra, Girish; Lee, Jin Hee; Park, Seul-gi; Choi, Won Jun; Kim, Hea Ok; Phan, Khai; Gao, Zhan-Guo; Jacobson, Kenneth A.; Choi, Sun; Lee, Sang Kook; Jeong, Lak Shin

    2011-01-01

    Truncated N6-substituted-4′-oxo- and 4′-thioadenosine derivatives with C2 or C8 substitution were studied as dual acting A2A and A3 adenosine receptor (AR) ligands. The lithiation-mediated stannyl transfer and palladium-catalyzed cross coupling reactions were utilized for functionalization of the C2 position of 6-chloropurine nucleosides. An unsubstituted 6-amino group and a hydrophobic C2 substituent were required for high affinity at the hA2AAR, but hydrophobic C8 substitution abolished binding at the hA2AAR. However, most of synthesized compounds displayed medium to high binding affinity at the hA3AR, regardless of C2 or C8 substitution, and low efficacy in a functional cAMP assay. Several compounds tended to be full hA2AAR agonists. C2 substitution probed geometrically through hA2AAR-docking, was important for binding in order of hexynyl > hexenyl > hexanyl. Compound 4g was the most potent ligand acting dually as hA2AAR agonist and hA3AR antagonist, which might be useful for treatment of asthma or other inflammatory diseases. PMID:22142423

  19. Studies in nuclear receptor Nurr1 : Identification of Nurr1-regulated genes

    OpenAIRE

    Hermanson, Elisabet

    2004-01-01

    The nuclear receptor family comprises more than sixty members, including receptors for steroids, thyroid hormone and retinoids. Many nuclear receptors function as ligand- activated transcription factors that regulate the expression of specific target genes. The family also includes nuclear receptors that lack identified ligands, and these receptors are therefore referred to as orphan receptors. It has recently been shown that some of these orphan receptors are ligand- indepe...

  20. 2-n-Butyl-9-methyl-8-[1,2,3]triazol-2-yl-9H-purin-6-ylamine and analogues as A2A adenosine receptor antagonists. Design, synthesis, and pharmacological characterization.

    Science.gov (United States)

    Minetti, Patrizia; Tinti, Maria Ornella; Carminati, Paolo; Castorina, Massimo; Di Cesare, Maria Assunta; Di Serio, Stefano; Gallo, Grazia; Ghirardi, Orlando; Giorgi, Fabrizio; Giorgi, Luca; Piersanti, Giovanni; Bartoccini, Francesca; Tarzia, Giorgio

    2005-11-03

    Two types of adenosine receptor ligands were designed, i.e., 9H-purine and 1H-imidazo[4,5-c]pyridines, to obtain selective A(2A) antagonists, and we report here their synthesis and binding affinities for the four adenosine receptor subtypes A(1), A(2A), A(2B) and A(3). The design was carried out on the basis of the molecular modeling of a number of potent adenosine receptor antagonists described in the literature. Three compounds (25b-d) showed an interesting affinity and selectivity for the A(2A) subtype. One of them, i.e., ST1535 (2-n-butyl-9-methyl-8-[1,2,3]triazol-2-yl-9H-purin-6-ylamine, 25b) (K(i) A(2A) = 6.6 nM, K(i) A(1)/A(2A) = 12; K(i) A(2B)/A(2A) = 58; K(i) A(3)/A(2A) > 160), was selected for in vivo study and shown to induce a dose-related increase in locomotor activity, suggestive of an A(2A) antagonist type of activity.

  1. Identification of novel androgen receptor target genes in prostate cancer

    Directory of Open Access Journals (Sweden)

    Gerald William L

    2007-06-01

    Full Text Available Abstract Background The androgen receptor (AR plays critical roles in both androgen-dependent and castrate-resistant prostate cancer (PCa. However, little is known about AR target genes that mediate the receptor's roles in disease progression. Results Using Chromatin Immunoprecipitation (ChIP Display, we discovered 19 novel loci occupied by the AR in castrate resistant C4-2B PCa cells. Only four of the 19 AR-occupied regions were within 10-kb 5'-flanking regulatory sequences. Three were located up to 4-kb 3' of the nearest gene, eight were intragenic and four were in gene deserts. Whereas the AR occupied the same loci in C4-2B (castrate resistant and LNCaP (androgen-dependent PCa cells, differences between the two cell lines were observed in the response of nearby genes to androgens. Among the genes strongly stimulated by DHT in C4-2B cells – D-dopachrome tautomerase (DDT, Protein kinase C delta (PRKCD, Glutathione S- transferase theta 2 (GSTT2, Transient receptor potential cation channel subfamily V member 3 (TRPV3, and Pyrroline-5-carboxylate reductase 1 (PYCR1 – most were less strongly or hardly stimulated in LNCaP cells. Another AR target gene, ornithine aminotransferase (OAT, was AR-stimulated in a ligand-independent manner, since it was repressed by AR siRNA knockdown, but not stimulated by DHT. We also present evidence for in vivo AR-mediated regulation of several genes identified by ChIP Display. For example, PRKCD and PYCR1, which may contribute to PCa cell growth and survival, are expressed in PCa biopsies from primary tumors before and after ablation and in metastatic lesions in a manner consistent with AR-mediated stimulation. Conclusion AR genomic occupancy is similar between LNCaP and C4-2B cells and is not biased towards 5' gene flanking sequences. The AR transcriptionally regulates less than half the genes nearby AR-occupied regions, usually but not always, in a ligand-dependent manner. Most are stimulated and a few are

  2. Interleukin 18 receptor 1 gene polymorphisms are associated with asthma

    DEFF Research Database (Denmark)

    Zhu, Guohua; Whyte, Moira K B; Vestbo, Jørgen

    2008-01-01

    by genotyping seven SNPs in 294, 342 and 100 families from Denmark, United Kingdom and Norway and conducting family-based association analyses for asthma, atopic asthma and bronchial hyper-reactivity (BHR) phenotypes. Three SNPs in IL18R1 were associated with asthma (0.01131 ...The interleukin 18 receptor (IL18R1) gene is a strong candidate gene for asthma. It has been implicated in the pathophysiology of asthma and maps to an asthma susceptibility locus on chromosome 2q12. The possibility of association between polymorphisms in IL18R1 and asthma was examined...... with atopic asthma (0.00066 asthma (0.00397

  3. Estrogenic receptors a and p gene polymorphisms in postmenopausal osteoporosis

    Directory of Open Access Journals (Sweden)

    K A Maslova

    2008-01-01

    Full Text Available Objective. To assess frequency distribution of estrogenic receptor (ERa and ERfl gene polymorphisms and their influence on bone mineral density (BMD in groups of postmenopausal women with and without osteoporosis (OP. Material and methods. 200 residents of Moscow and Moscow region were divided into two groups considering BMD values according to WHO criteria; OP group and healthy control group Results. Differences of genotype and their combinations frequency distribution between OP and control groups show presence OP risk and protector genotypes. ER gene important role in pathogenesis of postmenopausal osteoporosis and possibility to use these genetic markers for assessment of risk of OP development in Russian population was confirmed.

  4. Selective A2A receptor antagonist prevents microglia-mediated neuroinflammation and protects retinal ganglion cells from high intraocular pressure-induced transient ischemic injury.

    Science.gov (United States)

    Madeira, Maria H; Boia, Raquel; Elvas, Filipe; Martins, Tiago; Cunha, Rodrigo A; Ambrósio, António Francisco; Santiago, Ana Raquel

    2016-03-01

    Glaucoma is a leading cause of vision loss and blindness worldwide, characterized by chronic and progressive neuronal loss. Reactive microglial cells have been recognized as a neuropathologic feature, contributing to local inflammation and retinal neurodegeneration. In a recent in vitro work (organotypic cultures), we demonstrated that blockade of adenosine A2A receptor (A2AR) prevents the neuroinflammatory response and affords protection to retinal ganglion cells (RGCs) against exposure to elevated hydrostatic pressure (EHP), to mimic elevated intraocular pressure (IOP), the main risk factor for glaucoma development. Herein, we investigated whether a selective A2AR antagonist (SCH 58261) could modulate retinal microglia reactivity and their inflammatory response. Furthermore, we took advantage of the high IOP-induced transient ischemia (ischemia-reperfusion, I-R) animal model to evaluate the protective role of A2AR blockade in the control of retinal neuroinflammation and neurodegeneration. Primary microglial cell cultures were challenged either with lipopolysaccharide or with EHP, in the presence or absence of A2AR antagonist SCH 58261 (50 nM). In addition, I-R injury was induced in adult Wistar rats after intravitreal administration of SCH 58261 (100 nM, 5 μL). Our results showed that SCH 58261 attenuated microglia reactivity and the increased expression and release of proinflammatory cytokines. Moreover, intravitreal administration of SCH 58261 prevented I-R-induced cell death and RGC loss, by controlling microglial-mediated neuroinflammatory response. These results prompt the proposal that A2AR blockade may have great potential in the management of retinal neurodegenerative diseases characterized by microglia reactivity and RGC death, such as glaucoma and ischemic diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    International Nuclear Information System (INIS)

    Teodorov, E.; Ferrari, M.F.R.; Fior-Chadi, D.R.; Camarini, R.; Felício, L.F.

    2012-01-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  6. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Teodorov, E. [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, SP (Brazil); Ferrari, M.F.R. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Fior-Chadi, D.R. [Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Camarini, R. [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Felício, L.F. [Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  7. Pharmacological characterisation and inhibitory effects of (2R,3R,4S,5R)-2-(6-amino-2-{[(1S)-2-hydroxy-1-(phenylmethyl)ethyl]amino}-9H-purin-9-yl)-5-(2-ethyl-2H-tetrazol-5-yl)tetrahydro-3,4-furandiol, a novel ligand that demonstrates both adenosine A(2A) receptor agonist and adenosine A(3) receptor antagonist activity.

    Science.gov (United States)

    Bevan, Nicola; Butchers, Peter R; Cousins, Rick; Coates, Jill; Edgar, Emma V; Morrison, Val; Sheehan, Michael J; Reeves, Julian; Wilson, David J

    2007-06-14

    The pharmacological properties of the novel ligand, (2R,3R,4S,5R)-2-(6-amino-2-{[(1S)-2-hydroxy-1-(phenylmethyl)ethyl]amino}-9H-purin-9-yl)-5-(2-ethyl-2H-tetrazol-5-yl)tetrahydro-3,4-furandiol (I), at the human adenosine receptors were investigated using Chinese hamster ovary cell lines recombinantly expressing these receptors. Functional studies were performed using a cyclic AMP-coupled reporter gene system. Binding studies were performed using membranes from these cells. The effects of ligand (I) were also determined on functional responses of human neutrophils and eosinophils. Ligand (I) had a high affinity for the adenosine A(2A) receptor (pKi 7.8+/-0.2) and was a potent agonist at this receptor (pEC(50) 9.0+/-0.2). Ligand (I) had a similar affinity for the adenosine A(3) receptor (pKi 7.8+/-0.1) but displayed no agonist activity, acting instead as a competitive antagonist (pA(2) 8.3+/-0.04). Ligand (I) had lower affinity for adenosine A(1) and A(2B) receptors (pKireceptors (pEC(50) 7.1 at both receptors). Ligand (I) was a potent inhibitor of the generation of reactive oxygen species from human neutrophils and eosinophils (pEC(50) 9.7+/-0.1 and 9.4+/-0.2 respectively). The inhibitory effect of ligand (I) on the release of reactive oxygen species from neutrophils was antagonised competitively by the adenosine A(2A) receptor antagonist 9-chloro-2-(2-furanyl)-[1,2,4]triazolo[1,5-c]quinazolin-5-amine (CGS15943) with a pA(2) value (10.03+/-0.44) consistent with an effect on adenosine A(2A) receptors. Ligand (I) also inhibited the release of granule proteins from neutrophils and eosinophils (pEC(50) 8.7 and 8.9 respectively), albeit less potently than as an inhibitor of reactive oxygen species generation. In summary, ligand (I) is a potent and selective agonist for the adenosine A(2A) receptor and a competitive antagonist at the adenosine A(3) receptor. Ligand (I) has potent anti-inflammatory effects on human

  8. Dopamine Receptor Genes Modulate Associative Memory in Old Age.

    Science.gov (United States)

    Papenberg, Goran; Becker, Nina; Ferencz, Beata; Naveh-Benjamin, Moshe; Laukka, Erika J; Bäckman, Lars; Brehmer, Yvonne

    2017-02-01

    Previous research shows that associative memory declines more than item memory in aging. Although the underlying mechanisms of this selective impairment remain poorly understood, animal and human data suggest that dopaminergic modulation may be particularly relevant for associative binding. We investigated the influence of dopamine (DA) receptor genes on item and associative memory in a population-based sample of older adults (n = 525, aged 60 years), assessed with a face-scene item associative memory task. The effects of single-nucleotide polymorphisms of DA D1 (DRD1; rs4532), D2 (DRD2/ANKK1/Taq1A; rs1800497), and D3 (DRD3/Ser9Gly; rs6280) receptor genes were examined and combined into a single genetic score. Individuals carrying more beneficial alleles, presumably associated with higher DA receptor efficacy (DRD1 C allele; DRD2 A2 allele; DRD3 T allele), performed better on associative memory than persons with less beneficial genotypes. There were no effects of these genes on item memory or other cognitive measures, such as working memory, executive functioning, fluency, and perceptual speed, indicating a selective association between DA genes and associative memory. By contrast, genetic risk for Alzheimer disease (AD) was associated with worse item and associative memory, indicating adverse effects of APOE ε4 and a genetic risk score for AD (PICALM, BIN1, CLU) on episodic memory in general. Taken together, our results suggest that DA may be particularly important for associative memory, whereas AD-related genetic variations may influence overall episodic memory in older adults without dementia.

  9. NF-κB is activated in CD4+ iNKT cells by sickle cell disease and mediates rapid induction of adenosine A2A receptors.

    Directory of Open Access Journals (Sweden)

    Gene Lin

    Full Text Available Reperfusion injury following tissue ischemia occurs as a consequence of vaso-occlusion that is initiated by activation of invariant natural killer T (iNKT cells. Sickle cell disease (SDC results in widely disseminated microvascular ischemia and reperfusion injury as a result of vaso-occlusion by rigid and adhesive sickle red blood cells. In mice, iNKT cell activation requires NF-κB signaling and can be inhibited by the activation of anti-inflammatory adenosine A2A receptors (A2ARs. Human iNKT cells are divided into subsets of CD4+ and CD4- cells. In this study we found that human CD4+ iNKT cells, but not CD4- cells undergo rapid NF-κB activation (phosphorylation of NF-κB on p65 and induction of A2ARs (detected with a monoclonal antibody 7F6-G5-A2 during SCD painful vaso-occlusive crises. These findings indicate that SCD primarily activates the CD4+ subset of iNKT cells. Activation of NF-κB and induction of A2ARs is concordant, i.e. only CD4+ iNKT cells with activated NF-κB expressed high levels of A2ARs. iNKT cells that are not activated during pVOC express low levels of A2AR immunoreactivity. These finding suggest that A2AR transcription may be induced in CD4+ iNKT cells as a result of NF-κB activation in SCD. In order to test this hypothesis further we examined cultured human iNKT cells. In cultured cells, blockade of NF-κB with Bay 11-7082 or IKK inhibitor VII prevented rapid induction of A2AR mRNA and protein upon iNKT activation. In conclusion, NF-κB-mediated induction of A2ARs in iNKT cells may serve as a counter-regulatory mechanism to limit the extent and duration of inflammatory immune responses. As activated iNKT cells express high levels of A2ARs following their activation, they may become highly sensitive to inhibition by A2AR agonists.

  10. Two polymorphisms in the glucocorticoid receptor gene directly affect glucocorticoid-regulated gene expression.

    NARCIS (Netherlands)

    H. Russcher (Henk); P. Smit (Pauline); E.L.T. van den Akker (Erica); E.F.C. van Rossum (Liesbeth); A.O. Brinkmann (Albert); F.H. de Jong (Frank); S.W.J. Lamberts (Steven); J.W. Koper (Jan)

    2005-01-01

    textabstractCONTEXT: Interindividual variation in glucocorticoid (GC)-sensitivity can be partly explained by polymorphisms in the GC receptor (GR) gene. The ER22/23EK and N363S polymorphisms have been described to be associated with lower and higher GC sensitivity, respectively. OBJECTIVE AND

  11. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    International Nuclear Information System (INIS)

    Levy, J.R.; Olefsky, J.M.

    1988-01-01

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4 0 C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37 0 C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation

  12. Regulation of Clock Genes by Adrenergic Receptor Signaling in Osteoblasts.

    Science.gov (United States)

    Hirai, Takao

    2018-01-01

    The clock system has been identified as one of the major mechanisms controlling cellular functions. Circadian clock gene oscillations also actively participate in the functions of various cell types including bone-related cells. Previous studies demonstrated that clock genes were expressed in bone tissue and also that their expression exhibited circadian rhythmicity. Recent findings have shown that sympathetic tone plays a central role in biological oscillations in bone. Adrenergic receptor (AR) signaling regulates the expression of clock genes in cancellous bone. Furthermore, α 1 -AR signaling in osteoblasts is known to negatively regulate the expression of bone morphogenetic protein-4 (Bmp4) by up-regulating nuclear factor IL-3 (Nfil3)/e4 promoter-binding protein 4 (E4BP4). The ablation of α 1B -AR signaling also increases the expression of the Bmp4 gene in bone. The findings of transient overexpression and siRNA experiments have supported the involvement of the transcription factor CCAAT/enhancer-binding protein delta (C/EBPδ, Cebpd) in Nfil3 and Bmp4 expression in MC3T3-E1 cells. These findings suggest that the effects of Cebpd are due to the circadian regulation of Bmp4 expression, at least in part, by the up-regulated expression of the clock gene Nfil3 in response to α 1B -AR signaling in osteoblasts. Therefore, AR signaling appears to modulate cellular functionality through the expression of clock genes that are circadian rhythm regulators in osteoblasts. The expression of clock genes regulated by the sympathetic nervous system and clock-controlled genes that affect bone metabolism are described herein.

  13. Somatostatin receptor gene transfer inhibits established pancreatic cancer xenografts.

    Science.gov (United States)

    Celinski, Scott A; Fisher, William E; Amaya, Felipe; Wu, Yuan Qing; Yao, Q; Youker, Keith A; Li, Min

    2003-11-01

    Most human pancreatic adenocarcinoma cells do not express somatostatin receptors, and somatostatin does not inhibit the growth of these cancers. We have demonstrated previously that somatostatin inhibits the growth of pancreatic cancers expressing somatostatin receptor subtype-2 (SSTR2), but not receptor-negative cancers. SSTR2 expression may be an important tumor-suppressor pathway that is lost in human pancreatic cancer. We hypothesized that SSTR2 gene transfer would restore the growth-inhibitory response of human pancreatic cancer to somatostatin. Palpable human pancreatic adenocarcinoma tumors were established on the backs of nude mice by subcutaneous injection of cultured cells (Panc-1). The animals were divided into 5 groups (n = 10/group). Group I served as an untreated control. Group II received an intramuscular injection of the long-acting somatostatin analogue Sandostatin LAR. Group III received Lac-Z expressing adenovirus via intraperitoneal injection. Group IV received SSTR2 expressing adenovirus via intraperitoneal injection. Group V received SSTR2 expressing adenovirus via intraperitoneal injection and an intramuscular injection of Sandostatin LAR. The rate of tumor growth was assessed with calipers. After 28 days, the animals were anesthetized and exsanguanated, and the tumors were excised and weighed. Plasma somatostatin and octreotide levels were measured by radioimmunoassay. Expression of cell-surface somatostatin-receptor protein and known tumor-suppressor proteins was determined by reverse transcriptase-polymerase chain reaction, Western blot, and immunohistochemistry. Systemic delivery of SSTR2-expressing adenovirus by intraperitoneal injection resulted in expression of SSTR2 protein in the subcutaneous human pancreatic cancers. Final tumor weight was significantly decreased in the groups expressing SSTR2 receptors compared to the other 3 groups. Treatment with Sandostatin LAR increased plasma octreotide levels as determined by radioimmunoassay

  14. Genomic organization, annotation, and ligand-receptor inferences of chicken chemokines and chemokine receptor genes based on comparative genomics

    Directory of Open Access Journals (Sweden)

    Sze Sing-Hoi

    2005-03-01

    Full Text Available Abstract Background Chemokines and their receptors play important roles in host defense, organogenesis, hematopoiesis, and neuronal communication. Forty-two chemokines and 19 cognate receptors have been found in the human genome. Prior to this report, only 11 chicken chemokines and 7 receptors had been reported. The objectives of this study were to systematically identify chicken chemokines and their cognate receptor genes in the chicken genome and to annotate these genes and ligand-receptor binding by a comparative genomics approach. Results Twenty-three chemokine and 14 chemokine receptor genes were identified in the chicken genome. All of the chicken chemokines contained a conserved CC, CXC, CX3C, or XC motif, whereas all the chemokine receptors had seven conserved transmembrane helices, four extracellular domains with a conserved cysteine, and a conserved DRYLAIV sequence in the second intracellular domain. The number of coding exons in these genes and the syntenies are highly conserved between human, mouse, and chicken although the amino acid sequence homologies are generally low between mammalian and chicken chemokines. Chicken genes were named with the systematic nomenclature used in humans and mice based on phylogeny, synteny, and sequence homology. Conclusion The independent nomenclature of chicken chemokines and chemokine receptors suggests that the chicken may have ligand-receptor pairings similar to mammals. All identified chicken chemokines and their cognate receptors were identified in the chicken genome except CCR9, whose ligand was not identified in this study. The organization of these genes suggests that there were a substantial number of these genes present before divergence between aves and mammals and more gene duplications of CC, CXC, CCR, and CXCR subfamilies in mammals than in aves after the divergence.

  15. Presynaptic muscarinic acetylcholine autoreceptors (M1, M2 and M4 subtypes), adenosine receptors (A1 and A2A) and tropomyosin-related kinase B receptor (TrkB) modulate the developmental synapse elimination process at the neuromuscular junction.

    Science.gov (United States)

    Nadal, Laura; Garcia, Neus; Hurtado, Erica; Simó, Anna; Tomàs, Marta; Lanuza, Maria A; Santafé, Manel; Tomàs, Josep

    2016-06-23

    The development of the nervous system involves an initially exuberant production of neurons that make an excessive number of synaptic contacts. The initial overproduction of synapses promotes connectivity. Hebbian competition between axons with different activities (the least active are punished) leads to the loss of roughly half of the overproduced elements and this refines connectivity and increases specificity. The neuromuscular junction is innervated by a single axon at the end of the synapse elimination process and, because of its relative simplicity, has long been used as a model for studying the general principles of synapse development. The involvement of the presynaptic muscarinic ACh autoreceptors may allow for the direct competitive interaction between nerve endings through differential activity-dependent acetylcholine release in the synaptic cleft. Then, the most active ending may directly punish the less active ones. Our previous results indicate the existence in the weakest axons on the polyinnervated neonatal NMJ of an ACh release inhibition mechanism based on mAChR coupled to protein kinase C and voltage-dependent calcium channels. We suggest that this mechanism plays a role in the elimination of redundant neonatal synapses. Here we used confocal microscopy and quantitative morphological analysis to count the number of brightly fluorescent axons per endplate in P7, P9 and P15 transgenic B6.Cg-Tg (Thy1-YFP)16 Jrs/J mice. We investigate the involvement of individual mAChR M1-, M2- and M4-subtypes in the control of axonal elimination after the Levator auris longus muscle had been exposed to agonist and antagonist in vivo. We also analysed the role of adenosine receptor subtypes (A1 and A2A) and the tropomyosin-related kinase B receptor. The data show that postnatal axonal elimination is a regulated multireceptor mechanism that guaranteed the monoinnervation of the neuromuscular synapses. The three receptor sets considered (mAChR, AR and TrkB receptors

  16. Oxytocin receptor gene variation predicts subjective responses to MDMA.

    Science.gov (United States)

    Bershad, Anya K; Weafer, Jessica J; Kirkpatrick, Matthew G; Wardle, Margaret C; Miller, Melissa A; de Wit, Harriet

    2016-12-01

    3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") enhances desire to socialize and feelings of empathy, which are thought to be related to increased oxytocin levels. Thus, variation in the oxytocin receptor gene (OXTR) may influence responses to the drug. Here, we examined the influence of a single OXTR nucleotide polymorphism (SNP) on responses to MDMA in humans. Based on findings that carriers of the A allele at rs53576 exhibit reduced sensitivity to oxytocin-induced social behavior, we hypothesized that these individuals would show reduced subjective responses to MDMA, including sociability. In this three-session, double blind, within-subjects study, healthy volunteers with past MDMA experience (N = 68) received a MDMA (0, 0.75 mg/kg, and 1.5 mg/kg) and provided self-report ratings of sociability, anxiety, and drug effects. These responses were examined in relation to rs53576. MDMA (1.5 mg/kg) did not increase sociability in individuals with the A/A genotype as it did in G allele carriers. The genotypic groups did not differ in responses at the lower MDMA dose, or in cardiovascular or other subjective responses. These findings are consistent with the idea that MDMA-induced sociability is mediated by oxytocin, and that variation in the oxytocin receptor gene may influence responses to the drug.

  17. Transient receptor potential (TRP gene superfamily encoding cation channels

    Directory of Open Access Journals (Sweden)

    Pan Zan

    2011-01-01

    Full Text Available Abstract Transient receptor potential (TRP non-selective cation channels constitute a superfamily, which contains 28 different genes. In mammals, this superfamily is divided into six subfamilies based on differences in amino acid sequence homology between the different gene products. Proteins within a subfamily aggregate to form heteromeric or homomeric tetrameric configurations. These different groupings have very variable permeability ratios for calcium versus sodium ions. TRP expression is widely distributed in neuronal tissues, as well as a host of other tissues, including epithelial and endothelial cells. They are activated by environmental stresses that include tissue injury, changes in temperature, pH and osmolarity, as well as volatile chemicals, cytokines and plant compounds. Their activation induces, via intracellular calcium signalling, a host of responses, including stimulation of cell proliferation, migration, regulatory volume behaviour and the release of a host of cytokines. Their activation is greatly potentiated by phospholipase C (PLC activation mediated by coupled GTP-binding proteins and tyrosine receptors. In addition to their importance in maintaining tissue homeostasis, some of these responses may involve various underlying diseases. Given the wealth of literature describing the multiple roles of TRP in physiology in a very wide range of different mammalian tissues, this review limits itself to the literature describing the multiple roles of TRP channels in different ocular tissues. Accordingly, their importance to the corneal, trabecular meshwork, lens, ciliary muscle, retinal, microglial and retinal pigment epithelial physiology and pathology is reviewed.

  18. Molecular cloning and chromosomal localization of one of the human glutamate receptor genes

    OpenAIRE

    Puckett, Carmie; Gomez, Christopher M.; Korenberg, Julie R.; Tung, Howard; Meier, Timothy J.; Chen, Xiao Ning; Hood, Leroy

    1991-01-01

    Glutamate receptors are the predominant excitatory neurotransmitter receptors in the mammalian brain and are classified on the basis of their activation by different agonists. The agonists kainate and alpha-amino-3-hydroxy-5-methyl-4-isoxasolepropionic acid define a class of glutamate receptors termed kainate receptors. We have isolated and sequenced a human glutamate receptor (GluHI) cDNA and determined the chromosomal localization of its gene. The DNA sequence of GluHI would encode a 907-am...

  19. Detection of Heteromers Formed by Cannabinoid CB1, Dopamine D2, and Adenosine A2A G-Protein-Coupled Receptors by Combining Bimolecular Fluorescence Complementation and Bioluminescence Energy Transfer

    Directory of Open Access Journals (Sweden)

    Gemma Navarro

    2008-01-01

    Full Text Available Functional interactions in signaling occur between dopamine D2 (D2R and cannabinoid CB1 (CB1R receptors, between CB1R and adenosine A2A (A2AR receptors, and between D2R and A2AR. Furthermore, direct molecular interactions have been reported for the pairs CB1R-D2R, A2AR-D2R, and CB1R-A2AR. Here a combination of bimolecular fluorescence complementation and bioluminescence energy transfer techniques was used to identify the occurrence of D2R-CB1R-A2AR hetero-oligomers in living cells.

  20. AT1 Receptor Gene Polymorphisms in relation to Postprandial Lipemia

    Directory of Open Access Journals (Sweden)

    B. Klop

    2012-01-01

    Full Text Available Background. Recent data suggest that the renin-angiotensin system may be involved in triglyceride (TG metabolism. We explored the effect of the common A1166C and C573T polymorphisms of the angiotensin II type 1 receptor (AT1R gene on postprandial lipemia. Methods. Eighty-two subjects measured daytime capillary TG, and postprandial lipemia was estimated as incremental area under the TG curve. The C573T and A1166C polymorphisms of the AT1R gene were determined. Results. Postprandial lipemia was significantly higher in homozygous carriers of the 1166-C allele (9.39±8.36 mM*h/L compared to homozygous carriers of the 1166-A allele (2.02±6.20 mM*h/L (P<0.05. Postprandial lipemia was similar for the different C573T polymorphisms. Conclusion. The 1166-C allele of the AT1R gene seems to be associated with increased postprandial lipemia. These data confirm the earlier described relationships between the renin-angiotensin axis and triglyceride metabolism.

  1. Liver X Receptor Genes Variants Modulate ALS Phenotype.

    Science.gov (United States)

    Mouzat, Kevin; Molinari, Nicolas; Kantar, Jovana; Polge, Anne; Corcia, Philippe; Couratier, Philippe; Clavelou, Pierre; Juntas-Morales, Raul; Pageot, Nicolas; Lobaccaro, Jean -Marc A; Raoul, Cedric; Lumbroso, Serge; Camu, William

    2018-03-01

    Amyotrophic lateral sclerosis (ALS) is one of the most severe motor neuron (MN) disorders in adults. Phenotype of ALS patients is highly variable and may be influenced by modulators of energy metabolism. Recent works have implicated the liver X receptors α and β (LXRs), either in the propagation process of ALS or in the maintenance of MN survival. LXRs are nuclear receptors activated by oxysterols, modulating cholesterol levels, a suspected modulator of ALS severity. In a cohort of 438 ALS patients and 330 healthy controls, the influence of LXR genes on ALS risk and phenotype was studied using single nucleotide polymorphisms (SNPs). The two LXRα SNPs rs2279238 and rs7120118 were shown to be associated with age at onset in ALS patients. Consistently, homozygotes were twice more correlated than were heterozygotes to delayed onset. The onset was thus delayed by 3.9 years for rs2279238 C/T carriers and 7.8 years for T/T carriers. Similar results were obtained for rs7120118 (+2.1 years and +6.7 years for T/C and C/C genotypes, respectively). The LXRβ SNP rs2695121 was also shown to be associated with a 30% increase of ALS duration (p = 0.0055, FDR = 0.044). The tested genotypes were not associated with ALS risk. These findings add further evidence to the suspected implication of LXR genes in the disease process of ALS and might open new perspectives in ALS therapeutics.

  2. Fractalkine (CX3CL1) enhances hippocampal N-methyl-d-aspartate receptor (NMDAR) function via d-serine and adenosine receptor type A2 (A2AR) activity

    Science.gov (United States)

    2013-01-01

    Background N-Methyl-d-aspartate receptors (NMDARs) play fundamental roles in basic brain functions such as excitatory neurotransmission and learning and memory processes. Their function is largely regulated by factors released by glial cells, including the coagonist d-serine. We investigated whether the activation of microglial CX3CR1 induces the release of factors that modulate NMDAR functions. Methods We recorded the NMDAR component of the field excitatory postsynaptic potentials (NMDA-fEPSPs) elicited in the CA1 stratum radiatum of mouse hippocampal slices by Shaffer collateral stimulation and evaluated d-serine content in the extracellular medium of glial primary cultures by mass spectrometry analysis. Results We demonstrated that CX3CL1 increases NMDA-fEPSPs by a mechanism involving the activity of the adenosine receptor type A2 (A2AR) and the release of the NMDAR coagonist d-serine. Specifically (1) the selective A2AR blocker 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261) and the genetic ablation of A2AR prevent CX3CL1 action while the A2AR agonist 5-(6-amino-2-(phenethylthio)-9H-purin-9-yl)-N-ethyl-3,4-dihydroxytetrahydrofuran-2-carboxamide (VT7) mimics CX3CL1 effect, and (2) the selective blocking of the NMDAR glycine (and d-serine) site by 5,7-dicholorokynurenic acid (DCKA), the enzymatic degradation of d-serine by d-amino acid oxidase (DAAO) and the saturation of the coagonist site by d-serine, all block the CX3CL1 effect. In addition, mass spectrometry analysis demonstrates that stimulation of microglia and astrocytes with CX3CL1 or VT7 increases d-serine release in the extracellular medium. Conclusions CX3CL1 transiently potentiates NMDAR function though mechanisms involving A2AR activity and the release of d-serine. PMID:23981568

  3. The Dopamine D2 Receptor Gene, Perceived Parental Support, and Adolescent Loneliness: Longitudinal Evidence for Gene-Environment Interactions

    Science.gov (United States)

    van Roekel, Eeske; Goossens, Luc; Scholte, Ron H. J.; Engels, Rutger C. M. E.; Verhagen, Maaike

    2011-01-01

    Background: Loneliness is a common problem in adolescence. Earlier research focused on genes within the serotonin and oxytocin systems, but no studies have examined the role of dopamine-related genes in loneliness. In the present study, we focused on the dopamine D2 receptor gene (DRD2). Methods: Associations among the DRD2, sex, parental support,…

  4. The dopamine D2 receptor gene, perceived parental support, and adolescent loneliness : longitudinal evidence for gene-environment interactions

    NARCIS (Netherlands)

    van Roekel, Eeske; Goossens, Luc; Scholte, Ron H. J.; Engels, Rutger C. M. E.; Verhagen, Maaike

    2011-01-01

    Background: Loneliness is a common problem in adolescence. Earlier research focused on genes within the serotonin and oxytocin systems, but no studies have examined the role of dopamine-related genes in loneliness. In the present study, we focused on the dopamine D2 receptor gene (DRD2). Methods:

  5. Identifying polymorphisms in the Rattus norvegicus D3 dopamine receptor gene and regulatory region

    NARCIS (Netherlands)

    Smits, B.M.; D'Souza, U.M.; Berezikov, E.; Cuppen, E.; Sluyter, F.

    2004-01-01

    The D(3) dopamine receptor has been implicated in several neuropsychiatric disorders, including schizophrenia, Parkinson's disease and addiction. Sequence variation in the D(3) gene can lead to subtle alteration in receptor structure or gene expression and thus to a different phenotype. In this

  6. Association of Interleukin-4 Receptor Gene Polymorphism with Chronic Periodontitis

    Directory of Open Access Journals (Sweden)

    M. Khoshhal

    2011-10-01

    Full Text Available Introduction & Objective: Periodontitis is a multifactorial disease in which host immune system and genetic factors have an important role in its pathogenesis. Genetic polymorphisms in cytokines and their receptors have been proposed as potential markers for periodontal diseases. The aim of the present study was to evaluate whether IL-4R gene polymorphism is associated with chronic periodontitis (CP or not? Materials & Methods: In this cross sectional study ninety non smoker patients (61 women and 29 men with chronic periodontitis were selected according to established criteria. They were categorized into three groups according to their clinical attachment level (CAL. Mutation at position 375(alanine/glutamine, 411(leucine/serine, 478(serine/proline, 406 (arginine/ cysteine in the IL-4R gene was detected by a polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP method.Results: The distribution of mutations for IL-4 polymorphism at amino acids 375 (P=0.41, 411(P=0.22, 478(P=0.17, 406(P=0.77 were not significantly different among mild, moderate and sever chronic periodontitis patients. Conclusion: This study suggests that there is no correlation between IL-4R polymorphism of chronic periodontitis.(Sci J Hamadan Univ Med Sci 2011;18(3:63-69

  7. The altered promoter methylation of oxytocin receptor gene in autism.

    Science.gov (United States)

    Elagoz Yuksel, Mine; Yuceturk, Betul; Karatas, Omer Faruk; Ozen, Mustafa; Dogangun, Burak

    Autism spectrum disorder (ASD) is one of the lifelong existing disorders. Abnormal methylation status of gene promoters of oxytonergic system has been implicated as among the etiologic factors of ASDs. We, therefore, investigated the methylation frequency of oxytocin receptor gene (OXTR) promoter from peripheral blood samples of children with autistic features. Our sample includes 66 children in total (22-94 months); 27 children with ASDs according to the DSM-IV-TR and the Childhood Autism Rating Scale (CARS) and 39 children who do not have any autistic like symptoms as the healthy control group. We investigated the DNA methylation status of OXTR promoter by methylation specific enzymatic digestion of genomic DNA and polymerase chain reaction. A significant relationship has been found between ASDs and healthy controls for the reduction of methylation frequency of the regions MT1 and MT3 of OXTR. We could not find any association in the methylation frequency of MT2 and MT4 regions of OXTR. Although our findings indicate high frequency of OXTR promoter hypomethylation in ASDs, there is need for independent replication of the results for a bigger sample set. We expect that future studies with the inclusion of larger, more homogeneous samples will attempt to disentangle the causes of ASDs.

  8. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  9. Update of the androgen receptor gene mutations database.

    Science.gov (United States)

    Gottlieb, B; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1999-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 309 to 374 during the past year. We have expanded the database by adding information on AR-interacting proteins; and we have improved the database by identifying those mutation entries that have been updated. Mutations of unknown significance have now been reported in both the 5' and 3' untranslated regions of the AR gene, and in individuals who are somatic mosaics constitutionally. In addition, single nucleotide polymorphisms, including silent mutations, have been discovered in normal individuals and in individuals with male infertility. A mutation hotspot associated with prostatic cancer has been identified in exon 5. The database is available on the internet (http://www.mcgill.ca/androgendb/), from EMBL-European Bioinformatics Institute (ftp.ebi.ac.uk/pub/databases/androgen), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca). Copyright 1999 Wiley-Liss, Inc.

  10. BDNF prevents NMDA-induced toxicity in models of Huntington's disease: the effects are genotype specific and adenosine A2A receptor is involved.

    Science.gov (United States)

    Martire, Alberto; Pepponi, Rita; Domenici, Maria Rosaria; Ferrante, Antonella; Chiodi, Valentina; Popoli, Patrizia

    2013-04-01

    NMDA receptor-mediated excitotoxicity is thought to play a pivotal role in the pathogenesis of Huntington's disease (HD). The neurotrophin brain-derived neurotrophic factor (BDNF), which is also highly involved in HD and whose effects are modulated by adenosine A2 ARs, influences the activity and expression of striatal NMDA receptors. In electrophysiology experiments, we investigated the role of BDNF toward NMDA-induced effects in HD models, and the possible involvement of A2ARs. In corticostriatal slices from wild-type mice and age-matched symptomatic R6/2 mice (a model of HD), NMDA application (75 μM) induced a transient or a permanent (i.e., toxic) reduction of field potential amplitude, respectively. BDNF (10 ng/mL) potentiated NMDA effects in wild-type, while it protected from NMDA toxicity in R6/2 mice. Both effects of BDNF were prevented by A2 AR blockade. The protective effect of BDNF against NMDA-induced toxicity was reproduced in a cellular model of HD. These findings may have very important implications for the neuroprotective potential of BDNF and A2 AR ligands in HD. © 2013 International Society for Neurochemistry.

  11. Developing a System for Directed Gene Introduction into Mammary Gland Via Targeted Infection of Retrovirus Receptor Transgenics

    National Research Council Canada - National Science Library

    Bates, Paul

    1998-01-01

    ... (the Rous sarcoma virus receptor). Directed infection, and thus directed gene expression of cells expressing the viral receptor should provide a rapid and efficient method to test the mammary tumorigenic potential of genes in an animal model...

  12. Pharmacological Blockade of Adenosine A2A but Not A1 Receptors Enhances Goal-Directed Valuation in Satiety-Based Instrumental Behavior

    Directory of Open Access Journals (Sweden)

    Yan Li

    2018-04-01

    Full Text Available The balance and smooth shift between flexible, goal-directed behaviors and repetitive, habitual actions are critical to optimal performance of behavioral tasks. The striatum plays an essential role in control of goal-directed versus habitual behaviors through a rich interplay of the numerous neurotransmitters and neuromodulators to modify the input, processing and output functions of the striatum. The adenosine receptors (namely A2AR and A1R, with their high expression pattern in the striatum and abilities to interact and integrate dopamine, glutamate and cannabinoid signals in the striatum, may represent novel therapeutic targets for modulating instrumental behavior. In this study, we examined the effects of pharmacological blockade of the A2ARs and A1Rs on goal-directed versus habitual behaviors in different information processing phases of instrumental learning using a satiety-based instrumental behavior procedure. We found that A2AR antagonist acts at the coding, consolidation and expression phases of instrumental learning to modulate animals’ sensitivity to goal-directed valuation without modifying action-outcome contingency. However, pharmacological blockade and genetic knockout of A1Rs did not affect acquisition or sensitivity to goal-valuation of instrumental behavior. These findings provide pharmacological evidence for a potential therapeutic strategy to control abnormal instrumental behaviors associated with drug addiction and obsessive-compulsive disorder by targeting the A2AR.

  13. Classification of Dopamine Receptor Genes in Vertebrates: Nine Subtypes in Osteichthyes.

    Science.gov (United States)

    Yamamoto, Kei; Fontaine, Romain; Pasqualini, Catherine; Vernier, Philippe

    2015-01-01

    Dopamine neurotransmission regulates various brain functions, and its regulatory roles are mediated by two families of G protein-coupled receptors: the D1 and D2 receptor families. In mammals, the D1 family comprises two receptor subtypes (D1 and D5), while the D2 family comprises three receptor subtypes (D2, D3 and D4). Phylogenetic analyses of dopamine receptor genes strongly suggest that the common ancestor of Osteichthyes (bony jawed vertebrates) possessed four subtypes in the D1 family and five subtypes in the D2 family. Mammals have secondarily lost almost half of the ancestral dopamine receptor genes, whereas nonmammalian species kept many of them. Although the mammalian situation is an exception among Osteichthyes, the current classification and characterization of dopamine receptors are based on mammalian features, which have led to confusion in the identification of dopamine receptor subtypes in nonmammalian species. Here we begin by reviewing the history of the discovery of dopamine receptors in vertebrates. The recent genome sequencing of coelacanth, gar and elephant shark led to the proposal of a refined scenario of evolution of dopamine receptor genes. We also discuss a current problem of nomenclature of dopamine receptors. Following the official nomenclature of mammalian dopamine receptors from D1 to D5, we propose to name newly identified receptor subtypes from D6 to D9 in order to facilitate the use of an identical name for orthologous genes among different species. To promote a nomenclature change which allows distinguishing the two dopamine receptor families, a nomenclature consortium is needed. This comparative perspective is crucial to correctly interpret data obtained in animal studies on dopamine-related brain disorders, and more fundamentally, to understand the characteristics of dopamine neurotransmission in vertebrates. © 2015 S. Karger AG, Basel.

  14. Estrogen receptor gene polymorphism in patients with degenerative lumbar scoliosis.

    Science.gov (United States)

    Park, Yang Soo; Suh, Kuen Tak; Shin, Jong Ki; Lee, Jung Sub

    2017-02-01

    To examine the association between development of degenerative lumbar scoliosis (DLS) and sex hormones. We investigated the association between DLS and estrogen receptor alpha (ERα) gene polymorphisms in 184 patients with a diagnosis of DLS, by determining the presences of the Pvu II and Xba I polymorphisms, measuring bone mineral densities at the lumbar spine (LSBMD) and femoral neck (FNBMD), and by investigating biochemical markers of bone turnover and comparing these results with those of 220 healthy normal controls. Genotype frequencies in DLS patients and controls revealed a significant difference for the Pvu II polymorphism only (p = 0.0287). No significant difference was found between the DLS and control groups with respect to the Xba I polymorphism, bone mineral density (BMD), or biochemical markers. Furthermore, no significant association was observed between the Pvu II polymorphism and BMD, lumbar scoliosis, lateral listhesis, or biochemical markers in patients with DLS. These results suggest that the ERα Pvu II polymorphism influences the prevalence of DLS.

  15. [Progesterone receptor gene polymorphism and recurrent spontaneous abortion].

    Science.gov (United States)

    Traina, Evelyn; Daher, Silvia; Franchim, Camila Sommerauer; Fuziy, Juliana Aoki; Moron, Antônio Fernandes; Banzato, Priscilla Chamelete Andrade; Mattar, Rosiane

    2010-05-01

    To assess a possible association between polymorphism of the progesterone receptor gene (PROGINS) and recurrent spontaneous abortion (RSA). In this case-control study, 85 women with at least three previous spontaneous abortions without an identifiable cause (RSA Group) and 157 women with at least two previous term pregnancies without pathologies and no previous miscarriage (Control Group) were selected. An amount of 10 mL of peripheral blood was collected by venipuncture and genomic DNA was extracted by the DTAB/CTAB method, followed by the polymerase chain reaction (PCR) under specific conditions for this polymorphism and by amplification by 2% agarose gel electrophoresis. The bands were visualized with an ultraviolet light transilluminator and the gels were photographed. Differences in the PROGINS genotype and allele frequencies between groups were analyzed by the χ² test, with the level of significance set at p<0.05. The Odds Ratio (OR) was also used, with 95% confidence intervals 95%CI. PROGINS genotypic frequencies were 72.3% T1T1 and 27.7% T1T2 for the RSA group and 76.4% T1T1, 22.3% T1T2 and 1.3% T2T2 for the control group. There were no differences between groups when the genotype and allele frequencies were analyzed: respectively p=0.48 (OR: 0.8) and p=0.65 (OR: 0.9). Our results suggest that PROGINS polymorphism is not associated with RSA.

  16. Angiotensin II type 1 receptor (A1166C) gene polymorphism in ...

    African Journals Online (AJOL)

    Abstract. Background: Genetic variability in the genes of different components of renin-angiotensin system (RAS) is likely to contribute for its heterogenous association in renal diseased patients. Among the candidate genes of RAS, angiotensin II type 1 receptor gene polymorphism (AT1R A1166C) seems to be particularly ...

  17. Angiotensin II type 1 receptor (A1166C) gene polymorphism in ...

    African Journals Online (AJOL)

    H. El-banawy

    2015-01-05

    Jan 5, 2015 ... Abstract Background: Genetic variability in the genes of different components of renin-angioten- sin system (RAS) is likely to contribute for its heterogenous association in renal diseased patients. Among the candidate genes of RAS, angiotensin II type 1 receptor gene polymorphism (AT1R. A1166C) seems ...

  18. Glucocorticoid Receptor Related Genes: Genotype And Brain Gene Expression Relationships To Suicide And Major Depressive Disorder

    Science.gov (United States)

    Pantazatos, Spiro P.; Huang, Yung-yu; Rosoklija, Gorazd B.; Dwork, Andrew J.; Burke, Ainsley; Arango, Victoria; Oquendo, Maria A.; Mann, J. John

    2016-01-01

    Introduction We tested the relationship between genotype, gene expression and suicidal behavior and MDD in live subjects and postmortem samples for three genes, associated with the hypothalamic-pituitary-adrenal axis, suicidal behavior and major depressive disorder (MDD); FK506 binding protein 5 (FKBP5), Spindle and kinetochore-associated protein 2 (SKA2) and Glucocorticoid Receptor (NR3C1). Materials and Methods Single-nucleotide polymorphisms (SNPs) and haplotypes were tested for association with suicidal behavior and MDD in a live (N=277) and a postmortem sample (N=209). RNA-seq was used to examine gene and isoform-level brain expression postmortem (Brodmann Area 9) (N=59). Expression quantitative trait loci (eQTL) relationships were examined using a public database (UK Brain Expression Consortium). Results We identified a haplotype within the FKBP5 gene, present in 47% of the live subjects, that was associated with increased risk of suicide attempt (OR=1.58, t=6.03, p=0.014). Six SNPs on this gene, three SNPs on SKA2 and one near NR3C1 showed before-adjustment association with attempted suicide, and two SNPs of SKA2 with suicide death, but none stayed significant after adjustment for multiple testing. Only the SKA2 SNPs were related to expression in the prefrontal cortex. One NR3C1 transcript had lower expression in suicide relative to non-suicide sudden death cases (b=-0.48, SE=0.12, t=-4.02, adjusted p=0.004). Conclusion We have identified an association of FKBP5 haplotype with risk of suicide attempt and found an association between suicide and altered NR3C1 gene expression in the prefrontal cortex. Our findings further implicate hypothalamic pituitary axis dysfunction in suicidal behavior. PMID:27030168

  19. The Medicago truncatula lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes

    NARCIS (Netherlands)

    Arrighi, J.F.; Barre, A.; Amor, Ben B.; Bersoult, A.; Campos Soriano, L.; Mirabella, R.; Carvalho-Niebel, de F.; Journet, E.P.; Ghérardi, M.; Huguet, T.; Geurts, R.; Dénarié, J.; Rougé, P.; Gough, C.

    2006-01-01

    Rhizobial Nod factors are key symbiotic signals responsible for starting the nodulation process in host legume plants. Of the six Medicago truncatula genes controlling a Nod factor signaling pathway, Nod Factor Perception (NFP) was reported as a candidate Nod factor receptor gene. Here, we provide

  20. Expression of histamine receptor genes Hrh3 and Hrh4 in rat brain endothelial cells.

    Science.gov (United States)

    Karlstedt, K; Jin, C; Panula, P

    2013-09-01

    Brain vascular endothelial cells express histamine H1 and H2 receptors, which regulate brain capillary permeability. We investigated whether H3 and H4 receptors are also expressed in these cells and may thus play a role in permeability regulation. An immortalized rat brain endothelial cell line RBE4 was used to assess the presence of H3 and H4 receptors. Reverse transcription-PCR (RT-PCR) and sequencing were used to identify the receptor mRNAs. The receptors were stimulated with histamine and immepip, and specific inverse agonists/antagonists ciproxifan and JNJ 7777120 were used to block H3 and H4 receptors, respectively. RT-PCR of mRNA extracted from cultured immortalized RBE4 cells revealed two rat H4 receptor gene (Hrh4) transcripts, one full-length (coding sequence 1173 bp), and one with a 164 bp deletion. Also, two rat H3 receptor gene (Hrh3) isoform mRNAs were expressed in RBE4 cells, and sequencing showed they were the full-length H3 receptor and the 144 bp deletion form. Both histamine and immepip (H3 and H4 receptor agonists) activated the Erk1/2 MAPK pathway in the RBE4 cells and in vivo in brain blood vessels by activating H4 receptors, as the H4 receptor-specific inverse agonists/antagonist JNJ 7777120, but not ciproxifan, H3 receptor antagonist, dose-dependently blocked this effect in RBE4 cells. Both Hrh3 and Hrh4 receptors are expressed in rat brain endothelial cells, and activation of the histamine H4 receptor activates the Erk1/2 cascade. H3 and H4 receptors in endothelial cells are potentially important for regulation of blood-brain barrier permeability, including trafficking of immunocompetent cells. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.

  1. Quantitative RT-PCR analysis of estrogen receptor gene expression in laser microdissected prostate cancer tissue.

    Science.gov (United States)

    Walton, Thomas J; Li, Geng; McCulloch, Thomas A; Seth, Rashmi; Powe, Desmond G; Bishop, Michael C; Rees, Robert C

    2009-06-01

    Real-time quantitative RT-PCR analysis of laser microdissected tissue is considered the most accurate technique for determining tissue gene expression. The discovery of estrogen receptor beta (ERbeta) has focussed renewed interest on the role of estrogen receptors in prostate cancer, yet few studies have utilized the technique to analyze estrogen receptor gene expression in prostate cancer. Fresh tissue was obtained from 11 radical prostatectomy specimens and from 6 patients with benign prostate hyperplasia. Pure populations of benign and malignant prostate epithelium were laser microdissected, followed by RNA isolation and electrophoresis. Quantitative RT-PCR was performed using primers for androgen receptor (AR), estrogen receptor beta (ERbeta), estrogen receptor alpha (ERalpha), progesterone receptor (PGR) and prostate specific antigen (PSA), with normalization to two housekeeping genes. Differences in gene expression were analyzed using the Mann-Whitney U-test. Correlation coefficients were analyzed using Spearman's test. Significant positive correlations were seen when AR and AR-dependent PSA, and ERalpha and ERalpha-dependent PGR were compared, indicating a representative population of RNA transcripts. ERbeta gene expression was significantly over-expressed in the cancer group compared with benign controls (P AR, ERalpha or PSA expression between the groups. This study represents the first to show an upregulation of ERbeta gene expression in laser microdissected prostate cancer specimens. In concert with recent studies the findings suggest differential production of ERbeta splice variants, which may play important roles in the genesis of prostate cancer. (c) 2009 Wiley-Liss, Inc.

  2. Oleocanthal Modulates Estradiol-Induced Gene Expression Involving Estrogen Receptor α.

    Science.gov (United States)

    Keiler, Annekathrin Martina; Djiogue, Sefirin; Ehrhardt, Tino; Zierau, Oliver; Skaltsounis, Leandros; Halabalaki, Maria; Vollmer, Günter

    2015-09-01

    Oleocanthal is a bioactive compound from olive oil. It has attracted considerable attention as it is anti-inflammatory, antiproliferative, and has been shown to possess neuroprotective properties in vitro and in vivo. Delineated from its polyphenolic structure, the aim of this study was to characterize oleocanthal towards estrogenic properties. This might contribute to partly explain the beneficial effects described for the Mediterranean diet. Estrogenic properties of oleocanthal were assessed by different methods: a) stimulation of reporter gene activity in MVLN or RNDA cells either expressing estrogen receptor α or β, b) stimulation of luciferase reporter gene activity in U2OS osteosarcoma cells expressing estrogen receptor α or β, and c) elucidation of the impact on estradiol-induced gene expression in U2OS cells transduced with both estrogen receptors. Depending on the cell line origin, oleocanthal inhibited luciferase activity (MVLN, U2OS-estrogen receptor β) or weakly induced reporter gene activity at 10 µM in U2OS-estrogen receptor α cells. However, oleocanthal inhibited stimulation of luciferase activity by estradiol from both estrogen receptors. Oleocanthal, if given alone, did not stimulate gene expression in U2OS cells, but it significantly modulated the response of estradiol. Oleocanthal enhanced the effect of estradiol on the regulation of those genes, which are believed to be regulated through heterodimeric estrogen receptors. As the estrogenic response pattern of oleocanthal is rather unique, we compared the results obtained with oleacein. Oleocanthal binds to both estrogen receptors inducing estradiol-agonistic or antiagonistic effects depending on the cell line. Regarding regulation of gene expression in U2OS-estrogen receptor α/β cells, oleocanthal and oleacein enhanced estradiol-mediated regulation of heterodimer-regulated genes. Georg Thieme Verlag KG Stuttgart · New York.

  3. Interleukin-1 Receptor Antagonist Gene Polymorphism in Patients with Coronary Artery Diseases

    International Nuclear Information System (INIS)

    Abdel Aziz, A.F.; El Said, A.M.; El Maghraby, T.K.; Hassan, M.M.

    2012-01-01

    Cytokine gene variations are contributory factors in inflammatory pathology. Allele frequencies of Interleukin-1 receptor antagonist (IL-1Ra) gene intron 2 VNTR were measured in healthy blood donors (healthy control subjects) and patients with angina, myocardial infarction (MI) and acute coronary syndrome(ACS). Patients were classified into three groups: thirty one MI patients, twenty two angina patients and thirteen ACS patients. A1/A2 genotype showed significant resistant factor for angina and myocardial infarction and angina (70.97% vs. 29.03%; p=0.0001, 70.97% vs. 31.82%; p0.0004, respectively). A1/A1 homo zygote was a risk factor in MI and angina (p=0.012; p= 0.0001), Moreover, A1/A3 and A2/A3 heterozygotes were found in MI only (p= 0.025; p= 0.0047, respectively). All genotypes didn't show any effect on ACS patients. In conclusion, the data reflected that A1/A1 homo zygote was considered as a significantly risk factor associated with patients with angina as well as MI patients. But, A1/A2 heterozygote was considered a resistance factor against both diseases.

  4. Pulsed Electromagnetic Fields Increased the Anti-Inflammatory Effect of A2A and A3 Adenosine Receptors in Human T/C-28a2 Chondrocytes and hFOB 1.19 Osteoblasts

    Science.gov (United States)

    Vincenzi, Fabrizio; Targa, Martina; Corciulo, Carmen; Gessi, Stefania; Merighi, Stefania; Setti, Stefania; Cadossi, Ruggero; Goldring, Mary B.; Borea, Pier Andrea; Varani, Katia

    2013-01-01

    Adenosine receptors (ARs) have an important role in the regulation of inflammation and their activation is involved in the inhibition of pro-inflammatory cytokine release. The effects of pulsed electromagnetic fields (PEMFs) on inflammation have been reported and we have demonstrated that PEMFs increased A2A and A3AR density and functionality in different cell lines. Chondrocytes and osteoblasts are two key cell types in the skeletal system that play important role in cartilage and bone metabolism representing an interesting target to study the effect of PEMFs. The primary aim of the present study was to evaluate if PEMF exposure potentiated the anti-inflammatory effect of A2A and/or A3ARs in T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. Immunofluorescence, mRNA analysis and saturation binding assays revealed that PEMF exposure up-regulated A2A and A3AR expression. A2A and A3ARs were able to modulate cAMP production and cell proliferation. The activation of A2A and A3ARs resulted in the decrease of some of the most relevant pro-inflammatory cytokine release such as interleukin (IL)-6 and IL-8, following the treatment with IL-1β as an inflammatory stimuli. In human chondrocyte and osteoblast cell lines, the inhibitory effect of A2A and A3AR stimulation on the release of prostaglandin E2 (PGE2), an important lipid inflammatory mediator, was observed. In addition, in T/C-28a2 cells, the activation of A2A or A3ARs elicited an inhibition of vascular endothelial growth factor (VEGF) secretion. In hFOB 1.19 osteoblasts, PEMF exposure determined an increase of osteoprotegerin (OPG) production. The effect of the A2A or A3AR agonists in the examined cells was enhanced in the presence of PEMFs and completely blocked by using well-known selective antagonists. These results demonstrated that PEMF exposure significantly increase the anti-inflammatory effect of A2A or A3ARs suggesting their potential therapeutic use in the therapy of inflammatory bone and joint disorders

  5. Molecular genetic testing for familial hypercholesterolemia: spectrum of LDL receptor gene mutations in The Netherlands

    NARCIS (Netherlands)

    Lombardi, M. P.; Redeker, E. J.; Defesche, J. C.; Kamerling, S. W.; Trip, M. D.; Mannens, M. M.; Havekes, L. M.; Kastelein, J. J.

    2000-01-01

    Mutations in the LDL receptor are responsible for familial hypercholesterolemia (FH). At present, more than 600 mutations of the LDL receptor gene are known to underlie FH. However, the array of mutations varies considerably in different populations. Therefore, the delineation of essentially all LDL

  6. Histamine H1Receptor Gene Expression and Drug Action of Antihistamines.

    Science.gov (United States)

    Fukui, Hiroyuki; Mizuguchi, Hiroyuki; Nemoto, Hisao; Kitamura, Yoshiaki; Kashiwada, Yoshiki; Takeda, Noriaki

    2017-01-01

    The upregulation mechanism of histamine H 1 receptor through the activation of protein kinase C-δ (PKCδ) and the receptor gene expression was discovered. Levels of histamine H 1 receptor mRNA and IL-4 mRNA in nasal mucosa were elevated by the provocation of nasal hypersensitivity model rats. Pretreatment with antihistamines suppressed the elevation of mRNA levels. Scores of nasal symptoms were correlatively alleviated to the suppression level of mRNAs above. A correlation between scores of nasal symptoms and levels of histamine H 1 receptor mRNA in the nasal mucosa was observed in patients with pollinosis. Both scores of nasal symptoms and the level of histamine H 1 receptor mRNA were improved by prophylactic treatment of antihistamines. Similar to the antihistamines, pretreatment with antiallergic natural medicines showed alleviation of nasal symptoms with correlative suppression of gene expression in nasal hypersensitivity model rats through the suppression of PKCδ. Similar effects of antihistamines and antiallergic natural medicines support that histamine H 1 receptor-mediated activation of histamine H 1 receptor gene expression is an important signaling pathway for the symptoms of allergic diseases. Antihistamines with inverse agonist activity showed the suppression of constitutive histamine H 1 receptor gene expression, suggesting the advantage of therapeutic effect.

  7. 2',3'-cAMP, 3'-AMP, 2'-AMP and adenosine inhibit TNF-α and CXCL10 production from activated primary murine microglia via A2A receptors.

    Science.gov (United States)

    Newell, Elizabeth A; Exo, Jennifer L; Verrier, Jonathan D; Jackson, Travis C; Gillespie, Delbert G; Janesko-Feldman, Keri; Kochanek, Patrick M; Jackson, Edwin K

    2015-01-12

    Some cells, tissues and organs release 2',3'-cAMP (a positional isomer of 3',5'-cAMP) and convert extracellular 2',3'-cAMP to 2'-AMP plus 3'-AMP and convert these AMPs to adenosine (called the extracellular 2',3'-cAMP-adenosine pathway). Recent studies show that microglia have an extracellular 2',3'-cAMP-adenosine pathway. The goal of the present study was to investigate whether the extracellular 2',3'-cAMP-adenosine pathway could have functional consequences on the production of cytokines/chemokines by activated microglia. Experiments were conducted in cultures of primary murine microglia. In the first experiment, the effect of 2',3'-cAMP, 3'-AMP, 2'-AMP and adenosine on LPS-induced TNF-α and CXCL10 production was determined. In the next experiment, the first protocol was replicated but with the addition of 1,3-dipropyl-8-p-sulfophenylxanthine (DPSPX) (0.1 μM; antagonist of adenosine receptors). The last experiment compared the ability of 2-chloro-N(6)-cyclopentyladenosine (CCPA) (10 μM; selective A1 agonist), 5'-N-ethylcarboxamide adenosine (NECA) (10 μM; agonist for all adenosine receptor subtypes) and CGS21680 (10 μM; selective A2A agonist) to inhibit LPS-induced TNF-α and CXCL10 production. (1) 2',3'-cAMP, 3'-AMP, 2'-AMP and adenosine similarly inhibited LPS-induced TNF-α and CXCL10 production; (2) DPSPX nearly eliminated the inhibitory effects of 2',3'-cAMP, 3'-AMP, 2'-AMP and adenosine on LPS-induced TNF-α and CXCL10 production; (3) CCPA did not affect LPS-induced TNF-α and CXCL10; (4) NECA and CGS21680 similarly inhibited LPS-induced TNF-α and CXCL10 production. 2',3'-cAMP and its metabolites (3'-AMP, 2'-AMP and adenosine) inhibit LPS-induced TNF-α and CXCL10 production via A2A-receptor activation. Adenosine and its precursors, via A2A receptors, likely suppress TNF-α and CXCL10 production by activated microglia in brain diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. 2’,3’-cAMP, 3’-AMP, 2’-AMP and Adenosine Inhibit TNF-α and CXCL10 Production From Activated Primary Murine Microglia via A2A Receptors

    Science.gov (United States)

    Newell, Elizabeth A.; Exo, Jennifer L.; Verrier, Jonathan D.; Jackson, Travis C.; Gillespie, Delbert G.; Janesko-Feldman, Keri; Kochanek, Patrick M.

    2014-01-01

    Background Some cells, tissues and organs release 2’,3’-cAMP (a positional isomer of 3’,5’-cAMP) and convert extracellular 2’,3’-cAMP to 2’-AMP plus 3’-AMP and convert these AMPs to adenosine (called the extracellular 2’,3’-cAMP-adenosine pathway). Recent studies show that microglia have an extracellular 2’,3’-cAMP-adenosine pathway. The goal of the present study was to investigate whether the extracellular 2’,3’-cAMP-adenosine pathway could have functional consequences on the production of cytokines/chemokines by activated microglia. Methods Experiments were conducted in cultures of primary murine microglia. In the first experiment, the effect of 2’,3’-cAMP, 3’-AMP, 2’-AMP and adenosine on LPS-induced TNF-α and CXCL10 production was determined. In the next experiment, the first protocol was replicated but with the addition of 1,3-dipropyl-8-p-sulfophenylxanthine (DPSPX) (0.1 µM; antagonist of adenosine receptors). The last experiment compared the ability of 2-chloro-N6-cyclopentyladenosine (CCPA) (10 µM; selective A1 agonist), 5’-N-ethylcarboxamide adenosine (NECA) (10 µM; agonist for all adenosine receptor subtypes) and CGS21680 (10 µM; selective A2A agonist) to inhibit LPS-induced TNF-α and CXCL10 production. Results 1) 2’,3’-cAMP, 3’-AMP, 2’-AMP and adenosine similarly inhibited LPS-induced TNF-α and CXCL10 production; 2) DPSPX nearly eliminated the inhibitory effects of 2’,3’-cAMP, 3’-AMP, 2’-AMP and adenosine on LPS-induced TNF-α and CXCL10 production; 3) CCPA did not affect LPS-induced TNF-α and CXCL10; 4) NECA and CGS21680 similarly inhibited LPS-induced TNF-α and CXCL10 production. Conclusions 2’,3’-cAMP and its metabolites (3’-AMP, 2’-AMP and adenosine) inhibit LPS-induced TNF-α and CXCL10 production via A2A-receptor activation. Adenosine and its precursors, via A2A receptors, likely suppress TNF-α and CXCL10 production by activated microglia in brain diseases. PMID:25451117

  9. Computational characterization of modes of transcriptional regulation of nuclear receptor genes.

    Directory of Open Access Journals (Sweden)

    Yogita Sharma

    Full Text Available Nuclear receptors are a large structural class of transcription factors that act with their co-regulators and repressors to maintain a variety of biological and physiological processes such as metabolism, development and reproduction. They are activated through the binding of small ligands, which can be replaced by drug molecules, making nuclear receptors promising drug targets. Transcriptional regulation of the genes that encode them is central to gaining a deeper understanding of the diversity of their biochemical and biophysical roles and their role in disease and therapy. Even though they share evolutionary history, nuclear receptor genes have fundamentally different expression patterns, ranging from ubiquitously expressed to tissue-specific and spatiotemporally complex. However, current understanding of regulation in nuclear receptor gene family is still nascent.In this study, we investigate the relationship between long-range regulation of nuclear receptor family and their known functionality. Towards this goal, we identify the nuclear receptor genes that are potential targets based on counts of highly conserved non-coding elements. We validate our results using publicly available expression (RNA-seq and histone modification (ChIP-seq data from the ENCODE project. We find that nuclear receptor genes involved in developmental roles show strong evidence of long-range mechanism of transcription regulation with distinct cis-regulatory content they feature clusters of highly conserved non-coding elements distributed in regions spanning several Megabases, long and multiple CpG islands, bivalent promoter marks and statistically significant higher enrichment of enhancer mark around their gene loci. On the other hand nuclear receptor genes that are involved in tissue-specific roles lack these features, having simple transcriptional controls and a greater variety of mechanisms for producing paralogs. We further examine the combinatorial patterns of

  10. Co-regulation of a large and rapidly evolving repertoire of odorant receptor genes

    Directory of Open Access Journals (Sweden)

    Lane Robert P

    2007-09-01

    Full Text Available Abstract The olfactory system meets niche- and species-specific demands by an accelerated evolution of its odorant receptor repertoires. In this review, we describe evolutionary processes that have shaped olfactory and vomeronasal receptor gene families in vertebrate genomes. We emphasize three important periods in the evolution of the olfactory system evident by comparative genomics: the adaptation to land in amphibian ancestors, the decline of olfaction in primates, and the delineation of putative pheromone receptors concurrent with rodent speciation. The rapid evolution of odorant receptor genes, the sheer size of the repertoire, as well as their wide distribution in the genome, presents a developmental challenge: how are these ever-changing odorant receptor repertoires coordinated within the olfactory system? A central organizing principle in olfaction is the specialization of sensory neurons resulting from each sensory neuron expressing only ~one odorant receptor allele. In this review, we also discuss this mutually exclusive expression of odorant receptor genes. We have considered several models to account for co-regulation of odorant receptor repertoires, as well as discussed a new hypothesis that invokes important epigenetic properties of the system.

  11. Prolactin receptor gene polymorphism and the risk of recurrent pregnancy loss: a case-control study.

    Science.gov (United States)

    Kim, Jin Ju; Choi, Young Min; Lee, Sung Ki; Yang, Kwang Moon; Paik, Eun Chan; Jeong, Hyeon Jeong; Jun, Jong Kwan; Han, Ae Ra; Hwang, Kyu Ri; Hong, Min A

    2018-02-01

    Since the first study was published reporting the candidate association between the prolactin receptor gene intron C/T polymorphism (rs37389) and recurrent miscarriage, no replication study has been performed. In this study, we investigated the role of the prolactin receptor gene C/T polymorphism in 311 Korean women with recurrent pregnancy loss and 314 controls. Genotyping for prolactin receptor gene intron C/T polymorphism was performed using a TaqMan assay. The significance of difference in the genotype distribution was assessed using a chi-square test, and continuous variables were compared using a Student's t-test. The genotype distribution of the prolactin receptor gene C/T polymorphism in the recurrent pregnancy loss group did not differ from that in the control group (CC/CT/TT rates were 49.8%/41.5%/8.7% and 52.5%/37.6%/9.9% for the recurrent pregnancy loss patient and control groups, respectively, p = .587). When the analysis was restricted to patients with three or more consecutive spontaneous miscarriages or patients without prior live birth, there were also no differences in the genotype distribution between these subgroups and controls. In conclusion, the findings of the current study suggest that the prolactin receptor gene intron C/T polymorphism is not a major determinant of the development of recurrent pregnancy loss. Impact statement What is already known: Many studies have investigated whether there is a genetic component for the risk of recurrent pregnancy loss. Recently, one study investigated whether genetic polymorphisms involved in the regulation of the hypothalamic-pituitary-ovarian axis would be associated with recurrent miscarriage. Among 35 polymorphisms in 20 candidate genes, genotype distribution with regard to the prolactin receptor gene intron C/T polymorphism (rs37389) differed between the recurrent miscarriage and the control groups. Since this study reporting the candidate association between the prolactin receptor gene and

  12. The Axon Guidance Receptor Gene ROBO1 Is a Candidate Gene for Developmental Dyslexia.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available Dyslexia, or specific reading disability, is the most common learning disorder with a complex, partially genetic basis, but its biochemical mechanisms remain poorly understood. A locus on Chromosome 3, DYX5, has been linked to dyslexia in one large family and speech-sound disorder in a subset of small families. We found that the axon guidance receptor gene ROBO1, orthologous to the Drosophila roundabout gene, is disrupted by a chromosome translocation in a dyslexic individual. In a large pedigree with 21 dyslexic individuals genetically linked to a specific haplotype of ROBO1 (not found in any other chromosomes in our samples, the expression of ROBO1 from this haplotype was absent or attenuated in affected individuals. Sequencing of ROBO1 in apes revealed multiple coding differences, and the selection pressure was significantly different between the human, chimpanzee, and gorilla branch as compared to orangutan. We also identified novel exons and splice variants of ROBO1 that may explain the apparent phenotypic differences between human and mouse in heterozygous loss of ROBO1. We conclude that dyslexia may be caused by partial haplo-insufficiency for ROBO1 in rare families. Thus, our data suggest that a slight disturbance in neuronal axon crossing across the midline between brain hemispheres, dendrite guidance, or another function of ROBO1 may manifest as a specific reading disability in humans.

  13. The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia.

    Directory of Open Access Journals (Sweden)

    Katariina Hannula-Jouppi

    2005-10-01

    Full Text Available Dyslexia, or specific reading disability, is the most common learning disorder with a complex, partially genetic basis, but its biochemical mechanisms remain poorly understood. A locus on Chromosome 3, DYX5, has been linked to dyslexia in one large family and speech-sound disorder in a subset of small families. We found that the axon guidance receptor gene ROBO1, orthologous to the Drosophila roundabout gene, is disrupted by a chromosome translocation in a dyslexic individual. In a large pedigree with 21 dyslexic individuals genetically linked to a specific haplotype of ROBO1 (not found in any other chromosomes in our samples, the expression of ROBO1 from this haplotype was absent or attenuated in affected individuals. Sequencing of ROBO1 in apes revealed multiple coding differences, and the selection pressure was significantly different between the human, chimpanzee, and gorilla branch as compared to orangutan. We also identified novel exons and splice variants of ROBO1 that may explain the apparent phenotypic differences between human and mouse in heterozygous loss of ROBO1. We conclude that dyslexia may be caused by partial haplo-insufficiency for ROBO1 in rare families. Thus, our data suggest that a slight disturbance in neuronal axon crossing across the midline between brain hemispheres, dendrite guidance, or another function of ROBO1 may manifest as a specific reading disability in humans.

  14. The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPAR) gamma target gene and promotes PPARgamma-induced adipocyte differentiation

    DEFF Research Database (Denmark)

    Fontaine, Coralie; Dubois, Guillaume; Duguay, Yannick

    2003-01-01

    Rev-Erbalpha (NR1D1) is an orphan nuclear receptor encoded on the opposite strand of the thyroid receptor alpha gene. Rev-Erbalpha mRNA is induced during adipocyte differentiation of 3T3-L1 cells, and its expression is abundant in rat adipose tissue. Peroxisome proliferator-activated receptor gam...

  15. Identification and Expression Patterns of Anoplophora chinensis (Forster Chemosensory Receptor Genes from the Antennal Transcriptome

    Directory of Open Access Journals (Sweden)

    Long Sun

    2018-02-01

    Full Text Available The citrus long-horned beetle (CLB, Anoplophora chinensis (Forster is a destructive native pest in China. Chemosensory receptors including odorant receptors (ORs, gustatory receptors (GRs, and ionotropic receptors (IRs function to interface the insect with its chemical environment. In the current study, we assembled the antennal transcriptome of A. chinensis by next-generation sequencing. We assembled 44,938 unigenes from 64,787,784 clean reads and annotated their putative gene functions based on gene ontology (GO and Clusters of Orthologous Groups of proteins (COG. Overall, 74 putative receptor genes from chemosensory receptor gene families, including 53 ORs, 17 GRs, and 4 IRs were identified. Expression patterns of these receptors on the antennae, maxillary and labial palps, and remaining body segments of both male and female A. chinensis were performed using quantitative real time-PCR (RT-qPCR. The results revealed that 23 ORs, 6 GRs, and 1 IR showed male-biased expression profiles, suggesting that they may play a significant role in sensing female-produced sex pheromones; whereas 8 ORs, 5 GRs, and 1 IR showed female-biased expression profiles, indicating that these receptors may be involved in some female-specific behaviors such as oviposition site seeking. These results lay a solid foundation for deeply understanding CLB olfactory processing mechanisms. Moreover, by comparing our results with those from chemosensory receptor studies in other cerambycid species, several highly probable pheromone receptor candidates were highlighted, which may facilitate the identification of additional pheromone and/or host attractants in CLB.

  16. Adenosine A1, A2a, A2B, and A3 receptors in hematopoiesis. 2. Expression of receptor mRNA in resting and lipopolysaccharide-activated mouse RAW 264.7 macrophages

    Czech Academy of Sciences Publication Activity Database

    Štreitová, Denisa; Hofer, Michal; Holá, Jiřina; Vacek, Antonín; Pospíšil, Milan

    2010-01-01

    Roč. 59, č. 1 (2010), s. 139-144 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA305/06/0015; GA ČR(CZ) GA305/08/0158 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : adenosine receptors * macrophage * mRNA expression Subject RIV: BO - Biophysics Impact factor: 1.646, year: 2010

  17. Understanding the Functional Plasticity in Neural Networks of the Basal Ganglia in Cocaine Use Disorder: A Role for Allosteric Receptor-Receptor Interactions in A2A-D2 Heteroreceptor Complexes

    Directory of Open Access Journals (Sweden)

    Dasiel O. Borroto-Escuela

    2016-01-01

    Full Text Available Our hypothesis is that allosteric receptor-receptor interactions in homo- and heteroreceptor complexes may form the molecular basis of learning and memory. This principle is illustrated by showing how cocaine abuse can alter the adenosine A2AR-dopamine D2R heterocomplexes and their receptor-receptor interactions and hereby induce neural plasticity in the basal ganglia. Studies with A2AR ligands using cocaine self-administration procedures indicate that antagonistic allosteric A2AR-D2R heterocomplexes of the ventral striatopallidal GABA antireward pathway play a significant role in reducing cocaine induced reward, motivation, and cocaine seeking. Anticocaine actions of A2AR agonists can also be produced at A2AR homocomplexes in these antireward neurons, actions in which are independent of D2R signaling. At the A2AR-D2R heterocomplex, they are dependent on the strength of the antagonistic allosteric A2AR-D2R interaction and the number of A2AR-D2R and A2AR-D2R-sigma1R heterocomplexes present in the ventral striatopallidal GABA neurons. It involves a differential cocaine-induced increase in sigma1Rs in the ventral versus the dorsal striatum. In contrast, the allosteric brake on the D2R protomer signaling in the A2AR-D2R heterocomplex of the dorsal striatopallidal GABA neurons is lost upon cocaine self-administration. This is potentially due to differences in composition and allosteric plasticity of these complexes versus those in the ventral striatopallidal neurons.

  18. Mutation screening of the Ectodysplasin-A receptor gene EDAR in hypohidrotic ectodermal dysplasia

    NARCIS (Netherlands)

    van der Hout, Annemarie H.; Oudesluijs, Gretel G.; Venema, Andrea; Verheij, Joke B. G. M.; Mol, Bart G. J.; Rump, Patrick; Brunner, Han G.; Vos, Yvonne J.; van Essen, Anthonie J.

    Hypohidrotic ectodermal dysplasia (HED) can be caused by mutations in the X-linked ectodysplasin A (ED1) gene or the autosomal ectodysplasin A-receptor (EDAR) and EDAR-associated death domain (EDARADD) genes. X-linked and autosomal forms are sometimes clinically indistinguishable. For genetic

  19. Extensive variation in gene copy number at the killer immunoglobulin-like receptor locus in humans

    NARCIS (Netherlands)

    Vendelbosch, Sanne; de Boer, Martin; Gouw, Remko A. T. W.; Ho, Cynthia K. Y.; Geissler, Judy; Swelsen, Wendy T. N.; Moorhouse, Michael J.; Lardy, Neubury M.; Roos, Dirk; van den Berg, Timo K.; Kuijpers, Taco W.

    2013-01-01

    Killer immunoglobulin-like receptors (KIRs) are involved in the regulation of natural killer cell cytotoxicity. Within the human genome seventeen KIR genes are present, which all contain a large number of allelic variants. The high level of homology among KIR genes has hampered KIR genotyping in

  20. NMDA receptor gene variations as modifiers in Huntington disease : a replication study

    NARCIS (Netherlands)

    Saft, Carsten; Epplen, Jörg T; Wieczorek, Stefan; Landwehrmeyer, G Bernhard; Roos, Raymund A C; de Yebenes, Justo Garcia; Dose, Matthias; Tabrizi, Sarah J; Craufurd, David; Arning, Larissa; Kremer, Berry

    2011-01-01

    Several candidate modifier genes which, in addition to the pathogenic CAG repeat expansion, influence the age at onset (AO) in Huntington disease (HD) have already been described. The aim of this study was to replicate association of variations in the N-methyl D-aspartate receptor subtype genes

  1. Changes in gene expression following androgen receptor blockade ...

    Indian Academy of Sciences (India)

    Madhu urs

    Involution of the rat ventral prostate and concomitant modulation of gene expression post-castration is a well- documented phenomenon. While the rat castration model has been extensively used to study androgen regulation of gene expression in the ventral prostate, it is not clear whether all the gene expression changes ...

  2. Genomic cloning of the mouse LDL receptor related protein/_2-macroglobulin receptor gene

    NARCIS (Netherlands)

    Zee, A. van der; Stas, L.; Hilleker, C.; Leuven, F. van; Dijk, K.W. van; Havekes, L; Frants, R.A.; Hofker, M.H.

    1994-01-01

    The LDL receptor-related protein (LRP) or alpha 2-macroglobulin receptor (A2mr) is encoded by a 15-kb mRNA in mouse and human. Probes encompassing different regions of the mouse cDNA were used to isolate clones from a cosmid library of mouse strain 129. Four overlapping cosmids were used for

  3. The DAF-7 TGF-β signaling pathway regulates chemosensory receptor gene expression in C. elegans

    OpenAIRE

    Nolan, Katherine M.; Sarafi-Reinach, Trina R.; Horne, Jennifer G.; Saffer, Adam M.; Sengupta, Piali

    2002-01-01

    Regulation of chemoreceptor gene expression in response to environmental or developmental cues provides a mechanism by which animals can alter their sensory responses. Here we demonstrate a role for the daf-7 TGF-β pathway in the regulation of expression of a subset of chemoreceptor genes in Caenorhabditis elegans. We describe a novel role of this pathway in maintaining receptor gene expression in the adult and show that the DAF-4 type II TGF-β receptor functions cell-autonomously to modulate...

  4. Gene number determination and genetic polymorphism of the gamma delta T cell co-receptor WC1 genes

    Directory of Open Access Journals (Sweden)

    Chen Chuang

    2012-10-01

    Full Text Available Abstract Background WC1 co-receptors belong to the scavenger receptor cysteine-rich (SRCR superfamily and are encoded by a multi-gene family. Expression of particular WC1 genes defines functional subpopulations of WC1+ γδ T cells. We have previously identified partial or complete genomic sequences for thirteen different WC1 genes through annotation of the bovine genome Btau_3.1 build. We also identified two WC1 cDNA sequences from other cattle that did not correspond to sequences in the Btau_3.1 build. Their absence in the Btau_3.1 build may have reflected gaps in the genome assembly or polymorphisms among animals. Since the response of γδ T cells to bacterial challenge is determined by WC1 gene expression, it was critical to understand whether individual cattle or breeds differ in the number of WC1 genes or display polymorphisms. Results Real-time quantitative PCR using DNA from the animal whose genome was sequenced (“Dominette” and sixteen other animals representing ten breeds of cattle, showed that the number of genes coding for WC1 co-receptors is thirteen. The complete coding sequences of those thirteen WC1 genes is presented, including the correction of an error in the WC1-2 gene due to mis-assembly in the Btau_3.1 build. All other cDNA sequences were found to agree with the previous annotation of complete or partial WC1 genes. PCR amplification and sequencing of the most variable N-terminal SRCR domain (domain 1 which has the SRCR “a” pattern of each of the thirteen WC1 genes showed that the sequences are highly conserved among individuals and breeds. Of 160 sequences of domain 1 from three breeds of cattle, no additional sequences beyond the thirteen described WC1 genes were found. Analysis of the complete WC1 cDNA sequences indicated that the thirteen WC1 genes code for three distinct WC1 molecular forms. Conclusion The bovine WC1 multi-gene family is composed of thirteen genes coding for three structural forms whose

  5. PET/CT imaging of human somatostatin receptor 2 (hsstr2) as reporter gene for gene therapy

    International Nuclear Information System (INIS)

    Hofmann, M.; Gazdhar, A.; Weitzel, T.; Schmid, R.; Krause, T.

    2006-01-01

    Localized information on region-selective gene expression in small animals is widely obtained by use of reporter genes inducing light emission. Using these reporter genes for imaging deep inside the human body fluorescent probes are hindered by attenuation, scattering and possible fluorescence quenching. This can be overcome by use of radio-peptide receptors as reporter genes. Therefore, the feasibility of the somatostatin receptor 2 expression vector system for expression imaging was checked against a control vector containing luciferase gene. For in vivo transduction of vector DNA into the rat forelimb muscles the in vivo electroporation technique was chosen because of its high regio-selectivity. The gene expression was imaged by high-sensitive CCD camera (luciferase activity) and by PET/CT using a Ga-68-DOTATOC as radio peptide probe. The relative sstr2 expression was enhanced by gene transduction at maximum to a factor of 15. The PET/CT images could be fully quantified. The above demonstrated feasibility of radio-peptide PET/CT reporter gene imaging may serve in the future as a tool for full quantitative understanding of regional gene expression, especially in large animals and humans

  6. PET/CT imaging of human somatostatin receptor 2 (hsstr2) as reporter gene for gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, M. [Molecular Imaging and Therapy Group (MIT-Bern), Clinic of Nuclear Medicine, Inselspital, Medical School Bern (Switzerland)]. E-mail: Michael.Hofmann@insel.ch; Gazdhar, A. [Division of Pulmonary Medicine, University Hospital Bern (Switzerland); Weitzel, T. [Molecular Imaging and Therapy Group (MIT-Bern), Clinic of Nuclear Medicine, Inselspital, Medical School Bern (Switzerland); Schmid, R. [Division of Thoracic Surgery, University Hospital Bern (Switzerland); Krause, T. [Molecular Imaging and Therapy Group (MIT-Bern), Clinic of Nuclear Medicine, Inselspital, Medical School Bern (Switzerland)

    2006-12-20

    Localized information on region-selective gene expression in small animals is widely obtained by use of reporter genes inducing light emission. Using these reporter genes for imaging deep inside the human body fluorescent probes are hindered by attenuation, scattering and possible fluorescence quenching. This can be overcome by use of radio-peptide receptors as reporter genes. Therefore, the feasibility of the somatostatin receptor 2 expression vector system for expression imaging was checked against a control vector containing luciferase gene. For in vivo transduction of vector DNA into the rat forelimb muscles the in vivo electroporation technique was chosen because of its high regio-selectivity. The gene expression was imaged by high-sensitive CCD camera (luciferase activity) and by PET/CT using a Ga-68-DOTATOC as radio peptide probe. The relative sstr2 expression was enhanced by gene transduction at maximum to a factor of 15. The PET/CT images could be fully quantified. The above demonstrated feasibility of radio-peptide PET/CT reporter gene imaging may serve in the future as a tool for full quantitative understanding of regional gene expression, especially in large animals and human000.

  7. Molecular characterization of the Aphis gossypii olfactory receptor gene families.

    Directory of Open Access Journals (Sweden)

    Depan Cao

    Full Text Available The cotton aphid, Aphis gossypii Glover, is a polyphagous pest that inflicts great damage to cotton yields worldwide. Antennal olfaction, which is extremely important for insect survival, mediates key behaviors such as host preference, mate choice, and oviposition site selection. In insects, odor detection is mediated by odorant receptors (ORs and ionotropic receptors (IRs, which ensure the specificity of the olfactory sensory neuron responses. In this study, our aim is to identify chemosensory receptors in the cotton aphid genome, as a means to uncover olfactory encoding of the polyphagous feeding habits as well as to aid the discovery of new targets for behavioral interference. We identified a total of 45 candidate ORs and 14 IRs in the cotton aphid genome. Among the candidate AgoORs, 9 are apparent pseudogenes, while 19 can be clustered with ORs from the pea aphid, forming 16 AgoOR/ApOR orthologous subgroups. Among the candidate IRs, we identified homologs of the two highly conserved co-receptors IR8a and IR25a; no AgoIR retain the complete glutamic acid binding domain, suggesting that putative AgoIRs bind different ligands. Our results provide the necessary information for functional characterization of the chemosensory receptors of A. gossypii, with potential for new or refined applications of semiochemicals-based control of this pest insect.

  8. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists

    Science.gov (United States)

    Harmon, Jennifer L.; Wills, Lauren P.; McOmish, Caitlin E.; Demireva, Elena Y.; Gingrich, Jay A.; Beeson, Craig C.

    2016-01-01

    In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1–10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) β subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1–100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor

  9. Development of gene diagnosis for diabetes and cholecystitis based on gene analysis of CCK-A receptor

    International Nuclear Information System (INIS)

    Kono, Akira

    1999-01-01

    Base sequence analysis of CCKAR gene (a gene of A-type receptor for cholecystokinin) from OLETF rat, a model rat for insulin-independent diabetes was made based on the base sequence of wild CCKAR gene, which had been clarified in the previous year. From the pancreas of OLETF rat, DNA was extracted and transduced into λphage after fragmentation to construct the gene library of OLETF. Then, λphage DNA clone bound with labelled cDNA of CCKAR gene was analyzed and the gene structure was compared with that of the wild gene. It was demonstrated that CCKAR gene of OLETF had a deletion (6800 b.p.) ranging from the promoter region to the Exon 2, suggesting that CCKAR gene is not functional in OLETF rat. The whole sequence of this mutant gene was registered into Japan DNA Bank (D 50610). Then, F 2 offspring rats were obtained through crossing OLETF (female) and F344 (male) and the time course-changes in the blood glucose level after glucose loading were compared among them. The blood glucose level after glucose loading was significantly higher in the homo-mutant F 2 (CCKAR,-/-) as well as the parent OLETF rat than hetero-mutant F 2 (CCKARm-/+) or the wild rat (CCKAR,+/+). This suggests that CCKAR gene might be involved in the control of blood glucose level and an alteration of the expression level or the functions of CCKAR gene might affect the blood glucose level. (M.N.)

  10. Massive losses of taste receptor genes in toothed and baleen whales.

    Science.gov (United States)

    Feng, Ping; Zheng, Jinsong; Rossiter, Stephen J; Wang, Ding; Zhao, Huabin

    2014-05-06

    Taste receptor genes are functionally important in animals, with a surprising exception in the bottlenose dolphin, which shows extensive losses of sweet, umami, and bitter taste receptor genes. To examine the generality of taste gene loss, we examined seven toothed whales and five baleen whales and sequenced the complete repertoire of three sweet/umami (T1Rs) and ten bitter (T2Rs) taste receptor genes. We found all amplified T1Rs and T2Rs to be pseudogenes in all 12 whales, with a shared premature stop codon in 10 of the 13 genes, which demonstrated massive losses of taste receptor genes in the common ancestor of whales. Furthermore, we analyzed three genome sequences from two toothed whales and one baleen whale and found that the sour taste marker gene Pkd2l1 is a pseudogene, whereas the candidate salty taste receptor genes are intact and putatively functional. Additionally, we examined three genes that are responsible for taste signal transduction and found the relaxation of functional constraints on taste signaling pathways along the ancestral branch leading to whales. Together, our results strongly suggest extensive losses of sweet, umami, bitter, and sour tastes in whales, and the relaxation of taste function most likely arose in the common ancestor of whales between 36 and 53 Ma. Therefore, whales represent the first animal group to lack four of five primary tastes, probably driven by the marine environment with high concentration of sodium, the feeding behavior of swallowing prey whole, and the dietary switch from plants to meat in the whale ancestor. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Study of polymorphism of leptin gene receptor in Mazandaran fowls ...

    African Journals Online (AJOL)

    In chickens, leptin is expressed mainly in the liver and adipose tissue. In Iran, Mazandaran native fowls are under recording and breeding programs, but according to the action modes and importance of the leptin receptor, its polymorphisms can be related to economical traits such as body weight. In this study, in order to ...

  12. Prospects and limitations of T cell receptor gene therapy

    NARCIS (Netherlands)

    Jorritsma, Annelies; Schotte, Remko; Coccoris, Miriam; de Witte, Moniek A.; Schumacher, Ton N. M.

    2011-01-01

    Adoptive transfer of antigen-specific T cells is an attractive means to provide cancer patients with immune cells of a desired specificity and the efficacy of such adoptive transfers has been demonstrated in several clinical trials. Because the T cell receptor is the single specificity-determining

  13. Ecdysone Receptor-Based Gene Switches for Applications in Plants

    Science.gov (United States)

    There are a number of circumstances in which it is advantageous to use an inducible gene regulation system, the most obvious being when introducing transgenes whose constitutive expression is detrimental or even lethal to the host plants. The selective induction of gene expression is typically accom...

  14. The Drosophila gene CG9918 codes for a pyrokinin-1 receptor

    DEFF Research Database (Denmark)

    Cazzamali, Giuseppe; Torp, Malene; Hauser, Frank

    2005-01-01

    The database from the Drosophila Genome Project contains a gene, CG9918, annotated to code for a G protein-coupled receptor. We cloned the cDNA of this gene and functionally expressed it in Chinese hamster ovary cells. We tested a library of about 25 Drosophila and other insect neuropeptides......, and seven insect biogenic amines on the expressed receptor and found that it was activated by low concentrations of the Drosophila neuropeptide, pyrokinin-1 (TGPSASSGLWFGPRLamide; EC50, 5 x 10(-8) M). The receptor was also activated by other Drosophila neuropeptides, terminating with the sequence PRLamide...... (Hug-gamma, ecdysis-triggering-hormone-1, pyrokinin-2), but in these cases about six to eight times higher concentrations were needed. The receptor was not activated by Drosophila neuropeptides, containing a C-terminal PRIamide sequence (such as ecdysis-triggering-hormone-2), or PRVamide (such as capa...

  15. Disruption of the 37-kDa/67-kDa laminin receptor gene in bovine ...

    African Journals Online (AJOL)

    The 37-kDa/67-kDa laminin receptor (LRP/LR), also known as ribosomal protein SA (RPSA), acts as a cell surface receptor for prions and plays an important role in internalization of cellular prion protein. In this study, we knocked out the part of prion binding sites (aa 161-205) by gene targeting in the bovine fetal fibroblasts ...

  16. Auxins increase expression of the brassinosteroid receptor and brassinosteroid-responsive genes in Arabidopsis

    OpenAIRE

    Sakamoto, Tomoaki; Fujioka, Shozo

    2013-01-01

    Auxins and brassinosteroids are essential phytohormones that synergistically regulate physiological and developmental processes in plants. Previously, we demonstrated that auxins stimulate brassinosteroid perception by regulating the level of brassinosteroid receptor in rice. Here we showed that auxin treatment increased expression of the Arabidopsis brassinosteroid receptor gene BRI1. The promoter of BRI1 has an auxin-response element that is targeted by auxin-response factor transcription f...

  17. Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates.

    Directory of Open Access Journals (Sweden)

    Görel Sundström

    Full Text Available BACKGROUND: The opioid system is involved in reward and pain mechanisms and consists in mammals of four receptors and several peptides. The peptides are derived from four prepropeptide genes, PENK, PDYN, PNOC and POMC, encoding enkephalins, dynorphins, orphanin/nociceptin and beta-endorphin, respectively. Previously we have described how two rounds of genome doubling (2R before the origin of jawed vertebrates formed the receptor family. METHODOLOGY/PRINCIPAL FINDINGS: Opioid peptide gene family members were investigated using a combination of sequence-based phylogeny and chromosomal locations of the peptide genes in various vertebrates. Several adjacent gene families were investigated similarly. The results show that the ancestral peptide gene gave rise to two additional copies in the genome doublings. The fourth member was generated by a local gene duplication, as the genes encoding POMC and PNOC are located on the same chromosome in the chicken genome and all three teleost genomes that we have studied. A translocation has disrupted this synteny in mammals. The PDYN gene seems to have been lost in chicken, but not in zebra finch. Duplicates of some peptide genes have arisen in the teleost fishes. Within the prepropeptide precursors, peptides have been lost or gained in different lineages. CONCLUSIONS/SIGNIFICANCE: The ancestral peptide and receptor genes were located on the same chromosome and were thus duplicated concomitantly. However, subsequently genetic linkage has been lost. In conclusion, the system of opioid peptides and receptors was largely formed by the genome doublings that took place early in vertebrate evolution.

  18. Auxins increase expression of the brassinosteroid receptor and brassinosteroid-responsive genes in Arabidopsis.

    Science.gov (United States)

    Sakamoto, Tomoaki; Fujioka, Shozo

    2013-04-01

    Auxins and brassinosteroids are essential phytohormones that synergistically regulate physiological and developmental processes in plants. Previously, we demonstrated that auxins stimulate brassinosteroid perception by regulating the level of brassinosteroid receptor in rice. Here we showed that auxin treatment increased expression of the Arabidopsis brassinosteroid receptor gene BRI1. The promoter of BRI1 has an auxin-response element that is targeted by auxin-response factor transcription factors. Auxin pretreatment increased the sensitivity to brassinosteroids of brassinosteroid-responsive genes. Although multilevel interactions between auxins and brassinosteroids have previously been reported, our findings suggest a possibility that auxins control the degree of brassinosteroid perception by regulating the expression of gene for brassinosteroid receptor, and this phenomenon is conserved between monocots (rice) and dicots (Arabidopsis).

  19. Domain-dependent effects of insulin and IGF-1 receptors on signalling and gene expression

    Science.gov (United States)

    Cai, Weikang; Sakaguchi, Masaji; Kleinridders, Andre; Gonzalez-Del Pino, Gonzalo; Dreyfuss, Jonathan M.; O'Neill, Brian T.; Ramirez, Alfred K.; Pan, Hui; Winnay, Jonathon N.; Boucher, Jeremie; Eck, Michael J.; Kahn, C. Ronald

    2017-01-01

    Despite a high degree of homology, insulin receptor (IR) and IGF-1 receptor (IGF1R) mediate distinct cellular and physiological functions. Here, we demonstrate how domain differences between IR and IGF1R contribute to the distinct functions of these receptors using chimeric and site-mutated receptors. Receptors with the intracellular domain of IGF1R show increased activation of Shc and Gab-1 and more potent regulation of genes involved in proliferation, corresponding to their higher mitogenic activity. Conversely, receptors with the intracellular domain of IR display higher IRS-1 phosphorylation, stronger regulation of genes in metabolic pathways and more dramatic glycolytic responses to hormonal stimulation. Strikingly, replacement of leucine973 in the juxtamembrane region of IR to phenylalanine, which is present in IGF1R, mimics many of these signalling and gene expression responses. Overall, we show that the distinct activities of the closely related IR and IGF1R are mediated by their intracellular juxtamembrane region and substrate binding to this region. PMID:28345670

  20. Theobromine-Induced Changes in A1 Purinergic Receptor Gene Expression and Distribution in a Rat Brain Alzheimer's Disease Model.

    Science.gov (United States)

    Mendiola-Precoma, Jesus; Padilla, Karla; Rodríguez-Cruz, Alfredo; Berumen, Laura C; Miledi, Ricardo; García-Alcocer, Guadalupe

    2017-01-01

    Dementia caused by Alzheimer's disease (AD) is mainly characterized by accumulation in the brain of extra- and intraneuronal amyloid-β (Aβ) and tau proteins, respectively, which selectively affect specific regions, particularly the neocortex and the hippocampus. Sporadic AD is mainly caused by an increase in apolipoprotein E, a component of chylomicrons, which are cholesterol transporters in the brain. Recent studies have shown that high lipid levels, especially cholesterol, are linked to AD. Adenosine is an atypical neurotransmitter that regulates a wide range of physiological functions by activating four P1 receptors (A1, A2A, A2B, and A3) and P2 purinergic receptors that are G protein-coupled. A1 receptors are involved in the inhibition of neurotransmitter release, which could be related to AD. The aim of the present work was to study the effects of a lard-enriched diet (LED) on cognitive and memory processes in adult rats (6 months of age) as well as the effect of theobromine on these processes. The results indicated that the fat-enriched diet resulted in a long-term deterioration in cognitive and memory functions. Increased levels of Aβ protein and IL-1β were also observed in the rats fed with a high-cholesterol diet, which were used to validate the AD animal model. In addition, the results of qPCR and immunohistochemistry indicated a decrease in gene expression and distribution of A1 purinegic receptor, respectively, in the hippocampus of LED-fed rats. Interestingly, theobromine, at both concentrations tested, restored A1 receptor levels and improved cognitive functions and Aβ levels for a dose of 30 mg/L drinking water.

  1. BCLI GENE POLYMORPHISM OF GLUCOCORTICOID RECEPTOR IN CHILDREN WITH BRONCHIAL ASTHMA

    Directory of Open Access Journals (Sweden)

    M.V. Zhdanova

    2006-01-01

    Full Text Available Airways inflammation and immune activation are known to play an important part in asthma patogenesis. Glucocorticoids are commonly used as the most effective agents to treat asthma. frequency in alleles and b cligene polymorphism of clucorticoid receptor has been studied in children with mild to severe asthma and in controls. The alleles and b cligene polymorphism genotypes have been uniformly distributed in all groups regardless to asthma severity. Distribution corresponds with the data obtained in the western countries.Key words: bronchial asthma, glucocorticoids, glucocoticoid receptor, glucocoticoid receptor gene, bcli polymorphism, children.

  2. AT(1) receptor Gαq protein-independent signalling transcriptionally activates only a few genes directly, but robustly potentiates gene regulation from the β2-adrenergic receptor.

    Science.gov (United States)

    Christensen, Gitte L; Knudsen, Steen; Schneider, Mikael; Aplin, Mark; Gammeltoft, Steen; Sheikh, Søren P; Hansen, Jakob L

    2011-01-01

    The angiotensin II type 1 receptor (AT(1)R) is known to signal through heterotrimeric G proteins, and Gαq protein-independent signalling has only recently gained appreciation for profound impact on a diverse range of biological functions. β-Arrestins, among other central mediators of Gαq protein-independent signalling from the AT(1)R interact with transcriptional regulators and promote phosphorylation of nuclear proteins. However, the relative contribution of Gαq protein-independent signalling in AT(1)R mediated transcriptional regulation remains elusive. We here present a comprehensive comparative analysis of Gαq protein-dependent and -independent regulation of AT(1)R mediated gene expression. We found angiotensin II to regulate 212 genes, whereas Gαq-independent signalling obtained with the biased agonist, SII angiotensin II only regulated few genes. Interestingly, SII angiotensin II, like Ang II vastly potentiated β2-adrenergic receptor-stimulated gene expression. These novel findings indicate that the Gαq protein-independent signalling mainly modifies the transcriptional response governed by other signalling pathways, while direct induction of gene expression by the AT(1)R is dependent on classical Gαq protein activation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Sequence variation in the androgen receptor gene is not a common determinant of male sexual orientation

    Energy Technology Data Exchange (ETDEWEB)

    Macke, J.P.; Nathans, J.; King, V.L. (Johns Hopkins Univ., Baltimore, MD (United States)); Hu, N.; Hu, S.; Hamer, D.; Bailey, M. (Northwestern Univ., Evanston, IL (United States)); Brown, T. (Johns Hopkins Univ. School of Hygiene and Public Health, Baltimore, MD (United States))

    1993-10-01

    To test the hypothesis that DNA sequence variation in the androgen receptor gene plays a causal role in the development of male sexual orientation, the authors have (1) measured the degree of concordance of androgen receptor alleles in 36 pairs of homosexual brothers, (2) compared the lengths of polyglutamine and polyglycine tracts in the amino-terminal domain of the androgen receptor in a sample of 197 homosexual males and 213 unselected subjects, and (3) screened the entire androgen receptor coding region for sequence variation by PCR and denaturing gradient-gel electrophoresis (DGGE) and/or single-strand conformation polymorphism analysis in 20 homosexual males with homosexual or bisexual brothers and one homosexual male with no homosexual brothers, and screened the amino-terminal domain of the receptor for sequence variation in an additional 44 homosexual males, 37 of whom had one or more first- or second-degree male relatives who were either homosexual or bisexual. These analyses show that (1) homosexual brothers are as likely to be discordant as concordant for androgen receptor alleles; (2) there are no large-scale differences between the distributions of polyglycine or polyglutamine tract lengths in the homosexual and control groups; and (3) coding region sequence variation is not commonly found within the androgen receptor gene of homosexual men. The DGGE screen identified two rare amino acid substitutions, ser[sup 205] -to-arg and glu[sup 793]-to-asp, the biological significance of which is unknown. 32 refs., 2 figs., 2 tabs.

  4. Relevance of estrogen-related receptor gene and ecdysone receptor gene in adult testis of the cricket Teleogryllus emma (Orthoptera: Gryllidae)

    Science.gov (United States)

    Jin, Wenjie; Jia, Yishu; Tan, E.; Xi, Gengsi

    2017-12-01

    Estrogen-related receptor gene ( ERR) and ecdysone receptor gene ( EcR) belong to the nuclear receptor gene superfamily, both of which are associated with the regulation of insect reproductive development. However, the relationship between ERR and EcR and whether ERR participates in the 20E signal pathway during male reproduction are unclear. In this paper, adult male crickets Teleogryllus emma Ohmschi & Matsumura were divided into the experimental group, negative group, and control group. Crickets of the experimental group were injected with TeERR or TeEcR-dsRNA, and those in the negative group received EGFP-dsRNA. The efficiency of TeERR and TeEcR-RNAi was detected in the experimental group. Furthermore, the transcription level, morphological characteristics as well as weight were analyzed in the TeERR or TeEcR knocked-down testis. Results showed that the expression level of TeERR or TeEcR was significantly down-regulated ( P 0.05). These results indicate that TeERR and TeEcR are intimately related to each other. In addition, TeERR may be involved in the 20E signal pathway and maintain the function of adult cricket testis.

  5. Allelic variants of melanocortin 3 receptor gene (MC3R) and weight loss in obesity

    DEFF Research Database (Denmark)

    L. Santos, José; De la Cruz, Rolando; Holst, Claus

    2011-01-01

    receptor gene (MC3R) have been associated with childhood obesity, higher BMI Z-score and elevated body fat percentage compared to non-carriers. The aim of this study is to assess the association in adults between allelic variants of MC3R with weight loss induced by energy-restricted diets.......The melanocortin system plays an important role in energy homeostasis. Mice genetically deficient in the melanocortin-3 receptor gene have a normal body weight with increased body fat, mild hypophagia compared to wild-type mice. In humans, Thr6Lys and Val81Ile variants of the melanocortin-3...

  6. Angiotensin-II type 1 receptor gene polymorphism and diabetic microangiopathy

    DEFF Research Database (Denmark)

    Tarnow, L; Cambien, Francois; Rossing, P

    1996-01-01

    the relationship between the A1166-->C polymorphism in the angiotensin-II type 1 receptor gene in patients with insulin dependent diabetes mellitus (IDDM) and diabetic nephropathy (121 men, 77 women, age 41 +/- 10 years, diabetes duration 27 +/- 8 years) and in IDDM patients with normoalbuminuria (116 men, 74...... with proliferative retinopathy and without diabetic retinopathy was found either: 77 (50%) / 66 (42%) / 13 (8%) vs. 42 (63%) / 22 (33%) / 3 (4%) had AA/AC/CC genotypes, respectively. CONCLUSIONS: The A1166-->C polymorphism in the angiotensin-II type 1 receptor gene does not contribute to the genetic susceptibility...

  7. Altered Expression of Genes Encoding Neurotransmitter Receptors in GnRH Neurons of Proestrous Mice

    OpenAIRE

    Vastagh, Csaba; Rodolosse, Annie; Solymosi, Norbert; Liposits, Zsolt

    2016-01-01

    Gonadotropin-releasing hormone (GnRH) neurons play a key role in the central regulation of reproduction. In proestrous female mice, estradiol triggers the pre-ovulatory GnRH surge, however, its impact on the expression of neurotransmitter receptor genes in GnRH neurons has not been explored yet. We hypothesized that proestrus is accompanied by substantial changes in the expression profile of genes coding for neurotransmitter receptors in GnRH neurons. We compared the transcriptome of GnRH neu...

  8. Altered expression of genes encoding neurotransmitter receptors in GnRH neurons of proestrous mice

    OpenAIRE

    Csaba Vastagh; Annie Rodolosse; Norbert Solymosi; Zsolt Liposits; Zsolt Liposits

    2016-01-01

    Gonadotropin-releasing hormone (GnRH) neurons play a key role in the central regulation of reproduction. In proestrous female mice, estradiol triggers the pre-ovulatory GnRH surge, however, its impact on the expression of neurotransmitter receptor genes in GnRH neurons has not been explored yet. We hypothesized that proestrus is accompanied by substantial changes in the expression profile of genes coding for neurotransmitter receptors in GnRH neurons. We compared the transcriptome of GnRH neu...

  9. Does Serotonin 2A Receptor Gene Polymorphism Increase The Vulnerability To Panic Attacks?

    OpenAIRE

    LİM, Lee Wei; SCHRUERS, Koen; TEMEL, Yasin

    2011-01-01

    Many studies have been conducted to show the genetic associations between the serotonin 2A receptor (HTR2A) gene polymorphisms and panic disorder (PD), but the overall results are inconsistent and replication proved difficult. Here, we provide a concise overview of recent findings on genetic association studies with PD, which are summarized in a table. It has been shown that the HTR2A receptor gene 102T-C polymorphism is associated with a pure phenotype, and with agoraphobia in PD patients, a...

  10. Crosstalk between thyroid hormone receptor and liver X receptor in the regulation of selective Alzheimer's disease indicator-1 gene expression.

    Directory of Open Access Journals (Sweden)

    Emi Ishida

    Full Text Available Selective Alzheimer's disease (AD indicator 1 (Seladin-1 has been identified as a gene down-regulated in the degenerated lesions of AD brain. Up-regulation of Seladin-1 reduces the accumulation of β-amyloid and neuronal death. Thyroid hormone (TH exerts an important effect on the development and maintenance of central nervous systems. In the current study, we demonstrated that Seladin-1 gene and protein expression in the forebrain was increased in thyrotoxic mice compared with that of euthyroid mice. However, unexpectedly, no significant decrease in the gene and protein expression was observed in hypothyroid mice. Interestingly, an agonist of liver X receptor (LXR, TO901317 (TO administration in vivo increased Seladin-1 gene and protein expression in the mouse forebrain only in a hypothyroid state and in the presence of mutant TR-β, suggesting that LXR-α would compensate for TR-β function to maintain Seladin-1 gene expression in hypothyroidism and resistance to TH. TH activated the mouse Seladin-1 gene promoter (-1936/+21 bp and site 2 including canonical TH response element (TRE half-site in the region between -159 and -154 bp is responsible for the positive regulation. RXR-α/TR-β heterodimerization was identified on site 2 by gel-shift assay, and chromatin immunoprecipitation assay revealed the recruitment of TR-β to site 2 and the recruitment was increased upon TH administration. On the other hand, LXR-α utilizes a distinct region from site 2 (-120 to -102 bp to activate the mouse Seladin-1 gene promoter. Taking these findings together, we concluded that TH up-regulates Seladin-1 gene expression at the transcriptional level and LXR-α maintains the gene expression.

  11. Selective prostacyclin receptor agonism augments glucocorticoid-induced gene expression in human bronchial epithelial cells.

    Science.gov (United States)

    Wilson, Sylvia M; Shen, Pamela; Rider, Christopher F; Traves, Suzanne L; Proud, David; Newton, Robert; Giembycz, Mark A

    2009-11-15

    Prostacyclin receptor (IP-receptor) agonists display anti-inflammatory and antiviral activity in cell-based assays and in preclinical models of asthma and chronic obstructive pulmonary disease. In this study, we have extended these observations by demonstrating that IP-receptor activation also can enhance the ability of glucocorticoids to induce genes with anti-inflammatory activity. BEAS-2B bronchial epithelial cells stably transfected with a glucocorticoid response element (GRE) luciferase reporter were activated in a concentration-dependent manner by the glucocorticoid dexamethasone. An IP-receptor agonist, taprostene, increased cAMP in these cells and augmented luciferase expression at all concentrations of dexamethasone examined. Analysis of the concentration-response relationship that described this effect showed that taprostene increased the magnitude of transcription without affecting the potency of dexamethasone and was, thus, steroid-sparing in this simple system. RO3244794, an IP-receptor antagonist, and oligonucleotides that selectively silenced the IP-receptor gene, PTGIR, abolished these effects of taprostene. Infection of BEAS-2B GRE reporter cells with an adenovirus vector encoding a highly selective inhibitor of cAMP-dependent protein kinase (PKA) also prevented taprostene from enhancing GRE-dependent transcription. In BEAS-2B cells and primary cultures of human airway epithelial cells, taprostene and dexamethasone interacted either additively or cooperatively in the expression of three glucocorticoid-inducible genes (GILZ, MKP-1, and p57(kip2)) that have anti-inflammatory potential. Collectively, these data show that IP-receptor agonists can augment the ability of glucocorticoids to induce anti-inflammatory genes in human airway epithelial cells by activating a cAMP/PKA-dependent mechanism. This observation may have clinical relevance in the treatment of airway inflammatory diseases that are either refractory or respond suboptimally to

  12. The Medicago truncatula lysin [corrected] motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes.

    Science.gov (United States)

    Arrighi, Jean-François; Barre, Annick; Ben Amor, Besma; Bersoult, Anne; Soriano, Lidia Campos; Mirabella, Rossana; de Carvalho-Niebel, Fernanda; Journet, Etienne-Pascal; Ghérardi, Michèle; Huguet, Thierry; Geurts, René; Dénarié, Jean; Rougé, Pierre; Gough, Clare

    2006-09-01

    Rhizobial Nod factors are key symbiotic signals responsible for starting the nodulation process in host legume plants. Of the six Medicago truncatula genes controlling a Nod factor signaling pathway, Nod Factor Perception (NFP) was reported as a candidate Nod factor receptor gene. Here, we provide further evidence for this by showing that NFP is a lysin [corrected] motif (LysM)-receptor-like kinase (RLK). NFP was shown both to be expressed in association with infection thread development and to be involved in the infection process. Consistent with deviations from conserved kinase domain sequences, NFP did not show autophosphorylation activity, suggesting that NFP needs to associate with an active kinase or has unusual functional characteristics different from classical kinases. Identification of nine new M. truncatula LysM-RLK genes revealed a larger family than in the nonlegumes Arabidopsis (Arabidopsis thaliana) or rice (Oryza sativa) of at least 17 members that can be divided into three subfamilies. Three LysM domains could be structurally predicted for all M. truncatula LysM-RLK proteins, whereas one subfamily, which includes NFP, was characterized by deviations from conserved kinase sequences. Most of the newly identified genes were found to be expressed in roots and nodules, suggesting this class of receptors may be more extensively involved in nodulation than was previously known.

  13. Linkage analysis of schizophrenia with five dopamine receptor genes in nine pedigrees

    Energy Technology Data Exchange (ETDEWEB)

    Coon, H.; Byerley, W.; Holik, J.; Hoff, M.; Myles-Worsley, M.; Plaetke, R. (Univ. of Utah, Salt Lake City (United States)); Lannfelt, L. (Karolinska Inst., Stockholm (Sweden)); Sokoloff, P.; Schwartz, J.C. (Unite de Neurobiologie et de Pharmacologie de l' INSERM, Paris (France)); Waldo, M.; Freedman, R. (Univ. of Colorado, Denver (United States))

    1993-02-01

    Alterations in dopamine neurotransmission have been strongly implicated in the pathogenesis of schizophrenia for nearly 2 decades. Recently, the genes for five dopamine receptors have been cloned and characterized, and genetic and physical map information has become available. Using these five loci as candidate genes, the authors have tested for genetic linkage to schizophrenia in nine multigenerational families which include multiple affected individuals. In addition to testing conservative disease models, the have used a neurophysiological indicator variable, the P50 auditory evoked response. Deficits in gating of the P50 response have been shown to segregate with schizophrenia in this sample and may identify carriers of gene(s) predisposing for schizophrenia. Linkage results were consistently negative, indicating that a defect at any of the actual receptor sites is unlikely to be a major contributor to schizophrenia in the nine families studied. 47 refs., 1 fig., 4 tabs.

  14. Oxytocin and Vasopressin Receptor Gene Polymorphisms: Role in Social and Psychiatric Traits

    Science.gov (United States)

    Aspé-Sánchez, Mauricio; Moreno, Macarena; Rivera, Maria Ignacia; Rossi, Alejandra; Ewer, John

    2016-01-01

    Oxytocin (OXT) and arginine-vasopressin (AVP) are two phylogenetically conserved neuropeptides that have been implicated in a wide range of social behaviors. Although a large body of research, ranging from rodents to humans, has reported on the effects of OXT and AVP administration on affiliative and trust behaviors, and has highlighted the genetic contributions of OXT and AVP receptor polymorphisms to both social behaviors and to diseases related to social deficits, the consequences of peptide administration on psychiatric symptoms, and the impact of receptor polymorphisms on receptor function, are still unclear. Despite the exciting advances that these reports have brought to social neuroscience, they remain preliminary and suffer from the problems that are inherent to monogenetic linkage and association studies. As an alternative, some studies are using polygenic approaches, and consider the contributions of other genes and pathways, including those involving DA, 5-HT, and reelin, in addition to OXT and AVP; a handful of report are also using genome-wide association studies. This review summarizes findings on the associations between OXT and AVP receptor polymorphism, social behavior, and psychiatric diseases. In addition, we discuss reports on the interactions of OXT and AVP receptor genes and genes involved in other pathways (such as those of dopamine, serotonin, and reelin), as well as research that has shed some light on the impact of gene polymorphisms on the volume, connectivity, and activation of specific neural structures, differential receptor expression, and plasma levels of the OXT and AVP peptides. We hope that this effort will be helpful for understanding the studies performed so far, and for encouraging the inclusion of other candidate genes not explored to date. PMID:26858594

  15. Lineage-Specific Loss of Function of Bitter Taste Receptor Genes in Humans and Nonhuman Primates

    OpenAIRE

    Go, Yasuhiro; Satta, Yoko; Takenaka, Osamu; Takahata, Naoyuki

    2005-01-01

    Since the process of becoming dead genes or pseudogenes (pseudogenization) is irreversible and can occur rather rapidly under certain environmental circumstances, it is one plausible determinant for characterizing species specificity. To test this evolutionary hypothesis, we analyzed the tempo and mode of duplication and pseudogenization of bitter taste receptor (T2R) genes in humans as well as in 12 nonhuman primates. The results show that primates have accumulated more pseudogenes than mice...

  16. Mapping of Wnt-Frizzled interactions by multiplex CRISPR targeting of receptor gene families.

    Science.gov (United States)

    Voloshanenko, Oksana; Gmach, Philipp; Winter, Jan; Kranz, Dominique; Boutros, Michael

    2017-11-01

    Signaling pathway modules are often encoded by several closely related paralogous genes that can have redundant roles and are therefore difficult to analyze by loss-of-function analysis. A typical example is the Wnt signaling pathway, which in mammals is mediated by 19 Wnt ligands that can bind to 10 Frizzled (FZD) receptors. Although significant progress in understanding Wnt-FZD receptor interactions has been made in recent years, tools to generate systematic interaction maps have been largely lacking. Here we generated cell lines with multiplex mutant alleles of FZD1 , FZD2 , and FZD7 and demonstrate that these cells are unresponsive to canonical Wnt ligands. Subsequently, we performed genetic rescue experiments with combinations of FZDs and canonical Wnts to create a functional ligand-receptor interaction map. These experiments showed that whereas several Wnt ligands, such as Wnt3a, induce signaling through a broad spectrum of FZD receptors, others, such as Wnt8a, act through a restricted set of FZD genes. Together, our results map functional interactions of FZDs and 10 Wnt ligands and demonstrate how multiplex targeting by clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 can be used to systematically elucidate the functions of multigene families.-Voloshanenko, O., Gmach, P., Winter, J., Kranz, D., Boutros, M. Mapping of Wnt-Frizzled interactions by multiplex CRISPR targeting of receptor gene families. © The Author(s).

  17. Specific alleles of bitter receptor genes influence human sensitivity to the bitterness of aloin and saccharin.

    Science.gov (United States)

    Pronin, Alexey N; Xu, Hong; Tang, Huixian; Zhang, Lan; Li, Qing; Li, Xiaodong

    2007-08-21

    Variation in human taste is a well-known phenomenon. However, little is known about the molecular basis for it. Bitter taste in humans is believed to be mediated by a family of 25 G protein-coupled receptors (hT2Rs, or TAS2Rs). Despite recent progress in the functional expression of hT2Rs in vitro, up until now, hT2R38, a receptor for phenylthiocarbamide (PTC), was the only gene directly linked to variations in human bitter taste. Here we report that polymorphism in two hT2R genes results in different receptor activities and different taste sensitivities to three bitter molecules. The hT2R43 gene allele, which encodes a protein with tryptophan in position 35, makes people very sensitive to the bitterness of the natural plant compounds aloin and aristolochic acid. People who do not possess this allele do not taste these compounds at low concentrations. The same hT2R43 gene allele makes people more sensitive to the bitterness of an artificial sweetener, saccharin. In addition, a closely related gene's (hT2R44's) allele also makes people more sensitive to the bitterness of saccharin. We also demonstrated that some people do not possess certain hT2R genes, contributing to taste variation between individuals. Our findings thus reveal new examples of variations in human taste and provide a molecular basis for them.

  18. Pyruvate Kinase and Fcγ Receptor Gene Copy Numbers Associated With Malaria Phenotypes.

    Science.gov (United States)

    Faik, Imad; van Tong, Hoang; Lell, Bertrand; Meyer, Christian G; Kremsner, Peter G; Velavan, Thirumalaisamy P

    2017-07-15

    Genetic factors are associated with susceptibility to many infectious diseases and may be determinants of clinical progression. Gene copy number variation (CNV) has been shown to be associated with phenotypes of numerous diseases, including malaria. We quantified gene copy numbers of the pyruvate kinase, liver, and red blood cell (PKLR) gene as well as of the Fcγ receptor 2A and Fcγ receptor 2C (FCGR2A, FCGR2C) and Fcγ receptor 3 (FCGR3) genes using real-time quantitative polymerase chain reaction (RT-qPCR) assays in Gabonese children with severe (n = 184) or and mild (n = 189) malaria and in healthy Gabonese and white individuals (n = 76 each). The means of PKLR, FCGR2A, FCGR2C, and FCGR3 copy numbers were significantly higher among children with severe malaria compared to those with mild malaria (P malaria severity. Copy numbers of the FCGR2A and FCGR2C genes were significantly lower (P = .005) in Gabonese individuals compared with white individuals. In conclusion, CNV of the PKLR, FCGR2A, FCGR2C, and FCGR3 genes is associated with malaria severity, and our results provide evidence for a role of CNV in host responses to malaria. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  19. Mutations in the Human Ca{sup 2+}-sensing-receptor gene that cause familial hypocalciuric hypercalcemia

    Energy Technology Data Exchange (ETDEWEB)

    Yah-Huei Wu Chou [Chang Gung Memorial Hospital, Taoyuan (Taiwan, Province of China); Pollak, M.R.; Brown, E.M.; Seidman, J.G.; Seidman, C.E. [Harvard Univ., Boston, MA (United States); Brandi, M.L. [Univ. Florence (Italy); Toss, G.; Arnqvist, H. [Linkoping Univ. (Sweden)

    1995-05-01

    We report five novel mutations in the human Ca{sup 2+}-sensing-receptor gene that cause familial hypocalciuric hypercalcemia (FHH) or neonatal severe hyperparathyroidism. Each gene defect is a missense mutation that encodes a nonconservative amino acid alteration. These mutations are each predicted to be in the Ca{sup 2+}-sensing receptor`s large extracellular domain. In three families with FHH linked to the Ca{sup 2+}-sensing-receptor gene on chromosome 3 and in unrelated individuals probands with FHH, mutations were not detected in protein-coding sequences. On the basis of these data and previous analyses, we suggest that there are a wide range of mutations that cause FHH. Mutations that perturb the structure and function of the extracellular or transmembrane domains of the receptor and those that affect noncoding sequences of the Ca{sup 2+}-sensing-receptor gene can cause FHH. 23 refs., 2 figs., 1 tab.

  20. AT(1) receptor Gαq protein-independent signalling transcriptionally activates only a few genes directly, but robustly potentiates gene regulation from the β2-adrenergic receptor

    DEFF Research Database (Denmark)

    Christensen, Gitte Lund; Knudsen, Steen; Schneider, Mikael

    2011-01-01

    signalling from the AT(1)R interact with transcriptional regulators and promote phosphorylation of nuclear proteins. However, the relative contribution of Gαq protein-independent signalling in AT(1)R mediated transcriptional regulation remains elusive. We here present a comprehensive comparative analysis...... of Gαq protein-dependent and -independent regulation of AT(1)R mediated gene expression. We found angiotensin II to regulate 212 genes, whereas Gαq-independent signalling obtained with the biased agonist, SII angiotensin II only regulated few genes. Interestingly, SII angiotensin II, like Ang II vastly......The angiotensin II type 1 receptor (AT(1)R) is known to signal through heterotrimeric G proteins, and Gαq protein-independent signalling has only recently gained appreciation for profound impact on a diverse range of biological functions. β-Arrestins, among other central mediators of Gαq protein-independent...

  1. Hypoxia attenuates purinergic P2X receptor-induced inflammatory gene expression in brainstem microglia

    Directory of Open Access Journals (Sweden)

    Smith SMC

    2013-08-01

    Full Text Available Stephanie MC Smith,1,2 Gordon S Mitchell,1,2 Scott A Friedle,3 Christine M Sibigtroth,1 Stéphane Vinit,1 Jyoti J Watters1–31Department of Comparative Biosciences, 2Comparative Biomedical Sciences Training Program, 3Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI, USAAbstract: Hypoxia and increased extracellular nucleotides are frequently coincident in the brainstem. Extracellular nucleotides are potent modulators of microglial inflammatory gene expression via P2X purinergic receptor activation. Although hypoxia is also known to modulate inflammatory gene expression, little is known about how hypoxia or P2X receptor activation alone affects inflammatory molecule production in brainstem microglia, nor how hypoxia and P2X receptor signaling interact when they occur together. In the study reported here, we investigated the ability of a brief episode of hypoxia (2 hours in the presence and absence of the nonselective P2X receptor agonist 2′(3′-O-(4-benzoylbenzoyladenosine-5′-triphosphate (BzATP to promote inflammatory gene expression in brainstem microglia in adult rats. We evaluated inducible nitric oxide synthase (iNOS, tumor necrosis factor alpha (TNFα, and interleukin (IL-6 messenger RNA levels in immunomagnetically isolated brainstem microglia. While iNOS and IL-6 gene expression increased with hypoxia and BzATP alone, TNFα expression was unaffected. Surprisingly, BzATP-induced inflammatory effects were lost after hypoxia, suggesting that hypoxia impairs proinflammatory P2X-receptor signaling. We also evaluated the expression of key P2X receptors activated by BzATP, namely P2X1, P2X4, and P2X7. While hypoxia did not alter their expression, BzATP upregulated P2X4 and P2X7 mRNAs; these effects were ablated in hypoxia. Although both P2X4 and P2X7 receptor expression correlated with increased microglial iNOS and IL-6 levels in microglia from normoxic rats, in hypoxia, P2X7 only correlated with IL-6, and P2X

  2. Pseudogenization of a Sweet-Receptor Gene Accounts for Cats' Indifference toward Sugar.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Although domestic cats (Felis silvestris catus possess an otherwise functional sense of taste, they, unlike most mammals, do not prefer and may be unable to detect the sweetness of sugars. One possible explanation for this behavior is that cats lack the sensory system to taste sugars and therefore are indifferent to them. Drawing on work in mice, demonstrating that alleles of sweet-receptor genes predict low sugar intake, we examined the possibility that genes involved in the initial transduction of sweet perception might account for the indifference to sweet-tasting foods by cats. We characterized the sweet-receptor genes of domestic cats as well as those of other members of the Felidae family of obligate carnivores, tiger and cheetah. Because the mammalian sweet-taste receptor is formed by the dimerization of two proteins (T1R2 and T1R3; gene symbols Tas1r2 and Tas1r3, we identified and sequenced both genes in the cat by screening a feline genomic BAC library and by performing PCR with degenerate primers on cat genomic DNA. Gene expression was assessed by RT-PCR of taste tissue, in situ hybridization, and immunohistochemistry. The cat Tas1r3 gene shows high sequence similarity with functional Tas1r3 genes of other species. Message from Tas1r3 was detected by RT-PCR of taste tissue. In situ hybridization and immunohistochemical studies demonstrate that Tas1r3 is expressed, as expected, in taste buds. However, the cat Tas1r2 gene shows a 247-base pair microdeletion in exon 3 and stop codons in exons 4 and 6. There was no evidence of detectable mRNA from cat Tas1r2 by RT-PCR or in situ hybridization, and no evidence of protein expression by immunohistochemistry. Tas1r2 in tiger and cheetah and in six healthy adult domestic cats all show the similar deletion and stop codons. We conclude that cat Tas1r3 is an apparently functional and expressed receptor but that cat Tas1r2 is an unexpressed pseudogene. A functional sweet-taste receptor heteromer

  3. Pseudogenization of a sweet-receptor gene accounts for cats' indifference toward sugar.

    Directory of Open Access Journals (Sweden)

    Xia Li

    2005-07-01

    Full Text Available Although domestic cats (Felis silvestris catus possess an otherwise functional sense of taste, they, unlike most mammals, do not prefer and may be unable to detect the sweetness of sugars. One possible explanation for this behavior is that cats lack the sensory system to taste sugars and therefore are indifferent to them. Drawing on work in mice, demonstrating that alleles of sweet-receptor genes predict low sugar intake, we examined the possibility that genes involved in the initial transduction of sweet perception might account for the indifference to sweet-tasting foods by cats. We characterized the sweet-receptor genes of domestic cats as well as those of other members of the Felidae family of obligate carnivores, tiger and cheetah. Because the mammalian sweet-taste receptor is formed by the dimerization of two proteins (T1R2 and T1R3; gene symbols Tas1r2 and Tas1r3, we identified and sequenced both genes in the cat by screening a feline genomic BAC library and by performing PCR with degenerate primers on cat genomic DNA. Gene expression was assessed by RT-PCR of taste tissue, in situ hybridization, and immunohistochemistry. The cat Tas1r3 gene shows high sequence similarity with functional Tas1r3 genes of other species. Message from Tas1r3 was detected by RT-PCR of taste tissue. In situ hybridization and immunohistochemical studies demonstrate that Tas1r3 is expressed, as expected, in taste buds. However, the cat Tas1r2 gene shows a 247-base pair microdeletion in exon 3 and stop codons in exons 4 and 6. There was no evidence of detectable mRNA from cat Tas1r2 by RT-PCR or in situ hybridization, and no evidence of protein expression by immunohistochemistry. Tas1r2 in tiger and cheetah and in six healthy adult domestic cats all show the similar deletion and stop codons. We conclude that cat Tas1r3 is an apparently functional and expressed receptor but that cat Tas1r2 is an unexpressed pseudogene. A functional sweet-taste receptor heteromer

  4. Pseudogenization of a sweet-receptor gene accounts for cats' indifference toward sugar.

    Science.gov (United States)

    Li, Xia; Li, Weihua; Wang, Hong; Cao, Jie; Maehashi, Kenji; Huang, Liquan; Bachmanov, Alexander A; Reed, Danielle R; Legrand-Defretin, Véronique; Beauchamp, Gary K; Brand, Joseph G

    2005-07-01

    Although domestic cats (Felis silvestris catus) possess an otherwise functional sense of taste, they, unlike most mammals, do not prefer and may be unable to detect the sweetness of sugars. One possible explanation for this behavior is that cats lack the sensory system to taste sugars and therefore are indifferent to them. Drawing on work in mice, demonstrating that alleles of sweet-receptor genes predict low sugar intake, we examined the possibility that genes involved in the initial transduction of sweet perception might account for the indifference to sweet-tasting foods by cats. We characterized the sweet-receptor genes of domestic cats as well as those of other members of the Felidae family of obligate carnivores, tiger and cheetah. Because the mammalian sweet-taste receptor is formed by the dimerization of two proteins (T1R2 and T1R3; gene symbols Tas1r2 and Tas1r3), we identified and sequenced both genes in the cat by screening a feline genomic BAC library and by performing PCR with degenerate primers on cat genomic DNA. Gene expression was assessed by RT-PCR of taste tissue, in situ hybridization, and immunohistochemistry. The cat Tas1r3 gene shows high sequence similarity with functional Tas1r3 genes of other species. Message from Tas1r3 was detected by RT-PCR of taste tissue. In situ hybridization and immunohistochemical studies demonstrate that Tas1r3 is expressed, as expected, in taste buds. However, the cat Tas1r2 gene shows a 247-base pair microdeletion in exon 3 and stop codons in exons 4 and 6. There was no evidence of detectable mRNA from cat Tas1r2 by RT-PCR or in situ hybridization, and no evidence of protein expression by immunohistochemistry. Tas1r2 in tiger and cheetah and in six healthy adult domestic cats all show the similar deletion and stop codons. We conclude that cat Tas1r3 is an apparently functional and expressed receptor but that cat Tas1r2 is an unexpressed pseudogene. A functional sweet-taste receptor heteromer cannot form, and

  5. Suicide Gene Therapy to Increase the Safety of Chimeric Antigen Receptor-Redirected T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Monica Casucci, Attilio Bondanza

    2011-01-01

    Full Text Available Chimeric antigen receptors (CARs are generated by fusing the antigen-binding motif of a monoclonal antibody (mAb with the signal transduction machinery of the T-cell receptor (TCR. The genetic modification of T lymphocytes with chimeric receptors specific for tumor-associated antigens (TAAs allows for the redirection towards tumor cells. Clinical experience with CAR-redirected T cells suggests that antitumor efficacy associates with some degree of toxicity, especially when TAA expression is shared with healthy tissues. This situation closely resembles the case of allogeneic hematopoietic stem cell transplantation (HSCT, wherein allorecognition causes both the graft-versus-leukemia (GVL effect and graft-versus-host disease (GVHD. Suicide gene therapy, i.e. the genetic induction of a conditional suicide phenotype into donor T cells, enables dissociating the GVL effect from GVHD. Applying suicide gene modification to CAR-redirected T cells may therefore greatly increase their safety profile and facilitate their clinical development.

  6. Association of polymorphism in the dopamine receptors and transporter genes with hyperprolactinemia in patients with schizophrenia

    NARCIS (Netherlands)

    Osmanova, Diana Z; Boiko, Anastasia S; Fedorenko, Olga Yu; Pozhidaev, Ivan V; Freidin, Maxim B.; Kornetova, Elena G; Ivanova, Svetlana A.; Wilffert, Berend; Loonen, Antonius

    2017-01-01

    Association of polymorphism in the dopamine receptors and transporter genes with hyperprolactinemia in patients with schizophrenia D. Osmanova(1), A.S. Boiko(1), O.Y. Fedorenko(1), I.V. Pozhidaev(1), M.B. Freidin(2), E.G. Kornetova(3), S.A. Ivanova(1), B. Wilffert(4), A.J.M. Loonen(5) (1)Mental

  7. Transient receptor potential genes, smoking, occupational exposures and cough in adults

    NARCIS (Netherlands)

    Smit, L.A.|info:eu-repo/dai/nl/311470882; Kogevinas, M.; Antó, J.; Bouzigon, E.; González, J.R.; Le Moual, N.; Kromhout, J.|info:eu-repo/dai/nl/074385224; Carsin, A.; Pin, I.; Jarvis, D.; Vermeulen, R.C.H.|info:eu-repo/dai/nl/216532620; Janson, C.; Heinrich, J.; Gut, I.; Lathrop, M.; Valverde, M.A.; Demenais, F.; Kauffmann, F.

    2012-01-01

    BACKGROUND: Transient receptor potential (TRP) vanilloid and ankyrin cation channels are activated by various noxious chemicals and may play an important role in the pathogenesis of cough. The aim was to study the influence of single nucleotide polymorphisms (SNPs) in TRP genes and irritant

  8. Detection of thyroid hormone receptor disruptors by a novel stable in vitro reporter gene assay

    NARCIS (Netherlands)

    Freitas, de J.; Cano, P.; Craig-Veit, C.; Goodson, M.L.; Furlow, J.D.; Murk, A.J.

    2011-01-01

    A stable luciferase reporter gene assay was developed based on the thyroid hormone responsive rat pituitary tumor GH3 cell line that constitutively expresses both thyroid hormone receptor isoforms. Stable transfection of the pGL4CP-SV40-2xtaDR4 construct into the GH3 cells resulted in a highly

  9. Dopamine receptors genes polymorphisms in Parkinson patients with levodopa-induced dyskinesia

    NARCIS (Netherlands)

    Pozhidaev, Ivan V; Alifirova, V. M.; Freidin, Maxim B.; Zhukova, I.A.; Fedorenko, Olga Yu; Osmanova, Diana Z; Mironova, Y.S.; Wilffert, Berend; Ivanova, Svetlana A.; Loonen, Antonius

    2017-01-01

    Dopamine receptors genes polymorphisms in Parkinson patients with levodopa-induced dyskinesia I. Pozhidaev(1), V.M. Alifirova(2), M.B. Freidin(3), I.A. Zhukova(2), O.Y. Fedorenko(1), D.Z. Osmanova(1), Y.S. Mironova(2), B. Wilffert(4), S.A. Ivanova(1), A.J.M. Loonen(5) (1)Mental Health Research

  10. REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer

    DEFF Research Database (Denmark)

    Svensson, Charlotte; Ceder, Jens; Iglesias Gato, Diego

    2014-01-01

    The androgen receptor (AR) is a key regulator of prostate tumorgenesis through actions that are not fully understood. We identified the repressor element (RE)-1 silencing transcription factor (REST) as a mediator of AR actions on gene repression. Chromatin immunoprecipitation showed that AR binds...

  11. Disruption of the GH Receptor Gene in Adult Mice Increases Maximal Lifespan in Females

    DEFF Research Database (Denmark)

    Junnila, Riia K.; Duran-Ortiz, Silvana; Suer, Ozan

    2016-01-01

    GH and IGF-1 are important for a variety of physiological processes including growth, development, and aging. Mice with reduced levels of GH and IGF-1 have been shown to live longer than wild-type controls. Our laboratory has previously found that mice with a GH receptor gene knockout (GHRKO) fro...

  12. Vitamin D status, receptor gene BsmI (A/G) polymorphism and ...

    African Journals Online (AJOL)

    Vitamin D status, receptor gene BsmI (A/G) polymorphism and breast cancer in a group of Egyptian females. Rasha Rizk Elzehery, Azza A. Baiomy, Mohamed AbdEl-Fattah Hegazy, Rami Fares, Abdel-Hady El-Gilany, Refaat Hegazi ...

  13. Novel mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infections

    DEFF Research Database (Denmark)

    Storgaard, M; Varming, K; Herlin, Troels

    2006-01-01

    In 1981 we presented a patient with Mycobacterium intracellulare osteomyelitis and depressed monocyte cytotoxicity. It is now demonstrated that the molecular defect was a never-before-described nucleotide deletion at position 794 (794delT) in the interferon-gamma-receptor alpha-1 gene. The genetic...

  14. Genetic polymorphism of exon 9-11 of the leptin gene receptor in ...

    African Journals Online (AJOL)

    Jane

    2011-10-10

    primer3_www.cgi). These primers were designed based on the chicken sequence leptin gene receptor (GenBank –. NC006095.2) Gallus gallus chromosome 8, reference assembly. (based on Gallus_gallus-2.1). The primers were ...

  15. Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition

    NARCIS (Netherlands)

    S.W.J. Lamberts (Steven); E.F.C. van Rossum (Liesbeth)

    2004-01-01

    textabstractMost actions of glucocorticoids (GCs) are mediated by the glucocorticoid receptor (GR). The interindividual response to GCs varies considerably, as demonstrated by a variable suppressive response to 0.25-mg dexamethasone (DEX). Several polymorphisms in the gene coding

  16. β3-Adrenergic receptor gene polymorphism and type 2 diabetes in a Caucasian population

    NARCIS (Netherlands)

    Oeveren van-Dybicz, A.M.; Vonkeman, Harald Erwin; Bon, M.A.M.; van den Bergh, F.A.J.T.M.; Vermes, I.

    2008-01-01

    Aim: The β3-adrenergic receptor (β3-AR) is suspected to play a key role in the regulation of energy balance by increasing lipolysis and thermogenesis. A mutation in the β3-AR gene (Trp64Arg) has been associated with the capacity of weight gain and with early onset of noninsulin dependent diabetes

  17. Thyroid hormone resistance syndrome due to mutations in the thyroid hormone receptor alpha gene (THRA)

    NARCIS (Netherlands)

    Tylki-Szymanska, A.; Acuna Hidalgo, R.; Krajewska-Walasek, M.; Lecka-Ambroziak, A.; Steehouwer, M.; Gilissen, C.F.; Brunner, H.G.; Jurecka, A.; Rozdzynska-Swiatkowska, A.; Hoischen, A.; Chrzanowska, K.H.

    2015-01-01

    BACKGROUND: Resistance to thyroid hormone is characterised by a lack of response of peripheral tissues to the active form of thyroid hormone (triiodothyronine, T3). In about 85% of cases, a mutation in THRB, the gene coding for thyroid receptor beta (TRbeta), is the cause of this disorder. Recently,

  18. Amplification of epidermal growth factor receptor gene in renal cell carcinoma

    DEFF Research Database (Denmark)

    El-Hariry, Iman; Powles, Thomas; Lau, Mike R

    2010-01-01

    Expression of epidermal growth factor receptor (EGFR) may be of prognostic value in renal cell cancer (RCC). Gene amplification of EGFR was investigated in a cohort of 315 patients with advanced RCC from a previously reported randomised study. Using fluorescent in situ hybridisation, only 2 patie...

  19. [From gene to disease; tumor necrosis factor receptor and a syndrome of familial periodic fever

    NARCIS (Netherlands)

    Simon, A.; Drenth, J.P.H.; Meer, J.W.M. van der

    2001-01-01

    Familial Hibernian fever (FHF) is a rare hereditary syndrome that causes periodic attacks of fever and inflammation. It is an autosomal dominantly inherited disorder. The gene involved in FHF encodes for a receptor for tumour necrosis factor (TNFR1). These mutations are thought to result in impaired

  20. A Study of the androgen receptor gene polymorphism and the level ...

    African Journals Online (AJOL)

    salah

    Androgen receptor gene polymorphism in androgenetic alopecia. INTRODUCTION. Androgenetic alopecia (AGA) is the most common cause of hair loss in both men and women. In men, it is often referred to as male-pattern baldness; a common form of scalp hair loss that af- fects most males by old age1. The con- dition can ...

  1. Polymorphism of glucagon-like peptide-1 receptor gene (rs1042044 ...

    African Journals Online (AJOL)

    patience

    2015-02-16

    Feb 16, 2015 ... turnover via GLP-1 receptors (GLP1Rs) in postmenopausal state. Furthermore, polymorphisms in. GLP1R gene were suggested to affect the function of GLP1Rs and be associated with many diseases. However, the relationships between GLP1R polymorphisms and osteoporosis susceptibility and bone.

  2. Effect of the calcitonin gene-related peptide (CGRP) receptor antagonist telcagepant in human cranial arteries

    NARCIS (Netherlands)

    L. Edvinsson (Lars); K.Y. Chan (Kayi); S. Eftekhari; E. Nilsson (Elisabeth); R. de Vries (René); H. Säveland (Hans); C.M.F. Dirven (Clemens); A.H.J. Danser (Jan)

    2010-01-01

    textabstractIntroduction: Calcitonin gene-related peptide (CGRP) is a neuronal messenger in intracranial sensory nerves and is considered to play a significant role in migraine pathophysiology. Materials and methods: We investigated the effect of the CGRP receptor antagonist, telcagepant, on

  3. A Study of the androgen receptor gene polymorphism and the level ...

    African Journals Online (AJOL)

    Background: Androgenetic alopecia (AGA) occurs in men and women. The nature of the genetic predisposition to androgenetic alopecia is still unresolved. The aim of the work is to study the genotype of the androgen receptor gene (StuI polymorphism) and its relationship to AGA in a case control study and to determine the ...

  4. Development of gene diagnosis for diabetes and cholecystitis based on gene analysis of CCK-A receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kono, Akira [National Kyushu Cancer Center, Fukuoka (Japan)

    1999-02-01

    Base sequence analysis of CCKAR gene (a gene of A-type receptor for cholecystokinin) from OLETF rat, a model rat for insulin-independent diabetes was made based on the base sequence of wild CCKAR gene, which had been clarified in the previous year. From the pancreas of OLETF rat, DNA was extracted and transduced into {lambda}phage after fragmentation to construct the gene library of OLETF. Then, {lambda}phage DNA clone bound with labelled cDNA of CCKAR gene was analyzed and the gene structure was compared with that of the wild gene. It was demonstrated that CCKAR gene of OLETF had a deletion (6800 b.p.) ranging from the promoter region to the Exon 2, suggesting that CCKAR gene is not functional in OLETF rat. The whole sequence of this mutant gene was registered into Japan DNA Bank (D 50610). Then, F{sub 2} offspring rats were obtained through crossing OLETF (female) and F344 (male) and the time course-changes in the blood glucose level after glucose loading were compared among them. The blood glucose level after glucose loading was significantly higher in the homo-mutant F{sub 2} (CCKAR,-/-) as well as the parent OLETF rat than hetero-mutant F{sub 2} (CCKARm-/+) or the wild rat (CCKAR,+/+). This suggests that CCKAR gene might be involved in the control of blood glucose level and an alteration of the expression level or the functions of CCKAR gene might affect the blood glucose level. (M.N.)

  5. GABA{sub A} receptor beta 3 subunit gene is possibly paternally imprinted in humans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-15

    As the gene for GABA{sub A} receptor beta 3 subunit (GABRB3) is encompassed by a small molecular deletion in chromosome 15q11-q13, which is the critical region for Angelman syndrome(AS), the GABRB3 gene could be a candidate gene for AS. The abnormal phenotype of AS is manifested only when the deletion is inherited from the mother, not from the father. Therefore, a candidate gene for AS should be paternally imprinted. Although it was reported that the GABRB3 gene was expressed equally from either the maternal or paternal chromosome in mouse brain (i.e., not imprinted), it is well known that imprinting shows tissue specificity, and it remains to be determined if all genes imprinted in the mouse are also imprinted in humans. 4 refs., 1 fig.

  6. The human insulin receptor substrate-1 gene (IRS1) is localized on 2q36

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, Masaki; Matsufuji, Senya; Hayashi, Shin-ichi; Furusaka, Akihiro; Tanaka, Teruji (Jikei Univ. School of Medicine, Tokyo (Japan)); Inazawa, J.; Nakamura, Yusuke (Cancer Institute, Tokyo (Japan)); Ariyama, Takeshi (Kyoto Prefactural Univ. of Medicine (Japan)); Wands, J.R. (Harvard Medical School, Boston, MA (United States))

    1994-03-01

    The chromosomal localization of some of the genes participating in the insulin signaling pathway is known. The insulin and insulin receptor genes have been mapped to chromosomes 11 and 19, respectively. To identify the chromosomal localization of the human IRS1 gene, the fluorescence in situ hybridization technique was employed with Genomic Clone B-10. A total of 50 metaphase cells exhibiting either single or double spots of hybridization signals were examined. Among them, 32 showed the specific signals on 2q36. Therefore, the authors assigned the human IRS1 gene to 2q36. The genes for homeobox sequence (HOX4), fibronectin 1, alkaline phosphatase (intestinal), transition protein 1, villin 1, collagen (type IV), Waardenburg syndrome (type 1), alanine-glyoxylate aminotransferase, and glucagon have been localized in the vicinity of the IRS1 gene.

  7. Isoflavones enhance interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    International Nuclear Information System (INIS)

    Kojima, Hiroyuki; Takeda, Yukimasa; Muromoto, Ryuta; Takahashi, Miki; Hirao, Toru; Takeuchi, Shinji; Jetten, Anton M.; Matsuda, Tadashi

    2015-01-01

    Highlights: • Nuclear receptors, RORα and RORγ, are key regulators of Th17 cell differentiation. • Isoflavones have RORα/γ agonistic activities. • Isoflavones enhance the interaction of RORα/γ with co-activator. • These compounds enhance the expression of Il17a mRNA in mouse EL4 cells. • Dietary isoflavones can act as modulators of Il17a expression via RORα/γ. - Abstract: The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. In this study, we investigated the effects of isoflavones on RORα/γ activity and the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In doxycycline-inducible CHO stable cell lines, we found that four isoflavones, biochanin A (BA), genistein, formononetin, and daidzein, enhanced RORα- or RORγ-mediated transcriptional activity in a dose-dependent manner. In an activation assay of the Il17a promoter using Jurkat cells, these compounds enhanced the RORα- or RORγ-mediated activation of the Il17a promoter at concentrations of 1 × 10 −6 M to 1 × 10 −5 M. In mammalian two-hybrid assays, the four isoflavones enhanced the interaction between the RORα- or RORγ-ligand binding domain and the co-activator LXXLL peptide in a dose-dependent manner. In addition, these isoflavones potently enhanced Il17a mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin, but showed slight enhancement of Il17a gene expression in RORα/γ-knockdown EL4 cells. Immunoprecipitation and immunoblotting assays also revealed that BA enhanced the interaction between RORγt and SRC-1, which is a co-activator for nuclear receptors. Taken together, these results suggest that the isoflavones have the ability to enhance IL-17 gene expression by stabilizing the interactions between RORα/γ and co-activators. This also

  8. Endothelial Protein C Receptor Gene Variants and Risk of Thrombosis.

    Science.gov (United States)

    Anastasiou, Georgia; Politou, Marianna; Rallidis, Loukianos; Grouzi, Elisavet; Karakitsos, Petros; Merkouri, Efrosini; Travlou, Anthi; Gialeraki, Argyri

    2016-03-01

    Endothelial protein C receptor (EPCR) is a candidate mediator in the pathogenesis of thrombosis, as several data in the literature indicate that polymorphisms such as EPCR 4678G/C and 4600A/G are associated with either protective effect or increased risk of thrombosis, respectively. We investigated the prevalence of these polymorphisms in patients with thrombotic disorders as well as their impact on the risk of thrombosis, the age of first thrombotic episode, and recurrence. The prevalence of the rare EPCR alleles 4600G and 4678C was comparable in patients and controls. However, in a subset analysis, we observed that 4600G allele was more prevalent among patients who developed thrombosis at younger age (thrombosis. © The Author(s) 2014.

  9. Molecular analysis of the androgen-receptor gene in a family with receptor-positive partial androgen insensitivity: an unusual type of intronic mutation

    NARCIS (Netherlands)

    H.T. Brüggenwirth (Hennie); A.L.M. Boehmer (Annemie); S. Ramnarain; M.C. Verleun-Mooijman; D.P.E. Satijn (David); J. Trapman (Jan); J.A. Grootegoed (Anton); A.O. Brinkmann (Albert)

    1997-01-01

    textabstractIn the coding part and the intron-exon boundaries of the androgen-receptor gene of a patient with partial androgen insensitivity, no mutation was found. The androgen receptor of this patient displayed normal ligand-binding parameters and migrated as a

  10. Mutational analysis of the extracellular Ca{sup 2+}-sensing receptor gene in human parathyroid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Yoshitaka; Arnold, A. [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Pollak, M.R.; Brown, E.M. [Brigham and Women`s Hospital, Boston, MA (United States)

    1995-10-01

    Despite recent progress, such as the identification of PRAD1/cyclin D1 as a parathyroid oncogene, it is likely that many genes involved in the molecular pathogenesis of parathyroid tumors remain unknown. Individuals heterozygous for inherited mutations in the extracellular Ca{sup 2+}-sensing receptor gene that reduce its biological activity exhibit a disorder termed familial hypocalciuric hypercalcemia or familial benign hypercalcemia, which is characterized by reduced responsiveness of parathyroid and kidney to calcium and by PTH-dependent hypercalcemia. Those who are homozygous for such mutations present with neonatal severe hyperparathyroidism and have marked parathroid hypercellularity. Thus, the Ca{sup 2+}-sensing receptor gene is a candidate parathyroid tumor suppressor gene, with inactivating mutations plausibly explaining set-point abnormalities in the regulation of both parathyroid cellular proliferation and PTH secretion by extracellular Ca{sup 2+} similar to those seen in hyperparathyroidism. Using a ribonuclease A protection assay that has detected multiple mutations in the Ca{sup 2+}-sensing receptor gene in familial hypocalciuric hypercalcemia and covers more than 90% of its coding region, we sought somatic mutations in this gene in a total of 44 human parathyroid tumors (23 adenomas, 4 carcinomas, 5 primary hyperplasias, and 12 secondary hyperplasias). No such mutations were detected in these 44 tumors. Thus, our studies suggest that somatic mutation of the Ca{sup 2+}-sensing receptor gene does not commonly contribute to the pathogenesis of sporadic parathyroid tumors. As such, PTH set-point dysfunction in parathroid tumors may well be secondary to other clonal proliferative defects and/or mutations in other components of the extracellular Ca{sup 2+}-sensing pathway. 29 refs., 2 figs.

  11. Calcitonin gene-related peptide (CGRP receptors are important to maintain cerebrovascular reactivity in chronic hypertension.

    Directory of Open Access Journals (Sweden)

    Zhenghui Wang

    Full Text Available Cerebral blood flow autoregulation (CA shifts to higher blood pressures in chronic hypertensive patients, which increases their risk for brain damage. Although cerebral vascular smooth muscle cells express the potent vasodilatatory peptides calcitonin gene-related peptide (CGRP and adrenomedullin (AM and their receptors (calcitonin receptor-like receptor (Calclr, receptor-modifying proteins (RAMP 1 and 2, their contribution to CA during chronic hypertension is poorly understood. Here we report that chronic (10 weeks hypertensive (one-kidney-one-clip-method mice overexpressing the Calclr in smooth muscle cells (CLR-tg, which increases the natural sensitivity of the brain vasculature to CGRP and AM show significantly better blood pressure drop-induced cerebrovascular reactivity than wt controls. Compared to sham mice, this was paralleled by increased cerebral CGRP-binding sites (receptor autoradiography, significantly in CLR-tg but not wt mice. AM-binding sites remained unchanged. Whereas hypertension did not alter RAMP-1 expression (droplet digital (dd PCR in either mouse line, RAMP-2 expression dropped significantly in both mouse lines by about 65%. Moreover, in wt only Calclr expression was reduced by about 70% parallel to an increase of smooth muscle actin (Acta2 expression. Thus, chronic hypertension induces a stoichiometric shift between CGRP and AM receptors in favor of the CGRP receptor. However, the parallel reduction of Calclr expression observed in wt mice but not CLR-tg mice appears to be a key mechanism in chronic hypertension impairing cerebrovascular reactivity.

  12. SELF ADMINISTRATION OF OXYCODONE BY ADOLESCENT AND ADULT MICE AFFECTS STRIATAL NEUROTRANSMITTER RECEPTOR GENE EXPRESSION

    Science.gov (United States)

    Mayer-Blackwell, B.; Schlussman, S. D.; Butelman, E. R.; Ho, A.; Ott, J.; Kreek, M. J.; Zhang, Y.

    2014-01-01

    Illicit use of prescription opioid analgesics (e.g., oxycodone) in adolescence is a pressing public health issue. Our goal was to determine whether oxycodone self administration differentially affects striatal neurotransmitter receptor gene expression in the dorsal striatum of adolescent compared to adult C57BL/6J mice. Groups of adolescent mice (4 weeks old, n= 12) and of adult mice (11 weeks old, n= 11) underwent surgery during which a catheter was implanted into their jugular veins. After recovering from surgery, mice self administered oxycodone (0.25 mg/kg/infusion) 2 h/day for 14 consecutive days or served as yoked saline controls. Mice were sacrificed within 1 h after the last self-administration session and the dorsal striatum was isolated for mRNA analysis. Gene expression was analyzed with real time PCR using a commercially available neurotransmitter receptor PCR array containing 84 genes. We found that adolescent mice self administered less oxycodone than adult mice over the 14 days. Monoamine oxidase A (Maoa) and neuropeptide Y receptor 5 mRNA levels were lower in adolescent mice than in adult mice without oxycodone exposure. Oxycodone self administration increased Maoa mRNA levels compared to controls in both age groups. There was a positive correlation of the amount of oxycodone self administered in the last session or across 14 sessions with Maoa mRNA levels. Gastrin-releasing peptide receptor mRNA showed a significant Drug × Age interaction, with point-wise significance. More genes in the dorsal striatum of adolescents (19) changed in response to oxycodone self administration compared to controls than in adult (4) mice. Overall, this study demonstrates that repeated oxycodone self administration alters neurotransmitter receptors gene expression in the dorsal striatum of adolescent and adult mice. PMID:24220688

  13. Effects of prenatal and postnatal depression, and maternal stroking, at the glucocorticoid receptor gene.

    Science.gov (United States)

    Murgatroyd, C; Quinn, J P; Sharp, H M; Pickles, A; Hill, J

    2015-05-05

    In animal models, prenatal and postnatal stress is associated with elevated hypothalamic-pituitary axis (HPA) reactivity mediated via altered glucocorticoid receptor (GR) gene expression. Postnatal tactile stimulation is associated with reduced HPA reactivity mediated via increased GR gene expression. In this first study in humans to examine the joint effects of prenatal and postnatal environmental exposures, we report that GR gene (NR3C1) 1-F promoter methylation in infants is elevated in the presence of increased maternal postnatal depression following low prenatal depression, and that this effect is reversed by self-reported stroking of the infants by their mothers over the first weeks of life.

  14. [Polymorphism of vitamin D receptor gene Fok I in Mongolian population of China].

    Science.gov (United States)

    Xing, Shao-ji; Zhou, Li-she; Xu, Xiu-ju

    2006-04-01

    To investigate the polymorphism distribution of vitamin D receptor (VDR) gene Fok I in Mongolian population of China. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used to analyze three genotypes FF, Ff and ff in the start codon of VDR gene (Fok I) in unrelated normal healthy Mongolian individuals of China. In the population, we obtained the allelic frequencies of 57% and 43% for (F) and (f) allele and the percentage of genotypes FF, Ff and ff to be 31%, 52%, and 17% respectively. The polymorphism frequency and distribution of this VDR gene Fok I in Mongolian population of China exhibit its own characteristics.

  15. Variation in the oxytocin receptor gene (OXTR) is associated with differences in moral judgment.

    Science.gov (United States)

    Bernhard, Regan M; Chaponis, Jonathan; Siburian, Richie; Gallagher, Patience; Ransohoff, Katherine; Wikler, Daniel; Perlis, Roy H; Greene, Joshua D

    2016-12-01

    Moral judgments are produced through the coordinated interaction of multiple neural systems, each of which relies on a characteristic set of neurotransmitters. Genes that produce or regulate these neurotransmitters may have distinctive influences on moral judgment. Two studies examined potential genetic influences on moral judgment using dilemmas that reliably elicit competing automatic and controlled responses, generated by dissociable neural systems. Study 1 (N = 228) examined 49 common variants (SNPs) within 10 candidate genes and identified a nominal association between a polymorphism (rs237889) of the oxytocin receptor gene (OXTR) and variation in deontological vs utilitarian moral judgment (that is, judgments favoring individual rights vs the greater good). An association was likewise observed for rs1042615 of the arginine vasopressin receptor gene (AVPR1A). Study 2 (N = 322) aimed to replicate these findings using the aforementioned dilemmas as well as a new set of structurally similar medical dilemmas. Study 2 failed to replicate the association with AVPR1A, but replicated the OXTR finding using both the original and new dilemmas. Together, these findings suggest that moral judgment is influenced by variation in the oxytocin receptor gene and, more generally, that single genetic polymorphisms can have a detectable effect on complex decision processes. © The Author (2016). Published by Oxford University Press.

  16. A Matter of Taste: Lineage-Specific Loss of Function of Taste Receptor Genes in Vertebrates

    Directory of Open Access Journals (Sweden)

    Marco Antinucci

    2017-11-01

    Full Text Available Vertebrates can perceive at least five different taste qualities, each of which is thought to have a specific role in the evolution of different species. The avoidance of potentially poisonous foods, which are generally bitter or sour tasting, and the search for more nutritious ones, those with high-fat and high-sugar content, are two of the most well-known examples. The study of taste genes encoding receptors that recognize ligands triggering taste sensations has helped to reconstruct several evolutionary adaptations to dietary changes. In addition, an increasing number of studies have focused on pseudogenes, genomic DNA sequences that have traditionally been considered defunct relatives of functional genes mostly because of the presence of deleterious mutations interrupting their open reading frames. The study of taste receptor pseudogenes has helped to shed light on how the evolutionary history of taste in vertebrates has been the result of a succession of gene gain and loss processes. This dynamic role in evolution has been explained by the “less-is-more” hypothesis, suggesting gene loss as a mechanism of evolutionary change in response to a dietary shift. This mini-review aims at depicting the major lineage-specific loss of function of taste receptor genes in vertebrates, stressing their evolutionary importance and recapitulating signatures of natural selection and their correlations with food habits.

  17. Human dopamine D4 receptor gene: frequent occurrence of a null allele and observation of homozygosity.

    Science.gov (United States)

    Nöthen, M M; Cichon, S; Hemmer, S; Hebebrand, J; Remschmidt, H; Lehmkuhl, G; Poustka, F; Schmidt, M; Catalano, M; Fimmers, R

    1994-12-01

    We report a null mutation in the first exon of the human dopamine D4 receptor (DRD4) gene. The mutation is predicted to result in a truncated non-functional protein and is the first natural nonsense mutation found in a human dopamine receptor gene. It occurs with a frequency of about 2% in the general population. The distribution of the mutation was found to be similar in healthy controls and patients suffering from psychiatric diseases which included schizophrenia, bipolar affective disorder and Tourette's syndrome, indicating that heterozygosity for this mutation in the DRD4 gene is not causally related to major psychiatric diseases. We also identified an adult male who is homozygous for this mutation. He shows no symptoms of major psychiatric illness, but he displays somatic ailments including acousticous neurinoma, obesity and some disturbances of the autonomic nervous system. Some of these symptoms might be related to the absence of functional DRD4 protein.

  18. Distinct, genome-wide, gene-specific selectivity patterns of four glucocorticoid receptor coregulators.

    Science.gov (United States)

    Wu, Dai-Ying; Ou, Chen-Yin; Chodankar, Rajas; Siegmund, Kimberly D; Stallcup, Michael R

    2014-01-01

    Glucocorticoids are a class of steroid hormones that bind to and activate the glucocorticoid receptor (GR), which then positively or negatively regulates transcription of many genes that govern multiple important physiological pathways such as inflammation and metabolism of glucose, fat and bone. The remodeling of chromatin and regulated assembly or disassembly of active transcription complexes by GR and other DNA-binding transcription factors is mediated and modulated by several hundred transcriptional coregulator proteins. Previous studies focusing on single coregulators demonstrated that each coregulator is required for regulation of only a subset of all the genes regulated by a steroid hormone. We hypothesized that the gene-specific patterns of coregulators may correspond to specific physiological pathways such that different coregulators modulate the pathway-specificity of hormone action, thereby providing a mechanism for fine tuning of the hormone response. We tested this by direct comparison of multiple coregulators, using siRNA to deplete the products of four steroid hormone receptor coregulator genes (CCAR1, CCAR2, CALCOCO1 and ZNF282). Global analysis of glucocorticoid-regulated gene expression after siRNA mediated depletion of coregulators confirmed that each coregulator acted in a selective and gene-specific manner and demonstrated both positive and negative effects on glucocorticoid-regulated expression of different genes. We identified several classes of hormone-regulated genes based on the effects of coregulator depletion. Each coregulator supported hormonal regulation of some genes and opposed hormonal regulation of other genes (coregulator-modulated genes), blocked hormonal regulation of a second class of genes (coregulator-blocked genes), and had no effect on hormonal regulation of a third gene class (coregulator-independent genes). In spite of previously demonstrated physical and functional interactions among these four coregulators, the majority

  19. Polymorphisms of the human IL-1 receptor antagonist gene and forearm bone mineral density in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Jivka T Ivanova

    2012-01-01

    Full Text Available Context: Studies on the human interleukin 1 receptor antagonist (IL-1RA gene polymorphism have provided conflicting data regarding the bone mass and quality. Aim and Design: The objective of this case-control study was to investigate the association between the forearm bone mineral density (BMD and the IL1RA gene polymorphisms. Materials and Methods: A total of 400 postmenopausal Bulgarian women participated in this study. BMD was measured at the forearm by X-ray absorptiometry on a DTX-100 device (Osteometer Meditech, USA. A PCR product was isolated. The alleles were scored according to their length: A1 - 410 bp - 4 repeats; A2 - 240 bp - 2 repeats; A3 - 500 bp - 5 repeats; A4 - 325 bp - 3 repeats; A5 - 595 bp - 6 repeats. All analyses were evaluated for statistical significance (χ2 -test and T-test. Results: Four alleles were observed - A1, A2, A3, and A4. The A1A1 genotype was more common in cases with low BMD than in controls with normal BMD (95% vs. 90%, χ2 P < 0.01. The A2A2 genotype was equally distributed among cases and controls (both 5%. The other two genotypes (A3A3 and A4A4 as well as A1A3 were present only in controls with normal BMD. The A2A2 genotype was associated with higher BMD and the A1A1 - with lower BMD at both forearm sites. The odds ratio for low BMD in the presence of the A1A1 genotype was 2.11. The etiological factor reflecting the association between the polymorphism and the disease was 0.50. In our study sample the IL1RA genetic polymorphisms were associated with the forearm BMD. Conclusion: This genetic polymorphism may become a useful genetic marker for the study of osteoporosis.

  20. Progesterone Receptor Subcellular Localization and Gene Expression Profile in Human Astrocytoma Cells Are Modified by Progesterone

    Directory of Open Access Journals (Sweden)

    Aliesha González-Arenas

    2014-11-01

    Full Text Available Intracellular progesterone receptor (PR has been identified in human astrocytomas, the most common and aggressive primary brain tumors in humans. It has been reported that PR cell distribution affects their transcriptional activity and turnover. In this work we studied by immunofluorescence the effects of estradiol and progesterone on the subcellular localization of PR in a grade III human astrocytoma derived cell line (U373. We observed that total PR was mainly distributed in the cytoplasm without hormonal treatment. Estradiol (10 nM increased PR presence in the cytoplasm of U373 cells, whereas progesterone (10 nM and RU486 (PR antagonist, 1 μM blocked this effect. To investigate the role of PR activity in the regulation of gene expression pattern of U373 cells, we evaluated by microarray analysis the profile of genes regulated by progesterone, RU486, or both steroids. We found different genes regulated by steroid treatments that encode for proteins involved in metabolism, transport, cell cycle, proliferation, metastasis, apoptosis, processing of nucleic acids and proteins, adhesion, pathogenesis, immune response, cytoskeleton, and membrane receptors. We determined that 30 genes were regulated by progesterone, 41 genes by RU486 alone, and 13 genes by the cotreatment of progesterone+RU486, suggesting that there are many genes regulated by intracellular PR or through other signaling pathways modulated by progesterone. All these data suggest that PR distribution and activity should modify astrocytomas growth.

  1. A novel nuclear FGF Receptor-1 partnership with retinoid and Nur receptors during developmental gene programming of embryonic stem cells.

    Science.gov (United States)

    Lee, Yu-Wei; Terranova, Christopher; Birkaya, Barbara; Narla, Sridhar; Kehoe, Daniel; Parikh, Abhirath; Dong, Shuo; Ratzka, Andreas; Brinkmann, Hella; Aletta, John M; Tzanakakis, Emmanuel S; Stachowiak, Ewa K; Claus, Peter; Stachowiak, Michal K

    2012-09-01

    FGF Receptor-1 (FGFR1), a membrane-targeted protein, is also involved in independent direct nuclear signaling. We show that nuclear accumulation of FGFR1 is a common response to retinoic acid (RA) in pluripotent embryonic stem cells (ESC) and neural progenitors and is both necessary and sufficient for neuronal-like differentiation and accompanying neuritic outgrowth. Dominant negative nuclear FGFR1, which lacks the tyrosine kinase domain, prevents RA-induced differentiation while full-length nuclear FGFR1 elicits differentiation in the absence of RA. Immunoprecipitation and GST assays demonstrate that FGFR1 interacts with RXR, RAR and their Nur77 and Nurr1 partners. Conditions that promote these interactions decrease the mobility of nuclear FGFR1 and RXR in live cells. RXR and FGFR1 co-associate with 5'-Fluorouridine-labeled transcription sites and with RA Responsive Elements (RARE). RA activation of neuronal (tyrosine hydroxylase) and neurogenic (fgf-2 and fgfr1) genes is accompanied by increased FGFR1, Nur, and histone H3.3 binding to their regulatory sequences. Reporter-gene assays show synergistic activations of RARE, NBRE, and NurRE by FGFR1, RAR/RXR, and Nurs. As shown for mESC differentiation, FGFR1 mediates gene activation by RA and augments transcription in the absence of RA. Cooperation of FGFR1 with RXR/RAR and Nurs at targeted genomic sequences offers a new mechanism in developmental gene regulation. Copyright © 2012 Wiley Periodicals, Inc.

  2. Largest vertebrate vomeronasal type 1 receptor gene repertoire in the semiaquatic platypus.

    Science.gov (United States)

    Grus, Wendy E; Shi, Peng; Zhang, Jianzhi

    2007-10-01

    Vertebrate vomeronasal chemoreception plays important roles in many aspects of an organism's daily life, such as mating, territoriality, and foraging. Vomeronasal type 1 receptors (V1Rs) and vomeronasal type 2 receptors (V2Rs), 2 large families of G protein-coupled receptors, serve as vomeronasal receptors to bind to various pheromones and odorants. Contrary to the previous observations of reduced olfaction in aquatic and semiaquatic mammals, we here report the surprising finding that the platypus, a semiaquatic monotreme, has the largest V1R repertoire and nearly largest combined repertoire of V1Rs and V2Rs of all vertebrates surveyed, with 270 intact genes and 579 pseudogenes in the V1R family and 15 intact genes, 55 potentially intact genes, and 57 pseudogenes in the V2R family. Phylogenetic analysis shows a remarkable expansion of the V1R repertoire and a moderate expansion of the V2R repertoire in platypus since the separation of monotremes from placentals and marsupials. Our results challenge the view that olfaction is unimportant to aquatic mammals and call for further study into the role of vomeronasal reception in platypus physiology and behavior.

  3. Molecular cloning and characterization of a Toll receptor gene from Macrobrachium rosenbergii.

    Science.gov (United States)

    Srisuk, Chutima; Longyant, Siwaporn; Senapin, Saengchan; Sithigorngul, Paisarn; Chaivisuthangkura, Parin

    2014-02-01

    Toll receptors are cell surface molecules acting as pattern recognition receptors (PRRs) that have been implicated in the signaling pathway of innate immune responses. In this study, the full-length cDNA of a Toll receptor gene of Macrobrachium rosenbergii, designated MrToll, was successfully isolated using designed degenerate primers and the rapid amplification of cDNA ends (RACE). The MrToll gene sequence contained an open reading frame (ORF) of 2799 nucleotides encoding a protein of 932 amino acid residues. The protein contained distinct structural motifs of the Toll-like receptor (TLR) family, including an extracellular domain containing 15 leucine-rich repeats (LRRs), a transmembrane segment of 23 amino acids, and a cytoplasmic Toll/interleukin-1R (TIR) domain of 139 residues. Phylogenetic analysis revealed that MrToll and Toll receptor of Marsupenaeus japonicus (MjToll) evolved closely. However, the MrToll ORF demonstrated only 48-49% identity with shrimp Toll1, suggesting that MrToll isolated from a palaemonid shrimp might belong to a novel class of Toll receptors in shrimp. The transcripts of the MrToll gene were constitutively expressed in various tissues, with high levels in hemocytes, the stomach and muscle. A reverse transcriptase PCR assay demonstrated that the expression patterns of MrToll were distinctly modulated after Aeromonas caviae stimulation, with significant enhancement at 3-12 h post-challenge and a decline to basal levels at 24 h post-challenge. In addition, when MrToll-silenced shrimp were challenged with A. caviae, there was a significant increase in mortality and bacterial CFU counts. These results suggest that MrToll might be involved in host innate defense, especially against the pathogen A. caviae. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Gene expression of muscarinic, tachykinin and purinergic receptors in porcine bladder: comparison with cultured cells

    Directory of Open Access Journals (Sweden)

    Forough eBahadory

    2013-11-01

    Full Text Available Urothelial cells, myofibroblasts, and smooth muscle cells are important cell types contributing to bladder function. Multiple receptors including muscarinic (M3/M5, tachykinin (NK1/NK2 and purinergic (P2X1/P2Y6 receptors are involved in bladder motor and sensory actions. Using female pig bladder, our aim was to differentiate between various cell types in bladder by genetic markers. We compared the molecular expression pattern between the fresh tissue layers and their cultured cell counterparts. We also examined responses to agonists for these receptors in cultured cells. Urothelial, suburothelial (myofibroblasts and smooth muscle cells isolated from pig bladder were cultured (10-14 days and identified by marker antibodies. Gene (mRNA expression level was demonstrated by real-time PCR. The receptor expression pattern was very similar between suburothelium and detrusor, and higher than urothelium. The gene expression of all receptors decreased in culture compared with the fresh tissue, although the reduction in cultured urothelial cells appeared less significant compared to suburothelial and detrusor cells. Cultured myofibroblasts and detrusor cells did not contract in response to the agonists acetylcholine, neurokinin A and β,γ-MeATP, up to concentrations of 0.1 and 1 mM. The significant reduction of M3, NK2 and P2X1 receptors under culture conditions may be associated with the unresponsiveness of cultured suburothelial and detrusor cells to their respective agonists. These results suggest that under culture conditions, bladder cells lose the receptors that are involved in contraction, as this function is no longer required. The study provides further evidence that cultured cells do not necessarily mimic the actions exerted by intact tissues.

  5. A missense mutation in the Ca-sensing receptor gene causes familial autosomal dominant hypoparathyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Y.M.; Finegold, D.N.; Armitage, M.M. [Univ. of Pittsburgh, PA (United States)] [and others

    1994-09-01

    A large family was identified in which hypoparathyroidism was observed to segregate as an autosomal dominant trait in 3 generations. Linkage analysis using short tandem repeat polymorphisms linked the disease phenotype to chromosomal region 3q13. This region contains a newly identified Ca-sensing receptor (PCAR1) gene. This receptor regulates the secretion of parathyroid hormone from parathyroid cells in response to extracellular ionized Ca concentration ([Ca{sup +2}]). PCR-based single stranded conformational analysis of exonic sequences of the PCAR1 gene revealed an abnormal conformer in exon 3 in affected individuals. Direct sequencing of the amplification product from an affected and an unaffected family member showed an A {yields} G transition at nucleotide 770 of the PCAR1 gene [numbering based on the bovine sequence (Genbank accession number S67307)]. This substitution created a Msp1 restriction site which cosegregated with hypoparathyroidism in this family. This substitution was not observed in unaffected family members, unrelated spouses, or unrelated population controls. This substitution is predicted to result in the replacement of a glutamine residue at amino acid 246 by an arginine residue. The Ca-sensing receptor appears to be a member of the family of seven membrane spanning G-protein linked receptors. The extracellular location of this amino acid substitution appears to produce a gain of function mutation increasing the receptor sensitivity to [Ca{sup +2}] and decreasing the calcium {open_quotes}set point{close_quotes}. This is in contrast to the loss of function mutations observed in the PCAR1 gene in pedigrees with familial hypercalcemic hypocalciuria.

  6. Concerted gene expression of hippocampal steroid receptors during spatial learning in male Wistar rats: a correlation analysis

    Directory of Open Access Journals (Sweden)

    Gert eLubec

    2016-05-01

    Full Text Available Adrenal and gonadal steroid receptor activities are significantly involved and interact in the regulation of learning, memory and stress. Thus, a coordinated expression of steroid receptor genes during a learning task can be expected. Although coexpression of steroid receptors in response to behavioral tasks has been reported the correlative connection is unclear. According to the inverted U-shape model of the impact of stress upon learning and memory we hypothesized that glucocorticoid receptor expression should be correlated to corticosterone levels in a linear or higher order manner. Other cognition modulating steroid receptors like estrogen receptors should be correlated to glucocorticoid receptors in a quadratic manner, which describes a parabola and thus a U-shaped connection. Therefore, we performed a correlational meta-analyis of data of a previous study (Meyer and Korz, 2013a of steroid receptor gene expressions during spatial learning, which provides a sufficient data basis in order to perform such correlational connections. In that study male rats of different ages were trained in a spatial holeboard or remained untrained and the hippocampal gene expression of different steroid receptors as well as serum corticosterone levels were measured. Expressions of mineralocorticoid (MR and glucocorticoid (GR receptors were positively and linearly correlated with blood serum corticosterone levels in spatially trained but not in untrained animals. Training induced a cubic (best fit relationship between mRNA levels of estrogen receptor α (ERα and androgen receptor (AR with MR mRNA. GR gene expression was linearly correlated with MR expression under both conditions. ERα m RNA levels were negatively and linearily and MR and GR gene expressions were cubicely correlated with reference memory errors (RME. Due to only three age classes correlations with age could not be performed. The findings support the U-shape theory of steroid receptor

  7. Stat3 activates the receptor tyrosine kinase like orphan receptor-1 gene in chronic lymphocytic leukemia cells.

    Directory of Open Access Journals (Sweden)

    Ping Li

    Full Text Available BACKGROUND: The receptor tyrosine kinase like orphan receptor (ROR-1 gene is overexpressed in chronic lymphocytic leukemia (CLL. Because Stat3 is constitutively activated in CLL and sequence analysis revealed that the ROR1 promoter harbors gamma-interferon activation sequence-like elements typically activated by Stat3, we hypothesized that Stat3 activates ROR1. METHODOLOGY/PRINCIPAL FINDINGS: Because IL-6 induced Stat3 phosphorylation and upregulated Ror1 protein levels in MM1 cells, we used these cells as a model. We transfected MM1 cells with truncated ROR1 promoter luciferase reporter constructs and found that IL-6 induced luciferase activity of ROR1-195 and upstream constructs. Co-transfection with Stat3 siRNA reduced the IL-6-induced luciferase activity, suggesting that IL-6 induced luciferase activity by activating Stat3. EMSA and the ChIP assay confirmed that Stat3 binds ROR1, and EMSA studies identified two Stat3 binding sites. In CLL cells, EMSA and ChIP studies determined that phosphorylated Stat3 bound to the ROR1 promoter at those two ROR1 promoter sites, and ChIP analysis showed that Stat3 co-immunoprecipitated DNA of STAT3, ROR1, and several Stat3-regulated genes. Finally, like STAT3-siRNA in MM1 cells, STAT3-shRNA downregulated STAT3, ROR1, and STAT3-regulated genes and Stat3 and Ror1 protein levels in CLL cells. CONCLUSION/SIGNIFICANCE: Our data suggest that constitutively activated Stat3 binds to the ROR1 promoter and activates ROR1 in CLL cells.

  8. Association study between schizophrenia and dopamine D3 receptor gene polymorphism

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Toshihisa; Takahashi, Makoto; Maeda, Masaya [Niigata Univ. (Japan)] [and others

    1996-07-26

    Crocq et al. reported the existence of an association between schizophrenia and homozygosity of a BalI polymorphism in the first exon of the dopamine D3 receptor (DRD3) gene. In response to this report, further studies were conducted; however, these studies yielded conflicting results. In the present study, we examined 100 unrelated Japanese schizophrenics and 100 normal controls to determine any association between this polymorphism and schizophrenia. Results suggest that neither allele nor genotype frequencies of the DRD3 gene in the schizophrenics as a whole are significantly different from those of the controls. Further, we found no association between any allele or genotype and any clinical subtype based on family history of schizophrenia and age-at-onset. A significantly high frequency of homozygosity of a dopamine D3 receptor gene allele was not observed in the schizophrenics as a whole, or in clinical subtypes. Our results suggest that an association between the dopamine D3 receptor gene and schizophrenia is unlikely to exist. 26 refs., 1 tab.

  9. Oxytocin receptor gene polymorphisms are associated with human directed social behavior in dogs (Canis familiaris).

    Science.gov (United States)

    Kis, Anna; Bence, Melinda; Lakatos, Gabriella; Pergel, Enikő; Turcsán, Borbála; Pluijmakers, Jolanda; Vas, Judit; Elek, Zsuzsanna; Brúder, Ildikó; Földi, Levente; Sasvári-Székely, Mária; Miklósi, Adám; Rónai, Zsolt; Kubinyi, Enikő

    2014-01-01

    The oxytocin system has a crucial role in human sociality; several results prove that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans. Dogs' parallel evolution with humans and their adaptation to the human environment has made them a useful species to model human social interactions. Previous research indicates that dogs are eligible models for behavioral genetic research, as well. Based on these previous findings, our research investigated associations between human directed social behaviors and two newly described (-212AG, 19131AG) and one known (rs8679684) single nucleotide polymorphisms (SNPs) in the regulatory regions (5' and 3' UTR) of the oxytocin receptor gene in German Shepherd (N = 104) and Border Collie (N = 103) dogs. Dogs' behavior traits have been estimated in a newly developed test series consisting of five episodes: Greeting by a stranger, Separation from the owner, Problem solving, Threatening approach, Hiding of the owner. Buccal samples were collected and DNA was isolated using standard protocols. SNPs in the 3' and 5' UTR regions were analyzed by polymerase chain reaction based techniques followed by subsequent electrophoresis analysis. The gene-behavior association analysis suggests that oxytocin receptor gene polymorphisms have an impact in both breeds on (i) proximity seeking towards an unfamiliar person, as well as their owner, and on (ii) how friendly dogs behave towards strangers, although the mediating molecular regulatory mechanisms are yet unknown. Based on these results, we conclude that similarly to humans, the social behavior of dogs towards humans is influenced by the oxytocin system.

  10. Gene expression changes in GABA(A receptors and cognition following chronic ketamine administration in mice.

    Directory of Open Access Journals (Sweden)

    Sijie Tan

    Full Text Available Ketamine is a well-known anesthetic agent and a drug of abuse. Despite its widespread use and abuse, little is known about its long-term effects on the central nervous system. The present study was designed to evaluate the effect of long-term (1- and 3-month ketamine administration on learning and memory and associated gene expression levels in the brain. The Morris water maze was used to assess spatial memory and gene expression changes were assayed using Affymetrix Genechips; a focus on the expression of GABA(A receptors that mediate a tonic inhibition in the brain, was confirmed by quantitative real-time PCR and western blot. Compared with saline controls, there was a decline in learning and memory performance in the ketamine-treated mice. Genechip results showed that 110 genes were up-regulated and 136 genes were down-regulated. An ontology analysis revealed the most significant effects of ketamine were on GABA(A receptors. In particular, there was a significant up-regulation of both mRNA and protein levels of the alpha 5 subunit (Gabra5 of the GABA(A receptors in the prefrontal cortex. In conclusion, chronic exposure to ketamine impairs working memory in mice, which may be explained at least partly by up-regulation of Gabra5 subunits in the prefrontal cortex.

  11. A novel polymorphism in the coding region of the vasopressin type 2 receptor gene

    Directory of Open Access Journals (Sweden)

    J.L. Rocha

    1997-04-01

    Full Text Available Nephrogenic diabetes insipidus (NDI is a rare disease characterized by renal inability to respond properly to arginine vasopressin due to mutations in the vasopressin type 2 receptor (V2(R gene in affected kindreds. In most kindreds thus far reported, the mode of inheritance follows an X chromosome-linked recessive pattern although autosomal-dominant and autosomal-recessive modes of inheritance have also been described. Studies demonstrating mutations in the V2(R gene in affected kindreds that modify the receptor structure, resulting in a dys- or nonfunctional receptor have been described, but phenotypically indistinguishable NDI patients with a structurally normal V2(R gene have also been reported. In the present study, we analyzed exon 3 of the V2(R gene in 20 unrelated individuals by direct sequencing. A C®T alteration in the third position of codon 331 (AGC®AGT, which did not alter the encoded amino acid, was found in nine individuals, including two unrelated patients with NDI. Taken together, these observations emphasize the molecular heterogeneity of a phenotypically homogeneous syndrome

  12. Polymorphisms at the Ligand Binding Site of the Vitamin D Receptor Gene and Osteomalacia

    Directory of Open Access Journals (Sweden)

    Duygu Gezen Ak

    2005-01-01

    Full Text Available Vitamin D receptor (VDR gene polymorphisms have been suggested as possible determinants of bone mineral density (BMD and calcium metabolism. In this study, our aim was to determine whether there is an association between VDR gene polymorphism and osteomalacia or not. We determined ApaI and TaqI polymorphisms in the vitamin D receptor gene in 24 patients with osteomalacia and 25 age-matched healthy controls. Serum calcium, phosphorus, ALP, PTH, 25OHD levels were also examined. We used PCR and RFLP methods to test for an association between osteomalacia and polymorphisms within, intron 8 and exon 9 of the VDR gene. When the control and patients were compared for their ApaI and TaqI genotypes there was no relationship between VDR gene allelic polymorphisms and osteomalacia. Whereas a nearly significant difference for A allele was found in the allellic distribution of the patients (p = 0.08. Also no association between biochemical data and VDR gene polymorphisms was observed.

  13. Transcriptional activity of TGFβ1 and its receptors genes in thyroid gland.

    Science.gov (United States)

    Kajdaniuk, Dariusz; Marek, Anna; Marek, Bogdan; Mazurek, Urszula; Fila-Daniłow, Anna; Foltyn, Wanda; Morawiec-Szymonik, Elżbieta; Siemińśka, Lucyna; Nowak, Mariusz; Głogowska-Szeląg, Joanna; Niedziołka-Zielonka, Danuta; Seemann, Michał; Kos-Kudła, Beata

    2016-01-01

    Determination of gene-candidates' profile expression responsible for fibrosis, immunosuppression, angiogenesis, and neoplasia processes in the pathogenesis of thyroid gland disease. Sixty-three patients underwent thyroidectomy: 27 with non-toxic nodular goitre (NG), 22 with toxic nodular goitre (TNG), six with papillary cancer (PTC), and eight with Graves' disease (GD). In thyroid tissues, transcriptional activity of TGFbeta1 and its receptors TGFbetaRI, TGFbetaRII, and TGFbetaRIII genes were assessed using RT-qPCR (Reverse Transcriptase Quantitative Polymerase Chain Reaction). Molecular analysis was performed in tissues derived from GD and from the tumour centre (PTC, NG, TNG) and from peripheral parts of the removed lobe without histopathological lesions (tissue control). Control tissue for analysis performed in GD was an unchanged tissue derived from peripheral parts of the removed lobe of patients surgically treated for a single benign tumour. Strict regulation observed among transcriptional activity of TGFb1 and their receptor TGFbetaRI-III genes in control tissues is disturbed in all pathological tissues - it is completely disturbed in PTC and GD, and partially in NG and TNG. Additionally, higher transcriptional activity of TGFb1 gene in PTC in comparison with benign tissues (NG, GD) and lower expression of mRNA TGFbRII (than in TNG, GD) and mRNA TGFbetaRIII than in all studied benign tissues (NG, TNG, GD) suggests a pathogenetic importance of this cytokine and its receptors in PTC development. In GD tissue, higher transcriptional activity of TGFbetaRII and TGFbetaRIII genes as compared to other pathological tissues was observed, indicating a participation of the receptors in the pathomechanism of autoimmune thyroid disease (AITD). TGFbeta1 blood concentrations do not reflect pathological processes taking place in thyroid gland. (Endokrynol Pol 2016; 67 (4): 375-382).

  14. Genomic architecture of MHC-linked odorant receptor gene repertoires among 16 vertebrate species.

    Science.gov (United States)

    Santos, Pablo Sandro Carvalho; Kellermann, Thomas; Uchanska-Ziegler, Barbara; Ziegler, Andreas

    2010-09-01

    The recent sequencing and assembly of the genomes of different organisms have shown that almost all vertebrates studied in detail so far have one or more clusters of genes encoding odorant receptors (OR) in close physical linkage to the major histocompatibility complex (MHC). It has been postulated that MHC-linked OR genes could be involved in MHC-influenced mate choice, comprising both pre- as well as post-copulatory mechanisms. We have therefore carried out a systematic comparison of protein sequences of these receptors from the genomes of man, chimpanzee, gorilla, orangutan, rhesus macaque, mouse, rat, dog, cat, cow, pig, horse, elephant, opossum, frog and zebra fish (amounting to a total of 559 protein sequences) in order to identify OR families exhibiting evolutionarily conserved MHC linkage. In addition, we compared the genomic structure of this region within these 16 species, accounting for presence or absence of OR gene families, gene order, transcriptional orientation and linkage to the MHC or framework genes. The results are presented in the form of gene maps and phylogenetic analyses that reveal largely concordant repertoires of gene families, at least among tetrapods, although each of the eight taxa studied (primates, rodents, ungulates, carnivores, proboscids, marsupials, amphibians and teleosts) exhibits a typical architecture of MHC (or MHC framework loci)-linked OR genes. Furthermore, the comparison of the genomic organization of this region has implications for phylogenetic relationships between closely related taxa, especially in disputed cases such as the evolutionary history of even- and odd-toed ungulates and carnivores. Finally, the largely conserved linkage between distinct OR genes and the MHC supports the concept that particular alleles within a given haplotype function in a concerted fashion during self-/non-self-discrimination processes in reproduction.

  15. Association of variation in Fc gamma receptor 3B gene copy number with rheumatoid arthritis in Caucasian samples

    NARCIS (Netherlands)

    McKinney, Cushla; Fanciulli, Manuela; Merriman, Marilyn E.; Phipps-Green, Amanda; Alizadeh, Behrooz Z.; Koeleman, Bobby P. C.; Dalbeth, Nicola; Gow, Peter J.; Harrison, Andrew A.; Highton, John; Jones, Peter B.; Stamp, Lisa K.; Steer, Sophia; Barrera, Pilar; Coenen, Marieke J. H.; Franke, Barbara; van Riel, Piet L. C. M.; Vyse, Tim J.; Aitman, Tim J.; Radstake, Timothy R. D. J.; Merriman, Tony R.

    2010-01-01

    Objective There is increasing evidence that variation in gene copy number (CN) influences clinical phenotype. The low-affinity Fc gamma receptor 3B (FCGR3B) located in the FCGR gene cluster is a CN polymorphic gene involved in the recruitment to sites of inflammation and activation of

  16. Association of the 5-HT2A receptor gene polymorphism 102T/C with ischemic stroke

    DEFF Research Database (Denmark)

    Olesen, Ole F; Bennike, Bente; Dam, Henrik

    2006-01-01

    common polymorphisms in the 5-HT2A receptor gene. The two polymorphisms under investigation, namely the 102T/C and the -1438A/G variations of the 5-HT2A receptor gene, were examined in a case control association study involving 99 stroke patients and a comparable number of controls. Among patients...... and stroke was significant in both males and females. There was no association between stroke and the -1438A/G polymorphism. Taken together, this study indicates that the 102T/C polymorphism in the 5-HT2A receptor gene could be an independent risk factor for developing stroke....

  17. Regulation of gene expression in ovarian cancer cells by luteinizing hormone receptor expression and activation

    International Nuclear Information System (INIS)

    Cui, Juan; Miner, Brooke M; Eldredge, Joanna B; Warrenfeltz, Susanne W; Dam, Phuongan; Xu, Ying; Puett, David

    2011-01-01

    Since a substantial percentage of ovarian cancers express gonadotropin receptors and are responsive to the relatively high concentrations of pituitary gonadotropins during the postmenopausal years, it has been suggested that receptor activation may contribute to the etiology and/or progression of the neoplasm. The goal of the present study was to develop a cell model to determine the impact of luteinizing hormone (LH) receptor (LHR) expression and LH-mediated LHR activation on gene expression and thus obtain insights into the mechanism of gonadotropin action on ovarian surface epithelial (OSE) carcinoma cells. The human ovarian cancer cell line, SKOV-3, was stably transfected to express functional LHR and incubated with LH for various periods of time (0-20 hours). Transcriptomic profiling was performed on these cells to identify LHR expression/activation-dependent changes in gene expression levels and pathways by microarray and qRT-PCR analyses. Through comparative analysis on the LHR-transfected SKOV-3 cells exposed to LH, we observed the differential expression of 1,783 genes in response to LH treatment, among which five significant families were enriched, including those of growth factors, translation regulators, transporters, G-protein coupled receptors, and ligand-dependent nuclear receptors. The most highly induced early and intermediate responses were found to occupy a network impacting transcriptional regulation, cell growth, apoptosis, and multiple signaling transductions, giving indications of LH-induced apoptosis and cell growth inhibition through the significant changes in, for example, tumor necrosis factor, Jun and many others, supportive of the observed cell growth reduction in in vitro assays. However, other observations, e.g. the substantial up-regulation of the genes encoding the endothelin-1 subtype A receptor, stromal cell-derived factor 1, and insulin-like growth factor II, all of which are potential therapeutic targets, may reflect a positive

  18. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    Science.gov (United States)

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance.

  19. Association of arginine vasopressin receptor 1a gene polymorphisms with hepatorenal syndrome

    International Nuclear Information System (INIS)

    Wang, C.; Luo, X.; Ye, J.; Liu, S.; Miu, L.; Bao, J.; Wang, F.; Yu, Z.

    2017-01-01

    To assess the association of arginine vasopressin receptor 1a gene single nucleotide polymorphisms with type I hepatorenal syndrome. Methods: The case-control study was conducted at the Hangzhou City Xixi Hospital, Hangzhou, China, from January 2012 to June 2014, and comprised patients with type I hepatorenal syndrome and individuals with cirrhosis who acted as the control group. Arginine vasopressin receptor 1a gene rs113481894 locus single nucleotide polymorphisms were analysed by high-resolution melting methods. Statistical analysis was performed using SPSS 17. Results: Of the 60 participants, 28(46.7%) were in the hepatorenal syndrome group and 32(53.3%) were controls. The mean age was 42.21+-11.30years in the hepatorenal syndrome group and 43.69+-12.60 in the control group (p=0.64). Mean total bilirubin, albumin and prothrombin activity levels were 154.76+-51.58, 49.30+-24.67 and 33.42+-3.69 in the hepatorenal syndrome group compared to 181.26+-64.46, 41.78+-17.52 and 32.98+-4.81 among controls (p=0.09, p=0.18 and p=0.70). Statistically significant differences were found in the distributions of arginine vasopressin receptor 1a gene rs113481894 locus T allele between type I hepatorenal syndrome patients and the control group (odds ratio= 2.230; p= 0.040). Conclusion: T allele located at arginine vasopressin receptor 1a receptor promoter rs113481894 locus may be associated with the pathogenesis of type I hepatorenal syndrome. (author)

  20. Genetic variations in the human cannabinoid receptor gene are associated with happiness.

    Directory of Open Access Journals (Sweden)

    Masahiro Matsunaga

    Full Text Available Happiness has been viewed as a temporary emotional state (e.g., pleasure and a relatively stable state of being happy (subjective happiness level. As previous studies demonstrated that individuals with high subjective happiness level rated their current affective states more positively when they experience positive events, these two aspects of happiness are interrelated. According to a recent neuroimaging study, the cytosine to thymine single-nucleotide polymorphism of the human cannabinoid receptor 1 gene is associated with sensitivity to positive emotional stimuli. Thus, we hypothesized that our genetic traits, such as the human cannabinoid receptor 1 genotypes, are closely related to the two aspects of happiness. In Experiment 1, 198 healthy volunteers were used to compare the subjective happiness level between cytosine allele carriers and thymine-thymine carriers of the human cannabinoid receptor 1 gene. In Experiment 2, we used positron emission tomography with 20 healthy participants to compare the brain responses to positive emotional stimuli of cytosine allele carriers to that of thymine-thymine carriers. Compared to thymine-thymine carriers, cytosine allele carriers have a higher subjective happiness level. Regression analysis indicated that the cytosine allele is significantly associated with subjective happiness level. The positive mood after watching a positive film was significantly higher for the cytosine allele carriers compared to the thymine-thymine carriers. Positive emotion-related brain region such as the medial prefrontal cortex was significantly activated when the cytosine allele carriers watched the positive film compared to the thymine-thymine carriers. Thus, the human cannabinoid receptor 1 genotypes are closely related to two aspects of happiness. Compared to thymine-thymine carriers, the cytosine allele carriers of the human cannabinoid receptor 1 gene, who are sensitive to positive emotional stimuli, exhibited greater

  1. Genetic Variations in the Human Cannabinoid Receptor Gene Are Associated with Happiness

    Science.gov (United States)

    Matsunaga, Masahiro; Isowa, Tokiko; Yamakawa, Kaori; Fukuyama, Seisuke; Shinoda, Jun; Yamada, Jitsuhiro; Ohira, Hideki

    2014-01-01

    Happiness has been viewed as a temporary emotional state (e.g., pleasure) and a relatively stable state of being happy (subjective happiness level). As previous studies demonstrated that individuals with high subjective happiness level rated their current affective states more positively when they experience positive events, these two aspects of happiness are interrelated. According to a recent neuroimaging study, the cytosine to thymine single-nucleotide polymorphism of the human cannabinoid receptor 1 gene is associated with sensitivity to positive emotional stimuli. Thus, we hypothesized that our genetic traits, such as the human cannabinoid receptor 1 genotypes, are closely related to the two aspects of happiness. In Experiment 1, 198 healthy volunteers were used to compare the subjective happiness level between cytosine allele carriers and thymine-thymine carriers of the human cannabinoid receptor 1 gene. In Experiment 2, we used positron emission tomography with 20 healthy participants to compare the brain responses to positive emotional stimuli of cytosine allele carriers to that of thymine-thymine carriers. Compared to thymine-thymine carriers, cytosine allele carriers have a higher subjective happiness level. Regression analysis indicated that the cytosine allele is significantly associated with subjective happiness level. The positive mood after watching a positive film was significantly higher for the cytosine allele carriers compared to the thymine-thymine carriers. Positive emotion-related brain region such as the medial prefrontal cortex was significantly activated when the cytosine allele carriers watched the positive film compared to the thymine-thymine carriers. Thus, the human cannabinoid receptor 1 genotypes are closely related to two aspects of happiness. Compared to thymine-thymine carriers, the cytosine allele carriers of the human cannabinoid receptor 1 gene, who are sensitive to positive emotional stimuli, exhibited greater magnitude

  2. Genetic variations in the human cannabinoid receptor gene are associated with happiness.

    Science.gov (United States)

    Matsunaga, Masahiro; Isowa, Tokiko; Yamakawa, Kaori; Fukuyama, Seisuke; Shinoda, Jun; Yamada, Jitsuhiro; Ohira, Hideki

    2014-01-01

    Happiness has been viewed as a temporary emotional state (e.g., pleasure) and a relatively stable state of being happy (subjective happiness level). As previous studies demonstrated that individuals with high subjective happiness level rated their current affective states more positively when they experience positive events, these two aspects of happiness are interrelated. According to a recent neuroimaging study, the cytosine to thymine single-nucleotide polymorphism of the human cannabinoid receptor 1 gene is associated with sensitivity to positive emotional stimuli. Thus, we hypothesized that our genetic traits, such as the human cannabinoid receptor 1 genotypes, are closely related to the two aspects of happiness. In Experiment 1, 198 healthy volunteers were used to compare the subjective happiness level between cytosine allele carriers and thymine-thymine carriers of the human cannabinoid receptor 1 gene. In Experiment 2, we used positron emission tomography with 20 healthy participants to compare the brain responses to positive emotional stimuli of cytosine allele carriers to that of thymine-thymine carriers. Compared to thymine-thymine carriers, cytosine allele carriers have a higher subjective happiness level. Regression analysis indicated that the cytosine allele is significantly associated with subjective happiness level. The positive mood after watching a positive film was significantly higher for the cytosine allele carriers compared to the thymine-thymine carriers. Positive emotion-related brain region such as the medial prefrontal cortex was significantly activated when the cytosine allele carriers watched the positive film compared to the thymine-thymine carriers. Thus, the human cannabinoid receptor 1 genotypes are closely related to two aspects of happiness. Compared to thymine-thymine carriers, the cytosine allele carriers of the human cannabinoid receptor 1 gene, who are sensitive to positive emotional stimuli, exhibited greater magnitude

  3. Identification of natural killer cell receptor clusters in the platypus genome reveals an expansion of C-type lectin genes.

    Science.gov (United States)

    Wong, Emily S W; Sanderson, Claire E; Deakin, Janine E; Whittington, Camilla M; Papenfuss, Anthony T; Belov, Katherine

    2009-08-01

    Natural killer (NK) cell receptors belong to two unrelated, but functionally analogous gene families: the immunoglobulin superfamily, situated in the leukocyte receptor complex (LRC) and the C-type lectin superfamily, located in the natural killer complex (NKC). Here, we describe the largest NK receptor gene expansion seen to date. We identified 213 putative C-type lectin NK receptor homologs in the genome of the platypus. Many have arisen as the result of a lineage-specific expansion. Orthologs of OLR1, CD69, KLRE, CLEC12B, and CLEC16p genes were also identified. The NKC is split into at least two regions of the genome: 34 genes map to chromosome 7, two map to a small autosome, and the remainder are unanchored in the current genome assembly. No NK receptor genes from the LRC were identified. The massive C-type lectin expansion and lack of Ig-domain-containing NK receptors represents the most extreme polarization of NK receptors found to date. We have used this new data from platypus to trace the possible evolutionary history of the NK receptor clusters.

  4. Ovarian steroids regulate tachykinin and tachykinin receptor gene expression in the mouse uterus

    Directory of Open Access Journals (Sweden)

    Patak Eva

    2009-07-01

    Full Text Available Abstract Background In the mouse uterus, pregnancy is accompanied by changes in tachykinin and tachykinin receptor gene expression and in the uterotonic effects of endogenous tachykinins. In this study we have investigated whether changes in tachykinin expression and responses are a result of changes in ovarian steroid levels. Methods We quantified the mRNAs of tachykinins and tachykinin receptors in uteri from ovariectomized mice and studied their regulation in response to estrogen and progesterone using real-time quantitative RT-PCR. Early (3 h and late (24 h responses to estrogen were evaluated and the participation of the estrogen receptors (ER, ERalpha and ERbeta, was analyzed by treating mice with propylpyrazole triol, a selective ERalpha agonist, or diarylpropionitrile, a selective agonist of ERbeta. Results All genes encoding tachykinins (Tac1, Tac2 and Tac4 and tachykinin receptors (Tacr1, Tacr2 and Tacr3 were expressed in uteri from ovariectomized mice. Estrogen increased Tac1 and Tacr1 mRNA after 3 h and decreased Tac1 and Tac4 expression after 24 h. Tac2 and Tacr3 mRNA levels were decreased by estrogen at both 3 and 24 h. Most effects of estrogen were also observed in animals treated with propylpyrazole triol. Progesterone treatment increased the levels of Tac2. Conclusion These results show that the expression of tachykinins and their receptors in the mouse uterus is tightly and differentially regulated by ovarian steroids. Estrogen effects are mainly mediated by ERalpha supporting an essential role for this estrogen receptor in the regulation of the tachykinergic system in the mouse uterus.

  5. Ovarian steroids regulate tachykinin and tachykinin receptor gene expression in the mouse uterus.

    Science.gov (United States)

    Pinto, Francisco M; Pintado, C Oscar; Pennefather, Jocelyn N; Patak, Eva; Candenas, Luz

    2009-07-23

    In the mouse uterus, pregnancy is accompanied by changes in tachykinin and tachykinin receptor gene expression and in the uterotonic effects of endogenous tachykinins. In this study we have investigated whether changes in tachykinin expression and responses are a result of changes in ovarian steroid levels. We quantified the mRNAs of tachykinins and tachykinin receptors in uteri from ovariectomized mice and studied their regulation in response to estrogen and progesterone using real-time quantitative RT-PCR. Early (3 h) and late (24 h) responses to estrogen were evaluated and the participation of the estrogen receptors (ER), ERalpha and ERbeta, was analyzed by treating mice with propylpyrazole triol, a selective ERalpha agonist, or diarylpropionitrile, a selective agonist of ERbeta. All genes encoding tachykinins (Tac1, Tac2 and Tac4) and tachykinin receptors (Tacr1, Tacr2 and Tacr3) were expressed in uteri from ovariectomized mice. Estrogen increased Tac1 and Tacr1 mRNA after 3 h and decreased Tac1 and Tac4 expression after 24 h. Tac2 and Tacr3 mRNA levels were decreased by estrogen at both 3 and 24 h. Most effects of estrogen were also observed in animals treated with propylpyrazole triol. Progesterone treatment increased the levels of Tac2. These results show that the expression of tachykinins and their receptors in the mouse uterus is tightly and differentially regulated by ovarian steroids. Estrogen effects are mainly mediated by ERalpha supporting an essential role for this estrogen receptor in the regulation of the tachykinergic system in the mouse uterus.

  6. HindIII identifies a two allele DNA polymorphism of the human cannabinoid receptor gene (CNR)

    Energy Technology Data Exchange (ETDEWEB)

    Caenazzo, L.; Hoehe, M.R.; Hsieh, W.T.; Berrettini, W.H.; Bonner, T.I.; Gershon, E.S. (National Inst. of Health, Bethesda, MD (United States))

    1991-09-11

    HCNR p5, a 0.9 kb BamHI/EcoRI fragment from the human cannabinoid receptor gene inserted into pUC19, was used as probe. The fragment is located in an intron approximately 14 kb 5{prime} of the initiation codon. This fragment is a clean single copy sequence by genomic blotting. Hybridization of human genomic DNA digested with HindIII identified a two allele RFLP with bands at 5.5 (A1) and 3.3 kb (A2). The human cannabinoid receptor gene has been genetically mapped in CEPH reference pedigrees to the centromeric/q region of chromosome 6. In situ hybridization localizes it to 6q14-q15. Codominant segregation has been observed in 26 informative two- and three-generation CEPH pedigrees and in 14 medium-sized disease families.

  7. Gene Expression of Leptin and Long Leptin Receptor Isoform in Endometriosis: A Case-Control Study

    Directory of Open Access Journals (Sweden)

    Andrea Prestes Nácul

    2013-01-01

    Full Text Available In this study, leptin/BMI ratio in serum and peritoneal fluid and gene expression of leptin and long form leptin receptor (OB-RL were assessed in eutopic and ectopic endometria of women with endometriosis and controls. Increased serum leptin/BMI ratio was found in endometriosis patients. Leptin and OB-RL gene expression was significantly higher in ectopic versus eutopic endometrium of patients and controls. A positive, significant correlation was observed between leptin and OB-RL transcripts in ectopic endometria and also in eutopic endometria in endometriosis and control groups. A negative and significant correlation was found between OB-RL mRNA expression and peritoneal fluid leptin/BMI ratio only in endometriosis. These data suggest that, through a modulatory interaction with its active receptor, leptin might play a role in the development of endometrial implants.

  8. Growth and gene expression are predominantly controlled by distinct regions of the human IL-4 receptor.

    Science.gov (United States)

    Ryan, J J; McReynolds, L J; Keegan, A; Wang, L H; Garfein, E; Rothman, P; Nelms, K; Paul, W E

    1996-02-01

    IL-4 causes hematopoietic cells to proliferate and express a series of genes, including CD23. We examined whether IL-4-mediated growth, as measured by 4PS phosphorylation, and gene induction were similarly controlled. Studies of M12.4.1 cells expressing human IL-4R truncation mutants indicated that the region between amino acids 557-657 is necessary for full gene expression, which correlated with Stat6 DNA binding activity. This region was not required for 4PS phosphorylation. Tyrosine-to-phenylalanine mutations in the interval between amino acids 557-657 revealed that as long as one tyrosine remained unmutated, CD23 was fully induced. When all three tyrosines were mutated, the receptor was unable to induce CD23. The results indicate that growth regulation and gene expression are principally controlled by distinct regions of IL-4R.

  9. Androgen Receptor Gene Polymorphism, Aggression, and Reproduction in Tanzanian Foragers and Pastoralists

    Science.gov (United States)

    Butovskaya, Marina L.; Lazebny, Oleg E.; Vasilyev, Vasiliy A.; Dronova, Daria A.; Karelin, Dmitri V.; Mabulla, Audax Z. P.; Shibalev, Dmitri V.; Shackelford, Todd K.; Fink, Bernhard; Ryskov, Alexey P.

    2015-01-01

    The androgen receptor (AR) gene polymorphism in humans is linked to aggression and may also be linked to reproduction. Here we report associations between AR gene polymorphism and aggression and reproduction in two small-scale societies in northern Tanzania (Africa)—the Hadza (monogamous foragers) and the Datoga (polygynous pastoralists). We secured self-reports of aggression and assessed genetic polymorphism of the number of CAG repeats for the AR gene for 210 Hadza men and 229 Datoga men (aged 17–70 years). We conducted structural equation modeling to identify links between AR gene polymorphism, aggression, and number of children born, and included age and ethnicity as covariates. Fewer AR CAG repeats predicted greater aggression, and Datoga men reported more aggression than did Hadza men. In addition, aggression mediated the identified negative relationship between CAG repeats and number of children born. PMID:26291982

  10. Altered glucose homeostasis and hepatic function in obese mice deficient for both kinin receptor genes.

    Directory of Open Access Journals (Sweden)

    Carlos C Barros

    Full Text Available The Kallikrein-Kinin System (KKS has been implicated in several aspects of metabolism, including the regulation of glucose homeostasis and adiposity. Kinins and des-Arg-kinins are the major effectors of this system and promote their effects by binding to two different receptors, the kinin B2 and B1 receptors, respectively. To understand the influence of the KKS on the pathophysiology of obesity and type 2 diabetes (T2DM, we generated an animal model deficient for both kinin receptor genes and leptin (obB1B2KO. Six-month-old obB1B2KO mice showed increased blood glucose levels. Isolated islets of the transgenic animals were more responsive to glucose stimulation releasing greater amounts of insulin, mainly in 3-month-old mice, which was corroborated by elevated serum C-peptide concentrations. Furthermore, they presented hepatomegaly, pronounced steatosis, and increased levels of circulating transaminases. This mouse also demonstrated exacerbated gluconeogenesis during the pyruvate challenge test. The hepatic abnormalities were accompanied by changes in the gene expression of factors linked to glucose and lipid metabolisms in the liver. Thus, we conclude that kinin receptors are important for modulation of insulin secretion and for the preservation of normal glucose levels and hepatic functions in obese mice, suggesting a protective role of the KKS regarding complications associated with obesity and T2DM.

  11. Localization of the gene for the ciliary neutrotrophic factor receptor (CNTFR) to human chromosome 9

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, D.H.; Jones, C.; Patterson, D. (Eleanor Roosevelt Institute, Denver, CO (United States) Univ. of Colorado Health Science Center, Denver, CO (United States)); Britt, D.E.; Jackson, C.L. (Brown Univ., Providence, RI (United States))

    1993-09-01

    Ciliary neurotrophic factor (CNTF) has recently been found to be important for the survival of motor neurons and has shown activity in animal models of amyotrophic lateral sclerosis (ALS). CNTF therefore holds promise as a treatment for ALS, and it and its receptor (CNTFR) are candidates for a gene involved in familial ALS. The CNTFR gene was mapped to chromosome 9 by PCR on a panel of human/CHO somatic cell hybrids and localized to 9p13 by PCR on a panel of radiation hybrids. 18 ref., 1 fig., 2 tabs.

  12. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    International Nuclear Information System (INIS)

    Teutschbein, Janka; Haydn, Johannes M; Samans, Birgit; Krause, Michael; Eilers, Martin; Schartl, Manfred; Meierjohann, Svenja

    2010-01-01

    Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase) triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1), early growth response 1 (Egr1), osteopontin (Opn), insulin-like growth factor binding protein 3 (Igfbp3), dual-specificity phosphatase 4 (Dusp4), and tumor-associated antigen L6 (Taal6). Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute new possible molecular players in melanoma development

  13. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    Directory of Open Access Journals (Sweden)

    Krause Michael

    2010-07-01

    Full Text Available Abstract Background Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Methods Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Results Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1, early growth response 1 (Egr1, osteopontin (Opn, insulin-like growth factor binding protein 3 (Igfbp3, dual-specificity phosphatase 4 (Dusp4, and tumor-associated antigen L6 (Taal6. Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Conclusion Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute

  14. Genetic variation in the oxytocin receptor (OXTR) gene is associated with Asperger Syndrome.

    Science.gov (United States)

    Di Napoli, Agnese; Warrier, Varun; Baron-Cohen, Simon; Chakrabarti, Bhismadev

    2014-01-01

    Autism Spectrum Conditions (ASC) are a group of neurodevelopmental conditions characterized by impairments in communication and social interaction, alongside unusually repetitive behaviors and narrow interests. ASC are highly heritable and have complex patterns of inheritance where multiple genes are involved, alongside environmental and epigenetic factors. Asperger Syndrome (AS) is a subgroup of these conditions, where there is no history of language or cognitive delay. Animal models suggest a role for oxytocin (OXT) and oxytocin receptor (OXTR) genes in social-emotional behaviors, and several studies indicate that the oxytocin/oxytocin receptor system is altered in individuals with ASC. Previous studies have reported associations between genetic variations in the OXTR gene and ASC. The present study tested for an association between nine single nucleotide polymorphisms (SNPs) in the OXTR gene and AS in 530 individuals of Caucasian origin, using SNP association test and haplotype analysis. There was a significant association between rs2268493 in OXTR and AS. Multiple haplotypes that include this SNP (rs2268493-rs2254298, rs2268490-rs2268493-rs2254298, rs2268493-rs2254298-rs53576, rs237885-rs2268490-rs2268493-rs2254298, rs2268490-rs2268493-rs2254298-rs53576) were also associated with AS. rs2268493 has been previously associated with ASC and putatively alters several transcription factor-binding sites and regulates chromatin states, either directly or through other variants in linkage disequilibrium (LD). This study reports a significant association of the sequence variant rs2268493 in the OXTR gene and associated haplotypes with AS.

  15. Multiple Phenotypes in Adult Mice following Inactivation of the Coxsackievirus and Adenovirus Receptor (Car) Gene

    OpenAIRE

    Pazirandeh, Ahmad; Sultana, Taranum; Mirza, Momina; Rozell, Björn; Hultenby, Kjell; Wallis, Karin; Vennström, Björn; Davis, Ben; Arner, Anders; Heuchel, Rainer; Löhr, Matthias; Philipson, Lennart; Sollerbrant, Kerstin

    2011-01-01

    To determine the normal function of the Coxsackievirus and Adenovirus Receptor (CAR), a protein found in tight junctions and other intercellular complexes, we constructed a mouse line in which the CAR gene could be disrupted at any chosen time point in a broad spectrum of cell types and tissues. All knockouts examined displayed a dilated intestinal tract and atrophy of the exocrine pancreas with appearance of tubular complexes characteristic of acinar-to-ductal metaplasia. The mice also exhib...

  16. Environmental stress, oxytocin receptor gene (OXTR) polymorphism, and mental health following collective stress

    OpenAIRE

    Lucas-Thompson, RG; Holman, EA

    2013-01-01

    We examined whether the oxytocin receptor gene (OXTR) single nucleotide polymorphism (SNP) rs53576 genotype buffers the combined impact of negative social environments (e.g., interpersonal conflict/constraint) and economic stress on post-traumatic stress (PTS) symptoms and impaired daily functioning following collective stress (September 11th terrorist attacks). Saliva was collected by mail and used to genotype 704 respondents. Participants completed Web-based assessments of pre-9/11 mental h...

  17. The Sigma-2 Receptor and Progesterone Receptor Membrane Component 1 are Different Binding Sites Derived From Independent Genes

    Directory of Open Access Journals (Sweden)

    Uyen B. Chu

    2015-11-01

    Full Text Available The sigma-2 receptor (S2R is a potential therapeutic target for cancer and neuronal diseases. However, the identity of the S2R has remained a matter of debate. Historically, the S2R has been defined as (1 a binding site with high affinity to 1,3-di-o-tolylguanidine (DTG and haloperidol but not to the selective sigma-1 receptor ligand (+-pentazocine, and (2 a protein of 18–21 kDa, as shown by specific photolabeling with [3H]-Azido-DTG and [125I]-iodoazido-fenpropimorph ([125I]-IAF. Recently, the progesterone receptor membrane component 1 (PGRMC1, a 25 kDa protein, was reported to be the S2R (Nature Communications, 2011, 2:380. To confirm this identification, we created PGRMC1 knockout NSC34 cell lines using the CRISPR/Cas9 technology. We found that in NSC34 cells devoid of or overexpressing PGRMC1, the maximum [3H]-DTG binding to the S2R (Bmax as well as the DTG-protectable [125I]-IAF photolabeling of the S2R were similar to those of wild-type control cells. Furthermore, the affinities of DTG and haloperidol for PGRMC1 (KI = 472 μM and 350 μM, respectively, as determined in competition with [3H]-progesterone, were more than 3 orders of magnitude lower than those reported for the S2R (20–80 nM. These results clarify that PGRMC1 and the S2R are distinct binding sites expressed by different genes.

  18. Hydrogen sulfide inhibits A2A adenosine receptor agonist induced β-amyloid production in SH-SY5Y neuroblastoma cells via a cAMP dependent pathway.

    Directory of Open Access Journals (Sweden)

    Bhushan Vijay Nagpure

    Full Text Available Alzheimer's disease (AD is the leading cause of senile dementia in today's society. Its debilitating symptoms are manifested by disturbances in many important brain functions, which are influenced by adenosine. Hence, adenosinergic system is considered as a potential therapeutic target in AD treatment. In the present study, we found that sodium hydrosulfide (NaHS, an H2S donor, 100 µM attenuated HENECA (a selective A2A receptor agonist, 10-200 nM induced β-amyloid (1-42 (Aβ42 production in SH-SY5Y cells. NaHS also interfered with HENECA-stimulated production and post-translational modification of amyloid precursor protein (APP by inhibiting its maturation. Measurement of the C-terminal APP fragments generated from its enzymatic cleavage by β-site amyloid precursor protein cleaving enzyme 1 (BACE1 showed that NaHS did not have any significant effect on β-secretase activity. However, the direct measurements of HENECA-elevated γ-secretase activity and mRNA expressions of presenilins suggested that the suppression of Aβ42 production in NaHS pretreated cells was mediated by inhibiting γ-secretase. NaHS induced reductions were accompanied by similar decreases in intracellular cAMP levels and phosphorylation of cAMP responsive element binding protein (CREB. NaHS significantly reduced the elevated cAMP and Aβ42 production caused by forskolin (an adenylyl cyclase, AC agonist alone or forskolin in combination with IBMX (a phosphodiesterase inhibitor, but had no effect on those caused by IBMX alone. Moreover, pretreatment with NaHS significantly attenuated HENECA-elevated AC activity and mRNA expressions of various AC isoforms. These data suggest that NaHS may preferentially suppress AC activity when it was stimulated. In conclusion, H2S attenuated HENECA induced Aβ42 production in SH-SY5Y neuroblastoma cells through inhibiting γ-secretase via a cAMP dependent pathway.

  19. Adenosine A2A receptor signaling affects IL-21/IL-22 cytokines and GATA3/T-bet transcription factor expression in CD4+T cells from a BTBR T+Itpr3tf/J mouse model of autism.

    Science.gov (United States)

    Ahmad, Sheikh F; Ansari, Mushtaq A; Nadeem, Ahmed; Bakheet, Saleh A; Almutairi, Mashal M; Attia, Sabry M

    2017-10-15

    Autism is a complex heterogeneous neurodevelopmental disorder; previous studies have identified altered immune responses among individuals diagnosed with autism. An imbalance in the production of pro- and anti-inflammatory cytokines and transcription factors plays a role in neurodevelopmental behavioral and autism disorders. BTBR T + Itpr3tf/J (BTBR) mice are used as a model for autism, as they exhibit social deficits, communication deficits, and repetitive behaviors compared with C57BL/6J (B6) mice. The adenosine A2A receptor (A2AR) appears to be a potential target for the improvement of behavioral, inflammatory, immune, and neurological disorders. We investigated the effects of the A2AR antagonist SCH 5826 (SCH) and agonist CGS 21680 (CGS) on IL-21, IL-22, T-bet, T-box transcription factor (T-bet), GATA3 (GATA Binding Protein 3), and CD152 (CTLA-4) expression in BTBR mice. Our results showed that BTBR mice treated with SCH had increased CD4 + IL-21 + , CD4 + IL-22 + , CD4 + GATA3 + , and CD4 + T-bet + and decreased CD4 + CTLA-4 + expression in spleen cells compared with BTBR control mice. Moreover, CGS efficiently decreased CD4 + IL-21 + , CD4 + IL-22 + , CD4 + GATA3 + , and CD4 + T-bet + and increased CD4 + CTLA-4 production in spleen cells compared with SCH-treated and BTBR control mice. Additionally, SCH treatment significantly increased the mRNA and protein expression levels of IL-21, IL-22, GATA3, and T-bet in brain tissue compared with CGS-treated and BTBR control mice. The augmented levels of IL-21/IL-22 and GATA3/T-bet could be due to altered A2AR signaling. Our results indicate that A2AR agonists may represent a new class of compounds that can be developed for use in the treatment of autistic and neuroimmune dysfunctions. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads

    Energy Technology Data Exchange (ETDEWEB)

    Martinovic-Weigelt, Dalma, E-mail: dalma@stthomas.edu [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States); University of St. Thomas, 2115 Summit Ave, Saint Paul, MN 55105 (United States); Wang Ronglin [US Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Ecological Exposure Research Division, 26W. Martin Luther King Dr., Cincinnati, OH 45268 (United States); Villeneuve, Daniel L. [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States); Bencic, David C.; Lazorchak, Jim [US Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Ecological Exposure Research Division, 26W. Martin Luther King Dr., Cincinnati, OH 45268 (United States); Ankley, Gerald T. [US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804 (United States)

    2011-01-25

    The studies presented in this manuscript focus on characterization of transcriptomic responses to anti-androgens in zebrafish (Danio rerio). Research on the effects of anti-androgens in fish has been characterized by a heavy reliance on apical endpoints, and molecular mechanisms of action (MOA) of anti-androgens remain poorly elucidated. In the present study, we examined effects of a short term exposure (24-96 h) to the androgen receptor antagonists flutamide (FLU) and vinclozolin (VZ) on gene expression in gonads of sexually mature zebrafish, using commercially available zebrafish oligonucleotide microarrays (4 x 44 K platform). We found that VZ and FLU potentially impact reproductive processes via multiple pathways related to steroidogenesis, spermatogenesis, and fertilization. Observed changes in gene expression often were shared by VZ and FLU, as demonstrated by overlap in differentially-expressed genes and enrichment of several common key pathways including: (1) integrin and actin signaling, (2) nuclear receptor 5A1 signaling, (3) fibroblast growth factor receptor signaling, (4) polyamine synthesis, and (5) androgen synthesis. This information should prove useful to elucidating specific mechanisms of reproductive effects of anti-androgens in fish, as well as developing biomarkers for this important class of endocrine-active chemicals.

  1. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells

    Science.gov (United States)

    Chen, J.; Fabry, B.; Schiffrin, E. L.; Wang, N.; Ingber, D. E. (Principal Investigator)

    2001-01-01

    A magnetic twisting stimulator was developed based on the previously published technique of magnetic twisting cytometry. Using ligand-coated ferromagnetic microbeads, this device can apply mechanical stresses with varying amplitudes, duration, frequencies, and waveforms to specific cell surface receptors. Biochemical and biological responses of the cells to the mechanical stimulation can be assayed. Twisting integrin receptors with RGD (Arg-Gly-Asp)-containing peptide-coated beads increased endothelin-1 (ET-1) gene expression by >100%. In contrast, twisting scavenger receptors with acetylated low-density lipoprotein-coated beads or twisting HLA antigen with anti-HLA antibody-coated beads did not lead to alterations in ET-1 gene expression. In situ hybridization showed that the increase in ET-1 mRNA was localized in the cells that were stressed with the RGD-coated beads. Blocking stretch-activated ion channels with gadolinium, chelating Ca2+ with EGTA, or inhibiting tyrosine phosphorylation with genistein abolished twist-induced ET-1 mRNA elevation. Abolishing cytoskeletal tension with an inhibitor of the myosin ATPase, with an inhibitor of myosin light chain kinase, or with an actin microfilament disrupter blocked twisted-induced increases in ET-1 expression. Our results are consistent with the hypothesis that the molecular structural linkage of integrin-cytoskeleton is an important pathway for stress-induced ET-1 gene expression.

  2. Isolation and Characterization of the Brassinosteroid Receptor Gene (GmBRI1 from Glycine max

    Directory of Open Access Journals (Sweden)

    Miao Wang

    2014-03-01

    Full Text Available Brassinosteroids (BRs constitute a group of steroidal phytohormones that contribute to a wide range of plant growth and development functions. The genetic modulation of BR receptor genes, which play major roles in the BR signaling pathway, can create semi-dwarf plants that have great advantages in crop production. In this study, a brassinosteroid insensitive gene homologous with AtBRI1 and other BRIs was isolated from Glycine max and designated as GmBRI1. A bioinformatic analysis revealed that GmBRI1 shares a conserved kinase domain and 25 tandem leucine-rich repeats (LRRs that are characteristic of a BR receptor for BR reception and reaction and bear a striking similarity in protein tertiary structure to AtBRI1. GmBRI1 transcripts were more abundant in soybean hypocotyls and could be upregulated in response to exogenous BR treatment. The transformation of GmBRI1 into the Arabidopsis dwarf mutant bri1-5 restored the phenotype, especially regarding pod size and plant height. Additionally, this complementation is a consequence of a restored BR signaling pathway demonstrated in the light/dark analysis, root inhibition assay and BR-response gene expression. Therefore, GmBRI1 functions as a BR receptor to alter BR-mediated signaling and is valuable for improving plant architecture and enhancing the yield of soybean.

  3. Deletion of the δ opioid receptor gene impairs place conditioning but preserves morphine reinforcement.

    Science.gov (United States)

    Le Merrer, Julie; Plaza-Zabala, Ainhoa; Del Boca, Carolina; Matifas, Audrey; Maldonado, Rafael; Kieffer, Brigitte L

    2011-04-01

    Converging experimental data indicate that δ opioid receptors contribute to mediate drug reinforcement processes. Whether their contribution reflects a role in the modulation of drug reward or an implication in conditioned learning, however, has not been explored. In the present study, we investigated the impact of δ receptor gene knockout on reinforced conditioned learning under several experimental paradigms. We assessed the ability of δ receptor knockout mice to form drug-context associations with either morphine (appetitive)- or lithium (aversive)-induced Pavlovian place conditioning. We also examined the efficiency of morphine to serve as a positive reinforcer in these mice and their motivation to gain drug injections, with operant intravenous self-administration under fixed and progressive ratio schedules and at two different doses. Mutant mice showed impaired place conditioning in both appetitive and aversive conditions, indicating disrupted context-drug association. In contrast, mutant animals displayed intact acquisition of morphine self-administration and reached breaking-points comparable to control subjects. Thus, reinforcing effects of morphine and motivation to obtain the drug were maintained. Collectively, the data suggest that δ receptor activity is not involved in morphine reinforcement but facilitates place conditioning. This study reveals a novel aspect of δ opioid receptor function in addiction-related behaviors. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. G protein-coupled receptor kinase 4 gene variants in human essential hypertension

    Science.gov (United States)

    Felder, Robin A.; Sanada, Hironobu; Xu, Jing; Yu, Pei-Ying; Wang, Zheng; Watanabe, Hidetsuna; Asico, Laureano D.; Wang, Wei; Zheng, Shaopeng; Yamaguchi, Ikuyo; Williams, Scott M.; Gainer, James; Brown, Nancy J.; Hazen-Martin, Debra; Wong, Lee-Jun C.; Robillard, Jean E.; Carey, Robert M.; Eisner, Gilbert M.; Jose, Pedro A.

    2002-01-01

    Essential hypertension has a heritability as high as 30–50%, but its genetic cause(s) has not been determined despite intensive investigation. The renal dopaminergic system exerts a pivotal role in maintaining fluid and electrolyte balance and participates in the pathogenesis of genetic hypertension. In genetic hypertension, the ability of dopamine and D1-like agonists to increase urinary sodium excretion is impaired. A defective coupling between the D1 dopamine receptor and the G protein/effector enzyme complex in the proximal tubule of the kidney is the cause of the impaired renal dopaminergic action in genetic rodent and human essential hypertension. We now report that, in human essential hypertension, single nucleotide polymorphisms of a G protein-coupled receptor kinase, GRK4γ, increase G protein-coupled receptor kinase (GRK) activity and cause the serine phosphorylation and uncoupling of the D1 receptor from its G protein/effector enzyme complex in the renal proximal tubule and in transfected Chinese hamster ovary cells. Moreover, expressing GRK4γA142V but not the wild-type gene in transgenic mice produces hypertension and impairs the diuretic and natriuretic but not the hypotensive effects of D1-like agonist stimulation. These findings provide a mechanism for the D1 receptor coupling defect in the kidney and may explain the inability of the kidney to properly excrete sodium in genetic hypertension. PMID:11904438

  5. Molecular cloning, functional expression, and gene silencing of two Drosophila receptors for the Drosophila neuropeptide pyrokinin-2

    DEFF Research Database (Denmark)

    Rosenkilde, Carina; Cazzamali, Giuseppe; Williamson, Michael

    2003-01-01

    The database of the Drosophila Genome Project contains the sequences of two genes, CG8784 and CG8795, predicted to code for two structurally related G protein-coupled receptors. We have cloned these genes and expressed their coding parts in Chinese hamster ovary cells. We found that both receptors...... can be activated by low concentrations of the Drosophila neuropeptide pyrokinin-2 (CG8784, EC(50) for pyrokinin-2, 1x10(-9)M; CG8795, EC(50) for pyrokinin-2, 5 x 10(-10)M). The precise role of Drosophila pyrokinin-2 (SVPFKPRLamide) in Drosophila is unknown, but in other insects, pyrokinins have...... embryos and first instar larvae. In addition to the two Drosophila receptors, we also identified two probable pyrokinin receptors in the genomic database from the malaria mosquito Anopheles gambiae. The two Drosophila pyrokinin receptors are, to our knowledge, the first invertebrate pyrokinin receptors...

  6. Molecular Characterization and Sex Distribution of Chemosensory Receptor Gene Family Based on Transcriptome Analysis of Scaeva pyrastri.

    Directory of Open Access Journals (Sweden)

    Xiao-Ming Li

    Full Text Available Chemosensory receptors play key roles in insect behavior. Thus, genes encoding these receptors have great potential for use in integrated pest management. The hover fly Scaeva pyrastri (L. is an important pollinating insect and a natural enemy of aphids, mainly distributed in the Palearctic and Nearctic regions. However, a systematic identification of their chemosensory receptor genes in the antennae has not been reported. In the present study, we assembled the antennal transcriptome of S. pyrastri by using Illumina sequencing technology. Analysis of the transcriptome data identified 60 candidate chemosensory genes, including 38 for odorant receptors (ORs, 16 for ionotropic receptors (IRs, and 6 for gustatory receptors (GRs. The numbers are similar to those of other Diptera species, suggesting that we were able to successfully identify S. pyrastri chemosensory genes. We analyzed the expression patterns of all genes by using reverse transcriptase PCR (RT-PCR, and found that some genes exhibited sex-biased or sex-specific expression. These candidate chemosensory genes and their tissue expression profiles provide information for further studies aimed at fully understanding the molecular basis behind chemoreception-related behaviors in S. pyrastri.

  7. Temporal patterns of odorant receptor gene expression in adult and aged mice.

    Science.gov (United States)

    Khan, Mona; Vaes, Evelien; Mombaerts, Peter

    2013-11-01

    In the mouse, the sense of smell relies predominantly on the expression of ~1200 odorant receptor (OR) genes in the main olfactory epithelium (MOE). Each mature olfactory sensory neuron (OSN) in the MOE is thought to express just one of these OR genes; conversely, an OR gene is expressed in thousands to tens of thousands of OSNs per mouse. Here, we have characterized temporal patterns of OR gene expression in a cohort of inbred C57BL6/N mice from the Aged Rodent Colonies of the National Institute on Aging. We applied the NanoString multiplex platform to quantify RNA abundance for 531 OR genes in whole olfactory mucosa (WOM) tissue samples. The five study groups were females aged 2, 6, 12, 18, and 31 months (mo). We classified the 531 temporal patterns using a step-down quadratic regression method for time course analysis. The majority of OR genes (58.4%) are classified as flat: there is no significant difference from a horizontal line within this time window. There are 32.8% of OR genes with a downward profile, 7.2% with an upward profile, and 1.7% with a convex or concave profile. But the magnitude of these decreases and increases tends to be small: only 4.3% of OR genes are differentially expressed (DE) at 31 mo compared to 2 mo. Interestingly, the variances of NanoString counts for individual OR genes are homogeneous among the age groups. Our analyses of these 15,930 OR gene expression data of C57BL6/N mice that were raised and housed under well-controlled conditions indicate that OR gene expression at the MOE level is intrinsically stable. © 2013.

  8. Acute stress enhances heterodimerization and binding of corticosteroid receptors at glucocorticoid target genes in the hippocampus.

    Science.gov (United States)

    Mifsud, Karen R; Reul, Johannes M H M

    2016-10-04

    A stressful event results in secretion of glucocorticoid hormones, which bind to mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) in the hippocampus to regulate cognitive and affective responses to the challenge. MRs are already highly occupied by low glucocorticoid levels under baseline conditions, whereas GRs only become substantially occupied by stress- or circadian-driven glucocorticoid levels. Currently, however, the binding of MRs and GRs to glucocorticoid-responsive elements (GREs) within hippocampal glucocorticoid target genes under such physiological conditions in vivo is unknown. We found that forced swim (FS) stress evoked increased hippocampal RNA expression levels of the glucocorticoid-responsive genes FK506-binding protein 5 (Fkbp5), Period 1 (Per1), and serum- and glucocorticoid-inducible kinase 1 (Sgk1). Chromatin immunoprecipitation (ChIP) analysis showed that this stressor caused substantial gene-dependent increases in GR binding and surprisingly, also MR binding to GREs within these genes. Different acute challenges, including novelty, restraint, and FS stress, produced distinct glucocorticoid responses but resulted in largely similar MR and GR binding to GREs. Sequential and tandem ChIP analyses showed that, after FS stress, MRs and GRs bind concomitantly to the same GRE sites within Fkbp5 and Per1 but not Sgk1 Thus, after stress, MRs and GRs seem to bind to GREs as homo- and/or heterodimers in a gene-dependent manner. MR binding to GREs at baseline seems to be restricted, whereas after stress, GR binding may facilitate cobinding of MR. This study reveals that the interaction of MRs and GRs with GREs within the genome constitutes an additional level of complexity in hippocampal glucocorticoid action beyond expectancies based on ligand-receptor interactions.

  9. Bone marrow mesenchymal stem cells with Nogo-66 receptor gene silencing for repair of spinal cord injury.

    Science.gov (United States)

    Li, Zhiyuan; Zhang, Zhanxiu; Zhao, Lili; Li, Hui; Wang, Suxia; Shen, Yong

    2014-04-15

    We hypothesized that RNA interference to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells before transplantation might further improve neurological function in rats with spinal cord transection injury. After 2 weeks, the number of neurons and BrdU-positive cells in the Nogo-66 receptor gene silencing group was higher than in the bone marrow mesenchymal stem cell group, and significantly greater compared with the model group. After 4 weeks, behavioral performance was significantly enhanced in the model group. After 8 weeks, the number of horseradish peroxidase-labeled nerve fibers was higher in the Nogo-66 receptor gene silencing group than in the bone marrow mesenchymal stem cell group, and significantly higher than in the model group. The newly formed nerve fibers and myelinated nerve fibers were detectable in the central transverse plane section in the bone marrow mesenchymal stem cell group and in the Nogo-66 receptor gene silencing group.

  10. Bone marrow mesenchymal stem cells with Nogo-66 receptor gene silencing for repair of spinal cord injury

    Science.gov (United States)

    Li, Zhiyuan; Zhang, Zhanxiu; Zhao, Lili; Li, Hui; Wang, Suxia; Shen, Yong

    2014-01-01

    We hypothesized that RNA interference to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells before transplantation might further improve neurological function in rats with spinal cord transection injury. After 2 weeks, the number of neurons and BrdU-positive cells in the Nogo-66 receptor gene silencing group was higher than in the bone marrow mesenchymal stem cell group, and significantly greater compared with the model group. After 4 weeks, behavioral performance was significantly enhanced in the model group. After 8 weeks, the number of horseradish peroxidase-labeled nerve fibers was higher in the Nogo-66 receptor gene silencing group than in the bone marrow mesenchymal stem cell group, and significantly higher than in the model group. The newly formed nerve fibers and myelinated nerve fibers were detectable in the central transverse plane section in the bone marrow mesenchymal stem cell group and in the Nogo-66 receptor gene silencing group. PMID:25206893

  11. Dopamine transporter DAT and receptor DRD2 variants affect risk of lethal cocaine abuse: a gene-gene-environment interaction.

    Science.gov (United States)

    Sullivan, D; Pinsonneault, J K; Papp, A C; Zhu, H; Lemeshow, S; Mash, D C; Sadee, W

    2013-01-22

    Epistatic gene-gene interactions could contribute to the heritability of complex multigenic disorders, but few examples have been reported. Here, we focus on the role of aberrant dopaminergic signaling, involving the dopamine transporter DAT, a cocaine target, and the dopamine D2 receptor, which physically interacts with DAT. Splicing polymorphism rs2283265 of DRD2, encoding D2 receptors, were shown to confer risk of cocaine overdose/death (odds ratio ∼3) in subjects and controls from the Miami Dade County Brain Bank.(1) Risk of cocaine-related death attributable to the minor allele of rs2283265 was significantly enhanced to OR=7.5 (P=0.0008) in homozygous carriers of the main 6-repeat allele of DAT rs3836790, a regulatory VNTR in intron8 lacking significant effect itself. In contrast, carriers of the minor 5-repeat DAT allele showed no significant risk (OR=1.1, P=0.84). DAT rs3836790 and DRD2 rs2283265 also interacted by modulating DAT protein activity in the ventral putamen of cocaine abusers. In high-linkage disequilibrium with the VNTR, DAT rs6347 in exon9 yielded similar results. Assessing the impact of DAT alone, a rare DAT haplotype formed by the minor alleles of rs3836790 and rs27072, a regulatory DAT variant in the 3'-UTR, occurred in nearly one-third of the cocaine abusers but was absent in African American controls, apparently conferring strong risk. These results demonstrate gene-gene-drug interaction affecting risk of fatal cocaine intoxication.

  12. Distribution of killer cell immunoglobulin-like receptors genes in the Italian Caucasian population

    Directory of Open Access Journals (Sweden)

    Mariani M

    2006-10-01

    Full Text Available Abstract Background Killer cell immunoglobulin-like receptors (KIRs are a family of inhibitory and activatory receptors that are expressed by most natural killer (NK cells. The KIR gene family is polymorphic: genomic diversity is achieved through differences in gene content and allelic polymorphism. The number of KIR loci has been reported to vary among individuals, resulting in different KIR haplotypes. In this study we report the genotypic structure of KIRs in 217 unrelated healthy Italian individuals from 22 immunogenetics laboratories, located in the northern, central and southern regions of Italy. Methods Two hundred and seventeen DNA samples were studied by a low resolution PCR-SSP kit designed to identify all KIR genes. Results All 17 KIR genes were observed in the population with different frequencies than other Caucasian and non-Caucasian populations; framework genes KIR3DL3, KIR3DP1, KIR2DL4 and KIR3DL2 were present in all individuals. Sixty-five different profiles were found in this Italian population study. Haplotype A remains the most prevalent and genotype 1, with a frequency of 28.5%, is the most commonly observed in the Italian population. Conclusion The Italian Caucasian population shows polymorphism of the KIR gene family like other Caucasian and non-Caucasian populations. Although 64 genotypes have been observed, genotype 1 remains the most frequent as already observed in other populations. Such knowledge of the KIR gene distribution in populations is very useful in the study of associations with diseases and in selection of donors for haploidentical bone marrow transplantation.

  13. Endocannabinoid receptor 1 gene variations increase risk for obesity and modulate body mass index in European populations

    DEFF Research Database (Denmark)

    Benzinou, Michael; Chèvre, Jean-Claude; Ward, Kirsten J

    2008-01-01

    The therapeutic effects of cannabinoid receptor blockade on obesity-associated phenotypes underline the importance of the endocannabinoid pathway on the energy balance. Using a staged-approach, we examined the contribution of the endocannabinoid receptor 1 gene (CNR1) on obesity and body mass index...

  14. Positive evolutionary selection on the RIG-I-like receptor genes in mammals.

    Directory of Open Access Journals (Sweden)

    Ana Lemos de Matos

    Full Text Available The mammalian RIG-I-like receptors, RIG-I, MDA5 and LGP2, are a family of DExD/H box RNA helicases responsible for the cytoplasmic detection of viral RNA. These receptors detect a variety of RNA viruses, or DNA viruses that express unusual RNA species, many of which are responsible for a great number of severe and lethal diseases. Host innate sentinel proteins involved in pathogen recognition must rapidly evolve in a dynamic arms race with pathogens, and thus are subjected to long-term positive selection pressures to avoid potential infections. Using six codon-based Maximum Likelihood methods, we were able to identify specific codons under positive selection in each of these three genes. The highest number of positively selected codons was detected in MDA5, but a great percentage of these codons were located outside of the currently defined protein domains for MDA5, which likely reflects the imposition of both functional and structural constraints. Additionally, our results support LGP2 as being the least prone to evolutionary change, since the lowest number of codons under selection was observed for this gene. On the other hand, the preponderance of positively selected codons for RIG-I were detected in known protein functional domains, suggesting that pressure has been imposed by the vast number of viruses that are recognized by this RNA helicase. Furthermore, the RIG-I repressor domain, the region responsible for recognizing and binding to its RNA substrates, exhibited the strongest evidence of selective pressures. Branch-site analyses were performed and several species branches on the three receptor gene trees showed evidence of episodic positive selection. In conclusion, by looking for evidence of positive evolutionary selection on mammalian RIG-I-like receptor genes, we propose that a multitude of viruses have crafted the receptors biological function in host defense, specifically for the RIG-I gene, contributing to the innate species

  15. Effects of tobacco smoke condensate on estrogen receptor-alpha gene expression and activity.

    Science.gov (United States)

    Martin, Mary Beth; Reiter, Ronald; Johnson, Michael; Shah, Mansi S; Iann, Mary C; Singh, Baljit; Richards, Julie Kate; Wang, Antai; Stoica, Adriana

    2007-10-01

    Metallo-estrogens are a new class of potent environmental estrogens. This study investigates whether tobacco smoke condensate (TSC), which contains metals and metalloids, elicits estrogen-like effects at environmentally relevant doses. Treatment of human breast cancer cells, MCF-7, with 40 microg/ml TSC resulted in a 2.5-fold stimulation of cell growth. TSC decreased the concentration of estrogen receptor (ER)-alpha protein and mRNA (63 and 62%, respectively), and increased the expression of the estrogen-regulated genes, progesterone receptor and pS2 (5- and 2-fold, respectively). In addition, TSC activated ER-alpha in COS-1 or CHO cells transiently transfected with wild-type ER-alpha and an ERE-CAT or an ERE-luciferase reporter gene (11- and 6-fold, respectively). TSC also activated a chimeric receptor (GAL-ER) containing the hormone binding domain of ER-alpha (3.5-fold). It blocked the binding of estradiol to the receptor without altering the affinity of estradiol (K(d) = 2.2-6.8 x 10(-10) m). Transfection assays with ER-alpha mutants identified C381, C447, H524, N532, E523, and D538 in the hormone binding domain as important for activation by TSC. In ovariectomized rats, low doses of TSC [10 or 20 mg/kg body weight (bw)] increased uterine wet weight (1.7- and 2.1-fold), and induced the expression of progesterone receptor and complement C3 in the uterus (2- and 26-fold) and mammary gland (4.4- and 15-fold). Both the in vitro and in vivo TSC effects were blocked by the antiestrogen ICI 182,780, suggesting the involvement of ER. Collectively, these results provide strong evidence that low doses of TSC, acting through the hormone binding domain, exert estrogen-like effects in cell culture and animals.

  16. Effects of nuclear receptor transactivation on steroid hormone synthesis and gene expression in porcine Leydig cells.

    Science.gov (United States)

    Gray, Matthew A; Squires, E James

    2013-01-01

    Male pigs are routinely castrated at a young age to prevent the formation of androstenone, a 16-androstene testicular steroid that is a major component of boar taint. The practice of castration has been increasingly viewed as unfavorable, due to both economic considerations and animal welfare concerns. Other means of controlling boar taint, including reducing the synthesis of androstenone in the testes, would eliminate the need for castration. In this study, we determined the effects of transactivation of three nuclear receptors, the constitutive androstane receptor (CAR), pregnane X receptor (PXR), and farnesoid X receptor (FXR), on gene expression and steroid hormone metabolism in primary porcine Leydig cells. Primary cells were isolated from mature boars, and transcript expression levels were assayed using real-time PCR. The transcripts of interest included porcine orthologs of common phase I and phase II metabolic enzymes, enzymes involved in steroidogenesis, and transcripts previously shown to be differentially expressed in boars with high androstenone and boar taint levels. Transactivation of CAR, PXR, or FXR increased the expression of several genes involved in steroidogenesis, including cytochrome B5A (CYB5A) and cytochrome B5 reductase 1 (CYB5R1), as well as hydroxysteroid (17-beta) dehydrogenase 4 (HSD17B4) and retinol dehydrogenase 12 (RDH12). Treatment with (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime (CITCO), a CAR agonist, or rifampicin (RIF), a PXR agonist, resulted in significantly (pnuclear receptors may lead to increased levels of 16-androstene steroids, likely by altering the activity of CYP17A1 through CYB5A and CYB5R1 to the andien-β synthase reaction and away from the 17α-hydroxylase and C17, 20 lyase reactions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Expansion of microsatellite in the thyroid hormone receptor-alpha1 gene linked to increased receptor expression and less aggressive thyroid cancer

    DEFF Research Database (Denmark)

    Onda, Masamitsu; Li, Daisy; Suzuki, Shinichi

    2002-01-01

    PURPOSE: The purpose of this study was to determine whether the length of the THRA1 microsatellite, which resides in a noncoding portion of the thyroid hormone receptor-alpha1 gene, affects receptor expression and is linked to clinicopathological parameters in thyroid cancer. EXPERIMENTAL DESIGN......: In 30 cases of surgically resected sporadic thyroid cancer, the length of the THRA1 microsatellite was determined by DNA sequence analysis, and expression of thyroid hormone receptor-alpha1 was assessed immunohistochemically in thin sections cut from tumor blocks. The length of THRA1 and expression...... of thyroid hormone receptor-alpha1 were also assessed in seven cancer cell lines. Regression analysis was used to gauge the correlation between the size of THRA1 and receptor expression. Multivariate analysis was used to test for links to the clinical parameters of gender, age, histology, stage, nodal...

  18. The μ-opioid receptor gene and smoking initiation and nicotine dependence

    Directory of Open Access Journals (Sweden)

    Kendler Kenneth S

    2006-08-01

    Full Text Available Abstract The gene encoding the mu-opioid receptor (OPRM1 is reported to be associated with a range of substance dependence. Experiments in knockout mice indicate that the mu-opioid receptor may mediate reinforcing effects of nicotine. In humans, opioid antagonist naltrexone may reduce the reinforcing effects of tobacco smoking. Additionally, the OPRM1 gene is located in a region showing linkage to nicotine dependence. The OPRM1 is thus a plausible candidate gene for smoking behavior. To investigate whether OPRM1 contributes to the susceptibility of smoking initiation and nicotine dependence, we genotyped 11 SNPs in the gene for 688 Caucasian subjects of lifetime smokers and nonsmokers. Three SNPs showed nominal significance for smoking initiation and one reached significance for nicotine dependence. The global test for three-marker (rs9479757-rs2075572-rs10485057 haplotypes was significant for smoking initiation (p = 0.0022. The same three-marker haplotype test was marginal (p = 0.0514 for nicotine dependence. These results suggest that OPRM1 may be involved in smoking initiation and nicotine dependence.

  19. Gene Expression Profiling of Chemokines and Their Receptors in Low and High Grade Astrocytoma

    Science.gov (United States)

    Sharma, Ira; Singh, Avninder; Sharma, Karam Chand; Saxena, Sunita

    2017-05-01

    Background: Despite intense interest in molecular characterization and searches for novel therapeutic targets, the glioblastoma remains a formidable clinical challenge. Among many contributors to gliomagenesis, chemokines have drawn special attention due to their involvement in a plethora of biological processes and pathological conditions. In the present study we aimed to elucidate any pro-gliomagenic chemokine axis and probable roles in development of glioblastoma multiforme (GBM). Method: An array of 84 chemokines, chemokine receptors and related genes were studied by real time PCR with comparison between low grade astrocytoma (diffuse astrocytoma – grade II) and high grade astrocytoma (glioblastoma multiforme – grade IV). Gene ontology analysis and database mining were performed to funnel down the important axis in GBM followed by validation at the protein level by immunohistochemistry on tissue microarrays. Results: Gene expression and gene ontology analysis identified CXCL8 as an important chemokine which was more frequently up-regulated in GBM as compared to diffuse astrocytoma. Further we demonstrated localization of CXCL8 and its receptors in glioblastoma possibly affecting autocrine and paracrine signalling that promotes tumor cell proliferation and neovascularisation with vascular mimicry. Conclusion: From these results CXCL8 appears to be an important gliomagenic chemokine which may be involved in GBM growth by promoting tumor cell proliferation and neovascularization via vascular mimicry. Further in vitro and in vivo investigations are required to explore its potential candidature in anti-GBM therapy. Creative Commons Attribution License

  20. Structure of the gene for human β2-adrenergic receptor: expression and promoter characterization

    International Nuclear Information System (INIS)

    Emorine, L.J.; Marullo, S.; Delavier-Klutchko, C.; Kaveri, S.V.; Durieu-Trautmann, O.; Strosberg, A.D.

    1987-01-01

    The genomic gene coding for the human β 2 -adrenergic receptor (β 2 AR) from A431 epidermoid cells has been isolated. Transfection of the gene into eukaryotic cells restores a fully active receptor/GTP-binding protein/adenylate cyclase complex with β 2 AR properties. Southern blot analyses with β 2 AR-specific probes show that a single β 2 AR gene is common to various human tissues and that its flanking sequences are highly conserved among humans and between man and rabbit, mouse, and hamster. Functional significance of these regions is supported by the presence of a promoter region (including mRNA cap sites, two TATA boxes, a CAAT box, and three G + C-rich regions that resemble binding sites for transcription factor Sp1) 200-300 base pairs 5' to the translation initiation codon. In the 3' flanking region, sequences homologous to glucocorticoid-response elements might be responsible for the increased expression of the β 2 AR gene observed after treatment of the transfected cells with hydrocortisone. In addition, 5' to the promoter region, an open reading frame encodes a 251-residue polypeptide that displays striking homologies with protein kinases and other nucleotide-binding proteins

  1. Familial hypocalciuric hypercalcemia associated with mutation in the human Ca{sup 2+}-sensing receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Aida, Kaoru; Koishi, Sawako; Inoue, Masaharu [Univ. of Yamanashi Medical School, Yamanashi (Japan)] [and others

    1995-09-01

    Familial hypocalciuric hypercalcemia (FHH) is generally characterized by lifelong hypercalcemia without hypercalciuria and is inherited in an autosomal dominant manner. Affected individuals show abnormal parathyroid and renal responses to changes in the extracellular calcium concentration. A Japanese FHH family was screened for mutations in the Ca{sup 2+} -sensing receptor gene by the polymerase chain reaction and single strand conformation polymorphism. The proband with hypercalcemia showed an abnormal pattern in exon 1 of the gene, whereas her two sisters with normocalcemia showed a normal pattern. The consanguineous parents with borderline serum calcium concentrations showed both patterns. Nucleotide sequence analysis identified a G{yields}C point mutation at nucleotide 118 that resulted in the conversion of the normal codon for proline into a codon for alanine at amino acid 40 (numbered according to the bovine complementary DNA). The proband was homozygous for the mutation, and the parents were heterozygous. These results imply that this mutation in the human Ca{sup 2+}-sensing receptor gene causes FHH and that the dosage of the gene defect determines disease phenotype. 33 refs., 4 figs., 1 tab.

  2. Impact of gene polymorphisms of gonadotropins and their receptors on human reproductive success.

    Science.gov (United States)

    Casarini, Livio; Santi, Daniele; Marino, Marco

    2015-12-01

    Gonadotropins and their receptors' genes carry several single-nucleotide polymorphisms resulting in endocrine genotypes modulating reproductive parameters, diseases, and lifespan leading to important implications for reproductive success and potential relevance during human evolution. Here we illustrate common genotypes of the gonadotropins and gonadotropin receptors' genes and their clinical implications in phenotypes relevant for reproduction such as ovarian cycle length, age of menopause, testosterone levels, polycystic ovary syndrome, and cancer. We then discuss their possible role in human reproduction and adaptation to the environment. Gonadotropins and their receptors' variants are differently distributed among human populations. Some hints suggest that they may be the result of natural selection that occurred in ancient times, increasing the individual chance of successful mating, pregnancy, and effective post-natal parental cares. The gender-related differences in the regulation of the reproductive endocrine systems imply that many of these genotypes may lead to sex-dependent effects, increasing the chance of mating and reproductive success in one sex at the expenses of the other sex. Also, we suggest that sexual conflicts within the FSH and LH-choriogonadotropin receptor genes contributed to maintain genotypes linked to subfertility among humans. Because the distribution of polymorphic markers results in a defined geographical pattern due to human migrations rather than natural selection, these polymorphisms may have had only a weak impact on reproductive success. On the contrary, such genotypes could acquire relevant consequences in the modern, developed societies in which parenthood attempts often occur at a later age, during a short, suboptimal reproductive window, making clinical fertility treatments necessary. © 2015 Society for Reproduction and Fertility.

  3. Polymorphism of growth hormone receptor (GHR gene in Holstein Friesian dairy cattle

    Directory of Open Access Journals (Sweden)

    Restu Misrianti

    2011-12-01

    Full Text Available Growth hormone gene have a critical role in the regulation of lactation, mammary gland development and growth process through its interaction with a specific receptor. Growth hormone (GH is an anabolic hormone which is synthesized and secreted by somatotrop cell in pituitary anterior lobe, and interacts with a specific receptor on the surface of the target cells. Growth hormone receptor (GHR has been suggested as candidate gene for traits related to milk production in Bovidae. The purpose of this study was to identify genetic polymorphism of the Growth Hormone Receptor (GHR genes in Holstein Friesian (HF cattle. Total of 353 blood samples were collected from five populations belonging to Cikole Dairy Cattle Breeding Station (BPPT-SP Cikole (88 samples, Pasir Kemis (95 samples, Cilumber (98 samples, Cipelang Livestock Embryo Center (BET Cipelang (40 samples, Singosari National Artificial Insemination Centre (BBIB Singosari (32 samples and 17 frozen semen samples from Lembang Artificial Insemination Center (BIB Lembang. Genomic DNAs were extracted by a standard phenol-chloroform protocol and amplified by a polymerase chain reaction (PCR techniques then PCR products were genotyped by the Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP methods. There were two allele dan three genotypes were found namely: allele A and G, Genotype AA, AG and GG repectively. Allele A frequency (0.70-0.82 relatively higher than allele G frequency (0.18-0.30. Chi square test show that on group of BET Cipelang, BIB Lembang and BBIB Singosari population were not significantly different (0.00-0.93, while on group of BET Cipelang, BIB Lembang dan BBIB Singosari population were significantly different (6.02-11.13. Degree of observed heterozygosity (Ho ranged from 0.13-0.42 and expected heterozygosity (He ranged from 0.29-0.42.

  4. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese Ay mice

    International Nuclear Information System (INIS)

    Nonogaki, Katsunori; Nozue, Kana; Oka, Yoshitomo

    2006-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A y mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A y mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A y mice, but did not increase plasma adiponectin levels

  5. A Gene Implicated in Activation of Retinoic Acid Receptor Targets Is a Novel Renal Agenesis Gene in Humans.

    Science.gov (United States)

    Brophy, Patrick D; Rasmussen, Maria; Parida, Mrutyunjaya; Bonde, Greg; Darbro, Benjamin W; Hong, Xiaojing; Clarke, Jason C; Peterson, Kevin A; Denegre, James; Schneider, Michael; Sussman, Caroline R; Sunde, Lone; Lildballe, Dorte L; Hertz, Jens Michael; Cornell, Robert A; Murray, Stephen A; Manak, J Robert

    2017-09-01

    Renal agenesis (RA) is one of the more extreme examples of congenital anomalies of the kidney and urinary tract (CAKUT). Bilateral renal agenesis is almost invariably fatal at birth, and unilateral renal agenesis can lead to future health issues including end-stage renal disease. Genetic investigations have identified several gene variants that cause RA, including EYA1 , LHX1 , and WT1 However, whereas compound null mutations of genes encoding α and γ retinoic acid receptors (RARs) cause RA in mice, to date there have been no reports of variants in RAR genes causing RA in humans. In this study, we carried out whole exome sequence analysis of two families showing inheritance of an RA phenotype, and in both identified a single candidate gene, GREB1L Analysis of a zebrafish greb1l loss-of-function mutant revealed defects in the pronephric kidney just prior to death, and F0 CRISPR/Cas9 mutagenesis of Greb1l in the mouse revealed kidney agenesis phenotypes, implicating Greb1l in this disorder. GREB1L resides in a chromatin complex with RAR members, and our data implicate GREB1L as a coactivator for RARs. This study is the first to associate a component of the RAR pathway with renal agenesis in humans. Copyright © 2017 by the Genetics Society of America.

  6. Altered Expression of Genes Encoding Neurotransmitter Receptors in GnRH Neurons of Proestrous Mice.

    Science.gov (United States)

    Vastagh, Csaba; Rodolosse, Annie; Solymosi, Norbert; Liposits, Zsolt

    2016-01-01

    Gonadotropin-releasing hormone (GnRH) neurons play a key role in the central regulation of reproduction. In proestrous female mice, estradiol triggers the pre-ovulatory GnRH surge, however, its impact on the expression of neurotransmitter receptor genes in GnRH neurons has not been explored yet. We hypothesized that proestrus is accompanied by substantial changes in the expression profile of genes coding for neurotransmitter receptors in GnRH neurons. We compared the transcriptome of GnRH neurons obtained from intact, proestrous, and metestrous female GnRH-GFP transgenic mice, respectively. About 1500 individual GnRH neurons were sampled from both groups and their transcriptome was analyzed using microarray hybridization and real-time PCR. In this study, changes in mRNA expression of genes involved in neurotransmitter signaling were investigated. Differential gene expression was most apparent in GABA-ergic ( Gabbr1, Gabra3, Gabrb3, Gabrb2, Gabrg2 ), glutamatergic ( Gria1, Gria2, Grin1, Grin3a, Grm1, Slc17a6 ), cholinergic ( Chrnb2, Chrm4 ) and dopaminergic ( Drd3, Drd4 ), adrenergic ( Adra1b, Adra2a, Adra2c ), adenosinergic ( Adora2a, Adora2b ), glycinergic ( Glra ), purinergic ( P2rx7 ), and serotonergic ( Htr1b ) receptors. In concert with these events, expression of genes in the signaling pathways downstream to the receptors, i.e., G-proteins ( Gnai1, Gnai2, Gnas ), adenylate-cyclases ( Adcy3, Adcy5 ), protein kinase A ( Prkaca, Prkacb ) protein kinase C ( Prkca ) and certain transporters ( Slc1a4, Slc17a6, Slc6a17 ) were also changed. The marked differences found in the expression of genes involved in neurotransmitter signaling of GnRH neurons at pro- and metestrous stages of the ovarian cycle indicate the differential contribution of these neurotransmitter systems to the induction of the pre-ovulatory GnRH surge, the known prerequisite of the subsequent hormonal cascade inducing ovulation.

  7. Altered expression of genes encoding neurotransmitter receptors in GnRH neurons of proestrous mice

    Directory of Open Access Journals (Sweden)

    Csaba Vastagh

    2016-10-01

    Full Text Available Gonadotropin-releasing hormone (GnRH neurons play a key role in the central regulation of reproduction. In proestrous female mice, estradiol triggers the pre-ovulatory GnRH surge, however, its impact on the expression of neurotransmitter receptor genes in GnRH neurons has not been explored yet. We hypothesized that proestrus is accompanied by substantial changes in the expression profile of genes coding for neurotransmitter receptors in GnRH neurons. We compared the transcriptome of GnRH neurons obtained from intact, proestrous and metestrous female GnRH-GFP transgenic mice, respectively. About 1500 individual GnRH neurons were sampled from both groups and their transcriptome was analyzed using microarray hybridization and real-time PCR. In this study, changes in mRNA expression of genes involved in neurotransmitter signaling were investigated. Differential gene expression was most apparent in GABA-ergic (Gabbr1, Gabra3, Gabrb3, Gabrb2, Gabrg2, glutamatergic (Gria1, Gria2, Grin1, Grin3a, Grm1, Slc17a6, cholinergic (Chrnb2, Chrm4 and dopaminergic (Drd3, Drd4, adrenergic (Adra1b, Adra2a, Adra2c, adenosinergic (Adora2a, Adora2b, glycinergic (Glra, purinergic (P2rx7 and serotonergic (Htr1b receptors. In concert with these events, expression of genes in the signaling pathways downstream to the receptors, i.e. G-proteins (Gnai1, Gnai2, Gnas, adenylate-cyclases (Adcy3, Adcy5, protein kinase A (Prkaca, Prkacb protein kinase C (Prkca and certain transporters (Slc1a4, Slc17a6, Slc6a17 were also changed. The marked differences found in the expression of genes involved in neurotransmitter signaling of GnRH neurons at pro- and metestrous stages of the ovarian cycle indicate the differential contribution of these neurotransmitter systems to the induction of the pre-ovulatory GnRH surge, the known prerequisite of the subsequent hormonal cascade inducing ovulation.

  8. Expression of five acetylcholine receptor subunit genes in Brugia malayi adult worms

    Directory of Open Access Journals (Sweden)

    Ben-Wen Li

    2015-12-01

    Full Text Available Acetylcholine receptors (AChRs are required for body movement in parasitic nematodes and are targets of “classical” anthelmintic drugs such as levamisole and pyrantel and of newer drugs such as tribendimidine and derquantel. While neurotransmission explains the effects of these drugs on nematode movement, their effects on parasite reproduction are unexplained. The levamisole AChR type (L-AChRs in Caenorhabditis elegans is comprised of five subunits: Cel-UNC-29, Cel-UNC-38, Cel-UNC-63, Cel-LEV-1 and Cel-LEV-8. The genome of the filarial parasite Brugia malayi contains nine AChRs subunits including orthologues of Cel-unc-29, Cel-unc-38, and Cel-unc-63. We performed in situ hybridization with RNA probes to localize the expression of five AChR genes (Bm1_35890-Bma-unc-29, Bm1_20330-Bma-unc-38, Bm1_38195-Bma-unc-63, Bm1_48815-Bma-acr-26 and Bm1_40515-Bma-acr-12 in B. malayi adult worms. Four of these genes had similar expression patterns with signals in body muscle, developing embryos, spermatogonia, uterine wall adjacent to stretched microfilariae, wall of Vas deferens, and lateral cord. Three L-AChR subunit genes (Bma-unc-29, Bma-unc-38 and Bma-unc-63 were expressed in body muscle, which is a known target of levamisole. Bma-acr-12 was co-expressed with these levamisole subunit genes in muscle, and this suggests that its protein product may form receptors with other alpha subunits. Bma-acr-26 was expressed in male muscle but not in female muscle. Strong expression signals of these genes in early embryos and gametes in uterus and testis suggest that AChRs may have a role in nervous system development of embryogenesis and spermatogenesis. This would be consistent with embryotoxic effects of drugs that target these receptors in filarial worms. Our data show that the expression of these receptor genes is tightly regulated with regard to localization in adult worms and developmental stage in embryos and gametes. These results may help to explain the

  9. GLUCOCORTICOID RECEPTOR-RELATED GENES: GENOTYPE AND BRAIN GENE EXPRESSION RELATIONSHIPS TO SUICIDE AND MAJOR DEPRESSIVE DISORDER.

    Science.gov (United States)

    Yin, Honglei; Galfalvy, Hanga; Pantazatos, Spiro P; Huang, Yung-Yu; Rosoklija, Gorazd B; Dwork, Andrew J; Burke, Ainsley; Arango, Victoria; Oquendo, Maria A; Mann, J John

    2016-06-01

    We tested the relationship between genotype, gene expression and suicidal behavior and major depressive disorder (MDD) in live subjects and postmortem samples for three genes, associated with the hypothalamic-pituitary-adrenal axis, suicidal behavior, and MDD; FK506-binding protein 5 (FKBP5), Spindle and kinetochore-associated protein 2 (SKA2), and Glucocorticoid Receptor (NR3C1). Single-nucleotide polymorphisms (SNPs) and haplotypes were tested for association with suicidal behavior and MDD in a live (N = 277) and a postmortem sample (N = 209). RNA-seq was used to examine gene and isoform-level brain expression postmortem (Brodmann Area 9; N = 59). Expression quantitative trait loci (eQTL) relationships were examined using a public database (UK Brain Expression Consortium). We identified a haplotype within the FKBP5 gene, present in 47% of the live subjects, which was associated with increased risk of suicide attempt (OR = 1.58, t = 6.03, P = .014). Six SNPs on this gene, three SNPs on SKA2, and one near NR3C1 showed before-adjustment association with attempted suicide, and two SNPs of SKA2 with suicide death, but none stayed significant after adjustment for multiple testing. Only the SKA2 SNPs were related to expression in the prefrontal cortex (pFCTX). One NR3C1 transcript had lower expression in suicide relative to nonsuicide sudden death cases (b = -0.48, SE = 0.12, t = -4.02, adjusted P = .004). We have identified an association of FKBP5 haplotype with risk of suicide attempt and found an association between suicide and altered NR3C1 gene expression in the pFCTX. Our findings further implicate hypothalamic pituitary axis dysfunction in suicidal behavior. © 2016 Wiley Periodicals, Inc.

  10. Toll-like receptors and microbial exposure : gene-gene and gene-environment interaction in the development of atopy

    NARCIS (Netherlands)

    Reijmerink, N. E.; Kerkhof, M.; Bottema, R. W. B.; Gerritsen, J.; Stelma, F. F.; Thijs, C.; van Schayck, C. P.; Smit, H. A.; Brunekreef, B.; Postma, D. S.; Koppelman, G. H.

    2011-01-01

    Environmental and genetic factors contribute to atopy development. High microbial exposure may confer a protective effect on atopy. Toll-like receptors (TLRs) bind microbial products and are important in activating the immune system. To assess whether interactions between microbial exposures and

  11. Toll-like receptors and microbial exposure: gene-gene and gene-environment interaction in the development of atopy

    NARCIS (Netherlands)

    Reijmerink, N.E.; Kerkhof, M. van de; Bottema, R.W.; Gerritsen, J.; Stelma, F.F.; Thijs, C.; Schayck, C.P. van; Smit, H.A.; Brunekreef, B.; Postma, D.S.; Koppelman, G.H.

    2011-01-01

    Environmental and genetic factors contribute to atopy development. High microbial exposure may confer a protective effect on atopy. Toll-like receptors (TLRs) bind microbial products and are important in activating the immune system. To assess whether interactions between microbial exposures and

  12. Phosphorylated and sumoylation-deficient progesterone receptors drive proliferative gene signatures during breast cancer progression

    Science.gov (United States)

    2012-01-01

    Introduction Progesterone receptors (PR) are emerging as important breast cancer drivers. Phosphorylation events common to breast cancer cells impact PR transcriptional activity, in part by direct phosphorylation. PR-B but not PR-A isoforms are phosphorylated on Ser294 by mitogen activated protein kinase (MAPK) and cyclin dependent kinase 2 (CDK2). Phospho-Ser294 PRs are resistant to ligand-dependent Lys388 SUMOylation (that is, a repressive modification). Antagonism of PR small ubiquitin-like modifier (SUMO)ylation by mitogenic protein kinases suggests a mechanism for derepression (that is, transcriptional activation) of target genes. As a broad range of PR protein expression is observed clinically, a PR gene signature would provide a valuable marker of PR contribution to early breast cancer progression. Methods Global gene expression patterns were measured in T47D and MCF-7 breast cancer cells expressing either wild-type (SUMOylation-capable) or K388R (SUMOylation-deficient) PRs and subjected to pathway analysis. Gene sets were validated by RT-qPCR. Recruitment of coregulators and histone methylation levels were determined by chromatin immunoprecipitation. Changes in cell proliferation and survival were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and western blotting. Finally, human breast tumor cohort datasets were probed to identify PR-associated gene signatures; metagene analysis was employed to define survival rates in patients whose tumors express a PR gene signature. Results 'SUMO-sensitive' PR target genes primarily include genes required for proliferative and pro-survival signaling. DeSUMOylated K388R receptors are preferentially recruited to enhancer regions of derepressed genes (that is, MSX2, RGS2, MAP1A, and PDK4) with the steroid receptor coactivator, CREB-(cAMP-response element-binding protein)-binding protein (CBP), and mixed lineage leukemia 2 (MLL2), a histone methyltransferase mediator of nucleosome

  13. Lack of Association between an Interleukin-I Receptor Antagonist Gene Polymorphism and Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Victor A. Danis

    1994-01-01

    Full Text Available Non-MHC linked genes may contribute to genetic predisposition to the development of systemic lupus erythematosus. The possibility that cytokine genes may be involved was raised by the observation of increased frequency in expression of an uncommon allele of an interleukin-I receptor antagonist gene polymorphism and SLE in a recent U.K. study. We have not been able to show any significant differences in expression of this allele in SLE patients as a whole or in any patient subgroups. Our results actually show a slight decrease in the expression of this allele in SLE patients compared with healthy controls and in SLE patients with malar rash compared with SLE patients without malar rash.

  14. Inverse agonistic activity of antihistamines and suppression of histamine H1 receptor gene expression.

    Science.gov (United States)

    Mizuguchi, Hiroyuki; Ono, Shohei; Hattori, Masashi; Fukui, Hiroyuki

    2012-01-01

    Histamine H(1) receptor (H1R) expression influences the severity of allergy symptoms. We examined the effect of inverse agonists on H1R gene expression. Two inverse agonists (carebastine and mepyramine), but not the neutral antagonist oxatomide, decreased inositol phosphate accumulation. The inverse agonists also decreased H1R gene expression and down-regulated H1R mRNA below basal expression, while basal H1R mRNA expression was maintained after oxatomide treatment. These results suggest that inverse agonists more potently alleviate allergy symptoms by not only inhibiting stimulus-induced up-regulation of H1R gene expression but also by suppressing basal histamine signaling through their inverse agonistic activity.

  15. Canine olfactory receptor gene polymorphism and its relation to odor detection performance by sniffer dogs.

    Science.gov (United States)

    Lesniak, Anna; Walczak, Marta; Jezierski, Tadeusz; Sacharczuk, Mariusz; Gawkowski, Maciej; Jaszczak, Kazimierz

    2008-01-01

    The outstanding sensitivity of the canine olfactory system has been acknowledged by using sniffer dogs in military and civilian service for detection of a variety of odors. It is hypothesized that the canine olfactory ability is determined by polymorphisms in olfactory receptor (OR) genes. We investigated 5 OR genes for polymorphic sites which might affect the olfactory ability of service dogs in different fields of specific substance detection. All investigated OR DNA sequences proved to have allelic variants, the majority of which lead to protein sequence alteration. Homozygous individuals at 2 gene loci significantly differed in their detection skills from other genotypes. This suggests a role of specific alleles in odor detection and a linkage between single-nucleotide polymorphism and odor recognition efficiency.

  16. A variant in the fat mass and obesity-associated gene (FTO) and variants near the melanocortin-4 receptor gene (MC4R) do not influence dietary intake

    DEFF Research Database (Denmark)

    Hasselbalch, Ann L; Angquist, Lars; Christiansen, Lene

    2010-01-01

    We investigated the role of the fat mass and obesity associated gene (FTO) and variants near the melanocortin-4 receptor gene (MC4R) in modulating habitual intake of total energy and macronutrients, glycemic index, glycemic load, dietary energy density, and energy from 20 food groups in adults...

  17. Identification and expression analyses of a novel serotonin receptor gene, 5-HT2β, in the field cricket, Gryllus bimaculatus.

    Science.gov (United States)

    Watanabe, T; Aonuma, H

    2012-01-01

    Biogenic amine serotonin (5-HT) modulates various aspects of behaviors such as aggressive behavior and circadian behavior in the cricket. In our previous report, in order to elucidate the molecular basis of the cricket 5-HT system, we identified three genes involved in 5-HT biosynthesis, as well as four 5-HT receptor genes (5-HT1A, 5-HT1B, 5-HT2α, and 5-HT7) expressed in the brain of the field cricket Gryllus bimaculatus DeGeer [7]. In the present study, we identified Gryllus 5-HT2β gene, an additional 5-HT receptor gene expressed in the cricket brain, and examined its tissue-specific distribution and embryonic stage-dependent expression. Gryllus 5-HT2β gene was ubiquitously expressed in the all examined adult tissues, and was expressed during early embryonic development, as well as during later stages. This study suggests functional differences between two 5-HT2 receptors in the cricket.

  18. Oxytocin receptor gene polymorphisms are associated with human directed social behavior in dogs (Canis familiaris.

    Directory of Open Access Journals (Sweden)

    Anna Kis

    Full Text Available The oxytocin system has a crucial role in human sociality; several results prove that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans. Dogs' parallel evolution with humans and their adaptation to the human environment has made them a useful species to model human social interactions. Previous research indicates that dogs are eligible models for behavioral genetic research, as well. Based on these previous findings, our research investigated associations between human directed social behaviors and two newly described (-212AG, 19131AG and one known (rs8679684 single nucleotide polymorphisms (SNPs in the regulatory regions (5' and 3' UTR of the oxytocin receptor gene in German Shepherd (N = 104 and Border Collie (N = 103 dogs. Dogs' behavior traits have been estimated in a newly developed test series consisting of five episodes: Greeting by a stranger, Separation from the owner, Problem solving, Threatening approach, Hiding of the owner. Buccal samples were collected and DNA was isolated using standard protocols. SNPs in the 3' and 5' UTR regions were analyzed by polymerase chain reaction based techniques followed by subsequent electrophoresis analysis. The gene-behavior association analysis suggests that oxytocin receptor gene polymorphisms have an impact in both breeds on (i proximity seeking towards an unfamiliar person, as well as their owner, and on (ii how friendly dogs behave towards strangers, although the mediating molecular regulatory mechanisms are yet unknown. Based on these results, we conclude that similarly to humans, the social behavior of dogs towards humans is influenced by the oxytocin system.

  19. Haplotypes of the porcine peroxisome proliferator-activated receptor delta gene are associated with backfat thickness

    Directory of Open Access Journals (Sweden)

    Blöcker Helmut

    2009-11-01

    Full Text Available Abstract Background Peroxisome proliferator-activated receptor delta belongs to the nuclear receptor superfamily of ligand-inducible transcription factors. It is a key regulator of lipid metabolism. The peroxisome proliferator-activated receptor delta gene (PPARD has been assigned to a region on porcine chromosome 7, which harbours a quantitative trait locus for backfat. Thus, PPARD is considered a functional and positional candidate gene for backfat thickness. The purpose of this study was to test this candidate gene hypothesis in a cross of breeds that were highly divergent in lipid deposition characteristics. Results Screening for genetic variation in porcine PPARD revealed only silent mutations. Nevertheless, significant associations between PPARD haplotypes and backfat thickness were observed in the F2 generation of the Mangalitsa × Piétrain cross as well as a commercial German Landrace population. Haplotype 5 is associated with increased backfat in F2 Mangalitsa × Piétrain pigs, whereas haplotype 4 is associated with lower backfat thickness in the German Landrace population. Haplotype 4 and 5 carry the same alleles at all but one SNP. Interestingly, the opposite effects of PPARD haplotypes 4 and 5 on backfat thickness are reflected by opposite effects of these two haplotypes on PPAR-δ mRNA levels. Haplotype 4 significantly increases PPAR-δ mRNA levels, whereas haplotype 5 decreases mRNA levels of PPAR-δ. Conclusion This study provides evidence for an association between PPARD and backfat thickness. The association is substantiated by mRNA quantification. Further studies are required to clarify, whether the observed associations are caused by PPARD or are the result of linkage disequilibrium with a causal variant in a neighbouring gene.

  20. The nicotinic acetylcholine receptor gene family of the silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Zhang Chuan-Xi

    2007-09-01

    Full Text Available Abstract Background Nicotinic acetylcholine receptors (nAChRs mediate fast synaptic cholinergic transmission in the insect central nervous system. The insect nAChR is the molecular target of a class of insecticides, neonicotinoids. Like mammalian nAChRs, insect nAChRs are considered to be made up of five subunits, coded by homologous genes belonging to the same family. The nAChR subunit genes of Drosophila melanogaster, Apis mellifera and Anopheles gambiae have been cloned previously based on their genome sequences. The silkworm Bombyx mori is a model insect of Lepidoptera, among which are many agricultural pests. Identification and characterization of B. mori nAChR genes could provide valuable basic information for this important family of receptor genes and for the study of the molecular mechanisms of neonicotinoid action and resistance. Results We searched the genome sequence database of B. mori with the fruit fly and honeybee nAChRs by tBlastn and cloned all putative silkworm nAChR cDNAs by reverse transcriptase-polymerase chain reaction (RT-PCR and rapid amplification of cDNA ends (RACE methods. B. mori appears to have the largest known insect nAChR gene family to date, including nine α-type subunits and three β-type subunits. The silkworm possesses three genes having low identity with others, including one α and two β subunits, α9, β2 and β3. Like the fruit fly and honeybee counterparts, silkworm nAChR gene α6 has RNA-editing sites, and α4, α6 and α8 undergo alternative splicing. In particular, alternative exon 7 of Bmα8 may have arisen from a recent duplication event. Truncated transcripts were found for Bmα4 and Bmα5. Conclusion B. mori possesses a largest known insect nAChR gene family characterized to date, including nine α-type subunits and three β-type subunits. RNA-editing, alternative splicing and truncated transcripts were found in several subunit genes, which might enhance the diversity of the gene family.

  1. Latitudinal Clines of the Human Vitamin D Receptor and Skin Color Genes

    Directory of Open Access Journals (Sweden)

    Dov Tiosano

    2016-05-01

    Full Text Available The well-documented latitudinal clines of genes affecting human skin color presumably arise from the need for protection from intense ultraviolet radiation (UVR vs. the need to use UVR for vitamin D synthesis. Sampling 751 subjects from a broad range of latitudes and skin colors, we investigated possible multilocus correlated adaptation of skin color genes with the vitamin D receptor gene (VDR, using a vector correlation metric and network method called BlocBuster. We discovered two multilocus networks involving VDR promoter and skin color genes that display strong latitudinal clines as multilocus networks, even though many of their single gene components do not. Considered one by one, the VDR components of these networks show diverse patterns: no cline, a weak declining latitudinal cline outside of Africa, and a strong in- vs. out-of-Africa frequency pattern. We confirmed these results with independent data from HapMap. Standard linkage disequilibrium analyses did not detect these networks. We applied BlocBuster across the entire genome, showing that our networks are significant outliers for interchromosomal disequilibrium that overlap with environmental variation relevant to the genes’ functions. These results suggest that these multilocus correlations most likely arose from a combination of parallel selective responses to a common environmental variable and coadaptation, given the known Mendelian epistasis among VDR and the skin color genes.

  2. Association of Killer Cell Immunoglobulin- Like Receptor Genes in Iranian Patients with Rheumatoid Arthritis.

    Directory of Open Access Journals (Sweden)

    Masoumeh Nazari

    Full Text Available Rheumatoid arthritis (RA is a chronic inflammatory disorder characterized by persistent synovitis, ultimately leading to cartilage and bone degeneration. Natural Killer cells and CD28 null T-cells are suspected as role players in RA pathogenesis. These cells are similar in feature and function, as they both exert their cytotoxic effect via Killer Cell Immunoglobulin- Like Receptors (KIR on their surface. KIR genes have either an inhibitory or activating effect depending on their intracytoplasmic structure. Herein we genotyped 16 KIR genes, 3 pseudo genes and 6 HLA class І genes as their corresponding ligands in RA patients and control subjects.In this case-control study, KIR and HLA genes were genotyped in 400 RA patients and 372 matched healthy controls using sequence-specific primers (SSP-PCR. Differences in the frequency of genes and haplotypes were determined by χ² test.KIR2DL2, 2DL5a, 2DL5b and activating KIR: KIR2DS5 and 3DS1 were all protective against RA. KIR2DL5 removal from a full Inhibitory KIR haplotype converted the mild protection (OR = 0.56 to a powerful predisposition to RA (OR = 16.47. Inhibitory haplotype No. 7 comprising KIR2DL5 in the absence of KIR2DL1 and KIR2DL3 confers a 14-fold protective effect against RA.Individuals carrying the inhibitory KIR haplotype No. 6 have a high potential risk for developing RA.

  3. Genetic recombination within the human T-cell receptor α-chain gene complex

    International Nuclear Information System (INIS)

    Robinson, M.A.; Kindt, T.J.

    1987-01-01

    Genetic analyses of the human T-cell receptor (TCR) α-chain genes indicate that recombination events may occur frequently within this gene complex. Examination of the inheritance of restriction fragment length polymorphisms (RFLP) detected by using probes for constant or variable region gene segments made it possible to assign TCRα haplotypes to the 16 parents and 43 offspring of eight families studied. A total of six RFLP, three for the constant region and three for variable region segments, were examined in the present studies. Most enzyme and probe combinations tested revealed no polymorphism and those finally selected for the study showed limited polymorphism in that only two or, in one case, three allelic forms of the gene were seen. In spite of limited variability at this level, extensive heterogeneity was observed for the combinations of markers present in haplotypes, suggesting that frequent recombination events have occurred. Most strikingly, multiple combinations of RFLP occurring in close proximity of the TCRα constant region gene were observed in this study. A high recombination frequency for the TCRα gene complex is further supported by the observation that two children, one in each of two families, inherited recombinant TCRα haplotypes

  4. The oxytocin receptor gene, an integral piece of the evolution of Canis familaris from Canis lupus

    Directory of Open Access Journals (Sweden)

    Jessica Lee Oliva

    2016-07-01

    Full Text Available Previous research in canids has revealed both group (dog versus wolf and individual differences in object choice task (OCT performance. These differences might be explained by variation in the oxytocin receptor (OXTR gene, as intranasally administered oxytocin has recently been shown to improve performance on this task by domestic dogs. This study looked at microsatellites at various distances from the OXTR gene to determine whether there was an association between this gene and: i species (dog/wolf and ii good versus bad OCT performers. Ten primer sets were designed to amplify 10 microsatellites that were identified at various distances from the canine OXTR gene. We used 94 (52 males, 42 females blood samples from shelter dogs, 75 (33 males, 42 females saliva samples from pet dogs and 12 (6 males, 6 females captive wolf saliva samples to carry out our analyses. Significant species differences were found in the two markers closest to the OXTR gene, suggesting that this gene may have played an important part in the domestic dogs’ evolution from the wolf. However, no significant, meaningful differences were found in microsatellites between good versus bad OCT performers, which suggests that other factors, such as different training and socialisation experiences, probably impacted task performance

  5. Neurotensin receptor 1 gene (NTSR1 polymorphism is associated with working memory.

    Directory of Open Access Journals (Sweden)

    Jin Li

    Full Text Available BACKGROUND: Recent molecular genetics studies showed significant associations between dopamine-related genes (including genes for dopamine receptors, transporters, and degradation and working memory, but little is known about the role of genes for dopamine modulation, such as those related to neurotensin (NT, in working memory. A recent animal study has suggested that NT antagonist administration impaired working memory in a learning task. The current study examined associations between NT genes and working memory among humans. METHODS: Four hundred and sixty healthy undergraduate students were assessed with a 2-back working memory paradigm. 5 SNPs in the NTSR1 gene were genotyped. 5 ANOVA tests were conducted to examine whether and how working memory differed by NTSR1 genotype, with each SNP variant as the independent variable and the average accuracy on the working memory task as the dependent variable. RESULTS: ANOVA results suggested that two SNPs in the NTSR1 gene (rs4334545 and rs6090453 were significantly associated with working memory. These results survived corrections for multiple comparisons. CONCLUSIONS: Our results demonstrated that NTSR1 SNP polymorphisms were significantly associated with variance in working memory performance among healthy adults. This result extended previous rodent studies showing that the NT deficiency impairs the working memory function. Future research should replicate our findings and extend to an examination of other dopamine modulators.

  6. Transfection of Sertoli cells with androgen receptor alters gene expression without androgen stimulation.

    Science.gov (United States)

    Fietz, D; Markmann, M; Lang, D; Konrad, L; Geyer, J; Kliesch, S; Chakraborty, T; Hossain, H; Bergmann, M

    2015-12-29

    Androgens play an important role for the development of male fertility and gained interest as growth and survival factors for certain types of cancer. Androgens act via the androgen receptor (AR/Ar), which is involved in various cell biological processes such as sex differentiation. To study the functional mechanisms of androgen action, cell culture systems and AR-transfected cell lines are needed. Transfection of AR into cell lines and subsequent gene expression analysis after androgen treatment is well established to investigate the molecular biology of target cells. However, it remains unclear how the transfection with AR itself can modulate the gene expression even without androgen stimulation. Therefore, we transfected Ar-deficient rat Sertoli cells 93RS2 by electroporation using a full length human AR. Transfection success was confirmed by Western Blotting, immunofluorescence and RT-PCR. AR transfection-related gene expression alterations were detected with microarray-based genome-wide expression profiling of transfected and non-transfected 93RS2 cells without androgen stimulation. Microarray analysis revealed 672 differentially regulated genes with 200 up- and 472 down-regulated genes. These genes could be assigned to four major biological categories (development, hormone response, immune response and metabolism). Microarray results were confirmed by quantitative RT-PCR analysis for 22 candidate genes. We conclude from our data, that the transfection of Ar-deficient Sertoli cells with AR has a measurable effect on gene expression even without androgen stimulation and cause Sertoli cell damage. Studies using AR-transfected cells, subsequently stimulated, should consider alterations in AR-dependent gene expression as off-target effects of the AR transfection itself.

  7. Neurohypophysial Receptor Gene Expression by Thymic T Cell Subsets and Thymic T Cell Lymphoma Cell Lines

    Directory of Open Access Journals (Sweden)

    I. Hansenne

    2004-01-01

    transcribed in thymic epithelium, while immature T lymphocytes express functional neurohypophysial receptors. Neurohypophysial receptors belong to the G protein-linked seven-transmembrane receptor superfamily and are encoded by four distinct genes, OTR, V1R, V2R and V3R. The objective of this study was to identify the nature of neurohypophysial receptor in thymic T cell subsets purified by immunomagnetic selection, as well as in murine thymic lymphoma cell lines RL12-NP and BW5147. OTR is transcribed in all thymic T cell subsets and T cell lines, while V3R transcription is restricted to CD4+ CD8+ and CD8+ thymic cells. Neither V1R nor V2R transcripts are detected in any kind of T cells. The OTR protein was identified by immunocytochemistry on thymocytes freshly isolated from C57BL/6 mice. In murine fetal thymic organ cultures, a specific OTR antagonist does not modify the percentage of T cell subsets, but increases late T cell apoptosis further evidencing the involvement of OT/OTR signaling in the control of T cell proliferation and survival. According to these data, OTR and V3R are differentially expressed during T cell ontogeny. Moreover, the restriction of OTR transcription to T cell lines derived from thymic lymphomas may be important in the context of T cell leukemia pathogenesis and treatment.

  8. HES1 Is a Master Regulator of Glucocorticoid Receptor-Dependent Gene Expression

    Science.gov (United States)

    Revollo, Javier R.; Oakley, Robert H.; Lu, Nick Z.; Kadmiel, Mahita; Gandhavadi, Maheer; Cidlowski, John A.

    2014-01-01

    Hairy and enhancer of split-1 (HES1) is a basic helix-loop-helix transcription factor that is a key regulator of development and organogenesis. However, little is known about the role of HES1 after birth. Glucocorticoids, primary stress hormones that are essential for life, regulate numerous homeostatic processes that permit vertebrates to cope with physiological challenges. The molecular actions of glucocorticoids are mediated by glucocorticoid receptor-dependent regulation of nearly 25% of the genome. We now establish a genome wide molecular link between HES1 and glucocorticoid receptors that controls the ability of cells and animals to respond to stress. Glucocorticoid signaling rapidly and robustly silenced HES1 expression. This glucocorticoid-dependent repression of HES1 was necessary for the glucocorticoid receptor to regulate many of its target genes. Mice with conditional knockout of HES1 in the liver exhibited an expanded glucocorticoid receptor signaling profile and aberrant metabolic phenotype. Our results indicate that HES1 acts as a master repressor, the silencing of which is required for proper glucocorticoid signaling. PMID:24300895

  9. Modulation of gene expression of adenosine and metabotropic glutamate receptors in rat's neuronal cells exposed to L-glutamate and [60]fullerene.

    Science.gov (United States)

    Giust, Davide; Da Ros, Tatiana; Martín, Mairena; Albasanz, José Luis

    2014-08-01

    L-Glutamate (L-Glu) has been often associated not only to fundamental physiological roles, as learning and memory, but also to neuronal cell death and the genesis and development of important neurodegenerative diseases. Herein we studied the variation in the adenosine and metabotropic glutamate receptors expression induced by L-Glu treatment in rat's cortical neurons. The possibility to have structural alteration of the cells induced by L-Glu (100 nM, 1 and 10 microM) has been addressed, studying the modulation of microtubule associated protein-2 (MAP-2) and neurofilament heavy polypeptide (NEFH), natively associated proteins to the dendritic shape maintenance. Results showed that the proposed treatments were not destabilizing the cells, so the L-Glu concentrations were acceptable to investigate fluctuation in receptors expression, which were studied by RT-PCR. Interestingly, C60 fullerene derivative t3ss elicited a protective effect against glutamate toxicity, as demonstrated by MTT assay. In addition, t3ss compound exerted a different effect on the adenosine and metabotropic glutamate receptors analyzed. Interestingly, A(2A) and mGlu1 mRNAs were significantly decreased in conditions were t3ss neuroprotected cortical neurons from L-Glu toxicity. In summary, t3ss protects neurons from glutamate toxicity in a process that appears to be associated with the modulation of the gene expression of adenosine and metabotropic glutamate receptors.

  10. Vampire bats exhibit evolutionary reduction of bitter taste receptor genes common to other bats

    Science.gov (United States)

    Hong, Wei; Zhao, Huabin

    2014-01-01

    The bitter taste serves as an important natural defence against the ingestion of poisonous foods and is thus believed to be indispensable in animals. However, vampire bats are obligate blood feeders that show a reduced behavioural response towards bitter-tasting compounds. To test whether bitter taste receptor genes (T2Rs) have been relaxed from selective constraint in vampire bats, we sampled all three vampire bat species and 11 non-vampire bats, and sequenced nine one-to-one orthologous T2Rs that are assumed to be functionally conserved in all bats. We generated 85 T2R sequences and found that vampire bats have a significantly greater percentage of pseudogenes than other bats. These results strongly suggest a relaxation of selective constraint and a reduction of bitter taste function in vampire bats. We also found that vampire bats retain many intact T2Rs, and that the taste signalling pathway gene Calhm1 remains complete and intact with strong functional constraint. These results suggest the presence of some bitter taste function in vampire bats, although it is not likely to play a major role in food selection. Together, our study suggests that the evolutionary reduction of bitter taste function in animals is more pervasive than previously believed, and highlights the importance of extra-oral functions of taste receptor genes. PMID:24966321

  11. Genomic organization of the mouse fibroblast growth factor receptor 3 (Fgfr3) gene

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Castro, A.V.; Wilson, J.; Altherr, M.R. [Los Alamos National Lab., NM (United States)

    1995-11-20

    The fibroblast growth factor receptor 3 (Fgfr3) protein is a tyrosine kinase receptor involved in the signal transduction of various fibroblast growth factors. Recent studies suggest its important role in normal development. In humans, mutation in Fgfr3 is responsible for growth disorders such as achondroplasia, hypoachondroplasia, and thanatophoric dysplasia. Here, we report the complete genomic organization of the mouse Fgfr3 gene. The murine gene spans approximately 15 kb and consists of 19 exons and 18 introns. One major and one minor transcription initiation site were identified. Position +1 is located 614 nucleotides upstream from the ATG initiation codon. The translation initiation and termination sites are located in exons 2 and 19, respectively. Five Sp1 sites, two AP2 sites, one Zeste site, and one Krox 24 site were observed in the 5{prime}-flanking region. The Fgfr3 promoter appears to be contained within a CpG island and, as is common in genes having multiple Sp1-binding sites, lacks a TATA box. 35 refs., 3 figs., 1 tab.

  12. Cannabinoid Type-1 Receptor Gene Polymorphisms Are Associated with Central Obesity in a Southern Brazilian Population

    Directory of Open Access Journals (Sweden)

    Janaína P. Jaeger

    2008-01-01

    Full Text Available The CB1 cannabinoid receptor and its endogenous ligands, the endocannabinoids, are involved in energy balance control, stimulating appetite and increasing body weight in wasting syndromes. Different studies have investigated the relationship between polymorphisms of the cannabinoid receptor 1 (CNR1 gene and obesity with conflicting results. In the present study, we investigated the 1359G/A (rs1049353, 3813A/G (rs12720071 and 4895A/G (rs806368 polymorphisms in the CNR1 gene in a Brazilian population of European descent. To verify the association between these variants and obesity-related traits in this population, 756 individuals were genotyped by PCR-RFLP methods. The 4895G allele was associated with waist to hip ratio (WHR (P = 0.014; P = 0.042 after Bonferroni correction. An additive effect with the GAA haplotype was associated with WHR (P = 0.028, although this statistical significance disappeared after Bonferroni correction (P = 0.084. No significant association was observed between the genotypes of the 1359G/A and 3813A/G polymorphisms and any of the quantitative variables investigated. Our findings suggest that CNR1 gene polymorphism is associated with central obesity in this Brazilian population of European ancestry.

  13. Polymorphisms in the Estrogen Receptor Beta Gene and the Risk of Unexplained Recurrent Spontaneous Abortion

    Science.gov (United States)

    Mahdavipour, Marzieh; Zarei, Saeed; Fatemi, Ramina; Edalatkhah, Haleh; Heidari-Vala, Hamed; Jeddi-Tehrani, Mahmood; Idali, Farah

    2017-01-01

    Background: Recurrent Spontaneous Abortion (RSA) is caused by multiple genetic and non-genetic factors. Around 50% of the RSA cases have no known etiology and are considered as Unexplained RSA (URSA). Estrogens, via binding to their receptors, play an important role in female reproduction. This study aimed to investigate whether single nucleotide polymorphisms (SNPs; +1082G/A, +1730G/A and rs1256030 C/T) in the estrogen receptor beta (ESR2) gene are associated with susceptibility to URSA in a population of Iranian women. Methods: In this case-control study, the study groups consisted of 240 subjects with a history of URSA and 102 fertile women as controls. Serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) were measured on day 2–3 of menstrual cycle. Two functional SNPs, +1082G/A (a silent mutation in exon 5) and +1730G/A (3′ untranslated region of the exon 8), and one intron, rs1256030C/T, in the ESR2 gene were genotyped, using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Results: Serum levels of LH were significantly increased in URSA women. No significant differences in distribution of +1082G/A, +1730G/A and rs1256030C/T between URSA and control groups were observed. Conclusion: Our findings suggest that the studied SNPs on ESR2 gene may not be associated with URSA. PMID:28706612

  14. Itai-itai disease is not associated with polymorphisms of the estrogen receptor {alpha} gene

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Hisahide; Hayashi, Chiyo; Lee, Myeongjin; Ayaki, Hitoshi; Sumino, Kimiaki [Kobe Univ. School of Medicine (Japan). Dept. of Public Health; Yamamoto, Ryoji; Ninomiya, Ruriko; Koizumi, Naoko [Hyogo College of Medicine (Japan). Dept. of Public Health

    1999-11-01

    Itai-itai (or ouch-ouch) disease is a syndrome accompanied by bone mineral disorders, and which may be related to oral cadmium exposure. Itai-itai predominantly affects postmenopausal women with a history of multiple childbirths. Recently, it has been reported that polymorphisms of the estrogen receptor {alpha} (ER{alpha}) gene are associated with postmenopausal reduction of bone mineral density in Japanese women. However, estrogen receptors have never been studied in itai-itai disease. In this study, we examined the genotypic distributions of PvuII and XbaI restriction fragment length polymorphisms (RFLPs) of the ER{alpha} gene in patients with itai-itai disease and compared them with those of control subjects. The RFLPs are represented here as P{sub p} (PvuII) and Xx (XbaI); the capital and small letters signify the absence and presence of restriction sites, respectively. The genotypic distributions of the patient group were: PP, 14.8%; Pp, 55.6%; pp, 29.6%; XX, 7.4%; Xx, 29.6%; and xx, 63.0%. These distributions were similar to those observed for the control groups, hence no pattern of genotypic distribution was observed that could be related to itai-itai disease. We conclude that RFLPs of the ER{alpha} gene may not be associated with itai-itai disease. (orig.)

  15. Vitamin D receptor gene polymorphisms in multiple sclerosis patients in northwest Greece

    Directory of Open Access Journals (Sweden)

    Georgiou Ioannis

    2011-05-01

    Full Text Available Abstract Background Polymorphisms of the vitamin D receptor (VDR gene have been linked to both multiple sclerosis (MS and osteoporosis. We examined the frequency of the Taq-I and Bsm-I polymorphisms of the vitamin D receptor (VDR gene in 69 patients with MS and 81 age and sex-matched healthy individuals. Genotyping of Taq-I (rs731236 and Bsm-I (rs1544410 was performed using TaqMan® SNP Genotyping Assay. All patients and controls had determination of body mass index (BMI, bone mineral density (BMD and smoking history. Results The mean age of patients was 39 ± 10.5 years compared to 38.7 ± 10.7 years of the controls (p = 0.86, the BMI was 24.8 ± 4.2 kg/m2 compared to 25.7 ± 4.8 kg/m2 of the controls (p = 0.23, the BMD in the lumbar spine 0.981 ± 0.15 compared to 1.025 ± 013 of the controls (p = 0.06 and the total hip BMD was 0.875 ± 0.14 compared to 0.969 ± 0.12 of the controls (p Conclusions This study suggests that the Taq-I and Bsm-I polymorphisms of the VDR gene are not associated with MS risk, BMI or BMD in the Greek population studied.

  16. Characterization of V1R receptor (ora) genes in Lake Victoria cichlids.

    Science.gov (United States)

    Ota, Tomoki; Nikaido, Masato; Suzuki, Hikoyu; Hagino-Yamagishi, Kimiko; Okada, Norihiro

    2012-05-15

    Although olfaction could play a crucial role in underwater habitats by allowing fish to sense a variety of nonvolatile chemical signals, the importance of olfaction in species-rich cichlids is still controversial. In particular, examining whether cichlids rely on olfaction for reproduction is of primary interest to understand the mechanisms of speciation. In the present study, we explored the V1R (also known as ora) genes, which are believed to encode reproductive pheromone receptors in fish, in the genomes of Lake Victoria cichlids. By screening a bacterial artificial chromosome library, we identified all six intact V1R genes (V1R1 to V1R6) that have been reported in other teleost fish. Furthermore, RT-PCR and in situ hybridization analyses showed that all of the V1R genes were expressed in the olfactory epithelium, indicating that these receptors are functional in cichlids. These observations indicate that cichlids use V1R-mediated olfaction in some ways for their social behaviors. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Orphan nuclear receptor Nur77 participates in human apolipoprotein A5 gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kwang-Hoon, E-mail: ksong@kiom.re.kr [Korea Institute of Oriental Medicine, Daejeon 305-811 (Korea, Republic of)

    2010-01-29

    The orphan nuclear receptor Nur77 (NR4A1) has been reported to play a crucial role in the modulation of diverse metabolic processes in liver. Here, we reported the identification of human apolipoprotein A5 (ApoA5), which implicated in lowering plasma triglyceride levels, as a novel target gene of Nur77. Nur77 induced the human ApoA5 promoter activity. Using 5'-deletion and mutagenesis of human ApoA5 promoter analysis and chromatin immunoprecipitation assays, it was shown that Nur77 directly regulated human ApoA5 gene expression by binding to a Nur77 response element (AAAGGTCA) located in the proximal human ApoA5 promoter region. In addition, we demonstrated that blocking of Nur77 transcriptional activity via overexpression of dominant negative Nur77 suppressed human ApoA5 promoter activity and mRNA expression in human hepatoma cells, HepG2. Taken together, our results demonstrated that Nur77 is a novel regulator of human ApoA5 gene expression and provide a new insight into the role of this orphan nuclear receptor in lipoprotein metabolism and triglyceride homeostasis.

  18. Orphan nuclear receptor Nur77 participates in human apolipoprotein A5 gene expression

    International Nuclear Information System (INIS)

    Song, Kwang-Hoon

    2010-01-01

    The orphan nuclear receptor Nur77 (NR4A1) has been reported to play a crucial role in the modulation of diverse metabolic processes in liver. Here, we reported the identification of human apolipoprotein A5 (ApoA5), which implicated in lowering plasma triglyceride levels, as a novel target gene of Nur77. Nur77 induced the human ApoA5 promoter activity. Using 5'-deletion and mutagenesis of human ApoA5 promoter analysis and chromatin immunoprecipitation assays, it was shown that Nur77 directly regulated human ApoA5 gene expression by binding to a Nur77 response element (AAAGGTCA) located in the proximal human ApoA5 promoter region. In addition, we demonstrated that blocking of Nur77 transcriptional activity via overexpression of dominant negative Nur77 suppressed human ApoA5 promoter activity and mRNA expression in human hepatoma cells, HepG2. Taken together, our results demonstrated that Nur77 is a novel regulator of human ApoA5 gene expression and provide a new insight into the role of this orphan nuclear receptor in lipoprotein metabolism and triglyceride homeostasis.

  19. Gene polymorphisms of stress hormone and cytokine receptors associate with immunomodulatory profile and psychological measurement.

    Science.gov (United States)

    Xiang, Lianbin; Rehm, Kristina E; Sunesara, Imran; Griswold, Michael; Marshall, Gailen D

    2015-05-01

    We sought to identify whether stable single nucleotide polymorphisms (SNPs) of various endocrine and immune molecules could be used as biomarkers associated with specific immune alterations and chronic stress measures in normal humans. A total of 207 volunteer participants answered stress questionnaire and gave peripheral blood cells for identification of SNPs in genes coding for glucocorticoid receptor (GR), beta 2 adrenergic receptor (B2AR), interferon-gamma receptors (IFNGR1, IFNGR2), and interleukin-4 receptor (IL4R). Immunoregulatory profiles were measured by flow cytometry and genotyping assays were performed by allelic discrimination real-time PCR. Several significant differences were revealed in associations between stress marker and immune indicators based on SNP categories. For instance, Th1 levels of the minor alleles of GR TthIIII (AA) and IFNGR2 Q64R (Arg/Arg) groups were positively associated with chronic stress (PSS) (p = 0.024 and 0.005, respectively) compared with wild type (WT) and negatively associated with PSS in the heterozygous genotypes of GR BclI and IL4R Ile50Val (p = 0.040 and p = 0.052, respectively). Treg levels of the minor alleles of BclI (GG) and IFNGR1 T-56C (CC) groups were positively associated with PSS (p = 0.045 and p = 0.010, respectively) and negatively associated in the minor allele (Val/Val) of IL4R Ile50Va and the heterozygous genotype of IL4R Q576R (p = 0.041 and p = 0.017, respectively) compared to WT. The data support the notion that gene polymorphisms from various components of the psychoneuroendocrine-immune network may be useful as biomarkers to categorize individual stress-associated immune responses. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Oxytocin and Opioid Receptor Gene Polymorphisms Associated with Greeting Behavior in Dogs

    Directory of Open Access Journals (Sweden)

    Enikő Kubinyi

    2017-09-01

    Full Text Available Meeting humans is an everyday experience for most companion dogs, and their behavior in these situations and its genetic background is of major interest. Previous research in our laboratory reported that in German shepherd dogs the lack of G allele, and in Border collies the lack of A allele, of the oxytocin receptor gene (OXTR 19208A/G single nucleotide polymorphism (SNP was linked to increased friendliness, which suggests that although broad traits are affected by genetic variability, the specific links between alleles and behavioral variables might be breed-specific. In the current study, we found that Siberian huskies with the A allele approached a friendly unfamiliar woman less frequently in a greeting test, which indicates that certain polymorphisms are related to human directed behavior, but that the relationship patterns between polymorphisms and behavioral phenotypes differ between populations. This finding was further supported by our next investigation. According to primate studies, endogenous opioid peptide (e.g., endorphins receptor genes have also been implicated in social relationships. Therefore, we examined the rs21912990 of the OPRM1 gene. Firstly, we found that the allele frequencies of Siberian huskies and gray wolves were similar, but differed from that of Border collies and German shepherd dogs, which might reflect their genetic relationship. Secondly, we detected significant associations between the OPRM1 SNP and greeting behavior among German shepherd dogs and a trend in Border collies, but we could not detect an association in Siberian huskies. Although our results with OXTR and OPRM1 gene variants should be regarded as preliminary due to the relatively low sample size, they suggest that (1 OXTR and OPRM1 gene variants in dogs affect human-directed social behavior and (2 their effects differ between breeds.

  1. Nebulisation of receptor-targeted nanocomplexes for gene delivery to the airway epithelium.

    Directory of Open Access Journals (Sweden)

    Maria D I Manunta

    Full Text Available Gene therapy mediated by synthetic vectors may provide opportunities for new treatments for cystic fibrosis (CF via aerosolisation. Vectors for CF must transfect the airway epithelium efficiently and not cause inflammation so they are suitable for repeated dosing. The inhaled aerosol should be deposited in the airways since the cystic fibrosis transmembrane conductance regulator gene (CFTR is expressed predominantly in the epithelium of the submucosal glands and in the surface airway epithelium. The aim of this project was to develop an optimised aerosol delivery approach applicable to treatment of CF lung disease by gene therapy.The vector suspension investigated in this study comprises receptor-targeting peptides, cationic liposomes and plasmid DNA that self-assemble by electrostatic interactions to form a receptor-targeted nanocomplex (RTN of approximately 150 nm with a cationic surface charge of +50 mV. The aerodynamic properties of aerosolised nanocomplexes produced with three different nebulisers were compared by determining aerosol deposition in the different stages of a Next Generation Pharmaceutical Impactor (NGI. We also investigated the yield of intact plasmid DNA by agarose gel electrophoresis and densitometry, and transfection efficacies in vitro and in vivo.RTNs nebulised with the AeroEclipse II BAN were the most effective, compared to other nebulisers tested, for gene delivery both in vitro and in vivo. The biophysical properties of the nanocomplexes were unchanged after nebulisation while the deposition of RTNs suggested a range of aerosol aerodynamic sizes between 5.5 µm-1.4 µm cut off (NGI stages 3-6 compatible with deposition in the central and lower airways.RTNs showed their ability at delivering genes via nebulisation, thus suggesting their potential applications for therapeutic interventions of cystic fibrosis and other respiratory disorders.

  2. WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells.

    Science.gov (United States)

    Stauss, Hans J; Thomas, Sharyn; Cesco-Gaspere, Michela; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; King, Judy; Wright, Graham; Perro, Mario; Pospori, Constantina; Morris, Emma

    2008-01-01

    Adoptive transfer of antigen-specific T lymphocytes is an attractive form of immunotherapy for haematological malignancies and cancer. The difficulty of isolating antigen-specific T lymphocytes for individual patients limits the more widespread use of adoptive T cell therapy. The demonstration that cloned T cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T cell therapy. The first trial in humans demonstrated that TCR gene-modified T cells persisted for an extended time period and reduced tumor burden in some patients. The WT1 protein is an attractive target for immunotherapy of leukemia and solid cancer since elevated expression has been demonstrated in AML, CML, MDS and in breast, colon and ovarian cancer. In the past, we have isolated high avidity CTL specific for a WT1-derived peptide presented by HLA-A2 and cloned the TCR alpha and beta genes of a WT1-specific CTL line. The genes were inserted into retroviral vectors for transduction of human peripheral blood T lymphocytes of leukemia patients and normal donors. The treatment of leukemia-bearing NOD/SCID mice with T cells transduced with the WT1-specific TCR eliminated leukemia cells in the bone marrow of most mice, while treatment with T cells transduced with a TCR of irrelevant specificity did not diminish the leukemia burden. In order to improve the safety and efficacy of TCR gene therapy, we have developed lentiviral TCR gene transfer. In addition, we employed strategies to enhance TCR expression while avoiding TCR mis-pairing. It may be possible to generate dominant TCR constructs that can suppress the expression of the endogenous TCR on the surface of transduced T cells. The development of new TCR gene constructs holds great promise for the safe and effective delivery of TCR gene therapy for the treatment of malignancies.

  3. Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family

    NARCIS (Netherlands)

    Baudino, S.; Hansen, S.; Brettschneider, R.; Hecht, V.F.G.; Dresselhaus, T.; Lörz, H.; Dumas, C.; Rogowsky, P.M.

    2001-01-01

    Genes encoding two novel members of the leucine-rich repeat receptor-like kinase (LRR-RLK) superfamily have been isolated from maize (Zea mays L.). These genes have been named ZmSERK1 and ZmSERK2 since features such as a putative leucine zipper (ZIP) and five leucine rich repeats in the

  4. N-terminal truncated human RAG1 proteins can direct T-cell receptor but not immunoglobulin gene rearrangements

    NARCIS (Netherlands)

    J.G. Noordzij; N.S. Verkaik (Nicole); N.G. Hartwig (Nico); R. de Groot (Ronald); D.C. van Gent (Dik); J.J.M. van Dongen (Jacques)

    2000-01-01

    textabstractThe proteins encoded by RAG1 and RAG2 can initiate gene recombination by site-specific cleavage of DNA in immunoglobulin and T-cell receptor (TCR) loci. We identified a new homozygous RAG1 gene mutation (631delT) that leads to a premature stop codon in the

  5. Symptoms of Attention-Deficit/Hyperactivity Disorder in Down Syndrome: Effects of the Dopamine Receptor D4 Gene

    Science.gov (United States)

    Mason, Gina Marie; Spanó, Goffredina; Edgin, Jamie

    2015-01-01

    This study examined individual differences in ADHD symptoms and executive function (EF) in children with Down syndrome (DS) in relation to the dopamine receptor D4 (DRD4) gene, a gene often linked to ADHD in people without DS. Participants included 68 individuals with DS (7-21 years), assessed through laboratory tasks, caregiver reports, and…

  6. The human gene for neurotrophic tyrosine kinase receptor type 2 (NTRK2) is located on chromosome 9 but is not the familial dysautonomia gene

    Energy Technology Data Exchange (ETDEWEB)

    Slaugenhaupt, S.A. [Massachusetts General Hospital, Boston, MA (United States)]|[Harvard Medical School, Boston, MA (United States); Liebert, C.B.; Lucente, D.E. [Massachusetts General Hospital, Boston, MA (United States)] [and others

    1995-02-10

    The neurotrophic tyrosine kinase receptor type 2 (NTRK2) gene is a member of the trk family of tyrosine protein kinases, which encode receptors for the nerve growth factor-related proteins known as neurotrophins. The neurotrophins and their receptors have long been considered candidate genes for familial dysautonomia (FD), a hereditary sensory neuropathy resulting from the congenital loss of both sensory and autonomic neurons. The DYS gene has recently been mapped to human chromosome 9q31-q33, and therefore we set out to determine the chromosomal localization of the candidate gene NTRK2. A mouse trkB probe was hybridized to both somatic cell hybrids containing human chromosome 9 and a human chromosome 9 flow-sorted cosmid library. The human homologue of trkB, NTRK2, was assigned to chromosome 9. To localize the NTRK2 gene further, a dinucleotide repeat polymorphism was identified within a cosmid that contains NTRK2 exon sequences. This marker was genotyped in the CEPH reference pedigrees and places the NTRK2 gene near D9S1 on the proximal long arm of human chromosome 9. The NTRK2 gene is located approximately 22 cm proximal to DYS and shows several recombinants in disease families. Therefore, the NTRK2 gene can now be excluded as a candidate gene for familial dysautonomia. 18 refs., 1 fig.

  7. SIGNIFICANCE OF GENE POLYMORPHISM OF VITAMIN D RECEPTOR IN HUMAN PATHOLOGY

    Directory of Open Access Journals (Sweden)

    M. A. Bukhalko

    2017-01-01

    Full Text Available The literature review presents information on the role of gene polymorphism of vitamin D receptor in human pathology. According to  modern data, vitamin D is a hormone which has numerous pleiotropic effects on the human body by binding to its specific receptors  (VDR. These effects can greatly determine the role of vitamin D in the occurence and the course of a number of widespread diseases of a  modern man, including infectious pathology, autoimmune diseases, neuropsychiatric disorders. Special importance is currently attached  to the receptor gene of vitamin D, VDR, which is characterized by a genetic polymorphism that can determine the features of implementation of the biological effects of calcitriol in the human body. The article presents the review data supporting the contribution of certain  single nucleotide polymorphisms of gene VDR in the formation of the pleiotropic effects of vitamin D and their clinical manifestations.

  8. Isolation, characterization, and expression analyses of ecdysone receptor 1, ecdysone receptor 2 and ultraspiracle genes in varroa destructor mite

    Science.gov (United States)

    The varroa mite, Varroa destructor, is a honeybee ectoparasite considered the most important pest in apiaries throughout the US. Ecdysone receptor is a hormone secreted by the prothoracic gland of insects that controls ecdysis and stimulates metamorphosis. The ecdysone receptor is a nuclear receptor...

  9. Dysregulation of gene expression within the peroxisome proliferator activated receptor pathway in morbidly obese patients.

    Science.gov (United States)

    Hindle, A Katharine; Koury, Jadd; McCaffrey, Tim; Fu, Sidney W; Brody, Fred

    2009-06-01

    The causes of obesity are multifactorial but may include dysregulation of a family of related genes, such as the peroxisome proliferator activated receptor gamma (PPARgamma). When activated, the PPARgamma pathway promotes lipid metabolism. This study used microarray technology to evaluate differential gene expression profiles in obese patients undergoing bariatric surgery. The study enrolled six morbidly obese patients with a body mass index (BMI) exceeding 35 and four nonobese individuals. Blood samples were stabilized in PaxGene tubes (PreAnalytiX), and total RNA was extracted. Next, 100 ng of total RNA was amplified and labeled using the Ovation RNA Amplification System V2 with the Ovation whole-blood reagent (NuGen) before it was hybridized to an Affymetrix (Santa Clara, CA) focus array containing more than 8,500 verified genes. The data were analyzed using an analysis of variance (ANOVA) (p < 0.05) in the GeneSpring program, and potential pathways were identified with the Ingenuity program. Real-time quantitative reverse transcriptase-polymerase chain reaction was used to validate the array data. A total of 97 upregulated genes and 125 downregulated genes were identified. More than a 1.5-fold change was identified between the morbidly obese patients and the control subjects for a cluster of dysregulated genes involving pathways regulating cell metabolism and lipid formation. Specifically, the PPARgamma pathway showed a plethora of dysregulated genes including tumor necrosis factor-alpha (TNFalpha). In morbidly obese patients, TNFalpha expression was increased (upregulated) 1.6-fold. These findings were confirmed using quantitative polymerase chain reaction with a 2.8-fold change. Microarrays are a powerful tool for identifying biomarkers indicating morbid obesity by analyzing differential gene expression profiles. This study confirms the association of PPARgamma with morbid obesity. Also, these findings in blood support previous work documented in tissue

  10. Testosterone increases renal anti-aging klotho gene expression via the androgen receptor-mediated pathway.

    Science.gov (United States)

    Hsu, Shih-Che; Huang, Shih-Ming; Lin, Shih-Hua; Ka, Shuk-Man; Chen, Ann; Shih, Meng-Fu; Hsu, Yu-Juei

    2014-12-01

    Gender is known to be associated with longevity and oestrogen administration induced longevity-associated gene expression is one of the potential mechanisms underlying the benefits of oestrogen on lifespan, whereas the role of testosterone in the regulation of longevity-associated gene expressions remains largely unclear. The klotho gene, predominantly expressed in the kidney, has recently been discovered to be an aging suppressor gene. In the present study, we investigated the regulatory effects of testosterone on renal klotho gene expression in vivo and in vitro. In testosterone-administered mouse kidney and NRK-52E cells, increased klotho expression was accompanied by the up-regulation of the nuclear androgen receptor (AR). Overexpression of AR enhanced the expression of klotho mRNA and protein. Conversely, testosterone-induced klotho expression was attenuated in the presence of flutamide, an AR antagonist. A reporter assay and a chromatin immunoprecipitation (ChIP) assay demonstrated that AR directly binds to the klotho promoter via androgen response elements (AREs) which reconfirmed its importance for AR binding via the element mutation. In summary, our study demonstrates that testosterone up-regulates anti-aging klotho together with AR expression in the kidney in vivo and in vitro by recruiting AR on to the AREs of the klotho promoter.

  11. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng, E-mail: oxyccc@163.com

    2015-12-04

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  12. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1.

    Directory of Open Access Journals (Sweden)

    Christopher Terranova

    Full Text Available Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development.

  13. Angiotensin II type 1 receptor (A1166C gene polymorphism and essential hypertension in Egyptian population

    Directory of Open Access Journals (Sweden)

    Marium M. Shamaa

    2016-09-01

    Full Text Available The pathogenesis of essential hypertension (EH is affected by genetic and environmental factors. Mutations in hypertension-related genes can affect blood pressure (BP via alteration of salt and water reabsorption by the nephron. The genes of the renin-angiotensin system (RAS have been extensively studied because of the well documented role of this system in the control of BP. It has been previously shown that Angiotensin II type 1 receptor (ATR1 gene polymorphism could be associated with increased risk of EH. So, in the current study, we evaluated the frequency of ATR1 (A1166C polymorphism in relation to EH in a group of Egyptian population. The study population included 83 hypertensive patients and 60 age and sex matched healthy control subjects. Restriction fragment length polymorphism – Polymerase chain reaction (RFLP – PCR was used for the analysis of A1166C polymorphism of ATR1 genes in peripheral blood samples of all patients and controls. The results revealed that there was a positive risk of developing EH when having the T allele whether in homozygous or heterozygous state. From this work, it was concluded that there was an association between ATR1 (A1166C gene polymorphism and the risk of developing EH.

  14. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    International Nuclear Information System (INIS)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    2015-01-01

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  15. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1).

    Science.gov (United States)

    Terranova, Christopher; Narla, Sridhar T; Lee, Yu-Wei; Bard, Jonathan; Parikh, Abhirath; Stachowiak, Ewa K; Tzanakakis, Emmanuel S; Buck, Michael J; Birkaya, Barbara; Stachowiak, Michal K

    2015-01-01

    Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development.

  16. Multiplex Enhancer Interference Reveals Collaborative Control of Gene Regulation by Estrogen Receptor α-Bound Enhancers.

    Science.gov (United States)

    Carleton, Julia B; Berrett, Kristofer C; Gertz, Jason

    2017-10-25

    Multiple regulatory regions have the potential to regulate a single gene, yet how these elements combine to affect gene expression remains unclear. To uncover the combinatorial relationships between enhancers, we developed Enhancer-interference (Enhancer-i), a CRISPR interference-based approach that uses 2 different repressive domains, KRAB and SID, to prevent enhancer activation simultaneously at multiple regulatory regions. We applied Enhancer-i to promoter-distal estrogen receptor α binding sites (ERBS), which cluster around estradiol-responsive genes and therefore may collaborate to regulate gene expression. Targeting individual sites revealed predominant ERBS that are completely required for the transcriptional response, indicating a lack of redundancy. Simultaneous interference of different ERBS combinations identified supportive ERBS that contribute only when predominant sites are active. Using mathematical modeling, we find strong evidence for collaboration between predominant and supportive ERBS. Overall, our findings expose a complex functional hierarchy of enhancers, where multiple loci bound by the same transcription factor combine to fine-tune the expression of target genes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Rapid evolution of chemosensory receptor genes in a pair of sibling species of orchid bees (Apidae: Euglossini).

    Science.gov (United States)

    Brand, Philipp; Ramírez, Santiago R; Leese, Florian; Quezada-Euan, J Javier G; Tollrian, Ralph; Eltz, Thomas

    2015-08-28

    Insects rely more on chemical signals (semiochemicals) than on any other sensory modality to find, identify, and choose mates. In most insects, pheromone production is typically regulated through biosynthetic pathways, whereas pheromone sensory detection is controlled by the olfactory system. Orchid bees are exceptional in that their semiochemicals are not produced metabolically, but instead male bees collect odoriferous compounds (perfumes) from the environment and store them in specialized hind-leg pockets to subsequently expose during courtship display. Thus, the olfactory sensory system of orchid bees simultaneously controls male perfume traits (sender components) and female preferences (receiver components). This functional linkage increases the opportunities for parallel evolution of male traits and female preferences, particularly in response to genetic changes of chemosensory detection (e.g. Odorant Receptor genes). To identify whether shifts in pheromone composition among related lineages of orchid bees are associated with divergence in chemosensory genes of the olfactory periphery, we searched for patterns of divergent selection across the antennal transcriptomes of two recently diverged sibling species Euglossa dilemma and E. viridissima. We identified 3185 orthologous genes including 94 chemosensory loci from five different gene families (Odorant Receptors, Ionotropic Receptors, Gustatory Receptors, Odorant Binding Proteins, and Chemosensory Proteins). Our results revealed that orthologs with signatures of divergent selection between E. dilemma and E. viridissima were significantly enriched for chemosensory genes. Notably, elevated signals of divergent selection were almost exclusively observed among chemosensory receptors (i.e. Odorant Receptors). Our results suggest that rapid changes in the chemosensory gene family occurred among closely related species of orchid bees. These findings are consistent with the hypothesis that strong divergent selection

  18. Multiple phenotypes in adult mice following inactivation of the Coxsackievirus and Adenovirus Receptor (Car gene.

    Directory of Open Access Journals (Sweden)

    Ahmad Pazirandeh

    Full Text Available To determine the normal function of the Coxsackievirus and Adenovirus Receptor (CAR, a protein found in tight junctions and other intercellular complexes, we constructed a mouse line in which the CAR gene could be disrupted at any chosen time point in a broad spectrum of cell types and tissues. All knockouts examined displayed a dilated intestinal tract and atrophy of the exocrine pancreas with appearance of tubular complexes characteristic of acinar-to-ductal metaplasia. The mice also exhibited a complete atrio-ventricular block and abnormal thymopoiesis. These results demonstrate that CAR exerts important functions in the physiology of several organs in vivo.

  19. Multiple phenotypes in adult mice following inactivation of the Coxsackievirus and Adenovirus Receptor (Car) gene.

    Science.gov (United States)

    Pazirandeh, Ahmad; Sultana, Taranum; Mirza, Momina; Rozell, Björn; Hultenby, Kjell; Wallis, Karin; Vennström, Björn; Davis, Ben; Arner, Anders; Heuchel, Rainer; Löhr, Matthias; Philipson, Lennart; Sollerbrant, Kerstin

    2011-01-01

    To determine the normal function of the Coxsackievirus and Adenovirus Receptor (CAR), a protein found in tight junctions and other intercellular complexes, we constructed a mouse line in which the CAR gene could be disrupted at any chosen time point in a broad spectrum of cell types and tissues. All knockouts examined displayed a dilated intestinal tract and atrophy of the exocrine pancreas with appearance of tubular complexes characteristic of acinar-to-ductal metaplasia. The mice also exhibited a complete atrio-ventricular block and abnormal thymopoiesis. These results demonstrate that CAR exerts important functions in the physiology of several organs in vivo.

  20. Gene expression signature of estrogen receptor α status in breast cancer

    Directory of Open Access Journals (Sweden)

    Baggerly Keith

    2005-03-01

    Full Text Available Abstract Background Estrogens are known to regulate the proliferation of breast cancer cells and to modify their phenotypic properties. Identification of estrogen-regulated genes in human breast tumors is an essential step toward understanding the molecular mechanisms of estrogen action in cancer. To this end we generated and compared the Serial Analysis of Gene Expression (SAGE profiles of 26 human breast carcinomas based on their estrogen receptor α (ER status. Thus, producing a breast cancer SAGE database of almost 2.5 million tags, representing over 50,000 transcripts. Results We identified 520 transcripts differentially expressed between ERα-positive (+ and ERα-negative (- primary breast tumors (Fold change ≥ 2; p Estrogen Responsive Elements (EREs distributed on the promoter regions of 163 out of the 473 up-modulated genes in ERα (+ breast tumors. In brief, we observed predominantly up-regulation of cell growth related genes, DNA binding and transcription factor activity related genes based on Gene Ontology (GO biological functional annotation. GO terms over-representation analysis showed a statistically significant enrichment of various transcript families including: metal ion binding related transcripts (p = 0.011, calcium ion binding related transcripts (p = 0.033 and steroid hormone receptor activity related transcripts (p = 0.031. SAGE data associated with ERα status was compared with reported information from breast cancer DNA microarrays studies. A significant proportion of ERα associated gene expression changes was validated by this cross-platform comparison. However, our SAGE study also identified novel sets of genes as highly expressed in ERα (+ invasive breast tumors not previously reported. These observations were further validated in an independent set of human breast tumors by means of real time RT-PCR. Conclusion The integration of the breast cancer comparative transcriptome analysis based on ERα status coupled to

  1. Novel antagonists for the human adenosine A2A and A3 receptor via purine nitration: synthesis and biological evaluation of C2-substituted 6-trifluoromethylpurines and 1-deazapurines

    NARCIS (Netherlands)

    Koch, M.

    2011-01-01

    Melle Koch onderzocht diverse syntheseroutes om purinemoleculen zó te veranderen dat ze selectief werken op één receptor in het lichaam, de adenosinereceptor. De onderzochte stoffen hebben hoge activiteit op de adenosinereceptor en kunnen worden gebruikt in geneesmiddelonderzoek. Koch ontwikkelde

  2. Differential expression of the MT-1E gene in estrogen-receptor-positive and -negative human breast cancer cell lines.

    Science.gov (United States)

    Friedline, J A; Garrett, S H; Somji, S; Todd, J H; Sens, D A

    1998-01-01

    The goal of this study was to determine which of the 10 functional metallothionein (MT) genes are expressed in four human breast cancer cell lines and whether expression varies among the cell lines. Using reverse transcription polymerase chain reaction (RT-PCR) technology, it was shown that there was no expression of mRNA for the MT-1A, MT-1B, MT-1F, MT-1G, MT-1H, MT-3, and MT-4 genes in any of the four cell lines. All four cell lines were shown to express mRNA for the MT-2A and MT-1X genes. The expression level of mRNA for the MT-2A gene demonstrated modest differences among the cell lines, whereas expression of the MT-1X gene was consistent. In contrast, mRNA for the MT-1E gene was expressed in only two of the four cell lines and expression correlated to the estrogen receptor status of the cell lines. The two estrogen-receptor-positive cell lines showed no mRNA expression for the MT-1E gene. In the two estrogen-receptor-negative cell lines, mRNA expression for the MT-1E gene was elevated with expression levels similar to the housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase. The cellular content of MT protein was also shown to be elevated in the estrogen-receptor-negative cell lines that express MT-1E mRNA. These results suggest a possible relationship between estrogen receptor status and MT-1E gene expression in human breast cancer.

  3. Progesterone receptor-dependent regulation of genes in the oviducts of female mice.

    Science.gov (United States)

    Akison, Lisa K; Boden, Michael J; Kennaway, David J; Russell, Darryl L; Robker, Rebecca L

    2014-08-15

    Oviducts play a critical role in gamete and embryo transport, as well as supporting early embryo development. Progesterone receptor (PGR) is a transcription factor highly expressed in oviductal cells, while its activating ligand, progesterone, surges to peak levels as ovulation approaches. Progesterone is known to regulate oviduct cilia beating and muscular contractions in vitro, but how PGR may mediate this in vivo is poorly understood. We used PGR null mice to identify genes potentially regulated by PGR in the oviducts during the periovulatory period. Histologically, oviducts from PGR null mice showed no gross structural or morphological defects compared with normal littermates. However, microarray analysis of oviducts at 8 h posthuman chorionic gonadotropin revealed >1,000 PGR-dependent genes. Using reverse-transcription polymerase chain reaction (RT-PCR) we selected 10 genes for validation based on their potential roles in oocyte/embryo transport and support. Eight genes were confirmed to be downregulated (Adamts1, Itga8, Edn3, Prlr, Ptgfr, Des, Myocd, and Actg2) and one upregulated (Agtr2) in PGR null oviducts. Expression of these genes was also assessed in oviducts of naturally cycling mice during ovulation and day 1 and day 4 of pregnancy. Adamts1, Itga8, Edn3, Prlr, and Ptgfr were significantly upregulated in oviducts at ovulation/mating. However, most genes showed basal levels of expression at other times. The exceptions were Prlr and Ptgfr, which showed pulsatile increases on day 1 and/or day 4 of pregnancy. This is the first, comprehensive study to elucidate putative PGR-regulated genes in the oviduct and reveals key downstream targets potentially mediating oocyte and embryo transport. Copyright © 2014 the American Physiological Society.

  4. Identification of polymorphisms in the Toll-like receptor gene and the association with allergic rhinitis.

    Science.gov (United States)

    Kang, Inhong; Oh, Yeon-Kyun; Lee, Sang Heon; Jung, Ha Min; Chae, Soo-Cheon; Lee, Jae Hoon

    2010-03-01

    The TLRs gene encodes the principal innate immunity receptor in humans. The TLR2 Arg753Gln and Arg677Trp polymorphisms have been associated with a reduced response of monocytes and cell lines to challenge with mycobacteria. The TLR4 Asp299Gly and Thr399Ile polymorphisms have been associated with a reduction in the inflammatory responses to lipopolysaccharide in humans. It has been suggested that TLR2 and TLR4 polymorphisms may be associated with allergic responses; thus, we hypothesized that TLR2 and TLR4 polymorphisms may modify the relative risk for development of allergic rhinitis. The Taqman assay and high-resolution melt (HRM) were used for genotyping. We analyzed two single nucleotide polymorphisms (SNPs; 597T>C and 1350T>C) in the TLR2 gene and 1 SNP (4216G>C) in the TLR4 gene. We compared the genotype of these SNPs in patients with allergic rhinitis and controls without allergic rhinitis. We also estimated the haplotype frequencies between the two groups. The genotype and allele frequencies of the 597T>C and 1350T>C SNPs in the TLR2 gene were not significantly different between the patients with allergic rhinitis and controls (P > 0.05). The genotype and allele frequencies of 4216G>C in the TLR4 gene were not significantly different between the patients with allergic rhinitis and controls (P > 0.05). Haplotype analysis of the following two different (597)-(1350) major haplotypes (frequency >0.05) were present in the TLR2 gene: T-C and C-C. The C-C haplotype was positively associated with allergic rhinitis (P = 0.048). Our study suggests that the TLR2 gene polymorphisms might be susceptible to the development of allergic rhinitis. Further functional studies of TLR2 genetics in light of the associations with allergic rhinitis inflammation would help clarify the role of TLR2 genetics in clinical evaluations.

  5. Endocrine Parameters and Phenotypes of the Growth Hormone Receptor Gene Disrupted (GHR−/−) Mouse

    Science.gov (United States)

    List, Edward O.; Sackmann-Sala, Lucila; Berryman, Darlene E.; Funk, Kevin; Kelder, Bruce; Gosney, Elahu S.; Okada, Shigeru; Ding, Juan; Cruz-Topete, Diana

    2011-01-01

    Disruption of the GH receptor (GHR) gene eliminates GH-induced intracellular signaling and, thus, its biological actions. Therefore, the GHR gene disrupted mouse (GHR−/−) has been and is a valuable tool for helping to define various parameters of GH physiology. Since its creation in 1995, this mouse strain has been used by our laboratory and others for numerous studies ranging from growth to aging. Some of the most notable discoveries are their extreme insulin sensitivity in the presence of obesity. Also, the animals have an extended lifespan, which has generated a large number of investigations into the roles of GH and IGF-I in the aging process. This review summarizes the many results derived from the GHR−/− mice. We have attempted to present the findings in the context of current knowledge regarding GH action and, where applicable, to discuss how these mice compare to GH insensitivity syndrome in humans. PMID:21123740

  6. Potential mechanisms underlying estrogen-induced expression of the molluscan estrogen receptor (ER) gene

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Thi Kim Anh [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Department of Agriculture, Forestry and Fisheries, Vinh University, 182 Le Duan St., Vinh City, Nghe An (Viet Nam); MacFarlane, Geoff R. [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Kong, Richard Yuen Chong [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region (China); O’Connor, Wayne A. [New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316 (Australia); Yu, Richard Man Kit, E-mail: Richard.Yu@newcastle.edu.au [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2016-10-15

    Highlights: • This is the first report on the putative promoter sequence of a molluscan ER gene. • The gene promoter contains putative binding sites for direct and indirect interaction with ER. • E2 upregulates ER gene expression in the ovary in vitro and in vivo. • E2-induced gene expression may require a novel ligand-dependent receptor. • The ER proximal promoter is hypomethylated regardless of gene expression levels. - Abstract: In vertebrates, estrogens and estrogen mimicking chemicals modulate gene expression mainly through a genomic pathway mediated by the estrogen receptors (ERs). Although the existence of an ER orthologue in the mollusc genome has been known for some time, its role in estrogen signalling has yet to be deciphered. This is largely due to its constitutive (ligand-independent) activation and a limited mechanistic understanding of its regulation. To fill this knowledge gap, we cloned and characterised an ER cDNA (sgER) and the 5′-flanking region of the gene from the Sydney rock oyster Saccostrea glomerata. The sgER cDNA is predicted to encode a 477-amino acid protein that contains a DNA-binding domain (DBD) and a ligand-binding domain (LBD) typically conserved among both vertebrate and invertebrate ERs. A comparison of the sgER LBD sequence with those of other ligand-dependent ERs revealed that the sgER LBD is variable at several conserved residues known to be critical for ligand binding and receptor activation. Ligand binding assays using fluorescent-labelled E2 and purified sgER protein confirmed that sgER is devoid of estrogen binding. In silico analysis of the sgER 5′-flanking sequence indicated the presence of three putative estrogen responsive element (ERE) half-sites and several putative sites for ER-interacting transcription factors, suggesting that the sgER promoter may be autoregulated by its own gene product. sgER mRNA is ubiquitously expressed in adult oyster tissues, with the highest expression found in the ovary

  7. Relationship between estrogen receptor 1 gene polymorphisms and postmenopausal osteoporosis of the spine in Chinese women.

    Science.gov (United States)

    Shang, D P; Lian, H Y; Fu, D P; Wu, J; Hou, S S; Lu, J M

    2016-06-03

    The purpose of this study was to evaluate single nucleotide polymorphism (SNP) variants of the estrogen receptor 1 gene (ESR1) at rs2234693 and rs9340799, as well as to investigate the relationship between ESR gene polymorphisms and postmenopausal osteoporosis (OP) of the spine in Chinese women. We recruited 198 postmenopausal women with OP and 276 healthy women between May 2012 and September 2015 in Zhongshan Hospital. Dual energy x-ray absorptiometry was used to measure the bone mineral density (BMD) of the lumbar vertebrae in all subjects. In addition, PCR-restriction fragment length polymorphism based analysis was conducted to identify the genotypes of ESR1. The distribution of ESR1 in the osteoporosis group and the control group was determined; the relationship between ESR polymorphisms and BMD was analyzed. The distributions of BMD were: TT women.

  8. Fatty acid represses insulin receptor gene expression by impairing HMGA1 through protein kinase Cε

    International Nuclear Information System (INIS)

    Dey, Debleena; Bhattacharya, Anirban; Roy, SibSankar; Bhattacharya, Samir

    2007-01-01

    It is known that free fatty acid (FFA) contributes to the development of insulin resistance and type2 diabetes. However, the underlying mechanism in FFA-induced insulin resistance is still unclear. In the present investigation we have demonstrated that palmitate significantly (p < 0.001) inhibited insulin-stimulated phosphorylation of PDK1, the key insulin signaling molecule. Consequently, PDK1 phosphorylation of plasma membrane bound PKCε was also inhibited. Surprisingly, phosphorylation of cytosolic PKCε was greatly stimulated by palmitate; this was then translocated to the nuclear region and associated with the inhibition of insulin receptor (IR) gene transcription. A PKCε translocation inhibitor peptide, εV1, suppressed this inhibitory effect of palmitate, suggesting requirement of phospho-PKCε migration to implement palmitate effect. Experimental evidences indicate that phospho-PKCε adversely affected HMGA1. Since HMGA1 regulates IR promoter activity, expression of IR gene was impaired causing reduction of IR on cell surface and that compromises with insulin sensitivity

  9. Opposite roles of the Arabidopsis cytokinin receptors AHK2 and AHK3 in the expression of plastid genes and genes for the plastid transcriptional machinery during senescence.

    Science.gov (United States)

    Danilova, Maria N; Kudryakova, Natalia V; Doroshenko, Anastasia S; Zabrodin, Dmitry A; Rakhmankulova, Zulfira F; Oelmüller, Ralf; Kusnetsov, Victor V

    2017-03-01

    Cytokinin membrane receptors of the Arabidopsis thaliana AHK2 and AHK3 play opposite roles in the expression of plastid genes and genes for the plastid transcriptional machinery during leaf senescence Loss-of-function mutants of Arabidopsis thaliana were used to study the role of cytokinin receptors in the expression of chloroplast genes during leaf senescence. Accumulation of transcripts of several plastid-encoded genes is dependent on the АНК2/АНК3 receptor combination. АНК2 is particularly important at the final stage of plant development and, unlike АНК3, a positive regulator of leaf senescence. Cytokinin-dependent up-regulation of the nuclear encoded genes for chloroplast RNA polymerases RPOTp and RPOTmp suggests that the hormone controls plastid gene expression, at least in part, via the expression of nuclear genes for the plastid transcription machinery. This is further supported by cytokinin dependent regulation of genes for the nuclear encoded plastid σ-factors, SIG1-6, which code for components of the transcriptional apparatus in chloroplasts.

  10. Genomic organization and chromosomal localization of the human and mouse genes encoding the {alpha} receptor component for ciliary neurotrophic factor

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, D.M.; Rojas, E.; McClain, J. [Regeneron Pharmaceuticals, Inc., Tarrytown, NY (United States)] [and others

    1995-01-01

    Ciliary neurotrophic factor (CNTF) has recently been found to share receptor components with, and to be structurally related to, a family of broadly acting cytokines, including interleukin-6, leukemia inhibitory factor, and oncostatin M. However, the CNTF receptor complex also includes a CNTF-specific component known as CNTF receptor {alpha} (CNTFR{alpha}). Here we describe the molecular cloning of the human and mouse genes encoding CNTFR. We report that the human and mouse genes have an identical intron-exon structure that correlates well with the domain structure of CNTFR{alpha}. That is, the signal peptide and the immunoglobulin-like domain are each encoded by single exons, the cytokine receptor-like domain is distributed among 4 exons, and the C-terminal glycosyl phosphatidylinositol recognition domain in encoded by the final coding exon. The position of the introns within the cytokine receptor-like domain corresponds to those found in other members of the cytokine receptor superfamily. Confirming a recent study using radiation hybrids, we have also mapped the human CNTFR gene to chromosome band 9p13 and the mouse gene to a syntenic region of chromosome 4. 24 refs., 4 figs.

  11. Multiple thyrotropin β-subunit and thyrotropin receptor-related genes arose during vertebrate evolution.

    Directory of Open Access Journals (Sweden)

    Gersende Maugars

    Full Text Available Thyroid-stimulating hormone (TSH is composed of a specific β subunit and an α subunit that is shared with the two pituitary gonadotropins. The three β subunits derive from a common ancestral gene through two genome duplications (1R and 2R that took place before the radiation of vertebrates. Analysis of genomic data from phylogenetically relevant species allowed us to identify an additional Tshβ subunit-related gene that was generated through 2R. This gene, named Tshβ2, present in cartilaginous fish, little skate and elephant shark, and in early lobe-finned fish, coelacanth and lungfish, was lost in ray-finned fish and tetrapods. The absence of a second type of TSH receptor (Tshr gene in these species suggests that both TSHs act through the same receptor. A novel Tshβ sister gene, named Tshβ3, was generated through the third genomic duplication (3R that occurred early in the teleost lineage. Tshβ3 is present in most teleost groups but was lostin tedraodontiforms. The 3R also generated a second Tshr, named Tshrb. Interestingly, the new Tshrb was translocated from its original chromosomic position after the emergence of eels and was then maintained in its new position. Tshrb was lost in tetraodontiforms and in ostariophysians including zebrafish although the latter species have two TSHs, suggesting that TSHRb may be dispensable. The tissue distribution of duplicated Tshβs and Tshrs was studied in the European eel. The endocrine thyrotropic function in the eel would be essentially mediated by the classical Tshβ and Tshra, which are mainly expressed in the pituitary and thyroid, respectively. Tshβ3 and Tshrb showed a similar distribution pattern in the brain, pituitary, ovary and adipose tissue, suggesting a possible paracrine/autocrine mode of action in these non-thyroidal tissues. Further studies will be needed to determine the binding specificity of the two receptors and how these two TSH systems are interrelated.

  12. Effects of spironolactone on human blood mononuclear cells: mineralocorticoid receptor independent effects on gene expression and late apoptosis induction

    DEFF Research Database (Denmark)

    Sønder, Søren Ulrik Salling; Mikkelsen, Marianne; Rieneck, Klaus

    2006-01-01

    ,000 probed. In contrast, the SPIR-related steroids affected 17 or fewer transcripts. Combining SPIR and ALDO resulted in 940 affected transcripts, indicating that SPIR has an early gene-regulatory effect independent of MR. 3 The affected genes encode a large number of signalling proteins and receptors......, including immunoinflammatory response genes and apoptosis and antiapoptosis genes. Apoptosis was evident in CD3-, CD14- and CD19-positive cells, but only after 18 h of exposure to SPIR. 4 The transcriptional network involving the differentially regulated genes was examined and the results indicate that SPIR...

  13. Regulation of the human prostacyclin receptor gene by the cholesterol-responsive SREBP1[S

    Science.gov (United States)

    Turner, Elizebeth C.; Kinsella, B. Therese

    2012-01-01

    Prostacyclin and its prostacyclin receptor, the I Prostanoid (IP), play essential roles in regulating hemostasis and vascular tone and have been implicated in a range cardio-protective effects but through largely unknown mechanisms. In this study, the influence of cholesterol on human IP [(h)IP] gene expression was investigated in cultured vascular endothelial and platelet-progenitor megakaryocytic cells. Cholesterol depletion increased human prostacyclin receptor (hIP) mRNA, hIP promoter-directed reporter gene expression, and hIP-induced cAMP generation in all cell types. Furthermore, the constitutively active sterol-response element binding protein (SREBP)1a, but not SREBP2, increased hIP mRNA and promoter-directed gene expression, and deletional and mutational analysis uncovered an evolutionary conserved sterol-response element (SRE), adjacent to a known functional Sp1 element, within the core hIP promoter. Moreover, chromatin immunoprecipitation assays confirmed direct cholesterol-regulated binding of SREBP1a to this hIP promoter region in vivo, and immunofluorescence microscopy corroborated that cholesterol depletion significantly increases hIP expression levels. In conclusion, the hIP gene is directly regulated by cholesterol depletion, which occurs through binding of SREBP1a to a functional SRE within its core promoter. Mechanistically, these data establish that cholesterol can regulate hIP expression, which may, at least in part, account for the combined cardio-protective actions of low serum cholesterol through its regulation of IP expression within the human vasculature. PMID:22969152

  14. Regulation of the human prostacyclin receptor gene by the cholesterol-responsive SREBP1.

    Science.gov (United States)

    Turner, Elizebeth C; Kinsella, B Therese

    2012-11-01

    Prostacyclin and its prostacyclin receptor, the I Prostanoid (IP), play essential roles in regulating hemostasis and vascular tone and have been implicated in a range cardio-protective effects but through largely unknown mechanisms. In this study, the influence of cholesterol on human IP [(h)IP] gene expression was investigated in cultured vascular endothelial and platelet-progenitor megakaryocytic cells. Cholesterol depletion increased human prostacyclin receptor (hIP) mRNA, hIP promoter-directed reporter gene expression, and hIP-induced cAMP generation in all cell types. Furthermore, the constitutively active sterol-response element binding protein (SREBP)1a, but not SREBP2, increased hIP mRNA and promoter-directed gene expression, and deletional and mutational analysis uncovered an evolutionary conserved sterol-response element (SRE), adjacent to a known functional Sp1 element, within the core hIP promoter. Moreover, chromatin immunoprecipitation assays confirmed direct cholesterol-regulated binding of SREBP1a to this hIP promoter region in vivo, and immunofluorescence microscopy corroborated that cholesterol depletion significantly increases hIP expression levels. In conclusion, the hIP gene is directly regulated by cholesterol depletion, which occurs through binding of SREBP1a to a functional SRE within its core promoter. Mechanistically, these data establish that cholesterol can regulate hIP expression, which may, at least in part, account for the combined cardio-protective actions of low serum cholesterol through its regulation of IP expression within the human vasculature.

  15. Association analysis of peroxisome proliferator-activated receptors gamma gene polymorphisms with asprin hypersensitivity in asthmatics.

    Science.gov (United States)

    Oh, Sun-Hee; Park, Se-Min; Park, Jong-Sook; Jang, An-Soo; Lee, Yong-Mok; Uh, Soo-Taek; Kim, Young Hoon; Choi, In-Seon; Kim, Mi-Kyeong; Park, Byeong Lae; Shin, Hyoung-Doo; Park, Choon-Sik

    2009-10-01

    Peroxisome proliferator-activated receptors (PPARs) are transcriptional factors activated by ligands of the nuclear hormone receptor superfamily. The activation of PPARgamma regulates inflammation by downregulating the production of Th2 type cytokines and eosinophil function. In addition, a range of natural substances, including arachidonate pathway metabolites such as 15-hydroxyeicosatetranoic acid (15-HETE), strongly promote PPARG expression. Therefore, genetic variants of the PPARG gene may be associated with the development of aspirin-intolerant asthma (AIA). We investigated the relationship between single nucleotide polymorphism (SNP) of the PPARG gene and AIA. Based on the results of an oral aspirin challenge, asthmatics (n=403) were categorized into two groups: those with a decrease in FEV(1) of 15% or greater (AIA) or less than 15% (aspirin-tolerant asthma, ATA). We genotyped two single nucleotide polymorphisms in the PPARG gene from Korean asthmatics and normal controls (n=449): +34C>G (Pro12Ala) and +82466C>T (His449His). Logistic regression analysis showed that +82466C>T and haplotype 1 (CC) were associated with the development of aspirin hypersensitivity in asthmatics (P=0.04). The frequency of the rare allele of +82466C>T was significantly higher in AIA patients than in ATA patients in the recessive model [P=0.04, OR=3.97 (1.08-14.53)]. In addition, the frequency of PPARG haplotype 1 was significantly lower in AIA patients than in ATA patients in the dominant model (OR=0.25, P=0.04). The +82466C>T polymorphism and haplotype 1 of the PPARG gene may be linked to increased risk for aspirin hypersensitivity in asthma.

  16. A Single Dose of LSD Does Not Alter Gene Expression of the Serotonin 2A Receptor Gene (HTR2A) or Early Growth Response Genes (EGR1-3) in Healthy Subjects

    Science.gov (United States)

    Dolder, Patrick C.; Grünblatt, Edna; Müller, Felix; Borgwardt, Stefan J.; Liechti, Matthias E.

    2017-01-01

    Rationale: Renewed interest has been seen in the use of lysergic acid diethylamide (LSD) in psychiatric research and practice. The repeated use of LSD leads to tolerance that is believed to result from serotonin (5-HT) 5-HT2A receptor downregulation. In rats, daily LSD administration for 4 days decreased frontal cortex 5-HT2A receptor binding. Additionally, a single dose of LSD acutely increased expression of the early growth response genes EGR1 and EGR2 in rat and mouse brains through 5-HT2A receptor stimulation. No human data on the effects of LSD on gene expression has been reported. Therefore, we investigated the effects of single-dose LSD administration on the expression of the 5-HT2A receptor gene (HTR2A) and EGR1-3 genes. Methods: mRNA expression levels were analyzed in whole blood as a peripheral biomarker in 15 healthy subjects before and 1.5 and 24 h after the administration of LSD (100 μg) and placebo in a randomized, double-blind, placebo-controlled, cross-over study. Results: LSD did not alter the expression of the HTR2A or EGR1-3 genes 1.5 and 24 h after administration compared with placebo. Conclusion: No changes were observed in the gene expression of LSD’s primary target receptor gene or genes that are implicated in its downstream effects. Remaining unclear is whether chronic LSD administration alters gene expression in humans. PMID:28701958

  17. Effects of deletion of the prolactin receptor on ovarian gene expression

    Directory of Open Access Journals (Sweden)

    Kelly Paul A

    2003-02-01

    Full Text Available Abstract Prolactin (PRL exerts pleiotropic physiological effects in various cells and tissues, and is mainly considered as a regulator of reproduction and cell growth. Null mutation of the PRL receptor (R gene leads to female sterility due to a complete failure of embryo implantation. Pre-implantatory egg development, implantation and decidualization in the mouse appear to be dependent on ovarian rather than uterine PRLR expression, since progesterone replacement permits the rescue of normal implantation and early pregnancy. To better understand PRL receptor deficiency, we analyzed in detail ovarian and corpora lutea development of PRLR-/- females. The present study demonstrates that the ovulation rate is not different between PRLR+/+ and PRLR-/- mice. The corpus luteum is formed but an elevated level of apoptosis and extensive inhibition of angiogenesis occur during the luteal transition in the absence of prolactin signaling. These modifications lead to the decrease of LH receptor expression and consequently to a loss of the enzymatic cascades necessary to produce adequate levels of progesterone which are required for the maintenance of pregnancy.

  18. Characterization and functional analyses of the human G protein-coupled receptor kinase 4 gene promoter.

    Science.gov (United States)

    Hasenkamp, Sandra; Telgmann, Ralph; Staessen, Jan A; Hagedorn, Claudia; Dördelmann, Corinna; Bek, Martin; Brand-Herrmann, Stefan-Martin; Brand, Eva

    2008-10-01

    The G protein-coupled receptor kinase 4 is involved in renal sodium handling and blood pressure regulation. Missense variants have already been tested functionally and are associated with hypertension, but no data on promoter analyses are yet available. We scanned 94 hypertensive white subjects for genetic variation and performed promoter reporter gene analyses in HEK293T, COS7, and SaOs-2 cells. Transient transfections with various full lengths and wild-type deletion constructs revealed that 1851 bp of the flanking region and 275 bp of the 5'-untranslated region were sufficient for transcriptional activities and composed a powerful cis-active element in the distal 293 bp. The -1702T and +2T alleles resulted in drastic general reductions of promoter function, whereas an activity increasing effect of +268C was cell type specific. Electrophoretic mobility-shift assay, supershift, and cotransfection analyses of transcription factor binding sites predicted in silico (Alibaba2.1/Transfac7) resulted in allele-specific binding patterns of nuclear proteins and identified the participation of CCAAT/enhancer-binding protein transcription factor family members. The G protein-coupled receptor kinase 4 core promoter resides in the first 1851 bp upstream of its transcription start site. The 4 identified genetic variants within this region exert allele-specific impact on both cell type- and stimulation-dependent transcription and may affect the expression balance of renal G protein-coupled receptor kinase 4.

  19. Human interleukin 2 receptor β-chain gene: Chromosomal localization and identification of 5' regulatory sequences

    International Nuclear Information System (INIS)

    Gnarra, J.R.; Otani, Hiroki; Wang, M.G.; McBride, O.W.; Sharon, M.; Leonard, W.J.

    1990-01-01

    Interleukin 2 (IL-2) binds to and stimulates activated T cells through high-affinity IL-2 receptors (IL-2Rs). Such receptors represent a complex consisting of at least two proteins, the 55-kDa IL-2Rα chain and the 70-kDa IL-2Rβ chain. The low-affinity, IL-2Rα chain cannot by itself transduce a mitogenic signal, whereas IL-2 stimulates resting lymphocytes through the intermediate-affinity, IL-2Rβ receptor. The authors report here identification of the genomic locus for IL-2Rβ. The exons are contained on four EcoRI fragments of 1.1, 9.2, 7.2, and 13.7 kilobases. The 1.1-kilobase EcoRI fragment lies at the 5'-most end of the genomic locus and contains promoter sequences. The promoter contains no TATA box-like elements but does contain the d(GT) n class of middle repetitive elements, which may play an interesting regulatory role. The IL-2Rβ gene is localized to chromosome 22q11.2-q12, a region that is the locus for several lymphoid neoplasias

  20. Retinopathy and nephropathy in type 1 diabetic patients--association with polymorphysms of vitamin D-receptor, TNF, Neuro-D and IL-1 receptor 1 genes.

    Science.gov (United States)

    Bućan, Kajo; Ivanisević, Milan; Zemunik, Tatijana; Boraska, Vesna; Skrabić, Veselin; Vatavuk, Zoran; Galetović, Davor; Znaor, Ljubo

    2009-12-01

    Retinopathy and nephropathy are common late type 1 diabetes mellitus (T1D) complications. In this study we investigated whether individual differences in 4 candidate genes significantly contribute to development and progression of late complications in T1D patients. We examined 121 patients for the presence of diabetic retinopathy and nephropathy. We genotyped variants in vitamin D receptor (VDR) and tumor necrosis factor (TNF) genes in 47 patients and in NeuroD1 and interleukin-1 receptor 1 (IL1R1) genes in 35 patients. Diabetic retinopathy had 66 (55%) patients after a median of 13.0 years after diagnosis. Diabetic nephropathy had 14 (11.66%) patients, all of whom had already developed retinopathy. A significant correlation between the degree of diabetic retinopathy and mean microalbuminuria (MA) value has been found (chi2 = 54.18, p diabetic retinopathy, while no investigated genetic polymorphysms could reliably predict diabetic nephropathy.

  1. Common variants in the regulative regions of GRIA1 and GRIA3 receptor genes are associated with migraine susceptibility

    Directory of Open Access Journals (Sweden)

    Gianfrancesco Fernando

    2010-06-01

    Full Text Available Abstract Background Glutamate is the principal excitatory neurotransmitter in the central nervous system which acts by the activation of either ionotropic (AMPA, NMDA and kainate receptors or G-protein coupled metabotropic receptors. Glutamate is widely accepted to play a major role in the path physiology of migraine as implicated by data from animal and human studies. Genes involved in synthesis, metabolism and regulation of both glutamate and its receptors could be, therefore, considered as potential candidates for causing/predisposing to migraine when mutated. Methods The association of polymorphic variants of GRIA1-GRIA4 genes which encode for the four subunits (GluR1-GluR4 of the alpha-amino-3- hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA receptor for glutamate was tested in migraineurs with and without aura (MA and MO and healthy controls. Results Two variants in the regulative regions of GRIA1 (rs2195450 and GRIA3 (rs3761555 genes resulted strongly associated with MA (P = 0.00002 and P = 0.0001, respectively, but not associated with MO, suggesting their role in cortical spreading depression. Whereas the rs548294 variant in GRIA1 gene showed association primarily with MO phenotype, supporting the hypothesis that MA and MO phenotypes could be genetically related. These variants modify binding sites for transcription factors altering the expression of GRIA1 and GRIA3 genes in different conditions. Conclusions This study represents the first genetic evidence of a link between glutamate receptors and migraine.

  2. Evolution of the C-Type Lectin-Like Receptor Genes of the DECTIN-1 Cluster in the NK Gene Complex

    Directory of Open Access Journals (Sweden)

    Susanne Sattler

    2012-01-01

    Full Text Available Pattern recognition receptors are crucial in initiating and shaping innate and adaptive immune responses and often belong to families of structurally and evolutionarily related proteins. The human C-type lectin-like receptors encoded in the DECTIN-1 cluster within the NK gene complex contain prominent receptors with pattern recognition function, such as DECTIN-1 and LOX-1. All members of this cluster share significant homology and are considered to have arisen from subsequent gene duplications. Recent developments in sequencing and the availability of comprehensive sequence data comprising many species showed that the receptors of the DECTIN-1 cluster are not only homologous to each other but also highly conserved between species. Even in Caenorhabditis elegans, genes displaying homology to the mammalian C-type lectin-like receptors have been detected. In this paper, we conduct a comprehensive phylogenetic survey and give an up-to-date overview of the currently available data on the evolutionary emergence of the DECTIN-1 cluster genes.

  3. Molecular genetic variations in vitamin D receptor gene with risk of osteoporosis in postmenopausal women

    International Nuclear Information System (INIS)

    Zahid, S.; Tahir, M.; Ahmed, S.

    2017-01-01

    To investigate the association of Vitamin D receptor (VDR) gene polymorphisms and development of osteoporosis. Methodology: This case-control study was conducted at Sir Ganga Hospital and Sheikh Zayed Hospital, Lahore, Pakistan from January 2015 to August 2015. A total of 136 postmenopausal women between 46-75 years of age were included in the study while women with serious internal disease and premature (surgical) menopause before the age of 45 years were excluded. Genotyping of VDR ApaI, TaqI and BsmI loci was done using polymerase chain reaction-restriction fragment length polymorphism. Levels of ionized calcium, C-reactive protein, alkaline phosphatase were measured and body mass index was calculated. Statistical analysis was done by using SPSS version 16.0. Results: Percentage of AA genotype was higher (28%) as compared to controls (16.6%). The postmenopausal cases showed 54% TT, 42%Tt and 4% tt genotype. The Bb genotype (42.6 %) was most frequent in both cases and controls. Postmenopausal cases and controls showed non-significant difference in alkaline phosphatase, C-reactive protein and ionized calcium levels. Conclusions: Findings explained the earlier inconsistent association results and no particular genetic variation in Vitamin D receptor gene had pronounced effect in predisposition to osteoporosis. (author)

  4. The origin of the p.E180 growth hormone receptor gene mutation.

    Science.gov (United States)

    Ostrer, Harry

    2016-06-01

    Laron syndrome, an autosomal recessive condition of extreme short stature, is caused by the absence or dysfunction of the growth hormone receptor. A recurrent mutation in the GHR gene, p.E180, did not alter the encoded amino acid, but activated a cryptic splice acceptor resulting in a receptor protein with an 8-amino acid deletion in the extracellular domain. This mutation has been observed among Sephardic Jews and among individuals in Ecuador, Brazil and Chile, most notably in a large genetic isolate in Loja, Ecuador. A common origin has been postulated based on a shared genetic background of markers flanking this mutation, suggesting that the Lojanos (and others) may have Sephardic (Converso) Jewish ancestry. Analysis of the population structure of Lojanos based on genome-wide analysis demonstrated European, Sephardic Jewish and Native American ancestry in this group. X-autosomal comparison and monoallelic Y chromosomal and mitochondrial genetic analysis demonstrated gender-biased admixture between Native American women and European and Sephardic Jewish men. These findings are compatible with the co-occurrence of the Inquisition and the colonization of the Americas, including Converso Jews escaping the Inquisition in the Iberian Peninsula. Although not found among Lojanos, Converso Jews also brought founder mutations to contemporary Hispanic and Latino populations in the BRCA1 (c.68_69delAG) and BLM (c.2207_2212delATCTGAinsTAGATTC) genes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia.

    LENUS (Irish Health Repository)

    Vacic, Vladimir

    2011-03-24

    Rare copy number variants (CNVs) have a prominent role in the aetiology of schizophrenia and other neuropsychiatric disorders. Substantial risk for schizophrenia is conferred by large (>500-kilobase) CNVs at several loci, including microdeletions at 1q21.1 (ref. 2), 3q29 (ref. 3), 15q13.3 (ref. 2) and 22q11.2 (ref. 4) and microduplication at 16p11.2 (ref. 5). However, these CNVs collectively account for a small fraction (2-4%) of cases, and the relevant genes and neurobiological mechanisms are not well understood. Here we performed a large two-stage genome-wide scan of rare CNVs and report the significant association of copy number gains at chromosome 7q36.3 with schizophrenia. Microduplications with variable breakpoints occurred within a 362-kilobase region and were detected in 29 of 8,290 (0.35%) patients versus 2 of 7,431 (0.03%) controls in the combined sample. All duplications overlapped or were located within 89 kilobases upstream of the vasoactive intestinal peptide receptor gene VIPR2. VIPR2 transcription and cyclic-AMP signalling were significantly increased in cultured lymphocytes from patients with microduplications of 7q36.3. These findings implicate altered vasoactive intestinal peptide signalling in the pathogenesis of schizophrenia and indicate the VPAC2 receptor as a potential target for the development of new antipsychotic drugs.

  6. Risk conferred by FokI polymorphism of vitamin D receptor (VDR) gene for essential hypertension.

    Science.gov (United States)

    Swapna, N; Vamsi, U Mohana; Usha, G; Padma, T

    2011-09-01

    The vitamin D receptor (VDR) gene serves as a good candidate gene for susceptibility to several diseases. The gene has a critical role in regulating the renin-angiotensin system (RAS) influencing the regulation of blood pressure. Hence determining the association of VDR polymorphisms with essential hypertension is expected to help in the evaluation of risk for the condition. The aim of this study was to evaluate association between VDRFok I polymorphism and genetic susceptibility to essential hypertension. Two hundred and eighty clinically diagnosed hypertensive patients and 200 normotensive healthy controls were analyzed for Fok I (T/C) [rs2228570] polymorphism by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) analysis. Genotype distribution and allele frequencies in patients and controls, and odds ratios (ORs) were calculated to predict the risk for developing hypertension by the individuals of different genotypes. The genotype distribution and allele frequencies of Fok I (T/C) [rs2228570] VDR polymorphism differed significantly between patients and controls (χ(2) of 18.0; 2 degrees of freedom; P = 0.000). FF genotype and allele F were at significantly greater risk for developing hypertension and the risk was elevated for both the sexes, cases with positive family history and habit of smoking. Our data suggest that VDR gene Fok I polymorphism is associated with the risk of developing essential hypertension.

  7. Association of Aryl Hydrocarbon Receptor-Related Gene Variants with the Severity of Autism Spectrum Disorders.

    Science.gov (United States)

    Fujisawa, Takashi X; Nishitani, Shota; Iwanaga, Ryoichiro; Matsuzaki, Junko; Kawasaki, Chisato; Tochigi, Mamoru; Sasaki, Tsukasa; Kato, Nobumasa; Shinohara, Kazuyuki

    2016-01-01

    Exposure to environmental chemicals, such as dioxin, is known to have adverse effects on the homeostasis of gonadal steroids, thereby potentially altering the sexual differentiation of the brain to express autistic traits. Dioxin-like chemicals act on the aryl hydrocarbon receptor (AhR), polymorphisms, and mutations of AhR -related gene may exert pathological influences on sexual differentiation of the brain, causing autistic traits. To ascertain the relationship between AhR -related gene polymorphisms and autism susceptibility, we identified genotypes of them in patients and controls and determined whether there are different gene and genotype distributions between both groups. In addition, to clarify the relationships between the polymorphisms and the severity of autism, we compared the two genotypes of AhR -related genes (rs2066853, rs2228099) with the severity of autistic symptoms. Although no statistically significant difference was found between autism spectrum disorder (ASD) patients and control individuals for the genotypic distribution of any of the polymorphisms studied herein, a significant difference in the total score of severity was observed in rs2228099 polymorphism, suggesting that the polymorphism modifies the severity of ASD symptoms but not ASD susceptibility. Moreover, we found that a significant difference in the social communication score of severity was observed. These results suggest that the rs2228099 polymorphism is possibly associated with the severity of social communication impairment among the diverse ASD symptoms.

  8. TOLL-LIKE RECEPTOR 7 GENE Gln11Leu MISSENSEMUTATION AND SUSCEPTIBILITY TO PSORIASIS

    Directory of Open Access Journals (Sweden)

    E. S. Galimova

    2017-01-01

    Full Text Available Toll-like receptor (TLR are responsible for recognizing various molecular patterns associated with pathogens. Their expression have been detected in skin cells such as keratinocytes and melanocytes. Numerous experimental studies demonstrate the key role of TLRs in the pathogenesis of immune diseases, including psoriasis. The objective of this study is to analyze the associations of polymorphisms in TLR7 gene and the risk of psoriasis development. DNA samples were collected from 138 patients with psoriasis and 317 healthy controls. Genotyping of rs179003, rs179008, rs179020, rs850632, rs12013728 polymorphic loci in TLR7 gene was performed using the SNPlex™method (AB, USA. SNP in the TLR7 gene rs179008 (Gln11Leu was associated with psoriasis in entire psoriasis, late onset and sporadic subgroups (Рс = 0.0065, OR = 1.95; Рс = 0.0004, OR = 2.50; Рс = 0.0078, OR = 2.2, respectively. In conclusion, this study is the first to identify genetic variants of the TLR7 gene significantly associated with psoriasis. 

  9. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    Science.gov (United States)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Epigenetic Regulation of the Oxytocin Receptor Gene: Implications for Behavioral Neuroscience

    Directory of Open Access Journals (Sweden)

    Robert eKumsta

    2013-05-01

    Full Text Available Genetic approaches have improved our understanding of the neurobiological basis of social behavior and cognition. For instance, common polymorphisms of genes involved in oxytocin signaling have been associated with sociobehavioral phenotypes in healthy samples as well as in subjects with mental disorders. More recently, attention has been drawn to epigenetic mechanisms, which regulate genetic function and expression without changes to the underlying DNA sequence. We provide an overview of the functional importance of oxytocin receptor gene (OXTR promoter methylation and summarize studies that have investigated the role of OXTR methylation in behavioral phenotypes. There is first evidence that OXTR methylation is associated with autism, high callous-unemotional traits, and differential activation of brain regions involved in social perception. Furthermore, psychosocial stress exposure might dynamically regulate OXTR. Given evidence that epigenetic states of genes can be modified by experiences, especially those occurring in sensitive periods early in development, we conclude with a discussion on the effects of traumatic experience on the developing oxytocin system. Epigenetic modification of genes involved in oxytocin signaling might be involved in the mechanisms mediating the long-term influence of early adverse experiences on socio-behavioral outcomes.

  11. Bromodomain Protein BRD4 Is Required for Estrogen Receptor-Dependent Enhancer Activation and Gene Transcription

    Directory of Open Access Journals (Sweden)

    Sankari Nagarajan

    2014-07-01

    Full Text Available The estrogen receptor α (ERα controls cell proliferation and tumorigenesis by recruiting various cofactors to estrogen response elements (EREs to control gene transcription. A deeper understanding of these transcriptional mechanisms may uncover therapeutic targets for ERα-dependent cancers. We show that BRD4 regulates ERα-induced gene expression by affecting elongation-associated phosphorylation of RNA polymerase II (RNAPII and histone H2B monoubiquitination. Consistently, BRD4 activity is required for proliferation of ER+ breast and endometrial cancer cells and uterine growth in mice. Genome-wide studies revealed an enrichment of BRD4 on transcriptional start sites of active genes and a requirement of BRD4 for H2B monoubiquitination in the transcribed region of estrogen-responsive genes. Importantly, we demonstrate that BRD4 occupancy on distal EREs enriched for H3K27ac is required for recruitment and elongation of RNAPII on EREs and the production of ERα-dependent enhancer RNAs. These results uncover BRD4 as a central regulator of ERα function and potential therapeutic target.

  12. Association of aryl hydrocarbon receptor-related gene variants with the severity of autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Takashi X. Fujisawa

    2016-11-01

    Full Text Available Exposure to environmental chemicals, such as dioxin, is known to have adverse effects on the homeostasis of gonadal steroids, thereby potentially altering the sexual differentiation of the brain to express autistic traits. Dioxin-like chemicals act on the aryl hydrocarbon receptor (AhR, polymorphisms and mutations of AhR-related gene may exert pathological influences on sexual differentiation of the brain, causing autistic traits. To ascertain the relationship between AhR-related gene polymorphisms and autism susceptibility, we identified genotypes of them in patients and controls and determined whether there are different gene and genotype distributions between both groups. In addition, to clarify the relationships between the polymorphisms and the severity of autism, we compared the two genotypes of AhR-related genes (rs2066853, rs2228099 with the severity of autistic symptoms. Although no statistically significant difference was found between autism spectrum disorder (ASD patients and control individuals for the genotypic distribution of any of the polymorphisms studied herein, a significant difference in the total score of severity was observed in rs2228099 polymorphism, suggesting that the polymorphism modifies the severity of ASD symptoms but not ASD susceptibility. Moreover, we found that a significant difference in the social communication score of severity was observed. These results suggest that the rs2228099 polymorphism is possibly associated with the severity of social communication impairment among the diverse ASD symptoms.

  13. The Circadian Rhythm Gene Arntl2 Is a Metastasis Susceptibility Gene for Estrogen Receptor-Negative Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Ngoc-Han Ha

    2016-09-01

    Full Text Available Breast cancer mortality is primarily due to metastasis rather than primary tumors, yet relatively little is understood regarding the etiology of metastatic breast cancer. Previously, using a mouse genetics approach, we demonstrated that inherited germline polymorphisms contribute to metastatic disease, and that these single nucleotide polymorphisms (SNPs could be used to predict outcome in breast cancer patients. In this study, a backcross between a highly metastatic (FVB/NJ and low metastatic (MOLF/EiJ mouse strain identified Arntl2, a gene encoding a circadian rhythm transcription factor, as a metastasis susceptibility gene associated with progression, specifically in estrogen receptor-negative breast cancer patients. Integrated whole genome sequence analysis with DNase hypersensitivity sites reveals SNPs in the predicted promoter of Arntl2. Using CRISPR/Cas9-mediated substitution of the MOLF promoter, we demonstrate that the SNPs regulate Arntl2 transcription and affect metastatic burden. Finally, analysis of SNPs associated with ARNTL2 expression in human breast cancer patients revealed reproducible associations of ARNTL2 expression quantitative trait loci (eQTL SNPs with disease-free survival, consistent with the mouse studies.

  14. The medaka novel immune-type receptor (NITR gene clusters reveal an extraordinary degree of divergence in variable domains

    Directory of Open Access Journals (Sweden)

    Litman Gary W

    2008-06-01

    Full Text Available Abstract Background Novel immune-type receptor (NITR genes are members of diversified multigene families that are found in bony fish and encode type I transmembrane proteins containing one or two extracellular immunoglobulin (Ig domains. The majority of NITRs can be classified as inhibitory receptors that possess cytoplasmic immunoreceptor tyrosine-based inhibition motifs (ITIMs. A much smaller number of NITRs can be classified as activating receptors by the lack of cytoplasmic ITIMs and presence of a positively charged residue within their transmembrane domain, which permits partnering with an activating adaptor protein. Results Forty-four NITR genes in medaka (Oryzias latipes are located in three gene clusters on chromosomes 10, 18 and 21 and can be organized into 24 families including inhibitory and activating forms. The particularly large dataset acquired in medaka makes direct comparison possible to another complete dataset acquired in zebrafish in which NITRs are localized in two clusters on different chromosomes. The two largest medaka NITR gene clusters share conserved synteny with the two zebrafish NITR gene clusters. Shared synteny between NITRs and CD8A/CD8B is limited but consistent with a potential common ancestry. Conclusion Comprehensive phylogenetic analyses between the complete datasets of NITRs from medaka and zebrafish indicate multiple species-specific expansions of different families of NITRs. The patterns of sequence variation among gene family members are consistent with recent birth-and-death events. Similar effects have been observed with mammalian immunoglobulin (Ig, T cell antigen receptor (TCR and killer cell immunoglobulin-like receptor (KIR genes. NITRs likely diverged along an independent pathway from that of the somatically rearranging antigen binding receptors but have undergone parallel evolution of V family diversity.

  15. Animal models of Parkinson׳s disease: Effects of two adenosine A2A receptor antagonists ST4206 and ST3932, metabolites of 2-n-Butyl-9-methyl-8-[1,2,3]triazol-2-yl-9H-purin-6-ylamine (ST1535).

    Science.gov (United States)

    Stasi, Maria Antonietta; Minetti, Patrizia; Lombardo, Katia; Riccioni, Teresa; Caprioli, Antonio; Vertechy, Mario; Di Serio, Stefano; Pace, Silvia; Borsini, Franco

    2015-08-15

    Antagonism of the adenosine A2A receptor represents a promising strategy for non-dopaminergic treatment of Parkinson׳s disease (PD). Previously, the adenosine A2A receptor antagonist ST1535 was shown to possess potential beneficial effects in animal models of PD. Two metabolites of ST1535, namely ST3932 and ST4206, were tested in vitro to assess their affinity and activity on cloned human A2A adenosine receptors, and their metabolic profile. Additionally, ST3932 and ST4206 were investigated in vivo in animal models of PD following oral/intraperitoneal administration of 10, 20 and 40mg/kg using ST1535 as a reference compound. ST3932 and ST4206 displayed high affinity and antagonist behaviour for cloned human adenosine A2A receptors. The Ki values for ST1535, ST3932 and ST4206 were 8, 8 and 12nM, respectively, and their IC50 values on cyclic AMP were 427, 450 and 990nM, respectively. ST1535, ST3932 and ST4206 antagonized (orally) haloperidol-induced catalepsy in mice, potentiated (intraperitoneally) the number of contralateral rotations induced by l-3,4-dihydroxyphenylalanine (l-DOPA) (3mg/kg) plus benserazide (6mg/kg) in 6-Hydroxydopamine hydrobromide (6-OHDA)-lesioned rats, and increased mouse motor activity by oral route. Thus, ST3932 and ST4206, two ST1535 metabolites, show a pharmacological activity similar to ST1535, both in vitro and in vivo, and may be regarded as an interesting pharmacological alternative to ST1535. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors

    DEFF Research Database (Denmark)

    Sutton, Lesley-Ann; Young, Emma; Baliakas, Panagiotis

    2016-01-01

    We report on markedly different frequencies of genetic lesions within subsets of chronic lymphocytic leukemia patients carrying mutated or unmutated stereotyped B-cell receptor immunoglobulins in the largest cohort (n=565) studied for this purpose. By combining data on recurrent gene mutations...... subsets implies that the mechanisms underlying clinical aggressiveness are not uniform, but rather support the existence of distinct genetic pathways of clonal evolution governed by a particular stereotyped B-cell receptor selecting a certain molecular lesion(s)....

  17. Preliminary Genetic Imaging Study of the Association between Estrogen ReceptorGene Polymorphisms and Harsh Human Maternal Parenting

    OpenAIRE

    Lahey, Benjamin B.; Michalska, Kalina J.; Liu, Chunyu; Chen, Qi; Hipwell, Alison E.; Waldman, Irwin D.; Decety, Jean

    2012-01-01

    A failure of neural changes initiated by the estrogen surge in late pregnancy to reverse the valence of infant stimuli from aversive to rewarding is associated with dysfunctional maternal behavior in nonhuman mammals. Estrogen receptor-α plays the crucial role in mediating these neural effects of estrogen priming. This preliminary study examines associations between estrogen receptorgene polymorphisms and human maternal behavior. Two polymorphisms were associated with human negative matern...

  18. Osteoblast-specific transcription factor Osterix increases vitamin D receptor gene expression in osteoblasts.

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    Full Text Available Osterix (Osx is an osteoblast-specific transcription factor required for osteoblast differentiation from mesenchymal stem cells. In Osx knock-out mice, no bone formation occurs. The vitamin D receptor (VDR is a member of the nuclear hormone receptor superfamily that regulates target gene transcription to ensure appropriate control of calcium homeostasis and bone development. Here, we provide several lines of evidence that show that the VDR gene is a target for transcriptional regulation by Osx in osteoblasts. For example, calvaria obtained from Osx-null embryos displayed dramatic reductions in VDR expression compared to wild-type calvaria. Stable overexpression of Osx stimulated VDR expression in C2C12 mesenchymal cells. Inhibition of Osx expression by siRNA led to downregulation of VDR. In contrast, Osx levels remained unchanged in osteoblasts in VDR-null mice. Mechanistic approaches using transient transfection assays showed that Osx directly activated a 1 kb fragment of the VDR promoter in a dose-dependent manner. To define the region of the VDR promoter that was responsive to Osx, a series of VDR promoter deletion mutants were examined and the minimal Osx-responsive region was refined to the proximal 120 bp of the VDR promoter. Additional point mutants were used to identify two GC-rich regions that were responsible for VDR promoter activation by Osx. Chromatin immunoprecipitation assays demonstrated that endogenous Osx was associated with the native VDR promoter in primary osteoblasts in vivo. Cumulatively, these data strongly support a direct regulatory role for Osx in VDR gene expression. They further provide new insight into potential mechanisms and pathways that Osx controls in osteoblasts and during the process of osteoblastic cell differentiation.

  19. Selection in the dopamine receptor 2 gene: a candidate SNP study

    Directory of Open Access Journals (Sweden)

    Tobias Göllner

    2015-08-01

    Full Text Available Dopamine is a major neurotransmitter in the human brain and is associated with various diseases. Schizophrenia, for example, is treated by blocking the dopamine receptors type 2. Shaner, Miller & Mintz (2004 stated that schizophrenia was the low fitness variant of a highly variable mental trait. We therefore explore whether the dopamine receptor 2 gene (DRD2 underwent any selection processes. We acquired genotype data of the 1,000 Genomes project (phase I, which contains 1,093 individuals from 14 populations. We included single nucleotide polymorphisms (SNPs with two minor allele frequencies (MAFs in the analysis: MAF over 0.05 and over 0.01. This is equivalent to 151 SNPs (MAF > 0.05 and 246 SNPs (MAF > 0.01 for DRD2. We used two different approaches (an outlier approach and a Bayesian approach to detect loci under selection. The combined results of both approaches yielded nine (MAF > 0.05 and two candidate SNPs (MAF > 0.01, under balancing selection. We also found weak signs for directional selection on DRD2, but in our opinion these were too weak to draw any final conclusions on directional selection in DRD2. All candidates for balancing selection are in the intronic region of the gene and only one (rs12574471 has been mentioned in the literature. Two of our candidate SNPs are located in specific regions of the gene: rs80215768 lies within a promoter flanking region and rs74751335 lies within a transcription factor binding site. We strongly encourage research on our candidate SNPs and their possible effects.

  20. Amphetamine and Dopamine-Induced Immediate Early Gene Expression in Striatal Neurons Depends on Postsynaptic NMDA Receptors and Calcium

    Science.gov (United States)

    Konradi, Christine; Leveque, Jean-Christophe; Hyman, Steven E.

    2014-01-01

    Amphetamine and cocaine induce the expression of both immediate early genes (IEGs) and neuropeptide genes in rat striatum. Despite the demonstrated dependence of these effects on D1 dopamine receptors, which activate the cyclic AMP pathway, there are several reports that amphetamine and cocaine-induced IEG expression can be inhibited in striatum in vivo by NMDA receptor antagonists. We find that in vivo, the NMDA receptor antagonist MK-801 inhibits amphetamine induction of c-fos acutely and also prevents downregulation of IEG expression with chronic amphetamine administration. Such observations raise the question of whether dopamine/glutamate interactions occur at the level of corticostriatal and mesostriatal circuitry or within striatal neurons. Therefore, we studied dissociated striatal cultures in which midbrain and cortical presynaptic inputs are removed. In these cultures, we find that dopamine- or forskolin-mediated IEG induction requires Ca2+ entry via NMDA receptors but not via L-type Ca2+ channels. Moreover, blockade of NMDA receptors diminishes the ability of dopamine to induce phosphorylation of the cyclic AMP responsive element binding protein CREB. Although these results do not rule out a role for circuit-level dopamine/glutamate interactions, they demonstrate a requirement at the cellular level for interactions between the cyclic AMP and NMDA receptor pathways in dopamine-regulated gene expression in striatal neurons. PMID:8753884

  1. Expression of Dopamine Receptor 1A and Cannabinoid Receptor 1 Genes in the Cochlea and Brain after Salicylate-Induced Tinnitus.

    Science.gov (United States)

    Hwang, Juen-Haur; Chan, Yin-Ching

    2016-01-01

    The purpose of this study was to investigate the mRNA expression of the dopamine receptor 1A (DR1A) and cannabinoid receptor 1 (CR1) genes in mice with tinnitus. Sixteen 3-month-old male SAMP8 mice were randomly and equally divided into two groups (8 mice in each group): a control (saline-treated) group and a tinnitus (salicylate-treated) group. The mRNA expression of the DR1A and CR1 genes in the cochleae and brains of the mice was evaluated after tinnitus had been induced by intraperitoneal injection of sodium salicylate (300 mg/kg body weight). The results showed that 4-day salicylate treatment (unlike 4-day saline treatment) caused a significant increase in the tinnitus score and in mRNA expression of the DR1A gene in the cochlea, the brainstem and inferior colliculus, the hippocampus and parahippocampus, and the temporal lobe, but not the frontal lobe. Conversely, 4-day salicylate treatment caused significantly lower mRNA expression of the CR1 gene in the cochlea and all the brain areas tested. In summary, salicylate-induced tinnitus may be associated with increased mRNA expression of the DR1A gene - but with decreased mRNA expression of the CR1 gene - in the cochlea and in many tinnitus-related brain areas. © 2016 S. Karger AG, Basel.

  2. Expression of reproductive hormone receptors and contraction‑associated genes in porcine uterus during the estrous cycle.

    Science.gov (United States)

    An, Sung-Min; Kim, Sun Suk; Kim, Jun; Park, Mee-Na; Lee, Jae-Eon; Cho, Seong Keun; Lee, Kyu-Sup; An, Beum-Soo

    2017-06-01

    Contraction of uterus tissue frequently occurs throughout the estrous cycle and is regulated by several endogenous factors, including estradiol, progesterone, luteinizing hormone, follicle‑stimulating hormone, oxytocin (OXT) and contraction‑associated proteins (CAPs). Contraction activity of uterus tissue according to the estrous cycle is important, due to the fact that it is directly associated with balanced implantation and stable pregnancy. However, few studies have examined the mechanism of uterus contraction activity in a porcine model. In the current study, porcine uterus tissue was separated into the follicular and luteal phases by histological analysis. To investigate regulation of contraction‑associated factors according to the estrous cycle, mRNA and protein expression levels of reproductive hormonal receptors, including estrogen receptors, progesterone receptor and luteinizing hormone/choriogonadotropin receptor in addition to CAPs including OXT, OXT receptor (OXTR), hydroxyprostaglandin dehydrogenase 15‑(NAD) and gap junction α‑1 protein, were examined in the porcine uterus according to the follicular and luteal phases. For the results, hormonal receptors and CAPs were dynamically regulated depending on the estrous cycle. In conclusion, genes associated with uterine contraction and its regulatory hormonal receptors in the porcine uterus were differently regulated in the follicular and luteal phases, suggesting that these genes are critically involved in the remodeling and contraction of uterine tissue and may be required to modulate the physiological status of the uterus.

  3. The nuclear receptor gene nhr-25 plays multiple roles in the Caenorhabditis elegans heterochronic gene network to control the larva-to-adult transition

    Czech Academy of Sciences Publication Activity Database

    Hada, K.; Asahina, Masako; Hasegawa, H.; Kanaho, Y.; Slack, F. J.; Niwa, R.

    2010-01-01

    Roč. 344, č. 2 (2010), s. 1100-1109 ISSN 0012-1606 R&D Projects: GA ČR(CZ) GA204/07/0948; GA ČR(CZ) GD204/09/H058 Institutional research plan: CEZ:AV0Z60220518 Keywords : apl-1 * Caenorhabditis elegans * heterochronic gene * heterochronic gene * let-7 * nuclear receptor * nhr-25 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.094, year: 2010

  4. Analysis of Human Bradykinin Receptor Gene and Endothelial Nitric Oxide Synthase Gene Polymorphisms in End-Stage Renal Disease Among Malaysians

    Directory of Open Access Journals (Sweden)

    R. Vasudevan

    2014-06-01

    Full Text Available The aim of this study was to determine the association of the c.894G>T; p.Glu298Asp polymorphism and the variable number tandem repeat (VNTR polymorphism of the endothelial nitric oxide synthase (eNOS gene and c.181C>T polymorphism of the bradykinin type 2 receptor gene (B2R in Malaysian end-stage renal disease (ESRD subjects.

  5. Evidence for natural selection at the melanocortin-3 receptor gene in European and African populations.

    Science.gov (United States)

    Yoshiuchi, Issei

    2016-08-01

    Obesity is increasing steadily in worldwide prevalence and is known to cause serious health problems in association with type 2 diabetes mellitus (T2DM), including hypertension, stroke, and cardiovascular diseases. According to the thrifty gene hypothesis, the natural selection of obesity-related genes is important during feast and famine because they control body weight and fat levels. Past human adaptations to environmental changes in food supply, lifestyle, and geography may have influenced the selection of genes associated with the metabolism of glucose, lipids, and energy. The melanocortin-3 receptor gene (MC3R) is associated with obesity, with MC3R-deficient mice showing increased fat mass. MC3R variations are also linked with childhood obesity and insulin resistance. Here, we aimed to uncover evidence of selection at MC3R. We performed a three-step method to detect selection at MC3R using HapMap population data. We used Wright's F statistics as a measure of population differentiation, the long-range haplotype test to identify extended haplotypes, and the integrated haplotype score (iHS) to detect selection at MC3R. We observed high population differentiation between European and African populations at two MC3R childhood obesity- and insulin resistance-associated single-nucleotide polymorphisms (rs3746619 and rs3827103) using Wright's F statistics. The iHS revealed evidence of natural selection at MC3R. These findings provide evidence for natural selection at MC3R. Further investigation is warranted into adaptive evolution at T2DM- and obesity-associated genes.

  6. Episodic positive selection in the evolution of avian toll-like receptor innate immunity genes.

    Science.gov (United States)

    Grueber, Catherine E; Wallis, Graham P; Jamieson, Ian G

    2014-01-01

    Toll-like receptors (TLRs) are a family of conserved pattern-recognition molecules responsible for initiating innate and acquired immune responses. Because they play a key role in host defence, these genes have received increasing interest in the evolutionary and population genetics literature, as their variation represents a potential target of adaptive evolution. However, the role of pathogen-mediated selection (i.e. episodic positive selection) in the evolution of these genes remains poorly known and has not been examined outside of mammals. A recent increase in the number of bird species for which TLR sequences are available has enabled us to examine the selective processes that have influenced evolution of the 10 known avian TLR genes. Specifically, we tested for episodic positive selection to identify codons that experience purifying selection for the majority of their evolution, interspersed with bursts of positive selection that may occur only in restricted lineages. We included up to 23 species per gene (mean = 16.0) and observed that, although purifying selection was evident, an average of 4.5% of codons experienced episodic positive selection across all loci. For four genes in which sequence coverage traversed both the extracellular leucine-rich repeat region (LRR) and transmembrane/intracellular domains of the proteins, increased p