WorldWideScience

Sample records for a20 decreases glioma

  1. Combination of vatalanib and a 20-HETE synthesis inhibitor results in decreased tumor growth in an animal model of human glioma

    Directory of Open Access Journals (Sweden)

    Shankar A

    2016-03-01

    Full Text Available Adarsh Shankar,1 Thaiz F Borin,2 Asm Iskander,1 Nadimpalli RS Varma,3 Bhagelu R Achyut,1 Meenu Jain,1 Tom Mikkelsen,4 Austin M Guo,5 Wilson B Chwang,3 James R Ewing,6 Hassan Bagher-Ebadian,6 Ali S Arbab11Tumor Angiogenesis Laboratory, Cancer Center, Georgia Regents University, Augusta, GA, USA; 2Laboratory of Molecular Investigation of Cancer (LIMC, Faculty of Medicine of Sao Jose do Rio Preto, Sao Jose do Rio Preto, Brazil; 3Department of Radiology, Cellular and Molecular Imaging Laboratory, 4Department of Neurosurgery, Henry Ford Health System, Detroit, MI, 5Department of Pharmacology, New York Medical College, Valhalla, NY, 6Department of Neurology and Radiology, Henry Ford Health System, Detroit, MI, USA Background: Due to the hypervascular nature of glioblastoma (GBM, antiangiogenic treatments, such as vatalanib, have been added as an adjuvant to control angiogenesis and tumor growth. However, evidence of progressive tumor growth and resistance to antiangiogenic treatment has been observed. To counter the unwanted effect of vatalanib on GBM growth, we have added a new agent known as N-hydroxy-N'-(4-butyl-2 methylphenylformamidine (HET0016, which is a selective inhibitor of 20-hydroxyeicosatetraenoic acid (20-HETE synthesis. The aims of the studies were to determine 1 whether the addition of HET0016 can attenuate the unwanted effect of vatalanib on tumor growth and 2 whether the treatment schedule would have a crucial impact on controlling GBM.Methods: U251 human glioma cells (4×105 were implanted orthotopically. Two different treatment schedules were investigated. Treatment starting on day 8 (8–21 days treatment of the tumor implantation was to mimic treatment following detection of tumor, where tumor would have hypoxic microenvironment and well-developed neovascularization. Drug treatment starting on the same day of tumor implantation (0–21 days treatment was to mimic cases following radiation therapy or surgery. There were four

  2. Wuweizisu C from Schisandra chinensis decreases membrane potential in C6 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Young-whan CHOI; Kyeok KIM; Ji-yeong JO; Hyo-lim KIM; You-jin LEE; Woo-jung SHIN; Santosh J SACKET; Mijin HAN; Dong-soon IM

    2008-01-01

    Aim:To study the effects of dibenzocyclooctadiene lignans isolated from Schi-sandra chinensis, such as wuweizisu C, gomisin N, gomisin A, and schisandrin, on the membrane potential in C6 glioma cells. Methods: The membrane po-tential was estimated by measuring the fluorescence change in DiBAC-loaded glioma cells. Results: Wuweizisu C decreased the membrane potential in a concentration-dependent manner. Gomisin N and gomisin A, however, showed differential modulation and no change was induced by schisandrin or dimethyl-4,4'-dimethoxy-5,6,5',6'-dimethylene dioxybiphenyl-2,2'-dicarboxylate, a syn-thetic drug derived from dibenzocyclooctadiene lignans. We found no involve-ment of Gi/o proteins, phospholipase C, and extracellular Na+ on the wuweizisu C-indueed decrease of the membrane potential. Wuweizisu C by itself did not change the intracellular Ca2+ [Ca2+]I concentration, but decreased the ATP-indu-ted Ca2+ increase in C6 glioma cells. The 4 lignans at all concentrations used in this study did not induce any effect on cell viability. Furthermore, we found a similar decrease of the membrane potential by wuweizisu C in PC12 neuronal cells. Conclusion: Our results suggest that the decrease in the membrane poten-tial and the modulation of [Ca2+]I concentration by wuweizisu C could be impor-tant action mechanisms ofwuweizisu C.

  3. mTOR inhibition decreases SOX2-SOX9 mediated glioma stem cell activity and temozolomide resistance

    Science.gov (United States)

    Garros-Regulez, Laura; Aldaz, Paula; Arrizabalaga, Olatz; Moncho-Amor, Veronica; Carrasco-Garcia, Estefania; Manterola, Lorea; Moreno-Cugnon, Leire; Barrena, Cristina; Villanua, Jorge; Ruiz, Irune; Pollard, Steven; Lovell-Badge, Robin; Sampron, Nicolas; Garcia, Idoia; Matheu, Ander

    2016-01-01

    ABSTRACT Background: SOX2 and SOX9 are commonly overexpressed in glioblastoma, and regulate the activity of glioma stem cells (GSCs). Their specific and overlapping roles in GSCs and glioma treatment remain unclear. Methods: SOX2 and SOX9 levels were examined in human biopsies. Gain and loss of function determined the impact of altering SOX2 and SOX9 on cell proliferation, senescence, stem cell activity, tumorigenesis and chemoresistance. Results: SOX2 and SOX9 expression correlates positively in glioma cells and glioblastoma biopsies. High levels of SOX2 bypass cellular senescence and promote resistance to temozolomide. Mechanistic investigations revealed that SOX2 acts upstream of SOX9. mTOR genetic and pharmacologic (rapamycin) inhibition decreased SOX2 and SOX9 expression, and reversed chemoresistance. Conclusions: Our findings reveal SOX2-SOX9 as an oncogenic axis that regulates stem cell properties and chemoresistance. We identify that rapamycin abrogate SOX protein expression and provide evidence that a combination of rapamycin and temozolomide inhibits tumor growth in cells with high SOX2/SOX9. PMID:26878385

  4. Optic glioma

    Science.gov (United States)

    Glioma - optic; Optic nerve glioma; Juvenile pilocytic astrocytoma; Brain cancer - optic glioma ... Optic gliomas are rare. The cause of optic gliomas is unknown. Most optic gliomas are slow-growing ...

  5. Magnetofection based on superparamagnetic iron oxide nanoparticle-mediated low lncRNA HOTAIR expression decreases the proliferation and invasion of glioma stem cells.

    Science.gov (United States)

    Fang, Kan; Liu, Peifeng; Dong, Suyan; Guo, Yanjie; Cui, Xinxin; Zhu, Xiaoying; Li, Xuan; Jiang, Lianghan; Liu, Te; Wu, Yuncheng

    2016-08-01

    Glioma stem cells (GSCs) are a special subpopulation of glioma cells that are key to the sensitivity of tumors to treatments and to the possibility of tumor recurrence. Identifying new strategies that inhibit the growth of GSCs are therefore important for developing novel therapies for glioblastoma multiforme (GBM). In this study, CD133+ human glioma stem cells were isolated and cultured. Magnetic nanoparticles were used to mediate the expression of siRNAs targeting the HOTAIR (si-HOTAIR) sequence in human gliomas. Effect of downregulation of HOTAIR expression on proliferation, invasion and in vivo tumorigenicity of human GSCs and underlying molecular mechanisms were further evaluated. The results of the MTT assay and flow cytometric analysis showed that downregulation of HOTAIR expression inhibited cell proliferation and induced cell cycle arrest. Transwell assays demonstrated that downregulation of HOTAIR expression resulted in a decrease in the invasive capability of GSCs. Moreover, magnetic nanoparticle-mediated low expression of HOTAIR effectively reduced the tumorigenic capacity of glioma stem cells in vivo. In addition, the results of qRT-PCR and western blot analysis demonstrated that downregulation of HOTAIR expression significantly increased the expression of PDCD4 in GSCs, in addition to reducing the expression of CCND1 and CDK4. An in-depth mechanistic analysis showed that downregulation of HOTAIR expression reduced the recruitment of downstream molecules, EZH2 and LSD1, thereby activating the expression of PDCD4 at the transcriptional level. In conclusion, downregulation of HOTAIR expression effectively promoted the expression of PDCD4, thereby inhibiting the proliferation, invasion and in vivo tumorigenicity of human GSCs. PMID:27277755

  6. Genetic Inactivation of ATRX Leads to a Decrease in the Amount of Telomeric Cohesin and Level of Telomere Transcription in Human Glioma Cells.

    Science.gov (United States)

    Eid, Rita; Demattei, Marie-Véronique; Episkopou, Harikleia; Augé-Gouillou, Corinne; Decottignies, Anabelle; Grandin, Nathalie; Charbonneau, Michel

    2015-08-01

    Mutations in ATRX (alpha thalassemia/mental retardation syndrome X-linked), a chromatin-remodeling protein, are associated with the telomerase-independent ALT (alternative lengthening of telomeres) pathway of telomere maintenance in several types of cancer, including human gliomas. In telomerase-positive glioma cells, we found by immunofluorescence that ATRX localized not far from the chromosome ends but not exactly at the telomere termini. Chromatin immunoprecipitation (ChIP) experiments confirmed a subtelomeric localization for ATRX, yet short hairpin RNA (shRNA)-mediated genetic inactivation of ATRX failed to trigger the ALT pathway. Cohesin has been recently shown to be part of telomeric chromatin. Here, using ChIP, we showed that genetic inactivation of ATRX provoked diminution in the amount of cohesin in subtelomeric regions of telomerase-positive glioma cells. Inactivation of ATRX also led to diminution in the amount of TERRAs, noncoding RNAs resulting from transcription of telomeric DNA, as well as to a decrease in RNA polymerase II (RNAP II) levels at the telomeres. Our data suggest that ATRX might establish functional interactions with cohesin on telomeric chromatin in order to control TERRA levels and that one or the other or both of these events might be relevant to the triggering of the ALT pathway in cancer cells that exhibit genetic inactivation of ATRX. PMID:26055325

  7. Tumor-associated methylation of the putative tumor suppressor AJAP1 gene and association between decreased AJAP1 expression and shorter survival in patients with glioma

    Institute of Scientific and Technical Information of China (English)

    David Cogdell; Woonbok Chung; Yuexin Liu; Matthew McDonald; Kenneth Aldape; Jean-Pierre J. Issa; Gregory N. Fuller; Wei Zhang

    2011-01-01

    Allelic loss of the short arm of chromosome 1 has been observed frequently in a wide spectrum of cancers, most frequently in oligodendroglioma. In our previous studies, we evaluated 177 oligodendroglial tumor samples and identified the AJAP1 gene (formerly Shrew1) in the consensus region of deletion.AJAP1 is a transmembrane protein found in adheren junctions and functions to inhibit glioma cell adhesion and migration. Whereas a putative tumor suppressor gene, we did not detect AJAP1 gene mutations. In subsequent studies, we found that AJAP1 was underexpressed in oligodendrogliomas relative to normal brain tissues. Bioinformatic analysis revealed the presence of CpG islands in the promoter of AJAP1.Methylation analysis of the AJAP1 promoter identified hypermethylation in 21% of oligodendrogliomas (n = 27), and the degree of methylation correlated with Iow levels of AJAP1 expression (P = 0.045). The AJAP1 promoter was also highly methylated in a wide spectrum of cell lines (n = 22), including cell lines of glioblastoma. Analysis of the National Cancer Institute's REMBRANDT dataset, which contains 343 glioma samples, indicated that Iow AJAP1 gene expression was associated with decreased survival. Thus,both genetic (gene deletion) and epigenetic alterations (promoter methylation) are likely mechanisms that inactivate the putative tumor suppressor AJAP1 in gliomas, which contributes to poor prognosis.

  8. Tumor-associated methylation of the putative tumor suppressor AJAP1 gene and association between decreased AJAP1 expression and shorter survival in patients with glioma.

    Science.gov (United States)

    Cogdell, David; Chung, Woonbok; Liu, Yuexin; McDonald, J Matthew; Aldape, Kenneth; Issa, Jean-Pierre J; Fuller, Gregory N; Zhang, Wei

    2011-04-01

    Allelic loss of the short arm of chromosome 1 has been observed frequently in a wide spectrum of cancers, most frequently in oligodendroglioma. In our previous studies, we evaluated 177 oligodendroglial tumor samples and identified the AJAP1 gene (formerly Shrew1) in the consensus region of deletion. AJAP1 is a transmembrane protein found in adheren junctions and functions to inhibit glioma cell adhesion and migration. Whereas a putative tumor suppressor gene, we did not detect AJAP1 gene mutations. In subsequent studies, we found that AJAP1 was underexpressed in oligodendrogliomas relative to normal brain tissues. Bioinformatic analysis revealed the presence of CpG islands in the promoter of AJAP1. Methylation analysis of the AJAP1 promoter identified hypermethylation in 21% of oligodendrogliomas (n =27), and the degree of methylation correlated with low levels of AJAP1 expression (P = 0.045). The AJAP1 promoter was also highly methylated in a wide spectrum of cell lines (n = 22), including cell lines of glioblastoma. Analysis of the National Cancer Institute's REMBRANDT dataset, which contains 343 glioma samples, indicated that low AJAP1 gene expression was associated with decreased survival. Thus, both genetic (gene deletion) and epigenetic alterations (promoter methylation) are likely mechanisms that inactivate the putative tumor suppressor AJAP1 in gliomas, which contributes to poor prognosis.

  9. Multiple Gliomas

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Multiple gliomas are well-recognized but uncommon tumors. The incidence of multiple gliomas according to some reports ranges from 0.5% to 20% of all gliomas diagnosed. Multiple gliomas can be divided into two categories. One is by location of the lesions (multifocal and multicentric). The second type is by the time of the lesions occur (synchronous and metachronous). The lesions generally show hypo, or isodensity on CT; a hypo- or isointense signal on T1-weighted images, and a hyperintense signal on T2-weighted images. Glioblastoma is the most frequent histotype. The prognosis of multiple gliomas remains unfavorable. The treatment of multiple gliomas includes surgery, radiotherapy and chemotherapy. Distinction between multicentric and multifocal gliomas is difficult. This report reviews in detail the aspects of multiple gliomas mentioned above.

  10. Neuronavigator-guided glioma surgery

    Institute of Scientific and Technical Information of China (English)

    杜固宏; 周良辅; 毛颖

    2003-01-01

    Objective To evaluate the effectiveness of neuronavigator-guided surgery for the resection of gliomas. Methods A total of 80 patients with gliomas underwent surgical treatment under the StealthStation neuronavigator to estimate the extent of the tumors. In 27 cases, the measurements of brain shifts at the dura, cortical surface and lesion margin were recorded during the operations. A technique termed "micro-catheter fence post" was used in superficial gliomas to compensate for brain shift.Results Mean fiducial error and predicted accuracy in the 80 cases were 2.03 mm±0.89 mm and 2.43 mm±0.99 mm, respectively. The shifts at the dura, cortical surface and lesion margin were 3.44 mm±2.39 mm, 7.58 mm±3.75 mm, and 6.55 mm±3.19 mm, respectively. Although neuronavigation revealed residual tumors, operations were discontinued in 5 cases of deep-seated gliomas. In the other 75 cases, total tumor removals were achieved in 62 (82.7%), and subtotal removals were achieved in 13 (17.3%). Post-operation, neurological symptoms were improved or unchanged in 68 cases (85.0%), and worsened in 12 (15.0%). No deaths occurred during the operations and post-operations. Conclusions Intraoperative brain shifts mainly contribute to the fail of spatial accuracy during neuronavigator-guided glioma surgery. The "micro-catheter fence post" technique used for glioma surgery is shown to be useful for compensating for intraoperative brain shifts. This technique, thus, contributes to an increase in total tumor removal and a decrease in surgical complications.

  11. Suppression of glioma progression by Egln3.

    Directory of Open Access Journals (Sweden)

    Vicki A Sciorra

    Full Text Available Grade IV astrocytoma or glioblastoma has a poor clinical outcome that can be linked to hypoxia, invasiveness and active vascular remodeling. It has recently been suggested that hypoxia-inducible factors, Hifs, increase glioma growth and aggressiveness [1], [2], [3]. Here, we tested the hypothesis that Egl 9 homolog 3 (Egln3, a prolyl-hydroxylase that promotes Hif degradation, suppresses tumor progression of human and rodent glioma models. Through intracranial tumorigenesis and in vitro assays, we demonstrate for the first time that Egln3 was sufficient to decrease the kinetics of tumor progression and increase survival. We also find that Klf5, a transcription factor important to vascular remodeling, was regulated by hypoxia in glioma. An analysis of the tumor vasculature revealed that elevated Egln3 normalized glioma capillary architecture, consistent with a role for Egln3 in eliciting decreases in the production of Hif-regulated, angiogenic factors. We also find that the hydroxylase-deficient mutant, Egln3(H196A partially maintained tumor suppressive activity. These results highlight a bifurcation of Egln3 signaling and suggest that Egln3 has a non-hydroxylase-dependent function in glioma. We conclude that Egln3 is a critical determinant of glioma formation and tumor vascular functionality.

  12. Histologic classification of gliomas.

    Science.gov (United States)

    Perry, Arie; Wesseling, Pieter

    2016-01-01

    Gliomas form a heterogeneous group of tumors of the central nervous system (CNS) and are traditionally classified based on histologic type and malignancy grade. Most gliomas, the diffuse gliomas, show extensive infiltration in the CNS parenchyma. Diffuse gliomas can be further typed as astrocytic, oligodendroglial, or rare mixed oligodendroglial-astrocytic of World Health Organization (WHO) grade II (low grade), III (anaplastic), or IV (glioblastoma). Other gliomas generally have a more circumscribed growth pattern, with pilocytic astrocytomas (WHO grade I) and ependymal tumors (WHO grade I, II, or III) as the most frequent representatives. This chapter provides an overview of the histology of all glial neoplasms listed in the WHO 2016 classification, including the less frequent "nondiffuse" gliomas and mixed neuronal-glial tumors. For multiple decades the histologic diagnosis of these tumors formed a useful basis for assessment of prognosis and therapeutic management. However, it is now fully clear that information on the molecular underpinnings often allows for a more robust classification of (glial) neoplasms. Indeed, in the WHO 2016 classification, histologic and molecular findings are integrated in the definition of several gliomas. As such, this chapter and Chapter 6 are highly interrelated and neither should be considered in isolation. PMID:26948349

  13. Autophagy involved in resveratrol increased radiosensitivity in glioma stem cells

    International Nuclear Information System (INIS)

    Objective: To investigate the effect of Resveratrol combined with X-ray on radiosensitivity in glioma stem cells. Methods: The proliferation inhibition of glioma stem cells induced by X-rays and Resveratrol was assessed with MTT assay. The activation of proapoptotic effect was characterized by Hoechst 33258 stain. MDC stain and Western blot analysis were used to analyze the autophagy mechanism in X-rays-induced death of glioma stem cells. Results: MTT assay indicated that X-rays and Resveratrol decreased the viability of glioma stem cells (P<0.05); we found the proliferative inhibition of glioma stem cells was declined when we used 3-MA to inhibit autophagy(P<0.05). When the cells were treated by the Resveratrol and x-rays, their spherical shape were changed. Apoptosis was induced in glioma stem cells by combined X-rays and Resveratrol as detected by Hoechst 33258 staining. In addition, autophagy was induced in glioma stem cells in the combined treatment group as detected by MDC staining. Western blotting showed that Bcl-2 expression was decreased. in the combined treatment group (P<0.01), and the LC3-Ⅱ expression was increased in the combined treatment group (P<0.01). Conclusion: Resveratrol can increased the radiation sensitivity of glioma stem cells, the apoptosis and autophagy was induced in the glioma stem cells in the combined treatment X-rays and Resveratrol. Our results suggest that autophagy plays an essential role in the regulation of radiosensitization of glioma stem cells. (authors)

  14. Molecular Therapeutic Targets for Glioma Angiogenesis

    Directory of Open Access Journals (Sweden)

    Shingo Takano

    2010-01-01

    Full Text Available Due to the prominent angiogenesis that occurs in malignant glioma, antiangiogenic therapy has been attempted. There have been several molecular targets that are specific to malignant gliomas, as well as more broadly in systemic cancers. In this review, I will focus on some topics related to molecular therapeutic targets for glioma angiogenesis. First, important angiogenic factors that could be considered molecular targets are VEGF, VEGF-induced proteins on endothelial cells, tissue factor, osteopontin, v3 integrin, and thymidine phosphorylase as well as endogenous inhibitors, soluble Flt1, and thrombospondin 1. Second, hypoxic areas are also decreased by metronomic CPT11 treatment as well as temozolomide. Third, glioma-derived endothelial cells that are genetically and functionally distinct from normal endothelial cells should be targeted, for example, with SDF-1 and CXCR7 chemokine. Fourth, endothelial progenitor cells (EPCs likely contribute towards glioma angiogenesis in the brain and could be useful as a drug delivery tool. Finally, blockade of delta-like 4 (Dll4 results in a nonfunctioning vasculature and could be another important target distinct from VEGF.

  15. Treatment of malignant glioma using hyperthermia*

    Institute of Scientific and Technical Information of China (English)

    Jiahang Sun; Mian Guo; Hengyuan Pang; Jingtao Qi; Jinwei Zhang; Yunlong Ge

    2013-01-01

    Thirty pathological y diagnosed patients with grade III-IV primary or recurrent malignant glioma (tumor diameter 3-7 cm) were randomly divided into two groups. The control group underwent conventional radiotherapy and chemotherapy. In the hyperthermia group, primary cases received hyperthermia treatment, and patients with recurrent tumors were treated with hyperthermia in com-bination with radiotherapy and chemotherapy. Hyperthermia treatment was administered using a 13.56-MHz radio frequency hyperthermia device. Electrodes were inserted into the tumor with the aid of a CT-guided stereotactic apparatus and heat was applied for 1 hour. During 3 months after hyperthermia, patients were evaluated with head CT or MRI every month. Gliomas in the hyper-thermia group exhibited growth retardation or growth termination. Necrosis was evident in 80%of the heated tumor tissue and there was a decrease in tumor diameter. Our findings indicate that ra-dio frequency hyperthermia has a beneficial effect in the treatment of malignant glioma.

  16. Genetic Alterations in Glioma

    International Nuclear Information System (INIS)

    Gliomas are the most common type of primary brain tumor and have a dismal prognosis. Understanding the genetic alterations that drive glioma formation and progression may help improve patient prognosis by identification of novel treatment targets. Recently, two major studies have performed in-depth mutation analysis of glioblastomas (the most common and aggressive subtype of glioma). This systematic approach revealed three major pathways that are affected in glioblastomas: The receptor tyrosine kinase signaling pathway, the TP53 pathway and the pRB pathway. Apart from frequent mutations in the IDH1/2 gene, much less is known about the causal genetic changes of grade II and III (anaplastic) gliomas. Exceptions include TP53 mutations and fusion genes involving the BRAF gene in astrocytic and pilocytic glioma subtypes, respectively. In this review, we provide an update on all common events involved in the initiation and/or progression across the different subtypes of glioma and provide future directions for research into the genetic changes

  17. A Phase I Study of Mebendazole for the Treatment of Pediatric Gliomas

    Science.gov (United States)

    2016-07-08

    Pilomyxoid Astrocytoma; Pilocytic Astrocytoma; Glioma, Astrocytic; Optic Nerve Glioma; Pleomorphic Xanthoastrocytoma; Glioblastoma Multiforme; Anaplastic Astrocytoma; Gliosarcoma; Diffuse Intrinsic Pontine Glioma; DIPG; Low-grade Glioma; Brainstem Glioma

  18. Galunisertib inhibits glioma vasculogenic mimicry formation induced by astrocytes.

    Science.gov (United States)

    Zhang, Chao; Chen, Wenliang; Zhang, Xin; Huang, Bin; Chen, Aanjing; He, Ying; Wang, Jian; Li, Xingang

    2016-01-01

    Gliomas are among the most lethal primary brain tumors found in humans. In high-grade gliomas, vasculogenic mimicry is often detected and has been correlated with prognosis, thus suggesting its potential as a therapeutic target. Vasculogenic mimicry mainly forms vascular-like channels independent of endothelial cells; however, little is known about the relationship between astrocytes and vasculogenic mimicry. In our study, we demonstrated that the presence of astrocytes promoted vasculogenic mimicry. With suspension microarray technology and in vitro tube formation assays, we identified that astrocytes relied on TGF-β1 to enhance vasculogenic mimicry. We also found that vasculogenic mimicry was inhibited by galunisertib, a promising TGF-β1 inhibitor currently being studied in an ongoing trial in glioma patients. The inhibition was partially attributed to a decrease in autophagy after galunisertib treatment. Moreover, we observed a decrease in VE-cadherin and smooth muscle actin-α expression, as well as down-regulation of Akt and Flk phosphorylation in galunisertib-treated glioma cells. By comparing tumor weight and volume in a xenograft model, we acquired promising results to support our theory. This study expands our understanding of the role of astrocytes in gliomas and demonstrates that galunisertib inhibits glioma vasculogenic mimicry induced by astrocytes. PMID:26976322

  19. Methionine and cystine double deprivation stress suppresses glioma proliferation via inducing ROS/autophagy.

    Science.gov (United States)

    Liu, Huailei; Zhang, Weiguang; Wang, Kaikai; Wang, Xiaoxiong; Yin, Fei; Li, Chenguang; Wang, Chunlei; Zhao, Boxian; Zhong, Chen; Zhang, Jiakang; Peng, Fei; Bi, Yunke; Shen, Chen; Hou, Xu; Zhang, Daming; Liu, Yaohua; Ai, Jing; Zhao, Shiguang

    2015-01-22

    Cancer cells are highly dependent on methionine and cystine (Met-Cys) for survival and proliferation. However, the molecular mechanism is not fully clear. The present study is to investigate the effects of Met-Cys deprivation on glioma cells proliferation. The results showed that Met-Cys double deprivation had synergistic action on elevating ROS level, decreased GSH level and inhibition of glioma cell proliferation. Moreover, both of them deprivation triggered autophagy of glioma cells both in vitro and in vivo. Importantly, Met-Cys double restriction diet inhibited growth of glioma. These results provided a new regulation mechanism of Met-Cys metabolism on affecting glioma cell proliferation, suggesting that targeting Met-Cys metabolism may be a potential strategy for glioma therapy.

  20. Gene Therapy for Gliomas

    OpenAIRE

    Nanda, Dharminderkoemar

    2008-01-01

    textabstractThe overall median survival in glioblastoma multiforme (GBM) patients is less than one year and fewer than 5% of patients survive more than 5 years. The current standard of care for GBM patients involves neurosurgical resection of the tumor followed by radiotherapy with concomitant and adjuvant temozolomide chemotherapy. After initial treatment, all malignant gliomas eventually recur, mostly within a 2-3 cm margin of the original tumor on CT/MRI. The poor prognosis warrants resear...

  1. Molecular hallmarks of gliomas

    OpenAIRE

    Pojo, Marta; Costa, Bruno Marques

    2011-01-01

    Gliomas are a heterogeneous group of neoplasias that account for the majority of primary tumors of the central nervous system, of which glioblastoma multiforme is by far the most common and malignant subtype. These are particularly dramatic diseases, as they rank first among all human tumor types for the tumor‐related average years of life lost, and for which curative therapies are not yet available. Their etiology remains mostly undetermined: so far, only exposure to high‐dose therapeutic ra...

  2. Cellular host responses to gliomas.

    Directory of Open Access Journals (Sweden)

    Joseph Najbauer

    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM is the most aggressive type of malignant primary brain tumors in adults. Molecular and genetic analysis has advanced our understanding of glioma biology, however mapping the cellular composition of the tumor microenvironment is crucial for understanding the pathology of this dreaded brain cancer. In this study we identified major cell populations attracted by glioma using orthotopic rodent models of human glioma xenografts. Marker-specific, anatomical and morphological analyses revealed a robust influx of host cells into the main tumor bed and tumor satellites. METHODOLOGY/PRINCIPAL FINDINGS: Human glioma cell lines and glioma spheroid orthotopic implants were used in rodents. In both models, the xenografts recruited large numbers of host nestin-expressing cells, which formed a 'network' with glioma. The host nestin-expressing cells appeared to originate in the subventricular zone ipsilateral to the tumor, and were clearly distinguishable from pericytes that expressed smooth muscle actin. These distinct cell populations established close physical contact in a 'pair-wise' manner and migrated together to the deeper layers of tumor satellites and gave rise to tumor vasculature. The GBM biopsy xenografts displayed two different phenotypes: (a low-generation tumors (first in vivo passage in rats were highly invasive and non-angiogenic, and host nestin-positive cells that infiltrated into these tumors displayed astrocytic or elongated bipolar morphology; (b high-generation xenografts (fifth passage had pronounced cellularity, were angiogenic with 'glomerulus-like' microvascular proliferations that contained host nestin-positive cells. Stromal cell-derived factor-1 and its receptor CXCR4 were highly expressed in and around glioma xenografts, suggesting their role in glioma progression and invasion. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate a robust migration of nestin-expressing host cells to glioma, which

  3. In vivo single voxel H MR spectroscopy in cerebral glioma

    International Nuclear Information System (INIS)

    To assess the metabolite ratios in gliomas to determine whether the metabolic information obtained by using in vivo single voxel 1H magnetic resonance spectroscopy (MRS) can be used as a marker for the grading of malignancy. A total of 28 1H MR spectra from brain tumors in 27 patients with pathologically-proven gliomas were recorded. Seven patients had low grade gliomas (grade II astrocytoma in three, oligodendroglioma in three and mixed glioma in one), six had anaplastic gliomas (grade III astrocytoma in three and oligodendroglioma n three), and 14 had glioblastoma multiformes (grade IV). 1H MRS was performed on a 1.5T MR unit using PRESS sequence with a TR of 2000ms, a TE of 270 or 135ms and a voxel size of cm for all spectra. Relative lactate levels, NAA/Cho, NAA/ Cr and Cho/Cr ratios were measured based on the peak heights of each resonance and compared among gliomas. Most tumors demonstrated decreased NAA, elevated Cho and lactate. Relatively high lactate and Cho levels and markedly decreased NAA level were more frequently observed in the high grade gliomas than in low grade gliomas. Marked elevation of lactated level in the solid component of the tumor was mostly observed in high grade gliomas. In a patient with gliomatosis cerebri, 1H MRS demonstrated a spectral pattern of tumor infiltration in an area that on MR images was apparently normal. However, NAA/Cr, NAA/Cho and Cho/Cr ratios did not significantly correlate, however, with the histologic grading of malignancy. Because of the partial volume effect, the heterogeneity of tumors containing solid and cystic or necrotic components within a voxel limited the interpretation of 1H MRS data for the grading of malignancy. The results suggest that in some patients in vivo single voxel 1H MRS may be useful for grading the malignancy of gilomas and evaluating the exact extent of tumors. In solid gliomas, the relative level of lactate appears to be a good marker for the grading of malignancy

  4. A complex mechanism for HDGF-mediated cell growth, migration, invasion, and TMZ chemosensitivity in glioma.

    Science.gov (United States)

    Song, Ye; Hu, Zheng; Long, Hao; Peng, Yuping; Zhang, Xi'an; Que, Tianshi; Zheng, Shihao; Li, Zhiyong; Wang, Gang; Yi, Liu; Liu, Zhen; Fang, Weiyi; Qi, Songtao

    2014-09-01

    HDGF is overexpressed in gliomas as compared to normal brain. We therefore analyzed the molecular mechanisms of HDGF action in gliomas. HDGF was downregulated in normal brain tissue as compared to glioma specimens at both the mRNA and the protein levels. In glioma samples, increased HDGF expression was associated with disease progression. Knocking down HDGF expression not only significantly decreased cellular proliferation, migration, invasion, and tumorigenesis, but also markedly enhanced TMZ-induced cytotoxicity and apoptosis in glioma cells. Mechanistic analyses revealed that CCND1, c-myc, and TGF-β were downregulated after stable HDGF knockdown in the U251 and U87 glioma cells. HDGF knockdown restored E-cadherin expression and suppressed mesenchymal cell markers such as vimentin, β-catenin, and N-cadherin. The expression of cleaved caspase-3 increased, while Bcl-2 decreased in each cell line following treatment with shHDGF and TMZ, as compared to TMZ alone. Furthermore, RNAi-based knockdown study revealed that HDGF is probably involved in the activation of both the PI3K/Akt and the TGF-β signaling pathways. Together, our data suggested that HDGF regulates glioma cell growth, apoptosis and epithelial-mesenchymal transition (EMT) probably through the Akt and the TGF-β signaling pathways. These results provide evidence that targeting HDGF or its downstream targets may lead to novel therapies for gliomas.

  5. Effects of endostatin on C6 glioma-induced edema

    Institute of Scientific and Technical Information of China (English)

    YANG Li-juan; LIN Zhi-xiong; KANG De-zhi; WENG Shen-mei; LIN Jian-hua; HUANG Qiang; ZHANG Peng-fei

    2011-01-01

    Background Glioma-induced edema is considered as one of the most pathological characteristics of glioma and a significant source of morbidity and mortality.New strategies are needed for the treatment of peritumoral edema in glioma.Endostatin has been proven to be beneficial as an anti-angiogenic agent in experimental gliomas,but the effects are unclear.This study aimed to investigate the effects of endostatin on C6 glioma-induced edema.Methods Tumorigenic mice were established by subcutaneous injection of three glioma cell lines,C6-null cells and stable transfected-C6 cells overexpressing mock vector (C6-mock cells) and endostatin (C6-endo cells).Endostatin expression in xenograft C6 glioma was determined by immunostaining and Western blotting.Glioma-induced edema and tumor vessel permeability were assayed.The effect of endostatin on vascular enodothelial growth factor (VEGF) expression in vivo was analyzed by quantitative polymerase chain reaction (Q-PCR) and enzyme-linked immunosorbent assay (ELISA).The number of vesiculo-vascuolar organelles (VVOs) formed in tumor endothelia was calculated using electron microscopy.Data were analyzed by using one-way analysis of variance (ANOVA) followed by Dunnett's post hoc test for multiple comparisons to the control groups.Results Overexpression of endostatin (C6-endo cells) significantly suppressed tumor growth and reduced tumor edema and vessel permeability.ELISA analysis showed that the level of VEGF protein was markedly decreased in tumor from C6-endo cells compared with tumor from C6-null cells and C6-mock cells.Similar results were obtained by Q-PCR.Furthermore,the number of VVOs observed in tumor from C6-endo mice was significantly reduced compared with tumor from C6-null cells or C6-mock cells.Conclusions Our data provide primary evidence that endostatin reduces glioma-induced edema and vascular permeability.Using endostatin may be an effective strategy for treating glioma edema.

  6. PERK silence inhibits glioma cell growth under low glucose stress by blockage of p-AKT and subsequent HK2's mitochondria translocation

    KAUST Repository

    Hou, Xu

    2015-03-12

    Glioma relies on glycolysis to obtain energy and sustain its survival under low glucose microenvironment in vivo. The mechanisms on glioma cell glycolysis regulation are still unclear. Signaling mediated by Double-stranded RNA-activated protein kinase (PKR) - like ER kinase (PERK) is one of the important pathways of unfolded protein response (UPR) which is comprehensively activated in cancer cells upon the hypoxic and low glucose stress. Here we show that PERK is significantly activated in human glioma tissues. PERK silencing results in decreased glioma cell viability and ATP/lactate production upon low glucose stress, which is mediated by partially blocked AKT activation and subsequent inhibition of Hexokinase II (HK2)\\'s mitochondria translocation. More importantly, PERK silenced glioma cells show decreased tumor formation capacity. Our results reveal that PERK activation is involved in glioma glycolysis regulation and may be a potential molecular target for glioma treatment.

  7. Temozolomide in malignant glioma

    Directory of Open Access Journals (Sweden)

    Gregor Dresemann

    2010-07-01

    Full Text Available Gregor DresemannCenter for Neurooncology at Aerztehaus Velen, Velen, GermanyAbstract: Glioblastoma multiforme WHO grade IV (GBM is the most aggressive ­malignant glioma and the most frequent primary tumor of the central nervous system. The median ­survival of newly diagnosed GBM patients was between 9 to 12 months prior to treatment with ­temozolomide being introduced. Primary resection that is as complete as possible is recommended for malignant glioma. Conventional fractionated irradiation 55 to 60 gy with concomitant temozolomide followed by standard temozolomide 6 cycles (5/28 (EORTC/NCIC-regime published by R Stupp in 2005 is the standard of care for newly diagnosed GBM after surgery, independent of the methylation status of the MGM-T gene promoter. Age is no ­contraindication for treatment with temozolomide, although comorbidity and performance status have to be ­considered. For temozolomide naive GBM and astrocytoma grade III patients with disease progression, temozolomide is still the treatment of choice outside of clinical studies. A ­general consensus regarding the schedule of choice has not yet been achieved; so far the 5 out of 28 days regimen (5/28 is the standard of care in most countries. Patients with disease progression after standard temozolomide (5/28 are candidates for clinical studies. Outside of clinical ­studies, dose-dense (7/7, prolonged (21/28, or metronomic (28/28 temozolomide, or alternatively a nitrosourea-based regimen can be an option. The excellent toxicity profile of ­temozolomide allows for various combinations with antitumor agents. None of these ­combinations, however, have been demonstrated to be statistically significantly superior compared to temozolomide alone. The role of lower dosed, dose-dense, or continuous regimen with or without drug combination and the role of temozolomide for newly diagnosed astrocytoma grade III and low grade glioma still has to be determined.Keywords: glioblastoma

  8. Matrine inhibits the invasive properties of human glioma cells by regulating epithelial‑to‑mesenchymal transition.

    Science.gov (United States)

    Wang, Zhongwei; Wu, Yi; Wang, Yali; Jin, Yingying; Ma, Xiulong; Zhang, Yang; Ren, Hongtao

    2015-05-01

    Matrine is reported to be effective in tumor therapies; however, the anti‑metastatic effect and molecular mechanism(s) of matrine on glioma remain poorly understood. Therefore, the purpose of this study was to assess the effects of matrine on glioma and the associated mechanism(s). In the study, we demonstrated that matrine inhibited the proliferation of glioma cells. We also observed that matrine inhibited the migration and invasion of glioma cells at non‑toxic concentrations. Matrine also decreased the expression of E‑cadherin and increased the expression of N‑cadherin. These results suggest that the anti‑metastatic effect of matrine may be correlated with epithelial‑to‑mesenchymal transition (EMT). Moreover, matrine could reduce the phosphorylation levels of p38 and AKT proteins. In conclusion, these results suggest matrine may be a potential alternative against invasive glioma cells via the p38 MAPK and AKT signaling‑dependent inhibition of EMT.

  9. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    International Nuclear Information System (INIS)

    Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma

  10. Radiotherapy in supratentorial gliomas. A study of 821 cases

    Energy Technology Data Exchange (ETDEWEB)

    Heesters, M. [Dept. of Radiotherapy, Groningen Univ. Hospital (Netherlands); Molenaar, W. [Dept. of Pathology, Groningen Univ. Hospital (Netherlands); Go, G.K. [Dept. of Neurosurgery, Groningen Univ. Hospital (Netherlands)

    2003-09-01

    Purpose: Analysis of the results of radiotherapy in a large group of cerebral gliomas with identification of prognostic factors and the outcome with respect to different decades of treatment. Patients and Methods: Two decades (1979-1999) of radiotherapy in supratentorial astrocytic and oligodendroglial tumors (n = 821) at the University Hospital Groningen were retrospectively evaluated. Prognostic factors for survival were analyzed. Two decades of radiotherapy treatment were compared with respect to radiotherapy dose and treatment-field design. Results: Glioblastoma multiforme, including gliosarcoma, was the most frequent supratentorial glioma (n = 442) with a poor survival, i.e., median survival time (MST) 7 months, especially in patients > 50 years of age and with poor performance. Patients with good performance were selected for radiotherapy with an optimum dose of 60 Gy local-field irradiation. However, in patients with poor prognosis, no radiotherapy was applied or a shorter treatment scheme was given. Anaplastic astrocytomas (n = 131) were treated in the same way as glioblastoma multiforme. Over time, a decrease in radiation dose (from 60 to 45 Gy) and from whole brain irradiation to local-field treatment was observed, following the literature. In low-grade gliomas, prognostic factors for survival were age, performance, and extent of resection. Gemistocytic astrocytoma (n = 15) had an inferior survival compared to astrocytoma (MST 46 vs. 54 months), but a superior survival compared to anaplastic astrocytoma (MST 10 months). The presence of an oligodendroglial component in a glioma implied a superior survival compared to the astrocytic gliomas. The inherent biology of the glioma is reflected by the study of recurrent tumors with progression to higher grades of malignancy in 32-40% and by the histology of recurrent oligodendroglial tumors. In comparing two decades of radiotherapy in gliomas, no differences in survival were observed despite the technological

  11. Radiotherapy in supratentorial gliomas. A study of 821 cases

    International Nuclear Information System (INIS)

    Purpose: Analysis of the results of radiotherapy in a large group of cerebral gliomas with identification of prognostic factors and the outcome with respect to different decades of treatment. Patients and Methods: Two decades (1979-1999) of radiotherapy in supratentorial astrocytic and oligodendroglial tumors (n = 821) at the University Hospital Groningen were retrospectively evaluated. Prognostic factors for survival were analyzed. Two decades of radiotherapy treatment were compared with respect to radiotherapy dose and treatment-field design. Results: Glioblastoma multiforme, including gliosarcoma, was the most frequent supratentorial glioma (n = 442) with a poor survival, i.e., median survival time (MST) 7 months, especially in patients > 50 years of age and with poor performance. Patients with good performance were selected for radiotherapy with an optimum dose of 60 Gy local-field irradiation. However, in patients with poor prognosis, no radiotherapy was applied or a shorter treatment scheme was given. Anaplastic astrocytomas (n = 131) were treated in the same way as glioblastoma multiforme. Over time, a decrease in radiation dose (from 60 to 45 Gy) and from whole brain irradiation to local-field treatment was observed, following the literature. In low-grade gliomas, prognostic factors for survival were age, performance, and extent of resection. Gemistocytic astrocytoma (n = 15) had an inferior survival compared to astrocytoma (MST 46 vs. 54 months), but a superior survival compared to anaplastic astrocytoma (MST 10 months). The presence of an oligodendroglial component in a glioma implied a superior survival compared to the astrocytic gliomas. The inherent biology of the glioma is reflected by the study of recurrent tumors with progression to higher grades of malignancy in 32-40% and by the histology of recurrent oligodendroglial tumors. In comparing two decades of radiotherapy in gliomas, no differences in survival were observed despite the technological

  12. Stem cell signatures in glioma

    OpenAIRE

    He, Xiaobing

    2012-01-01

    Gliomas are the most common tumors of the central nervous system in adults. Glioblastoma, the most aggressive form, has a median survival of 15 months regardless of the standard treatment with surgery and temozolomide-based radiochemotherapy. Therefore, it is imperative to improve treatment options for patients with glioblastoma. It has been suggested that the putative tumor stem cells in brain tumors are responsible for glioma initiation, development and resistance to ...

  13. Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells

    International Nuclear Information System (INIS)

    A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in the malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133+ cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.

  14. Tumor-derived hepatocyte growth factor is associated with poor prognosis of patients with glioma and influences the chemosensitivity of glioma cell line to cisplatin in vitro

    Directory of Open Access Journals (Sweden)

    Guo You-feng

    2012-06-01

    Full Text Available Abstract Background We examined the association of tumor-derived hepatocyte growth factor (HGF with the clinicopathological features of gliomas and investigated the effect of HGF inhibition on the biological behavior of tumor cells in vitro in order to determine whether HGF is a valuable prognostic predictor for glioma patients. Methods Seventy-six cases of glioma were collected. The tumor-derived HGF expression, cell proliferation index (PI and intratumoral microvessels were evaluated by immunohistochemistry. Correlation between immunostaining and clinicopathological parameters, as well as the follow-up data of patients, was analyzed statistically. U87MG glioma cells were transfected with short interference (si-RNA for HGF, and the cell viability, migratory ability and chemosensitivity to cisplatin were evaluated in vitro. Results Both high HGF expression in tumor cells (59.2%, 45/76 and high PI were significantly associated with high-grade glioma and increased microvessels in tumors (P P = 0.004 and high-expression of HGF (P = 0.008 emerged as independent prognostic factors for the overall survival of glioma patients. The tumor-derived HGF mRNA and protein expressions were significantly decreased in vitro after transfection of HGF siRNA. HGF siRNA inhibited the cell growth and reduced cell migratory ability. Moreover, HGF siRNA transfection enhanced the chemosensitivity of U87MG glioma cells to cisplatin. Conclusion This study indicated that there was significant correlation among tumor cell-derived HGF, cell proliferation and microvessel proliferation in gliomas. HGF might influence tumor progression by modulating the cell growth, migration and chemoresistance to drugs. Increased expression of HGF may be a valuable predictor for prognostic evaluation of glioma patients.

  15. Radiation effects on human glia and glioma cells in vitro

    International Nuclear Information System (INIS)

    The radiosensitivity of human glia and glioma cells has been studied in vitro, and a new cloning method has been developed to overcome the difficulties due to the very low cloning efficiency of these cells. The cells were confined to small palladium areas surrounded by agarose, which increased the cell density, but kept the clones separated. Using this method, the glia cells were found to be very sensitive to gamma irradiation (D0=1.0-1.5 Gy and n=1) in comparision with the glioma cells (D0=1.5-2.5 Gy and n=3.5). The induction and repair of DNA strand breaks were studied with two DNA unwinding techniques. No differences between the two cell-lines were detected when induction and fast repair were studied with the single-labelling method, while the glioma cells showed less unrepaired DNA strand breaks than the glia cells after 1, 2 and 3 hours, when the double-labelling method was used. Detachment, attachment and growth kinetics were studied using the palladium-agarose cloning method. All of the glioma cell-lines studied, detached and attached themselves at rates higher than the normal diploid glia cell-lines. All of the cell-lines contained clones with different properties. Some clones were rapidly growing, others maintained a nearly constant number of cells or even decreased. The effects of chronic hypoxia were tested in a few experiments. Low oxygen tension in the culture medium reduced the rate of growth and the DNA synthesis of the glioma cells. The present study indicates that cultured human glioma cells are less radiosensitive than cultured glia cells. The palladium-agarose technique, enable studying growth kinetics detachment, attachment and radiosensitivity in a quantitative manner for cells with low cloning efficiency. (author)

  16. Imaging of adult brainstem gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, Bela, E-mail: purohitbela@yahoo.co.in; Kamli, Ali A.; Kollias, Spyros S.

    2015-04-15

    Highlights: •BSG are classified on MRI into diffuse low-grade, malignant, focal tectal and exophytic subtypes. •Their prognosis and treatment is variable and is almost similar to adult supratentorial gliomas. •This article illustrates the imaging of adult BSGs on MRI and FET-PET. •We also describe prognostic factors and the treatment options of these tumours. -- Abstract: Brainstem gliomas (BSGs) are uncommon in adults accounting for about 2% of all intracranial neoplasms. They are often phenotypically low-grade as compared to their more common paediatric counterparts. Since brainstem biopsies are rarely performed, these tumours are commonly classified according to their MR imaging characteristics into 4 subgroups: (a) diffuse intrinsic low-grade gliomas, (b) enhancing malignant gliomas, (c) focal tectal gliomas and (d) exophytic gliomas/other subtypes. The prognosis and treatment is variable for the different types and is almost similar to adult supratentorial gliomas. Radiotherapy (RT) with adjuvant chemotherapy is the standard treatment of diffuse low-grade and malignant BSGs, whereas, surgical resection is limited to the exophytic subtypes. Review of previous literature shows that the detailed imaging of adult BSGs has not received significant attention. This review illustrates in detail the imaging features of adult BSGs using conventional and advanced MR techniques like diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), MR perfusion weighted imaging (PWI), MR spectroscopy (MRS), as well as {sup 18}F-fluoro-ethyl-tyrosine positron emission tomography ({sup 18}F-FET/PET). We have discussed the pertinent differences between childhood and adult BSGs, imaging mimics, prognostic factors and briefly reviewed the treatment options of these tumours.

  17. Antisense MMP-9 RNA inhibits malignant glioma cell growth in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Cuiyun Sun; Qian Wang; Hongxu Zhou; Shizhu Yu; Alain R.Simard; Chunsheng Kang; Yanyan Li

    2013-01-01

    The matrix-degrading metalloproteinases (MMPs),particularly MMP-9,play important roles in the pathogenesis and development of malignant gliomas.In the present study,the oncogenic role of MMP-9 in malignant glioma cells was investigated via antisense RNA blockade in vitro and in vivo.TJ905 malignant glioma cells were transfected with pcDNA3.0 vector expressing antisense MMP-9 RNA (pcDNA-ASMMP9),which significantly decreased MMP-9 expression,and cell proliferation was assessed.For in vivo studies,U251 cells,a human malignant glioma cell line,were implanted subcutaneously into 4-to 6-week-old BALB/c nude mice.The mice bearing well-established U251 gliomas were treated with intratumoral pcDNA-AS-MMP9-Lipofectamine complex (AS-MMP-9-treated group),subcutaneous injection of endostatin (endostatin-treated group),or both (combined therapy group).Mice treated with pcDNA (empty vector)-Lipofectamine served as the control group.Four or eight weeks later,the volume and weight of tumor,MMP-9 expression,microvessel density and proliferative activity were assayed.We demonstrate that pcDNA-AS-MMP9 significantly decreased MMP-9 expression and inhibited glioma cell proliferation.Volume and weight of tumor,MMP-9 expression,microvessel density and proliferative activity in the antisense-MMP-9-treated and therapeutic alliance groups were significantly lower than those in the control group.The results suggest that MMP-9 not only promotes malignant glioma cell invasiveness,but also affects tumor cell proliferation.Blocking the expression of MMP-9 with antisense RNA substantially suppresses the malignant phenotype of glioma cells,and thus can be used as an effective therapeutic strategy for malignant gliomas.

  18. Synergy of enediyne antibiotic lidamycin and temozolomide in suppressing glioma growth with potentiated apoptosis induction.

    Science.gov (United States)

    Li, Xing-Qi; Ouyang, Zhi-Gang; Zhang, Sheng-Hua; Liu, Hong; Shang, Yue; Li, Yi; Zhen, Yong-Su

    2014-08-01

    The present work evaluated the synergistic efficacy of an enediyne antibiotic lidamycin (LDM) plus temozolomide (TMZ) against glioma in vitro and in vivo. LDM plus TMZ inhibited the proliferations of rat glioma C6 cells and human glioma U87 cells more efficiently than the single usage of LDM or TMZ. In addition, LDM also potentiated the apoptosis inductions by TMZ in rat C6 cells and human U87 cells. Meanwhile, the results of TdT-mediated dUTP Nick End Labeling assay for subcutaneous U87 tumor sections indicated an enhanced apoptosis induction in vivo by LDM plus TMZ, which confirmed the high potency of the combination for glioma therapy. As determined by Western blot, apoptosis signal pathways in C6 cells and U87 cells were markedly affected by the synergistic alteration of P53, bax, procaspase 3, and bcd-2 expression. In both subcutaneous U87 xenograft and C6 intracerebral orthotopic implant model, TMZ-induced glioma growth suppression was dramatically potentiated by LDM. As shown, the combination therapy efficiently reduced the tumor volumes and tumor weights of the human glioma U87 xenograft. Kaplan-Meier assay revealed that LDM plus TMZ dramatically prolonged the life span of C6 intracerebral tumor-bearing rats with decreased tumor size. This study indicates that the combination of LDM with TMZ might be a promising strategy for glioma therapy. PMID:24842385

  19. Paediatric and adult malignant glioma

    DEFF Research Database (Denmark)

    Jones, Chris; Perryman, Lara; Hargrave, Darren

    2012-01-01

    Gliomas in children differ from their adult counterparts by their distribution of histological grade, site of presentation and rate of malignant transformation. Although rare in the paediatric population, patients with high-grade gliomas have, for the most part, a comparably dismal clinical outcome...... to older patients with morphologically similar lesions. Molecular profiling data have begun to reveal the major genetic alterations underpinning these malignant tumours in children. Indeed, the accumulation of large datasets on adult high-grade glioma has revealed key biological differences between...... the adult and paediatric disease. Furthermore, subclassifications within the childhood age group can be made depending on age at diagnosis and tumour site. However, challenges remain on how to reconcile clinical data from adult patients to tailor novel treatment strategies specifically for paediatric...

  20. Immunotherapy for malignant glioma

    Directory of Open Access Journals (Sweden)

    Carter M Suryadevara

    2015-01-01

    Full Text Available Malignant gliomas (MG are the most common type of primary malignant brain tumor. Most patients diagnosed with glioblastoma (GBM, the most common and malignant glial tumor, die within 12-15 months. Moreover, conventional treatment, which includes surgery followed by radiation and chemotherapy, can be highly toxic by causing nonspecific damage to healthy brain and other tissues. The shortcomings of standard-of-care have thus created a stimulus for the development of novel therapies that can target central nervous system (CNS-based tumors specifically and efficiently, while minimizing off-target collateral damage to normal brain. Immunotherapy represents an investigational avenue with the promise of meeting this need, already having demonstrated its potential against B-cell malignancy and solid tumors in clinical trials. T-cell engineering with tumor-specific chimeric antigen receptors (CARs is one proven approach that aims to redirect autologous patient T-cells to sites of tumor. This platform has evolved dramatically over the past two decades to include an improved construct design, and these modern CARs have only recently been translated into the clinic for brain tumors. We review here emerging immunotherapeutic platforms for the treatment of MG, focusing on the development and application of a CAR-based strategy against GBM.

  1. The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma.

    Science.gov (United States)

    Bhat, Krishna P L; Salazar, Katrina L; Balasubramaniyan, Veerakumar; Wani, Khalida; Heathcock, Lindsey; Hollingsworth, Faith; James, Johanna D; Gumin, Joy; Diefes, Kristin L; Kim, Se Hoon; Turski, Alice; Azodi, Yasaman; Yang, Yuhui; Doucette, Tiffany; Colman, Howard; Sulman, Erik P; Lang, Frederick F; Rao, Ganesh; Copray, Sjef; Vaillant, Brian D; Aldape, Kenneth D

    2011-12-15

    Recent molecular classification of glioblastoma (GBM) has shown that patients with a mesenchymal (MES) gene expression signature exhibit poor overall survival and treatment resistance. Using regulatory network analysis of available expression microarray data sets of GBM, including The Cancer Genome Atlas (TCGA), we identified the transcriptional coactivator with PDZ-binding motif (TAZ), to be highly associated with the MES network. TAZ expression was lower in proneural (PN) GBMs and lower-grade gliomas, which correlated with CpG island hypermethylation of the TAZ promoter compared with MES GBMs. Silencing of TAZ in MES glioma stem cells (GSCs) decreased expression of MES markers, invasion, self-renewal, and tumor formation. Conversely, overexpression of TAZ in PN GSCs as well as murine neural stem cells (NSCs) induced MES marker expression and aberrant osteoblastic and chondrocytic differentiation in a TEAD-dependent fashion. Using chromatin immunoprecipitation (ChIP), we show that TAZ is directly recruited to a majority of MES gene promoters in a complex with TEAD2. The coexpression of TAZ, but not a mutated form of TAZ that lacks TEAD binding, with platelet-derived growth factor-B (PDGF-B) resulted in high-grade tumors with MES features in a murine model of glioma. Our studies uncover a direct role for TAZ and TEAD in driving the MES differentiation of malignant glioma.

  2. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells

    International Nuclear Information System (INIS)

    Sox2, a master transcription factor, contributes to the generation of induced pluripotent stem cells and plays significant roles in sustaining the self-renewal of neural stem cells and glioma-initiating cells. Understanding the functional differences of Sox2 between glioma-initiating cells and normal neural stem cells would contribute to therapeutic approach for treatment of brain tumors. Here, we first demonstrated that Sox2 could contribute to the self-renewal and proliferation of glioma-initiating cells. The following experiments showed that Sox2 was activated at translational level in a subset of human glioma-initiating cells compared with the normal neural stem cells. Further investigation revealed there was a positive correlation between Sox2 and eukaryotic initiation factor 4E (eIF4E) in glioma tissues. Down-regulation of eIF4E decreased Sox2 protein level without altering its mRNA level in glioma-initiating cells, indicating that Sox2 was activated by eIF4E at translational level. Furthermore, eIF4E was presumed to regulate the expression of Sox2 by its 5' untranslated region (5' UTR) sequence. Our results suggest that the eIF4E-Sox2 axis is a novel mechanism of unregulated self-renewal of glioma-initiating cells, providing a potential therapeutic target for glioma.

  3. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Yuqing; Zhou, Fengbiao; Chen, Hong; Cui, Chunhong; Liu, Dan [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Li, Qiuping [Zhongshan Hospital of Fudan University, Shanghai 200032 (China); Yang, Zhiyuan; Wu, Guoqiang [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Sun, Shuhui [Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Gu, Jianxin [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Institutes of Biomedical Sciences of Fudan University, Shanghai 200032 (China); Wei, Yuanyan, E-mail: yywei@fudan.edu.cn [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Jiang, Jianhai, E-mail: jianhaijiang@fudan.edu.cn [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China)

    2010-07-09

    Sox2, a master transcription factor, contributes to the generation of induced pluripotent stem cells and plays significant roles in sustaining the self-renewal of neural stem cells and glioma-initiating cells. Understanding the functional differences of Sox2 between glioma-initiating cells and normal neural stem cells would contribute to therapeutic approach for treatment of brain tumors. Here, we first demonstrated that Sox2 could contribute to the self-renewal and proliferation of glioma-initiating cells. The following experiments showed that Sox2 was activated at translational level in a subset of human glioma-initiating cells compared with the normal neural stem cells. Further investigation revealed there was a positive correlation between Sox2 and eukaryotic initiation factor 4E (eIF4E) in glioma tissues. Down-regulation of eIF4E decreased Sox2 protein level without altering its mRNA level in glioma-initiating cells, indicating that Sox2 was activated by eIF4E at translational level. Furthermore, eIF4E was presumed to regulate the expression of Sox2 by its 5' untranslated region (5' UTR) sequence. Our results suggest that the eIF4E-Sox2 axis is a novel mechanism of unregulated self-renewal of glioma-initiating cells, providing a potential therapeutic target for glioma.

  4. Inhibition of MMP14 potentiates the therapeutic effect of temozolomide and radiation in gliomas.

    Science.gov (United States)

    Ulasov, Ilya; Thaci, Bart; Sarvaiya, Purvaba; Yi, Ruiyang; Guo, Donna; Auffinger, Brenda; Pytel, Peter; Zhang, Lingjiao; Kim, Chung Kwon; Borovjagin, Anton; Dey, Mahua; Han, Yu; Baryshnikov, Anatoly Y; Lesniak, Maciej S

    2013-08-01

    Metalloproteinases are membrane-bound proteins that play a role in the cellular responses to antiglioma therapy. Previously, it has been shown that treatment of glioma cells with temozolomide (TMZ) and radiation (XRT) induces the expression of metalloproteinase 14 (MMP14). To investigate the role of MMP14 in gliomagenesis, we used several chemical inhibitors which affect MMP14 expression. Of all the inhibitors tested, we found that Marimastat not only inhibits the expression of MMP14 in U87 and U251 glioma cells, but also induces cell cycle arrest. To determine the relationship between MMP14 inhibition and alteration of the cell cycle, we used an RNAi technique. Genetic knockdown of MMP14 in U87 and U251 glioma cells induced G2/M arrest and decreased proliferation. Mechanistically, we show that TMZ and XRT regulated expression of MMP14 in clinical samples and in vitro models through downregulation of microRNA374. In vivo genetic knockdown of MMP14 significantly decreased tumor growth of glioma xenografts and improved survival of glioma-bearing mice. Moreover, the combination of MMP14 silencing with TMZ and XRT significantly improved the survival of glioma-bearing mice compared to a single modality treatment group. Therefore, we show that the inhibition of MMP14 sensitizes tumor cells to TMZ and XRT and could be used as a future strategy for antiglioma therapy.

  5. Sirt2 suppresses glioma cell growth through targeting NF-κB–miR-21 axis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ya’nan; Dai, Dongwei [Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Lu, Qiong; Fei, Mingyu [Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai (China); Li, Mengmeng [Department of Rheumatology, Changzheng Hospital, Second Military Medical University, Shanghai (China); Wu, Xi, E-mail: xiwuchh@sina.com [Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai (China)

    2013-11-22

    Highlights: •Sirt2 expression is down-regulated in human glioma tissues and cell lines. •Sirt2 regresses glioma cell growth and colony formation via inducing apoptosis. •miR-21 is essential for the functions of Sirt2 in glioma cells. •Sirt2 deacetylates p65 to decrease miR-21 expression. -- Abstract: Sirtuins are NAD{sup +}-dependent deacetylases that regulate numerous cellular processes including aging, DNA repair, cell cycle, metabolism, and survival under stress conditions. The roles of sirtuin family members are widely studied in carcinogenesis. However, their roles in glioma remain unclear. Here we report that Sir2 was under expressed in human glioma tissues and cell lines. We found that Sirt2 overexpression decreased cell proliferation and colony formation capacity. In addition, Sirt2 overexpression induced cellular apoptosis via up-regulating cleaved caspase 3 and Bax, and down-regulating anti-apoptotic protein Bcl-2. Sirt2 knockdown obtained opposing results. We showed that Sirt2 overexpression inhibited miR-21 expression, and Sirt2 was not sufficient to reduce cell proliferation and colony formation as well as to induce apoptosis when miR-21 was knocked down in glioma cells. Mechanically, we demonstrated that Sirt2 deacetylated p65 at K310 and blocked p65 binding to the promoter region of miR-21, thus regressing the transcription of miR-21. In summary, Sirt2 is critical in human glioma via NF-κB–miR-21 pathway and Sirt2 activator may serve as candidate drug for glioma therapy.

  6. Estradiol Receptors Regulate Differential Connexin 43 Expression in F98 and C6 Glioma Cell Lines.

    Directory of Open Access Journals (Sweden)

    Zahra Moinfar

    Full Text Available Glioma is the most common malignant primary brain tumour with male preponderance and poor prognosis. Glioma cells express variable amounts of connexin 43 (Cx43 and estrogen receptors (ERs. Both, Cx43 and ERs, play important roles in cell proliferation and migration. Therefore, we investigated the effects of 17-ß estradiol (E2 on Cx43 expression in two glioma cell lines with variable native expression of Cx43.F98 and C6 rat glioma cells were cultured for 24 h in the presence of 10 nM or 100 nM E2, and the E2-antagonist, Fulvestrant. An MTT assay was performed to evaluate cell viability. ERα, ERβ and Cx43 protein expressions were analysed by western blotting and Cx43 mRNA expression was analysed by real-time polymerase chain reaction. To quantify cell migration, an exclusive zone migration assay was used. Functional coupling of cells via gap junctions was examined using whole-cell patch-clamp technique.E2 reduced Cx43 expression in C6 cells, but increased Cx43 expression in F98 cultures. These effects were mediated via ERs. Moreover, E2 promoted C6 cell migration, but it did not affect F98 cell migration. The expression level of ERα was found to be high in C6, but low in F98 cells. ERβ was exclusively expressed in C6 cells. In addition, E2 treatment induced a significant decrease of ERβ in C6 cultures, while it decreased ERα expression in F98 glioma cells.These findings show that E2 differentially modulates Cx43 expression in F98 and C6 glioma cells, likely due to the differential expression of ERs in each of these cell lines. Our findings point to the molecular mechanisms that might contribute to the gender-specific differences in the malignancy of glioma and could have implications for therapeutic strategies against glioma.

  7. Methylation of the miR-126 gene associated with glioma progression.

    Science.gov (United States)

    Cui, Hongwei; Mu, Yongping; Yu, Lei; Xi, Ya-guang; Matthiesen, Rune; Su, Xiulan; Sun, Wenjie

    2016-04-01

    miR-126 was found in 40% of glioma patients in our study (20/50 cases), resulting in significantly decreased miR-126 expression (0.1715 ± 0.1376; P < 0.05). Our results indicate that we verified successfully the miRNA-126 down-regulation phenomenon in patients with glioma which showed in the results of glioma tissue miRNAs chip and the miRNA-126 down-regulation through methylation in patients with glioma. So we could say that epigenetic modification is a crucial mechanism for controlling the expression of miR-126 in glioma.

  8. MicroRNA in Human Glioma

    International Nuclear Information System (INIS)

    Glioma represents a serious health problem worldwide. Despite advances in surgery, radiotherapy, chemotherapy, and targeting therapy, the disease remains one of the most lethal malignancies in humans, and new approaches to improvement of the efficacy of anti-glioma treatments are urgently needed. Thus, new therapeutic targets and tools should be developed based on a better understanding of the molecular pathogenesis of glioma. In this context, microRNAs (miRNAs), a class of small, non-coding RNAs, play a pivotal role in the development of the malignant phenotype of glioma cells, including cell survival, proliferation, differentiation, tumor angiogenesis, and stem cell generation. This review will discuss the biological functions of miRNAs in human glioma and their implications in improving clinical diagnosis, prediction of prognosis, and anti-glioma therapy

  9. MicroRNA in Human Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mengfeng, E-mail: limf@mail.sysu.edu.cn [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Li, Jun [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Liu, Lei; Li, Wei [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Yang, Yi [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Yuan, Jie [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Key Laboratory of Functional Molecules from Oceanic Microorganisms (Sun Yat-sen University), Department of Education of Guangdong Province, Guangzhou 510080 (China)

    2013-10-23

    Glioma represents a serious health problem worldwide. Despite advances in surgery, radiotherapy, chemotherapy, and targeting therapy, the disease remains one of the most lethal malignancies in humans, and new approaches to improvement of the efficacy of anti-glioma treatments are urgently needed. Thus, new therapeutic targets and tools should be developed based on a better understanding of the molecular pathogenesis of glioma. In this context, microRNAs (miRNAs), a class of small, non-coding RNAs, play a pivotal role in the development of the malignant phenotype of glioma cells, including cell survival, proliferation, differentiation, tumor angiogenesis, and stem cell generation. This review will discuss the biological functions of miRNAs in human glioma and their implications in improving clinical diagnosis, prediction of prognosis, and anti-glioma therapy.

  10. Expression of elongation factor-2 kinase contributes to anoikis resistance and invasion of human glioma cells

    Institute of Scientific and Technical Information of China (English)

    Li ZHANG; Yi ZHANG; Xiao-yuan LIU; Zheng-hong QIN; Jin-ming YANG

    2011-01-01

    Aim: To determine whether elongation factor-2 kinase (eEF-2 kinase) contributes to the malignant phenotype of glioblastoma multiforme by promoting the migration and invasion of glioma cells. The mechanism involved was also explored.Methods: Human glioma cell lines T98G and LN-229 were used. The expression of eEF-2 kinase was silenced using siRNA, and the invasive potential of tumor cells was assessed using a wound-healing assay and a Matrigel invasion assay. Apoptosis was determined using propidium iodide (PI) staining and Western blot analysis of cleaved caspase-3.Results: Silencing the expression of eEF-2 kinase by siRNA significantly suppressed both the migration and invasion of human glioma cells. Silencing eEF-2 kinase expression also sensitized glioma cells to anoikis, thereby decreasing tumor cell viability in the absence of attachment. Treatment of tumor cells with the caspase inhibitor z-VAD-fmk down-regulated Bim accumulation and abolished glioma cell sensitivity to anoikis.Conclusion: The results suggest that the expression of eEF-2 kinase contributes to migration and invasion of human glioma cells by protecting them from anoikis. eEF-2 kinase expression may serve as a prognostic marker and a novel target for cancer therapy.

  11. Regulation of Glioma Cell Migration by Seri ne-Phosphorylated P3111

    Directory of Open Access Journals (Sweden)

    Wendy S. McDonough

    2005-09-01

    Full Text Available P311, an 8-kDa polypeptide, was previously shown to be highly expressed in invasive glioma cells. Here, we report the functional characteristics of P311 with regard to influencing glioma cell migration. P311 is constitutively serine-phosphorylated; decreased phosphorylation is observed in migration-activated glioma cells. The primary amino acid sequence of P311 indicates a putative serine phosphorylation site (S59 near the PEST domain. Site-directed mutagenesis of S59A retarded P311 degradation, induced glioma cell motility. In contrast, S59D mutation resulted in the rapid degradation of P311, reduced glioma cell migration. Coimmunoprecipitation coupled with matrixassisted laser desorption/ionization time-of-flight mass spectrometry analysis identified Filamin A as a binding partner of P311, immunofluorescence studies showed that both proteins colocalized at the cell periphery. Moreover, P311-induced cell migration was abrogated by inhibition of β1 integrin function using TACβ1A, a dominant-negative inhibitor of β1 integrin signaling, suggesting that P311 acts downstream of β1 signaling. Finally, overexpression of P311 or P311 S59A mutant protein activates Raci GTPase; small interfering RNA-mediated depletion of Raci suppresses P311-induced motility. Collectively, these results suggest a role for levels of P311 in regulating glioma motility, invasion through the reorganization of actin cytoskeleton at the cell periphery.

  12. The Wnt secretion protein Evi/Gpr177 promotes glioma tumourigenesis.

    Science.gov (United States)

    Augustin, Iris; Goidts, Violaine; Bongers, Angelika; Kerr, Grainne; Vollert, Gordon; Radlwimmer, Bernhard; Hartmann, Christian; Herold-Mende, Christel; Reifenberger, Guido; von Deimling, Andreas; Boutros, Michael

    2012-01-01

    Malignant astrocytomas are highly aggressive brain tumours with poor prognosis. While a number of structural genomic changes and dysregulation of signalling pathways in gliomas have been described, the identification of biomarkers and druggable targets remains an important task for novel diagnostic and therapeutic approaches. Here, we show that the Wnt-specific secretory protein Evi (also known as GPR177/Wntless/Sprinter) is overexpressed in astrocytic gliomas. Evi/Wls is a core Wnt signalling component and a specific regulator of pan-Wnt protein secretion, affecting both canonical and non-canonical signalling. We demonstrate that its depletion in glioma and glioma-derived stem-like cells led to decreased cell proliferation and apoptosis. Furthermore, Evi/Wls silencing in glioma cells reduced cell migration and the capacity to form tumours in vivo. We further show that Evi/Wls overexpression is sufficient to promote downstream Wnt signalling. Taken together, our study identifies Evi/Wls as an essential regulator of glioma tumourigenesis, identifying a pathway-specific protein trafficking factor as an oncogene and offering novel therapeutic options to interfere with the aberrant regulation of growth factors at the site of production.

  13. ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion, and apoptosis in glioma.

    Directory of Open Access Journals (Sweden)

    Songtao Qi

    Full Text Available BACKGROUND: The aim of the present study was to analyze the expression of Zinc finger E-box Binding homeobox 2 (ZEB2 in glioma and to explore the molecular mechanisms of ZEB2 that regulate cell proliferation, migration, invasion, and apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: Expression of ZEB2 in 90 clinicopathologically characterized glioma patients was analyzed by immunohistochemistry. Furthermore, siRNA targeting ZEB2 was transfected into U251 and U87 glioma cell lines in vitro and proliferation, migration, invasion, and apoptosis were examined separately by MTT assay, Transwell chamber assay, flow cytometry, and western blot. RESULTS: The expression level of ZEB2 protein was significantly increased in glioma tissues compared to normal brain tissues (P<0.001. In addition, high levels of ZEB2 protein were positively correlated with pathology grade classification (P = 0.024 of glioma patients. Knockdown of ZEB2 by siRNA suppressed cell proliferation, migration and invasion, as well as induced cell apoptosis in glioma cells. Furthermore, ZEB2 downregulation was accompanied by decreased expression of CDK4/6, Cyclin D1, Cyclin E, E2F1, and c-myc, while p15 and p21 were upregulated. Lowered expression of ZEB2 enhanced E-cadherin levels but also inhibited β-Catenin, Vimentin, N-cadherin, and Snail expression. Several apoptosis-related regulators such as Caspase-3, Caspase-6, Caspase-9, and Cleaved-PARP were activated while PARP was inhibited after ZEB2 siRNA treatment. CONCLUSION: Overexpression of ZEB2 is an unfavorable factor that may facilitate glioma progression. Knockdown ZEB2 expression by siRNA suppressed cell proliferation, migration, invasion and promoted cell apoptosis in glioma cells.

  14. A computational model incorporating neural stem cell dynamics reproduces glioma incidence across the lifespan in the human population.

    Directory of Open Access Journals (Sweden)

    Roman Bauer

    Full Text Available Glioma is the most common form of primary brain tumor. Demographically, the risk of occurrence increases until old age. Here we present a novel computational model to reproduce the probability of glioma incidence across the lifespan. Previous mathematical models explaining glioma incidence are framed in a rather abstract way, and do not directly relate to empirical findings. To decrease this gap between theory and experimental observations, we incorporate recent data on cellular and molecular factors underlying gliomagenesis. Since evidence implicates the adult neural stem cell as the likely cell-of-origin of glioma, we have incorporated empirically-determined estimates of neural stem cell number, cell division rate, mutation rate and oncogenic potential into our model. We demonstrate that our model yields results which match actual demographic data in the human population. In particular, this model accounts for the observed peak incidence of glioma at approximately 80 years of age, without the need to assert differential susceptibility throughout the population. Overall, our model supports the hypothesis that glioma is caused by randomly-occurring oncogenic mutations within the neural stem cell population. Based on this model, we assess the influence of the (experimentally indicated decrease in the number of neural stem cells and increase of cell division rate during aging. Our model provides multiple testable predictions, and suggests that different temporal sequences of oncogenic mutations can lead to tumorigenesis. Finally, we conclude that four or five oncogenic mutations are sufficient for the formation of glioma.

  15. TLR9 expression in glioma tissues correlated to glioma progression and the prognosis of GBM patients

    International Nuclear Information System (INIS)

    Our study aims to evaluate the expression of TLR9 in glioma tissues, examine the association between TLR9 expression, clinicopathological variables, and glioma patient outcome, we further characterized the direct effects of TLR9 agonist CpG ODN upon the proliferation and invasion of glioma cells in vitro. RT-PCR and immunofluorescence were used to determine the expression of TLR9 in glioma cell lines and clinical glioma samples. Tissue microarry and immunohistochemistry were applied to evaluated TLR9 expression in 292 newly diagnosed glioma and 13 non-neoplastic brain tissues. We further investigated the effect of CpG ODN on the proliferation and invasion of glioma cells in vitro with MTT assays and matrigel transwell assay respectively. RT-PCR showed that TLR9 expressed in all the glioma samples and glioma cell lines we examined. The tissue array analysis indicated that TLR9 expression is correlated with malignancy of glioma (p < 0.01). Multivariate Cox regression analysis revealed that TLR9 expression is an independent prognostic factor for PFS of GBM patients(P = 0.026). TLR9 agonist CpG ODN has no significant effect on glioma proliferation, but matrigel transwell analysis showed that TLR9 agonist CpG ODN can significantly enhance glioma invasion in vitro. Our data indicated that TLR9 expression increases according to the histopathological grade of glioma, and the TLR9 expression level is related to the PFS of GBM patients. In addition, our findings warrant caution in the directly injection of TLR9 agonist CpG ODN into glioma tissues for the glioma immunotherapy

  16. Tumor Metabolism of Malignant Gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Ru, Peng; Williams, Terence M.; Chakravarti, Arnab; Guo, Deliang, E-mail: deliang.guo@osumc.edu [Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center & Arthur G James Cancer Hospital, Columbus, OH 43012 (United States)

    2013-11-08

    Constitutively activated oncogenic signaling via genetic mutations such as in the EGFR/PI3K/Akt and Ras/RAF/MEK pathways has been recognized as a major driver for tumorigenesis in most cancers. Recent insights into tumor metabolism have further revealed that oncogenic signaling pathways directly promote metabolic reprogramming to upregulate biosynthesis of lipids, carbohydrates, protein, DNA and RNA, leading to enhanced growth of human tumors. Therefore, targeting cell metabolism has become a novel direction for drug development in oncology. In malignant gliomas, metabolism pathways of glucose, glutamine and lipid are significantly reprogrammed. Moreover, molecular mechanisms causing these metabolic changes are just starting to be unraveled. In this review, we will summarize recent studies revealing critical gene alterations that lead to metabolic changes in malignant gliomas, and also discuss promising therapeutic strategies via targeting the key players in metabolic regulation.

  17. Tumor Metabolism of Malignant Gliomas

    Directory of Open Access Journals (Sweden)

    Deliang Guo

    2013-11-01

    Full Text Available Constitutively activated oncogenic signaling via genetic mutations such as in the EGFR/PI3K/Akt and Ras/RAF/MEK pathways has been recognized as a major driver for tumorigenesis in most cancers. Recent insights into tumor metabolism have further revealed that oncogenic signaling pathways directly promote metabolic reprogramming to upregulate biosynthesis of lipids, carbohydrates, protein, DNA and RNA, leading to enhanced growth of human tumors. Therefore, targeting cell metabolism has become a novel direction for drug development in oncology. In malignant gliomas, metabolism pathways of glucose, glutamine and lipid are significantly reprogrammed. Moreover, molecular mechanisms causing these metabolic changes are just starting to be unraveled. In this review, we will summarize recent studies revealing critical gene alterations that lead to metabolic changes in malignant gliomas, and also discuss promising therapeutic strategies via targeting the key players in metabolic regulation.

  18. Role of Dicer on tumorigenesis in glioma cells

    Institute of Scientific and Technical Information of China (English)

    Anling Zhang; Lei Han; Guangxiu Wang; Zhifan Jia; Peiyu Pu; Chunsheng Kang

    2010-01-01

    Micro RNAs(miRNAs)are non-coding,single-stranded RNAs that regulate target gene expression by repressing translation or promoting RNA cleavage.Recent studies show that miRNA expression is globally decreased in some human tumors.Dicer is an essential component of the miRNA processing machinery.To determine whether global reduction of miRNA effects tumorigenesis,small interfering RNA were designed to target Dicer to restrain whole miRNA expression in the glioblastoma cell line-TJ905.With effective knock-down of Dicer,tumor cells were invasive and proliferative,and globally impaired miRNA processing enhanced proliferation and invasiveness of glioma cells in vitro.Suppression of Dicer expression resulted in a more aggressive glioma phenotype,which suggests that global reduction of miRNA expression could have an oncogenic role in glioblastoma cells.

  19. 3-Bromopyruvate antagonizes effects of lactate and pyruvate, synergizes with citrate and exerts novel anti-glioma effects.

    Science.gov (United States)

    El Sayed, S M; El-Magd, R M Abou; Shishido, Y; Chung, S P; Diem, T H; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-02-01

    Oxidative stress-energy depletion therapy using oxidative stress induced by D-amino acid oxidase (DAO) and energy depletion induced by 3-bromopyruvate (3BP) was reported recently (El Sayed et al., Cancer Gene Ther., 19, 1-18, 2012). Even in the presence of oxygen, cancer cells oxidize glucose preferentially to produce lactate (Warburg effect) which seems vital for cancer microenvironment and progression. 3BP is a closely related structure to lactate and pyruvate and may antagonize their effects as a novel mechanism of its action. Pyruvate exerted a potent H(2)O(2) scavenging effect to exogenous H(2)O(2), while lactate had no scavenging effect. 3BP induced H(2)O(2) production. Pyruvate protected against H(2)O(2)-induced C6 glioma cell death, 3BP-induced C6 glioma cell death but not against DAO/D-serine-induced cell death, while lactate had no protecting effect. Lactate and pyruvate protected against 3BP-induced C6 glioma cell death and energy depletion which were overcome with higher doses of 3BP. Lactate and pyruvate enhanced migratory power of C6 glioma which was blocked by 3BP. Pyruvate and lactate did not protect against C6 glioma cell death induced by other glycolytic inhibitors e.g. citrate (inhibitor of phosphofructokinase) and sodium fluoride (inhibitor of enolase). Serial doses of 3BP were synergistic with citrate in decreasing viability of C6 glioma cells and spheroids. Glycolysis subjected to double inhibition using 3BP with citrate depleted ATP, clonogenic power and migratory power of C6 glioma cells. 3BP induced a caspase-dependent cell death in C6 glioma. 3BP was powerful in decreasing viability of human glioblastoma multiforme cells (U373MG) and C6 glioma in a dose- and time-dependent manner. PMID:22318356

  20. Is Development of High-Grade Gliomas Sulfur-Dependent?

    Directory of Open Access Journals (Sweden)

    Maria Wróbel

    2014-12-01

    Full Text Available We characterized γ-cystathionase, rhodanese and 3-mercaptopyruvate sulfurtransferase activities in various regions of human brain (the cortex, thalamus, hypothalamus, hippocampus, cerebellum and subcortical nuclei and human gliomas with II to IV grade of malignancy (according to the WHO classification. The human brain regions, as compared to human liver, showed low γ-cystathionase activity. The activity of rhodanese was also much lower and it did not vary significantly between the investigated brain regions. The activity of 3-mercaptopyruvate sulfurtransferase was the highest in the thalamus, hypothalamus and subcortical nuclei and essentially the same level of sulfane sulfur was found in all the investigated brain regions. The investigations demonstrated that the level of sulfane sulfur in gliomas with the highest grades was high in comparison to various human brain regions, and was correlated with a decreased activity of γ-cystathionase, 3-mercaptopyruvate sulfurtransferase and rhodanese. This can suggest sulfane sulfur accumulation and points to its importance for malignant cell proliferation and tumor growth. In gliomas with the highest grades of malignancy, despite decreased levels of total free cysteine and total free glutathione, a high ratio of GSH/GSSG was maintained, which is important for the process of malignant cells proliferation. A high level of sulfane sulfur and high GSH/GSSG ratio could result in the elevated hydrogen sulfide levels. Because of the disappearance of γ-cystathionase activity in high-grade gliomas, it seems to be possible that 3-mercaptopyruvate sulfurtransferase could participate in hydrogen sulfide production. The results confirm sulfur dependence of malignant brain tumors.

  1. Identification of proteins involved in neural progenitor cell targeting of gliomas

    Directory of Open Access Journals (Sweden)

    Honeth Gabriella

    2009-06-01

    Full Text Available Abstract Background Glioblastoma are highly aggressive tumors with an average survival time of 12 months with currently available treatment. We have previously shown that specific embryonic neural progenitor cells (NPC have the potential to target glioma growth in the CNS of rats. The neural progenitor cell treatment can cure approximately 40% of the animals with malignant gliomas with no trace of a tumor burden 6 months after finishing the experiment. Furthermore, the NPCs have been shown to respond to signals from the tumor environment resulting in specific migration towards the tumor. Based on these results we wanted to investigate what factors could influence the growth and progression of gliomas in our rodent model. Methods Using microarrays we screened for candidate genes involved in the functional mechanism of tumor inhibition by comparing glioma cell lines to neural progenitor cells with or without anti-tumor activity. The expression of candidate genes was confirmed at RNA level by quantitative RT-PCR and at the protein level by Western blots and immunocytochemistry. Moreover, we have developed in vitro assays to mimic the antitumor effect seen in vivo. Results We identified several targets involved in glioma growth and migration, specifically CXCL1, CD81, TPT1, Gas6 and AXL proteins. We further showed that follistatin secretion from the NPC has the potential to decrease tumor proliferation. In vitro co-cultures of NPC and tumor cells resulted in the inhibition of tumor growth. The addition of antibodies against proteins selected by gene and protein expression analysis either increased or decreased the proliferation rate of the glioma cell lines in vitro. Conclusion These results suggest that these identified factors might be useful starting points for performing future experiments directed towards a potential therapy against malignant gliomas.

  2. Imaging investigations of optic gliomas

    International Nuclear Information System (INIS)

    Objective: To evaluate CT and MR imaging findings of optic gliomas and their clinical significance. Methods: CT and MR imaging findings of 20 patients with pathologically confirmed optic gliomas were analyzed retrospectively. The age of the patients ranged from 8 months to 69 years. Ten patients were female and ten were male. CT scanning was performed in 10 patients with contrast scanning in 2, and MR imaging was performed in 19 patients with contrast scanning in 14. Results: Of the 20 cases with optic gliomas, a fusiform thickening of the optic nerve was found on CT and/or MR imaging in 12, a tubular enlarging and kinking of the optic nerve in 5, a dumb-bell mass of the optic nerve in 2, and an ovoid mass in 1. Enlargement of intraorbital and intracanalicular segments of the optic nerve was seen in all 20 cases, simultaneous enlargement of intracranial segment in 15, a simultaneous mass of intraocular segment in 4, a simultaneous mass of optic chiasm in 6, and simultaneous enlargement of optic tract in 2. CT scanning performed in 10 patients showed iso-density mass. Enhancement of enlarged optic nerve was observed on postcontrast CT in two. MR imaging performed in 19 patients displayed a long T1 and long T2 signal intensity mass in 12, a long T1 and identical T2 signal intensity mass in 5, and an isointense mass on T1- and T2- weighted images in 2. After contrast administration in 14 cases, marked enhancement of the mass was seen in 12 cases, and moderate enhancement was demonstrated in 2. Of the 7 patients associated with neurofibromatosis I, four optic gliomas appeared as a specific sign-isointense in the center on both T1- and T2-weighted images , hypointense on T1- and T2-weighted images in the intermediate portion, and long T1 and long T2 signal intensity in peripheral portion. After statistical analysis, MR imaging was superior to CT in demonstrating the tumor involvement of the intracanalicular and intracranial segments of the optic nerve (P<0

  3. Current treatment of low grade gliomas

    NARCIS (Netherlands)

    M.J. van den Bent (Martin); T.A.B. Snijders (Tom); J.E.C. Bromberg (Jacolien)

    2012-01-01

    textabstractLow grade gliomas affect predominantly young adults, and have a relatively favorable prognosis compared to grade III and grade IV gliomas. The challenge for an optimal management of these patients is to find the balance between an optimal survival and the preservation of neurological fun

  4. Neurofibromatosis Type 1 and Sporadic Optic Gliomas

    OpenAIRE

    J Gordon Millichap

    2002-01-01

    The natural history of sporadic optic gliomas was compared with that of optic gliomas associated with neurofibromatosis type 1 (NF1) in a study using a Children’s Tumor Registry (CTR) and an NF1 Database (NF1DB) at St Mary’s Hospital, Manchester, UK.

  5. Neurofibromatosis Type 1 and Sporadic Optic Gliomas

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2002-10-01

    Full Text Available The natural history of sporadic optic gliomas was compared with that of optic gliomas associated with neurofibromatosis type 1 (NF1 in a study using a Children’s Tumor Registry (CTR and an NF1 Database (NF1DB at St Mary’s Hospital, Manchester, UK.

  6. IMMUNOHISTOCHEMICAL DETECTION OF P73 PRODUCT IN BRAIN GLIOMAS

    Institute of Scientific and Technical Information of China (English)

    ZHAI Guang; YUAN Xian-hou; PAN Hui-jin; QIU Shang-ming; ZHOU Ming-yong

    1999-01-01

    Objective: To elucidate the role of p73 in the genesis or development of glioma. Methods: P73 and p53expression of 63 gliomas were detected by immunohistochemistry. Results: Out of the 63 gliomas, 17 cases appeared p73 positive. The positive-rate in high grade gliomas was higher than that in low grade gliomas (x2=4.75, P<0.05). Among the 17 cases with p73-positive gliomas, 12 cases overexpressed p53 protein. Conclusion:Overexpression of wild p73 may involve in the genesis or development of glioma.

  7. Aurantiamide acetate suppresses the growth of malignant gliomas in vitro and in vivo by inhibiting autophagic flux

    OpenAIRE

    Yi YANG; Zhang, Li-hui; Yang, Bing-xian; Tian, Jin-kui; Zhang, Lin

    2015-01-01

    We aim to investigate the effect of aurantiamide acetate isolated from the aerial parts of Clematis terniflora DC against gliomas. Human malignant glioma U87 and U251 cells were incubated with different concentrations (0–100 μM) of aurantiamide acetate. Aurantiamide acetate greatly decreased the cell viability in a dose- and time-dependent manner. It induced moderate mitochondrial fragmentation and the loss of mitochondrial membrane potential. No significant difference was found in the altern...

  8. Carbon Ion Irradiation Inhibits Glioma Cell Migration Through Downregulation of Integrin Expression

    International Nuclear Information System (INIS)

    Purpose: To investigate the effect of carbon ion irradiation on glioma cell migration. Methods and Materials: U87 and Ln229 glioma cells were irradiated with photons and carbon ions. Migration was analyzed 24 h after irradiation. Fluorescence-activated cell sorting analysis was performed in order to quantify surface expression of integrins. Results: Single photon doses of 2 Gy and 10 Gy enhanced ανβ3 and ανβ5 integrin expression and caused tumor cell hypermigration on both vitronectin (Vn) and fibronectin (Fn). Compared to integrin expression in unirradiated cells, carbon ion irradiation caused decreased integrin expression and inhibited cell migration on both Vn and Fn. Conclusion: Photon radiotherapy (RT) enhances the risk of tumor cell migration and subsequently promotes locoregional spread via photon induction of integrin expression. In contrast to photon RT, carbon ion RT causes decreased integrin expression and suppresses glioma cell migration on both Vn and Fn, thus promising improved local control.

  9. Associations of high-grade glioma with glioma risk alleles and histories of allergy and smoking.

    Science.gov (United States)

    Lachance, Daniel H; Yang, Ping; Johnson, Derek R; Decker, Paul A; Kollmeyer, Thomas M; McCoy, Lucie S; Rice, Terri; Xiao, Yuanyuan; Ali-Osman, Francis; Wang, Frances; Stoddard, Shawn M; Sprau, Debra J; Kosel, Matthew L; Wiencke, John K; Wiemels, Joseph L; Patoka, Joseph S; Davis, Faith; McCarthy, Bridget; Rynearson, Amanda L; Worra, Joel B; Fridley, Brooke L; O'Neill, Brian Patrick; Buckner, Jan C; Il'yasova, Dora; Jenkins, Robert B; Wrensch, Margaret R

    2011-09-01

    Glioma risk has consistently been inversely associated with allergy history but not with smoking history despite putative biologic plausibility. Data from 855 high-grade glioma cases and 1,160 controls from 4 geographic regions of the United States during 1997-2008 were analyzed for interactions between allergy and smoking histories and inherited variants in 5 established glioma risk regions: 5p15.3 (TERT), 8q24.21 (CCDC26/MLZE), 9p21.3 (CDKN2B), 11q23.3 (PHLDB1/DDX6), and 20q13.3 (RTEL1). The inverse relation between allergy and glioma was stronger among those who did not (odds ratio(allergy-glioma) = 0.40, 95% confidence interval: 0.28, 0.58) versus those who did (odds ratio(allergy-glioma) = 0.76, 95% confidence interval: 0.59, 0.97; P(interaction) = 0.02) carry the 9p21.3 risk allele. However, the inverse association with allergy was stronger among those who carried (odds ratio(allergy-glioma) = 0.44, 95% confidence interval: 0.29, 0.68) versus those who did not carry (odds ratio(allergy-glioma) = 0.68, 95% confidence interval: 0.54, 0.86) the 20q13.3 glioma risk allele, but this interaction was not statistically significant (P = 0.14). No relation was observed between glioma risk and smoking (odds ratio = 0.92, 95% confidence interval: 0.77, 1.10; P = 0.37), and there were no interactions for glioma risk of smoking history with any of the risk alleles. The authors' observations are consistent with a recent report that the inherited glioma risk variants in chromosome regions 9p21.3 and 20q13.3 may modify the inverse association of allergy and glioma. PMID:21742680

  10. Toward Distinguishing Recurrent Tumor From Radiation Necrosis: DWI and MTC in a Gamma Knife–Irradiated Mouse Glioma Model

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Torres, Carlos J.; Engelbach, John A. [Department of Radiology, Washington University, St. Louis, Missouri (United States); Cates, Jeremy; Thotala, Dinesh [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Yuan, Liya [Department of Neurosurgery, Washington University, St. Louis, Missouri (United States); Schmidt, Robert E. [Department of Neuropathology, Washington University, St. Louis, Missouri (United States); Rich, Keith M. [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Department of Neurosurgery, Washington University, St. Louis, Missouri (United States); Drzymala, Robert E. [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Ackerman, Joseph J.H. [Department of Chemistry, Washington University, St. Louis, Missouri (United States); Department of Radiology, Washington University, St. Louis, Missouri (United States); Department of Internal Medicine, Washington University, St. Louis, Missouri (United States); Garbow, Joel R., E-mail: garbow@wustl.edu [Department of Radiology, Washington University, St. Louis, Missouri (United States)

    2014-10-01

    Purpose: Accurate noninvasive diagnosis is vital for effective treatment planning. Presently, standard anatomical magnetic resonance imaging (MRI) is incapable of differentiating recurring tumor from delayed radiation injury, as both lesions are hyperintense in both postcontrast T1- and T2-weighted images. Further studies are therefore necessary to identify an MRI paradigm that can differentially diagnose these pathologies. Mouse glioma and radiation injury models provide a powerful platform for this purpose. Methods and Materials: Two MRI contrasts that are widely used in the clinic were chosen for application to a glioma/radiation-injury model: diffusion weighted imaging, from which the apparent diffusion coefficient (ADC) is obtained, and magnetization transfer contrast, from which the magnetization transfer ratio (MTR) is obtained. These metrics were evaluated longitudinally, first in each lesion type alone–glioma versus irradiation – and then in a combined irradiated glioma model. Results: MTR was found to be consistently decreased in all lesions compared to nonlesion brain tissue (contralateral hemisphere), with limited specificity between lesion types. In contrast, ADC, though less sensitive to the presence of pathology, was increased in radiation injury and decreased in tumors. In the irradiated glioma model, ADC also increased immediately after irradiation, but decreased as the tumor regrew. Conclusions: ADC is a better metric than MTR for differentiating glioma from radiation injury. However, MTR was more sensitive to both tumor and radiation injury than ADC, suggesting a possible role in detecting lesions that do not enhance strongly on T1-weighted images.

  11. Boldine: a potential new antiproliferative drug against glioma cell lines.

    Science.gov (United States)

    Gerhardt, Daniéli; Horn, Ana Paula; Gaelzer, Mariana Maier; Frozza, Rudimar Luiz; Delgado-Cañedo, Andrés; Pelegrini, Alessandra Luiza; Henriques, Amélia T; Lenz, Guido; Salbego, Christianne

    2009-12-01

    Malignant gliomas are the most common and devastating primary tumors of the central nervous system. Currently no efficient treatment is available. This study evaluated the effect and underlying mechanisms of boldine, an aporphine alkaloid of Peumus boldus, on glioma proliferation and cell death. Boldine decreased the cell number of U138-MG, U87-MG and C6 glioma lines at concentrations of 80, 250 and 500 muM. We observed that cell death caused by boldine was cell-type specific and dose-dependent. Exposure to boldine for 24 h did not activate key mediators of apoptosis. However, it induced alterations in the cell cycle suggesting a G(2)/M arrest in U138-MG cells. Boldine had no toxic effect on non-tumor cells when used at the same concentrations as those used on tumor cells. Based on these results, we speculate that boldine may be a promising compound for evaluation as an anti-cancer agent. PMID:19050827

  12. Radiotherapeutic management of optic nerve gliomas in children

    International Nuclear Information System (INIS)

    Optic nerve gliomas represent one to five percent of all intracranial tumors in children. The management of these tumors remains controversial. From 1956 to 1977, 18 children with optic nerve gliomas were treated at Thomas Jefferson University Hospital using external beam radiotherapy. All children presented with decreased visual acuity and five of eighteen were blind in one eye. No patient was found to have involvement of a single optic nerve. in eight patients, the chiasm was involved, in ten patients, tumor had extended to the frontal lobes and/or hypothalamus. Initial surgical management included biopsy only in seven patients, inspection of tumor in two patients and partial excision in seven patients. Two patients were treated with radiotherapy based on radiological findings. A tumor dose of 5000 to 6000 rad was given in 5.5 to 6.5 weeks. Stabilization of visual impairment or improvement in vision was noted in 78 percent of patients who were evaluable. The ten year survival was 73 percent. Radiological evidence of tumor regression will be presented. It is our impression that radiotherapy is indicated in the treatment of children with optic nerve gliomas who have poor prognostic signs

  13. The positive correlation between DJ-1 and β-catenin expression shows prognostic value for patients with glioma.

    Science.gov (United States)

    Wang, Chao; Fang, Mao; Zhang, Meng; Li, Weiping; Guan, Hong; Sun, Yanhua; Xie, Siming; Zhong, Xueyun

    2013-12-01

    The relationship between DJ-1 and β-catenin, and its impact on the prognosis for glioma patients has not been fully understood. This study determined the effect of DJ-1 on β-catenin and the prognostic significance of this interaction in glioma patients. We collected tumor specimens from 88 glioma patients and determined the expression of DJ-1, β-catenin and PTEN by using immunohistochemical staining. The involvement of DJ-1 and β-catenin in glioma cell lines was evaluated by immunohistochemistry and Western blotting. High DJ-1 expression (37.5%) and high β-catenin expression (34.1%) in glioma specimens were significantly associated with high grade and poor prognosis in glioma patients. However, only high levels of DJ-1 (P = 0.014) was a strong independent prognostic factor, correlated with a reduced overall survival time. In vitro DJ-1 expression was positively correlated with the expression levels of β-catenin and p-Akt, and negatively correlated with PTEN expression in U87, U251 MG, SWO-38 and SHG44 human glioma cell lines. After the knockdown of DJ-1, Akt, p-Akt or β-catenin expression levels were not affected in the PTEN-null cell lines (U87 and U251 MG). However, in the SWO-38 cell line, which has wild-type PTEN protein, the level of PTEN increased while Akt/p-Akt and β-catenin levels were reduced. Furthermore, β-catenin staining weakened in SWO-38 cells after DJ-1 levels decreased according to immunocytochemical analysis. In conclusion, DJ-1 and β-catenin may contribute to the development and recurrence of glioma and are valuable prognostic factors for glioma patients. DJ-1 may regulate β-catenin expression via PTEN and p-Akt.

  14. Frequent Nek1 overexpression in human gliomas.

    Science.gov (United States)

    Zhu, Jun; Cai, Yu; Liu, Pin; Zhao, Weiguo

    2016-08-01

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients' poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. PMID:27251576

  15. The anti-tumor effects of calorie restriction are correlated with reduced oxidative stress in ENU-induced gliomas

    Directory of Open Access Journals (Sweden)

    Megan A. Mahlke

    2011-06-01

    Full Text Available The anti-tumor effects of calorie restriction (CR and the possible underlying mechanisms were investigated using ethylnitrosourea (ENU-induced glioma in rats. ENU was given transplacentally at gestational day 15, and male offspring were used in this experiment. The brain from 4-, 6-, and 8-month-old rats fed either ad libitum (AL or calorie-restricted diets (40% restriction of total calories compared to AL rats was studied. Tumor burden was assessed by comparing the number and size of gliomas present in sections of the brain. Immunohistochemical analysis was used to document lipid peroxidation [4-hydroxy-2-nonenal (HNE and malondialdehyde (MDA], protein oxidation (nitrotyrosine, glycation and AGE formation [methylglyoxal (MG and carboxymethyllysine (CML], cell proliferation activity [proliferating cell nuclear antigen (PCNA], cell death [single-stranded DNA (ssDNA], presence of thioredoxin 1 (Trx1, and presence of heme oxygenase-1 (HO-1 associated with the development of gliomas. The results showed that the number of gliomas did not change with age in the AL groups; however, the average size of the gliomas was significantly larger in the 8-month-old group compared to that of the younger groups. Immunopositivity was observed mainly in tumor cells and reactive astrocytes in all histological types of ENU-induced glioma. Immunopositive areas for HNE, MDA, nitrotyrosine, MG, CML, HO-1, and Trx1 increased with the growth of gliomas. The CR group showed both reduced number and size of gliomas, and tumors exhibited less accumulation of oxidative damage, decreased formation of glycated end products, and a decreased presence of HO-1 and Trx1 compared to the AL group. Furthermore, gliomas of the CR group showed less PCNA positive and more ssDNA positive cells, which are correlated to the retarded growth of tumors. Interestingly, we also discovered that the anti-tumor effects of CR were associated with decreased hypoxia-inducible factor-1α (HIF-1α levels

  16. Molecular genetic study of human malignant gliomas

    International Nuclear Information System (INIS)

    Loss of heterozygosity for loci on chromosome 10 were found in four of 9 (44%) informative cases of malignant gliomas. Deletions on RB1 locus were seen in six of 11 (54%) informative glioblastomas. LOH on chromosome 17p was found in eight of 16 (50%) malignant gliomas, including 2 cases of anaplastic oligodendroglioma. On the basis of the data presented here, it is possible to associate certain molecular abnormalities with malignant gliomas, LOH on chromosome 10, RB1 gene, and 17p. (Author)

  17. Knockdown of long noncoding RNA H19 sensitizes human glioma cells to temozolomide therapy.

    Science.gov (United States)

    Jiang, Pengfei; Wang, Ping; Sun, Xiaoling; Yuan, Zhongshun; Zhan, Rucai; Ma, Xiangyu; Li, Weiguo

    2016-01-01

    Temozolomide (TMZ) is commonly used in glioma chemotherapy. However, a great clinical challenge for TMZ is chemoresistance. H19 transcripts are recognized as long noncoding RNAs, which potentially interact with chromatin-modifying complexes to regulate gene expression via epigenetic changes. Our data based on glioma patients showed that the expression of H19 was significantly upregulated in TMZ-resistant tumors compared with the TMZ-sensitive tumors. To determine the function of H19 in glioma, cell lines U87 and U251 were exposed to TMZ to establish TMZ-resistant clones U87(TMZ) and U251(TMZ). In U87(TMZ) and U251(TMZ), the expression level of H19 transcripts was increased compared to wild-type or nonresistant clones, as determined by real-time quantitative reverse transcription polymerase chain reaction. Concomitant treatment with small interfering RNA specifically targeting H19 and TMZ in resistant glioma clones resulted in decreased IC50 values for TMZ, and increased apoptotic rates than control small interfering RNA-treated cells. This was also evident by the increased PARP cleavage in resistant cells exposed to TMZ + si-H19. Furthermore, the reduced expression of H19 altered major drug resistance genes, such as MDR, MRP, and ABCG2, both at the mRNA and protein levels. Taken together, these findings suggest that H19 plays an important role in the development of TMZ resistance, and may represent a novel therapeutic target for TMZ-resistant gliomas. PMID:27366087

  18. Knockdown of long noncoding RNA H19 sensitizes human glioma cells to temozolomide therapy

    Science.gov (United States)

    Jiang, Pengfei; Wang, Ping; Sun, Xiaoling; Yuan, Zhongshun; Zhan, Rucai; Ma, Xiangyu; Li, Weiguo

    2016-01-01

    Temozolomide (TMZ) is commonly used in glioma chemotherapy. However, a great clinical challenge for TMZ is chemoresistance. H19 transcripts are recognized as long noncoding RNAs, which potentially interact with chromatin-modifying complexes to regulate gene expression via epigenetic changes. Our data based on glioma patients showed that the expression of H19 was significantly upregulated in TMZ-resistant tumors compared with the TMZ-sensitive tumors. To determine the function of H19 in glioma, cell lines U87 and U251 were exposed to TMZ to establish TMZ-resistant clones U87TMZ and U251TMZ. In U87TMZ and U251TMZ, the expression level of H19 transcripts was increased compared to wild-type or nonresistant clones, as determined by real-time quantitative reverse transcription polymerase chain reaction. Concomitant treatment with small interfering RNA specifically targeting H19 and TMZ in resistant glioma clones resulted in decreased IC50 values for TMZ, and increased apoptotic rates than control small interfering RNA-treated cells. This was also evident by the increased PARP cleavage in resistant cells exposed to TMZ + si-H19. Furthermore, the reduced expression of H19 altered major drug resistance genes, such as MDR, MRP, and ABCG2, both at the mRNA and protein levels. Taken together, these findings suggest that H19 plays an important role in the development of TMZ resistance, and may represent a novel therapeutic target for TMZ-resistant gliomas. PMID:27366087

  19. Interferon-α/β enhances temozolomide activity against MGMT-positive glioma stem-like cells.

    Science.gov (United States)

    Shen, Dong; Guo, Cheng-Cheng; Wang, Jing; Qiu, Zhi-Kun; Sai, Ke; Yang, Qun-Ying; Chen, Yin-Sheng; Chen, Fu-Rong; Wang, Jie; Panasci, Lawrence; Chen, Zhong-Ping

    2015-11-01

    Glioma is one of the most common primary tumors of the central nervous system in adults. Glioblastoma (GBM) is the most lethal type of glioma, whose 5-year survival is 9.8% at best. Glioma stem-like cells (GSCs) play an important role in recurrence and treatment resistance. MGMT is a DNA repair protein that removes DNA adducts and therefore attenuates treatment efficiency. It has been reported that interferon-α/β (IFN-α/β) downregulates the level of MGMT and sensitizes glioma cells to temozolomide. In the present study, we assessed whether IFN-α/β is able to sensitize GSCs to temozolomide by modulating MGMT expression. Upon the treatment of IFN-α/β, the efficacy of temozolomide against MGMT‑positive GSCs was markedly enhanced by combination treatment with IFN-α/β when compared with the temozolomide single agent group, and MGMT expression was markedly decreased at the same time. Further mechanistic study showed that IFN-α/β suppressed the NF-κB activity, which further mediated the sensitization of MGMT‑positive GSCs to temozolomide. Our data therefore demonstrated that the application of IFN-α/β is a promising agent with which to enhance temozolomide efficiency and reduce drug resistance, and our findings shed light on improving clinical outcomes and prolonging the survival of patients with malignant gliomas. PMID:26329778

  20. Effect and Mechanism of Epidermal Growth Factor on Proliferation of GL15 Gliomas Cell Line

    Institute of Scientific and Technical Information of China (English)

    WANG Heping; GUO Dongsheng; YE Fei; XI Guifa; WANG Baofeng; CHEN Jian; LEI Ting

    2006-01-01

    The effects of epidermal growth factor (EGF) on proliferation of G 15 glioma cells and the possible mechanisms were investigated. GFAP and EGFR expression was detected by immunohistochemical method. After the cells were treated with EGF at different concentrations, cell count method was used to determine the proliferation of glioma cells, cell cycle and apoptosis were analyzed by flow cytometry (FCM), and laser scan confocal microscope (LSCM) was used to measure the cytoplasmic free calcium. The results showed that GFAP was diffusedly expressed in GL15 cells and EGFR was over-expressed. EGF at doses of ≤ 1 ng/mL could significantly stimulate cell proliferation, cells in phase G0/G1 decreased, and those in phase S increased. EGF at doses of 10 and 100ng/ml could inhibit the cell proliferation significantly, and the apoptosis ratio in high dose of EGF group was higher than in control group. EGF could significantly induce a quick rise of intracellular free calcium, but the peak value of intracellular free calcium activated by high dose of EGF was higher than by low dose of EGF. It was suggested that EGF had a dual effect on gliomas: low dose of EGF could stimulate the cell proliferation of gliomas, but high dose of EGF could induce the cell apoptosis and inhibit the proliferation of gliomas, which might be contributed to the difference of intracellular free calcium.

  1. The expression of cytoglobin as a prognostic factor in gliomas: a retrospective analysis of 88 patients

    International Nuclear Information System (INIS)

    Evidence suggests that cytoglobin (Cygb) may function as a tumor suppressor gene. We immunohistochemically evaluated the expression of Cygb, phosphatidylinositol-3 kinase (PI-3K), phosphorylated (p)-Akt, Interleukin-6 (IL-6), tumor necrosis factor-α (TNFα) and vascular endothelial growth factor (VEGF) in 88 patients with 41 high-grade gliomas and 47 low-grade gliomas. Intratumoral microvessel density (IMD) was also determined and associated with clinicopathological factors. Low expression of Cygb was significantly associated with the higher histological grading and tumor recurrence. A significant negative correlation emerged between Cygb expression and PI3K, p-Akt, IL-6, TNFα or VEGF expression. Cygb expression was negatively correlated with IMD. There was a positive correlation between PI3K, p-Akt, IL-6, TNFα and VEGF expression with IMD.High histologic grade, tumor recurrence, decreased Cygb expression, increased PI3K expression, increased p-Akt expression and increased VEGF expression correlated with patients’ overall survival in univariate analysis. However, only histological grading and Cygb expression exhibited a relationship with survival of patients as independent prognostic factors of glioma by multivariate analysis. Cygb loss may contribute to tumor recurrence and a worse prognosis in gliomas. Cygb may serve as an independent predictive factor for prognosis of glioma patients

  2. Semaphorin3B modulates radiosensitivity of human glioma U-87MG cells

    International Nuclear Information System (INIS)

    This study was to determine the Semaphorin3B (SEMA3B) role in glioma cells responding to irradiation. Two glioma cell lines, which were used here was wild-type p53 (U-87MG), and the other was harboring mutated p53 (U-251). The SEMA3B mRNA could be detected in the two cell lines. The expression level of SEMA3B mRNA was higher in U-87MG cells than in U-251 cells, and increased with time in U-87MG cells after irradiation. Knockdown of SEMA3B expression by shRNA decreased the radiosensitivity of U-87MG cells, this may be associated with the increased G2 accumulation after irradiation. In addition, G2 accumulation after irradiation was enhanced in SEMA3B low-expressing U-87MG cells. These results showed that the SEMA3B was implicated in glioma cells responding to irradiation. (authors)

  3. Hypotaurine evokes a malignant phenotype in glioma through aberrant hypoxic signaling

    Science.gov (United States)

    Nesvick, Cody L.; Feldman, Michael J.; Sizdahkhani, Saman; Liu, Huailei; Chu, Huiying; Yang, Fengxu; Tang, Ling; Tian, Jing; Zhao, Shiguang; Li, Guohui; Heiss, John D.; Liu, Yang; Zhuang, Zhengping; Xu, Guowang

    2016-01-01

    Metabolomics has shown significant potential in identifying small molecules specific to tumor phenotypes. In this study we analyzed resected tissue metabolites using capillary electrophoresis-mass spectrometry and found that tissue hypotaurine levels strongly and positively correlated with glioma grade. In vitro studies were conducted to show that hypotaurine activates hypoxia signaling through the competitive inhibition of prolyl hydroxylase domain-2. This leads to the activation of hypoxia signaling as well as to the enhancement of glioma cell proliferation and invasion. In contrast, taurine, the oxidation metabolite of hypotaurine, decreased intracellular hypotaurine and resulted in glioma cell growth arrest. Lastly, a glioblastoma xenograft mice model was supplemented with taurine feed and exhibited impaired tumor growth. Taken together, these findings suggest that hypotaurine is an aberrantly produced oncometabolite, mediating tumor molecular pathophysiology and progression. The hypotaurine metabolic pathway may provide a potentially new target for glioblastoma diagnosis and therapy. PMID:26934654

  4. Adult high-grade malignant gliomas

    Directory of Open Access Journals (Sweden)

    Fable Zustovich

    2011-12-01

    Full Text Available Central nervous system (CNS malignant gliomas are relatively rare diseases. Prognosis is poor but has improved over recent years due to the improvement in the multi-disciplinary treatment: surgery, radiotherapy and chemotherapy...

  5. Inhibition of MMP14 potentiates the therapeutic effect of temozolomide and radiation in gliomas

    Science.gov (United States)

    Ulasov, Ilya; Thaci, Bart; Sarvaiya, Purvaba; Yi, Ruiyang; Guo, Donna; Auffinger, Brenda; Pytel, Peter; Zhang, Lingjiao; Kim, Chung Kwon; Borovjagin, Anton; Dey, Mahua; Han, Yu; Baryshnikov, Anatoly Y; Lesniak, Maciej S

    2013-01-01

    Abstract Metalloproteinases are membrane-bound proteins that play a role in the cellular responses to antiglioma therapy. Previously, it has been shown that treatment of glioma cells with temozolomide (TMZ) and radiation (XRT) induces the expression of metalloproteinase 14 (MMP14). To investigate the role of MMP14 in gliomagenesis, we used several chemical inhibitors which affect MMP14 expression. Of all the inhibitors tested, we found that Marimastat not only inhibits the expression of MMP14 in U87 and U251 glioma cells, but also induces cell cycle arrest. To determine the relationship between MMP14 inhibition and alteration of the cell cycle, we used an RNAi technique. Genetic knockdown of MMP14 in U87 and U251 glioma cells induced G2/M arrest and decreased proliferation. Mechanistically, we show that TMZ and XRT regulated expression of MMP14 in clinical samples and in vitro models through downregulation of microRNA374. In vivo genetic knockdown of MMP14 significantly decreased tumor growth of glioma xenografts and improved survival of glioma-bearing mice. Moreover, the combination of MMP14 silencing with TMZ and XRT significantly improved the survival of glioma-bearing mice compared to a single modality treatment group. Therefore, we show that the inhibition of MMP14 sensitizes tumor cells to TMZ and XRT and could be used as a future strategy for antiglioma therapy. Glioblastoma remains an incurable form of brain cancer. In this manuscript, we show that inhibition of MMP14 can potentiate the efficacy of current standard of care which includes chemo- and radiotherapy. PMID:24156018

  6. MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor.

    Directory of Open Access Journals (Sweden)

    Hae Kyung Lee

    Full Text Available Glioblastomas (GBM, the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3'-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3'-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors.

  7. Improving seroreactivity-based detection of glioma.

    Science.gov (United States)

    Ludwig, Nicole; Keller, Andreas; Heisel, Sabrina; Leidinger, Petra; Klein, Veronika; Rheinheimer, Stefanie; Andres, Claudia U; Stephan, Bernhard; Steudel, Wolf-Ingo; Graf, Norbert M; Burgeth, Bernhard; Weickert, Joachim; Lenhof, Hans-Peter; Meese, Eckart

    2009-12-01

    Seroreactivity profiling emerges as valuable technique for minimal invasive cancer detection. Recently, we provided first evidence for the applicability of serum profiling of glioma using a limited number of immunogenic antigens. Here, we screened 57 glioma and 60 healthy sera for autoantibodies against 1827 Escherichia coli expressed clones, including 509 in-frame peptide sequences. By a linear support vector machine approach, we calculated mean specificity, sensitivity, and accuracy of 100 repetitive classifications. We were able to differentiate glioma sera from sera of the healthy controls with a specificity of 90.28%, a sensitivity of 87.31% and an accuracy of 88.84%. We were also able to differentiate World Health Organization grade IV glioma sera from healthy sera with a specificity of 98.45%, a sensitivity of 80.93%, and an accuracy of 92.88%. To rank the antigens according to their information content, we computed the area under the receiver operator characteristic curve value for each clone. Altogether, we found 46 immunogenic clones including 16 in-frame clones that were informative for the classification of glioma sera versus healthy sera. For the separation of glioblastoma versus healthy sera, we found 91 informative clones including 26 in-frame clones. The best-suited in-frame clone for the classification glioma sera versus healthy sera corresponded to the vimentin gene (VIM) that was previously associated with glioma. In the future, autoantibody signatures in glioma not only may prove useful for diagnosis but also offer the prospect for a personalized immune-based therapy. PMID:20019846

  8. Improving Seroreactivity-Based Detection of Glioma

    OpenAIRE

    Nicole Ludwig; Andreas Keller; Sabrina Heisel; Petra Leidinger; Veronika Klein; Stefanie Rheinheimer; Andres, Claudia U; Bernhard Stephan; Wolf-Ingo Steudel; Graf, Norbert M; Bernhard Burgeth; Joachim Weickert; Hans-Peter Lenhof; Eckart Meese

    2009-01-01

    Seroreactivity profiling emerges as valuable technique for minimal invasive cancer detection. Recently, we provided first evidence for the applicability of serum profiling of glioma using a limited number of immunogenic antigens. Here, we screened 57 glioma and 60 healthy sera for autoantibodies against 1827 Escherichia coli expressed clones, including 509 in-frame peptide sequences. By a linear support vector machine approach, we calculated mean specificity, sensitivity, and accuracy of 100 ...

  9. Improving Seroreactivity-Based Detection of Glioma

    Directory of Open Access Journals (Sweden)

    Nicole Ludwig

    2009-12-01

    Full Text Available Seroreactivity profiling emerges as valuable technique for minimal invasive cancer detection. Recently, we provided first evidence for the applicability of serum profiling of glioma using a limited number of immunogenic antigens. Here, we screened 57 glioma and 60 healthy sera for autoantibodies against 1827 Escherichia coli expressed clones, including 509 in-frame peptide sequences. By a linear support vector machine approach, we calculated mean specificity, sensitivity, and accuracy of 100 repetitive classifications. We were able to differentiate glioma sera from sera of the healthy controls with a specificity of 90.28%, a sensitivity of 87.31% and an accuracy of 88.84%. We were also able to differentiate World Health Organization grade IV glioma sera from healthy sera with a specificity of 98.45%, a sensitivity of 80.93%, and an accuracy of 92.88%. To rank the antigens according to their information content, we computed the area under the receiver operator characteristic curve value for each clone. Altogether, we found 46 immunogenic clones including 16 in-frame clones that were informative for the classification of glioma sera versus healthy sera. For the separation of glioblastoma versus healthy sera, we found 91 informative clones including 26 in-frame clones. The best-suited in-frame clone for the classification glioma sera versus healthy sera corresponded to the vimentin gene (VIM that was previously associated with glioma. In the future, autoantibody signatures in glioma not only may prove useful for diagnosis but also offer the prospect for a personalized immune-based therapy.

  10. Photochemical internalization of bleomycin for glioma treatment

    Science.gov (United States)

    Mathews, Marlon S.; Blickenstaff, Joseph W.; Shih, En-Chung; Zamora, Genesis; Vo, Van; Sun, Chung-Ho; Hirschberg, Henry; Madsen, Steen J.

    2012-05-01

    We study the use of photochemical internalization (PCI) for enhancing chemotherapeutic response to malignant glioma cells in vitro. Two models are studied: monolayers consisting of F98 rat glioma cells and human glioma spheroids established from biopsy-derived glioma cells. In both cases, the cytotoxicity of aluminum phthalocyanine disulfonate (AlPcS2a)-based PCI of bleomycin was compared to AlPcS2a-photodynamic therapy (PDT) and chemotherapy alone. Monolayers and spheroids were incubated with AlPcS2a (PDT effect), bleomycin (chemotherapy effect), or AlPcS2a+bleomycin (PCI effect) and were illuminated (670 nm). Toxicity was evaluated using colony formation assays or spheroid growth kinetics. F98 cells in monolayer/spheroids were not particularly sensitive to the effects of low radiant exposure (1.5 J/cm2 @ 5 mW/cm2) AlPcS2a-PDT. Bleomycin was moderately toxic to F98 cells in monolayer at relatively low concentrations-incubation of F98 cells in 0.1 μg/ml for 4 h resulted in 80% survival, but less toxic in human glioma spheroids respectively. In both in vitro systems investigated, a significant PCI effect is seen. PCI using 1.5 J/cm2 together with 0.25 μg/ml bleomycin resulted in approximately 20% and 18% survival of F98 rat glioma cells and human glioma spheroids, respectively. These results show that AlPcS2a-mediated PCI can be used to enhance the efficacy of chemotherapeutic agents such as bleomycin in malignant gliomas.

  11. Targeted Radiolabeled Compounds in Glioma Therapy.

    Science.gov (United States)

    Cordier, Dominik; Krolicki, Leszek; Morgenstern, Alfred; Merlo, Adrian

    2016-05-01

    Malignant gliomas of World Health Organization (WHO) grades II-IV represent the largest entity within the group of intrinsic brain tumors and are graded according to their pathophysiological features with survival times between more than 10 years (WHO II) and only several months (WHO IV). Gliomas arise from astrocytic or oligodendrocytic precursor cells and exhibit an infiltrative growth pattern lacking a clearly identifiable tumor border. The development of effective treatment strategies of the invasive tumor cell front represents the main challenge in glioma therapy. The therapeutic standard consists of surgical resection and, depending on the extent of resection and WHO grade, adjuvant external beam radiotherapy or systemic chemotherapy. Within the last decades, there has been no major improvement of the prognosis of patients with glioma. The consistent overexpression of neurokinin type 1 receptors in gliomas WHO grades II-IV has been used to develop a therapeutic substance P-based targeting system. A substance P-analogue conjugated to the DOTA or DOTAGA chelator has been labeled with different alpha-particle or beta-particle emitting radionuclides for targeted glioma therapy. The radiopharmaceutical has been locally injected into the tumors or the resection cavity. In several clinical studies, the methodology has been examined in adjuvant and neoadjuvant clinical settings. Although no large controlled series have so far been generated, the results of radiolabeled substance P-based targeted glioma therapy compare favorably with standard therapy. Recently, labeling with the alpha particle emitting Bi-213 has been found to be promising due to the high linear energy transfer and the very short tissue range of 0.08 mm. Further development needs to focus on the improvement of the stability of the compound and the application by dedicated catheter systems to improve the intratumoral distribution of the radiopharmaceutical within the prognostically critical

  12. GliomaPredict: a clinically useful tool for assigning glioma patients to specific molecular subtypes

    Directory of Open Access Journals (Sweden)

    Fine Howard A

    2010-07-01

    Full Text Available Abstract Background Advances in generating genome-wide gene expression data have accelerated the development of molecular-based tumor classification systems. Tools that allow the translation of such molecular classification schemas from research into clinical applications are still missing in the emerging era of personalized medicine. Results We developed GliomaPredict as a computational tool that allows the fast and reliable classification of glioma patients into one of six previously published stratified subtypes based on sets of extensively validated classifiers derived from hundreds of glioma transcriptomic profiles. Our tool utilizes a principle component analysis (PCA-based approach to generate a visual representation of the analyses, quantifies the confidence of the underlying subtype assessment and presents results as a printable PDF file. GliomaPredict tool is implemented as a plugin application for the widely-used GenePattern framework. Conclusions GliomaPredict provides a user-friendly, clinically applicable novel platform for instantly assigning gene expression-based subtype in patients with gliomas thereby aiding in clinical trial design and therapeutic decision-making. Implemented as a user-friendly diagnostic tool, we expect that in time GliomaPredict, and tools like it, will become routinely used in translational/clinical research and in the clinical care of patients with gliomas.

  13. MicroRNA-195 inhibits the proliferation of human glioma cells by directly targeting cyclin D1 and cyclin E1.

    Directory of Open Access Journals (Sweden)

    Wang Hui

    Full Text Available Glioma proliferation is a multistep process during which a sequence of genetic and epigenetic alterations randomly occur to affect the genes controlling cell proliferation, cell death and genetic stability. microRNAs are emerging as important epigenetic modulators of multiple target genes, leading to abnormal cellular signaling involving cellular proliferation in cancers.In the present study, we found that expression of miR-195 was markedly downregulated in glioma cell lines and human primary glioma tissues, compared to normal human astrocytes and matched non-tumor associated tissues. Upregulation of miR-195 dramatically reduced the proliferation of glioma cells. Flow cytometry analysis showed that ectopic expression of miR-195 significantly decreased the percentage of S phase cells and increased the percentage of G1/G0 phase cells. Overexpression of miR-195 dramatically reduced the anchorage-independent growth ability of glioma cells. Furthermore, overexpression of miR-195 downregulated the levels of phosphorylated retinoblastoma (pRb and proliferating cell nuclear antigen (PCNA in glioma cells. Conversely, inhibition of miR-195 promoted cell proliferation, increased the percentage of S phase cells, reduced the percentage of G1/G0 phase cells, enhanced anchorage-independent growth ability, upregulated the phosphorylation of pRb and PCNA in glioma cells. Moreover, we show that miR-195 inhibited glioma cell proliferation by downregulating expression of cyclin D1 and cyclin E1, via directly targeting the 3'-untranslated regions (3'-UTR of cyclin D1 and cyclin E1 mRNA. Taken together, our results suggest that miR-195 plays an important role to inhibit the proliferation of glioma cells, and present a novel mechanism for direct miRNA-mediated suppression of cyclin D1 and cyclin E1 in glioma.

  14. D-amino acid oxidase gene therapy sensitizes glioma cells to the antiglycolytic effect of 3-bromopyruvate.

    Science.gov (United States)

    El Sayed, S M; Abou El-Magd, R M; Shishido, Y; Chung, S P; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-01-01

    Glioma tumors are refractory to conventional treatment. Glioblastoma multiforme is the most aggressive type of primary brain tumors in humans. In this study, we introduce oxidative stress-energy depletion (OSED) therapy as a new suggested treatment for glioblastoma. OSED utilizes D-amino acid oxidase (DAO), which is a promising therapeutic protein that induces oxidative stress and apoptosis through generating hydrogen peroxide (H2O2). OSED combines DAO with 3-bromopyruvate (3BP), a hexokinase II (HK II) inhibitor that interferes with Warburg effect, a metabolic alteration of most tumor cells that is characterized by enhanced aerobic glycolysis. Our data revealed that 3BP induced depletion of energetic capabilities of glioma cells. 3BP induced H2O2 production as a novel mechanism of its action. C6 glioma transfected with DAO and treated with D-serine together with 3BP-sensitized glioma cells to 3BP and decreased markedly proliferation, clonogenic power and viability in a three-dimensional tumor model with lesser effect on normal astrocytes. DAO gene therapy using atelocollagen as an in vivo transfection agent proved effective in a glioma tumor model in Sprague-Dawley (SD) rats, especially after combination with 3BP. OSED treatment was safe and tolerable in SD rats. OSED therapy may be a promising therapeutic modality for glioma. PMID:21921941

  15. FRK inhibits migration and invasion of human glioma cells by promoting N-cadherin/β-catenin complex formation.

    Science.gov (United States)

    Shi, Qiong; Song, Xu; Wang, Jun; Gu, Jia; Zhang, Weijian; Hu, Jinxia; Zhou, Xiuping; Yu, Rutong

    2015-01-01

    Fyn-related kinase (FRK), a member of Src-related tyrosine kinases, is recently reported to function as a potent tumor suppressor in several cancer types. Our previous study has also shown that FRK over-expression inhibited the migration and invasion of glioma cells. However, the mechanism of FRK effect on glioma cell migration and invasion, a feature of human malignant gliomas, is still not clear. In this study, we found that FRK over-expression increased the protein level of N-cadherin, but not E-cadherin. Meanwhile, FRK over-expression promoted β-catenin translocation to the plasma membrane, where it formed complex with N-cadherin, while decreased β-catenin level in the nuclear fraction. In addition, down-regulation of N-cadherin by siRNA promoted the migration and invasion of glioma U251 and U87 cells and abolished the inhibitory effect of FRK on glioma cell migration and invasion. In summary, these results indicate that FRK inhibits migration and invasion of human glioma cells by promoting N-cadherin/β-catenin complex formation.

  16. TIPE2 Inhibits Hypoxia-Induced Wnt/β-Catenin Pathway Activation and EMT in Glioma Cells.

    Science.gov (United States)

    Liu, Zhi-Jun; Liu, Hong-Lin; Zhou, Hai-Cun; Wang, Gui-Cong

    2016-01-01

    Hypoxia-induced epithelial-to-mesenchymal transition (EMT) could facilitate tumor progression. TIPE2, the tumor necrosis factor-α (TNF-α)-induced protein 8-like 2 (also known as TNFAIP8L2), is a member of the TNF-α-induced protein 8 (TNFAIP8, TIPE) family and has been involved in the development and progression of several tumors. However, the effects of TIPE2 on the EMT process in glioma cells and the underlying mechanisms of these effects have not been previously reported. In our study, we assessed the roles of TIPE2 in the EMT process in glioma cells in response to hypoxia. Our results indicated that TIPE2 expression was significantly decreased in human glioma cell lines. TIPE2 overexpression significantly inhibited hypoxia-induced migration and invasion, as well as suppressed the EMT process in glioma cells. Furthermore, TIPE2 overexpression prevented hypoxia-induced expression of β-catenin, cyclin D1, and c-myc in human glioma cells. In summary, these data suggest that TIPE2 overexpression inhibited hypoxia-induced Wnt/β-catenin pathway activation and EMT in glioma cells. PMID:27656836

  17. Role of lymphocyte-specific protein tyrosine kinase (LCK) in the expansion of glioma-initiating cells by fractionated radiation

    International Nuclear Information System (INIS)

    Research highlights: → Activation of Lymphocyte-specific protein tyrosine kinase (LCK) is involved in the fractionated radiation-induced expansion of glioma stem-like cells. → Inhibition of LCK prevents acquisition of fractionated radiation-induced resistance to chemotherapeutic treatment. → LCK activity is critical for the maintenance of self-renewal in glioma stem-like cells. -- Abstract: Brain cancers frequently recur or progress as focal masses after treatment with ionizing radiation. Radiation used to target gliomas may expand the cancer stem cell population and enhance the aggressiveness of tumors; however, the mechanisms underlying the expansion of cancer stem cell population after radiation have remained unclear. In this study, we show that LCK (lymphocyte-specific protein tyrosine kinase) is involved in the fractionated radiation-induced expansion of the glioma-initiating cell population and acquisition of resistance to anticancer treatments. Fractionated radiation caused a selective increase in the activity of LCK, a Src family non-receptor tyrosine kinase. The activities of other Src family kinases Src, Fyn, and Lyn were not significantly increased. Moreover, knockdown of LCK expression with a specific small interfering RNA (siRNA) effectively blocked fractionated radiation-induced expansion of the CD133+ cell population. siRNA targeting of LCK also suppressed fractionated radiation-induced expression of the glioma stem cell marker proteins CD133, Nestin, and Musashi. Expression of the known self-renewal-related proteins Notch2 and Sox2 in glioma cells treated with fractionated radiation was also downregulated by LCK inhibition. Moreover, siRNA-mediated knockdown of LCK effectively restored the sensitivity of glioma cells to cisplatin and etoposide. These results indicate that the non-receptor tyrosine kinase LCK is critically involved in fractionated radiation-induced expansion of the glioma-initiating cell population and decreased cellular

  18. Expression of phosphoribosyl pyrophosphate synthetase genes in U87 glioma cells with ERN1 knockdown: effect of hypoxia and endoplasmic reticulum stress.

    Science.gov (United States)

    Minchenko, O H; Garmash, I A; Kovalevska, O V; Tsymbal, D O; Minchenko, D O

    2014-01-01

    Activation of pentose phosphate pathway is an important factor of enhanced cell proliferation and tumor growth. Phosphoribosyl pyrophosphate synthetase (PRPS) is a key enzyme of this pathway and plays a central role in the synthesis of purines and pyrimidines. Hypoxia as well as ERN1 (from endoplasmic reticulum to nuclei-1) mediated endoplasmic reticulum stress response-signalling pathway is linked to the proliferation because the blockade of ERN1 suppresses tumor growth, including glioma. We studied the expression of different PRPS genes in glioma cells with ERN1 knockdown under hypoxic condition. It was shown that hypoxia decreases the expression of PRPS1 and PRPS2 genes in both types of glioma cells, being more pronounced in cells without ERN1 function, but PRPSAP1 and PRPSAP2 gene expressions are suppressed by hypoxia only in glioma cells with blockade of ERN1. Moreover, the blockade of endoribonuclease activity of ERN1 does not affect the expression of PRPS1 and PRPS2 as well as PPRS-associated protein genes in U87 glioma cells. At the same time, the induction of endoplasmic reticulum stress by tunicamycin in glioma cells with suppressed activity of ERN1 endoribonuclease decreases the expression level of PRPS1 and PRPS2 genes only. Results of this investigation clearly demonstrated that the expression of different genes encoding subunits of PRPS enzyme is affected by hypoxia in U87 glioma cells, but the effect of hypoxia is modified by suppression of endoplasmic reticulum stress signaling enzyme ERN1. PMID:25816608

  19. Resveratrol Represses Pokemon Expression in Human Glioma Cells.

    Science.gov (United States)

    Yang, Yutao; Cui, Jiajun; Xue, Feng; Overstreet, Anne-Marie; Zhan, Yiping; Shan, Dapeng; Li, Hui; Li, Hui; Wang, Yongjun; Zhang, Mengmeng; Yu, Chunjiang; Xu, Zhi-Qing David

    2016-03-01

    POK erythroid myeloid ontogenic factor (Pokemon), an important proto-oncoprotein, is a transcriptional repressor that regulates the expression of many genes and plays an important role in tumorigenesis. Resveratrol (RSV), a natural polyphenolic compound, has many beneficial biological effects on health. In this study, we investigated the role of Pokemon in RSV-induced biological effects and the effect of RSV on the expression of Pokemon in glioma cells. We found that overexpression of Pokemon decreased RSV-induced cell apoptosis, senescence, and anti-proliferative effects. Moreover, we showed that RSV could efficiently decrease the activity of the Pokemon promoter and the expression of Pokemon. Meanwhile, RSV also inhibited Sp1 DNA binding activity to the Pokemon promoter; whereas, it did not influence the expression and nuclear translocation of Sp1. In addition, we found that RSV could increase the recruitment of HDAC1, but decreased p300 to the Pokemon promoter. Taken together, all these results extended our understanding on the anti-cancer mechanism of RSV in glioma cells. PMID:25875864

  20. Aberrant Signaling Pathways in Glioma

    International Nuclear Information System (INIS)

    Glioblastoma multiforme (GBM), a WHO grade IV malignant glioma, is the most common and lethal primary brain tumor in adults; few treatments are available. Median survival rates range from 12–15 months. The biological characteristics of this tumor are exemplified by prominent proliferation, active invasiveness, and rich angiogenesis. This is mainly due to highly deregulated signaling pathways in the tumor. Studies of these signaling pathways have greatly increased our understanding of the biology and clinical behavior of GBM. An integrated view of signal transduction will provide a more useful approach in designing novel therapies for this devastating disease. In this review, we summarize the current understanding of GBM signaling pathways with a focus on potential molecular targets for anti-signaling molecular therapies

  1. Growth and radiosensitivity of irradiated human glioma cell progeny

    Institute of Scientific and Technical Information of China (English)

    Chao Li; Li Li; Changshao Xu; Juying Zhou

    2008-01-01

    BACKGROUND: Progenitors of the immortalized human glioma cell line, SHG-44, are significantly less sensitive to irradiation. Two hypotheses regarding the mechanism of this effect exist: several studies have suggested that there is a subgroup with different radiosensitivities in identical cell group, and the progenitors of irradiate is a adaptive response subgroup, so its radiosensitivity is descend. A second hypothesis suggests that irradiated glioma progeny have a stronger ability to repair DNA damage. This would suggest that when progeny are continuously irradiated, resistance to irradiation-induced DNA increases, and radiosensitivity decreases.OBJECTIVE: To investigate radiosensitivity and growth features after irradiation to progeny of the human glioma cell line SHG-44.DESIGN, TIME AND SETTING: A randomized, controlled experiment, which was performed at the Department of Radiology Laboratory, the First Hospital Affiliated to Soochow University, between September 2004 and January 2006.MATERIALS: The glioma cell line SHG-44 was provided by the Institute of Neuroscience, First Affiliated Hospital of Suzhou University. Propidium iodide reagent was provided by Coulter Corporation. A linear accelerator, KD-2 type, was provided by Siemens, Germany. The flow cytometer EPICS-XL was provided by Coulter Corporation.METHODS: Brain glioma SHG-44 cells were divided into four groups: SHG-44, SHG-44-2, SHG-44-6, and SHG-44-10. The SHG-44-2, SHG-44-6, and SHG-44-10 cells were vertically irradiated with varying doses of 2,6 and 10 Gy by a linear accelerator (6 MVX). The cells were passaged for 15 generations and cultured in RPMI-1640 culture media.MAIN OUTCOME MEASURES: Community re-double time, mean lethal dose (D0), extrapolation number (N), fraction surviving fraction irradiated by 2 Gy dose (SF2), quasi-threshold dose (Dq), and cell cycle.RESULTS: The Population doubling time (PDT) of SHG-44-2, SHG-44-6, and SHG-44-10 cell groups was not significant (P=0.052). Compared to

  2. MEG network differences between low- and high-grade glioma related to epilepsy and cognition.

    Directory of Open Access Journals (Sweden)

    Edwin van Dellen

    Full Text Available OBJECTIVE: To reveal possible differences in whole brain topology of epileptic glioma patients, being low-grade glioma (LGG and high-grade glioma (HGG patients. We studied functional networks in these patients and compared them to those in epilepsy patients with non-glial lesions (NGL and healthy controls. Finally, we related network characteristics to seizure frequency and cognitive performance within patient groups. METHODS: We constructed functional networks from pre-surgical resting-state magnetoencephalography (MEG recordings of 13 LGG patients, 12 HGG patients, 10 NGL patients, and 36 healthy controls. Normalized clustering coefficient and average shortest path length as well as modular structure and network synchronizability were computed for each group. Cognitive performance was assessed in a subset of 11 LGG and 10 HGG patients. RESULTS: LGG patients showed decreased network synchronizability and decreased global integration compared to healthy controls in the theta frequency range (4-8 Hz, similar to NGL patients. HGG patients' networks did not significantly differ from those in controls. Network characteristics correlated with clinical presentation regarding seizure frequency in LGG patients, and with poorer cognitive performance in both LGG and HGG glioma patients. CONCLUSION: Lesion histology partly determines differences in functional networks in glioma patients suffering from epilepsy. We suggest that differences between LGG and HGG patients' networks are explained by differences in plasticity, guided by the particular lesional growth pattern. Interestingly, decreased synchronizability and decreased global integration in the theta band seem to make LGG and NGL patients more prone to the occurrence of seizures and cognitive decline.

  3. Oncolytic adenoviruses: A thorny path to glioma cure

    OpenAIRE

    Ulasov, I.V.; Borovjagin, A.V.; Schroeder, B.A. (Betsy A.); Baryshnikov, A.Y.

    2014-01-01

    Glioblastoma Multiforme (GBM) is a rapidly progressing brain tumor. Despite the relatively low percentage of cancer patients with glioma diagnoses, recent statistics indicate that the number of glioma patients may have increased over the past decade. Current therapeutic options for glioma patients include tumor resection, chemotherapy, and concomitant radiation therapy with an average survival of approximately 16 months. The rapid progression of gliomas has spurred the development of novel tr...

  4. New similarity search based glioma grading

    Energy Technology Data Exchange (ETDEWEB)

    Haegler, Katrin; Brueckmann, Hartmut; Linn, Jennifer [Ludwig-Maximilians-University of Munich, Department of Neuroradiology, Munich (Germany); Wiesmann, Martin; Freiherr, Jessica [RWTH Aachen University, Department of Neuroradiology, Aachen (Germany); Boehm, Christian [Ludwig-Maximilians-University of Munich, Department of Computer Science, Munich (Germany); Schnell, Oliver; Tonn, Joerg-Christian [Ludwig-Maximilians-University of Munich, Department of Neurosurgery, Munich (Germany)

    2012-08-15

    MR-based differentiation between low- and high-grade gliomas is predominately based on contrast-enhanced T1-weighted images (CE-T1w). However, functional MR sequences as perfusion- and diffusion-weighted sequences can provide additional information on tumor grade. Here, we tested the potential of a recently developed similarity search based method that integrates information of CE-T1w and perfusion maps for non-invasive MR-based glioma grading. We prospectively included 37 untreated glioma patients (23 grade I/II, 14 grade III gliomas), in whom 3T MRI with FLAIR, pre- and post-contrast T1-weighted, and perfusion sequences was performed. Cerebral blood volume, cerebral blood flow, and mean transit time maps as well as CE-T1w images were used as input for the similarity search. Data sets were preprocessed and converted to four-dimensional Gaussian Mixture Models that considered correlations between the different MR sequences. For each patient, a so-called tumor feature vector (= probability-based classifier) was defined and used for grading. Biopsy was used as gold standard, and similarity based grading was compared to grading solely based on CE-T1w. Accuracy, sensitivity, and specificity of pure CE-T1w based glioma grading were 64.9%, 78.6%, and 56.5%, respectively. Similarity search based tumor grading allowed differentiation between low-grade (I or II) and high-grade (III) gliomas with an accuracy, sensitivity, and specificity of 83.8%, 78.6%, and 87.0%. Our findings indicate that integration of perfusion parameters and CE-T1w information in a semi-automatic similarity search based analysis improves the potential of MR-based glioma grading compared to CE-T1w data alone. (orig.)

  5. New similarity search based glioma grading

    International Nuclear Information System (INIS)

    MR-based differentiation between low- and high-grade gliomas is predominately based on contrast-enhanced T1-weighted images (CE-T1w). However, functional MR sequences as perfusion- and diffusion-weighted sequences can provide additional information on tumor grade. Here, we tested the potential of a recently developed similarity search based method that integrates information of CE-T1w and perfusion maps for non-invasive MR-based glioma grading. We prospectively included 37 untreated glioma patients (23 grade I/II, 14 grade III gliomas), in whom 3T MRI with FLAIR, pre- and post-contrast T1-weighted, and perfusion sequences was performed. Cerebral blood volume, cerebral blood flow, and mean transit time maps as well as CE-T1w images were used as input for the similarity search. Data sets were preprocessed and converted to four-dimensional Gaussian Mixture Models that considered correlations between the different MR sequences. For each patient, a so-called tumor feature vector (= probability-based classifier) was defined and used for grading. Biopsy was used as gold standard, and similarity based grading was compared to grading solely based on CE-T1w. Accuracy, sensitivity, and specificity of pure CE-T1w based glioma grading were 64.9%, 78.6%, and 56.5%, respectively. Similarity search based tumor grading allowed differentiation between low-grade (I or II) and high-grade (III) gliomas with an accuracy, sensitivity, and specificity of 83.8%, 78.6%, and 87.0%. Our findings indicate that integration of perfusion parameters and CE-T1w information in a semi-automatic similarity search based analysis improves the potential of MR-based glioma grading compared to CE-T1w data alone. (orig.)

  6. Immunoglobulin genes implicated in glioma risk.

    Science.gov (United States)

    Pandey, Janardan P; Kaur, Navtej; Costa, Sandra; Amorim, Julia; Nabico, Rui; Linhares, Paulo; Vaz, Rui; Viana-Pereira, Marta; Reis, Rui M

    2014-01-01

    Both genetic and environmental factors are thought to be causal in gliomagenesis. Several genes have been implicated in glioma development, but the putative role of a major immunity-related gene complex member, immunoglobulin heavy chain γ (IGHG) has not been evaluated. Prior observations that IGHG-encoded γ marker (GM) allotypes exhibit differential sensitivity to an immunoevasion strategy of cytomegalovirus, a pathogen implicated as a promoter of gliomagenesis, has lead us to hypothesize that these determinants are risk factors for glioma. To test this hypothesis, we genotyped the IGHG locus comprising the GM alleles, specifically GM alleles 3 and 17, of 120 glioma patients and 133 controls via TaqMan® genotyping assay. To assess the associations between GM genotypes and the risk of glioma, we applied an unconditional multivariate logistic regression analysis adjusted for potential confounding variables. In comparison to subjects who were homozygous for the GM 17 allele, the GM 3 homozygotes were over twice as likely, and the GM 3/17 heterozygotes were over three times as likely, to develop glioma. Similar results were achieved when analyzed by combining the data corresponding to alleles GM 3 and GM 3/17 in a dominant model. The GM 3/17 genotype and the combination of GM 3 and GM 3/17 were found to be further associated with over 3 times increased risk for high-grade astrocytoma (grades III-IV). Allele frequency analyses also showed an increased risk for gliomas and high-grade astrocytoma in association with GM 3. Our findings support the premise that the GM 3 allele may present risk for the development of glioma, possibly by modulating immunity to cytomegalovirus.

  7. Bromelain Reversibly Inhibits Invasive Properties of Glioma Cells

    OpenAIRE

    Tysnes, Berit B.; H. Rainer Maurert; Torsten Porwol; Beatrice Probst; Rolf Bjerkvig; Frank Hoover

    2001-01-01

    Bromelain is an aqueous extract from pineapple stem that contains proteinases and exhibits pleiotropic therapeutic effects, i.e., antiedematous, antiinflammatory, antimetastatic, antithrombotic, and fibrinolytic activities. In this study, we tested bromelain's effects on glioma cells to assess whether bromelain could be a potential contributor to new antiinvasive strategies for gliomas. Several complementary assays demonstrated that bromelain significantly and reversibly reduced glioma cell a...

  8. Neurotensin promotes the progression of malignant glioma through NTSR1 and impacts the prognosis of glioma patients

    OpenAIRE

    Ouyang, Qing; Gong, Xueyang; Xiao, Hualiang; Zhou, Ji; Xu, Minhui; Dai, Yun; Xu, Lunshan; Feng, Hua; Cui, Hongjuan; Yi, Liang

    2015-01-01

    Background The poor prognosis and minimally successful treatments of malignant glioma indicate a challenge to identify new therapeutic targets which impact glioma progression. Neurotensin (NTS) and its high affinity receptor (NTSR1) overexpression induces neoplastic growth and predicts the poor prognosis in various malignancies. Whether NTS can promote the glioma progression and its prognostic significance for glioma patients remains unclear. Methods NTS precursor (ProNTS), NTS and NTSR1 expr...

  9. Inhibition of autophagy induced by proteasome inhibition increases cell death in human SHG-44 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Peng-fei GE; Ji-zhou ZHANG; Xiao-fei WANG; Fan-kai MENG; Wen-chen LI; Yong-xin LUAN; Feng LING; Yi-nan LUO

    2009-01-01

    Aim:The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation.Recent studies suggest that proteasome inhibitors may reduce tumor growth and activate autophagy.Due to the dual roles of autophagy in tumor cell survival and death,the effect of autophagy on the destiny of glioma cells remains unclear.In this study,we sought to investigate whether inhibition of the proteasome can induce autophagy and the effects of autophagy on the fate of human SHG-44 glioma cells.Methods:The proteasome inhibitor MG-132 was used to induce autophagy in SHG-44 glioma cells,and the effect of autophagy on the survival of SHG-44 glioma cells was investigated using an autophagy inhibitor 3-MA.Cell viability was measured by MTT assay.Apoptosis and cell cycle were detected by flow cytometry.The expression of autophagy related proteins was determined by Western blot.Results:MG-132 inhibited cell proliferation,induced cell death and cell cycle arrest at G~JM phase,and activated autophagy in SHG-44 glioma cells.The expression of autophagy-related Beclin-1 and LC3-1 was significantly up-regulated and part of LC3-1 was converted into LC3-11.However,when SHG-44 glioma cells were co-treated with MG-132 and 3-MA,the cells became less viable,but cell death and cell numbers at G2/M phase increased.Moreover,the accumulation of acidic vesicular organelles was decreased,the expression of Beclin-1 and LC3 was significantly down-regulated and the conversion of LC3-11 from LC3-1 was also inhibited.Conclusion:Inhibition of the proteasome can induce autophagy in human SHG-44 glioma cells,and inhibition of autophagy increases cell death.This discovery may shed new light on the effect of autophagy on modulating the fate of SHG-44 glioma cells.

  10. Sensitivity of Interstitial combined Chemotherapy against Glioma

    Institute of Scientific and Technical Information of China (English)

    WANG Ming-sheng; LIN Jian-ying; ZHOU Guo-sheng; ZHANG Xin-zhong

    2006-01-01

    Objective To investigate the inhibitory effects of combination chemotherapy of Carboplatin(CBP) ,Teniposide (Vm-26) ,Methasquin(MTX),and Nimodipine(NIM) on glioma,and to explore the sensitivity of glioma cells to different treatment regimens so as to provide some clues for clinical usage of interstitial combination chemotherapy. Methods MTT assay and 3H-TdR incorporation assay were performed to evaluate the inhibitory effects upon the proliferation of glioma cells,and to compare the sensitivity of glioma cells to administration of CBP,Vm-26, MTX, and NIM with that of the administration of CBP + NIM, Vm-26 + NIM, MTX + NIM, CBP + Vm-26 + MTX, or CBP + Vm-26 + MTX + NIM respectively. Results The inhibition rate of CBP + Vm-26 + MTX + NIM combination administration against glioma cells was 96.64%,which was higher than that of CBP + NIM (69.03%), Vm-26 + NIM (71.53%), MTX + NIM (52. 75% ), CBP + Vm-26 + MTX(78.59%)(P<0.01),and the dosage of CBP,Vm-26,and MTX was declined to 1/10 ~ 1/100 that of respective use of CBP,Vm-26,and MTX. Conclusions The curative effects of combination administration of CBP,Vm-26, MTX, and NIM was much better than that of respective administration,suggesting a higher inhibition rate and a lower dosage use.

  11. Genetic characterization of adult infratentorial gliomas.

    Science.gov (United States)

    Miwa, Tomoru; Hirose, Yuichi; Sasaki, Hikaru; Ikeda, Eiji; Yoshida, Kazunari; Kawase, Takeshi

    2009-02-01

    Adult infratentorial gliomas are rare and have not been well studied. We therefore conducted genetic analysis of those tumors to see if there was any characteristic that could be relevant in clinical management and understanding of tumorigenesis. Nineteen adult infratentorial gliomas were analyzed for chromosomal aberration by comparative genomic hybridization, and for expression of p53 and epidermal growth factor receptor (EGFR) by immunohistochemistry. The most frequent chromosomal aberration was the gain of 7p, and five of the seven cerebellar or fourth ventricle malignant gliomas had that aberration. However, the gain of 7q, the characteristic abnormality of supratentorial astrocytomas commonly associated with the gaining of 7p, was observed only in 1 of 11 adult infratentorial astrocytic tumors. Combined losses of 1p and 19q, the genetic hallmark of oligodendroglioma, were not observed. Results of immunohistochemistry of p53 and EGFR were comparable to those reported in supratentorial gliomas. Our findings might suggest the presence of distinct tumorigenic pathway in adult infratentorial gliomas.

  12. [Chemotherapy of chiasmal gliomas in children].

    Science.gov (United States)

    Helcl, F

    1995-04-01

    Chiasmal gliomas are rare tumors occurring predominantly in childhood. Their optimal treatment is still controversial. In the past only neurosurgeons (performing partial or subtotal removal of the tumor, biopsy or shunting procedure in hydrocephalus) and radiotherapeutists participated in their treatment. In the middle of the eighties there was only a single article dealing with chemotherapy of these tumors (Rosenstock, 1985). Since that time there was an increased number of articles about harmful effects of radiotherapy on the developing child's brain. Neurosurgeons are aware that they will not solve this problem alone. During the past 7 years we have observed gradual retreat from radiotherapy and an inclination to combined chemotherapy of the chiasmal gliomas in children. The author has been engaged in the research of this clinical entity for more than 10 years and he offers to readers a summary of the contemporary knowledge about chemotherapy of chiasmal gliomas in children. Despite the fact that there is lacking experience with long-term survivors after chemotherapy, which is extremely important especially in this disease, the preliminary short-term results of combined chemotherapy of chiasmal gliomas in children are promising. Rapid development of chemistry and pharmacology in the last few years is promising for the discovery of further, more effective anti-tumor drugs. Their new combinations could improve present non-satisfactory results of treatment of chiasmal gliomas in children. (Ref. 25.)

  13. Glioma cells on the run – the migratory transcriptome of 10 human glioma cell lines

    Directory of Open Access Journals (Sweden)

    Holz David

    2008-01-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is the most common primary intracranial tumor and despite recent advances in treatment regimens, prognosis for affected patients remains poor. Active cell migration and invasion of GBM cells ultimately lead to ubiquitous tumor recurrence and patient death. To further understand the genetic mechanisms underlying the ability of glioma cells to migrate, we compared the matched transcriptional profiles of migratory and stationary populations of human glioma cells. Using a monolayer radial migration assay, motile and stationary cell populations from seven human long term glioma cell lines and three primary GBM cultures were isolated and prepared for expression analysis. Results Gene expression signatures of stationary and migratory populations across all cell lines were identified using a pattern recognition approach that integrates a priori knowledge with expression data. Principal component analysis (PCA revealed two discriminating patterns between migrating and stationary glioma cells: i global down-regulation and ii global up-regulation profiles that were used in a proband-based rule function implemented in GABRIEL to find subsets of genes having similar expression patterns. Genes with up-regulation pattern in migrating glioma cells were found to be overexpressed in 75% of human GBM biopsy specimens compared to normal brain. A 22 gene signature capable of classifying glioma cultures based on their migration rate was developed. Fidelity of this discovery algorithm was assessed by validation of the invasion candidate gene, connective tissue growth factor (CTGF. siRNA mediated knockdown yielded reduced in vitro migration and ex vivo invasion; immunohistochemistry on glioma invasion tissue microarray confirmed up-regulation of CTGF in invasive glioma cells. Conclusion Gene expression profiling of migratory glioma cells induced to disperse in vitro affords discovery of genomic signatures; selected

  14. Associations of High-Grade Glioma With Glioma Risk Alleles and Histories of Allergy and Smoking

    OpenAIRE

    Lachance, Daniel H.; Yang, Ping; Johnson, Derek R.; Decker, Paul A.; Kollmeyer, Thomas M.; McCoy, Lucie S.; Rice, Terri; Xiao, Yuanyuan; Ali-Osman, Francis; Wang, Frances; Stoddard, Shawn M.; Sprau, Debra J.; Kosel, Matthew L.; Wiencke, John K.; Wiemels, Joseph L.

    2011-01-01

    Glioma risk has consistently been inversely associated with allergy history but not with smoking history despite putative biologic plausibility. Data from 855 high-grade glioma cases and 1,160 controls from 4 geographic regions of the United States during 1997–2008 were analyzed for interactions between allergy and smoking histories and inherited variants in 5 established glioma risk regions: 5p15.3 (TERT), 8q24.21 (CCDC26/MLZE), 9p21.3 (CDKN2B), 11q23.3 (PHLDB1/DDX6), and 20q13.3 (RTEL1). Th...

  15. Prenatal diagnosis of a nasal glioma.

    Science.gov (United States)

    Grzegorczyk, Véronica; Brasseur-Daudruy, Marie; Labadie, Gérard; Cellier, Cécile; Verspyck, Eric

    2010-10-01

    Nasal glioma is a rare congenital midline malformation composed of heterotopic masses of neuroglial tissue. We report a case of fetal nasal glioma diagnosed by sonography at 22 weeks' gestation as a vascular hypoechoic mass located on the left nasal bone. Fetal MRI excluded an underlying bone defect. At birth, the lesion appeared as a reddish mass. Post natal imaging confirmed the vascularisation within the lesion with an arterial low-flow velocity and a high-resistance spectrum, consistent with a glioma. The child underwent surgery at 5 months and final diagnosis was made on pathological examination. Therefore, a vascular lesion and a clinical aspect mimicking a haemangioma should not be considered sufficient to reach the final diagnosis. PMID:20401478

  16. Downregulation of miR-544 in tissue, but not in serum, is a novel biomarker of malignant transformation in glioma.

    Science.gov (United States)

    Ma, Ruimin; Zhang, Guojun; Wang, Huimin; Lv, Hong; Fang, Fang; Kang, Xixiong

    2012-12-01

    Low-grade glioma is predisposed to progress to anaplastic astrocytoma and eventually secondary glioblastoma. The malignant transformation may involve the accumulation of multiple genetic alterations. The purpose of this study was to explore the role of miR-544 in glioma progression and discuss whether it may be a novel biomarker of malignant transformation. The expression of miR-544 was measured in a series of 198 glioma samples (63 low-grade glioma, 44 anaplastic astrocytoma and 91 glioblastoma tumors) using microarrays. Quantitative real-time reverse transcription PCR (qRT-PCR) was used to validate the expression levels of miR-544 in tissue and serum samples in an independent validated cohort (25 low-grade glioma, 21 anaplastic astrocytoma and 20 glioblastoma tumors). A Pearson correlation analysis was performed to examine the correlation between miR-544 levels of tissue and serum samples. Microarrays revealed that the expression levels of miR-544 decreased significantly in anaplastic gliomas (PmiR-544 exhibited a progression-associated downregulation in glioma tumors. The levels of miR-544 in serum samples tended to be lower in anaplastic and glioblastoma patients compared with low-grade gliomas, but with no significant difference. The Pearson correlation analysis revealed a weakly positive correlation between tissue and serum levels of miR-544. These data support a significant role for miR-544 aberration in the malignant transformation of glioma. The downregulation of miR-544 in tissue may be used as a novel biomarker.

  17. [Surgical treatment of chiasmal gliomas in children].

    Science.gov (United States)

    Helcl, F

    1997-03-01

    Chiasmal gliomas are rare brain tumors occurring especially in children. Their proper treatment is still controversial and consists of surgery, radiotherapy and chemotherapy. Surgical removal of these tumors can usually be only partial or subtotal and radiotherapy frequently follows. There are supporters of surgical approach, as well as its enemies. The author has been engaged in problems of optimal treatment of this entity for more than 10 years. He is offering a review of knowledge from the literature concerning surgical treatment of this disease in children. The great majority of articles in the literature are dealing with retrospective analysis of relatively small series of patients usually treated in single neurosurgical department and the surgical treatment is enclosed like a part of combined therapy. Articles dealing only with surgical treatment of chiasmal gliomas are few and reviews determining the contemporary role of surgery of this entity are also lacking. This was the main impulse for writing this compilation. The short history of surgical therapy is reviewed. Some new trends of this therapy are also mentioned (microsurgery, Cavitron Ultrasonic Surgical Aspirator and peroperative use of visual evoked potentials). Up to date criteria for surgical treatment of chiasmal gliomas in children are given-exploration of chiasmal region and performing a biopsy in all cases, radical surgery only in extrinsic gliomas of the chiasmal region and conservative surgical approach to intrinsic chiasmal gliomas. It is emphasized that the significance of obstructive hydrocephalus in this entity has not been fully estimated till now, as well as the role of shunting procedures. Surgical treatment remains, nevertheless, an important armamentarium in the management of chiasmal gliomas in children. (Ref. 20.)

  18. Alteration of long-distance functional connectivity and network topology in patients with supratentorial gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun; Kim, Ho Sung; Kim, Sang Joon; Shim, Woo Hyun [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Songpa-Gu, Seoul (Korea, Republic of); Kim, Jeong Hoon [University of Ulsan College of Medicine, Department of Neurosurgery, Asan Medical Center, Seoul (Korea, Republic of)

    2016-03-15

    The need for information regarding functional alterations in patients with brain gliomas is increasing, but little is known about the functional consequences of focal brain tumors throughout the entire brain. Using resting-state functional MR imaging (rs-fMRI), this study assessed functional connectivity in patients with supratentorial brain gliomas with possible alterations in long-distance connectivity and network topology. Data from 36 patients with supratentorial brain gliomas and 12 healthy subjects were acquired using rs-fMRI. The functional connectivity matrix (FCM) was created using 32 pairs of cortical seeds on Talairach coordinates in each individual subject. Local and distant connectivity were calculated using z-scores in the individual patient's FCM, and the averaged FCM of patients was compared with that of healthy subjects. Weighted network analysis was performed by calculating local efficiency, global efficiency, clustering coefficient, and small-world topology, and compared between patients and healthy controls. When comparing the averaged FCM of patients with that of healthy controls, the patients showed decreased long-distance, inter-hemispheric connectivity (0.32 ± 0.16 in patients vs. 0. 42 ± 0.15 in healthy controls, p = 0.04). In network analysis, patients showed increased local efficiency (p < 0.05), but global efficiency, clustering coefficient, and small-world topology were relatively preserved compared to healthy subjects. Patients with supratentorial brain gliomas showed decreased long-distance connectivity while increased local efficiency and preserved small-world topology. The results of this small case series may provide a better understanding of the alterations of functional connectivity in patients with brain gliomas across the whole brain scale. (orig.)

  19. Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells

    Institute of Scientific and Technical Information of China (English)

    Zhi-Kun Qiu; Dong Shen; Yin-Sheng Chen; Qun-Ying Yang; Cheng-Cheng Guo; Bing-Hong Feng; Zhong-Ping Chen

    2014-01-01

    O6-methylguanine DNA methyltransferase (MGMT) can remove DNA alkylation adducts, thereby repairing damaged DNA and contributing to the drug resistance of gliomas to alkylating agents. In addition, glioma stem-like cells (GSCs) have been demonstrated to be involved in the recurrence and treatment resistance of gliomas. In this study, we aimed to investigate MGMT expression and regulatory mechanisms in GSCs and the association of MGMT with temozolomide (TMZ) sensitivity. GSCs were enriched from one MGMT-positive cellline (SF-767) and 7 MGMT-negative celllines (U251, SKMG-4, SKMG-1, SF295, U87, MGR1, and MGR2) through serum-free clone culture. GSCs from the U251G, SKMG-4G, SF295G, and SKMG-1G cell lines became MGMT-positive, but those from the U87G, MGR1G, and MGR2G cell lines remained MGMT-negative. However, al the GSCs and their parental glioma celllines were positive for nuclear factor-κB (NF-κB). In addition, GSCs were more resistant to TMZ than their parental glioma cell lines (P 0.05). When we treated the MGMT-positive GSCs with TMZ plus MG-132 (an NF-κB inhibitor), the antitumor activity was significantly enhanced compared to that of GSCs treated with TMZ alone (P < 0.05). Furthermore, we found that MGMT expression decreased through the down-regulation of NF-κB expression by MG-132. Our results show that MG-132 may inhibit NF-κB expression and further decrease MGMT expression, resulting in a synergistic effect on MGMT-positive GSCs. These results indicate that enhanced MGMT expression contributes to TMZ resistance in MGMT-positive GSCs.

  20. Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells

    Science.gov (United States)

    Qiu, Zhi-Kun; Shen, Dong; Chen, Yin-Sheng; Yang, Qun-Ying; Guo, Cheng-Cheng; Feng, Bing-Hong; Chen, Zhong-Ping

    2014-01-01

    O6-methylguanine DNA methyltransferase (MGMT) can remove DNA alkylation adducts, thereby repairing damaged DNA and contributing to the drug resistance of gliomas to alkylating agents. In addition, glioma stem-like cells (GSCs) have been demonstrated to be involved in the recurrence and treatment resistance of gliomas. In this study, we aimed to investigate MGMT expression and regulatory mechanisms in GSCs and the association of MGMT with temozolomide (TMZ) sensitivity. GSCs were enriched from one MGMT-positive cell line (SF-767) and 7 MGMT-negative cell lines (U251, SKMG-4, SKMG-1, SF295, U87, MGR1, and MGR2) through serum-free clone culture. GSCs from the U251G, SKMG-4G, SF295G, and SKMG-1G cell lines became MGMT-positive, but those from the U87G, MGR1G, and MGR2G cell lines remained MGMT-negative. However, all the GSCs and their parental glioma cell lines were positive for nuclear factor-κB (NF-κB). In addition, GSCs were more resistant to TMZ than their parental glioma cell lines (P 0.05). When we treated the MGMT-positive GSCs with TMZ plus MG-132 (an NF-κB inhibitor), the antitumor activity was significantly enhanced compared to that of GSCs treated with TMZ alone (P < 0.05). Furthermore, we found that MGMT expression decreased through the down-regulation of NF-κB expression by MG-132. Our results show that MG-132 may inhibit NF-κB expression and further decrease MGMT expression, resulting in a synergistic effect on MGMT-positive GSCs. These results indicate that enhanced MGMT expression contributes to TMZ resistance in MGMT-positive GSCs. PMID:23958055

  1. Mean Diffusional Kurtosis in Patients with Glioma

    DEFF Research Database (Denmark)

    Tietze, A.; Hansen, Mikkel Bo; Østergaard, Leif;

    2015-01-01

    , and the contralateral normal appearing white and grey matter of 34 patients (22 high-grade, 12 low-grade gliomas). MK’ and MD in different grades were compared using a Wilcoxon rank-sum test. Receiver Operating Characteristic curves and the area under the curve were calculated to determine the diagnostic accuracy of MK...... with regard to glioma grading, compare it to conventional DKI and compare the diagnostic accuracy of mean kurtosis (MK’) to that of the widely used mean diffusivity (MD). Material and Methods: MK’ and MD were measured in the contrast-enhancing tumor core, the peri-focal hyperintensity on T2FLAIR...

  2. Using bioluminescence imaging in glioma research.

    Science.gov (United States)

    Luwor, Rodney B; Stylli, Stanley S; Kaye, Andrew H

    2015-05-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumour and has the worst prognosis. Over the last decade, the use of bioluminescence imaging technology has rapidly become widespread to further understand the mechanisms that drive GBM development and progression. Pre-clinical evaluation and optimisation of therapeutic efficacy in GBM research has also utilised this simple non-invasive technology. Here we summarise recent advances made in glioma biology and therapeutic intervention using bioluminescence imaging. This review also describes the current knowledge regarding the use of luciferase-based reporters in examining the role of specific cancer signalling cascades that promote glioma progression.

  3. Prognostic value of Musashi-1 in gliomas

    DEFF Research Database (Denmark)

    Dahlrot, Rikke H; Hansen, Steinbjørn; Herrstedt, Jørn;

    2013-01-01

    The aim of this study was to investigate the prognostic value of the RNA-binding protein Musashi-1 in adult patients with primary gliomas. Musashi-1 has been suggested to be a cancer stem cell-related marker in gliomas, and high levels of Musashi-1 have been associated with high tumor grades...... 0.65, p = 0.038). In addition patients with high levels of Musashi-1 benefitted most from post-surgical treatment, indicating that Musashi-1 may be a predictive marker in GBMs. In conclusion, our results suggest that high levels of Musashi-1 are associated with poor survival in patients with WHO...

  4. New naphthoquinone derivatives against glioma cells.

    Science.gov (United States)

    Redaelli, Marco; Mucignat-Caretta, Carla; Isse, Abdirisak Ahmed; Gennaro, Armando; Pezzani, Raffaele; Pasquale, Riccardo; Pavan, Valeria; Crisma, Marco; Ribaudo, Giovanni; Zagotto, Giuseppe

    2015-01-01

    This work was aimed to the development of a set of new naphtoquinone derivatives that can act against glioma. The compounds were tested in order to find out their ability to inhibit the growth of glioma cells, and the results of these assays were correlated with electrochemical analysis and NMR-based reoxidation kinetic studies, suggesting that a redox mechanism underlies and may explain the observed biological behavior. In addition to a full description of the synthetic pathways, electrochemistry, NMR and single crystal X-ray diffraction data are provided. PMID:25916907

  5. Comparative genomic and proteomic analysis of high grade glioma primary cultures and matched tumor in situ.

    LENUS (Irish Health Repository)

    Howley, R

    2012-10-15

    Developing targeted therapies for high grade gliomas (HGG), the most common primary brain tumor in adults, relies largely on glioma cultures. However, it is unclear if HGG tumorigenic signaling pathways are retained under in-vitro conditions. Using array comparative genomic hybridization and immunohistochemical profiling, we contrasted the epidermal and platelet-derived growth factor receptor (EGFR\\/PDGFR) in-vitro pathway status of twenty-six primary HGG cultures with the pathway status of their original HGG biopsies. Genomic gains or amplifications were lost during culturing while genomic losses were more likely to be retained. Loss of EGFR amplification was further verified immunohistochemically when EGFR over expression was decreased in the majority of cultures. Conversely, PDGFRα and PDGFRβ were more abundantly expressed in primary cultures than in the original tumor (p<0.05). Despite these genomic and proteomic differences, primary HGG cultures retained key aspects of dysregulated tumorigenic signaling. Both in-vivo and in-vitro the presence of EGFR resulted in downstream activation of P70s6K while reduced downstream activation was associated with the presence of PDGFR and the tumor suppressor, PTEN. The preserved pathway dysregulation make this glioma model suitable for further studies of glioma tumorigenesis, however individual culture related differences must be taken into consideration when testing responsiveness to chemotherapeutic agents.

  6. Imaging bone morphogenetic protein 7 induced cell cycle arrest in experimental gliomas.

    Science.gov (United States)

    Klose, Anke; Waerzeggers, Yannic; Monfared, Parisa; Vukicevic, Slobodan; Kaijzel, Eric L; Winkeler, Alexandra; Wickenhauser, Claudia; Löwik, Clemens W G M; Jacobs, Andreas H

    2011-03-01

    Bone morphogenetic protein 7 (BMP-7) belongs to the superfamily of transforming growth factor β-like cytokines, which can act either as tumor suppressors or as tumor promoters depending on cell type and differentiation. Our investigations focused on analyzing the effects of BMP-7 during glioma cell proliferation in vitro and in vivo. BMP-7 treatment decreased the proliferation of Gli36ΔEGFR-LITG glioma cells up to 50%through a cell cycle arrest in the G(1) phase but not by induction of apoptosis. This effect was mediated by the modulation of the expression and phosphorylation of cyclin-dependent kinase 2, cyclin-dependent kinase inhibitor p21, and downstream retinoblastoma protein. Furthermore, in vivo optical imaging of luciferase activity of Gli36ΔEGFR-LITG cells implanted intracranially into nude mice in the presence or absence of BMP-7 treatment corroborated the antiproliferative effects of this cytokine. This report clearly underlines the tumor-suppressive role of BMP-7 in glioma-derived cells. Taken together, our results indicate that manipulating the BMP/transforming growth factor β signaling cascade may serve as a new strategy for imaging-guided molecular-targeted therapy of malignant gliomas.

  7. Imaging Bone Morphogenetic Protein 7 Induced Cell Cycle Arrest in Experimental Gliomas

    Directory of Open Access Journals (Sweden)

    Anke Klose

    2011-03-01

    Full Text Available Bone morphogenetic protein 7 (BMP-7 belongs to the superfamily of transforming growth factor β-like cytokines, which can act either as tumor suppressors or as tumor promoters depending on cell type and differentiation. Our investigations focused on analyzing the effects of BMP-7 during glioma cell proliferation in vitro and in vivo. BMP-7 treatment decreased the proliferation of Gli36ΔEGFR-LITG glioma cells up to 50%through a cell cycle arrest in the G1 phase but not by induction of apoptosis. This effect was mediated by the modulation of the expression and phosphorylation of cyclin-dependent kinase 2, cyclin-dependent kinase inhibitor p21, and downstream retinoblastoma protein. Furthermore, in vivo optical imaging of luciferase activity of Gli36ΔEGFR-LITG cells implanted intracranially into nude mice in the presence or absence of BMP-7 treatment corroborated the antiproliferative effects of this cytokine. This report clearly underlines the tumor-suppressive role of BMP-7 in glioma-derived cells. Taken together, our results indicate that manipulating the BMP/transforming growth factor β signaling cascade may serve as a new strategy for imaging-guided molecular-targeted therapy of malignant gliomas.

  8. Silencing of MGMT with small interference RNA reversed resistance in human BCUN-resistant glioma cell lines

    Institute of Scientific and Technical Information of China (English)

    XIE Si-ming; FANG Mao; GUO Hui; ZHONG Xue-yun

    2011-01-01

    Background Our previous study had cloned two glioma cell lines SWOZ1 and SWOZ2 isolated from parental glioma cell line SWO38.The 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) resistance of SWOZ1 was higher than that of SWOZ2.Since O6-methylguanine-DNA methyltransferase (MGMT) was thought to be closely related to BCNU resistance in glioma,this study aimed to explore the function of MGMT in glioma resistant to BCNU.Methods A BCNU resistant glioma cell line SWOZ2-BCNU was established.The expression of MGMT was detected in SWOZ1,SWOZ2 and SWOZ2-BCNU.Small interferencing RNA targeting MGMT was used to silence the expression of MGMT in resistant cell lines SWOZ1 and SWOZ2-BCNU.The cytotoxicity of BCNU to these cells was measured using the cell counting kit-8 assay.Statistical analysis was carried out by one-way analysis of variance in statistical package SPSS 13.0.Results The resistance of SWOZ1 and SWOZ2-BCNU against BCNU was 4.9-fold and 5.3-fold higher than that of SWOZ2.The results of quantitative RT-PCR and Western blotting confirmed that MGMT was both significantly increased in SWOZ1 and SWOZ2-BCNU compared to SOWZ2.After transfection with small interferencing RNA targeting MGMT,a decreased level of MGMT mRNA expression in SWOZ1 and SWOZ2-BCNU for more than 75% compared to negative control was found and confirmed by Western blotting.As a result,the resistance against BCNU was reversed for about 50% both in the BCNU-resistant cell lines SWOZ1 and SWOZ2-BCNU.Conclusions Silencing MGMT with specific small interferencing RNA can reverse the BCNU resistant phenotype in these glioma cell lines.MGMT may play an important role both in intrinsic and acquired BCNU-resistance in glioma.

  9. Lymphoid Cell-Glioma Cell Interaction Enhances Cell Coat Production by Human Gliomas: Novel Suppressor Mechanism

    Science.gov (United States)

    Dick, Steven J.; Macchi, Beatrice; Papazoglou, Savvas; Oldfield, Edward H.; Kornblith, Paul L.; Smith, Barry H.; Gately, Maurice K.

    1983-05-01

    Certain human glioma lines produce mucopolysaccharide coats that impair the generation of cytolytic lymphocytes in response to these lines in vitro. Coat production is substantially enhanced by the interaction of glioma cells with a macromolecular factor released by human peripheral blood mononuclear cells in culture. This interaction thus constitutes an unusual mechanism by which inflammatory cells may nonspecifically suppress the cellular immune response to at least one class of solid tumors in humans.

  10. Known glioma risk loci are associated with glioma with a family history of brain tumours

    DEFF Research Database (Denmark)

    Melin, Beatrice; Dahlin, Anna M; Andersson, Ulrika;

    2013-01-01

    family history of brain tumours, defined as having at least one first- or second-degree relative with a history of brain tumour, are associated with known glioma risk loci. One thousand four hundred and thirty-one glioma cases and 2,868 cancer-free controls were identified from four case-control studies...... and two prospective cohorts from USA, Sweden and Denmark and genotyped for seven SNPs previously reported to be associated with glioma risk in case-control designed studies. Odds ratios were calculated by unconditional logistic regression. In analyses including glioma cases with a family history of brain...... tumours (n = 104) and control subjects free of glioma at baseline, three of seven SNPs were associated with glioma risk: rs2736100 (5p15.33, TERT), rs4977756 (9p21.3, CDKN2A-CDKN2B) and rs6010620 (20q13.33, RTEL1). After Bonferroni correction for multiple comparisons, only one marker was statistically...

  11. Photodynamic therapy of supratentorial gliomas

    Science.gov (United States)

    Muller, Paul J.; Wilson, Brian C.

    1997-05-01

    We are reporting the results form intraoperative intracavitary PDT treatment in 56 patients with recurrent supratentorial gliomas who had failed previous surgery and radiotherapy. These patients received 2mg/kg Photofin iv. 12-36 hours prior to surgical resection of their tumor or tumor cyst drainage. The median survival times in weeks for glioblastoma (GBM), malignant astrocytoma (MA), malignant mixed astrocytoma-oligodendroglioma and ependymoma were 30, 40, >56 and >174 weeks, respectively. Eight patients with recurrent GBM who received >60 J/cm2 had a median survival of 58 weeks and 24 patients who received recurrent glioblastoma who undergo surgical treatment alone is only 20 weeks. We are also reporting the results of PDT treatment in 20 patients with newly diagnosed MA or GBM treated with intracavitary Photofin-PDT at the time of their initial craniotomy. The median survival of the whole cohort was 44 weeks with a 1 and 2 year survival of 40 percent and 15 percent, respectively. The median survival of patients with GBM was 37 weeks with a 1 and 2 year actuarial survival of 35 percent and 0 percent, respectively. The median survival of patients with MA as 48 weeks with a 1 and 2 year actuarial survival of 44 percent and 33 percent, respectively. Six patients with a Karnofsky score of >70 who received a light dose of >1260J had a median survival of 92 weeks with a 1 and 2 year survival of 83 percent and 33 percent, respectively. The mortality rate in our total series of 93 PDT treatments or brain tumor is 3 percent. The combined serious mortality-morbidity rate is 8 percent.

  12. ARPP-19 promotes proliferation and metastasis of human glioma.

    Science.gov (United States)

    Jiang, Tao; Zhao, Bing; Li, Xiaocan; Wan, Jinghai

    2016-09-01

    Glioma is the most common and aggressive type of human primary brain tumor with a poor outcome. The molecular mechanisms underlying glioma development and progression are still poorly understood. Recent studies have reported a novel role of ARPP-19 in the regulation of cell mitosis and cancer progression. However, no study has been carried out to determine the role of ARPP-19 in human glioma cells and assess the expression and clinical significance of ARPP-19 in human glioma. In this study, we systematically examined the role of ARPP-19 in glioma A172 cells and examined the expression of ARPP-19 and CD147 in 81 cases of human glioma tissue specimens and correlated them to clinicopathological parameters and patient survival. We found that ARPP-19 promoted both proliferation and metastasis of human glioma cells and the expression of ARPP-19 and CD147 in high-grade glioma was significantly higher than that in the low-grade glioma. Patients whose tumors were positive for expression of ARPP-19 or CD147 showed lower relapse-free survival and overall survival than patients whose tumors were negative for ARPP-19 or CD147, respectively. Pearson correlation analysis indicated that there was a statistically significant correlation between ARPP-19 and CD147. Expressions of ARPP-19 and CD147 may serve as biomarkers for high-grade glioma and poor patient survival. PMID:27380244

  13. RhoA regulates invasion of glioma cells via the c-Jun NH2-terminal kinase pathway under hypoxia.

    Science.gov (United States)

    Tong, Jiao Jian; Yan, Zhang; Jian, Ren; Tao, Huang; Hui, Ouyang Tao; Jian, Chen

    2012-09-01

    The purpose of this study was to investigate the mechanism of glioma cell invasion in hypoxic conditions. We demonstrated that hypoxia increased cell invasion, matrix metalloproteinase-2 (MMP2) activity and time-dependent expression of hypoxia inducible factor-1α (HIF-1α) in human glioma cells. These data suggest that MMP2 may play a significant role in tumor invasion in hypoxic conditions. We investigated the mechanisms involved in the increased MMP2 activity and cell invasion in hypoxic conditions. Increased expression of phospho-Jun NH2-terminal kinase (p-JNK) and phospho-c-Jun (p-c-Jun) in glioma cells induced by hypoxia was detected. Furthermore, this effect may be reduced by inhibiting the JNK signaling pathway. We found that inhibition of RhoA geranylgeranylation by geranylgeranyltransferase inhibitor-2147 (GGTI-2147) or knockdown of RhoA by siRNA against RhoA reduced the expression of p-JNK and p-c-Jun, and decreased MMP2 activity and glioma cell invasion in hypoxic conditions. These data suggest a link among RhoA, JNK, c-Jun and MMP2 activity that is functionally involved in the increased glioma cell invasion induced by hypoxia. PMID:23741249

  14. Resting-state magnetoencephalography study of “small world” characteristics and cognitive dysfunction in patients with glioma

    Directory of Open Access Journals (Sweden)

    Hu X

    2013-04-01

    Full Text Available Xin-Hua Hu, Ting Lei, Hua-Zhong Xu, Yuan-Jie Zou, Hong-Yi Liu Department of Neurosurgery, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China Background: The purpose of this study was to analyze “small world” characteristics in glioma patients in order to understand the relationship between cognitive dysfunction and brain functional connectivity network in the resting state. Methods: Resting-state magnetoencephalography was performed in 20 patients with glioma and 20 healthy subjects. The clustering coefficient of the resting functional connectivity network in the brain, average path length, and “small world” index (SWI were calculated. Cognitive function was estimated by testing of attention, verbal fluency, memory, athletic ability, visual-spatial ability, and intelligence. Results: Compared with healthy controls, patients with glioma showed decreased cognitive function, and diminished low and high gamma band “small world” characteristics in the resting functional connectivity network. Conclusion: The SWI is associated with cognitive function and is diminished in patients with glioma, and is therefore correlated with cognition dysfunction. Keywords: glioma, cognitive dysfunction, “small world”, functional connectivity network, magnetoencephalography

  15. Surgical strategies for glioma involving language areas

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhong; JIANG Tao; XIE Jian; LIU Fu-sheng; LI Shou-wei; QIAO Hui; WANG Zhong-cheng

    2008-01-01

    Background Successful treatment of gliomas in or adjacent to language areas constitutes a major challenge to neurosurgery. The present study was performed to evaluate the procedure of language mapping via intraoperative direct cortical electrical stimulation under awake anaesthesia when performed prior to resective glioma surgery.Methods Thirty patients with gliomas and left-hemisphere dominance and, who underwent language mapping via intraoperative direct cortical electrical stimulation under awake anaesthesia before resective glioma surgery, were analyzed retrospectively. All patients had tumors in or adjacent to cortical language areas. The brain lesions were removed according to anatomic-functional boundaries with preservation of areas of language function. Both preoperative and postoperative functional findings were evaluated.Results Intraoperative language areas were detected in 20 patients but not in four patients. Language mapping failure for reasons attributable to the anaesthesia or to an intraoperative increase in intracranial pressure occurred in six cases.Seven patients presented with moderate or severe language deficits after six months of follow-up. Total resection was achieved in 14 cases, near-total resection in 12 cases and subtotal resection in four cases.Conclusions Intraoperative cortical electrical stimulation is an accurate and safe approach to identification of the language cortex. Awake craniotomy intraoperative cortical electrical stimulation, in combination with presurgical neurological functional imaging to identify the anatomic-functional boundaries of tumor resection, permits extensive tumor excision while preserving normal language function and minimizing the risk of postoperative language deficits.

  16. Hormone replacement therapy and risk of glioma

    DEFF Research Database (Denmark)

    Andersen, Lene; Friis, Søren; Hallas, Jesper;

    2013-01-01

    Aim: Several studies indicate that use of hormone replacement therapy (HRT) is associated with an increased risk of intracranial meningioma, while associations between HRT use and risk of other brain tumors have been less explored. We investigated the influence of HRT use on the risk of glioma...

  17. Genetics and pharmacogenomics of diffuse gliomas

    NARCIS (Netherlands)

    Thuijl, H.F. van; Ylstra, B.; Wurdinger, T.; Nieuwenhuizen, D. van; Heimans, J.J.; Wesseling, P.; Reijneveld, J.C.

    2013-01-01

    Rapidly evolving techniques for analysis of the genome provide new opportunities for cancer therapy. For diffuse gliomas this has resulted in molecular markers with potential for personalized therapy. Some drugs that utilize pharmacogenomics are currently being tested in clinical trials. In melanoma

  18. Neuromyelitis Optica Lesion Mimicking Brainstem Glioma

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-12-01

    Full Text Available A 12-year-old girl who presented with weakness of the left extremities and right sided sixth cranial nerve palsy had neuromyelitis optica (NMO mistaken for brainstem glioma on MRI, in a report from Brain Research Institute, Yonsei University College of Medicine,Seoul, Republic of KoreaNeuromyelitis Optica, Optic-Spinal Syndrome, Spectroscopy.

  19. Changing incidence and improved survival of gliomas

    NARCIS (Netherlands)

    Ho, Vincent K. Y.; Reijneveld, Jaap C.; Enting, Roeline; Bienfait, Henri P.; Robe, Pierre; Baumert, Brigitta G.; Visser, Otto

    2014-01-01

    BACKGROUND: Tumours of the central nervous system (CNS) represent a relatively rare but serious health burden. This study provides insight into the incidence and survival patterns of gliomas in the Netherlands diagnosed in adult patients during the time period 1989-2010, with a focus on glioblastoma

  20. An incidentally detected third ventricle chordoid glioma

    Directory of Open Access Journals (Sweden)

    Gallina Pasquale

    2007-01-01

    Full Text Available Chordoid glioma is a rare low-grade tumor located in the third ventricle-hypothalamic region. Since its first report, 37 cases have been described in the literature. We report on an additional case that we considered significant because of its incidental detection and its uneventful surgical removal.

  1. A case of radiation-induced glioma

    International Nuclear Information System (INIS)

    A case of malignant cerebellar glioma developing 25 years after radiotherapy for pineal tumor is described. The patient is a 40-year-old male, who was admitted to our department with complaints of dizziness and gait disturbance. neurological examinations revealed symptoms involving the left cerebellar hemisphere and cerebellar vermis. CT scan and MRI demonstrated a circularly enhanced tumor which was located in the left cerebellar hemisphere extending to the vermis. The tumor was diagnosed as malignant glioma. In view of the former radiotherapy, this glioma was suspected to have been induced by radiation. The situation conformed to Walker's criteria for radiation-induced tumor. With the patient under general anesthesia, the tumor was subtotally removed by means of suboccipitel craniectomy. Histopathologically, the tumor was diagnosed as astrocytoma, grade 3. Most radiation-induced gliomas are malignant. There seems to be no significant correlation between the radiation dose; the latent period widely varies, ranging from several years to more than 20 years. Even if the radiation dose is small, there still exists the risk that radiation might induce a tumor. It was concluded that the possibility of radiation-induced tumor should be kept in mind whenever radiation therapy is carried out for brain tumors. (author)

  2. Effects of antigliomatin from the scorpion venom of Buthus martensii Karsch on chloride channels on C6 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Zan Wang; Mingxian Li; Hongmei Meng; Min Huang; Weihong Lin; Li Cui; Shao Wang

    2011-01-01

    Using whole-cell patch-clamp recordings, the effects of antigliomatin were observed on chloride channels on C6 glioma cells cultured in vitro. Antigliomatin was extracted from the venom of the scorpion Buthus martensii Karsch. Chloride channels are closed under normal osmotic pressure. When osmotic pressure was reduced to 120, 110 and 100 mV, the cell volume enlarged, chloride channels opened, and the chloride channel current increased. Three minutes after antigliomatin treatment, the chloride channel current decreased in a dose-dependent manner. These results show that antigliomatin extracted from the venom of the scorpion Buthus martensii Karsch diminishes chloride channel currents on C6 glioma cells.

  3. Proton magnetic resonance spectroscopy of normal human brain and glioma:a quantitive in vivo study

    Institute of Scientific and Technical Information of China (English)

    TONG Zhi-yong; YAMAKI Toshiaki; WANG Yun-jie

    2005-01-01

    Background In vivo proton magnetic resonance spectroscopy (MRS) provides a noninvasive method of examining a wide variety of cerebral metabolites in both healthy subjects and patients with various brain diseases.Absolute metabolite concentrations have been determined using external and internal standards with known concentrations.When an external standard is placed beside the head, variations in signal amplitudes due to B1 field inhomogeneity and static field inhomogeneity may occur.Hence an internal standard is preferable.The purpose of this study was to quantitatively analyze the metabolite concentrations in normal adult brains and gliomas by in vivo proton MRS using the fully relaxed water signal as an internal standard.Methods Between January 1998 and October 2001, 28 healthy volunteers and 16 patients with gliomas were examined by in vivo proton MRS.Single-voxel spectra were acquired using the point-resolved spectroscopic pulse sequence with a 1.5 T scanner (TR/TE/Ave=3000 ms/30 ms/64).Results The calculated concentrations of N-acetyl-asparatate (NAA), creatine (Cre), choline (Cho), and water (H2O) in the normal hemispheric white matter were (23.59±2.62) mmol/L, (13.06±1.8) mmol/L, (4.28±0.8) mmol/L, and (47 280.96±5414.85) mmol/L, respectively.The metabolite concentrations were not necessarily uniform in different parts of the brain.The concentrations of NAA and Cre decreased in all gliomas (P<0.001).The ratios of NAA/Cho and NAA/H2O showed a significant difference between the normal brain and gliomas, and also between the high and low grades (P<0.001).Conclusions Quantitative analysis of in vivo proton MR spectra using the fully relaxed water signal as an internal standard is useful.The concentrations of NAA and the ratios of NAA/H2O and NAA/Cho conduce to discriminating between the glioma and normal brain, and also between the low-grade glioma and high-grade glioma.

  4. Metabolomic Screening of Tumor Tissue and Serum in Glioma Patients Reveals Diagnostic and Prognostic Information

    Directory of Open Access Journals (Sweden)

    Lina Mörén

    2015-09-01

    Full Text Available Glioma grading and classification, today based on histological features, is not always easy to interpret and diagnosis partly relies on the personal experience of the neuropathologists. The most important feature of the classification is the aimed correlation between tumor grade and prognosis. However, in the clinical reality, large variations exist in the survival of patients concerning both glioblastomas and low-grade gliomas. Thus, there is a need for biomarkers for a more reliable classification of glioma tumors as well as for prognosis. We analyzed relative metabolite concentrations in serum samples from 96 fasting glioma patients and 81 corresponding tumor samples with different diagnosis (glioblastoma, oligodendroglioma and grade (World Health Organization (WHO grade II, III and IV using gas chromatography-time of flight mass spectrometry (GC-TOFMS. The acquired data was analyzed and evaluated by pattern recognition based on chemometric bioinformatics tools. We detected feature patterns in the metabolomics data in both tumor and serum that distinguished glioblastomas from oligodendrogliomas (ptumor = 2.46 × 10−8, pserum = 1.3 × 10−5 and oligodendroglioma grade II from oligodendroglioma grade III (ptumor = 0.01, pserum = 0.0008. Interestingly, we also found patterns in both tumor and serum with individual metabolite features that were both elevated and decreased in patients that lived long after being diagnosed with glioblastoma compared to those who died shortly after diagnosis (ptumor = 0.006, pserum = 0.004; AUROCCtumor = 0.846 (0.647–1.000, AUROCCserum = 0.958 (0.870–1.000. Metabolic patterns could also distinguish long and short survival in patients diagnosed with oligodendroglioma (ptumor = 0.01, pserum = 0.001; AUROCCtumor = 1 (1.000–1.000, AUROCCserum = 1 (1.000–1.000. In summary, we found different metabolic feature patterns in tumor tissue and serum for glioma diagnosis, grade and survival, which indicates that

  5. Different body mass index grade on the risk of developing glioma: a meta-analysis

    Institute of Scientific and Technical Information of China (English)

    Zifeng Dai; Qilin Huang; Haipeng Liu

    2015-01-01

    Background: Previous studies reported conflicting results about the risk of developing glioma and different body mass index.So we decided to execute a meta-analysis to solve the dispute.Methods: Comprehensive literature retrieval was carried in PubMed, MEDLINE, and EMBASE up to September 15, 2014.Hand literature information retrieval was not carried.Six studies were fit for this meta-analysis.Pooled hazard ratio (HR) and 95 % confidence interval (CI) of different body mass index grade were performed by fixed/random-effects models, except for normal weight which was referent.Results: Data of 3726 cases were included.Compared with normal weight (20 kg.m-2 < body mass index (BMI) ≤ 24.9 kg.m-2), the underweight (BMI ≤ 20 kg.m-2) might have lower incidence on the risk of developing glioma (HR =1.08, 95 % CI ranged 0.74 to 1.58, P =0.678).While the overweight (25 kg.m-2 < BMI ≤ 29.9 kg.m-2)and obesity (BMI ≥ 30 kg.m-2) were performed as a risk factor of developing glioma.The pooled HR of overweight group was 1.12 (95 % CI ranged 1.02 to 1.22, P=0.013);the pooled HR of obesity was 1.14 (95 % CI ranged 1.02 to 1.27, P =0.017).Sensitivity analysis approved that our results were stable.There was no publication bias of these studies.Conclusions: Underweight could decrease the risk of developing glioma.Excess BMI was considered as a risk factor to develop glioma.

  6. MRI and morphological observation in C6 glioma model rats and significance

    International Nuclear Information System (INIS)

    Objective: To establish stable and reliable rat C6 glioma model, and to perform MRI dynamic observation and pathomorphological observation in model animal brain, and to provide experimental basis for pharmaceutical research on anti-glioma drugs. Methods: The C6 glioma cells were cultured and 20 μL cultural fluid containing 1×106 C6 cells was sterotactically implanted into the left caudate nuclei in 10 male Wistar rats, respectively. The changes in the behavior of the rats after implantation were observed and recorded. MRI dynamic scanning was performed in 10 rats 2, 3 and 4 weeks after implantation and the brain tissues were taken for general and pathological examination when the 10 rats were naturally dead. The survival period of tumor-bearing rats was calculated. Results: 2 weeks after implantation the rats showed decreased activities and food intake, fur lackluster, and conjunctival congestion and so on; 3 weeks later, some rats appeared nerve symptoms such as body twitch, body hemiplegy, body distortion, rotation and so on. All the 10 rats died in 8-30 d. The median survival period of the tumor-bearing rats was 18 d, the average survival period was (18.3±7.3) d. The pathological examination showed that the tumor cells were arranged irregularly closely and karyokinesis was easy to see; tumor vascular tissue proliferation and tumor invasive growth into surrounding normal tissues were found. The expression of glial fibrillary acidic protein (GFAP) was positive in the tumors. Conclusion: A stable animal model of intracranial glioma is successfully established by stereotactic implantation of C6 cells into the rat caudate nucleus. The results of MRI dynamic observation and pathohistological observation on the model animal brain tissue. Can provide experimental basis for selecting the appropriate time window to perform the pharmaceutical research on anti-glioma drugs. (authors)

  7. Tumstatin transfected into human glioma cell line U251 represses tumor growth by inhibiting angiogenesis

    Institute of Scientific and Technical Information of China (English)

    YE Hong-xing; YAO Yu; JIANG Xin-jun; YUAN Xian-rui

    2013-01-01

    Background Angiogenesis is a prerequisite for tumor growth and plays an important role in rapidly growing tumors,such as malignant gliomas.A variety of factors controlling the angiogenic balance have been described,and among these,the endogenous inhibitor of angiogenesis,tumstatin,has drawn considerable attention.The current study investigated whether expression of tumstatin by glioma cells could alter this balance and prevent tumor formation.Methods We engineered stable transfectants from human glioma cell line U251 to constitutively secrete a human tumstatin protein with c-myc and polyhistidine tags.Production and secretion of the tumstatin-c-myc-His fusion protein by tumstatin-transfected cells were confirmed by Western blotting analysis.In the present study,we identify the anti-angiogenic capacity of tumstatin using several in vitro and in vivo assays.Student's t-test and one-way analysis of variance (ANOVA) test were used to determine the statistical significance in this study.Results The tumstatin transfectants and control transfectants (stably transfected with a control plasmid) had similar in vitro growth rates compared to their parental cell lines.However,the conditioned medium from the tumstatin transfected tumor cells significantly inhibits proliferation and causes apoptosis of endothelial cells.It also inhibits tube formation of endothelial cells on Matrigel.Examination of armpit tumors arising from cells overexpressing tumstatin repress the growth of tumor,accompanying the decreased density of CD31 positive vessels in tumors ((5.62±1.32)/HP),compared to the control-transfectants group ((23.84+1.71)/HP) and wild type U251 glioma cells group ((29.33+4.45)/HP).Conclusion Anti-angiogenic gene therapy using human tumstatin gene may be an effective strategy for the treatment of glioma.

  8. Economics of Malignant Gliomas: A Critical Review

    Science.gov (United States)

    Raizer, Jeffrey J.; Fitzner, Karen A.; Jacobs, Daniel I.; Bennett, Charles L.; Liebling, Dustin B.; Luu, Thanh Ha; Trifilio, Steven M.; Grimm, Sean A.; Fisher, Matthew J.; Haleem, Meraaj S.; Ray, Paul S.; McKoy, Judith M.; DeBoer, Rebecca; Tulas, Katrina-Marie E.; Deeb, Mohammed; McKoy, June M.

    2015-01-01

    Purpose: Approximately 18,500 persons are diagnosed with malignant glioma in the United States annually. Few studies have investigated the comprehensive economic costs. We reviewed the literature to examine costs to patients with malignant glioma and their families, payers, and society. Methods: A total of 18 fully extracted studies were included. Data were collected on direct and indirect costs, and cost estimates were converted to US dollars using the conversion rate calculated from the study's publication date, and updated to 2011 values after adjustment for inflation. A standardized data abstraction form was used. Data were extracted by one reviewer and checked by another. Results: Before approval of effective chemotherapeutic agents for malignant gliomas, estimated total direct medical costs in the United States for surgery and radiation therapy per patient ranged from $50,600 to $92,700. The addition of temozolomide (TMZ) and bevacizumab to glioblastoma treatment regimens has resulted in increased overall costs for glioma care. Although health care costs are now less front-loaded, they have increased over the course of illness. Analysis using a willingness-to-pay threshold of $50,000 per quality-adjusted life-year suggests that the benefits of TMZ fall on the edge of acceptable therapies. Furthermore, indirect medical costs, such as productivity losses, are not trivial. Conclusion: With increased chemotherapy use for malignant glioma, the paradigm for treatment and associated out-of-pocket and total medical costs continue to evolve. Larger out-of-pocket costs may influence the choice of chemotherapeutic agents, the economic implications of which should be evaluated prospectively. PMID:25466707

  9. Overexpressed KDM5B is associated with the progression of glioma and promotes glioma cell growth via downregulating p21

    International Nuclear Information System (INIS)

    Highlights: • KDM5B is overexpressed in glioma samples. • KDM5B stimulated proliferation of glioma cells. • Inhibition of p21contributes to KDM5B-induced proliferation. - Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Upregulation of lysine (K)-specific demethylase 5B (KDM5B) has been reported in a variety of malignant tumors. However, the impact of KDM5B in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of KDM5B in glioma. In clinical glioma samples, we found that KDM5B expression was significantly upregulated in cancer lesions compared with normal brain tissues. Kaplan–Meier analysis showed that patients with glioma and higher KDM5B expression tend to have shorter overall survival time. By silencing or overexpressing KDM5B in glioma cells, we found that KDM5B could promote cell growth both in vitro and in vivo. Moreover, we demonstrated that KDM5B promoted glioma proliferation partly via regulation of the expression of p21. Our study provided evidence that KDM5B functions as a novel tumor oncogene in glioma and may be a potential therapeutic target for glioma management

  10. Overexpressed KDM5B is associated with the progression of glioma and promotes glioma cell growth via downregulating p21

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Bin [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Hu, Zhiqiang, E-mail: zhiqhutg@126.com [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Huang, Hui; Zhu, Guangtong; Xiao, Zhiyong [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Wan, Weiqing; Zhang, Peng; Jia, Wang; Zhang, Liwei [Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050 (China)

    2014-11-07

    Highlights: • KDM5B is overexpressed in glioma samples. • KDM5B stimulated proliferation of glioma cells. • Inhibition of p21contributes to KDM5B-induced proliferation. - Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Upregulation of lysine (K)-specific demethylase 5B (KDM5B) has been reported in a variety of malignant tumors. However, the impact of KDM5B in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of KDM5B in glioma. In clinical glioma samples, we found that KDM5B expression was significantly upregulated in cancer lesions compared with normal brain tissues. Kaplan–Meier analysis showed that patients with glioma and higher KDM5B expression tend to have shorter overall survival time. By silencing or overexpressing KDM5B in glioma cells, we found that KDM5B could promote cell growth both in vitro and in vivo. Moreover, we demonstrated that KDM5B promoted glioma proliferation partly via regulation of the expression of p21. Our study provided evidence that KDM5B functions as a novel tumor oncogene in glioma and may be a potential therapeutic target for glioma management.

  11. Veliparib, Radiation Therapy, and Temozolomide in Treating Younger Patients With Newly Diagnosed Diffuse Pontine Gliomas

    Science.gov (United States)

    2016-10-05

    Childhood Mixed Glioma; Untreated Childhood Anaplastic Astrocytoma; Untreated Childhood Brain Stem Glioma; Untreated Childhood Fibrillary Astrocytoma; Untreated Childhood Giant Cell Glioblastoma; Untreated Childhood Glioblastoma; Untreated Childhood Gliosarcoma

  12. Dendritic Cell Based Vaccines that Utilize Myeloid Rather than Plasmacytoid Cells Offer a Superior Survival Advantage in Malignant Glioma

    Science.gov (United States)

    Dey, Mahua; Chang, Alan L.; Miska, Jason; Wainwright, Derek A.; Ahmed, Atique U.; Balyasnikova, Irina V.; Pytel, Peter; Han, Yu; Tobias, Alex; Zhang, Lingjiao; Qiao, Jian; Lesniak, Maciej S.

    2015-01-01

    Dendritic cells (DC) are professional antigen presenting cells (APC) that are traditionally divided into two distinct subsets: myeloid DC (mDCs) and plasmacytoid DC (pDCs). pDCs are known for their ability to secrete large amount of IFN-α. Apart from IFN-α production, pDCs can also process antigen and induce T-cell immunity or tolerance. In several solid tumors, pDCs have been shown to play a critical role in promoting tumor immunosuppression. We investigated the role of pDCs in the process of glioma progression in the syngeneic murine model of glioma. We show that glioma-infiltrating pDCs are the major APC in glioma and are deficient in IFN-α secretion (p < 0.05). pDC depletion leads to increased survival of the mice bearing intracranial tumor by decreasing the number of regulatory T-cells (Treg) and by decreasing the suppressive capabilities of Tregs. We subsequently compared the ability of mDCs and pDCs to generate effective anti-glioma immunity in a GL261-OVA mouse model of glioma. Our data suggest that mature pDCs and mDCs isolated from naïve mice can be effectively activated and loaded with SIINFEKL antigen in vitro. Upon intra-dermal injection in the hind leg, a fraction of both types of DCs migrate to the brain and lymph nodes.. Compared to mice vaccinated with pDC or control mice, mice vaccinated with mDCs generated a robust Th1 type immune response, characterized by high frequency of CD4+Tbet+ T-cells and CD8+Siinfekel+ T-cells. This robust anti-tumor T-cell response resulted in tumor eradication and long-term survival in 60% of the animals (p<0.001). PMID:26026061

  13. BMPs as Therapeutic Targets and Biomarkers in Astrocytic Glioma

    Directory of Open Access Journals (Sweden)

    Pilar González-Gómez

    2014-01-01

    Full Text Available Astrocytic glioma is the most common brain tumor. The glioma initiating cell (GIC fraction of the tumor is considered as highly chemoresistant, suggesting that GICs are responsible for glioma relapse. A potential treatment for glioma is to induce differentiation of GICs to a more benign and/or druggable cell type. Given BMPs are among the most potent inducers of GIC differentiation, they have been considered as noncytotoxic therapeutic compounds that may be of use to prevent growth and recurrence of glioma. We herein summarize advances made in the understanding of the role of BMP signaling in astrocytic glioma, with a particular emphasis on the effects exerted on GICs. We discuss the prognostic value of BMP signaling components and the implications of BMPs in the differentiation of GICs and in their sensitization to alkylating drugs and oncolytic therapy/chemotherapy. This mechanistic insight may provide new opportunities for therapeutic intervention of brain cancer.

  14. Slit2/Robo1 signaling in glioma migration and invasion.

    Science.gov (United States)

    Xu, Yun; Li, Wen-Liang; Fu, Li; Gu, Feng; Ma, Yong-Jie

    2010-12-01

    Slit2/Robo1 is a conserved ligand-receptor system, which greatly affects the distribution, migration, axon guidance and branching of neuron cells. Slit2 and its transmembrane receptor Robo1 have different distribution patterns in gliomas. The expression of Slit2 is at very low levels in pilocytic astrocytoma, fibrillary astrocytoma and glioblastoma, while Robo1 is highly expressed in different grades of gliomas at both mRNA and protein levels. Acquisition of insidious invasiveness by malignant glioma cells involves multiple genetic alterations in signaling pathways. Although the specific mechanisms of tumor-suppressive effect of Slit2/Robo1 have not been elucidated, it has been proved that Slit2/Robo1 signaling inhibits glioma cell migration and invasion by inactivation of Cdc42-GTP. With the research development on the molecular mechanisms of Slit2/Robo1 signaling in glioma invasion and migration, Slit2/Robo1 signaling may become a potential target for glioma prevention and treatment.

  15. Baicalin interferes with iron accumulation in C6 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Chunyan Guo; Xin Chen

    2011-01-01

    Baicalin reacts with ferric ammonium citrate and acts as an-iron chelator. The maximal reaction time for baicalin to interact with irons was approximately 3 hours. C6 glioma cell survival decreased following iron-loading, with a large number of cells accumulating iron. In addition, lipid peroxidation increased. Iron accumulation and lipid peroxidation were the major cause of cellular death. Baicalin and ferric ammonium citrate alleviated iron accumulation in C6 cells and lowered the mortality of nerve cells. In addition, malondialdehyde and lactate dehydrogenase levels reduced. These results indicate that baicalin strongly inhibits lipid peroxidation via chelation, reduces the content of iron in C6 cells, lowers lipid peroxidation, and thus plays a protective role against iron-induced nerve cell death.

  16. Is cerebral cavernous malformation a pre-glioma lesion?

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji-yang; MING Zong-yi; WU An-hua

    2012-01-01

    Glioma is the most malignant tumor in the brain,the origin of glioma is still unknown.Recently some papers indicated that glioma may be developed from cerebral cavernous malformation (CCM).We describe a man with a right temporal lobe CCM,after gamma-knife radiotherapy,the patient developed a low-grade astrocytoma in the area of the preexistent CCM.This case,together with other reports,may indicated an oncogenetic properties of CCM,and we proposed that CCM may be a pre-glioma lesion.

  17. Identify paraffin-embedded brain glioma using terahertz pulsed spectroscopy

    Science.gov (United States)

    Li, Ze-ren; Meng, Kun; Chen, Tu-nan; Chen, Tao; Zhu, Li-guo; Liu, Qiao; Li, Zhao; Li, Fei; Zhong, Sen-cheng; Feng, Hua; Zhao, Jian-heng

    2015-01-01

    The refractive indices, absorption coefficients and complex dielectric constants spectra of paraffin-embedded brain glioma and normal brain tissues have been measured by a terahertz time domain spectroscopy (THz-TDS) system in the range of 0.2 - 2.0 THz. The spectral differences between glioma and normal brain tissues were obtained. Our results indicate that, compared with normal tissue, glioma had higher refractive index, absorption coefficient, and dielectric constant. Based on these results, the suitable frequency components for different methods of glioma imaging (intensity imaging, coherent imaging and terahertz pulsed imaging) are analyzed.

  18. Sunitinib in Treating Patients With Recurrent Malignant Gliomas

    Science.gov (United States)

    2016-01-29

    Adult Anaplastic Astrocytoma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pineal Gland Astrocytoma

  19. Use of tricyclic antidepressants and risk of glioma

    DEFF Research Database (Denmark)

    Pottegård, Anton; García Rodríguez, Luis Alberto; Rasmussen, Lotte;

    2016-01-01

    inhibitors (SSRIs). RESULTS: We identified 3767 glioma cases and 75 340 population controls. Long-term use of TCAs was inversely associated with risk of glioma (OR 0.72, 95% CI: 0.41-1.25). Long-term SSRI use was not associated with glioma risk (OR 0.93, 95% CI: 0.75-1.16). CONCLUSIONS: Our study indicated...... that long-term use of TCAs may be associated with a reduced risk of glioma, however, the statistical precision was limited. A similar pattern was not observed for use of SSRIs....

  20. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Chu SH

    2012-07-01

    Full Text Available Sheng-Hua Chu,1 Dong-Fu Feng,1 Yan-Bin Ma,1 Zhi-Qiang Li21Department of Neurosurgery, No 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; 2Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, ChinaAbstract: Hydroxyapatite nanoparticles (nano-HAPs have been reported to exhibit antitumor effects on various human cancers, but the effects of nano-HAPs on human glioma cells remain unclear. The aim of this study was to explore the inhibitory effect of nano-HAPs on the growth of human glioma U251 and SHG44 cells in vitro and in vivo. Nano-HAPs could inhibit the growth of U251 and SHG44 cells in a dose- and time-dependent manner, according to methyl thiazoletetrazolium assay and flow cytometry. Treated with 120 mg/L and 240 mg/L nano-HAPs for 48 hours, typical apoptotic morphological changes were noted under Hoechst staining and transmission electron microscopy. The tumor growth of cells was inhibited after the injection in vivo, and the related side effects significantly decreased in the nano-HAP-and-drug combination group. Because of the function of nano-HAPs, the expression of c-Met, SATB1, Ki-67, and bcl-2 protein decreased, and the expression of SLC22A18 and caspase-3 protein decreased noticeably. The findings indicate that nano-HAPs have an evident inhibitory action and induce apoptosis of human glioma cells in vitro and in vivo. In a drug combination, they can significantly reduce the adverse reaction related to the chemotherapeutic drug 1,3-bis(2-chloroethyl-1-nitrosourea (BCNU.Keywords: glioma, hydroxyapatite nanoparticles, growth mechanism

  1. Upregulation of PTEN in glioma cells by cord blood mesenchymal stem cells inhibits migration via downregulation of the PI3K/Akt pathway.

    Directory of Open Access Journals (Sweden)

    Venkata Ramesh Dasari

    Full Text Available BACKGROUND: PTEN (phosphatase and tensin homologue deleted on chromosome ten is a tumor suppressor gene implicated in a wide variety of human cancers, including glioblastoma. PTEN is a major negative regulator of the PI3K/Akt signaling pathway. Most human gliomas show high levels of activated Akt, whereas less than half of these tumors carry PTEN mutations or homozygous deletions. The unique ability of mesenchymal stem cells to track down tumor cells makes them as potential therapeutic agents. Based on this capability, new therapeutic approaches have been developed using mesenchymal stem cells to cure glioblastoma. However, molecular mechanisms of interactions between glioma cells and stem cells are still unknown. METHODOLOGY/PRINCIPAL FINDINGS: In order to study the mechanisms by which migration of glioma cells can be inhibited by the upregulation of the PTEN gene, we studied two glioma cell lines (SNB19 and U251 and two glioma xenograft cell lines (4910 and 5310 alone and in co-culture with human umbilical cord blood-derived mesenchymal stem cells (hUCBSC. Co-cultures of glioma cells showed increased expression of PTEN as evaluated by immunofluorescence and immunoblotting assays. Upregulation of PTEN gene is correlated with the downregulation of many genes including Akt, JUN, MAPK14, PDK2, PI3K, PTK2, RAS and RAF1 as revealed by cDNA microarray analysis. These results have been confirmed by reverse-transcription based PCR analysis of PTEN and Akt genes. Upregulation of PTEN resulted in the inhibition of migration capability of glioma cells under in vitro conditions. Also, wound healing capability of glioma cells was significantly inhibited in co-culture with hUCBSC. Under in vivo conditions, intracranial tumor growth was inhibited by hUCBSC in nude mice. Further, hUCBSC upregulated PTEN and decreased the levels of XIAP and Akt, which are responsible for the inhibition of tumor growth in the mouse brain. CONCLUSIONS/SIGNIFICANCE: Our studies

  2. The upper midwest health study: a case–control study of pesticide applicators and risk of glioma

    Directory of Open Access Journals (Sweden)

    Yiin James H

    2012-06-01

    Full Text Available Abstract Background An excess incidence of brain cancer in farmers has been noted in several studies. The National Institute for Occupational Safety and Health developed the Upper Midwest Health Study (UMHS as a case–control study of intracranial gliomas and pesticide uses among rural residents. Previous studies of UMHS participants, using “ever-never” exposure to farm pesticides and analyzing men and women separately, found no positive association of farm pesticide exposure and glioma risks. The primary objective was to determine if quantitatively estimated exposure of pesticide applicators was associated with an increased risk of glioma in male and female participants. Methods The study included 798 histologically confirmed primary intracranial glioma cases (45 % with proxy respondents and 1,175 population-based controls, all adult (age 18–80 non-metropolitan residents of Iowa, Michigan, Minnesota, and Wisconsin. The analyses used quantitatively estimated exposure from questionnaire responses evaluated by an experienced industrial hygienist with 25 years of work on farm pesticide analyses. Odds ratios (ORs and 95 % confidence intervals (CIs using unconditional logistic regression modeling were calculated adjusting for frequency-matching variables (10-year age group and sex, and for age and education (a surrogate for socioeconomic status. Analyses were separately conducted with or without proxy respondents. Results No significant positive associations with glioma were observed with cumulative years or estimated lifetime cumulative exposure of farm pesticide use. There was, a significant inverse association for phenoxy pesticide used on the farm (OR 0.96 per 10 g-years of cumulative exposure, CI 0.93-0.99. No significant findings were observed when proxy respondents were excluded. Non-farm occupational applicators of any pesticide had decreased glioma risk: OR 0.72, CI 0.52-0.99. Similarly, house and garden pesticide applicators

  3. Bevacizumab and Irinotecan in Treating Young Patients With Recurrent, Progressive, or Refractory Glioma, Medulloblastoma, Ependymoma, or Low Grade Glioma

    Science.gov (United States)

    2016-06-14

    Childhood Cerebral Anaplastic Astrocytoma; Childhood Oligodendroglioma; Childhood Spinal Cord Neoplasm; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma

  4. Trends in Malignant Glioma Monoclonal Antibody Therapy

    Science.gov (United States)

    Chekhonin, Ivan; Gurina, Olga

    2015-01-01

    Although new passive and active immunotherapy methods are emerging, unconjugated monoclonal antibodies remain the only kind of biological preparations approved for high-grade glioma therapy in clinical practice. In this review, we combine clinical and experimental data discussion. As antiangiogenic therapy is the standard of care for recurrent glioblastoma multiforme (GBM), we analyze major clinical trials and possible therapeutic combinations of bevacizumab, the most common monoclonal antibody to vascular endothelial growth factor (VEGF). Another humanized antibody to gain recognition in GBM is epidermal growth factor (EGFR) antagonist nimotuzumab. Other antigens (VEGF receptor, platelet-derived growth factor receptor, hepatocyte growth factor and c-Met system) showed significance in gliomas and were used to create monoclonal antibodies applied in different malignant tumors. We assess the role of genetic markers (isocitrate dehydrogenase, O6-methylguanine-DNA methyltransnsferase) in GBM treatment outcome prediction. Besides antibodies studied in clinical trials, we focus on perspective targets and briefly list other means of passive immunotherapy.

  5. Effect of Human Cytomegalovirus Infection on Nerve Growth Factor Expression in Human Glioma U251 Cells

    Institute of Scientific and Technical Information of China (English)

    HAI-TAO WANG; BIN WANG; ZHI-JUN LIU; ZHI-QIANG BAI; LING LI; HAI-YAN LIU; DONG-MENG QIAN; ZHI-YONG YAN; XU-XIA SONG

    2009-01-01

    Objectives To explore the change of endogenic nerve growth factor (NGF) expression in human glioma cells infected with human cytomegalovirus (HCMV). Methods U251 cells were cultured in RPMI 1640 culture medium and infected with HCMV AD169 strain in vitro to establish a cell model of viral infection. Morphologic changes of U251 cells were observed under inverted microscope before and after infection with HCMV. Expression of NGF gene and protein of cells was detected by RT-PCR and Western blotting before and after infection with HCMV. Results The cytopathic effects of HCMV-infected cells appeared on day 5 after infection. However, differential NGF expression was evident on day 7. NGF expression was decreased significantly in U251 cells on day 7 after infection in comparison with control group (P<0.05). Conclusion HCMV can down-regulate endogenous NGF levels in human glioma cell line U251.

  6. Bright Solitary Waves in Malignant Gliomas

    OpenAIRE

    Pérez-García, Víctor M.; Calvo, Gabriel F.; Belmonte-Beitia, Juan; Diego, D.; Pérez-Romasanta, Luis

    2011-01-01

    We put forward a nonlinear wave model describing the fundamental physio-pathologic features of an aggressive type of brain tumors: glioblastomas. Our model accounts for the invasion of normal tissue by a proliferating and propagating rim of active glioma cancer cells in the tumor boundary and the subsequent formation of a necrotic core. By resorting to numerical simulations, phase space analysis and exact solutions, we prove that bright solitary tumor waves develop in such systems.

  7. CURRENT APPROACHES TO CHEMORADIOTHERAPY FOR MALIGNANT GLIOMAS

    Directory of Open Access Journals (Sweden)

    Ye. L. Choinzonov

    2014-01-01

    Full Text Available High-grade malignant gliomas (WHO grade G III–IV account for more than 50% of all primary brain tumors. Despite aggressive treatment, survival rates are still very low with a median reported survival of no more than 1.5 years.Radiation therapy is an integral part of the combined treatment, but often does not influence lethally on resistant tumor cells. Thereby, in recent decades there has been an active search for novel approaches to the treatment of malignant gliomas (chemotherapeutic drugs, biological modifiers, local hyperthermia. Experimental data showed that the effect of high temperatures has both a direct damaging effect on tumor cells and a sensitizing effect. Significant advantages are achieved when the complex treatment of different malignant tumorsincludes local hyperthermia. However data on the treatment of patients with primary and recurrent gliomas G III–IV using local hyperthermia are scarce.The literature review is given in the article provides an overview of the existing treatment methods for brain tumors.

  8. Differential Effects of Cold Atmospheric Plasma in the Treatment of Malignant Glioma.

    Directory of Open Access Journals (Sweden)

    Alan Siu

    Full Text Available Cold atmospheric plasma (CAP has recently been shown to selectively target cancer cells with minimal effects on normal cells. We systematically assessed the effects of CAP in the treatment of glioblastoma.Three glioma cell lines, normal astrocytes, and endothelial cell lines were treated with CAP. The effects of CAP were then characterized for viability, cytotoxicity/apoptosis, and cell cycle effects. Statistical significance was determined with student's t-test.CAP treatment decreases viability of glioma cells in a dose dependent manner, with the ID50 between 90-120 seconds for all glioma cell lines. Treatment with CAP for more than 120 seconds resulted in viability less than 35% at 24-hours posttreatment, with a steady decline to less than 20% at 72-hours. In contrast, the effect of CAP on the viability of NHA and HUVEC was minimal, and importantly not significant at 90 to 120 seconds, with up to 85% of the cells remained viable at 72-hours post-treatment. CAP treatment produces both cytotoxic and apoptotic effects with some variability between cell lines. CAP treatment resulted in a G2/M-phase cell cycle pause in all three cell lines.This preliminary study determined a multi-focal effect of CAP on glioma cells in vitro, which was not observed in the non-tumor cell lines. The decreased viability depended on the treatment duration and cell line, but overall was explained by the induction of cytotoxicity, apoptosis, and G2/M pause. Future studies will aim at further characterization with more complex pre-clinical models.

  9. R132H mutation in IDH1 gene reduces proliferation, cell survival and invasion of human glioma by downregulating Wnt/β-catenin signaling.

    Science.gov (United States)

    Cui, Daming; Ren, Jie; Shi, Jinlong; Feng, Lijing; Wang, Ke; Zeng, Tao; Jin, Yi; Gao, Liang

    2016-04-01

    Mutations in the isocitrate dehydrogenase 1 (IDH1) gene commonly occur in gliomas. Remarkably, the R132H mutation in IDH1 (IDH1-R132H) is associated with better prognosis and increased survival than patients lacking this mutation. The molecular mechanism underlying this phenomenon is largely unknown. In this study, we investigated potential cross-talk between IDH1-R132H and Wnt/β-catenin signaling in regulating the cellular properties of human glioma. Although aberrant nuclear accumulation of β-catenin is linked to the malignant progression of gliomas, its association with IDH1 remains unknown. We identified an inverse correlation between IDH1-R132H and the expression and activity of β-catenin in human gliomas. In addition, overexpression of IDH1-R132H in glioblastoma cell lines U87 and U251 led to reduced cell proliferation, migration and invasion, accompanied by increased apoptosis. At the molecular level, we detected a significant reduction in the expression, nuclear accumulation and activity of β-catenin following overexpression of IDH1-R132H. A microarray-based comparison of gene expression indicated that several mediators, effectors and targets of Wnt/β-catenin signaling are downregulated, while negative regulators are upregulated in IDH1-R132H gliomas. Further, overexpression of β-catenin in IDH1-R132H glioma cells restored the cellular phenotype induced by this mutation. Specifically, β-catenin abrogated the decrease in proliferation, invasion and migration, and the increase in apoptosis, triggered by overexpression of IDH1-R132H. Finally, we demonstrate that xenografts of IDH1-R132H overexpressing U87 cells can significantly decrease the growth of tumors in vivo. Altogether, our results strongly suggest that the R132H mutation in IDH1 serves a tumor suppressor function in human glioma by negatively regulating Wnt/β-catenin signaling.

  10. Interaction between 5 genetic variants and allergy in glioma risk

    DEFF Research Database (Denmark)

    Schoemaker, Minouk J; Robertson, Lindsay; Wigertz, Annette;

    2010-01-01

    The etiology of glioma is barely known. Epidemiologic studies have provided evidence for an inverse relation between glioma risk and allergic disease. Genome-wide association data have identified common genetic variants at 5p15.33 (rs2736100, TERT), 8q24.21 (rs4295627, CCDC26), 9p21.3 (rs4977756...

  11. Glioma Association and Balancing Selection of ZFPM2.

    Directory of Open Access Journals (Sweden)

    Shui-Ying Tsang

    Full Text Available ZFPM2, encoding a zinc finger protein and abundantly expressed in the brain, uterus and smooth muscles, plays important roles in cardiac and gonadal development. Abnormal expression of ZFPM2 in ovarian tumors and neuroblastoma has been reported but hitherto its genetic association with cancer and effects on gliomas have not been studied. In the present study, the hexamer insertion-deletion polymorphism rs71305152, located within a large haplotype block spanning intron 1 to intron 3 of ZFPM2, was genotyped in Chinese cohorts of glioma (n = 350, non-glioma cancer (n = 354 and healthy control (n = 463 by direct sequencing and length polymorphism in gel electrophoresis, and ZFPM2 expression in glioma tissues (n = 69 of different grades was quantified by real-time RT-PCR. Moreover, potential natural selection pressure acting on the gene was investigated. Disease-association analysis showed that the overall genotype of rs71305152 was significantly associated with gliomas (P = 0.016, and the heterozygous genotype compared to the combined homozygous genotypes was less frequent in gliomas than in controls (P = 0.005 or non-glioma cancers (P = 0.020. ZFPM2 mRNA expression was negatively correlated with the grades of gliomas (P = 0.002, with higher expression levels in the low-grade gliomas. In the astrocytoma subtype, higher ZFPM2 expression was also correlated with the rs71305152 heterozygous genotype (P = 0.028. In addition, summary statistics tests gave highly positive values, demonstrating that the gene is under the influence of balancing selection. These findings suggest that ZFPM2 is a glioma susceptibility gene, its genotype and expression showing associations with incidence and severity, respectively. Moreover, the balancing selection acting on ZFPM2 may be related to the important roles it has to play in multiple organ development or associated disease etiology.

  12. Cognitive impairments in patients with low grade gliomas and high grade gliomas

    Directory of Open Access Journals (Sweden)

    Eliane C. Miotto

    2011-08-01

    Full Text Available OBJECTIVE: The relationship between brain tumors and cognitive deficits is well established in the literature. However, studies investigating the cognitive status in low and high-grade gliomas patients are scarce, particularly in patients with average or lower educational level. This study aimed at investigating the cognitive functioning in a sample of patients with low and high-grade gliomas before surgical intervention. METHOD: The low-grade (G1, n=19 and high-grade glioma (G2, n=8 patients underwent a detailed neuropsychological assessment of memory, executive functions, visuo-perceptive and visuo-spatial abilities, intellectual level and language. RESULTS: There was a significant impairment on verbal and visual episodic memory, executive functions including mental flexibility, nominal and categorical verbal fluency and speed of information processing in G2. G1 showed only specific deficits on verbal and visual memory recall, mental flexibility and processing speed. CONCLUSION: These findings demonstrated different levels of impairments in the executive and memory domains in patients with low and high grade gliomas.

  13. Glioma Cell Proliferation Controlled by ERK Activity-Dependent Surface Expression of PDGFRA

    OpenAIRE

    Dongfeng Chen; Duo Zuo; Cheng Luan; Min Liu; Manli Na; Liang Ran; Yingyu Sun; Annette Persson; Elisabet Englund; Leif G Salford; Erik Renström; Xiaolong Fan; Enming Zhang

    2014-01-01

    Increased PDGFRA signaling is an essential pathogenic factor in many subtypes of gliomas. In this context the cell surface expression of PDGFRA is an important determinant of ligand sensing in the glioma microenvironment. However, the regulation of spatial distribution of PDGFRA in glioma cells remains poorly characterized. Here, we report that cell surface PDGFRA expression in gliomas is negatively regulated by an ERK-dependent mechanism, resulting in reduced proliferation of glioma cells. G...

  14. MicroRNA-218 modulates activities of glioma cells by targeting HMGB1

    Science.gov (United States)

    Gu, Jianjun; Xu, Rong; Li, Yaxing; Zhang, Jianhe; Wang, Shousen

    2016-01-01

    To explore the effects of microRNA-218 (miR-218) on glioma cell lines and the related mechanism. U251 and U87 cells were transfected with negative control, miR-218 mimic or miR-218 inhibitor using lipofectamine 2000. The expressions of mRNA and proteins were detected with qRT-PCR and Western blotting. The cell proliferation, apoptosis, migration and invasion were studied using MTT, flow cytometry, Transwell assay and scratch-wound assay, respectively. The targeting effect of HMGB1 by miR-218 was measured with luciferase reporter assay. The results showed that miR-218 was significantly downregulated while HMGB1 was upregulated in both glioma cell lines. Transfection of miR-218 significantly reduced the cell viability and colony formation, increased cell apoptosis and arrested cell in G0/G1 phase. Transfection of miR-218 also decreased the invasion and migration of glioma cells. The expressions of HMGB1, RAGE, cyclin D1 and MMP-9 were downregulated while the expression of caspase-9 was upregulated by miR-218. Silencing HMGB1 increased the expression of RAGE, cyclin D1, MMP-9 but decreased the expression of caspase-9 in U251 and U87 cells. Co-transfection with pcHMGB1 and miR-218 significantly decreased the growth inhibition and increased the apoptosis of glioma cells while these effects were abolished in glioma cells co-transfected with HMGB1 siRNA and miR-218 inhibitor. In addition, co-transfection with pcHMGB1 and miR-218 inhibitor increased the invasiveness of U251 and U87 cells. These findings suggested that miR-218 may negatively regulate HMGB-mediated suppression of RAGE to regulate cell proliferation, apoptosis and invasion, and that intervention of miR-218-HMGB1-RAGE may be useful for developing potential clinical strategies. PMID:27725858

  15. Increased leucine-rich repeats and immunoglobulin- like domains 1 expression enhances chemosensitivity in glioma

    Institute of Scientific and Technical Information of China (English)

    Baohui Liu; Shenqi Zhang; Dong Ruan; Xiaonan Zhu; Zhentao Guo; Huimin Dong; Mingmin Yan; Qianxue Chen; Daofeng Tian; Liquan Wu; Junmin Wang; Qiang Cai; Heng Shen; Baowei Ji; Long Wang

    2011-01-01

    Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is an anti-oncogene.LRIG1 is correlated with Bcl-2 in ependymomas.Decreased Bcl-2 and manganese superoxide dismutase expression can improve the chemosensitivity of glioma.In the present study, a tissue microarray of human brain astrocytomas was constructed.To investigate the relationship of LRIG1 with Bcl-2 and manganese superoxide dismutase, LRIG1, Bcl-2 and manganese superoxide dismutase expression in our tissue microarray was determined using immunohistochemistry.In addition, we constructed the LRIG1-U251 cell line, and its responses to doxorubicin and temozolomide were detected using the MTT assay.Results showed that LRIG1 expression was significantly negatively correlated with Bcl-2 and manganese superoxide dismutase expression in glioma.Also, proliferation of LRIG1-U251 cells exposed to doxorubicin or temozolomide was significantly inhibited, i.e.in the LRIG1-U251 cell line, the chemosensitivity to doxorubicin and temozolomide was increased.This indicates that increased LRIG1 expression produces a chemosensitivity in glioma.

  16. Improved Intratumoral Oxygenation Through Vascular Normalization Increases Glioma Sensitivity to Ionizing Radiation

    International Nuclear Information System (INIS)

    Purpose: Ionizing radiation, an important component of glioma therapy, is critically dependent on tumor oxygenation. However, gliomas are notable for areas of necrosis and hypoxia, which foster radioresistance. We hypothesized that pharmacologic manipulation of the typically dysfunctional tumor vasculature would improve intratumoral oxygenation and, thus, the antiglioma efficacy of ionizing radiation. Methods and Materials: Orthotopic U87 xenografts were treated with either continuous interferon-β (IFN-β) or bevacizumab, alone, or combined with cranial irradiation (RT). Tumor growth was assessed by quantitative bioluminescence imaging; the tumor vasculature using immunohistochemical staining, and tumor oxygenation using hypoxyprobe staining. Results: Both IFN-β and bevaziumab profoundly affected the tumor vasculature, albeit with different cellular phenotypes. IFN-β caused a doubling in the percentage of area of perivascular cell staining, and bevacizumab caused a rapid decrease in the percentage of area of endothelial cell staining. However, both agents increased intratumoral oxygenation, although with bevacizumab, the effect was transient, being lost by 5 days. Administration of IFN-β or bevacizumab before RT was significantly more effective than any of the three modalities as monotherapy or when RT was administered concomitantly with IFN-β or bevacizumab or 5 days after bevacizumab. Conclusion: Bevacizumab and continuous delivery of IFN-β each induced significant changes in glioma vascular physiology, improving intratumoral oxygenation and enhancing the antitumor activity of ionizing radiation. Additional investigation into the use and timing of these and other agents that modify the vascular phenotype, combined with RT, is warranted to optimize cytotoxic activity.

  17. PROGNOSTIC FACTORS FOR DEEP SITUATED MALIGNANT GLIOMAS TREATED WITH LINAC RADIOSURGERY

    Institute of Scientific and Technical Information of China (English)

    Yun-yan Wang; Guo-kuan Yang; Shu-ying Li; Xiu-feng Bao; Cheng-yuan Wu

    2004-01-01

    Objective To study the function ofradiosurgery on malignant glioma by analyzing prognostic factors affecting malignant gliomas treated with linac radiosurgery.Method Fifty-eight patients with deep situated malignant gliomas, aged 7 to 70 years, 28 anaplastic astrocytomas and 30glioblastomas multiforme were analyzed. The median volume of tumor was 10.67 cm3, and median prescription dose for linac radiosurgery was 20 Gy. Results were analyzed with Kaplan-Meier curve and Cox regression.Result In follow-up 44.8 percent tumors (26 patients) decreased in size. Median tumor local control interval was 10months, 15 months for anaplastic astrocytomas, and 9 months for glioblastoma multiforme. Tumor local control probability was 37.9 percent for 1 year and 10.3 percent for 2 years. Median survival was 22.5 months for anaplastic astrocytoma, 13 months for glioblastoma multiforme, and 15 months for all patients. The survival probability was 79.3 percent at 1 year and 20.6 percent at 2 years. Isocenter numbers and tumor volume were the prognostic factors for tumor control, but conformity index was the prognostic factor for survival by Cox regression analysis. Considering pathology, only isocenter number and target volume significantly affected tumor control interval. Complications appeared in 44.8 percent patients and the median interval of complication onset was 8 months. Symptomatic cerebral edema was observed in 31.0 percent patients.Conclusion Linac radiosurgery can effectively improve tumor local control and prolong survival for deep situated malignant gliomas.

  18. Induction of apoptosis and inhibition of proliferation of C6 glioma cells in vitro by tamoxifen

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To investigate the anti-tumor effect and mechanism of tamoxifen on rat C6 glioma cells. Methods C6 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) with 3% fetal calf serum (FCS), and treated with tamoxifen of different concentrations, i.e. group A (1.25μmol/L), group B (2.50 μmol/L), group C (5.00 μmol/L), group D (10.00 μmol/L), group E (20.00 μmol/L) and control group (0.00 μmol/L). Morphological changes, MTT assay and 5-bromo-2'-deoxyuriding labeling ratio were assessed. Apoptosis was observed by flow cytometry. Results C6 cells treated with different doses of tamoxifen for 24, 48, and 72 hours became irregular in shape, while cells treated with vehicle grew normally. MTT assay showed that tamoxifen did not suppress C6 cell growth until 72 hours after treatment. Seventy-two hours after treatment, there were significant differences in cell viable rate between group A versus groups C, D and E; so did group B versus group D as well as group E (P<0.05). BrdU incorporation assay indicated significant difference of BrdU labbled index (BrdU LI) among groups A, C, E and control group 48 hours after treatment (P<0.05). And the BrdU LI decreased with the increased concentration of tamoxifen. Flow cytometry (FCM) showed significant difference between treated group and control group at 24, 48, and 72 hours after treatment (P<0.05). Conclusion Tamoxifen significantly suppresses the growth of C6 glioma cells in a time- and dose-dependent manner. The mechanism of tamoxifen suppressing C6 glioma cells may be inhibiting proliferation and inducing apoptosis. Therefore, tamoxifen can be a candidate as a chemotherapy agent for glioma.

  19. Dendritic Cell-Based Vaccines that Utilize Myeloid Rather than Plasmacytoid Cells Offer a Superior Survival Advantage in Malignant Glioma.

    Science.gov (United States)

    Dey, Mahua; Chang, Alan L; Miska, Jason; Wainwright, Derek A; Ahmed, Atique U; Balyasnikova, Irina V; Pytel, Peter; Han, Yu; Tobias, Alex; Zhang, Lingjiao; Qiao, Jian; Lesniak, Maciej S

    2015-07-01

    Dendritic cells (DCs) are professional APCs that are traditionally divided into two distinct subsets, myeloid DC (mDCs) and plasmacytoid DC (pDCs). pDCs are known for their ability to secrete large amounts of IFN-α. Apart from IFN-α production, pDCs can also process Ag and induce T cell immunity or tolerance. In several solid tumors, pDCs have been shown to play a critical role in promoting tumor immunosuppression. We investigated the role of pDCs in the process of glioma progression in the syngeneic murine model of glioma. We show that glioma-infiltrating pDCs are the major APC in glioma and are deficient in IFN-α secretion (p < 0.05). pDC depletion leads to increased survival of the mice bearing intracranial tumor by decreasing the number of regulatory T cells (Tregs) and by decreasing the suppressive capabilities of Tregs. We subsequently compared the ability of mDCs and pDCs to generate effective antiglioma immunity in a GL261-OVA mouse model of glioma. Our data suggest that mature pDCs and mDCs isolated from naive mice can be effectively activated and loaded with SIINFEKL Ag in vitro. Upon intradermal injection in the hindleg, a fraction of both types of DCs migrate to the brain and lymph nodes. Compared to mice vaccinated with pDC or control mice, mice vaccinated with mDCs generate a robust Th1 type immune response, characterized by high frequency of CD4(+)T-bet(+) T cells and CD8(+)SIINFEKEL(+) T cells. This robust antitumor T cell response results in tumor eradication and long-term survival in 60% of the animals (p < 0.001).

  20. Lactate-modulated induction of THBS-1 activates transforming growth factor (TGF-beta2 and migration of glioma cells in vitro.

    Directory of Open Access Journals (Sweden)

    Corinna Seliger

    Full Text Available BACKGROUND: An important phenomenon observed in glioma metabolism is increased aerobic glycolysis in tumor cells, which is generally referred to as the Warburg effect. Transforming growth factor (TGF-beta2, which we previously showed to be induced by lactic acid, is a key pathophysiological factor in glioblastoma, leading to increased invasion and severe local immunosuppression after proteolytic cleavage from its latency associated peptide. In this study we tested the hypothesis, that lactate regulates TGF-beta2 expression and glioma cell migration via induction of Thrombospondin-1 (THBS-1, a TGF-beta activating protein. METHODS: Lactate levels were reduced by knockdown of LDH-A using specific small interfering RNA (siRNA and competitive inhibition of LDH-A by sodium oxamate. Knockdown of THBS-1 was performed using specific siRNA. Western Blot, qRT-PCR, and ELISA were used to investigate expression levels of LDH-A, LDH-B, TGF-beta2 and THBS-1. Migration of cells was examined by Spheroid, Scratch and Boyden Chamber assays. RESULTS: Knockdown of LDH-A with subsequent decrease of lactate concentration leads to reduced levels of THBS-1 and TGF-beta2 in glioma cells. Lactate addition increases THBS-1 protein, leading to increased activation of TGF-beta2. Inhibition of THBS-1 reduces TGF-beta2 protein and migration of glioma cells. Addition of synthetic THBS-1 can rescue reduced TGF-beta2 protein levels and glioma cell migration in siLDH-A treated cells. CONCLUSION: We define a regulatory cascade between lactate, THBS-1 and TGF-beta2, leading to enhanced migration of glioma cells. Our results demonstrate a specific interaction between tumor metabolism and migration and provide a better understanding of the mechanisms underlying glioma cell invasion.

  1. A Pilot Feasibility Study of Oral 5-Fluorocytosine and Genetically-Modified Neural Stem Cells Expressing E.Coli Cytosine Deaminase for Treatment of Recurrent High Grade Gliomas

    Science.gov (United States)

    2015-03-02

    Adult Anaplastic Astrocytoma; Recurrent Grade III Glioma; Recurrent Grade IV Glioma; Adult Anaplastic Oligodendroglioma; Adult Brain Tumor; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Recurrent Adult Brain Tumor; Adult Anaplastic Oligoastrocytoma; Recurrent High Grade Glioma

  2. Tipifarnib in Treating Young Patients With Recurrent or Progressive High-Grade Glioma, Medulloblastoma, Primitive Neuroectodermal Tumor, or Brain Stem Glioma

    Science.gov (United States)

    2013-10-07

    Childhood High-grade Cerebral Astrocytoma; Childhood Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  3. Effects of Photodynamic Therapy on the Ultrastructure of Glioma Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To study the change in ultrastructure of C6 glioma cells after photodynamic therapy (PDT), to compare morphological differences in necrosis and apoptosis before and after PDT treatment, and to evaluate the effect of photodynamic therapy on the blood brain tumor barrier (BTB) of C6 glioma. Methods The model was produced by transplanting C6 glioma cells cultured in vitro using Peterson method into the caudate nuclei of Wister rats. The experiment group received PDT for two weeks after the operation. The sub-cellular structure, blood-brain-barrier (BBB) and BTB in both groups were observed under electron microscope. Results Apoptosis in different phases and necrosis could be observed in some C6 glioma cells.Swelling occurred on the ultrastructure of cellular organs such as mitochondria and endoplasmic reticulum in most of the cells.Damage to the BTB, reduction of the number of cellular organs in endothelial cells of the capillary blood vessels, stretch of the tight junction, and enlargement of the gaps between endothelial cells were also seen in the experiment group. Meanwhile,limited impact on the normal sub-cellular structures and BBB was observed. Conclusion PDT could induce apoptosis and necrosis of C6 glioma cells due to the damage to the ultrastructure of mitochondria and endoplasmic reticulum. The weakened function of C6 glioma BTB initiated by PDT makes it possible to perform a combined therapy of PDT and chemotherapy for glioma.

  4. Telomere maintenance and the etiology of adult glioma.

    Science.gov (United States)

    Walsh, Kyle M; Wiencke, John K; Lachance, Daniel H; Wiemels, Joseph L; Molinaro, Annette M; Eckel-Passow, Jeanette E; Jenkins, Robert B; Wrensch, Margaret R

    2015-11-01

    A growing body of epidemiologic and tumor genomic research has identified an important role for telomere maintenance in glioma susceptibility, initiation, and prognosis. Telomere length has long been investigated in relation to cancer, but whether longer or shorter telomere length might be associated with glioma risk has remained elusive. Recent data address this question and are reviewed here. Common inherited variants near the telomerase-component genes TERC and TERT are associated both with longer telomere length and increased risk of glioma. Exome sequencing of glioma patients from families with multiple affected members has identified rare inherited mutations in POT1 (protection of telomeres protein 1) as high-penetrance glioma risk factors. These heritable POT1 mutations are also associated with increased telomere length in leukocytes. Tumor sequencing studies further indicate that acquired somatic mutations of TERT and ATRX are among the most frequent alterations found in adult gliomas. These mutations facilitate telomere lengthening, thus bypassing a critical mechanism of apoptosis. Although future research is needed, mounting evidence suggests that glioma is, at least in part, a disease of telomere dysregulation. Specifically, several inherited and acquired variants underlying gliomagenesis affect telomere pathways and are also associated with increased telomere length. PMID:26014050

  5. Current status of cerebral glioma surgery in China

    Institute of Scientific and Technical Information of China (English)

    WU Jin-song; ZHANG Jie; ZHUANG Dong-xiao; YAO Cheng-jun; QIU Tian-ming; LU Jun-feng; ZHU Feng-ping; MAO Ying; ZHOU Liang-fu

    2011-01-01

    The treatment of gliomas is highly individualized.Surgery for gliomas is essentially for histological diagnosis,to alleviate mass effect,and most importantly,to favor longer survival expectancy.During the past two decades,many surgical techniques and adjuvants have been applied to glioma surgery in China,which lead to a rapid development in the field of cerebral glioma surgery.This article broadly and critically reviewed the existing studies on cerebral glioma surgery and to portrait the current status of glioma surgery in China.A literature search was conducted covering major innovative surgical techniques and adjuvants for glioma surgery in China.The following databases were searched:the Pubmed (January 1995 to date);China Knowledge Resource Integrated Database (January 1995 to date) and VIP Database for Chinese Technical Periodicals (January 1995 to date).A selection criterion was established to exclude duplicates and irrelevant studies.The outcome measures were extracted from included studies.A total of 3307 articles were initially searched.After excluded by abstracts and full texts,69 studies conducted in the mainland of China were included and went through further analysis.The philosophy of surgical strategies for cerebral gliomas in China is undergoing tremendous change.Nowadays Chinese neurosurgeons pay more attention to the postoperative neurofunctional status of the patients.The aim of the glioma surgery is not only the more extensive tumor resection but also the maximal safety of intervention.The well balance of longer overall survival and higher quality of life should be judged with respect to each individual patient.

  6. P01.23NEUROTENSIN PROMOTES THE PROGRESSION OF MALIGNANT GLIOMA THROUGH NTSR1 AND IMPACTS THE PROGNOSIS OF GLIOMA PATIENTS

    OpenAIRE

    Yi, L.; Xu, M.; Xu, L.; Feng, H.; Cui, H.

    2014-01-01

    BACKGROUND: Neurotensin (NTS) functions as a neuromodulator and induces cellular proliferation and migration in various solid tumors. However, whether NTS can promote the progression of malignant glioma and its prognostic significance for glioma patients remain unclear. METHODS: NTS and its high-affinity receptor (NTSR1) expression levels in clinical glioma samples were detected by immunohistochemistry and immunobloting. The prognostic analysis in glioma patients were conducted online by R2 m...

  7. Enhanced anti-tumor effect of zoledronic acid combined with temozolomide against human malignant glioma cell expressing O6-methylguanine DNA methyltransferase.

    Directory of Open Access Journals (Sweden)

    Junya Fukai

    Full Text Available Temozolomide (TMZ, a DNA methylating agent, is widely used in the adjuvant treatment of malignant gliomas. O6-methylguanine-DNA methyltranferase (MGMT, a DNA repair enzyme, is frequently discussed as the main factor that limits the efficacy of TMZ. Zoledronic acid (ZOL, which is clinically applied to treat cancer-induced bone diseases, appears to possess direct anti-tumor activity through apoptosis induction by inhibiting mevalonate pathway and prenylation of intracellular small G proteins. In this study, we evaluated whether ZOL can be effectively used as an adjuvant to TMZ in human malignant glioma cells that express MGMT. Malignant glioma cell lines, in which the expression of MGMT was detected, did not exhibit growth inhibition by TMZ even at a longer exposure. However, combination experiment of TMZ plus ZOL revealed that a supra-additive effect resulted in a significant decrease in cell growth. In combined TMZ/ZOL treatment, an increased apoptotic rate was apparent and significant activation of caspase-3 and cleavage of poly-(ADP-ribose polymerase were observed compared with each single drug exposure. There were decreased amounts of Ras-GTP, MAPK and Akt phosphorylation and MGMT expression in the ZOL-treated cells. Subcutanous xenograft models showed significant decrease of tumor growth with combined TMZ/ZOL treatment. These results suggest that ZOL efficaciously inhibits activity of Ras in malignant glioma cells and potentiates TMZ-mediated cytotoxicity, inducing growth inhibition and apoptosis of malignant glioma cells that express MGMT and resistant to TMZ. Based on this work, combination of TMZ with ZOL might be a potential therapy in malignant gliomas that receive less therapeutic effects of TMZ due to cell resistance.

  8. Somatostatin-receptor positive brain stem glioma visualized by octreoscan.

    Science.gov (United States)

    Pichler, Robert; Pichler, Josef; Mustafa, Hamdy; Nussbaumer, Karin; Zaunmüller, Thomas; Topakian, Raffi

    2007-06-01

    In diffuse brainstem gliomas often surgical biopsies cannot be obtained. The diagnosis relies upon imaging criteria, first line being MRI. Gliomas generally express somatostatin receptors (SSTR), which might enable receptor imaging. We present the case of a female adolescent with acute onset of hallucinations, dysphagia and diplopia. MRI detected a suggestive large pontine glioma. This lesion presented with marked In-111-pentreotide tracer uptake. SSTR-scan provided information about SSTR-expression, tumour viability and extension. Radiopeptide therapy for selected patients might be discussed. PMID:17627256

  9. THE EFFECT OF ANTISENSE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) RNA ON THE PROLIFERATION OF HUMAN GLIOMA CELLS AND INDUCTION OF CELL APOPTOSIS

    Institute of Scientific and Technical Information of China (English)

    PU Pei-yu; LIU Xu-wen; LIU Ai-xue; WANG Chun-yan; WANG Guang-xiu

    1999-01-01

    Objective: To study the effect of antisense EGFR RNA on the growth of human glioma cells in vitro and evaluate the feasibility of targeting EGFR gene for gene therapy of gliomas. Methods: Southern and Northern blot analysis,in situ hybridization and immunohistochemical staining were used to detect the integration and expression of antisense EGFR constructs. MTT assay and the average number of AgNOR for evaluation of cell proliferation, and the TUNEL method and ultrastructural change for observation of cell apoptosis. Results: Exogenous antisense EGFR cDNA was integrated into the genome of glioma cells and highly expressed, which resulted in a dramatic decrease of endogenous EGFR mRNA and GEPR protein levels.Clones with high expression of the antisense construct showed a lower proliferation activity and the induction of apoptosis in vitro. Conclusion: This study suggests that EGFR plays an important role in the genesis of gliomas; it may be used as a target for antisense gene therapy of gliomas.

  10. IRE1 KNOCKDOWN MODIFIES GLUCOSE AND GLUTAMINE DEPRIVATION EFFECTS ON THE EXPRESSION OF PROLIFERATION RELATED GENES IN U87 GLIOMA CELLS

    Directory of Open Access Journals (Sweden)

    D. O. Tsymbal

    2016-02-01

    Full Text Available We have studied the expression of genes encoding proliferation related factors and enzymes such as IL13RA2, KRT18, CD24, ING1, ING2, MYL9, BET1, TRAPPC3, ENDOG, POLG, TSFM, and MTIF2 in U87 glioma cells upon glucose and glutamine deprivation in relation to inhibition of inositol requiring enzyme 1, a central mediator of endoplasmic reticulum stress. It was shown that glutamine deprivation leads to up-regulation of the expression of BET1, MYL9, and MTIF2 genes and down-regulation of CD24, ING2, ENDOG, POLG, and TSFM genes in control (with native IRE1 glioma cells. At the same time, glucose deprivation enhances the expression of MYL9 gene only and decreases – ING1, ING2, and MTIF2 genes in control glioma cells. Thus, effect of glucose and glutamine deprivation on gene expressions in glioma cells is gene-specific. Inhibition of inositol requiring enzyme 1 by dnIRE1 significantly modifies the effect of both glutamine and glucose deprivation on the expression of most studied genes with different direction and magnitude, especially for ING2, CD24, and MTIF2 genes. Present study demonstrates that IRE1 knockdown modifies glucose and glutamine deprivation effects on the expression of proliferation related genes and possibly contributes to slower tumor growth of these glioma cells after inhibition of IRE1 signaling enzyme.

  11. Trichosanthin suppresses the proliferation of glioma cells by inhibiting LGR5 expression and the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Miao, Junjie; Jiang, Yilin; Wang, Dongliang; Zhou, Jingru; Fan, Cungang; Jiao, Feng; Liu, Bo; Zhang, Jun; Wang, Yangshuo; Zhang, Qingjun

    2015-12-01

    Studies have indicated that trichosanthin (TCS), a bioactive protein extracted and purified from the tuberous root of Trichosanthes kirilowii (a well‑known traditional Chinese medicinal plant), produces antitumor effects on various types of cancer cells. However, the effects of TCS on glioma cells are poorly understood. The objective of this study was to investigate the antitumor effects of TCS on the U87 and U251 cell lines. The in vitro effects of TCS on these two cell lines were determined using a Cell Counting Kit‑8 (CCK‑8) assay, Annexin V‑FITC staining, DAPI staining, Transwell assays, terminal deoxynucleotidyl transferase‑mediated dUTP nick end‑labeling (TUNEL) assays, 5,5',6,6'‑tetrachloro‑1,1',3,3'‑tetraethyl‑imidacarbocyanine iodide (JC‑1) staining and western blotting, which was utilized to assess the expression of leucine‑rich repeat‑containing G protein‑coupled receptor 5 (LGR5) and key proteins in the Wnt/β‑catenin signaling pathway. Our data indicated that TCS inhibited the proliferation of glioma cells in a dose‑ and time‑dependent manner and played a role in inhibiting glioma cell invasion and migration. Additional investigation revealed that the expression levels of LGR5 and of key proteins in the Wnt/β‑catenin signaling pathway were markedly decreased after TCS treatment. The results suggest that TCS may induce apoptosis in glioma cells by targeting LGR5 and repressing the Wnt/β‑catenin signaling pathway. In the future, in vivo experiments should be conducted to examine the potential use of this compound as a novel therapeutic agent for gliomas.

  12. Upregulation of SATB1 is associated with the development and progression of glioma

    Directory of Open Access Journals (Sweden)

    Chu Sheng-Hua

    2012-07-01

    Full Text Available Abstract Background Special AT-rich sequence-binding protein-1 (SATB1 has been reported to be expressed in several human cancers and may have malignant potential. This study was aimed at investigating the expression and potential role of SATB1 in human glioma. Method The relationship between SATB1 expression, clinicopathological parameters, Ki67 expression and MGMT promoter methylation status was evaluated, and the prognostic value of SATB1 expression in patients with gliomas was analyzed. SATB1-specific shRNA sequences were synthesized, and U251 cells were transfected with SATB1 RNAi plasmids. Expression of SATB1 mRNA and protein was investigated by RT-PCR and immunofluoresence staining and western blotting. The expression of c-Met, SLC22A18, caspase-3 and bcl-2 protein was determined by western blotting. U251 cell growth and adherence was detected by methyl thiazole tetrazolium assay. The apoptosis of U251 cells was examined with a flow cytometer. The adherence, invasion, and in vitro angiogenesis assays of U251 cells were done. The growth and angiogenesis of SATB1 low expressing U251 cells was measured in an in vivo xenograft model. Results Of 70 tumors, 44 (62.9% were positive for SATB1 expression. SATB1 expression was significantly associated with a high histological grade and with poor survival in univariate and multivariate analyses. SATB1 expression was also positively correlated with Ki67 expression but negatively with MGMT promoter methylation in glioma tissues. SATB1 shRNA expression vectors could efficiently induce the expression of SLC22A18 protein, increase the caspase-3 protein, inhibit the expression of SATB1, c-Met and bcl-2 protein, the growth, invasion, metastasis and angiogenesis of U251 cells, and induce apoptosis in vitro. Furthermore, the tumor growth of U251 cells expressing SATB1 shRNA were inhibited in vivo, and immunohistochemical analyses of tumor sections revealed a decreased vessel density in the animals where sh

  13. Terahertz pulsed spectroscopy of paraffin-embedded brain glioma

    Science.gov (United States)

    Meng, Kun; Chen, Tu-nan; Chen, Tao; Zhu, Li-guo; Liu, Qiao; Li, Zhao; Li, Fei; Zhong, Sen-cheng; Li, Ze-ren; Feng, Hua; Zhao, Jian-heng

    2014-07-01

    The refractive indices, absorption coefficients, and complex dielectric constants of paraffin-embedded brain glioma and normal brain tissues have been measured by a terahertz time-domain spectroscopy (THz-TDS) system in the 0.2- to 2.0-THz range. The spectral differences between gliomas and normal brain tissues were obtained. Compared with normal brain tissue, our results indicate that paraffin-embedded brain gliomas have a higher refractive index, absorption coefficient, and dielectric constant. Based on these results, the best THz frequencies for different methods of paraffin-embedded brain glioma imaging, such as intensity imaging, coherent imaging with continuum THz sources, and THz pulsed imaging with short-pulsed THz sources, are analyzed.

  14. Research and application progress of MGMT promoter methylation in gliomas

    Directory of Open Access Journals (Sweden)

    Cui-yun SUN

    2014-07-01

    Full Text Available O6-methylguanine-DNA methyltransferase (MGMT is an important DNA repair enzyme. The promoter methylation status of MGMT gene has recently become a biomarker of gliomas. Methylation of the MGMT promoter not only is an important biomarker to evaluate the sensitivity to the chemotherapy with alkylating agents, but also contributes to predicting prognosis and distinguishing between recurrence and pseudoprogression in glioma patients. Especially in the elderly, MGMT promoter methylation status has recently been introduced to be a biomarker for glioma classification and personalized treatment strategies. This review gives a short summary of the function of MGMT and clinical application of MGMT promoter methylation in personalized treatment strategies, prognosis evaluation and differentiation of recurrence and pseudoprogression of glioma. doi: 10.3969/j.issn.1672-6731.2014.07.017

  15. Cognitive rehabilitation in patients with gliomas : a randomized, controlled trial

    NARCIS (Netherlands)

    Gehring, Karin; Sitskoorn, Margriet M; Gundy, Chad M; Sikkes, Sietske A M; Klein, Martin; Postma, Tjeerd J; van den Bent, Martin J; Beute, Guus N; Enting, Roelien H.; Kappelle, Arnoud C; Boogerd, Willem; Veninga, Theo; Twijnstra, Albert; Boerman, Dolf H; Taphoorn, Martin J B; Aaronson, Neil K

    2009-01-01

    PURPOSE: Patients with gliomas often experience cognitive deficits, including problems with attention and memory. This randomized, controlled trial evaluated the effects of a multifaceted cognitive rehabilitation program (CRP) on cognitive functioning and selected quality-of-life domains in patients

  16. Glioma-Associated Antigen HEATR1 Induces Functional Cytotoxic T Lymphocytes in Patients with Glioma

    Directory of Open Access Journals (Sweden)

    Zhe Bao Wu

    2014-01-01

    Full Text Available A2B5+ glioblastoma (GBM cells have glioma stem-like cell (GSC properties that are crucial to chemotherapy resistance and GBM relapse. T-cell-based antigens derived from A2B5+ GBM cells provide important information for immunotherapy. Here, we show that HEAT repeat containing 1 (HEATR1 expression in GBM tissues was significantly higher than that in control brain tissues. Furthermore, HEATR1 expression in A2B5+ U87 cells was higher than that in A2B5−U87 cells (P=0.016. Six peptides of HEATR1 presented by HLA-A*02 were selected for testing of their ability to induce T-cell responses in patients with GBM. When peripheral blood mononuclear cells from healthy donors (n=6 and patients with glioma (n=33 were stimulated with the peptide mixture, eight patients with malignant gliomas had positive reactivity with a significantly increased number of responding T-cells. The peptides HEATR1682–690, HEATR11126–1134, and HEATR1757–765 had high affinity for binding to HLA-A*02:01 and a strong capacity to induce CTL response. CTLs against HEATR1 peptides were capable of recognizing and lysing GBM cells and GSCs. These data are the first to demonstrate that HEATR1 could induce specific CTL responses targeting both GBM cells and GSCs, implicating that HEATR1 peptide-based immunotherapy could be a novel promising strategy for treating patients with GBM.

  17. Migratory, invasive and metastatic capacity of NCAM transfected rat glioma cells

    DEFF Research Database (Denmark)

    Edvardsen, K; Brünner, N; Spang-Thomsen, M;

    1993-01-01

    A cDNA encoding a transmembrane 140 kDa isoform of the neural cell adhesion molecule, NCAM, was transfected into the rat glioma cell line BT4Cn. Transfectants with a homogeneously high expression of NCAM-B showed a decreased capacity for penetration of an artificial basement membrane when compared...... to cells transfected with expression-vector alone or untransfected cells. However, when injected subcutaneously into nude mice, both NCAM expressing cells and control cells produced invasive tumors. Nude mice injected with NCAM positive cells developed tumors with slower growth rates as compared to those...

  18. Galunisertib inhibits glioma vasculogenic mimicry formation induced by astrocytes

    OpenAIRE

    Chao Zhang; Wenliang Chen; Xin Zhang; Bin Huang; Aanjing Chen; Ying He; Jian Wang; Xingang Li

    2016-01-01

    Gliomas are among the most lethal primary brain tumors found in humans. In high-grade gliomas, vasculogenic mimicry is often detected and has been correlated with prognosis, thus suggesting its potential as a therapeutic target. Vasculogenic mimicry mainly forms vascular-like channels independent of endothelial cells; however, little is known about the relationship between astrocytes and vasculogenic mimicry. In our study, we demonstrated that the presence of astrocytes promoted vasculogenic ...

  19. P47THE IDENTIFICATION OF NOVEL APTAMERS TO GLIOMA

    OpenAIRE

    Norris, Karl; Shaw, Lisa; Alder, Jane Elizabeth; Lawrence, Clare Louise

    2014-01-01

    INTRODUCTION: Glioma represent less than 2% of all cancer cases in the UK, however, 80% of these tumours are glioblastoma (GBM). GBM is a highly aggressive tumour with poor patient survival rates, despite treatment involving surgery and radiotherapy with adjuvant chemotherapy. Delivery systems that have the ability to distinguish neoplasms from non-cancerous tissues, such as aptamers, may improve patient outcome. Aptamers have previously been shown to selectively target glioma cell lines. Apt...

  20. Improving Seroreactivity-Based Detection of Glioma1

    OpenAIRE

    Ludwig, Nicole; Keller, Andreas; Heisel, Sabrina; Leidinger, Petra; Klein, Veronika; Rheinheimer, Stefanie; Andres, Claudia U; Stephan, Bernhard; Steudel, Wolf-Ingo; Graf, Norbert M; Burgeth, Bernhard; Weickert, Joachim; Lenhof, Hans-Peter; Meese, Eckart

    2009-01-01

    Seroreactivity profiling emerges as valuable technique for minimal invasive cancer detection. Recently, we provided first evidence for the applicability of serum profiling of glioma using a limited number of immunogenic antigens. Here, we screened 57 glioma and 60 healthy sera for autoantibodies against 1827 Escherichia coli expressed clones, including 509 in-frame peptide sequences. By a linear support vector machine approach, we calculated mean specificity, sensitivity, and accuracy of 100 ...

  1. Research and application progress of MGMT promoter methylation in gliomas

    OpenAIRE

    Cui-yun SUN; Shi-zhu YU

    2014-01-01

    O6-methylguanine-DNA methyltransferase (MGMT) is an important DNA repair enzyme. The promoter methylation status of MGMT gene has recently become a biomarker of gliomas. Methylation of the MGMT promoter not only is an important biomarker to evaluate the sensitivity to the chemotherapy with alkylating agents, but also contributes to predicting prognosis and distinguishing between recurrence and pseudoprogression in glioma patients. Especially in the elderly, MGMT promoter methylation stat...

  2. Extra-Neural Metastases of Malignant Gliomas: Myth or Reality?

    International Nuclear Information System (INIS)

    Malignant gliomas account for approximately 60% of all primary brain tumors in adults. Prognosis for these patients has not significantly changed in recent years— despite debulking surgery, radiotherapy and cytotoxic chemotherapy—with a median survival of 9–12 months. Virtually no patients are cured of their illness. Malignant gliomas are usually locally invasive tumors, though extra-neural metastases can sometimes occur late in the course of the disease (median of two years). They generally appear after craniotomy although spontaneous metastases have also been reported. The incidence of these metastases from primary intra-cranial malignant gliomas is low; it is estimated at less than 2% of all cases. Extra-neural metastases from gliomas frequently occur late in the course of the disease (median of two years), and generally appear after craniotomy, but spontaneous metastases have also been reported. Malignant glioma metastases usually involve the regional lymph nodes, lungs and pleural cavity, and occasionally the bone and liver. In this review, we present three cases of extra-neural metastasis of malignant gliomas from our department, summarize the main reported cases in literature, and try to understand the mechanisms underlying these systemic metastases

  3. Role of MicroRNAs in Malignant Glioma

    Institute of Scientific and Technical Information of China (English)

    Bao-Cheng Wang; Jie Ma

    2015-01-01

    Objective:This overview seeked to bring together the microRNA (miRNA) researches on biogenesis and bio-function in these areas of clinical diagnosis and therapy for malignant glioma.Data Sources:Using the keyword terms "glioma" and "miRNA," we performed the literature search in PubMed,Ovid,and web.metstr.com databases from their inception to October 2014.Study Selection:In screening out the quality of the articles,factors such as clinical setting of the study,the size of clinical samples were taken into consideration.Animal studied for verification and reviews article were also included in our data collection.Results:Despite many advance in miRNA for malignant glioma,further studies were still required to focus on the following aspects:(i) Improving the understanding about biogenesis of miRNA and up-down regulation;(ii) utilizing high-throughput miRNA expression analysis to screen out the core miRNA for glioma;(iii) Focusing related miRNAs on the signal transduction pathways that regulate the proliferation and growth of glioma.Conclusions:We discussed the most promising miRNA,correlative signaling pathway and their relation with gliomas in the way of prompting miRNA target into being a clinical therapeutic strategy.

  4. Ion channel gene expression predicts survival in glioma patients.

    Science.gov (United States)

    Wang, Rong; Gurguis, Christopher I; Gu, Wanjun; Ko, Eun A; Lim, Inja; Bang, Hyoweon; Zhou, Tong; Ko, Jae-Hong

    2015-08-03

    Ion channels are important regulators in cell proliferation, migration, and apoptosis. The malfunction and/or aberrant expression of ion channels may disrupt these important biological processes and influence cancer progression. In this study, we investigate the expression pattern of ion channel genes in glioma. We designate 18 ion channel genes that are differentially expressed in high-grade glioma as a prognostic molecular signature. This ion channel gene expression based signature predicts glioma outcome in three independent validation cohorts. Interestingly, 16 of these 18 genes were down-regulated in high-grade glioma. This signature is independent of traditional clinical, molecular, and histological factors. Resampling tests indicate that the prognostic power of the signature outperforms random gene sets selected from human genome in all the validation cohorts. More importantly, this signature performs better than the random gene signatures selected from glioma-associated genes in two out of three validation datasets. This study implicates ion channels in brain cancer, thus expanding on knowledge of their roles in other cancers. Individualized profiling of ion channel gene expression serves as a superior and independent prognostic tool for glioma patients.

  5. EXPRESSION AND SWITCHING OF TH 1/TH2 TYPE CYTOKINES GENE IN HUMAN GLIOMAS

    Institute of Scientific and Technical Information of China (English)

    Yong-sheng Hu; Xin-gang Li; Qing-lin Zhang; Dong-hai Wang; Song-feng Gong

    2005-01-01

    Objective To study the expression and switching of Th1/Th2 cytokines gene in hman gliomas and its effects on occurring and developing of human gliomas.Methods Interleukin(IL)-2 and intefferon-γ represent Th1 type cytokines. IL-4, IL-6, IL-10, and IL-13 represent Th2 type cytokines. The gene expressions of Th1/Th2 cytokines in human glioma cells, glioma infiltrating lymphocytes,and glioma cell lines were detected by reverse transcription polymerase chain reaction (RT-PCR). The biological activity of cytokines in the supematant of glioma cell lines was assayed by enzyme-linked immunosorbent assay (ELISA)method.Results The total positive rates of Th1 and Th2 type cytokines gene in human glioma cells were 14.77% and 75%. The total positive rates of Thl and Th2 type cytokines gene in glioma infiltrating lymphocytes were 22.73% and 68.17%. There was obviously predominant expression of Th2 type cytokines in human glioma tissues, glioma infiltrating lymphocytes, and glioma cell lines. There was no unbalanced expression of Th1/Th2 cytokines in normal brain tissues.Conclusion There is a predominant expression of Th2 type cytokines in human glioma cells. The switching of Th1/Th2 cytokines gene may play an important role in the occurring and developing of human gliomas.

  6. Utilizing the Dog Genome in the Search for Novel Candidate Genes Involved in Glioma Development-Genome Wide Association Mapping followed by Targeted Massive Parallel Sequencing Identifies a Strongly Associated Locus.

    Directory of Open Access Journals (Sweden)

    Katarina Truvé

    2016-05-01

    Full Text Available Gliomas are the most common form of malignant primary brain tumors in humans and second most common in dogs, occurring with similar frequencies in both species. Dogs are valuable spontaneous models of human complex diseases including cancers and may provide insight into disease susceptibility and oncogenesis. Several brachycephalic breeds such as Boxer, Bulldog and Boston Terrier have an elevated risk of developing glioma, but others, including Pug and Pekingese, are not at higher risk. To identify glioma-associated genetic susceptibility factors, an across-breed genome-wide association study (GWAS was performed on 39 dog glioma cases and 141 controls from 25 dog breeds, identifying a genome-wide significant locus on canine chromosome (CFA 26 (p = 2.8 x 10-8. Targeted re-sequencing of the 3.4 Mb candidate region was performed, followed by genotyping of the 56 SNVs that best fit the association pattern between the re-sequenced cases and controls. We identified three candidate genes that were highly associated with glioma susceptibility: CAMKK2, P2RX7 and DENR. CAMKK2 showed reduced expression in both canine and human brain tumors, and a non-synonymous variant in P2RX7, previously demonstrated to have a 50% decrease in receptor function, was also associated with disease. Thus, one or more of these genes appear to affect glioma susceptibility.

  7. Survival advantage combining a BRAF inhibitor and radiation in BRAF V600E-mutant glioma.

    Science.gov (United States)

    Dasgupta, Tina; Olow, Aleksandra K; Yang, Xiaodong; Hashizume, Rintaro; Nicolaides, Theodore P; Tom, Maxwell; Aoki, Yasuyuki; Berger, Mitchel S; Weiss, William A; Stalpers, Lukas J A; Prados, Michael; James, C David; Mueller, Sabine; Haas-Kogan, Daphne A

    2016-02-01

    Radiation (RT) is critical to the treatment of high-grade gliomas (HGGs) but cures remain elusive. The BRAF mutation V600E is critical to the pathogenesis of 10-20% of pediatric gliomas, and a small proportion of adult HGGs. Here we aim to determine whether PLX4720, a specific BRAF V600E inhibitor, enhances the activity of RT in human HGGs in vitro and in vivo. Patient-derived HGG lines harboring wild-type BRAF or BRAF V600E were assessed in vitro to determine IC50 values, cell cycle arrest, apoptosis and senescence and elucidate mechanisms of combinatorial activity. A BRAF V600E HGG intracranial xenograft mouse model was used to evaluate in vivo combinatorial efficacy of PLX4720+RT. Tumors were harvested for immunohistochemistry to quantify cell cycle arrest and apoptosis. RT+PLX4720 exhibited greater anti-tumor effects than either monotherapy in BRAF V600E but not in BRAF WT lines. In vitro studies showed increased Annexin V and decreased S phase cells in BRAF V600E gliomas treated with PLX4720+RT, but no significant changes in β-galactosidase levels. In vivo, concurrent and sequential PLX4720+RT each significantly prolonged survival compared to monotherapies, in the BRAF V600E HGG model. Immunohistochemistry of in vivo tumors demonstrated that PLX4720+RT decreased Ki-67 and phospho-MAPK, and increased γH2AX and p21 compared to control mice. BRAF V600E inhibition enhances radiation-induced cytotoxicity in BRAF V600E-mutated HGGs, in vitro and in vivo, effects likely mediated by apoptosis and cell cycle, but not senescence. These studies provide the pre-clinical rationale for clinical trials of concurrent radiotherapy and BRAF V600E inhibitors.

  8. P61CATHEPSIN K IN AN IN VITRO MODEL OF GLIOMA ANGIOGENESIS

    Science.gov (United States)

    Briggs, S.; Stevenson, K.; Verbovšek, U.; Yin, L.H.; Pilkington, G.; Lah, T.; Fillmore, H.L.

    2014-01-01

    INTRODUCTION: Cathepsin K, a cysteine protease expressed in osteoclasts, involved in bone resorption is expressed in other cells including brain cells. Reports suggest that cathepsin K may be involved in cancers associated with bone metastasis. Little is known about its expression in brain tumours. There is evidence of a potential interaction of cathepsin K with stromal cell derived factor 1 (SDF-1) in haemapoietic stem cell motility. Because of the importance of SDF-1 in brain tumour angiogenesis and recruitment of glioma like stem cells to vascular niches, we investigated cathepsin K in an in vitro model of angiogenesis. METHOD: Brain endothelial cells (hCMEC) and glioma cell lines (SNB-19 and UP-007) cultured under normoxic and hypoxic conditions were analysed using flow cytometry and western blotting. Angiogenesis was assessed using an in vitro model of brain endothelial cell tube formation. Brain endothelial tube length, number of tube projections and number of branch points were measured. RESULTS: Under hypoxic conditions, there is a significant decrease in cathepsin K expression in brain endothelial cells when compared to normoxic conditions (P ≤ 0.05). Addition of Odanacatib, a cathepsin K inhibitor, to the angiogenesis assay revealed that inhibition of cathepsin K resulted in a significant increase in endothelial tube length in normoxic conditions (p < 0.05). CONCLUSION: The decrease in cathepsin K expression in endothelial cells under hypoxia, coupled with the increase in tube length following inhibition of cathepsin K, suggests an involvement of cathepsin K with angiogenesis. These data provide rationale and basis for further study into the function of cathepsin K and its relationship with SDF-1 in gliomas.

  9. Intraoperative radiation therapy for malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Noboru; Yamada, Hiromu; Andoh, Takashi; Takada, Mitsuaki; Hirata, Toshifumi; Funakoshi, Takashi; Doi, Hidetaka; Yanagawa, Shigeo (Gifu Univ. (Japan). Faculty of Medicine)

    1989-04-01

    Intraoperative radiation therapy (IOR) is an ideal means of exterminating residual tumor after surgical resection. In this study, the clinical results of IOR using a Scanditronix Microtron MM-22 were evaluated in 14 patients with malignant glioma, five of whom had recurrent tumors. Between July, 1985 and October, 1986, 11 patients with glioblastoma multiforme (GB) were irradiated 18 times (mean, 1.6 times/case), and three with astrocytoma (Kernohan grade III) underwent IOR once each. The target-absorbed dose at 1 to 2 cm deeper than the tumor resection surface was 15 to 50 Gy. During irradiation, a cotton bolus was placed in the dead space after over 91% of the tumor had been resected. As a rule, external irradiation therapy was also given postoperatively at a dose of 30 to 52 Gy. One patient died of pneumonia and disseminated intravascular coagulation syndrome 1 month postoperatively. The 1- and 2-year survival rates of the ramaining 13 patients were 84.6% and 61.5%, respectively; among the 10 with GB, they were 80% and 50%. Generally, the smaller the tumor size, the better the results. There were no adverse effects, despite the dose 15 to 50 Gy applied temporally to the tumor bed. IOR was especially effective against small, localized tumors, but was not always beneficial in cases of large tumors, particularly those with a contralateral focus. The improved survival rate in this series demonstrates that IOR is significantly effective in the 'induction of remission' following surgical excision of malignant gliomas. (author).

  10. DELETION AND 5'CPG ISLAND METHYLATION OF p15 GENE IN BRAIN GLIOMA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To investigate the abnormality of p15 gene in brain glioma and the correlation of it with occurrence or malignant progression of brain glioma. Methods: Deletion and 5'CPG island methylation of p15 gene were detected by the methods of PCR and PCR-based methylation in 56 cases of brain glioma. Results: Out of 43 cases of high grade glioma, 14 cases were found to have homozygous deletion of p15E1, while none of the 13 cases of low grade glioma was found to have deletion of p15E1 (P<0.05). Methylation of 5'CPG Island of p15 gene was found only in four cases of glioma. Conclusion: Abnormality of p15 gene may involved in the occurrence and malignant progression of brain glioma. Homozygous deletion of gene is the major mechanism of inactivation for p15 gene in brain glioma.

  11. Proton Beam Radiation Therapy in Treating Patients With Low Grade Gliomas

    Science.gov (United States)

    2015-12-14

    Adult Brain Tumor; Adult Brain Stem Glioma; Adult Diffuse Astrocytoma; Adult Ependymoma; Adult Grade II Meningioma; Adult Melanocytic Lesion; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pineal Gland Astrocytoma; Adult Pineocytoma; Recurrent Adult Brain Tumor

  12. Glioma progression is mediated by an addiction to aberrant IGFBP2 expression and can be blocked using anti-IGFBP2 strategies.

    Science.gov (United States)

    Phillips, Lynette M; Zhou, Xinhui; Cogdell, David E; Chua, Corrine Yingxuan; Huisinga, Anouk; R Hess, Kenneth; Fuller, Gregory N; Zhang, Wei

    2016-07-01

    Insulin-like growth factor binding protein 2 (IGFBP2) overexpression is common in high-grade glioma and is both a strong biomarker of aggressive behaviour and a well-documented prognostic factor. IGFBP2 is a member of the secreted IGFBP family that functions by interacting with circulating IGFs to modulate IGF-mediated signalling. This traditional view of IGFBP2 activities has been challenged by the recognition of the diverse functions and cellular locations of members of the IGFBP family. IGFBP2 has been previously established as a driver of glioma progression to a higher grade. In this study, we sought to determine whether IGFBP2-overexpressing tumours are dependent on continued oncogene expression and whether IGFBP2 is a viable therapeutic target in glioma. We took advantage of the well-characterized RCAS/Ntv-a mouse model to create a doxycycline-inducible IGFBP2 model of glioma and demonstrated that the temporal expression of IGFBP2 has dramatic impacts on tumour progression and survival. Further, we demonstrated that IGFBP2-driven tumours are dependent on the continued expression of IGFBP2, as withdrawal of this oncogenic signal led to a significant decrease in tumour progression and prolonged survival. Inhibition of IGFBP2 also impaired tumour cell spread. To assess a therapeutically relevant inhibition strategy, we evaluated a neutralizing antibody against IGFBP2 and demonstrated that it impaired downstream IGFBP2-mediated oncogenic signalling pathways. The studies presented here indicate that IGFBP2 not only is a driver of glioma progression and a prognostic factor but is also required for tumour maintenance and thus represents a viable therapeutic target in the treatment of glioma. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:27125842

  13. Glioma progression is mediated by an addiction to aberrant IGFBP2 expression and can be blocked using anti-IGFBP2 strategies.

    Science.gov (United States)

    Phillips, Lynette M; Zhou, Xinhui; Cogdell, David E; Chua, Corrine Yingxuan; Huisinga, Anouk; R Hess, Kenneth; Fuller, Gregory N; Zhang, Wei

    2016-07-01

    Insulin-like growth factor binding protein 2 (IGFBP2) overexpression is common in high-grade glioma and is both a strong biomarker of aggressive behaviour and a well-documented prognostic factor. IGFBP2 is a member of the secreted IGFBP family that functions by interacting with circulating IGFs to modulate IGF-mediated signalling. This traditional view of IGFBP2 activities has been challenged by the recognition of the diverse functions and cellular locations of members of the IGFBP family. IGFBP2 has been previously established as a driver of glioma progression to a higher grade. In this study, we sought to determine whether IGFBP2-overexpressing tumours are dependent on continued oncogene expression and whether IGFBP2 is a viable therapeutic target in glioma. We took advantage of the well-characterized RCAS/Ntv-a mouse model to create a doxycycline-inducible IGFBP2 model of glioma and demonstrated that the temporal expression of IGFBP2 has dramatic impacts on tumour progression and survival. Further, we demonstrated that IGFBP2-driven tumours are dependent on the continued expression of IGFBP2, as withdrawal of this oncogenic signal led to a significant decrease in tumour progression and prolonged survival. Inhibition of IGFBP2 also impaired tumour cell spread. To assess a therapeutically relevant inhibition strategy, we evaluated a neutralizing antibody against IGFBP2 and demonstrated that it impaired downstream IGFBP2-mediated oncogenic signalling pathways. The studies presented here indicate that IGFBP2 not only is a driver of glioma progression and a prognostic factor but is also required for tumour maintenance and thus represents a viable therapeutic target in the treatment of glioma. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  14. EFFECTS OF p16INK4 GENE ON CHEMOSENSITIVITY OF HUMAN GLIOMA U251 CELL LINE TO TENIPOSIDE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To determine the effects on the cell growth, tumorigenicity and chemosensitivity of p16/CDK4I in human glioma. Methods: p16 gene was transfected into U251 cells by lipofectin. Expression of exogenous p16 gene was confirmed by immunohistochemistry and Northern blot. The effects of exogenous p16 gene on the growth and chemosensitivity to teniposide were examined. Results: Expression of exogenous p16 gene inhibited the growth dramatically in vitro. G1 arrest of tumor cells was observed. However, wt p16-positive U251 was less sensitive than control cell lines and the number of apoptotic cells after chemotherapy was reduced. Conclusion: The expression of exogenous p16 gene could inhibit the growth of glioma. On the other hand, the chemosensitivity to teniposide of p16-positive U251 was decreased.

  15. Synergistic inhibition of angiogenesis and glioma cell-induced angiogenesis by the combination of temozolomide and enediyne antibiotic lidamycin.

    Science.gov (United States)

    Li, Xing-Qi; Ouyang, Zhi-Gang; Zhang, Sheng-Hua; Liu, Hong; Shang, Yue; Li, Yi; Zhen, Yong-Su

    2014-04-01

    Present work mainly evaluated the inhibitory effects of lidamycin (LDM), an enediyne antibiotic, on angiogenesis or glioma-induced angiogenesis in vitro and in vivo, especially its synergistic anti-angiogenesis with temozolomide (TMZ). LDM alone efficiently inhibited proliferations and induced apoptosis of rat brain microvessel endothelial cells (rBMEC). LDM also interrupted the tube formation of rat brain microvessel endothelial cells (rBMEC) and rat aortic ring spreading. The blockade of rBMEC invasion and C6 cell-induced rBMEC migration by LDM was associated with decrease of VEGF secretion in a co-culture system. TMZ dramatically potentiated the effects of LDM on anti-proliferation, apoptosis induction, and synergistically inhibited angiogenesis events. As determined by western blot and ELISA, the interaction of tumor cells and the rBMEC was markedly interrupted by LDM plus TMZ with synergistic regulations of VEGF induced angiogenesis signal pathway, tumor cell invasion/migration, and apoptosis signal pathway. Immunofluorohistochemistry of CD31 and VEGF showed that LDM plus TMZ resulted in synergistic decrease of microvessel density (MVD) and VEGF expression in human glioma U87 cell subcutaneous xenograft. This study indicates that the high efficacy of LDM and the synergistic effects of LDM plus TMZ against glioma are mediated, at least in part, by the potentiated anti-angiogenesis. PMID:24424202

  16. Treating malignant glioma in Chinese patients: update on temozolomide

    Directory of Open Access Journals (Sweden)

    Chang L

    2014-02-01

    Full Text Available Liang Chang,1 Jun Su,1 Xiuzhi Jia,2,3 Huan Ren2,3 1Department of Neurosurgery, The Tumor Hospital of Harbin Medical University, 2Department of Immunology, Harbin Medical University, 3Key Lab Infection and Immunity, Heilongjiang Province, Harbin, People's Republic of China Abstract: Malignant glioma, ie, anaplastic astrocytoma and glioblastoma, is the most common type of primary malignant brain tumor in the People's Republic of China, and is particularly aggressive. The median survival of patients with newly diagnosed glioblastoma is only 12–14 months despite advanced therapeutic strategies. Treatment of malignant glioma consists mainly of surgical resection followed by adjuvant radiation and chemotherapy. Temozolomide (TMZ, a second-generation oral alkylating agent, is playing an increasingly important role in the treatment of malignant glioma in Chinese patients. Since the publication of a study by Stupp et al in 2005, which used a protocol of conventional fractionated irradiation with concomitant TMZ followed by standard TMZ for six cycles, many clinical studies in the People's Republic of China have demonstrated that such a treatment strategy has significantly improved efficacy with limited side effects for newly diagnosed glioblastoma after surgery as compared with strategies that do not contain TMZ. However, as a relatively new agent, the history and development of TMZ for malignant glioma is not well documented in Chinese patients. Multicenter, randomized controlled trials including appropriately sized patient populations investigating multiple aspects of TMZ therapy and related combination therapies are warranted in patients with malignant glioma. This review provides an update on the efficacy, mechanism of action, adverse reactions, and clinical role of TMZ in the treatment of malignant glioma in Chinese patients. Keywords: malignant glioma, chemotherapy, temozolomide, efficacy, side effect, People's Republic of China

  17. IDH1 mutation detection by droplet digital PCR in glioma.

    Science.gov (United States)

    Wang, Jing; Zhao, Yi-ying; Li, Jian-feng; Guo, Cheng-cheng; Chen, Fu-rong; Su, Hong-kai; Zhao, Hua-fu; Long, Ya-kang; Shao, Jian-yong; To, Shing shun Tony; Chen, Zhong-ping

    2015-11-24

    Glioma is the most frequent central nervous system tumor in adults. The overall survival of glioma patients is disappointing, mostly due to the poor prognosis of glioblastoma (Grade IV glioma). Isocitrate dehydrogenase (IDH) is a key factor in metabolism and catalyzes the oxidative decarboxylation of isocitrate. Mutations in IDH genes are observed in over 70% of low-grade gliomas and some cases of glioblastoma. As the most frequent mutation, IDH1(R132H) has been served as a predictive marker of glioma patients. The recently developed droplet digital PCR (ddPCR) technique generates a large amount of nanoliter-sized droplets, each of which carries out a PCR reaction on one template. Therefore, ddPCR provides high precision and absolute quantification of the nucleic acid target, with wide applications for both research and clinical diagnosis. In the current study, we collected 62 glioma tissue samples (Grade II to IV) and detected IDH1 mutations by Sanger direct sequencing, ddPCR, and quantitative real-time PCR (qRT-PCR). With the results from Sanger direct sequencing as the standard, the characteristics of ddPCR were compared with qRT-PCR. The data indicated that ddPCR was much more sensitive and much easier to interpret than qRT-PCR. Thus, we demonstrated that ddPCR is a reliable and sensitive method for screening the IDH mutation. Therefore, ddPCR is able to applied clinically in predicting patient prognosis and selecting effective therapeutic strategies. Our data also supported that the prognosis of Grade II and III glioma was better in patients with an IDH mutation than in those without mutation.

  18. Description of selected characteristics of familial glioma patients – Results from the Gliogene Consortium

    DEFF Research Database (Denmark)

    Sadetzki, Siegal; Bruchim, Revital; Oberman, Bernice;

    2013-01-01

    While certain inherited syndromes (e.g. Neurofibromatosis or Li-Fraumeni) are associated with an increased risk of glioma, most familial gliomas are non-syndromic. This study describes the demographic and clinical characteristics of the largest series of non-syndromic glioma families ascertained...

  19. Invasion of primary glioma- and cell line-derived spheroids implanted into corticostriatal slice cultures

    DEFF Research Database (Denmark)

    Aaberg-Jessen, Charlotte; Nørregaard, Annette; Christensen, Karina;

    2013-01-01

    Gliomas are highly invasive tumors and the pronounced invasive features of gliomas prevent radical surgical resection. In the search for new therapeutics targeting invasive glioma cells, in vivo-like in vitro models are of great interest. We developed and evaluated an in vivo-like in vitro model ...

  20. [18F]-fluoro-l-thymidine PET and advanced MRI for preoperative grading of gliomas

    Directory of Open Access Journals (Sweden)

    S. Collet

    2015-01-01

    Conclusion: Whereas advanced MRI parameters give indications for the grading of gliomas, the addition of [18F]-FLT-PET could be of interest for the accurate preoperative classification of diffuse gliomas, particularly for identification of doubtful grade III and IV gliomas.

  1. Combination hyperbaric oxygen and temozolomide therapy in c6 rat glioma model Terapia combinada de oxigênio hiperbárico e temozomida no modelo C6 de glioma em ratos

    Directory of Open Access Journals (Sweden)

    Yaşar Dagıstan

    2012-06-01

    Full Text Available PURPOSE: Temozolomide (TMZ has anti-tumor activity in patients with malignant glioma. Hyperbaric oxygen (HBO may enhance the efficacy of certain therapies that are limited because of the hypoxic tumor microenvironment. We examined the combined effects of TMZ-HBO in a rat glioma model. METHODS: After stereotactic injection of C6/LacZ rat glioma cells into the Wistar rats brain, the rats were randomly assigned to three treatment groups [group 1, control treatment; group 2, TMZ alone; group 3, a combination of TMZ and HBO]. Rats were sacrificed 18 days after treatment, and number of intra-/peri-tumoral vessels, microendothelial proliferations, immunohistochemistry and necrotic area were evaluated. RESULTS: Tumoral tissue was stained only sparsely with GFAP. Temozolomide treatment was significantly decreased in tumor tissue intratumoral vessel number / total tumor area level. The level of Ki67 was significantly decreased in the tumor tissue of the group 3. Additionally, the total necrotic area / total tumor volume (% was decreased significantly in tumor tissue of the group 3 rats compared to group1 and 2. CONCLUSION: The combination of hyperbaric oxygen with temozolomide produced an important reduction in glioma growth and effective approach to the treatment of glioblastoma.OBJETIVO: A temozolomida (TMZ tem atividade anti-tumoral em pacientes com glioma maligno. Oxigênio hiperbárico (HBO pode aumentar a eficácia de terapias que são limitadas devido a um microambiente do tumor hipóxico. Foram examinados os efeitos combinados de TMZ-HBO em um modelo de glioma em rato. MÉTODOS: Após a injeção estereotáxica de células de glioma de rato C6/LacZ no cérebro de ratos Wistar, os ratos foram distribuídos aleatoriamente em três grupos de tratamento: Grupo 1: tratamento de controle. Grupo 2: TMZ sozinho. Grupo 3: uma combinação de TMZ e HBO. Os ratos foram sacrificados 18 dias após o tratamento. Foram avaliados o número de vasos intra

  2. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    International Nuclear Information System (INIS)

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  3. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Zhang, Jing [Animal Experimental Center of Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Tang, Tian [Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Chen, Honglei [Department of Pathology and Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yue, Jiang [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Li, Ying, E-mail: lyying0@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-07-15

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  4. Combination of temozolomide and Taxol exerts a synergistic inhibitory effect on Taxol‑resistant glioma cells via inhibition of glucose metabolism.

    Science.gov (United States)

    Guan, Ding-Guo; Chen, Han-Min; Liao, Sheng-Fang; Zhao, Tian-Zhi

    2015-11-01

    Malignant gliomas, which comprise the most common type of primary malignant brain tumor, are associated with a poor prognosis and quality of life. Paclitaxel (Taxol) and temozolomide (TMZ) are Food and Drug Administration‑approved anticancer agents, which are known to have therapeutic applications in various malignancies. However, similar to other chemotherapeutic agents, the development of resistance to TMZ and Taxol is common. The aim of the present study was to investigate the regulation of glucose metabolism by TMZ and Taxol in glioma cells. The results demonstrated that glioma cells exhibit decreased glucose uptake and lactate production in response to treatment with TMZ; however, glucose metabolism was increased in response to Taxol treatment. Following analysis of TMZ‑ and Taxol‑resistant cell lines, it was reported that glucose metabolism was decreased in the TMZ‑resistant cells, but was increased in the Taxol‑resistant cells. Notably, a combination of TMZ and Taxol exerted synergistic inhibitory effects on Taxol‑resistant glioma cells. However, the synergistic phenotype was not observed following treatment with a combination of 5‑fluorouracil and Taxol. Furthermore, restoration of glucose metabolism by overexpression of glucose transporter 1 in Taxol‑resistant cells resulted in regained resistance to Taxol. Therefore, the present study proposes a novel mechanism accounting for the synergistic effects of Taxol and TMZ co‑treatment, which may contribute to the development of therapeutic strategies for overcoming chemoresistance in patients with cancer.

  5. Copper compound induces autophagy and apoptosis of glioma cells by reactive oxygen species and jnk activation

    Directory of Open Access Journals (Sweden)

    Trejo-Solís Cristina

    2012-04-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is the most aggressive of the primary brain tumors, with a grim prognosis despite intensive treatment. In the past decades, progress in research has not significantly increased overall survival rate. Methods The in vitro antineoplastic effect and mechanism of action of Casiopeina III-ia (Cas III-ia, a copper compound, on rat malignant glioma C6 cells was investigated. Results Cas III-ia significantly inhibited cell proliferation, inducing autophagy and apoptosis, which correlated with the formation of autophagic vacuoles, overexpression of LC3, Beclin 1, Atg 7, Bax and Bid proteins. A decrease was detected in the mitochondrial membrane potential and in the activity of caspase 3 and 8, together with the generation of intracellular reactive oxygen species (ROS and increased activity of c-jun NH2-terminal kinase (JNK. The presence of 3-methyladenine (as selective autophagy inhibitor increased the antineoplastic effect of Cas III-ia, while Z-VAD-FMK only showed partial protection from the antineoplastic effect induced by Cas III-ia, and ROS antioxidants (N-acetylcysteine decreased apoptosis, autophagy and JNK activity. Moreover, the JNK –specific inhibitor SP600125 prevented Cas III-ia-induced cell death. Conclusions Our data suggest that Cas III-ia induces cell death by autophagy and apoptosis, in part due to the activation of ROS –dependent JNK signaling. These findings support further studies of Cas III-ia as candidate for treatment of human malignant glioma.

  6. Topoisomerase I inhibitors, shikonin and topotecan, inhibit growth and induce apoptosis of glioma cells and glioma stem cells.

    Directory of Open Access Journals (Sweden)

    Feng-Lei Zhang

    Full Text Available Gliomas, the most malignant form of brain tumors, contain a small subpopulation of glioma stem cells (GSCs that are implicated in therapeutic resistance and tumor recurrence. Topoisomerase I inhibitors, shikonin and topotecan, play a crucial role in anti-cancer therapies. After isolated and identified the GSCs from glioma cells successfully, U251, U87, GSCs-U251 and GSCs-U87 cells were administrated with various concentrations of shikonin or topotecan at different time points to seek for the optimal administration concentration and time point. The cell viability, cell cycle and apoptosis were detected using cell counting kit-8 and flow cytometer to observe the inhibitory effects on glioma cells and GSCs. We demonstrated that shikonin and topotecan obviously inhibited proliferation of not only human glioma cells but also GSCs in a dose- and time-dependent manner. According to the IC50 values at 24 h, 2 μmol/L of shikonin and 3 μmol/L of topotecan were selected as the optimal administration concentration. In addition, shikonin and topotecan induced cell cycle arrest in G0/G1 and S phases and promoted apoptosis. The down-regulation of Bcl-2 expression with the activation of caspase 9/3-dependent pathway was involved in the apoptosis process. Therefore, the above results showed that topoisomerase I inhibitors, shikonin and topotecan, inhibited growth and induced apoptosis of GSCs as well as glioma cells, which suggested that they might be the potential anticancer agents targeting gliomas to provide a novel therapeutic strategy.

  7. Facing Contrast-Enhancing Gliomas: Perfusion MRI in Grade III and Grade IV Gliomas according to Tumor Area

    Directory of Open Access Journals (Sweden)

    Anna Luisa Di Stefano

    2014-01-01

    Full Text Available Tumoral neoangiogenesis characterizes high grade gliomas. Relative Cerebral Blood Volume (rCBV, calculated with Dynamic Susceptibility Contrast (DSC Perfusion-Weighted Imaging (PWI, allows for the estimation of vascular density over the tumor bed. The aim of the study was to characterize putative tumoral neoangiogenesis via the study of maximal rCBV with a Region of Interest (ROI approach in three tumor areas—the contrast-enhancing area, the nonenhancing tumor, and the high perfusion area on CBV map—in patients affected by contrast-enhancing glioma (grades III and IV. Twenty-one patients were included: 15 were affected by grade IV and 6 by grade III glioma. Maximal rCBV values for each patient were averaged according to glioma grade. Although rCBV from contrast-enhancement and from nonenhancing tumor areas was higher in grade IV glioma than in grade III (5.58 and 2.68; 3.01 and 2.2, resp., the differences were not significant. Instead, rCBV recorded in the high perfusion area on CBV map, independently of tumor compartment, was significantly higher in grade IV glioma than in grade III (7.51 versus 3.78, P=0.036. In conclusion, neoangiogenesis encompasses different tumor compartments and CBV maps appear capable of best characterizing the degree of neovascularization. Facing contrast-enhancing brain tumors, areas of high perfusion on CBV maps should be considered as the reference areas to be targeted for glioma grading.

  8. Histone deacetylase inhibitor, 2-propylpentanoic acid, increases the chemosensitivity and radiosensitivity of human glioma cell lines in vitro

    Institute of Scientific and Technical Information of China (English)

    SHAO Cui-jie; WU Ming-wei; CHEN Fu-rong; LI Cong; XIA Yun-fei; CHEN Zhong-ping

    2012-01-01

    Background Treatment for malignant glioma generally consists of cytoreductive surgery followed by radiotherapy and chemotherapy.In this study,we intended to investigate the effects of 2-propylpentanoic acid (VPA),a histone deacetylase inhibitor,on chemosensitivity and radiosensitivity in human glioma cell lines.Methods Human glioma cell lines,T98-G,and SF295,were treated with temozolomide (TMZ) or irradiation (IR),with or without VPA (1.0 mmol/L).Then,cytotoxicity and clonogenic survival assay was performed.Cell cycle stage,apoptosis,and autophagy were also detected using flow cytometry and dansyl monocadaverin (MDC) incorporation assay.One-way analysis of variance (ANOVA) and t-test were used to analyze the differences among variant groups.Results Mild cytotoxicity of VPA was revealed in both cell lines,T98-G and SF295,with the 50% inhibiting concentration (IC50) value of (3.85±0.58) mmol/L and (2.15±0.38) mmol/L,respectively; while the IC50 value of TMZ was (0.20±0.09) mmol/L for T98-G and (0.08±0.02) mmol/L for SF295.Moreover,if combined with VPA (1.0 mmol/L) for 96hours,the sensitivity of glioma cells to TMZ was significant increased (P <0.05).The surviving fractions at 2 Gy (SF2) of T98-G and SF295 cells exposed to IR alone were 0.52 and 0.58.However,when VPA was combined with IR,the SF2 of T98-G and SF295 dropped to 0.39 (P=0.047) and 0.49 (P=-0.049),respectively.Treatment with VPA plus TMZ or IR also resulted in a significant decrease in the proportion of cells in the G2 phase and increased apoptotic rates as well as autophagy in T98-G and SF295 cell lines (P <0.01).Conclusion VPA may enhance the activities of TMZ and IR on glioma cells possibly through cell cycle block and promote autophagy,and thus could be a potential sensitizer of glioma treatment.

  9. Metabolic impact of anti-angiogenic agents on U87 glioma cells.

    Directory of Open Access Journals (Sweden)

    Tanja Mesti

    Full Text Available BACKGROUND: Glioma cells not only secrete high levels of vascular endothelial growth factor (VEGF but also express VEGF receptors (VEGFR, supporting the existence of an autocrine loop. The direct impact on glioma cells metabolism of drugs targeting the VEGF pathway, such as Bevacizumab (Bev or VEGFR Tyrosine Kinase Inhibitor (TKI, is poorly known. MATERIAL AND METHODS: U87 cells were treated with Bev or SU1498, a selective VEGFR2 TKI. VEGFR expression was checked with FACS flow cytometry and Quantitative Real-Time PCR. VEGF secretion into the medium was assessed with an ELISA kit. Metabolomic studies on cells were performed using High Resolution Magic Angle Spinning Spectroscopy (HR-MAS. RESULTS: U87 cells secreted VEGF and expressed low level of VEGFR2, but no detectable VEGFR1. Exposure to SU1498, but not Bev, significantly impacted cell proliferation and apoptosis. Metabolomic studies with HR MAS showed that Bev had no significant effect on cell metabolism, while SU1498 induced a marked increase in lipids and a decrease in glycerophosphocholine. Accordingly, accumulation of lipid droplets was seen in the cytoplasm of SU1498-treated U87 cells. CONCLUSION: Although both drugs target the VEGF pathway, only SU1498 showed a clear impact on cell proliferation, cell morphology and metabolism. Bevacizumab is thus less likely to modify glioma cells phenotype due to a direct therapeutic pressure on the VEGF autocrine loop. In patients treated with VEGFR TKI, monitoring lipids with magnetic resonance spectroscopic (MRS might be a valuable marker to assess drug cytotoxicity.

  10. Dynamics of central and peripheral immunomodulation in a murine glioma model

    Directory of Open Access Journals (Sweden)

    Anderson Richard CE

    2009-02-01

    Full Text Available Abstract Background Immunosuppression by gliomas contributes to tumor progression and treatment resistance. It is not known when immunosuppression occurs during tumor development but it likely involves cross-talk among tumor cells, tumor-associated macrophages and microglia (TAMs, and peripheral as well as tumor-infiltrating lymphocytes (TILs. Results We have performed a kinetic study of this immunomodulation, assessing the dynamics of immune infiltration and function, within the central nervous system (CNS and peripherally. PDGF-driven murine glioma cells were injected into the white matter of 13 mice. Four mice were sacrificed 13 days post-injection (dpi, four mice at 26 dpi, and five mice at 40 dpi. Using multiparameter flow cytometry, splenic T cells were assessed for FoxP3 expression to identify regulatory T cells (Tregs and production of IFN-γ and IL-10 after stimulation with PMA/ionomycin; within the CNS, CD4+ TILs were quantified, and TAMs were quantified and assessed for TNF-α and IL-10 production after stimulation with LPS. Peripheral changes associated with tumor development were noted prior to effects within the CNS. The percentage of FoxP3+ regulatory T cells (Tregs increased by day 26, with elevated frequencies throughout the duration of the study. This early increase in Tregs was paralleled by an increase in IL-10 production from Tregs. At the final time points examined (tumor morbidity or 40 dpi, there was an increase in the frequency of TAMs with decreased capacity to secrete TNF-α. An increase in TIL frequency was also observed at these final time points. Conclusion These data provide insight into the kinetics of the immunosuppressive state associated with tumor growth in a murine model of human gliomas. Functional impairment of TAMs occurs relatively late in the course of GBM tumor growth, potentially providing a window of opportunity for therapeutic strategies directed towards preventing their functional impairment.

  11. MicroRNA-130b promotes cell proliferation and invasion by inhibiting peroxisome proliferator-activated receptor-γ in human glioma cells.

    Science.gov (United States)

    Gu, Jian-Jun; Zhang, Jian-He; Chen, Hong-Jie; Wang, Shou-Sen

    2016-06-01

    MicroRNA-130b (miR-130b) is a novel tumor-related miRNA that has been found to be involved in several biological processes. However, there is limited evidence regarding the role of miR-130b in the tumorigenesis of human gliomas. In the present study, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays were used to quantify miR-130b expression levels in human glioma tissues and glioma cell lines (U251, U87, SNB19 and LN229). The expression level of miR-130b was found to be markedly higher in human glioma tissues than in non‑neoplastic brain specimens. Specifically, higher expression levels of miR‑130b were observed in the glioma cell lines, compared with those in normal human astrocytes (NHA). We also confirmed that miR‑130b interacted with the 3'-untranslated region of peroxisome proliferator‑activated receptor-γ (PPAR‑γ), which negatively affected the protein levels of E-cadherin. Furthermore, its effects on cell proliferation and invasion were examined using CCK8, colony formation, cell cycle and Transwell assays. We found that the upregulation of miR-130b induced cell proliferation, decreased the percentage of cells in the G0/G1 phase and enhanced the invasiveness of U251 glioma cells whereas the downregulation of miR-130b exerted opposing effects. Moreover, it was demonstrated that the downregulation of miR‑130b in U251 glioma cells restored the expression of PPAR-γ and E-cadherin, and inhibited the expression of β-catenin. Notably, PPAR-γ knockdown abolished the inhibitory effect of miR-130b inhibitor on the proliferation and invasivness of U251 cells. Taken together, these findings suggest that miR‑130b promotes the proliferation and invasion of U251 glioma cells by inhibiting PPAR-γ.

  12. The miR-204-3p-targeted IGFBP2 pathway is involved in xanthohumol-induced glioma cell apoptotic death.

    Science.gov (United States)

    Chen, Peng-Hsu; Chang, Cheng-Kuei; Shih, Chwen-Ming; Cheng, Chia-Hsiung; Lin, Cheng-Wei; Lee, Chin-Cheng; Liu, Ann-Jeng; Ho, Kuo-Hao; Chen, Ku-Chung

    2016-11-01

    Xanthohumol (XN), a prenylated chalcone extracted from hop plant Humulus lupulus L. (Cannabaceae), has potential for cancer therapy, including gliomas. Micro (mi)RNAs are small noncoding RNAs that control gene expression. Several miRNAs have been identified to participate in regulating glioma development. However, no studies have demonstrated whether miRNA is involved in XN cytotoxicity resulting in glioma cell death. This study investigated the effects of XN-mediated miRNA expression in activating apoptotic pathways in glioblastoma U87 MG cells. First, we found that XN significantly reduced cell viability and induced apoptosis via pro-caspase-3/8 cleavage and poly(ADP ribose) polymerase (PARP) degradation. We also identified that pro-caspase-9 cleavage, Bcl2 family expression changes, mitochondrial dysfunction, and intracellular ROS generation also participated in XN-induced glioma cell death. With a microarray analysis, miR-204-3p was identified as the most upregulated miRNA induced by XN cytotoxicity. The extracellular signal-regulated kinase (ERK)/c-Fos pathway was validated to participate in XN-upregulated miR-204-3p expression. With a promoter assay and ChIP analysis, we found that c-Fos dose-dependently bound to the miR-204-3p gene promoter region. Furthermore, miR-204-3p levels decreased in several glioma cell lines compared to astrocytes. Overexpression of miR-204-3p enhanced glioma cell apoptosis. IGFBP2, an upregulated regulator of glioma proliferation, was validated by a TCGA analysis as a direct target gene of miR-204-3p. XN's inhibition of the IGFBP2/AKT/Bcl2 pathway via miR-204-3p targeting played a critical role in mediating glioma cell death. These results emphasized that the XN-mediated miR-204-3p network may provide novel therapeutic strategies for future glioblastoma therapy and drug development.

  13. Impact of Temozolomide on Immune Response during Malignant Glioma Chemotherapy

    Directory of Open Access Journals (Sweden)

    Sadhak Sengupta

    2012-01-01

    Full Text Available Malignant glioma, or glioblastoma, is the most common and lethal form of brain tumor with a median survival time of 15 months. The established therapeutic regimen includes a tripartite therapy of surgical resection followed by radiation and temozolomide (TMZ chemotherapy, concurrently with radiation and then as an adjuvant. TMZ, a DNA alkylating agent, is the most successful antiglioma drug and has added several months to the life expectancy of malignant glioma patients. However, TMZ is also responsible for inducing lymphopenia and myelosuppression in malignant glioma patients undergoing chemotherapy. Although TMZ-induced lymphopenia has been attributed to facilitate antitumor vaccination studies by inducing passive immune response, in general lymphopenic conditions have been associated with poor immune surveillance leading to opportunistic infections in glioma patients, as well as disrupting active antiglioma immune response by depleting both T and NK cells. Deletion of O6-methylguanine-DNA-methyltransferase (MGMT activity, a DNA repair enzyme, by temozolomide has been determined to be the cause of lymphopenia. Drug-resistant mutation of the MGMT protein has been shown to render chemoprotection against TMZ. The immune modulating role of TMZ during glioma chemotherapy and possible mechanisms to establish a strong TMZ-resistant immune response have been discussed.

  14. Possible novel therapy for malignant gliomas with secretable trimeric TRAIL.

    Directory of Open Access Journals (Sweden)

    Moonsup Jeong

    Full Text Available Malignant gliomas are the most common primary brain tumors. Despite intensive clinical investigation and many novel therapeutic approaches, average survival for the patients with malignant gliomas is only about 1 year. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL has shown potent and cancer-selective killing activity and drawn considerable attention as a promising therapy for cancers, but concerns over delivery and toxicity have limited progress. We have developed a secretable trimeric TRAIL (stTRAIL and here evaluated the therapeutic potential of this stTRAIL-based gene therapy in brain tumors. An adenovirus (Ad-stTRAIL delivering stTRAIL was injected into intra-cranial human glioma tumors established in nude mice and tumor growth monitored using the magnetic resonance imaging (MRI. Ad-stTRAIL gene therapy showed potent tumor suppressor activity with no toxic side effects at therapeutically effective doses. When compared with 1, 3-bis(2-chloroethyl-1-nitrosourea (BCNU, a conventional therapy for malignant gliomas, Ad-stTRAIL suppressed tumor growth more potently. The combination of Ad-stTRAIL and BCNU significantly increased survival compared to the control mice or mice receiving Ad-stTRAIL alone. Our data indicate that Ad-stTRAIL, either alone or combined with BCNU, has promise as a novel therapy for malignant gliomas.

  15. Targeting the erythropoietin receptor on glioma cells reduces tumour growth

    International Nuclear Information System (INIS)

    Hypoxia has been shown to be one of the major events involved in EPO expression. Accordingly, EPO might be expressed by cerebral neoplastic cells, especially in glioblastoma, known to be highly hypoxic tumours. The expression of EPOR has been described in glioma cells. However, data from the literature remain descriptive and controversial. On the basis of an endogenous source of EPO in the brain, we have focused on a potential role of EPOR in brain tumour growth. In the present study, with complementary approaches to target EPO/EPOR signalling, we demonstrate the presence of a functional EPO/EPOR system on glioma cells leading to the activation of the ERK pathway. This EPO/EPOR system is involved in glioma cell proliferation in vitro. In vivo, we show that the down-regulation of EPOR expression on glioma cells reduces tumour growth and enhances animal survival. Our results support the hypothesis that EPOR signalling in tumour cells is involved in the control of glioma growth.

  16. Targeting the erythropoietin receptor on glioma cells reduces tumour growth

    Energy Technology Data Exchange (ETDEWEB)

    Peres, Elodie A.; Valable, Samuel [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Guillamo, Jean-Sebastien [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Departement de Neurologie, CHU de Caen (France); Marteau, Lena [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Bernaudin, Jean-Francois [Service d' Histologie-Biologie Tumorale, ER2UPMC, Universite Paris 6, Hopital Tenon, Paris (France); Roussel, Simon [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Lechapt-Zalcman, Emmanuele [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Service d' Anatomie Pathologique, CHU de Caen (France); Bernaudin, Myriam [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Petit, Edwige, E-mail: epetit@cyceron.fr [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France)

    2011-10-01

    Hypoxia has been shown to be one of the major events involved in EPO expression. Accordingly, EPO might be expressed by cerebral neoplastic cells, especially in glioblastoma, known to be highly hypoxic tumours. The expression of EPOR has been described in glioma cells. However, data from the literature remain descriptive and controversial. On the basis of an endogenous source of EPO in the brain, we have focused on a potential role of EPOR in brain tumour growth. In the present study, with complementary approaches to target EPO/EPOR signalling, we demonstrate the presence of a functional EPO/EPOR system on glioma cells leading to the activation of the ERK pathway. This EPO/EPOR system is involved in glioma cell proliferation in vitro. In vivo, we show that the down-regulation of EPOR expression on glioma cells reduces tumour growth and enhances animal survival. Our results support the hypothesis that EPOR signalling in tumour cells is involved in the control of glioma growth.

  17. Concurrent thermochemoradiotherapy for brain high-grade glioma

    Science.gov (United States)

    Ryabova, A. I.; Novikov, V. A.; Choinzonov, E. L.; Gribova, O. V.; Startseva, Zh. A.; Bober, E. E.; Frolova, I. G.; Baranova, A. V.

    2016-08-01

    Despite the achievements in the current strategies for treatment, the prognosis in malignant glioma patients remains unsatisfactory. Hyperthermia is currently considered to be the most effective and universal modifier of radiotherapy and chemotherapy. Preliminary treatment outcomes for 28 patients with newly diagnosed (23) and recurrent (5) high-grade gliomas were presented. All the patients received multimodality treatment including surgery, thermoche-moradiotherapy followed by 4 cycles of adjuvant chemotherapy. All the patients endured thermochemoradiotherapy well. A complication, limited skin burn (II stage), was diagnosed in two cases and treated conservatively without treatment interruption. A month after thermochemoradiotherapy the results were as follows: complete regression was achieved in 4 cases, partial regression in 4 cases, stable disease in 14 cases and disease progression in 6 cases (one of them is pseudo-progression). After completing the adjuvant chemotherapy 2 more patients demonstrated complete response and 1 patient had disease progression. Introduction of local hyperthermia in multimodal therapy of malignant glioma does not impair the combined modality treatment tolerability of patients with malignant gliomas. A small number of studied patients and short follow-up time do not allow making reliable conclusions about the impact of local hyperthermia on the treatment outcomes; however, there is a tendency towards the increase in disease-free survival in the patients with newly diagnosed malignant gliomas.

  18. The rise and fall of "biopsy and radiate": a history of surgical nihilism in glioma treatment.

    Science.gov (United States)

    Han, Seunggu J; Sughrue, Michael E

    2012-04-01

    Many neurosurgeons take a nihilistic approach to surgical treatment of gliomas, stating the inability to achieve a cure. Where this idea comes from is somewhat nebulous to most neurosurgeons. A review of the scientific studies supporting the commonly held beliefs about gliomas shows that these ideas regarding the surgical treatment of gliomas are based on overgeneralizations of data from older studies. One should avoid the temptation to apply them to the greater concept of what gliomas are, how they behave, and what should be done, but rather we should continue to scientifically evaluate the role of surgical resection in glioma treatment. PMID:22440864

  19. Relapse of herpes encephalitis induced by temozolomide-based chemoradiation in a patient with malignant glioma.

    Science.gov (United States)

    Okada, Masaki; Miyake, Keisuke; Shinomiya, Aya; Kawai, Nobuyuki; Tamiya, Takashi

    2013-02-01

    The authors report on a case of concurrent herpes simplex encephalitis (HSE) and malignant glioma. The co-occurrence of HSE and malignant glioma is very rare, but it can occur during glioma treatment. Both radiotherapy and chemoradiation with temozolomide can induce viral reactivation, leading to HSE relapse. Careful observation for HSE is necessary when administering chemoradiation to patients with a history of HSE. Antiviral therapy for HSE must be initiated immediately, and the chemoradiation for glioma should be stopped; however, it is not clear what antitumor therapy is optimal when HSE co-occurs during the treatment of glioma.

  20. RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas

    OpenAIRE

    Bao, Zhao-Shi; Chen, Hui-min; Yang, Ming-Yu; Zhang, Chuan-Bao; Yu, Kai; Ye, Wan-Lu; Hu, Bo-Qiang; Yan, Wei; Zhang, Wei; Akers, Johnny; Ramakrishnan, Valya; Li, Jie; Carter, Bob; Liu, Yan-Wei; HU, HUI-MIN

    2014-01-01

    Studies of gene rearrangements and the consequent oncogenic fusion proteins have laid the foundation for targeted cancer therapy. To identify oncogenic fusions associated with glioma progression, we catalogued fusion transcripts by RNA-seq of 272 gliomas. Fusion transcripts were more frequently found in high-grade gliomas, in the classical subtype of gliomas, and in gliomas treated with radiation/temozolomide. Sixty-seven in-frame fusion transcripts were identified, including three recurrent ...

  1. Diffusion tensor imaging and chemical shift imaging assessment of heterogeneity in low grade glioma under temozolomide chemotherapy.

    Science.gov (United States)

    Sijens, P E; Heesters, M A A M; Enting, R H; van der Graaf, W T A; Potze, J H; Irwan, R; Meiners, L C; Oudkerk, M

    2007-12-01

    Diffusion tensor imaging and multiple voxel magnetic resonance spectroscopy were performed in the MRI follow-up of a patient with a glioma treated with temozolomide chemotherapy. Tumor shrinkage was paralleled by reductions in choline level and by increases in apparent diffusion coefficient indicating decreased cellularity. Within the tumor, choline level and apparent diffusion coefficient showed a significant inverse correlation (P < 0.01). Fractional anisotropy distribution in the tumor correlated positively with N-acetyl aspartate level (P < 0.001), indicating that these parameters reflect (remaining) axonal structure. Tumor lactate level, also found to decrease under therapy, did not correlate with any other parameter.

  2. Glioma-initiating cells and molecular pathology: implications for therapy.

    Science.gov (United States)

    Natsume, Atsushi; Kinjo, Sayano; Yuki, Kanako; Kato, Takenori; Ohno, Masasuke; Motomura, Kazuya; Iwami, Kenichiro; Wakabayashi, Toshihiko

    2011-02-01

    There is now compelling evidence that gliomas harbor a small population of cells, termed glioma-initiating cells (GICs), characterized by their ability to undergo self-renewal and initiate tumorigenesis. The development of therapeutic strategies targeted toward GIC signaling may improve the treatment of malignant gliomas. The characterization of GICs provides a clue to elucidating histological heterogeneity and treatment failure. The role of the stem cell marker CD133 in the initiation and progression of brain tumors is still uncertain. Here, we review some of the signaling mechanisms involved in GIC biology, such as phosphatase and tensin homolog (PTEN), sonic hedgehog, Notch, and WNT signaling pathways, maternal embryonic leucine-zipper kinase (MELK), BMI1, and Janus kinase signal transducer and activator of transcription (JAK-STAT) signaling. In addition, we discuss the role of microRNAs in GICs by focusing on microRNA-21 regulation by type I interferon.

  3. Targeting autophagy to sensitive glioma to temozolomide treatment.

    Science.gov (United States)

    Yan, Yuanliang; Xu, Zhijie; Dai, Shuang; Qian, Long; Sun, Lunquan; Gong, Zhicheng

    2016-02-02

    Temozolomide (TMZ), an alkylating agent, is widely used for treating primary and recurrent high-grade gliomas. However, the efficacy of TMZ is often limited by the development of resistance. Recently, studies have found that TMZ treatment could induce autophagy, which contributes to therapy resistance in glioma. To enhance the benefit of TMZ in the treatment of glioblastomas, effective combination strategies are needed to sensitize glioblastoma cells to TMZ. In this regard, as autophagy could promote cell survival or autophagic cell death, modulating autophagy using a pharmacological inhibitor, such as chloroquine, or an inducer, such as rapamycin, has received considerably more attention. To understand the effectiveness of regulating autophagy in glioblastoma treatment, this review summarizes reports on glioblastoma treatments with TMZ and autophagic modulators from in vitro and in vivo studies, as well as clinical trials. Additionally, we discuss the possibility of using autophagy regulatory compounds that can sensitive TMZ treatment as a chemotherapy for glioma treatment.

  4. MR imaging of optic chiasmatic glioma

    International Nuclear Information System (INIS)

    To evaluate the MR findings of optic chiasmatic glioma (OCG). MR images were reviewed in 14 patients with histologically proven OCGs and one with neurofibromatosis type 1 (male: female=8:7, mean age=8.5 years.) Tumors were evaluated retrospectively with respect to their size, involvement of the optic pathway, transverse/vertical diameter ratio based on the coronal plane, signal intensities, enhancement pattern, and the presence of a cyst or calcification. Tumors was measured 1.7-5.5 (mean, 3.3) cm in maximum diameter. In ten patients, the optic tracts were involved, and in three, the optic nerves. In 12 patients, tumors had a transverse/vertical diameter ratio of over one, and showed iso (n=5) or low signal intensity (n=10) compared with gray matter at T1-weighted imaging and high signal intensity (n=15) at T2-weighted imaging. Cyst formations were ween in eight patients, and tumors were enhanced strongly and homogeneously in nine and peripherally in four. In seven three was associated hydrocephalus, and in one, calcification. OCG is a suprasellar tumor which can extend into the optic pathway, has a transverse/vertical diameter ratio of more than one, and shows strong and homogeneous enhancement. These MR imaging findings are useful for the differentiation of OCG from other suprasellar tumors

  5. Epigenetic aberrations and therapeutic implications in gliomas.

    Science.gov (United States)

    Natsume, Atsushi; Kondo, Yutaka; Ito, Motokazu; Motomura, Kazuya; Wakabayashi, Toshihiko; Yoshida, Jun

    2010-06-01

    Almost all cancer cells have multiple epigenetic abnormalities, which combine with genetic changes to affect many cellular processes, including cell proliferation and invasion, by silencing tumor-suppressor genes. In this review, we focus on the epigenetic mechanisms of DNA hypomethylation and CpG island hypermethylation in gliomas. Aberrant hypermethylation in promoter CpG islands has been recognized as a key mechanism involved in the silencing of cancer-associated genes and occurs at genes with diverse functions related to tumorigenesis and tumor progression. Such promoter hypermethylation can modulate the sensitivity of glioblastomas to drugs and radiotherapy. As an example, the methylation of the O6-methylguanine DNA methyltransferase (MGMT) promoter is a specific predictive biomarker of tumor responsiveness to chemotherapy with alkylating agents. Further, we reviewed reports on pyrosequencing - a simple technique for the accurate and quantitative analysis of DNA methylation. We believe that the quantification of MGMT methylation by pyrosequencing might enable the selection of patients who are most likely to benefit from chemotherapy. Finally, we also evaluated the potential of de novo NY-ESO-1, the most immunogenic cancer/testis antigen (CTA) discovered thus far, as an immunotherapy target. The use of potent epigenetics-based therapy for cancer cells might restore the abnormally regulated epigenomes to a more normal state through epigenetic reprogramming. Thus, epigenetic therapy may be a promising and potent treatment for human neoplasia.

  6. MR imaging of optic chiasmatic glioma

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Sook; Lee, Ho Kyu; Kim, Hyun Jin; Ryu, Meung Sun; Goo, Hyun Woo; Yoon, Chong Hyun; Choi, Choong Gon; Suh, Dae Chul; Ra, Young Shin; Khang, Shin Kwang [University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2002-08-01

    To evaluate the MR findings of optic chiasmatic glioma (OCG). MR images were reviewed in 14 patients with histologically proven OCGs and one with neurofibromatosis type 1 (male: female=8:7, mean age=8.5 years.) Tumors were evaluated retrospectively with respect to their size, involvement of the optic pathway, transverse/vertical diameter ratio based on the coronal plane, signal intensities, enhancement pattern, and the presence of a cyst or calcification. Tumors was measured 1.7-5.5 (mean, 3.3) cm in maximum diameter. In ten patients, the optic tracts were involved, and in three, the optic nerves. In 12 patients, tumors had a transverse/vertical diameter ratio of over one, and showed iso (n=5) or low signal intensity (n=10) compared with gray matter at T1-weighted imaging and high signal intensity (n=15) at T2-weighted imaging. Cyst formations were ween in eight patients, and tumors were enhanced strongly and homogeneously in nine and peripherally in four. In seven three was associated hydrocephalus, and in one, calcification. OCG is a suprasellar tumor which can extend into the optic pathway, has a transverse/vertical diameter ratio of more than one, and shows strong and homogeneous enhancement. These MR imaging findings are useful for the differentiation of OCG from other suprasellar tumors.

  7. Presence of neural progenitors in spontaneous canine gliomas: A histopathological and immunohistochemical study of 20 cases.

    Science.gov (United States)

    Fernández, Francisco; Deviers, Alexandra; Dally, Claire; Mogicato, Giovanni; Delverdier, Maxence; Cauzinille, Laurent; Gnirs, Kirsten; Añor, Sònia; de la Fuente, Cristian; Fondevila, Dolors; Pumarola, Martí

    2016-03-01

    Gliomas are the most common primary brain tumours in humans and are associated with a poor prognosis. An accurate animal model of human glioma tumorigenesis is needed to test new treatment strategies. Dogs represent a promising model because they develop spontaneous diffusely-infiltrating gliomas. This study investigated whether spontaneous canine gliomas contain cancer stem cells previously identified in all grades of human gliomas. Twenty spontaneous cases of canine gliomas were graded according to the human WHO classification. The expression of different markers of lineage differentiation was evaluated with immunohistochemistry as follows: nestin and CD133 for neural stem cells, doublecortin for neuronal progenitor cells, Olig2 for glial progenitor cells, glial fibrillary acidic protein, vimentin and S-100 for mature glial cells, and NeuN and βIII-tubulin for mature neurons. Gliomas were characterised as follows: five grade II (oligodendrogliomas); nine grade III (seven anaplastic oligodendrogliomas, one anaplastic astrocytoma, one anaplastic oligoastrocytoma); six grade IV (glioblastomas). Immunohistochemical evaluation revealed that (1) nestin and CD133 were expressed in all grades of gliomas with a higher proportion of positive cells in high-grade gliomas; (2) the expression of S-100 protein and Olig2 did not differ substantially between astrocytic and oligodendroglial tumours, and (3) all gliomas were negative for mature neuron markers. The results demonstrated the presence of undifferentiated neural progenitors in all grades of spontaneous canine gliomas, confirming the relevance of this animal model for further studies on cancer stem cells. PMID:26831167

  8. Upregulation of p-Smad2 contributes to FAT10-induced oncogenic activities in glioma.

    Science.gov (United States)

    Dai, Bin; Zhang, Yisong; Zhang, Peng; Pan, Changcun; Xu, Cheng; Wan, Weiqing; Wu, Zhen; Zhang, Junting; Zhang, Liwei

    2016-07-01

    The human leukocyte antigen f-associated transcript 10 (FAT10) has a similar structure and function with ubiquitin, which efficiently mediate proteasome degradation in an ubiquitin-independent manner. FAT10 expression is upregulated in many tumor tissues and plays a vital role in cell cycle regulation and tumor genesis. However, its role in glioma has not been illuminated. The aim of this study was to evaluate the prognostic value of FAT10 and investigate its functional roles in glioma. The expression of FAT10 in glioma patient samples was examined using quantitative real-time reverse-transcriptase polymerase chain reaction (qRT-PCR), Western blotting and immunohistochemistry methods. Glioma cell lines with either FAT10 overexpression or knockdown were created. The effect of FAT10 on glioma cell migration and invasion was investigated using these cells. In the present study, we had shown that FAT10 was elevated significantly in glioma samples and correlated with tumor pathological grade. FAT10 high-expression glioma is associated with a poor clinical prognosis. Overexpression of FAT10 promoted proliferation, invasion, migration, and sphere formation of glioma cells, whereas downregulation of FAT10 had an opposite effect. Overexpression of FAT10 also promoted the growth of glioma cells in vivo. Moreover, FAT10 enhanced the phosphorylation of Smad2, which contributes to FAT10-induced oncogenic activities in glioma. In conclusion, these findings indicate that FAT10 is a critical regulator potential therapeutic target of glioma. PMID:26733179

  9. Progress of temozolomide in the treatment of recurrent high-grade gliomas

    Directory of Open Access Journals (Sweden)

    LI Jin-duo

    2013-12-01

    Full Text Available High-grade gliomas are central nervous system malignancies which are difficult to treat. Surgery, temozolomide combined with radiotherapy postoperatively and adjuvant chemotherapy with temozolomide have been established as the standard treatment options for high-grade gliomas. Nevertheless, the prognosis of patients with high-grade gliomas remains poor. At present, there is no standard therapy for recurrent or relapsed high-grade gliomas. Temozolomide is still an effective drug for the treatment of recurrent high-grade gliomas. According to the characteristics of patients, there have been many kinds of temozolomide administration and other treatments in combination. Individual therapy were paid more attention, so that the patients with high-grade gliomas recurrence could get greater survival benefit. This paper aims to introduce the progress of temozolomide in the treatment of recurrent high-grade gliomas in recent years.

  10. Expression of FOXG1 is associated with the malignancy of human glioma

    Institute of Scientific and Technical Information of China (English)

    Zhiwei Shao; Beibei Cong; Aihua Sui; Kai Meng; Yihe Dou

    2014-01-01

    Objective: Recent evidence indicates that the increased expression of FOXG1 is associated with tumor genesis. This study was designed to explore the expression and role which FOXG1 plays in human glioma. Methods: We detected the expression of FOXG1 by immunohistochemistry in glioma tissue samples. Fol owing the down-regulation of FOXG1 in glioma cel lines by a specific short hairpin RNA, the function of FOXG1 in proliferation and apoptosis was assessed. Results:Glioma tissues exhibited notably higher expression of FOXG1 compared with control brain tissues and was positively corre-lated with histological malignancy. The down-regulation of FOXG1 in glioma cel s led to a cel apoptosis in vitro. Conclusion:The overexpression of FOXG1 is a novel glioma malignancy marker, and FOXG1 may be used as a new target in therapeutic strategies for human glioma.

  11. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  12. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    International Nuclear Information System (INIS)

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK

  13. Superoxide mediates direct current electric field-induced directional migration of glioma cells through the activation of AKT and ERK.

    Directory of Open Access Journals (Sweden)

    Fei Li

    Full Text Available Direct current electric fields (DCEFs can induce directional migration for many cell types through activation of intracellular signaling pathways. However, the mechanisms that bridge extracellular electrical stimulation with intracellular signaling remain largely unknown. In the current study, we found that a DCEF can induce the directional migration of U87, C6 and U251 glioma cells to the cathode and stimulate the production of hydrogen peroxide and superoxide. Subsequent studies demonstrated that the electrotaxis of glioma cells were abolished by the superoxide inhibitor N-acetyl-l-cysteine (NAC or overexpression of mitochondrial superoxide dismutase (MnSOD, but was not affected by inhibition of hydrogen peroxide through the overexpression of catalase. Furthermore, we found that the presence of NAC, as well as the overexpression of MnSOD, could almost completely abolish the activation of Akt, extracellular-signal-regulated kinase (Erk1/2, c-Jun N-terminal kinase (JNK, and p38, although only JNK and p38 were affected by overexpression of catalase. The presenting of specific inhibitors can decrease the activation of Erk1/2 or Akt as well as the directional migration of glioma cells. Collectively, our data demonstrate that superoxide may play a critical role in DCEF-induced directional migration of glioma cells through the regulation of Akt and Erk1/2 activation. This study provides novel evidence that the superoxide is at least one of the "bridges" coupling the extracellular electric stimulation to the intracellular signals during DCEF-mediated cell directional migration.

  14. Glioma Stem Cells but Not Bulk Glioma Cells Upregulate IL-6 Secretion in Microglia/Brain Macrophages via Toll-like Receptor 4 Signaling.

    Science.gov (United States)

    a Dzaye, Omar Dildar; Hu, Feng; Derkow, Katja; Haage, Verena; Euskirchen, Philipp; Harms, Christoph; Lehnardt, Seija; Synowitz, Michael; Wolf, Susanne A; Kettenmann, Helmut

    2016-05-01

    Peripheral macrophages and resident microglia constitute the dominant glioma-infiltrating cells. The tumor induces an immunosuppressive and tumor-supportive phenotype in these glioma-associated microglia/brain macrophages (GAMs). A subpopulation of glioma cells acts as glioma stem cells (GSCs). We explored the interaction between GSCs and GAMs. Using CD133 as a marker of stemness, we enriched for or deprived the mouse glioma cell line GL261 of GSCs by fluorescence-activated cell sorting (FACS). Over the same period of time, 100 CD133(+ )GSCs had the capacity to form a tumor of comparable size to the ones formed by 10,000 CD133(-) GL261 cells. In IL-6(-/-) mice, only tumors formed by CD133(+ )cells were smaller compared with wild type. After stimulation of primary cultured microglia with medium from CD133-enriched GL261 glioma cells, we observed an selective upregulation in microglial IL-6 secretion dependent on Toll-like receptor (TLR) 4. Our results show that GSCs, but not the bulk glioma cells, initiate microglial IL-6 secretion via TLR4 signaling and that IL-6 regulates glioma growth by supporting GSCs. Using human glioma tissue, we could confirm the finding that GAMs are the major source of IL-6 in the tumor context.

  15. IgE, Allergy, and Risk of Glioma: Update from the San Francisco Bay Area Adult Glioma Study in the Temozolomide Era

    OpenAIRE

    Wiemels, Joseph L.; Wilson, David; Patel, Chirag; Patoka, Joseph; McCoy, Lucie; Rice, Terri; Schwartzbaum, Judith; Heimberger, Amy; Sampson, John H; Chang, Susan; Prados, Michael; Wiencke, John K.; Wrensch, Margaret

    2009-01-01

    The consistently observed inverse relationship of allergic conditions with glioma risk and our previous demonstration that IgE levels also were lower in glioma patients than controls suggest that atopic allergy may be related to a mechanism that inhibits or prevents glioma. We sought to extend these results with a new and larger series of patients (n=535 with questionnaire data; 393 with IgE measures) and controls (n=532 with questionnaire data; 470 with IgE measures). As expected, glioma cas...

  16. Molecular biology of gliomas: present and future challenges.

    Science.gov (United States)

    Altieri, R; Agnoletti, A; Quattrucci, F; Garbossa, D; Calamo Specchia, F M; Bozzaro, M; Fornaro, R; Mencarani, C; Lanotte, M; Spaziante, R; Ducati, A

    2014-09-01

    Malignant brain tumours are one of the most relevant causes of morbidity and mortality across a wide range of individuals. Malignant glioma is the most common intra axial tumor in the adult. Many researches on this theme brought advances in the knowledge of gliomas biology and pathogenesis and to the development of new agents for targeted molecular therapy. Recent studies focused on either tumor metabolism analysis or epigenetic regulation in the pathogenesis or maintenance of brain tumors. This Review summarizes these developments analyzing molecular pathology and possible further developments for targeted therapies.

  17. Brain Mitochondrial Lipid Abnormalities in Mice Susceptible to Spontaneous Gliomas

    OpenAIRE

    Kiebish, M.A.; Han, X; Cheng, H; Chuang, J H; Seyfried, T N

    2008-01-01

    Alterations in mitochondrial function have long been considered a hallmark of cancer. We compared the lipidome and electron transport chain activities of non-synaptic brain mitochondria in two inbred mouse strains, the C57BL/6J (B6) and the VM/Dk (VM). The VM strain is unique in expressing a high incidence of spontaneous brain tumors (1.5%) that are mostly gliomas. The incidence of gliomas is about 210-fold greater in VM mice than in B6 mice. Using shotgun lipidomics, we found that the mitoch...

  18. Targetting hypoxia in gliomas: From mathematics to bedside.

    OpenAIRE

    Martínez González, Alicia

    2014-01-01

    Esta Tesis explora la utilización de modelos matemáticos como herramientas para ayudar a entender la complejidad de los tumores y su entorno. El estudio presta especial atención a los gliomas, que son tumores cerebrales primarios, originados por células de la glia: astrocitos u oligodendrocitos. Estos tumores abarcan desde los astrocitomas de bajo grado, como el astrocitoma difuso, de crecimiento lento, a los gliomas de más alto grado, como el más maligno y de más incidencia: el glioblastoma ...

  19. Epigenetic biomarkers of T-cells in human glioma

    OpenAIRE

    Wiencke, John K.; Accomando, William P.; Zheng, Shichun; Patoka, Joe; Dou, Xiaoqin; Phillips, Joanna J.; Hsuang, George; Christensen, Brock C.; Houseman, E. Andres; Koestler, Devin C; Bracci, Paige; Wiemels, Joseph L.; Wrensch, Margaret; Nelson, Heather H.; Kelsey, Karl T.

    2012-01-01

    Immune factors are thought to influence glioma risk and outcomes, but immune profiling studies to further our understanding of the immune response are limited by current immunodiagnostic methods. We developed a new assay to capture glioma immune biology based on quantitative methylation specific PCR (qMSP) of two T-cell genes (CD3Z: T-cells, and FOXP3: Tregs). Flow cytometry of T-cells correlated well with the CD3Z demethylation assay (r = 0.93; p < 2.2 × 10−16), demonstrating the validity of...

  20. The functional role of Notch signaling in human gliomas

    DEFF Research Database (Denmark)

    Stockhausen, Marie-Thérése; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2010-01-01

    have been referred to as brain cancer stem cells (bCSC), as they share similarities to normal neural stem cells in the brain. The Notch signaling pathway is involved in cell fate decisions throughout normal development and in stem cell proliferation and maintenance. The role of Notch in cancer is now......Gliomas are among the most devastating adult tumors for which there is currently no cure. The tumors are derived from brain glial tissue and comprise several diverse tumor forms and grades. Recent reports highlight the importance of cancer-initiating cells in the malignancy of gliomas. These cells...

  1. The Inhibition by Oxaliplatin, a Platinum-Based Anti-Neoplastic Agent, of the Activity of Intermediate-Conductance Ca2+-Activated K+ Channels in Human Glioma Cells

    Directory of Open Access Journals (Sweden)

    Mei-Han Huang

    2015-10-01

    Full Text Available Oxaliplatin (OXAL is a third-generation organoplatinum which is effective against advanced cancer cells including glioma cells. How this agent and other related compounds interacts with ion channels in glioma cells is poorly understood. OXAL (100 µM suppressed the amplitude of whole-cell K+ currents (IK; and, either DCEBIO or ionomycin significantly reversed OXAL-mediated inhibition of IK in human 13-06-MG glioma cells. In OXAL-treated cells, TRAM-34 did not suppress IK amplitude in these cells. The intermediate-conductance Ca2+-activated K+ (IKCa channels subject to activation by DCEBIO and to inhibition by TRAM-34 or clotrimazole were functionally expressed in these cells. Unlike cisplatin, OXAL decreased the probability of IKCa-channel openings in a concentration-dependent manner with an IC50 value of 67 µM. No significant change in single-channel conductance of IKCa channels in the presence of OXAL was demonstrated. Neither large-conductance Ca2+-activated K+ channels nor inwardly rectifying K+ currents in these cells were affected in the presence of OXAL. OXAL also suppressed the proliferation and migration of 13-06-MG cells in a concentration- and time-dependent manner. OXAL reduced IKCa-channel activity in LoVo colorectal cancer cells. Taken together, the inhibition by OXAL of IKCa channels would conceivably be an important mechanism through which it acts on the functional activities of glioma cells occurring in vivo.

  2. Antiproliferative activity of melanoidins isolated from heated potato fiber (potex) in glioma cell culture model.

    Science.gov (United States)

    Langner, Ewa; Nunes, Fernando M; Pozarowski, Piotr; Kandefer-Szerszeń, Martyna; Pierzynowski, Stefan G; Rzeski, Wojciech

    2011-03-23

    Potex constitutes a potato fiber preparation widely used as an ingredient to meat and bakery products which thermal treatment results in creation of new compounds. Melanoidins are high molecular weight brown end products of Maillard reaction, and few data presenting tumor cell growth inhibiting activity of melanoidins have been reported. Thus, in present study we utilized water extract of Potex roasted (180 °C for 2 h), whose chemical characterization revealed the presence of melanoidin complexes. Heated Potex extract inhibited C6 glioma cell proliferation in a dose-dependent manner measured by MTT method. High molecular weight components present in initial extract were responsible for stronger antiproliferative effect compared with low molecular weight fraction. Impaired MAPK (mitogen-activated protein kinase) and Akt signaling was found in cells treated with the extract. Moreover, flow cytometry analyses revealed the extract to induce G1/S arrest in glioma cells. Simultaneously, Western blot analysis showed elevated levels of p21 protein with concomitant decrease of cyclin D1. In conclusion, observed antiproliferative activity of melanoidins present in heated Potex was linked to disregulated MAPK and Akt signaling pathways, as well as to cell cycle cessation. These results suggest potential application of Potex preparation as a functional food ingredient and chemopreventive agent.

  3. Rapamycin induces differentiation of glioma stem/progenitor cells by activating autophagy

    Institute of Scientific and Technical Information of China (English)

    Wen-Zhuo Zhuang; Lin-Mei Long; Wen-Jun Ji; Zhong-Qin Liang

    2011-01-01

    Glioma stem/progenitor cells(GSPCs) are considered to be responsible for the initiation,propagation,and recurrence of gliomas.The factors determining their differentiation remain poorly defined.Accumulating evidences indicate that alterations in autophagy may influence cell fate during mammalian development and differentiation.Here,we investigated the role of autophagy in GSPC differentiation.SU-2 cells were treated with rapamycin,3-methyladenine (3-MA) plus rapamycin,E64d plus rapamycin,or untreated as control.SU-2 cell xenografts in nude mice were treated with rapamycin or 3-MA plus rapamycin,or untreated as control.Western blotting and immunocytochemistry showed up-regulation of microtubule-associated protein light chain-3(LC3)-II in rapamycin-treated cells.The neurosphere formation rate and the number of cells in each neurosphere were significantly lower in the rapamycin treatment group than in other groups.Real-time PCR and immunocytochemistry showed down-regulation of stem/progenitor cell markers and up-regulation of differentiation markers in rapamycin-treated cells.Transmission electron microscopy revealed autophagy activation in rapamycin-treated tumor cells in mice.Immunohistochemistry revealed decreased Nestin-positive cells and increased GFAP-positive cells in rapamycin-treated tumor sections.These results indicate that rapamycin induces differentiation of GSPCs by activating autophagy.

  4. Temozolomide and carmustine cause large-scale heterochromatin reorganization in glioma cells

    International Nuclear Information System (INIS)

    Temozolomide (TMZ) and carmustine (BCNU), cancer-drugs usually used in the treatment of gliomas, are DNA-methylating agents producing O6-methylguanine. It has been shown that 06-methylguanine triggers DNA mismatch repair and in turn induce apoptosis and senescence, respectively, over a 4 and 6 days period [Y. Hirose, M.S. Berger, R.O. Pieper, p53 effects both the duration of G2/M arrest and the fate of temozolomide-treated human glioblastoma cells, Cancer Res. 61 (2001) 1957-1963; W. Roos, M. Baumgartner, B. Kaina, Apoptosis triggered by DNA damage O6-methylguanine in human lymphocytes requires DNA replication and is mediated by p53 and Fas/CD95/Apo-1, Oncogene 23 (2004) 359-367]. Here we show that TMZ and BCNU have an earlier effect on nuclear organization and chromatin structure. In particular, we report that TMZ and BCNU induce clustering of pericentromeric heterochromatin regions and increase the amount of heterochromatic proteins MeCP2 and HP1α bound to chromatin. These drugs also decrease global levels of histone H3 acetylation and increase levels of histone H3 trimethylated on lysine 9 (H3-triMeK9). These events precede the senescence status. We conclude that TMZ and BCNU efficacy in glioma treatment may implicate a first event characterized by changes in heterochromatin organization and its silencing which is then followed by apoptosis and senescence.

  5. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    Directory of Open Access Journals (Sweden)

    Mueller-Klieser Wolfgang

    2011-07-01

    Full Text Available Abstract Background Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. Methods To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. Results The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2, 3-oxoacid-CoA transferase 1 (OXCT1 and acetyl-CoA acetyltransferase 1 (ACAT1 were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. Conclusion In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic

  6. E series prostaglandins alter the proliferative, apoptotic and migratory properties of T98G human glioma cells in vitro

    Directory of Open Access Journals (Sweden)

    Gomes Renata N

    2012-12-01

    Full Text Available Abstract Background In many types of cancer, prostaglandin E2 (PGE2 is associated with tumour related processes including proliferation, migration, angiogenesis and apoptosis. However in gliomas the role of this prostanoid is poorly understood. Here, we report on the proliferative, migratory, and apoptotic effects of PGE1, PGE2 and Ibuprofen (IBP observed in the T98G human glioma cell line in vitro. Methods T98G human glioma cells were treated with IBP, PGE1 or PGE2 at varying concentrations for 24–72 hours. Cell proliferation, mitotic index and apoptotic index were determined for each treatment. Caspase-9 and caspase-3 activity was measured using fluorescent probes in live cells (FITC-LEHD-FMK and FITC-DEVD-FMK respectively. The migratory capacity of the cells was quantified using a scratch migration assay and a transwell migration assay. Results A significant decrease was seen in cell number (54% in the presence of 50 μM IBP. Mitotic index and bromodeoxyuridine (BrdU incorporation were also decreased 57% and 65%, respectively, by IBP. The apoptotic index was increased (167% and the in situ activity of caspase-9 and caspase-3 was evident in IBP treated cells. The inhibition of COX activity by IBP also caused a significant inhibition of cell migration in the monolayer scratch assay (74% and the transwell migration assay (36%. In contrast, the presence of exogenous PGE1 or PGE2 caused significant increases in cell number (37% PGE1 and 45% PGE2. When mitotic index was measured no change was found for either PG treatment. However, the BrdU incorporation rate was significantly increased by PGE1 (62% and to a greater extent by PGE2 (100%. The apoptotic index was unchanged by exogenous PGs. The addition of exogenous PGs caused an increase in cell migration in the monolayer scratch assay (43% PGE1 and 44% PGE2 and the transwell migration assay (28% PGE1 and 68% PGE2. Conclusions The present study demonstrated that treatments which alter PGE1 and PGE

  7. Chloride transport in a glioma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Wolpaw, E.W.

    1984-01-01

    Maintenance of the extracellular environment is a major function of central nervous system astroglia. The transport of Cl/sup -/ across the cell membrane may be an integral part of this function, since Cl/sup -/ transport has been implicated in homeostasis of cell volume, pH, and extracellular K/sup +/ concentration. The work presented here investigated Cl/sup -/ transport in the glioma cell line LRM55. Results indicate that LRM55 cells are a good model for astroglia and that these cells contain three Cl/sup -/ transporters; a Cl/sup -//HCO/sub 3//sup -/ exchanger, a K/sup +//Cl/sup -/ cotransporter, and a Cl/sup -//SO/sub 4//sup 2 -/ exchanger. Ion transport studies measured the fluxes of Cl/sup -/ (as /sup 36/Cl/sup -/), K/sup +/ (as /sup 86/Rb/sup +/), and SO/sub 4//sup 2 -/ (as /sup 35/SO/sub 4//sup 2 -/). Cl/sup -/ flux was trans-simulated by Cl/sup -/ or HCO/sub 3//sup -/ and was inhibited by SITS or furosemide. External K/sup +/ stimulated Cl/sup -/ influx and external Cl/sup -/ stimulated Rb/sup +/ influx. Furosemide, but not SITS, inhibited the K/sup +//Cl/sup -/ cotransporter. High K/sup +/ medium increased cell volume and Cl/sup -/ content. Steady-state Cl/sup -/ concentration was at least twice that predicted from passive equilibration according to the Nernst equation. SO/sub 4//sup 2 -/ flux was trans-stimulated by SO/sub 4//sup 2 -/ or by Cl/sup -/. Cl/sup -/ was a competitive inhibitor of SO/sub 4//sup 2 -/ influx, but SO/sub 4//sup 2 -/ had no detectable effect on Cl/sup -/ influx or efflux. SO/sub 4//sup 2 -/ flux was inhibited by SITS or furosemide.

  8. Germline rearrangements in families with strong family history of glioma and malignant melanoma, colon, and breast cancer

    DEFF Research Database (Denmark)

    Andersson, Ulrika; Wibom, Carl; Cederquist, Kristina;

    2014-01-01

    BACKGROUND: Although familial susceptibility to glioma is known, the genetic basis for this susceptibility remains unidentified in the majority of glioma-specific families. An alternative approach to identifying such genes is to examine cancer pedigrees, which include glioma as one of several can...... colon cancer. CONCLUSIONS: Large deletions and duplications are rare events in familial glioma cases, even in families with a strong family history of cancers that may be involved in known cancer syndromes.......BACKGROUND: Although familial susceptibility to glioma is known, the genetic basis for this susceptibility remains unidentified in the majority of glioma-specific families. An alternative approach to identifying such genes is to examine cancer pedigrees, which include glioma as one of several...... cancer phenotypes, to determine whether common chromosomal modifications might account for the familial aggregation of glioma and other cancers. METHODS: Germline rearrangements in 146 glioma families (from the Gliogene Consortium; http://www.gliogene.org/) were examined using multiplex ligation...

  9. Activated vascular endothelia regulate invasion of glioma cells through expression of fibronectin

    Institute of Scientific and Technical Information of China (English)

    LIN Zhi-xiong; YANG Li-juan; HUANG Qiang; FU Jin

    2010-01-01

    Background Previous researches have indicated that glioma invasion may occur within a tumor-host microecology, and that fibronectin may be involved in glioma invasion as an important component of the extracellular matrix. However, how the interaction between tumor cells and vascular endothelial cells affects glioma invasion is poorly understood. The aim of this study was to investigate the effects of the interaction between tumor cells and vascular endothelial cells on glioma invasion, and the relationship of this interaction to fibronectin.Methods The localization of fibronectin in different brain astrocytoma tissues was determined by immunohistochemistry. Then, vascular endothelial cells and glioma cells were co-cultured in a Transwell co-culturing system. Fibronectin expression was detected by reverse transcriptase-polymerase chain reaction, immunocytochemistry, and enzyme-linked immunosorbent assay. Additionally, the influence of the interaction between tumor cells and vascular endothelial cells on glioma cell invasion was determined by an in vitro rapid invasion test.Results In brain astrocytoma tissues, fibronectin was present on the endothelial cells, in the extracellular matrix. Fibronectin expression was greater in higher grade tumors than in lower grade tumors. The interaction of glioma cells and vascular endothelial cells in vitro induced fibronectin release from vascular endothelial cells, which in turn stimulated glioma cell migration. This effect was inhibited by fibronectin blocking antibody.Conclusion Glioma cells may induce vascular epithelial cells to express fibronectin, and in turn fibronectin could promote glioma cell invasion.

  10. In vivo glioblastoma growth is reduced by apyrase activity in a rat glioma model

    Directory of Open Access Journals (Sweden)

    Meurer Luise

    2006-09-01

    Full Text Available Abstract Background ATP is an important signalling molecule in the peripheral and central nervous system. Both glioma growth and tumor resection induces cell death, thus liberating nucleotides to the extracellular medium. Nucleotides are hydrolyzed very slowly by gliomas when compared with astrocytes and induce neuronal cell death and glioma proliferation. The objective of the present study was to test the involvement of extracellular ATP in glioblastoma growth in a rat glioma model. Methods To deplete the extracellular ATP, the enzyme apyrase was tested on the treatment of gliomas implanted in the rats CNS. One million glioma C6 cells in 3 microliters of DMEM/FCS were injected in the right striata of male Wistar rats, 250–270 g. After 20 days, the rats were decapitated and the brain sectioning and stained with hematoxylin and eosine. We performed immunohistochemical experiments with Ki67, CD31 and VEGF. Total RNA was isolated from cultured glioma C6 cells and the cDNA was analyzed by Real Time-PCR with primers for the NTPDase family. Results C6 glioma cells effectively have a low expression of all NTPDases investigated, in comparison with normal astrocytes. The implanted glioma co-injected with apyrase had a significant reduction in the tumor size (p Conclusion These results indicate that the participation of extracellular ATP and the ecto-nucleotidases may be associated with the development of this type of brain tumor in an in vivo glioma model.

  11. Overexpressed homeobox B9 regulates oncogenic activities by transforming growth factor-β1 in gliomas

    International Nuclear Information System (INIS)

    Highlights: • HOXB9 is overexpressed in gliomas. • HOXB9 over expression had shorter survival time than down expression in gliomas. • HOXB9 stimulated the proliferation, migration and sphere formation of glioma cells. • Activation of TGF-β1 contributed to HOXB9-induced oncogenic activities. - Abstract: Glioma is the leading cause of deaths related to tumors in the central nervous system. The mechanisms of gliomagenesis remain elusive to date. Homeobox B9 (HOXB9) has a crucial function in the regulation of gene expression and cell survival, but its functions in glioma formation and development have yet to be elucidated. This study showed that HOXB9 expression in glioma tissues was significantly higher than that in nontumor tissues. Higher HOXB9 expression was also significantly associated with advanced clinical stage in glioma patients. HOXB9 overexpression stimulated the proliferation, migration, and sphere formation of glioma cells, whereas HOXB9 knockdown elicited an opposite effect. HOXB9 overexpression also increased the tumorigenicity of glioma cells in vivo. Moreover, the activation of transforming growth factor-β1 contributed to HOXB9-induced oncogenic activities. HOXB9 could be used as a predictable biomarker to be detected in different pathological and histological subtypes in glioma for diagnosis or prognosis

  12. Expression and Prognostic Significance of p53 in Glioma Patients: A Meta-analysis.

    Science.gov (United States)

    Jin, Yueling; Xiao, Weizhong; Song, Tingting; Feng, Guangjia; Dai, Zhensheng

    2016-07-01

    Glioma is a brain tumor deriving from the neoplastic glial cells or neuroglia. Due to its resistance to anticancer drugs and different disease progress of individuals, patients with high-grade glioma are difficult to completely cure, leading to a poor prognosis and low overall survival. Therefore, there is an urgent need to look for prognostic and diagnostic indicators that can predict glioma grades. P53 is one of the widely studied biomarkers in human glioma. The purpose of this study was to comprehensively evaluate the significance of p53 expression in glioma grades and overall survival. We searched commonly used electronic databases to retrieve related articles of p53 expression in glioma. Overall, a total of 21 studies including 1322 glioma patients were finally screened out. We observed that the frequency of p53 immuno-positivity was higher in high-grade patients than that in low-grade category (63.8 vs. 41.6 %), and our statistic analysis indicated that p53 expression was associated with pathological grade of glioma (OR 2.93, 95 % CI 1.87-4.60, P < 0.00001). This significant correction was also found in 1-, 3- and 5-year overall survival. However, no positive relationship was found between age, sex, tumor size and p53 expression in patients with glioma. In conclusion, our results suggested that p53 immunohistochemical expression might have an effective usefulness in predicting the prognosis in patients with glioma. PMID:27038932

  13. OASIS/CREB3L1 is induced by endoplasmic reticulum stress in human glioma cell lines and contributes to the unfolded protein response, extracellular matrix production and cell migration.

    Directory of Open Access Journals (Sweden)

    Ravi N Vellanki

    Full Text Available OASIS is a transcription factor similar to ATF6 that is activated by endoplasmic reticulum stress. In this study we investigated the expression of OASIS in human glioma cell lines and the effect of OASIS knock-down on the ER stress response and cell migration. OASIS mRNA was detected in three distinct glioma cell lines (U373, A172 and U87 and expression levels were increased upon treatment with ER stress-inducing compounds in the U373 and U87 lines. OASIS protein, which is glycosylated on Asn-513, was detected in the U373 and U87 glioma lines at low levels in control cells and protein expression was induced by ER stress. Knock-down of OASIS in human glioma cell lines resulted in an attenuated unfolded protein response to ER stress (reduced GRP78/BiP and GRP94 induction and decreased expression of chondroitin sulfate proteoglycan extracellular matrix proteins, but induction of the collagen gene Col1a1 was unaffected. Cells in which OASIS was knocked-down exhibited altered cell morphology and reduced cell migration. These results suggest that OASIS is important for the ER stress response and maintenance of some extracellular matrix proteins in human glioma cells.

  14. An unusual cystic appearance of disseminated low-grade gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Huang, T.; Zimmerman, R.A. [Dept. of Radiology, Children' s Hospital of Philadelphia, PA (United States); Perilongo, G. [Dipt. di Pediatria, Univ. di Padova (Italy); Kaufman, B.A. [Dept. of Neurosurgery, St Louis Children' s Hospital, St Louis, MO (United States); Holden, K.R. [Division of Pediatric Neurology, Room 511, Children' s Hospital, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425-2232 (United States); Carollo, C. [Division of Neuroradiology, Regione Veneto, Azienda Ospedalieri di Padova, Universita di Padova, Via Giustiniani 3, 35 128 Padua (Italy); Kling Chong, W.K. [Dept. of Radiology, Great Ormond Street Hospital for Children, London (United Kingdom)

    2001-10-01

    We report five cases of pediatric disseminated low-grade gliomas of the brainstem or spinal cord that exhibited an unusual, cystic pattern. Leptomeningeal disease was present in three of these at diagnosis, and was detected shortly afterwards in the other two. Four patients are alive up to 5 years later, following minimal to no intervention, while one is dead. (orig.)

  15. Pediatric glioma stem cells: biologic strategies for oncolytic HSV virotherapy

    Directory of Open Access Journals (Sweden)

    Gregory K Friedman

    2013-02-01

    Full Text Available While glioblastoma multiforme (GBM is the most common adult malignant brain tumor, GBMs in childhood represent less than 10% of pediatric malignant brain tumors and are phenotypically and molecularly distinct from adult GBMs. Similar to adult patients, outcomes for children with high-grade gliomas (HGGs remain poor. Furthermore, the significant morbidity and mortality yielded by pediatric GBM is compounded by neurotoxicity for the developing brain caused by current therapies. Poor outcomes have been attributed to a subpopulation of chemotherapy and radiotherapy resistant cells, termed ‘glioma stem cells’ (GSCs, ‘glioma progenitor cells’, or ‘glioma-initiating cells', which have the ability to initiate and maintain the tumor and to repopulate the recurring tumor after conventional therapy. Future innovative therapies for pediatric HGGs must be able to eradicate these therapy-resistant GSCs. Oncolytic herpes simplex viruses, genetically engineered to be safe for normal cells and to express diverse foreign anti-tumor therapeutic genes, have been demonstrated in preclinical studies to infect and kill GSCs and tumor cells equally while sparing normal brain cells. In this review, we discuss the unique aspects of pediatric GSCs, including markers to identify them, the microenvironment they reside in, signaling pathways that regulate them, mechanisms of cellular resistance, and approaches to target GSCs, with a focus on the promising therapeutic, genetically engineered oncolytic herpes simplex virus (HSV.

  16. Human pontine glioma cells can induce murine tumors

    NARCIS (Netherlands)

    Caretti, V.; Sewing, A.C.; Lagerweij, T.; Schellen, P.; Bugiani, M.; Jansen, M.H.; Vuurden, D.G. van; Navis, A.C.; Horsman, I.; Vandertop, W.P.; Noske, D.P.; Wesseling, P.; Kaspers, G.J.L.; Nazarian, J.; Vogel, H.; Hulleman, E.; Monje, M.; Wurdinger, T.

    2014-01-01

    Diffuse intrinsic pontine glioma (DIPG), with a median survival of only 9 months, is the leading cause of pediatric brain cancer mortality. Dearth of tumor tissue for research has limited progress in this disease until recently. New experimental models for DIPG research are now emerging. To develop

  17. Gliomas and the vascular fragility of the blood brain barrier

    Directory of Open Access Journals (Sweden)

    Luiz Gustavo eDubois

    2014-12-01

    Full Text Available Astrocytes, members of the glial family, interact through the exchange of soluble factors or by directly contacting neurons and other brain cells, such as microglia and endothelial cells. Astrocytic projections interact with vessels and act as additional elements of the Blood Brain Barrier (BBB. By mechanisms not fully understood, astrocytes can undergo oncogenic transformation and give rise to gliomas. The tumors take advantage of the BBB to ensure survival and continuous growth. A glioma can develop into a very aggressive tumor, the glioblastoma (GBM, characterized by a highly heterogeneous cell population (including tumor stem cells, extensive proliferation and migration. Nevertheless, gliomas can also give rise to slow growing tumors and in both cases, the afflux of blood, via BBB is crucial. Glioma cells migrate to different regions of the brain guided by the extension of blood vessels, colonizing the healthy adjacent tissue. In the clinical context, GBM can lead to tumor-derived seizures, which represent a challenge to patients and clinicians, since drugs used for its treatment must be able to cross the BBB. Uncontrolled and fast growth also leads to the disruption of the chimeric and fragile vessels in the tumor mass resulting in peritumoral edema. Although hormonal therapy is currently used to control the edema, it is not always efficient. In this review we comment the points cited above, considering the importance of the blood brain barrier and the concerns that arise when this barrier is affected.

  18. Targeted therapies for malignant gliomas: novel agents, same barrier

    NARCIS (Netherlands)

    Lin, F.

    2013-01-01

    Malignant gliomas are common and devastating brain malignancies. Despite this extensive treatment the mean overall survival is still only 14.6 months and more effective treatments are urgently needed. Targeted therapy holds the promise for the new generation of chemotherapy due to the selectively ta

  19. Gliomas and the vascular fragility of the blood brain barrier

    Science.gov (United States)

    Dubois, Luiz Gustavo; Campanati, Loraine; Righy, Cassia; D’Andrea-Meira, Isabella; Spohr, Tania Cristina Leite de Sampaio e; Porto-Carreiro, Isabel; Pereira, Claudia Maria; Balça-Silva, Joana; Kahn, Suzana Assad; DosSantos, Marcos F.; Oliveira, Marcela de Almeida Rabello; Ximenes-da-Silva, Adriana; Lopes, Maria Celeste; Faveret, Eduardo; Gasparetto, Emerson Leandro; Moura-Neto, Vivaldo

    2014-01-01

    Astrocytes, members of the glial family, interact through the exchange of soluble factors or by directly contacting neurons and other brain cells, such as microglia and endothelial cells. Astrocytic projections interact with vessels and act as additional elements of the Blood Brain Barrier (BBB). By mechanisms not fully understood, astrocytes can undergo oncogenic transformation and give rise to gliomas. The tumors take advantage of the BBB to ensure survival and continuous growth. A glioma can develop into a very aggressive tumor, the glioblastoma (GBM), characterized by a highly heterogeneous cell population (including tumor stem cells), extensive proliferation and migration. Nevertheless, gliomas can also give rise to slow growing tumors and in both cases, the afflux of blood, via BBB is crucial. Glioma cells migrate to different regions of the brain guided by the extension of blood vessels, colonizing the healthy adjacent tissue. In the clinical context, GBM can lead to tumor-derived seizures, which represent a challenge to patients and clinicians, since drugs used for its treatment must be able to cross the BBB. Uncontrolled and fast growth also leads to the disruption of the chimeric and fragile vessels in the tumor mass resulting in peritumoral edema. Although hormonal therapy is currently used to control the edema, it is not always efficient. In this review we comment the points cited above, considering the importance of the BBB and the concerns that arise when this barrier is affected. PMID:25565956

  20. Slit2 inhibits glioma cell invasion in the brain by suppression of Cdc42 activity.

    Science.gov (United States)

    Yiin, Jia-Jean; Hu, Bo; Jarzynka, Michael J; Feng, Haizhong; Liu, Kui-Wei; Wu, Jane Y; Ma, Hsin-I; Cheng, Shi-Yuan

    2009-12-01

    Acquisition of insidious invasiveness by malignant glioma cells involves multiple genetic alterations in signaling pathways. Slit2, a chemorepulsive factor, controls cell migration of neuronal and glial cells during development and inhibits chemotaxic migration of various types of cells in vitro. However, the role of Slit2 in vitro remains controversial, and the biological significance of Slit2 expression in cancer cell invasion in vivo has not yet been determined. In the present study, we characterized the effects of Slit2 expression on the migration and invasion of invasive glioma cells in vitro and in vivo. By reverse transcriptase polymerase chain reaction (PCR) analyses, Slit2 was found to be expressed at lower levels in primary glioma specimens and invasive glioma cells compared with normal human brain cells and astrocytes. Ectopic expression of Slit2 or treatment with recombinant Slit2 on glioma cells attenuates cell migration and invasion through inhibition of Cdc42 activity in vitro. Cellular depletion of Robo1, a cognate receptor for Slit2, prevented Slit2 inhibition of Cdc42 activity and glioma cell migration. In vivo, expression of Slit2 by invasive SNB19 glioma cells markedly inhibited glioma cell infiltration into the brain of mice. Moreover, impediment of glioma cell invasion by Slit2 did not affect the expression of N-cadherin and beta-catenin in glioma cells. These results provide the first evidence demonstrating that Slit2-Robo1 inhibits glioma invasion through attenuating Cdc42 activity in vitro and in the brain. Understanding the mechanisms of Slit2-Robo1 inhibition of glioma cell invasion will foster new treatments for malignant gliomas.

  1. INHIBITION OF IRE1 MODIFIES EFFECT OF GLUCOSE DEPRIVATION ON THE EXPRESSION OF TNFα-RELATED GENES IN U87 GLIOMA CELLS.

    Science.gov (United States)

    Kryvdiuk, I V; Minchenko, D O; Hlushchak, N A; Ratushna, O O; Karbovskyi, L L; Minchenko, O H

    2015-01-01

    Inhibition of IRE1 (inositol requiring enzyme-1), the major signaling pathway of endoplasmic reticulm stress, significantly decreases glioma cell proliferation and tumor growth. We have studied the expression of TNFα-related genes and effect of glucose deprivation on these gene expressions in U87 glioma cells over-expressing dominant-negative IRE1 defective in both kinase and endonuclease (dn-IRE1) activity of IRE1 with hopes of elucidating its contribution to IRE1 mediated glioma growth. We have demonstrated that glucose deprivation condition leads to down-regulation of the expression of TNFRSF11B, TNFRSF1A, TNFRSF10D/TRAILR4, and LITAF genes and up-regulation of TNFRSF10B/TRAILR2/DR5 gene at the mRNA level in control glioma cells. At the same time, the expression of TNFRSF21/DR6, TNFAIP1, TNFAIP3, TRADD, and CD70/TNFSF7 genes in control glioma cells is resistant to glucose deprivation condition. The inhibition of IRE1 modifies the effect of glucose deprivation on LITAF, TNFRSF21, TNFRSF11B, and TRADD gene expressions and induces sensitivity to glucose deprivation condition the expression of TNFRSF10B, TNFRSF1A, and CD70 genes. We have also demonstrated that the expression of all studied genes is affected in glioma cells by inhibition of IRE1, except TNFRSF1A gene, as compared to control glioma cells. Moreover, the changes in the expression of TNFRSF1A, TNFRSF10D/TRAILR4, and LITAF genes induced by glucose deprivation condition have opposite orientation to that induced by inhibition of IRE1. The present study demonstrates that fine-tuning of the expression of TNFα-induced proteins and TNF receptor superfamily genes, which related to cell death and proliferation, is regulated by IRE1, an effector of endoplasmic reticulum stress, as well as depends on glucose deprivation in gene specific manner. Thus, the inhibition of kinase and endoribonuclease activity of IRE1 correlates with deregulation of TNFα-induced protein genes and TNF receptor superfamily genes in gene

  2. Innate immune functions of microglia isolated from human glioma patients

    Directory of Open Access Journals (Sweden)

    Grimm Elizabeth

    2006-03-01

    Full Text Available Abstract Background Innate immunity is considered the first line of host defense and microglia presumably play a critical role in mediating potent innate immune responses to traumatic and infectious challenges in the human brain. Fundamental impairments of the adaptive immune system in glioma patients have been investigated; however, it is unknown whether microglia are capable of innate immunity and subsequent adaptive anti-tumor immune responses within the immunosuppressive tumor micro-environment of human glioma patients. We therefore undertook a novel characterization of the innate immune phenotype and function of freshly isolated human glioma-infiltrating microglia (GIM. Methods GIM were isolated by sequential Percoll purification from patient tumors immediately after surgical resection. Flow cytometry, phagocytosis and tumor cytotoxicity assays were used to analyze the phenotype and function of these cells. Results GIM expressed significant levels of Toll-like receptors (TLRs, however they do not secrete any of the cytokines (IL-1β, IL-6, TNF-α critical in developing effective innate immune responses. Similar to innate macrophage functions, GIM can mediate phagocytosis and non-MHC restricted cytotoxicity. However, they were statistically less able to mediate tumor cytotoxicity compared to microglia isolated from normal brain. In addition, the expression of Fas ligand (FasL was low to absent, indicating that apoptosis of the incoming lymphocyte population may not be a predominant mode of immunosuppression by microglia. Conclusion We show for the first time that despite the immunosuppressive environment of human gliomas, GIM are capable of innate immune responses such as phagocytosis, cytotoxicity and TLR expression but yet are not competent in secreting key cytokines. Further understanding of these innate immune functions could play a critical role in understanding and developing effective immunotherapies to malignant human gliomas.

  3. Targeting Glioma Stem Cells by Functional Inhibition of a Prosurvival OncomiR-138 in Malignant Gliomas

    Directory of Open Access Journals (Sweden)

    Xin Hui Derryn Chan

    2012-09-01

    Full Text Available Malignant gliomas are the most aggressive forms of brain tumors, associated with high rates of morbidity and mortality. Recurrence and tumorigenesis are attributed to a subpopulation of tumor-initiating glioma stem cells (GSCs that are intrinsically resistant to therapy. Initiation and progression of gliomas have been linked to alterations in microRNA expression. Here, we report the identification of microRNA-138 (miR-138 as a molecular signature of GSCs and demonstrate a vital role for miR-138 in promoting growth and survival of bona fide tumor-initiating cells with self-renewal potential. Sequence-specific functional inhibition of miR-138 prevents tumorsphere formation in vitro and impedes tumorigenesis in vivo. We delineate the components of the miR-138 regulatory network by loss-of-function analysis to identify specific regulators of apoptosis. Finally, the higher expression of miR-138 in GSCs compared to non-neoplastic tissue and association with tumor recurrence and survival highlights the clinical significance of miR-138 as a prognostic biomarker and a therapeutic target for treatment of malignant gliomas.

  4. Discrimination between glioma grades II and III in suspected low-grade gliomas using dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging

    DEFF Research Database (Denmark)

    Falk, Anna; Fahlström, Markus; Rostrup, Egill;

    2014-01-01

    .76). In DSC, the standard deviation of relative cerebral blood flow (rCBF) was found superior for differentiating grade II from grade III gliomas (AUC 0.80). CONCLUSIONS: Histogram parameters from k(trans) (DCE) and rCBF (DSC) could most efficiently discriminate between grade II and grade III gliomas....... could best discriminate between grade II and III gliomas. METHODS: MRI (3 T) including morphological ((T2 fluid attenuated inversion recovery (FLAIR) and T1-weighted (T1W)+Gd)) and perfusion (DCE and DSC) sequences was performed in 39 patients with newly diagnosed suspected low-grade glioma after...... written informed consent in this review board-approved study. Regions of interests (ROIs) in tumour area were delineated on FLAIR images co-registered to DCE and DSC, respectively, in 25 patients with histopathological grade II (n = 18) and III (n = 7) gliomas. Statistical analysis of differences between...

  5. Scientific literature addressing brain glioma in the Web of Science A 10-year bibliometric analysis

    Institute of Scientific and Technical Information of China (English)

    Zaihua Xu; Tao Tang; Dongsheng Pan; Di Fan; Zhenquan Song; Hongli Xue

    2011-01-01

    Brain glioma is a hot topic in recent years; however, brain glioma remains poorly understood.A bibliometric analysis based on the Science Citation Index (SCI) published by the Institute of Scientific Information (ISI) was performed to identify the global research and to improve the understanding of research trends in the brain glioma field from 2001 to 2010.During 2001 to 2010, there were 8 413 papers addressing brain glioma added to the SCI, and this trend is increasing annually.Of these reports, 6 945 papers are written in English.Journals published in the United States had the most papers, including ten core source titles.The Journal of Neuro-Oncology published the most articles followed by Cancer Research.Furthermore, the University of California, San Francisco, is the most productive institution for publishing articles in the brain glioma field.Finally, this study highlights the topics in brain glioma research that are being published around the world.

  6. Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs)

    International Nuclear Information System (INIS)

    The aim of this work was to compare the effects of 24-h exposure of rat primary astrocytes and C6 rat glioma cells to 7.8 nm AgNPs. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and current treatments lead to diverse side-effects; for this reason, it is imperative to investigate new approaches, including those alternatives provided by nanotechnology, like nanomaterials (NMs) such as silver nanoparticles. Herein, we found that C6 rat glioma cells, but no primary astrocytes, decreased cell viability after AgNPs treatment; however, both cell types diminished their proliferation. The decrease of glioma C6 cells proliferation was related with necrosis, while in primary astrocytes, the decreased proliferation was associated with the induction of apoptosis. The ionic control (AgNO3) exerted a different profile than AgNPs; the bulk form did not modify the basal effect in each determination, whereas cisplatin, a well-known antitumoral drug used as a comparative control, promoted cytotoxicity in both cell types at specific concentrations. Our findings prompt the need to determine the fine molecular and cellular mechanisms involved in the differential biological responses to AgNPs in order to develop new tools or alternatives based on nanotechnology that may contribute to the understanding, impact and use of NMs in specific targets, like glioblastoma cells

  7. Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs)

    Energy Technology Data Exchange (ETDEWEB)

    Salazar-García, Samuel; Silva-Ramírez, Ana Sonia; Ramirez-Lee, Manuel A.; Rosas-Hernandez, Hector [Universidad Autonoma de San Luis Potosi, Facultad de Ciencias Quimicas (Mexico); Rangel-López, Edgar [Instituto Nacional de Neurologia y Neurocirugia Manuel Velasco Suárez, Laboratorio de Aminoacidos Excitadores (Mexico); Castillo, Claudia G. [Facultad de Medicina, Universidad Autonoma de San Luis Potosi (Mexico); Santamaría, Abel [Instituto Nacional de Neurologia y Neurocirugia Manuel Velasco Suárez, Laboratorio de Aminoacidos Excitadores (Mexico); Martinez-Castañon, Gabriel A. [Universidad Autonoma de San Luis Potosi, Facultad de Estomatologia (Mexico); Gonzalez, Carmen, E-mail: cgonzalez.uaslp@gmail.com, E-mail: gonzalez.castillocarmen@fcq.uaslp.mx [Universidad Autonoma de San Luis Potosi, Facultad de Ciencias Quimicas (Mexico)

    2015-11-15

    The aim of this work was to compare the effects of 24-h exposure of rat primary astrocytes and C6 rat glioma cells to 7.8 nm AgNPs. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and current treatments lead to diverse side-effects; for this reason, it is imperative to investigate new approaches, including those alternatives provided by nanotechnology, like nanomaterials (NMs) such as silver nanoparticles. Herein, we found that C6 rat glioma cells, but no primary astrocytes, decreased cell viability after AgNPs treatment; however, both cell types diminished their proliferation. The decrease of glioma C6 cells proliferation was related with necrosis, while in primary astrocytes, the decreased proliferation was associated with the induction of apoptosis. The ionic control (AgNO{sub 3}) exerted a different profile than AgNPs; the bulk form did not modify the basal effect in each determination, whereas cisplatin, a well-known antitumoral drug used as a comparative control, promoted cytotoxicity in both cell types at specific concentrations. Our findings prompt the need to determine the fine molecular and cellular mechanisms involved in the differential biological responses to AgNPs in order to develop new tools or alternatives based on nanotechnology that may contribute to the understanding, impact and use of NMs in specific targets, like glioblastoma cells.

  8. Chordoid glioma with intraventricular dissemination: A case report with perfusion MR imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Ki, So Yeon; Kim, Seul Kee; Heo, Tae Wook; Baek, Byung Hyun; Kim, Hyung Seok; Yoon, Woong [Chonnam National University Medical School, Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2016-02-15

    Chordoid glioma is a rare low grade tumor typically located in the third ventricle. Although a chordoid glioma can arise from ventricle with tumor cells having features of ependymal differentiation, intraventricular dissemination has not been reported. Here we report a case of a patient with third ventricular chordoid glioma and intraventricular dissemination in the lateral and fourth ventricles. We described the perfusion MR imaging features of our case different from a previous report.

  9. Identification of microRNAs in the cerebrospinal fluid as biomarker for the diagnosis of glioma

    OpenAIRE

    Baraniskin, Alexander; Kuhnhenn, Jan; Schlegel, Uwe; Maghnouj, Abdelouahid; Zöllner, Hannah; Schmiegel, Wolf; Hahn, Stephan; Schroers, Roland

    2011-01-01

    Malignant gliomas are the most common and lethal primary intracranial tumors. To date, no reliable biomarkers for the detection and risk stratification of gliomas have been identified. Recently, we demonstrated significant levels of microRNAs (miRNAs) to be present in cerebrospinal fluid (CSF) samples from patients with primary CNS lymphoma. Because of the involvement of miRNA in carcinogenesis, miRNAs in CSF may serve as unique biomarkers for minimally invasive diagnosis of glioma. The objec...

  10. Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells

    OpenAIRE

    Zhi-Kun Qiu; Dong Shen; Yin-Sheng Chen; Qun-Ying Yang; Cheng-Cheng Guo; Bing-Hong Feng; Zhong-Ping Chen

    2014-01-01

    O6-methylguanine DNA methyltransferase (MGMT) can remove DNA alkylation adducts, thereby repairing damaged DNA and contributing to the drug resistance of gliomas to alkylating agents. In addition, glioma stem-like cells (GSCs) have been demonstrated to be involved in the recurrence and treatment resistance of gliomas. In this study, we aimed to investigate MGMT expression and regulatory mechanisms in GSCs and the association of MGMT with temozolomide (TMZ) sensitivity. GSC...

  11. AT-36PANOBINOSTAT IN COMBINATION WITH BEVACIZUMAB FOR RECURRENT GLIOBLASTOMA AND ANAPLASTIC GLIOMA

    OpenAIRE

    Lee, Eudocia; Reardon, David; Schiff, David; Drappatz, Jan; Muzikansky, Alona; Grimm, Sean; Norden, Andrew; Nayak, Lakshmi; Beroukhim, Rameen; Rinne, Mikael; Chi, Andrew; Batchelor, Tracy; Hempfling, Kelly; McCluskey, Christine; Smith, Katrina

    2014-01-01

    Bevacizumab is frequently used to treat recurrent high-grade gliomas, but responses are generally not durable. Panobinostat is a histone deacetylase inhibitor with anti-neoplastic and anti-angiogenic effects in glioma models and may work synergistically with bevacizumab. We conducted a multicenter phase II trial of panobinostat in combination with bevacizumab. Two cohorts were enrolled: one with recurrent glioblastoma (GBM) as the primary study and one with recurrent anaplastic glioma (AG) as...

  12. MGMT testing-the challenges for biomarker-based glioma treatment

    OpenAIRE

    Wick, W.; Weller, M.; van den Bent, M; Sanson, M.; Weiler, M.; von Deimling, A.; Plass, C.; Hegi, M; Platten, M; Reifenberger, G.

    2014-01-01

    Many patients with malignant gliomas do not respond to alkylating agent chemotherapy. Alkylator resistance of glioma cells is mainly mediated by the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). Epigenetic silencing of the MGMT gene by promoter methylation in glioma cells compromises this DNA repair mechanism and increases chemosensitivity. MGMT promoter methylation is, therefore, a strong prognostic biomarker in paediatric and adult patients with glioblastoma treated wit...

  13. Glioma cell proliferation controlled by ERK activity-dependent surface expression of PDGFRA.

    Science.gov (United States)

    Chen, Dongfeng; Zuo, Duo; Luan, Cheng; Liu, Min; Na, Manli; Ran, Liang; Sun, Yingyu; Persson, Annette; Englund, Elisabet; Salford, Leif G; Renström, Erik; Fan, Xiaolong; Zhang, Enming

    2014-01-01

    Increased PDGFRA signaling is an essential pathogenic factor in many subtypes of gliomas. In this context the cell surface expression of PDGFRA is an important determinant of ligand sensing in the glioma microenvironment. However, the regulation of spatial distribution of PDGFRA in glioma cells remains poorly characterized. Here, we report that cell surface PDGFRA expression in gliomas is negatively regulated by an ERK-dependent mechanism, resulting in reduced proliferation of glioma cells. Glioma tumor tissues and their corresponding cell lines were isolated from 14 patients and analyzed by single-cell imaging and flow cytometry. In both cell lines and their corresponding tumor samples, glioma cell proliferation correlated with the extent of surface expression of PDGFRA. High levels of surface PDGFRA also correlated to high tubulin expression in glioma tumor tissue in vivo. In glioma cell lines, surface PDGFRA declined following treatment with inhibitors of tubulin, actin and dynamin. Screening of a panel of small molecule compounds identified the MEK inhibitor U0126 as a potent inhibitor of surface PDGFRA expression. Importantly, U0126 inhibited surface expression in a reversible, dose- and time-dependent manner, without affecting general PDGFRA expression. Treatment with U0126 resulted in reduced co-localization between PDGFRA and intracellular trafficking molecules e.g. clathrin, RAB11 and early endosomal antigen-1, in parallel with enhanced co-localization between PDGFRA and the Golgi cisternae maker, Giantin, suggesting a deviation of PDGFRA from the endosomal trafficking and recycling compartment, to the Golgi network. Furthermore, U0126 treatment in glioma cells induced an initial inhibition of ERK1/2 phosphorylation, followed by up-regulated ERK1/2 phosphorylation concomitant with diminished surface expression of PDGFRA. Finally, down-regulation of surface PDGFRA expression by U0126 is concordant with reduced glioma cell proliferation. These findings

  14. Glioma cell proliferation controlled by ERK activity-dependent surface expression of PDGFRA.

    Directory of Open Access Journals (Sweden)

    Dongfeng Chen

    Full Text Available Increased PDGFRA signaling is an essential pathogenic factor in many subtypes of gliomas. In this context the cell surface expression of PDGFRA is an important determinant of ligand sensing in the glioma microenvironment. However, the regulation of spatial distribution of PDGFRA in glioma cells remains poorly characterized. Here, we report that cell surface PDGFRA expression in gliomas is negatively regulated by an ERK-dependent mechanism, resulting in reduced proliferation of glioma cells. Glioma tumor tissues and their corresponding cell lines were isolated from 14 patients and analyzed by single-cell imaging and flow cytometry. In both cell lines and their corresponding tumor samples, glioma cell proliferation correlated with the extent of surface expression of PDGFRA. High levels of surface PDGFRA also correlated to high tubulin expression in glioma tumor tissue in vivo. In glioma cell lines, surface PDGFRA declined following treatment with inhibitors of tubulin, actin and dynamin. Screening of a panel of small molecule compounds identified the MEK inhibitor U0126 as a potent inhibitor of surface PDGFRA expression. Importantly, U0126 inhibited surface expression in a reversible, dose- and time-dependent manner, without affecting general PDGFRA expression. Treatment with U0126 resulted in reduced co-localization between PDGFRA and intracellular trafficking molecules e.g. clathrin, RAB11 and early endosomal antigen-1, in parallel with enhanced co-localization between PDGFRA and the Golgi cisternae maker, Giantin, suggesting a deviation of PDGFRA from the endosomal trafficking and recycling compartment, to the Golgi network. Furthermore, U0126 treatment in glioma cells induced an initial inhibition of ERK1/2 phosphorylation, followed by up-regulated ERK1/2 phosphorylation concomitant with diminished surface expression of PDGFRA. Finally, down-regulation of surface PDGFRA expression by U0126 is concordant with reduced glioma cell proliferation

  15. Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading

    OpenAIRE

    Rika Inano; Naoya Oishi; Takeharu Kunieda; Yoshiki Arakawa; Yukihiro Yamao; Sumiya Shibata; Takayuki Kikuchi; Hidenao Fukuyama; Susumu Miyamoto

    2014-01-01

    Gliomas are the most common intra-axial primary brain tumour; therefore, predicting glioma grade would influence therapeutic strategies. Although several methods based on single or multiple parameters from diagnostic images exist, a definitive method for pre-operatively determining glioma grade remains unknown. We aimed to develop an unsupervised method using multiple parameters from pre-operative diffusion tensor images for obtaining a clustered image that could enable visual grading of glio...

  16. Plasma IGFBP-2 levels predict clinical outcomes of patients with high-grade gliomas

    OpenAIRE

    Lin, Yi; Jiang, Tao; Zhou, Kaijia; Xu, Li; Chen, Baoshi; Li, Guilin; Qiu, Xiaoguang; Jiang, Tianzi; Zhang, Wei; Song, Sonya W.

    2009-01-01

    Insulin-like growth factor binding protein 2 (IGFBP-2) is a malignancy-associated protein measurable in tumors and blood. Increased IGFBP-2 is associated with shortened survival of advanced glioma patients. Thus, we examined plasma IGFBP-2 levels in glioma patients and healthy controls to evaluate its value as a plasma bio-marker for glioma. Plasma IGFBP-2 levels in 196 patients with newly diagnosed glioma and 55 healthy controls were analyzed using an IGFBP-2 ELISA kit. Blood was collected b...

  17. Increased Expression of microRNA-17 Predicts Poor Prognosis in Human Glioma

    Directory of Open Access Journals (Sweden)

    Shengkui Lu

    2012-01-01

    Full Text Available Aim. To investigate the clinical significance of microRNA-17 (miR-17 expression in human gliomas. Methods. Quantitative real-time polymerase chain reaction (qRT-PCR analysis was used to characterize the expression patterns of miR-17 in 108 glioma and 20 normal brain tissues. The associations of miR-17 expression with clinicopathological factors and prognosis of glioma patients were also statistically analyzed. Results. Compared with normal brain tissues, miR-17 expression was significantly higher in glioma tissues (P<0.001. In addition, the increased expression of miR-17 in glioma was significantly associated with advanced pathological grade (P=0.006 and low Karnofsky performance score (KPS, P=0.01. Moreover, Kaplan-Meier survival and Cox regression analyses showed that miR-17 overexpression (P=0.008 and advanced pathological grade (P=0.02 were independent factors predicting poor prognosis for gliomas. Furthermore, subgroup analyses showed that miR-17 expression was significantly associated with poor overall survival in glioma patients with high pathological grades (for grade III~IV: P<0.001. Conclusions. Our data offer the convinced evidence that the increased expression of miR-17 may have potential value for predicting poor prognosis in glioma patients with high pathological grades, indicating that miR-17 may contribute to glioma progression and be a candidate therapeutic target for this disease.

  18. T-cell epitope finding on EPHA2 for further glioma vaccine development: An immunomics study

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2011-01-01

    Full Text Available Background: Glioma is a deadly neurological tumor. For modern management of glioma, glioma vaccinotherapy is the new concept. Materials and Methods: Based on present biomedical technique, the identification of T-cell epitopes via MHC mapping can help clarify the inter-relationship of tumor and immune system. This process can be performed using advanced immunoinformatics technique. Results: Here, the author performs an immunoinformatics analysis to find alternative epitopes for glioma-related antigen, EPHA2. Conclusion: After complete manipulation on EPHA2 molecules, the five best epitopes were derived.

  19. STUDY ON THE MECHANISM OF ESCAPING IMMUNE SURVEILLANCE IN HUMAN GLIOMAS

    Institute of Scientific and Technical Information of China (English)

    Pu Peiyu; Xu Xiaohua

    1998-01-01

    Objective:To study mechanisms by which human gliomas may escape immune surveillance. Methods: The effect of supernatant (SN) obtained from cultured media of malignant glioma cell lines on the proliferation of phytohemagglutinin-p stimulated peripheral blood lymphocytes (PBLs) from healthy subjects and patients with gliomas was examined by MTT assay. The immunosuppressive factor which might be existed in the SN was identified by neutralization method with specific antibodies and Northern blot hybridization of glioma cells.In addition, the cellular immunity of patients with gliomas and relevant hormone and catecholamine were determined. Results: It was found that the malignant glioma cells could release an immunosuppressive factor in an autocrine fashion which was further identified as the transforming growth factor β2 (TGF-β2). It was also demonstrated that the plasma levels of norepinephrine in glioma patients were significantly reduced and correlated well with the suppression of the patients' own cellular immunity. Conclusions: Two distinct mechanisms by which human gliomas may evade immune surveillance: 1.The secretion of an immunosuppressive factor which was identified as TGF-β2; 2. The dysfunction of NeuroImmune modulation in the presence of cerebral gliomas.

  20. Retinoids in the treatment of glioma: a new perspective

    Directory of Open Access Journals (Sweden)

    Mawson AR

    2012-08-01

    Full Text Available Anthony R MawsonDepartment of Health Policy and Management, School of Health Sciences, College of Public Service, Jackson State University, Jackson, MS, USAAbstract: Primary brain tumors are among the top ten causes of cancer-related deaths in the US. Malignant gliomas account for approximately 70% of the 22,500 new cases of malignant primary brain tumors diagnosed in adults each year and are associated with high morbidity and mortality. Despite optimal treatment, the prognosis for patients with gliomas remains poor. The use of retinoids (vitamin A and its congeners in the treatment of certain tumors was originally based on the assumption that these conditions were associated with an underlying deficiency of vitamin A and that supplementation with pharmacological doses would correct the deficiency. Yet the results of retinoid treatment have been only modestly beneficial and usually short-lived. Studies also indicate that vitamin A excess and supplementation have pro-oxidant effects and are associated with increased risks of mortality from cancer and other diseases. The therapeutic role of vitamin A in cancer thus remains uncertain and a new perspective on the facts is needed. The modest and temporary benefits of retinoid treatment could result from a process of feedback inhibition, whereby exogenous retinoid temporarily inhibits the endogenous synthesis of these compounds. In fact, repeated and/or excessive exposure of the tissues to endogenous retinoic acid may contribute to carcinogenesis. Gliomas, in particular, may result from an imbalance in retinoid receptor expression initiated by environmental factors that increase the endogenous production of retinoic acid in glia. At the receptor level, it is proposed that this imbalance is characterized by excessive expression of retinoic acid receptor-α(RARα and reduced expression of retinoic acid receptor-β (RARβ. This suggests a potential new treatment strategy for gliomas, possibly even at a

  1. Decreasing relative risk premium

    DEFF Research Database (Denmark)

    Hansen, Frank

    2007-01-01

    such that the corresponding relative risk premium is a decreasing function of present wealth, and we determine the set of associated utility functions. We find a new characterization of risk vulnerability and determine a large set of utility functions, closed under summation and composition, which are both risk vulnerable...... and have decreasing relative risk premium. We finally introduce the notion of partial risk neutral preferences on binary lotteries and show that partial risk neutrality is equivalent to preferences with decreasing relative risk premium...

  2. Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers.

    LENUS (Irish Health Repository)

    Jansen, Michael

    2010-07-01

    Over the past 10 years, there has been an increasing use of molecular markers in the assessment and management of adult malignant gliomas. Some molecular signatures are used diagnostically to help pathologists classify tumours, whereas others are used to estimate prognosis for patients. Most crucial, however, are those markers that are used to predict response to certain therapies, thereby directing clinicians to a particular treatment while avoiding other potentially deleterious therapies. Recently, large-scale genome-wide surveys have been used to identify new biomarkers that have been rapidly developed as diagnostic and prognostic tools. Given these developments, the pace of discovery of new molecular assays will quicken to facilitate personalised medicine in the setting of malignant glioma.

  3. Radioimmunoimaging of experimental gliomas using radiolabelled monoclonal antibodies

    International Nuclear Information System (INIS)

    The biodistribution and tumour uptake of radiolabelled (131 I) glioma-seeking monoclonal antibodies (14 AC1) and their F(ab')2 fragments were investigated in nude mice having received glioma transplants. Radioimmunoimaging by external scintigraphy at 48 and 96 hours pointed to a superior tumour localisation by the fragments that was clearly related to the dose. Wholebody determinations of the biokinetic behaviour led to the following results: Faster clearance anc more ready elimination from the blood pool for the fragments, preferential uptake in the tumour; intact antibodies; binding in the liver, spleen and lungs. The study confirmed the value of fragments of monoclonal antibodies in the diagnosis of tumours and pointed to the possibility of using intact monoclonal antibodies as carriers of radioisotopes and cytotoxic drugs within the scope of therapeutic programmes. (TRV)

  4. Use of intraoperative MRI for resection of gliomas

    Directory of Open Access Journals (Sweden)

    Hector Navarro Cabrera

    2011-12-01

    Full Text Available Literature has shown that extent of tumor resection has an impact on quality of life and survival of patients with gliomas. Intraoperative MRI has been used to increase resection while preserving procedure's safety. METHOD: The first five patients with gliomas operated on at the University of São Paulo using intraoperative MRI are reported. All but one patient had Karnofsky Performance Status of 100% before surgery. Presentation symptoms were progressive headache, seizures, behavior disturbance, one instance of hemianopsia, and another of hemiparesis. RESULTS: Gross total removal was achieved in two patients. Surgical resection was limited by tumor invasion of critical areas like the internal capsule or the mesencephalon in the remaining patients. CONCLUSION: Intra-operative MRI is an important tool that helps surgeons to remove glial tumors, however, knowledge of physiology and functional anatomy is still fundamental to avoid morbidity.

  5. Hormonal contraceptive use and risk of glioma among younger women

    DEFF Research Database (Denmark)

    Andersen, Lene; Friis, Søren; Hallas, Jesper;

    2015-01-01

    AIM: Oral contraceptive use influences the risk for certain cancers. However, few studies have examined any link with risk of central nervous system tumours. We investigated the association between hormonal contraceptive use and glioma risk among premenopausal women in a population-based setting...... risk set sampling. Based on prescription data, exposure until 2 years prior to the index date was categorized according to hormonal contraceptive type, i.e. combined oestrogen-progestagen or progestagen only, and duration of use (....0) and the OR increased with duration of use (long term, ≥5 years: OR 1.9; 95% CI 1.2, 2.9). The association between long term hormonal contraceptive use and glioma risk was most pronounced for progestagen only therapy (OR 2.4; 95% CI 1.1, 5.1), especially when this regimen constituted the sole hormonal contraceptive...

  6. The engineered Salmonella typhimurium inhibits tumorigenesis in advanced glioma

    Directory of Open Access Journals (Sweden)

    Chen JQ

    2015-09-01

    Full Text Available Jian-qiang Chen,1 Yue-fu Zhan,2 Wei Wang,1 Sheng-nan Jiang,2,3 Xiang-ying Li21Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China; 2Department of Radiology, Affiliated to Haikou Hospital Xiangya School of Medicine, Central South University, Haikou, People’s Republic of China; 3Department of Nuclear Medicine, Central South University Xiangya School of Medicine Affiliated HaiKou Hospital, Haikou, Hainan, People’s Republic of ChinaObjective: To explore the antitumor role of the attenuated Salmonella typhimurium ΔppGpp with inducible cytolysin A (ClyA in advanced stage of glioma.Materials and methods: The C6 rat glioma cells were orthotopically implanted by surgery into the caudate nucleus of rat brains. The rats were then randomly divided into the treatment group (SL + ClyA (n=12, negative control group (SL (n=12, and control group (phosphate-buffered saline [PBS] (n=12. In the treatment group, the attenuated S. typhimurium were transformed with the plasmid-encoded antitumor gene ClyA. The expression of ClyA was controlled by the TetR-regulated promoter in response to extracellular doxycycline. The plasmid also contained an imaging gene lux to allow illumination of the tumor infected by the bacteria. The rat glioma C6 cells were implanted into the caudate nucleus of all rats. The engineered S. typhimurium and respective controls were injected intravenously into the rats 21 days after initial tumor implantation. The pathological analysis of the glioma tumor was performed at 21 days and 28 days (7 days after doxycycline treatment postimplantation. All rats underwent MRI (magnetic resonance imaging and bioluminescence study at 21 days and 28 days postimplantation to detect tumor volume. The differences between the three groups in tumor volume and survival time were analyzed.Results: Advanced stage glioma  was detected at 21 days postimplantation. Bioluminescence showed that the

  7. In vitro drug response and efflux transporters associated with drug resistance in pediatric high grade glioma and diffuse intrinsic pontine glioma.

    Directory of Open Access Journals (Sweden)

    Susanna J E Veringa

    Full Text Available Pediatric high-grade gliomas (pHGG, including diffuse intrinsic pontine gliomas (DIPG, are the leading cause of cancer-related death in children. While it is clear that surgery (if possible, and radiotherapy are beneficial for treatment, the role of chemotherapy for these tumors is still unclear. Therefore, we performed an in vitro drug screen on primary glioma cells, including three DIPG cultures, to determine drug sensitivity of these tumours, without the possible confounding effect of insufficient drug delivery. This screen revealed a high in vitro cytotoxicity for melphalan, doxorubicine, mitoxantrone, and BCNU, and for the novel, targeted agents vandetanib and bortezomib in pHGG and DIPG cells. We subsequently determined the expression of the drug efflux transporters P-gp, BCRP1, and MRP1 in glioma cultures and their corresponding tumor tissues. Results indicate the presence of P-gp, MRP1 and BCRP1 in the tumor vasculature, and expression of MRP1 in the glioma cells themselves. Our results show that pediatric glioma and DIPG tumors per se are not resistant to chemotherapy. Treatment failure observed in clinical trials, may rather be contributed to the presence of drug efflux transporters that constitute a first line of drug resistance located at the blood-brain barrier or other resistance mechanism. As such, we suggest that alternative ways of drug delivery may offer new possibilities for the treatment of pediatric high-grade glioma patients, and DIPG in particular.

  8. Mechanisms of Glioma Formation: Iterative Perivascular Glioma Growth and Invasion Leads to Tumor Progression, VEGF-Independent Vascularization, and Resistance to Antiangiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Gregory J. Baker

    2014-07-01

    Full Text Available As glioma cells infiltrate the brain they become associated with various microanatomic brain structures such as blood vessels, white matter tracts, and brain parenchyma. How these distinct invasion patterns coordinate tumor growth and influence clinical outcomes remain poorly understood. We have investigated how perivascular growth affects glioma growth patterning and response to antiangiogenic therapy within the highly vascularized brain. Orthotopically implanted rodent and human glioma cells are shown to commonly invade and proliferate within brain perivascular space. This form of brain tumor growth and invasion is also shown to characterize de novo generated endogenous mouse brain tumors, biopsies of primary human glioblastoma (GBM, and peripheral cancer metastasis to the human brain. Perivascularly invading brain tumors become vascularized by normal brain microvessels as individual glioma cells use perivascular space as a conduit for tumor invasion. Agent-based computational modeling recapitulated biological perivascular glioma growth without the need for neoangiogenesis. We tested the requirement for neoangiogenesis in perivascular glioma by treating animals with angiogenesis inhibitors bevacizumab and DC101. These inhibitors induced the expected vessel normalization, yet failed to reduce tumor growth or improve survival of mice bearing orthotopic or endogenous gliomas while exacerbating brain tumor invasion. Our results provide compelling experimental evidence in support of the recently described failure of clinically used antiangiogenics to extend the overall survival of human GBM patients.

  9. Application of Nanoparticles on Diagnosis and Therapy in Gliomas

    OpenAIRE

    Hernández-Pedro, Norma Y.; Edgar Rangel-López; Roxana Magaña-Maldonado; Verónica Pérez de la Cruz; Abel Santamaría del Angel; Benjamín Pineda; Julio Sotelo

    2013-01-01

    Glioblastoma multiforme (GBM) is one of the most deadly diseases that affect humans, and it is characterized by high resistance to chemotherapy and radiotherapy. Its median survival is only fourteen months, and this dramatic prognosis has stilled without changes during the last two decades; consequently GBM remains as an unsolved clinical problem. Therefore, alternative diagnostic and therapeutic approaches are needed for gliomas. Nanoparticles represent an innovative tool in research and the...

  10. Functionally-defined Therapeutic Targets in Diffuse Intrinsic Pontine Glioma

    Science.gov (United States)

    Grasso, Catherine S.; Tang, Yujie; Truffaux, Nathalene; Berlow, Noah E.; Liu, Lining; Debily, Marie-Anne; Quist, Michael J.; Davis, Lara E.; Huang, Elaine C.; Woo, Pamelyn J; Ponnuswami, Anitha; Chen, Spenser; Johung, Tessa B.; Sun, Wenchao; Kogiso, Mari; Du, Yuchen; Lin, Qi; Huang, Yulun; Hütt-Cabezas, Marianne; Warren, Katherine E.; Dret, Ludivine Le; Meltzer, Paul S.; Mao, Hua; Quezado, Martha; van Vuurden, Dannis G.; Abraham, Jinu; Fouladi, Maryam; Svalina, Matthew N.; Wang, Nicholas; Hawkins, Cynthia; Nazarian, Javad; Alonso, Marta M.; Raabe, Eric; Hulleman, Esther; Spellman, Paul T.; Li, Xiao-Nan; Keller, Charles; Pal, Ranadip; Grill, Jacques; Monje, Michelle

    2015-01-01

    Diffuse Intrinsic Pontine Glioma (DIPG) is a fatal childhood cancer. We performed a chemical screen in patient-derived DIPG cultures along with RNAseq analyses and integrated computational modeling to identify potentially effective therapeutic strategies. The multi-histone deacetylase inhibitor panobinostat demonstrated efficacy in vitro and in DIPG orthotopic xenograft models. Combination testing of panobinostat with histone demethylase inhibitor GSKJ4 revealed synergy. Together, these data suggest a promising therapeutic strategy for DIPG. PMID:25939062

  11. Efficacy and toxicity of postoperative temozolomide radiochemotherapy in malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, M.; Kunze, S.; Eich, H.T.; Semrau, R.; Mueller, R.P. [Dept. of Radiation Oncology, Univ. of Cologne (Germany)

    2005-03-01

    Purpose: to evaluate the feasibility, safety and efficacy of daily temozolomide concurrent with postoperative radiotherapy in malignant glioma. Patients and methods: from 11/1999 to 03/2003, n = 81 patients aged 15-72 years (median 52 years, karnofsky score 80-100% in 83%) suffering from primary glioblastoma (n = 47), anaplastic astrocytoma (n = 6), anaplastic oligodendroglioma (n = 16), and recurrent glioma (n = 12) were treated. Patients with primary gliomas received a combination of postoperative radiotherapy (60 Gy/1.8- to 2.0-Gy fractions) and daily oral temozolomide (75 mg/m{sup 2}) at all irradiation days (30-33 doses), while recurrent tumors were treated with 45-60 Gy and temozolomide. Initially, 6/81 patients had daily temozolomide doses of 50 mg/m{sup 2}. Results: in total, 70/81 patients (86%) completed both radio- and chemotherapy. Grade 1 nausea/vomiting was seen in 28%, grade 2 in 11%, grade 3 in 1%. Antiemetics were applied in 41%. Hematologic toxicities were observed as follows: leukopenia grade 3/4 1%, lymphopenia grade 3/4 46%, thrombopenia grade 3/4 1%. Two patients under dexamethasone suffered herpes encephalitis after one and 16 doses of temozolomide (75 mg/m{sup 2}). Median survival was 15 months for glioblastoma. In oligodendroglioma patients, a 4-year survival rate of 78% was observed. Conclusion: postoperative radiochemotherapy with 30-33 daily doses of temozolomide (75 mg/m{sup 2}) is safe in patients with malignant glioma. The combined schedule is effective in oligodendroglioma patients and may prolong survival in glioblastoma. Effort should be taken to minimize corticosteroid doses, since both steroids and temozolomide lead to immunosuppression. (orig.)

  12. New (alternative) temozolomide regimens for the treatment of glioma

    OpenAIRE

    Wick, W.; Platten, M; Weller, M.

    2009-01-01

    One barrier to successful treatment of malignant glioma is resistance to alkylating agents such as temozolomide. The cytotoxic activity of temozolomide and other alkylating agents is believed to be manifested largely by the formation of O-methylguanine DNA adducts. Consequently, the primary mechanism of resistance to temozolomide is a function of the activity of the DNA repair enzyme O-methylguanine DNA methyltransferase (MGMT). Fortuitously, MGMT is inactivated after each reaction (ie, suici...

  13. Interstitial chemotherapy for malignant gliomas: the Johns Hopkins experience

    OpenAIRE

    Lawson, H. Christopher; Sampath, Prakash; Bohan, Eileen; Park, Michael C.; Hussain, Namath; Olivi, Alessandro; Weingart, Jon; Kleinberg, Lawrence; Brem, Henry

    2006-01-01

    Malignant gliomas are very difficult neoplasms for clinicians to treat. The reason for this is multifaceted. Many treatments that are effective for systemic cancer are unable to cross the blood-brain barrier and/or have unacceptable systemic toxicities. Consequently, in recent years an effort has been placed on trying to develop innovative local treatments that bypass the blood-brain barrier and allow for direct treatment in the central nervous system (CNS)—interstitial treatment. In this pap...

  14. Perturbation of Hyaluronan Interactions Inhibits Malignant Properties of Glioma Cells

    OpenAIRE

    Ward, Jeanine A; Huang, Lei; Guo, Huiming; Ghatak, Shibnath; Toole, Bryan P.

    2003-01-01

    Malignant progression of gliomas is characterized by acquisition of inappropriate growth and invasive properties. In vitro, these malignant properties are reflected in, and measured by, the ability to grow in an anchorage-independent manner and to invade artificial extracellular matrices. The results of numerous studies have suggested that the extracellular and pericellular matrix polysaccharide, hyaluronan, plays an important role in these attributes of malignant cancer cells. However, with ...

  15. Resveratrol Induces Glioma Cell Apoptosis through Activation of Tristetraprolin

    OpenAIRE

    Ryu, Jinhyun; Yoon, Nal Ae; Seong, Hyemin; Jeong, Joo Yeon; Kang, Seokmin; Park, Nammi; Choi, Jungil; Lee, Dong Hoon; Roh, Gu Seob; Kim, Hyun Joon; Cho, Gyeong Jae; Choi, Wan Sung; Park, Jae-Yong; Park, Jeong Woo; Kang, Sang Soo

    2015-01-01

    Tristetraprolin (TTP) is an AU-rich elements (AREs)-binding protein, which regulates the decay of AREs-containing mRNAs such as proto-oncogenes, anti-apoptotic genes and immune regulatory genes. Despite the low expression of TTP in various human cancers, the mechanism involving suppressed expression of TTP is not fully understood. Here, we demonstrate that Resveratrol (3,5,4′-trihydroxystilbene, Res), a naturally occurring compound, induces glioma cell apoptosis through activation of tristetr...

  16. Temozolomide Chemotherapy in Patients with Recurrent Malignant Gliomas

    OpenAIRE

    Yang, Seung-Ho; Kim, Moon-Kyu; Lee, Tae-Kyu; Lee, Kwan-Sung; Jeun, Sin-Soo; Park, Chun-Kun; Kang, Joon-Ki; Kim, Moon-Chan; Hong, Yong-Kil

    2006-01-01

    Numerous studies have demonstrated the clinical activity of temozolomide, a second-generation alkylating agent, against malignant brain tumors, however, its activity has not been reported in an Asian population. This study analyzed the efficacy and toxicity of temozolomide in 25 adult patients with recurrent or progressive malignant gliomas after surgery and standard radiation therapy with or without chemotherapy, enrolled in our institution since July 2000. Sixteen patients had glioblastoma ...

  17. Epigenetic biomarkers of T-cells in human glioma.

    Science.gov (United States)

    Wiencke, John K; Accomando, William P; Zheng, Shichun; Patoka, Joe; Dou, Xiaoqin; Phillips, Joanna J; Hsuang, George; Christensen, Brock C; Houseman, E Andres; Koestler, Devin C; Bracci, Paige; Wiemels, Joseph L; Wrensch, Margaret; Nelson, Heather H; Kelsey, Karl T

    2012-12-01

    Immune factors are thought to influence glioma risk and outcomes, but immune profiling studies to further our understanding of the immune response are limited by current immunodiagnostic methods. We developed a new assay to capture glioma immune biology based on quantitative methylation specific PCR (qMSP) of two T-cell genes (CD3Z: T-cells, and FOXP3: Tregs). Flow cytometry of T-cells correlated well with the CD3Z demethylation assay (r = 0.93; p < 2.2 × 10 (-16) ), demonstrating the validity of the assay. Furthermore, there was a high correlation between qMSP and immunohistochemistry (IHC) in quantifying tumor infiltrating T-cells (r = 0.85; p = 3.4 × 10 (-11) ). Applying our qMSP methods to archival whole blood from 65 glioblastoma multiforme (GBM) cases and 94 non-diseased controls, GBM cases had highly statistically significantly lower T-cells (p = 1.7 × 10 (-9) ) as well as Tregs (p = 5.2 × 10 (-11) ) and a modestly lower ratio of Tregs/T-cells (p = 0.024). Applying the methods to 120 excised glioma tumors, we observed that tumor infiltrating CD3+ T-cells were positively correlated with glioma tumor grade (p = 5.7 × 10 (-7) ), and that Tregs were enriched in tumors compared with peripheral blood indicating active chemoattraction of suppressive Tregs into the tumor compartment. Poorer patient survival was correlated with higher levels of tumor infiltrating T-cells (p = 0.01) and Tregs (p = 0.04). DNA methylation based immunodiagnostics represent a new generation of powerful laboratory tools offering many advantages over conventional methods that will facilitate large clinical epidemiologic studies and capitalize on stored archival blood and tissue banks. PMID:23108258

  18. Targeted therapies for malignant gliomas: novel agents, same barrier

    OpenAIRE

    Lin, F.

    2013-01-01

    Malignant gliomas are common and devastating brain malignancies. Despite this extensive treatment the mean overall survival is still only 14.6 months and more effective treatments are urgently needed. Targeted therapy holds the promise for the new generation of chemotherapy due to the selectively target inhibition of deregulated signaling pathways in cancer cell but not normal cells. However, recent researches suggested that the blood-brain barrier (BBB) restricting the brain delivery of most...

  19. Multimodal imaging in cerebral gliomas and its neuropathological correlation

    Energy Technology Data Exchange (ETDEWEB)

    Gempt, Jens, E-mail: jens.gempt@lrz.tum.de [Neurochirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Soehngen, Eric [Abteilung für Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Abteilung für Neuropathologie des Instituts für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Förster, Stefan [Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Ryang, Yu-Mi [Neurochirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Schlegel, Jürgen [Abteilung für Neuropathologie des Instituts für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); and others

    2014-05-15

    Introduction: Concerning the preoperative clinical diagnostic work-up of glioma patients, tumor heterogeneity challenges the oncological therapy. The current study assesses the performance of a multimodal imaging approach to differentiate between areas in malignant gliomas and to investigate the extent to which such a combinatorial imaging approach might predict the underlying histology. Methods: Prior to surgical resection, patients harboring intracranial gliomas underwent MRIs (MR-S, PWI) and {sup 18}F-FET-PETs. Intratumoral and peritumoral biopsy targets were defined, by MRI only, by FET-PET only, and by MRI and FET-PET combined, and biopsied prior to surgical resection and which then received separate histopathological examinations. Results: In total, 38 tissue samples were acquired (seven glioblastomas, one anaplastic astrocytoma, one anaplastic oligoastrocytoma, one diffuse astrocytoma, and one oligoastrocytoma) and underwent histopathological analysis. The highest mean values of Mib1 and CD31 were found in the target point “T’ defined by MRI and FET-PET combined. A significant correlation between NAA/Cr and PET tracer uptake (−0.845, p < 0.05) as well as Cho/Cr ratio and cell density (0.742, p < 0.05) and NAA/Cr ratio and MIB-1 (−0761, p < 0.05) was disclosed for this target point, though not for target points defined by MRI and FET-PET alone. Conclusion: Multimodal-imaging-guided stereotactic biopsy correlated more with histological malignancy indices, such as cell density and MIB-1 labeling, than targets that were based solely on the highest amino acid uptake or contrast enhancement on MRI. The results of our study indicate that a combined PET-MR multimodal imaging approach bears potential benefits in detecting glioma heterogeneity.

  20. Is Development of High-Grade Gliomas Sulfur-Dependent?

    OpenAIRE

    Maria Wróbel; Jerzy Czubak; Patrycja Bronowicka-Adamska; Halina Jurkowska; Dariusz Adamek; Bolesław Papla

    2014-01-01

    We characterized γ-cystathionase, rhodanese and 3-mercaptopyruvate sulfurtransferase activities in various regions of human brain (the cortex, thalamus, hypothalamus, hippocampus, cerebellum and subcortical nuclei) and human gliomas with II to IV grade of malignancy (according to the WHO classification). The human brain regions, as compared to human liver, showed low γ-cystathionase activity. The activity of rhodanese was also much lower and it did not vary significantly between the investiga...

  1. Thromboembolic disease in patients with high-grade glioma

    OpenAIRE

    Perry, James R.

    2012-01-01

    Venous thromboembolism (VTE) is common throughout the course of disease in high-grade glioma (HGG). The interactions between the coagulation cascade, endothelium, and regulation of angiogenesis are complex and drive glioblastoma growth and invasion. We reviewed the incidence of VTE in HGG, the biology of the coagulome as related to glioblastoma progression, prevention and treatment of thrombosis, and the putative role of anticoagulants as anti-cancer therapy. VTE can be significantly reduced ...

  2. Treatment of Glioma Using neuroArm Surgical System

    OpenAIRE

    Yaser Maddahi; Kourosh Zareinia; Liu Shi Gan; Christina Sutherland; Sanju Lama; Sutherland, Garnette R.

    2016-01-01

    The use of robotic technology in the surgical treatment of brain tumour promises increased precision and accuracy in the performance of surgery. Robotic manipulators may allow superior access to narrow surgical corridors compared to freehand or conventional neurosurgery. This paper reports values and ranges of tool-tissue interaction forces during the performance of glioma surgery using an MR compatible, image-guided neurosurgical robot called neuroArm. The system, capable of microsurgery and...

  3. Treatment Resistance Mechanisms of Malignant Glioma Tumor Stem Cells

    International Nuclear Information System (INIS)

    Malignant gliomas are highly lethal because of their resistance to conventional treatments. Recent evidence suggests that a minor subpopulation of cells with stem cell properties reside within these tumors. These tumor stem cells are more resistant to radiation and chemotherapies than their counterpart differentiated tumor cells and may underlie the persistence and recurrence of tumors following treatment. The various mechanisms by which tumor stem cells avoid or repair the damaging effects of cancer therapies are discussed

  4. Genetic therapy in gliomas: Historical analysis and future perspectives

    OpenAIRE

    Mattei Tobias; Ramina Ricardo; Miura Flavio; Aguiar Paulo; Valiengo Leandro

    2005-01-01

    High-grade gliomas are relatively frequent in adults, and consist of the most malignant kind of primary brain tumor. Being resistant to standard treatment modalities such as surgery, radiation, and chemotherapy, it is fatal within 1 to 2 years of onset of symptoms. Although several gene therapy systems proved to be efficient in controlling or eradicating these tumors in animal models, the clinical studies performed so far were not equally successful. Most clinical studies showed that methodol...

  5. Treatment Resistance Mechanisms of Malignant Glioma Tumor Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Schmalz, Philip G.R. [Surgical and Molecular Neuro-Oncology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 (United States); Howard Hughes Medical Institute, National Institutes of Health Research Scholars Program, Bethesda, MD 20892 (United States); Shen, Michael J.; Park, John K., E-mail: parkjk@ninds.nih.gov [Surgical and Molecular Neuro-Oncology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 (United States)

    2011-02-10

    Malignant gliomas are highly lethal because of their resistance to conventional treatments. Recent evidence suggests that a minor subpopulation of cells with stem cell properties reside within these tumors. These tumor stem cells are more resistant to radiation and chemotherapies than their counterpart differentiated tumor cells and may underlie the persistence and recurrence of tumors following treatment. The various mechanisms by which tumor stem cells avoid or repair the damaging effects of cancer therapies are discussed.

  6. Intra-Arterial Chemotherapy for Malignant Gliomas: a Critical Analysis

    OpenAIRE

    Burkhardt, J-K.; Riina, H A; Shin, B.J.; Moliterno, J.A.; Hofstetter, C. P.; Boockvar, J A

    2011-01-01

    Intra-arterial (IA) chemotherapy for malignant gliomas including glioblastoma multiforme was initiated decades ago, with many preclinical and clinical studies having been performed since then. Although novel endovascular devices and techniques such as microcatheter or balloon assistance have been introduced into clinical practice, the question remains whether IA therapy is safe and superior to other drug delivery modalities such as intravenous (IV) or oral treatment regimens. This review focu...

  7. Destruction of vasculogenic mimicry channels by targeting epirubicin plus celecoxib liposomes in treatment of brain glioma

    Directory of Open Access Journals (Sweden)

    Ju RJ

    2016-03-01

    Full Text Available Rui-Jun Ju,1,2,* Fan Zeng,1,* Lei Liu,1 Li-Min Mu,1 Hong-Jun Xie,1 Yao Zhao,1 Yan Yan,1 Jia-Shuan Wu,1 Ying-Jie Hu,1 Wan-Liang Lu1 1Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 2Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, People’s Republic of China *These authors contributed equally to this work Abstract: The efficacy of chemotherapy for brain glioma is restricted by the blood–brain barrier (BBB, and surgery or radiotherapy cannot eliminate the glioma cells because of their unique location. Residual brain glioma cells can form vasculogenic mimicry (VM channels that can cause a recurrence of brain glioma. In the present study, targeting liposomes incorporating epirubicin and celecoxib were prepared and used for the treatment of brain glioma, along with the destruction of their VM channels. Evaluations were performed on the human brain glioma U87MG cells in vitro and on intracranial brain glioma-bearing nude mice. Targeting epirubicin plus celecoxib liposomes in the circulatory blood system were able to be transported across the BBB, and accumulated in the brain glioma region. Then, the liposomes were internalized by brain glioma cells and killed glioma cells by direct cytotoxic injury and the induction of apoptosis. The induction of apoptosis was related to the activation of caspase-8- and -3-signaling pathways, the activation of the proapoptotic protein Bax, and the suppression of the antiapoptotic protein Mcl-1. The destruction of brain glioma VM channels was related to the downregulation of VM channel-forming indictors, which consisted of MMP-2, MMP-9, FAK, VE-Cad, and VEGF. The results demonstrated that the targeting epirubicin plus celecoxib liposomes were able to effectively destroy the glioma VM channels and exhibited significant efficacy in the

  8. MAGI3 Suppresses Glioma Cell Proliferation via Upregulation of PTEN Expression

    Institute of Scientific and Technical Information of China (English)

    MA Qian; ZHAO Ji Zong; HE Jun Qi; ZHANG Yan; MENG Ran; XIE Kun Ming; XIONG Ying; LIN Song; HE Zong Lin K; TAO Tao; YANG Ying

    2015-01-01

    Objective To investigate the role and molecular mechanism of membrane-associated guanylate kinase inverted 3 (MAGI3) in glioma cell proliferation. Methods The expression levels of MAGI3 and PTEN were assessed in glioma samples by Western blotting. MAGI3 was stably transfected into C6 glioma cells to obtain C6-MAGI3 cells. Then, the proliferation, the expression levels of MAGI3 and PTEN, and Akt phosphorylation were evaluated in C6 and C6-MAGI3 cells. Xenograft tumor models were established by subcutaneous injection of C6 and C6-MAGI3 cells into nude mice, and the growth rates of xenografts in the mice were compared. The potential role of MAGI3 expression in PI3K/Akt signaling activation was further investigated by examining the correlation between MAGI3 expression and the expression of PI3K/Akt signaling downstream target genes in a glioma dataset using gene set enrichment analysis (GSEA). Results Expression levels of MAGI3 and PTEN were significantly downregulated in gliomas. Overexpression of MAGI3 in the glioma C6 cell line upregulated PTEN protein expression, inhibited the phosphorylation of Akt, and suppressed cell proliferation. MAGI3 overexpression also inhibited the growth of C6 glioma tumor xenografts in nude mice. Analysis based on the GEO database confirmed the negative correlation between activation of PI3K/Akt pathway and MAGI3 mRNA levels in human glioma samples. Conclusion The loss of MAGI3 expression in glioma may enhance the proliferation of glioma cells via downregulation of PTEN expression, leading to the activation of the PI3K/Akt pathway. MAGI3 is a potential glioma suppressor.

  9. Gliomas múltiplos do cérebro

    Directory of Open Access Journals (Sweden)

    J. Lamartine de Assis

    1947-12-01

    Full Text Available Os AA. apresentam um caso de gliomas múltiplos do cérebro, com regressão dos sintomas clínicos após intervenção cirúrgica. A localização do tumor foi feita exclusivamente pelos dados clínicos. Chamava a atenção o fato de tôda área cerebral descoberta pela cranictomia estar ocupada por três grandes gliomas, que foram fàcilmente enucleados, e, mais profundamente, três outros tumores menores. Houve regressão notável da sintomatologia após o ato cirúrgico. O exame anátomo-patolóico mostrou tratar-se de ependimoma. Os AA. terminam a exposição do caso tecendo considerações de ordem clínica e anátomo-patológica, e admitindo, como ponto de origem dos gliomas no caso em aprêço, os germes ependimais deslocados durante o desenvolvimento embrionário, pois os tumores estavam em pleno córtex cerebral, sem conexão com os ventrículos.

  10. Radiochemotherapy of malignant glioma in adults. Clinical experiences

    Energy Technology Data Exchange (ETDEWEB)

    Kortmann, R.D.; Jeremic, B.; Plasswilm, L.; Bamberg, M. [Dept. for Radiation Oncology, Univ. of Tuebingen (Germany); Weller, M. [Dept. of Neurology, Univ. of Tuebingen (Germany)

    2003-04-01

    Background: Standard treatment in patients with malignant glioma consists of surgery and postoperative radiotherapy. A high early recurrence rate, particularly in glioblastoma, has led to the investigation of additional chemotherapy. Material and Methods: Recent results of radiochemotherapy published in the literature were reviewed with respect to outcome in phase II and III trials. Based on these experiences, aspects of future strategies were discussed. Results: 3 decades of intensive research had, unfortunately, little impact on the overall results. While early prospective studies established adjuvant nitrosoureas, particularly BCNU, as suitable adjuvant to surgery and postoperative radiotherapy, further studies largely concentrated on combined chemotherapeutic protocols, mostly procarbazine, CCNU and vincristine (PCV), which was shown to prolong survival in anaplastic astrocytoma. The recent MRC study, however, showed no effect for adjuvant PCV in grade III and IV malignant glioma. Only in high-grade glioma with an oligodendroglial component, additional chemotherapy may be of a decisive benefit. The introduction of newer drugs such as paclitaxel, temozolomide, or gemcitabine demonstrated no decisive advantage. Different modes of application and sequencing of radiotherapy and chemotherapy are presently actively investigated, but failed to substantially improve outcome. Conclusions: Therefore, search for newer and more effective drugs continues, as well as for ''optimal'' administration and sequencing, especially from the standpoint of accompanying acute and late toxicity. Finally, recent endeavors focused on basic research such as angiogenesis, migration and invasion, or induction of cell differentiation, but these strategies are still away from broader clinical investigation. (orig.)

  11. Atypical crossmodal emotional integration in patients with gliomas.

    Science.gov (United States)

    Luherne-du Boullay, Viviane; Plaza, Monique; Perrault, Annabelle; Capelle, Laurent; Chaby, Laurence

    2014-11-01

    The relevance of emotional perception in interpersonal relationships and social cognition has been well documented. Although brain diseases might impair emotional processing, studies concerning emotional recognition in patients with brain tumours are relatively rare. The aim of this study was to explore emotional recognition in patients with gliomas in three conditions (visual, auditory and crossmodal) and to analyse how tumour-related variables (notably, tumour localisation) and patient-related variables influence emotion recognition. Twenty six patients with gliomas and 26 matched healthy controls were instructed to identify 5 basic emotions and a neutral expression, which were displayed through visual, auditory and crossmodal stimuli. Relative to the controls, recognition was weakly impaired in the patient group under both visual and auditory conditions, but the performances were comparable in the crossmodal condition. Additional analyses using the 'race model' suggest differences in multisensory emotional integration abilities across the groups, which were potentially correlated with the executive disorders observed in the patients. These observations support the view of compensatory mechanisms in the case of gliomas that might preserve the quality of life and help maintain the normal social and professional lives often observed in these patients. PMID:25463143

  12. External irradiation models for intracranial 9L glioma studies

    Directory of Open Access Journals (Sweden)

    Feuvret Loïc

    2010-11-01

    Full Text Available Abstract Purpose Radiotherapy has been shown to be an effective for the treatment human glioma and consists of 30 fractions of 2 Gy each for 6-7 weeks in the tumor volume with margins. However. in preclinical studies, many different radiation schedules are used. The main purpose of this work was to review the relevant literature and to propose an external whole-brain irradiation (WBI protocol for a rat 9L glioma model. Materials and methods 9L cells were implanted in the striatum of twenty 344-Fisher rats to induce a brain tumor. On day 8, animals were randomized in two groups: an untreated group and an irradiated group with three fractions of 6 Gy at day 8, 11 and 14. Survival and toxicity were assessed. Results Irradiated rats had significantly a longer survival (p = 0.01. No deaths occurred due to the treatment. Toxicities of reduced weight and alopecia were increased during the radiation period but no serious morbidity or mortality was observed. Moreover, abnormalities disappeared the week following the end of the therapeutic schedule. Conclusions Delivering 18 Gy in 3 fractions of 6 Gy every 3 days, with mild anaesthesia, is safe, easy to reproduce and allows for standardisation in preclinical studies of different treatment regimens glioma rat model.

  13. Targeted therapy in the treatment of malignant gliomas

    Directory of Open Access Journals (Sweden)

    Rimas V Lukas

    2009-05-01

    Full Text Available Rimas V Lukas1, Adrienne Boire2, M Kelly Nicholas1,2 1Department of Neurology; 2Department of Medicine, University of Chicago, Chicago, IL, USAAbstract: Malignant gliomas are invasive tumors with the potential to progress through current available therapies. These tumors are characterized by a number of abnormalities in molecular signaling that play roles in tumorigenesis, spread, and survival. These pathways are being actively investigated in both the pre-clinical and clinical settings as potential targets in the treatment of malignant gliomas. We will review many of the therapies that target the cancer cell, including the epidermal growth factor receptor, mammalian target of rapamycin, histone deacetylase, and farnesyl transferase. In addition, we will discuss strategies that target the extracellular matrix in which these cells reside as well as angiogenesis, a process emerging as central to tumor development and growth. Finally, we will briefly touch on the role of neural stem cells as both potential targets as well as delivery vectors for other therapies. Interdependence between these varied pathways, both in maintaining health and in causing disease, is clear. Thus, attempts to easily classify some targeted therapies are problematic.Keywords: glioma, EGFR, mTOR, HDAC, Ras, angiogenesis

  14. Role of Inflammation and Oxidative Stress Mediators in Gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Conti, Alfredo, E-mail: alfredo.conti@unime.it; Gulì, Carlo; La Torre, Domenico; Tomasello, Chiara; Angileri, Filippo F.; Aguennouz, M’Hammed [Department of Neuroscience and Department of Oncology, University of Messina, Policlinico Universitario, Via Consolare Valeria 1, 98125, Messina (Italy)

    2010-04-26

    Gliomas are the most common primary brain tumors of the central nervous system. Despite relevant progress in conventional treatments, the prognosis of such tumors remains almost invariably dismal. The genesis of gliomas is a complex, multistep process that includes cellular neoplastic transformation, resistance to apoptosis, loss of control of the cell cycle, angiogenesis, and the acquisition of invasive properties. Among a number of different biomolecular events, the existence of molecular connections between inflammation and oxidative stress pathways and the development of this cancer has been demonstrated. In particular, the tumor microenvironment, which is largely orchestrated by inflammatory molecules, is an indispensable participant in the neoplastic process, promoting proliferation, survival and migration of such tumors. Proinflammatory cytokines, such as tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma, as well as chemokines and prostaglandins, are synthesized by resident brain cells and lymphocytes invading the affected brain tissue. Key mediators of cancer progression include nuclear factor-kappaB, reactive oxygen and nitrogen species, and specific microRNAs. The collective activity of these mediators is largely responsible for a pro-tumorigenic response through changes in cell proliferation, cell death, cellular senescence, DNA mutation rates, DNA methylation and angiogenesis. We provide a general overview of the connection between specific inflammation and oxidative stress pathway molecules and gliomas. The elucidation of specific effects and interactions of these factors may provide the opportunity for the identification of new target molecules leading to improved diagnosis and treatment.

  15. Dipeptidyl peptidase IV in two human glioma cell lines

    Directory of Open Access Journals (Sweden)

    A Sedo

    2009-12-01

    Full Text Available There is growing evidence that dipeptidyl peptidase IV [DPP-IV, EC 3.4.14.5] takes part in the metabolism of biologically active peptides participating in the regulation of growth and transformation of glial cells. However, the knowledge on the DPP-IV expression in human glial and glioma cells is still very limited. In this study, using histochemical and biochemical techniques, the DPP-IV activity was demonstrated in two commercially available human glioma cell lines of different transformation degree, as represented by U373 astrocytoma (Grade III and U87 glioblastoma multiforme (Grade IV lines. Higher total activity of the enzyme, as well as its preferential localisation in the plasma membrane, was observed in U87 cells. Compared to U373 population, U87 cells were morphologically more pleiomorphic, they were cycling at lower rate and expressing less Glial Fibrillary Acidic Protein. The data revealed positive correlation between the degree of transformation of cells and activity of DPP-IV. Great difference in expression of this enzyme, together with the phenotypic differences of cells, makes these lines a suitable standard model for further 57 studies of function of this enzyme in human glioma cells.

  16. EEG controls for detecting the recurrence of supratentorial gliomas

    International Nuclear Information System (INIS)

    The purpose of this study was to find out the value of postoperative EEG controls in the early detection of recurrence of supratentorial gliomas (the majority being astrocytomas, stage II to IV). 29 cases with verified tumour recurrence were examined and in all but one the EEG showed a reactivation of the focus in accordance with the development of the glioma. At least one of the following parameters had to be established: 1. a further spreading of the focal changes, 2. a reduction in frequency, 3. an increase in amplitudes and 4. focal depression and amplitudes. At least 3 postoperative EEG controls were made in each case. The duration of tumour treatment was 3 to 59 months. In 3 cases temporary focus activation was found without evidence of tumour recurrence; in one of these cases the activation was preceded by an epileptic seizure. Epileptic seizures, thus, seem to have a focus activating effect. Focus activation as a result of radiotherapy or cytostatic treatment was not observed. On the basis of our findings it appears that regularly conducted postoperative EEG controls seem to be highly suited as a non-invasive and economical method for the early detection of recurrence of this type of tumour. In the case of malignant types of gliomas involving rapid growth EEG controls should be made monthly. (Author)

  17. Post-treatment imaging of high-grade gliomas

    Directory of Open Access Journals (Sweden)

    Darshana Sanghvi

    2015-01-01

    Full Text Available Current standard of care for treatment of newly diagnosed high grade gliomas is surgery followed by concomitant radiotherapy (RT and chemotherapy (CT with temozolomide (TMZ. Recently, bevacizumab, an anti - angiogenic agent has also been approved for treatment of recurrent gliomas. Baseline imaging after excision is optimally obtained in the first 24 hours. When baseline postoperative imaging is delayed beyond 24 hours, subacute hemorrhage, subacute ischemia and inflammation at the resection margins render differentiation from residual tumor challenging. Radiation necrosis is a well recognized entity and is differentiated from recurrence based on morphology on structural imaging, presence of lipid - lactate complexes with lack of choline on spectroscopy and low normalized cerebral blood volume (CBV ratios at perfusion imaging. Novel chemotherapies have lead to the occurrence of interesting but sometimes confusing post treatment imaging appearances including the phenomena of ′pseudoprogression′ and ′pseudoresponse′. Pseudoprogression refers to transient, self resolving focal enhancement mediated by TMZ-induced increased vascular permeability and local inflammatory response. Pathologically, these lesions do not have viable tumor. The lesions stabilize or regress without further treatment and are usually clinically asymptomatic. Pseudoresponse refers to rapid regression of enhancement, perfusion, mass effect and midline shift caused by the anti - angiogenic effect of bevacizumab. It is termed pseudoresponse since biological tumor persists as non-enhancing altered signal. It is important for radiologists to be aware of these entities seen on post treatment imaging of gliomas, as misinterpretation may lead to inappropriate management decisions and prognostication.

  18. RETROVIRAL-MEDIATED SUICIDE GENE THERAPY OF EXPERIMENTAL GLIOMA

    Institute of Scientific and Technical Information of China (English)

    Xu Lingfei; Ge Kai; Zheng Zhongcheng; Sun Lanying; Liu Xinyuan

    1998-01-01

    Objective: To establish a retroviral-mediated suicide gene therapy system for experimental glioma and test its efficacy. Methods: C6 rat glioma cells were infected with recombinant retrovirus containing HSV-tk gene. The C6/tk cell line which stably expressed tk was selected and cloned. The sensitivities of C6/tk cells to several nucleoside analogues, such as GCV, BVdU, ACV were compared by the growth inhibition studies. Antitumor effects were also observed after GCV treatment in nude mice bearing tumors derived from C6/tk cells. Results:The growth inhibition studies showed that GCV was the most efficient prodrug in this system. C6/tk cells were highly sensitive to GCV, with an IC50<0.2 μmol/L, being 500-fold less than that in tk-negative C6 cells. In vivo studies showed significant tumor inhibition in the treatment group. Conclusion: Glioma cells can be eradicated by using retroviral-mediated suicide gene system in vitro as well as in vivo.

  19. Bromelain reversibly inhibits invasive properties of glioma cells.

    Science.gov (United States)

    Tysnes, B B; Maurer, H R; Porwol, T; Probst, B; Bjerkvig, R; Hoover, F

    2001-01-01

    Bromelain is an aqueous extract from pineapple stem that contains proteinases and exhibits pleiotropic therapeutic effects, i.e., antiedematous, antiinflammatory, antimetastatic, antithrombotic, and fibrinolytic activities. In this study, we tested bromelain's effects on glioma cells to assess whether bromelain could be a potential contributor to new antiinvasive strategies for gliomas. Several complementary assays demonstrated that bromelain significantly and reversibly reduced glioma cell adhesion, migration, and invasion without affecting cell viability, even after treatment periods extending over several months. Immunohistochemistry and immunoblotting experiments demonstrated that alpha3 and beta1 integrin subunits and hyaluronan receptor CD44 protein levels were reduced within 24 hours of bromelain treatment. These effects were not reflected at the RNA level because RNA profiling did not show any significant effects on gene expression. Interestingly, metabolic labelling with 35-S methionine demonstrated that de novo protein synthesis was greatly attenuated by bromelain, in a reversible manner. By using a transactivating signaling assay, we found that CRE-mediated signaling processes were suppressed. These results indicate that bromelain exerts its antiinvasive effects by proteolysis, signaling cascades, and translational attenuation.

  20. Bromelain Reversibly Inhibits Invasive Properties of Glioma Cells

    Directory of Open Access Journals (Sweden)

    Berit B. Tysnes

    2001-01-01

    Full Text Available Bromelain is an aqueous extract from pineapple stem that contains proteinases and exhibits pleiotropic therapeutic effects, i.e., antiedematous, antiinflammatory, antimetastatic, antithrombotic, fibrinolytic activities. In this study, we tested bromelain's effects on glioma cells to assess whether bromelain could be a potential contributor to new antiinvasive strategies for gliomas. Several complementary assays demonstrated that bromelain significantly and reversibly reduced glioma cell adhesion, migration, invasion without affecting cell viability, even after treatment periods extending over several months. Immunohistochemistry and immunoblotting experiments demonstrated that a3 and α1 integrin subunits and hyaluronan receptor CD44 protein levels were reduced within 24 hours of bromelain treatment. These effects were not reflected at the RNA level because RNA profiling did not show any significant effects on gene expression. Interestingly, metabolic labelling with 35-S methionine demonstrated that de novo protein synthesis was greatly attenuated by bromelain, in a reversible manner. By using a transactivating signaling assay, we found that CRE-mediated signaling processes were suppressed. These results indicate that bromelain exerts its antiinvasive effects by proteolysis, signaling cascades, translational attenuation.

  1. Fluorescence and image guided resection in high grade glioma.

    Science.gov (United States)

    Panciani, Pier Paolo; Fontanella, Marco; Schatlo, Bawarjan; Garbossa, Diego; Agnoletti, Alessandro; Ducati, Alessandro; Lanotte, Michele

    2012-01-01

    The extent of resection in high grade glioma is increasingly been shown to positively effect survival. Nevertheless, heterogeneity and migratory behavior of glioma cells make gross total resection very challenging. Several techniques were used in order to improve the detection of residual tumor. Aim of this study was to analyze advantages and limitations of fluorescence and image guided resection. A multicentric prospective study was designed to evaluate the accuracy of each method. Furthermore, the role of 5-aminolevulinc acid and neuronavigation were reviewed. Twenty-three patients harboring suspected high grade glioma, amenable to complete resection, were enrolled. Fluorescence and image guides were used to perform surgery. Multiple samples were obtained from the resection cavity of each lesion according to 5-ALA staining positivity and boundaries as delineated by neuronavigation. All samples were analyzed by a pathologist blinded to the intra-operative labeling. Decision-making based on fluorescence showed a sensitivity of 91.1% and a specificity of 89.4% (pimage-guided resection accuracy was low (sensitivity: 57.8%; specificity: 57.4%; p=0.346). We observed that the sensitivity of 5-ALA can be improved by the combined use of neuronavigation, but this leads to a significant reduction in specificity. Thus, the use of auxiliary techniques should always be subject to critical skills of the surgeon. We advocate a large-scale study to further improve the assessment of multimodal approaches.

  2. Novel approaches for quantifying protein biomarkers in gliomas

    DEFF Research Database (Denmark)

    Dahlrot, Rikke H; Sørensen, Mia D; Rosager, Ann Mari;

    2014-01-01

    The therapeutic paradigm of gliomas is changing from a general approach towards an individualized and targeted approach. Accordingly, the search for prognostic and predictive biomarkers, as well as the demand for quantitative, feasible and robust methods for biomarker analysis increases. We find ...... of the expression, allowing establishment of new cut-points and identification of patients with specific prognoses. However, some pitfalls must be noted. This article focuses on benefits and pitfalls of novel approaches for quantifying protein biomarkers in gliomas.......The therapeutic paradigm of gliomas is changing from a general approach towards an individualized and targeted approach. Accordingly, the search for prognostic and predictive biomarkers, as well as the demand for quantitative, feasible and robust methods for biomarker analysis increases. We find...... that software classifiers can identify and quantify the expression of a given biomarker within different subcellular compartments and that such classifiers can exclude frequently occurring nontumor cells, thereby avoiding potential bias. The use of a quantitative approach provides a continuous measurement...

  3. Second Surgery in Insular Low-Grade Gliomas

    Directory of Open Access Journals (Sweden)

    Tamara Ius

    2015-01-01

    Full Text Available Background. Given the technical difficulties, a limited number of works have been published on insular gliomas surgery and risk factors for tumor recurrence (TR are poorly documented. Objective. The aim of the study was to determine TR in adult patients with initial diagnosis of insular Low-Grade Gliomas (LGGs that subsequently underwent second surgery. Methods. A consecutive series of 53 patients with insular LGGs was retrospectively reviewed; 23 patients had two operations for TR. Results. At the time of second surgery, almost half of the patients had experienced progression into high-grade gliomas (HGGs. Univariate analysis showed that TR is influenced by the following: extent of resection (EOR (P<0.002, ΔVT2T1 value (P<0.001, histological diagnosis of oligodendroglioma (P=0.017, and mutation of IDH1 (P=0.022. The multivariate analysis showed that EOR at first surgery was the independent predictor for TR (P<0.001. Conclusions. In patients with insular LGG the EOR at first surgery represents the major predictive factor for TR. At time of TR, more than 50% of cases had progressed in HGG, raising the question of the oncological management after the first surgery.

  4. Increasing the efficacy of antitumor glioma vaccines by photodynamic therapy and local injection of allogeneic glioma cells

    Science.gov (United States)

    Christie, Catherine E.; Peng, Qian; Madsen, Steen J.; Uzal, Francisco A.; Hirschberg, Henry

    2016-03-01

    Immunotherapy of brain tumors involves the stimulation of an antitumor immune response. This type of therapy can be targeted specifically to tumor cells thus sparing surrounding normal brain. Due to the presence of the blood-brain barrier, the brain is relatively isolated from the systemic circulation and, as such, the initiation of significant immune responses is more limited than other types of cancers. The purpose of this study was to show that the efficacy of tumor primed antigen presenting macrophage vaccines could be increased by: (1) PDT of the priming tumor cells, and (2) injection of allogeneic glioma cells directly into brain tumors. Experiments were conducted in an in vivo brain tumor model using Fisher rats and BT4C (allogeneic) and F98 (syngeneic) glioma cells. Preliminary results showed that vaccination alone had significantly less inhibitory effect on F98 tumor growth compared to the combination of vaccination and allogeneic cell (BT4C) injection.

  5. Antroquinonol Targets FAK-Signaling Pathway Suppressed Cell Migration, Invasion, and Tumor Growth of C6 Glioma.

    Science.gov (United States)

    Thiyagarajan, Varadharajan; Tsai, May-Jywan; Weng, Ching-Feng

    2015-01-01

    Focal adhesion kinase (FAK) is a non-receptor protein tyrosine that is overexpressed in many types of tumors and plays a pivotal role in multiple cell signaling pathways involved in cell survival, migration, and proliferation. This study attempts to determine the effect of synthesized antroquinonol on the modulation of FAK signaling pathways and explore their underlying mechanisms. Antroquinonol significantly inhibits cell viability with an MTT assay in both N18 neuroblastoma and C6 glioma cell lines, which exhibits sub G1 phase cell cycle, and further induction of apoptosis is confirmed by a TUNEL assay. Antroquinonol decreases anti-apoptotic proteins, whereas it increases p53 and pro-apoptotic proteins. Alterations of cell morphology are observed after treatment by atomic force microscopy. Molecular docking results reveal that antroquinonol has an H-bond with the Arg 86 residue of FAK. The protein levels of Src, pSrc, FAK, pFAK, Rac1, and cdc42 are decreased after antroquinonol treatment. Additionally, antroquinonol also regulates the expression of epithelial to mesenchymal transition (EMT) proteins. Furthermore, antroquinonol suppresses the C6 glioma growth in xenograft studies. Together, these results suggest that antroquinonol is a potential anti-tumorigenesis and anti-metastasis inhibitor of FAK. PMID:26517117

  6. Antroquinonol Targets FAK-Signaling Pathway Suppressed Cell Migration, Invasion, and Tumor Growth of C6 Glioma.

    Directory of Open Access Journals (Sweden)

    Varadharajan Thiyagarajan

    Full Text Available Focal adhesion kinase (FAK is a non-receptor protein tyrosine that is overexpressed in many types of tumors and plays a pivotal role in multiple cell signaling pathways involved in cell survival, migration, and proliferation. This study attempts to determine the effect of synthesized antroquinonol on the modulation of FAK signaling pathways and explore their underlying mechanisms. Antroquinonol significantly inhibits cell viability with an MTT assay in both N18 neuroblastoma and C6 glioma cell lines, which exhibits sub G1 phase cell cycle, and further induction of apoptosis is confirmed by a TUNEL assay. Antroquinonol decreases anti-apoptotic proteins, whereas it increases p53 and pro-apoptotic proteins. Alterations of cell morphology are observed after treatment by atomic force microscopy. Molecular docking results reveal that antroquinonol has an H-bond with the Arg 86 residue of FAK. The protein levels of Src, pSrc, FAK, pFAK, Rac1, and cdc42 are decreased after antroquinonol treatment. Additionally, antroquinonol also regulates the expression of epithelial to mesenchymal transition (EMT proteins. Furthermore, antroquinonol suppresses the C6 glioma growth in xenograft studies. Together, these results suggest that antroquinonol is a potential anti-tumorigenesis and anti-metastasis inhibitor of FAK.

  7. Impact of head immobilization position on dose distribution in patients of brainstem glioma

    Directory of Open Access Journals (Sweden)

    Seema Sharma

    2015-03-01

    Full Text Available Purpose: The purpose of this study is to investigate the impact of patient position (supine and prone on conventional bilateral field, three dimensional conformal radiotherapy (3DCRT and intensity modulated radiotherapy (IMRT treatment plans in patients of brainstem glioma with a view to exploring the possibility of avoiding beam entry through immobilization accessories. Methods: Five patients of brainstem glioma were immobilized and scanned in supine and prone positions with a combination of head rest and thermoplastic cast. Each patient was planned with three techniques: (i 2-fields bilateral (ii 3-fields 3DCRT, and (iii 5-fields IMRT. Plan quality was analyzed in terms of planning target volume (PTV coverage and dose to various critical organs at risk (OAR for both the supine and prone treatment positions. Results: In case of bilateral fields (parallel opposed planning, the PTV coverage and dose to the OAR were almost similar for both the supine and prone positions. In 3DCRT plan, although the PTV coverage and dose to critical structures were comparable for both the supine and prone position, dose to cochlea was lower for the prone position plan. A modest decrease in maximum dose to optic nerves and mean dose to temporal lobes were also observed for the prone position plan. In IMRT plans, the PTV coverage and homogeneity were comparable in both the supine and prone positions. Reduction in average maximum and mean doses to all OARs with functional subunit (FSU in series and parallel respectively was observed in the IMRT plan for prone position when compared to the supine position.Conclusion: Supine and prone positions resulted in almost similar dose distribution in all the three techniques applied. At some instances, the prone position showed better normal tissues sparing when compared to supine. Moreover, prone position is more likely to avoid attenuation due to immobilization devices and uncertainty in dose calculation under large

  8. Nrf2 is required to maintain the self-renewal of glioma stem cells

    International Nuclear Information System (INIS)

    Glioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioma stem cells (GSCs). Self-renewal is a complex biological process necessary for maintaining the glioma stem cells. Nuclear factor rythroid 2-related factor 2(Nrf2) plays a significant role in protecting cells from endogenous and exogenous stresses. Nrf2 is a key nuclear transcription factor that regulates antioxidant response element (ARE)-containing genes. Previous studies have demonstrated the significant role of Nrf2 in the proliferation of glioblastoma, and in their resistance to radioactive therapies. We examined the effect of knocking down Nrf2 in GSCs. Nrf2 expression was down-regulated by shRNA transinfected with lentivirus. Expression levels of Nestin, Nrf2, BMI-1, Sox2 and Cyclin E were assessed by western blotting, quantitative polymerase chain reaction (qPCR) and immunohistochemistry analysis. The capacity for self-renewal in vitro was assessed by genesis of colonies. The capacity for self-renewal in vivo was analyzed by tumor genesis of xenografts in nude mice. Knockdown of Nrf2 inhibited the proliferation of GSCs, and significantly reduced the expression of BMI-1, Sox2 and CyclinE. Knocking down of Nrf2 changed the cell cycle distribution of GSCs by causing an uncharacteristic increase in the proportion of cells in the G2 phase and a decrease in the proportion of cells in the S phase of the cell cycle. Nrf2 is required to maintain the self-renewal of GSCs, and its down-regulation can attenuate the self-renewal of GSCs significantly

  9. Synergistic effect of cisplatin and synchrotron irradiation on F98 gliomas growing in nude mice

    Energy Technology Data Exchange (ETDEWEB)

    Ricard, Clement; Fernandez, Manuel [Grenoble Institut des Neurosciences, Grenoble (France); Université Joseph Fourier, Grenoble (France); Requardt, Herwig [European Synchrotron Radiation Facility, Grenoble (France); Wion, Didier [Grenoble Institut des Neurosciences, Grenoble (France); Université Joseph Fourier, Grenoble (France); Vial, Jean-Claude [Université Joseph Fourier, Grenoble (France); Laboratoire Interdisciplinaire de Physique, St Martin d’Hères (France); Segebarth, Christoph; Sanden, Boudewijn van der, E-mail: boudewijn.vandersanden@ujf-grenoble.fr [Grenoble Institut des Neurosciences, Grenoble (France); Université Joseph Fourier, Grenoble (France)

    2013-09-01

    Synchrotron photoactivation therapy of cisplatin relies on a synergistic effect of synchrotron X-rays and platinum and leads to tumor-cell-killing effects and reduction of the tumor blood perfusion. Among brain tumors, glioblastoma multiforme appears as one of the most aggressive forms of cancer with poor prognosis and no curative treatment available. Recently, a new kind of radio-chemotherapy has been developed using synchrotron irradiation for the photoactivation of molecules with high-Z elements such as cisplatin (PAT-Plat). This protocol showed a cure of 33% of rats bearing the F98 glioma but the efficiency of the treatment was only measured in terms of overall survival. Here, characterization of the effects of the PAT-Plat on tumor volume and tumor blood perfusion are proposed. Changes in these parameters may predict the overall survival. Firstly, changes in tumor growth of the F98 glioma implanted in the hindlimb of nude mice after the PAT-Plat treatment and its different modalities have been characterized. Secondly, the effects of the treatment on tumor blood perfusion have been observed by intravital two-photon microscopy. Cisplatin alone had no detectable effect on the tumor volume. A reduction of tumor growth was measured after a 15 Gy synchrotron irradiation, but the whole therapy (15 Gy irradiation + cisplatin) showed the largest decrease in tumor growth, indicating a synergistic effect of both synchrotron irradiation and cisplatin treatment. A high number of unperfused vessels (52%) were observed in the peritumoral area in comparison with untreated controls. In the PAT-Plat protocol the transient tumor growth reduction may be due to synergistic interactions of tumor-cell-killing effects and reduction of the tumor blood perfusion.

  10. Decreasing Relative Risk Premium

    DEFF Research Database (Denmark)

    Hansen, Frank

    We consider the risk premium demanded by a decision maker with wealth x in order to be indifferent between obtaining a new level of wealth y1 with certainty, or to participate in a lottery which either results in unchanged present wealth or a level of wealth y2 > y1. We define the relative risk...... premium as the quotient between the risk premium and the increase in wealth y1–x which the decision maker puts on the line by choosing the lottery in place of receiving y1 with certainty. We study preferences such that the relative risk premium is a decreasing function of present wealth, and we determine...... relative risk premium in the small implies decreasing relative risk premium in the large, and decreasing relative risk premium everywhere implies risk aversion. We finally show that preferences with decreasing relative risk premium may be equivalently expressed in terms of certain preferences on risky...

  11. Decreasing Serial Cost Sharing

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Østerdal, Lars Peter

    The increasing serial cost sharing rule of Moulin and Shenker [Econometrica 60 (1992) 1009] and the decreasing serial rule of de Frutos [Journal of Economic Theory 79 (1998) 245] have attracted attention due to their intuitive appeal and striking incentive properties. An axiomatic characterization...... of the increasing serial rule was provided by Moulin and Shenker [Journal of Economic Theory 64 (1994) 178]. This paper gives an axiomatic characterization of the decreasing serial rule...

  12. Decreasing serial cost sharing

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Østerdal, Lars Peter Raahave

    2009-01-01

    The increasing serial cost sharing rule of Moulin and Shenker (Econometrica 60:1009-1037, 1992) and the decreasing serial rule of de Frutos (J Econ Theory 79:245-275, 1998) are known by their intuitive appeal and striking incentive properties. An axiomatic characterization of the increasing serial...... rule was provided by Moulin and Shenker (J Econ Theory 64:178-201, 1994). This paper gives an axiomatic characterization of the decreasing serial rule....

  13. Increasing feasibility and utility of 18F-FDOPA PET for the management of glioma

    International Nuclear Information System (INIS)

    Introduction: Despite radical treatment therapies, glioma continues to carry with it a uniformly poor prognosis. Patients diagnosed with WHO Grade IV glioma (glioblastomas; GBM) generally succumb within two years, even those with WHO Grade III anaplastic gliomas and WHO Grade II gliomas carry prognoses of 2–5 and 2 years, respectively. PET imaging with 18F-FDOPA allows in vivo assessment of the metabolism of glioma relative to surrounding tissues. The high sensitivity of 18F-DOPA imaging grants utility for a number of clinical applications. Methods: A collection of published work about 18F-FDOPA PET was made and a critical review was discussed and written. Results: A number of research papers have been published demonstrating that in conjunction with MRI, 18F-FDOPA PET provides greater sensitivity and specificity than these modalities in detection, grading, prognosis and validation of treatment success in both primary and recurrent gliomas. In further comparisons with 11C-MET, 18F-FLT, 18F-FET and MRI, 18F-FDOPA has shown similar or better efficacy. Recently synthesis cassettes have become available, making 18F-FDOPA more accessible. Conclusions: According to the available data, 18F-FDOPA PET is a viable radiotracer for imaging and treatment planning of gliomas. Advances in knowledge and implication for patient care: 18F-FDOPA PET appears to be a viable radiopharmaceutical for the diagnosis and treatment planning of gliomas cases, improving on that of MRI and 18F-FDG PET

  14. Malignant glioma of the optic chiasm eight years after radiotherapy for prolactinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hufnagel, T.J.; Kim, J.H.; Lesser, R.; Miller, J.M.; Abrahams, J.J.; Piepmeier, J.; Manuelidis, E.E.

    1988-12-01

    A 41-year-old man had rapidly progressive visual loss caused by a malignant glioma that developed in the optic chiasm eight years after radiation therapy for a recurrent prolactinoma. Radiation-induced glioma should be considered as a cause of progressive visual loss in patients who have received irradiation in the region of the sella turcica.

  15. Expression and prognostic value of the WEE1 kinase in gliomas

    DEFF Research Database (Denmark)

    Music, Darija; Dahlrot, Rikke Hedegaard; Hermansen, Simon Kjær;

    2016-01-01

    to irradiation and temozolomide. However, expression level and prognostic potential of WEE1 protein in gliomas remain uninvestigated. In this study, glioma samples from 235 patients across all four WHO grades were analyzed by immunohistochemistry. Using image analysis, we calculated the area fraction of WEE1...

  16. Alisertib and Fractionated Stereotactic Radiosurgery in Treating Patients With Recurrent High Grade Gliomas

    Science.gov (United States)

    2016-04-11

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Subependymal Giant Cell Astrocytoma; Recurrent Adult Brain Tumor

  17. Radiosensitizing potential of the selective cyclooygenase-2 (COX-2) inhibitor meloxicam on human glioma cells

    NARCIS (Netherlands)

    Bijnsdorp, Irene; Berg, van den Jaap; Kuipers, Gitta; Wedekind, Laurine; Slotman, Ben; Rijn, van Johannes; Lafleur, M.; Sminia, Peter

    2007-01-01

    The COX-2 protein is frequently overexpressed in human malignant gliomas. This expression has been associated with their aggressive growth characteristics and poor prognosis for patients. Targeting the COX-2 pathway might improve glioma therapy. In this study, the effects of the selective COX-2 in

  18. Establishment of C6 brain glioma models through stereotactic technique for laser interstitial thermotherapy research

    Directory of Open Access Journals (Sweden)

    Jian Shi

    2015-01-01

    Conclusion: The rat C6 brain glioma model established in the study was a perfect model to study LITT of glioma. Infrared thermograph technique measured temperature conveniently and effectively. The technique is noninvasive, and the obtained data could be further processed using software used in LITT research. To measure deep-tissue temperature, combining thermocouple with infrared thermograph technique would present better results.

  19. Gene expression profiles of gliomas in formalin-fixed paraffin-embedded material

    NARCIS (Netherlands)

    A.M. Gravendeel (Lonneke); J.J. de Rooi (Johan); P.H.C. Eilers (Paul); M.J. van den Bent (Martin); P.A.E. Sillevis Smitt (Peter); P.J. French (Pim)

    2012-01-01

    textabstractBackground: We have recently demonstrated that expression profiling is a more accurate and objective method to classify gliomas than histology. Similar to most expression profiling studies, our experiments were performed using fresh frozen (FF) glioma samples whereas most archival sample

  20. Interleukin-2 expression and glioma cell proliferation following Vaceinia vector gene transfection in vivo

    Institute of Scientific and Technical Information of China (English)

    Xiaogang Wang; Xuezhong Wei; Jiangqiu Liu

    2008-01-01

    BACKGROUND: The effectiveness of gene therapy is closely related to the efficiency of vector transfection and expression.OBJECTIVE: This study was designed to transfect a human brain glioma cell line with recombinant Vaccinia virus expressing the interleukin-2 (rVV-IL-2) gene, and to observe IL-2 expression and glioma cell proliferation potential after transfection. DESIGN: Experimental observation. SETTING: Department of Neurosurgery, Shenyang Military Area Command of Chinese PLA. MATERIALS: The rVV-IL-2 vectors were obtained through homologous recombination and screening in the Second Military Medical University of Chinese PLA. The human brain glioma cell line and IL-2-dependent cells were produced by the Second Military Medical University of Chinese PLA. Human IL-2 was produced by Genzyme Corporation. MAIN OUTCOME MEASURES: IL-2 expression at different time points after transfection of human brain glioma cells with varying MOI of Vaccinia viral vectors; in vitro proliferation capacity of human brain glioma cells among the 4 groups. RESULTS: IL-2 expression was detectable 4 hours after Vaccinia viral vector transfection and reached 300 kU/L by 8 hours. There was no significant difference in the proliferating rate of human brain glioma cells among the 4 groups (P > 0.05).CONCLUSION: Vaccinia viral vectors can transfect human brain glioma cells in vitro and express high levels of IL-2. Vaccinia virus and high IL-2 expression do not influence the proliferation rate of human brain glioma cells in vitro.

  1. Long-term evaluation of cognition after glioma surgery in eloquent areas

    NARCIS (Netherlands)

    Satoer, Djaina; Visch-Brink, Evy; Smits, Marion; Kloet, Alfred; Looman, Caspar; Dirven, Clemens; Vincent, Arnaud

    2014-01-01

    Preservation of cognition is an important outcome measure in eloquent area glioma surgery. Glioma patients may have pre-operative deficits in one or more cognitive domains which could deteriorate post-operatively. It is assumed that these impairments recover within 3 months; some studies however, st

  2. Modeling tumor-associated edema in gliomas during anti-angiogenic therapy and its impact on imageable tumor

    Directory of Open Access Journals (Sweden)

    Andrea eHawkins-Daarud

    2013-04-01

    Full Text Available Glioblastoma, the most aggressive form of primary brain tumor is predominantly assessed with gadolinium-enhanced T1-weighted (T1Gd and T2-weighted magnetic resonance imaging (MRI. Pixel intensity enhancement on the T1Gd image is understood to correspond to the gadolinium contrast agent leaking from the tumor-induced neovasculature, while hyperintensity on the T2/FLAIR images corresponds with edema and infiltrated tumor cells. None of these modalities directly show tumor cells; rather, they capture abnormalities in the microenvironment caused by the presence of tumor cells. Thus, assessing disease response after treatments impacting the microenvironment remains challenging through the obscuring lens of MR imaging. Anti-angiogenic therapies have been used in the treatment of gliomas with spurious results ranging from no apparent response to significant imaging improvement with the potential for extremely diffuse patterns of tumor recurrence on imaging and autopsy. Anti-angiogenic treatment normalizes the vasculature, effectively decreasing vessel permeability and thus reducing tumor-induced edema, drastically altering T2-weighted MRI. We extend a previously developed mathematical model of glioma growth to explicitly incorporate edema formation allowing us to directly characterize and potentially predict the effects of anti-angiogenics on imageable tumor growth. A comparison of simulated glioma growth and imaging enhancement with and without bevacizumab supports the current understanding that anti-angiogenic treatment can serve as a surrogate for steroids and the clinically-driven hypothesis that anti-angiogenic treatment may not have any significant effect on the growth dynamics of the overall tumor-cell populations. However, the simulations do illustrate a potentially large impact on the level of edematous extracellular fluid, and thus on what would be imageable on T2/FLAIR MR for tumors with lower proliferation rates.

  3. Aurantiamide acetate suppresses the growth of malignant gliomas in vitro and in vivo by inhibiting autophagic flux.

    Science.gov (United States)

    Yang, Yi; Zhang, Li-hui; Yang, Bing-xian; Tian, Jin-kui; Zhang, Lin

    2015-05-01

    We aim to investigate the effect of aurantiamide acetate isolated from the aerial parts of Clematis terniflora DC against gliomas. Human malignant glioma U87 and U251 cells were incubated with different concentrations (0-100 μM) of aurantiamide acetate. Aurantiamide acetate greatly decreased the cell viability in a dose- and time-dependent manner. It induced moderate mitochondrial fragmentation and the loss of mitochondrial membrane potential. No significant difference was found in the alternation of other intracellular organelles, although F-actin structure was slightly disturbed. Apparent ultrastructure alternation with increased autophagosome and autolysosome accumulation was observed in aurantiamide acetate-treated cells. The expression of LC3-II was greatly up-regulated in cells exposed to aurantiamide acetate (P < 0.05 compared with control). The cytoplasmic accumulation of autophagosomes and autolysosomes induced by aurantiamide acetate treatment was confirmed by fluorescent reporter protein labelling. Administration of chloroquine (CQ), which inhibits the fusion step of autophagosomes, further increased the accumulation of autophagosomes in the cytoplasm of U87 cells. Autophagy inhibition by 3-methyladenine, Bafilomycin A1 or CQ had no influence on aurantiamide acetate-induced cytotoxicity, whereas autophagy stimulator rapamycin significantly suppressed aurantiamide acetate-induced cell death. The anti-tumour effects of aurantiamide acetate were further evaluated in tumour-bearing nude mice. Intratumoural injection of aurantiamide acetate obviously suppressed tumour growth, and increased number of autophagic vacuoles was observed in tumour tissues of animals receiving aurantiamide acetate. Our findings suggest that aurantiamide acetate may suppress the growth of malignant gliomas by blocking autophagic flux. PMID:25704599

  4. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Paola Massi

    2010-05-01

    Full Text Available Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  5. History of allergic disease and epilepsy and risk of glioma and meningioma (INTERPHONE study group, Germany)

    DEFF Research Database (Denmark)

    Berg-Beckhoff, Gabriele; Schüz, Joachim; Blettner, Maria;

    2009-01-01

    The aim of the present analysis was to examine the association of a medical history of asthma, hay fever, eczema, or epilepsy with the risk of glioma and meningioma. Data of a German population-based case-control study included 381 meningioma cases, 366 glioma cases, and 1,494 controls....... Participants' histories of asthma, hay fever, eczema, and epilepsy and the respective ages at onset were asked during a personal interview. A small inverse association between allergic condition and both glioma (odds ratio: 0.92; 95% CI: 0.70-1.22) and meningioma (odd ratio: 0.87; 95% CI: 0.66-1.14) was found....... For glioma, this inverse association was more pronounced in persons reporting to have asthma compared to other allergic conditions. The positive association between epilepsy and particularly glioma suggests that epilepsy is an early symptom of the disease. As the association was seen also for epilepsies...

  6. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Energy Technology Data Exchange (ETDEWEB)

    Massi, Paola [Department of Pharmacology, Chemotherapy and Toxicology, University of Milan, Via Vanvitelli 32, 20129 Milan (Italy); Valenti, Marta; Solinas, Marta; Parolaro, Daniela, E-mail: daniela.parolaro@uninsubria.it [Department of Structural and Functional Biology, Section of Pharmacology, Center of Neuroscience, University of Insubria, Via A. da Giussano 10, 20152 Busto Arsizio, Varese (Italy)

    2010-05-26

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  7. Application of iron oxide nanoparticles in glioma imaging and therapy: from bench to bedside

    Science.gov (United States)

    Liu, Heng; Zhang, Jun; Chen, Xiao; Du, Xue-Song; Zhang, Jin-Long; Liu, Gang; Zhang, Wei-Guo

    2016-04-01

    Gliomas are the most common primary brain tumors and have a very dismal prognosis. However, recent advancements in nanomedicine and nanotechnology provide opportunities for personalized treatment regimens to improve the poor prognosis of patients suffering from glioma. This comprehensive review starts with an outline of the current status facing glioma. It then provides an overview of the state-of-the-art applications of iron oxide nanoparticles (IONPs) to glioma diagnostics and therapeutics, including MR contrast enhancement, drug delivery, cell labeling and tracking, magnetic hyperthermia treatment and magnetic particle imaging. It also addresses current challenges associated with the biological barriers and IONP design with an emphasis on recent advances and innovative approaches for glioma targeting strategies. Opportunities for future development are highlighted.

  8. “...those left behind.” Biology and Oncology of Invasive Glioma Cells

    Directory of Open Access Journals (Sweden)

    Michael E Berens

    1999-08-01

    Full Text Available Although significant technical advances in surgical and radiation treatment for brain tumors have emerged in recent years, their impact on clinical outcome for patients has been disappointing. A fundamental source of the management challenge presented by glioma patients is the insidious propensity of the malignant cells to invade into adjacent normal brain. Invasive tumor cells escape surgical removal and geographically dodge lethal radiation exposure. Recent improved understanding of the biochemistry and molecular determinants of glioma cell invasion provide valuable insight to the underlying biological features of the disease, as well as illuminating possible new therapeutic targets. Heightened commitment to migrate and invade is accompanied by a glioma cell's reduced proliferative activity. The microenvironmental manipulations coincident to invasion and migration may also impact the glioma cell's response to cytotoxic treatments. These collateral aspects of the glioma cell invasive phenotype should be further explored and exploited as novel antiglioma therapies.

  9. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas

    Directory of Open Access Journals (Sweden)

    Torres-Trejo Alejandro

    2007-12-01

    Full Text Available Abstract Background The prognosis for malignant gliomas remains dismal. We addressed the safety, feasibility and preliminary clinical activity of the vaccinations using autologous glioma cells and interleukin (IL-4 gene transfected fibroblasts. Methods In University of Pittsburgh Cancer Institute (UPCI protocol 95-033, adult participants with recurrent glioblastoma multiforme (GBM or anaplastic astrocytoma (AA received gross total resection (GTR of the recurrent tumors, followed by two vaccinations with autologous fibroblasts retrovirally transfected with TFG-IL4-Neo-TK vector admixed with irradiated autologous glioma cells. In UPCI 99-111, adult participants with newly diagnosed GBM or AA, following GTR and radiation therapy, received two intradermal vaccinations with the TFG-IL4-Neo-TK-transfected fibroblasts admixed with type-1 dendritic cells (DC loaded with autologous tumor lysate. The participants were evaluated for occurrence of adverse events, immune response, and clinical response by radiological imaging. Results and Discussion In UPCI 95-033, only 2 of 6 participants received the vaccinations. Four other participants were withdrawn from the trial because of tumor progression prior to production of the cellular vaccine. However, both participants who received two vaccinations demonstrated encouraging immunological and clinical responses. Biopsies from the local vaccine sites from one participant displayed IL-4 dose-dependent infiltration of CD4+ as well as CD8+ T cells. Interferon (IFN-γ Enzyme-Linked Immuno-SPOT (ELISPOT assay in another human leukocyte antigen (HLA-A2+ participant demonstrated systemic T-cell responses against an HLA-A2-restricted glioma-associated antigen (GAA epitope EphA2883–891. Moreover, both participants demonstrated clinical and radiological improvement with no evidence of allergic encephalitis, although both participants eventually succumbed with the tumor recurrence. In 99-111, 5 of 6 enrolled participants

  10. Capacity of ultraviolet-induced DNA repair in human glioma cells

    International Nuclear Information System (INIS)

    A DNA repair abnormality is likely related to an increased incidence of neoplasms in several autosomal recessive diseases such as xeroderma pigmentosum, Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. In human glioma cells, however, there are only a few reports on DNA repair. In this study, an ultraviolet (UV)-induced DNA repair was examined systematically in many human glioma cells. Two human malignant glioma cell lines (MMG-851, U-251-MG) and 7 human glioma cell strains (4, benign; 3, malignant) of short term culture, in which glial fibrillary acidic protein (GFAP) staining were positive, were used. To investigate the capacity of DNA repair, UV sensitivity was determined by colony formation; excision repair by autoradiography and Cytosine Arabinoside (Ara-C) assay; and post-replication repair by the joining rate of newly synthesized DNA. As a result, the colony-forming abilities of malignant glioma cell lines were lower than those of normal human fibroblasts, but no difference was found between two malignant glioma cell lines. The excision repair of the malignant group (2 cell lines and 3 cell strains) was apparently lower than that of the benign group (4 cell strains). In two malignant glioma cell lines, the excision repair of MMG-851 was lower than that of U-251-MG, and the post-replication repair of MMG-851 was higher than that of U-251-MG. These results were considered to correspond well with colony-forming ability. The results indicate that there are some differences in each human malignant glioma cell in its UV-induced DNA repair mechanism, and that the excision repair of the malignant glioma cells is apparently lower than that of the benign glioma cells. These findings may be useful for diagnosis and treatment. (author)

  11. IgE, allergy, and risk of glioma: update from the San Francisco Bay Area Adult Glioma Study in the temozolomide era.

    Science.gov (United States)

    Wiemels, Joseph L; Wilson, David; Patil, Chirag; Patoka, Joseph; McCoy, Lucie; Rice, Terri; Schwartzbaum, Judith; Heimberger, Amy; Sampson, John H; Chang, Susan; Prados, Michael; Wiencke, John K; Wrensch, Margaret

    2009-08-01

    The consistently observed inverse relationship of allergic conditions with glioma risk and our previous demonstration that immunoglobulin E (IgE) levels also were lower in glioma patients than controls suggest that atopic allergy may be related to a mechanism that inhibits or prevents glioma. We sought to extend these results with a new and larger series of patients (n = 535 with questionnaire data; 393 with IgE measures) and controls (n = 532 with questionnaire data; 470 with IgE measures). As expected, glioma cases were less likely than controls to report history of allergies [among self-reported cases, Odds ratios (OR) = 0.59, 95% confidence interval (CI): 0.41-0.85]. IgE levels also were lower in glioma cases versus controls (OR per unit log IgE = 0.89, 95% CI (0.82-0.98). However, this inverse relationship was only apparent among cases receiving temozolomide, a treatment which became part of the "standard of care" for glioblastoma patients during the study period. Among patients receiving temozolomide, IgE levels in cases whose blood samples were obtained within 30 days of diagnosis were slightly higher than controls, whereas IgE levels in cases whose blood sample was obtained >60 days after diagnosis were significantly lower than controls (OR = 0.80; 95% CI: 0.71-0.89). Thus, although our results robustly confirm the inverse association between allergy and glioma, the results for IgE are affected by temozolomide treatments which may have influenced IgE levels. These results have implications for the study of immunologic factors in glioma as well as for immunotherapy protocols for treating glioma. PMID:19408307

  12. Preclinical Biosafety Evaluation of Genetically Modified Human Adipose Tissue-Derived Mesenchymal Stem Cells for Clinical Applications to Brainstem Glioma.

    Science.gov (United States)

    Choi, Seung Ah; Yun, Jun-Won; Joo, Kyeung Min; Lee, Ji Yeoun; Kwak, Pil Ae; Lee, Young Eun; You, Ji-Ran; Kwon, Euna; Kim, Woo Ho; Wang, Kyu-Chang; Phi, Ji Hoon; Kang, Byeong-Cheol; Kim, Seung-Ki

    2016-06-15

    Stem-cell based gene therapy is a promising novel therapeutic approach for inoperable invasive tumors, including brainstem glioma. Previously, we demonstrated the therapeutic potential of human adipose tissue-derived mesenchymal stem cells (hAT-MSC) genetically engineered to express a secreted form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) against brainstem glioma. However, safety concerns should be comprehensively investigated before clinical applications of hAT-MSC.sTRAIL. At first, we injected stereotactically low (1.2 × 10(5) cells/18 μL), medium (2.4 × 10(5)/18 μL), or high dose (3.6 × 10(5)/18 μL) of hAT-MSC.sTRAIL into the brainstems of immunodeficient mice reflecting the plan of the future clinical trial. Local toxicity, systemic toxicity, secondary tumor formation, and biodistribution of hAT-MSC.sTRAIL were investigated. Next, presence of hAT-MSC.sTRAIL was confirmed in the brain and major organs at 4, 9, and 14 weeks in brainstem glioma-bearing mice. In the 15-week subchronic toxicity test, no serious adverse events in terms of body weight, food consumption, clinical symptom, urinalysis, hematology, clinical chemistry, organ weight, and histopathology were observed. In the 26-week tumorigenicity test, hAT-MSC.sTRAIL made no detectable tumors, whereas positive control U-87 MG cells made huge tumors in the brainstem. No remaining hAT-MSC.sTRAIL was observed in any organs examined, including the brainstem at 15 or 26 weeks. In brainstem glioma-bearing mice, injected hAT-MSC.sTRAIL was observed, but gradually decreased over time in the brain. The mRNA of human specific GAPDH and TRAIL was not detected in all major organs. These results indicate that the hAT-MSC.sTRAIL could be applicable to the future clinical trials in terms of biosafety.

  13. Magnetic resonance diffusion tensor imaging with fluorescein sodium dyeing for surgery of gliomas in brain motor functional areas

    Institute of Scientific and Technical Information of China (English)

    LIU Jia-gang; YANG Shuai-feng; LIU Yan-hui; WANG Xiang; MAO Qing

    2013-01-01

    Background Tumor surgery in brain motor functional areas remains challenging.Novel techniques are being developed to gain maximal and safe resection for brain tumor surgery.Herein,we assessed the magnetic resonance diffusion tensor imaging (MR-DTI) and fluorescein sodium dyeing (FLS) guiding technique for surgery of glioma located in brain motor functional areas.Methods Totally 83 patients were enrolled according to our inclusion and exclusion criteria (56 patients in experimental group,27 patients in control group).In the experimental group,the surgical approach was designed by DTI imaging,which showed the relationship between the tumor and motor tract.The range of resection in the operation was determined using the FLS-stained area,which recognized the tumor and its infiltrated tissue.The traditional routine method was used in the control group.Postoperatively,all patients underwent enhanced brain MRI within 72 hours to ascertain the extent of resection.Patients were followed in our outpatient clinic over 6-24 months.Neurological deficits and Karnofsky scoring (KPS) were evaluated.Results There were no significant differences in balance test indexes of preoperative data (sex,age,lesion location and volume,and neurological deficits before operation) and diagnosis of histopathology between the two groups.There was a trend in the experimental group for greater rates of gross total resection (80.4% vs.40.7%),and the paralysis rate caused by surgery was lower in experimental (25.0%) vs.control (66.7%) groups (P <0.05).The 6-month KPS in the low-grade and high-grade gliomas was 91±11 and 73±26,respectively,in the experimental group vs.82±9 and 43±27,respectively,in the control group (P <0.05 for both).Conclusions MR-DTI and FLS dye guiding for surgery of glioma located in brain motor functional areas can increase the gross total resection rate,decrease the paralysis rate caused by surgery,and improve patient quality of life compared with traditional

  14. Preclinical Biosafety Evaluation of Genetically Modified Human Adipose Tissue-Derived Mesenchymal Stem Cells for Clinical Applications to Brainstem Glioma.

    Science.gov (United States)

    Choi, Seung Ah; Yun, Jun-Won; Joo, Kyeung Min; Lee, Ji Yeoun; Kwak, Pil Ae; Lee, Young Eun; You, Ji-Ran; Kwon, Euna; Kim, Woo Ho; Wang, Kyu-Chang; Phi, Ji Hoon; Kang, Byeong-Cheol; Kim, Seung-Ki

    2016-06-15

    Stem-cell based gene therapy is a promising novel therapeutic approach for inoperable invasive tumors, including brainstem glioma. Previously, we demonstrated the therapeutic potential of human adipose tissue-derived mesenchymal stem cells (hAT-MSC) genetically engineered to express a secreted form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) against brainstem glioma. However, safety concerns should be comprehensively investigated before clinical applications of hAT-MSC.sTRAIL. At first, we injected stereotactically low (1.2 × 10(5) cells/18 μL), medium (2.4 × 10(5)/18 μL), or high dose (3.6 × 10(5)/18 μL) of hAT-MSC.sTRAIL into the brainstems of immunodeficient mice reflecting the plan of the future clinical trial. Local toxicity, systemic toxicity, secondary tumor formation, and biodistribution of hAT-MSC.sTRAIL were investigated. Next, presence of hAT-MSC.sTRAIL was confirmed in the brain and major organs at 4, 9, and 14 weeks in brainstem glioma-bearing mice. In the 15-week subchronic toxicity test, no serious adverse events in terms of body weight, food consumption, clinical symptom, urinalysis, hematology, clinical chemistry, organ weight, and histopathology were observed. In the 26-week tumorigenicity test, hAT-MSC.sTRAIL made no detectable tumors, whereas positive control U-87 MG cells made huge tumors in the brainstem. No remaining hAT-MSC.sTRAIL was observed in any organs examined, including the brainstem at 15 or 26 weeks. In brainstem glioma-bearing mice, injected hAT-MSC.sTRAIL was observed, but gradually decreased over time in the brain. The mRNA of human specific GAPDH and TRAIL was not detected in all major organs. These results indicate that the hAT-MSC.sTRAIL could be applicable to the future clinical trials in terms of biosafety. PMID:27151205

  15. Differential biodistribution of intravenously administered endothelial progenitor and cytotoxic T-cells in rat bearing orthotopic human glioma

    International Nuclear Information System (INIS)

    A major challenge in the development of cell based therapies for glioma is to deliver optimal number of cells (therapeutic dose) to the tumor. Imaging tools such as magnetic resonance imaging (MRI), optical imaging, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) has been used in cell tracking and/or biodistribution studies. In this study, we evaluate the dynamic biodistribution of systemic injected labeled cells [human cord blood derived endothelial progenitor cells (EPCs) and cytotoxic T-cells (CTLs)] in rat glioma model with in vivo SPECT imaging. Human cord blood EPCs, T-cells and CD14+ cells (monocytes/dendritic cells) were isolated using the MidiMACS system. CD14+ cells were converted to dendritic cells (DC) and also primed with U251 tumor cell line lysate. T-cells were co-cultured with irradiated primed DCs at 10:1 ratio to make CTLs. Both EPCs and CTLs were labeled with In-111-oxine at 37°C in serum free DMEM media. Glioma bearing animals were randomly assigned into three groups. In-111 labeled cells or In-111 oxine alone were injected through tail vein and SPECT imaging was performed on day 0, 1, and 3. In-111 oxine activity in various organs and tumor area was determined. Histochemical analysis was performed to further confirm the migration and homing of injected cells at the tumor site. EPCs and CTLs showed an In-111 labeling efficiency of 87.06 ± 7.75% and 70.8 ± 12.9% respectively. Initially cell migration was observed in lung following inravenous administration of In-111 labeled cells and decreased on day 1 and 3, which indicate re-distribution of labeled cells from lung to other organs. Relatively higher In-111 oxine activity was observed in tumor areas at 24 hours in animals received In-111 labeled cells (EPCs or CTLs). Histiological analysis revealed iron positive cells in and around the tumor area in animals that received labeled cells (CTLs and EPCs). We observed differential biodistribution of In-111

  16. Molecular Study on Differentiation-Associated Genes Involved in Both Malignant Progression of Glioma and Differentiation of Human Fetal Neural Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Jun Dong; Yinyan Wu; Qiang Huang; Fei Wang; Aidong Wang; Qing Lan

    2006-01-01

    OBJECTIVE It is unclear whether differentiation disturbances or deregulation of neural stem cells (NSCs) are the early key steps for gliomagenesis and tumor development. Furthermore, relevant molecular changes and gene-regulation pathways are unknown. This study focused on screening and validating differentiation-associated genes from both human NSCs and glioma cells with malignant progression, for the purpose of offering an experimental basis for the cellular origin of gilomas and molecular pathology of gliomagenesis.METHODS The differential-gene expression profiles of malignant progression of gliomas were established, then the differentiation related genes were screened out with a bioinformatics analysis. Expression levels of these genes was further analyzed in cultured human fetal NSCs undergoing differentiation processes with a semi-quantitative RT-PCR assay.RESULTS Eight genes were screened out from the gene-expression profiling of which the expression levels were associated with the differentiation processes of NSCs, namely CXCR4, TN-C, GLT1, IL1-RI, EGFR8, CDC2, Ndr3 and MAPKK4. Three of them, ie., GLT1, CDC2 and MAPKK4, were further analyzed, showing that expression levels decreased with the differentiation processes of NSCs, and increased with the malignant progression of ganglioglioma.CONCLUSION Three differentiation associated genes were found negatively associated with NSCs differentiation and positively associated with malignant progression of gliomas, suggesting that differentiation disturbances of neural stem ceils may be involved in oncogenesis, and that further studies on their roles in gliomagenesis should be conducted.

  17. Relation of Cystatin C and Cathepsin B Expression to the Pathological Grade and Invasion of Human Gliomas

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    OBJECTIVE To explore the relation of cystatin C and cathepsin B expression to the pathological grade and invasion of human gliomas.METHODS A immunohistochemical method was used to detect the expression of cystatin C and cathepsin B in 57 glioma samples.RESULTS The expression of cystatin C in high-grade (Grade Ⅲ~Ⅳ )gliomas was significantly weaker than that in low-grade(Grade Ⅰ~Ⅱ, P=0.0001).On the other hand, the expression of cathepsin B in high-grade gliomas was significantly stronger than that in low-grade (P=0.0001). Cystatin C expression correlated inversely with cathepsin B expression in gliomas (P=0.01).CONCLUSION Cystatin C and cathepsin B expression is related to the pathological grade and invasion of gliomas. Combining detection of cystatin C and cathepsin B expressions might provide significant information for clinical assessment of maglignant phenotypes and invasion of gliomas.

  18. Silencing of microRNA-21 confers radio-sensitivity through inhibition of the PI3K/AKT pathway and enhancing autophagy in malignant glioma cell lines.

    Directory of Open Access Journals (Sweden)

    Ho-Shin Gwak

    Full Text Available Radiation is a core part of therapy for malignant glioma and is often provided following debulking surgery. However, resistance to radiation occurs in most patients, and the underlying molecular mechanisms of radio-resistance are not fully understood. Here, we demonstrated that microRNA 21 (miR-21, a well-known onco-microRNA in malignant glioma, is one of the major players in radio-resistance. Radio-resistance in different malignant glioma cell lines measured by cytotoxic cell survival assay was closely associated with miR-21 expression level. Blocking miR-21 with anti-miR-21 resulted in radio-sensitization of U373 and U87 cells, whereas overexpression of miR-21 lead to a decrease in radio-sensitivity of LN18 and LN428 cells. Anti-miR-21 sustained γ-H2AX DNA foci formation, which is an indicator of double-strand DNA damage, up to 24 hours and suppressed phospho-Akt (ser473 expression after exposure to γ-irradiation. In a cell cycle analysis, a significant increase in the G₂/M phase transition by anti-miR-21 was observed at 48 hours after irradiation. Interestingly, our results showed that anti-miR-21 increased factors associated with autophagosome formation and autophagy activity, which was measured by acid vesicular organelles, LC3 protein expression, and the percentage of GFP-LC3 positive cells. Furthermore, augmented autophagy by anti-miR-21 resulted in an increase in the apoptotic population after irradiation. Our results show that miR-21 is a pivotal molecule for circumventing radiation-induced cell death in malignant glioma cells through the regulation of autophagy and provide a novel phenomenon for the acquisition of radio-resistance.

  19. Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading.

    Science.gov (United States)

    Inano, Rika; Oishi, Naoya; Kunieda, Takeharu; Arakawa, Yoshiki; Yamao, Yukihiro; Shibata, Sumiya; Kikuchi, Takayuki; Fukuyama, Hidenao; Miyamoto, Susumu

    2014-01-01

    Gliomas are the most common intra-axial primary brain tumour; therefore, predicting glioma grade would influence therapeutic strategies. Although several methods based on single or multiple parameters from diagnostic images exist, a definitive method for pre-operatively determining glioma grade remains unknown. We aimed to develop an unsupervised method using multiple parameters from pre-operative diffusion tensor images for obtaining a clustered image that could enable visual grading of gliomas. Fourteen patients with low-grade gliomas and 19 with high-grade gliomas underwent diffusion tensor imaging and three-dimensional T1-weighted magnetic resonance imaging before tumour resection. Seven features including diffusion-weighted imaging, fractional anisotropy, first eigenvalue, second eigenvalue, third eigenvalue, mean diffusivity and raw T2 signal with no diffusion weighting, were extracted as multiple parameters from diffusion tensor imaging. We developed a two-level clustering approach for a self-organizing map followed by the K-means algorithm to enable unsupervised clustering of a large number of input vectors with the seven features for the whole brain. The vectors were grouped by the self-organizing map as protoclusters, which were classified into the smaller number of clusters by K-means to make a voxel-based diffusion tensor-based clustered image. Furthermore, we also determined if the diffusion tensor-based clustered image was really helpful for predicting pre-operative glioma grade in a supervised manner. The ratio of each class in the diffusion tensor-based clustered images was calculated from the regions of interest manually traced on the diffusion tensor imaging space, and the common logarithmic ratio scales were calculated. We then applied support vector machine as a classifier for distinguishing between low- and high-grade gliomas. Consequently, the sensitivity, specificity, accuracy and area under the curve of receiver operating characteristic

  20. Genetic therapy in gliomas: Historical analysis and future perspectives

    Directory of Open Access Journals (Sweden)

    Mattei Tobias

    2005-01-01

    Full Text Available High-grade gliomas are relatively frequent in adults, and consist of the most malignant kind of primary brain tumor. Being resistant to standard treatment modalities such as surgery, radiation, and chemotherapy, it is fatal within 1 to 2 years of onset of symptoms. Although several gene therapy systems proved to be efficient in controlling or eradicating these tumors in animal models, the clinical studies performed so far were not equally successful. Most clinical studies showed that methodologies that increase tumor infection/transduction and, consequently confer more permanent activity against the tumor, will lead to enhanced therapeutic results. Due to the promising practical clinical benefits that can be expected for the near future, an exposition to the practicing neurosurgeon about the basic issues in genetic therapy of gliomas seems convenient. Among the main topics, we shall discuss anti-tumoral mechanisms of various genes that can be transfected, the advantages and drawbacks of the different vectors utilized, the possibilities of tumor targeting by modifications in the native tropism of virus vectors, as well as the different physical methods for vector delivery to the tumors. Along with the exposition we will also review of the history of the genetic therapy for gliomas, with special focus on the main problems found during the advancement of scientific discoveries in this area. A general analysis is also made of the present state of this promising therapeutic modality, with reference to the problems that still must be solved and the new paradigms for future research in this area.

  1. A systematic review of microRNAs and the therapeutic potential in glioma%MicroRNAs在胶质瘤中生物学功能及基因治疗潜力研究进展

    Institute of Scientific and Technical Information of China (English)

    刘楠; 涂艳阳; 张永生

    2015-01-01

    MicroRNAs (miRNA)are short non-coding RNAs, and the discovery of miRNA has provided a novel idea to the re-search of tumor pathogenesis,and a new strategy to the diagnosis and prognosis of human cancers.Currently,numerous studies have indicated that the deregulation of miRNAs in glioma is close-ly related to glioma pathogenesis and progress.Glioma is the most frequent and malignant brain tumor,which was classified five grades (I -IV)according to WHO,and each level includes vari-ous pathological subtypes.miRNAs function as key regulator of glioma through negative control the target gene expression,and could decrease the key regulator level by targeting the 3′-UTR of it's mRNA which regulates the cell proliferation,apoptosis and prognosis of glioma.Moreover,the radiation and chemotherapy resistance in glioma therapy are also effected by deregulation of miRNAs,which suggested that miRNAs would act as tumor sup-pressor or oncogene in glioma,and it can be used as a biomarker of glioma diagnose and therapy,but also a novel target of glioma gene therapy.In this review,we summarize the current finding of miRNAs which is deregulated in glioma and discuss the molecular diagnostic and therapeutic potential of miRNAs in glioma.%MicroRNAs(miRNA)是一类非编码 RNA,研究表明,胶质瘤中 miRNA 表达水平异常与其发病机制及恶化密切相关,这为研究肿瘤发病机理提供了新的方向,同时为癌症的诊断与治疗提供了新的策略。神经胶质瘤是颅内最频发的恶性肿瘤,根据其恶性程度,世界卫生组织(WHO)将其分为 I -IV 4个等级,每个等级又分为许多亚型。通过抑制参与调控胶质瘤细胞增殖和凋亡相关基因的表达,miRNA 参与胶质瘤发生发展的调控,影响预后。此外,miRNA 还影响着胶质瘤的放、化疗抵抗,它不仅可以作为胶质瘤临床诊断与治疗新的分子靶标,还可以作为胶质瘤基因治疗的靶点。本文综述了目

  2. Inhibition of HSP27 alone or in combination with pAKT inhibition as therapeutic approaches to target SPARC-induced glioma cell survival

    Directory of Open Access Journals (Sweden)

    Schultz Chad R

    2012-04-01

    Full Text Available Abstract Background The current treatment regimen for glioma patients is surgery, followed by radiation therapy plus temozolomide (TMZ, followed by 6 months of adjuvant TMZ. Despite this aggressive treatment regimen, the overall survival of all surgically treated GBM patients remains dismal, and additional or different therapies are required. Depending on the cancer type, SPARC has been proposed both as a therapeutic target and as a therapeutic agent. In glioma, SPARC promotes invasion via upregulation of the p38 MAPK/MAPKAPK2/HSP27 signaling pathway, and promotes tumor cell survival by upregulating pAKT. As HSP27 and AKT interact to regulate the activity of each other, we determined whether inhibition of HSP27 was better than targeting SPARC as a therapeutic approach to inhibit both SPARC-induced glioma cell invasion and survival. Results Our studies found the following. 1 SPARC increases the expression of tumor cell pro-survival and pro-death protein signaling in balance, and, as a net result, tumor cell survival remains unchanged. 2 Suppressing SPARC increases tumor cell survival, indicating it is not a good therapeutic target. 3 Suppressing HSP27 decreases tumor cell survival in all gliomas, but is more effective in SPARC-expressing tumor cells due to the removal of HSP27 inhibition of SPARC-induced pro-apoptotic signaling. 4 Suppressing total AKT1/2 paradoxically enhanced tumor cell survival, indicating that AKT1 or 2 are poor therapeutic targets. 5 However, inhibiting pAKT suppresses tumor cell survival. 6 Inhibiting both HSP27 and pAKT synergistically decreases tumor cell survival. 7 There appears to be a complex feedback system between SPARC, HSP27, and AKT. 8 This interaction is likely influenced by PTEN status. With respect to chemosensitization, we found the following. 1 SPARC enhances pro-apoptotic signaling in cells exposed to TMZ. 2 Despite this enhanced signaling, SPARC protects cells against TMZ. 3 This protection can be reduced

  3. Saw Palmetto Extract Inhibits Metastasis and Antiangiogenesis through STAT3 Signal Pathway in Glioma Cell

    Directory of Open Access Journals (Sweden)

    Hong Ding

    2015-01-01

    Full Text Available Signal transducer and activator of transcription factor 3 (STAT3 plays an important role in the proliferation and angiogenesis in human glioma. Previous research indicated that saw palmetto extract markedly inhibited the proliferation of human glioma cells through STAT3 signal pathway. But its effect on tumor metastasis and antiangiogenesis is not clear. This study is to further clear the impact of saw palmetto extract on glioma cell metastasis, antiangiogenesis, and its mechanism. TUNEL assay indicated that the apoptotic cells in the saw palmetto treated group are higher than that in the control group (p<0.05. The apoptosis related protein is detected and the results revealed that saw palmetto extract inhibits the proliferation of human glioma. Meanwhile pSTAT3 is lower in the experimental group and CD34 is also inhibited in the saw palmetto treated group. This means that saw palmetto extract could inhibit the angiogenesis in glioma. We found that saw palmetto extract was an important phytotherapeutic drug against the human glioma through STAT3 signal pathway. Saw palmetto extract may be useful as an adjunctive therapeutic agent for treatment of individuals with glioma and other types of cancer in which STAT3 signaling is activated.

  4. Assessment of Tumor Cells in a Mouse Model of Diffuse Infiltrative Glioma by Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Kuniaki Tanahashi

    2014-01-01

    Full Text Available Glioma of infiltrative nature is challenging for surgeons to achieve tumor-specific and maximal resection. Raman spectroscopy provides structural information on the targeted materials as vibrational shifts. We utilized Raman spectroscopy to distinguish invasive tumors from normal tissues. Spectra obtained from replication-competent avian sarcoma-(RCAS- based infiltrative glioma cells and glioma tissues (resembling low-grade human glioma were compared with those obtained from normal mouse astrocytes and normal tissues. In cell analysis, the spectra at 950–1000, 1030, 1050–1100, 1120–1130, 1120–1200, 1200–1300, 1300–1350, and 1450 cm−1 were significantly higher in infiltrative glioma cells than in normal astrocytes. In brain tissue analysis, the spectra at 1030, 1050–1100, and 1200–1300 cm−1 were significantly higher in infiltrative glioma tissues than in normal brain tissues. These spectra reflect the structures of proteins, lipids, and DNA content. The sensitivity and specificity to predict glioma cells by distinguishing normal cells were 98.3% and 75.0%, respectively. Principal component analysis elucidated the significance of spectral difference between tumor tissues and normal tissues. It is possible to distinguish invasive tumors from normal tissues by using Raman spectroscopy.

  5. Inhibition of elongation factor-2 kinase augments the antitumor activity of Temozolomide against glioma.

    Directory of Open Access Journals (Sweden)

    Xiao-Yuan Liu

    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM, the most common form of brain cancer with an average survival of less than 12 months, is a highly aggressive and fatal disease characterized by survival of glioma cells following initial treatment, invasion through the brain parenchyma and destruction of normal brain tissues, and ultimately resistance to current treatments. Temozolomide (TMZ is commonly used chemotherapy for treatment of primary and recurrent high-grade gliomas. Nevertheless, the therapeutic outcome of TMZ is often unsatisfactory. In this study, we sought to determine whether eEF-2 kinase affected the sensitivity of glioma cells to treatment with TMZ. METHODOLOGY/PRINCIPAL FINDINGS: Using RNA interference approach, a small molecule inhibitor of eEF-2 kinase, and in vitro and in vivo glioma models, we observed that inhibition of eEF-2 kinase could enhance sensitivity of glioma cells to TMZ, and that this sensitizing effect was associated with blockade of autophagy and augmentation of apoptosis caused by TMZ. CONCLUSIONS/SIGNIFICANCE: These findings demonstrated that targeting eEF-2 kinase can enhance the anti-glioma activity of TMZ, and inhibitors of this kinase may be exploited as chemo-sensitizers for TMZ in treatment of malignant glioma.

  6. Dynamic radiological change of gliomas located in the paralimbic system and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    CHEN Xu-zhu; JIANG Tao; LI Shao-wu; AI Lin; DAI Jian-ping

    2008-01-01

    Background The paralimbic system, which is composed of three parts, is an important functional unit. Gliomas located in the region remain a challenge for clinical treatment. However, the dynamic change of gliomas in the area has not been well documented. The purpose of this study was to identify the growth tendency of gliomas located in the paralimbic system and to obtain some suggestions for clinical treatment. Methods Eleven cases of gliomas located in the paralimbic system were recruited in the study. All of them were proven by pathology. Analysis of the serial radiological examinations in each patient was performed from the initial to the final examination, taking into consideration the following items: initial tumor location, final location and the growth tendency. Results In the initial and final examinations the ratios of insula involvement were 64% and 100%, respectively. On the other hand, the ratios of gliomas located in two or more partS of paralimbic system increased from 64%to 100%during the dynamic examination. Conclusions Even though the paralimbic system is composed of three independent anatomical parts, gliomas tend to involve all three pans, especially the insula. Therapeutic plans should aim at the whole region of the system, even during the early stages of gliomas.

  7. A Study on the Usefulness of Perfusion MRI in Grading of Gliomas

    International Nuclear Information System (INIS)

    To predict the tumor grading, various imaging modalities have been applied clinically. This study determines clinical usefulness of perfusion MRI, using relative cerebral blood volume in grading of the gliomas. We did a retrospective review of 17 patients (mean age, 57.5 years; 11 male, 6 female) who underwent perfusion MR and conventional MRI, and then correlated pathologically after operation. Statistical analysis of regional cerebral blood volume and relative cerebral blood volume(rCBV) was performed by using software such as PAT by SIEMENS and Xmap ver 2.0 developed by ourselves. Six patients out of 13 were low-grade gliomas while eleven patients were the high-grade gliomas. Mean relative CBV (mrCBV/white matter) in the low-grade gliomas was 1.62, and mean relative CBV(mrCBV/cortex) was 0.12. In the high-grade gliomas, mean relative CBV(mrCBV/white matter) and mean relative CBV(mrCBV/cortex) were 33.53 and 0.96. Mean relative CBV of gliomas were elevated with a statistical difference(PrCBV/white matter) was much higher than mean relative CBV(mrCBV/cortex). Perfusion MRI using regional cerebral blood volume and rCBV is very useful imaging modality for grading the glioma.

  8. Use of tricyclic antidepressants and risk of glioma: a nationwide case–control study

    Science.gov (United States)

    Pottegård, Anton; García Rodríguez, Luis Alberto; Rasmussen, Lotte; Damkier, Per; Friis, Søren; Gaist, David

    2016-01-01

    Background: A protective effect of tricyclic antidepressants (TCAs) against gliomas has been suggested by a small number of studies. We investigated this putative association in a nationwide setting. Methods: Using a case–control design, we identified all patients with histologically verified glioma (cases) in Denmark between 2000 and 2012 and matched these 1 : 20 to population controls. Conditional logistic regression was used to estimate adjusted odds ratios (ORs) for glioma associated with long-term (⩾3 years) use of TCAs. Similar analyses were performed for selective serotonin reuptake inhibitors (SSRIs). Results: We identified 3767 glioma cases and 75 340 population controls. Long-term use of TCAs was inversely associated with risk of glioma (OR 0.72, 95% CI: 0.41–1.25). Long-term SSRI use was not associated with glioma risk (OR 0.93, 95% CI: 0.75–1.16). Conclusions: Our study indicated that long-term use of TCAs may be associated with a reduced risk of glioma, however, the statistical precision was limited. A similar pattern was not observed for use of SSRIs. PMID:27115466

  9. Insulin-like Growth Factor Binding Protein 7 Mediates Glioma Cell Growth and Migration

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2008-12-01

    Full Text Available Insulin-like growth factor binding protein 7 (IGFBP-7 is the only member of the IGFBP superfamily that binds strongly to insulin, suggesting that IGFBP-7 may have different functions from other IGFBPs. Unlike other IGFBPs, the expression and functions of IGFBP-7 in glioma tumors have not been reported. Using cDNA microarray analysis, we found that expression of IGFBP-7 correlated with the grade of glioma tumors and the overall patient survival. This finding was further validated by real-time reverse transcription-polymerase chain reaction and Western blot analysis. We used RNAi to examine the role of IGFBP-7 in glioma cells, inhibiting IGFBP-7 expression by short interfering RNA transfection. Cell proliferation was suppressed after IGFBP-7 expression was inhibited for 5 days, and glioma cell growth was stimulated consistently by the addition of recombinant IGFBP-7 protein. Moreover, glioma cell migration was attenuated by IGFBP-7 depletion but enhanced by IGFBP-7 overexpression and addition. Overexpression of AKT1 in IGFBP-7-overxpressed cells attenuated the IGFBP-7-promoted migration and further enhanced inhibition of IGFBP-7 depletion on the migration. Phosphorylation of AKT and Erk1/2 was also inversely regulated by IGFBP-7 expression. These two factors together suggest that IGFBP-7 can regulate glioma cell migration through the AKT-ERK pathway, thereby playing an important role in glioma growth and migration.

  10. Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process.

    Science.gov (United States)

    Galvao, Rui Pedro; Kasina, Anita; McNeill, Robert S; Harbin, Jordan E; Foreman, Oded; Verhaak, Roel G W; Nishiyama, Akiko; Miller, C Ryan; Zong, Hui

    2014-10-01

    How malignant gliomas arise in a mature brain remains a mystery, hindering the development of preventive and therapeutic interventions. We previously showed that oligodendrocyte precursor cells (OPCs) can be transformed into glioma when mutations are introduced perinatally. However, adult OPCs rarely proliferate compared with their perinatal counterparts. Whether these relatively quiescent cells have the potential to transform is unknown, which is a critical question considering the late onset of human glioma. Additionally, the premalignant events taking place between initial mutation and a fully developed tumor mass are particularly poorly understood in glioma. Here we used a temporally controllable Cre transgene to delete p53 and NF1 specifically in adult OPCs and demonstrated that these cells consistently give rise to malignant gliomas. To investigate the transforming process of quiescent adult OPCs, we then tracked these cells throughout the premalignant phase, which revealed a dynamic multistep transformation, starting with rapid but transient hyperproliferative reactivation, followed by a long period of dormancy, and then final malignant transformation. Using pharmacological approaches, we discovered that mammalian target of rapamycin signaling is critical for both the initial OPC reactivation step and late-stage tumor cell proliferation and thus might be a potential target for both glioma prevention and treatment. In summary, our results firmly establish the transforming potential of adult OPCs and reveal an actionable multiphasic reactivation process that turns slowly dividing OPCs into malignant gliomas.

  11. Sequential Administration of Carbon Nanotubes and Near Infrared Radiation for the Treatment of Gliomas

    Directory of Open Access Journals (Sweden)

    Tiago eSantos

    2014-07-01

    Full Text Available The objective was to use carbon nanotubes (CNT coupled with near infrared radiation (NIR to induce hyperthermia, as a novel non-ionizing radiation treatment for primary brain tumors, glioblastoma multiforme (GBM. In this study we report the therapeutic potential of hyperthermia-induced thermal ablation using the sequential administration of carbon nanotubes and NIR. In vitro studies were performed using glioma tumor cell lines (U251, U87, LN229, T98G. Glioma cells were incubated with CNTs for 24 hours followed by exposure to NIR for 10 minutes. Glioma cells preferentially internalized CNTs, which upon NIR exposure, generated heat, causing necrotic cell death. There were minimal effects to normal cells, which correlate to their minimal uptake of CNTs. Furthermore, this protocol caused cell death to glioma cancer stem cells, and drug-resistant as well as drug-sensitive glioma cells. This sequential hyperthermia therapy was effective in vivo, in the rodent tumor model resulting in tumor shrinkage and no recurrence after only one treatment. In conclusion, this sequence of selective CNT administration followed by NIR activation provides a new approach to the treatment of glioma, particularly drug-resistant gliomas.

  12. A multivariate analysis of the prognostic factors of grade Ⅲ gliomas

    Institute of Scientific and Technical Information of China (English)

    ZHU Yong-jian; ZHU Xiang-dong; WANG Sheng-hu; SHEN Fang; SHEN Hong; LIU Wei-guo

    2008-01-01

    Background Glioma is the most common type of malignant brain tumor and the prognosis of glioma is still poor.Moreover,the prognosis of patients diagnosed with grade Ⅲ gliomas varies significantly.In this study,we assessed the factors that contribute to the prognosis of patients with grade Ⅲ gliomas.Methods Data from 97 patients with grade Ⅲ glioma who received surgery from 2000 to 2005 were included in this study.Kaplan-Meier survival analysis and Cox regression analysis were used to analyze the prognostic effects of 16 different factors selected from clinical characteristics,results from neuroimaging and pathological examinations,as well as different treatment schemes.Results The results indicated that age,preoperative Karnofsky Performance Scale score,extent of tumor invasion,tumor resection degree,residual tumor shown by postoperative magnetic resonance imaging(MRI),and postoperative radiotherapy and chemotherapy all correlated with patient prognosis.Furthermore,Cox multivariate analysis also showed the age(P<0.01),extent of tumor invasion(P<0.01),residual tumor shown by postoperative MRI (P<0.05),and postoperative radiotherapy (P<0.05) significantly correlated with patients' prognosis.Conclusions Age,postoperative radiotherapy and residual tumor indicated by MRI after surgery correlated significantly with the prognosis of patients with grade Ⅲ glioma.The extent of tumor invasion may be an independent prognostic factor for patients with grade Ⅲ glioma.

  13. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    International Nuclear Information System (INIS)

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma

  14. Atypical nuclear localization of VIP receptors in glioma cell lines and patients

    Energy Technology Data Exchange (ETDEWEB)

    Barbarin, Alice; Séité, Paule [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Godet, Julie [Laboratoire d’anatomie et de cytologie pathologiques, CHU de Poitiers, 2 rue de la Milétrie, 86000 Poitiers (France); Bensalma, Souheyla; Muller, Jean-Marc [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Chadéneau, Corinne, E-mail: corinne.chadeneau@univ-poitiers.fr [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France)

    2014-11-28

    Highlights: • The VIP receptor VPAC1 contains a putative NLS signal. • VPAC1 is predominantly nuclear in GBM cell lines but not VPAC2. • Non-nuclear VPAC1/2 protein expression is correlated with glioma grade. • Nuclear VPAC1 is observed in 50% of stage IV glioma (GBM). - Abstract: An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, by applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression.

  15. Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression

    International Nuclear Information System (INIS)

    Tumor cell invasion and proliferation remain the overwhelming causes of death for malignant glioma patients. To establish effective therapeutic methods, new targets implied in these processes have to be identified. Tetraspanin 8 (Tspn8) forms complexes with a large variety of trans-membrane and/or cytosolic proteins to regulate several important cellular functions. In the current study, we found that Tspn8 was over-expressed in multiple clinical malignant glioma tissues, and its expression level correlated with the grade of tumors. Tspn8 expression in malignant glioma cells (U251MG and U87MG lines) is important for cell proliferation and migration. siRNA-mediated knockdown of Tspn8 markedly reduced in vitro proliferation and migration of U251MG and U87MG cells. Meanwhile, Tspn8 silencing also increased the sensitivity of temozolomide (TMZ), and significantly increased U251MG or U87MG cell death and apoptosis by TMZ were achieved with Tspn8 knockdown. We observed that Tspn8 formed a complex with activated focal adhesion kinase (FAK) in both human malignant glioma tissues and in above glioma cells. This complexation appeared required for FAK activation, since Tspn8 knockdown inhibited FAK activation in U251MG and U87MG cells. These results provide evidence that Tspn8 contributes to the pathogenesis of glioblastoma probably by promoting proliferation, migration and TMZ-resistance of glioma cells. Therefore, targeting Tspn8 may provide a potential therapeutic intervention for malignant glioma. - Highlights: • Tspn8 is over-expressed in multiple clinical malignant glioma tissues. • Tspn8 expression is correlated with the grade of malignant gliomas. • Tspn8 knockdown suppresses U251MG/U87MG proliferation and in vitro migration. • Tspn8 knockdown significantly increases TMZ sensitivity in U251MG/U87MG cells. • Tspn8 forms a complex with FAK, required for FAK activation

  16. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaopeng; Du, Jie; Hua, Song; Zhang, Haowen; Gu, Cheng; Wang, Jie; Yang, Lei; Huang, Jianfeng; Yu, Jiahua, E-mail: yujiahua@suda.edu.cn; Liu, Fenju, E-mail: fangsh@suda.edu.cn

    2015-01-15

    Radiotherapy is an essential component of the standard therapy for newly diagnosed glioblastoma. To increase the radiosensitivity of glioma cells is a feasible solution to improve the therapeutic effects. It has been suggested that inhibition of signal transducer and activator of transcription 3 (STAT3) can radiosensitize glioma cells, probably via the activation of mitochondrial apoptotic pathway. In this study, human malignant glioma cells, U251 and A172, were treated with an STAT3 inhibitor, WP1066, or a short hairpin RNA plasmid targeting STAT3 to suppress the activation of STAT3 signaling. The radiosensitizing effects of STAT3 inhibition were confirmed in glioma cells. Intriguingly, combination of ionizing radiation exposure and STAT3 inhibition triggered a pronounced increase of autophagy flux. To explore the role of autophagy, glioma cells were treated with 3-methyladenine or siRNA for autophagy-related gene 5, and it was demonstrated that inhibition of autophagy further strengthened the radiosensitizing effects of STAT3 inhibition. Accordingly, more apoptotic cells were induced by the dual inhibition of autophagy and STAT3 signaling. In conclusion, our data revealed a protective role of autophagy in the radiosensitizing effects of STAT3 inhibition, and inhibition of both autophagy and STAT3 might be a potential therapeutic strategy to increase the radiosensitivity of glioma cells. - Highlights: • Inactivation of STAT3 signaling radiosensitizes malignant glioma cells. • STAT3 inhibition triggers a significant increase of autophagy flux induced by ionizing radiation in glioma cells. • Suppression of autophagy further strengthens the radiosensitizing effects of STAT3 inhibition in glioma cells. • Dual inhibition of autophagy and STAT3 induce massive apoptotic cells upon exposure to ionizing radiation.

  17. Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Si-Jian [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China); Wu, Yue-Bing [Department of Internal Medicine Oncology, Hubei Cancer Hospital, Wuhan, Hubei 430079 (China); Cai, Shang [Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 21500 (China); Pan, Yi-Xin; Liu, Wei [Department of Stereotactic and Functional Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Bian, Liu-Guan [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China); Sun, Bomin [Department of Stereotactic and Functional Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Sun, Qing-Fang, E-mail: sunqingfang11@163.com [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China)

    2015-03-13

    Tumor cell invasion and proliferation remain the overwhelming causes of death for malignant glioma patients. To establish effective therapeutic methods, new targets implied in these processes have to be identified. Tetraspanin 8 (Tspn8) forms complexes with a large variety of trans-membrane and/or cytosolic proteins to regulate several important cellular functions. In the current study, we found that Tspn8 was over-expressed in multiple clinical malignant glioma tissues, and its expression level correlated with the grade of tumors. Tspn8 expression in malignant glioma cells (U251MG and U87MG lines) is important for cell proliferation and migration. siRNA-mediated knockdown of Tspn8 markedly reduced in vitro proliferation and migration of U251MG and U87MG cells. Meanwhile, Tspn8 silencing also increased the sensitivity of temozolomide (TMZ), and significantly increased U251MG or U87MG cell death and apoptosis by TMZ were achieved with Tspn8 knockdown. We observed that Tspn8 formed a complex with activated focal adhesion kinase (FAK) in both human malignant glioma tissues and in above glioma cells. This complexation appeared required for FAK activation, since Tspn8 knockdown inhibited FAK activation in U251MG and U87MG cells. These results provide evidence that Tspn8 contributes to the pathogenesis of glioblastoma probably by promoting proliferation, migration and TMZ-resistance of glioma cells. Therefore, targeting Tspn8 may provide a potential therapeutic intervention for malignant glioma. - Highlights: • Tspn8 is over-expressed in multiple clinical malignant glioma tissues. • Tspn8 expression is correlated with the grade of malignant gliomas. • Tspn8 knockdown suppresses U251MG/U87MG proliferation and in vitro migration. • Tspn8 knockdown significantly increases TMZ sensitivity in U251MG/U87MG cells. • Tspn8 forms a complex with FAK, required for FAK activation.

  18. The application of DWI in the differential diagnosis between malignant glioma and solitary metastases

    International Nuclear Information System (INIS)

    Glioma and brain metastases are common tumors in clinical practice. It's difficult to diagnose and differentiate glioma from solitary metastases, because they have similar clinical characters and conventional imaging manifestations. Because of different treatments and prognosis for the two types of tumor, it's important for us to accurately diagnose and differentiate them. Some scholars have used diffusion weighted imaging in diagnosis and differential diagnosis of brain tumors. In this paper, we reviewed the usefulness of diffusion weighted imaging in diagnosis and differential diagnosis between glioma and solitary metastases. (authors)

  19. In-vitro inhibitory effect of EGFL7-RNAi on endothelial angiogenesis in glioma

    OpenAIRE

    Li, Qiang; Wang, Ai-Yue; Xu, Qiong-Guan; Liu, Da-Yuan; Xu, Peng-Xiang; Yu, Dai

    2015-01-01

    Objective: To investigate the role and mechanism of epidermal growth factor like domain 7 (EGFL7) in glioma angiogenesis by cell co-culture and RNA interference. Methods: NSCs-HUVECs co-culture system was established using Transwell culturing techniques. The interactions between glioma and endothelial cells were simulated in-vitro. Cellular expression of EGFL7 in NSCs and HUVEC was targeted and suppressed by lentiviral vector carrying siRNA. The effect of EGFL7 on angiogenesis in glioma in-vi...

  20. The prognostic value of clinical factors and cancer stem cell-related markers in gliomas

    DEFF Research Database (Denmark)

    Dahlrot, Rikke Hedegaard

    2014-01-01

    -renewal, proliferation, and differentiation during development of different (normal) tissues. The same characteristics were identified in cancer cells, and recently a major part of the glioma research has focused on the cancer stem cell (CSC) hypothesis, suggesting that only CSCs posses the ability of initiating new......UNLABELLED: Gliomas are the most frequent brain tumours among adults, and it is estimated that gliomas constitute half of the about 1500 new brain tumours diagnosed in Denmark every year. Existing treatment strategies include neurosurgery, radiation, and chemotherapy. Therapy selection is based...

  1. Successful outcome in a patient with glioma of brain with twin pregnancy

    Directory of Open Access Journals (Sweden)

    Anjali Rani

    2014-06-01

    Full Text Available We present a case of glioma in pregnant female with twin pregnancy. Gliomas during pregnancy are rare. Gliomas during pregnancy pose a risk to maternal and fetal life. The benefit-to-risk ratio should be carefully evaluated and discussed prior to get marriage and pregnancy. In present case, patient had non-specific symptom like seizure and no any focal neurological deficit, Caesarean Section (CS was done at term with multidisciplinary group, including a neurosurgeon, obstetrician, anesthesiologist and neonatologist. She has been followed up to the present date and remains in good health. [Int J Reprod Contracept Obstet Gynecol 2014; 3(3.000: 827-830

  2. Combination chemotherapy (COMP protocol) and radiotherapy of anaplastic supratentorial gliomas

    International Nuclear Information System (INIS)

    Postoperative survival time and recurrence-free intervals in 116 consecutive patients with supratentorial grade III and IV gliomas (glioblastomas, gliosarcomas, anaplastic astrocytomas, and ependymomas) were compared in unselected groups receiving different forms of treatment. Postoperative high-voltage radiotherapy (31 patients, dosage 4,000-6,000 rads) and combined chemotherapy consisting of CCNU, vincristine, amethopterine, and procarbazine in 15-day circles (COMP protocol) (12 patients) showed the same median survival time of 10.6 months and comparable recurrence-free intervals of 6.8 and 7.0 months, respectively. These results were significantly different from a control group (39 patients) receiving best postoperative supportive (conventional) care (median survival 5.4 months, free interval 3.7 months). Combination of postoperative radiotherapy with simultaneous polychemotherapy (COMP protocol), evaluated in 18 patients, did not significantly change the recurrence-free interval (median 7.0 months), but increased the median survival time to 12.9 months, which was significantly superior to the two other treatment groups. The toxic side effects of COMP therapy were moderate and essentially haematological. In general, simultaneous radiation and chemical treatment was well tolerated after major tumour resection. These preliminary results of postoperative combination of radiation and polychemotherapy for anaplastic supratentorial gliomas appear encouraging, but further trials for optimization of combined therapeutic strategies are warranted. (author)

  3. Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion.

    Science.gov (United States)

    Venkatesh, Humsa S; Johung, Tessa B; Caretti, Viola; Noll, Alyssa; Tang, Yujie; Nagaraja, Surya; Gibson, Erin M; Mount, Christopher W; Polepalli, Jai; Mitra, Siddhartha S; Woo, Pamelyn J; Malenka, Robert C; Vogel, Hannes; Bredel, Markus; Mallick, Parag; Monje, Michelle

    2015-05-01

    Active neurons exert a mitogenic effect on normal neural precursor and oligodendroglial precursor cells, the putative cellular origins of high-grade glioma (HGG). By using optogenetic control of cortical neuronal activity in a patient-derived pediatric glioblastoma xenograft model, we demonstrate that active neurons similarly promote HGG proliferation and growth in vivo. Conditioned medium from optogenetically stimulated cortical slices promoted proliferation of pediatric and adult patient-derived HGG cultures, indicating secretion of activity-regulated mitogen(s). The synaptic protein neuroligin-3 (NLGN3) was identified as the leading candidate mitogen, and soluble NLGN3 was sufficient and necessary to promote robust HGG cell proliferation. NLGN3 induced PI3K-mTOR pathway activity and feedforward expression of NLGN3 in glioma cells. NLGN3 expression levels in human HGG negatively correlated with patient overall survival. These findings indicate the important role of active neurons in the brain tumor microenvironment and identify secreted NLGN3 as an unexpected mechanism promoting neuronal activity-regulated cancer growth.

  4. High-grade gliomas:reality and hopes

    Institute of Scientific and Technical Information of China (English)

    Ren-Olivier Mirimanoff

    2014-01-01

    In this issue of the Chinese Journal of Cancer, European experts review current standards, trends, and future prospects in the difficult domain of high-grade glioma. In al fields covered by the different authors, the progress has been impressive. For example, discoveries at the molecular level have already impacted imaging, surgery, radiotherapy, and systemic therapies, and they are expected to play an increasing role in the management of these cancers. The European Organization for Research and Treatment of Cancer (EORTC) has pioneered new treatment strategies and contributed to new standards. The articles in this issue will cover basic molecular biological principles applicable today, novel surgical approaches, innovations in radiotherapy planning and delivery, evidence-based standards for radiotherapy alone or combined with chemotherapy, current standards and novel approaches for systemic treatments, and the important but often neglected field of health-related quality of life. Despite the advances described in these articles, the overall prognosis of high-grade glioma, especially glioblastoma, remains poor, and more research is needed to address this problem.

  5. Application of Nanoparticles on Diagnosis and Therapy in Gliomas

    Directory of Open Access Journals (Sweden)

    Norma Y. Hernández-Pedro

    2013-01-01

    Full Text Available Glioblastoma multiforme (GBM is one of the most deadly diseases that affect humans, and it is characterized by high resistance to chemotherapy and radiotherapy. Its median survival is only fourteen months, and this dramatic prognosis has stilled without changes during the last two decades; consequently GBM remains as an unsolved clinical problem. Therefore, alternative diagnostic and therapeutic approaches are needed for gliomas. Nanoparticles represent an innovative tool in research and therapies in GBM due to their capacity of self-assembly, small size, increased stability, biocompatibility, tumor-specific targeting using antibodies or ligands, encapsulation and delivery of antineoplastic drugs, and increasing the contact surface between cells and nanomaterials. The active targeting of nanoparticles through conjugation with cell surface markers could enhance the efficacy of nanoparticles for delivering several agents into the tumoral area while significantly reducing toxicity in living systems. Nanoparticles can exploit some biological pathways to achieve specific delivery to cellular and intracellular targets, including transport across the blood-brain barrier, which many anticancer drugs cannot bypass. This review addresses the advancements of nanoparticles in drug delivery, imaging, diagnosis, and therapy in gliomas. The mechanisms of action, potential effects, and therapeutic results of these systems and their future applications in GBM are discussed.

  6. IGFBP2 promotes glioma tumor stem cell expansion and survival

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, David, E-mail: dhs.zfs@gmail.com [College of Medicine, The University of Arizona (United States); Hsieh, Antony [The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine (United States); Stea, Baldassarre [Department of Radiation Oncology, The University of Arizona (United States); Ellsworth, Ron [College of Medicine, The University of Arizona (United States)

    2010-06-25

    IGFBP2 is overexpressed in the most common brain tumor, glioblastoma (GBM), and its expression is inversely correlated to GBM patient survival. Previous reports have demonstrated a role for IGFBP2 in glioma cell invasion and astrocytoma development. However, the function of IGFBP2 in the restricted, self-renewing, and tumorigenic GBM cell population comprised of tumor-initiating stem cells has yet to be determined. Herein we demonstrate that IGFBP2 is overexpressed within the stem cell compartment of GBMs and is integral for the clonal expansion and proliferative properties of glioma stem cells (GSCs). In addition, IGFBP2 inhibition reduced Akt-dependent GSC genotoxic and drug resistance. These results suggest that IGFBP2 is a selective malignant factor that may contribute significantly to GBM pathogenesis by enriching for GSCs and mediating their survival. Given the current dearth of selective molecular targets against GSCs, we anticipate our results to be of high therapeutic relevance in combating the rapid and lethal course of GBM.

  7. Pre-Clinical Models of Diffuse Intrinsic Pontine Glioma

    Directory of Open Access Journals (Sweden)

    Oren J Becher

    2015-07-01

    Full Text Available Diffuse Intrinsic Pontine Glioma (DIPG is a rare and incurable brain tumor that arises in the brainstem of children predominantly between the ages of six and eight. Its intricate morphology and involvement of normal pons tissue precludes surgical resection, and the standard of care today remains fractionated radiation alone. In the past 30 years, there have been no significant advances made in the treatment of DIPG. This is largely because we lack good models of DIPG and therefore have little biological basis for treatment. In recent years however, due to increased biopsy and acquisition of autopsy specimens, research is beginning to unravel the genetic and epigenetic drivers of DIPG. Insight gleaned from these studies has led to improvements in approaches to both model these tumors in the lab, as well as to potentially treat them in the clinic. This review will detail the initial strides towards modeling DIPG in animals, which included allograft and xenograft rodent models using non-DIPG glioma cells. Important advances in the field came with the development of in vitro cell and in vivo xenograft models derived directly from autopsy material of DIPG patients or from human embryonic stem cells. Lastly, we will summarize the progress made in the development of genetically engineered mouse models of DIPG. Cooperation of studies incorporating all of these modeling systems to both investigate the unique mechanisms of gliomagenesis in the brainstem and to test potential novel therapeutic agents in a preclinical setting will result in improvement in treatments for DIPG patients.

  8. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Directory of Open Access Journals (Sweden)

    Brian J. Ahn

    2013-11-01

    Full Text Available Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas.

  9. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Brian J. [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Pollack, Ian F. [Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Okada, Hideho, E-mail: okadah@upmc.edu [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States)

    2013-11-01

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas.

  10. CyberKnife radiotherapy for pediatric recurrent gliomas and medulloblastomas

    International Nuclear Information System (INIS)

    CyberKnife (CK), the linear accelerator mounted on the robot arm, is a novel stereotactic irradiation system. Children with recurrent tumors including 6 low-grade and 4 high-grade gliomas and 3 medulloblastomas were treated with hypofractionated stereotactic radiotherapy using with the CK. The patient ages were 4-15 years, with average of 10.3 years. The tumor sizes were 0.11-28.5 cm3. Marginal doses were set at 17.2-31.1 Gy. When the total dose was over 20 Gy, the treatment was divided into 2-5 fractions. Among 6 patients with low grade-glima, 2 patients were controlled and others required further therapies. Four patients followed over 2 years were still alive. Six out of 7 patients with high-grade glioma or medulloblastoma survived between 11 and 48 months after the CK radiotherapy. No treatment complication was observed. The safety and less invasiveness indicate that the CK is a useful tool when it adds to the standard tumor treatments. However, long period of tumor control was not achieved. Indication and application of the CK radiotherapy for these invasion tumors should be explored. (author)

  11. High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor

    International Nuclear Information System (INIS)

    Epidermal growth factor (EGF) receptors contribute to the development of malignant glioma. Here we considered the possible implication of the EGFR ligand epiregulin (EREG) in glioma development in relation to the activity of the unfolded protein response (UPR) sensor IRE1α. We also examined EREG status in several glioblastoma cell lines and in malignant glioma. Expression and biological properties of EREG were analyzed in human glioma cells in vitro and in human tumor xenografts with regard to the presence of ErbB proteins and to the blockade of IRE1α. Inactivation of IRE1α was achieved by using either the dominant-negative strategy or siRNA-mediated knockdown. EREG was secreted in high amounts by U87 cells, which also expressed its cognate EGF receptor (ErbB1). A stimulatory autocrine loop mediated by EREG was evidenced by the decrease in cell proliferation using specific blocking antibodies directed against either ErbB1 (cetuximab) or EREG itself. In comparison, anti-ErbB2 antibodies (trastuzumab) had no significant effect. Inhibition of IRE1α dramatically reduced EREG expression both in cell culture and in human xenograft tumor models. The high-expression rate of EREG in U87 cells was therefore linked to IRE1α, although being modestly affected by chemical inducers of the endoplasmic reticulum stress. In addition, IRE1-mediated production of EREG did not depend on IRE1 RNase domain, as neither the selective dominant-negative invalidation of the RNase activity (IRE1 kinase active) nor the siRNA-mediated knockdown of XBP1 had significant effect on EREG expression. Finally, chemical inhibition of c-Jun N-terminal kinases (JNK) using the SP600125 compound reduced the ability of cells to express EREG, demonstrating a link between the growth factor production and JNK activation under the dependence of IRE1α. EREG may contribute to glioma progression under the control of IRE1α, as exemplified here by the autocrine proliferation loop mediated in U87 cells by the

  12. Cathepsin L knockdown enhances curcumin-mediated inhibition of growth, migration, and invasion of glioma cells.

    Science.gov (United States)

    Fei, Yao; Xiong, Yajie; Zhao, Yifan; Wang, Wenjuan; Han, Meilin; Wang, Long; Tan, Caihong; Liang, Zhongqin

    2016-09-01

    Curcumin can be used to prevent and treat cancer. However, its exact underlying molecular mechanisms remain poorly understood. Cathepsin L, a lysosomal cysteine protease, is overexpressed in several cancer types. This study aimed to determine the role of cathepsin L in curcumin-mediated inhibition of growth, migration, and invasion of glioma cells. Results revealed that the activity of cathepsin L was enhanced in curcumin-treated glioma cells. Cathepsin L knockdown induced by RNA interference significantly promoted curcumin-induced cytotoxicity, apoptosis, and cell cycle arrest. The knockdown also inhibited the migration and invasion of glioma cells. Our results suggested that the inhibition of cathepsin L can enhance the sensitivity of glioma cells to curcumin. Therefore, cathepsin L may be a new target to enhance the efficacy of curcumin against cancers. PMID:27373979

  13. The limited capacity of malignant glioma-derived exosomes to suppress peripheral immune effectors.

    Science.gov (United States)

    Iorgulescu, J Bryan; Ivan, Michael E; Safaee, Michael; Parsa, Andrew T

    2016-01-15

    Tumor-derived microvesicular exosomes permit intercellular communication both locally and systemically by delivering a snapshot of the tumor cell's constituents. We thus investigated whether exosomes mediate malignant glioma's facility for inducing peripheral immunosuppression. In Western blot and RT-PCR analyses, glioma-derived exosomes displayed exosome-specific markers, but failed to recapitulate the antigen-presentation machinery, surface co-modulatory signals, or immunosuppressive mediator status of their parent tumor cells. Treatment with glioma-derived exosomes promoted immunosuppressive HLA-DR(low) monocytic phenotypes, but failed to induce monocytic PD-L1 expression or alter the activation of cytotoxic T-cells from patients' peripheral blood by FACS and RT-PCR analyses. Our results suggest that malignant glioma-derived exosomes are restricted in their capacity to directly prime peripheral immunosuppression.

  14. Measuring glioma volumes: A comparison of linear measurement based formulae with the manual image segmentation technique

    Directory of Open Access Journals (Sweden)

    Sanjeev A Sreenivasan

    2016-01-01

    Conclusions: Manual region of interest-based image segmentation is the standard technique for measuring glioma volumes. For routine clinical use, the simple formula v = abc/2 (or the formula for volume of an ellipsoid could be used as alternatives.

  15. Chronic inflammation drives glioma growth: cellular and molecular factors responsible for an immunosuppressive microenvironment

    Directory of Open Access Journals (Sweden)

    Joseph P Antonios

    2014-09-01

    Full Text Available This review examines glioma disease initiation, promotion, and progression with a focus on the cell types present within the tumor mass and the molecules responsible for the immunosuppressive microenvironment that are present at each step of the disease. The cell types and molecules present also correlate with the grade of malignancy. An overall "type 2" chronic inflammatory microenvironment develops that facilitates glioma promotion and contributes to the neo-vascularization characteristic of gliomas. An immunosuppressive microenvironment shields the tumor mass from clearance by the patient's own immune system. Here, we provide suggestions to deal with a chronically-inflamed tumor microenvironment and provide recommendations to help optimize adjuvant immune- and gene therapies currently offered to glioma patients.

  16. Synchronized brain activity and neurocognitive function in patients with low-grade glioma : a magnetoencephalography study

    NARCIS (Netherlands)

    Bosma, Ingeborg; Douw, Linda; Bartolomei, Fabrice; Heimans, Jan J.; van Dijk, Bob W.; Postma, Tjeerd J.; Stam, Cornelis J.; Reijneveld, Jaap C.; Klein, Martin

    2008-01-01

    We investigated the mechanisms underlying neurocognitive dysfunction in patients with low-grade glioma (LGG) by relating functional connectivity revealed by magnetoencephalography to neurocognitive function. We administered a battery of standardized neurocognitive tests measuring six neurocognitive

  17. Sunitinib Malate in Treating Younger Patients With Recurrent, Refractory, or Progressive Malignant Glioma or Ependymoma

    Science.gov (United States)

    2015-08-18

    Childhood Cerebellar Anaplastic Astrocytoma; Childhood Cerebral Anaplastic Astrocytoma; Childhood Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma

  18. Ets Factors Regulate Neural Stem Cell Depletion and Gliogenesis in Ras Pathway Glioma.

    Science.gov (United States)

    Breunig, Joshua J; Levy, Rachelle; Antonuk, C Danielle; Molina, Jessica; Dutra-Clarke, Marina; Park, Hannah; Akhtar, Aslam Abbasi; Kim, Gi Bum; Hu, Xin; Bannykh, Serguei I; Verhaak, Roel G W; Danielpour, Moise

    2015-07-14

    As the list of putative driver mutations in glioma grows, we are just beginning to elucidate the effects of dysregulated developmental signaling pathways on the transformation of neural cells. We have employed a postnatal, mosaic, autochthonous glioma model that captures the first hours and days of gliomagenesis in more resolution than conventional genetically engineered mouse models of cancer. We provide evidence that disruption of the Nf1-Ras pathway in the ventricular zone at multiple signaling nodes uniformly results in rapid neural stem cell depletion, progenitor hyperproliferation, and gliogenic lineage restriction. Abolishing Ets subfamily activity, which is upregulated downstream of Ras, rescues these phenotypes and blocks glioma initiation. Thus, the Nf1-Ras-Ets axis might be one of the select molecular pathways that are perturbed for initiation and maintenance in glioma.

  19. Malignant cerebral glioma. Pt. 1: Survival, disability, and morbidity after radiotherapy

    International Nuclear Information System (INIS)

    The objective was to describe survival, disability, and morbidity after radiotherapy for malignant glioma. Severely disabled patients gain little physical benefit from radiotherapy, whereas those not so disabled may experience considerable adverse effects. (Author)

  20. The Prognostic Role of SOCS3 and A20 in Human Cholangiocarcinoma.

    Directory of Open Access Journals (Sweden)

    Yimin Wang

    Full Text Available As an antagonist of the JAK/STAT pathway, suppressor of cytokine signaling 3 (SOCS3 plays an integral role in shaping the inflammatory environment, tumorigenesis and disease progression in cholangiocarcinoma (CCA; however, its prognostic significance remains unclear. Although tumor necrosis factor α-induced protein 3 (TNFAIP3, also known as A20 can decrease SOCS3 expression and is involved in the regulation of tumorigenesis in certain malignancies, its role in CCA remains unknown. In this study, we investigated the expression of SOCS3 and A20 in human CCA tissues to assess the prognostic significance of these proteins. The expression of SOCS3 and A20 was initially detected by western blot in 22 cases of freshly frozen CCA tumors with corresponding peritumoral tissues and 22 control normal bile duct tissues. Then, these proteins were investigated in 86 CCA patients by immunohistochemistry (IHC and were evaluated for their association with clinicopathological parameters in human CCA. The results indicated that SOCS3 expression was significantly lower in CCA tumor tissues than in corresponding peritumoral biliary tissues and normal bile duct tissues. Conversely, A20 was overexpressed in CCA tissues. Thus, an inverse correlation between the expression of SOCS3 and A20 was discovered. Furthermore, patients with low SOCS3 expression or high A20 expression showed a dramatically lower overall survival rate. These proteins were both associated with CCA lymph node metastasis, postoperative recurrence and overall survival rate. However, only A20 showed a significant association with the tumor node metastasis (TNM stage, while SOCS3 showed a significant association with tumor differentiation. Multivariate Cox analysis revealed that SOCS3 and A20 were independent prognostic indicators for overall survival in CCA. Thus, our study demonstrated that SOCS3 and A20 represent novel prognostic factors for human CCA.

  1. Concurrent hypermethylation of DNMT1, MGMT and EGFR genes in progression of gliomas

    Directory of Open Access Journals (Sweden)

    Gömöri Éva

    2012-01-01

    Full Text Available Abstract Background Gliomas are the most common neoplasm of the brain. High-grade gliomas often resist treatment even with aggressive surgical resection and adjuvant radiation and chemotherapy. Despite the combined treatment, they frequently recur with the same or higher-grade histology. Genetic instability is commonly associated with inactivation of the normal DNA repair function and tumour suppressor genes as well as activation of oncogenes resulting from alterations of promoter hypermethylation, but the molecular mechanisms of the histological and clinical progression of gliomas are still poorly understood. Methods This study involved longitudinal analysis samples of primary and recurrent gliomas to determine whether the progression of low- and high-grade gliomas is associated with the promoter methylation of the DNMT1, MGMT and EGFR genes by PCR-based restriction enzyme assay. Epigenetic inactivation of these three important glioma-associated genes was analyzed in paired biopsy samples from 18 patients with tumour recurrence. Results The methylation analysis of the CpG sites in the DNA methyltransferase (DNMT1 promoter revealed a total of 6 hypermethylations (6/18, the methylguanine-DNA methyltransferase (MGMT promoter revealed a total of 10 hypermethylations (10/18 and the epithelial grow factor receptor (EGFR promoter revealed a total of 12 (12/18 hypermethylations respectively in recurrent gliomas. The results demonstrated that DNMT1 promoter hypermethylation does not occur in low-grade gliomas, it was mainly observed in secondary glioblastomas. Additionally, the MGMT and EGFR promoter was hypermethylated in both low-and high-grade GLs and their corresponding histological transformed GLs. Conclusion This study has provided further evidence that the histological transformation and progression of gliomas may be associated with the inactivation of the EGFR and MGMT genes. It seems that EGFR and MGMT promoter hypermethylations are early

  2. The combination of novel targeted molecular agents and radiation in the treatment of pediatric gliomas.

    Science.gov (United States)

    Dasgupta, Tina; Haas-Kogan, Daphne A

    2013-01-01

    Brain tumors are the most common solid pediatric malignancy. For high-grade, recurrent, or refractory pediatric brain tumors, radiation therapy (XRT) is an integral treatment modality. In the era of personalized cancer therapy, molecularly targeted agents have been designed to inhibit pathways critical to tumorigenesis. Our evolving knowledge of genetic aberrations in pediatric gliomas is being exploited with the use of specific targeted inhibitors. These agents are additionally being combined with XRT to increase the efficacy and duration of local control. In this review, we discuss novel agents targeting three different pathways in gliomas, and their potential combination with XRT. BRAF is a serine/threonine kinase in the RAS/RAF/MAPK kinase pathway, which is integral to cellular division, survival, and metabolism. Two-thirds of pilocytic astrocytomas, a low-grade pediatric glioma, contain a translocation within the BRAF gene called KIAA1549:BRAF that causes an overactivation of the MEK/MAPK signaling cascade. In vitro and in vivo data support the use of MEK or mammalian target of rapamycin (mTOR) inhibitors in low-grade gliomas expressing this translocation. Additionally, 15-20% of high-grade pediatric gliomas express BRAF V600E, an activating mutation of the BRAF gene. Pre-clinical in vivo and in vitro data in BRAF V600E gliomas demonstrate dramatic cooperation between XRT and small molecule inhibitors of BRAF V600E. Another major signaling cascade that plays a role in pediatric glioma pathogenesis is the PI3-kinase (PI3K)/mTOR pathway, known to be upregulated in the majority of high- and low-grade pediatric gliomas. Dual PI3K/mTOR inhibitors are in clinical trials for adult high-grade gliomas and are poised to enter studies of pediatric tumors. Finally, many brain tumors express potent stimulators of angiogenesis that render them refractory to treatment. An analog of thalidomide, CC-5103 increases the secretion of critical cytokines of the tumor

  3. Disruption of NF-κB signaling by fluoxetine attenuates MGMT expression in glioma cells

    Directory of Open Access Journals (Sweden)

    Song T

    2015-08-01

    Full Text Available Tao Song,1 Hui Li,2 Zhiliang Tian,3 Chaojiu Xu,4 Jingfang Liu,1 Yong Guo1 1Department of Neurosurgery, Xiangya Hospital, Central South University, 2Department of Immunology and Microbiology, Medical School of Jishou University, 3Department of Neurosurgery, 4Department of Oncology, The Hospital of Xiangxi Autonomous Prefecture, Jishou, People’s Republic of China Background: Resistance to temozolomide (TMZ in glioma is modulated by the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT. This study aimed to examine the effects of fluoxetine (FLT on MGMT expression in glioma cells and to investigate its underlying mechanisms.Materials and methods: Expression of MGMT, GluR1, or IκB kinase β (IKKβ was attenuated using short hairpin RNA-mediated gene knockdown. The 3-(4,5-dimethylthiazol -2-yl-2,5-diphenyltetrazolium bromide (MTT assay was used to evaluate the growth inhibition induced by FLT or TMZ. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL was conducted to detect apoptotic cells. Western blotting was conducted to analyze the protein expression of MGMT, IKKβ, and NF-κB/p65 following FLT treatment. The murine subcutaneous xenograft model was used to evaluate the combinational effect of TMZ and FLT.Results: FLT markedly reduced MGMT expression in glioma cells, which was independent of GluR1 receptor function. Further, FLT disrupted NF-κB/p65 signaling in glioma cells and consequently attenuated NF-κB/p65 activity in regulating MGMT expression. Importantly, FLT sensitized MGMT-expressing glioma cells to TMZ, as FLT enhanced TMZ’s ability to impair the in vitro tumorigenic potential and to induce apoptosis in glioma cells. Knockdown of MGMT or IKKβ expression abolished the synergistic effect of FLT with TMZ in glioma cells, which suggested that FLT might sensitize glioma cells to TMZ through down-regulation of MGMT expression. Consistently, TMZ combined with FLT markedly attenuated NF

  4. Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in glioma U87 cells

    Institute of Scientific and Technical Information of China (English)

    Fei Zhong; Xiangyuan Wu; Chunkui Shao; Qu Lin; Min Dong; Jingyun Wen; Xiaokun Ma; Li Wei

    2010-01-01

    Studies have shown that tumor necrosis factor-related apoptosis-inducing ligand(TRAIL)exhibits strong induction of apoptosis in human glioma cells.It remains unclear whether the mitochondrion pathway,an important apoptosis signaling pathway,is involved in TRAIL-induced glioma cell apoptosis.In the present study,in vitro cultured human glioma U87 cells were treated with human recombinant soluble TRAIL.Apoptosis of glioma U87 cells,mitochondrial transmembrane potential(Δψm),cytoplasmic cytochrome c concentration and changes in caspase-3,-8 and-9 activity following human recombinant soluble TRAIL treatment were investigated to determine the mechanism of glioma U87 cell apoptosis induced by TRAIL.Additionally,blocking caspase-8resulted in TRAIL-induced mitochondrion pathway activation,suggesting that TRAIL,through activating caspase-8,initiated a series of mitochondrial events and resulted in apoptosis of glioma U87 cells.

  5. MicroRNA-544 inhibits glioma proliferation, invasion and migration but induces cell apoptosis by targeting PARK7.

    Science.gov (United States)

    Jin, Shiguang; Dai, Yan; Li, Cheng; Fang, Xiao; Han, Huijing; Wang, Daxin

    2016-01-01

    Glioma is a common type of primary brain tumor. The survival rate in people with malignant gliomas is extremely low associated with the lack of effective treatment. Here, we firstly observed that miR-544 expression is downregulated in glioma tissues and its overexpression in glioma cell line dramatically reduces cell proliferation, migration and invasion. In addition, we found that the tumor growth in nude mouse was as well inhibited by miR-544 overexpressed in glioma cell. Our further investigation showed that the inhibitor role of miR-544 in tumor development was related to the downregulated expression of Park7 gene which has been demonstrated as a functional downstream target of miR-544. Thus, our discovery suggested that miR-544 might used as a therapeutic reagent for the treatment of glioma in the future.

  6. O9.09EFFICACY AND TOLERABILITY OF LACOSAMIDE IN PATIENTS WITH GLIOMA: A PROSPECTIVE STUDY

    OpenAIRE

    Pellerino, A.; Bertero, L.; Trevisan, E.; Magistrello, M.; R. Soffietti; Rudà, R.

    2014-01-01

    BACKGROUND: Lacosamide (LCM) has been suggested in some retrospective studies to improve seizure control as an add-on treatment in brain tumor patients. We present here the preliminary results of a prospective study focused on a cohort of patients with gliomas and active epilepsy who received LCM. METHODS: Eligibility criteria were as follows: 1) biopsy-proven grade II or III or IV gliomas according to WHO 2007; 2) persisting seizures (seizure frequency > 1 per month) despite a treatment with...

  7. Expression and prognostic value of the WEE1 kinase in gliomas.

    Science.gov (United States)

    Music, Darija; Dahlrot, Rikke Hedegaard; Hermansen, Simon Kjær; Hjelmborg, Jacob; de Stricker, Karin; Hansen, Steinbjørn; Kristensen, Bjarne Winther

    2016-04-01

    High-grade gliomas have an aggressive clinical course and new clinical biomarkers and therapeutic targets are highly needed. WEE1 is a regulator of the G2 checkpoint in glioblastoma (GBM) cells. Inhibition of this kinase has, in experimental glioma studies, been suggested to enhance sensitivity to irradiation and temozolomide. However, expression level and prognostic potential of WEE1 protein in gliomas remain uninvestigated. In this study, glioma samples from 235 patients across all four WHO grades were analyzed by immunohistochemistry. Using image analysis, we calculated the area fraction of WEE1 positive nuclei. We found that WEE1 protein was localized in tumor cell nuclei and expressed in all glioma types and grades. Although WEE1 protein levels are higher in GBMs (mean 24.5%) relative to grade III (mean 14,0%, p < 0.05) and grade II (mean 6.8%, p < 0.001) gliomas, high WEE1 protein was associated with better survival in GBMs (p = 0.002). This was confirmed in multivariate analysis (HR 0.60, p = 0.003) even when adjusted for MGMT status (HR 0.60, p = 0.005). In conclusion, we report a nuclear expression of WEE1 protein in all glioma grades and types. The WEE1 positive nuclear area was correlated with malignancy grade but it was inversely associated with prognosis in GBM. Although WEE1 is a frequently occurring protein and has been proposed as a novel target in GBM, the role of WEE1 in glioma patient survival appears to be connected to the MGMT status and is more complex than previously anticipated.

  8. Personal hair dyes use and risk of glioma: a meta-analysis

    OpenAIRE

    Shao, Chuan; Qi, Zhen-Yu; Hui, Guo-Zhen; Wang, Zhong

    2013-01-01

    Background and Objective: Use of hair dyes for glioma risk has been investigated in numerous epidemiological studies, but the evidence is inconsistent. Therefore, a meta-analysis was performed to estimate the association between hair dyes use and glioma risk. Methods: We searched PubMed and EMBASE databases without any limitations, covering all papers published by the end of March 8, 2013. Cohort and case-control studies reporting relative risk estimates (RRs) with corresponding 95% confidenc...

  9. [(18)F]Fluoroethyltyrosine- positron emission tomography-guided radiotherapy for high-grade glioma

    OpenAIRE

    Ratib Osman; Dipasquale Giovanna; Nouet Philippe; Rouzaud Michel; Haller Guy; Casanova Nathalie; Buchegger Franz; Zilli Thomas; Weber Damien C; Zaidi Habib; Vees Hansjorg; Miralbell Raymond

    2008-01-01

    Abstract Background To compare morphological gross tumor volumes (GTVs), defined as pre- and postoperative gadolinium enhancement on T1-weighted magnetic resonance imaging to biological tumor volumes (BTVs), defined by the uptake of 18F fluoroethyltyrosine (FET) for the radiotherapy planning of high-grade glioma, using a dedicated positron emission tomography (PET)-CT scanner equipped with three triangulation lasers for patient positioning. Methods Nineteen patients with malignant glioma were...

  10. Prediction of P-glycoprotein expression and chemoresistant character of gliomas by SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Iuchi, Toshihiko; Togawa, Takashi; Oga, Masaru; Osato, Katsunobu [Chiba Cancer Center (Japan); Namba, Hiroki; Fujimoto, Shuichi

    2000-09-01

    In this prospective study of 25 malignant gliomas, we correlated the {sup 99m}Tc-MIBI uptake/{sup 201}Tl uptake ratio (MIBI/Tl) with the expression of P-glycoprotein in tumor tissue and the tumor's response to anticancer agents. All patients underwent {sup 99m}Tc-MIBI and {sup 201}Tl SPECT before surgery. Semiquantitative assessment of tracer uptake was performed using the ratio of radioactivity in the tumor relative to normal scalp. Immunohistochemical studies were performed on paraffin sections using an anti-P-glycoprotein monoclonal antibody, JSB-1. Chemosensitivity of the gliomas to following 12 anticancer agents: vincristine, vinblastine, vindesine, etoposide, irinotecan, daunomycin, adriamycin, aclarubicin, epirubicin, pirarubicin, actinomycin and mitoxantrone, was determined by an in vitro assay using surgical specimens, and chemosensitivity was expressed as the number of effective drugs. Gliomas expressing P-glycoprotein were significantly less chemosensitive than gliomas without the glycoprotein (p=0.010), and MIBI/Tl of gliomas expressing P-glycoprotein was significantly smaller than tumors without expression (p=0.008). From the prognostic point of view, gliomas showing MIBI/Tl of 0.6 or less had fewer effective drugs (p=0.008). However, MIBI/Tl was not effective at predicting overall survival in patients with malignant glioma. From these results, we concluded that efflux of {sup 99m}Tc-MIBI through P-glycoprotein could be evaluated by MIBI/Tl, and this index reflected well the chemoresistant character of malignant gliomas. (author)

  11. QL-04FACTORS ASSOCIATED WITH SUICIDAL IDEATION IN CLINICALLY DISTRESSED ADULT GLIOMA PATIENTS

    OpenAIRE

    Banerjee, Pia; Cloughesy, Timothy; Cervantes, Sandra; Pham, Jennifer; Nghiemphu, Phioanh; Lai, Albert; Wellisch, David

    2014-01-01

    OBJECTIVE: During patient care, it is critical to identify the glioma patients who are experiencing suicidal ideation among those who present with elevated levels of psychological distress, so appropriate interventions can be implemented. The aim of this study was to determine the factors that differentiated adult glioma patients with possible suicidal ideation from those without suicidal ideation among patients experiencing psychological distress. METHODS: 317 adult patients with WHO Grade I...

  12. Genomic dynamics associated with malignant transformation in IDH1 mutated gliomas

    OpenAIRE

    Park, Chul-Kee; Park, Inho; Lee, Seungmook; Sun, Choong-Hyun; Koh, Youngil; Park, Sung-Hye; Kim, Ja Eun; Yun, Hongseok; Lee, Se-Hoon

    2015-01-01

    The genomic mechanism responsible for malignant transformation remains an open question for glioma researchers, where differing conclusions have been drawn based on diverse study conditions. Therefore, it is essential to secure direct evidence using longitudinal samples from the same patient. Moreover, malignant transformation of IDH1-mutated gliomas is of potential interest, as its genomic mechanism under influence of oncometabolite remains unclear, and even higher rate of malignant transfor...

  13. ET-67SUICIDE GENE THERAPY FOR GLIOMA USING MULTILINEAGE-DEFFERENTIATING STRESS ENDURING (MUSE) CELLS

    OpenAIRE

    Yamasaki, Tomohiro; Wakao, Shohei; KAWAJI, Hiroshi; Suzuki, Tomo; Kamio, Yoshinobu; AMANO, SHINJI; Sameshima, Tetsuro; Sakai, Naoto; TOKUYAMA, TSUTOMU; Dezawa, Mari; NAMBA, HIROKI

    2014-01-01

    INTRODUCTION: We have been investigating cell-based glioma gene therapy using various kinds of stem cells transduced with the herpes simplex virus thymidine kinase gene (HSVtk). In our previous study, we used SSEA3/CD105 double-positive multilineage-differentiating stress-enduring (Muse) cells transduced with HSVtk (Muse-tk cells) as the vehicle for HSVtk/ganciclovir (GCV) gene therapy. We demonstrated a potent in vitro tumoricidal bystander effect for various glioma cells. In the present stu...

  14. Ultrastructural Characterization of the Optic Pathway in a Mouse Model of Neurofibromatosis-1 Optic Glioma

    OpenAIRE

    KIM, K-.Y.; JU, W-. K.; Hegedus, B; Gutmann, D. H.; Ellisman, M H

    2010-01-01

    The purpose of this study was to investigate the progression of changes in retinal ganglion cells and optic nerve glia in neurofibromatosis-1 (NF1) genetically-engineered mice with optic glioma. Optic glioma tumors were generated in Nf1+/− mice lacking Nf1 expression in GFAP+ cells (astrocytes). Standard immunohistochemistry methods were employed to identify astrocytes (GFAP, S100β), proliferating progenitor cells (sox2, nestin), microglia (Iba1), endothelial cells (CD31) and retinal ganglion...

  15. Glutathione depletion sensitizes cisplatin- and temozolomide-resistant glioma cells in vitro and in vivo

    OpenAIRE

    Rocha, C R R; Garcia, C C M; Vieira, D B; Quinet, A.; de Andrade-Lima, L C; V. Munford; Belizário, J E; Menck, C F M

    2014-01-01

    Malignant glioma is a severe type of brain tumor with a poor prognosis and few options for therapy. The main chemotherapy protocol for this type of tumor is based on temozolomide (TMZ), albeit with limited success. Cisplatin is widely used to treat several types of tumor and, in association with TMZ, is also used to treat recurrent glioma. However, several mechanisms of cellular resistance to cisplatin restrict therapy efficiency. In that sense, enhanced DNA repair, high glutathione levels an...

  16. Current technological progress in neurosurgery and its impact on surgical treatment of glioma brain tumours

    International Nuclear Information System (INIS)

    Brain gliomas are characterized by infiltrative growth, with possible finding of functional brain tissue within the tumor. Intraoperatively are glioma borders often indistinguishable from surrounding brain. Eloquent areas can be damaged during surgical removal of tumors near or within these areas. Therefore, in addition to preoperative identification of cortical and subcortical eloquent areas, meticulous microsurgical technique, neuro navigation, intraoperative imaging, neuro monitoring and awake surgery are necessary. Using these methods, satisfactory and safe resection of tumors previously considered as unresectable is possible. (author)

  17. LIN28 Is Involved in Glioma Carcinogenesis and Predicts Outcomes of Glioblastoma Multiforme Patients

    OpenAIRE

    Qin, Rong; ZHOU, JINGXU; Chen, Chao; Xu, Tao; Yan, Yong; Ma, Yushui; Zheng, Zongli; Shen, Yiping; Lu, Yicheng; Fu, Da; Chen, Juxiang

    2014-01-01

    LIN28, an evolutionarily conversed RNA binding protein which can bind to the terminal loops of let-7 family microRNA precursors and block their processing to maturation, is highly expressed in several subsets of tumors that carry poor prognoses, such as ovarian carcinoma, hepatocellular carcinoma, colon carcinoma and germ cell carcinoma. However, there has been no study on the expression of LIN28 in glioma tissues or their importance as a prognostic predictor of glioma patients. This study ai...

  18. Phase II trial of bevacizumab and erlotinib in patients with recurrent malignant glioma

    OpenAIRE

    Sathornsumetee, Sith; Desjardins, Annick; Vredenburgh, James J.; McLendon, Roger E; Marcello, Jennifer; Herndon, James E.; Mathe, Alyssa; Hamilton, Marta; Jeremy N Rich; Norfleet, Julie A.; Gururangan, Sridharan; Friedman, Henry S.; Reardon, David A.

    2010-01-01

    Vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) signaling are established contributors to malignant glioma (MG) biology. We, therefore, evaluated bevacizumab, a humanized anti-VEGF monoclonal antibody, in combination with the EGFR tyrosine kinase inhibitor erlotinib, in this phase 2 study for recurrent MG patients (www.ClinicalTrials.gov, NCT00671970). Fifty-seven patients (n = 25, glioblastoma [GBM]; n = 32, anaplastic glioma [AG]) were enrolled. The pri...

  19. Concurrent hypermethylation of DNMT1, MGMT and EGFR genes in progression of gliomas

    OpenAIRE

    Gömöri Éva; Pál József; Kovács Bernadett; Dóczi Tamás

    2012-01-01

    Abstract Background Gliomas are the most common neoplasm of the brain. High-grade gliomas often resist treatment even with aggressive surgical resection and adjuvant radiation and chemotherapy. Despite the combined treatment, they frequently recur with the same or higher-grade histology. Genetic instability is commonly associated with inactivation of the normal DNA repair function and tumour suppressor genes as well as activation of oncogenes resulting from alterations of promoter hypermethyl...

  20. The role of autophagy in sensitizing malignant glioma cells to radiation therapy

    Institute of Scientific and Technical Information of China (English)

    Wenzhuo Zhuang; Zhenghong Qin; Zhongqin Liang

    2009-01-01

    Malignant gliomas representthe majority of primary brain tumors.The current standard treatments for malignant gliomas include surgical resection,radiation therapy,and chemotherapy.Radiotherapy,a standard adjuvant therapy,confers some survival advantages,but resistance of the glioma cells to the efficacy of radiation limits the success of the treatment.The mechanisms underlying glioma cell radioresistance have remained elusive.Autophagy is a protein degradation system characterized by a prominent formation of double-membrane vesicles in the cytoplasm.Recent studies suggest that autophagy may be important in the regulation of cancer development and progression and in determining the response of tumor cells to anticancer therapy.Also,autophagy is a novel response of glioma cells to ionizing radiation.Autophagic cell death is considered programmed cell death type Ⅱ,whereas apoptosis is programmed cell death type Ⅰ.These two types of cell death are predominantly distinctive,but many studies demonstrate a cross-talk between them.Whether autophagy in cancer cells causes death or protects cells is controversial.The regulatory pathways of autophagy share several molecules.P13K/Akt/Mtor,DNA-PK,tumor suppressor genes, mitochondrial damage,and lysosome may play important roles in radiation-induced autophagy in glioma cells.Recently,a highly tumorigenic glioma tumor subpopulation,termed cancer stem cell or tumor-initiating cell,has been shown to promote therapeutic resistance.This review summarizes the main mediators associated with radiation-induced autophagy in malignant glioma cells and discusses the implications of the cancer stem cell hypothesis for the development of future therapies for brain tumors.

  1. An Axis Involving SNAI1, microRNA-128 and SP1 Modulates Glioma Progression

    OpenAIRE

    Qingsheng Dong; Ning Cai; Tao Tao; Rui Zhang; Wei Yan; Rui Li; Junxia Zhang; Hui Luo; Yan Shi; Wenkang Luan; Yaxuan Zhang; Yongping You; Yingyi Wang; Ning Liu

    2014-01-01

    Background Glioblastoma is an extraordinarily aggressive disease that requires more effective therapeutic options. Snail family zinc finger 1, dysregulated in many neoplasms, has been reported to be involved in gliomas. However, the biological mechanisms underlying SNAI1 function in gliomas need further investigation. Methods Quantitative real-time PCR was used to measure microRNA-128 (miR-128) expression level and western blot was performed to detect protein expression in U87 and U251 cells ...

  2. Chlorotoxin: A Helpful Natural Scorpion Peptide to Diagnose Glioma and Fight Tumor Invasion

    OpenAIRE

    Lucie Dardevet; Dipti Rani; Tarek Abd El Aziz; Ingrid Bazin; Jean-Marc Sabatier; Mahmoud Fadl; Elisabeth Brambilla; Michel De Waard

    2015-01-01

    Chlorotoxin is a small 36 amino-acid peptide identified from the venom of the scorpion Leiurus quinquestriatus. Initially, chlorotoxin was used as a pharmacological tool to characterize chloride channels. While studying glioma-specific chloride currents, it was soon discovered that chlorotoxin possesses targeting properties towards cancer cells including glioma, melanoma, small cell lung carcinoma, neuroblastoma and medulloblastoma. The investigation of the mechanism of action of chlorotoxin ...

  3. GE-15CLONAL EVOLUTION AND INTRATUMORAL HETEROGENEITY OF LOW-GRADE GLIOMA GENOMES

    OpenAIRE

    Johnson, Brett; Mazor, Tali; Hong, Chibo; Barnes, Michael; Yamamoto, Shogo; UEDA, HIROKI; Tatsuno, Kenji; Aihara, Koki; Asthana, Saurabh; Dayal, Manisha; Nelson, Sarah; Phillips, Joanna; Bollen, Andrew; Mukasa, Akitake; Saito, Nobuhito

    2014-01-01

    Low-grade gliomas frequently recur after surgical resection and may undergo malignant progression to a higher grade with a significantly worse prognosis. Understanding the origin and evolution of recurrences is critical for effectively treating residual disease to delay or prevent recurrence. Here, we extend previous work by sequencing the exomes of over 30 initial low-grade gliomas and their patient-matched recurrences to reconstruct the patterns of clonal evolution. We also sequence multipl...

  4. Delineating the Cytogenomic and Epigenomic Landscapes of Glioma Stem Cell Lines

    OpenAIRE

    Simona Baronchelli; Angela Bentivegna; Serena Redaelli; Gabriele Riva; Valentina Butta; Laura Paoletta; Giuseppe Isimbaldi; Monica Miozzo; Silvia Tabano; Antonio Daga; Daniela Marubbi; Monica Cattaneo; Ida Biunno; Leda Dalprà

    2013-01-01

    Glioblastoma multiforme (GBM), the most common and malignant type of glioma, is characterized by a poor prognosis and the lack of an effective treatment, which are due to a small sub-population of cells with stem-like properties, termed glioma stem cells (GSCs). The term “multiforme” describes the histological features of this tumor, that is, the cellular and morphological heterogeneity. At the molecular level multiple layers of alterations may reflect this heterogeneity providing together th...

  5. Autotaxin and LPA receptors represent potential molecular targets for the radiosensitization of murine glioma through effects on tumor vasculature.

    Directory of Open Access Journals (Sweden)

    Stephen M Schleicher

    Full Text Available Despite wide margins and high dose irradiation, unresectable malignant glioma (MG is less responsive to radiation and is uniformly fatal. We previously found that cytosolic phospholipase A2 (cPLA(2 is a molecular target for radiosensitizing cancer through the vascular endothelium. Autotaxin (ATX and lysophosphatidic acid (LPA receptors are downstream from cPLA(2 and highly expressed in MG. Using the ATX and LPA receptor inhibitor, α-bromomethylene phosphonate LPA (BrP-LPA, we studied ATX and LPA receptors as potential molecular targets for the radiosensitization of tumor vasculature in MG. Treatment of Human Umbilical Endothelial cells (HUVEC and mouse brain microvascular cells bEND.3 with 5 µmol/L BrP-LPA and 3 Gy irradiation showed decreased clonogenic survival, tubule formation, and migration. Exogenous addition of LPA showed radioprotection that was abrogated in the presence of BrP-LPA. In co-culture experiments using bEND.3 and mouse GL-261 glioma cells, treatment with BrP-LPA reduced Akt phosphorylation in both irradiated cell lines and decreased survival and migration of irradiated GL-261 cells. Using siRNA to knock down LPA receptors LPA1, LPA2 or LPA3 in HUVEC, we demonstrated that knockdown of LPA2 but neither LPA1 nor LPA3 led to increased viability and proliferation. However, knockdown of LPA1 and LPA3 but not LPA2 resulted in complete abrogation of tubule formation implying that LPA1 and LPA3 on endothelial cells are likely targets of BrP-LPA radiosensitizing effect. Using heterotopic tumor models of GL-261, mice treated with BrP-LPA and irradiation showed a tumor growth delay of 6.8 days compared to mice treated with irradiation alone indicating that inhibition of ATX and LPA receptors may significantly improve malignant glioma response to radiation therapy. These findings identify ATX and LPA receptors as molecular targets for the development of radiosensitizers for MG.

  6. Outcomes of Multidisciplinary Management in Pediatric Low-Grade Gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Kevin S., E-mail: koh2@partners.org [Department of Radiation Oncology, University of Michigan Health System, Ann Arbor, MI (United States); Hung, Jonathan [Department of Radiation Oncology, University of Michigan Health System, Ann Arbor, MI (United States); Robertson, Patricia L. [Department of Pediatrics and Communicable Diseases, University of Michigan Health System, Ann Arbor, MI (United States); Department of Neurology, University of Michigan Health System, Ann Arbor, MI (United States); Garton, Hugh J.; Muraszko, Karin M. [Department of Neurosurgery, University of Michigan Health System, Ann Arbor, MI (United States); Sandler, Howard M. [Department of Radiation Oncology, University of Michigan Health System, Ann Arbor, MI (United States); Hamstra, Daniel A. [Department of Pediatrics and Communicable Diseases, University of Michigan Health System, Ann Arbor, MI (United States)

    2011-11-15

    Purpose: To evaluate the outcomes in pediatric low-grade gliomas managed in a multidisciplinary setting. Methods and Materials: We conducted a single-institution retrospective study of 181 children with Grade I-II gliomas. Log-rank and stepwise Cox proportional hazards models were used to analyze freedom from progression (FFP) and overall survival (OS). Results: Median follow-up was 6.4 years. Thirty-four (19%) of patients had neurofibromatosis Type 1 (NF1) and because of their favorable prognosis were evaluated separately. In the 147 (81%) of patients without NF1, actuarial 7-year FFP and OS were 67 {+-} 4% (standard error) and 94 {+-} 2%, respectively. In this population, tumor location in the optic pathway/hypothalamus was associated with worse FFP (39% vs. 76%, p < 0.0003), but there was no difference in OS. Age {<=}5 years was associated with worse FFP (52% vs. 75%, p < 0.02) but improved OS (97% vs. 92%, p < 0.05). In those with tissue diagnosis, gross total resection (GTR) was associated with improved 7-year FFP (81% vs. 56%, p < 0.02) and OS (100% vs. 90%, p < 0.03). In a multivariate model, only location in the optic pathway/hypothalamus predicted worse FFP (p < 0.01). Fifty patients received radiation therapy (RT). For those with less than GTR, adjuvant RT improved FFP (89% vs. 49%, p < 0.003) but not OS. There was no difference in OS between patient groups given RT as adjuvant vs. salvage therapy. In NF1 patients, 94% of tumors were located in the optic pathway/hypothalamus. With a conservative treatment strategy in this population, actuarial 7-year FFP and OS were 73 {+-} 9% and 100%, respectively. Conclusions: Low-grade gliomas in children {<=}5 years old with tumors in the optic pathway/hypothalamus are more likely to progress, but this does not confer worse OS because of the success of salvage therapy. When GTR is not achieved, adjuvant RT improves FFP but not OS. Routine adjuvant RT can be avoided and instead reserved as salvage.

  7. Intraoperative neuropathology of glioma recurrence: cell detection and classification

    Science.gov (United States)

    Abas, Fazly S.; Gokozan, Hamza N.; Goksel, Behiye; Otero, Jose J.; Gurcan, Metin N.

    2016-03-01

    Intraoperative neuropathology of glioma recurrence represents significant visual challenges to pathologists as they carry significant clinical implications. For example, rendering a diagnosis of recurrent glioma can help the surgeon decide to perform more aggressive resection if surgically appropriate. In addition, the success of recent clinical trials for intraoperative administration of therapies, such as inoculation with oncolytic viruses, may suggest that refinement of the intraoperative diagnosis during neurosurgery is an emerging need for pathologists. Typically, these diagnoses require rapid/STAT processing lasting only 20-30 minutes after receipt from neurosurgery. In this relatively short time frame, only dyes, such as hematoxylin and eosin (H and E), can be implemented. The visual challenge lies in the fact that these patients have undergone chemotherapy and radiation, both of which induce cytological atypia in astrocytes, and pathologists are unable to implement helpful biomarkers in their diagnoses. Therefore, there is a need to help pathologists differentiate between astrocytes that are cytologically atypical due to treatment versus infiltrating, recurrent, neoplastic astrocytes. This study focuses on classification of neoplastic versus non-neoplastic astrocytes with the long term goal of providing a better neuropathological computer-aided consultation via classification of cells into reactive gliosis versus recurrent glioma. We present a method to detect cells in H and E stained digitized slides of intraoperative cytologic preparations. The method uses a combination of the `value' component of the HSV color space and `b*' component of the CIE L*a*b* color space to create an enhanced image that suppresses the background while revealing cells on an image. A composite image is formed based on the morphological closing of the hue-luminance combined image. Geometrical and textural features extracted from Discrete Wavelet Frames and combined to classify

  8. The Guanine Nucleotide Exchange Factor SWAP-70 Modulates the Migration and Invasiveness of Human Malignant Glioma Cells12

    OpenAIRE

    SEOL, HO JUN; Smith, Christian A.; Salhia, Bodour; Rutka, James T.

    2009-01-01

    The malignant glioma is the most common primary human brain tumor. Its tendency to invade away from the primary tumor mass is considered a leading cause of tumor recurrence and treatment failure. Accordingly, the molecular pathogenesis of glioma invasion is currently under investigation. Previously, we examined a gene expression array database comparing human gliomas to nonneoplastic controls and identified several Rac guanine nucleotide exchange factors with differential expression. Here, we...

  9. The Expression and Significance of MGMT, Ku80 and Ki67 Gene in Different Grades of Spinal gliomas

    OpenAIRE

    Mo, Wanbin

    2015-01-01

    Compared to cranial gliomas, the spinal cord glioma is a rare tumor of the central nervous system. Due to its infrequent incidence, there is no consensus regarding the management of spinal cord glioma until nowadays. Radical surgery, radiation therapy, and chemotherapy have been used in various combinations around the world; so far the extent of resection and the use of adjuvant chemotherapy or radiotherapy have not been clearly shown to be associated with a survival advantage. MGMT is one of...

  10. RT-40THE DOWN-REGULATION OF H-FERRITIN AS AN ADJUVANT THERAPY IN HUMAN GLIOMA

    OpenAIRE

    Pang, Min; Liu, Xiaoli; MadhanKumar, A.B.; Slagle-Webb, Becky; Connor, James

    2014-01-01

    Cancer cells generally exhibit increased iron requirements and heightened iron metabolism. As the major iron storage protein, ferritin expression is elevated in many types of cancer. In this study, we report that the sensitization of H-ferritin down-regulation in glioma cells against radiation and suggest the potential of H-ferritin down-regulation as an adjuvant therapy in human glioma. In human glioma cells, down-regulation of H-ferritin performed through a nanotechnology-based transfection...

  11. Exogenous IGFBP-2 promotes proliferation, invasion, and chemoresistance to temozolomide in glioma cells via the integrin β1-ERK pathway

    OpenAIRE

    Han, S.; Z. Li; Master, L M; Master, Z W; Wu, A

    2014-01-01

    Background: Insulin-like growth factor binding protein-2 (IGFBP-2) is significantly increased in the serum of patients with malignant gliomas. High plasma IGFBP-2 levels are correlated with poor prognosis in glioma patients. However, the exact role of exogenous IGFBP-2 in gliomas is unclear. Methods and results: Using the MTT cell viability assay, cell cycle analysis, and the transwell migration assay, it was demonstrated that IGFBP-2 treatment stimulated proliferation and invasion in U87 and...

  12. The 9LLUC/Wistar rat glioma model is not suitable for immunotherapy

    Institute of Scientific and Technical Information of China (English)

    Liping Yang; Jingxiang Zhao; Guihong Zhou; Yunfang Wang; Lusi Li; Hongfeng Yuan; Xue Nan; Lidong Guan; Xuetao Pei

    2012-01-01

    The availability of a well-characterized animal brain tumor model will play an important role in identifying treatments for human brain tumors. Wistar rats bearing 9L glioma cells can develop solid, well-circumcised tumors, and may be a useful animal model for the evaluation of various therapeutic approaches for gliosarcomas. In this study, the 9L/Wistar rat glioma model was produced by intracerebral implantation of 9LLUC glioma cells syngenic to Fischer 344 (F344) rats. Bioluminescence imaging showed that tumors progressively grew from day 7 to day 21 in 9LLUC/F344 rats, and tumor regression was found in some 9LLUC/Wistar rats. Hematoxylin-eosin staining verified that intracranial tumors were gliomas. Immunohistochemistry results demonstrated that no CD4- and CD8-positive cells were found in the syngeneic 9LLUC/F344 model. However, many infiltrating CD4- and CD8-positive cells were observed within the tumors of the 9LLUC/Wistar model. Our data suggests that compared with 9L/F344 rats, 9L glioma Wistar rats may not be suitable for evaluating brain glioma immunotherapies, even though the model induced an immune response and exhibited tumor regression.

  13. Evaluation of TAZ expression and its effect on tumor invasion and metastasis in human glioma

    Institute of Scientific and Technical Information of China (English)

    Pei-Dong Li; Xin-Jun Wang; Qiao Shan; Yue-Hui Wu; Zhen Wang

    2014-01-01

    Objective:To evaluate the expression ofTAZ and its role in tumor invasion and metastasis in human glioma.Methods:The expression ofTAZ protein was measured in48 samples of surgically resected human glioma and13 samples of normal brain tissues using immunohistochemistry. TAZ was knocked down by a retrovirus-mediatedTAZ shRNA in a glioma cell line,SNB19. Transwell cell migration and invasion assays were used to determine migration and invasion ofSNB19 cells.Results:The positive expression rate ofTAZ protein in glioma tissues was significantly higher than that in normal brain tissues(79.2%vs.15.4%,P<0.001).Furthermore, clinical analysis suggested that the positive expression rate ofTAZ protein in poorly differentiated tumor tissues was significantly higher as compared with that in well differentiated tissues(96.0%vs.60.9%,P<0.01).TAZ was significantly knocked down byTAZ shRNA(P<0.001), andTAZ knockdown significantly reduced cell migration and invasion(P<0.01, respectively) inSNB19 cells.Conclusions:TAZ protein overexpression is observed in human glioma and its elevated expression is significantly correlated with poor differentiation.TAZ knockdown prominently reduces cell migration and invasion inSNB19 cells, suggesting thatTAZ may play a key role in the initiation and progression of human glioma.

  14. Migration capacity of human umbilical cord mesenchymal stem cells towards glioma in vivo*

    Institute of Scientific and Technical Information of China (English)

    Cungang Fan; Dongliang Wang; Qingjun Zhang; Jingru Zhou

    2013-01-01

    High-grade glioma is the most common malignant primary brain tumor in adults. The poor prognosis of glioma, combined with a resistance to currently available treatments, necessitates the ment of more effective tumor-selective therapies. Stem cel-based therapies are emerging as novel cel-based delivery vehicle for therapeutic agents. In the present study, we successful y isolated human umbilical cord mesenchymal stem cel s by explant culture. The human umbilical cord senchymal stem cel s were adherent to plastic surfaces, expressed specific surface phenotypes of mesenchymal stem cel s as demonstrated by flow cytometry, and possessed multi-differentiation potentials in permissive induction media in vitro. Furthermore, human umbilical cord mesenchymal stem cel s demonstrated excel ent glioma-specific targeting capacity in established rat glioma models after intratumoral injection or contralateral ventricular administration in vivo. The excellent glioma-specific targeting ability and extensive intratumoral distribution of human umbilical cord mesenchymal stem cel s indicate that they may serve as a novel cel ular vehicle for delivering the-rapeutic molecules in glioma therapy.

  15. Human Cytomegalovirus DNA Quantification and Gene Expression in Gliomas of Different Grades

    Science.gov (United States)

    Medeiros, Raphael Salles Scortegagna; Guerra, Juliana Mariotti; Kimura, Lidia Midori; Shirata, Neuza Kazumi; Nonogaki, Suely; dos Santos, Claudia Januário; Carlan Silva, Maria Cristina

    2016-01-01

    Gliomas are the most common type of primary brain tumors. The most aggressive type, Glioblastoma multiforme (GBM), is one of the deadliest human diseases, with an average survival at diagnosis of about 1 year. Previous evidence suggests a link between human cytomegalovirus (HCMV) and gliomas. HCMV has been shown to be present in these tumors and several viral proteins can have oncogenic properties in glioma cells. Here we have investigated the presence of HCMV DNA, RNA and proteins in fifty-two gliomas of different grades of malignancy. The UL83 viral region, the early beta 2.7 RNA and viral protein were detected in 73%, 36% and 57% by qPCR, ISH and IHC, respectively. Positivity of the viral targets and viral load was independent of tumor type or grade suggesting no correlation between viral presence and tumor progression. Our results demonstrate high prevalence of the virus in gliomas from Brazilian patients, contributing to a better understanding of the association between HCMV infection and gliomas worldwide and supporting further investigations of the virus oncomodulatory properties. PMID:27458810

  16. Detection of Human Cytomegalovirus in Different Histopathological Types of Glioma in Iraqi Patients

    Directory of Open Access Journals (Sweden)

    Haidar A. Shamran

    2015-01-01

    Full Text Available Human Cytomegalovirus (HCMV is an endemic herpes virus that reemerges in cancer patients enhancing oncogenic potential. HCMV infection is associated with certain types of cancer morbidity such as glioblastomas. HCMV, like all other herpes viruses, has the ability to remain latent within the body of the host and can contribute in chronic inflammation. To determine the role of HCMV in glioma pathogenesis, paraffin-embedded blocks from glioma patients (n=50 and from benign meningioma patients (n=30 were obtained and evaluated by immunohistochemistry and polymerase chain reaction for the evidence of HCMV antigen expression and the presence of viral DNA. We detected HCMV antigen and DNA for IEI-72, pp65, and late antigen in 33/36, 28/36, and 26/36 in glioblastoma multiforme patients whereas 12/14, 10/14, and 9/14 in anaplastic astrocytoma patients, respectively. Furthermore, 84% of glioma patients were positive for immunoglobulin G (IgG compared to 72.5% among control samples (P=0.04. These data indicate the presence of the HCMV virus in a high percentage of glioma samples demonstrating distinct histopathological grades and support previous reports showing the presence of HCMV infection in glioma tissue. These studies demonstrate that detection of low-levels of latent viral infections may play an active role in glioma development and pathogenesis.

  17. NUMB does not impair growth and differentiation status of experimental gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Euskirchen, Philipp, E-mail: philipp.euskirchen@charite.de [Department of Biomedicine, University of Bergen (Norway); Laboratory for Gene Therapy and Molecular Imaging, Max-Planck-Institute for Neurological Research, Cologne (Germany); Skaftnesmo, Kai-Ove; Huszthy, Peter C.; Brekka, Narve [Department of Biomedicine, University of Bergen (Norway); Bjerkvig, Rolf [Department of Biomedicine, University of Bergen (Norway); NorLux Neuro-Oncology Laboratory, Centre de Public de la Sante, Luxembourg (Luxembourg); Jacobs, Andreas H. [Laboratory for Gene Therapy and Molecular Imaging, Max-Planck-Institute for Neurological Research, Cologne (Germany); European Institute for Molecular Imaging, Muenster (Germany); Miletic, Hrvoje [Department of Biomedicine, University of Bergen (Norway); Department of Pathology, Haukeland University Hospital, Bergen (Norway)

    2011-12-10

    The cell fate determinant NUMB orchestrates asymmetric cell division in flies and mammals and has lately been suggested to have a tumor suppressor function in breast and lung cancer. Here, we studied NUMB in the context of malignant gliomas. We used ectopic expression of NUMB in order to inhibit proliferation and induce differentiation in glioma cells by alteration of Notch, Hedgehog and p53 signaling. We found that NUMB is consistently expressed in glioma biopsies with predominance of NUMB2/4 isoforms as determined by isoform-specific real-time PCR and Western blotting. Upon lentiviral overexpression, in vitro proliferation rate and the grade of differentiation as assessed by morphology and expression of neural and glial markers remained unchanged. Orthotopic xenografts of NUMB-transduced human U87 glioma cells could be established in nude rats without impairing engraftment or causing significant changes in morphology based on magnetic resonance imaging (MRI). The previously reported alteration of Hedgehog and p53 signaling by NUMB could not be recapitulated in glioma cells. We thus show that in experimental gliomas, NUMB overexpression most likely does not exert a tumor suppressor function such as seen in epithelial cancers.

  18. The involvement of heparan sulfate proteoglycans in stem cell differentiation and in malignant glioma

    Science.gov (United States)

    Kundu, Soumi; Xiong, Anqi; Forsberg-Nilsson, Karin

    2016-04-01

    Heparan sulfate (HS) proteoglycans (HSPG) are major components of the extracellular matrix. They interact with a plethora of macromolecules that are of physiological importance. The pattern of sulfation of the HS chain determines the specificity of these interactions. The enzymes that synthesize and degrade HS are thus key regulators of processes ranging from embryonic development to tissue homeostasis and tumor development. Formation of the nervous system is also critically dependent on appropriate HSPGs as shown by several studies on the role of HS in neural induction from embryonic stem cells. High-grade glioma is the most common primary malignant brain tumor among adults, and the prognosis is poor. Neural and glioma stem cells share several traits, including sustained proliferation and highly efficient migration in the brain. There are also similarities between the neurogenic niche where adult neural stem cells reside and the tumorigenic niche, including their interactions with components of the extracellular matrix (ECM). The levels of many of these components, for example HSPGs and enzymes involved in the biosynthesis and modification of HS are attenuated in gliomas. In this paper, HS regulation of pathways involved in neural differentiation and how these may be of importance for brain development are discussed. The literature suggesting that modifications of HS could regulate glioma growth and invasion is reviewed. Targeting the invasiveness of glioma cells by modulating HS may improve upon present therapeutic options, which only marginally enhance the survival of glioma patients.

  19. Glioma cell VEGFR-2 confers resistance to chemotherapeutic and antiangiogenic treatments in PTEN-deficient glioblastoma.

    Science.gov (United States)

    Kessler, Tobias; Sahm, Felix; Blaes, Jonas; Osswald, Matthias; Rübmann, Petra; Milford, David; Urban, Severino; Jestaedt, Leonie; Heiland, Sabine; Bendszus, Martin; Hertenstein, Anne; Pfenning, Philipp-Niclas; Ruiz de Almodóvar, Carmen; Wick, Antje; Winkler, Frank; von Deimling, Andreas; Platten, Michael; Wick, Wolfgang; Weiler, Markus

    2015-10-13

    Loss of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a prerequisite for tumor cell-specific expression of vascular endothelial growth factor receptor (VEGFR)-2 in glioblastoma defining a subgroup prone to develop evasive resistance towards antiangiogenic treatments. Immunohistochemical analysis of human tumor tissues showed VEGFR-2 expression in glioma cells in 19% of specimens examined, mainly in the infiltration zone. Glioma cell VEGFR-2 positivity was restricted to PTEN-deficient tumor specimens. PTEN overexpression reduced VEGFR-2 expression in vitro, as well as knock-down of raptor or rictor. Genetic interference with VEGFR-2 revealed proproliferative, antiinvasive and chemoprotective functions for VEGFR-2 in glioma cells. VEGFR-2-dependent cellular effects were concomitant with activation of 'kappa-light-chain-enhancer' of activated B-cells, protein kinase B, and N-myc downstream regulated gene 1. Two-photon in vivo microscopy revealed that expression of VEGFR-2 in glioma cells hampers antiangiogenesis. Bevacizumab induces a proinvasive response in VEGFR-2-positive glioma cells. Patients with PTEN-negative glioblastomas had a shorter survival after initiation of bevacizumab therapy compared with PTEN-positive glioblastomas. Conclusively, expression of VEGFR-2 in glioma cells indicates an aggressive glioblastoma subgroup developing early resistance to temozolomide or bevacizumab. Loss of PTEN may serve as a biomarker identifying those tumors upfront by routine neuropathological methods.

  20. Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma.

    Science.gov (United States)

    Ceccarelli, Michele; Barthel, Floris P; Malta, Tathiane M; Sabedot, Thais S; Salama, Sofie R; Murray, Bradley A; Morozova, Olena; Newton, Yulia; Radenbaugh, Amie; Pagnotta, Stefano M; Anjum, Samreen; Wang, Jiguang; Manyam, Ganiraju; Zoppoli, Pietro; Ling, Shiyun; Rao, Arjun A; Grifford, Mia; Cherniack, Andrew D; Zhang, Hailei; Poisson, Laila; Carlotti, Carlos Gilberto; Tirapelli, Daniela Pretti da Cunha; Rao, Arvind; Mikkelsen, Tom; Lau, Ching C; Yung, W K Alfred; Rabadan, Raul; Huse, Jason; Brat, Daniel J; Lehman, Norman L; Barnholtz-Sloan, Jill S; Zheng, Siyuan; Hess, Kenneth; Rao, Ganesh; Meyerson, Matthew; Beroukhim, Rameen; Cooper, Lee; Akbani, Rehan; Wrensch, Margaret; Haussler, David; Aldape, Kenneth D; Laird, Peter W; Gutmann, David H; Noushmehr, Houtan; Iavarone, Antonio; Verhaak, Roel G W

    2016-01-28

    Therapy development for adult diffuse glioma is hindered by incomplete knowledge of somatic glioma driving alterations and suboptimal disease classification. We defined the complete set of genes associated with 1,122 diffuse grade II-III-IV gliomas from The Cancer Genome Atlas and used molecular profiles to improve disease classification, identify molecular correlations, and provide insights into the progression from low- to high-grade disease. Whole-genome sequencing data analysis determined that ATRX but not TERT promoter mutations are associated with increased telomere length. Recent advances in glioma classification based on IDH mutation and 1p/19q co-deletion status were recapitulated through analysis of DNA methylation profiles, which identified clinically relevant molecular subsets. A subtype of IDH mutant glioma was associated with DNA demethylation and poor outcome; a group of IDH-wild-type diffuse glioma showed molecular similarity to pilocytic astrocytoma and relatively favorable survival. Understanding of cohesive disease groups may aid improved clinical outcomes. PMID:26824661

  1. NUMB does not impair growth and differentiation status of experimental gliomas

    International Nuclear Information System (INIS)

    The cell fate determinant NUMB orchestrates asymmetric cell division in flies and mammals and has lately been suggested to have a tumor suppressor function in breast and lung cancer. Here, we studied NUMB in the context of malignant gliomas. We used ectopic expression of NUMB in order to inhibit proliferation and induce differentiation in glioma cells by alteration of Notch, Hedgehog and p53 signaling. We found that NUMB is consistently expressed in glioma biopsies with predominance of NUMB2/4 isoforms as determined by isoform-specific real-time PCR and Western blotting. Upon lentiviral overexpression, in vitro proliferation rate and the grade of differentiation as assessed by morphology and expression of neural and glial markers remained unchanged. Orthotopic xenografts of NUMB-transduced human U87 glioma cells could be established in nude rats without impairing engraftment or causing significant changes in morphology based on magnetic resonance imaging (MRI). The previously reported alteration of Hedgehog and p53 signaling by NUMB could not be recapitulated in glioma cells. We thus show that in experimental gliomas, NUMB overexpression most likely does not exert a tumor suppressor function such as seen in epithelial cancers.

  2. Clinical utility of 5-aminolevulinic acid HCl to better visualize and more completely remove gliomas

    Directory of Open Access Journals (Sweden)

    Halani SH

    2016-09-01

    Full Text Available Sameer H Halani,1 D Cory Adamson1,2 1Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; 2Neurosurgery Section, Atlanta VA Medical Center, Decatur, GA, USA Abstract: Surgical resection is typically the first line of treatment for gliomas. However, the neurosurgeon faces a major challenge in achieving maximal resection in high-grade gliomas as these infiltrative tumors make it difficult to discern tumor margins from normal brain with conventional white-light microscopy alone. To aid in resection of these infiltrative tumors, fluorescence-guided surgery has gained much popularity in intraoperative visualization of malignant gliomas, with 5-aminolevulinic acid (5-ALA leading the way. First introduced in an article in Neurosurgery, 5-ALA has since become a safe, effective, and inexpensive method to visualize and improve resection of gliomas. This has undoubtedly led to improvements in the clinical course of patients as demonstrated by the increased overall and progression-free survival in patients with such devastating disease. This literature review aims to discuss the major studies and trials demonstrating the clinical utility of 5-ALA and its ability to aid in complete resection of malignant gliomas. Keywords: aminolevulinic acid, 5-ALA, fluorescence, glioblastoma multiforme, high-grade glioma, resection

  3. Isolation, cultivation and identification of brain glioma stem cells by magnetic bead sorting

    Institute of Scientific and Technical Information of China (English)

    Xiuping Zhou; Chao Zheng; Qiong Shi; Xiang Li; Zhigang Shen; Rutong Yu

    2012-01-01

    This study describes a detailed process for obtaining brain glioma stem cells from freshly dissected human brain glioma samples using an immunomagnetic bead technique combined with serum-free media pressure screening. Furthermore, the proliferation, differentiation and self-renewal biological features of brain glioma stem cells were identified. Results showed that a small number of CD133 positive tumor cells isolated from brain glioma samples survived as a cell suspension in serum-free media and proliferated. Subcultured CD133 positive cells maintained a potent self-renewal and proliferative ability, and expressed the stem cell-specific markers CD133 and nestin. After incubation with fetal bovine serum, the number of glial fibrillary acidic protein and microtubule associated protein 2 positive cells increased significantly, indicating that the cultured brain glioma stem cells can differentiate into astrocytes and neurons. Western blot analysis showed that tumor suppressor phosphatase and tensin homolog was highly expressed in tumor spheres compared with the differentiated tumor cells. These experimental findings indicate that the immunomagnetic beads technique is a useful method to obtain brain glioma stem cells from human brain tumors.

  4. An Epigenetic Mechanism of High Gdnf Transcription in Glioma Cells Revealed by Specific Sequence Methylation.

    Science.gov (United States)

    Zhang, Bao-Le; Liu, Jie; Lei, Yu; Xiong, Ye; Li, Heng; Lin, Xiaoqian; Yao, Rui-Qin; Gao, Dian-Shuai

    2016-09-01

    Glioma cells express high levels of GDNF. When investigating its transcriptional regulation mechanism, we observed increased or decreased methylation of different cis-acting elements in the gdnf promoter II. However, it is difficult to determine the contributions of methylation changes of each cis-acting element to the abnormally high transcription of gdnf gene. To elucidate the contributions of methylation changes of specific cis-acting elements to the regulation of gdnf transcription, we combined gene site-directed mutation, molecular cloning, and dual luciferase assay to develop the "specific sequence methylation followed by plasmid recircularization" method to alter methylation levels of specific cis-acting elements in the gdnf promoter in living cells and assess gene transcriptional activity. This method successfully introduced artificial changes in the methylation of different cis-acting elements in the gdnf promoter II. Moreover, compared with unmethylated gdnf promoter II, both silencer II hypermethylation plus enhancer II unmethylation and hypermethylation of the entire promoter II (containing enhancer II and silencer II) significantly enhanced gdnf transcriptional activity (P  0.05). Enhancer II hypermethylation plus silencer II unmethylation did not significantly affect gene transcription (P > 0.05). Furthermore, we found significantly increased DNA methylation in the silencer II of the gdnf gene in high-grade astroglioma cells with abnormally high gdnf gene expression (P < 0.01). The absence of silencer II significantly increased gdnf promoter II activity in U251 cells (P < 0.01). In conclusion, our specific sequence methylation followed by plasmid recircularization method successfully altered the methylation levels of a specific cis-acting element in a gene promoter in living cells. This method allows in-depth investigation of the impact of methylation changes of different cis-acting elements in the same promoter on gene transcriptional

  5. Establishment and characterization of multicellular spheroids from a human glioma cell line; Implications for tumor therapy

    Directory of Open Access Journals (Sweden)

    Arya MB

    2006-03-01

    Full Text Available Abstract Background Multicellular spheroids, an appropriate in vitro system for simulating 3-D tumor micro-milieu can be used for evaluating and predicting tumor response to therapeutic agents including metabolic inhibitors. However, detailed understanding of the nature, distribution and sensitivity/responses of cellular sub-populations to potential therapeutic agents/strategies is required for using this unique model with optimal precision. Spheroid characteristics may also vary considerably with the origin and type of cell line used, and thorough characterization of viable and dissociated glioma cell spheroids is not yet completely known. In order to evaluate in vivo responses of gliomas to various therapeutic strategies, especially the metabolic inhibitors capable of penetrating the blood brain barrier, we have characterized continuously growing spheroids of a human glioma cell line (BMG-1 with respect to organization, growth, viability, cell survival, cell death, metabolic and mitochondrial status, oxidative stress and radiation response using microscopy, flow cytometry and enzymatic assays. Spheroids were fed daily with fresh medium in order to maintain nutrient supply to outer cellular layers while hypoxia/necrosis developed in the innermost cells of enlarging spheroids. Results Volume of spheroids, fed daily with fresh medium, increased exponentially during 7–28 days of growth through three population doublings. Proportion of G1-phase cells was higher (~60% than exponentially growing monolayer cells (~48%. A significant fraction of S-phase cells turned metabolically inactive (disengaged in DNA synthesis with increasing age of the spheroids, unlike in quiescent monolayer cultures, where the fraction of S-phase cells was less than 5%. With increasing spheroid size, increasing sub-populations of cells became non-viable and entered apoptosis or necrosis revealed by Annexin-V-FITC/PI staining. PI positive (necrotic cells were not confined to

  6. Develop a novel superparamagnetic nano-carrier for drug delivery to brain glioma.

    Science.gov (United States)

    Zhao, Ming; Li, Anmin; Chang, Jin; Fu, Xiangping; Zhang, Zhiwen; Yan, Runmin; Wang, Hanjie; Liang, Shuli

    2013-01-01

    Magnetic drug carrier has been employed in drug delivery for over 30 years. Modern nanotechnology has improved its efficiency dramatically by decreasing its diameter into nano-scale. It may help chemotherapeutic agents penetrate BBB and raise local drug concentration in brain, which is the ideal model for glioma treatment. In our study, magnetic carrier was fabricated with octadecyl quaternized caroxymethyl chitosan (OQCMC), hydrophobic Fe₃O₄ ferrofluid and cholesterol, which showed a uniform diameter of 20 nm under transmission electronic microscopy and superparamagnetic character in vibration sample magnetical measurement system. To investigate the efficacy of drug delivery, paclitaxel was used as loaded drug and analyzed by the HPLC. Results showed that magnetic carrier released drugs for more than 20 d in vitro and maintain the drug concentration above 0.4 μg/g for 16 h in rat brain after magnetic targeting. Drug concentration increased by 1-3 folds when delivered by carrier without magnetic targeting, and by 3-15 folds after magnetic targeting. Cellular study revealed that the magnetic carrier was clearly localized in the targeted cortex neural cells and U251-MG cell lines. These results showed that this magnetic carrier is capable of maintaining high drug concentration in magnetically targeted area and carrying drugs or genes into cells, which is potentially promising for local chemotherapy to brain tumors. PMID:23701032

  7. Role of Autophagy in Capsaicin-Induced Apoptosis in U251 Glioma Cells.

    Science.gov (United States)

    Liu, Ya-Ping; Dong, Fu-Xing; Chai, Xiang; Zhu, Shuang; Zhang, Bao-Le; Gao, Dian-Shuai

    2016-07-01

    In recent years, the role of capsaicin in cancer prevention and treatment has gained people's attention. However, the mechanism of anti-glioma cells by capsaicin has not been elucidated. Here, we discuss the mechanism of capsaicin in U251 cells. Cell viability was detected by MTT and extracellular LDH measurements, while immunofluorescence was performed to measure changes of LC3 in U251 cells. The expressions of LC3II, Puma-α, Beclin1, P62, Procaspase-3, and P53 were observed by immunoblotting. The cell viability decreased and the punctate patterns of LC3 in U251 cells were observed after Capsaicin treatment. Meanwhile, the expressions of Beclin1, P62, and Puma-α increased. After using 3-MA, the expressions of Beclin1 and Procaspase-3 were reduced while those of P53 and Puma-α increased. The expression of LC3II was increased after Pifithrin-α treatment. Therefore, we believed that capsaicin could induce apoptosis in U251 cells, and the inhibition of autophagy could contribute to apoptosis. PMID:26351174

  8. Vision specific quality of life in children with optic pathway gliomas.

    Science.gov (United States)

    Avery, Robert A; Hardy, Kristina K

    2014-01-01

    Children with optic pathway gliomas (OPGs) frequently experience vision loss from their tumors. Most pediatric OPG research has focused on radiographic and visual outcomes, yet the impact of vision loss on quality of life (QOL) in children with OPGs has not been studied. The present study prospectively recruited children ≤ 10 years of age with sporadic or neurofibromatosis type 1 (NF1)-related OPGs. Vision specific QOL was assessed by parent proxy using the Children's Visual Function Questionnaire (CVFQ), and scores were analyzed according to magnitude of visual acuity (VA) loss and presence of visual field (VF) loss. Thirty-six subjects completed the study (53 % female) with median age of 4.6 years. Children with mild, moderate and severe vision loss have lower CVFQ subscale scores, indicating a lower vision specific QOL, compared to those with normal vision. Lower Competence scores were noted in participants with more profound vision loss (p visually impaired eyes were rated as having greater difficulty with social interactions and pleasurable activities (Personality subscale, p = 0.039) compared to those with only one impaired eye. In summary, our findings demonstrate that children with vision loss secondary to their OPG have a decreased vision specific QOL compared to those with normal vision. Measuring vision specific QOL may be considered a meaningful secondary outcome measure for pediatric OPG clinical trials.

  9. Hydrophobic fractal surface from glycerol tripalmitate and the effects on C6 glioma cell growth.

    Science.gov (United States)

    Zhang, Shanshan; Chen, Xuerui; Yu, Jing; Hong, Biyuan; Lei, Qunfang; Fang, Wenjun

    2016-06-01

    To provide a biomimic environment for glial cell culture, glycerol tripalmitate (PPP) has been used as a raw material to prepare fractal surfaces with different degrees of hydrophobicity. The spontaneous formation of the hydrophobic fractal surfaces was monitored by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The surface morphologies were observed by a scanning electron microscope (SEM), and then the fractal dimension (FD) values of the surfaces were determined with the box-counting method. C6 glioma cells were cultured and compared on different hydrophobic PPP surfaces and poly-L-lysine (PLL)-coated surface. The cell numbers as a function of incubation time on different surfaces during the cell proliferation process were measured, and the cell morphologies were observed under a fluorescence microscope. Influences of hydrophobic fractal surfaces on the cell number and morphology were analyzed. The experimental results show that the cell proliferation rates decrease while the cell morphology complexities increase with the growth of the fractal dimensions of the PPP surfaces. PMID:26970826

  10. Association of BCL2-938C>A genetic polymorphism with glioma risk in Chinese Han population.

    Science.gov (United States)

    Li, Wei; Qian, Chunfa; Wang, Linxiong; Teng, Hong; Zhang, Li

    2014-03-01

    Glioma is the most common type of primary brain malignancy in adults. The anti-apoptotic protein B-cell lymphoma 2 (BCL2) has been implicated in the pathogenesis of glioma. This study aimed to evaluate the potential association between BCL2-938C>A genetic polymorphism and glioma susceptibility. This case-control study was conducted in Chinese Han populations consisting of 248 glioma cases and 252 cancer-free controls. The BCL2-938C>A genetic polymorphism was detected by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and verified using DNA sequencing methods. Our data suggested that the genotype/allele of BCL2-938C>A polymorphism were statistically associated with the increased risk of glioma where the risk of glioma for genotype AA or allele A is significantly higher than wild genotype CC (odds ratio (OR) = 2.23, 95% confidence interval (CI) 1.21-4.10, p = 0.009) or allele C (OR = 1.39, 95% CI 1.06-1.82, p = 0.016), respectively. In addition, the BCL2-938AA genotype was significantly more common in patients with glioblastoma and in patients with grade IV glioma. Our findings indicate that the BCL2-938C>A polymorphism is associated with the susceptibility to glioma in Chinese Han populations and might be used as molecular markers for evaluating glioma risk.

  11. WEE1 Inhibitor MK-1775 and Local Radiation Therapy in Treating Younger Patients With Newly Diagnosed Diffuse Intrinsic Pontine Gliomas

    Science.gov (United States)

    2016-07-20

    Untreated Childhood Anaplastic Astrocytoma; Untreated Childhood Anaplastic Oligodendroglioma; Untreated Childhood Brain Stem Glioma; Untreated Childhood Giant Cell Glioblastoma; Untreated Childhood Glioblastoma; Untreated Childhood Gliosarcoma

  12. Downregulation of uPAR and cathepsin B induces apoptosis via regulation of Bcl-2 and Bax and inhibition of the PI3K/Akt pathway in gliomas.

    Directory of Open Access Journals (Sweden)

    Ramarao Malla

    Full Text Available BACKGROUND: Glioma is the most commonly diagnosed primary brain tumor and is characterized by invasive and infiltrative behavior. uPAR and cathepsin B are known to be overexpressed in high-grade gliomas and are strongly correlated with invasive cancer phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we observed that simultaneous downregulation of uPAR and cathepsin B induces upregulation of some pro-apoptotic genes and suppression of anti-apoptotic genes in human glioma cells. uPAR and cathepsin B (pCU-downregulated cells exhibited decreases in the Bcl-2/Bax ratio and initiated the collapse of mitochondrial membrane potential. We also observed that the broad caspase inhibitor, Z-Asp-2, 6-dichlorobenzoylmethylketone rescued pCU-induced apoptosis in U251 cells but not in 5310 cells. Immunoblot analysis of caspase-9 immunoprecipitates for Apaf-1 showed that uPAR and cathepsin B knockdown activated apoptosome complex formation in U251 cells. Downregulation of uPAR and cathepsin B also retarded nuclear translocation and interfered with DNA binding activity of CREB in both U251 and 5310 cells. Further western blotting analysis demonstrated that downregulation of uPAR and cathepsin B significantly decreased expression of the signaling molecules p-PDGFR-β, p-PI3K and p-Akt. An increase in the number of TUNEL-positive cells, increased Bax expression, and decreased Bcl-2 expression in nude mice brain tumor sections and brain tissue lysates confirm our in vitro results. CONCLUSIONS/SIGNIFICANCE: In conclusion, RNAi-mediated downregulation of uPAR and cathepsin B initiates caspase-dependent mitochondrial apoptosis in U251 cells and caspase-independent mitochondrial apoptosis in 5310 cells. Thus, targeting uPAR and cathepsin B-mediated signaling using siRNA may serve as a novel therapeutic strategy for the treatment of gliomas.

  13. MicroRNA profiling in the malignant progression of gliomas

    Science.gov (United States)

    Stupak, E. V.; Veryaskina, Yu. A.; Titov, S. E.; Achmerova, L. G.; Stupak, V. V.; Ivanov, M. K.; Zhimulev, I. F.; Kolesnikov, N. N.

    2016-08-01

    Wealth of data indicates that microRNAs (miRNAs) are directly involved in carcinogenesis and that miRNA can, on their own, act as diagnostic and prognostic markers for various types of cancers, including gliomas. The aim of this study was to conduct a comparative analysis of expression profile for 10 microRNAs (miR-124, -125b, -16, -181b, -191, -21, -221, -223, -31, and -451) in surgical specimens of various hystotypes of glioimatissues vs adjacent normal tissues from the same patient (n = 77). The study identified specific microRNA expression profiles for different histotypes of tumors that are related to their degree of malignancy. We have outlined approaches to development of miRNA-based diagnostic and prognostic panel, which may be used to compensate for the lack of appropriate screening methods.

  14. Diagnosis of glioma by multivoxel 1H-MRSI

    Institute of Scientific and Technical Information of China (English)

    QUAN Hong; LIU Yue; BAO Shanglian; LI Shaowu; XIE Yaoqin; MIAO Binghe; WANG Huiliang

    2004-01-01

    Glioma is one of the most malignant tumors due to its special construction of the glia cells and its character of infiltration. The usual procedure of the treatment is the surgical resection followed by radiotherapy with or without chemotherapy. This combined treatment needs the precise information on the extent of the tumor's infiltration and tumor grading, and then the determination can be made as to when, where and what kind of treatment should be used. Functional imaging modalities display advantages in defining the heterogeneous characters and histological grade. This paper describes how the ratios of Cho/NAA and Lac/NAA measured by magnetic resonance spectroscopy imaging (MRSI) could be used to define the cancer cell distribution in tissues, tumor burden and malignancy, and the results are proved to be consistent with the histological observation.

  15. The ubiquitin-proteasome system in glioma cell cycle control

    Directory of Open Access Journals (Sweden)

    Vlachostergios Panagiotis J

    2012-07-01

    Full Text Available Abstract A major determinant of cell fate is regulation of cell cycle. Tight regulation of this process is lost during the course of development and progression of various tumors. The ubiquitin-proteasome system (UPS constitutes a universal protein degradation pathway, essential for the consistent recycling of a plethora of proteins with distinct structural and functional roles within the cell, including cell cycle regulation. High grade tumors, such as glioblastomas have an inherent potential of escaping cell cycle control mechanisms and are often refractory to conventional treatment. Here, we review the association of UPS with several UPS-targeted proteins and pathways involved in regulation of the cell cycle in malignant gliomas, and discuss the potential role of UPS inhibitors in reinstitution of cell cycle control.

  16. Sensitivity of MRI tumor biomarkers to VEGFR inhibitor therapy in an orthotopic mouse glioma model.

    Directory of Open Access Journals (Sweden)

    Christian T Farrar

    Full Text Available MRI biomarkers of tumor edema, vascular permeability, blood volume, and average vessel caliber are increasingly being employed to assess the efficacy of tumor therapies. However, the dependence of these biomarkers on a number of physiological factors can compromise their sensitivity and complicate the assessment of therapeutic efficacy. Here we examine the response of these MRI tumor biomarkers to cediranib, a potent vascular endothelial growth factor receptor (VEGFR inhibitor, in an orthotopic mouse glioma model. A significant increase in the tumor volume and relative vessel caliber index (rVCI and a slight decrease in the water apparent diffusion coefficient (ADC were observed for both control and cediranib treated animals. This contrasts with a clinical study that observed a significant decrease in tumor rVCI, ADC and volume with cediranib therapy. While the lack of a difference between control and cediranib treated animals in these biomarker responses might suggest that cediranib has no therapeutic benefit, cediranib treated mice had a significantly increased survival. The increased survival benefit of cediranib treated animals is consistent with the significant decrease observed for cediranib treated animals in the relative cerebral blood volume (rCBV, relative microvascular blood volume (rMBV, transverse relaxation time (T2, blood vessel permeability (K(trans, and extravascular-extracellular space (ν(e. The differential response of pre-clinical and clinical tumors to cediranib therapy, along with the lack of a positive response for some biomarkers, indicates the importance of evaluating the whole spectrum of different tumor biomarkers to properly assess the therapeutic response and identify and interpret the therapy-induced changes in the tumor physiology.

  17. Metabolic reprogramming in mutant IDH1 glioma cells.

    Directory of Open Access Journals (Sweden)

    Jose L Izquierdo-Garcia

    Full Text Available Mutations in isocitrate dehydrogenase (IDH 1 have been reported in over 70% of low-grade gliomas and secondary glioblastomas. IDH1 is the enzyme that catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate while mutant IDH1 catalyzes the conversion of α-ketoglutarate into 2-hydroxyglutarate. These mutations are associated with the accumulation of 2-hydroxyglutarate within the tumor and are believed to be one of the earliest events in the development of low-grade gliomas. The goal of this work was to determine whether the IDH1 mutation leads to additional magnetic resonance spectroscopy (MRS-detectable changes in the cellular metabolome.Two genetically engineered cell models were investigated, a U87-based model and an E6/E7/hTERT immortalized normal human astrocyte (NHA-based model. For both models, wild-type IDH1 cells were generated by transduction with a lentiviral vector coding for the wild-type IDH1 gene while mutant IDH1 cells were generated by transduction with a lentiviral vector coding for the R132H IDH1 mutant gene. Metabolites were extracted from the cells using the dual-phase extraction method and analyzed by 1H-MRS. Principal Component Analysis was used to analyze the MRS data.Principal Component Analysis clearly discriminated between wild-type and mutant IDH1 cells. Analysis of the loading plots revealed significant metabolic changes associated with the IDH1 mutation. Specifically, a significant drop in the concentration of glutamate, lactate and phosphocholine as well as the expected elevation in 2-hydroxyglutarate were observed in mutant IDH1 cells when compared to their wild-type counterparts.The IDH1 mutation leads to several, potentially translatable MRS-detectable metabolic changes beyond the production of 2-hydroxyglutarate.

  18. Intra-arterial bromodeoxyuridine radiosensitization of malignant gliomas

    International Nuclear Information System (INIS)

    In the 1950's it was first observed that mammalian cells exposed to the halogenated deoxyuridines were more sensitive to ultraviolet light and radiation than untreated cells. This prompted early clinical trials with bromodeoxyuridine (BUdR) which showed mixed results. More recently, several Phase I studies, while establishing the feasibility of continuous intravenous (IV) infusion of BUdR, have reported significant dose limiting skin and bone marrow toxicities and have questioned the optimal method of BUdR delivery. To exploit the high mitotic activity of malignant gliomas relative to surrounding normal brain tissue, we have developed a permanently implantable infusion pump system for safe, continuous intraarterial (IA) internal carotid BUdR delivery. Since July 1985, 23 patients with malignant brain tumors (18 grade 4, 5 grade 3) have been treated in a Phase I clinical trial using IA BUdR (400-600 mg/m2/day X 8 1/2 weeks) and focal external beam radiotherapy (59.4 Gy at 1.8 Gy/day in 6 1/2 weeks). Following initial biopsy/surgery the infusion pump system was implanted; BUdR infusion began 2 weeks prior to and continued throughout the 6 1/2 week course of radiotherapy. There have been no vascular complications. Side-effects in all patients have included varying degrees of anorexia, fatigue, ipsilateral forehead dermatitis, blepharitis, and conjunctivitis. Myelosuppression requiring dose reduction occurred in one patient. An overall Kaplan-Meier estimated median survival of 20 months has been achieved. As in larger controlled series, histologic grade and age are prognostically significant. We have shown in a Phase I study that IA BUdR radiosensitization is safe, tolerable, may lead to improved survival, and appears to be an efficacious primary treatment of malignant gliomas

  19. Structural studies of human glioma pathogenesis-related protein 1

    International Nuclear Information System (INIS)

    Structural analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1, a membrane protein implicated in the proliferation of aggressive brain cancer, is presented. Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structures of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn2+ complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn2+ similarly to snake-venom CRISPs, which are involved in Zn2+-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1

  20. Structural studies of human glioma pathogenesis-related protein 1

    Energy Technology Data Exchange (ETDEWEB)

    Asojo, Oluwatoyin A., E-mail: oasojo@unmc.edu [College of Medicine, Nebraska Medical Center, Omaha, NE 68198-6495 (United States); Koski, Raymond A.; Bonafé, Nathalie [L2 Diagnostics LLC, 300 George Street, New Haven, CT 06511 (United States); College of Medicine, Nebraska Medical Center, Omaha, NE 68198-6495 (United States)

    2011-10-01

    Structural analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1, a membrane protein implicated in the proliferation of aggressive brain cancer, is presented. Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structures of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn{sup 2+} complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn{sup 2+} similarly to snake-venom CRISPs, which are involved in Zn{sup 2+}-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1.

  1. Imaging of a glioma using peripheral benzodiazepine receptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Starosta-Rubinstein, S.; Ciliax, B.J.; Penney, J.B.; McKeever, P.; Young, A.B.

    1987-02-01

    Two types of benzodiazepine receptors have been demonstrated in mammalian tissues, one which is localized on neuronal elements in brain and the other, on glial cells and in peripheral tissues such as kidney. In vivo administration of /sup 3/H-labeled PK 11195 (1-(2-chlorophenyl-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide) or (/sup 3/H)flunitrazepam with 5 mg of clonazepam per kg to rats with intracranial C6 gliomas resulted in high levels of tritiated-drug binding to the tumor as shown by quantitative autoradiography. Pharmacological studies indicated that the bound drugs labeled the peripheral benzodiazepine binding site. Binding to the peripheral benzodiazepine site was confirmed primarily to malignant cells with little binding to adjacent normal brain tissue or to necrotic tissue. Tumor cell binding was completely inhibited by preadministration of the peripheral benzodiazepine blocking agent PK 11195 at 5 mg/kg. The centrally selective benzodiazepine ligand clonazepam had no effect on PK 11195 binding to the tumor cells. When binding to other tumor cell lines grown in nude mice and nude athymic rats was evaluated, little or no peripheral benzodiazepine binding was detected on human pheochromocytoma (RN1) and neuroblastoma (SK-N-MC, SK-N-SH) tumor cells, respectively. However, high densities of peripheral benzodiazepine binding sites were observed on tumors derived from a human glioma cell line (ATCC HTB 14, U-87 MG). The presence of high concentrations of specific peripheral benzodiazepine receptors on glial tumors suggests that human primary central nervous system tumors could be imaged and diagnosed using peripheral benzodiazepine ligands labeled with positron- or gamma-emitting isotopes.

  2. Imaging of a glioma using peripheral benzodiazepine receptor ligands

    International Nuclear Information System (INIS)

    Two types of benzodiazepine receptors have been demonstrated in mammalian tissues, one which is localized on neuronal elements in brain and the other, on glial cells and in peripheral tissues such as kidney. In vivo administration of 3H-labeled PK 11195 [1-(2-chlorophenyl-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide] or [3H]flunitrazepam with 5 mg of clonazepam per kg to rats with intracranial C6 gliomas resulted in high levels of tritiated-drug binding to the tumor as shown by quantitative autoradiography. Pharmacological studies indicated that the bound drugs labeled the peripheral benzodiazepine binding site. Binding to the peripheral benzodiazepine site was confirmed primarily to malignant cells with little binding to adjacent normal brain tissue or to necrotic tissue. Tumor cell binding was completely inhibited by preadministration of the peripheral benzodiazepine blocking agent PK 11195 at 5 mg/kg. The centrally selective benzodiazepine ligand clonazepam had no effect on PK 11195 binding to the tumor cells. When binding to other tumor cell lines grown in nude mice and nude athymic rats was evaluated, little or no peripheral benzodiazepine binding was detected on human pheochromocytoma (RN1) and neuroblastoma (SK-N-MC, SK-N-SH) tumor cells, respectively. However, high densities of peripheral benzodiazepine binding sites were observed on tumors derived from a human glioma cell line (ATCC HTB 14, U-87 MG). The presence of high concentrations of specific peripheral benzodiazepine receptors on glial tumors suggests that human primary central nervous system tumors could be imaged and diagnosed using peripheral benzodiazepine ligands labeled with positron- or gamma-emitting isotopes

  3. Efficacy of radiotherapy for malignant gliomas in elderly patients

    International Nuclear Information System (INIS)

    Purpose: Age above 65 years is a strong negative prognostic factor for survival in patients with malignant gliomas (MG) treated with radiotherapy (RT) and its value has been questioned. We analyzed the effect of RT on the survival of elderly patients with malignant gliomas. Methods and Materials: We examined 85 consecutive elderly patients with a histological diagnosis of MG. Age ranged from 65 to 81 years (median 70 years). Glioblastoma multiforme (GBM) was diagnosed in 64 patients (75.3%). Surgical treatment included needle biopsy in 32 patients (37.6%). Median postoperative Karnofsky Performance Status (KPS) was 60 (range: 30-100). Survival probability was estimated using Kaplan-Meier method and compared with the log-rank test. Crude and adjusted hazard ratios (HR) were calculated using Cox's regression models. Results: Median survival time for all patients was 18.1 weeks. In multivariate analysis, RT was the only independent prognostic variable for survival (HR: 9.1 [95% CI: 4.5-18.7]). Forty-two patients did not start RT mostly due to low KPS (<50). The median survival of the 43 patients who started RT was 45 weeks. In these patients, Cox multivariate analysis indicated that age was independently associated with prolonged survival (HR: 2.85 [95% CI 1.31-6.19]). Median survival of patients age 70 years and younger was 55 weeks compared with 34 weeks for patients older than 70 years. Conclusions: The overall survival for elderly patients with MG is poor. RT seems to improve survival in patients up to 70 years, but in older patients treated with RT the survival is significantly shorter

  4. Promoter hypomethylation regulates CD133 expression in human gliomas

    Institute of Scientific and Technical Information of China (English)

    Kouichi Tabu; Ken Sasai; Taichi Kimura; Lei Wang; Eiko Aoyanagi; Shinji Kohsaka; Mishie Tanino; Hiroshi Nishihara; Shinya Tanaka

    2008-01-01

    Brain tumor-initiating cells (BTICs) have been enriched using antibodies against the cell surface protein CD133;however,the biological relevance and the regulatory mechanism of CD133 expression in human gliomas are not yet understood.In this study,we initially demonstrated that CD133 was overexpressed in high-grade human glioblastomas where CD133-positive cells were focally observed as a micro-cluster.In addition,CD133 transcripts with exon 1A,1B,or 1C were predominantly expressed in glioblastomas.To elucidate the mechanism regulating this aberrant expression of CD133,three proximal promoters (P1,P2,and P3) containing a CpG island were isolated.In U251MG and T98Gglioblastoma cells,the P1 region flanking exon 1A exhibited the highest activity among the three promoters,and this activity was significantly inactivated by in vitro methylation.After treatment with the demethylating agent 5-azacytidine and/or the histone deacetylase inhibitor valproic acid,the expression level of CD133 mRNA was significantly restored in glioma cells.Importantly,hypomethylation of CpG sites within the P1,P2,and P3 regions was observed by bisulfite sequencing in human glioblastoma tissues with abundant CD133 mRNA.Taken together,our results indicate that DNA hypomethylation is an important determinant of CD133 expression in glioblastomas,and this epigenetic event may be associated with the development of BTICs expressing CD133.

  5. Longer genotypically-estimated leukocyte telomere length is associated with increased adult glioma risk.

    Science.gov (United States)

    Walsh, Kyle M; Codd, Veryan; Rice, Terri; Nelson, Christopher P; Smirnov, Ivan V; McCoy, Lucie S; Hansen, Helen M; Elhauge, Edward; Ojha, Juhi; Francis, Stephen S; Madsen, Nils R; Bracci, Paige M; Pico, Alexander R; Molinaro, Annette M; Tihan, Tarik; Berger, Mitchel S; Chang, Susan M; Prados, Michael D; Jenkins, Robert B; Wiemels, Joseph L; Samani, Nilesh J; Wiencke, John K; Wrensch, Margaret R

    2015-12-15

    Telomere maintenance has emerged as an important molecular feature with impacts on adult glioma susceptibility and prognosis. Whether longer or shorter leukocyte telomere length (LTL) is associated with glioma risk remains elusive and is often confounded by the effects of age and patient treatment. We sought to determine if genotypically-estimated LTL is associated with glioma risk and if inherited single nucleotide polymorphisms (SNPs) that are associated with LTL are glioma risk factors. Using a Mendelian randomization approach, we assessed differences in genotypically-estimated relative LTL in two independent glioma case-control datasets from the UCSF Adult Glioma Study (652 patients and 3735 controls) and The Cancer Genome Atlas (478 non-overlapping patients and 2559 controls). LTL estimates were based on a weighted linear combination of subject genotype at eight SNPs, previously associated with LTL in the ENGAGE Consortium Telomere Project. Mean estimated LTL was 31bp (5.7%) longer in glioma patients than controls in discovery analyses (P = 7.82x10-8) and 27bp (5.0%) longer in glioma patients than controls in replication analyses (1.48x10-3). Glioma risk increased monotonically with each increasing septile of LTL (O.R.=1.12; P = 3.83x10-12). Four LTL-associated SNPs were significantly associated with glioma risk in pooled analyses, including those in the telomerase component genes TERC (O.R.=1.14; 95% C.I.=1.03-1.28) and TERT (O.R.=1.39; 95% C.I.=1.27-1.52), and those in the CST complex genes OBFC1 (O.R.=1.18; 95% C.I.=1.05-1.33) and CTC1 (O.R.=1.14; 95% C.I.=1.02-1.28). Future work is needed to characterize the role of the CST complex in gliomagenesis and further elucidate the complex balance between ageing, telomere length, and molecular carcinogenesis.

  6. Clinical Outcomes and Late Endocrine, Neurocognitive, and Visual Profiles of Proton Radiation for Pediatric Low-Grade Gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Greenberger, Benjamin A. [Harvard Medical School, Boston, Massachusetts (United States); Pulsifer, Margaret B. [Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts (United States); Ebb, David H. [Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts (United States); MacDonald, Shannon M. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Jones, Robin M. [Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts (United States); Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts (United States); Butler, William E. [Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts (United States); Huang, Mary S. [Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts (United States); Marcus, Karen J. [Department of Radiation Oncology, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Oberg, Jennifer A. [Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York (United States); Tarbell, Nancy J. [Harvard Medical School, Boston, Massachusetts (United States); Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Yock, Torunn I., E-mail: tyock@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2014-08-01

    Purpose/Objective(s): Primary low-grade gliomas are common brain tumors of childhood, many of which require radiation therapy (RT) as definitive treatment. Increased conformality of RT could decrease the incidence and severity of late effects. We report our experience with 32 pediatric patients treated with proton RT. Methods and Materials: Thirty-two pediatric patients with low-grade gliomas of the brain or spinal cord were treated with proton RT from 1995 to 2007. Sixteen patients received at least 1 regimen of chemotherapy before definitive RT. The median radiation dose was 52.2 Gy{sub RBE} (48.6-54 Gy{sub RBE}). Results: The median age at treatment was 11.0 years (range, 2.7-21.5 years), with a median follow-up time of 7.6 years (range, 3.2-18.2 years). The 6-year and 8-year rates of progression-free survival were 89.7% and 82.8%, respectively, with an 8-year overall survival of 100%. For the subset of patients who received serial neurocognitive testing, there were no significant declines in Full-Scale Intelligence Quotient (P=.80), with a median neurocognitive testing interval of 4.5 years (range, 1.2-8.1 years) from baseline to follow-up, but subgroup analysis indicated some significant decline in neurocognitive outcomes for young children (<7 years) and those with significant dose to the left temporal lobe/hippocampus. The incidence of endocrinopathy correlated with a mean dose of ≥40 Gy{sub RBE} to the hypothalamus, pituitary, or optic chiasm. Stabilization or improvement of visual acuity was achieved in 83.3% of patients at risk for radiation-induced injury to the optic pathways. Conclusions: This report of late effects in children with low-grade gliomas after proton RT is encouraging. Proton RT appears to be associated with good clinical outcome, especially when the tumor location allows for increased sparing of the left temporal lobe, hippocampus, and hypothalamic-pituitary axis.

  7. Clinical Outcomes and Late Endocrine, Neurocognitive, and Visual Profiles of Proton Radiation for Pediatric Low-Grade Gliomas

    International Nuclear Information System (INIS)

    Purpose/Objective(s): Primary low-grade gliomas are common brain tumors of childhood, many of which require radiation therapy (RT) as definitive treatment. Increased conformality of RT could decrease the incidence and severity of late effects. We report our experience with 32 pediatric patients treated with proton RT. Methods and Materials: Thirty-two pediatric patients with low-grade gliomas of the brain or spinal cord were treated with proton RT from 1995 to 2007. Sixteen patients received at least 1 regimen of chemotherapy before definitive RT. The median radiation dose was 52.2 GyRBE (48.6-54 GyRBE). Results: The median age at treatment was 11.0 years (range, 2.7-21.5 years), with a median follow-up time of 7.6 years (range, 3.2-18.2 years). The 6-year and 8-year rates of progression-free survival were 89.7% and 82.8%, respectively, with an 8-year overall survival of 100%. For the subset of patients who received serial neurocognitive testing, there were no significant declines in Full-Scale Intelligence Quotient (P=.80), with a median neurocognitive testing interval of 4.5 years (range, 1.2-8.1 years) from baseline to follow-up, but subgroup analysis indicated some significant decline in neurocognitive outcomes for young children (<7 years) and those with significant dose to the left temporal lobe/hippocampus. The incidence of endocrinopathy correlated with a mean dose of ≥40 GyRBE to the hypothalamus, pituitary, or optic chiasm. Stabilization or improvement of visual acuity was achieved in 83.3% of patients at risk for radiation-induced injury to the optic pathways. Conclusions: This report of late effects in children with low-grade gliomas after proton RT is encouraging. Proton RT appears to be associated with good clinical outcome, especially when the tumor location allows for increased sparing of the left temporal lobe, hippocampus, and hypothalamic-pituitary axis

  8. E2F1蛋白在胶质瘤中的表达及其对胶质瘤细胞生长的影响%Expression of E2F1 protein in glioma and its effect on growth of human glioma cell

    Institute of Scientific and Technical Information of China (English)

    王炜; 尤永平

    2014-01-01

    目的:探讨E2 F1蛋白在胶质瘤中的表达及其对胶质瘤细胞生长的影响。方法用实时荧光定量PCR法检测E2F1mRNA在各级别胶质瘤组织中的表达水平。应用RNA干扰技术降低E2F1表达后,采用Western印迹法验证E2F1蛋白的变化。采用四甲基偶氮唑盐( MTT)微量酶反应比色法和糖检测分析试剂盒检测干扰E2 F1表达后胶质瘤细胞的增殖和糖代谢的变化。结果胶质瘤组织中E2 F1的表达高于正常脑组织,其表达随着级别的增高而升高;抑制E2F1的表达后,U87细胞生长受抑制,细胞的葡萄糖消耗量明显降低。结论 E2 F1在胶质瘤中的表达随着肿瘤恶性程度的增高而升高;抑制E2 F1表达可以明显抑制胶质瘤细胞增殖及代谢能力。%Objective To study the expression of E 2 F1 protein in human glioma tissues and its effect on tumor growth .Methods E2F1 expression in glioma tissues was determined by real-time quantification RT-PCR.Subsequently, MTT assay, western blotting and Glucose Assay were used to assay U87 cells with reduced E2F1 expression.Results This data of the study showed that the expression of E2F1 in glioma was increased and strongly correlated with its pathological grade . Abrogating expression of E2F1 could suppress glioma cells growth , decrease the glucose consumption.Conclusions The expression levels of E2F1 mRNA in human glioma is high. Abrogating expression of E 2F1 could inhibit the growth and metabolism in U 87 cells.

  9. Susceptibility-Weighted Imaging of Glioma: Update on Current Imaging Status and Future Directions.

    Science.gov (United States)

    Hsu, Charlie Chia-Tsong; Watkins, Trevor William; Kwan, Gigi Nga Chi; Haacke, E Mark

    2016-07-01

    Susceptibility-weighted imaging (SWI) provides invaluable insight into glioma pathophysiology and internal tumoral architecture. The physical contribution of intratumoral susceptibility signal (ITSS) may correspond to intralesional hemorrhage, calcification, or tumoral neovascularity. In this review, we present emerging evidence of ITSS for assessment of intratumoral calcification, grading of glioma, and factors influencing the pattern of ITSS in glioblastoma. SWI phase imaging assists in identification of intratumoral calcification that aids in narrowing the differential diagnosis. Development of intratumoral calcification posttreatment of glioma serves as an imaging marker of positive therapy response. Grading of tumors with ITSS using information attributed to microhemorrhage and neovascularity in SWI correlates with MR perfusion parameters and histologic grading of glioma and enriches preoperative prognosis. Quantitative susceptibility mapping may provide a means to discriminate subtle calcifications and hemorrhage in tumor imaging. Recent data suggest ITSS patterns in glioblastoma vary depending on tumoral volume and sublocation and correlate with degree of intratumoral necrosis and neovascularity. Increasingly, there is a recognized role of obtaining contrast-enhanced SWI (CE-SWI) for assessment of tumoral margin in high-grade glioma. Significant higher concentration of gadolinium accumulates at the border of the tumoral invasion zone as seen on the SWI sequence; this results from contrast-induced phase shift that clearly delineates the tumor margin. Lastly, absence of ITSS may aid in differentiation between high-grade glioma and primary CNS lymphoma, which typically shows absence of ITSS. We conclude that SWI and CE-SWI are indispensable tools for diagnosis, preoperative grading, posttherapy surveillance, and assessment of glioma. PMID:27227542

  10. The combination of novel targeted molecular agents and radiation in the treatment of pediatric gliomas

    Directory of Open Access Journals (Sweden)

    Tina eDasgupta

    2013-05-01

    Full Text Available Brain tumors are the most common solid pediatric malignancy. For high-grade, recurrent or refractory pediatric brain tumors, radiation therapy (XRT is an integral treatment modality. In the era of personalized cancer therapy, molecularly targeted agents have been designed to inhibit pathways critical to tumorigenesis. Our evolving knowledge of genetic aberrations in low-grade gliomas is being exploited with targeted inhibitors. These agents are also being combined with XRT to increase their efficacy. In this review, we discuss novel agents targeting three different pathways in low-grade gliomas, and their potential combination with XRT. B-Raf is a kinase in the Ras/Raf/MAPK kinase pathway, which is integral to cellular division, survival and metabolism. In low-grade pediatric gliomas, point mutations in BRAF (BRAF V600E or a BRAF fusion mutation (KIAA1549:BRAF causes overactivation of the MEK/MAPK pathway. Pre-clinical data shows cooperation between XRT and tagrgeted inhibitors of BRAF V600E, and MEK and mTOR inhibitors in the gliomas with the BRAF fusion. A second important signaling cascade in pediatric glioma pathogenesis is the PI3 kinase (PI3K/mTOR pathway. Dual PI3K/mTOR inhibitors are poised to enter studies of pediatric tumors. Finally, many brain tumors express potent stimulators of angiogenesis. Several inhibitors of immunomodulators are currently being evaluated in in clinical trials for the treatment of recurrent or refractory pediatric central nervous system (CNS tumors. In summary, combinations of these targeted inhibitors with radiation are currently under investigation in both translational bench research and early clinical trials. We summarize the molecular rationale for, and the pre-clinical data supporting the combinations of these targeted agents with other anti-cancer agents and XRT in pediatric gliomas. Parallels are drawn to adult gliomas, and the molecular mechanisms underlying the efficacy of these agents is discussed

  11. Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas

    Science.gov (United States)

    Jennewein, Lukas; Ronellenfitsch, Michael W.; Antonietti, Patrick; Ilina, Elena I.; Jung, Jennifer; Stadel, Daniela; Flohr, Lisa-Marie; Zinke, Jenny; von Renesse, Janusz; Drott, Ulrich; Baumgarten, Peter; Braczynski, Anne K.; Penski, Cornelia; Burger, Michael C.; Theurillat, Jean-Philippe; Steinbach, Joachim P.; Plate, Karl-Heinz; Dikic, Ivan; Fulda, Simone; Brandts, Christian; Kögel, Donat; Behrends, Christian; Harter, Patrick N.; Mittelbronn, Michel

    2016-01-01

    Recently, the conserved intracellular digestion mechanism ‘autophagy’ has been considered to be involved in early tumorigenesis and its blockade proposed as an alternative treatment approach. However, there is an ongoing debate about whether blocking autophagy has positive or negative effects in tumor cells. Since there is only poor data about the clinico-pathological relevance of autophagy in gliomas in vivo, we first established a cell culture based platform for the in vivo detection of the autophago-lysosomal components. We then investigated key autophagosomal (LC3B, p62, BAG3, Beclin1) and lysosomal (CTSB, LAMP2) molecules in 350 gliomas using immunohistochemistry, immunofluorescence, immunoblotting and qPCR. Autophagy was induced pharmacologically or by altering oxygen and nutrient levels. Our results show that autophagy is enhanced in astrocytomas as compared to normal CNS tissue, but largely independent from the WHO grade and patient survival. A strong upregulation of LC3B, p62, LAMP2 and CTSB was detected in perinecrotic areas in glioblastomas suggesting micro-environmental changes as a driver of autophagy induction in gliomas. Furthermore, glucose restriction induced autophagy in a concentration-dependent manner while hypoxia or amino acid starvation had considerably lesser effects. Apoptosis and autophagy were separately induced in glioma cells both in vitro and in vivo. In conclusion, our findings indicate that autophagy in gliomas is rather driven by micro-environmental changes than by primary glioma-intrinsic features thus challenging the concept of exploitation of the autophago-lysosomal network (ALN) as a treatment approach in gliomas. PMID:26956048

  12. Retrospective analysis of 104 histologically proven adult brainstem gliomas: clinical symptoms, therapeutic approaches and prognostic factors

    International Nuclear Information System (INIS)

    Adult brainstem gliomas are rare primary brain tumors (<2% of gliomas). The goal of this study was to analyze clinical, prognostic and therapeutic factors in a large series of histologically proven brainstem gliomas. Between 1997 and 2007, 104 patients with a histologically proven brainstem glioma were retrospectively analyzed. Data about clinical course of disease, neuropathological findings and therapeutic approaches were analyzed. The median age at diagnosis was 41 years (range 18-89 years), median KPS before any operative procedure was 80 (range 20-100) and median survival for the whole cohort was 18.8 months. Histopathological examinations revealed 16 grade I, 31 grade II, 42 grade III and 14 grade IV gliomas. Grading was not possible in 1 patient. Therapeutic concepts differed according to the histopathology of the disease. Median overall survival for grade II tumors was 26.4 months, for grade III tumors 12.9 months and for grade IV tumors 9.8 months. On multivariate analysis the relative risk to die increased with a KPS ≤ 70 by factor 6.7, with grade III/IV gliomas by the factor 1.8 and for age ≥ 40 by the factor 1.7. External beam radiation reduced the risk to die by factor 0.4. Adult brainstem gliomas present with a wide variety of neurological symptoms and postoperative radiation remains the cornerston