WorldWideScience

Sample records for a2 receptor expression

  1. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    Science.gov (United States)

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  2. Expression of phospholipase A2 receptor in primary cultured podocytes derived from dog kidneys.

    Science.gov (United States)

    Sugahara, Go; Kamiie, Junichi; Kobayashi, Ryosuke; Mineshige, Takayuki; Shirota, Kinji

    2016-06-01

    Phospholipase A2 receptor (PLA2R) expressed in human podocytes has been highlighted as a causative autoantigen of human idiopathic membranous nephropathy. However, its expression was found to be minimal or absent in murine and rat podocytes. In this study, immunofluorescence revealed the expression of PLA2R in the glomerular podocytes in the kidney tissue sections of dogs. We then attempted to culture canine podocytes and investigate the expression of PLA2R in these cells. Glomeruli were isolated from dog kidneys and cultured to obtain podocytes using nylon mesh-based isolation method as followed for isolating rat podocytes. The cultured cells expressed PLA2R mRNA and protein in addition to other podocyte markers (synaptopodin, podocin and nephrin). These results indicate that the canine podocytes express PLA2R.

  3. Large-scale functional expression of WT and truncated human adenosine A2A receptor in Pichia pastoris bioreactor cultures

    Directory of Open Access Journals (Sweden)

    Strange Philip G

    2008-10-01

    Full Text Available Abstract Background The large-scale production of G-protein coupled receptors (GPCRs for functional and structural studies remains a challenge. Recent successes have been made in the expression of a range of GPCRs using Pichia pastoris as an expression host. P. pastoris has a number of advantages over other expression systems including ability to post-translationally modify expressed proteins, relative low cost for production and ability to grow to very high cell densities. Several previous studies have described the expression of GPCRs in P. pastoris using shaker flasks, which allow culturing of small volumes (500 ml with moderate cell densities (OD600 ~15. The use of bioreactors, which allow straightforward culturing of large volumes, together with optimal control of growth parameters including pH and dissolved oxygen to maximise cell densities and expression of the target receptors, are an attractive alternative. The aim of this study was to compare the levels of expression of the human Adenosine 2A receptor (A2AR in P. pastoris under control of a methanol-inducible promoter in both flask and bioreactor cultures. Results Bioreactor cultures yielded an approximately five times increase in cell density (OD600 ~75 compared to flask cultures prior to induction and a doubling in functional expression level per mg of membrane protein, representing a significant optimisation. Furthermore, analysis of a C-terminally truncated A2AR, terminating at residue V334 yielded the highest levels (200 pmol/mg so far reported for expression of this receptor in P. pastoris. This truncated form of the receptor was also revealed to be resistant to C-terminal degradation in contrast to the WT A2AR, and therefore more suitable for further functional and structural studies. Conclusion Large-scale expression of the A2AR in P. pastoris bioreactor cultures results in significant increases in functional expression compared to traditional flask cultures.

  4. Up-regulation of thromboxane A2 receptor expression by lipid soluble smoking particles through post-transcriptional mechanisms

    DEFF Research Database (Denmark)

    Zhang, Wei; Zhang, Yaping; Edvinsson, Lars

    2008-01-01

    . The present study was designed to test if lipid soluble smoking particles (DSP) enhance TxA(2) receptor (TP) expression in rat mesenteric arteries, and if intracellular mitogen-activated protein kinase (MAPK) pathways play a role. Organ culture of rat mesenteric arteries in the presence of DSP (0.2 microl...... actinomycin D, but was almost completely abolished by cycloheximide, a general translational inhibitor. Dexamethasone, a glucocorticoid, manifested a potent inhibitory effect as well. These results suggest that the up-regulation of TP receptor occurs via post-transcriptional events, and mainly translation...... are responsible for the up-regulation of TP receptor by DSP, in which enhanced translation is the major cause of the elevated protein expression and the enhanced contraction....

  5. Expression, Purification and Crystallisation of the Adenosine A2A Receptor Bound to an Engineered Mini G Protein.

    Science.gov (United States)

    Carpenter, Byron; Tate, Christopher G

    2017-04-20

    G protein-coupled receptors (GPCRs) promote cytoplasmic signalling by activating heterotrimeric G proteins in response to extracellular stimuli such as light, hormones and nucleosides. Structure determination of GPCR-G protein complexes is central to understanding the precise mechanism of signal transduction. However, these complexes are challenging targets for structural studies due to their conformationally dynamic and inherently transient nature. We recently developed an engineered G protein, mini-Gs, which addressed these problems and allowed the formation of a stable GPCR-G protein complex. Mini-Gs facilitated the structure determination of the human adenosine A2A receptor (A2AR) in its G protein-bound conformation at 3.4 Å resolution. Here, we describe a step by step protocol for the expression and purification of A2AR, and crystallisation of the A2AR-mini-Gs complex.

  6. Functional expression of adenosine A2A and A3 receptors in the mouse dendritic cell line XS-106.

    Science.gov (United States)

    Dickenson, John M; Reeder, Steve; Rees, Bob; Alexander, Steve; Kendall, Dave

    2003-08-01

    There is increasing evidence to suggest that adenosine receptors can modulate the function of cells involved in the immune system. For example, human dendritic cells derived from blood monocytes have recently been described to express functional adenosine A1, A2A and A3 receptors. Therefore, in the present study, we have investigated whether the recently established murine dendritic cell line XS-106 expresses functional adenosine receptors. The selective adenosine A3 receptor agonist 1-[2-chloro-6[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-beta-D-ribofuranuronamide (2-Cl-IB-MECA) inhibited forskolin-mediated [3H]cyclic AMP accumulation and stimulated concentration-dependent increases in p42/p44 mitogen-activated protein kinase (MAPK) phosphorylation. The selective adenosine A2A receptor agonist 4-[2-[[-6-amino-9-(N-ethyl-beta-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzene-propanoic acid (CGS 21680) stimulated a robust increase in [3H]cyclic AMP accumulation and p42/p44 MAPK phosphorylation. In contrast, the selective adenosine A1 receptor agonist CPA (N6-cyclopentyladenosine) did not inhibit forskolin-mediated [3H]cyclic AMP accumulation or stimulate increases in p42/p44 MAPK phosphorylation. These observations suggest that XS-106 cells express functional adenosine A2A and A3 receptors. The non-selective adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA) inhibited lipopolysaccharide-induced tumour necrosis factor-alpha (TNF-alpha) release from XS-106 cells in a concentration-dependent fashion. Furthermore, treatment with Cl-IB-MECA (1 microM) or CGS 21680 (1 microM) alone produced a partial inhibition of lipopolysaccharide-induced TNF-alpha release (when compared to NECA), whereas a combination of both agonists resulted in the inhibition of TNF-alpha release comparable to that observed with NECA alone. Treatment of cells with the adenosine A2A receptor selective antagonists 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a

  7. Regulation of epithelial sodium channel a-subunit expression by adenosine receptor A2a in alveolar epithelial cells

    Institute of Scientific and Technical Information of China (English)

    DENG Wang; WANG Dao-xin; ZHANG Wei; LI Chang-yi

    2011-01-01

    Background The amiloride-sensitive epithelial sodium channel a-subunit (a-ENaC) is an important factor for alveolar fluid clearance during acute lung injury. The relationship between adenosine receptor A2a (A2aAR) expressed in alveolar epithelial cells and aα-ENaC is poorly understood. We targeted the A2aAR in this study to investigate its role in the expression of αa-ENaC and in acute lung injury.Methods A549 cells were incubated with different concentrations of A2aAR agonist CGS-21680 and with 100 μmol/L CGS-21680 for various times. Rats were treated with lipopolysaccharide (LPS) after CGS-21680 was injected. Animals were sacrificed and tissue was harvested for evaluation of lung injury by analysis of the lung wet-to-dry weight ratio, lung permeability and myeloperoxidase activity. RT-PCR and Western blotting were used to determine the mRNA and protein expression levels of α-ENaC in A549 cells and alveolar type II epithelial cells.Results Both mRNA and protein levels of α-ENaC were markedly higher from 4 hours to 24 hours after exposure to 100μmol/L CGS-21680. There were significant changes from 0.1 umol/L to 100 μmol/L CGS-21680, with a positive correlation between increased concentrations of CGS-21680 and expression of α-ENaC. Treatment with CGS-21680during LPS induced lung injury protected the lung and promoted α-ENaC expression in the alveolar epithelial cells.Conclusion Activation of A2aAR has a protective effect during the lung injury, which may be beneficial to the prognosis of acute lung injury.

  8. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Bolado-Carrancio, A. [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain); Riancho, J.A. [Department of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, University of Cantabria, RETICEF, Santander (Spain); Sainz, J. [Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC-University of Cantabria, Santander (Spain); Rodríguez-Rey, J.C., E-mail: rodriguj@unican.es [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain)

    2014-04-04

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.

  9. Subarachnoid hemorrhage induces enhanced expression of thromboxane A2 receptors in rat cerebral arteries

    DEFF Research Database (Denmark)

    Ansar, Saema; Larsen, Carl; Maddahi, Aida;

    2010-01-01

    after SAH in cerebral arteries. SAH was induced in rats by injecting 250 microl of blood into the prechiasmatic cistern. Two days after the SAH, cerebral arteries were harvested and contractile responses to the TP receptor agonist U46619 were investigated with myographs. In addition, the contractile...

  10. Adenosine A2A receptor deficiency up-regulates cystatin F expression in white matter lesions induced by chronic cerebral hypoperfusion.

    Directory of Open Access Journals (Sweden)

    Wei Duan

    Full Text Available In previous studies, we have shown that the inactivation of the adenosine A2A receptor exacerbates chronic cerebral hypoperfusion-induced white matter lesions (WMLs by enhancing neuroinflammatory responses. However, the molecular mechanism underlying the effect of the adenosine A2A receptor remains unknown. Recent studies have demonstrated that cystatin F, a potent endogenous cysteine protease inhibitor, is selectively expressed in immune cells in association with inflammatory demyelination in central nervous system diseases. To understand the expression of cystatin F and its potential role in the effect of A2A receptor on WMLs induced through chronic cerebral hypoperfusion, we investigated cystatin F expression in the WMLs of A2A receptor gene knockout mice, the littermate wild-type mice and wild-type mice treated daily with the A2A receptor agonist CGS21680 or both CGS21680 and A2A receptor antagonist SCH58261 after chronic cerebral hypoperfusion. The results of quantitative-PCR and western blot analysis revealed that cystatin F mRNA and protein expression were significantly up-regulated in the WMLs after chronic cerebral hypoperfusion. In addition, cystatin F expression in the corpus callosum was significantly increased in A2A receptor gene knockout mice and markedly decreased in mice treated with CGS21680 on both the mRNA and protein levels. Additionally, SCH58261 counteracted the attenuation of cystatin F expression produced by CGS21680 after chronic cerebral hypoperfusion. Moreover, double immunofluorescence staining revealed that cystatin F was co-localized with the activated microglia marker CD11b. In conclusion, the cystatin F expression in the activated microglia is closely associated with the effect of the A2A receptors, which may be related to the neuroinflammatory responses occurring during the pathological process.

  11. Adenosine A2A receptor deficiency up-regulates cystatin F expression in white matter lesions induced by chronic cerebral hypoperfusion.

    Science.gov (United States)

    Duan, Wei; Ran, Hong; Zhou, Zhujuan; He, Qifen; Zheng, Jian

    2012-01-01

    In previous studies, we have shown that the inactivation of the adenosine A2A receptor exacerbates chronic cerebral hypoperfusion-induced white matter lesions (WMLs) by enhancing neuroinflammatory responses. However, the molecular mechanism underlying the effect of the adenosine A2A receptor remains unknown. Recent studies have demonstrated that cystatin F, a potent endogenous cysteine protease inhibitor, is selectively expressed in immune cells in association with inflammatory demyelination in central nervous system diseases. To understand the expression of cystatin F and its potential role in the effect of A2A receptor on WMLs induced through chronic cerebral hypoperfusion, we investigated cystatin F expression in the WMLs of A2A receptor gene knockout mice, the littermate wild-type mice and wild-type mice treated daily with the A2A receptor agonist CGS21680 or both CGS21680 and A2A receptor antagonist SCH58261 after chronic cerebral hypoperfusion. The results of quantitative-PCR and western blot analysis revealed that cystatin F mRNA and protein expression were significantly up-regulated in the WMLs after chronic cerebral hypoperfusion. In addition, cystatin F expression in the corpus callosum was significantly increased in A2A receptor gene knockout mice and markedly decreased in mice treated with CGS21680 on both the mRNA and protein levels. Additionally, SCH58261 counteracted the attenuation of cystatin F expression produced by CGS21680 after chronic cerebral hypoperfusion. Moreover, double immunofluorescence staining revealed that cystatin F was co-localized with the activated microglia marker CD11b. In conclusion, the cystatin F expression in the activated microglia is closely associated with the effect of the A2A receptors, which may be related to the neuroinflammatory responses occurring during the pathological process.

  12. Role of Site-Specific N-Glycans Expressed on GluA2 in the Regulation of Cell Surface Expression of AMPA-Type Glutamate Receptors.

    Science.gov (United States)

    Takeuchi, Yusuke; Morise, Jyoji; Morita, Ippei; Takematsu, Hiromu; Oka, Shogo

    2015-01-01

    The AMPA-type glutamate receptor (AMPAR), which is a tetrameric complex composed of four subunits (GluA1-4) with several combinations, mediates the majority of rapid excitatory synaptic transmissions in the nervous system. Cell surface expression levels of AMPAR modulate synaptic plasticity, which is considered one of the molecular bases for learning and memory formation. To date, a unique trisaccharide (HSO3-3GlcAβ1-3Galβ1-4GlcNAc), human natural killer-1 (HNK-1) carbohydrate, was found expressed specifically on N-linked glycans of GluA2 and regulated the cell surface expression of AMPAR and the spine maturation process. However, evidence that the HNK-1 epitope on N-glycans of GluA2 directly affects these phenomena is lacking. Moreover, it is thought that other N-glycans on GluA2 also have potential roles in the regulation of AMPAR functions. In the present study, using a series of mutants lacking potential N-glycosylation sites (N256, N370, N406, and N413) within GluA2, we demonstrated that the mutant lacking the N-glycan at N370 strongly suppressed the intracellular trafficking of GluA2 from the endoplasmic reticulum (ER) in HEK293 cells. Cell surface expression of GluA1, which is a major subunit of AMPAR in neurons, was also suppressed by co-expression of the GluA2 N370S mutant. The N370S mutant and wild-type GluA2 were co-immunoprecipitated with GluA1, suggesting that N370S was properly associated with GluA1. Moreover, we found that N413 was the main potential site of the HNK-1 epitope that promoted the interaction of GluA2 with N-cadherin, resulting in enhanced cell surface expression of GluA2. The HNK-1 epitope on N-glycan at the N413 of GluA2 was also involved in the cell surface expression of GluA1. Thus, our data suggested that site-specific N-glycans on GluA2 regulate the intracellular trafficking and cell surface expression of AMPAR.

  13. Role of Site-Specific N-Glycans Expressed on GluA2 in the Regulation of Cell Surface Expression of AMPA-Type Glutamate Receptors.

    Directory of Open Access Journals (Sweden)

    Yusuke Takeuchi

    Full Text Available The AMPA-type glutamate receptor (AMPAR, which is a tetrameric complex composed of four subunits (GluA1-4 with several combinations, mediates the majority of rapid excitatory synaptic transmissions in the nervous system. Cell surface expression levels of AMPAR modulate synaptic plasticity, which is considered one of the molecular bases for learning and memory formation. To date, a unique trisaccharide (HSO3-3GlcAβ1-3Galβ1-4GlcNAc, human natural killer-1 (HNK-1 carbohydrate, was found expressed specifically on N-linked glycans of GluA2 and regulated the cell surface expression of AMPAR and the spine maturation process. However, evidence that the HNK-1 epitope on N-glycans of GluA2 directly affects these phenomena is lacking. Moreover, it is thought that other N-glycans on GluA2 also have potential roles in the regulation of AMPAR functions. In the present study, using a series of mutants lacking potential N-glycosylation sites (N256, N370, N406, and N413 within GluA2, we demonstrated that the mutant lacking the N-glycan at N370 strongly suppressed the intracellular trafficking of GluA2 from the endoplasmic reticulum (ER in HEK293 cells. Cell surface expression of GluA1, which is a major subunit of AMPAR in neurons, was also suppressed by co-expression of the GluA2 N370S mutant. The N370S mutant and wild-type GluA2 were co-immunoprecipitated with GluA1, suggesting that N370S was properly associated with GluA1. Moreover, we found that N413 was the main potential site of the HNK-1 epitope that promoted the interaction of GluA2 with N-cadherin, resulting in enhanced cell surface expression of GluA2. The HNK-1 epitope on N-glycan at the N413 of GluA2 was also involved in the cell surface expression of GluA1. Thus, our data suggested that site-specific N-glycans on GluA2 regulate the intracellular trafficking and cell surface expression of AMPAR.

  14. L-DOPA-treatment in primates disrupts the expression of A(2A) adenosine-CB(1) cannabinoid-D(2) dopamine receptor heteromers in the caudate nucleus.

    Science.gov (United States)

    Bonaventura, Jordi; Rico, Alberto J; Moreno, Estefanía; Sierra, Salvador; Sánchez, Marta; Luquin, Natasha; Farré, Daniel; Müller, Christa E; Martínez-Pinilla, Eva; Cortés, Antoni; Mallol, Josefa; Armentero, Marie-Therese; Pinna, Annalisa; Canela, Enric I; Lluís, Carme; McCormick, Peter J; Lanciego, José L; Casadó, Vicent; Franco, Rafael

    2014-04-01

    The molecular basis of priming for L-DOPA-induced dyskinesias in Parkinson's disease (PD), which depends on the indirect pathway of motor control, is not known. In rodents, the indirect pathway contains striatopallidal GABAergic neurons that express heterotrimers composed of A(2A) adenosine, CB(1) cannabinoid and D(2) dopamine receptors that regulate dopaminergic neurotransmission. The present study was designed to investigate the expression of these heteromers in the striatum of a primate model of Parkinson's disease and to determine whether their expression and pharmacological properties are altered upon L-DOPA treatment. By using the recently developed in situ proximity ligation assay and by identification of a biochemical fingerprint, we discovered a regional distribution of A(2A)/CB(1) /D(2) receptor heteromers that predicts differential D(2)-mediated neurotransmission in the caudate-putamen of Macaca fascicularis. Whereas heteromers were abundant in the caudate nucleus of both naïve and MPTP-treated monkeys, L-DOPA treatment blunted the biochemical fingerprint and led to weak heteromer expression. These findings constitute the first evidence of altered receptor heteromer expression in pathological conditions and suggest that drugs targeting A(2A)-CB(1) -D(2) receptor heteromers may be successful to either normalize basal ganglia output or prevent L-DOPA-induced side effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Limited participation of 5-HT1A and 5-HT2A/2C receptors in the clozapine-induced Fos-protein expression in rat forebrain regions

    NARCIS (Netherlands)

    Sebens, JB; Kuipers, SD; Koch, T; Ter Horst, GJ; Korf, J

    2000-01-01

    Through the development of tolerance following long-term clozapine treatment, we investigated whether 5-HT1A and 5-HT2A/2C receptors participate in the clozapine-induced Fos-protein expression in the rat forebrain. Tolerance exists when the acutely increased Fos responses to a challenge dose of the

  16. ALTERED EXPRESSION AND FUNCTIONALITY OF A2A ADENOSINE RECEPTORS IN HUNTINGTON’S DISEASE AND OTHER POLYGLUTAMINE DISORDERS

    OpenAIRE

    Vincenzi, Fabrizio

    2009-01-01

    Several studies have suggested the possible involvement of A2A adenosine receptors in the pathogenesis of neuronal disorders, including Huntington’s disease. Huntington’s disease is an inherited neurodegenerative disease clinically characterized by motor, cognitive and behavioural impairments. The genetic cause of the disease is the expanded CAG triplet in a gene coding for huntingtin, a protein involved in several physiological processes. Huntington’s disease affects primarly ...

  17. A novel, potent, and specific ephrinA1-based cytotoxin against EphA2 receptor expressing tumor cells.

    Science.gov (United States)

    Wykosky, Jill; Gibo, Denise M; Debinski, Waldemar

    2007-12-01

    We have previously shown that the EphA2 receptor tyrosine kinase is overexpressed in glioblastoma multiforme (GBM) and represents a novel, attractive therapeutic target for the treatment of brain tumors. Here, we have developed an EphA2-targeted agent, ephrinA1-PE38QQR, a novel cytotoxin composed of ephrinA1, a ligand for EphA2, and PE38QQR, a mutated form of Pseudomonas aeruginosa exotoxin A. EphrinA1-PE38QQR showed potent and dose-dependent killing of GBM cells overexpressing the EphA2 receptor in cell viability and clonogenic survival assays, with an average IC(50) of approximately 10(-11) mol/L. The conjugate was also highly effective in killing breast and prostate cancer cells overexpressing EphA2. The cytotoxic effect of ephrinA1-PE38QQR was specific, as it was neutralized by an excess of EphA2 ligands. Moreover, normal human endothelial cells and breast cancer cells that do not overexpress EphA2, as well as GBM cells that have down-regulated EphA2, were not susceptible to the cytotoxin. EphrinA1-PE38QQR-mediated cytotoxicity induced caspase-dependent apoptosis, which was, however, not responsible for cell death in response to the conjugate. In addition, the conjugate elicited no changes in the activity of survival pathways such as phosphoinositide 3-kinase, measured by AKT phosphorylation. This is the first attempt to create a cytotoxic therapy using any of the ephrin ligands of either class (A or B) conjugated to a bacterial toxin. EphrinA1-PE38QQR is very potent and specific, produces cell death that is caspase independent, and forms the basis for the further development of clinically applicable EphA2-targeted cytotoxins.

  18. Enhanced expression of the M-type phospholipase A2 receptor in glomeruli correlates with serum receptor antibodies in primary membranous nephropathy.

    Science.gov (United States)

    Hoxha, Elion; Kneißler, Ursula; Stege, Gesa; Zahner, Gunther; Thiele, Ina; Panzer, Ulf; Harendza, Sigrid; Helmchen, Udo M; Stahl, Rolf A K

    2012-10-01

    The M-type phospholipase A2 receptor (PLA2R) is the major target antigen in idiopathic membranous nephropathy with detectable autoantibodies in the serum of up to 70% of patients. In retrospective studies, the PLA2R-autoantibody titer in the serum was sometimes negative indicating their measurement alone may be inconclusive. In order to better differentiate between primary and secondary membranous nephropathy, we conducted a prospective study that included 88 patients with a histologic diagnosis of membranous nephropathy. Immunohistochemical analysis for PLA2R was faintly positive in kidneys from normal individuals and patients with various other glomerular injuries. In 61 of the 88 patients, PLA2R expression was strongly positive in glomeruli, and in 60 of these patients PLA2R autoantibodies were also detected in the serum. The 27 patients negative for serum PLA2R autoantibodies were faintly positive for PLA2R staining in glomeruli and in 15 of these patients a secondary cause was found. The remaining 12 patients have a yet undetected secondary cause of membranous nephropathy or have different glomerular antigens other than PLA2R. Thus, increased staining for PLA2R in glomeruli of renal biopsies tightly correlates with the presence of PLA2R autoantibodies in the serum and this may help discriminate between primary and secondary membranous nephropathy.

  19. Antigen receptors on immature, but not mature, B and T cells are coupled to cytosolic phospholipase A2 activation: expression and activation of cytosolic phospholipase A2 correlate with lymphocyte maturation.

    Science.gov (United States)

    Gilbert, J J; Stewart, A; Courtney, C A; Fleming, M C; Reid, P; Jackson, C G; Wise, A; Wakelam, M J; Harnett, M M

    1996-03-15

    The Ag receptors on mature B and T cells are not coupled to the activation of cytosolic phospholipase A2 (cPLA2) and arachidonic acid release. Moreover, phorbol esters such as PMA, which can activate cPLA2 via mitogen-activated protein (MAP) kinase in most cell types, also failed to induce the release of arachidonate from mature cells, suggesting that the cPLA2 pathway may not be functional in mature lymphocytes. Interestingly, Western blot analysis revealed that cPLA2, which had previously been thought to be expressed ubiquitously, is not expressed in mature B or T cells and that cytosolic phospholipase A2 expression could not be up-regulated in lymphocytes following culture with a range of cytokines most likely to be involved in an immune response such as IL-1 alpha, IL-3, or TNF-alpha. In contrast, cPLA2 was shown to be expressed and activated in thymocytes and immature B cells under conditions in which ligation of the Ag receptors led to growth arrest and/or apoptosis. Taken together, these data suggest that cPLA2 does not play a role in Ag receptor-mediated lymphocyte activation, but may be involved in the molecular mechanisms underlying lymphocyte maturation and/or self tolerance by clonal deletion.

  20. Induction of progesterone receptor A form attenuates the induction of cytosolic phospholipase A2alpha expression by cortisol in human amnion fibroblasts.

    Science.gov (United States)

    Guo, Chunming; Ni, Xiaotian; Zhu, Ping; Li, Wenjiao; Zhu, Xiaoou; Sun, Kang

    2010-05-01

    Cytosolic phospholipase A2alpha (cPLA(2alpha), now known as PLA2G4A) is the enzyme catalyzing the formation of the rate-limiting substrate, arachidonic acid, for prostaglandin (PG) synthesis. The increasing expression of PLA2G4A toward term gestation in human amnion fibroblasts is believed to be the crucial event in parturition. Human amnion fibroblasts produce cortisol, progesterone and express glucocorticoid receptor (GR), progesterone receptor A (PGRA) form at term. The roles of progesterone and PGRA in the induction of PLA2G4A by cortisol via GR in the amnion fibroblasts remain largely unknown. Using cultured human term amnion fibroblasts, we found that cortisol induced the expression of PGRA, which was attenuated by inhibiting PG synthesis with indomethacin. Knockdown of PGRA expression or inhibition of endogenous progesterone production with trilostane significantly enhanced the induction of PLA2G4A by cortisol, whereas overexpression of PGRA attenuated the induction of PLA2G4A by cortisol. Although exogenous progesterone did not alter PLA2G4A expression under basal conditions, it attenuated cortisol-induced PLA2G4A expression at concentrations about tenfold higher, which might be achieved by competition with cortisol for GR. In conclusion, PGRA in the presence of endogenous progesterone is a transdominant repressor of the induction of PLA2G4A by cortisol. High level of progesterone may compete with cortisol for GR, thus further inhibiting the induction of PLA2G4A by cortisol. Moreover, increased PG synthesis by cortisol may feed back on the expression of PGRA leading to attenuation of cortisol-induced PLA2G4A expression. The above findings may be pertinent to the inconsistent effects of glucocorticoids on parturition in humans.

  1. Caffeine reduces 11β-hydroxysteroid dehydrogenase type 2 expression in human trophoblast cells through the adenosine A(2B receptor.

    Directory of Open Access Journals (Sweden)

    Saina Sharmin

    Full Text Available Maternal caffeine consumption is associated with reduced fetal growth, but the underlying molecular mechanisms are unknown. Since there is evidence that decreased placental 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2 is linked to fetal growth restriction, we hypothesized that caffeine may inhibit fetal growth partly through down regulating placental 11β-HSD2. As a first step in examining this hypothesis, we studied the effects of caffeine on placental 11β-HSD2 activity and expression using our established primary human trophoblast cells as an in vitro model system. Given that maternal serum concentrations of paraxanthine (the primary metabolite of caffeine were greater in women who gave birth to small-for-gestational age infants than to appropriately grown infants, we also studied the effects of paraxanthine. Our main findings were: (1 both caffeine and paraxanthine decreased placental 11β-HSD2 activity, protein and mRNA in a concentration-dependent manner; (2 this inhibitory effect was mediated by the adenosine A(2B receptor, since siRNA-mediated knockdown of this receptor prevented caffeine- and paraxanthine-induced inhibition of placental 11β-HSD2; and (3 forskolin (an activator of adenyl cyclase and a known stimulator of 11β-HSD2 abrogated the inhibitory effects of both caffeine and paraxanthine, which provides evidence for a functional link between exposure to caffeine and paraxanthine, decreased intracellular levels of cAMP and reduced placental 11β-HSD2. Taken together, these findings reveal that placental 11β-HSD2 is a novel molecular target through which caffeine may adversely affect fetal growth. They also uncover a previously unappreciated role for the adenosine A(2B receptor signaling in regulating placental 11β-HSD2, and consequently fetal development.

  2. Echinacea purpurea up-regulates CYP1A2, CYP3A4 and MDR1 gene expression by activation of pregnane X receptor pathway.

    Science.gov (United States)

    Awortwe, Charles; Manda, Vamshi K; Avonto, Cristina; Khan, Shabana I; Khan, Ikhlas A; Walker, Larry A; Bouic, Patrick J; Rosenkranz, Bernd

    2015-03-01

    1.This study investigated the mechanism underlying Echinacea-mediated induction of CYP1A2, CYP3A4 and MDR1 in terms of human pregnane X receptor (PXR) activation. 2.Crude extracts and fractions of Echinacea purpurea were tested for PXR activation in HepG2 cells by a reporter gene assay. Quantitative real-time PCR was carried out to determine their effects on CYP1A2 and CYP3A4 mRNA expressions. Capsules and fractions were risk ranked as high, intermediate and remote risk of drug-metabolizing enzymes induction based on EC50 values determined for respective CYPs. 3. Fractions F1, F2 and capsule (2660) strongly activated PXR with 5-, 4- and 3.5-fold increase in activity, respectively. Echinacea preparations potentiated up-regulation of CYP1A2, CYP3A4 and MDR1 via PXR activation. 4.Thus E. purpurea preparations cause herb-drug interaction by up-regulating CYP1A2, CYP3A4 and P-gp via PXR activation.

  3. Transcriptional down-regulation of thromboxane A(2) receptor expression via activation of MAPK ERK1/2, p38/NF-kappaB pathways

    DEFF Research Database (Denmark)

    Zhang, Wei; Zhang, Yaping; Edvinsson, Lars

    2009-01-01

    BACKGROUND: We have developed an in vitro model by organ culture of rat mesenteric arteries to imitate vascular smooth muscle cell (VSMC) receptor changes in cardiovascular disease. By using this model, alteration of VSMC thromboxane A(2) (TP) receptors was studied. METHODS AND RESULTS:After organ...... abolished decreased TP receptor-mediated contraction, while inhibition of translation, cyclooxygenase or nitric oxide synthase had no effect. TP receptor mRNA stability was unchanged during organ culture. CONCLUSIONS:The present study has demonstrated for the first time that organ culture of rat mesenteric...

  4. Transcriptional Down-Regulation of Thromboxane A(2) Receptor Expression via Activation of MAPK ERK1/2, p38/NF-kappaB Pathways

    DEFF Research Database (Denmark)

    Zhang, Wei; Zhang, Yaping; Edvinsson, Lars

    2008-01-01

    BACKGROUND: We have developed an in vitro model by organ culture of rat mesenteric arteries to imitate vascular smooth muscle cell (VSMC) receptor changes in cardiovascular disease. By using this model, alteration of VSMC thromboxane A(2) (TP) receptors was studied. METHODS AND RESULTS:After organ...... abolished decreased TP receptor-mediated contraction, while inhibition of translation, cyclooxygenase or nitric oxide synthase had no effect. TP receptor mRNA stability was unchanged during organ culture. CONCLUSIONS:The present study has demonstrated for the first time that organ culture of rat mesenteric...

  5. Anti-Phospholipase A2 Receptor (PLA2R Antibody and Glomerular PLA2R Expression in Japanese Patients with Membranous Nephropathy.

    Directory of Open Access Journals (Sweden)

    Kei Hihara

    Full Text Available The phospholipase A2 receptor (PLA2R is the major target antigen (Ag in idiopathic membranous nephropathy (IMN. Recently, several types of immunoassay systems for anti-PLA2R antibody (Ab have been developed. However, the correlation of serum anti-PLA2R Abs and glomerular expression of PLA2R Ag, and their association with clinicopathological characteristics have yet to be proven in Japanese patients. We examined serum anti-PLA2R Abs by both ELISA and cell-based indirect immunofluorescence assay (CIIFA, and glomerular PLA2R expression by immunofluorescence (IF in 59 biopsy-proven MN patients including IMN (n = 38 and secondary MN (SMN (n = 21. In this study, anti-PLA2R Abs were present in 50% of IMN patients, but was absent in SMN patients. The concordance rate between ELISA and CIIFA was 100%. Serum IgG levels were significantly lower in anti-PLA2R Ab-positive patients. Serum albumin levels correlated inversely with serum anti-PLA2R Ab titers. The prevalence and intensity of glomerular staining for IgG4 by IF were significantly higher in anti-PLA2R Ab-positive patients than in -negative patients. Glomerular PLA2 Ag expression evaluated by IF was positive in 52.6% of IMN patients, but was absent in SMN patients. The concordance rate between the prevalence of glomerular PLA2R Ag expression and anti-PLA2R Ab was 84.2%. The prevalence of anti-PLA2R Abs measured by ELISA/CIIFA was equivalent to previous Japanese studies evaluated using Western blotting. These analyses showed an excellent specificity for the diagnosis of IMN, and anti-PLA2R positivity was associated with some clinicopathological features, especially glomerular IgG4-dominant deposition.

  6. Anti-Phospholipase A2 Receptor (PLA2R) Antibody and Glomerular PLA2R Expression in Japanese Patients with Membranous Nephropathy.

    Science.gov (United States)

    Hihara, Kei; Iyoda, Masayuki; Tachibana, Shohei; Iseri, Ken; Saito, Tomohiro; Yamamoto, Yasutaka; Suzuki, Taihei; Wada, Yukihiro; Matsumoto, Kei; Shibata, Takanori

    2016-01-01

    The phospholipase A2 receptor (PLA2R) is the major target antigen (Ag) in idiopathic membranous nephropathy (IMN). Recently, several types of immunoassay systems for anti-PLA2R antibody (Ab) have been developed. However, the correlation of serum anti-PLA2R Abs and glomerular expression of PLA2R Ag, and their association with clinicopathological characteristics have yet to be proven in Japanese patients. We examined serum anti-PLA2R Abs by both ELISA and cell-based indirect immunofluorescence assay (CIIFA), and glomerular PLA2R expression by immunofluorescence (IF) in 59 biopsy-proven MN patients including IMN (n = 38) and secondary MN (SMN) (n = 21). In this study, anti-PLA2R Abs were present in 50% of IMN patients, but was absent in SMN patients. The concordance rate between ELISA and CIIFA was 100%. Serum IgG levels were significantly lower in anti-PLA2R Ab-positive patients. Serum albumin levels correlated inversely with serum anti-PLA2R Ab titers. The prevalence and intensity of glomerular staining for IgG4 by IF were significantly higher in anti-PLA2R Ab-positive patients than in -negative patients. Glomerular PLA2 Ag expression evaluated by IF was positive in 52.6% of IMN patients, but was absent in SMN patients. The concordance rate between the prevalence of glomerular PLA2R Ag expression and anti-PLA2R Ab was 84.2%. The prevalence of anti-PLA2R Abs measured by ELISA/CIIFA was equivalent to previous Japanese studies evaluated using Western blotting. These analyses showed an excellent specificity for the diagnosis of IMN, and anti-PLA2R positivity was associated with some clinicopathological features, especially glomerular IgG4-dominant deposition.

  7. Thromboxane A2 receptor-mediated release of matrix metalloproteinase-1 (MMP-1) induces expression of monocyte chemoattractant protein-1 (MCP-1) by activation of protease-activated receptor 2 (PAR2) in A549 human lung adenocarcinoma cells.

    Science.gov (United States)

    Li, Xiuling; Tai, Hsin-Hsiung

    2014-08-01

    Matrix metalloproteinases (MMPs) and monocyte chemoattractant protein-1 (MCP-1, CCL2) are known to be upregulated in many tumors. Their roles in tumor invasion and metastasis are being uncovered. How they are related to each other and involved in tumor progression remains to be determined. Earlier it was reported that I-BOP-initiated activation of thromboxane A2 receptor (TP) induced the release of MMP-1, MMP-3, and MMP-9 from lung cancer A549 cells overexpressing TPα (A549-TPα). Herein it was found that MMP-1, but not MMP-3 or MMP-9, induced the expression of MCP-1 in A549 cells. Conditioned medium (CM) from I-BOP activated, MMP-1 siRNA pretreated A549-TPα cells induced greatly attenuated expression of MCP-1 in A549 cells indicating that MMP-1 in the CM contributed significantly to the expression of MCP-1. MMP-1 was shown to activate protease-activated receptor 2 (PAR2) instead of commonly assumed PAR1 to increase the expression of MCP-1 in A549 cells. This conclusion was reached from the following findings: (1) expression of MCP-1 induced by trypsin, a PAR2 agonist, and also PAR2 agonist peptide, was inhibited by a PAR2 antagonist; (2) expression of MCP-1 induced by MMP-1 and by CM from I-BOP activated A549-TPα cells was blocked by a PAR2 antagonist but not by other PAR antagonists; (3) expression of MCP-1 induced by MMP-1 and by CM from I-BOP activated A549-TPα cells was attenuated significantly by pretreatment of cells with PAR2-siRNA. These results suggest that PAR2 is a novel MMP-1 target mediating MMP-1-induced signals in A549 lung cancer cells.

  8. Effect of A2A receptor antagonist (SCH 442416) on the mRNA expression of glutamate aspartate transporter and glutamine synthetase in rat retinal Müller cells under hypoxic conditions in vitro

    OpenAIRE

    Yu, Jun; Huang, Xin; WU, QIRONG; Wang, Jun; Yu, Xiaoyan; Zhao, Peiquan

    2012-01-01

    The purpose of the present study was to investigate the effect of the A2A receptor antagonist (SCH 442416) on the mRNA expression of glutamate aspartate transporter (GLAST) and glutamine synthetase (GS) in rat retinal Müller cells under hypoxic conditions in vitro. Immunofluorescent staining of GS and GFAP was used for the identification of Müller cells. The GLAST and GS mRNA expression of Müller cells treated with 0.1, 1 and 10 μM SCH 442416 under hypoxic conditions was examined by real-time...

  9. Adenosine A2A Receptors and A2A Receptor Heteromers as Key Players in Striatal Function

    Science.gov (United States)

    Ferré, Sergi; Quiroz, César; Orru, Marco; Guitart, Xavier; Navarro, Gemma; Cortés, Antonio; Casadó, Vicent; Canela, Enric I.; Lluis, Carme; Franco, Rafael

    2011-01-01

    A very significant density of adenosine A2A receptors (A2ARs) is present in the striatum, where they are preferentially localized postsynaptically in striatopallidal medium spiny neurons (MSNs). In this localization A2ARs establish reciprocal antagonistic interactions with dopamine D2 receptors (D2Rs). In one type of interaction, A2AR and D2R are forming heteromers and, by means of an allosteric interaction, A2AR counteracts D2R-mediated inhibitory modulation of the effects of NMDA receptor stimulation in the striatopallidal neuron. This interaction is probably mostly responsible for the locomotor depressant and activating effects of A2AR agonist and antagonists, respectively. The second type of interaction involves A2AR and D2R that do not form heteromers and takes place at the level of adenylyl cyclase (AC). Due to a strong tonic effect of endogenous dopamine on striatal D2R, this interaction keeps A2AR from signaling through AC. However, under conditions of dopamine depletion or with blockade of D2R, A2AR-mediated AC activation is unleashed with an increased gene expression and activity of the striatopallidal neuron and with a consequent motor depression. This interaction is probably the main mechanism responsible for the locomotor depression induced by D2R antagonists. Finally, striatal A2ARs are also localized presynaptically, in cortico-striatal glutamatergic terminals that contact the striato-nigral MSN. These presynaptic A2ARs heteromerize with A1 receptors (A1Rs) and their activation facilitates glutamate release. These three different types of A2ARs can be pharmacologically dissected by their ability to bind ligands with different affinity and can therefore provide selective targets for drug development in different basal ganglia disorders. PMID:21731559

  10. Adenosine A2A receptors and A2A receptor heteromers as key players in striatal function

    Directory of Open Access Journals (Sweden)

    Sergi eFerre

    2011-06-01

    Full Text Available A very significant density of adenosine adenosine A2A receptors (A2ARs is present in the striatum, where they are preferentially localized postsynaptically in striatopallidal medium spiny neurons (MSNs. In this localization A2ARs establish reciprocal antagonistic interactions with dopamine D2 receptors (D2Rs. In one type of interaction, A2AR and D2R are forming heteromers and, by means of an allosteric interaction, A2AR counteracts D2R-mediated inhibitory modulation of the effects of NMDA receptor stimulation in the striato-pallidal neuron. This interaction is probably mostly responsible for the locomotor depressant and activating effects of A2AR agonist and antagonists, respectively. The second type of interaction involves A2AR and D2R that do not form heteromers and takes place at the level of adenylyl-cyclase (AC. Due to a strong tonic effect of endogenous dopamine on striatal D2R, this interaction keeps A2AR from signaling through AC. However, under conditions of dopamine depletion or with blockade of D2R, A2AR-mediated AC activation is unleashed with an increased gene expression and activity of the striato-pallidal neuron and with a consequent motor depression. This interaction is probably the main mechanism responsible for the locomotor depression induced by D2R antagonists. Finally, striatal A2ARs are also localized presynaptically, in cortico-striatal glutamatergic terminals that contact the striato-nigral MSN. These presynaptic A2ARs heteromerize with A1 receptors (A1Rs and their activation facilitates glutamate release. These three different types of A2ARs can be pharmacologically dissected by their ability to bind ligands with different affinity and can therefore provide selective targets for drug development in different basal ganglia disorders.

  11. Adenosine A2A receptor regulates expression of vascular endothelial growth factor in feto-placental endothelium from normal and late-onset pre-eclamptic pregnancies.

    Science.gov (United States)

    Acurio, Jesenia; Herlitz, Kurt; Troncoso, Felipe; Aguayo, Claudio; Bertoglia, Patricio; Escudero, Carlos

    2017-03-01

    We aim to investigate whether A2A/nitric oxide-mediated regulation of vascular endothelial growth factor (VEGF) expression is impaired in feto-placental endothelial cells from late-onset pre-eclampsia. Cultures of human umbilical vein endothelial cells (HUVECs) and human placental microvascular endothelial cells (hPMECs) from normal and pre-eclamptic pregnancies were used. Assays by using small interference RNA (siRNA) for A2A were performed, and transfected cells were used for estimation of messenger RNA (mRNA) levels of VEGF, as well as for cell proliferation and angiogenesis in vitro. CGS-21680 (A2A agonist, 24 h) increases HUVEC and hPMEC proliferation in a dose response manner. Furthermore, similar to CGS-21680, the nitric oxide donor, S-nitroso-N-acetyl-penicillamine oxide (SNAP), increased cell proliferation in a dose response manner (logEC50 10(-9.2) M). In hPMEC, CGS-21680 increased VEGF protein levels in both normal (∼1.5-fold) and pre-eclamptic pregnancies (∼1.2-fold), an effect blocked by the A2A antagonist, ZM-241385 (10(-5) M) and the inhibitor of NO synthase, N ω-nitro-L-arginine methyl ester hydrochloride (L-NAME). Subsequently, SNAP partially recovered cell proliferation and in vitro angiogenesis capacity of cells from normal pregnancies exposed to siRNA for A2A. CGS-21680 also increased (∼1.5-fold) the level of VEGF mRNA in HUVEC from normal pregnancies, but not in pre-eclampsia. Additionally, transfection with siRNA for A2A decrease (∼30 %) the level of mRNA for VEGF in normal pregnancy compared to untransfected cells, an effect partially reversed by co-incubation with SNAP. The A2A-NO-VEGF pathway is present in endothelium from microcirculation and macrocirculation in both normal and pre-eclamptic pregnancies. However, NO signaling pathway seems to be impaired in HUVEC from pre-eclampsia.

  12. Immunohistochemical Glomerular Expression of Phospholipase A2 Receptor in Primary and Secondary Membranous Nephropathy: A Retrospective Study in an Indian Cohort with Clinicopathological Correlations

    Directory of Open Access Journals (Sweden)

    Sanjeet Roy

    2017-02-01

    Full Text Available Background: Limited published literature exists on the utility and standardization of anti-phospholipase A2 receptor (anti-PLA2R immunohistochemistry (IHC for the diagnosis of primary membranous nephropathy (MN. The study aimed to validate anti-PLA2R IHC for the diagnosis of primary MN and clinicopathological correlations in an Indian cohort. Methods: Subjects included patients with primary and secondary MN diagnosed between January 2012 and August 2014 with an adequate renal biopsy and at least 1 year of clinical follow-up. Anti-PLA2R IHC was performed in all cases with miscellaneous renal lesions as controls. Electron microscopy was performed in selected cases. Sensitivity and specificity of anti-PLA2R IHC to identify primary MN was evaluated. Histopathological analyses of primary and secondary MN were done with clinicopathological correlations including serum creatinine, eGFR, chronic kidney disease stage, 24-h urine protein, serum cholesterol, serum albumin, and hypertension at presentation and follow-up, using the Kruskal-Wallis test and Spearman rank correlation. A p value of ≤0.05 was considered statistically significant. Results: In 153 MN patients (99 primary, 54 secondary and 37 miscellaneous controls, anti-PLA2R IHC differentiated primary from secondary MN with a sensitivity of 70.2% and a specificity of 96.6%. Secondary MN had increased mesangial matrix expansion compared to primary MN (p = 0.001. Severe nephrotic syndrome, impaired renal function, and hypertension were all more common in primary than in secondary MN. Conclusion: Anti-PLA2R IHC is a specific marker to distinguish primary MN from secondary MN.

  13. A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes.

    Science.gov (United States)

    Cervetto, Chiara; Venturini, Arianna; Passalacqua, Mario; Guidolin, Diego; Genedani, Susanna; Fuxe, Kjell; Borroto-Esquela, Dasiel O; Cortelli, Pietro; Woods, Amina; Maura, Guido; Marcoli, Manuela; Agnati, Luigi F

    2017-01-01

    Evidence for striatal A2A-D2 heterodimers has led to a new perspective on molecular mechanisms involved in schizophrenia and Parkinson's disease. Despite the increasing recognition of astrocytes' participation in neuropsychiatric disease vulnerability, involvement of striatal astrocytes in A2A and D2 receptor signal transmission has never been explored. Here, we investigated the presence of D2 and A2A receptors in isolated astrocyte processes prepared from adult rat striatum by confocal imaging; the effects of receptor activation were measured on the 4-aminopyridine-evoked release of glutamate from the processes. Confocal analysis showed that A2A and D2 receptors were co-expressed on the same astrocyte processes. Evidence for A2A-D2 receptor-receptor interactions was obtained by measuring the release of the gliotransmitter glutamate: D2 receptors inhibited the glutamate release, while activation of A2A receptors, per se ineffective, abolished the effect of D2 receptor activation. The synthetic D2 peptide VLRRRRKRVN corresponding to the receptor region involved in electrostatic interaction underlying A2A-D2 heteromerization abolished the ability of the A2A receptor to antagonize the D2 receptor-mediated effect. Together, the findings are consistent with heteromerization of native striatal astrocytic A2A-D2 receptors that via allosteric receptor-receptor interactions could play a role in the control of striatal glutamatergic transmission. These new findings suggest possible new pathogenic mechanisms and/or therapeutic approaches to neuropsychiatric disorders. © 2016 International Society for Neurochemistry.

  14. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    Directory of Open Access Journals (Sweden)

    Shinji Kataoka

    Full Text Available In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3 on taste nerves as well as metabotropic (P2Y purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate, but not anterior (fungiform, palate taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  15. Highly expressed adenosine receptor A2B in mucosa dendritic cells is associated with enhanced pathogenicity of Crohn's disease%腺苷受体A2B亚型增加肠黏膜树突状细胞对Crohn's病的致病性

    Institute of Scientific and Technical Information of China (English)

    赵嵘; 周树民; 左爱军

    2014-01-01

    目的 研究Crohn's病存在时其肠黏膜树突状细胞(dendritic cell,DC)中腺苷受体(ADOR) A2A及A2B的表达是否发生了变化,及对DC的功能产生了何种影响.方法 自不同来源的肠组织中分离肠黏膜DC(mucosa DC,mDC),real-time PCR测定ador-a2a及a2b基因的表达;放射性配体结合实验测定腺苷与mDC的结合能力及受体选择性.选择性激活mDC中的ADOR-A2A及A2B通路,以此DC刺激分离的CD4+细胞,ELISA测定细胞因子的分泌,荧光抗体染色及流式细胞仪分析检测CD4+细胞的分化.分离外周血单个核细胞(PBMC)诱导分化为树突状细胞(Mo-DC),以不同Toll样受体(TLR)的配体进行干预,测定ador-a2a及a2b基因的表达;选择性激活Mo-DC中的ADOR-A2B通路,检测其对CD4+细胞的刺激作用.结果 Crohn's病患者肠黏膜DC中ador-a2b基因的表达显著升高,该受体被激活后可刺激mDC分泌IL-1、IL-6及IL-12,并可促进CD4+细胞向Th1、Th17细胞的分化.TLR2的配体pam3csk4或TLR4的配体LPS可促进Mo-DC中ador-a2b基因的表达;该受体与LPS相协同显著增加Mo-DC的致病性.结论 Crohn's病肠黏膜DC中存在腺苷受体A2B亚型的高表达,该受体可增加mDC的致病功能且其在DC中的表达会受到某些Toll样受体通路的调节.%Objective To investigate the expression of adenosine receptor (ADOR) subtypes (A2A and A2B subtypes) in the mucosal dendritic cells (DCs) from patients with Crohn's disease and their pathogenic roles.Methods Mucosal DCs (mDCs) were isolated from resected intestine of patients with or without Crohn's disease.Some of the mDCs were cultured in vitro and others were used to extract RNA.The expression of ador-a2a and ador-a2b were detected by real-time qPCR.mDCs in culture were treated with selective ADOR-A2A and ADOR-A2B agonists (CGS 21680 and BAY 60-6583) and then the concentration of IL-1,IL-6 and IL-12 in the medium were measured by ELISA.The binding affinities of ADOR-A2A and ADOR-A2B to adenosine

  16. Structural comparison of phospholipase-A2-binding regions in phospholipase-A2 receptors from various mammals.

    Science.gov (United States)

    Higashino, K; Ishizaki, J; Kishino, J; Ohara, O; Arita, H

    1994-10-01

    We determined the nucleotide sequence of a mouse cDNA encoding the receptor for pancreatic group I phospholipase A2 (PLA2-I). Interspecies structural comparison of the mouse receptor with bovine PLA2-I receptor, whose structure had been clarified, revealed that the fourth carbohydrate-recognition domain (CRD)-like domain (CRD-like 4) was the most conserved among the domains in the PLA2-I receptor, suggesting the functional importance of CRD-like 4. A transient expression experiment with a truncated form of the receptor consisting of three CRD-like domains, from the third to the fifth, demonstrated that the PLA2-I-binding site of the receptor is constituted from these three CRD-like domains, supporting the functional indispensability of CRD-like 4 in the receptor. Since the PLA2-I-binding region was thus assigned to be CRD-like domains 3-5, we further analyzed the structures of the PLA2-I-binding regions in the PLA2-I receptors from the rat, rabbit and human. Furthermore, the obtained PLA2-I receptor cDNA fragments from these animals made it possible to examine the tissue expression patterns of this receptor in various mammals. The results, together with the results of the genomic structural analysis of this gene, indicated that a PLA2 receptor recently characterized by Lambeau et al. [Lambeau, G., Ancian, P., Barhanin, J. & Lazdunski, M. (1994) J. Biol. Chem. 269, 1575-1578] is a rabbit counterpart of the PLA2-I receptor although these two PLA2 receptors have distinctive PLA2-binding specificities.

  17. Adenosine A2A receptor signaling affects IL-21/IL-22 cytokines and GATA3/T-bet transcription factor expression in CD4(+) T cells from a BTBR T(+) Itpr3tf/J mouse model of autism.

    Science.gov (United States)

    Ahmad, Sheikh F; Ansari, Mushtaq A; Nadeem, Ahmed; Bakheet, Saleh A; Almutairi, Mashal M; Attia, Sabry M

    2017-10-15

    Autism is a complex heterogeneous neurodevelopmental disorder; previous studies have identified altered immune responses among individuals diagnosed with autism. An imbalance in the production of pro- and anti-inflammatory cytokines and transcription factors plays a role in neurodevelopmental behavioral and autism disorders. BTBR T(+) Itpr3tf/J (BTBR) mice are used as a model for autism, as they exhibit social deficits, communication deficits, and repetitive behaviors compared with C57BL/6J (B6) mice. The adenosine A2A receptor (A2AR) appears to be a potential target for the improvement of behavioral, inflammatory, immune, and neurological disorders. We investigated the effects of the A2AR antagonist SCH 5826 (SCH) and agonist CGS 21680 (CGS) on IL-21, IL-22, T-bet, T-box transcription factor (T-bet), GATA3 (GATA Binding Protein 3), and CD152 (CTLA-4) expression in BTBR mice. Our results showed that BTBR mice treated with SCH had increased CD4(+)IL-21(+), CD4(+)IL-22(+), CD4(+)GATA3(+), and CD4(+)T-bet(+) and decreased CD4(+)CTLA-4(+) expression in spleen cells compared with BTBR control mice. Moreover, CGS efficiently decreased CD4(+)IL-21(+), CD4(+)IL-22(+), CD4(+)GATA3(+), and CD4(+)T-bet(+) and increased CD4(+)CTLA-4 production in spleen cells compared with SCH-treated and BTBR control mice. Additionally, SCH treatment significantly increased the mRNA and protein expression levels of IL-21, IL-22, GATA3, and T-bet in brain tissue compared with CGS-treated and BTBR control mice. The augmented levels of IL-21/IL-22 and GATA3/T-bet could be due to altered A2AR signaling. Our results indicate that A2AR agonists may represent a new class of compounds that can be developed for use in the treatment of autistic and neuroimmune dysfunctions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Ephrin A2 receptor targeting does not increase adenoviral pancreatic cancer transduction in vivo

    NARCIS (Netherlands)

    van Geer, M.A.; Bakker, C.T.; Koizumi, N.; Mizuguchi, H.; Wesseling, J.G.; Oude Elferink, R.P.J.; Bosma, P.J.

    2009-01-01

    AIM: To generate an adenoviral vector specifically targeting the EphA2 receptor (EphA2R) highly expressed on pancreatic cancer cells in vivo. METHODS: YSA, a small peptide ligand that binds the EphA2R with high affinity, was inserted into the HI loop of the adenovirus serotype 5 fiber knob. To furth

  19. Transitional cell carcinoma express vitamin D receptors

    DEFF Research Database (Denmark)

    Hermann, G G; Andersen, C B

    1997-01-01

    .05). Similarly, also tumor grade appeared to be related to the number of cells expressing the receptor. Normal urothlium also expressed VDR but only with low intensity. Our study shows that TCC cells possess the VDR receptor which may make them capable to respond to stimulation with vitamin D, but functional...

  20. Human Neuroepithelial Cells Express NMDA Receptors

    Directory of Open Access Journals (Sweden)

    Cappell B

    2003-11-01

    Full Text Available Abstract L-glutamate, an excitatory neurotransmitter, binds to both ionotropic and metabotropic glutamate receptors. In certain parts of the brain the BBB contains two normally impermeable barriers: 1 cerebral endothelial barrier and 2 cerebral epithelial barrier. Human cerebral endothelial cells express NMDA receptors; however, to date, human cerebral epithelial cells (neuroepithelial cells have not been shown to express NMDA receptor message or protein. In this study, human hypothalamic sections were examined for NMDA receptors (NMDAR expression via immunohistochemistry and murine neuroepithelial cell line (V1 were examined for NMDAR via RT-PCR and Western analysis. We found that human cerebral epithelium express protein and cultured mouse neuroepithelial cells express both mRNA and protein for the NMDA receptor. These findings may have important consequences for neuroepithelial responses during excitotoxicity and in disease.

  1. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia.

    OpenAIRE

    Felicita Pedata; Anna Maria Pugliese; Elisabetta Coppi; Ilaria Dettori; Giovanna Maraula; Lucrezia Cellai; Alessia Melani

    2014-01-01

    The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by ...

  2. Androgen receptor expression in gastrointestinal stromal tumor.

    Science.gov (United States)

    Lopes, Lisandro F; Bacchi, Carlos E

    2009-03-01

    The aim of this study was to evaluate the expression of estrogen, progesterone, and androgen receptors in a large series of gastrointestinal stromal tumors. Clinical and pathologic data were reviewed in 427 cases of gastrointestinal stromal tumor and the expression of such hormone receptors was investigated by immunohistochemistry using tissue microarray technique. All tumors were negative for estrogen receptor expression. Progesterone and androgen receptors expression was observed in 5.4% and 17.6% of tumors, respectively. We found the higher average age at diagnosis, the lower frequency of tumors located in the small intestine, and the higher frequency of extragastrointestinal tumors to be statistically significant in the group of tumors with androgen receptor expression in contrast to the group showing no androgen receptor expression. There was no statistic difference between such groups regarding sex, tumor size, mitotic count, cell morphology, and risk of aggressive behavior. Considering that the expression of androgen receptors in gastrointestinal stromal tumors is not negligible, further studies are encouraged to establish the role of androgen deprivation therapy for gastrointestinal stromal tumors.

  3. Sleep Disturbance Induced by Cocaine Abstinence Involving in A2A Receptor over-Expression in Rat Hypothalamus%可卡因戒断致大鼠睡眠结构失调涉及下丘脑腺苷A2A受体

    Institute of Scientific and Technical Information of China (English)

    洪芬芳; 刘晓军; 贺长生; 杨树龙

    2012-01-01

    本实验于大鼠体内植入无线发射器,在可卡因用药前、停药第1(急性戒断)、第8(亚急性戒断)和第14 d(亚慢性戒断)记录自由活动大鼠脑电活动24 h.Western blot法检测腺苷受体在下丘脑和小脑组织表达水平,初步探索可卡因戒断致睡眠失调与腺苷受体之间的关系.结果发现可卡因停药第8d夜晚和白天,非快眼动(NREM)睡眠增加(P<0.05),快眼动(REM)睡眠下降(P<0.01);停药第14 d,NREM睡眠夜晚显著增加(P<0.01)而白天仅略加强,但白天和夜间REM睡眠均明显下降(P<0.01).可卡因戒断第8d和第14d下丘脑腺苷A2A受体表达明显增高(P<0.05),而腺苷A1受体在可卡因戒断仅第14 d降低(P<0.05),停药第1、第8和第14d腺苷A2B亚基表达变化不明显(P>0.05).而小脑腺苷A1、A2A和A2B受体表达均未见明显改变.这些证据提示亚急性和亚慢性可卡因戒断导致睡眠失调可能部分涉及大鼠下丘脑腺苷A2A受体过表达.%Adult rats were implanted with sleep-wake recording electrodes in our experiments. Polygraphic signs of undisturbed sleep-wake activities were recorded for 24 h before cocaine administration, cocaine withdrawal day 1 (a-cute), day 8 (subacute), and day 14 (subchronic). Western blot method was performed to examine the expression levels of adenosine receptor subtypes in hypothalamus and cerebellum. Non rapid eye movement (NREM) sleep was significantly increased during nighttime (P<0. 01) and daytime (P<0. 05) on withdrawal day 8. The increase of NREM sleep was significant during nighttime (P<0. 01) and slight during daytime on withdrawal day 14, whereas both daytime and nighttime rapid eye movement (REM) sleeps were reduced markedly (P<0. 01) on withdrawal day 8 and 14. In addition, A2A receptor level was significantly enhanced on cocaine withdrawal day 8 and day 14 (P< 0. 05), whereas A1 receptor level reduced markedly on withdrawal day 14 (P<0. 05). However, compared with that in the

  4. GABA B receptor subunit expression in glia.

    Science.gov (United States)

    Charles, K J; Deuchars, J; Davies, C H; Pangalos, M N

    2003-09-01

    GABA(B) receptor subunits are widely expressed on neurons throughout the CNS, at both pre- and postsynaptic sites, where they mediate the late, slow component of the inhibitory response to the major inhibitory neurotransmitter GABA. The existence of functional GABA(B) receptors on nonneuronal cells has been reported previously, although the molecular composition of these receptors has not yet been described. Here we demonstrate for the first time, using immunohistochemistry the expression of GABA(B1a), GABA(B1b), and GABA(B2) on nonneuronal cells of the rat CNS. All three principle GABA(B) receptor subunits were expressed on these cells irrespective of whether they had been cultured or found within brain tissue sections. At the ultrastructural level GABA(B) receptor subunits were expressed on astrocytic processes surrounding both symmetrical and assymetrical synapses in the CA1 subregion of the hippocampus. In addition, GABA(B1a), GABA(B1b), and GABA(B2) receptor subunits were expressed on activated microglia in culture but were not found on myelin forming oligodendrocytes in the white matter of rat spinal cord. Together these data demonstrate that the obligate subunits of functional GABA(B) receptors are expressed in astrocytes and microglia in the rat CNS.

  5. [Olfactory esthesioneuroblastoma: scintigraphic expression of somatostatin receptors].

    Science.gov (United States)

    García Vicente, A; García Del Castillo, E; Soriano Castrejón, A; Alonso Farto, J

    1999-10-01

    Esthesioneuroblastoma is an uncommon tumor originating in the upper nasal cavity and constitutes 3% of all intranasal neoplasms. Few references exist about the expression of somatostatin receptors in these tumors. Our case demonstrates a good correlation between the somatostatin receptor scintigraphy and magnetic resonance imaging.

  6. Effect of Sinomenine on Expression of Purinergic Receptors A2A and P2X7 in Mouse Model and In-vitro Macrophages Stimulated by Lipopolysaccharide%青藤碱对细菌内毒素刺激的小鼠及巨噬细胞嘌呤受体A2A、 P2X7表达的影响

    Institute of Scientific and Technical Information of China (English)

    李景; 吴阳阳; 周海松; 朱瑞丽; 易浪; 董燕; 王培训

    2016-01-01

    Objective To investigate the effect of sinomenine on the purinergic receptors A2A and P2X7 in endotoxemia mouse model and RAW264.7 macrophage model stimulated by lipopolysaccharide(LPS). Methods BALB/c mice were randomly divided into blank control group, model group and sinomenine group. Thirty minutes after the rats of sinomenine group were pretreated with intraperitoneal injection of sinomenine (40, 80, 160 mg/kg), the mice were given intraperitoneal injection of 15 mg/kg LPS to induce endotoxemia model. The serum levels of tumor necrosis factor-alpha(TNF-α) and interleukin-6(IL-6) were measured by enzyme-linked immunosorbent assay (ELISA). The expression levels of purinergic receptor A2A and P2X7 in the liver and spleen were detected by reverse transcription-polymerase chain reaction(RT-PCR). RAW264.7 macrophages were divided into blank control group, LPS group and sinomenine group. Sinomenine group was firstly treated with sinomenine(300μmol/L) for 2 h, and then LPS group and sinomenine group were treated with LPS (100 ng/mL) for another 8 hours. TNF-α in the cell supernatant was measured by ELISA, and the expression levels of A2A and P2X7 in RAW264.7 cells were detected by RT-PCR. Results Stimulation with LPS could induce the increase of the mouse serum levels of TNF-α and IL-6 as well as the expression of A2A and P2X7 in mouse liver and spleen, and sinomenine had a counteraction on the above indexes(P<0.05) . In-vitro stimulation with LPS could induce the increase of the content of TNF-α and the expression of A2A and P2X7 in RAW264.7 cells , and sinomenine decreased TNF-α content and P2X7 expression (P<0.05) , but had an effect on enhancing A2A expression. Conclusion Sinomenine suppresses the expression of purinergic receptor P2X7 in mouse spleen and liver as well as in RAW264.7 macrophages, but its effect on the expression of A2A in various tissues and cells varies, whose related mechanism is needed further study.%【

  7. Transitional cell carcinoma express vitamin D receptors

    DEFF Research Database (Denmark)

    Hermann, G G; Andersen, C B

    1997-01-01

    Recently, vitamin D analogues have shown antineoplastic effect in several diseases. Vitamin D analogues exert its effect by interacting with the vitamin D receptor (VDR). Studies of VDR in transitional cell carcinoma (TCC) have not been reported. The purpose of the present study was therefore...... to examine whether human bladder tumor cells express VDR. Tumor biopsies were obtained from 26 patients with TCC. Expression of VDR was examined by immunohistochemical experiments. All tumors expressed VDR. Biopsies from advanced disease contained more VDR positive cells than low stage disease (p ....05). Similarly, also tumor grade appeared to be related to the number of cells expressing the receptor. Normal urothlium also expressed VDR but only with low intensity. Our study shows that TCC cells possess the VDR receptor which may make them capable to respond to stimulation with vitamin D, but functional...

  8. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    Directory of Open Access Journals (Sweden)

    Felicita Pedata

    2014-01-01

    Full Text Available The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes. Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke.

  9. Adenosine Receptors: Expression, Function and Regulation

    Directory of Open Access Journals (Sweden)

    Sandeep Sheth

    2014-01-01

    Full Text Available Adenosine receptors (ARs comprise a group of G protein-coupled receptors (GPCR which mediate the physiological actions of adenosine. To date, four AR subtypes have been cloned and identified in different tissues. These receptors have distinct localization, signal transduction pathways and different means of regulation upon exposure to agonists. This review will describe the biochemical characteristics and signaling cascade associated with each receptor and provide insight into how these receptors are regulated in response to agonists. A key property of some of these receptors is their ability to serve as sensors of cellular oxidative stress, which is transmitted by transcription factors, such as nuclear factor (NF-κB, to regulate the expression of ARs. Recent observations of oligomerization of these receptors into homo- and heterodimers will be discussed. In addition, the importance of these receptors in the regulation of normal and pathological processes such as sleep, the development of cancers and in protection against hearing loss will be examined.

  10. The A2B adenosine receptor impairs the maturation and immunogenicity of dendritic cells.

    Science.gov (United States)

    Wilson, Jeffrey M; Ross, William G; Agbai, Oma N; Frazier, Renea; Figler, Robert A; Rieger, Jayson; Linden, Joel; Ernst, Peter B

    2009-04-15

    The endogenous purine nucleoside adenosine is an important antiinflammatory mediator that contributes to the control of CD4(+) T cell responses. While adenosine clearly has direct effects on CD4(+) T cells, it remains to be determined whether actions on APC such as dendritic cells (DC) are also important. In this report we characterize DC maturation and function in BMDC stimulated with LPS in the presence or absence of the nonselective adenosine receptor agonist NECA (5'-N-ethylcarboxamidoadenosine). We found that NECA inhibited TNF-alpha and IL-12 in a concentration-dependent manner, whereas IL-10 production was increased. NECA-treated BMDC also expressed reduced levels of MHC class II and CD86 and were less effective at stimulating CD4(+) T cell proliferation and IL-2 production compared with BMDC exposed to vehicle control. Based on real-time RT-PCR, the A(2A) adenosine receptor (A(2A)AR) and A(2B)AR were the predominant adenosine receptors expressed in BMDC. Using adenosine receptor subtype selective antagonists and BMDC derived from A(2A)AR(-/-) and A(2B)AR(-/-)mice, it was shown that NECA modulates TNF-alpha, IL-12, IL-10, and CD86 responses predominantly via A(2B)AR. These data indicate that engagement of A(2B)AR modifies murine BMDC maturation and suggest that adenosine regulates CD4(+) T cell responses by selecting for DC with impaired immunogencity.

  11. The significance of TGF-β expression in scar in adenosine receptor A_(2A) knockout mice%腺苷A_(2A)受体基因敲除小鼠瘢痕增生中TGF-β的表达及意义

    Institute of Scientific and Technical Information of China (English)

    肖虎; 冉丽; 禚莹莹; 王德昌; 霍然; 王一兵; 冯永强; 李强

    2010-01-01

    Objective To discuss the mechanism of scar hypertrophy in adenosine receptor A_(2A) (A_(2A) R) knockout mice. Methods Animal models of hypertrophic scar were established in 12 A_(2A)R knockout mice and 12 wild-type mice as control. The thickness and the size of transverse section of the hypertrophic scar were observed by H-E staining. The hydroxyproline ( HYP) in the scar was measured colorimetrically. The TGF-p expression was tested by Western blotting method. Results The hypertrophic scar in wild-type mice was more severe than that in knockout mice. Compared with self-control , the increase of the thickness and the size of transverse section of hypertrophic scar was markedly higher in wild-type group than in the knockout group( P < 0. 01) . There was significant difference in HYP content between the two groups (P < 0. 01 ). Compared with self-control, the increase of TGF-p expression in wild-type group was much more than that in knockout group (P < 0. 01 ). Conclusions The TGF-p expression decreases in the A_(2A) R knockout mice. The scar hypertrophy is also much less in the A_(2A) R knockout mice.%目的 探讨腺苷A_(2A)受体基因敲除小鼠在瘢痕形成中的作用及其机制.方法 4周大腺苷A_(2A)受体基因敲除小鼠和同窝野生型小鼠各12只,制作瘢痕模型,利用HE染色观察瘢痕组织厚度、横截面积变化情况.采用比色氯胺T法测量组织羟脯氨酸含量,利用Western免疫印迹测量TGF-β表达.结果 野生型组小鼠瘢痕增生明显,其厚度、横截面积比自身对照增加倍数显著大于腺苷A_(2A)受体基因敲除组小鼠(P<0.01),腺苷A_(2A)受体基因敲除小鼠瘢痕增生轻,羟脯氨酸含量与同窝野生型组小鼠瘢痕含量相比差异有统计学(P<0.01),野生型组小鼠瘢痕TGF-β表达比自身对照增加倍数显著大于腺苷A_(2A)受体基因敲除小鼠组(P<0.01).结论 腺苷A_(2A)受体基因敲除小鼠瘢痕TGF-β表达降低,瘢痕增生显著减轻.

  12. Cell adhesion and EGFR activation regulate EphA2 expression in cancer

    DEFF Research Database (Denmark)

    Larsen, Alice Bjerregaard; Stockhausen, Marie-Thérése; Poulsen, Hans Skovgaard

    2010-01-01

    . These effects were however abolished by activation of the EGF-receptor ligand system favoring Ras/MAPK signaling and cell proliferation. Based on our results, we propose a regulatory mechanism where cell adhesion induces EGFR kinase activation and EphA2 expression; and where the effect of ephrinA1 mediated...... largely unknown. Here we show that the expression of EphA2 in in vitro cultured cells, is restricted to cells growing adherently and that adhesion-induced EphA2 expression is dependent upon activation of the epidermal growth factor receptor (EGFR), mitogen activated protein kinase kinase (MEK) and Src...... family kinases (SRC). Moreover, the results show that adhesion-induced EGFR activation and EphA2 expression is affected by interactions with extracellular matrix (ECM) proteins working as integrin ligands. Stimulation with the EphA2 ligand, ephrinA1 inhibited ERK phosphorylation and cancer cell viability...

  13. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors

    DEFF Research Database (Denmark)

    Gnad, Thorsten; Scheibler, Saskia; von Kügelgen, Ivar

    2014-01-01

    hamster or rat. However, the role of adenosine in human BAT is unknown. Here we show that adenosine activates human and murine brown adipocytes at low nanomolar concentrations. Adenosine is released in BAT during stimulation of sympathetic nerves as well as from brown adipocytes. The adenosine A2A...... of A2A receptors or injection of lentiviral vectors expressing the A2A receptor into white fat induces brown-like cells-so-called beige adipocytes. Importantly, mice fed a high-fat diet and treated with an A2A agonist are leaner with improved glucose tolerance. Taken together, our results demonstrate...... that adenosine-A2A signalling plays an unexpected physiological role in sympathetic BAT activation and protects mice from diet-induced obesity. Those findings reveal new possibilities for developing novel obesity therapies....

  14. Evidence that the EphA2 receptor exacerbates ischemic brain injury.

    Directory of Open Access Journals (Sweden)

    John Thundyil

    Full Text Available Ephrin (Eph signaling within the central nervous system is known to modulate axon guidance, synaptic plasticity, and to promote long-term potentiation. We investigated the potential involvement of EphA2 receptors in ischemic stroke-induced brain inflammation in a mouse model of focal stroke. Cerebral ischemia was induced in male C57Bl6/J wild-type (WT and EphA2-deficient (EphA2(-/- mice by middle cerebral artery occlusion (MCAO; 60 min, followed by reperfusion (24 or 72 h. Brain infarction was measured using triphenyltetrazolium chloride staining. Neurological deficit scores and brain infarct volumes were significantly less in EphA2(-/- mice compared with WT controls. This protection by EphA2 deletion was associated with a comparative decrease in brain edema, blood-brain barrier damage, MMP-9 expression and leukocyte infiltration, and higher expression levels of the tight junction protein, zona occludens-1. Moreover, EphA2(-/- brains had significantly lower levels of the pro-apoptotic proteins, cleaved caspase-3 and BAX, and higher levels of the anti-apoptotic protein, Bcl-2 as compared to WT group. We confirmed that isolated WT cortical neurons express the EphA2 receptor and its ligands (ephrin-A1-A3. Furthermore, expression of all four proteins was increased in WT primary cortical neurons following 24 h of glucose deprivation, and in the brains of WT mice following stroke. Glucose deprivation induced less cell death in primary neurons from EphA2(-/- compared with WT mice. In conclusion, our data provide the first evidence that the EphA2 receptor directly contributes to blood-brain barrier damage and neuronal death following ischemic stroke.

  15. The expression of the ACTH receptor

    Directory of Open Access Journals (Sweden)

    L.L.K. Elias

    2000-10-01

    Full Text Available Adrenal glucocorticoid secretion is regulated by adrenocorticotropic hormone (ACTH acting through a specific cell membrane receptor (ACTH-R. The ACTH-R is a member of the G protein superfamily-coupled receptors and belongs to the subfamily of melanocortin receptors. The ACTH-R is mainly expressed in the adrenocortical cells showing a restricted tissue specificity, although ACTH is recognized by the other four melanocortin receptors. The cloning of the ACTH-R was followed by the study of this gene in human diseases such as familial glucocorticoid deficiency (FGD and adrenocortical tumors. FGD is a rare autosomal recessive disease characterized by glucocorticoid deficiency, elevated plasma ACTH levels and preserved renin/aldosterone secretion. This disorder has been ascribed to an impaired adrenal responsiveness to ACTH due to a defective ACTH-R, a defect in intracellular signal transduction or an abnormality in adrenal cortical development. Mutations of the ACTH-R have been described in patients with FGD in segregation with the disease. The functional characterization of these mutations has been prevented by difficulties in expressing human ACTH-R in cells that lack endogenous melanocortin receptor activity. To overcome these difficulties we used Y6 cells, a mutant variant of the Y1 cell line, which possesses a non-expressed ACTH-R gene allowing the functional study without any background activity. Our results demonstrated that the several mutations of the ACTH-R found in FGD result in an impaired cAMP response or loss of sensitivity to ACTH stimulation. An ACTH-binding study showed an impairment of ligand binding with loss of the high affinity site in most of the mutations studied.

  16. Expression of orexin receptors in the pituitary.

    Science.gov (United States)

    Kaminski, Tadeusz; Smolinska, Nina

    2012-01-01

    Orexin receptors type 1 (OX1R) and type 2 (OX2R) are G protein-coupled receptors whose structure is highly conserved in mammals. OX1R is selective for orexin A, and OX2R binds orexin A and orexin B with similar affinity. Orexin receptor expression was observed in human, rat, porcine, sheep as well as Xenopus laevis pituitaries, both in the adenohypophysis and in the neurohypophysis. The expression level is regulated by gonadal steroid hormones and GnRH. The majority of orexins reaching the pituitary originate from the lateral hypothalamus, but due to the presence of the receptors and the local production of orexins in the pituitary, orexins could deliver an auto/paracrine effect within the gland. Cumulative data indicate that orexins are involved in the regulation of LH, GH, PRL, ACTH, and TSH secretion by pituitary cells, pointing to orexins' effect on the functioning of the endocrine axes. Those hormones may also serve as a signal linking metabolic status with endocrine control of sleep, arousal, and reproduction processes.

  17. Widespread ectopic expression of olfactory receptor genes

    Directory of Open Access Journals (Sweden)

    Yanai Itai

    2006-05-01

    Full Text Available Abstract Background Olfactory receptors (ORs are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information.

  18. Myometrial oxytocin receptor expression and intracellular pathways.

    Science.gov (United States)

    Yulia, A; Johnson, M R

    2014-06-01

    Oxytocin (OT) signalling plays a fundamental role in the mechanisms of parturition. OT is one of the most frequently used drugs in obstetrics, promoting uterine contractions for labor induction and augmentation and to prevent postpartum hemorrhage (PPH). Expression of the oxytocin receptor (OTR) in the human myometrium is tightly regulated during pregnancy and its levels have been shown to peak upon labour onset and to fall sharply in advanced labour and the postpartum period, when the uterus become refractive to OT. However, uterine sensitivity to OT varies between pregnant women, probably reflecting differences in their myometrial OTR expression. Control of OTR expression is mediated by a combination of steroid hormone stimulation, stretch, and inflammation. This review summarises current knowledge regarding the complex regulation of myometrial OTR expression and its associated intracellular signaling pathways.

  19. IL-21 Receptor Expression in Human Tendinopathy

    Science.gov (United States)

    Campbell, Abigail L.; Smith, Nicola C.; Reilly, James H.; Kerr, Shauna C.; Leach, William J.; Fazzi, Umberto G.; Rooney, Brian P.; Murrell, George A. C.; Millar, Neal L.

    2014-01-01

    The pathogenetic mechanisms underlying tendinopathy remain unclear, with much debate as to whether inflammation or degradation has the prominent role. Increasing evidence points toward an early inflammatory infiltrate and associated inflammatory cytokine production in human and animal models of tendon disease. The IL-21/IL-21R axis is a proinflammatory cytokine complex that has been associated with chronic inflammatory diseases including rheumatoid arthritis and inflammatory bowel disease. This project aimed to investigate the role and expression of the cytokine/receptor pair IL-21/IL-21R in human tendinopathy. We found significantly elevated expression of IL-21 receptor message and protein in human tendon samples but found no convincing evidence of the presence of IL-21 at message or protein level. The level of expression of IL-21R message/protein in human tenocytes was significantly upregulated by proinflammatory cytokines (TNFα/IL-1β) in vitro. These findings demonstrate that IL-21R is present in early human tendinopathy mainly expressed by tenocytes and macrophages. Despite a lack of IL-21 expression, these data again suggest that early tendinopathy has an inflammatory/cytokine phenotype, which may provide novel translational targets in the treatment of tendinopathy. PMID:24757284

  20. IL-21 Receptor Expression in Human Tendinopathy

    Directory of Open Access Journals (Sweden)

    Abigail L. Campbell

    2014-01-01

    Full Text Available The pathogenetic mechanisms underlying tendinopathy remain unclear, with much debate as to whether inflammation or degradation has the prominent role. Increasing evidence points toward an early inflammatory infiltrate and associated inflammatory cytokine production in human and animal models of tendon disease. The IL-21/IL-21R axis is a proinflammatory cytokine complex that has been associated with chronic inflammatory diseases including rheumatoid arthritis and inflammatory bowel disease. This project aimed to investigate the role and expression of the cytokine/receptor pair IL-21/IL-21R in human tendinopathy. We found significantly elevated expression of IL-21 receptor message and protein in human tendon samples but found no convincing evidence of the presence of IL-21 at message or protein level. The level of expression of IL-21R message/protein in human tenocytes was significantly upregulated by proinflammatory cytokines (TNFα/IL-1β in vitro. These findings demonstrate that IL-21R is present in early human tendinopathy mainly expressed by tenocytes and macrophages. Despite a lack of IL-21 expression, these data again suggest that early tendinopathy has an inflammatory/cytokine phenotype, which may provide novel translational targets in the treatment of tendinopathy.

  1. Ephrin A2 receptor targeting does not increase adenoviral pancreatic cancer transduction in vivo

    Institute of Scientific and Technical Information of China (English)

    Michael A van Geer; Conny T Bakker; Naoya Koizumi; Hiroyuki Mizuguchi; John G Wesseling; Ronald PJ Oude Elferink; Piter J Bosma

    2009-01-01

    AIM:To generate an adenoviral vector specifically targeting the EphA2 receptor (EphA2R) highly expressed on pancreatic cancer cells in vivo.METHODS:YSA,a small peptide ligand that binds the EphA2R with high affinity,was inserted into the HI loop of the adenovirus serotype 5 fiber knob.To further increase the specificity of this vector,binding sites for native adenoviral receptors,the coxsackie and adenovirus receptor (CAR) and integrin,were ablated from the viral capsid.The ablated retargeted adenoviral vector was produced on 293T cells.Specific targeting of this novel adenoviral vector to pancreatic cancer was investigated on established human pancreatic cancer cell lines.Upon demonstrating specific in vitro targeting,in vivo targeting to subcutaneous growing human pancreatic cancer was tested by intravenous and intraperitoneal administration of the ablated adenoviral vector.RESULTS:Ablation of native cellular binding sites reduced adenoviral transduction at least 100-fold.Insertion of the YSA peptide in the HI loop restored adenoviral transduction of EphA2R-expressing cells but not of cells lacking this receptor.YSA-mediated transduction was inhibited by addition of synthetic YSA peptide.The transduction specificity of the ablated retargeted vector towards human pancreatic cancer cells was enhanced almost 10-fold in vitro.In a subsequent in vivo study in a nude (nu/nu) mouse model however,no increased adenoviral targeting to subcutaneously growing human pancreas cancer nodules was seen upon injection into the tail vein,nor upon injection into the peritoneum.CONCLUSION:Targeting the EphA2 receptor increases specificity of adenoviral transduction of human pancreatic cancer cells in vitro but fails to enhance pancreatic cancer transduction in vivo.

  2. The A2B adenosine receptor protects against inflammation and excessive vascular adhesion

    Science.gov (United States)

    Yang, Dan; Zhang, Ying; Nguyen, Hao G.; Koupenova, Milka; Chauhan, Anil K.; Makitalo, Maria; Jones, Matthew R.; Hilaire, Cynthia St.; Seldin, David C.; Toselli, Paul; Lamperti, Edward; Schreiber, Barbara M.; Gavras, Haralambos; Wagner, Denisa D.; Ravid, Katya

    2006-01-01

    Adenosine has been described as playing a role in the control of inflammation, but it has not been certain which of its receptors mediate this effect. Here, we generated an A2B adenosine receptor–knockout/reporter gene–knock-in (A2BAR-knockout/reporter gene–knock-in) mouse model and showed receptor gene expression in the vasculature and macrophages, the ablation of which causes low-grade inflammation compared with age-, sex-, and strain-matched control mice. Augmentation of proinflammatory cytokines, such as TNF-α, and a consequent downregulation of IκB-α are the underlying mechanisms for an observed upregulation of adhesion molecules in the vasculature of these A2BAR-null mice. Intriguingly, leukocyte adhesion to the vasculature is significantly increased in the A2BAR-knockout mice. Exposure to an endotoxin results in augmented proinflammatory cytokine levels in A2BAR-null mice compared with control mice. Bone marrow transplantations indicated that bone marrow (and to a lesser extent vascular) A2BARs regulate these processes. Hence, we identify the A2BAR as a new critical regulator of inflammation and vascular adhesion primarily via signals from hematopoietic cells to the vasculature, focusing attention on the receptor as a therapeutic target. PMID:16823489

  3. The Major Prognostic Features of Nuclear Receptor NR5A2 in Infiltrating Ductal Breast Carcinomas

    Directory of Open Access Journals (Sweden)

    Li-Yun Chang

    2015-01-01

    Full Text Available Background. Gene expression profiles of 181 breast cancer samples were analyzed to identify prognostic features of nuclear receptors NR5A1 and NR5A2 based upon their associated transcriptional networks. Methods. A supervised network analysis approach was used to build the NR5A-mediated transcriptional regulatory network. Other bioinformatic tools and statistical methods were utilized to confirm and extend results from the network analysis methodology. Results. NR5A2 expression is a negative factor in breast cancer prognosis in both ER(− and ER(−/ER(+ mixed cohorts. The clinical and cohort significance of NR5A2-mediated transcriptional activities indicates that it may have a significant role in attenuating grade development and cancer related signal transduction pathways. NR5A2 signature that conditions poor prognosis was identified based upon results from 15 distinct probes. Alternatively, the expression of NR5A1 predicts favorable prognosis when concurrent NR5A2 expression is low. A favorable signature of eight transcription factors mediated by NR5A1 was also identified. Conclusions. Correlation of poor prognosis and NR5A2 activity is identified by NR5A2-mediated 15-gene signature. NR5A2 may be a potential drug target for treating a subset of breast cancer tumors across breast cancer subtypes, especially ER(− breast tumors. The favorable prognostic feature of NR5A1 is predicted by NR5A1-mediated 8-gene signature.

  4. NCS-1 associates with adenosine A2A receptors and modulates receptor function

    Directory of Open Access Journals (Sweden)

    Gemma eNavarro

    2012-04-01

    Full Text Available Modulation of G protein-coupled receptor (GPCR signalling by local changes in intracellular calcium concentration is an established function of Calmodulin which is known to interact with many GPCRs. Less is known about the functional role of the closely related neuronal EF-hand Ca2+-sensor proteins that frequently associate with calmodulin targets with different functional outcome. In the present study we aimed to investigate if a target of calmodulin – the A2A adenosine receptor, is able to associate with two other neuronal calcium binding proteins, namely NCS-1 and caldendrin. Using bioluminescence resonance energy transfer and co-immunoprecipitation experiments we show the existence of A2A - NCS-1 complexes in living cells whereas caldendrin did not associate with A2A receptors under the conditions tested. Interestingly, NCS-1 binding modulated downstream A2A receptor intracellular signalling in a Ca2+-dependent manner. Taken together this study provides further evidence that neuronal Ca2+-sensor proteins play an important role in modulation of GPCR signalling.

  5. 抗精神病药对精神分裂症患者血小板腺苷A2a受体基因表达的影响%Effects of antipsychotics on platelet adenosine A2a receptor gene expression in un-medicated patients with schizophrenia

    Institute of Scientific and Technical Information of China (English)

    章杰; 王俊清; 张印南; 洪晓虹; 黄庆军; 吴仁华; 许崇涛

    2011-01-01

    examined as controls.Results There were no significant difference ( P > 0.05 ) in the mRNA level of ADA2aR between schizophrenics (747.6 ±282.3) and controls (692.7 ± 286.7) at baseline.There were also no significant correlation between mRNA level of ADA2aR and scores of Positive and Negative Symptoms Scales (PANSS) (P > 0.05 ) at baseline. After six-week antipsychotic treatment,the mRNA level of ADA2aR in schizophrenics ( 873.2 ± 206.2) were significantly higher than the baseline (747.6 ± 282.3 )and in controls ( 635.4 ± 263.2 ) ( all P < 0.05 ).No significant correlation between the mRNA level of ADA2aR and PANSS scores were found in schizophrenics and controls at baseline and endpoint (P > 0.05 ).There were also no significant correlation between changes in the mRNA level of ADA2aR and PANSS scores ( P > 0.05 ) in schizophrenics and controls.Conclusions The results suggested that antipsychotics treatment have effect on the gene expression level of adenosine A2a receptor on platelet and changes in gene expression level of adenosine A2a receptor could have no relationship with clinical symptom of schizophrenics.

  6. Adenosine A2A receptor hyperexpression in patients with severe SIRS after cardiopulmonary bypass.

    Science.gov (United States)

    Kerbaul, François; Bénard, Frédéric; Giorgi, Roch; Youlet, By; Carrega, Louis; Zouher, Ibrahim; Mercier, Laurence; Gérolami, Victoria; Bénas, Vincent; Blayac, Dorothée; Gariboldi, Vlad; Collart, Frédéric; Guieu, Régis

    2008-08-01

    Adenosine (ADO) is an endogenous nucleoside, which has been involved in blood pressure failure during severe systemic inflammatory response syndrome (severe SIRS) after cardiac surgery with cardiopulmonary bypass (CPB). Adenosine acts via its receptor subtypes, namely A1, A2A, A2B, or A3. Because A2A receptors are implicated in vascular tone, their expression might contribute to severe SIRS. We compared adenosine plasma levels (APLs) and A2A ADO receptor expression (ie, B, K, and mRNA amount) in patients with or without postoperative SIRS. : This was a prospective comparative observational study. Forty-four patients who underwent cardiac surgery involving CPB. Ten healthy subjects served as controls. Among the patients, 11 presented operative vasoplegia and postoperative SIRS (named complicated patients) and 33 were without vasoplegia or SIRS (named uncomplicated patients). Adenosine plasma levels, K, B, and mRNA amount (mean +/- SD) were measured on peripheral blood mononuclear cells. Adenosine plasma levels, B, and K were significantly higher in complicated patients than in uncomplicated patients (APLs: 2.7 +/- 1.0 vs 1.0 +/- 0.5 micromol l, P SIRS after CPB.

  7. Striatal pre- and postsynaptic profile of adenosine A(2A receptor antagonists.

    Directory of Open Access Journals (Sweden)

    Marco Orru

    Full Text Available Striatal adenosine A(2A receptors (A(2ARs are highly expressed in medium spiny neurons (MSNs of the indirect efferent pathway, where they heteromerize with dopamine D(2 receptors (D(2Rs. A(2ARs are also localized presynaptically in cortico-striatal glutamatergic terminals contacting MSNs of the direct efferent pathway, where they heteromerize with adenosine A(1 receptors (A(1Rs. It has been hypothesized that postsynaptic A(2AR antagonists should be useful in Parkinson's disease, while presynaptic A(2AR antagonists could be beneficial in dyskinetic disorders, such as Huntington's disease, obsessive-compulsive disorders and drug addiction. The aim or this work was to determine whether selective A(2AR antagonists may be subdivided according to a preferential pre- versus postsynaptic mechanism of action. The potency at blocking the motor output and striatal glutamate release induced by cortical electrical stimulation and the potency at inducing locomotor activation were used as in vivo measures of pre- and postsynaptic activities, respectively. SCH-442416 and KW-6002 showed a significant preferential pre- and postsynaptic profile, respectively, while the other tested compounds (MSX-2, SCH-420814, ZM-241385 and SCH-58261 showed no clear preference. Radioligand-binding experiments were performed in cells expressing A(2AR-D(2R and A(1R-A(2AR heteromers to determine possible differences in the affinity of these compounds for different A(2AR heteromers. Heteromerization played a key role in the presynaptic profile of SCH-442416, since it bound with much less affinity to A(2AR when co-expressed with D(2R than with A(1R. KW-6002 showed the best relative affinity for A(2AR co-expressed with D(2R than co-expressed with A(1R, which can at least partially explain the postsynaptic profile of this compound. Also, the in vitro pharmacological profile of MSX-2, SCH-420814, ZM-241385 and SCH-58261 was is in accordance with their mixed pre- and postsynaptic profile

  8. AMPA receptor pHluorin-GluA2 reports NMDA receptor-induced intracellular acidification in hippocampal neurons

    DEFF Research Database (Denmark)

    Rathje, Mette; Fang, Huaqiang; Bachman, Julia L;

    2013-01-01

    NMDA receptor activation promotes endocytosis of AMPA receptors, which is an important mechanism underlying long-term synaptic depression. The pH-sensitive GFP variant pHluorin fused to the N terminus of GluA2 (pH-GluA2) has been used to assay NMDA-mediated AMPA receptor endocytosis and recycling...

  9. Restriction of Receptor Movement Alters Cellular Response: Physical Force Sensing by EphA2

    Energy Technology Data Exchange (ETDEWEB)

    Salaita, Khalid; Nair, Pradeep M; Petit, Rebecca S; Neve, Richard M; Das, Debopriya; Gray, Joe W; Groves, Jay T

    2009-09-09

    Activation of the EphA2 receptor tyrosine kinase by ephrin-A1 ligands presented on apposed cell surfaces plays important roles in development and exhibits poorly understood functional alterations in cancer. We reconstituted this intermembrane signaling geometry between live EphA2-expressing human breast cancer cells and supported membranes displaying laterally mobile ephrin-A1. Receptor-ligand binding, clustering, and subsequent lateral transport within this junction were observed. EphA2 transport can be blocked by physical barriers nanofabricated onto the underlying substrate. This physical reorganization of EphA2 alters the cellular response to ephrin-A1, as observed by changes in cytoskeleton morphology and recruitment of a disintegrin and metalloprotease 10. Quantitative analysis of receptor-ligand spatial organization across a library of 26 mammary epithelial cell lines reveals characteristic differences that strongly correlate with invasion potential. These observations reveal a mechanism for spatio-mechanical regulation of EphA2 signaling pathways.

  10. Hormone-receptor expression and ovarian cancer survival

    DEFF Research Database (Denmark)

    Sieh, Weiva; Köbel, Martin; Longacre, Teri A

    2013-01-01

    Few biomarkers of ovarian cancer prognosis have been established, partly because subtype-specific associations might be obscured in studies combining all histopathological subtypes. We examined whether tumour expression of the progesterone receptor (PR) and oestrogen receptor (ER) was associated ...

  11. Expression of Androgen Receptor in Meningiomas

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to investigate the expression of androgen receptor (AR) in meningiomas and its relation to tumor proliferative potential, we examined the expression of AR and proliferating cell nuclear antigen (PCNA) by avidine-biotin complex immunohistochemistry in 39 cases of meningiomas. Of the 39 cases of meningiomas, 20(51 %) showed positive AR immunoreactivity. The AR expression positivity rates were 31 % (6/19) in benign meningiomas, 58 % (7/12) in atypical meningiomas, 87.5 % (7/8) in malignant meningiomas, respectively. In addition to the tumor cells, cells of microvascular endothelial proliferation were frequently AR positive. Malignant meningiomas had a significantly higher percentage of AR positive cells compared with atypical and benign meningiomas (P<0.05). The mean proliferating cell nuclear antigen labeling index (PCNA LI) was significantly higher in the malignant meningiomas when compared with atypical meningiomas (P<0.05) and benign meningiomas (P<0.05). AR positive meningiomas had higher PCNA LI than AR negative meningiomas (P<0.05). The expression of AR in tumor tissues was significantly related with PCNA LI. These data indicated that AR in the meningiomas was correlated with histological grade and AR might participate in the growth of these tumors and tumor angiogenesis. The measurement of AR in these tumors may indirectly represent tumor growth potential.

  12. Human basophils express interleukin-4 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Valent, P.; Besemer, J.; Kishi, K.; Di Padova, F.; Geissler, K.; Lechner, K.; Bettelheim, P. (Univ. of Vienna (Austria))

    1990-11-01

    Interleukin-4 (IL-4), a multipotential lymphokine reputed to play an important role in the regulation of immune responses, interacts with a variety of hemopoietic target cells through specific cell surface membrane receptors. The present study was designed to investigate whether human basophils express IL-4 binding sites. For this purpose, basophils were enriched to homogeneity (93% and 98% purity, respectively) from the peripheral blood of two chronic granulocytic leukemia (CGL) donors using a cocktail of monoclonal antibodies (MoAbs) and complement. Purified basophils bound 125I-radiolabeled recombinant human (rh) IL-4 in a specific manner. Quantitative binding studies and Scatchard plot analysis revealed the presence of a single class of high affinity IL-4 binding sites (280 +/- 40 sites per cell in donor 1 and 640 +/- 45 sites per cell in donor 2) with an apparent dissociation constant, kd, of 7.12 x 10(-11) +/- 2.29 x 10(-11) and 9.55 +/- 3.5 x 10(-11) mol/L, respectively. KU812-F, a human basophil precursor cell line, was found to express a single class of 810 to 1,500 high affinity IL-4 binding sites with a kd of 2.63 to 5.54 x 10(-10) mol/L. No change in the numbers or binding constants of IL-4 receptors was found after exposure of KU812-F cells to rhIL-3 (a potent activator of basophils) for 60 minutes. No effect of rhIL-4 on 3H-thymidine uptake, release or synthesis of histamine, or expression of basophil differentiation antigens (Bsp-1, CD11b, CD25, CD40, CD54) on primary human CGL basophils or KU812-F cells was observed.

  13. Selective adenosine A2A receptor agonists and antagonists protect against spinal cord injury through peripheral and central effects

    Directory of Open Access Journals (Sweden)

    Esposito Emanuela

    2011-04-01

    Full Text Available Abstract Background Permanent functional deficits following spinal cord injury (SCI arise both from mechanical injury and from secondary tissue reactions involving inflammation. Enhanced release of adenosine and glutamate soon after SCI represents a component in the sequelae that may be responsible for resulting functional deficits. The role of adenosine A2A receptor in central ischemia/trauma is still to be elucidated. In our previous studies we have demonstrated that the adenosine A2A receptor-selective agonist CGS21680, systemically administered after SCI, protects from tissue damage, locomotor dysfunction and different inflammatory readouts. In this work we studied the effect of the adenosine A2A receptor antagonist SCH58261, systemically administered after SCI, on the same parameters. We investigated the hypothesis that the main action mechanism of agonists and antagonists is at peripheral or central sites. Methods Spinal trauma was induced by extradural compression of SC exposed via a four-level T5-T8 laminectomy in mouse. Three drug-dosing protocols were utilized: a short-term systemic administration by intraperitoneal injection, a chronic administration via osmotic minipump, and direct injection into the spinal cord. Results SCH58261, systemically administered (0.01 mg/kg intraperitoneal. 1, 6 and 10 hours after SCI, reduced demyelination and levels of TNF-α, Fas-L, PAR, Bax expression and activation of JNK mitogen-activated protein kinase (MAPK 24 hours after SCI. Chronic SCH58261 administration, by mini-osmotic pump delivery for 10 days, improved the neurological deficit up to 10 days after SCI. Adenosine A2A receptors are physiologically expressed in the spinal cord by astrocytes, microglia and oligodendrocytes. Soon after SCI (24 hours, these receptors showed enhanced expression in neurons. Both the A2A agonist and antagonist, administered intraperitoneally, reduced expression of the A2A receptor, ruling out the possibility that the

  14. Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation.

    LENUS (Irish Health Repository)

    Wakai, A

    2012-02-03

    The effects of adenosine on neutrophil (polymorphonuclear neutrophils; PMN)-directed changes in vascular permeability are poorly characterized. This study investigated whether adenosine modulates activated PMN vascular endothelial growth factor (vascular permeability factor; VEGF) release and transendothelial migration. PMN activated with tumour necrosis factor-alpha (TNF-alpha, 10 ng\\/mL) were incubated with adenosine and its receptor-specific analogues. Culture supernatants were assayed for VEGF. PMN transendothelial migration across human umbilical vein endothelial cell (HUVEC) monolayers was assessed in vitro. Adhesion molecule receptor expression was assessed flow cytometrically. Adenosine and some of its receptor-specific analogues dose-dependently inhibited activated PMN VEGF release. The rank order of potency was consistent with the affinity profile of human A2B receptors. The inhibitory effect of adenosine was reversed by 3,7-dimethyl-1-propargylxanthine, an A2 receptor antagonist. Adenosine (100 microM) or the A2B receptor agonist 5\\'-N-ethylcarboxamidoadenosine (NECA, 100 microM) significantly reduced PMN transendothelial migration. However, expression of activated PMN beta2 integrins and HUVEC ICAM-1 were not significantly altered by adenosine or NECA. Adenosine attenuates human PMN VEGF release and transendothelial migration via the A2B receptor. This provides a novel target for the modulation of PMN-directed vascular hyperpermeability in conditions such as the capillary leak syndrome.

  15. Expressions and significance of IgG subtypes and M-type phospholipase A2 receptor (PLA2R) in membra-nous nephropathy%IgG亚型及M型磷脂酶A2受体在膜性肾病中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    韩伟霞; 高丽芳; 王莹; 张晓琴; 魏荣; 王晨

    2016-01-01

    Objective To investigate the expressions of IgG subtypes and M-type phospholipase A2 receptor (PLA2R) in membranous nephropathy (MN), and to retrospectively analyze its significance and value of differential di-agnosis in idiopathic membranous nephropathy (IMN) and undetermined atypical membranous nephropathy (UAMN). Methods A total of 120 cases of membranous nephropathy diagnosed by renal biopsy pathology (immunofluores-cence, light microscopy, and electron microscopy) in our hospital between February and September, 2015 were includ-ed in the study. The expressions of IgG subtypes and PLA2R were determined by immunohistochemistry, and retro-spectively analyzed, combined with the clinical data and pathological features. Their value in the differential diagnosis of IMN and UAMN was evaluated. Results ①A total of 120 cases were included, that IMN accounted for 69.2%and UAMN accounted for 30.8%. The average age of onset in the UAMN group was lower than that in the IMN group, and the difference was statistical significance, whereas no statistical difference was found in the level of urinary protein be-tween the two groups. ②The positive rates of IgA, IgM, C3, FRA, and C1q in the UAMN group were higher than those in the IMN group, and there were statistical differences in the expressions of IgA and complement C1q between the two groups. ③Positive IgG4 was mainly expressed in IMN group that the positive rate of IgG4 was significantly higher than the other IgG subtypes, and there was statistical difference between the IMN group and the UAMN group. In the UAMN group, positive IgG1 and IgG2 were highly expressed. The positive rate of IgG4 in the UAMN group was significantly lower than that in the IMN group. ④The positive rate of PLA2R was significantly higher than all IgG subtypes in the IMN group, and there was statistical difference between the IMN group and the UAMN group. ⑤In the evaluation of the value of IMN and UAMN by the differential diagnosis of IgG4 and

  16. Expressing exogenous functional odorant receptors in cultured olfactory sensory neurons

    Directory of Open Access Journals (Sweden)

    Fomina Alla F

    2008-09-01

    Full Text Available Abstract Background Olfactory discrimination depends on the large numbers of odorant receptor genes and differential ligand-receptor signaling among neurons expressing different receptors. In this study, we describe an in vitro system that enables the expression of exogenous odorant receptors in cultured olfactory sensory neurons. Olfactory sensory neurons in the culture express characteristic signaling molecules and, therefore, provide a system to study receptor function within its intrinsic cellular environment. Results We demonstrate that cultured olfactory sensory neurons express endogenous odorant receptors. Lentiviral vector-mediated gene transfer enables successful ectopic expression of odorant receptors. We show that the ectopically expressed mouse I7 is functional in the cultured olfactory sensory neurons. When two different odorant receptors are ectopically expressed simultaneously, both receptor proteins co-localized in the same olfactory sensory neurons up to 10 days in vitro. Conclusion This culture technique provided an efficient method to culture olfactory sensory neurons whose morphology, molecular characteristics and maturation progression resembled those observed in vivo. Using this system, regulation of odorant receptor expression and its ligand specificity can be studied in its intrinsic cellular environment.

  17. Role of adenosine A2b receptor overexpression in tumor progression.

    Science.gov (United States)

    Sepúlveda, Cesar; Palomo, Iván; Fuentes, Eduardo

    2016-12-01

    The adenosine A2b receptor is a G-protein coupled receptor. Its activation occurs with high extracellular adenosine concentration, for example in inflammation or hypoxia. These conditions are generated in the tumor environment. Studies show that A2b receptor is overexpressed in various tumor lines and biopsies from patients with different cancers. This suggests that A2b receptor can be used by tumor cells to promote progression. Thus A2b participates in different events, such as angiogenesis and metastasis, besides exerting immunomodulatory effects that protect tumor cells. Therefore, adenosine A2b receptor appears as an interesting therapeutic target for cancer treatment.

  18. Anti-phospholipase A2 receptor antibody in membranous nephropathy.

    Science.gov (United States)

    Qin, Weisong; Beck, Laurence H; Zeng, Caihong; Chen, Zhaohong; Li, Shijun; Zuo, Ke; Salant, David J; Liu, Zhihong

    2011-06-01

    The M-type phospholipase A2 receptor (PLA2R) is a target autoantigen in adult idiopathic membranous nephropathy (MN), but the prevalence of autoantibodies against PLA2R is unknown among Chinese patients with MN. Here, we measured anti-PLA2R antibody in the serum of 60 patients with idiopathic MN, 20 with lupus-associated MN, 16 with hepatitis B (HBV)-associated MN, and 10 with tumor-associated MN. Among patients with idiopathic MN, 49 (82%) had detectable anti-PLA2R autoantibodies using a Western blot assay; an assay with greater sensitivity detected very low titers of anti-PLA2R in 10 of the remaining 11 patients. Using the standard assay, we detected anti-PLA2R antibody in only 1 patient with lupus, 1 with HBV, and 3 with cancer, producing an overall specificity of 89% in this cohort limited to patients with secondary MN. The enhanced assay detected low titers of anti-PLA2R in only 2 additional samples of HBV-associated MN. In summary, these results suggest that PLA2R is a major target antigen in Chinese idiopathic MN and that detection of anti-PLA2R is a sensitive test for idiopathic MN.

  19. Estrogen receptor expression in adrenocortical carcinoma

    Institute of Scientific and Technical Information of China (English)

    Xiao-cao SHEN; Cai-xiao GU; Yi-qing QIU; Chuan-jun DU; Yan-biao FU; Jian-jun WU

    2009-01-01

    Objective: Adrenocortical carcinoma (ACC) is a rare but highly malignant tumor, and its diagnosis is mostly delayed and prognosis is poor. We report estrogen receptor (ER) expression in this tumor and our clinical experiences with 17 ACC cases. Methods: The data of the 17 patients (9 females and 8 males, age range from 16 to 69 years, mean age of 42.6 years) with ACC were reviewed, and symptoms, diagnostic procedures, treatment, and results of follow-up were evaluated. Immunohistochemistry was used to detect ER expression in tumor samples from the 17 patients. Results: At the time of diagnosis, 4 tumors were classified as Stage Ⅰ, 4 as Stage Ⅱ, 3 as Stage Ⅲ, and 6 as Stage Ⅳ. Eight patients demonstrated positive nuclear immunostaining of ER. The prognosis of patients with ER positive was significantly better (P<0.05) than that of patients with ER negative, with 1- and 5-year survival rates at 86% and 60% for ER-positive patients, and 38% and 0% for ER-negative patients, respectively. Conclusion: ER-positivity may be one of the factors associated with a worse prognosis of ACC.

  20. Vasopressin V1 receptors contribute to hemodynamic and sympathoinhibitory responses evoked by stimulation of adenosine A2a receptors in NTS.

    Science.gov (United States)

    Scislo, Tadeusz J; O'Leary, Donal S

    2006-05-01

    Activation of adenosine A2a receptors in the nucleus of the solitary tract (NTS) decreases mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), whereas increases in preganglionic adrenal sympathetic nerve activity (pre-ASNA) occur, a pattern similar to that observed during hypotensive hemorrhage. Central vasopressin V1 receptors may contribute to posthemorrhagic hypotension and bradycardia. Both V1 and A2a receptors are densely expressed in the NTS, and both of these receptors are involved in cardiovascular control; thus they may interact. The responses elicited by NTS A2a receptors are mediated mostly via nonglutamatergic mechanisms, possibly via release of vasopressin. Therefore, we investigated whether blockade of NTS V1 receptors alters the autonomic response patterns evoked by stimulation of NTS A2a receptors (CGS-21680, 20 pmol/50 nl) in alpha-chloralose-urethane anesthetized male Sprague-Dawley rats. In addition, we compared the regional sympathetic responses to microinjections of vasopressin (0.1-100 ng/50 nl) into the NTS. Blockade of V1 receptors reversed the normal decreases in MAP into increases (-95.6 +/- 28.3 vs. 51.4 +/- 15.7 integralDelta%), virtually abolished the decreases in HR (-258.3 +/- 54.0 vs. 18.9 +/- 57.8 integralDeltabeats/min) and RSNA (-239.3 +/- 47.4 vs. 15.9 +/- 36.1 integralDelta%), and did not affect the increases in pre-ASNA (279.7 +/- 48.3 vs. 233.1 +/- 54.1 integralDelta%) evoked by A2a receptor stimulation. The responses partially returned toward normal values approximately 90 min after the blockade. Microinjections of vasopressin into the NTS evoked dose-dependent decreases in HR and RSNA and variable MAP and pre-ASNA responses with a tendency toward increases. We conclude that the decreases in MAP, HR, and RSNA in response to NTS A2a receptor stimulation may be mediated via release of vasopressin from neural terminals in the NTS. The differential effects of NTS V1 and A2a receptors on

  1. The importance of the adenosine A(2A) receptor-dopamine D(2) receptor interaction in drug addiction.

    Science.gov (United States)

    Filip, M; Zaniewska, M; Frankowska, M; Wydra, K; Fuxe, K

    2012-01-01

    Drug addiction is a serious brain disorder with somatic, psychological, psychiatric, socio-economic and legal implications in the developed world. Illegal (e.g., psychostimulants, opioids, cannabinoids) and legal (alcohol, nicotine) drugs of abuse create a complex behavioral pattern composed of drug intake, withdrawal, seeking and relapse. One of the hallmarks of drugs that are abused by humans is that they have different mechanisms of action to increase dopamine (DA) neurotransmission within the mesolimbic circuitry of the brain and indirectly activate DA receptors. Among the DA receptors, D(2) receptors are linked to drug abuse and addiction because their function has been proven to be correlated with drug reinforcement and relapses. The recognition that D(2) receptors exist not only as homomers but also can form heteromers, such as with the adenosine (A)(2A) receptor, that are pharmacologically and functionally distinct from their constituent receptors, has significantly expanded the range of potential drug targets and provided new avenues for drug design in the search for novel drug addiction therapies. The aim of this review is to bring current focus on A(2A) receptors, their physiology and pharmacology in the central nervous system, and to discuss the therapeutic relevance of these receptors to drug addiction. We concentrate on the contribution of A(2A) receptors to the effects of different classes of drugs of abuse examined in preclinical behavioral experiments carried out with pharmacological and genetic tools. The consequences of chronic drug treatment on A(2A) receptor-assigned functions in preclinical studies are also presented. Finally, the neurochemical mechanism of the interaction between A(2A) receptors and drugs of abuse in the context of the heteromeric A(2A)-D(2) receptor complex is discussed. Taken together, a significant amount of experimental analyses provide evidence that targeting A(2A) receptors may offer innovative translational strategies

  2. Functional expression of rat VPAC1 receptor in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hansen, M.K.; Tams, J.W.; Fahrenkrug, Jan;

    1999-01-01

    G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide......G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide...

  3. Expression of histamine receptors in the human endolymphatic sac

    DEFF Research Database (Denmark)

    Møller, M Nue; Kirkeby, S; Vikeså, J.

    2016-01-01

    in 2012. This leaves betahistine (Betaserc) as the only drug for potential prevention of the incapacitating attacks of dizziness, tinnitus and hearing loss. However, the histamine receptors targeted by betahistine have never been demonstrated in the human ES. Accordingly, this study aims to investigate...... the expression of histamine receptors of the human ES epithelium and sub-epithelial stroma. Following sampling of human endolymphatic sac tissue during translabyrinthine surgery, the expression of histamine receptor genes was determined by cDNA microarray analysis. Results were subsequently verified by immuno......-histochemistry. The combined results of microarrays and immuno-histochemistry showed expression of the histamine receptor HRH1 in the epithelial lining of the ES, whereas HRH3 was expressed exclusively in the sub-epithelial capillary network. Receptors HRH2 and -4 were not expressed. The present data provide the first direct...

  4. Distribution of cellular HSV-1 receptor expression in human brain.

    Science.gov (United States)

    Lathe, Richard; Haas, Juergen G

    2016-12-15

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of these receptor molecules in different areas of the adult and developing human brain using online transcriptome databases. Whereas all HSV-1 receptors showed distinct expression patterns in different brain areas, the Allan Brain Atlas (ABA) reported increased expression of both gD and gB receptors in the hippocampus. Specifically, for PVRL1, TNFRFS14, and MYH9, the differential z scores for hippocampal expression, a measure of relative levels of increased expression, rose to 2.9, 2.9, and 2.5, respectively, comparable to the z score for the archetypical hippocampus-enriched mineralocorticoid receptor (NR3C2, z = 3.1). These data were confirmed at the Human Brain Transcriptome (HBT) database, but HBT data indicate that MAG expression is also enriched in hippocampus. The HBT database allowed the developmental pattern of expression to be investigated; we report that all HSV1 receptors markedly increase in expression levels between gestation and the postnatal/adult periods. These results suggest that differential receptor expression levels of several HSV-1 gD and gB receptors in the adult hippocampus are likely to underlie the susceptibility of this brain region to HSV-1 infection.

  5. Caffeine induces CYP1A2 expression in rat hepatocytes but not in human hepatocytes.

    Science.gov (United States)

    Vaynshteyn, David; Jeong, Hyunyoung

    2012-06-01

    Caffeine is the active constituent in coffee. Continual consumption of caffeine can lead to an attenuated response also known as tolerance. Results from rat studies have shown that caffeine is an inducer of CYP1A2, the enzyme responsible for caffeine's metabolism. This suggests that CYP1A2 induction by caffeine may be in part responsible for caffeine tolerance. However, whether caffeine induces CYP1A2 expression in humans remains unknown. Our results from luciferase assays performed in HepG2 cells showed that caffeine is not an activator of the aromatic hydrocarbon receptor (AhR), a major transcription factor involved in upregulation of CYP1A2. Furthermore, caffeine did not induce CYP1A2 expression in primary human hepatocytes at a concentration attained by ordinary coffee drinking. On the other hand, caffeine enhanced CYP1A2 expression by 9-fold in rat hepatocytes. Our results suggest that caffeine from ordinary coffee drinking does not induce CYP1A2 expression in humans and that factors other than CYP1A2 induction by caffeine likely contribute to development of caffeine tolerance in humans.

  6. Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids.

    Science.gov (United States)

    Carriba, Paulina; Ortiz, Oskar; Patkar, Kshitij; Justinova, Zuzana; Stroik, Jessica; Themann, Andrea; Müller, Christa; Woods, Anima S; Hope, Bruce T; Ciruela, Francisco; Casadó, Vicent; Canela, Enric I; Lluis, Carme; Goldberg, Steven R; Moratalla, Rosario; Franco, Rafael; Ferré, Sergi

    2007-11-01

    The mechanism of action responsible for the motor depressant effects of cannabinoids, which operate through centrally expressed cannabinoid CB1 receptors, is still a matter of debate. In the present study, we report that CB1 and adenosine A2A receptors form heteromeric complexes in co-transfected HEK-293T cells and rat striatum, where they colocalize in fibrilar structures. In a human neuroblastoma cell line, CB1 receptor signaling was found to be completely dependent on A2A receptor activation. Accordingly, blockade of A2A receptors counteracted the motor depressant effects produced by the intrastriatal administration of a cannabinoid CB1 receptor agonist. These biochemical and behavioral findings demonstrate that the profound motor effects of cannabinoids depend on physical and functional interactions between striatal A2A and CB1 receptors.

  7. High-level expression of a full-length Eph receptor.

    Science.gov (United States)

    Paavilainen, Sari; Grandy, David; Karelehto, Eveliina; Chang, Elizabeth; Susi, Petri; Erdjument-Bromage, Hediye; Nikolov, Dimitar; Himanen, Juha

    2013-11-01

    Eph receptors are the largest family of Receptor Tyrosine Kinases containing a single membrane-spanning segment. They are involved in a various developmental and cell-cell communication events. Although there is extensive structural information available on both the extra- and intracellular regions of Eph's in isolation, no structures are available for the entire receptor. To facilitate structural studies on functionally relevant Eph/ephrin complexes, we have developed an expression system for producing the full-length human EphA2 receptor. We successfully expressed milligram amounts of the receptor using baculovirus-based vector and insect cells. We were also able to extract the protein from the cell membranes and purify it to near homogeneity in two simple steps. The purified receptor was shown to retain its biological activity in terms of both binding to its functional ligands and being able to auto-phosphorylate the key tyrosine residues of the cytoplasmic kinase domain.

  8. Expression of the endocannabinoid receptors in human fascial tissue

    Directory of Open Access Journals (Sweden)

    C. Fede

    2016-06-01

    Full Text Available Cannabinoid receptors have been localized in the central and peripheral nervous system as well as on cells of the immune system, but recent studies on animal tissue gave evidence for the presence of cannabinoid receptors in different types of tissues. Their presence was supposed also in myofascial tissue, suggesting that the endocannabinoid system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia. However, until now the expression of CB1 (cannabinoid receptor 1 and CB2 (cannabinoid receptor 2 in fasciae has not yet been established. Small samples of fascia were collected from volunteers patients during orthopedic surgery. For each sample were done a cell isolation, immunohistochemical investigation (CB1 and CB2 antibodies and real time RT-PCR to detect the expression of CB1 and CB2. Both cannabinoid receptors are expressed in human fascia and in human fascial fibroblasts culture cells, although to a lesser extent than the control gene. We can assume that the expression of mRNA and protein of CB1 and CB2 receptors in fascial tissue are concentrated into the fibroblasts. This is the first demonstration that the fibroblasts of the muscular fasciae express CB1 and CB2. The presence of these receptors could help to provide a description of cannabinoid receptors distribution and to better explain the role of fasciae as pain generator and the efficacy of some fascial treatments. Indeed the endocannabinoid receptors of fascial fibroblasts can contribute to modulate the fascial fibrosis and inflammation.

  9. Elevated Adenosine Induces Placental DNA Hypomethylation Independent of A2B Receptor Signaling in Preeclampsia.

    Science.gov (United States)

    Huang, Aji; Wu, Hongyu; Iriyama, Takayuki; Zhang, Yujin; Sun, Kaiqi; Song, Anren; Liu, Hong; Peng, Zhangzhe; Tang, Lili; Lee, Minjung; Huang, Yun; Ni, Xin; Kellems, Rodney E; Xia, Yang

    2017-07-01

    Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia. © 2017 American Heart Association, Inc.

  10. Vaccination with EphA2-derived T cell-epitopes promotes immunity against both EphA2-expressing and EphA2-negative tumors

    Directory of Open Access Journals (Sweden)

    Hatano Manabu

    2004-11-01

    Full Text Available Abstract Background A novel tyrosine kinase receptor EphA2 is expressed at high levels in advanced and metastatic cancers. We examined whether vaccinations with synthetic mouse EphA2 (mEphA2-derived peptides that serve as T cell epitopes could induce protective and therapeutic anti-tumor immunity. Methods C57BL/6 mice received subcutaneous (s.c. vaccinations with bone marrow-derived dendritic cells (DCs pulsed with synthetic peptides recognized by CD8+ (mEphA2671–679, mEphA2682–689 and CD4+ (mEphA230–44 T cells. Splenocytes (SPCs were harvested from primed mice to assess the induction of cytotoxic T lymphocyte (CTL responses against syngeneic glioma, sarcoma and melanoma cell lines. The ability of these vaccines to prevent or treat tumor (s.c. injected MCA205 sarcoma or B16 melanoma; i.v. injected B16-BL6 establishment/progression was then assessed. Results Immunization of C57BL/6 mice with mEphA2-derived peptides induced specific CTL responses in SPCs. Vaccination with mEPhA2 peptides, but not control ovalbumin (OVA peptides, prevented the establishment or prevented the growth of EphA2+ or EphA2-negative syngeneic tumors in both s.c. and lung metastasis models. Conclusions These data indicate that mEphA2 can serve as an attractive target against which to direct anti-tumor immunity. The ability of mEphA2 vaccines to impact EphA2-negative tumors such as the B16 melanoma may suggest that such beneficial immunity may be directed against alternative EphA2+ target cells, such as the tumor-associated vascular endothelial cells.

  11. Characterization of the A2B adenosine receptor from mouse, rabbit, and dog.

    Science.gov (United States)

    Auchampach, John A; Kreckler, Laura M; Wan, Tina C; Maas, Jason E; van der Hoeven, Dharini; Gizewski, Elizabeth; Narayanan, Jayashree; Maas, Garren E

    2009-04-01

    We have cloned and pharmacologically characterized the A(2B) adenosine receptor (AR) from the dog, rabbit, and mouse. The full coding regions of the dog and mouse A(2B)AR were obtained by reverse transcriptase-polymerase chain reaction, and the rabbit A(2B)AR cDNA was obtained by screening a rabbit brain cDNA library. It is noteworthy that an additional clone was isolated by library screening that was identical in sequence to the full-length rabbit A(2B)AR, with the exception of a 27-base pair deletion in the region encoding amino acids 103 to 111 (A(2B)AR(103-111)). This 9 amino acid deletion is located in the second intracellular loop at the only known splice junction of the A(2B)AR and seems to result from the use of an additional 5' donor site found in the rabbit and dog but not in the human, rat, or mouse sequences. [(3)H]3-Isobutyl-8-pyrrolidinoxanthine and 8-[4-[((4-cyano-[2,6-(3)H]-phenyl)carbamoylmethyl)oxy]phenyl]-1,3-di(n-propyl)xanthine ([(3)H]MRS 1754) bound with high affinity to membranes prepared from human embryonic kidney (HEK) 293 cells expressing mouse, rabbit, and dog A(2B)ARs. Competition binding studies performed with a panel of agonist (adenosine and 2-amino-3,5-dicyano-4-phenylpyridine analogs) and antagonist ligands identified similar potency orders for the A(2B)AR orthologs, although most xanthine antagonists displayed lower binding affinity for the dog A(2B)AR compared with A(2B)ARs from rabbit and mouse. No specific binding could be detected with membranes prepared from HEK 293 cells expressing the rabbit A(2B)AR(103-111) variant. Furthermore, the variant failed to stimulate adenylyl cyclase or calcium mobilization. We conclude that significant differences in antagonist pharmacology of the A(2B)AR exist between species and that some species express nonfunctional variants of the A(2B)AR due to "leaky" splicing.

  12. CONSTITUTIVE ANDROSTANE RECEPTOR DEPENDENT AND INDEPENDENT MODULATION OF CYP3A2, CYP1A2 BY PHENOBARBITAL AND FIBRATE IN RATS’ LIVER

    Directory of Open Access Journals (Sweden)

    Zein Shaban Ibrahim

    2013-01-01

    Full Text Available Cytochrome P450 enzymes, CYP3A and CYP1A are major drug metabolizing enzymes in the liver. CYP3A enzymes have a major role in the metabolism of 30-40% of all used drugs. CYP1A2 is a key enzyme having an important role in the metabolic clearance of 5% of currently marketed drugs. CYP1A2 participates in the metabolic activation of chemical mutagens in cooked food, therefore its activity is suspected to be one of the possible risk factors determining the carcinogenicity of heterocyclic amines in human beings. In a previous report, we have reported the induction of CYP3A2 and the inhibition of CYP1A2 by Fibrate (CFA and proved CYP1A2 inhibition to be PPARα-dependent. CYP3A2 and CYP1A2 have been reported to be induced in the liver by Phenobarbital (PB while Fibrates was reported to induce CYP3A2. However the exact mechanism of the induction of CYP3A2 by CFA and PB and induction of CYP1A2 by PB has not been clarified yet whether it is through Constitutive Androstane Receptor (CAR or other receptor as PPARα or Pregnane X Receptor (PXR. We treated Wistar female rats (with normal expression of CAR protein and Wistar femal Kyoto rats (with low expression of CAR protein with PB and Clofibric Acid (CFA. PB caused a high CYP3A2 induction in Wistar female rats and a low induction in (WKY indicating that PB induced CYP3A2 in a CAR-dependent manner. Interestingly, PB treatment induced CYP1A2 in Wistar female rats and failed to induce it in (WKY indicating that the induction of CYP1A2 by PB to be CAR-dependent. Moreover CFA induced CYP3A2 protein similarly in both rat strains indicating that CYP3A2 induction by Fibrates is CAR-independent and most probably to be PXR or PPARα-dependent. For the best of our knowledge this is the first report that shows a clear evidence of the CAR-dependent induction of CYP1A2 and CYP3A2 by PB and the CAR-independent induction of CYP3A2 by fibrates.

  13. Role of the Phospholipase A2 Receptor in Liposome Drug Delivery in Prostate Cancer Cells

    Science.gov (United States)

    2015-01-01

    The M-type phospholipase A2 receptor (PLA2R1) is a member of the C-type lectin superfamily and can internalize secreted phospholipase A2 (sPLA2) via endocytosis in non-cancer cells. sPLA2 itself was recently shown to be overexpressed in prostate tumors and to be a possible mediator of metastasis; however, little is known about the expression of PLA2R1 or its function in prostate cancers. Thus, we examined PLA2R1 expression in primary prostate cells (PCS-440-010) and human prostate cancer cells (LNCaP, DU-145, and PC-3), and we determined the effect of PLA2R1 knockdown on cytotoxicity induced by free or liposome-encapsulated chemotherapeutics. Immunoblot analysis demonstrated that the expression of PLA2R1 was higher in prostate cancer cells compared to that in primary prostate cells. Knockdown of PLA2R1 expression in PC-3 cells using shRNA increased cell proliferation and did not affect the toxicity of cisplatin, doxorubicin (Dox), and docetaxel. In contrast, PLA2R1 knockdown increased the in vitro toxicity of Dox encapsulated in sPLA2 responsive liposomes (SPRL) and correlated with increased Dox and SPRL uptake. Knockdown of PLA2R1 also increased the expression of Group IIA and X sPLA2. These data show the novel findings that PLA2R1 is expressed in prostate cancer cells, that PLA2R1 expression alters cell proliferation, and that PLA2R1 modulates the behavior of liposome-based nanoparticles. Furthermore, these studies suggest that PLA2R1 may represent a novel molecular target for controlling tumor growth or modulating delivery of lipid-based nanomedicines. PMID:25189995

  14. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation.

    Science.gov (United States)

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G; Beazely, Michael A

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  15. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    Directory of Open Access Journals (Sweden)

    Anshula eSamarajeewa

    2014-11-01

    Full Text Available The serotonin (5-HT type 7 receptor is expressed throughout the CNS including cortical neurons. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA-induced toxicity. The tropomyosin-related kinase B (TrkB receptor is one of the receptors for brain-derived neurotrophic factor (BDNF and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins towards the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  16. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    Science.gov (United States)

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  17. Regulation of gonadotropin receptor gene expression

    NARCIS (Netherlands)

    A.P.N. Themmen (Axel); R. Kraaij (Robert); J.A. Grootegoed (Anton)

    1994-01-01

    textabstractThe receptors for the gonadotropins differ from the other G protein-coupled receptors by having a large extracellular hormone-binding domain, encoded by nine or ten exons. Alternative splicing of the large pre-mRNA of approximately 100 kb can result in mRNA species that encode truncated

  18. Dcc haploinsufficiency regulates dopamine receptor expression across postnatal lifespan.

    Science.gov (United States)

    Pokinko, Matthew; Grant, Alanna; Shahabi, Florence; Dumont, Yvan; Manitt, Colleen; Flores, Cecilia

    2017-03-27

    Adolescence is a period during which the medial prefrontal cortex (mPFC) undergoes significant remodeling. The netrin-1 receptor, deleted in colorectal cancer (DCC), controls the extent and organization of mPFC dopamine connectivity during adolescence and in turn directs mPFC functional and structural maturation. Dcc haploinsufficiency leads to increased mPFC dopamine input, which causes improved cognitive processing and resilience to behavioral effects of stimulant drugs of abuse. Here we examine the effects of Dcc haploinsufficiency on the dynamic expression of dopamine receptors in forebrain targets of C57BL6 mice. We conducted quantitative receptor autoradiography experiments with [(3)H]SCH-23390 or [(3)H]raclopride to characterize D1 and D2 receptor expression in mPFC and striatal regions in male Dcc haploinsufficient and wild-type mice. We generated autoradiograms at early adolescence (PND21±1), mid-adolescence (PND35±2), and adulthood (PND75±15). C57BL6 mice exhibit overexpression and pruning of D1, but not D2, receptors in striatal regions, and a lack of dopamine receptor pruning in the mPFC. We observed age- and region-specific differences in D1 and D2 receptor density between Dcc haploinsufficient and wild-type mice. Notably, neither group shows the typical pattern of mPFC dopamine receptor pruning in adolescence, but adult haploinsufficient mice show increased D2 receptor density in the mPFC. These results show that DCC receptors contribute to the dynamic refinement of D1 and D2 receptor expression in striatal regions across adolescence. The age-dependent expression of dopamine receptor in C57BL6 mice shows marked differences from previous characterizations in rats.

  19. High expression of NPY receptors in the human testis.

    Science.gov (United States)

    Körner, Meike; Waser, Beatriche; Thalmann, George N; Reubii, Jean Claude

    2011-04-30

    NPY receptors represent novel molecular therapeutic targets in cancer and obesity. However, the extent of NPY receptor expression in normal human tissues is poorly investigated. Based on the role of NPY in reproductive functions, the NPY receptor expression was studied in 25 normal human testes and, additionally, 24 testicular tumors using NPY receptor autoradiography. In the normal testis, Leydig cells strongly expressed NPY receptor subtype Y2, and small arterial blood vessels Y1. Y2 receptors were found to be functional with agonist-stimulated [(35)S]GTPγS binding autoradiography. Full functional integrity of the NPY system was further suggested by the immunohistochemical detection of NPY peptide in nerve fibers directly adjacent to Leydig cells and arteries. Germ cell tumors expressed Y1 and Y2 on tumor cells in 33% and Y1 on intratumoral blood vessels in 50%. Based on its strong NPY receptor expression in Leydig cells and blood vessels, the normal human testis represents a potentially important physiological and pharmalogical NPY target.

  20. Expression of luteinizing hormone receptors in the mouse penis.

    Science.gov (United States)

    Kokk, Kersti; Kuuslahti, Marianne; Keisala, Tiina; Purmonen, Sami; Kaipia, Antti; Tammela, Teuvo; Orro, Helen; Simovart, Helle-Evi; Pöllänen, Pasi

    2011-01-01

    The role of luteinizing hormone (LH) in the regulation of normal reproductive functions in males and females is quite well established. Besides the expression of LH receptors in the target cells in gonads, it has been found in several extragonadal organs. There is no information about the expression of LH receptors in the penis up to now. The aim of the present study is to investigate the expression of the LH receptor in the mouse penis to see if LH effects are possible in the penis. BALB/c mice were used as donors of normal penis and testis tissue. Immunocytochemistry, Western blotting, and quantitative reverse transcriptase polymerase chain reactions (RT-PCRs) were used for the detection of the LH receptor. Positive immunoreaction for LH receptors was present in the nuclei of urethral epithelium and endothelial cells of cavernous spaces in the corpus cavernosum and corpus spongiosum penis. Western blotting experiments demonstrated the presence of LH antigen at M(r) = 97.4 and 78 kd. Quantitative RT-PCRs confirmed the expression of LH receptor in the penis. Our results show that LH receptor is expressed in the body of the mouse penis; thus, it may directly regulate functions of penile tissue.

  1. Role of nuclear receptor NR4A2 in gastrointestinal inflammation and cancers

    Institute of Scientific and Technical Information of China (English)

    Yi-Fang Han; Guang-Wen Cao

    2012-01-01

    NR4A2 is a transcription factor belonging to the steroid orphan nuclear receptor superfamily.It was originally considered to be essential in the generation and maintenance of dopaminergic neurons,and associated with neurological disorders such as Parkinson's disease.Recently,NR4A2 has been found to play a critical role in some inflammatory diseases and cancer.NR4A2 can be efficiently trans-activated by some proinflammatory cytokines,such as tumor necrosis factor-α,interleukin-1β,and vascular endothelial growth factor (VEGF).The nuclear factor-κB signaling pathway serves as a principal regulator of inducible NR4A expression in immune cells.NR4A2 can trans-activate Foxp3,a hallmark specifically expressed in regulatory T (Treg) cells,and plays a critical role in the differentiation,maintenance,and function of Treg cells.NR4A2 in T lymphocytes is pivotal for Treg cell induction and suppression of aberrant induction of Th1 under physiological and pathological conditions.High density of Foxp3+ Treg cells is significantly associated with gastrointestinal inflammation,tumor immune escape,and disease progression.NR4A2 is produced at high levels in CD133+ colorectal carcinoma (CRC) cells and significantly upregulated by cyclooxygenase-2-derived prostaglandin E2 in a cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)-dependent manner in CRC cells.The cAMP/PKA signaling pathway is the common pathway of NR4A2-related inflammation and cancer.NR4A2 trans-activates osteopontin,a direct target of the Wnt/β-catenin pathway associated with CRC invasion,metastasis,and poor prognosis.Knockdown of endogenous NR4A2 expression attenuates VEGF-induced endothelial cell proliferation,migration and in vivo angiogenesis.Taken together,NR4A2 emerges as an important nuclear factor linking gastrointestinal inflammation and cancer,especially CRC,and should serve as a candidate therapeutic target for inflammation-related gastrointestinal cancer.

  2. Cloning and expression of the rabbit prostaglandin EP2 receptor

    OpenAIRE

    Guan, Youfei; Stillman, Brett A.; Zhang, Yahua; Schneider, André; Saito, Osamu; Davis, Linda S.; Redha, Reyadh; Breyer, Richard M.; Breyer, Matthew D.

    2002-01-01

    Background Prostaglandin E2 (PGE2) has multiple physiologic roles mediated by G protein coupled receptors designated E-prostanoid, or "EP" receptors. Evidence supports an important role for the EP2 receptor in regulating fertility, vascular tone and renal function. Results The full-length rabbit EP2 receptor cDNA was cloned. The encoded polypeptide contains 361 amino acid residues with seven hydrophobic domains. COS-1 cells expressing the cloned rabbit EP2 exhibited specific [3H]PGE2 binding ...

  3. Adenosine A2B receptor: from cell biology to human diseases

    Science.gov (United States)

    Sun, Ying; Huang, Pingbo

    2016-08-01

    Extracellular adenosine is a ubiquitous signaling molecule that modulates a wide array of biological processes. Recently, significant advances have been made in our understanding of A2B adenosine receptor (A2BAR). In this review, we first summarize some of the general characteristics of A2BAR, and then we describe the multiple binding partners of the receptor, such as newly identified α-actinin-1 and p105, and discuss how these associated proteins could modulate A2BAR’s functions, including certain seemingly paradoxical functions of the receptor. Growing evidence indicates a critical role of A2BAR in cancer, renal disease, and diabetes, in addition to its importance in the regulation of vascular diseases and lung disease. Here, we also discuss the role of A2BAR in cancer, renal disease, and diabetes and the potential of the receptor as a target for treating these three diseases.

  4. Increased Expression of Cannabinoid CB1 Receptors in Achilles Tendinosis

    Science.gov (United States)

    Björklund, Emmelie; Forsgren, Sture; Alfredson, Håkan; Fowler, Christopher J.

    2011-01-01

    Background The endogenous cannabinoid system is involved in the control of pain. However, little is known as to the integrity of the cannabinoid system in human pain syndromes. Here we investigate the expression of the cannabinoid receptor 1 (CB1) in human Achilles tendons from healthy volunteers and from patients with Achilles tendinosis. Methodology Cannabinoid CB1 receptor immunoreactivity (CB1IR) was evaluated in formalin-fixed biopsies from individuals suffering from painful Achilles tendinosis in comparison with healthy human Achilles tendons. Principal Findings CB1IR was seen as a granular pattern in the tenocytes. CB1IR was also observed in the blood vessel wall and in the perineurium of the nerve. Quantification of the immunoreactivity in tenocytes showed an increase of CB1 receptor expression in tendinosis tissue compared to control tissue. Conclusion Expression of cannabinoid receptor 1 is increased in human Achilles tendinosis suggesting that the cannabinoid system may be dysregulated in this disorder. PMID:21931835

  5. Increased expression of cannabinoid CB₁ receptors in Achilles tendinosis.

    Directory of Open Access Journals (Sweden)

    Emmelie Björklund

    Full Text Available BACKGROUND: The endogenous cannabinoid system is involved in the control of pain. However, little is known as to the integrity of the cannabinoid system in human pain syndromes. Here we investigate the expression of the cannabinoid receptor 1 (CB₁ in human Achilles tendons from healthy volunteers and from patients with Achilles tendinosis. METHODOLOGY: Cannabinoid CB₁ receptor immunoreactivity (CB₁IR was evaluated in formalin-fixed biopsies from individuals suffering from painful Achilles tendinosis in comparison with healthy human Achilles tendons. PRINCIPAL FINDINGS: CB₁IR was seen as a granular pattern in the tenocytes. CB₁IR was also observed in the blood vessel wall and in the perineurium of the nerve. Quantification of the immunoreactivity in tenocytes showed an increase of CB₁ receptor expression in tendinosis tissue compared to control tissue. CONCLUSION: Expression of cannabinoid receptor 1 is increased in human Achilles tendinosis suggesting that the cannabinoid system may be dysregulated in this disorder.

  6. Prostaglandin F receptor expression in intrauterine tissues of pregnant rats

    Science.gov (United States)

    Kanca, Halit; Yar, Atiye Seda; Helvacioğlu, Fatma; Menevşe, Sevda; Çalgüner, Engin; Erdoğan, Deniz

    2014-01-01

    In this investigation, we studied the expression and localization of rat prostaglandin F (FP) receptor in uterine tissues of rats on gestational Days 10, 15, 18, 20, 21, 21.5 and postpartal Days 1 and 3 using Western blotting analysis, real-time PCR, and immunohistochemistry. A high level of immunoreactivity was observed on gestational Days 20, 21, and 21.5 with the most significant signals found on Day 20. FP receptor protein was expressed starting on gestational Day 15, and a fluctuating unsteady increase was observed until delivery. Uterine FP receptor mRNA levels were low between Days 10 and 18 of gestation (p < 0.05). The transcript level increased significantly on Day 20 and peaked on Day 21.5 just before labor (p < 0.05). There was a positive correlation between FP receptor mRNA expression and serum estradiol levels (rs = 0.78; p < 0.01) along with serum estradiol/progesterone ratios (rs = 0.79; p < 0.01). In summary, we observed an increase FP receptor expression in rat uterus with advancing gestation, a marked elevation of expression at term, and a concominant decrease during the postpartum period. These findings indicate a role for uterine FP receptors in the mediation of uterine contractility at term. PMID:24136214

  7. Role of Adenosine Receptor A2A in Traumatic Optic Neuropathies

    Science.gov (United States)

    2015-02-01

    in vivo effect of CGS21680 is important for the development of a receptor based therapy for TON. Future chal lenges include the development of...receptor agonist CGS 21680 reduces JNK MAPK activation in oligodendrocytes in injured spinal cord. Shock 32, 578–585. Gerits, N., Kostenko, S...tissues of diabetic rat. They suggested that the expression of AK to some extent is controlled by insulin . Reduced AK expression is also reported in

  8. Expression and function of nicotinic acetylcholine receptors in stem cells

    Directory of Open Access Journals (Sweden)

    Herman S. Cheung

    2016-07-01

    Full Text Available Nicotinic acetylcholine receptors are prototypical ligand gated ion channels typically found in muscular and neuronal tissues. Functional nicotinic acetylcholine receptors, however, have also recently been identified on other cell types, including stem cells. Activation of these receptors by the binding of agonists like choline, acetylcholine, or nicotine has been implicated in many cellular changes. In regards to stem cell function, nicotinic acetylcholine receptor activation leads to changes in stem cell proliferation, migration and differentiation potential. In this review we summarize the expression and function of known nicotinic acetylcholine receptors in different classes of stem cells including: pluripotent stem cells, mesenchymal stem cells, periodontal ligament derived stem cells, and neural progenitor cells and discuss the potential downstream effects of receptor activation on stem cell function.

  9. Orphan nuclear receptor NR4A2 inhibits hepatic stellate cell proliferation through MAPK pathway in liver fibrosis.

    Science.gov (United States)

    Chen, Pengguo; Li, Jie; Huo, Yan; Lu, Jin; Wan, Lili; Li, Bin; Gan, Run; Guo, Cheng

    2015-01-01

    Hepatic stellate cells (HSCs) play a crucial role in liver fibrosis, which is a pathological process characterized by extracellular matrix accumulation. NR4A2 is a nuclear receptor belonging to the NR4A subfamily and vital in regulating cell growth, metabolism, inflammation and other biological functions. However, its role in HSCs is unclear. We analyzed NR4A2 expression in fibrotic liver and stimulated HSCs compared with control group and studied the influence on cell proliferation, cell cycle, cell apoptosis and MAPK pathway after NR4A2 knockdown. NR4A2 expression was examined by real-time polymerase chain reaction, Western blotting, immunohistochemistry and immunofluorescence analyses. NR4A2 expression was significantly lower in fibrotic liver tissues and PDGF BB or TGF-β stimulated HSCs compared with control group. After NR4A2 knockdown α-smooth muscle actin and Col1 expression increased. In addition, NR4A2 silencing led to the promotion of cell proliferation, increase of cell percentage in S phase and reduced phosphorylation of ERK1/2, P38 and JNK in HSCs. These results indicate that NR4A2 can inhibit HSC proliferation through MAPK pathway and decrease extracellular matrix in liver fibrogenesis. NR4A2 may be a promising therapeutic target for liver fibrosis.

  10. In vivo adenosine A(2B) receptor desensitization in guinea-pig airway smooth muscle: implications for asthma.

    Science.gov (United States)

    Breschi, Maria Cristina; Blandizzi, Corrado; Fogli, Stefano; Martinelli, Cinzia; Adinolfi, Barbara; Calderone, Vincenzo; Camici, Marcella; Martinotti, Enrica; Nieri, Paola

    2007-12-01

    This study was aimed at characterizing the role of adenosine receptor subtypes in the contractility modulation of guinea-pig airway smooth muscle in normal and pathological settings. In vitro and in vivo experiments were performed by testing selective agonists and antagonists on isolated tracheal smooth muscle preparations and pulmonary inflation pressure, respectively, under normal conditions or following ovalbumin-induced allergic sensitization. In normal and sensitized animals, the adenosine A(2A)/A(2B) receptor agonist, NECA, evoked relaxing responses of isolated tracheal preparations precontracted with histamine, and such an effect was reversed by the adenosine A(2B) antagonist, MRS 1706, in the presence or in the absence of epithelium. The expression of mRNA coding for adenosine A(2B) receptors was demonstrated in tracheal specimens. In vitro desensitization with 100 microM NECA markedly reduced the relaxing effect of the agonist. In vivo NECA or adenosine administration to normal animals inhibited histamine-mediated bronchoconstriction, while these inhibitory effects no longer occurred in sensitized guinea-pigs. Adenosine plasma levels were significantly higher in sensitized than normal animals. In conclusion, our data demonstrate that: (i) adenosine A(2B) receptors are responsible for the relaxing effects of adenosine on guinea-pig airways; (ii) these receptors can undergo rapid adaptive changes that may affect airway smooth muscle responsiveness to adenosine; (iii) ovalbumin-induced sensitization promotes a reversible inactivation of adenosine A(2B) receptors which can be ascribed to homologous desensitization. These findings can be relevant to better understand adenosine functions in airways as well as mechanisms of action of asthma therapies targeting the adenosine system.

  11. New chromene scaffolds for adenosine A(2A) receptors: synthesis, pharmacology and structure-activity relationships.

    Science.gov (United States)

    Areias, Filipe; Costa, Marta; Castro, Marián; Brea, José; Gregori-Puigjané, Elisabet; Proença, M Fernanda; Mestres, Jordi; Loza, María I

    2012-08-01

    In silico screening of a collection of 1584 academic compounds identified a small molecule hit for the human adenosine A(2A) receptor (pK(i) = 6.2) containing a novel chromene scaffold (3a). To explore the structure-activity relationships of this new chemical series for adenosine receptors, a focused library of 43 2H-chromene-3-carboxamide derivatives was synthesized and tested in radioligand binding assays at human adenosine A(1), A(2A), A(2B) and A(3) receptors. The series was found to be enriched with bioactive compounds for adenosine receptors, with 14 molecules showing submicromolar affinity (pK(i) ≥ 6.0) for at least one adenosine receptor subtype. These results provide evidence that the chromene scaffold, a core structure present in natural products from a wide variety of plants, vegetables, and fruits, constitutes a valuable source for novel therapeutic agents. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  12. Profiling neurotransmitter receptor expression in the Ambystoma mexicanum brain.

    Science.gov (United States)

    Reyes-Ruiz, Jorge Mauricio; Limon, Agenor; Korn, Matthew J; Nakamura, Paul A; Shirkey, Nicole J; Wong, Jamie K; Miledi, Ricardo

    2013-03-22

    Ability to regenerate limbs and central nervous system (CNS) is unique to few vertebrates, most notably the axolotl (Ambystoma sp.). However, despite the fact the neurotransmitter receptors are involved in axonal regeneration, little is known regarding its expression profile. In this project, RT-PCR and qPCR were performed to gain insight into the neurotransmitter receptors present in Ambystoma. Its functional ability was studied by expressing axolotl receptors in Xenopus laevis oocytes by either injection of mRNA or by direct microtransplantation of brain membranes. Oocytes injected with axolotl mRNA expressed ionotropic receptors activated by GABA, aspartate+glycine and kainate, as well as metabotropic receptors activated by acetylcholine and glutamate. Interestingly, we did not see responses following the application of serotonin. Membranes from the axolotl brain were efficiently microtransplanted into Xenopus oocytes and two types of native GABA receptors that differed in the temporal course of their responses and affinities to GABA were observed. Results of this study are necessary for further characterization of axolotl neurotransmitter receptors and may be useful for guiding experiments aimed at understanding activity-dependant limb and CNS regeneration.

  13. Behavioral analysis of Drosophila transformants expressing human taste receptor genes in the gustatory receptor neurons.

    Science.gov (United States)

    Adachi, Ryota; Sasaki, Yuko; Morita, Hiromi; Komai, Michio; Shirakawa, Hitoshi; Goto, Tomoko; Furuyama, Akira; Isono, Kunio

    2012-06-01

    Transgenic Drosophila expressing human T2R4 and T2R38 bitter-taste receptors or PKD2L1 sour-taste receptor in the fly gustatory receptor neurons and other tissues were prepared using conventional Gal4/UAS binary system. Molecular analysis showed that the transgene mRNAs are expressed according to the tissue specificity of the Gal4 drivers. Transformants expressing the transgene taste receptors in the fly taste neurons were then studied by a behavioral assay to analyze whether transgene chemoreceptors are functional and coupled to the cell response. Since wild-type flies show strong aversion against the T2R ligands as in mammals, the authors analyzed the transformants where the transgenes are expressed in the fly sugar receptor neurons so that they promote feeding ligand-dependently if they are functional and activate the neurons. Although the feeding preference varied considerably among different strains and individuals, statistical analysis using large numbers of transformants indicated that transformants expressing T2R4 showed a small but significant increase in the preference for denatonium and quinine, the T2R4 ligands, as compared to the control flies, whereas transformants expressing T2R38 did not. Similarly, transformants expressing T2R38 and PKD2L1 also showed a similar preference increase for T2R38-specific ligand phenylthiocarbamide (PTC) and a sour-taste ligand, citric acid, respectively. Taken together, the transformants expressing mammalian taste receptors showed a small but significant increase in the feeding preference that is taste receptor and also ligand dependent. Although future improvements are required to attain performance comparable to the endogenous robust response, Drosophila taste neurons may serve as a potential in vivo heterologous expression system for analyzing chemoreceptor function.

  14. Adenosine A(2A receptor up-regulates retinal wave frequency via starburst amacrine cells in the developing rat retina.

    Directory of Open Access Journals (Sweden)

    Pin-Chien Huang

    Full Text Available BACKGROUND: Developing retinas display retinal waves, the patterned spontaneous activity essential for circuit refinement. During the first postnatal week in rodents, retinal waves are mediated by synaptic transmission between starburst amacrine cells (SACs and retinal ganglion cells (RGCs. The neuromodulator adenosine is essential for the generation of retinal waves. However, the cellular basis underlying adenosine's regulation of retinal waves remains elusive. Here, we investigated whether and how the adenosine A(2A receptor (A(2AR regulates retinal waves and whether A(2AR regulation of retinal waves acts via presynaptic SACs. METHODOLOGY/PRINCIPAL FINDINGS: We showed that A(2AR was expressed in the inner plexiform layer and ganglion cell layer of the developing rat retina. Knockdown of A(2AR decreased the frequency of spontaneous Ca²⁺ transients, suggesting that endogenous A(2AR may up-regulate wave frequency. To investigate whether A(2AR acts via presynaptic SACs, we targeted gene expression to SACs by the metabotropic glutamate receptor type II promoter. Ca²⁺ transient frequency was increased by expressing wild-type A(2AR (A2AR-WT in SACs, suggesting that A(2AR may up-regulate retinal waves via presynaptic SACs. Subsequent patch-clamp recordings on RGCs revealed that presynaptic A(2AR-WT increased the frequency of wave-associated postsynaptic currents (PSCs or depolarizations compared to the control, without changing the RGC's excitability, membrane potentials, or PSC charge. These findings suggest that presynaptic A(2AR may not affect the membrane properties of postsynaptic RGCs. In contrast, by expressing the C-terminal truncated A(2AR mutant (A(2AR-ΔC in SACs, the wave frequency was reduced compared to the A(2AR-WT, but was similar to the control, suggesting that the full-length A(2AR in SACs is required for A(2AR up-regulation of retinal waves. CONCLUSIONS/SIGNIFICANCE: A(2AR up-regulates the frequency of retinal waves via

  15. Cloning and expression of a widely expressed receptor tyrosine phosphatase

    DEFF Research Database (Denmark)

    Sap, J; D'Eustachio, P; Givol, D;

    1990-01-01

    antigen yielded cDNA clones coding for a 794-amino acid transmembrane protein [hereafter referred to as receptor protein tyrosine phosphatase alpha (R-PTP-alpha)] with an intracellular domain displaying clear homology to the catalytic domains of CD45 and LAR (45% and 53%, respectively). The 142-amino acid...

  16. Regulation of fibrinogen receptor expression on human platelets

    Energy Technology Data Exchange (ETDEWEB)

    Shattil, S.J.; Motulsky, H.J.; Insel, P.A.; Brass, L.F.

    1986-03-01

    Platelet aggregation requires the binding of fibrinogen to specific receptors on the plasma membrane glycoprotein IIb-IIIa complex. Although the IIb-IIIa complex is identifiable on the surface of resting platelets, the fibrinogen receptor is expressed only after platelet activation. The authors have developed a monoclonal anti-IIb-IIIa antibody (PAC-1) that binds only to stimulated platelets and only in the presence of Ca. In order to better understand the steps leading to platelet aggregation, the authors used radiolabeled PAC-1 and fibrinogen to examine the effect of the ..cap alpha../sub 2/-adrenergic agonist, epinephrine, on the expression and function of the fibrinogen receptor. The addition of epinephrine to unstirred platelets caused and immediate increase in PAC-1 and fibrinogen binding that was associated with platelet aggregation once the platelets were stirred. Even after prolonged incubation of the platelets with epinephrine, fibrinogen receptor expression could be reversed by adding EGTA, PGl/sub 2/, or the ..cap alpha../sub 2/-adrenergic antagonist, phentolamine. When unstirred platelets were exposed to epinephrine for more than 10 min, the extent of aggregation caused by subsequent stirring was decreased by 70%. Surprisingly, these desensitized platelets bound PAC-1 and fibrinogen normally, indicating that the loss of aggregation was not due to a decrease in fibrinogen receptor expression or function. These studies demonstrate that: (1) fibrinogen receptor expression is dependent on extracellular CA; (2) induction of the fibrinogen receptor by epinephrine requires the continued presence of the agonist; and (3) prolonged stimulation of the platelet by epinephrine can lead to a reduced aggregation response by a mechanism that does not involve a loss of either fibrinogen recepor expression or fibrinogen binding.

  17. Estrogen and Progesterone hormone receptor expression in oral cavity cancer

    Science.gov (United States)

    Biegner, Thorsten; Teriete, Peter; Hoefert, Sebastian; Krimmel, Michael; Munz, Adelheid; Reinert, Siegmar

    2016-01-01

    Background Recent studies have shown an increase in the incidence of oral squamous cell carcinoma (OSCC) in younger patients. The hypothesis that tumors could be hormonally induced during pregnancy or in young female patients without the well-known risk factors alcohol or tobacco abuse seems to be plausible. Material and Methods Estrogen Receptor alpha (ERα) and Progesterone Receptor (PR) expression were analyzed in normal oral mucosa (n=5), oral precursor lesions (simple hyperplasia, n=11; squamous intraepithelial neoplasia, SIN I-III, n=35), and OSCC specimen. OSCCs were stratified in a young female (n=7) study cohort and older patients (n=46). In the young female study cohort three patients (n=3/7) developed OSCC during or shortly after pregnancy. Breast cancer tissues were used as positive control for ERα and PR expression. Results ERα expression was found in four oral precursor lesions (squamous intraepithelial neoplasia, SIN I-III, n=4/35, 11%) and in five OSCC specimen (n=5/46, 11%). The five ERα positive OSCC samples were older male patients. All patients within the young female study cohort were negatively stained for both ERα and PR. Conclusions ER expression could be regarded as a seldom risk factor for OSCC. PR expression seems to be not relevant for the development of OSCC. Key words:Oral squamous cell carcinoma, estrogen receptor, progesterone receptor, hormone receptor. PMID:27475696

  18. Discovery of Potent and Highly Selective A2B Adenosine Receptor Antagonist Chemotypes.

    Science.gov (United States)

    El Maatougui, Abdelaziz; Azuaje, Jhonny; González-Gómez, Manuel; Miguez, Gabriel; Crespo, Abel; Carbajales, Carlos; Escalante, Luz; García-Mera, Xerardo; Gutiérrez-de-Terán, Hugo; Sotelo, Eddy

    2016-03-10

    Three novel families of A2B adenosine receptor antagonists were identified in the context of the structural exploration of the 3,4-dihydropyrimidin-2(1H)-one chemotype. The most appealing series contain imidazole, 1,2,4-triazole, or benzimidazole rings fused to the 2,3-positions of the parent diazinone core. The optimization process enabled identification of a highly potent (3.49 nM) A2B ligand that exhibits complete selectivity toward A1, A2A, and A3 receptors. The results of functional cAMP experiments confirmed the antagonistic behavior of representative ligands. The main SAR trends identified within the series were substantiated by a molecular modeling study based on a receptor-driven docking model constructed on the basis of the crystal structure of the human A2A receptor.

  19. Correlation of M-type phospholipase A2 receptor genetic polymorphism with idiopathic membranous nephropathy

    Institute of Scientific and Technical Information of China (English)

    周广宇

    2013-01-01

    Objective To investigate the correlation of M-typephos pholipase A2receptor(PLA2R) genetic polymorphism in two single nucleotide polymorphisms(SNPs) with idiopathic membranous nephropathy(IMN) of Chinese

  20. Expression of epidermal growth factor receptors in human brain tumors.

    Science.gov (United States)

    Libermann, T A; Razon, N; Bartal, A D; Yarden, Y; Schlessinger, J; Soreq, H

    1984-02-01

    The expression of receptors for epidermal growth factor (EGF-R) was determined in 29 samples of brain tumors from 22 patients. Primary gliogenous tumors, of various degrees of cancer, five meningiomas, and two neuroblastomas were examined. Tissue samples were frozen in liquid nitrogen immediately after the operation and stored at -70 degrees until use. Cerebral tissue samples from 11 patients who died from diseases not related to the central nervous system served as controls. Immunoprecipitation of functional EGF-R-kinase complexes revealed high levels of EGF-R in all of the brain tumors of nonneuronal origin that were examined. The level of EGF-R varied between tumors from different patients and also between specimens prelevated from different areas of the same tumor. In contrast, the levels of EGF-R from control specimens were invariably low. The biochemical properties of EGF-R in brain tumor specimens were found to be indistinguishable from those of the well-characterized EGF-R from the A-431 cell line, derived from human epidermoid carcinomas. Human brain EGF-R displays a molecular weight of 170,000 by polyacrylamide-sodium dodecyl sulfate gel electrophoresis. It is phosphorylated mainly in tyrosine residues and shows a 2-dimensional phosphopeptide map similar to that obtained with the phosphorylated EGF-R from membranes of A-431 cells. Our observations suggest that induction of EGF-R expression may accompany the malignant transformation of human brain cells of nonneuronal origin.

  1. Receptor-binding domain of ephrin-A1: production in bacterial expression system and activity.

    Science.gov (United States)

    Nekrasova, O V; Sharonov, G V; Tikhonov, R V; Kolosov, P M; Astapova, M V; Yakimov, S A; Tagvey, A I; Korchagina, A A; Bocharova, O V; Wulfson, A N; Feofanov, A V; Kirpichnikov, M P

    2012-12-01

    Eph receptor tyrosine kinases and their ligands, the ephrins, perform an important regulatory function in tissue organization, as well as participate in malignant transformation of cells. Ephrin-A1, a ligand of A class Eph receptors, is a modulator of tumor growth and progression, and the mechanism of its action needs detailed investigation. Here we report on the development of a system for bacterial expression of an ephrin-A1 receptor-binding domain (eA1), a procedure for its purification, and its renaturation with final yield of 50 mg/liter of culture. Functional activity of eA1 was confirmed by immunoblotting, laser scanning confocal microscopy, and flow cytometry. It is shown that monomeric non-glycosylated receptor-binding domain of ephrin-A1 is able to activate cellular EphA2 receptors, stimulating their phosphorylation. Ligand eA1 can be used to study the features of ephrin-A1 interactions with different A class Eph receptors. The created expression cassette is suitable for the development of ligands with increased activity and selectivity and experimental systems for the delivery of cytotoxins into tumor cells that overexpress EphA2 or other class A Eph receptors.

  2. Activation of 5-HT7 receptors increases neuronal platelet-derived growth factor β receptor expression.

    Science.gov (United States)

    Vasefi, Maryam S; Kruk, Jeff S; Liu, Hui; Heikkila, John J; Beazely, Michael A

    2012-03-09

    Several antipsychotics have a high affinity for 5-HT7 receptors yet despite intense interest in the 5-HT7 receptor as a potential drug target to treat psychosis, the function and signaling properties of 5-HT7 receptors in neurons remain largely uncharacterized. In primary mouse hippocampal and cortical neurons, as well as in the SH-SY5Y cell line, incubation with 5-HT, 5-carboxamidotryptamine (5-CT), or 5-HT7 receptor-selective agonists increases the expression of platelet-derived growth factor (PDGF)β receptors. The increased PDGFβ receptor expression is cyclic AMP-dependent protein kinase (PKA)-dependent, suggesting that 5-HT7 receptors couple to Gα(s) in primary neurons. Interestingly, up-regulated PDGFβ receptors display an increased basal phosphorylation state at the phospholipase Cγ-activating tyrosine 1021. This novel linkage between the 5-HT7 receptor and the PDGF system may be an important GPCR-neurotrophic factor signaling pathway in neurons.

  3. Purinergic receptors expressed in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Bornø, A; Ploug, Thorkil; Bune, L T

    2012-01-01

    Purinergic receptors are present in most tissues and thought to be involved in various signalling pathways, including neural signalling, cell metabolism and local regulation of the microcirculation in skeletal muscles. The present study aims to determine the distribution and intracellular content...... of purinergic receptors in skeletal muscle fibres in patients with type 2 diabetes and age-matched controls. Muscle biopsies from vastus lateralis were obtained from six type 2 diabetic patients and seven age-matched controls. Purinergic receptors were analysed using light and confocal microscopy...... in immunolabelled transverse sections of muscle biopsies. The receptors P2Y(4), P2Y(11) and likely P2X(1) were present intracellularly or in the plasma membrane of muscle fibres and were thus selected for further detailed morphological analysis. P2X(1) receptors were expressed in intracellular vesicles...

  4. Expression of AT2 receptors in the developing rat fetus.

    OpenAIRE

    Grady, E F; Sechi, L. A.; Griffin, C A; Schambelan, M.; Kalinyak, J E

    1991-01-01

    Angiotensin II is known primarily for its effects on blood pressure and electrolyte homeostasis, but recent studies suggest that angiotensin II may play a role in the regulation of cellular growth. This study was undertaken to identify the angiotensin II receptor subtypes expressed during fetal and neonatal development and to characterize their cellular localization. Using an in situ receptor binding assay on sagittal frozen sections of fetal and neonatal rats, bound 125I-[Sar1,Ile8]-angioten...

  5. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    Energy Technology Data Exchange (ETDEWEB)

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. (Universite de Bordeaux II (France))

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  6. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    Science.gov (United States)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  7. Chemokine receptor expression by inflammatory T cells in EAE

    DEFF Research Database (Denmark)

    Mony, Jyothi Thyagabhavan; Khorooshi, Reza; Owens, Trevor

    2014-01-01

    Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS). The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS). The CCL20...... receptor CCR6 has been reported to be selectively expressed by CD4(+) T cells that produce the cytokine IL-17 (Th17 cells). Th17 cells and interferon-gamma (IFNγ)-producing Th1 cells are implicated in induction of MS and its animal model experimental autoimmune encephalomyelitis (EAE). We have assessed...... whether CCR6 identifies specific inflammatory T cell subsets in EAE. Our approach was to induce EAE, and then examine chemokine receptor expression by cytokine-producing T cells sorted from CNS at peak disease. About 7% of CNS-infiltrating CD4(+) T cells produced IFNγ in flow cytometric cytokine assays...

  8. Sex Steroid Hormone Receptor Expression Affects Ovarian Cancer Survival

    DEFF Research Database (Denmark)

    Jönsson, Jenny-Maria; Skovbjerg Arildsen, Nicolai; Malander, Susanne;

    2015-01-01

    BACKGROUND AND AIMS: Although most ovarian cancers express estrogen (ER), progesterone (PR), and androgen (AR) receptors, they are currently not applied in clinical decision making. We explored the prognostic impact of sex steroid hormone receptor protein and mRNA expression on survival...... in epithelial ovarian cancer. METHODS: Immunohistochemical stainings for ERα, ERβ, PR, and AR were assessed in relation to survival in 118 serous and endometrioid ovarian cancers. Expression of the genes encoding the four receptors was studied in relation to prognosis in the molecular subtypes of ovarian cancer...... in ovarian cancer and support that tumors should be stratified based on molecular as well as histological subtypes in future studies investigating the role of endocrine treatment in ovarian cancer....

  9. Pre-synaptic adenosine A2A receptors control cannabinoid CB1 receptor-mediated inhibition of striatal glutamatergic neurotransmission.

    Science.gov (United States)

    Martire, Alberto; Tebano, Maria Teresa; Chiodi, Valentina; Ferreira, Samira G; Cunha, Rodrigo A; Köfalvi, Attila; Popoli, Patrizia

    2011-01-01

    An interaction between adenosine A(2A) receptors (A(2A) Rs) and cannabinoid CB(1) receptors (CB(1) Rs) has been consistently reported to occur in the striatum, although the precise mechanisms are not completely understood. As both receptors control striatal glutamatergic transmission, we now probed the putative interaction between pre-synaptic CB(1) R and A(2A) R in the striatum. In extracellular field potentials recordings in corticostriatal slices from Wistar rats, A(2A) R activation by CGS21680 inhibited CB(1) R-mediated effects (depression of synaptic response and increase in paired-pulse facilitation). Moreover, in superfused rat striatal nerve terminals, A(2A) R activation prevented, while A(2A) R inhibition facilitated, the CB(1) R-mediated inhibition of 4-aminopyridine-evoked glutamate release. In summary, the present study provides converging neurochemical and electrophysiological support for the occurrence of a tight control of CB(1) R function by A(2A) Rs in glutamatergic terminals of the striatum. In view of the key role of glutamate to trigger the recruitment of striatal circuits, this pre-synaptic interaction between CB(1) R and A(2A) R may be of relevance for the pathogenesis and the treatment of neuropsychiatric disorders affecting the basal ganglia.

  10. Regulatory effects of adenosine A2A receptors on psychomotor ability and mood behavior of mice

    Directory of Open Access Journals (Sweden)

    Li JIANG

    2011-07-01

    Full Text Available Objective To explore the effects of gene knock-out,agonist or inhibitor of adenosine A2A receptor on the locomotor activity,and anxiety-or depression-like behavior of mice.Methods Male C57BL/6 mice,comprising those underwent gene knock-out of adenosine A2A receptor(A2AKO and their wild-type(WT littermates,were assigned into A2AKO group and WT group.Another batch of male C57BL/6,specific-pathogen-free(SPF mice,were assigned into SCH58261 group,CGS21680 group and control group.Mice of aforesaid 3 groups were transperitoneally administered with SCH58261,a specific inhibitor of adenosine A2A receptor at a dose of 2mg/kg,CGS21680,a specific agonist of adenosine A2A receptor at a dose of 0.5mg/kg,and vehicle(0.25ml,comprising DMSO and saline,respectively.Ten minutes after injection,mice of the 3 groups underwent open-field test,elevated plus-maze test and forced swimming test to detect their locomotor activity,anxiety-and depression-like behavior.Results a Compared with WT group,the total movement distance decreased(P 0.05.b Compared with control group,the total movement distance decreased and the stay time in the peripheral area increased significantly in the open field test(P 0.05.Conclusions The agonist of adenosine A2A receptor may depress the spontaneous motility and exploratory behavior,and exacerbate the anxiety and depression,and it simulates the effect induced by knock-out of A2A receptor gene,but it is opposite to the effect induced by A2A receptor inhibitor.

  11. Regulation of TrkB receptor translocation to lipid rafts by adenosine A2A receptors and its functional implications for BDNF-induced regulation of synaptic plasticity

    OpenAIRE

    Assaife-Lopes, Natália; Sousa, Vasco C.; Pereira, Daniela B.; Ribeiro, Joaquim A.; Sebastião, Ana M.

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) signalling is critical for neuronal development and transmission. Recruitment of TrkB receptors to lipid rafts has been shown to be necessary for the activation of specific signalling pathways and modulation of neurotransmitter release by BDNF. Since TrkB receptors are known to be modulated by adenosine A2A receptor activation, we hypothesized that activation of A2A receptors could influence TrkB receptor localization among different membrane microdoma...

  12. Phospholipase A2-modified low-density lipoprotein activates macrophage peroxisome proliferator-activated receptors.

    Science.gov (United States)

    Namgaladze, Dmitry; Morbitzer, Daniel; von Knethen, Andreas; Brüne, Bernhard

    2010-02-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors modulating metabolic and inflammatory responses of phagocytes to stimuli such as fatty acids and their metabolites. We studied the role of PPARs in macrophages exposed to low-density lipoprotein (LDL) modified by secretory phospholipase A(2) (PLA). By analyzing PPAR ligand-binding domain luciferase reporter activation, we observed that PLA-LDL transactivates PPARalpha and PPARdelta, but not PPARgamma. We confirmed that PLA-LDL induced PPAR response element reporter activation by endogenous PPARalpha and PPARdelta in human THP-1 macrophages. By using THP-1 cells with a stable knockdown of PPARalpha and PPARdelta, we showed that PLA-LDL-activated PPARdelta altered macrophage gene expression related to lipid metabolism and lipid droplet formation. Although PPARalpha/delta silencing did not affect cholesterol and triglyceride accumulation in PLA-LDL-treated macrophages, PPARdelta activation by PLA-LDL attenuated macrophage inflammatory gene expression induced by interferon gamma and lipopolysaccharide. PPARdelta activation by PLA-LDL does not influence lipid accumulation in PLA-LDL-treated macrophages. However, it attenuates macrophage inflammatory responses, thus contributing to an anti-inflammatory cell phenotype.

  13. Radiolabelled GLP-1 receptor antagonist binds to GLP-1 receptor-expressing human tissues

    Energy Technology Data Exchange (ETDEWEB)

    Waser, Beatrice; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, PO Box 62, Berne (Switzerland)

    2014-06-15

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the {sup 125}iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer {sup 125}I-GLP-1(7-36)amide. Receptor autoradiography studies with {sup 125}I-GLP-1(7-36)amide agonist or {sup 125}I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. The antagonist {sup 125}I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer {sup 125}I-GLP-1(7-36)amide. For comparison, {sup 125}I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. The GLP-1 receptor antagonist exendin(9-39) labelled with {sup 125}I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients. (orig.)

  14. Expression and characterization of purinergic receptors in rat middle meningeal artery-potential role in migraine.

    Directory of Open Access Journals (Sweden)

    Kristian Agmund Haanes

    Full Text Available The dura mater and its vasculature have for decades been central in the hypothesis of migraine and headache pathophysiology. Although recent studies have questioned the role of the vasculature as the primary cause, dural vessel physiology is still relevant in understanding the complex pathophysiology of migraine. The aim of the present study was to isolate the middle meningeal artery (MMA from rodents and characterize their purinergic receptors using a sensitive wire myograph method and RT-PCR. The data presented herein suggest that blood flow through the MMA is, at least in part, regulated by purinergic receptors. P2X1 and P2Y6 receptors are the strongest contractile receptors and, surprisingly, ADPβS caused contraction most likely via P2Y1 or P2Y13 receptors, which is not observed in other arteries. Adenosine addition, however, caused relaxation of the MMA. The adenosine relaxation could be inhibited by SCH58261 (A2A receptor antagonist and caffeine (adenosine receptor antagonist. This gives one putative molecular mechanism for the effect of caffeine, often used as an adjuvant remedy of cranial pain. Semi-quantitative RT-PCR expression data for the receptors correlate well with the functional findings. Together these observations could be used as targets for future understanding of the in vivo role of purinergic receptors in the MMA.

  15. Up-regulation of striatal adenosine A(2A) receptors with iron deficiency in rats: effects on locomotion and cortico-striatal neurotransmission.

    Science.gov (United States)

    Quiroz, César; Pearson, Virginia; Gulyani, Seema; Allen, Richard; Earley, Christopher; Ferré, Sergi

    2010-07-01

    Brain iron deficiency leads to altered dopaminergic function in experimental animals, which can provide a mechanistic explanation for iron deficiency-related human sensory-motor disorders, such as Restless Legs Syndrome (RLS). However, mechanisms linking both conditions have not been determined. Considering the strong modulation exerted by adenosine on dopamine signaling, one connection could involve changes in adenosine receptor expression or function. In the striatum, presynaptic A(2A) receptors are localized in glutamatergic terminals contacting GABAergic dynorphinergic neurons and their function can be analyzed by the ability of A(2A) receptor antagonists to block the motor output induced by cortical electrical stimulation. Postsynaptic A(2A) receptors are localized in the dendritic field of GABAergic enkephalinergic neurons and their function can be analyzed by studying the ability of A(2A) receptor antagonists to produce locomotor activity and to counteract striatal ERK1/2 phosphorylation induced by cortical electrical stimulation. Increased density of striatal A(2A) receptors was found in rats fed during 3 weeks with an iron-deficient diet during the post-weaning period. In iron-deficient rats, the selective A(2A) receptor antagonist MSX-3, at doses of 1 and 3 mg/kg, was more effective at blocking motor output induced by cortical electrical stimulation (presynaptic A(2A) receptor-mediated effect) and at enhancing locomotor activation and blocking striatal ERK phosphorylation induced by cortical electrical stimulation (postsynaptic A(2A) receptor-mediated effects). These results indicate that brain iron deficiency induces a functional up-regulation of both striatal pre- and postsynaptic A(2A) receptor, which could be involved in sensory-motor disorders associated with iron deficiency such as RLS. Copyright 2010. Published by Elsevier Inc.

  16. Up-regulation of striatal adenosine A2A receptors with iron deficiency in rats. Effects on locomotion and cortico-striatal neurotransmission

    Science.gov (United States)

    Quiroz, César; Pearson, Virginia; Gulyani, Seema; Allen, Richard; Earley, Christopher; Ferré, Sergi

    2010-01-01

    Brain iron deficiency leads to altered dopaminergic function in experimental animals, which can provide a mechanistic explanation for iron deficiency-related human sensory-motor disorders, such as Restless Legs Syndrome (RLS). However, mechanisms linking both conditions have not been determined. Considering the strong modulation exerted by adenosine on dopamine signaling, one connection could involve changes in adenosine receptor expression or function. In the striatum, presynaptic A2A receptors are localized in glutamatergic terminals contacting GABAergic dynorphinergic neurons and their function can be analyzed by the ability of A2A receptor antagonists to block the motor output induced by cortical electrical stimulation. Postsynaptic A2A receptors are localized in the dendritic field of GABAergic enkephalinergic neurons and their function can be analyzed by studying the ability of A2A receptor antagonists to produce locomotor activity and to counteract striatal ERK1/2 phosphorylation induced by cortical electrical stimulation. Increased density of striatal A2A receptors was found in rats fed during three weeks with an iron-deficient diet during the post-weaning period. In iron-deficient rats, the selective A2A receptor antagonist MSX-3, at doses of 1 and 3 mg/kg, was more effective at blocking motor output induced by cortical electrical stimulation (presynaptic A2A receptor-mediated effect) and at enhancing locomotor activation and blocking striatal ERK phosphorylation induced by cortical electrical stimulation (postsynaptic A2A receptor-mediated effects). These results indicate that brain iron deficiency induces a functional up-regulation of both striatal pre- and postsynaptic A2A receptor, which could be involved in sensory-motor disorders associated with iron deficiency such as RLS. PMID:20385128

  17. Both A1 and A2a purine receptors regulate striatal acetylcholine release.

    Science.gov (United States)

    Brown, S J; James, S; Reddington, M; Richardson, P J

    1990-07-01

    The receptors responsible for the adenosine-mediated control of acetylcholine release from immunoaffinity-purified rat striatal cholinergic nerve terminals have been characterized. The relative affinities of three analogues for the inhibitory receptor were (R)-phenylisopropyladenosine greater than cyclohexyladenosine greater than N-ethylcarboxamidoadenosine (NECA), with binding being dependent of the presence of Mg2+ and inhibited by 5'-guanylylimidodiphosphate [Gpp(NH)p] and adenosine receptor antagonists. Adenosine A1 receptor agonists inhibited forskolin-stimulated cholinergic adenylate cyclase activity, with an IC50 of 0.5 nM for (R)-phenylisopropyladenosine and 500 nM for (S)-phenylisopropyladenosine. A1 agonists inhibited acetylcholine release at concentrations approximately 10% of those required to inhibit the cholinergic adenylate cyclase. High concentrations (1 microM) of adenosine A1 agonists were less effective in inhibiting both adenylate cyclase and acetylcholine release, due to the presence of a lower affinity stimulatory A2 receptor. Blockade of the A1 receptor with 8-cyclopentyl-1,3-dipropylxanthine revealed a half-maximal stimulation by NECA of the adenylate cyclase at 10 nM, and of acetylcholine release at approximately 100 nM. NECA-stimulated adenylate cyclase activity copurified with choline acetyltransferase in the preparation of the cholinergic nerve terminals, suggesting that the striatal A2 receptor is localized to cholinergic neurones. The possible role of feedback inhibitory and stimulatory receptors on cholinergic nerve terminals is discussed.

  18. A2A adenosine receptor antagonism enhances synaptic and motor effects of cocaine via CB1 cannabinoid receptor activation.

    Directory of Open Access Journals (Sweden)

    Alessandro Tozzi

    Full Text Available BACKGROUND: Cocaine increases the level of endogenous dopamine (DA in the striatum by blocking the DA transporter. Endogenous DA modulates glutamatergic inputs to striatal neurons and this modulation influences motor activity. Since D2 DA and A2A-adenosine receptors (A2A-Rs have antagonistic effects on striatal neurons, drugs targeting adenosine receptors such as caffeine-like compounds, could enhance psychomotor stimulant effects of cocaine. In this study, we analyzed the electrophysiological effects of cocaine and A2A-Rs antagonists in striatal slices and the motor effects produced by this pharmacological modulation in rodents. PRINCIPAL FINDINGS: Concomitant administration of cocaine and A2A-Rs antagonists reduced glutamatergic synaptic transmission in striatal spiny neurons while these drugs failed to produce this effect when given in isolation. This inhibitory effect was dependent on the activation of D2-like receptors and the release of endocannabinoids since it was prevented by L-sulpiride and reduced by a CB1 receptor antagonist. Combined application of cocaine and A2A-R antagonists also reduced the firing frequency of striatal cholinergic interneurons suggesting that changes in cholinergic tone might contribute to this synaptic modulation. Finally, A2A-Rs antagonists, in the presence of a sub-threshold dose of cocaine, enhanced locomotion and, in line with the electrophysiological experiments, this enhanced activity required activation of D2-like and CB1 receptors. CONCLUSIONS: The present study provides a possible synaptic mechanism explaining how caffeine-like compounds could enhance psychomotor stimulant effects of cocaine.

  19. Adenosine A2A Receptor and IL-10 in Peripheral Blood Mononuclear Cells of Patients with Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Beatrice Arosio

    2011-01-01

    Full Text Available Adenosine suppresses immune responses through the A2A receptor (A2AR. This study investigated the interleukin 10 (IL-10 genetic profile and the expression of A2AR in peripheral blood mononuclear cells (PBMCs of patients with mild cognitive impairment (MCI, Alzheimer disease (AD, and age-matched controls to verify, if they may help distinguish different forms of cognitive decline. We analyzed the IL-10 genotype and the expression of A2AR in 41 subjects with AD, 10 with amnestic MCI (a-MCI, 49 with multiple cognitive domain MCI (mcd-MCI, and 46 controls. There was a significant linear increase in A2AR mRNA levels and A2AR density from mcd-MCI to a-MCI, with intermediate levels being found in AD. The IL-10 AA genotype frequency was 67% in a-MCI, 46% in AD, 35% in mcd-MCI, and 20% in controls. These data suggest that the assessment of the IL-10 genotype and the expression of A2AR in PBMCs may be a valuable means of differentiating between a-MCI and mcd-MCI.

  20. Therapeutic Opportunities for Caffeine and A2A Receptor Antagonists in Retinal Diseases.

    Science.gov (United States)

    Boia, Raquel; Ambrósio, António Francisco; Santiago, Ana Raquel

    2016-01-01

    Caffeine, the major component of coffee, is the most consumed psychostimulant in the world. Caffeine is an adenosine analog and acts as a nonselective adenosine receptor antagonist. The majority of the effects of caffeine are mainly mediated by the blockade of adenosine receptors, and the proved neuroprotective effects of caffeine in brain disorders have been mimicked by the blockade of adenosine A2A receptor (A2AR). A growing body of evidence demonstrates that microglia-mediated neuroinflammation plays a key role in the pathophysiology of brain and retinal diseases. Moreover, the control of microglia reactivity by blocking A2AR has been proposed to be the mechanism underlying the observed protective effects of caffeine. Hence, it is conceivable that caffeine and A2AR antagonists offer therapeutic value for the treatment of retinal diseases, mainly those involving microglia-mediated neuroinflammation.

  1. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer.

    Science.gov (United States)

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Cortés, Antoni; Volkow, Nora D; Schiffmann, Serge N; Ferré, Sergi; Casadó, Vicent

    2015-07-07

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain.

  2. Inhibitory effects of benzodiazepines on the adenosine A(2B) receptor mediated secretion of interleukin-8 in human mast cells.

    Science.gov (United States)

    Hoffmann, Kristina; Xifró, Rosa Altarcheh; Hartweg, Julia Lisa; Spitzlei, Petra; Meis, Kirsten; Molderings, Gerhard J; von Kügelgen, Ivar

    2013-01-30

    The activation of adenosine A(2B) receptors in human mast cells causes pro-inflammatory responses such as the secretion of interleukin-8. There is evidence for an inhibitory effect of benzodiazepines on mast cell mediated symptoms in patients with systemic mast cell activation disease. Therefore, we investigated the effects of benzodiazepines on adenosine A(2B) receptor mediated interleukin-8 production in human mast cell leukaemia (HMC1) cells by an enzyme linked immunosorbent assay. The adenosine analogue N-ethylcarboxamidoadenosine (NECA, 0.3-3 μM) increased interleukin-8 production about 5-fold above baseline. This effect was attenuated by the adenosine A(2B) receptor antagonist MRS1754 (N-(4-cyanophenyl)-2-{4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy}-acetamide) 1 μM. In addition, diazepam, 4'-chlorodiazepam and flunitrazepam (1-30 μM) markedly reduced NECA-induced interleukin-8 production in that order of potency, whereas clonazepam showed only a modest inhibition. The inhibitory effect of diazepam was not altered by flumazenil 10 μM or PK11195 (1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide) 10 μM. Diazepam attenuated the NECA-induced expression of mRNA encoding for interleukin-8. Moreover, diazepam and flunitrazepam reduced the increasing effects of NECA on cAMP-response element- and nuclear factor of activated t-cells-driven luciferase reporter gene activities in HMC1 cells. Neither diazepam nor flunitrazepam affected NECA-induced increases in cellular cAMP levels in CHO Flp-In cells stably expressing recombinant human adenosine A(2B) receptors, excluding a direct action of benzodiazepines on human adenosine A(2B) receptors. In conclusion, this is the first study showing an inhibitory action of benzodiazepines on adenosine A(2B) receptor mediated interleukin-8 production in human mast (HMC1) cells. The rank order of potency indicates the involvement of an atypical benzodiazepine binding site.

  3. Genes involved in Drosophila glutamate receptor expression and localization

    Directory of Open Access Journals (Sweden)

    Featherstone David E

    2005-06-01

    Full Text Available Abstract Background A clear picture of the mechanisms controlling glutamate receptor expression, localization, and stability remains elusive, possibly due to an incomplete understanding of the proteins involved. We screened transposon mutants generated by the ongoing Drosophila Gene Disruption Project in an effort to identify the different types of genes required for glutamate receptor cluster development. Results To enrich for non-silent insertions with severe disruptions in glutamate receptor clustering, we identified and focused on homozygous lethal mutants in a collection of 2185 BG and KG transposon mutants generated by the BDGP Gene Disruption Project. 202 lethal mutant lines were individually dissected to expose glutamatergic neuromuscular junctions, stained using antibodies that recognize neuronal membrane and the glutamate receptor subunit GluRIIA, and viewed using laser-scanning confocal microscopy. We identified 57 mutants with qualitative differences in GluRIIA expression and/or localization. 84% of mutants showed loss of receptors and/or clusters; 16% of mutants showed an increase in receptors. Insertion loci encode a variety of protein types, including cytoskeleton proteins and regulators, kinases, phosphatases, ubiquitin ligases, mucins, cell adhesion proteins, transporters, proteins controlling gene expression and protein translation, and proteins of unknown/novel function. Expression pattern analyses and complementation tests, however, suggest that any single mutant – even if a mutant gene is uniquely tagged – must be interpreted with caution until the mutation is validated genetically and phenotypically. Conclusion Our study identified 57 transposon mutants with qualitative differences in glutamate receptor expression and localization. Despite transposon tagging of every insertion locus, extensive validation is needed before one can have confidence in the role of any individual gene. Alternatively, one can focus on the

  4. Expression of Androgen Receptor Is Negatively Regulated By p53

    Directory of Open Access Journals (Sweden)

    Fatouma Alimirah

    2007-12-01

    Full Text Available Increased expression of androgen receptor (AR in prostate cancer (PC is associated with transition to androgen independence. Because the progression of PC to advanced stages is often associated with the loss of p53 function, we tested whether the p53 could regulate the expression of AR gene. Here we report that p53 negatively regulates the expression of AR in prostate epithelial cells (PrECs. We found that in LNCaP human prostate cancer cells that express the wild-type p53 and AR and in human normal PrECs, the activation of p53 by genotoxic stress or by inhibition of p53 nuclear export downregulated the expression of AR. Furthermore, forced expression of p53 in LNCaP cells decreased the expression of AR. Conversely, knockdown of p53 expression in LNCaP cells increased the AR expression. Consistent with the negative regulation of AR expression by p53, the p53-null HCT116 cells expressed higher levels of AR compared with the isogenic HCT116 cells that express the wildtype p53. Moreover, we noted that in etoposide treated LNCaP cells p53 bound to the promoter region of the AR gene, which contains a potential p53 DNA-binding consensus sequence, in chromatin immunoprecipitation assays. Together, our observations provide support for the idea that the loss of p53 function in prostate cancer cells contributes to increased expression of AR.

  5. Expression of haemopexin receptors by cultured human cytotrophoblast

    NARCIS (Netherlands)

    H.P. van Dijk (Hans); M.J. Kroos; J.S. Starreveld; H.G. van Eijk (Henk); S.P. Tang; D.X. Song

    1995-01-01

    textabstractThe expression of cell-surface haemopexin (Hx) receptors on human cytotrophoblasts was assessed by using four different Hx species purified from plasma: human Hx isolated by wheatgerm-affinity chromatography, human Hx isolated by haem-agarose-affinity

  6. Problem-Solving Test: Expression Cloning of the Erythropoietin Receptor

    Science.gov (United States)

    Szeberenyi, Jozsef

    2008-01-01

    Terms to be familiar with before you start to solve the test: cytokines, cytokine receptors, cDNA library, cDNA synthesis, poly(A)[superscript +] RNA, primer, template, reverse transcriptase, restriction endonucleases, cohesive ends, expression vector, promoter, Shine-Dalgarno sequence, poly(A) signal, DNA helicase, DNA ligase, topoisomerases,…

  7. Aberrant methylation of the M-type phospholipase A2 receptor gene in leukemic cells

    Directory of Open Access Journals (Sweden)

    Menschikowski Mario

    2012-12-01

    Full Text Available Abstract Background The M-type phospholipase A2 receptor (PLA2R1 plays a crucial role in several signaling pathways and may act as tumor-suppressor. This study examined the expression and methylation of the PLA2R1 gene in Jurkat and U937 leukemic cell lines and its methylation in patients with myelodysplastic syndrome (MDS or acute leukemia. Methods Sites of methylation of the PLA2R1 locus were identified by sequencing bisulfite-modified DNA fragments. Methylation specific-high resolution melting (MS-HRM analysis was then carried out to quantify PLA2R1 methylation at 5`-CpG sites identified with differences in methylation between healthy control subjects and leukemic patients using sequencing of bisulfite-modified genomic DNA. Results Expression of PLA2R1 was found to be completely down-regulated in Jurkat and U937 cells, accompanied by complete methylation of PLA2R1 promoter and down-stream regions; PLA2R1 was re-expressed after exposure of cells to 5-aza-2´-deoxycytidine. MS-HRM analysis of the PLA2R1 locus in patients with different types of leukemia indicated an average methylation of 28.9% ± 17.8%, compared to less than 9% in control subjects. In MDS patients the extent of PLA2R1 methylation significantly increased with disease risk. Furthermore, measurements of PLA2R1 methylation appeared useful for predicting responsiveness to the methyltransferase inhibitor, azacitidine, as a pre-emptive treatment to avoid hematological relapse in patients with high-risk MDS or acute myeloid leukemia. Conclusions The study shows for the first time that PLA2R1 gene sequences are a target of hypermethylation in leukemia, which may have pathophysiological relevance for disease evolution in MDS and leukemogenesis.

  8. Metabotropic glutamate receptor expression in olfactory receptor neurons from the channel catfish, Ictalurus punctatus.

    Science.gov (United States)

    Medler, K F; Tran, H N; Parker, J M; Caprio, J; Bruch, R C

    1998-04-01

    Metabotropic glutamate receptors (mGluRs) were identified in olfactory receptor neurons of the channel catfish, Ictalurus punctatus, by polymerase chain reaction. DNA sequence analysis confirmed the presence of two subtypes, mGluR1 and mGluR3, that were coexpressed with each other and with the putative odorant receptors within single olfactory receptor neurons. Immunocytochemical data showed that both mGluR subtypes were expressed in the apical dendrites and some cilia of olfactory neurons. Pharmacological analysis showed that antagonists to each mGluR subtype significantly decreased the electrophysiological response to odorant amino acids. alpha-Methyl-L-CCG1/(2S,3S,4S)-2-methyl-2-(carboxycyclopropyl++ +)glycine (MCCG), a known antagonist to mGluR3, and (S)-4-carboxyphenylglycine (S-4CPG), a specific antagonist to mGluR1, each significantly reduced olfactory receptor responses to L-glutamate. S-4CPG and MCCG reduced the glutamate response to 54% and 56% of control, respectively, which was significantly greater than their effect on a neutral amino acid odorant, methionine. These significant reductions of odorant response by the antagonists, taken with the expression of these receptors throughout the dendritic and ciliated portions of some olfactory receptor neurons, suggest that these mGluRs may be involved in olfactory reception and signal transduction.

  9. Expression of estrogen and progesterone receptors in papillary thyroid carcinoma

    Science.gov (United States)

    Jalali-Nadoushan, Mohammad-Reza; Amirtouri, Reza; Davati, Ali; Askari, Samaneh; Siadati, Sepideh

    2016-01-01

    Background: Papillary thyroid carcinoma (PTC), occurs mostly in women and sex hormones may play a role in the pathogenesis and clinical course. The objective of this study was to determine the status and prevalence of estrogen and progesterone receptors in PTC with regard to age, gender, tumor size and lymph node involvement. Methods: Immunohistochemical stains were performed on 92 tissue blocks of PTC for estrogen receptor (ER) and progesterone receptor (PR) expression in tumor cells. Chi-square test and Mann-Whitney U test were used to determine statistical difference using statistical software SPSS. Results: The mean age of patients was 39.32±1.7 years (range 13-80) with 79(85.9%) women and 13 (14.1%) men. Lymph node involvement was seen in 76.1% of patients. The average tumor size was 3.6±2.21 cm. The rate of ER and PR expression were 46.75% and 5.6%, respectively. ER expression for females was higher than males (P=0.014), but no relation was found between males and females in PR expression (P=0.7). Also there was no statistical difference between ER and PR expression with respect to age, lymph node involvement and tumor size. Conclusion: Our study showed higher ER expression in females than males with PTC. No relation was found between the expression of these receptors and age of presentation, lymph node involvement and tumor size. Further investigation is required to determine the prognostic importance of ER and PR in PTC.

  10. Functional bitter taste receptors are expressed in brain cells.

    Science.gov (United States)

    Singh, Nisha; Vrontakis, Maria; Parkinson, Fiona; Chelikani, Prashen

    2011-03-04

    Humans are capable of sensing five basic tastes which are sweet, sour, salt, umami and bitter. Of these, bitter taste perception provides protection against ingestion of potentially toxic substances. Bitter taste is sensed by bitter taste receptors (T2Rs) that belong to the G-protein coupled receptors (GPCRs) superfamily. Humans have 25 T2Rs that are expressed in the oral cavity, gastrointestinal (GI) neuroendocrine cells and airway cells. Electrophysiological studies of the brain neurons show that the neurons are able to respond to different tastants. However, the presence of bitter taste receptors in brain cells has not been elucidated. In this report using RT-PCR, and immunohistochemistry analysis we show that T2Rs are expressed in multiple regions of the rat brain. RT-PCR analysis revealed the presence of T2R4, T2R107 and T2R38 transcripts in the brain stem, cerebellum, cortex and nucleus accumbens. The bitter receptor T2R4 was selected for further analysis at the transcript level by quantitative real time PCR and at the protein level by immunohistochemistry. To elucidate if the T2R4 expressed in these cells is functional, assays involving G-protein mediated calcium signaling were carried out. The functional assays showed an increase in intracellular calcium levels after the application of exogenous ligands for T2R4, denatonium benzoate and quinine to these cultured cells, suggesting that endogenous T2R4 expressed in these cells is functional. We discuss our results in terms of the physiological relevance of bitter receptor expression in the brain.

  11. Immunological role of neuronal receptor vanilloid receptor 1 expressed on dendritic cells

    OpenAIRE

    Basu, Sreyashi; Srivastava, Pramod

    2005-01-01

    Capsaicin (CP), the pungent component of chili pepper, acts on sensory neurons to convey the sensation of pain. The CP receptor, vanilloid receptor 1 (VR1), has been shown to be highly expressed by nociceptive neurons in dorsal root and trigeminal ganglia. We demonstrate here that the dendritic cell (DC), a key cell type of the vertebrate immune system, expresses VR1. Engagement of VR1 on immature DCs such as by treatment with CP leads to maturation of DCs as measured by up-regulation of anti...

  12. Role of A1 and A2A adenosine receptor agonists in adipose tissue inflammation induced by obesity in mice.

    Science.gov (United States)

    DeOliveira, Caroline Candida; Paiva Caria, Cintia Rabelo E; Ferreira Gotardo, Erica Martins; Ribeiro, Marcelo Lima; Gambero, Alessandra

    2017-03-15

    Adenosine receptors are expressed in adipose tissue and control physiological and pathological events such as lipolysis and inflammation. The aim of this study was to evaluate the activity of N(6)-cyclopentyladenosine (CPA), a potent and selective A1 adenosine receptor agonist; 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxyamidoadenosine hydrochloride (CGS-21680), an A2A adenosine receptor agonist; and 5'-N-ethylcarboxamidoadenosine (NECA), a potent non-selective adenosine receptor agonist on adipose tissue inflammatory alterations induced by obesity in mice. Swiss mice were fed with a high-fat diet for 12 weeks and agonists were administered in the last two weeks. Body weight, adiposity and glucose homeostasis were evaluated. Inflammation in adipose tissue was assessed by evaluation of adipokine production and macrophage infiltration. Adenosine receptor signaling in adipose tissue was also evaluated. Mice that received CGS21680 presented an improvement in glucose homeostasis in association with systemically reduced inflammatory markers (TNF-α, PAI-1) and in the visceral adipose tissue (TNF-α, MCP-1, macrophage infiltration). Activation of p38 signaling was found in adipose tissue of this group of mice. NECA-treated mice presented some improvements in glucose homeostasis associated with an observed weight loss. Mice that received CPA presented only a reduction in the ex vivo basal lipolysis rate measured within visceral adipose tissue. In conclusion, administration of the A2A receptor agonist to obese mice resulted in improvements in glucose homeostasis and adipose tissue inflammation, corroborating the idea that new therapeutics to treat obesity could emerge from these compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Steroidal Hormone Receptor Expression in Male Breast Cancer

    Directory of Open Access Journals (Sweden)

    Fatemeh Homaei-Shandiz

    2014-01-01

    Full Text Available Introduction: The etiology of male breast cancer is unclear, but hormonal levels may play a role in development of this disease. It seems that the risk of male breast cancer related to increased lifelong exposure to estrogen or reduced androgen. The aim of this study was to investigate the expression of the steroid hormone receptors including estrogen receptor (ER and progesterone receptor (PR in Iranian cases with male breast cancer. Methods: This is a prospective review of 18 cases of male breast cancer in in Omid Hospital, Mashhad, North East of Iran, between October 2001 and October 2006. ER and PR were measured by immunohistochemistry. Clinicopathologic features and family history were obtained by interview. Data were analyzed with SPSS 13 using descriptive statistics.  Results: The median age was 63.2 year. All the cases were infiltrating ductal carcinoma. A high rate of expression of ER (88.8% and PR (66.6% was found in the studied cases. Conclusion: Cancers of the male breast are significantly more likely than cancers of the female breast to express hormonal receptors.

  14. Adenosine A2A receptor antagonists exert motor and neuroprotective effects by distinct cellular mechanisms

    OpenAIRE

    Yu, Liqun; Shen, Hai-Ying; Coelho, Joana E.; Araújo, Inês M.; HUANG, QING-YUAN; Day, Yuan-Ji; Rebola, Nelson; Canas, Paula M.; Rapp, Erica Kirsten; Ferrara, Jarrod; Taylor, Darcie; Müller, Christa E.; Linden, Joel; Cunha, Rodrigo A.; Chen, Jiang-Fan

    2008-01-01

    To investigate whether the motor and neuroprotective effects of adenosine A2A receptor (A2AR) antagonists are mediated by distinct cell types in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease.We used the forebrain A2AR knock-out mice coupled with flow cytometric analyses and intracerebroventricular injection to determine the contribution of A2ARs in forebrain neurons and glial cells to A2AR antagonist-mediated motor and neuroprotective effects.The selecti...

  15. Expression of serotonin receptors in human lower esophageal sphincter

    OpenAIRE

    Li, He-Fei; Liu, Jun-Feng; Zhang, Ke; Feng, Yong

    2014-01-01

    Serotonin (5-HT) is a neurotransmitter and vasoactive amine that is involved in the regulation of a large number of physiological functions. The wide variety of 5-HT-mediated functions is due to the existence of different classes of serotonergic receptors in the mammalian gastrointestinal tract and nervous system. The aim of this study was to explore the expression of multiple types of 5-HT receptor (5-HT1AR, 5-HT2AR, 5-HT3AR, 5-HT4R, 5-HT5AR, 5-HT6R and 5-HT7R) in sling and clasp fibers from...

  16. Adenosine A2A receptor and ecto-5'-nucleotidase/CD73 are upregulated in hippocampal astrocytes of human patients with mesial temporal lobe epilepsy (MTLE).

    Science.gov (United States)

    Barros-Barbosa, Aurora R; Ferreirinha, Fátima; Oliveira, Ângela; Mendes, Marina; Lobo, M Graça; Santos, Agostinho; Rangel, Rui; Pelletier, Julie; Sévigny, Jean; Cordeiro, J Miguel; Correia-de-Sá, Paulo

    2016-12-01

    Refractoriness to existing medications of up to 80 % of the patients with mesial temporal lobe epilepsy (MTLE) prompts for finding new antiepileptic drug targets. The adenosine A2A receptor emerges as an interesting pharmacological target since its excitatory nature partially counteracts the dominant antiepileptic role of endogenous adenosine acting via inhibitory A1 receptors. Gain of function of the excitatory A2A receptor has been implicated in a significant number of brain pathologies commonly characterized by neuronal excitotoxicity. Here, we investigated changes in the expression and cellular localization of the A2A receptor and of the adenosine-generating enzyme, ecto-5'-nucleotidase/CD73, in the hippocampus of control individuals and MTLE human patients. Western blot analysis indicates that the A2A receptor is more abundant in the hippocampus of MTLE patients compared to control individuals. Immunoreactivity against the A2A receptor predominates in astrocytes staining positively for the glial fibrillary acidic protein (GFAP). No co-localization was observed between the A2A receptor and neuronal cell markers, like synaptotagmin 1/2 (nerve terminals) and neurofilament 200 (axon fibers). Hippocampal astrogliosis observed in MTLE patients was accompanied by a proportionate increase in A2A receptor and ecto-5'-nucleotidase/CD73 immunoreactivities. Given our data, we hypothesize that selective blockade of excessive activation of astrocytic A2A receptors and/or inhibition of surplus adenosine formation by membrane-bound ecto-5'-nucleotidase/CD73 may reduce neuronal excitability, thus providing a novel therapeutic target for drug-refractory seizures in MTLE patients.

  17. Transgenic silkworms expressing human insulin receptors for evaluation of therapeutically active insulin receptor agonists.

    Science.gov (United States)

    Matsumoto, Yasuhiko; Ishii, Masaki; Ishii, Kenichi; Miyaguchi, Wataru; Horie, Ryo; Inagaki, Yoshinori; Hamamoto, Hiroshi; Tatematsu, Ken-ichiro; Uchino, Keiro; Tamura, Toshiki; Sezutsu, Hideki; Sekimizu, Kazuhisa

    2014-12-12

    We established a transgenic silkworm strain expressing the human insulin receptor (hIR) using the GAL4/UAS system. Administration of human insulin to transgenic silkworms expressing hIR decreased hemolymph sugar levels and facilitated Akt phosphorylation in the fat body. The decrease in hemolymph sugar levels induced by injection of human insulin in the transgenic silkworms expressing hIR was blocked by co-injection of wortmannin, a phosphoinositide 3-kinase inhibitor. Administration of bovine insulin, an hIR ligand, also effectively decreased sugar levels in the transgenic silkworms. These findings indicate that functional hIRs that respond to human insulin were successfully induced in the transgenic silkworms. We propose that the humanized silkworm expressing hIR is useful for in vivo evaluation of the therapeutic activities of insulin receptor agonists. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Effect of Yirui Capsule on Expression of Purinergic Receptors P2X7 and A2A in Livers of Hyperlipidemia Rats%怡瑞胶囊对高脂血症大鼠肝脏中嘌呤受体P2X7,A2A表达的影响

    Institute of Scientific and Technical Information of China (English)

    周海松; 王青; 易浪; 李文治; 罗其昌; 董燕; 王培训

    2015-01-01

    目的:探讨高脂血症大鼠炎症水平与肝组织中嘌呤受体P2X7,A2A表达的关系及怡瑞胶囊的干预作用.方法:SD雄性大鼠50只,随机分为正常组10只,喂饲维持饲料;高脂饲料组40只,喂饲高脂饲料,14 d后再分为模型组和怡瑞胶囊低、中、高剂量组(140,280,560 mg·kg-1),每组10只.ig给药30 d,采血分离血清,检测血脂水平.酶联免疫吸附试验(ELISA)检测白介素-1β(IL-1β)和肿瘤坏死因子-α(TNF-α)的水平,反转录PCR技术(RT-PCR)检测肝组织的嘌呤受体P2X7,A2A的表达.结果:与正常组比较,高脂血症模型组大鼠血清中炎症因子IL-1β和TNF-α含量显著升高(P<0.01),肝脏中嘌呤受体P2X7,A2A的表达水平升高(P<0.01),与模型组比较,怡瑞胶囊各剂量组IL-1β和TNF-α的水平显著降低(P<0.01),肝组织中P2X7,A2A的表达水平显著降低(P<0.01).结论:怡瑞胶囊调节高脂血症大鼠肝组织中嘌呤受体的表达可能与其降低炎症水平和改善脂代谢有关.

  19. Identification of NR4A2 as a transcriptional activator of IL-8 expression in human inflammatory arthritis.

    LENUS (Irish Health Repository)

    Aherne, Carol M

    2009-10-01

    Expression of the orphan nuclear receptor NR4A2 is controlled by pro-inflammatory mediators, suggesting that NR4A2 may contribute to pathological processes in the inflammatory lesion. This study identifies the chemoattractant protein, interleukin 8 (IL-8\\/CXCL8), as a molecular target of NR4A2 in human inflammatory arthritis and examines the mechanism through which NR4A2 modulates IL-8 expression. In TNF-alpha-activated human synoviocyte cells, enhanced expression of IL-8 mRNA and protein correspond to temporal changes in NR4A2 transcription and nuclear distribution. Ectopic expression of NR4A2 leads to robust changes in endogenous IL-8 mRNA levels and co-treatment with TNF-alpha results in significant (p<0.001) secretion of IL-8 protein. Transcriptional effects of NR4A2 on the human IL-8 promoter are enhanced in the presence of TNF-alpha, suggesting molecular crosstalk between TNF-alpha signalling and NR4A2. A dominant negative IkappaB kinase antagonizes the combined effects of NR4A2 and TNF-alpha on IL-8 promoter activity. Co-expression of NR4A2 and the p65 subunit of NF-kappaB enhances IL-8 transcription and functional studies indicate that transactivation occurs independently of NR4A2 binding to DNA or heterodimerization with additional nuclear receptors. The IL-8 minimal promoter region is sufficient to support NR4A2 and NF-kappaB\\/p65 co-operative activity and NR4A2 can interact with NF-kappaB\\/p65 on a 39bp sequence within this region. In patients treated with methotrexate for active inflammatory arthritis, a reduction in NR4A2 synovial tissue levels correlate significantly (n=10, r=0.73, p=0.002) with changes in IL-8 expression. Collectively, these data delineate an important role for NR4A2 in modulating IL-8 expression and reveal novel transcriptional responses to TNF-alpha in human inflammatory joint disease.

  20. Characterisation of the expression of NMDA receptors in human astrocytes.

    Directory of Open Access Journals (Sweden)

    Ming-Chak Lee

    Full Text Available Astrocytes have long been perceived only as structural and supporting cells within the central nervous system (CNS. However, the discovery that these glial cells may potentially express receptors capable of responding to endogenous neurotransmitters has resulted in the need to reassess astrocytic physiology. The aim of the current study was to characterise the expression of NMDA receptors (NMDARs in primary human astrocytes, and investigate their response to physiological and excitotoxic concentrations of the known endogenous NMDAR agonists, glutamate and quinolinic acid (QUIN. Primary cultures of human astrocytes were used to examine expression of these receptors at the mRNA level using RT-PCR and qPCR, and at the protein level using immunocytochemistry. The functionality role of the receptors was assessed using intracellular calcium influx experiments and measuring extracellular lactate dehydrogenase (LDH activity in primary cultures of human astrocytes treated with glutamate and QUIN. We found that all seven currently known NMDAR subunits (NR1, NR2A, NR2B, NR2C, NR2D, NR3A and NR3B are expressed in astrocytes, but at different levels. Calcium influx studies revealed that both glutamate and QUIN could activate astrocytic NMDARs, which stimulates Ca2+ influx into the cell and can result in dysfunction and death of astrocytes. Our data also show that the NMDAR ion channel blockers, MK801, and memantine can attenuate glutamate and QUIN mediated cell excitotoxicity. This suggests that the mechanism of glutamate and QUIN gliotoxicity is at least partially mediated by excessive stimulation of NMDARs. The present study is the first to provide definitive evidence for the existence of functional NMDAR expression in human primary astrocytes. This discovery has significant implications for redefining the cellular interaction between glia and neurons in both physiological processes and pathological conditions.

  1. GABAA receptor-expressing neurons promote consumption in Drosophila melanogaster.

    Science.gov (United States)

    Cheung, Samantha K; Scott, Kristin

    2017-01-01

    Feeding decisions are highly plastic and bidirectionally regulated by neurons that either promote or inhibit feeding. In Drosophila melanogaster, recent studies have identified four GABAergic interneurons that act as critical brakes to prevent incessant feeding. These GABAergic neurons may inhibit target neurons that drive consumption. Here, we tested this hypothesis by examining GABA receptors and neurons that promote consumption. We find that Resistance to dieldrin (RDL), a GABAA type receptor, is required for proper control of ingestion. Knockdown of Rdl in a subset of neurons causes overconsumption of tastants. Acute activation of these neurons is sufficient to drive consumption of appetitive substances and non-appetitive substances and acute silencing of these neurons decreases consumption. Taken together, these studies identify GABAA receptor-expressing neurons that promote Drosophila ingestive behavior and provide insight into feeding regulation.

  2. GABAA receptor-expressing neurons promote consumption in Drosophila melanogaster

    Science.gov (United States)

    Cheung, Samantha K.

    2017-01-01

    Feeding decisions are highly plastic and bidirectionally regulated by neurons that either promote or inhibit feeding. In Drosophila melanogaster, recent studies have identified four GABAergic interneurons that act as critical brakes to prevent incessant feeding. These GABAergic neurons may inhibit target neurons that drive consumption. Here, we tested this hypothesis by examining GABA receptors and neurons that promote consumption. We find that Resistance to dieldrin (RDL), a GABAA type receptor, is required for proper control of ingestion. Knockdown of Rdl in a subset of neurons causes overconsumption of tastants. Acute activation of these neurons is sufficient to drive consumption of appetitive substances and non-appetitive substances and acute silencing of these neurons decreases consumption. Taken together, these studies identify GABAA receptor-expressing neurons that promote Drosophila ingestive behavior and provide insight into feeding regulation. PMID:28362856

  3. Inflammatory Eicosanoids Increase Amyloid Precursor Protein Expression via Activation of Multiple Neuronal Receptors.

    Science.gov (United States)

    Herbst-Robinson, Katie J; Liu, Li; James, Michael; Yao, Yuemang; Xie, Sharon X; Brunden, Kurt R

    2015-12-17

    Senile plaques comprised of Aβ peptides are a hallmark of Alzheimer's disease (AD) brain, as are activated glia that release inflammatory molecules, including eicosanoids. Previous studies have demonstrated that amyloid precursor protein (APP) and Aβ levels can be increased through activation of thromboxane A2-prostanoid (TP) receptors on neurons. We demonstrate that TP receptor regulation of APP expression depends on Gαq-signaling and conventional protein kinase C isoforms. Importantly, we discovered that Gαq-linked prostaglandin E2 and leukotriene D4 receptors also regulate APP expression. Prostaglandin E2 and thromboxane A2, as well as total APP levels, were found to be elevated in the brains of aged 5XFAD transgenic mice harboring Aβ plaques and activated glia, suggesting that increased APP expression resulted from eicosanoid binding to Gαq-linked neuronal receptors. Notably, inhibition of eicosanoid synthesis significantly lowered brain APP protein levels in aged 5XFAD mice. These results provide new insights into potential AD therapeutic strategies.

  4. Adenosine enhances sweet taste through A2B receptors in the taste bud.

    Science.gov (United States)

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2012-01-01

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.

  5. Regulation of bradykinin B2-receptor expression by oestrogen

    Science.gov (United States)

    Madeddu, Paolo; Emanueli, Costanza; Varoni, Maria Vittoria; Demontis, Maria Piera; Anania, Vittorio; Gorioso, Nicola; Chao, Julie

    1997-01-01

    Tissue kallikrein is overexpressed in the kidney of female rats, this sexual dimorphism being associated with a greater effect of early blockade of bradykinin B2-receptors on female blood pressure phenotype. We evaluated the effect of ovariectomy and oestradiol benzoate (50 μg kg−1 every two days for two weeks) on the vasodepressor response to intra-arterial injection of bradykinin (150–900 ng kg−1) and on the expression of bradykinin B2-receptors.Ovariectomy reduced the magnitude of the vasodepressor response to bradykinin and unmasked a secondary vasopressor effect. Oestrogen replacement restored the vasodepressor response to bradykinin in ovariectomized rats.The vasodepressor responses to sodium nitroprusside (3–18 μg kg−1), acetylcholine (30–600 ng kg−1), desArg9-bradykinin (150–900 ng kg−1) or prostaglandin E2 (30–600 ng kg−1) were significantly reduced by ovariectomy. Oestrogen restored to normal the responses to desArg9-bradykinin, acetylcholine and prostaglandin E2, but not that to sodium nitroprusside.B2-receptor mRNA levels were decreased by ovariectomy in the aorta and kidney and they were restored to normal levels by oestrogen. Neither ovariectomy nor oestradiol affected receptor expression in the heart and uterus.These results indicate that oestrogen regulates B2-receptor gene expression and function. Since kinins exert a cardiovascular protective action, reduction in their vasodilator activity after menopause might contribute to the increased risk of pathological cardiovascular events. Conversely, the cardioprotective effects of oestrogen replacement might be, at least in part, mediated by activation of the kallikrein-kinin system. PMID:9283715

  6. Vitamin D Receptor, Retinoid X Receptor, Ki-67, Survivin, and Ezrin Expression in Canine Osteosarcoma

    Directory of Open Access Journals (Sweden)

    John Davies

    2012-01-01

    Full Text Available Canine osteosarcoma (OS is an aggressive malignant bone tumor. Prognosis is primarily determined by clinical parameters. Vitamin D has been postulated as a novel therapeutic option for many malignancies. Upon activation, vitamin D receptors (VDRs combine with retinoid receptor (RXR forming a heterodimer initiating a cascade of events. Vitamin D's antineoplastic activity and its mechanism of action in OS remain to be clearly established. Expression of VDR, RXR, Ki-67, survivin, and ezrin was studied in 33 archived, canine OS specimens. VDR, RXR, survivin, and ezrin were expressed in the majority of cases. There was no statistically significant difference in VDR expression in relationship with tumor grade, type, or locations or animal breed, age, and/or sex. No significant association (p=0.316 between tumor grade and Ki-67 expression was found; in particular, no difference in Ki-67 expression between grades 2 and 3 OSs was found, while a negative correlation was noted between Ki-67 and VDR expression (ρ=−0.466, a positive correlation between survivin and RXR expression was found (p=0.374. A significant relationship exists between VDR and RXR expression in OSs and proliferative/apoptosis markers. These results establish a foundation for elucidating mechanisms by which vitamin D induces antineoplastic activity in OS.

  7. Silencing Receptor EphA2 Enhanced Sensitivity to Lipoplatin™ in Lung Tumor and MPM Cells.

    Science.gov (United States)

    Lee, Hung-Yen; Mohammed, Kamal A; Goldberg, Eugene P; Kaye, Frederic; Najmunnisa, Nasreen

    2016-08-08

    Receptor EphA2 is overexpressed in lung cancer and malignant pleural mesothelioma (MPM) which promote tumorogenesis. Lipoplatin™, a new liposomal cisplatin formulation, is used against resistant tumors. Use of cisplatin-based drugs leads to unacceptable toxicities. To improve the effectiveness of Lipoplatin, enhancing the cellular sensitivity of lung tumor and MPM cells is critical. Therefore, we targeted receptor EphA2 by silencing interference RNA (siRNA) and treated tumor cells with Lipoplatin. The combined effects of siRNA-EphA2 and Lipoplatin were determined. We report that silencing EphA2 significantly enhanced the cellular sensitivity of lung tumor and MPM cells to Lipoplatin and maybe a potential therapy for lung cancer.

  8. NH125 reduces the level of CPEB3, an RNA binding protein, to promote synaptic GluA2 expression.

    Science.gov (United States)

    Bender, Crhistian L; Yang, Qian; Sun, Lu; Liu, Siqiong June

    2016-02-01

    Neuronal activity can alter the phosphorylation state of eukaryotic elongation factor 2 (eEF2) and thereby regulates protein synthesis. This is thought to be the underlying mechanism for a form of synaptic plasticity that involves changes in the expression of synaptic AMPA type glutamate receptors. Phosphorylation of eEF2 by Ca/calmodulin-dependent eEF2 kinase reduces the activity of eEF2, and this is prevented by a commonly used eEF2 kinase inhibitor, NH125. Here we show that 10 μM NH125 increased the expression of synaptic GluA2-containing receptors in mouse cerebellar stellate cells and this was prevented by a protein synthesis inhibitor. However NH125 at 10 μM also reduced the level of CPEB3, a protein that is known to bind to GluA2 mRNA and suppress GluA2 (also known as GluR2) synthesis. In contrast, a low concentration of NH125 lowered the peEF2 level, but did not alter CPEB3 expression and also failed to increase synaptic GluA2 receptors. A selective eEF2 kinase inhibitor, A-484954, decreased the level of peEF2, without changing the expression of CPEB3. This suggests that reducing peEF2 does not lead to a decrease in CPEB3 levels and is not sufficient to increase GluA2 synthesis. Thus NH125 at 10 μM reduced the level of CPEB3, and promoted GluA2 translation via a mechanism independent of inhibition of eEF2 kinase. Therefore NH125 does not always alter protein synthesis via selective inhibition of eEF2 kinase and the effects of NH125 on translation of mRNAs should be interpreted with caution.

  9. Targeting Adenosine A2A Receptors in Parkinson’s Disease

    Science.gov (United States)

    2006-11-01

    University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ USA Background: The blockade of A2A receptors...IRP/NIH/DHHS Baltimore MD Gilberto Fisone Karolinska Institutet Stockholm Sweden Laura Font University of Connecticut Storrs CT Yolanda Fortin

  10. Effects of Repeated Ethanol Exposures on NMDA Receptor Expression and Locomotor Sensitization in Mice Expressing Ethanol Resistant NMDA Receptors

    Science.gov (United States)

    den Hartog, Carolina R.; Gilstrap, Meghin; Eaton, Bethany; Lench, Daniel H.; Mulholland, Patrick J.; Homanics, Gregg. E.; Woodward, John J.

    2017-01-01

    Evidence from a large number of preclinical studies suggests that chronic exposure to drugs of abuse, such as psychostimulants or ethanol induces changes in glutamatergic transmission in key brain areas associated with reward and control of behavior. These changes include alterations in the expression of ionotropic glutamate receptors including N-methyl-D-aspartate receptors (NMDAR) that are important for regulating neuronal activity and synaptic plasticity. NMDA receptors are inhibited by ethanol and reductions in NMDA-mediated signaling are thought to trigger homestatic responses that limit ethanol's effects on glutamatergic transmission. Following repeated exposures to ethanol, these homeostatic responses may become unstable leading to an altered glutamatergic state that contributes to the escalations in drinking and cognitive deficits observed in alcohol-dependent subjects. An important unanswered question is whether ethanol-induced changes in NMDAR expression are modulated by the intrinsic sensitivity of the receptor to ethanol. In this study, we examined the effects of ethanol on NMDAR subunit expression in cortical (orbitofrontal, medial prefrontal), striatal (dorsal and ventral striatum) and limbic (dorsal hippocampus, basolateral amygdala) areas in mice genetically modified to express ethanol-resistant receptors (F639A mice). These mice have been previously shown to drink more ethanol than their wild-type counterparts and have altered behavioral responses to certain actions of ethanol. Following long-term voluntary drinking, F639A mice showed elevations in GluN2A but not GluN1 or GluN2B expression as compared to wild-type mice. Mice treated with repeated injections with ethanol (2–3.5 g/kg; i.p.) showed changes in NMDAR expression that varied in a complex manner with genotype, brain region, subunit type and exposure protocol all contributing to the observed response. F639A mice, but not wild-type mice, showed enhanced motor activity following repeated

  11. Re-evaluation of the prolactin receptor expression in human breast cancer

    DEFF Research Database (Denmark)

    Galsgaard, Elisabeth Douglas; Rasmussen, Birgitte Bruun; Folkesson, Charlotta Grånäs;

    2009-01-01

    and decidual cells in tissue sections of human placenta. Screening of 160 mammary adenocarcinomas demonstrated significant immunoreactivity in only four tumours, indicating that PRLR is generally not strongly upregulated in human breast cancer. However, even a very low level of PRLR expression was found......The pituitary hormone PRL is involved in tumorigenesis in rodents and humans. PRL promotes proliferation, survival and migration of cancer cells acting via the PRL receptor (PRLR). Aiming to perform a large-scale immunohistochemical (IHC) screening of human mammary carcinomas for PRLR expression...... specificity for PRLR and to rather recognise a PRLR-associated protein. The mAb U5 raised against the rat PRLR did not cross-react with the human receptor. Only one mAb, 1A2B1, was found useful for detection of PRLR in IHC applications. This antibody recognised PRLR expressed in human breast cancer cell lines...

  12. ephrin ligands and Eph receptors show regionally restricted expression in the developing palate and tongue

    Directory of Open Access Journals (Sweden)

    Guilherme Machado Xavier

    2016-02-01

    Full Text Available The Eph family receptor-interacting (ephrin ligands and erythropoietin-producing hepatocellular carcinoma (Eph receptors constitute the largest known family of receptor tyrosine kinases. Ephrin ligands and their receptors form an important cell communication system with widespread roles in normal physiology and disease pathogenesis. In order to investigate potential roles of the ephrin-Eph system during palatogenesis and tongue development, we have characterized the cellular mRNA expression of family members EphrinA1-A3, EphA1–A8 and EphrinB2, EphB1, EphB4 during murine embryogenesis between embryonic day 13.5–16.5 using radioactive in situ hybridization. With the exception of EphA6 and ephrinA3, all genes were regionally expressed during the process of palatogenesis, with restricted and often overlapping domains. Transcripts were identified in the palate epithelium, localized at the tip of the palatal shelves, in the mesenchyme and also confined to the medial epithelium seam. Numerous Eph transcripts were also identified during tongue development. In particular, EphA1 and EphA2 demonstrated a highly restricted and specific expression in the tongue epithelium at all stages examined, whereas EphA3 was strongly expressed in the lateral tongue mesenchyme. These results suggest regulatory roles for ephrin-EphA signaling in development of the murine palate and tongue.

  13. Expression of androgen receptor target genes in skeletal muscle

    OpenAIRE

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR)-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 ) versus w...

  14. NTS adenosine A2a receptors inhibit the cardiopulmonary chemoreflex control of regional sympathetic outputs via a GABAergic mechanism.

    Science.gov (United States)

    Minic, Zeljka; O'Leary, Donal S; Scislo, Tadeusz J

    2015-07-01

    Adenosine is a powerful central neuromodulator acting via opposing A1 (inhibitor) and A2a (activator) receptors. However, in the nucleus of the solitary tract (NTS), both adenosine receptor subtypes attenuate cardiopulmonary chemoreflex (CCR) sympathoinhibition of renal, adrenal, and lumbar sympathetic nerve activity and attenuate reflex decreases in arterial pressure and heart rate. Adenosine A1 receptors inhibit glutamatergic transmission in the CCR pathway, whereas adenosine A2a receptors most likely facilitate release of an unknown inhibitory neurotransmitter, which, in turn, inhibits the CCR. We hypothesized that adenosine A2a receptors inhibit the CCR via facilitation of GABA release in the NTS. In urethane-chloralose-anesthetized rats (n = 51), we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of the 5-HT3 receptor agonist phenylbiguanide (1-8 μg/kg) before and after selective stimulation of NTS adenosine A2a receptors [microinjections into the NTS of CGS-21680 (20 pmol/50 nl)] preceded by blockade of GABAA or GABAB receptors in the NTS [bicuculline (10 pmol/100 nl) or SCH-50911 (1 nmol/100 nl)]. Blockade of GABAA receptors virtually abolished adenosine A2a receptor-mediated inhibition of the CCR. GABAB receptors had much weaker but significant effects. These effects were similar for the different sympathetic outputs. We conclude that stimulation of NTS adenosine A2a receptors inhibits CCR-evoked hemodynamic and regional sympathetic reflex responses via a GABA-ergic mechanism.

  15. Expression of Toll-like receptors in the developing brain.

    Directory of Open Access Journals (Sweden)

    David Kaul

    Full Text Available Toll-like receptors (TLR are key players of the innate and adaptive immune response in vertebrates. The original protein Toll in Drosophila melanogaster regulates both host defense and morphogenesis during development. Making use of real-time PCR, in situ hybridization, and immunohistochemistry we systematically examined the expression of TLR1-9 and the intracellular adaptor molecules MyD88 and TRIF during development of the mouse brain. Expression of TLR7 and TLR9 in the brain was strongly regulated during different embryonic, postnatal, and adult stages. In contrast, expression of TLR1-6, TLR8, MyD88, and TRIF mRNA displayed no significant changes in the different phases of brain development. Neurons of various brain regions including the neocortex and the hippocampus were identified as the main cell type expressing both TLR7 and TLR9 in the developing brain. Taken together, our data reveal specific expression patterns of distinct TLRs in the developing mouse brain and lay the foundation for further investigation of the pathophysiological significance of these receptors for developmental processes in the central nervous system of vertebrates.

  16. Epidermal growth factor receptor expression in urinary bladder cancer

    Directory of Open Access Journals (Sweden)

    Dayalu S.L. Naik

    2011-01-01

    Full Text Available Objective : To evaluate the expression pattern of epidermal growth factor receptor (EGFR in urinary bladder cancer and its association with human epidermal growth factor receptor 2 (HER2, epidermal growth factor (EGF, interleukin-6 (IL-6, and high risk human papilloma virus (HPV types 16 and 18. Materials and Methods : Thirty cases of urothelial carcinoma were analyzed. EGFR, HER2, EGF, and IL-6 expressions in the tissue were evaluated by immunohistochemical staining. For HPV, DNA from tissue samples was extracted and detection of HPV was done by PCR technique. Furthermore, evaluation of different intracellular molecules associated with EGFR signaling pathways was performed by the western blot method using lysates from various cells and tissues. Results : In this study, the frequencies of immunopositivity for EGFR, HER2, EGF, and IL-6 were 23%, 60%, 47%, and 80%, respectively. No cases were positive for HPV-18, whereas HPV-16 was detected in 10% cases. Overall, expression of EGFR did not show any statistically significant association with the studied parameters. However, among male patients, a significant association was found only between EGFR and HER2. Conclusions : Overexpression of EGFR and/or HER2, two important members of the same family of growth factor receptors, was observed in a considerable proportion of cases. Precise knowledge in this subject would be helpful to formulate a rational treatment strategy in patients with urinary bladder cancer.

  17. The effects of A2B receptor modulators on vascular endothelial growth factor and nitric oxide axis in chronic cyclosporine nephropathy

    Directory of Open Access Journals (Sweden)

    Leena Patel

    2015-01-01

    Full Text Available Introduction: To investigate the actions of adenosine A2B receptor modulators on VEGF and NO levels in CsA nephropathy. Materials and Methods: Nephropathy was induced by administrating 25 mg/kg (s.c of CsA for 5 weeks. The VEGF and NO levels were measured in kidney tissue. Serum creatinine, creatinine clearance, urinary albumin excretion, blood urea nitrogen, kidney pathology score were measured to assess renal function. The analysis of mRNA expression of A2B receptor and VEGF was performed. Results: Administration of CsA for 5 weeks induced adverse renal function. The mRNA expression of VEGF was reduced in renal tissue after 5 weeks of CsA treatment. The renal VEGF and NO levels were also reduced in these animals. In vivo administration of A2B adenosine receptor agonist increased renal VEGF which was inhibited by a selective A2BAR antagonist (MRS1754 in CsA-treated animals. The increase in VEGF was associated with reversal of adverse renal functions. The effects of A2BAR modulators were prominent in CsA-treated animals compared with control animals suggesting CsA treatment may upregulate A2BARs. The mRNA expression of A2BAR was increased after 5 weeks of CsA. Conclusions: A2BAR modulators may provide new therapeutic options to retard CsA nephropathy by mediating renal VEGF and NO.

  18. Chemokine receptor expression by inflammatory T cells in EAE.

    Science.gov (United States)

    Mony, Jyothi Thyagabhavan; Khorooshi, Reza; Owens, Trevor

    2014-01-01

    Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS). The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS). The CCL20 receptor CCR6 has been reported to be selectively expressed by CD4(+) T cells that produce the cytokine IL-17 (Th17 cells). Th17 cells and interferon-gamma (IFNγ)-producing Th1 cells are implicated in induction of MS and its animal model experimental autoimmune encephalomyelitis (EAE). We have assessed whether CCR6 identifies specific inflammatory T cell subsets in EAE. Our approach was to induce EAE, and then examine chemokine receptor expression by cytokine-producing T cells sorted from CNS at peak disease. About 7% of CNS-infiltrating CD4(+) T cells produced IFNγ in flow cytometric cytokine assays, whereas less than 1% produced IL-17. About 1% of CD4(+) T cells produced both cytokines. CCR6 was expressed by Th1, Th1+17 and by Th17 cells, but not by CD8(+) T cells. CD8(+) T cells expressed CXCR3, which was also expressed by CD4(+) T cells, with no correlation to cytokine profile. Messenger RNA for IFNγ, IL-17A, and the Th1 and Th17-associated transcription factors T-bet and RORγt was detected in both CCR6(+) and CXCR3(+) CD4(+) T cells. IFNγ, but not IL-17A mRNA expression was detected in CD8(+) T cells in CNS. CCR6 and CD4 were co-localized in spinal cord infiltrates by double immunofluorescence. Consistent with flow cytometry data some but not all CD4(+) T cells expressed CCR6 within infiltrates. CD4-negative CCR6(+) cells included macrophage/microglial cells. Thus we have for the first time directly studied CD4(+) and CD8(+) T cells in the CNS of mice with peak EAE, and determined IFNγ and IL17 expression by cells expressing CCR6 and CXCR3. We show that neither CCR6 or CXCR3 align with CD4 T cell subsets, and Th1 or mixed Th1+17 predominate in EAE.

  19. Overexpression of adenosine A2A receptors in rats: effects on depression, locomotion and anxiety

    Directory of Open Access Journals (Sweden)

    Joana E Coelho

    2014-06-01

    Full Text Available Adenosine A2A receptors (A2AR are a sub-type of receptors enriched in basal ganglia, activated by the neuromodulator adenosine, which interact with dopamine D2 receptors. Although this reciprocal antagonistic interaction is well established in motor function, the outcome in dopamine-related behaviors remains uncertain, in particular in depression and anxiety. We have demonstrated an upsurge of A2AR associated to aging and chronic stress. Furthermore, Alzheimer’s disease patients present A2AR accumulation in cortical areas together with depressive signs. We now tested the impact of overexpressing A2AR in forebrain neurons on dopamine related behavior, namely depression. Adult male rats overexpressing human A2AR under the control of CaMKII promoter [Tg(CaMKII-hA2AR] and aged-matched wild-types (WT of the same strain (Sprague-Dawley were studied. The forced swimming test (FST, sucrose preference test (SPT and the open-field test (OFT were performed to evaluate behavioral despair, anhedonia, locomotion and anxiety. Tg(CaMKII-hA2AR animals spent more time floating and less time swimming in the FST and presented a decreased sucrose preference at 48h in the SPT. They also covered higher distances in the OFT and spent more time in the central zone than the WT. The results indicate that Tg(CaMKII-hA2AR rats exhibit depressive-like behavior, hyperlocomotion and altered exploratory behavior. This A2AR overexpression may explain the depressive signs found in aging, chronic stress and Alzheimer’s disease.

  20. Heterologous expression of functional G-protein-coupled receptors in Caenorhabditis elegans.

    Science.gov (United States)

    Salom, David; Cao, Pengxiu; Sun, Wenyu; Kramp, Kristopher; Jastrzebska, Beata; Jin, Hui; Feng, Zhaoyang; Palczewski, Krzysztof

    2012-02-01

    New strategies for expression, purification, functional characterization, and structural determination of membrane-spanning G-protein-coupled receptors (GPCRs) are constantly being developed because of their importance to human health. Here, we report a Caenorhabditis elegans heterologous expression system able to produce milligram amounts of functional native and engineered GPCRs. Both bovine opsin [(b)opsin] and human adenosine A(2A) subtype receptor [(h)A(2A)R] expressed in neurons or muscles of C. elegans were localized to cell membranes. Worms expressing these GPCRs manifested changes in motor behavior in response to light and ligands, respectively. With a newly devised protocol, 0.6-1 mg of purified homogenous 9-cis-retinal-bound bovine isorhodopsin [(b)isoRho] and ligand-bound (h)A(2A)R were obtained from C. elegans from one 10-L fermentation at low cost. Purified recombinant (b)isoRho exhibited its signature absorbance spectrum and activated its cognate G-protein transducin in vitro at a rate similar to native rhodopsin (Rho) obtained from bovine retina. Generally high expression levels of 11 native and mutant GPCRs demonstrated the potential of this C. elegans system to produce milligram quantities of high-quality GPCRs and possibly other membrane proteins suitable for detailed characterization.

  1. Spatiotemporal expression of Nogo-66 receptor after focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Yue Cao; Ya-xian Dong; Jie Xu; Guo-liang Chu; Zhi-hua Yang; Yan-ming Liu

    2016-01-01

    NgR, the receptor for the neurite outgrowth inhibitor Nogo-66, plays a critical role in the plasticity and regeneration of the nervous system after injury such as ischemic stroke. In the present study, we used immunohistochemistry to investigate the regional expression of NgR in rat brain following middle cerebral artery occlusion (MCAO). NgR protein expression was not observed in the center of the lesion, but was elevated in the marginal zone compared with control and sham-operated rats. The cerebral cortex and hippocampus (CA1, CA2, and CA3) showed the greatest expression of NgR. Furthermore, NgR expression was higher in the ipsilesional hemisphere than on the control side in the same coronal section. Although time-dependent changes in NgR expression across brain regions had their own characteristics, the overall trend complied with the following rules: NgR expression changes with time showed two peaks and one trough; the ifrst peak in expression appeared between 1 and 3 days after MCAO; expression declined at 5 days; and the second peak occurred at 28 days.

  2. Adenosine A2B receptor-mediated leukemia inhibitory factor release from astrocytes protects cortical neurons against excitotoxicity

    Directory of Open Access Journals (Sweden)

    Moidunny Shamsudheen

    2012-08-01

    Full Text Available Abstract Background Neuroprotective and neurotrophic properties of leukemia inhibitory factor (LIF have been widely reported. In the central nervous system (CNS, astrocytes are the major source for LIF, expression of which is enhanced following disturbances leading to neuronal damage. How astrocytic LIF expression is regulated, however, has remained an unanswered question. Since neuronal stress is associated with production of extracellular adenosine, we investigated whether LIF expression in astrocytes was mediated through adenosine receptor signaling. Methods Mouse cortical neuronal and astrocyte cultures from wild-type and adenosine A2B receptor knock-out animals, as well as adenosine receptor agonists/antagonists and various enzymatic inhibitors, were used to study LIF expression and release in astrocytes. When needed, a one-way analysis of variance (ANOVA followed by Bonferroni post-hoc test was used for statistical analysis. Results We show here that glutamate-stressed cortical neurons induce LIF expression through activation of adenosine A2B receptor subtype in cultured astrocytes and require signaling of protein kinase C (PKC, mitogen-activated protein kinases (MAPKs: p38 and ERK1/2, and the nuclear transcription factor (NF-κB. Moreover, LIF concentration in the supernatant in response to 5′-N-ethylcarboxamide (NECA stimulation was directly correlated to de novo protein synthesis, suggesting that LIF release did not occur through a regulated release pathway. Immunocytochemistry experiments show that LIF-containing vesicles co-localize with clathrin and Rab11, but not with pHogrin, Chromogranin (CgA and CgB, suggesting that LIF might be secreted through recycling endosomes. We further show that pre-treatment with supernatants from NECA-treated astrocytes increased survival of cultured cortical neurons against glutamate, which was absent when the supernatants were pre-treated with an anti-LIF neutralizing antibody. Conclusions

  3. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Directory of Open Access Journals (Sweden)

    E. Teodorov

    2012-10-01

    Full Text Available The periaqueductal gray (PAG has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc or 0.9% saline (up to 1 mL/kg and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05 because a lower percentage of kappa group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR. A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05 and lactating female rats (P < 0.01, with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in

  4. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Teodorov, E. [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, SP (Brazil); Ferrari, M.F.R. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Fior-Chadi, D.R. [Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Camarini, R. [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Felício, L.F. [Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  5. Antagonists of the human A(2A) receptor. Part 6: Further optimization of pyrimidine-4-carboxamides.

    Science.gov (United States)

    Gillespie, Roger J; Bamford, Samantha J; Clay, Alex; Gaur, Suneel; Haymes, Tim; Jackson, Philip S; Jordan, Allan M; Klenke, Burkhard; Leonardi, Stefania; Liu, Jeanette; Mansell, Howard L; Ng, Sean; Saadi, Mona; Simmonite, Heather; Stratton, Gemma C; Todd, Richard S; Williamson, Douglas S; Yule, Ian A

    2009-09-15

    Antagonists of the human A(2A) receptor have been reported to have potential therapeutic benefit in the alleviation of the symptoms associated with neurodegenerative movement disorders such as Parkinson's disease. As part of our efforts to discover potent and selective antagonists of this receptor, we herein describe the detailed optimization and structure-activity relationships of a series of pyrimidine-4-carboxamides. These optimized derivatives display desirable physiochemical and pharmacokinetic profiles, which have led to promising oral activity in clinically relevant models of Parkinson's disease.

  6. The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor.

    Science.gov (United States)

    Watson, Michael J; Lee, Shernita L; Marklew, Abigail J; Gilmore, Rodney C; Gentzsch, Martina; Sassano, Maria F; Gray, Michael A; Tarran, Robert

    2016-06-09

    CFTR is an apical membrane anion channel that regulates fluid homeostasis in many organs including the airways, colon, pancreas and sweat glands. In cystic fibrosis, CFTR dysfunction causes significant morbidity/mortality. Whilst CFTR's function as an ion channel has been well described, its ability to regulate other proteins is less understood. We have previously shown that plasma membrane CFTR increases the surface density of the adenosine 2B receptor (A2BR), but not of the β2 adrenergic receptor (β2AR), leading to an enhanced, adenosine-induced cAMP response in the presence of CFTR. In this study, we have found that the C-terminal PDZ-domain of both A2BR and CFTR were crucial for this interaction, and that replacing the C-terminus of A2BR with that of β2AR removed this CFTR-dependency. This observation extended to intact epithelia and disruption of the actin cytoskeleton prevented A2BR-induced but not β2AR-induced airway surface liquid (ASL) secretion. We also found that CFTR expression altered the organization of the actin cytoskeleton and PDZ-binding proteins in both HEK293T cells and in well-differentiated human bronchial epithelia. Furthermore, removal of CFTR's PDZ binding motif (ΔTRL) prevented actin rearrangement, suggesting that CFTR insertion in the plasma membrane results in local reorganization of actin, PDZ binding proteins and certain GPCRs.

  7. Alterations in ventral and dorsal striatal allosteric A2AR-D2R receptor-receptor interactions after amphetamine challenge: Relevance for schizophrenia.

    Science.gov (United States)

    Pintsuk, Julia; Borroto-Escuela, Dasiel O; Lai, Terence K Y; Liu, Fang; Fuxe, Kjell

    2016-10-29

    Striatal dopamine D2R homodimerization is increased in the dorsal striatum after acute amphetamine challenge and in the amphetamine-induced sensitized state, a well-known animal model of schizophrenia. Therefore, it was tested if the increase in D2R homoreceptor complexes found after acute amphetamine challenge in the saline or the amphetamine sensitized state leads to changes in the antagonistic adenosine A2AR-D2R interactions in the striatum. [(3)H]-raclopride binding was performed in membrane preparations from the ventral and dorsal striatum involving competition with the D2R like agonist quinpirole. In the ventral striatum CGS 21680 produced a significant increase of the KiH values (pvalues in saline sensitized rats after amphetamine challenge. However, in the dorsal striatum a significant change did not develop in the KiH values when expressed in percent of the corresponding values in saline sensitized rats after amphetamine challenge. In fact, the non-significant change was in the opposite direction towards a reduction of the KiH values. Taken together, a reduced affinity of the high affinity D2 agonist binding site (KiH value) developed in the ventral but not in the dorsal striatum as a result of increased antagonistic allosteric A2AR-D2R interactions in the amphetamine-induced sensitized state versus the saline sensitized state after an acute amphetamine challenge. The selective reappearance of antagonistic A2AR-D2R receptor-receptor interactions in the ventral striatum after amphetamine challenge in the amphetamine sensitized rat may give one possible mechanism for the atypical antipsychotic-like actions of A2AR receptor agonists.

  8. Endothelin-1 downregulates Mas receptor expression in human cardiomyocytes.

    Science.gov (United States)

    Chen, Zhiheng; Tang, Yamei; Yang, Zuocheng; Liu, Shaojun; Liu, Yong; Li, Yan; He, Wei

    2013-09-01

    Endothelin-1 (ET-1) and the renin-angiotensin system (RAS) are involved in the pathogenesis of cardiac dysfunction. The Mas receptor is a functional binding site for angiotensin (Ang)‑(1-7), which is now considered a critical component of the RAS and exerts cardioprotective effects. To the best of our knowledge, the present study aimed to examine, for the first time, the effects of ET-1 on Mas expression in cultured human cardiomyocytes. Human cardiomyocytes were treated with ET-1 at different concentrations (1, 5, 10, 20 and 30 nM) for varied time periods (0.5, 1.5, 3, 4.5 or 6 h) with or without the transcription inhibitor actinomycin D, endothelin A (ETA) receptor blocker BQ123 and ETB receptor blocker BQ788, or different kinase inhibitors. ET-1 decreased the Mas mRNA level in a statistically significant dose- and time-dependent manner within 4.5 h, which was reflected in the dose-dependent downregulation of Mas promoter activity, Mas protein levels and Ang-(1-7) binding on the cell membrane. Actinomycin D (1 mg/ml), BQ123 (1 µM), p38 mitogen-activated protein kinase (MAPK) siRNA and inhibitor PD169316 (25 µM), completely eliminated the inhibitory effects of ET-1 on Mas expression in human cardiomyocytes. In conclusion, the present study demonstrated that ET-1 downregulates Mas expression at the transcription level in human cardiomyocytes via the ETA receptor by a p38 MAPK‑dependent mechanism. This study provides novel insights into the function of ET-1 and the Ang‑(1-7)/Mas axis in cardiac pathophysiology.

  9. Leptin receptor expression during the progression of endometrial carcinoma is correlated with estrogen and progesterone receptors

    Science.gov (United States)

    Méndez-López, Luis Fernando; Zavala-Pompa, Angel; Cortés-Gutiérrez, Elva I.; Cerda-Flores, Ricardo M.

    2016-01-01

    Introduction The hormone leptin, which is produced in the adipose tissue, may influence tumorigenesis directly via its receptor (Ob-R). Thus, a role for Ob-R in endometrial carcinogenesis has been proposed. However, most studies neither included samples of the entire histological progression of endometrial carcinoma nor examined Ob-R jointly with the estrogen and progesterone receptors (ER and PR, respectively). Material and methods To determine the fluctuations of Ob-R, ER, and PR during the histological progression of endometrial carcinoma, we assessed their expression via immunohistochemistry (IHC) in six histological types of endometrium (proliferative, secretory, nonatypical and atypical hyperplasia, and endometrioid and nonendometrioid endometrial carcinoma), in which we performed histopathological and digital scoring for the quantification of receptors. Results We found that Ob-R expression was positively correlated with that of ER and PR (r = 1, p hyperplasias, and carcinomas, according to their relative digitally scored Ob-R expression (p endometrial carcinogenesis in correlation with ER and PR, suggesting that Ob-R expression in vivo is highly dependent on estrogen and progesterone activities in the endometrium and on its ER and PR status, as suggested previously by in vitro studies. PMID:28144276

  10. Expression profile of frizzled receptors in human medulloblastomas.

    Science.gov (United States)

    Salsano, Ettore; Paterra, Rosina; Figus, Miriam; Menghi, Francesca; Maderna, Emanuela; Pollo, Bianca; Solero, Carlo Lazzaro; Massimi, Luca; Finocchiaro, Gaetano

    2012-01-01

    Secreted WNT proteins signal through ten receptors of the frizzled (FZD) family. Because of the relevance of the WNT/β-catenin (CTNNB1) signaling pathway in medulloblastomas (MBs), we investigated the expression of all ten members of the FZD gene family (FZD1-10) in 17 human MBs, four MB cell lines and in normal human cerebellum, using real-time PCR. We found that FZD2 transcript was over-expressed in all MBs and MB cell lines. Western blot analysis confirmed the expression of FZD2 at the protein level. Moreover, the levels of FZD2 transcript were found to correlate with those of ASPM transcript, a marker of mitosis essential for mitotic spindle function. Accordingly, ASPM mRNA was expressed at a very low level in the adult, post-mitotic, human cerebellum, at higher levels in fetal cerebellum and at highest levels in MB tissues and cell lines. Unlike FZD2, the other FZDs were overexpressed (e.g., FZD1, FZD3 and FZD8) or underexpressed (e.g., FZD7, FZD9 and FZD10) in a case-restricted manner. Interestingly, we did not find any nuclear immuno-reactivity to CTNNB1 in four MBs over-expressing both FZD2 and other FZD receptors, confirming the lack of nuclear CTNNB1 staining in the presence of increased FZD expression, as in other tumor types. Overall, our results indicate that altered expression of FZD2 might be associated with a proliferative status, thus playing a role in the biology of human MBs, and possibly of cerebellar progenitors from which these malignancies arise.

  11. Expression of oestrogen receptor-α and oestrogen receptor-β in prostate cancer

    Institute of Scientific and Technical Information of China (English)

    YANG Guo-sheng; WANG Ying; WANG Ping; CHEN Zhao-dian

    2007-01-01

    Background Recent studies have suggested that estrogens are involved in normal and abnormal prostate growth,though their exact role is still controversial. Oestrogens exert inhibitory and stimulatory effects on prostate gland, but the expression of oestrogen receptor-α (ERα) and oestrogen receptor-β (ERβ) in malignant prostate tissue remains unresolved. We determined ERα and ERβ in prostate cancer and investigated the relationship between expression of ER and pathological features of prostate carcinoma.Methods Thirty-two cases of prostate cancer, 12 cases of normal prostate tissue and 32 cases of benign prostate hyperplasia were analyzed for the expression of ERα and ERβ using semiquantitative, reverse transcription polymerase chain reaction (RT-PCR) and the products sequenced.Results Comparisons of the normal, hyperplastic and tumour prostate tissues indicated an overexpression of ERα in tumour specimens (P<0.01). However, the expression of ERβ significantly reduced in tumour tissues compared with normal and hyperplastic specimens (P<0.01), suggesting that severe pathological features of prostate cancer were associated with lower ERβ expression. Spearman analysis showed negative correlation between ERβ expression and tumour stage, grade (-0.67, -0.43, respectively, both P<0.05), and a positive correlation between ERα expression and tumour stage, grade (0.51, 0.57, respectively, both P<0.01). Our analysis also showed that hormone refractory, prostate cancer, compared with hormone dependent, prostate cancer, displayed a decreased expression of ERβ (P<0.01) and an increased expression of ERα.Conclusions ERa and ERβ may play important roles in the development of prostate cancer. The decrease in ERβ expression is associated with higher Gleason grade tumours and prostate cancer with higher metastatic potential. The loss of ERβ could be one of the key processes leading to uncontrolled growth of prostate epithelial cells.

  12. A transparent expression of the A^2-Condensate's renormalisation

    CERN Document Server

    Boucaud, P; Le Yaouanc, A; Leroy, J P; Micheli, J; Moutarde, H; Pène, O; Rodríguez-Quintero, J; Boucaud, Ph.

    2003-01-01

    We give a more transparent understanding of the vacuum expectation value of the renormalised local operator A^2 by relating it to the gluon propagator integrated over the momentum. The quadratically divergent perturbative contribution is subtracted and the remainder, dominantly due to the O(1/p^2) correction to the perturbative propagator at large p^2 is logarithmically divergent. This provides a transparent derivation of the fact that this O(1/p^2) term is related to the vacuum expectation value of the local A^2 operator and confirms a previous claim based on the operator product expansion (OPE) of the gluon propagator. At leading logarithms the agreement is quantitative, with a standard running factor, between the local A^2 condensate renormalised as described above and the one renormalised in the OPE context.

  13. TEMPORAL EXPRESSION OF NOTCH RECEPTORS DURING LUNG DEVELOPMENT IN RAT

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qian-shen; CHANG Li-wen; LIU Han-chu; RONG Zhi-hu; CHEN Hong-bing

    2005-01-01

    Objective To investigate the temporal expression of Notch receptors in developing lungs of rats and to explore the regulating role of Notch in lung development. Methods We studied the expression of Notch1,2,3 isforms in embryonic days 18,20,21 and postnatal days 1,4,7,14, 21 rat lungs. Six rats of each group were used to assess lung histologic changes by HE staining and expression of Notch in lungs by immunohistochemistry. Total RNA was extracted by Trizol reagent from the frozen lung tissues. mRNA levels of Notch were measured by reverse transcription polymerase chain reaction (RT-PCR). Results It is showed that Notch1-3 mainly localized in the airway surface epithelium、alveolar epithelium during the psdueoglandular stage, and reached the peaks at canalicular period. The expression patterns of Notch1-3 were changed with the fetal age. Conclusion These results support multiple roles for Notch1,2,and 3 receptor activation during lung development, probably not only modulating the process of branching morphogenesis but also involved in determining the cell differentiation fate in fetal alveolar epithelium.

  14. Adenosine A(2A) receptor gene (ADORA2A) variants may increase autistic symptoms and anxiety in autism spectrum disorder.

    Science.gov (United States)

    Freitag, Christine M; Agelopoulos, Konstantin; Huy, Ellen; Rothermundt, Matthias; Krakowitzky, Petra; Meyer, Jobst; Deckert, Jürgen; von Gontard, Alexander; Hohoff, Christa

    2010-01-01

    Autism spectrum disorders (ASDs) are heterogeneous disorders presenting with increased rates of anxiety. The adenosine A(2A) receptor gene (ADORA2A) is associated with panic disorder and is located on chromosome 22q11.23. Its gene product, the adenosine A(2A) receptor, is strongly expressed in the caudate nucleus, which also is involved in ASD. As autistic symptoms are increased in individuals with 22q11.2 deletion syndrome, and large 22q11.2 deletions and duplications have been observed in ASD individuals, in this study, 98 individuals with ASD and 234 control individuals were genotyped for eight single-nucleotide polymorphisms in ADORA2A. Nominal association with the disorder was observed for rs2236624-CC, and phenotypic variability in ASD symptoms was influenced by rs3761422, rs5751876 and rs35320474. In addition, association of ADORA2A variants with anxiety was replicated for individuals with ASD. Findings point toward a possible mediating role of ADORA2A variants on phenotypic expression in ASD that need to be replicated in a larger sample.

  15. Deficiency of phospholipase A2 receptor exacerbates ovalbumin-induced lung inflammation.

    Science.gov (United States)

    Tamaru, Shun; Mishina, Hideto; Watanabe, Yosuke; Watanabe, Kazuhiro; Fujioka, Daisuke; Takahashi, Soichiro; Suzuki, Koji; Nakamura, Takamitsu; Obata, Jun-Ei; Kawabata, Kenichi; Yokota, Yasunori; Murakami, Makoto; Hanasaki, Kohji; Kugiyama, Kiyotaka

    2013-08-01

    Secretory phospholipase A2 (sPLA2) plays a critical role in the genesis of lung inflammation through proinflammatory eicosanoids. A previous in vitro experiment showed a possible role of cell surface receptor for sPLA2 (PLA2R) in the clearance of extracellular sPLA2. PLA2R and groups IB and X sPLA2 are expressed in the lung. This study examined a pathogenic role of PLA2R in airway inflammation using PLA2R-deficient (PLA2R(-/-)) mice. Airway inflammation was induced by immunosensitization with OVA. Compared with wild-type (PLA2R(+/+)) mice, PLA2R(-/-) mice had a significantly greater infiltration of inflammatory cells around the airways, higher levels of groups IB and X sPLA2, eicosanoids, and Th2 cytokines, and higher numbers of eosinophils and neutrophils in bronchoalveolar lavage fluid after OVA treatment. In PLA2R(-/-) mice, intratracheally instilled [(125)I]-labeled sPLA2-IB was cleared much more slowly from bronchoalveolar lavage fluid compared with PLA2R(+/+) mice. The degradation of the instilled [(125)I]-labeled sPLA2-IB, as assessed by trichloroacetic acid-soluble radioactivity in bronchoalveolar lavage fluid after instillation, was lower in PLA2R(-/-) mice than in PLA2R(+/+) mice. In conclusion, PLA2R deficiency increased sPLA2-IB and -X levels in the lung through their impaired clearance from the lung, leading to exaggeration of lung inflammation induced by OVA treatment in a murine model.

  16. M-Type Phospholipase A2 Receptor as Target Antigen in Idiopathic Membranous Nephropathy

    Science.gov (United States)

    Beck, Laurence H.; Bonegio, Ramon G.B.; Lambeau, Gérard; Beck, David M.; Powell, David W.; Cummins, Timothy D.; Klein, Jon B.; Salant, David J.

    2009-01-01

    BACKGROUND Idiopathic membranous nephropathy, a common form of the nephrotic syndrome, is an antibody-mediated autoimmune glomerular disease. Serologic diagnosis has been elusive because the target antigen is unknown. METHODS We performed Western blotting of protein extracts from normal human glomeruli with serum samples from patients with idiopathic or secondary membranous nephropathy or other proteinuric or autoimmune diseases and from normal controls. We used mass spectrometry to analyze the reactive protein bands and confirmed the identity and location of the target antigen with a monospecific antibody. RESULTS Serum samples from 26 of 37 patients (70%) with idiopathic but not secondary membranous nephropathy specifically identified a 185-kD glycoprotein in non-reduced glomerular extract. Mass spectrometry of the reactive protein band detected the M-type phospholipase A2 receptor (PLA2R). Reactive serum specimens recognized recombinant PLA2R and bound the same 185-kD glomerular protein as did the monospecific anti-PLA2R antibody. Anti-PLA2R autoantibodies in serum samples from patients with membranous nephropathy were mainly IgG4, the predominant immunoglobulin subclass in glomerular deposits. PLA2R was expressed in podocytes in normal human glomeruli and colocalized with IgG4 in immune deposits in glomeruli of patients with membranous nephropathy. IgG eluted from such deposits in patients with idiopathic membranous nephropathy, but not in those with lupus membranous or IgA nephropathy, recognized PLA2R. CONCLUSIONS A majority of patients with idiopathic membranous nephropathy have antibodies against a conformation-dependent epitope in PLA2R. PLA2R is present in normal podocytes and in immune deposits in patients with idiopathic membranous nephropathy, indicating that PLA2R is a major antigen in this disease. PMID:19571279

  17. Role of adenosine A2B receptor signaling in contribution of cardiac mesenchymal stem-like cells to myocardial scar formation.

    Science.gov (United States)

    Ryzhov, Sergey; Sung, Bong Hwan; Zhang, Qinkun; Weaver, Alissa; Gumina, Richard J; Biaggioni, Italo; Feoktistov, Igor

    2014-09-01

    Adenosine levels increase in ischemic hearts and contribute to the modulation of that pathological environment. We previously showed that A2B adenosine receptors on mouse cardiac Sca1(+)CD31(-) mesenchymal stromal cells upregulate secretion of paracrine factors that may contribute to the improvement in cardiac recovery seen when these cells are transplanted in infarcted hearts. In this study, we tested the hypothesis that A2B receptor signaling regulates the transition of Sca1(+)CD31(-) cells, which occurs after myocardial injury, into a myofibroblast phenotype that promotes myocardial repair and remodeling. In vitro, TGFβ1 induced the expression of the myofibroblast marker α-smooth muscle actin (αSMA) and increased collagen I generation in Sca1(+)CD31(-) cells. Stimulation of A2B receptors attenuated TGFβ1-induced collagen I secretion but had no effect on αSMA expression. In vivo, myocardial infarction resulted in a rapid increase in the numbers of αSMA-positive cardiac stromal cells by day 5 followed by a gradual decline. Genetic deletion of A2B receptors had no effect on the initial accumulation of αSMA-expressing stromal cells but hastened their subsequent decline; the numbers of αSMA-positive cells including Sca1(+)CD31(-) cells remained significantly higher in wild type compared with A2B knockout hearts. Thus, our study revealed a significant contribution of cardiac Sca1(+)CD31(-) cells to the accumulation of αSMA-expressing cells after infarction and implicated A2B receptor signaling in regulation of myocardial repair and remodeling by delaying deactivation of these cells. It is plausible that this phenomenon may contribute to the beneficial effects of transplantation of these cells to the injured heart.

  18. Differential expression of pancreatic protein andchemosensing receptor mRNAs in NKCC1-null intestine

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    AIM To investigate the intestinal functions of the NKCC1Na+-K+-2Cl cotransporter (SLC12a2 gene), differentialmRNA expression changes in NKCC1-null intestine wereanalyzed.METHODS: Microarray analysis of mRNA from intestinesof adult wild-type mice and gene-targeted NKCC1-null mice (n = 6 of each genotype) was performed toidentify patterns of differential gene expression changes.Differential expression patterns were further examinedby Gene Ontology analysis using the online Gorillaprogram, and expression changes of selected genes wereverified using northern blot analysis and quantitativereal time-polymerase chain reaction. Histological stainingand immunofluorescence were performed to identify celltypes in which upregulated pancreatic digestive enzymeswere expressed.RESULTS: Genes typically associated with pancreaticfunction were upregulated. These included lipase,amylase, elastase, and serine proteases indicative ofpancreatic exocrine function, as well as insulin andregenerating islet genes, representative of endocrinefunction. Northern blot analysis and immunohistochemistryshowed that differential expression of exocrinepancreas mRNAs was specific to the duodenum andlocalized to a subset of goblet cells. In addition, a majorpattern of changes involving differential expression ofolfactory receptors that function in chemical sensing, aswell as other chemosensing G-protein coupled receptors,was observed. These changes in chemosensory receptorexpression may be related to the failure of intestinalfunction and dependency on parenteral nutritionobserved in humans with SLC12a2 mutations.CONCLUSION: The results suggest that loss of NKCC1affects not only secretion, but also goblet cell functionand chemosensing of intestinal contents via G-proteincoupled chemosensory receptors.

  19. Novel Alexa Fluor-488 labeled antagonist of the A(2A) adenosine receptor: Application to a fluorescence polarization-based receptor binding assay.

    Science.gov (United States)

    Kecskés, Miklós; Kumar, T Santhosh; Yoo, Lena; Gao, Zhan-Guo; Jacobson, Kenneth A

    2010-08-15

    Fluorescence polarization (FP) assay has many advantages over the traditional radioreceptor binding studies. We developed an A(2A) adenosine receptor (AR) FP assay using a newly synthesized fluorescent antagonist of the A(2A)AR (MRS5346), a pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine derivative conjugated to the fluorescent dye Alexa Fluor-488. MRS5346 displayed a K(i) value of 111+/-16nM in radioligand binding using [(3)H]CGS21680 and membranes prepared from HEK293 cells stably expressing the human A(2A)AR. In a cyclic AMP functional assay, MRS5346 was shown to be an A(2A)AR antagonist. MRS5346 did not show any effect on A(1) and A(3) ARs in binding or the A(2B)AR in a cyclic AMP assay at 10microM. Its suitability as a fluorescent tracer was indicated in an initial observation of an FP signal following A(2A)AR binding. The FP signal was optimal with 20nM MRS5346 and 150microg protein/mL HEK293 membranes. The association and dissociation kinetic parameters were readily determined using this FP assay. The K(d) value of MRS5346 calculated from kinetic parameters was 16.5+/-4.7nM. In FP competition binding experiments using MRS5346 as a tracer, K(i) values of known AR agonists and antagonists consistently agreed with K(i) values from radioligand binding. Thus, this FP assay, which eliminates using radioisotopes, appears to be appropriate for both routine receptor binding and high-throughput screening with respect to speed of analysis, displaceable signal and precision. The approach used in the present study could be generally applicable to other GPCRs.

  20. Nuclear receptor complement of the cnidarian Nematostella vectensis: phylogenetic relationships and developmental expression patterns

    Directory of Open Access Journals (Sweden)

    Tarrant Ann M

    2009-09-01

    Full Text Available Abstract Background Nuclear receptors are a superfamily of metazoan transcription factors that regulate diverse developmental and physiological processes. Sequenced genomes from an increasing number of bilaterians have provided a more complete picture of duplication and loss of nuclear receptors in protostomes and deuterostomes but have left open the question of which nuclear receptors were present in the cnidarian-bilaterian ancestor. In addition, nuclear receptor expression and function are largely uncharacterized within cnidarians, preventing determination of conserved and novel nuclear receptor functions in the context of animal evolution. Results Here we report the first complete set of nuclear receptors from a cnidarian, the starlet sea anemone Nematostella vectensis. Genomic searches using conserved DNA- and ligand-binding domains revealed seventeen nuclear receptors in N. vectensis. Phylogenetic analyses support N. vectensis orthologs of bilaterian nuclear receptors in four nuclear receptor subfamilies within nuclear receptor family 2 (COUP-TF, TLL, HNF4, TR2/4 and one putative ortholog of GCNF (nuclear receptor family 6. Other N. vectensis genes grouped well with nuclear receptor family 2 but represented lineage-specific duplications somewhere within the cnidarian lineage and were not clear orthologs of bilaterian genes. Three nuclear receptors were not well-supported within any particular nuclear receptor family. The seventeen nuclear receptors exhibited distinct developmental expression patterns, with expression of several nuclear receptors limited to a subset of developmental stages. Conclusion N. vectensis contains a diverse complement of nuclear receptors including orthologs of several bilaterian nuclear receptors. Novel nuclear receptors in N. vectensis may be ancient genes lost from triploblastic lineages or may represent cnidarian-specific radiations. Nuclear receptors exhibited distinct developmental expression patterns, which

  1. Activation of D4 dopamine receptor decreases angiotensin II type 1 receptor expression in rat renal proximal tubule cells.

    Science.gov (United States)

    Chen, Ken; Deng, Kun; Wang, Xiaoyan; Wang, Zhen; Zheng, Shuo; Ren, Hongmei; He, Duofen; Han, Yu; Asico, Laureano D; Jose, Pedro A; Zeng, Chunyu

    2015-01-01

    The dopaminergic and renin-angiotensin systems interact to regulate blood pressure. Disruption of the D4 dopamine receptor gene in mice produces hypertension that is associated with increased renal angiotensin type 1 (AT1) receptor expression. We hypothesize that the D4 receptor can inhibit AT1 receptor expression and function in renal proximal tubule cells from Wistar-Kyoto (WKY) rats, but the D4 receptor regulation of AT1 receptor is aberrant in renal proximal tubule cells from spontaneously hypertensive rats (SHRs). The D4 receptor agonist, PD168077, decreased AT1 receptor protein expression in a time- and concentration-dependent manner in WKY cells. By contrast, in SHR cells, PD168077 increased AT1 receptor protein expression. The inhibitory effect of D4 receptor on AT1 receptor expression in WKY cells was blocked by a calcium channel blocker, nicardipine, or calcium-free medium, indicating that calcium is involved in the D4 receptor-mediated signaling pathway. Angiotensin II increased Na(+)-K(+) ATPase activity in WKY cells. Pretreatment with PD168077 decreased the stimulatory effect of angiotensin II on Na(+)-K(+) ATPase activity in WKY cells. In SHR cells, the inhibitory effect of D4 receptor on angiotensin II-mediated stimulation of Na(+)-K(+) ATPase activity was aberrant; pretreatment with PD168077 augmented the stimulatory effect of AT1 receptor on Na(+)-K(+) ATPase activity in SHR cells. This was confirmed in vivo; pretreatment with PD128077 for 1 week augmented the antihypertensive and natriuretic effect of losartan in SHRs but not in WKY rats. We suggest that an aberrant interaction between D4 and AT1 receptors may play a role in the abnormal regulation of sodium excretion in hypertension.

  2. Expression and Characterization of Purinergic Receptors in Rat Middle Meningeal Artery–Potential Role in Migraine

    DEFF Research Database (Denmark)

    Haanes, Kristian Agmund; Edvinsson, Lars

    2014-01-01

    The dura mater and its vasculature have for decades been central in the hypothesis of migraine and headache pathophysiology. Although recent studies have questioned the role of the vasculature as the primary cause, dural vessel physiology is still relevant in understanding the complex pathophysio......The dura mater and its vasculature have for decades been central in the hypothesis of migraine and headache pathophysiology. Although recent studies have questioned the role of the vasculature as the primary cause, dural vessel physiology is still relevant in understanding the complex...... be inhibited by SCH58261 (A2A receptor antagonist) and caffeine (adenosine receptor antagonist). This gives one putative molecular mechanism for the effect of caffeine, often used as an adjuvant remedy of cranial pain. Semi-quantitative RT-PCR expression data for the receptors correlate well...

  3. Drug-target residence time : a case for the adenosine A1 and A2A receptors

    NARCIS (Netherlands)

    Guo, Dong

    2014-01-01

    Ligand-receptor binding kinetics is increasingly recognized to play a pivotal role in the early phase of drug design and discovery. In this thesis ligand-receptor binding kinetics, particularly residence time, at the adenosine A1 and A2A receptors was extensively investigated. Several case studies

  4. NMDA receptor subunit expression and PAR2 receptor activation in colospinal afferent neurons (CANs during inflammation induced visceral hypersensitivity

    Directory of Open Access Journals (Sweden)

    Caudle Robert M

    2009-09-01

    Full Text Available Abstract Background Visceral hypersensitivity is a clinical observation made when diagnosing patients with functional bowel disorders. The cause of visceral hypersensitivity is unknown but is thought to be attributed to inflammation. Previously we demonstrated that a unique set of enteric neurons, colospinal afferent neurons (CANs, co-localize with the NR1 and NR2D subunits of the NMDA receptor as well as with the PAR2 receptor. The aim of this study was to determine if NMDA and PAR2 receptors expressed on CANs contribute to visceral hypersensitivity following inflammation. Recently, work has suggested that dorsal root ganglion (DRG neurons expressing the transient receptor potential vanilloid-1 (TRPV1 receptor mediate inflammation induced visceral hypersensitivity. Therefore, in order to study CAN involvement in visceral hypersensitivity, DRG neurons expressing the TRPV1 receptor were lesioned with resiniferatoxin (RTX prior to inflammation and behavioural testing. Results CANs do not express the TRPV1 receptor; therefore, they survive following RTX injection. RTX treatment resulted in a significant decrease in TRPV1 expressing neurons in the colon and immunohistochemical analysis revealed no change in peptide or receptor expression in CANs following RTX lesioning as compared to control data. Behavioral studies determined that both inflamed non-RTX and RTX animals showed a decrease in balloon pressure threshold as compared to controls. Immunohistochemical analysis demonstrated that the NR1 cassettes, N1 and C1, of the NMDA receptor on CANs were up-regulated following inflammation. Furthermore, inflammation resulted in the activation of the PAR2 receptors expressed on CANs. Conclusion Our data show that inflammation causes an up-regulation of the NMDA receptor and the activation of the PAR2 receptor expressed on CANs. These changes are associated with a decrease in balloon pressure in response to colorectal distension in non-RTX and RTX lesioned

  5. Role of adenosine A1 and A2A receptors in the alcohol withdrawal syndrome.

    Science.gov (United States)

    Kaplan, G B; Bharmal, N H; Leite-Morris, K A; Adams, W R

    1999-10-01

    The role of adenosine receptor-mediated signaling was examined in the alcohol withdrawal syndrome. CD-1 mice received a liquid diet containing ethanol (6.7%, v/v) or a control liquid diet that were abruptly discontinued after 14 days of treatment. Mice consuming ethanol showed a progressive increase in signs of intoxication throughout the drinking period. Following abrupt discontinuation of ethanol diet, mice demonstrated reversible signs of handling-induced hyperexcitability that were maximal between 5-8 h. Withdrawing mice received treatment with adenosine receptor agonists at the onset of peak withdrawal (5.5 h) and withdrawal signs were blindly rated (during withdrawal hours 6 and 7). Adenosine A1-receptor agonist R-N6(phenylisopropyl)adenosine (0.15 and 0.3 mg/ kg) reduced withdrawal signs 0.5 and 1.5 h after drug administration in a dose-dependent fashion. Adenosine A2A-selective agonist 2-p-(2-carboxyethyl)phenylethyl-amino-5'-N-ethylcarboxamidoadenosine (0.3 mg/kg) reduced withdrawal signs at both time points. In ethanol-withdrawing mice, there were significant decreases in adenosine transporter sites in striatum without changes in cortex or cerebellum. In ethanol-withdrawing mice, there were no changes in adenosine A1 and A2A receptor concentrations in cortex, striatum, or cerebellum. There appears to be a role for adenosine A1 and A2A receptors in the treatment of the ethanol withdrawal syndrome. Published by Elsevier Science Inc.

  6. Evidence for homogeneity of thromboxane A2 receptor using structurally different antagonists.

    Science.gov (United States)

    Swayne, G T; Maguire, J; Dolan, J; Raval, P; Dane, G; Greener, M; Owen, D A

    1988-08-01

    Nine structurally dissimilar thromboxane antagonists (SQ 29548, ICI 185282, AH 23848, BM 13505 (Daltroban), BM 13177 (Sulotroban), SK&F 88046, L-636499, L-640035 and a Bayer compound SK&F 47821) were studied for activity as thromboxane A2 receptor antagonists. The assays used were inhibition of responses induced by the thromboxane mimetic, U46619, on human washed platelet aggregation, rabbit platelet aggregation, rabbit aortic strip contraction, anaesthetised guinea-pig bronchoconstriction, and a radio-labelled ligand (125I-PTA-OH) binding assay as a measure of affinity for the human platelet receptor. The results of the present study, with activities spanning at least four orders of magnitude along with statistically significant correlations (at least P less than 0.01), strongly suggests that between assays, antagonists and species a homogenous population of thromboxane A2 receptors exists. This finding is in contrast to those of a close series of 13-azapinane antagonists studied by other workers which have suggested receptor heterogeneity.

  7. Regulation of gene expression in ovarian cancer cells by luteinizing hormone receptor expression and activation

    Directory of Open Access Journals (Sweden)

    Dam Phuongan

    2011-06-01

    Full Text Available Abstract Background Since a substantial percentage of ovarian cancers express gonadotropin receptors and are responsive to the relatively high concentrations of pituitary gonadotropins during the postmenopausal years, it has been suggested that receptor activation may contribute to the etiology and/or progression of the neoplasm. The goal of the present study was to develop a cell model to determine the impact of luteinizing hormone (LH receptor (LHR expression and LH-mediated LHR activation on gene expression and thus obtain insights into the mechanism of gonadotropin action on ovarian surface epithelial (OSE carcinoma cells. Methods The human ovarian cancer cell line, SKOV-3, was stably transfected to express functional LHR and incubated with LH for various periods of time (0-20 hours. Transcriptomic profiling was performed on these cells to identify LHR expression/activation-dependent changes in gene expression levels and pathways by microarray and qRT-PCR analyses. Results Through comparative analysis on the LHR-transfected SKOV-3 cells exposed to LH, we observed the differential expression of 1,783 genes in response to LH treatment, among which five significant families were enriched, including those of growth factors, translation regulators, transporters, G-protein coupled receptors, and ligand-dependent nuclear receptors. The most highly induced early and intermediate responses were found to occupy a network impacting transcriptional regulation, cell growth, apoptosis, and multiple signaling transductions, giving indications of LH-induced apoptosis and cell growth inhibition through the significant changes in, for example, tumor necrosis factor, Jun and many others, supportive of the observed cell growth reduction in in vitro assays. However, other observations, e.g. the substantial up-regulation of the genes encoding the endothelin-1 subtype A receptor, stromal cell-derived factor 1, and insulin-like growth factor II, all of which are

  8. Immunohistochemical Analysis of Omi/HtrA2 Expression in Prostate Cancer and Benign Prostatic Hyperplasia

    Institute of Scientific and Technical Information of China (English)

    HU Xiaoyong; CHEN Xiaochun; PING Hao; CHEN Zhaohui; ZENG Fuqing; LU Gongcheng

    2005-01-01

    To study the expression and significance of the serine protease Omi/HtrA2 in prostate cancer and benign prostatic hyperplasia. The expression of Omi/HtrA2 was assayed by means of immunohistochemical technique in 41 prostate cancer (Cap), 20 benign prostatic hyperplasia (BPH) and 10 normal prostate (NP) specimens. Omi/HtrA2 expression was positive in 30 (73.17%) prostate cancer specimens, and the positive rate of Omi/HtrA2 was lower in well differentiated than in poorly and moderately differentiated groups (P<0.05). By contrast, the cells in normal prostate and benign prostatic hyperplasia groups showed no or weak expression of Omi/HtrA2.Prostate cancer cells in vivo may need Omi/HtrA2 expression for apoptosis, and that Omi/HtrA2expression might be involved in prostate cancer development.

  9. Defining breast cancer intrinsic subtypes by quantitative receptor expression.

    Science.gov (United States)

    Cheang, Maggie C U; Martin, Miguel; Nielsen, Torsten O; Prat, Aleix; Voduc, David; Rodriguez-Lescure, Alvaro; Ruiz, Amparo; Chia, Stephen; Shepherd, Lois; Ruiz-Borrego, Manuel; Calvo, Lourdes; Alba, Emilio; Carrasco, Eva; Caballero, Rosalia; Tu, Dongsheng; Pritchard, Kathleen I; Levine, Mark N; Bramwell, Vivien H; Parker, Joel; Bernard, Philip S; Ellis, Matthew J; Perou, Charles M; Di Leo, Angelo; Carey, Lisa A

    2015-05-01

    To determine intrinsic breast cancer subtypes represented within categories defined by quantitative hormone receptor (HR) and HER2 expression. We merged 1,557 cases from three randomized phase III trials into a single data set. These breast tumors were centrally reviewed in each trial for quantitative ER, PR, and HER2 expression by immunohistochemistry (IHC) stain and by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), with intrinsic subtyping by research-based PAM50 RT-qPCR assay. Among 283 HER2-negative tumors with definition of triple-negative breast cancer significantly diminished enrichment for basal-like cancer (p 10%) expression, only 69 (54%) were HER2-enriched and 55 (43%) were luminal (39 luminal B, 16 luminal A). Quantitative HR expression by RT-qPCR gave similar results. Regardless of methodology, basal-like cases seldom expressed ER/ESR1 or PR/PGR and were associated with the lowest expression level of HER2/ERBB2 relative to other subtypes. Significant discordance remains between clinical assay-defined subsets and intrinsic subtype. For identifying basal-like breast cancer, the optimal HR IHC cut point was <1%, matching the American Society of Clinical Oncology and College of American Pathologists guidelines. Tumors with borderline HR staining are molecularly diverse and may require additional assays to clarify underlying biology. ©AlphaMed Press.

  10. Molecular Cooperativity Governs Diverse and Monoallelic Olfactory Receptor Expression

    Science.gov (United States)

    Xing, Jianhua; Tian, Xiaojun; Zhang, Hang; Sannerud, Jens

    Multiple-objective optimization is common in biological systems. In the mammalian olfactory system, each sensory neuron stochastically expresses only one out of up to thousands of olfactory receptor (OR) gene alleles; at organism level the types of expressed ORs need to be maximized. The molecular mechanism of this Nobel-Prize winning puzzle remains unresolved after decades of extensive studies. Existing models focus only on monoallele activation, and cannot explain recent observations in mutants, especially the reduced global diversity of expressed ORs in G9a/GLP knockouts. In this work we integrated existing information on OR expression, and proposed an evolutionarily optimized three-layer regulation mechanism, which includes zonal segregation, epigenetic and enhancer competition coupled to a negative feedback loop. This model not only recapitulates monoallelic OR expression, but also elucidates how the olfactory system maximizes and maintains the diversity of OR expression. The model is validated by several experimental results, and particularly underscores cooperativity and synergy as a general design principle of multi-objective optimization in biology. The work is supported by the NIGMS/DMS Mathematical Biology program.

  11. Insulin-increased L-arginine transport requires A(2A adenosine receptors activation in human umbilical vein endothelium.

    Directory of Open Access Journals (Sweden)

    Enrique Guzmán-Gutiérrez

    Full Text Available Adenosine causes vasodilation of human placenta vasculature by increasing the transport of arginine via cationic amino acid transporters 1 (hCAT-1. This process involves the activation of A(2A adenosine receptors (A(2AAR in human umbilical vein endothelial cells (HUVECs. Insulin increases hCAT-1 activity and expression in HUVECs, and A(2AAR stimulation increases insulin sensitivity in subjects with insulin resistance. However, whether A(2AAR plays a role in insulin-mediated increase in L-arginine transport in HUVECs is unknown. To determine this, we first assayed the kinetics of saturable L-arginine transport (1 minute, 37°C in the absence or presence of nitrobenzylthioinosine (NBTI, 10 µmol/L, adenosine transport inhibitor and/or adenosine receptors agonist/antagonists. We also determined hCAT-1 protein and mRNA expression levels (Western blots and quantitative PCR, and SLC7A1 (for hCAT-1 reporter promoter activity. Insulin and NBTI increased the extracellular adenosine concentration, the maximal velocity for L-arginine transport without altering the apparent K(m for L-arginine transport, hCAT-1 protein and mRNA expression levels, and SLC7A1 transcriptional activity. An A2AAR antagonist ZM-241385 blocked these effects. ZM241385 inhibited SLC7A1 reporter transcriptional activity to the same extent in cells transfected with pGL3-hCAT-1(-1606 or pGL3-hCAT-1(-650 constructs in the presence of NBTI + insulin. However, SLC7A1 reporter activity was increased by NBTI only in cells transfected with pGL3-hCAT-1(-1606, and the ZM-241385 sensitive fraction of the NBTI response was similar in the absence or in the presence of insulin. Thus, insulin modulation of hCAT-1 expression and activity requires functional A(2AAR in HUVECs, a mechanism that may be applicable to diseases associated with fetal insulin resistance, such as gestational diabetes.

  12. Modulation of Progesterone Receptor Isoform Expression in Pregnant Human Myometrium

    Directory of Open Access Journals (Sweden)

    Marina Ilicic

    2017-01-01

    Full Text Available Background. Regulation of myometrial progesterone receptor (PR expression is an unresolved issue central to understanding the mechanism of functional progesterone withdrawal and initiation of labor in women. Objectives. To determine whether pregnant human myometrium undergoes culture-induced changes in PR isoform expression ex situ and, further, to determine if conditions approaching the in vivo environment stabilise PR isoform expression in culture. Methods. Term nonlaboring human myometrial tissues were cultured under specific conditions: serum supplementation, steroids, stretch, cAMP, PMA, PGF2α, NF-κB inhibitors, or TSA. Following 48 h culture, PR-T, PR-A, and PR-B mRNA levels were determined using qRT-PCR. PR-A/PR-B ratios were calculated. Results. PR-T and PR-A expression and the PR-A/PR-B ratio significantly increased in culture. Steroids prevented the culture-induced increase in PR-T and PR-A expression. Stretch blocked the effects of steroids on PR-T and PR-A expression. PMA further increased the PR-A/PR-B ratio, while TSA blocked culture-induced increases of PR-A expression and the PR-A/PR-B ratio. Conclusion. Human myometrial tissue in culture undergoes changes in PR gene expression consistent with transition toward a laboring phenotype. TSA maintained the nonlaboring PR isoform expression pattern. This suggests that preserving histone and/or nonhistone protein acetylation is critical for maintaining the progesterone dependent quiescent phenotype of human myometrium in culture.

  13. Modulation of Progesterone Receptor Isoform Expression in Pregnant Human Myometrium

    Science.gov (United States)

    2017-01-01

    Background. Regulation of myometrial progesterone receptor (PR) expression is an unresolved issue central to understanding the mechanism of functional progesterone withdrawal and initiation of labor in women. Objectives. To determine whether pregnant human myometrium undergoes culture-induced changes in PR isoform expression ex situ and, further, to determine if conditions approaching the in vivo environment stabilise PR isoform expression in culture. Methods. Term nonlaboring human myometrial tissues were cultured under specific conditions: serum supplementation, steroids, stretch, cAMP, PMA, PGF2α, NF-κB inhibitors, or TSA. Following 48 h culture, PR-T, PR-A, and PR-B mRNA levels were determined using qRT-PCR. PR-A/PR-B ratios were calculated. Results. PR-T and PR-A expression and the PR-A/PR-B ratio significantly increased in culture. Steroids prevented the culture-induced increase in PR-T and PR-A expression. Stretch blocked the effects of steroids on PR-T and PR-A expression. PMA further increased the PR-A/PR-B ratio, while TSA blocked culture-induced increases of PR-A expression and the PR-A/PR-B ratio. Conclusion. Human myometrial tissue in culture undergoes changes in PR gene expression consistent with transition toward a laboring phenotype. TSA maintained the nonlaboring PR isoform expression pattern. This suggests that preserving histone and/or nonhistone protein acetylation is critical for maintaining the progesterone dependent quiescent phenotype of human myometrium in culture. PMID:28540297

  14. Vocal area-related expression of the androgen receptor in the budgerigar (Melopsittacus undulatus) brain.

    Science.gov (United States)

    Matsunaga, Eiji; Okanoya, Kazuo

    2008-05-01

    The androgen receptor is a steroid hormone receptor widely expressed in the vocal control nuclei in songbirds. Here, we analysed androgen receptor expression in the brains of juvenile and adult budgerigars. With a species-specific probe for budgerigar androgen receptor mRNA, we found that the androgen receptor was expressed in the vocal areas, such as the central nucleus of the lateral nidopallium, the anterior arcopallium, the oval nucleus of the mesopallium, the oval nucleus of the anterior nidopallium and the tracheosyringeal hypoglossal nucleus. With the present data, together with previous reports, it turned out that the androgen receptor expression in telencephalic vocal control areas is similar amongst three groups of vocal learners--songbirds, hummingbirds and parrots, suggesting the possibility that the androgen receptor might play a role in vocal development and that the molecular mechanism regulating the androgen receptor expression in the vocal areas might be important in the evolution of vocal learning.

  15. Amylase expression in taste receptor cells of rat circumvallate papillae.

    Science.gov (United States)

    Merigo, Flavia; Benati, Donatella; Cecchini, Maria Paola; Cristofoletti, Mirko; Osculati, Francesco; Sbarbati, Andrea

    2009-06-01

    The chemical composition of the luminal content is now accepted to have a profound influence on the performance of chemosensory receptors. Gustatory and intestinal chemoreceptors have in common their expression of molecules involved in taste sensing and signal transduction pathways. The recent finding that enterocytes of the duodenal epithelium are capable of expressing luminal pancreatic amylase suggests that taste cells of the gustatory epithelium might, in the same way, express salivary amylase in the oral cavity. Therefore, we investigated amylase expression in rat circumvallate papillae by using analyses involving immunohistochemistry, Western blot, and reverse transcription with the polymerase chain reaction. In addition, we used double-labeling confocal laser microscopy to compare amylase immunolabeling with that of the following markers: protein gene product 9.5 (PGP 9.5) and chromogranin A (CgA) for endocrine cells, alpha-gustducin and phospholipase C beta 2 (PLC beta 2) as taste-signaling molecules, and cystic fibrosis transmembrane regulator (CFTR) and Clara-cell-specific secretory protein of 10-kDa (CC10) as secretory markers. The results showed that amylase was present in some taste bud cells; its immunoreactivity was observed in subsets of cells that expressed CgA, alpha-gustducin, PLC beta 2, CFTR, or CC10. PGP 9.5 immunoreactivity was never colocalized with amylase. The data suggest that amylase-positive cells constitute an additional subset of taste receptor cells also associated with chemoreceptorial and/or secretory molecules, confirming the occurrence of various pathways in taste buds.

  16. Key modulatory role of presynaptic adenosine A2A receptors in cortical neurotransmission to the striatal direct pathway.

    Science.gov (United States)

    Quiroz, César; Luján, Rafael; Uchigashima, Motokazu; Simoes, Ana Patrícia; Lerner, Talia N; Borycz, Janusz; Kachroo, Anil; Canas, Paula M; Orru, Marco; Schwarzschild, Michael A; Rosin, Diane L; Kreitzer, Anatol C; Cunha, Rodrigo A; Watanabe, Masahiko; Ferré, Sergi

    2009-11-18

    Basal ganglia processing results from a balanced activation of direct and indirect striatal efferent pathways, which are controlled by dopamine D1 and D2 receptors, respectively. Adenosine A2A receptors are considered novel antiparkinsonian targets, based on their selective postsynaptic localization in the indirect pathway, where they modulate D2 receptor function. The present study provides evidence for the existence of an additional, functionally significant, segregation of A2A receptors at the presynaptic level. Using integrated anatomical, electrophysiological, and biochemical approaches, we demonstrate that presynaptic A2A receptors are preferentially localized in cortical glutamatergic terminals that contact striatal neurons of the direct pathway, where they exert a selective modulation of corticostriatal neurotransmission. Presynaptic striatal A2A receptors could provide a new target for the treatment of neuropsychiatric disorders.

  17. Caffeine consumption prevents memory impairment, neuronal damage, and adenosine A2A receptors upregulation in the hippocampus of a rat model of sporadic dementia.

    Science.gov (United States)

    Espinosa, Janaína; Rocha, Andreia; Nunes, Fernanda; Costa, Marcelo S; Schein, Vanessa; Kazlauckas, Vanessa; Kalinine, Eduardo; Souza, Diogo O; Cunha, Rodrigo A; Porciúncula, Lisiane O

    2013-01-01

    Intracerebroventricular (icv) streptozotocin (STZ) administration induces pathological and behavioral alterations similar to those observed in Alzheimer's disease (AD) and is thus considered an experimental model of sporadic AD. Since caffeine (an adenosine receptor antagonist) and selective antagonists of adenosine A2A receptors modify the course of memory impairment in different amyloid-β-based experimental models of AD, we now tested the impact of caffeine on STZ-induced dementia and associated neurodegeneration in the hippocampus as well as on the expression and density of adenosine receptors. Adult male rats received a bilateral infusion of saline or STZ (3 mg/kg, icv), which triggered memory deficits after four weeks, as gauged by impaired object recognition memory. This was accompanied by a reduced NeuN immunoreactivity in the hippocampal CA1 region and an increased expression and density of adenosine A2A receptors (A2AR), but not A1R, in the hippocampus. Caffeine consumption (1 g/L in the drinking water starting 2 weeks before the STZ challenge) prevented the STZ-induced memory impairment and neurodegeneration as well as the upregulation of A2AR. These findings provide the first demonstration that caffeine prevents sporadic dementia and implicate the control of central A2AR as its likely mechanism of action.

  18. The collagen receptor DDR2 is expressed during early cardiac development.

    Science.gov (United States)

    Goldsmith, Edie C; Zhang, Xiadong; Watson, James; Hastings, Josh; Potts, Jay D

    2010-05-01

    Discoidin Domain Receptor 2 (DDR2) is a receptor tyrosine kinase which has been shown to regulate cell migration upon binding its ligand, collagen. Expression studies determined that DDR2 mRNA and protein are present in the atrioventricular canal during epithelial-mesenchymal transformation (EMT) and the receptor is expressed in both activated endothelial and migrating mesenchymal cells in vivo.

  19. Cytosolic phospholipase A2-alpha expression in breast cancer is associated with EGFR expression and correlates with an adverse prognosis in luminal tumours.

    LENUS (Irish Health Repository)

    Caiazza, F

    2012-02-01

    BACKGROUND: The eicosanoid signalling pathway promotes the progression of malignancies through the production of proliferative prostaglandins (PGs). Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) activity provides the substrate for cyclooxygenase-dependent PG release, and we have previously found that cPLA(2)alpha expression correlated with EGFR\\/HER2 over-expression in a small number of breast cancer cell lines. METHODS: The importance of differential cPLA(2)alpha activity in clinical breast cancer was established by relating the expression of cPLA(2)alpha in tissue samples from breast cancer patients, and two microarray-based gene expression datasets to different clinicopathological and therapeutic parameters. RESULTS: High cPLA(2)alpha mRNA expression correlated with clinical parameters of poor prognosis, which are characteristic of highly invasive tumours of the HER2-positive and basal-like subtype, including low oestrogen receptor expression and high EGFR expression. High cPLA(2)alpha expression decreased overall survival in patients with luminal cancers, and correlated with a reduced effect of tamoxifen treatment. The cPLA(2)alpha expression was an independent predictive parameter of poor response to endocrine therapy in the first 5 years of follow-up. CONCLUSION: This study shows a role of cPLA(2)alpha in luminal breast cancer progression, in which the enzyme could represent a novel therapeutic target and a predictive marker.

  20. Expression of epidermal growth factor receptors in human endometrial carcinoma

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Ottesen, B

    1993-01-01

    Little data exist on the expression of epidermal growth factor receptors (EGF-Rs) in human endometrial cancer. EGF-R status was studied in 65 patients with endometrial carcinomas and in 26 women with nonmalignant postmenopausal endometria, either inactive/atrophic endometrium or adenomatous...... hyperplasia. EGF-R was identified on frozen tissue sections by means of an indirect immunoperoxidase technique with a monoclonal antibody against the external domain of the EGF-R. Seventy-one percent of the carcinomas expressed positive EGF-R immunoreactivity. In general, staining was most prominent....../inactive endometria and seven of 13 (54%) endometria with adenomatous hyperplasia were EGF-R positive, with an immunostaining pattern rather similar to that of the carcinomas....

  1. Ultraslow Water-Mediated Transmembrane Interactions Regulate the Activation of A2A Adenosine Receptor.

    Science.gov (United States)

    Lee, Yoonji; Kim, Songmi; Choi, Sun; Hyeon, Changbong

    2016-09-20

    Water molecules inside a G-protein coupled receptor (GPCR) have recently been spotlighted in a series of crystal structures. To decipher the dynamics and functional roles of internal water molecules in GPCR activity, we studied the A2A adenosine receptor using microsecond molecular-dynamics simulations. Our study finds that the amount of water flux across the transmembrane (TM) domain varies depending on the receptor state, and that the water molecules of the TM channel in the active state flow three times more slowly than those in the inactive state. Depending on the location in solvent-protein interface as well as the receptor state, the average residence time of water in each residue varies from ∼O(10(2)) ps to ∼O(10(2)) ns. Especially, water molecules, exhibiting ultraslow relaxation (∼O(10(2)) ns) in the active state, are found around the microswitch residues that are considered activity hotspots for GPCR function. A continuous allosteric network spanning the TM domain, arising from water-mediated contacts, is unique in the active state, underscoring the importance of slow water molecules in the activation of GPCRs. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Toll-like receptor 2 ligands regulate monocyte Fcγ receptor expression and function.

    Science.gov (United States)

    Shah, Prexy; Fatehchand, Kavin; Patel, Hemal; Fang, Huiqing; Justiniano, Steven E; Mo, Xiaokui; Jarjoura, David; Tridandapani, Susheela; Butchar, Jonathan P

    2013-04-26

    Fcγ receptor (FcγR) clustering on monocytes/macrophages results in phagocytosis and inflammatory cytokine production, which serve to eliminate antibody-opsonized targets and activate neighboring immune cells. Toll-like receptor 2 (TLR2), which recognizes a range of both bacterial and fungal components, elicits strong proinflammatory responses in these cells when stimulated by ligands, either natural or synthetic. Thus, we explored the possibility that TLR2 agonists could strengthen FcγR activity within the context of antibody therapy. Human peripheral blood monocytes treated with the TLR2 agonist Pam2CSK4 showed significantly enhanced FcγR-mediated cytokine production as well as phagocytic ability. An examination of the molecular mechanism behind this enhancement revealed increased expression of both FcγRIIa and the common γ subunit following Pam2CSK4 treatment. Interestingly however, expression of the inhibitory receptor FcγRIIb was also modestly increased. Further investigation revealed that Pam2CSK4 also dramatically decreased the expression of SHIP, the major mediator of FcγRIIb inhibitory activity. Using a murine Her2/neu solid tumor model of antibody therapy, we found that Pam2CSK4 significantly enhanced the ability of anti-Her2 antibody to reduce the rate of tumor growth. To verify that the FcγR enhancement was not unique to the diacylated Pam2CSK4, we also tested Pam3CSK4, a related triacylated TLR2 agonist. Results showed significant enhancement in FcγR function and expression. Taken together, these findings indicate that TLR2 activation can positively modulate FcγR and suggest that TLR2 agonists should be considered for testing as adjuvants for antitumor antibody therapy.

  3. Toll-like Receptor 2 Ligands Regulate Monocyte Fcγ Receptor Expression and Function*

    Science.gov (United States)

    Shah, Prexy; Fatehchand, Kavin; Patel, Hemal; Fang, Huiqing; Justiniano, Steven E.; Mo, Xiaokui; Jarjoura, David; Tridandapani, Susheela; Butchar, Jonathan P.

    2013-01-01

    Fcγ receptor (FcγR) clustering on monocytes/macrophages results in phagocytosis and inflammatory cytokine production, which serve to eliminate antibody-opsonized targets and activate neighboring immune cells. Toll-like receptor 2 (TLR2), which recognizes a range of both bacterial and fungal components, elicits strong proinflammatory responses in these cells when stimulated by ligands, either natural or synthetic. Thus, we explored the possibility that TLR2 agonists could strengthen FcγR activity within the context of antibody therapy. Human peripheral blood monocytes treated with the TLR2 agonist Pam2CSK4 showed significantly enhanced FcγR-mediated cytokine production as well as phagocytic ability. An examination of the molecular mechanism behind this enhancement revealed increased expression of both FcγRIIa and the common γ subunit following Pam2CSK4 treatment. Interestingly however, expression of the inhibitory receptor FcγRIIb was also modestly increased. Further investigation revealed that Pam2CSK4 also dramatically decreased the expression of SHIP, the major mediator of FcγRIIb inhibitory activity. Using a murine Her2/neu solid tumor model of antibody therapy, we found that Pam2CSK4 significantly enhanced the ability of anti-Her2 antibody to reduce the rate of tumor growth. To verify that the FcγR enhancement was not unique to the diacylated Pam2CSK4, we also tested Pam3CSK4, a related triacylated TLR2 agonist. Results showed significant enhancement in FcγR function and expression. Taken together, these findings indicate that TLR2 activation can positively modulate FcγR and suggest that TLR2 agonists should be considered for testing as adjuvants for antitumor antibody therapy. PMID:23504312

  4. Prevention of adenosine A2A receptor activation diminishes beat-to-beat alternation in human atrial myocytes.

    Science.gov (United States)

    Molina, Cristina E; Llach, Anna; Herraiz-Martínez, Adela; Tarifa, Carmen; Barriga, Montserrat; Wiegerinck, Rob F; Fernandes, Jacqueline; Cabello, Nuria; Vallmitjana, Alex; Benitéz, Raúl; Montiel, José; Cinca, Juan; Hove-Madsen, Leif

    2016-01-01

    Atrial fibrillation (AF) has been associated with increased spontaneous calcium release from the sarcoplasmic reticulum and linked to increased adenosine A2A receptor (A2AR) expression and activation. Here we tested whether this may favor atrial arrhythmogenesis by promoting beat-to-beat alternation and irregularity. Patch-clamp and confocal calcium imaging was used to measure the beat-to-beat response of the calcium current and transient in human atrial myocytes. Responses were classified as uniform, alternating or irregular and stimulation of Gs-protein coupled receptors decreased the frequency where a uniform response could be maintained from 1.0 ± 0.1 to 0.6 ± 0.1 Hz; p < 0.01 for beta-adrenergic receptors and from 1.4 ± 0.1 to 0.5 ± 0.1 Hz; p < 0.05 for A2ARs. The latter was linked to increased spontaneous calcium release and after-depolarizations. Moreover, A2AR activation increased the fraction of non-uniformly responding cells in HL-1 myocyte cultures from 19 ± 3 to 51 ± 9 %; p < 0.02, and electrical mapping in perfused porcine atria revealed that adenosine induced electrical alternans at longer cycle lengths, doubled the fraction of electrodes showing alternation, and increased the amplitude of alternations. Importantly, protein kinase A inhibition increased the highest frequency where uniform responses could be maintained from 0.84 ± 0.12 to 1.86 ± 0.11 Hz; p < 0.001 and prevention of A2AR-activation with exogenous adenosine deaminase selectively increased the threshold from 0.8 ± 0.1 to 1.2 ± 0.1 Hz; p = 0.001 in myocytes from patients with AF. In conclusion, A2AR-activation promotes beat-to-beat irregularities in the calcium transient in human atrial myocytes, and prevention of A2AR activation may be a novel means to maintain uniform beat-to-beat responses at higher beating frequencies in patients with atrial fibrillation.

  5. Decreased expression of serum and microvascular vascular endothelial growth factor receptor-2 in meningococcal sepsis*.

    NARCIS (Netherlands)

    Flier, M. van der; Baerveldt, E.M.; Miedema, A.; Hartwig, N.G.; Hazelzet, J.A.; Emonts, M.; Groot, R. de; Prens, E.P.; Vught, A.J. van; Jansen, N.J.

    2013-01-01

    OBJECTIVES: To determine the skin microvessel expression of vascular endothelial growth factor receptor 2 and serum-soluble vascular endothelial growth factor receptor 2 levels in children with meningococcal sepsis. DESIGN: Observational study. SETTING: Two tertiary academic children hospital PICUs.

  6. Expression of CysLT2 receptors in asthma lung, and their possible role in bronchoconstriction

    Directory of Open Access Journals (Sweden)

    Tomohiko Sekioka

    2015-10-01

    Conclusions: CysLT2 receptors were expressed in lung specimens isolated from asthma subjects. Activation of CysLT2 receptors may contribute to antigen-induced bronchoconstriction in certain asthma population.

  7. Modification of the tetrodotoxin receptor in Electrophorus electricus by phospholipase A2.

    Science.gov (United States)

    Reed, J K

    1981-08-06

    The effects of phospholipase A2 treatment on the tetrodotoxin receptors in Electrophorus electricus was studied. (1) The binding of [3H]tetrodotoxin to electroplaque membranes was substantially reduced by treatment of the membranes with low concentrations of phospholipase A2 from a number of sources, including bee venom, Vipera russelli and Crotalus adamanteus and by beta-bungarotoxin. (2) Phospholipase A2 from bee venom and from C. adamanteus both caused extensive hydrolysis of electroplaque membrane phospholipids although the substrate specificity differed. Analysis of the phospholipid classes hydrolyzed revealed a striking correlation between loss of toxin binding and hydrolysis of phosphatidylethanolamine but not of phosphatidylserine. (3) The loss of toxin binding could be partially reversed by treatment of the membranes with bovine serum albumin, conditions which are known to remove hydrolysis products from the membrane. (4) Equilibrium binding studies on the effects of phospholipase A2 treatment of [3H]tetrodotoxin binding showed that the reduction reflected loss of binding sites and not a change in affinity. (5) These results are interpreted in terms of multiple equilibrium states of the tetrodotoxin-receptors with conformations determined by the phospholipid environment.

  8. Activation of NTS A2a adenosine receptors differentially resets baroreflex control of renal vs. adrenal sympathetic nerve activity.

    Science.gov (United States)

    Ichinose, Tomoko K; O'Leary, Donal S; Scislo, Tadeusz J

    2009-04-01

    The role of nucleus of solitary tract (NTS) A(2a) adenosine receptors in baroreflex mechanisms is controversial. Stimulation of these receptors releases glutamate within the NTS and elicits baroreflex-like decreases in mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), whereas inhibition of these receptors attenuates HR baroreflex responses. In contrast, stimulation of NTS A(2a) adenosine receptors increases preganglionic adrenal sympathetic nerve activity (pre-ASNA), and the depressor and sympathoinhibitory responses are not markedly affected by sinoaortic denervation and blockade of NTS glutamatergic transmission. To elucidate the role of NTS A(2a) adenosine receptors in baroreflex function, we compared full baroreflex stimulus-response curves for HR, RSNA, and pre-ASNA (intravenous nitroprusside/phenylephrine) before and after bilateral NTS microinjections of selective adenosine A(2a) receptor agonist (CGS-21680; 2.0, 20 pmol/50 nl), selective A(2a) receptor antagonist (ZM-241385; 40 pmol/100 nl), and nonselective A(1) + A(2a) receptor antagonist (8-SPT; 1 nmol/100 nl) in urethane/alpha-chloralose anesthetized rats. Activation of A(2a) receptors decreased the range, upper plateau, and gain of baroreflex-response curves for RSNA, whereas these parameters all increased for pre-ASNA, consistent with direct effects of the agonist on regional sympathetic activity. However, no resetting of baroreflex-response curves along the MAP axis occurred despite the marked decreases in baseline MAP. The antagonists had no marked effects on baseline variables or baroreflex-response functions. We conclude that the activation of NTS A(2a) adenosine receptors differentially alters baroreflex control of HR, RSNA, and pre-ASNA mostly via non-baroreflex mechanism(s), and these receptors have virtually no tonic action on baroreflex control of these sympathetic outputs.

  9. The Estrogen ReceptorExpression in De Quervain's Disease.

    Science.gov (United States)

    Shen, Po-Chuan; Wang, Ping-Hui; Wu, Po-Ting; Wu, Kuo-Chen; Hsieh, Jeng-Long; Jou, I-Ming

    2015-11-04

    Stenosing tenosynovitis of the first dorsal compartment of the wrist (a.k.a. de Quervain's disease) is common but how estrogen is involved is still unknown. We previously reported that inflammation was involved in the pathogenesis of this ailment. In the present study, we extended our investigation of estrogen receptor (ER)-β expression to determine whether estrogen is involved in the pathogenesis of de Quervain's. Intraoperative retinaculum samples were collected from 16 patients with the ailment. Specimens were histologically graded by collagen structure and immunohistochemically evaluated by quantifying the expression of ER-β, interleukin (IL)-1β and IL-6 (inflammatory cytokines), cyclooxygenase (COX)-2 (an inflammatory enzyme), and vascular endothelial growth factor (VEGF), and Von Willebrand's factor (vWF). De Quervain's occurs primarily in women. The female:male ratio in our study was 7:1. We found that ER-β expression in the retinaculum was positively correlated with disease grade and patient age. Additionally, disease severity was associated with inflammatory factors--IL-1β and IL-6, COX-2, and VEGF and vWF in tenosynovial tissue. The greater the levels of ER-β expression, tissue inflammation, and angiogenesis are, the more severe de Quervain's disease is. ER-β might be a useful target for novel de Quervain's disease therapy.

  10. Expression of androgen receptor target genes in skeletal muscle.

    Science.gov (United States)

    Rana, Kesha; Lee, Nicole K L; Zajac, Jeffrey D; MacLean, Helen E

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR)-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (AR(ΔZF2)) versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR(∆ZF2) muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57(Kip2), Igf2 and calcineurin Aa, was increased in AR(∆ZF2) muscle, and the expression of all but p57(Kip2) was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  11. Expression of Formyl-peptide Receptors in Human Lung Carcinoma.

    Science.gov (United States)

    Cattaneo, Fabio; Guerra, Germano; Parisi, Melania; Lucariello, Angela; De Luca, Antonio; De Rosa, Nicolina; Mazzarella, Gennaro; Bianco, Andrea; Ammendola, Rosario

    2015-05-01

    Formyl-peptide receptors (FPRs) are expressed in several tissues and cell types. The identification of markers involved in cell growth may further allow for molecular profiling of lung cancer. We investigated the possible role of FPRs as molecular markers in several types of lung carcinomas which is the main cause of cancer death worldwide. Tumor tissue samples were collected from six patients affected by lung cancer. Biopsies were analyzed for expression of FPR isoforms both in tumoral and peritumoral tissue by real-time polymerase chain reaction (PCR), western blot and immunofluorescence. Real-time PCR, western blot and immunofluorescence analyses showed that FPR expression is lower in types of human lung cancer tissues when compared to the surrounding peritumoral tissues. The study of the mechanistic basis for the control of FPR expression in normal peritumoral versus tumoral tissues could provide the basis for new diagnostic and therapeutic interventions. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Expression of androgen receptor target genes in skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    Kesha Rana; Nicole KL Lee; Jeffrey D Zajac; Helen E MacLean

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor(AR)‑regulated genes ininvitroandinvivomodels. The expression of the myogenic regulatory factormyogenin was signiifcantly decreased in skeletal muscle from testosterone‑treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity(ARΔZF2) versus wildtype mice, demonstrating thatmyogenin is repressed by the androgen/AR pathway. The ubiquitin ligaseFbxo32 was repressed by 12h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, andc‑Myc expression was decreased in testosterone‑treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7, p57Kip2, Igf2 andcalcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all butp57Kip2was also decreased in testosterone‑treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase‑mediated atrophy pathways to preserve muscle mass in adult muscle.

  13. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  14. Expression of estrogen receptor alpha in preimplantation mice embryos

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective:To study the expression of estrogen receptor alpha (ERα) in preimplantation mice embryos.Methods:Mice zygotes were collected from superovulated Kunming mice and cultured in vitro.Embryos at different developmental stages were collected at 0,24,36,48,72 and 96hours after cultivation.The expression of ERα in early mice embryos was detected by reverse transcription-PCR (RT-PCR) and immunocytochemistry.Results:The expression of ERα mRNA was detected in all of the examined embryonic stages.The relative amount of ERα mRNA showed no significant difference between 1-cell stage embryos and 4-cell stage embryos (P>0.05).However,the relative level of ERα mRNA significantly decreased (P<0.05) at 2-cell stage and was the lowest at this stage.Over 2-cell stage,the ERα mRNA relative level would increase and achieve the peak level at blastocyst stage.The location of immunocytochemistry showed that ERα immunopositive cells could be firstly detected at 8-cell stage,after which they are consistently detected until blastocyst stage.In addition,the intensity of ERα positive staining was higher at blastocyst stage compared with that at 8-cell stage and morula stage.Conclusion:ERα is expressed in preimplantation mice embryos in a temporal and spatial pattern and may be involved in regulating the development of early mice embryos,which probably plays crucial roles in early embryonic development.

  15. The effects of adenosine A2B receptor inhibition on VEGF and nitric oxide axis-mediated renal function in diabetic nephropathy.

    Science.gov (United States)

    Patel, Leena; Thaker, Aswin

    2014-07-01

    Diabetic nephropathy (DN) is the most common cause of end-stage renal disease worldwide. The pathophysiologic mechanisms of diabetic nephropathy are incompletely understood but include overproduction of various growth factors and cytokines. Upregulation of vascular endothelial growth factor (VEGF) is a pathogenic event occurring in most forms of podocytopathy; however, the mechanisms that regulate this growth factor induction are not clearly identified. A2B receptors have been found to regulate VEGF expression under hypoxic environment in different tissues. One proposed hypothesis in mediating diabetic nephropathy is the modulation of VEGF-NO balance in renal tissue. We determined the role of adenosine A2B receptor in mediating VEGF overproduction and nitrite in diabetic nephropathy. The renal content of A2B receptors and VEGF was increased after 8 weeks of diabetes induction. The renal and plasma nitrite levels were also reduced in these animals. In vivo administration of A2B adenosine receptor antagonist (MRS1754) inhibited the renal over expression of VEGF and adverse renal function parameters. The antagonist administration also improved the kidney tissue nitrite levels. In conclusion, we demonstrated that VEGF induction via adenosine signaling might be the critical event in regulating VEGF-NO axis in diabetic nephropathy.

  16. Expression of estrogen receptor β in human colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Li-Qun Xie; Jie-Ping Yu; He-Sheng Luo

    2004-01-01

    AIM: To determine the expression of estrogen receptor (ER)β in Chinese colorectal carcinoma (CRC) patients.METHODS: Erβ expression in CRC was investigated by immunohistochemical staining of formalin-fixed, paraffin-embedded tissue sections from 40 CRCs, 10 colonic adenomas,and 10 normal colon mucosa biopsies. The percentage of positive cells was recorded, mRNA expression of Erα and Erβ in 12 CRC tissues and paired normal colon tissues were detected by RT-PCR.RESULTS: Positive ER immunoreactivity was present in part of normal epithelium of biopsy (2/10), adenomas (3/10),and the sections of CRC tissue, most of them were nuclear positive. In CRCs, nuclear Erβ immunoreactivity was detected in over 10% of the cancer cells in 57.5% of the cases and was always associated with cytoplasmic immunoreactivity.There was no statistical significance between Erβ positive and negative groups in regard to depth of invasion and nodal metastases. Of the 12 CRC tissues and paired normal colon tissues, the expression rate of Erα mRNA in CRC tissue and corresponding normal colon tissue was 25% and 16.6%,respectively. Erβ mRNA was expressed in 83.3% CRC tissue and 91.7% paired normal colon tissue, respectively. Therewas no significant difference in Erβ mRNA level between CRC tissues and paired normal colon tissues.CONCLUSION: A large number of CRCs are positive for Erβ, which can also be detected in normal colonic epithelia.There is a different localization of Erβ immunoreactivity among normal colon mucosae, adenomas and CRCs. Erαand Erβ mRNA can be detected both in CRC tissue and in corresponding normal colon tissue. A post-transcriptional mechanism may account for the decrease of Erβ protein expression in CRC tissues.

  17. Expression of retinoic acid receptors in human endometrial carcinoma.

    Science.gov (United States)

    Tanabe, Kojiro; Utsunomiya, Hiroki; Tamura, Mitsutoshi; Niikura, Hitoshi; Takano, Tadao; Yoshinaga, Kohsuke; Nagase, Satoru; Suzuki, Takashi; Ito, Kiyoshi; Matsumoto, Mitsuyo; Hayashi, Shin-ichi; Yaegashi, Nobuo

    2008-02-01

    The retinoids (vitamin A and its biologically active derivatives) are essential for the health and survival of the individual. Several studies have reported a strong rationale for the use of retinoids in cancer treatment and chemoprevention. It has been discovered that expression of retinoic acid receptor (RAR) beta is frequently silenced in epithelial carcinogenesis, which has led to the hypothesis that RAR beta could act as a tumor suppressor. However, the status of RAR beta in human endometrial carcinoma has not been examined. In the present study, we initially studied the effects of retinoic acid on cell proliferation and the expression of RAR alpha, RAR beta, and RAR gamma using AM580 (a RAR-specific agonist) in the Ishikawa endometrial cancer cell line. We also examined the expression of RAR in human eutopic endometrium (30 cases), endometrial hyperplasia (28 cases), and endometrial carcinoma (103 cases) using immunohistochemistry. Finally, we correlated these findings with the clinicopathological parameters. In vitro, cell growth was inhibited and RAR beta and RAR gamma mRNA was significantly induced by AM580, compared with vehicle controls, whereas RAR alpha mRNA was significantly attenuated by AM580, compared with vehicle. RAR beta was detected predominantly in endometrial hyperplasia, compared with endometrial carcinoma. No statistically significant correlation was obtained between the expression of any other RAR subtypes and clinicopathological parameters in human endometrial carcinoma. The results of our study demonstrate that AM580 inhibits cell growth and induces RAR beta mRNA expression in the Ishikawa cell line, and the expression level of RAR beta in endometrial carcinoma is significantly lower than that in endometrial hyperplasia. AM580 might therefore be considered as a potential treatment for endometrial carcinoma.

  18. A novel thromboxane A2 receptor D304N variant that abrogates ligand binding in a patient with a bleeding diathesis

    Science.gov (United States)

    Mumford, Andrew D.; Dawood, Ban B.; Daly, Martina E.; Murden, Sherina L.; Williams, Michael D.; Protty, Majd B.; Spalton, Jennifer C.; Wheatley, Mark; Mundell, Stuart J.; Watson, Steve P.

    2015-01-01

    We investigated the cause of mild mucocutaneous bleeding in a 14-year-old male patient (P1). Platelet aggregation and ATP secretion induced by arachidonic acid and the thromboxane A2 receptor (TxA2R) agonist U46619 were reduced in P1 compared with controls, whereas the responses to other platelet agonists were retained. P1 was heterozygous for a transversion within the TBXA2R gene predictive of a D304N substitution in the TxA2R. In Chinese hamster ovary-K1 cells expressing the variant D304N TxA2R, U46619 did not increase cytosolic free Ca2+ concentration, indicating loss of receptor function. The TxA2R antagonist [3H]-SQ29548 showed an approximate 50% decrease in binding to platelets from P1 but absent binding to Chinese hamster ovary-K1 cells expressing variant D304N TxA2R. This is the second naturally occurring TxA2R variant to be associated with platelet dysfunction and the first in which loss of receptor function is associated with reduced ligand binding. D304 lies within a conserved NPXXY motif in transmembrane domain 7 of the TxA2R that is a key structural element in family A G protein-coupled receptors. Our demonstration that the D304N substitution causes clinically significant platelet dysfunction by reducing ligand binding establishes the importance of the NPXXY motif for TxA2R function in vivo. PMID:19828703

  19. Glomerular Glucocorticoid Receptors Expression and Clinicopathological Types of Childhood Nephrotic Syndrome.

    Science.gov (United States)

    Gamal, Yasser; Badawy, Ahlam; Swelam, Salwa; Tawfeek, Mostafa S K; Gad, Eman Fathalla

    2017-02-01

    Glucocorticoids are primary therapy of idiopathic nephrotic syndrome (INS). However, not all children respond to steroid therapy. We assessed glomerular glucocorticoid receptor expression in fifty-one children with INS and its relation to response to steroid therapy and to histopathological type. Clinical, laboratory and glomerular expression of glucocorticoid receptors were compared between groups with different steroid response. Glomerular glucocorticoid expression was slightly higher in controls than in minimal change early responders, which in turn was significantly higher than in minimal change late responders. There was significantly lower glomerular glucocorticoid receptor expression in steroid-resistance compared to early responders, late responders and controls. Glomerular glucocorticoid expression was significantly higher in all minimal change disease (MCD) compared to focal segmental glomerulosclerosis. In INS, response to glucocorticoid is dependent on glomerular expression of receptors and peripheral expression. Evaluation of glomerular glucocorticoid receptor expression at time of diagnosis of NS can predict response to steroid therapy.

  20. Adenosine A2A receptor binding profile of two antagonists, ST1535 and KW6002: consideration on the presence of atypical adenosine A2A binding sites

    Directory of Open Access Journals (Sweden)

    Teresa Riccioni

    2010-08-01

    Full Text Available Adenosine A2A receptors seem to exist in typical (more in striatum and atypical (more in hippocampus and cortex subtypes. In the present study, we investigated the affinity of two adenosine A2A receptor antagonists, ST1535 [2 butyl -9-methyl-8-(2H-1,2,3-triazol 2-yl-9H-purin-6-xylamine] and KW6002 [(E-1,3-diethyl-8-(3,4-dimethoxystyryl-7-methyl-3,7-dihydro-1H-purine-2,6,dione] to the “typical” and “atypical” A2A binding sites. Affinity was determined by radioligand competition experiments in membranes from rat striatum and hippocampus. Displacement of the adenosine analog [3H]CGS21680 [2-p-(2-carboxyethylphenethyl-amino-5’-N-ethylcarbox-amidoadenosine] was evaluated in the absence or in the presence of either CSC [8-(3-chlorostyryl-caffeine], an adenosine A2A antagonist that pharmacologically isolates atypical binding sites, or DPCPX (8-cyclopentyl-1,3-dipropylxanthine, an adenosine A1 receptor antagonist that pharmacologically isolates typical binding site. ZM241385 [84-(2-[7-amino-2-(2-furyl [1,2,4]-triazol[2,3-a][1,3,5]triazin-5-yl amino]ethyl phenol] and SCH58261 [(5-amino-7-(β-phenylethyl-2-(8-furylpyrazolo(4,3-e-1,2,4-triazolo(1,5-c pyrimidine], two other adenosine A2A receptor antagonists, which were reported to differently bind to atypical and typical A2A receptors, were used as reference compounds. ST1535, KW6002, ZM241385 and SCH58261 displaced [3H]CGS21680 with higher affinity in striatum than in hippocampus. In hippocampus, no typical adenosine A2A binding was detected, and ST1535 was the only compound that occupied atypical A2A adenosine receptors. Present data are explained in terms of heteromeric association among adenosine A2A, A2B and A1 receptors, rather than with the presence of atypical A2A receptor subtype.

  1. Equine insulin receptor and insulin-like growth factor-1 receptor expression in digital lamellar tissue and insulin target tissues.

    Science.gov (United States)

    Kullmann, A; Weber, P S; Bishop, J B; Roux, T M; Norby, B; Burns, T A; McCutcheon, L J; Belknap, J K; Geor, R J

    2016-09-01

    Hyperinsulinaemia is implicated in the pathogenesis of endocrinopathic laminitis. Insulin can bind to different receptors: two insulin receptor isoforms (InsR-A and InsR-B), insulin-like growth factor-1 receptor (IGF-1R) and InsR/IGF-1R hybrid receptor (Hybrid). Currently, mRNA expression of these receptors in equine tissues and the influence of body type and dietary carbohydrate intake on expression of these receptors is not known. The study objectives were to characterise InsR-A, InsR-B, IGF-1R and Hybrid expression in lamellar tissue (LT) and insulin responsive tissues from horses and examine the effect of dietary nonstructural carbohydrate (NSC) on mRNA expression of these receptors in LT, skeletal muscle, liver and two adipose tissue (AT) depots of lean and obese ponies. In vivo experiment. Lamellar tissue samples were evaluated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) for receptor mRNA expression (n = 8) and immunoblotting for protein expression (n = 3). Archived LT, skeletal muscle, liver and AT from lean and obese mixed-breed ponies fed either a low (~7% NSC as dry matter; 5 lean, 5 obese) or high NSC diet (~42% NSC as dry matter; 6 lean, 6 obese) for 7 days were evaluated by RT-qPCR to determine the effect of body condition and diet on expression of the receptors in different tissues. Significance was set at P≤0.05. Lamellar tissue expresses both InsR isoforms, IGF-1R and Hybrid. LT IGF-1R gene expression was greater than either InsR isoform and InsR-A expression was greater than InsR-B (P≤0.05). Obesity significantly lowered IGF-1R, InsR-A and InsR-B mRNA expression in LT and InsR-A in tailhead AT. High NSC diet lowered expression of all three receptor types in liver; IGF-1R and InsR-A in LT and InsR-A in tailhead AT. Lamellar tissue expresses IGF-1R, InsR isoforms and Hybrids. The functional characteristics of these receptors and their role in endocrinopathic laminitis warrants further investigation. © 2015 EVJ

  2. A strategy using NMR peptide structures of thromboxane A2 receptor as templates to construct ligand-recognition pocket of prostacyclin receptor

    Directory of Open Access Journals (Sweden)

    Ruan Ke-He

    2005-11-01

    Full Text Available Abstract Background: Prostacyclin receptor (IP and thromboxane A2 receptor (TP belong to rhodopsin-type G protein-coupling receptors and respectively bind to prostacyclin and thromboxane A2 derived from arachidonic acid. Recently, we have determined the extracellular loop (eLP structures of the human TP receptor by 2-D 1H NMR spectroscopy using constrained peptides mimicking the individual eLP segments. The studies have identified the segment along with several residues in the eLP domains important to ligand recognition, as well as proposed a ligand recognition pocket for the TP receptor. Results: The IP receptor shares a similar primary structure in the eLPs with those of the TP receptor. Forty percent residues in the second eLPs of the receptors are identical, which is the major region involved in forming the ligand recognition pocket in the TP receptor. Based on the high homology score, the eLP domains of the IP receptor were constructed by the homology modeling approach using the NMR structures of the TP eLPs as templates, and then configured to the seven transmembrane (TM domains model constructed using the crystal structure of the bovine rhodopsin as a template. A NMR structure of iloprost was docked into the modeled IP ligand recognition pocket. After dynamic studies, the segments and residues involved in the IP ligand recognition were proposed. A key residue, Arg173 involved in the ligand recognition for the IP receptor, as predicted from the modeling, was confirmed by site-directed mutagenesis. Conclusion: A 3-D model of the human IP receptor was constructed by homology modeling using the crystal structure of bovine rhodopsin TM domains and the NMR structures of the synthetic constrained peptides of the eLP domains of the TP receptor as templates. This strategy can be applied to molecular modeling and the prediction of ligand recognition pockets for other prostanoid receptors.

  3. Expression of tumor necrosis factor related apoptosis inducing ligand receptor in glioblastoma

    Institute of Scientific and Technical Information of China (English)

    Dongling Gao; Zhongwei Zhao; Hongxin Zhang; Lan Zhang; Kuisheng Chen; Yunhan Zhang

    2008-01-01

    BACKGROUND: Receptors for tumor necrosis factor related apoptosis inducing ligand (TRAIL) include death receptor 4, death receptor 5, decoy receptor 1, and decoy receptor 2. Activation of death receptor 4 and 5 selectively kills tumor cells.OBJECTIVE: To detect TRAIL receptor expression in glioblastoma by immunohistochemistry and RT-PCR and to compare this expression to that in normal brain tissue.DESIGN: Observational analysis.SETTING: Department of Pathology, the First Affiliated Hospital of Zhengzhou University; Henan Tumor Pathology Key Laboratory.PARTICIPANTS: Twenty-five patients (17 males and 8 females) who received glioblastoma resection were selected from the Fifth Affiliated Hospital of Zhengzhou University, between September 2003 to June 2004. All glioblastoma samples were diagnosed pathologically. Twenty patients (12 males and 8 females) with craniocerebral injury who received normal brain tissue resection were selected in the same time period. There were no significant differences in sex and age between glioblastoma patients or between craniocerebral injury patients (P>0.05). All patients and appropriate relatives provided informed consent, and this study was approved by the local research ethics committee.METHODS: Polyclonal antibody against TRAIL receptors and an immunohistochemical kit (batch number: 200502) were purchased from Boster Company, Wuhan. Immunohistochemistry: Expression of death receptor 4, death receptor 5, decoy receptor 1, and decoy receptor 2 were observed in both glioblastoma and normal brain tissue. The experiment was performed according to the kit instructions, and positive staining was brown-yellow. Assessment: There were no positive signals (-); weakly positive signals, positive cells75% (++++). Evaluation: Expression levels of TRAIL receptors were estimated in both normal brain tissue and glioblastoma. Expression of decoy receptor 1 and decoy receptor 2 mRNA in glioblastoma were detected by reverse transcription polymerase

  4. Annexin A2 is a natural extrahepatic inhibitor of the PCSK9-induced LDL receptor degradation.

    Directory of Open Access Journals (Sweden)

    Nabil G Seidah

    Full Text Available Proprotein convertase subtilisin/kexin-9 (PCSK9 enhances the degradation of hepatic low-density lipoprotein receptor (LDLR. Deletion of PCSK9, and loss-of-function mutants in humans result in lower levels of circulating LDL-cholesterol and a strong protection against coronary heart disease. Accordingly, the quest for PCSK9 inhibitors has major clinical implications. We have previously identified annexin A2 (AnxA2 as an endogenous binding partner and functional inhibitor of PCSK9. Herein, we studied the relevance of AnxA2 in PCSK9 inhibition and lipid metabolism in vivo. Plasma analyses of AnxA2(-/- mice revealed: i a ∼1.4-fold increase in LDL-cholesterol without significant changes in VLDLs or HDLs, and ii a ∼2-fold increase in circulating PCSK9 levels. Western blotting and immunohistochemistry of AnxA2(-/- tissues revealed that the LDLR was decreased by ∼50% in extrahepatic tissues, such as adrenals and colon. We also show that AnxA2-derived synthetic peptides block the PCSK9≡LDLR interaction in vitro, and adenoviral overexpression of AnxA2 in mouse liver increases LDLR protein levels in vivo. These results suggest that AnxA2 acts as an endogenous regulator of LDLR degradation, mostly in extrahepatic tissues. Finally, we identified an AnxA2 coding polymorphism, V98L, that correlates with lower circulating levels of PCSK9 thereby extending our results on the physiological role of AnxA2 in humans.

  5. Differential microRNA expression is associated with androgen receptor expression in breast cancer.

    Science.gov (United States)

    Shi, Yaqin; Yang, Fang; Sun, Zijia; Zhang, Wenwen; Gu, Jun; Guan, Xiaoxiang

    2017-01-01

    The androgen receptor (AR) is frequently expressed in breast cancer; however, its prognostic value remains unclear. AR expression in breast cancer has been associated with improved outcomes in estrogen receptor (ER)‑positive breast cancer compared with ER‑negative disease. Eliminating AR function in breast cancer is critically important for breast cancer progression. However, the mechanism underlying AR regulation remains poorly understood. The study of microRNAs (miRNAs) has provided important insights into the pathogenesis of hormone‑dependent cancer. To determine whether miRNAs function in the AR regulation of breast cancer, the present study performed miRNA expression profiling in AR‑positive and ‑negative breast cancer cell lines. A total of 153 miRNAs were differentially expressed in AR‑positive compared with AR‑negative breast cancer cells; 52 were upregulated and 101 were downregulated. A number of these have been extensively associated with breast cancer cell functions, including proliferation, invasion and drug‑resistance. Furthermore, through pathway enrichment analysis, signaling pathways associated with the prediction targets of the miRNAs were characterized, including the vascular endothelial growth factor and mammalian target of rapamycin signaling pathways. In conclusion, the results of the present study indicated that the expression of miRNAs may be involved in the mechanism underlying AR regulation of breast cancer, and may improve understanding of the role of AR in breast cancer.

  6. Differential microRNA expression is associated with androgen receptor expression in breast cancer

    Science.gov (United States)

    Shi, Yaqin; Yang, Fang; Sun, Zijia; Zhang, Wenwen; Gu, Jun; Guan, Xiaoxiang

    2017-01-01

    The androgen receptor (AR) is frequently expressed in breast cancer; however, its prognostic value remains unclear. AR expression in breast cancer has been associated with improved outcomes in estrogen receptor (ER)-positive breast cancer compared with ER-negative disease. Eliminating AR function in breast cancer is critically important for breast cancer progression. However, the mechanism underlying AR regulation remains poorly understood. The study of microRNAs (miRNAs) has provided important insights into the pathogenesis of hormone-dependent cancer. To determine whether miRNAs function in the AR regulation of breast cancer, the present study performed miRNA expression profiling in AR-positive and -negative breast cancer cell lines. A total of 153 miRNAs were differentially expressed in AR-positive compared with AR-negative breast cancer cells; 52 were upregulated and 101 were downregulated. A number of these have been extensively associated with breast cancer cell functions, including proliferation, invasion and drug-resistance. Furthermore, through pathway enrichment analysis, signaling pathways associated with the prediction targets of the miRNAs were characterized, including the vascular endothelial growth factor and mammalian target of rapamycin signaling pathways. In conclusion, the results of the present study indicated that the expression of miRNAs may be involved in the mechanism underlying AR regulation of breast cancer, and may improve understanding of the role of AR in breast cancer. PMID:27959398

  7. The A2B adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease.

    Science.gov (United States)

    Karmouty-Quintana, Harry; Zhong, Hongyan; Acero, Luis; Weng, Tingting; Melicoff, Ernestina; West, James D; Hemnes, Anna; Grenz, Almut; Eltzschig, Holger K; Blackwell, Timothy S; Xia, Yang; Johnston, Richard A; Zeng, Dewan; Belardinelli, Luiz; Blackburn, Michael R

    2012-06-01

    Development of pulmonary hypertension is a common and deadly complication of interstitial lung disease. Little is known regarding the cellular and molecular mechanisms that lead to pulmonary hypertension in patients with interstitial lung disease, and effective treatment options are lacking. The purpose of this study was to examine the adenosine 2B receptor (A(2B)R) as a regulator of vascular remodeling and pulmonary hypertension secondary to pulmonary fibrosis. To accomplish this, cellular and molecular changes in vascular remodeling were monitored in mice exposed to bleomycin in conjunction with genetic removal of the A(2B)R or treatment with the A(2B)R antagonist GS-6201. Results demonstrated that GS-6201 treatment or genetic removal of the A(2B)R attenuated vascular remodeling and hypertension in our model. Furthermore, direct A(2B)R activation on vascular cells promoted interleukin-6 and endothelin-1 release. These studies identify a novel mechanism of disease progression to pulmonary hypertension and support the development of A(2B)R antagonists for the treatment of pulmonary hypertension secondary to interstitial lung disease.

  8. CHARACTERIZATION OF THE OLFACTORY RECEPTORS EXPRESSED IN HUMAN SPERMATOZOA

    Directory of Open Access Journals (Sweden)

    Caroline eFlegel

    2016-01-01

    Full Text Available The detection of external cues is fundamental for human spermatozoa to locate the oocyte in the female reproductive tract. This task requires a specific chemoreceptor repertoire that is expressed on the surface of human spermatozoa, which is not fully identified to date. Olfactory receptors (ORs are candidate molecules and have been attributed to be involved in sperm chemotaxis and chemokinesis, indicating an important role in mammalian spermatozoa. An increasing importance has been suggested for spermatozoal RNA, which led us to investigate the expression of all 387 OR genes. This study provides the first comprehensive analysis of OR transcripts in human spermatozoa of several individuals by RNA-Seq. We detected 91 different transcripts in the spermatozoa samples that could be aligned to annotated OR genes. Using stranded mRNA-Seq, we detected a class of these putative OR transcripts in an antisense orientation, indicating a different function, rather than coding for a functional OR protein. Nevertheless, we were able to detect OR proteins in various compartments of human spermatozoa, indicating distinct functions in human sperm. A panel of various OR ligands induced Ca2+ signals in human spermatozoa, which could be inhibited by mibefradil. This study indicated that a variety of ORs are expressed at the mRNA and protein level in human spermatozoa and demonstrates that ORs are involved in the physiological processes.

  9. Structural and energetic effects of A2A adenosine receptor mutations on agonist and antagonist binding.

    Directory of Open Access Journals (Sweden)

    Henrik Keränen

    Full Text Available To predict structural and energetic effects of point mutations on ligand binding is of considerable interest in biochemistry and pharmacology. This is not only useful in connection with site-directed mutagenesis experiments, but could also allow interpretation and prediction of individual responses to drug treatment. For G-protein coupled receptors systematic mutagenesis has provided the major part of functional data as structural information until recently has been very limited. For the pharmacologically important A(2A adenosine receptor, extensive site-directed mutagenesis data on agonist and antagonist binding is available and crystal structures of both types of complexes have been determined. Here, we employ a computational strategy, based on molecular dynamics free energy simulations, to rationalize and interpret available alanine-scanning experiments for both agonist and antagonist binding to this receptor. These computer simulations show excellent agreement with the experimental data and, most importantly, reveal the molecular details behind the observed effects which are often not immediately evident from the crystal structures. The work further provides a distinct validation of the computational strategy used to assess effects of point-mutations on ligand binding. It also highlights the importance of considering not only protein-ligand interactions but also those mediated by solvent water molecules, in ligand design projects.

  10. Progress on the M-type phospholipase A2 receptor in idiopathic membranous nephropathy

    Institute of Scientific and Technical Information of China (English)

    Wang Chao; Lu Huan; Yang Cui; Luo Yuezhong

    2014-01-01

    Objective To highlight current knowledge about M-type phospholipase A2 receptor (PLA2R) which is the first human autoantigen discovered in adult idiopathic membranous nephropathy.Data sources Relevant articles published in English from 2000 to present were selected from PubMed.Searches were made using the terms "idiopathic membranous nephropathy,M-type PLA2R and podocyte." Study selection Articles studying the role of M-type PLA2R in idiopathic membranous nephropathy were reviewed.Articles focusing on the discovery,detection and clinical observation of anti-PLA2R antibodies were selected.Results M-type PLA2R is a member of the mannose receptor family of proteins,locating on normal human glomeruli as a transmembrane receptor.The anti-PLA2R in serum samples from MN were primarily IgG4 subclass.Technologies applied to detect anti-PLA2R autoantibody are mainly WB,lIFT,ELISA and so on.Studies from domestic and overseas have identified a strongly relationship between circulating anti-PLA2R levels and disease activity.Conclusion Recent discoveries corresponding to PLA2R facilitate a better understanding on IMN pathogenesis and may provide a new tool to its diagnosis,differential diagnosis,risk evaluation,response monitoring and patient-specific treatment.

  11. Pharmacological Characterization of Human Histamine Receptors and Histamine Receptor Mutantsin the Sf9 Cell Expression System.

    Science.gov (United States)

    Schneider, Erich H; Seifert, Roland

    2017-02-24

    A large problem of histamine receptor research is data heterogeneity. Various experimental approaches, the complex signaling pathways of mammalian cells, and the use of different species orthologues render it difficult to compare and interpret the published results. Thus, the four human histamine receptor subtypes were analyzed side-by-side in the Sf9 insect cell expression system, using radioligand binding assays as well as functional readouts proximal to the receptor activation event (steady-state GTPase assays and [(35)S]GTPγS assays). The human H1R was co-expressed with the regulators of G protein signaling RGS4 or GAIP, which unmasked a productive interaction between hH1R and insect cell Gαq. By contrast, functional expression of the hH2R required the generation of an hH2R-Gsα fusion protein to ensure close proximity of G protein and receptor. Fusion of hH2R to the long (GsαL) or short (GsαS) splice variant of Gαs resulted in comparable constitutive hH2R activity, although both G protein variants show different GDP affinities. Medicinal chemistry studies revealed profound species differences between hH1R/hH2R and their guinea pig orthologues gpH1R/gpH2R. The causes for these differences were analyzed by molecular modeling in combination with mutational studies. Co-expression of the hH3R with Gαi1, Gαi2, Gαi3, and Gαi/o in Sf9 cells revealed high constitutive activity and comparable interaction efficiency with all G protein isoforms. A comparison of various cations (Li(+), Na(+), K(+)) and anions (Cl(-), Br(-), I(-)) revealed that anions with large radii most efficiently stabilize the inactive hH3R state. Potential sodium binding sites in the hH3R protein were analyzed by expressing specific hH3R mutants in Sf9 cells. In contrast to the hH3R, the hH4R preferentially couples to co-expressed Gαi2 in Sf9 cells. Its high constitutive activity is resistant to NaCl or GTPγS. The hH4R shows structural instability and adopts a G protein-independent high

  12. Expression pattern of mda-7/IL-24 receptors in liver cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Hong Zhu; Zhi-Bin Yang

    2009-01-01

    BACKGROUND: The mda-7/IL-24 receptor belongs to the typeⅡ cytokine receptor family, and its two heterodimeric receptors are IL-22R1/IL-20R2 and IL-20R1/IL-20R2. Mda-7/IL-24 receptor expression in liver cancer cell lines has not yet been described. This information may be helpful for further clinical gene therapy. METHODS: With normal skin total RNA as template, the cDNA sequences of IL-20R1, IL-20R2 and IL-22R were ampliifed by RT-PCR. Total RNA was extracted from cultured liver cancer cell lines and a normal liver cell line, then detected by northern blotting, and the expression of mda-7/IL-24 receptors was analyzed. RESULTS: PLC/PRF/5 and SMMC-7721 expressed IL-20R1;BEL-7402, Hep3B, HepG2, and PLC/PRF/5 expressed IL-20R2; and HepG2 and PLC/PRF/5 expressed IL-22R. Only HepG2 expressed the IL-22R/IL-20R2 receptor complex. PLC/PRF/5 completely expressed both heterodimeric receptors. Huh-7, QGY-7701 and WRL-68 did not express the IL-24 receptor. CONCLUSION: Complete mda-7/IL-24 receptors are seldom expressed in liver cancer cell lines.

  13. Serotonin 1A receptors alter expression of movement representations.

    Science.gov (United States)

    Scullion, Kathleen; Boychuk, Jeffery A; Yamakawa, Glenn R; Rodych, Justin T G; Nakanishi, Stan T; Seto, Angela; Smith, Victoria M; McCarthy, Ryan W; Whelan, Patrick J; Antle, Michael C; Pittman, Quentin J; Teskey, G Campbell

    2013-03-13

    Serotonin has a myriad of central functions involving mood, appetite, sleep, and memory and while its release within the spinal cord is particularly important for generating movement, the corresponding role on cortical movement representations (motor maps) is unknown. Using adult rats we determined that pharmacological depletion of serotonin (5-HT) via intracerebroventricular administration of 5,7 dihydroxytryptamine resulted in altered movements of the forelimb in a skilled reaching task as well as higher movement thresholds and smaller maps derived using high-resolution intracortical microstimulation (ICMS). We ruled out the possibility that reduced spinal cord excitability could account for the serotonin depletion-induced changes as we observed an enhanced Hoffman reflex (H-reflex), indicating a hyperexcitable spinal cord. Motor maps derived in 5-HT1A receptor knock-out mice also showed higher movement thresholds and smaller maps compared with wild-type controls. Direct cortical application of the 5-HT1A/7 agonist 8-OH-DPAT lowered movement thresholds in vivo and increased map size in 5-HT-depleted rats. In rats, electrical stimulation of the dorsal raphe lowered movement thresholds and this effect could be blocked by direct cortical application of the 5-HT1A antagonist WAY-100135, indicating that serotonin is primarily acting through the 5-HT1A receptor. Next we developed a novel in vitro ICMS preparation that allowed us to track layer V pyramidal cell excitability. Bath application of WAY-100135 raised the ICMS current intensity to induce action potential firing whereas the agonist 8-OH-DPAT had the opposite effect. Together our results demonstrate that serotonin, acting through 5-HT1A receptors, plays an excitatory role in forelimb motor map expression.

  14. Analysis of TRAIL receptor expression using anti-TRAIL death receptor-5 monoclonal antibodies

    Institute of Scientific and Technical Information of China (English)

    马远方; 杨东亮; 陈有海

    2003-01-01

    ObjectiveTo establish hybridomas that produce anti-death receptor-5 (DR5) monoclonal antibodies (mAbs) and check the surface expression of DR5 (sDR5) on cell lines.MethodsThe cDNA of human DR5 was cloned into pGAPZα. Recombinant Pichia pastoris clones generated via homologous recombination secreted high levels of sDR5. The sDR5 was purified using a nickel ion column. BALB/c mice were immunized with sDR5 and spleen cells were fused with the SP2/0-Ag 14. Monoclonal antibodies were tested by ELISA for their abilities binding to sDR5 and by flow cytometry for thereactivities to surface DR5 of Jurkat cells. Surface expression of the TRAIL receptor was determined by flow cytometric analysis measuring the binding of anti-DR5 mAb. Resultse to sDR5 as observed through ELISA. It was discovered using flow cytometry that only IgG was able to bind to DR5 on the plasma membrane of Jurkat cells. sDR5was found to completely inhibit anti-DR5 mAb binding to Jurkat cells. Pproximately 95% of Jurkat cells, 98% SW480, 99% U937, 100% U87, 86% HCT116, 64% HL-60, 47% HeLa and 13% K562 cells express membrane DR5. ConclusionsThese results demonstrate that anti-DR5 mAb is able to specifically bind to DR5and that DR5 is expressed at high levels on Jurkat, SW480, U87, U937 and HCT116cell lines, and at medium levels on HL-60 and HeLa cell lines. The expressionof DR5 on K562 cell line is low.

  15. A novel gene delivery system targeting cells expressing VEGF receptors

    Institute of Scientific and Technical Information of China (English)

    LIJUNMIN; JINGCHULUO; 等

    1999-01-01

    Two ligand oligopeptides GV1 and GV2 were designed according to the putative binding region of VEGF to its receptors.GV1,GV2 and endosome releasing oligopeptide HA20 were conjugated with poly-L-lysine or protamine and the resulting conjugates could interact with DNA in a noncovalent bond to form a complex.Using pSV2-β-galactosidase as a reporter gene,it has been demonstrated that exogenous gene was transferred into bovine aortic arch-derived endothelial cells (ABAE) and human malignant melanoma cell lines (A375) in vitro.In vivo experiments,exogenous gene was transferred into tumor vascular endothelial cells and tumor cells of subcutaneously transplanted human colon cancer LOVO,human malignant melanoma A375 and human hepatoma graft in nude mice.This system could also target gene to intrahepatically transplanted human hepatoma injected via portal vein in nude mice.These results are correlated with the relevant receptors(flt-1,flk-1/KDR) expression on the targeted cells and tissues.

  16. Upregulation of group IB secreted phospholipase A(2) and its M-type receptor in rat ANTI-THY-1 glomerulonephritis.

    Science.gov (United States)

    Beck, S; Beck, G; Ostendorf, T; Floege, J; Lambeau, G; Nevalainen, T; Radeke, H H; Gurrieri, S; Haas, U; Thorwart, B; Pfeilschifter, J; Kaszkin, M

    2006-10-01

    Treatment of rat glomerular mesangial cell (GMC) cultures with pancreatic secreted phospholipase A(2) (sPLA(2)-IB) results in an enhanced expression of sPLA(2)-IIA and COX-2, possibly via binding to its specific M-type sPLA(2) receptor. In the current study, we have investigated the expression and regulation of sPLA(2)-IB and its receptor during glomerulonephritis (GN). In vivo we used the well-established rat model of anti-Thy 1.1 GN (anti-Thy 1.1-GN) to study the expression of sPLA(2)-IB and the M-type sPLA(2) receptor by immunohistochemistry. In addition, in vitro we determined the interkeukin (IL)-1beta-regulated mRNA and protein expression in primary rat glomerular mesangial and endothelial cells as well as in rat peripheral blood leukocytes (PBLs). Shortly after induction of anti-Thy 1.1-GN, sPLA(2)-IB expression was markedly upregulated in the kidney at 6-24 h. Within glomeruli, the strongest sPLA(2)-IB protein expression was detected on infiltrated granulocytes and monocytes. However, at the same time, the M-type receptor was also markedly upregulated on resident glomerular cells. In vitro, the most prominent cytokine-stimulated secretion of sPLA(2)-IB was observed in monocytes isolated from rat PBLs. Treating glomerular endothelial cells (GECs) with cytokines elicited only weak sPLA(2)-IB expression, but treatment of these cells with exogenous sPLA(2)-IB resulted in a marked expression of the endogenous sPLA(2)-IB. Mesangial cells did not express sPLA(2)-IB at all. The M-type sPLA(2) receptor protein was markedly upregulated on cytokine-stimulated mesangial and endothelial cells as well as on lymphocytes and granulocytes. During anti-Thy 1.1 rat GN, sPLA(2)-IB and the M-type sPLA(2) receptor are induced as primary downstream genes stimulated by inflammatory cytokines. Subsequently, both sPLA(2)-IB and the M-type sPLA(2) receptor are involved in the autocrine and paracrine amplification of the inflammatory process in different resident and infiltrating

  17. Expression of estrogen receptor and estrogen receptor messenger RNA in gastric carcinoma tissues

    Institute of Scientific and Technical Information of China (English)

    Xin-Han Zhao; Shan-Zhi Gu; Shan-Xi Liu; Bo-Rong Pan

    2003-01-01

    AIM: To study estrogen receptor (ER) and estrogen receptor messenger RNA (ERmRNA) expression in gastric carcinoma tissues and to investigate their association with the pathologic types of gastric carcinoma.METHODS: The expression of ER and ERmRNA in gastric carcinoma tissues (15 males and 15 females, 42-70 years old) was detected by immunohistochemistry and in situ hybridization, respectively.RESULTS: The positive rate of ER (immunohistochemistry)was 33.3% in males and 46.7% in females. In Borrmann Ⅳ gastric carcinoma ER positive rate was greater than that in other pathologic types, and in poorly differentiated adenocarcinoma and signet ring cell carcinoma the positive rates were greater than those in other histological types of both males and females (P<0.05). The ER was more highly expressed in diffused gastric carcinoma than in non-diffused gastric carcinoma (P<0.05). The ER positive rate was also related to regional lymph nodes metastases (P<0.05), and was significantly higher in females above 55 years old, and higher in males under 55 years old (P<0.05). The ERmRNA (in situ hybridization) positive rate was 73.3% in males and 86.7% in females. The ERmRNA positive rates were almost the same in Borrmann Ⅰ, Ⅱ, Ⅲ and Ⅳ gastric carcinoma (P>0.05). ERmRNA was expressed in all tubular adenocarcinoma, poorly differentiated adenocarcinoma and signet ring cell carcinoma (P<0.05). The ERmRNA positive rate was related to both regional lymph nodes metastases and gastric carcinoma growth patterns, and was higher in both sexes above 55 years old but without statistical significance (P>0.05). The positive rate of ERmRNA expression by in situ hybridization was higher than that of ER expression by immunohistochemistry (P<0.05).CONCLUSION: ERmRNA expression is related to the pathological behaviors of gastric carcinoma, which might help to predict the prognosis and predict the effectiveness of endocrine therapy for gastric carcinoma.

  18. Expression and role of a2 vacuolar-ATPase (a2V) in trafficking of human neutrophil granules and exocytosis.

    Science.gov (United States)

    Gilman-Sachs, Alice; Tikoo, Anjali; Akman-Anderson, Leyla; Jaiswal, Mukesh; Ntrivalas, Evangelos; Beaman, Kenneth

    2015-06-01

    Neutrophils kill microorganisms by inducing exocytosis of granules with antibacterial properties. Four isoforms of the "a" subunit of V-ATPase-a1V, a2V, a3V, and a4V-have been identified. a2V is expressed in white blood cells, that is, on the surface of monocytes or activated lymphocytes. Neutrophil associated-a2V was found on membranes of primary (azurophilic) granules and less often on secondary (specific) granules, tertiary (gelatinase granules), and secretory vesicles. However, it was not found on the surface of resting neutrophils. Following stimulation of neutrophils, primary granules containing a2V as well as CD63 translocated to the surface of the cell because of exocytosis. a2V was also found on the cell surface when the neutrophils were incubated in ammonium chloride buffer (pH 7.4) a weak base. The intracellular pH (cytosol) became alkaline within 5 min after stimulation, and the pH increased from 7.2 to 7.8; this pH change correlated with intragranular acidification of the neutrophil granules. Upon translocation and exocytosis, a2V on the membrane of primary granules remained on the cell surface, but myeloperoxidase was secreted. V-ATPase may have a role in the fusion of the granule membrane with the cell surface membrane before exocytosis. These findings suggest that the granule-associated a2V isoform has a role in maintaining a pH gradient within the cell between the cytosol and granules in neutrophils and also in fusion between the surface and the granules before exocytosis. Because a2V is not found on the surface of resting neutrophils, surface a2V may be useful as a biomarker for activated neutrophils.

  19. Role of Microglia Adenosine A2A Receptors in Retinal and Brain Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Ana R. Santiago

    2014-01-01

    Full Text Available Neuroinflammation mediated by microglial cells in the brain has been commonly associated with neurodegenerative diseases. Whether this microglia-mediated neuroinflammation is cause or consequence of neurodegeneration is still a matter of controversy. However, it is unequivocal that chronic neuroinflammation plays a role in disease progression and halting that process represents a potential therapeutic strategy. The neuromodulator adenosine emerges as a promising targeting candidate based on its ability to regulate microglial proliferation, chemotaxis, and reactivity through the activation of its G protein coupled A2A receptor (A2AR. This is in striking agreement with the ability of A2AR blockade to control several brain diseases. Retinal degenerative diseases have been also associated with microglia-mediated neuroinflammation, but the role of A2AR has been scarcely explored. This review aims to compare inflammatory features of Parkinson’s and Alzheimer’s diseases with glaucoma and diabetic retinopathy, discussing the therapeutic potential of A2AR in these degenerative conditions.

  20. A complex pattern of chemokine receptor expression is seen in osteosarcoma

    Science.gov (United States)

    von Luettichau, Irene; Segerer, Stephan; Wechselberger, Alexandra; Notohamiprodjo, Mike; Nathrath, Michaela; Kremer, Markus; Henger, Anna; Djafarzadeh, Roghieh; Burdach, Stefan; Huss, Ralf; Nelson, Peter J

    2008-01-01

    Background Osteosarcoma is the most frequent bone tumor in childhood and adolescence. Patients with primary metastatic disease have a poor prognosis. It is therefore important to better characterize the biology of this tumor to define new prognostic markers or therapeutic targets for tailored therapy. Chemokines and their receptors have been shown to be involved in the development and progression of malignant tumors. They are thought to be active participants in the biology of osteosarcoma. The function of specific chemokines and their receptors is strongly associated with the biological context and microenvironment of their expression. In this report we characterized the expression of a series of chemokine receptors in the complex environment that defines osteosarcoma. Methods The overall level of chemokine receptor mRNA expression was determined using TaqMan RT-PCR of microdissected archival patient biopsy samples. Expression was then verified at the protein level by immunohistochemistry using a series of receptor specific antibody reagents to elucidate the cellular association of expression. Results Expression at the RNA level was found for most of the tested receptors. CCR1 expression was found on infiltrating mononuclear and polynuclear giant cells in the tumor. Cells associated with the lining of intratumoral vessels were shown to express CCR4. Infiltrating mononuclear cells and tumor cells both showed expression of the receptor CCR5, while CCR7 was predominantly expressed by the mononuclear infiltrate. CCR10 was only very rarely detected in few scattered infiltrating cells. Conclusion Our data elucidate for the first time the cellular context of chemokine receptor expression in osteosarcoma. This is an important issue for better understanding potential chemokine/chemokine receptor function in the complex biologic processes that underlie the development and progression of osteosarcoma. Our data support the suggested involvement of chemokines and their

  1. A complex pattern of chemokine receptor expression is seen in osteosarcoma

    Directory of Open Access Journals (Sweden)

    Nathrath Michaela

    2008-01-01

    Full Text Available Abstract Background Osteosarcoma is the most frequent bone tumor in childhood and adolescence. Patients with primary metastatic disease have a poor prognosis. It is therefore important to better characterize the biology of this tumor to define new prognostic markers or therapeutic targets for tailored therapy. Chemokines and their receptors have been shown to be involved in the development and progression of malignant tumors. They are thought to be active participants in the biology of osteosarcoma. The function of specific chemokines and their receptors is strongly associated with the biological context and microenvironment of their expression. In this report we characterized the expression of a series of chemokine receptors in the complex environment that defines osteosarcoma. Methods The overall level of chemokine receptor mRNA expression was determined using TaqMan RT-PCR of microdissected archival patient biopsy samples. Expression was then verified at the protein level by immunohistochemistry using a series of receptor specific antibody reagents to elucidate the cellular association of expression. Results Expression at the RNA level was found for most of the tested receptors. CCR1 expression was found on infiltrating mononuclear and polynuclear giant cells in the tumor. Cells associated with the lining of intratumoral vessels were shown to express CCR4. Infiltrating mononuclear cells and tumor cells both showed expression of the receptor CCR5, while CCR7 was predominantly expressed by the mononuclear infiltrate. CCR10 was only very rarely detected in few scattered infiltrating cells. Conclusion Our data elucidate for the first time the cellular context of chemokine receptor expression in osteosarcoma. This is an important issue for better understanding potential chemokine/chemokine receptor function in the complex biologic processes that underlie the development and progression of osteosarcoma. Our data support the suggested involvement of

  2. Evidence for an A2/Ra adenosine receptor in the guinea-pig trachea

    Science.gov (United States)

    Brown, C.M.; Collis, M.G.

    1982-01-01

    1 An attempt was made to determine whether the extracellular adenosine receptor that mediates relaxation in the guinea-pig trachea is of the A1/Ri or A2/Ra subtype. 2 Dose-response curves to adenosine and a number of 5′- and N6-substituted analogues were constructed for the isolated guinea-pig trachea, contracted with carbachol. 3 The 5′-substituted analogues of adenosine were the most potent compounds tested, the order of potency being 5′-N-cyclopropylcarboxamide adenosine (NCPCA) > 5′-N-ethylcarboxamide adenosine (NECA) > 2-chloroadenosine > L-N6-phenylisopropyladenosine (L-PIA) > adenosine > D-N6-phenylisopropyladenosine (D-PIA). 4 The difference in potency between the stereoisomers D- and L-PIA on the isolated trachea was at the most five fold. 5 Responses to low doses of adenosine and its analogues were attenuated after treatment with either theophylline or 8-phenyltheophylline. The responses to 2-chloroadenosine were affected to a lesser extent than were those to the other purines. 6 Adenosine transport inhibitors, dipyridamole and dilazep, potentiated responses to adenosine, did not affect those to NCPCA, NECA, L-PIA and D-PIA but significantly reduced the responses to high doses of 2-chloroadenosine. 7 Relaxations evoked by 9-β-D-xylofuranosyladenosine which can activate intracellular but not extracellular adenosine receptors, were attenuated by dipyridamole but unaffected by 8-phenyltheophylline. 8 The results support the existence of an extracellular A2/Ra subtype of adenosine receptor and an intracellular purine-sensitive site, both of which mediate relaxation. PMID:6286021

  3. The Characteristics of Gastrin Receptor Expression in Gastric Cancer

    Institute of Scientific and Technical Information of China (English)

    HUANGGuangjian; ZHANGYanling; LEZhuqin; YUFen; ZHANGGuangming; DENShouzhen; NIQuanxing

    2003-01-01

    Objective: To investigate the characteristics and significance of gastrin receptor (GR) expression in gastric cancer. Methods: The content and affinity of GR were determined in 34 specimens of gastric cancer using radioligand binding assay. The correlation was analyzed between GR expression in tumors and tumor sites, stages, grades, DNA of gastric cancer cells, GR of adjacent normal gastric mucosa, survival time. Results: Among the 34 cases of gastric cancer, 16 patients (47.1%) had positive GR in specimens of gastric cancer, with high-affinity GR in 14 cases (41.2%) and low-affinity GR in 2 cases. Of high-affinity GR, 9 cases had cancers with GR>10 fmol/mg.protein (39.5±14.4 fmol/mg.protein), 5 cases with GR≤10fmol/mg.protein (6.0±2.8 fmol/mg.protein). High-affinity GR was easier to be expressed in cancers ofgastric body (7/9) and cardia (3/6) than in gastric antrum (4/19). The expression of GR in gastric cancer accorded well with that in normal gastric mucosa at the same sites, but with more high-special binding sites than the latter (39.5±14.4 vs 26.1±16.6 fmol/mg.protein). A significantly greater proportion of patients withⅢ+Ⅳ stages (13/24) had high-affinity GR compared with I+II stages (1/10) of gastric cancers. During a follow-up of 23-61 months, 11 of 13 cases with high-affinity GR were dead, whereas 4 of 11 cases with low-affinity or negative GR were dead in Ⅲ+Ⅳ stages of gastric cancer. Conclusion: GR is an important factor in the autocrine growth of gastric cancer cells, and helpful in the prediction of prognosis and guidance of treatment with GR antagonists.

  4. Cyclic AMP Effectors Regulate Myometrial Oxytocin Receptor Expression.

    Science.gov (United States)

    Yulia, Angela; Singh, Natasha; Lei, Kaiyu; Sooranna, Suren R; Johnson, Mark R

    2016-11-01

    The factors that initiate human labor are poorly understood. We have tested the hypothesis that a decline in cAMP/protein kinase A (PKA) function leads to the onset of labor. Initially, we identified myometrial cAMP/PKA-responsive genes (six up-regulated and five down-regulated genes) and assessed their expression in myometrial samples taken from different stages of pregnancy and labor. We found that the oxytocin receptor (OTR) was one of the cAMP-repressed genes, and, given the importance of OTR in the labor process, we studied the mechanisms involved in greater detail using small interfering RNA, chemical agonists, and antagonists of the cAMP effectors. We found that cAMP-repressed genes, including OTR, increased with the onset of labor. Our in vitro studies showed that cAMP acting via PKA reduced OTR expression but that in the absence of PKA, cAMP acts via exchange protein activated by cAMP (EPAC) to increase OTR expression. In early labor myometrial samples, PKA levels and activity declined and Epac1 levels increased, perhaps accounting for the increase in myometrial OTR mRNA and protein levels at this time. In vitro exposure of myometrial cells to stretch and IL-1β increased OTR levels and reduced basal and forskolin-stimulated cAMP and PKA activity, as judged by phospho-cAMP response element-binding protein levels, but neither stretch nor IL-1β had any effect on PKA or EPAC1 levels. In summary, there is a reduction in the activity of the cAMP/PKA pathway with the onset of human labor potentially playing a critical role in regulating OTR expression and the transition from myometrial quiescence to activation.

  5. Expression of the aryl hydrocarbon receptor pathway and cyclooxygenase-2 in dog tumors.

    Science.gov (United States)

    Giantin, M; Vascellari, M; Lopparelli, R M; Ariani, P; Vercelli, A; Morello, E M; Cristofori, P; Granato, A; Buracco, P; Mutinelli, F; Dacasto, M

    2013-02-01

    In humans, the aryl hydrocarbon receptor (AHR) gene battery constitutes a set of contaminant-responsive genes, which have been recently shown to be involved in the regulation of several patho-physiological conditions, including tumorigenesis. As the domestic dog represents a valuable animal model in comparative oncology, mRNA levels of cytochromes P450 1A1, 1A2 and 1B1 (CYP1A1, 1A2 and 1B1), AHR, AHR nuclear translocator (ARNT), AHR repressor (AHRR, whose partial sequence was here obtained) and cyclooxygenase-2 (COX2) were measured in dog control tissues (liver, skin, mammary gland and bone), in 47 mast cell tumors (MCTs), 32 mammary tumors (MTs), 5 osteosarcoma (OSA) and related surgical margins. Target genes were constitutively expressed in the dog, confirming the available human data. Furthermore, their pattern of expression in tumor biopsies was comparable to that already described in a variety of human cancers; in particular, both AHR and COX2 genes were up-regulated and positively correlated, while CYP1A1 and CYP1A2 mRNAs were generally poorly expressed. This work demonstrated for the first time that target mRNAs are expressed in neoplastic tissues of dogs, thereby increasing the knowledge about dog cancer biology and confirming this species as an useful animal model for comparative studies on human oncology.

  6. Receptor Expression in Rat Skeletal Muscle Cell Cultures

    Science.gov (United States)

    Young, Ronald B.

    1996-01-01

    One on the most persistent problems with long-term space flight is atrophy of skeletal muscles. Skeletal muscle is unique as a tissue in the body in that its ability to undergo atrophy or hypertrophy is controlled exclusively by cues from the extracellular environment. The mechanism of communication between muscle cells and their environment is through a group of membrane-bound and soluble receptors, each of which carries out unique, but often interrelated, functions. The primary receptors include acetyl choline receptors, beta-adrenergic receptors, glucocorticoid receptors, insulin receptors, growth hormone (i.e., somatotropin) receptors, insulin-like growth factor receptors, and steroid receptors. This project has been initiated to develop an integrated approach toward muscle atrophy and hypertrophy that takes into account information on the populations of the entire group of receptors (and their respective hormone concentrations), and it is hypothesized that this information can form the basis for a predictive computer model for muscle atrophy and hypertrophy. The conceptual basis for this project is illustrated in the figure below. The individual receptors are shown as membrane-bound, with the exception of the glucocorticoid receptor which is a soluble intracellular receptor. Each of these receptors has an extracellular signalling component (e.g., innervation, glucocorticoids, epinephrine, etc.), and following the interaction of the extracellular component with the receptor itself, an intracellular signal is generated. Each of these intracellular signals is unique in its own way; however, they are often interrelated.

  7. Arginine vasotocin, isotocin and nonapeptide receptor gene expression link to social status and aggression in sex-dependent patterns.

    Science.gov (United States)

    Lema, S C; Sanders, K E; Walti, K A

    2015-02-01

    Nonapeptide hormones of the vasopressin/oxytocin family regulate social behaviours. In mammals and birds, variation in behaviour also is linked to expression patterns of the V1a-type receptor and the oxytocin/mesotocin receptor in the brain. Genome duplications, however, expand the diversity of nonapeptide receptors in actinopterygian fishes, and two distinct V1a-type receptors (v1a1 and v1a2) for vasotocin, as well as at least two V2-type receptors (v2a and v2b), have been identified in these taxa. The present study investigates how aggression connected to social status relates to the abundance patterns of gene transcripts encoding four vasotocin receptors, an isotocin receptor (itr), pro-vasotocin (proVT) and pro-isotocin (proIT) in the brain of the pupfish Cyprinodon nevadensis amargosae. Sexually-mature pupfish were maintained in mixed-sex social groups and assessed for individual variation in aggressive behaviours. Males in these groups behaved more aggressively than females, and larger fish exhibited higher aggression relative to smaller fish of the same sex. Hypothalamic proVT transcript abundance was elevated in dominant males compared to subordinate males, and correlated positively with individual variation in aggression in both social classes. Transcripts encoding vasotocin receptor v1a1 were at higher levels in the telencephalon and hypothalamus of socially subordinate males than dominant males. Dominant males exhibited elevated hypothalamic v1a2 receptor transcript abundance relative to subordinate males and females, and telencephalic v1a2 mRNA abundance in dominant males was also associated positively with individual aggressiveness. Transcripts in the telencephalon encoding itr were elevated in females relative to males, and both telencephalic proIT and hypothalamic itr transcript abundance varied with female social status. Taken together, these data link hypothalamic proVT expression to aggression and implicate forebrain expression of the V1a

  8. GDNF control of the glutamatergic cortico-striatal pathway requires tonic activation of adenosine A2A Receptors

    Science.gov (United States)

    Gomes, Catarina A.R.V.; Simões, Patrícia F.; Canas, Paula M.; Quiroz, César; Sebastião, Ana M.; Ferré, Sergi; Cunha, Rodrigo A.; Ribeiro, Joaquim A.

    2009-01-01

    Glial cell line-derived neurotrophic factor (GDNF) affords neuroprotection in Parkinson’s disease in accordance with its ability to bolster nigrostriatal innervation. We previously found that GDNF facilitates dopamine release in a manner dependent on adenosine A2A receptor activation. Since motor dysfunction also involves modifications of striatal glutamatergic innervation, we now tested if GDNF and its receptor system, Ret (rearranged during transfection) and GFRα1 (GDNF family receptor alpha 1) controlled the cortico-striatal glutamatergic pathway in an A2A receptor-dependent manner. GDNF (10 ng/ml) enhanced (by ≈13%) glutamate release from rat striatal nerve endings, an effect potentiated (up to ≈ 30%) by the A2A receptor agonist CGS 21680 (10 nM) and prevented by the A2A receptor antagonist, SCH 58261 (50 nM). Triple immunocytochemical studies revealed that Ret and GFRα1 were located in 50% of rat striatal glutamatergic terminals (immunopositive for vesicular glutamate transporters-1/2), where they were found to be co-located with A2A receptors. Activation of the glutamatergic system upon in vivo electrical stimulation of the rat cortico-striatal input induced striatal Ret phosphoprylation that was prevented by pre-treatment with the A2A receptor antagonist, MSX-3 (3 mg/kg). The results provide the first functional and morphological evidence that GDNF controls cortico-striatal glutamatergic pathways in a manner largely dependent on the co-activation of adenosine A2A receptors. PMID:19141075

  9. Epidermal growth factor receptor expression in triple negative and nontriple negative breast carcinomas

    Directory of Open Access Journals (Sweden)

    Arathi A Changavi

    2015-01-01

    Conclusion: EGFR is an important marker to stratify patients with breast cancer according to molecular classification. Its expression correlated positively with young age, higher SBR grade, necrosis, lymphocytic infiltrate and inversely with hormonal receptor expression.

  10. Endothelin-1 and endothelin-3 regulate endothelin receptor expression in rat coronary arteries

    DEFF Research Database (Denmark)

    Skovsted, Gry Freja; Kilic, Semsi; Edvinsson, Lars

    2015-01-01

    . Organ culture significantly up-regulated ETB receptors and down-regulated ETA receptor expression. Co-incubation with ET-1 (1 nM) or ET-3 (100 nM) induced further down-regulation of the ETA receptor mRNA, while the function and protein level of ETA remained unchanged. ET-3 (100 nM) further up...

  11. Salidroside attenuates chronic hypoxia-induced pulmonary hypertension via adenosine A2a receptor related mitochondria-dependent apoptosis pathway.

    Science.gov (United States)

    Huang, Xiaoying; Zou, Lizhen; Yu, Xiaoming; Chen, Mayun; Guo, Rui; Cai, Hui; Yao, Dan; Xu, Xiaomei; Chen, Yanfan; Ding, Cheng; Cai, Xueding; Wang, Liangxing

    2015-05-01

    Pulmonary arterial hypertension (PAH) is characterized by pulmonary arterial remodeling mainly due to excess cellular proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs). Salidroside, an active ingredient isolated from Rhodiola rosea is proposed to exert protective effects against PAH. However, the function of salidroside in PAH has not been investigated systematically and the underlying mechanisms are not clear. To investigate the effects of salidroside on PAH, the mice in chronic hypoxia model of PAH were given by an increasing concentration of salidroside (0, 16 mg/kg, 32 mg/kg, and 64 mg/kg). After salidroside treatment, the chronic hypoxia-induced right ventricular hypertrophy and pulmonary arterial remodeling were attenuated, suggesting a protective role played by salidroside in PAH. To explore the potential mechanisms, the apoptosis of PASMCs after salidroside treatment under hypoxia conditions were determined in vivo and in vitro, and also the mitochondria-dependent apoptosis factors, Bax, Bcl-2, cytochrome C, and caspase 9 were examined. The results revealed that salidroside reversed hypoxia-induced cell apoptosis resistance at least partially via a mitochondria-dependent pathway. In addition, salidroside upregulated the expression of adenosine A2a receptor (A2aR) in lung tissues of mice and in PASMCs in vitro after hypoxia exposure. Combined the evidence above, we conclude that salidroside can attenuate chronic hypoxia-induced PAH by promoting PASMCs apoptosis via an A2aR related mitochondria dependent pathway. Copyright © 2015. Published by Elsevier Ltd.

  12. Defective expression of scavenger receptors in celiac disease mucosa.

    Directory of Open Access Journals (Sweden)

    Maria Laura Cupi

    Full Text Available Celiac disease (CD is a gluten sensitive enteropathy characterized by a marked infiltration of the mucosa with immune cells, over-production of inflammatory cytokines and epithelial cell damage. The factors/mechanisms that sustain and amplify the ongoing mucosal inflammation in CD are not however fully understood. Here, we have examined whether in CD there is a defective clearance of apoptotic cells/bodies, a phenomenon that helps promote tolerogenic signals thus liming pathogenic responses. Accumulation of apoptotic cells and bodies was more pronounced in the epithelial and lamina propria compartments of active CD patients as compared to inactive CD patients and normal controls. Expression of scavenger receptors, which are involved in the clearance of apoptotic cells/bodies, namely thrombospondin (TSP-1, CD36 and CD61, was significantly reduced in active CD as compared to inactive CD and normal mucosal samples. Consistently, lamina propria mononuclear cells (LPMC of active CD patients had diminished ability to phagocyte apoptotic cells. Interleukin (IL-15, IL-21 and interferon-γ, cytokines over-produced in active CD, inhibited the expression of TSP-1, CD36, and CD61 in normal intestinal LPMC. These results indicate that CD-related inflammation is marked by diminished clearance of apoptotic cells/bodies, thus suggesting a role for such a defect in the ongoing mucosal inflammation in this disorder.

  13. Defective expression of scavenger receptors in celiac disease mucosa.

    Science.gov (United States)

    Cupi, Maria Laura; Sarra, Massimiliano; De Nitto, Daniela; Franzè, Eleonora; Marafini, Irene; Monteleone, Ivan; Del Vecchio Blanco, Giovanna; Paoluzi, Omero Alessandro; Di Fusco, Davide; Gentileschi, Paolo; Ortenzi, Angela; Colantoni, Alfredo; Pallone, Francesco; Monteleone, Giovanni

    2014-01-01

    Celiac disease (CD) is a gluten sensitive enteropathy characterized by a marked infiltration of the mucosa with immune cells, over-production of inflammatory cytokines and epithelial cell damage. The factors/mechanisms that sustain and amplify the ongoing mucosal inflammation in CD are not however fully understood. Here, we have examined whether in CD there is a defective clearance of apoptotic cells/bodies, a phenomenon that helps promote tolerogenic signals thus liming pathogenic responses. Accumulation of apoptotic cells and bodies was more pronounced in the epithelial and lamina propria compartments of active CD patients as compared to inactive CD patients and normal controls. Expression of scavenger receptors, which are involved in the clearance of apoptotic cells/bodies, namely thrombospondin (TSP)-1, CD36 and CD61, was significantly reduced in active CD as compared to inactive CD and normal mucosal samples. Consistently, lamina propria mononuclear cells (LPMC) of active CD patients had diminished ability to phagocyte apoptotic cells. Interleukin (IL)-15, IL-21 and interferon-γ, cytokines over-produced in active CD, inhibited the expression of TSP-1, CD36, and CD61 in normal intestinal LPMC. These results indicate that CD-related inflammation is marked by diminished clearance of apoptotic cells/bodies, thus suggesting a role for such a defect in the ongoing mucosal inflammation in this disorder.

  14. Muscle Plasticity and β2-Adrenergic Receptors: Adaptive Responses of β2-Adrenergic Receptor Expression to Muscle Hypertrophy and Atrophy

    Directory of Open Access Journals (Sweden)

    Shogo Sato

    2011-01-01

    Full Text Available We discuss the functional roles of β2-adrenergic receptors in skeletal muscle hypertrophy and atrophy as well as the adaptive responses of β2-adrenergic receptor expression to anabolic and catabolic conditions. β2-Adrenergic receptor stimulation using anabolic drugs increases muscle mass by promoting muscle protein synthesis and/or attenuating protein degradation. These effects are prevented by the downregulation of the receptor. Endurance training improves oxidative performance partly by increasing β2-adrenergic receptor density in exercise-recruited slow-twitch muscles. However, excessive stimulation of β2-adrenergic receptors negates their beneficial effects. Although the preventive effects of β2-adrenergic receptor stimulation on atrophy induced by muscle disuse and catabolic hormones or drugs are observed, these catabolic conditions decrease β2-adrenergic receptor expression in slow-twitch muscles. These findings present evidence against the use of β2-adrenergic agonists in therapy for muscle wasting and weakness. Thus, β2-adrenergic receptors in the skeletal muscles play an important physiological role in the regulation of protein and energy balance.

  15. Human thromboxane A2 receptor genetic variants: in silico, in vitro and "in platelet" analysis.

    Directory of Open Access Journals (Sweden)

    Scott Gleim

    Full Text Available Thromboxane and its receptor have emerged as key players in modulating vascular thrombotic events. Thus, a dysfunctional hTP genetic variant may protect against (hypoactivity or promote (hyperactivity vascular events, based upon its activity on platelets. After extensive in silico analysis, six hTP-α variants were selected (C(68S, V(80E, E(94V, A(160T, V(176E, and V(217I for detailed biochemical studies based on structural proximity to key regions involved in receptor function and in silico predictions. Variant biochemical profiles ranged from severe instability (C(68S to normal (V(217I, with most variants demonstrating functional alteration in binding, expression or activation (V(80E, E(94V, A(160T, and V(176E. In the absence of patient platelet samples, we developed and validated a novel megakaryocyte based system to evaluate human platelet function in the presence of detected dysfunctional genetic variants. Interestingly, variant V80E exhibited reduced platelet activation whereas A160T demonstrated platelet hyperactivity. This report provides the most comprehensive in silico, in vitro and "in platelet" evaluation of hTP variants to date and highlightscurrent inherent problems in evaluating genetic variants, with possible solutions. The study additionally provides clinical relevance to characterized dysfunctional hTP variants.

  16. Expression of leptin and leptin receptor isoforms in the human stomach

    OpenAIRE

    Mix, H.; Widjaja, A; Jandl, O.; Cornberg, M; Kaul, A; Goke, M; Beil, W.; Kuske, M.; Brabant, G; Manns, M; Wagner, S.

    2000-01-01

    BACKGROUND—Leptin is an important regulator of food intake and energy expenditure. Initially it was thought to be expressed exclusively in and secreted by adipocytes. Recently, leptin expression was also noted in other tissues, including rat gastric mucosa. Information on leptin and leptin receptor expression in the human stomach is lacking.
AIM—To investigate expression of leptin and its corresponding receptors in human gastric epithelial cells.
METHODS—Fundic and antral gastric mucosal biop...

  17. Expression of leptin and leptin receptor isoforms in the human stomach

    OpenAIRE

    Mix, H.; Widjaja, A; Jandl, O.; Cornberg, M.; Kaul, A.; GOKE, M; Beil, W; Kuske, M.; Brabant, G; Manns, M; Wagner, S.

    2000-01-01

    BACKGROUND—Leptin is an important regulator of food intake and energy expenditure. Initially it was thought to be expressed exclusively in and secreted by adipocytes. Recently, leptin expression was also noted in other tissues, including rat gastric mucosa. Information on leptin and leptin receptor expression in the human stomach is lacking.
AIM—To investigate expression of leptin and its corresponding receptors in human gastric epithelial cells.
METHODS—Fundic and antral gastric mucosal biop...

  18. Cytokine receptor expression in human lymphoid tissue: analysis by fluorescence microscopy.

    Science.gov (United States)

    Zola, H; Ridings, J; Weedon, H; Fusco, M; Byard, R W; Macardle, P J

    1995-08-01

    A highly-sensitive flourescence method, capable of detecting cytokine receptors present at low concentrations (around 100 molecules per cell) by flow cytometry, was adapted for use on tissue sections. This method was used to examine the expression of several cytokine receptors in lymphoid tissues. IL-2 receptors were distributed broadly, with higher concentrations in T cell areas. IL-1 receptor Type 1 was detected in T cell areas and in the follicular mantle, and was strongly expressed on vascular endothelium. IL-6 receptor was found at very low concentration, both within and outside germinal centres. The gp 130 molecule, which is involved in the functional receptor complex for IL-6 and several other cytokines, was present at higher concentrations, particularly in the germinal centre. Analysis of receptor expression in secondary lymphoid tissue provides evidence bearing on the physiological roles of cytokines, as these tissues contain cells at various stages of physiological activation located in well-defined functional zones.

  19. Short-term sleep deprivation impairs spatial working memory and modulates expression levels of ionotropic glutamate receptor subunits in hippocampus.

    Science.gov (United States)

    Xie, Meilan; Yan, Jie; He, Chao; Yang, Li; Tan, Gang; Li, Chao; Hu, Zhian; Wang, Jiali

    2015-06-01

    Hippocampus-dependent learning memory is sensitive to sleep deprivation (SD). Although the ionotropic glutamate receptors play a vital role in synaptic plasticity and learning and memory, however, whether the expression of these receptor subunits is modulated by sleep loss remains unclear. In the present study, western blotting was performed by probing with specific antibodies against the ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1, GluA2, GluA3, and against the N-methyl-d-aspartate (NMDA) glutamate receptor subunits GluN1, GluN2A, GluN2B. In hippocampus, down regulation of surface GluA1 and GluN2A surface expression were observed in both SD groups. However, surface expression level of GluA2, GluA3, GluN1 and GluN2B was significantly up-regulated in 8h-SD rats when compared to the 4h-SD rats. In parallel with the complex changes in AMPA and NMDA receptor subunit expressions, we found the 8h-SD impaired rat spatial working memory in 30-s-delay T-maze task, whereas no impairment of spatial learning was observed in 4h-SD rats. These results indicate that sleep loss alters the relative expression levels of the AMPA and NMDA receptors, thus affects the synaptic strength and capacity for plasticity and partially contributes to spatial memory impairment. Copyright © 2015. Published by Elsevier B.V.

  20. Neural stem cells express melatonin receptors and neurotrophic factors: colocalization of the MT1 receptor with neuronal and glial markers

    Directory of Open Access Journals (Sweden)

    McMillan Catherine R

    2004-10-01

    Full Text Available Abstract Background In order to optimize the potential benefits of neural stem cell (NSC transplantation for the treatment of neurodegenerative disorders, it is necessary to understand their biological characteristics. Although neurotrophin transduction strategies are promising, alternative approaches such as the modulation of intrinsic neurotrophin expression by NSCs, could also be beneficial. Therefore, utilizing the C17.2 neural stem cell line, we have examined the expression of selected neurotrophic factors under different in vitro conditions. In view of recent evidence suggesting a role for the pineal hormone melatonin in vertebrate development, it was also of interest to determine whether its G protein-coupled MT1 and MT2 receptors are expressed in NSCs. Results RT-PCR analysis revealed robust expression of glial cell-line derived neurotrophic factor (GDNF, brain-derived neurotrophic factor (BDNF and nerve growth factor (NGF in undifferentiated cells maintained for two days in culture. After one week, differentiating cells continued to exhibit high expression of BDNF and NGF, but GDNF expression was lower or absent, depending on the culture conditions utilized. Melatonin MT1 receptor mRNA was detected in NSCs maintained for two days in culture, but the MT2 receptor was not seen. An immature MT1 receptor of about 30 kDa was detected by western blotting in NSCs cultured for two days, whereas a mature receptor of about 40 – 45 kDa was present in cells maintained for longer periods. Immunocytochemical studies demonstrated that the MT1 receptor is expressed in both neural (β-tubulin III positive and glial (GFAP positive progenitor cells. An examination of the effects of melatonin on neurotrophin expression revealed that low physiological concentrations of this hormone caused a significant induction of GDNF mRNA expression in NSCs following treatment for 24 hours. Conclusions The phenotypic characteristics of C17.2 cells suggest that they are

  1. Expression of a novel D4 dopamine receptor in the lamprey brain. Evolutionary considerations about dopamine receptors.

    Directory of Open Access Journals (Sweden)

    Juan ePérez-Fernández

    2016-01-01

    Full Text Available Numerous data reported in lampreys, which belong to the phylogenetically oldest branch of vertebrates, show that the dopaminergic system was already well developed at the dawn of vertebrate evolution. The expression of dopamine in the lamprey brain is well conserved when compared to other vertebrates, and this is also true for the D2 receptor. Additionally, the key role of dopamine in the striatum, modulating the excitability in the direct and indirect pathways through the D1 and D2 receptors, has also been recently reported in these animals. The moment of divergence regarding the two whole genome duplications occurred in vertebrates suggests that additional receptors, apart from the D1 and D2 previously reported, could be present in lampreys. We used in situ hybridization to characterize the expression of a novel dopamine receptor, which we have identified as a D4 receptor according to the phylogenetic analysis. The D4 receptor shows in the sea lamprey a more restricted expression pattern than the D2 subtype, as reported in mammals. Its main expression areas are the striatum, lateral and ventral pallial sectors, several hypothalamic regions, habenula, and mesencephalic and rhombencephalic motoneurons. Some expression areas are well conserved through vertebrate evolution, as is the case of the striatum or the habenula, but the controversies regarding the D4 receptor expression in other vertebrates hampers for a complete comparison, especially in rhombencephalic regions. Our results further support that the dopaminergic system in vertebrates is well conserved and suggest that at least some functions of the D4 receptor were already present before the divergence of lampreys.

  2. sPLA2 IB induces human podocyte apoptosis via the M-type phospholipase A2 receptor.

    Science.gov (United States)

    Pan, Yangbin; Wan, Jianxin; Liu, Yipeng; Yang, Qian; Liang, Wei; Singhal, Pravin C; Saleem, Moin A; Ding, Guohua

    2014-01-01

    The M-type phospholipase A2 receptor (PLA2R) is expressed in podocytes in human glomeruli. Group IB secretory phospholipase A2 (sPLA2 IB), which is one of the ligands of the PLA2R, is more highly expressed in chronic renal failure patients than in controls. However, the roles of the PLA2R and sPLA2 IB in the pathogenesis of glomerular diseases are unknown. In the present study, we found that more podocyte apoptosis occurs in the kidneys of patients with higher PLA2R and serum sPLA2 IB levels. In vitro, we demonstrated that human podocyte cells expressed the PLA2R in the cell membrane. After binding with the PLA2R, sPLA2 IB induced podocyte apoptosis in a time- and concentration-dependent manner. sPLA2 IB-induced podocyte PLA2R upregulation was not only associated with increased ERK1/2 and cPLA2α phosphorylation but also displayed enhanced apoptosis. In contrast, PLA2R-silenced human podocytes displayed attenuated apoptosis. sPLA2 IB enhanced podocyte arachidonic acid (AA) content in a dose-dependent manner. These data indicate that sPLA2 IB has the potential to induce human podocyte apoptosis via binding to the PLA2R. The sPLA2 IB-PLA2R interaction stimulated podocyte apoptosis through activating ERK1/2 and cPLA2α and through increasing the podocyte AA content.

  3. Regulation of TRAIL receptor expression by β-catenin in colorectal tumours

    NARCIS (Netherlands)

    Jalving, M.; Heijink, D. M.; Koornstra, J. J.; Boersma-van Ek, W.; Zwart, N.; Wesseling, Johannes; Sluiter, W. J.; de Vries, E.G.E.; Kleibeuker, J. H.; de Jong, S.

    2014-01-01

    Expression of the pro-apoptotic TRAIL receptors is regulated, at least in part, by beta-catenin. We show that beta-catenin co-localizes with DR4/5 in human and mouse colorectal tumours and that downregulation of beta-catenin in cell line models reduces TRAIL receptor expression and TRAIL sensitivity

  4. Functional analysis of synthetic insectatachykinin analogs on recombinant neurokinin receptor expressing cell lines

    NARCIS (Netherlands)

    Torfs, H.; Akerman, K.E.; Nachman, R.J.; Oonk, H.B.; Detheux, M.; Poels, J.; Loy, van T.; Loof, A.; Meloen, R.H.; Vassart, G.; Parmentier, M.; Broeck, van den J.

    2002-01-01

    The activity of a series of synthetic tachykinin-like peptide analogs was studied by means of microscopic calcium imaging on recombinant neurokinin receptor expressing cell lines. A C-terminal pentapeptide (FTGMRa) is sufficient for activation of the stomoxytachykinin receptor (STKR) expressed in

  5. Expression of soluble Toll-like receptors in pleural effusions

    Institute of Scientific and Technical Information of China (English)

    YANG Hai-bo; XIE Kai-qing; DENG Jing-min; QIN Shou-ming

    2010-01-01

    Background The Toll-like receptors (TLRs) represent a group of single-pass transmembrane receptors expressed on sentinel cells that are central to innate immune responses.The aim of this study was to investigate the presence of soluble TLRs in pleural effusions, and the diagnostic values of TLRs for pleural effusion with various etiologies.Methods Pleural effusion and serum samples were collected from 102 patients (36 with malignant pleural effusion, 36with tuberculous pleural effusion, 18 with bacterial pleural effusion, and 12 with transudative pleural effusion).The concentrations of TLR1 to TLR10 were determined in effusion and serum samples by enzyme linked immunosorbent assay.Four classical parameters (protein, lactate dehydrogenase, glucose and C-reactive protein (CRP)) in the pleural fluid were also assessed.Receiver-operating characteristic curves were used to assess the sensitivity and specificity of pleural fluid TLRs and biochemical parameters for differentiating bacterial pleural effusion.Results The concentrations of TLR1, TLR3, TLR4, TLR7 and TLR9 in bacterial pleural effusion were significantly higher than those in malignant, tuberculous, and transudative groups, respectively.Analysis of receiver operating characteristic curves revealed that the area under the curves of TLR1, TLR3, TLR4, TLR7 and TLR9 were 0.831, 0.843,0.842, 0.883 and 0.786, respectively, suggesting that these TLRs play a role in the diagnosis of bacterial pleural effusion.Also, the diagnostic value of TLRs for bacterial pleural effusions was much better than that of biochemical parameters (protein, lactate dehydrogenase, glucose and CRP).Conclusions The concentrations of TLR1, TLR3, TLR4, TLR7 and TLR9 appeared to be increased in bacterial pleural effusion compared to non-bacterial pleural effusions.Determination of these pleural TLRs may improve the ability of clinicians to differentiate pleural effusion patients of bacterial origin from those with other etiologies.

  6. Integrating Pharmacophore into Membrane Molecular Dynamics Simulations to Improve Homology Modeling of G Protein-coupled Receptors with Ligand Selectivity: A2A Adenosine Receptor as an Example.

    Science.gov (United States)

    Zeng, Lingxiao; Guan, Mengxin; Jin, Hongwei; Liu, Zhenming; Zhang, Liangren

    2015-12-01

    Homology modeling has been applied to fill in the gap in experimental G protein-coupled receptors structure determination. However, achievement of G protein-coupled receptors homology models with ligand selectivity remains challenging due to structural diversity of G protein-coupled receptors. In this work, we propose a novel strategy by integrating pharmacophore and membrane molecular dynamics (MD) simulations to improve homology modeling of G protein-coupled receptors with ligand selectivity. To validate this integrated strategy, the A2A adenosine receptor (A2A AR), whose structures in both active and inactive states have been established, has been chosen as an example. We performed blind predictions of the active-state A2A AR structure based on the inactive-state structure and compared the performance of different refinement strategies. The blind prediction model combined with the integrated strategy identified ligand-receptor interactions and conformational changes of key structural elements related to the activation of A2 A AR, including (i) the movements of intracellular ends of TM3 and TM5/TM6; (ii) the opening of ionic lock; (iii) the movements of binding site residues. The integrated strategy of pharmacophore with molecular dynamics simulations can aid in the optimization in the identification of side chain conformations in receptor models. This strategy can be further investigated in homology modeling and expand its applicability to other G protein-coupled receptor modeling, which should aid in the discovery of more effective and selective G protein-coupled receptor ligands. © 2015 John Wiley & Sons A/S.

  7. Alcohol Consumption and Risk of Breast Cancer by Tumor Receptor Expression

    OpenAIRE

    Wang, Jun; Zhang, Xuehong; Beck, Andrew H.; Collins, Laura C.; Chen, Wendy Y.; Tamimi, Rulla M.; Hazra, Aditi; Brown, Myles; Rosner, Bernard; Hankinson, Susan E.

    2015-01-01

    In epidemiologic studies, alcohol consumption appears more strongly associated with risk of estrogen receptor (ER)-positive than ER-negative breast cancer. However, this association has not been assessed by other potentially relevant tumor markers, such as androgen receptor (AR) or insulin receptor (IR). In the prospective Nurses’ Health Study cohort, we evaluated alcohol consumption and breast cancer risk by individual tumor marker expression (i.e. ER, Progesterone Receptor [PR], AR and IR) ...

  8. Activation profiles of opioid ligands in HEK cells expressing δ opioid receptors

    OpenAIRE

    Clark J; Demirci Hasan; Gharagozlou Parham; Lameh Jelveh

    2002-01-01

    Abstract Background The aim of the present study was to characterize the activation profiles of 15 opioid ligands in transfected human embryonic kidney cells expressing only δ opioid receptors. Activation profiles of most of these ligands at δ opioid receptors had not been previously characterized in vitro. Receptor activation was assessed by measuring the inhibition of forskolin-stimulated cAMP production. Results Naltrexone and nalorphine were classified as antagonists at δ opioid receptor....

  9. TRAIL Death Receptor-4, Decoy Receptor-1 and Decoy Receptor-2 Expression on CD8+ T Cells Correlate with the Disease Severity in Patients with Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Bisgin Atil

    2010-08-01

    Full Text Available Abstract Background Rheumatoid Arthritis (RA is a chronic autoimmune inflammatory disorder. Although the pathogenesis of disease is unclear, it is well known that T cells play a major role in both development and perpetuation of RA through activating macrophages and B cells. Since the lack of TNF-Related Apoptosis Inducing Ligand (TRAIL expression resulted in defective thymocyte apoptosis leading to an autoimmune disease, we explored evidence for alterations in TRAIL/TRAIL receptor expression on peripheral T lymphocytes in the molecular mechanism of RA development. Methods The expression of TRAIL/TRAIL receptors on T cells in 20 RA patients and 12 control individuals were analyzed using flow cytometry. The correlation of TRAIL and its receptor expression profile was compared with clinical RA parameters (RA activity scored as per DAS28 using Spearman Rho Analysis. Results While no change was detected in the ratio of CD4+ to CD8+ T cells between controls and RA patient groups, upregulation of TRAIL and its receptors (both death and decoy was detected on both CD4+ and CD8+ T cells in RA patients compared to control individuals. Death Receptor-4 (DR4 and the decoy receptors DcR1 and DcR2 on CD8+ T cells, but not on CD4+ T cells, were positively correlated with patients' DAS scores. Conclusions Our data suggest that TRAIL/TRAIL receptor expression profiles on T cells might be important in revelation of RA pathogenesis.

  10. Arginine 199 and leucine 208 have key roles in the control of adenosine A2A receptor signalling function.

    Directory of Open Access Journals (Sweden)

    Nicolas Bertheleme

    Full Text Available One successful approach to obtaining high-resolution crystal structures of G-protein coupled receptors is the introduction of thermostabilising mutations within the receptor. This technique allows the generation of receptor constructs stabilised into different conformations suitable for structural studies. Previously, we functionally characterised a number of mutants of the adenosine A2A receptor, thermostabilised either in an agonist or antagonist conformation, using a yeast cell growth assay and demonstrated that there is a correlation between thermostability and loss of constitutive activity. Here we report the functional characterisation of 30 mutants intermediate between the Rag23 (agonist conformation mutant and the wild-type receptor using the same yeast signalling assay with the aim of gaining greater insight into the role individual amino acids have in receptor function. The data showed that R199 and L208 have important roles in receptor function; substituting either of these residues for alanine abolishes constitutive activity. In addition, the R199A mutation markedly reduces receptor potency while L208A reduces receptor efficacy. A184L and L272A mutations also reduce constitutive activity and potency although to a lesser extent than the R199A and L208A. In contrast, the F79A mutation increases constitutive activity, potency and efficacy of the receptor. These findings shed new light on the role individual residues have on stability of the receptor and also provide some clues as to the regions of the protein responsible for constitutive activity. Furthermore, the available adenosine A2A receptor structures have allowed us to put our findings into a structural context.

  11. Differential expression of functional Fc-receptors and additional immune complex receptors on mouse kidney cells.

    Science.gov (United States)

    Suwanichkul, Adisak; Wenderfer, Scott E

    2013-12-01

    The precise mechanisms by which circulating immune complexes accumulate in the kidney to form deposits in glomerulonephritis are not well understood. In particular, the role of resident cells within glomeruli of the kidney has been widely debated. Immune complexes have been shown to bind one glomerular cell type (mesangial cells) leading to functional responses such as pro-inflammatory cytokine production. To further assess the presence of functional immunoreceptors on resident glomerular cells, cultured mouse renal epithelial, endothelial, and mesangial cells were treated with heat-aggregated mouse IgG or preformed murine immune complexes. Mesangial and renal endothelial cells were found to bind IgG complexes, whereas glomerular epithelial cell binding was minimal. A blocking antibody for Fc-gamma receptors reduced binding to mesangial cells but not renal endothelial cells, suggesting differential immunoreceptor utilization. RT-PCR and immunostaining based screening of cultured renal endothelial cells showed limited low-level expression of known Fc-receptors and Ig binding proteins. The interaction between mesangial cells and renal endothelial cells and immune complexes resulted in distinct, cell-specific patterns of chemokine and cytokine production. This novel pathway involving renal endothelial cells likely contributes to the predilection of circulating immune complex accumulation within the kidney and to the inflammatory responses that drive kidney injury.

  12. Impact of chronic morphine on delta opioid receptor-expressing neurons in the mouse hippocampus.

    Science.gov (United States)

    Erbs, E; Faget, L; Ceredig, R A; Matifas, A; Vonesch, J-L; Kieffer, B L; Massotte, D

    2016-01-28

    Delta opioid (DOP) receptors participate to the control of chronic pain and emotional responses. Recent data also identified their implication in spatial memory and drug-context associations pointing to a critical role of hippocampal delta receptors. To better appreciate the impact of repeated drug exposure on their modulatory activity, we used fluorescent knock-in mice that express a functional delta receptor fused at its carboxy-terminus with the green fluorescent protein in place of the native receptor. We then tested the impact of chronic morphine treatment on the density and distribution of delta receptor-expressing cells in the hippocampus. A decrease in delta receptor-positive cell density was observed in the CA1, CA3 and dentate gyrus without alteration of the distribution across the different GABAergic populations that mainly express delta receptors. This effect partly persisted after four weeks of morphine abstinence. In addition, we observed increased DOP receptor expression at the cell surface compared to saline-treated animals. In the hippocampus, chronic morphine administration thus induces DOP receptor cellular redistribution and durably decreases delta receptor-expressing cell density. Such modifications are likely to alter hippocampal physiology, and to contribute to long-term cognitive deficits.

  13. A tail of two signals: the C terminus of the A(2A)-adenosine receptor recruits alternative signaling pathways.

    Science.gov (United States)

    Gsandtner, Ingrid; Freissmuth, Michael

    2006-08-01

    G protein-coupled receptors are endowed with carboxyl termini that vary greatly in length and sequence. In most instances, the distal portion of the C terminus is dispensable for G protein coupling. This is also true for the A(2A)-adenosine receptor, where the last 100 amino acids are of very modest relevance to G(s) coupling. The C terminus was originally viewed mainly as the docking site for regulatory proteins of the beta-arrestin family. These beta-arrestins bind to residues that have been phosphorylated by specialized kinases (G protein-coupled receptor kinases) and thereby initiate receptor desensitization and endocytosis. More recently, it has become clear that many additional "accessory" proteins bind to C termini of G protein-coupled receptors. The article by Sun et al. in the current issue of Molecular Pharmacology identifies translin-associated protein-X as yet another interaction partner of the A(2A) receptor; translin-associated protein allows the A(2A) receptor to impinge on the signaling mechanisms by which p53 regulates neuronal differentiation, but the underlying signaling pathways are uncharted territory. With a list of five known interaction partners, the C terminus of the A(2A) receptor becomes a crowded place. Hence, there must be rules that regulate the interaction. This allows the C terminus to act as coincidence detector and as signal integrator. Despite our ignorance about the precise mechanisms, the article has exciting implications: the gene encoding for translin-associated protein-X maps to a locus implicated in some forms of schizophrenia; A(2A) receptor agonists are candidate drugs for the treatment of schizophrenic symptoms. It is of obvious interest to explore a possible link.

  14. Continuous adenosine A2A receptor antagonism after focal cerebral ischemia in spontaneously hypertensive rats.

    Science.gov (United States)

    Fronz, Ulrike; Deten, Alexander; Baumann, Frank; Kranz, Alexander; Weidlich, Sarah; Härtig, Wolfgang; Nieber, Karen; Boltze, Johannes; Wagner, Daniel-Christoph

    2014-02-01

    Antagonism of the adenosine A2A receptor (A2AR) has been shown to elicit substantial neuroprotective properties when given immediately after cerebral ischemia. We asked whether the continuous application of a selective A2AR antagonist within a clinically relevant time window will be a feasible and effective approach to treat focal cerebral ischemia. To answer this question, we subjected 20 male spontaneously hypertensive rats to permanent middle cerebral artery occlusion and randomized them equally to a verum and a control group. Two hours after stroke onset, the animals received a subcutaneous implantation of an osmotic minipump filled with 5 mg kg(-1) day(-1) 8-(3-chlorostyryl) caffeine (CSC) or vehicle solution. The serum level of CSC was measured twice a day for three consecutive days. The infarct volume was determined at days 1 and 3 using magnetic resonance imaging. We found the serum level of CSC showing a bell-shaped curve with its maximum at 36 h. The infarct volume was not affected by continuous CSC treatment. These results suggest that delayed and continuous CSC application was not sufficient to treat acute ischemic stroke, potentially due to unfavorable hepatic elimination and metabolization of the pharmaceutical.

  15. Antiphospholipase A2 Receptor Autoantibodies: A Step Forward in the Management of Primary Membranous Nephropathy

    Directory of Open Access Journals (Sweden)

    Bogdan Obrisca

    2015-01-01

    Full Text Available Since the identification of PLA2R (M-type phospholipase A2 receptor as the first human antigenic target in primary membranous nephropathy (MN, perpetual progress has been made in understanding the pathogenesis of this disease. Accumulating clinical data support a pathogenic role for the anti-PLA2R antibodies (PLA2R ABs, but confirmation in an animal model is still lacking. However, PLA2R ABs were related to disease activity and outcome, as well as to response therapy. Accordingly, PLA2R ABs assay seems to be promising tool not only to diagnose MN but also to predict the course of the disease and could open the way to personalize therapy. Nevertheless, validation of a universal assay with high precision and definition of cut-off levels, followed by larger studies with a prolonged follow-up period, are needed to confirm these prospects.

  16. Antibodies to m-type phospholipase A2 receptor in children with idiopathic membranous nephropathy.

    Science.gov (United States)

    Kumar, Vinod; Ramachandran, Raja; Kumar, Ashwani; Nada, Ritambhra; Suri, Deepti; Gupta, Anju; Kohli, Harbir Singh; Gupta, Krishan Lal; Jha, Vivekanand

    2015-08-01

    Idiopathic membranous nephropathy (IMN), the commonest cause of adult nephrotic syndrome (NS), accounts for only a minority of paediatric NS. Antibodies to m-type phospholipase A2 receptor (PLA2R) are seen in two-thirds of adult IMN cases. PLA2R staining in glomerular deposits is observed in 74% and 45% of adult and paediatric IMN cases, respectively. However, there are no reports of anti-PLA2R in paediatric IMN. We evaluated anti-PLA2R levels and PLA2R in gloemrular deposits in paediatric IMN seen at our center. Five cases were enrolled, all the cases stained for PLA2R in glomeruli and three (60%) had antibodies to PLA2R antigen. There was a parellel reduction in proteinuria and anti-PLA2R titer. The present report suggests that PLA2R has a contributory role in the pathogenesis of paediatric IMN.

  17. Phospholipase A2 Receptor-Positive Idiopathic Membranous Glomerulonephritis with Onset at 95 Years: Case Report

    Science.gov (United States)

    Kubota, Keiichi; Hoshino, Junichi; Ueno, Toshiharu; Mise, Koki; Hazue, Ryo; Sekine, Akinari; Yabuuchi, Junko; Yamanouchi, Masayuki; Suwabe, Tatsuya; Kikuchi, Koichi; Sumida, Keiichi; Hayami, Noriko; Sawa, Naoki; Takaichi, Kenmei; Fujii, Takeshi; Ohashi, Kenichi; Akiyama, Shinichi; Maruyama, Shoichi; Ubara, Yoshifumi

    2016-01-01

    A 95-year-old woman was admitted to our hospital for evaluation of bilateral lower-limb edema persisting for 3 months. Serum creatinine was 1.55 mg/dl, and urinary protein excretion was 9.1 g/day. Renal biopsy revealed stage 1 membranous glomerulonephritis (MGN) with immunoglobulin G4-dominant staining. This patient did not have any underlying disease such as infection with hepatitis B or C virus or malignancy, and anti-phospholipase A2 receptor (PLA2R) antibody was detected in the serum. Accordingly, idiopathic MGN was diagnosed. Corticosteroid therapy was avoided, but hemodialysis was required to treat generalized edema. The patient is currently doing well. This is the oldest reported case of idiopathic MGN with positivity for anti-PLA2R antibody. PMID:27390744

  18. Antiphospholipase A2 Receptor Autoantibodies: A Step Forward in the Management of Primary Membranous Nephropathy.

    Science.gov (United States)

    Obrisca, Bogdan; Ismail, Gener; Jurubita, Roxana; Baston, Catalin; Andronesi, Andreea; Mircescu, Gabriel

    2015-01-01

    Since the identification of PLA2R (M-type phospholipase A2 receptor) as the first human antigenic target in primary membranous nephropathy (MN), perpetual progress has been made in understanding the pathogenesis of this disease. Accumulating clinical data support a pathogenic role for the anti-PLA2R antibodies (PLA2R ABs), but confirmation in an animal model is still lacking. However, PLA2R ABs were related to disease activity and outcome, as well as to response therapy. Accordingly, PLA2R ABs assay seems to be promising tool not only to diagnose MN but also to predict the course of the disease and could open the way to personalize therapy. Nevertheless, validation of a universal assay with high precision and definition of cut-off levels, followed by larger studies with a prolonged follow-up period, are needed to confirm these prospects.

  19. Expression of the EphA2 Gene in Esophageal Carcinoma Tissues

    Institute of Scientific and Technical Information of China (English)

    Baolan Hao; Shanshan Li; Hongyan Zhang; Aihua Yan; Xiuhua Ren

    2006-01-01

    OBJECTIVE To investigate the relationship of the EphA2 gene with the occurrence, invasion and metastasis of esophageal carcinoma.METHODS The expression of EphA2 mRNA was detected by RT-PCR and the EphA2 protein was estimated by immunohistochemistry (SP method) in both esophageal cancerous tissues and normal epithelial tissues.RESULTS The expression of EphA2 mRNA showed no difference between esophageal cancerous tissues and normal epithelium, and there appeared to be no correlation with differentiation of the cancerous tissues, the depth of infiltration or lymph node metastasis (P>0.05). However, the expression of the EphA2 protein was significantly higher in cancerous tissues compared to normal epithelial tissues (P<0.05). The expression of the EphA2 protein in a deeper invasive group and in a group with lymph node metastasis was significantly higher compared to a superficially invasive group and a group without lymph node metastasis (P<0.05).Its expression did not appear to be correlated with differentiation of cancerous tissues (P>0.05).CONCLUSION The occurrence of esophagus carcinoma and the formation of invasion and metastasis may be related to overexpression of the EphA2 protein but not to the level of mRNA, a finding which may due to up-regulation at the translation level or by increased protein stability.

  20. Lymphocyte Cc Chemokine Receptor 9 and Epithelial Thymus-Expressed Chemokine (Teck) Expression Distinguish the Small Intestinal Immune Compartment

    OpenAIRE

    2000-01-01

    The immune system has evolved specialized cellular and molecular mechanisms for targeting and regulating immune responses at epithelial surfaces. Here we show that small intestinal intraepithelial lymphocytes and lamina propria lymphocytes migrate to thymus-expressed chemokine (TECK). This attraction is mediated by CC chemokine receptor (CCR)9, a chemoattractant receptor expressed at high levels by essentially all CD4+ and CD8+ T lymphocytes in the small intestine. Only a small subset of lymp...

  1. Neurokinin 1 receptor expression in the rat retina.

    Science.gov (United States)

    Casini, G; Rickman, D W; Sternini, C; Brecha, N C

    1997-12-22

    Tachykinin (TK) peptides influence neuronal activity in the inner retina of mammals. The aim of this investigation was to determine the cellular localization of the neurokinin 1 receptor (NK1), whose preferred ligand is the TK peptide substance P (SP), in the rat retina. These studies used a polyclonal antiserum directed to the C-terminus of rat NK1. The majority of NK1-immunoreactive (IR) cells were located in the proximal inner nuclear layer (INL), and very rarely they were found in the distal INL. Some small and large NK1-IR somata were present in the ganglion cell layer. NK1-IR processes were densely distributed across the inner plexiform layer (IPL) with a maximum density over lamina 2 of the IPL. Immunoreactive processes also crossed the INL and ramified in the outer plexiform layer where they formed a sparse meshwork. NK1-IR processes were rarely observed in the optic nerve fiber layer. Double-label immunofluorescence studies with different histochemical markers for bipolar cells indicated that NK1 immunoreactivity was not present in bipolar cells. Together, these observations indicate that NK1 immunoreactivity is predominantly expressed by amacrine, displaced amacrine, interplexiform, and some ganglion cells. Double-label immunofluorescence experiments were also performed to characterize NK1-containing amacrine cells. Sixty-one percent of the gamma-aminobutyric acid (GABA)-IR cells, 71% of the large tyrosine hydroxylase (TH)-IR cells, and 100% of the small TH-IR cells contained NK1 immunoreactivity. In addition, most (91%) of the NK1-IR cells had GABA immunoreactivity. In contrast, vasoactive intestinal polypeptide-, TK-, choline acetyltransferase-, and parvalbumin-IR amacrine tells did not express NK1 immunoreactivity. Overall, the present findings suggest that SP acts directly upon several cell populations, including GABA-containing amacrine cells and ganglion cells, to influence visual information processing in the inner retina.

  2. De novo analysis of receptor binding affinity data of 8-ethenyl-xanthine antagonists to adenosine A1 and A2a receptors.

    Science.gov (United States)

    Dalpiaz, A; Gessi, S; Varani, K; Borea, P A

    1997-05-01

    The receptor binding affinity data to adenosine A1 and A2a receptors of a wide series of 8-ethenyl-xanthine derivatives has been analyzed by means of the Free-Wilson model. The analysis of the individual group contributions (aij) shows the importance of the presence of an ethenyl moiety at position 8 on the xanthine ring for obtaining selective A2a antagonists. The different aij values of the substituents for the adenosine. A1 receptor do not correlate with the corresponding ones for the A2a receptor, indicating the possibility to obtain A1 and A2a selective compounds. The presence of aromatic substituents at the 8-ethenyl group, such as 3,5-(OCH3)2-phenyl, permits to obtain strongly A2a selective compounds (affinity ratio of up to 100); moreover, it appears that 8-ethenyl-xanthinic derivatives cannot have high selectivity for the adenosine A1 receptor (affinity ratio < or = 10).

  3. Role of sphingosine 1-phosphate receptor expression in eosinophils of patients with allergic rhinitis, and effect of topical nasal steroid treatment on this receptor expression.

    LENUS (Irish Health Repository)

    Mackle, T

    2008-12-01

    Recent research has indicated that sphingosine 1-phosphate plays a role in allergy. This study examined the effect of allergen challenge on the expression of sphingosine 1-phosphate receptors on the eosinophils of allergic rhinitis patients, and the effect of steroid treatment on this expression.

  4. Differential regulation of alpha7 nicotinic receptor gene (CHRNA7) expression in schizophrenic smokers.

    Science.gov (United States)

    Mexal, Sharon; Berger, Ralph; Logel, Judy; Ross, Randal G; Freedman, Robert; Leonard, Sherry

    2010-01-01

    The alpha7 neuronal nicotinic receptor gene (CHRNA7) has been implicated in the pathophysiology of schizophrenia by genetic and pharmacological studies. Expression of the alpha7* receptor, as measured by [(125)I]alpha-bungarotoxin autoradiography, is decreased in postmortem brain of schizophrenic subjects compared to non-mentally ill controls. Most schizophrenic patients are heavy smokers, with high levels of serum cotinine. Smoking changes the expression of multiple genes and differentially regulates gene expression in schizophrenic hippocampus. We examined the effects of smoking on CHRNA7 expression in the same tissue and find that smoking differentially regulates expression of both mRNA and protein for this gene. CHRNA7 mRNA and protein levels are significantly lower in schizophrenic nonsmokers compared to control nonsmokers and are brought to control levels in schizophrenic smokers. Sufficient protein but low surface expression of the alpha7* receptor, seen in the autoradiographic studies, suggests aberrant assembly or trafficking of the receptor.

  5. Localization and steroid regulation of prostaglandin E2 receptor protein expression in ovine cervix.

    Science.gov (United States)

    Schmitz, Thomas; Levine, Brian A; Nathanielsz, Peter W

    2006-04-01

    Although prostaglandin E2 (PGE2) has been identified as a central mediator of the cervical ripening process, the mechanisms responsible for PGE2 ripening are still poorly understood, partly because of the lack of information concerning the precise cellular localization and regulation of PGE2 (EP) receptors in the cervix. To provide new insights into the mechanisms of cervical ripening, we used indirect immunofluorescence to localize cervical EP receptor protein expression in ovariectomized ewes and examined the effect of administration of progesterone or estradiol. EP receptors were widely distributed in cervical blood vessels, epithelium of the cervical canal, circular and longitudinal muscles, and stroma. Estradiol replacement decreased EP1 and EP3 receptor protein in blood vessel media (by 23 and 31% respectively, P EP1 receptor protein expression in the longitudinal muscle layer (by 27%, P EP1 and EP3 receptor protein expression was also reduced by estradiol (by 29 and 20% respectively, P EP receptor protein expression. The arterial changes would favor PGE2-induced vasodilatation, subsequent edema and leukocyte infiltration during the cervical ripening process whereas the muscular alterations would facilitate smooth muscle relaxation and cervical dilatation. Furthermore, estradiol provoked perinuclear localization of EP3 receptor protein in the longitudinal muscle layer. This latter result suggests that cellular EP receptor localization is regulated by estradiol and that PGE2 may also control smooth muscle contraction and regulate ovine cervical dilatation in an intracrine manner via EP3 receptors.

  6. [Research Progress on Expression and Function of P2 Purinergic Receptor in Blood Cells].

    Science.gov (United States)

    Feng, Wen-Li; Wang, Li-Na; Zheng, Guo-Guang

    2015-10-01

    Nucleotides have unambiguously emerged as a family of mediators of intercellular communication, which bind a class of plasma membrane receptors, P2 purinergic receptors, to trigger intercellular signaling. P2 receptors can be further divided into two structurally and functionally different sub-famlies, the P2X and P2Y receptors. Different blood cells express diverse spectrum of P2 receptors at different levels. Extracellular adenosine triphosphate (ATP) exerts different effects on blood cells, regulating cell proliferation, differentiation, migration, chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species. The relationship between abnormal P2 receptors and human diseases attracts more and more attention. This review briefly discusses the expression and function of P2 receptors in hematopoietic system.

  7. TRA-418, a novel compound having both thromboxane A(2) receptor antagonistic and prostaglandin I(2) receptor agonistic activities: its antiplatelet effects in human and animal platelets.

    Science.gov (United States)

    Yamada, N; Miyamoto, M; Isogaya, M; Suzuki, M; Ikezawa, S; Ohno, M; Otake, A; Umemura, K

    2003-08-01

    TRA-418 is a novel compound that has been found in our screening for compounds having both thromboxane A2 (TP) receptor antagonistic and prostaglandin I2 (IP) receptor agonistic activities. In the binding assays, TRA-418 showed a 10-fold higher affinity to TP-receptors than IP-receptors. TRA-418 inhibited platelet aggregation induced by the TP-receptor agonist, U-46619 and by arachidonic acid at concentrations lower than those required for inhibition of ADP-induced aggregations. Furthermore, TRA-418 inhibited not only platelet aggregation induced by ADP alone, but also that induced by ADP in the presence of the TP-receptor antagonist, SQ-29548. When the IC50 values of TRA-418 for platelet aggregation were estimated in platelet preparations from monkeys, dogs, cats, and rats using ADP and arachidonic acid as the platelet stimulating agents, it was found that the values estimated in monkey platelets were quite similar to those estimated in human platelets. In ex vivo platelet aggregation in monkeys, TRA-418 exhibited significant inhibitory effects on arachidonic acid-induced aggregation in platelet preparations from monkeys treated at 3 micro g kg min-1 or higher doses, where neither a significant decrease in blood pressure nor a significant increase in heart rate was observed. These results are consistent with the fact that TRA-418 has a relatively potent TP-receptor antagonistic activity together with a relatively weak IP-receptor agonistic activity.

  8. Urotensin II is a new chemotactic factor for UT receptor-expressing monocytes.

    Science.gov (United States)

    Segain, Jean-Pierre; Rolli-Derkinderen, Malvyne; Gervois, Nadine; Raingeard de la Blétière, Diane; Loirand, Gervaise; Pacaud, Pierre

    2007-07-15

    Urotensin II (U-II), a vasoactive cyclic neuropeptide which activates the G protein-coupled receptor UT receptor, exerts various cardiovascular effects and may play a role in the pathophysiology of atherosclerosis. In this study, we report that the UT receptor is expressed and functional on human PBMC and rat splenocytes. PBMC surface expression of the UT receptor was mainly found in monocytes and NK cells, also in a minority of B cells, but not in T cells. Stimulation of monocytes with LPS increased UT receptor mRNA and protein expression. Cloning and functional characterization of the human UT receptor gene promoter revealed the presence of NF-kappaB-binding sites involved in the stimulation of UT receptor gene expression by LPS. Activation of the UT receptor by U-II induced chemotaxis with maximal activity at 10 and 100 nM. This U-II effect was restricted to monocytes. Analysis of the signaling pathway involved indicated that U-II-mediated chemotaxis was related to RhoA and Rho kinase activation and actin cytoskeleton reorganization. The present results thus identify U-II as a chemoattractant for UT receptor-expressing monocytes and indicate a pivotal role of the RhoA-Rho kinase signaling cascade in the chemotaxis induced by U-II.

  9. Estrogens and selective estrogen receptor modulators regulate gene and protein expression in the mesenteric arteries.

    Science.gov (United States)

    Mark-Kappeler, Connie J; Martin, Douglas S; Eyster, Kathleen M

    2011-01-01

    Estrogen has both beneficial and detrimental effects on the cardiovascular system. Selective estrogen receptor modulators (SERMs) exhibit partial estrogen agonist/antagonist activity in estrogen target tissues. Gene targets of estrogen and SERMs in the vasculature are not well-known. Thus, the present study tested the hypothesis that estrogens (ethinyl estradiol, estradiol benzoate, and equilin) and SERMs (tamoxifen and raloxifene) cause differential gene and protein expression in the vasculature. DNA microarray and real-time RT-PCR were used to investigate gene expression in the mesenteric arteries of estrogen and SERM treated ovariectomized rats. The genes shown to be differentially expressed included stearoyl-CoA desaturase (SCD), soluble epoxide hydrolase (sEH), secreted frizzled related protein-4 (SFRP-4), insulin-like growth factor-1 (IGF-1), phospholipase A2 group 1B (PLA2-G1B), and fatty acid synthase (FAS). Western blot further confirmed the differential expression of sEH, SFRP-4, FAS, and SCD protein. These results reveal that estrogens and SERMs cause differential gene and protein expression in the mesenteric artery. Consequently, the use of these agents may be associated with a unique profile of functional and structural changes in the mesenteric arterial circulation.

  10. Cloning and expression of the mouse histamine H3 receptor: evidence for multiple isoforms.

    Science.gov (United States)

    Rouleau, Agnès; Héron, Anne; Cochois, Véronique; Pillot, Catherine; Schwartz, Jean-Charles; Arrang, Jean-Michel

    2004-09-01

    The existence of mouse H3-receptor isoforms was investigated by PCR analysis and cDNA cloning. Splicing mechanisms previously reported in various species are conserved in the mouse. The retention/deletion of a fragment in the third intracellular loop of the mouse receptor leads to the existence of three isoforms designated mH(3(445)), mH(3(413)) and mH(3(397)) according to the length of their deduced amino acid sequence. PCR analysis showed that mouse H3-receptor isoforms display different expression patterns in the brain. Following expression in Cos-1 cells, [125I]iodoproxyfan binding indicated similar pharmacological profiles of the mH(3(445)), mH(3(413)) and mH(3(397)) isoforms. The pharmacological profile of the mouse H3 receptor is more similar to the rat receptor than to the human receptor, although some differences were also observed between the mouse and rat receptors. For example, the potency of thioperamide and ciproxifan is slightly higher at the mouse receptor than at the rat receptor but 40-100-fold higher than at the human receptor. In situ hybridization histochemistry showed that the distribution of H3-receptor mRNAs in the mouse brain is rather similar to that previously reported in the rat brain. However, the autoradiographic and cellular expression patterns observed in several brain areas such as the thalamus or hippocampus reveal important differences between the two species.

  11. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression

    Directory of Open Access Journals (Sweden)

    Pangburn Heather A

    2005-09-01

    Full Text Available Abstract Background Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs is associated with a decreased mortality from colorectal cancer (CRC. NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2 signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF receptor (EGFR. Methods HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068, total EGFR, phosphorylated ERK1/2 (pERK1/2, total ERK1/2, activated caspase-3, and α-tubulin. Results EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. Conclusion These results suggest that

  12. The assay of thyrotropin receptor antibodies with human TSH/LH-CG chimeric receptor expressed on chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ka Hee; Kim, Chang Min [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1996-12-01

    TSH/LH-CG chimera cDNA is transfected to CHO-K1 cell to obtain the chimeric receptor expressed on the cell surface. The optimal conditions for TSAb and TSBAb measurements are determined using chimeric receptors and under these conditions activity of TSAb and TSBAb in the sera of the Graves` patients. The results obtained are compared to those of TSAb assays using FRTL5 cells CHO-TSHR cells which have wild type human TSH receptor. The transfection procedure of chimeric receptor gene to CHO-K1 cells are on going. The optimal conditions for TSAb and TSBAb measurement using chimeric receptor will be determined after success of transfection procedure. If this study is successfully completed, not only the heterogeneity of Graves. IgG but also pathogenesis of Graves` disease will be elucidated. (author). 25 refs.

  13. The assay of thyrotropin receptor antibodies with human TSH/LH-CG chimeric receptor expressed on chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ka Hee; Kim, Chang Min [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1996-12-01

    TSH/LH-CG chimera cDNA is transfected to CHO-K1 cell to obtain the chimeric receptor expressed on the cell surface. The optimal conditions for TSAb and TSBAb measurements are determined using chimeric receptors and under these conditions activity of TSAb and TSBAb in the sera of the Graves` patients. The results obtained are compared to those of TSAb assays using FRTL5 cells CHO-TSHR cells which have wild type human TSH receptor. The transfection procedure of chimeric receptor gene to CHO-K1 cells are on going. The optimal conditions for TSAb and TSBAb measurement using chimeric receptor will be determined after success of transfection procedure. If this study is successfully completed, not only the heterogeneity of Graves. IgG but also pathogenesis of Graves` disease will be elucidated. (author). 25 refs.

  14. Modifications of 5-HT4 receptor expression in rat brain during memory consolidation.

    Science.gov (United States)

    Manuel-Apolinar, L; Rocha, L; Pascoe, D; Castillo, E; Castillo, C; Meneses, A

    2005-04-25

    Pharmacological evidence indicates a specific role of 5-HT(4) receptors on memory function. These receptors are members of G-protein-coupled 7-transmembrane domain receptor superfamily, are positively coupled to adenylyl cyclase, and are heterogeneously located in some structures important for memory, such as the hippocampus and cortical regions. To further clarify 5-HT(4) receptors' role in memory, the expression of these receptors in passive (P3) untrained and autoshaping (A3) trained (3 sessions) adult (3 months) and old (P9 or A9; 9 months) male rats was determined by autoradiography. Adult trained (A3) rats showed a better memory respect to old trained (A9). Using [(3)H] GR113808 as ligand (0.2 nM specific activity 81 Ci/mmol) for 5-HT(4) receptor expression, 29 brain areas were analyzed, 16 areas of A3 and 17 of A9 animals displayed significant changes. The medial mammillary nucleus of A3 group showed diminished 5-HT(4) receptor expression, and in other 15 brain areas of A3 or 10 of A9 animals, 5-HT(4) receptors were increased. Thus, for A3 rats, 5-HT(4) receptors were augmented in olfactory lobule, caudate putamen, fundus striatum, CA2, retrosplenial, frontal, temporal, occipital, and cingulate cortex. Also, 5-HT(4) receptors were increased in olfactory tubercule, hippocampal CA1, parietal, piriform, and cingulate cortex of A9. However, hippocampal CA2 and CA3 areas, and frontal, parietal, and temporal cortex of A9 rats, expressed less 5-HT(4) receptors. These findings suggest that serotonergic activity, via 5-HT(4) receptors in hippocampal, striatum, and cortical areas, mediates memory function and provides further evidence for a complex and regionally specific regulation over 5-HT receptor expression during memory formation.

  15. Expression of serotonin receptors in the colonic tissue of chronic diarrhea rats

    Directory of Open Access Journals (Sweden)

    Tong Zhu

    2016-01-01

    Full Text Available Background/Aims: This study aimed to investigate the difference among the expression of serotonin receptors (5-HT3, 5-HT4, and 5-HT7 receptors in colonic tissue of chronic diarrhea rats. Materials and Methods: A rat model of chronic diarrhea was established by lactose diet. The expression of 5-HT3, 5-HT4, and 5-HT7 receptors in the colonic tissue was detected using immunohistochemistry, real-time PCR and Western blotting techniques. Results: There is no significant difference on the protein expression of 5-HT3receptor between the normal group and the chronic diarrhea model group. The mRNA expression of 5-HT3 receptor in the chronic diarrhea model group was significantly lower than that in the normal group (n = 10; P< 0.01. The protein and mRNA expression of 5-HT4 receptor in the chronic diarrhea model group were significantly higher than those in the normal group (n = 10; P< 0.05, P< 0.01. On the contrary, the protein and mRNA expressions of 5-HT7 receptor in the chronic diarrhea model group were significantly decreased compared with the normal group (n = 10; P< 0.01, P< 0.01. Conclusions: The results suggested the receptors of 5-HT4and 5-HT7 may be involved in inducing diarrhea by lactose diet.

  16. Dopamine D2 receptor expression in the corticotroph cells of the human normal pituitary gland.

    Science.gov (United States)

    Pivonello, Rosario; Waaijers, Marlijn; Kros, Johan M; Pivonello, Claudia; de Angelis, Cristina; Cozzolino, Alessia; Colao, Annamaria; Lamberts, Steven W J; Hofland, Leo J

    2017-08-01

    The dopamine D2 receptor is the main dopamine receptor expressed in the human normal pituitary gland. The aim of the current study was to evaluate dopamine D2 receptor expression in the corticotroph cell populations of the anterior lobe and pars intermedia, as well as posterior lobe of the human normal pituitary gland by immunohistochemistry. Human normal pituitary gland samples obtained from routine autopsies were used for the study. In all cases, histology together with immunostaining for adrenocorticotropic hormone, melanocyte-stimulating hormone, prolactin, and neurofilaments were performed and compared to the immunostaining for D2 receptor. D2 receptor was heterogeneously expressed in the majority of the cell populations of the anterior and posterior lobe as well as in the area localized between the anterior and posterior lobe, and arbitrary defined as "intermediate zone". This zone, characterized by the presence of nerve fibers included the residual pars intermedia represented by the colloid-filled cysts lined by the remnant melanotroph cells strongly expressing D2 receptors, and clusters of corticotroph cells, belonging to the anterior lobe but localized within the cysts and adjacent to the posterior lobe, variably expressing D2 receptors. D2 dopamine receptor is expressed in the majority of the cell populations of the human normal pituitary gland, and particularly, in the different corticotroph cell populations localized in the anterior lobe and the intermediate zone of the pituitary gland.

  17. Secretory phospholipase A2-mediated neuronal cell death involves glutamate ionotropic receptors

    DEFF Research Database (Denmark)

    de Turco, Elena B; Diemer, Nils Henrik; Bazan, Nicolas G

    2002-01-01

    To define the significance of glutamate ionotropic receptors in sPLA -mediated neuronal cell death we used the NMDA receptor antagonist MK-801 and the AMPA receptor antagonist PNQX. In primary neuronal cell cultures both MK-801 and PNQX inhibited sPLA - and glutamate-induced neuronal death. [ H]A...

  18. Beta-Adrenergic Receptor Expression in Muscle Cells

    Science.gov (United States)

    Young, Ronald B.; Bridge, K.; Vaughn, J. R.

    1999-01-01

    beta-adrenergic receptor (bAR) agonists presumably exert their physiological action on skeletal muscle cells through the bAR. Since the signal generated by the bAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of bAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 uM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the bAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 uM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in (beta)AR population, with a maximum increase of approximately 50% at 10 uM. This increase in (beta)AR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of (beta)AR population. Clenbuterol and isoproterenol gave similar effects on bAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 UM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.

  19. The association of thromboxane A2 receptor with lipid rafts is a determinant for platelet functional responses.

    Science.gov (United States)

    Moscardó, A; Vallés, J; Latorre, A; Santos, M T

    2014-08-25

    We have investigated the presence of thromboxane A2 (TXA2) receptor associated with lipid rafts in human platelets and the regulation of platelet function in response to TXA2 receptor agonists when lipid rafts are disrupted by cholesterol extraction. Platelet aggregation with TXA2 analogs U46619 and IBOP was almost blunted in cholesterol-depleted platelets, as well as αIIbβ3 integrin activation and P-selectin exposure. Raft disruption also inhibited TXA2-induced cytosolic calcium increase and nucleotide release, ruling out an implication of P2Y12 receptor. An important proportion of TXA2 receptor (40%) was colocalized at lipid rafts. The presence of the TXA2 receptor associated with lipid rafts in platelets is important for functional platelet responses to TXA2.

  20. Pharmacologic antagonism of thromboxane A2 receptors by trimetoquinol analogs in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Y.; Romstedt, K.J.; Doyle, K.; Harrold, M.W.; Gerhardt, M.A.; Miller, D.D.; Patil, P.N.; Feller, D.R. (Ohio State University, Columbus (USA))

    1991-01-01

    Although (-)-(S)-trimetoquinol (1-(3,4,5-trimethoxy-benzyl)- 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline; TMQ) is recognized as a potent bronchodilator, (+)-(R)-TMQ is a selective antagonist of human platelet aggregation and serotonin secretion induced by thromboxane A2 (TXA2) agonists. To confirm the pharmacological actions of TMQ analogs, the interaction of the drugs with TXA2 receptors was examined in human platelets and in a mouse sudden death model. The inhibitory potencies of TMQ analogs (pIC50 values) for displacement of (3H)SQ 29,548 binding to platelets showed excellent correlation with the respective pIC50 (-log IC50) values for U46619-induced aggregation (r = 0.99, P less than 0.01) and serotonin secretion (r = 0.99, P less than 0.01) in human platelet-rich plasma and for whole blood aggregation (r = 0.99, P less than 0.01). In each system, the rank order of inhibitory potencies was rac-iodoTMQ greater than or equal to (+)-(R)-TMQ greater than rac-TMQ much greater than (-)-(S)-TMQ. Antithrombotic effects of TMQ analogs were evaluated in a mouse sudden death model. In vivo antithrombotic potencies of these compounds were consistent with the in vitro potencies as TXA2 receptor antagonists in platelet systems. Administration of rac-iodoTMQ, (+)-(R)-TMQ and rac-TMQ 15 min before the injection of U46619 (800 micrograms/kg, iv) protected mice against U46619-induced sudden death. On the other hand, (-)-(S)-TMQ did not protect animals against death. Protection of U46619-induced cardiopulmonary thrombosis by TMQ analogs was seen at doses of 3-100 mg/kg.

  1. Induction of liver cytochrome P450 1A2 expression by flutamide in rats

    Institute of Scientific and Technical Information of China (English)

    Hai-xue WANG; Xiao LIU; Chang-jiang XU; Xiao-chao MA; Jian-er LONG; Duan LI

    2005-01-01

    Aim: To investigate the modulation of liver cytochrome P4501A2 (CYP1A2) expression by giving flutamide to adult rats. Methods: Rats were given 50, 100, and200 mg/kgpo of flutamide for 2 weeks. Liver CYP1A2 mRNA was measured using reverse transcription-polymerase chain reaction. CYP1A2 protein was detected using immunoblotting. CYP1A2 activity was assayed using high performance liquid chromatography, with caffeine as the CYP1A2 substrate. Results: CYP1A2mRNA levels after flutamide treatment at 100 mg/kg and 200 mg/kg were, respectively,1.86 and 3.11-fold higher than those of the control. Correspondingly, CYP1A2protein increased 1.78 and 2.89-fold and CYP1A2 activity increased approximately1.65 and 2.83-fold, respectively, relative to controls. Flutamide treatment at 50mg/kg had no significant effect on CYP1A2 mRNA, protein, or enzyme activity.Conclusion: Giving rats flutamide induced liver CYP1A2 expression in a dosedependent manner.

  2. Fluoxetine alters mu opioid receptor expression in obese Zucker rat extrahypothalamic regions.

    Science.gov (United States)

    Churruca, Itziar; Portillo, María P; Zumalabe, José María; Macarulla, María T; Sáenz Del Burgo, Laura; Zarate, Jon; Echevarría, Enrique

    2006-03-01

    The aim of this article was to describe the effects of chronic fluoxetine on mu opioid receptor expression in obese Zucker rat extrahypothalamic regions. Male obese Zucker (fa/fa) rats were administered with fluoxetine (10 mg/kg; i.p.) daily for two weeks. Brain regional immunostaining for mu opioid receptor was carried out. An increase in the numbers of neural cells immunostained for mu opioid receptor in caudatus-putamen, dentate gyrus, lateral septum, amygdala, and frontal, parietal, and piriform cortices was observed. Increased mu opioid receptor expression in the central amygdaloid nuclei suggests a decreased opioidergic tone at this level that could be involved in fluoxetine anorectic action.

  3. Role of Triggering Receptor Expressed on Myeloid Cells in the Activation of Innate Immunity

    Directory of Open Access Journals (Sweden)

    V. G. Matveyeva

    2011-01-01

    Full Text Available The innate immune system plays a key role in triggering a systemic inflammatory response (SIR. The triggering receptor expressed on myeloid cells (TREM-1, which is located on neutrophils and monocytes, is involved in SIR, by regulating the effector mechanisms of innate immunity. Hyperproduction of proinflammatory cytokines is a pathogenetic component of the hyperergic phase of acute systemic inflammation. The simultaneous activation of Toll-like receptors and TREM-1 increases the production of cytokines manifold. This is compensatory and adaptive, however, resulting in damage to organs and tissues during excessive production of cytokines. Key words: triggering receptor expressed on myeloid cells, Toll-like receptors, cytokines, inflammation.

  4. Cardiovascular risk factors regulate the expression of vascular endothelin receptors

    DEFF Research Database (Denmark)

    Xu, Cang-Bao; Sun, Yang; Edvinsson, Lars

    2010-01-01

    , cigarette smoking and hypertension (both strongly related to arterial wall injury), inflammation and atherosclerosis. The vascular endothelin receptors are a protein family that belongs to the larger family of G-protein coupled receptors. They mediate vascular smooth muscle contraction, proliferation......-activated protein kinase pathways and downstream transcription factors such as nuclear factor-kappaB. Understanding the mechanisms involved in vascular endothelin receptor upregulation during cardiovascular disease may provide novel therapeutic approaches....

  5. Alteration in transforming growth factor-β receptor expression in gallbladder disease: implications of chronic cholelithiasis and chronic Salmonella typhi infection

    Directory of Open Access Journals (Sweden)

    Yogesh D. Walawalkar

    2016-08-01

    Full Text Available Gallbladder cancer prevalence is ever increasing with Salmonella typhi chronic infection being one of the predisposing factors. Altered ratios or expression of transforming growth factor-β (TGF-β receptors and changes in its function are associated with loss in anti-proliferative effects of TGF-β and cancer progression. Using reverse transcriptase polymerase chain reaction we monitor any changes in TGF-β receptor gene expression. We simultaneously screen for S. typhi within the samples. From 73 patients undergoing cholecystectomy 39-50% had significant expression (P<0.05 of TGF-β receptor (TβR- I and TβR-II during chronic cholelithiasis as compared to the remaining 19-23% with acute chronic cholelithiasis. There was no significant increase in TβR-III receptor expression. Patient’s positive for S. typhi (7/73 did not show any significant changes in expression of these receptors, thus indicating no direct relation in regulating the host TGFβ-signaling pathway. Further analysis on expression of downstream Smad components revealed that patients with up-regulated TGFβ receptor expression show >2-fold increase in the RSmads and Co-Smads with a >2-fold decrease in I-Smads. Thus gain of TβR-I and II expression in epithelial cells of the gallbladder was associated with chronic inflammatory stages of the gallbladder disease.

  6. Expression of functional growth hormone receptor in a mouse L cell line infected with recombinant vaccinia virus

    NARCIS (Netherlands)

    Strous, G J; van Kerkhof, P; Verheijen, C; Rossen, J W; Liou, W; Slot, J W; Roelen, C A; Schwartz, A L

    1994-01-01

    The growth hormone receptor is a member of a large family of receptors including the receptors for prolactin and interleukins. Upon binding to one molecule of growth hormone two growth hormone receptor polypeptides dimerize. We have expressed the rabbit growth hormone receptor DNA in transfected mou

  7. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression.

    Science.gov (United States)

    Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-Il; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y L; Choi, Hueng-Sik

    2015-09-01

    Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ-binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism.

  8. Relationship between expression of somatostatin receptors subtype 2 mRNA and estrogen and progesterone receptors in breast cancer

    Institute of Scientific and Technical Information of China (English)

    曾希志; 姚榛祥

    2003-01-01

    Objectives To observe the expression of somatostatin receptor subtype 2 (SSTR2) mRNA, and investigate the relationship between the expression of SSTR2 mRNA and the expressions of estrogen and progesterone receptors (ERs and PRs) in benign and malignant breast tissues.Methods Samples from a total of 23 breast carcinomas, 16 mammary hyperplasias, and 9 mammary fibroadenomas were analyzed. SSTR2 mRNA expression was examined by in situ hybridization using multiphase oligoprobes. ER and PR expressions were detected by immunohistochemical staining. A computerized image analysis system was utilized to estimate the relative content of SSTR2 mRNA.Results The rate of expression (87.0%) and relative content (0.47) of SSTR2 mRNA in breast cancer were higher than those in benign breast tissue (64%,0.26) (P<0.05). SSTR2 mRNA expression was closely correlated with ER and PR expressions in breast cancer (P<0.05). SSTR2 mRNA was also positively correlated with ER expression in benign breast tissues.Conclusions SSTR2 mRNA expression is higher or in benign breast tissues than in malignant ones. There is a significant positive correlation between SSTR2 mRNA and ER and PR expressions. Combined antiestrogen and somatostatin analogue in treatment of ER-positive breast cancers should be further investigated.

  9. CB1 cannabinoid receptor expression in the striatum: Association with corticostriatal circuits and developmental regulation

    Directory of Open Access Journals (Sweden)

    Vincent eVan Waes

    2012-03-01

    Full Text Available Corticostriatal circuits mediate various aspects of goal-directed behavior and are critically important for basal ganglia-related disorders. Activity in these circuits is regulated by the endocannabinoid system via stimulation of CB1 cannabinoid receptors. CB1 receptors are highly expressed in projection neurons and select interneurons of the striatum, but expression levels vary considerably between different striatal regions (functional domains. We investigated CB1 receptor expression within specific corticostriatal circuits by mapping CB1 mRNA levels in striatal sectors defined by their cortical inputs in rats. We also assessed changes in CB1 expression in the striatum during development. Our results show that CB1 expression is highest in juveniles (P25 and then progressively decreases towards adolescent (P40 and adult (P70 levels. At every age, CB1 receptors are predominantly expressed in sensorimotor striatal sectors, with considerably lower expression in associative and limbic sectors. Moreover, for most corticostriatal circuits there is an inverse relationship between cortical and striatal expression levels. Thus, striatal sectors with high CB1 expression (sensorimotor sectors tend to receive inputs from cortical areas with low expression, while striatal sectors with low expression (associative/limbic sectors receive inputs from cortical regions with higher expression (medial prefrontal cortex. In so far as CB1 mRNA levels reflect receptor function, our findings suggest differential CB1 signaling between different developmental stages and between sensorimotor and associative/limbic circuits. The regional distribution of CB1 receptor expression in the striatum further suggests that, in sensorimotor sectors, CB1 receptors mostly regulate GABA inputs from local axon collaterals of projection neurons, whereas in associative/limbic sectors, CB1 regulation of GABA inputs from interneurons and glutamate inputs may be more important.

  10. Discovery and optimization of potent and selective functional antagonists of the human adenosine A2B receptor.

    Science.gov (United States)

    Bedford, Simon T; Benwell, Karen R; Brooks, Teresa; Chen, Ijen; Comer, Mike; Dugdale, Sarah; Haymes, Tim; Jordan, Allan M; Kennett, Guy A; Knight, Anthony R; Klenke, Burkhard; LeStrat, Loic; Merrett, Angela; Misra, Anil; Lightowler, Sean; Padfield, Anthony; Poullennec, Karine; Reece, Mark; Simmonite, Heather; Wong, Melanie; Yule, Ian A

    2009-10-15

    We herein report the discovery of a novel class of antagonists of the human adenosine A2B receptor. This low molecular weight scaffold has been optimized to offer derivatives with potential utility for the alleviation of conditions associated with this receptor subtype, such as nociception, diabetes, asthma and COPD. Furthermore, preliminary pharmacokinetic analysis has revealed compounds with profiles suitable for either inhaled or systemic routes of administration.

  11. Adenosine Receptors Differentially Regulate the Expression of Regulators of G-Protein Signalling (RGS 2, 3 and 4 in Astrocyte-Like Cells.

    Directory of Open Access Journals (Sweden)

    Till Nicolas Eusemann

    Full Text Available The "regulators of g-protein signalling" (RGS comprise a large family of proteins that limit by virtue of their GTPase accelerating protein domain the signal transduction of G-protein coupled receptors. RGS proteins have been implicated in various neuropsychiatric diseases such as schizophrenia, drug abuse, depression and anxiety and aggressive behaviour. Since conditions associated with a large increase of adenosine in the brain such as seizures or ischemia were reported to modify the expression of some RGS proteins we hypothesized that adenosine might regulate RGS expression in neural cells. We measured the expression of RGS-2,-3, and -4 in both transformed glia cells (human U373 MG astrocytoma cells and in primary rat astrocyte cultures stimulated with adenosine agonists. Expression of RGS-2 mRNA as well as RGS2 protein was increased up to 30-fold by adenosine agonists in astrocytes. The order of potency of agonists and the blockade by the adenosine A2B-antagonist MRS1706 indicated that this effect was largely mediated by adenosine A2B receptors. However, a smaller effect was observed due to activation of adenosine A2A receptors. In astrocytoma cells adenosine agonists elicited an increase in RGS-2 expression solely mediated by A2B receptors. Expression of RGS-3 was inhibited by adenosine agonists in both astrocytoma cells and astrocytes. However while this effect was mediated by A2B receptors in astrocytoma cells it was mediated by A2A receptors in astrocytes as assessed by the order of potency of agonists and selective blockade by the specific antagonists MRS1706 and ZM241385 respectively. RGS-4 expression was inhibited in astrocytoma cells but enhanced in astrocytes by adenosine agonists.

  12. Comparison of human recombinant adenosine A2B receptor function assessed by Fluo-3-AM fluorometry and microphysiometry.

    Science.gov (United States)

    Patel, H; Porter, R H P; Palmer, A M; Croucher, M J

    2003-02-01

    1. The aim of this study was to establish the utility of a fluorometric imaging plate reader (FLIPR) assay to assess human adenosine A(2B) receptor function by characterizing its receptor pharmacology and comparing this profile to that obtained using a microphysiometer. 2. FLIPR was used, in conjunction with a Ca(2+)-sensitive dye (Fluo-3-AM), to measure rapid rises in intracellular calcium in a Chinese Hamster Ovary (CHO-K1) cell line stably transfected with both the human A(2B) receptor and a promiscuous G(alpha16) protein. Microphysiometry was used to measure rapid changes in the rate of extracellular acidification in a Human Embryonic Kidney (HEK-293) cell line also stably transfected with human A(2B) receptor. 3. Activation of A(2B) receptors by various ligands caused a concentration-dependent increase in both the intracellular calcium concentration and the extracellular acidification rate in the cells tested, with a similar rank order of potency for agonists: NECA > N(6)-Benzyl NECA > adenosine > or = R-PIA > CPA > S-PIA > CHA > CGS 21680. No comparable effects were observed in the non-transfected control cell lines. 4. The rank order of potency of the agonists examined was the same in all studies, whereas absolute potency and efficacy varied. Thus, all compounds exhibited greater potency in FLIPR than the microphysiometer and the efficacies obtained with CHO-K1 + G(alpha16) + A(2B) cell line and FLIPR were greater than those obtained with HEK-293 + A(2B) cell line in the microphysiometer. 5. ZM-241385 was the most potent of a range of adenosine antagonists tested with a pA(2) of 8.0 in both the FLIPR and microphysiometer assays. 6. In conclusion, the profile of the responses to both A(2B) receptor agonists and antagonists in FLIPR were similar to those obtained by the microphysiometer, although both potency and efficacy values were higher in the FLIPR assay. With this caveat in mind, this study shows that FLIPR coupled with a cell line transfected with both

  13. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors

    Science.gov (United States)

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana

    2016-01-01

    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease.

  14. Expression of Caenorhabditis elegans neurotransmitter receptors and ion channels in Xenopus oocytes

    Science.gov (United States)

    Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2006-01-01

    Injection of Caenorhabditis elegans polyA RNA into Xenopus laevis oocytes led to the expression of neurotransmitter receptors that generated some unique responses, including ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors as well as receptors that coupled to G proteins, such as those to octopamine, norepinephrine, and angiotensin, which activated the oocyte’s own phosphatidylinositol system and calcium-gated chloride channels. The oocytes also expressed chloride-conducting glutamate receptors, muscarinic acetylcholine receptors, and voltage-operated calcium channels. Unexpectedly, serotonin (5-hydroxytryptamine), dopamine, GABA, and kainate did not generate ionic currents, suggesting that the corresponding receptors were not expressed or were not functional in the oocytes. The use of X. laevis oocytes for expressing worm RNA demonstrates that there are many molecular components whose role remains to be clarified in the nematode. Among them are the nature of the endogenous agonists for the octopamine and angiotensin receptors and the subunits that compose the ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and the norepinephrine receptors that couple to the phosphoinositide cascade. PMID:16549772

  15. Intensity of HLA-A2 Expression Significantly Decreased in Occult Hepatitis B Infection.

    Science.gov (United States)

    Askari, Azam; Hassanshahi, Gholam Hossein; Ghalebi, Seyed Razi; Jafarzadeh, Abdollah; Mohit, Maryam; Hajghani, Masomeh; Kazemi Arababadi, Mohammad

    2014-06-01

    Occult hepatitis B infected (OBI) patients cannot eradicate hepatitis B virus (HBV)-DNA from their liver and peripheral blood, completely. The main aim of this study was to investigate the rate of HLA-A2 expression on peripheral blood mononuclear cells (PBMCs) of patients with OBI. In this experimental study, intensity of HLA-A2 was measured on the PBMCs of 57 OBI patients and 100 HBsAg-/anti-HBc+/HBV-DNA samples were enrolled as controls; measurements were performed using the flow cytometry technique. Flow cytometric analysis indicated that 19 (33.3%) OBI patients and 28 (28%) controls expressed HLA-A2 antigen on their PBMCs. There was no significant difference between the two groups regarding the rate of individuals expressing HLA-A2 antigen. Statistical analyses showed that the intensity of HLA-A2 expression significantly decreased in OBI patients (3.58 ± 0.1) in comparison to healthy controls (4.21 ± 0.25; P < 0.001). According to these results it can be concluded that decreased intensity of HLA-A2 on the PBMCs of OBI patients may lead to resistance of HBV in the patients.

  16. Neuroprotection by caffeine in the MPTP model of parkinson's disease and its dependence on adenosine A2A receptors.

    Science.gov (United States)

    Xu, K; Di Luca, D G; Orrú, M; Xu, Y; Chen, J-F; Schwarzschild, M A

    2016-05-13

    Considerable epidemiological and laboratory data have suggested that caffeine, a nonselective adenosine receptor antagonist, may protect against the underlying neurodegeneration of parkinson's disease (PD). Although both caffeine and more specific antagonists of the A2A subtype of adenosine receptor (A2AR) have been found to confer protection in animal models of PD, the dependence of caffeine's neuroprotective effects on the A2AR is not known. To definitively determine its A2AR dependence, the effect of caffeine on 1-methyl-4-phenyl-1,2,3,6 tetra-hydropyridine (MPTP) neurotoxicity was compared in wild-type (WT) and A2AR gene global knockout (A2A KO) mice, as well as in central nervous system (CNS) cell type-specific (conditional) A2AR knockout (cKO) mice that lack the receptor either in postnatal forebrain neurons or in astrocytes. In WT and in heterozygous A2AR KO mice caffeine pretreatment (25mg/kgip) significantly attenuated MPTP-induced depletion of striatal dopamine. By contrast in homozygous A2AR global KO mice caffeine had no effect on MPTP toxicity. In forebrain neuron A2AR cKO mice, caffeine lost its locomotor stimulant effect, whereas its neuroprotective effect was mostly preserved. In astrocytic A2AR cKO mice, both caffeine's locomotor stimulant and protective properties were undiminished. Taken together, these results indicate that neuroprotection by caffeine in the MPTP model of PD relies on the A2AR, although the specific cellular localization of these receptors remains to be determined.

  17. DMPD: G-protein-coupled receptor expression, function, and signaling in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17456803 G-protein-coupled receptor expression, function, and signaling in macropha...2007 Apr 24. (.png) (.svg) (.html) (.csml) Show G-protein-coupled receptor expression, function, and signali...ng in macrophages. PubmedID 17456803 Title G-protein-coupled receptor expression,

  18. Expression of thyroid stimulating hormone receptor in differentiated thyroid carcinoma and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    李清怀

    2013-01-01

    Objective To explore the expression of thyroid stimulating hormone (TSH) receptor in differentiated thyroid carcinoma and its clinical significance.Methods Seventy-four patients with differentiated thyroid carcinoma treated in our department from January 2009 to January 2011were selected as the observation group,and 28 patients with nodular goiter were selected as the control group.Expression of TSH receptor in the two groups were detected by immunohistochemistry.Results The positive rate of TSH receptor expression in the observation group was55.4 (41/74) ,significantly lower than that of the control

  19. Expression of heregulin and ErbB receptors in mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    GUI Chun; WANG Jian-an; HE Ai-na; CHEN Tie-long; LIU Xian-bao; LUO Rong-hua; JIANG Jun

    2008-01-01

    Background Mesenchymal stem cells are a promising cell type for cell transplantation in myocardial infarction.Type Ⅰ neuregulins-1,also known as heregulin,can promote the survival of cardiomyocytes and stimulate angiogenesis.The purpose of this study was to investigate the expression of heregulin and ErbB receptors in mesenchymaI stem cells,then further detect the secretion of heregulin and the changes in expression of heregulin and ErbB receptors under conditions of serum deprivation and hypoxia.Methods Mesenchymal stem cells lsolated frOm bone marrow of 180 g male Sprague-Dawley rats were cultured.Passage 3 cells were detected experimentally by regular reverse transcriptase-polymerase chain reaction(RT-PCR),quantitative real time PCR and Western blotting.Results Heregulin and ErbB receptors were expressed in mesenchymal stem cells,and all three ErbB receptors mRNA expressions were significantly down-regulated by serum deprivation and hypoxia,but serum deprivation and hypoxia significantly increased the protein expression of heregulin.Serum deprivation and hypoxia more than 12 hours could induce the secretion of heregulin.Conclusions Mesenchymal stem cells can express all three ErbB receptors and heregulin.Serum deprivation and hypoxia decrease the mRNA expression of ErbB receptors,increase the expression of heregulin,and activate the secretion of heregulin.

  20. Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ.

    Science.gov (United States)

    Słoniecka, Marta; Le Roux, Sandrine; Boman, Peter; Byström, Berit; Zhou, Qingjun; Danielson, Patrik

    2015-01-01

    Keratocytes, the quiescent cells of the corneal stroma, play a crucial role in corneal wound healing. Neuropeptides and neurotransmitters are usually associated with neuronal signaling, but have recently been shown to be produced also by non-neuronal cells and to be involved in many cellular processes. The aim of this study was to assess the endogenous intracellular and secreted levels of the neuropeptides substance P (SP) and neurokinin A (NKA), and of the neurotransmitters acetylcholine (ACh), catecholamines (adrenaline, noradrenaline and dopamine), and glutamate, as well as the expression profiles of their receptors, in human primary keratocytes in vitro and in keratocytes of human corneal tissue sections in situ. Cultured keratocytes expressed genes encoding for SP and NKA, and for catecholamine and glutamate synthesizing enzymes, as well as genes for neuropeptide, adrenergic and ACh (muscarinic) receptors. Keratocytes in culture produced SP, NKA, catecholamines, ACh, and glutamate, and expressed neurokinin-1 and -2 receptors (NK-1R and NK-2R), dopamine receptor D2, muscarinic ACh receptors, and NDMAR1 glutamate receptor. Human corneal sections expressed SP, NKA, NK-1R, NK-2R, receptor D2, choline acetyl transferase (ChAT), M3, M4 and M5 muscarinic ACh receptors, glutamate, and NMDAR1, but not catecholamine synthesizing enzyme or the α1 and β2 adrenoreceptors, nor M1 receptor. In addition, expression profiles assumed significant differences between keratocytes from the peripheral cornea as compared to those from the central cornea, as well as differences between keratocytes cultured under various serum concentrations. In conclusion, human keratocytes express an array of neuropeptides and neurotransmitters. The cells furthermore express receptors for neuropeptides/neurotransmitters, which suggests that they are susceptible to stimulation by these substances in the cornea, whether of neuronal or non-neuronal origin. As it has been shown that neuropeptides

  1. Leishmania infantum Parasites Subvert the Host Inflammatory Response through the Adenosine A2A Receptor to Promote the Establishment of Infection

    Directory of Open Access Journals (Sweden)

    Mikhael H. F. Lima

    2017-07-01

    Full Text Available Adenosine is an endogenously released purine nucleoside that signals through four widely expressed G protein-coupled receptors: A1, A2A, A2B, and A3. Of these, A2AR is recognized as mediating major adenosine anti-inflammatory activity. During cutaneous leishmaniasis, adenosine induces immunosuppression, which promotes the establishment of infection. Herein, we demonstrated that A2AR signaling is exploited by Leishmania infantum parasites, the etiologic agent that causes Visceral Leishmaniasis, to successfully colonize the vertebrate host. A2AR gene-deleted mice exhibited a well-developed cellular reaction with a strong Th1 immune response in the parasitized organs. An intense infiltration of activated neutrophils into the disease-target organs was observed in A2AR−/− mice. These cells were characterized by high expression of CXCR2 and CD69 on their cell surfaces and increased cxcl1 expression. Interestingly, this phenotype was mediated by IFN-γ on the basis that a neutralizing antibody specific to this cytokine prevented neutrophilic influx into parasitized organs. In evaluating the immunosuppressive effects, we identified a decreased number of CD4+ FOXP3+ T cells and reduced il10 expression in A2AR−/− infected mice. During ex vivo cell culture, A2AR−/− splenocytes produced smaller amounts of IL-10. In conclusion, we demonstrated that the A2AR signaling pathway is detrimental to development of Th1-type adaptive immunity and that this pathway could be associated with the regulatory process. In particular, it promotes parasite surveillance.

  2. Profiling of olfactory receptor gene expression in whole human olfactory mucosa.

    Directory of Open Access Journals (Sweden)

    Christophe Verbeurgt

    Full Text Available Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems, containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men. Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were

  3. Expression and function of P2 receptors in hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Feng, Wenli; Wang, Lina; Zheng, Guoguang

    2015-01-01

    Nucleotides have unambiguously emerged as a family of mediators of intercellular communication, which bind to a class of plasma membrane receptors, P2 receptors, to trigger intercellular signaling. P2 receptors can be further divided into P2X and P2Y subfamilies based on structure and function. Different hematopoietic cells express diverse spectrums of P2 receptors at different levels, including hematopoietic stem and progenitor cells (HSPCs). Extracellular adenosine triphosphate (ATP) exerts different effects on HSPCs, regulating cell proliferation, differentiation, migration, and chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species. The relationship between abnormal P2 receptor function and human diseases attracts more and more attention. This review summarizes the expression and function of P2 receptors in HSPCs and the relationship to hematopoietic diseases.

  4. THE EXPRESSION OF RECEPTORS FOR VASOACTIVE INTESTINAL PEPTIDE AND SECRETIN IN COLON NEOPLASMS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To investigate the expression of the receptors for vasoactive intestinal peptide (VIP) and secretin in colon cancer. Methods: This study visualized and characterized the receptors for VIP and secretin in the sequence of human tumor-free colon, adenoma, carcinoma, liver metastasis using storage phosphor autoradiography. Results: Receptors for VIP and secretin were demonstrated in tumor-free colon and colon tumors. A decrease in affinity of VIP receptors was shown in the colonic liver metastasis (Kd = 3.30 nmol) when compared with tumor-free colon (Kd = 0.82 nmol). An up-regulation of receptors for secretin was found in colonic liver metastases. Conclusions: VIP and secretin were both expressed on normal colon tissues. Binding of VIP decreased while secretin increased in colonic liver metastasis. A down-regulation of receptors for VIP in colonic liver metastases may helpful to understand the migration of colon cancer.

  5. Enigma (partially) resolved: phospholipase A2 receptor is the cause of "idiopathic" membranous glomerulonephritis.

    Science.gov (United States)

    Truong, Luan D; Seshan, Surya V

    2015-12-15

    Membranous glomerulonephritis (MGN) is a very significant kidney disease. It is one of the frequent causes of heavy protein excretion in urine. MGN is thought to be an immune-mediated disease caused by glomerular deposition of antigen-antibody complexes. The pathogenic antigen, however, has been an enigma until recently. It was discovered in 2009 that phospholipase A2 receptor (PLA2R), a normal transmembrane protein in podocyte plasma membrane, is the antigen causing MGN. Within 5 yr of its discovery, this seminal finding has leaded to novel insights into the treatment of this disease including diagnosis, therapy, and prediction of outcome. This finding also paves the way for fundamental studies on how and why autoimmunity against PLA2R develops. The discovery of PLA2A as the cause of "idiopathic" MGN after a half century of speculation, followed by further fundamental insights with such an expedient and successful application in patient care, embodies the elegance of science at its junction with society. This perspective traces the story of this remarkable discovery.

  6. Expression of oestrogen receptor α and oestrogen receptor β in the uterus of the pregnant swine.

    Science.gov (United States)

    Knapczyk-Stwora, K; Durlej, M; Duda, M; Czernichowska-Ferreira, K; Tabecka-Lonczynska, A; Slomczynska, M

    2011-02-01

    The uterus is a well-known target of endocrine, paracrine and autocrine acting molecules among which steroid hormones are of special importance. The objective of our work was to localize oestrogen receptors (ERα and ERβ) mRNA and protein in the pig uterus throughout pregnancy (10, 18, 32, 50, 71, 90 days post coitum) using RT-PCR, Western-blot and immunohistochemistry. The present study is the first one to demonstrate the presence of ERs protein in the porcine uterus not only at the beginning but also at mid- and late pregnancy. In the pregnant swine, ERα was immunolocalized in the luminal epithelium (LE) and glandular epithelium (GE) and the myometrium of the uterus with differences in the intensity of staining at different stages of pregnancy studied. The LE and GE of pregnant swine stained for ERβ regardless of the day of pregnancy examined, whereas only a few cells within the myometrium showed a weak immunoreactivity. Western blot analysis confirmed the presence of ERα and ERβ proteins on all investigated days of gestation. The expression of ERα and ERβ mRNA was detected by RT-PCR in all examined samples corresponding to each of the consecutive stages of pregnancy. The obtained results show that ERα is more abundant in comparison to ERβ within the porcine pregnant uterus. The presence of ERα and ERβ in all compartments of the pig uterus during pregnancy may indicate direct action of oestrogens on proliferation and differentiation of these cells.

  7. Activation of Adenosine Receptor A2A Increases HSC Proliferation and Inhibits Death and Senescence by Down-regulation of p53 and Rb

    Directory of Open Access Journals (Sweden)

    Md. Kaimul eAhsan

    2014-04-01

    Full Text Available Background & Aims: During fibrosis hepatic stellate cells (HSC undergo activation, proliferation and senescence but the regulation of these important processes is poorly understood. The adenosine A2A receptor (A2A is known to be present on HSC, and its activation results in liver fibrosis. In this study, we tested if A2A has a role in the regulation of HSC proliferation, apoptosis, senescence, and the relevant molecular mechanism.Methods: The ability of adenosine to regulate p53 and Rb protein levels, proliferation, apoptosis and senescence was tested in the human HSC cell line LX-2 and rat primary HSC.Results: Adenosine receptor activation down-regulates p53 and Rb protein levels, increases BrdU incorporation and increases cell survival in LX-2 cells and in primary rat HSC. These effects of NECA were reproduced by an adenosine A2A receptor specific agonist (CGS21680 and blocked by a specific antagonist (ZM241385. By day twenty-one of culture primary rat HSC entered senescence and expressed -gal which was significantly inhibited by NECA. Furthermore, NECA induced down regulation of p53 and Rb and Rac1, and decreased phosphorylation of p44-42 MAP Kinase in LX-2 cells and primary rat HSC. These effects were reproduced by the cAMP analog 8-Bromo-cAMP, and the adenylyl cyclase activator forskolin, and were blocked by PKA inhibitors.Conclusions: These results demonstrate that A2A receptor regulates a number of HSC fate decisions and induces greater HSC proliferation, reduces apoptosis and senescence by decreasing p53 and Rb through cAMP-PKA/Rac1/p38 MAPK pathway. This provides a mechanism for adenosine induced HSC regulation and liver fibrosis.

  8. Expression of soluble triggering receptor expression on myeloid cells-1 in pleural effusion

    Institute of Scientific and Technical Information of China (English)

    HUANG Lu-ying; SHI Huan-zhong; LIANG Qiu-li; WU Yan-bin; QIN Xue-jun; CHEN Yi-qiang

    2008-01-01

    Background Tdggedng receptors expressed on myeloid cells(TREM)proteins are a family of cell surface receptors expressed broadly by cells of the myeloid lineage.The aim of this study was to investigate the clinical significance of soluble TREM-1(sTREM-1)in pleural effusions,and to determine the effects of pneumonia on pleural sTREM-1 concentrations.Methods PleuraI fluid was collected from 109 patients who presented to the respiratory institute (35 with malignant pleural effusion,31 with tuberculous pleural effusion,21 with bacteriaI pleural effusion,and 22 with transudate).The concentrations of sTREM-1,tumor necrosis factor-o(TNF-α)and interleukin-1β(IL-1β)were determined jn effusion and serum samples by enzyme Iinked immunosorbent assay(ELISA).Results The concentrations of sTREM-1 in bacterial pleural effusion were significantly higher than those in malignant.tuberculous,and transudative groups(all P<0.001).An sTREM-1 cutoff value of 768.1 ng/L had a sensitivity of 86%and a specificity of 93%.Pleural sTREM-1 Ievels were positively correlated with Ievels of TNF-α and IL-1β.Patients with complicating bacterial pneumonia did not have elevated concentration of STREM-1 jn pleural effusion when compared with patients without pneumonia.Conclusions Determination of pleural sTREM-1 may improve the ability of clinicians to differentiate pleural effusion patients of bacterial origin from those with other etiologies.The occurrence of bacterial pneumonia did not affect pleural sTREM-1 concentrations.

  9. In adult female hamsters hypothyroidism stimulates D1 receptor-mediated breathing without altering D1 receptor expression.

    Science.gov (United States)

    Schlenker, Evelyn H; Del Rio, Rodrigo; Schultz, Harold D

    2015-11-01

    Hypothyroidism affects cardiopulmonary regulation and function of dopaminergic receptors. Here we evaluated effects of 5 months of hypothyroidism on dopamine D1 receptor modulation of breathing in female hamsters using a D1 receptor antagonist SCH 23390. Euthyroid hamsters (EH) served as controls. Results indicated that hypothyroid female hamsters (HH) exhibited decreased body weights and minute ventilation (VE) following hypoxia due to decreased frequency of breathing (F). Moreover, SCH 23390 administration in HH increased VE by increasing tidal volume during exposure to air, hypoxia and following hypoxia. Relative to vehicle, SCH 23390 treatment decreased body temperature and hypoxic VE responsiveness in both groups. In EH, SCH 23390 decreased F in air, hypoxia and post hypoxia, and VE during hypoxia trended to decrease (P=0.053). Finally, expression of D1 receptor protein was not different between the two groups in any region evaluated. Thus, hypothyroidism in older female hamsters affected D1 receptor modulation of ventilation differently relative to euthyroid animals, but not expression of D1 receptors.

  10. TRA-418, a thromboxane A2 receptor antagonist and prostacyclin receptor agonist, inhibits platelet-leukocyte interaction in human whole blood.

    Science.gov (United States)

    Miyamoto, Mitsuko; Ohno, Michihiro; Yamada, Naohiro; Ohtake, Atsushi; Matsushita, Teruo

    2010-10-01

    TRA-418, a compound with both thromboxane A2 receptor (TP receptor) antagonistic and prostacyclin receptor (IP receptor) agonistic activities, was synthesised in our laboratory as a new antithrombotic agent. In this study, we examined the effects of TRA-418 on platelet-leukocyte interactions in human whole blood. Platelet-leukocyte interactions were induced by U-46619 in the presence of epinephrine (U-46619 + epinephrine) or with thrombin receptor agonist peptide 1-6 (TRAP). Platelet-leukocyte interactions were assessed by flow cytometry, with examination of both platelet-neutrophil and platelet-monocyte complexes. In a control experiment, the TP receptor antagonist SQ-29548 significantly inhibited the induction of platelet-leukocyte complexes by the combination of U-46619 and epinephrine, but not TRAP-induced formation of platelet-leukocyte complexes. Conversely, the IP receptor agonist beraprost sodium inhibited platelet-leukocyte complex formation induced by both methods, although the IC50 values of beraprost sodium for U-46619 + epinephrine were at least 10-fold greater than for TRAP. Under such conditions, TRA-418 inhibited both U-46619 + epinephrine-induced and TRAP-induced platelet-leukocyte complex formation in a concentration-dependent manner, in a similar range. These results suggest that TRA-418 exerts its inhibitory effects on platelet-leukocyte interactions by acting as a TP receptor antagonist as well as an IP receptor agonist in an additive or synergistic manner. These inhibitory effects of TRA-418 on formation of platelet-leukocyte complexes suggest the compound is beneficial effects as an antithrombotic agent.

  11. Regulation of bradykinin receptor gene expression in human lung fibroblasts.

    Science.gov (United States)

    Phagoo, S B; Yaqoob, M; Herrera-Martinez, E; McIntyre, P; Jones, C; Burgess, G M

    2000-06-01

    In WI-38 human fibroblasts, interleukin-1 beta and tumour necrosis factor-alpha (TNF-alpha) increased bradykinin B(1) receptor mRNA, which peaked between 2 and 4 h, remaining elevated for 20 h. Binding of the bradykinin B(1) receptor selective ligand [3H]des-Arg(10)-kallidin, also increased, peaking at 4 h and remaining elevated for 20 h. The B(max) value for [3H]des-Arg(10)-kallidin rose from 280+/-102 fmol/mg (n=3) to 701+/-147 fmol/mg (n=3), but the K(D) value remained unaltered (control, 1.04+/-0.33 nM (n=3); interleukin-1 beta, 0.88+/-0.41 nM (n=3)). The interleukin-1 beta-induced [3H]des-Arg(10)-kallidin binding sites were functional receptors, as bradykinin B(1) receptor agonist-induced responses increased in treated cells. Bradykinin B(2) receptor mRNA and [3H]bradykinin binding were upregulated by interleukin-1 beta, but not TNF-alpha. The effect of interleukin-1 beta on bradykinin B(2) receptors was smaller than for bradykinin B(1) receptors. Cycloheximide prevented interleukin-1 beta-mediated increases in B(1) and B(2) binding, but not mRNA suggesting that de novo synthesis of a transcriptional activator was unnecessary.

  12. Antiphospholipase A2 Receptor Autoantibodies: A Comparison of Three Different Immunoassays for the Diagnosis of Idiopathic Membranous Nephropathy

    Directory of Open Access Journals (Sweden)

    Astrid Behnert

    2014-01-01

    Full Text Available Background. The recent identification of circulating autoantibodies directed towards the M-type phospholipase A2 receptor (PLA2R has been a major advancement in the serological diagnosis of idiopathic membranous nephropathy (IMN, a common cause of nephrotic syndrome in adults. The goal of this study was to compare the performance characteristics of two commercial assays as well as the first addressable laser bead immunoassay (ALBIA developed for the detection of anti-PLA2R antibodies. Methods. Serum samples of 157 IMN patients and 142 controls were studied. Samples were tested by a cell based immunofluorescence assay (CBA-IFA, Euroimmun, Germany, by ELISA (Euroimmun, and by a novel ALBIA employing an in vivo expressed recombinant human PLA2R. Results. Overall, the three assays showed significant qualitative and quantitative correlation. As revealed by receiver operating characteristic analysis, the ALBIA correlated better with the CBA-IFA than the ELISA (P=0.0003. The clinical sensitivities/specificities for IMN were 60.0% (51.0–68.5%/98.6% (95.0–99.8% and 56.2% (47.2–64.8%/100.0% (97.4–100.0% for ALBIA and CBA-IFA, respectively. Conclusion. The ALBIA represents a promising assay for the detection of anti-PLA2R antibodies showing similar performance to the CBA-IFA and the advantage of ease of use and suitability for high throughput, rapid turnaround times, and multiplexing.

  13. Gene expression of estrogen receptor-alpha in orbital fibroblasts in Graves’ ophthalmopathy

    OpenAIRE

    Cury, Sarah Santiloni; Oliveira,Miriane; Síbio, Maria Teresa; Clara,Sueli; Luvizotto, Renata de Azevedo Melo; Conde,Sandro; Jorge, Edson Nacib [UNESP; Nunes, Vania Dos Santos [UNESP; Nogueira, Célia Regina; Mazeto, Gláucia Maria Ferreira da Silva

    2015-01-01

    Graves’ ophthalmopathy (GO) is one of the most severe clinical manifestations of Graves’ disease (GD), and its treatment might involve high-dose glucocorticoid therapy. The higher incidence of GO among females, and the reported association between polymorphisms of estrogen receptor (ER) and GD susceptibility have led us to question the role of estrogen and its receptor in GO pathogenesis. We, thus, assessed estrogen receptor-alpha (ERA) gene expression in cultures of orbital fibro...

  14. Expression of growth hormone and growth hormone receptor in fibroadenomas of the breast.

    Science.gov (United States)

    Lenicek, Tanja; Kasumović, Dino; Stajduhar, Emil; Dzombeta, Tihana; Jukić, Zoran; Kruslin, Bozo

    2013-06-01

    Fibroadenoma is the most prevalent benign breast tumor. It consists of epithelial and stromal components. In general, breast tumors are highly hormonally dependent and growth hormone by its physiology may have a possible oncogenic potential. Therefore, the aim of this study was to determine the expression of growth hormone and growth hormone receptor in epithelial and stromal components of fibroadenomas. Study group included 30 randomly chosen fibroadenomas from female patients aged between 18 and 69 years. The expression of growth hormone and growth hormone receptor was defined in both histologic components of fibroadenomas. Growth hormone was expressed in 96.7% of both epithelial and stromal components of fibroadenomas, with stronger expression in the stromal component. The same percentage of positive reaction (96.7%) was obtained in the epithelial component of fibroadenomas for growth hormone receptor expression. Only 6.7% of stromal components tested for growth hormone receptor were positive. The high expression of growth hormone and growth hormone receptor in fibroadenoma tissue indicates their possible role in the pathogenesis of this tumor. Follow up of patients with high expression of growth hormone and growth hormone receptor may be suggested.

  15. Interleukin-1 receptors are differentially expressed in normal and psoriatic T cells.

    Science.gov (United States)

    Bebes, Attila; Kovács-Sólyom, Ferenc; Prihoda, Judit; Kui, Róbert; Kemény, Lajos; Gyulai, Rolland

    2014-01-01

    This study was carried out to examine the possible role of interleukin-1 (IL-1) in the functional insufficiency of regulatory T cells in psoriasis, by comparing the expression of IL-1 receptors on healthy control and psoriatic T cells. Patients with moderate-to-severe chronic plaque psoriasis and healthy volunteers, matched in age and sex, were selected for all experiments. CD4(+)CD25(-) effector and CD4(+)CD25(+)CD127(low) regulatory T cells were separated and used for the experiments. Expression of the mRNA of IL-1 receptors (IL-1R1, IL-1R2, and sIL-1R2) was determined by quantitative real-time RT-PCR. Cell surface IL-1 receptor expression was assessed by flow cytometry. Relative expression of the signal transmitting IL-1 receptor type 1 (IL-1R1) mRNA is higher in resting psoriatic effector and regulatory T cells, and activation induces higher IL-1R1 protein expression in psoriatic T cells than in healthy cells. Psoriatic regulatory and effector T cells express increased mRNA levels of the decoy IL-1 receptors (IL-1R2 and sIL-1R2) upon activation compared to healthy counterparts. Psoriatic T cells release slightly more sIL-1R2 into their surrounding than healthy T cells. In conclusion, changes in the expression of IL-1 receptors in psoriatic regulatory and effector T cells could contribute to the pathogenesis of psoriasis.

  16. The histaminergic system in human thalamus: correlation of innervation to receptor expression.

    Science.gov (United States)

    Jin, C Y; Kalimo, H; Panula, Pertti

    2002-04-01

    The mRNA expression of three histamine receptors (H1, H2 and H3) and H1 and H3 receptor binding were mapped and quantified in normal human thalamus by in situ hybridization and receptor binding autoradiography, respectively. Immunohistochemistry was applied to study the distribution of histaminergic fibres and terminals in the normal human thalamus. mRNAs for all three histamine receptors were detected mainly in the dorsal thalamus, but the expression intensities were different. Briefly, H1 and H3 receptor mRNAs were relatively enriched in the anterior, medial, and part of the lateral nuclei regions; whereas the expression level was much lower in the ventral and posterior parts of the thalamus, and the reticular nucleus. H2 receptor mRNA displayed in general very low expression intensity with slightly higher expression level in the anterior and lateropolar regions. H1 receptor binding was mainly detected in the mediodorsal, ventroposterolateral nuclei, and the pulvinar. H3 receptor binding was detected mainly in the dorsal thalamus, predominantly the periventricular, mediodorsal, and posterior regions. Very high or high histaminergic fibre densities were observed in the midline nuclear region and other nuclei next to the third ventricle, ventroposterior lateral nucleus and medial geniculate nucleus. In most of the core structures of the thalamus, the fibre density was very low or absent. The results suggest that histamine in human brain regulates tactile and proprioceptory thalamocortical functions through multiple receptors. Also, other, e.g. visual areas and those not making cortical connections expressed histamine receptors and contained histaminergic nerve fibres.

  17. Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2

    DEFF Research Database (Denmark)

    Seemann, Petra; Schwappacher, Raphaela; Kjær, Klaus Wilbrandt

    2005-01-01

    Here we describe 2 mutations in growth and differentiation factor 5 (GDF5) that alter receptor-binding affinities. They cause brachydactyly type A2 (L441P) and symphalangism (R438L), conditions previously associated with mutations in the GDF5 receptor bone morphogenetic protein receptor type 1b...... activity when compared with WT GDF5. Biosensor interaction analyses revealed loss of binding to BMPR1A and BMPR1B ectodomains for the L441P mutant, whereas the R438L mutant showed normal binding to BMPR1B but increased binding to BMPR1A, the receptor normally activated by BMP2. The binding to NOGGIN...... was normal for both mutants. Thus, the brachydactyly type A2 phenotype (L441P) is caused by inhibition of the ligand-receptor interaction, whereas the symphalangism phenotype (R438L) is caused by a loss of receptor-binding specificity, resulting in a gain of function by the acquisition of BMP2-like...

  18. Hall Effect Thruster Interactions Data From the Russian Express-A2 and Express-A3 Satellites. Part 11; Express/T-160E Project Express A2 and A3 Data Agreement Document

    Science.gov (United States)

    Sitnikova, N.; Volkov, D.; Maximov, I.; Petrusevich, V.; Allen, D.; Dunning, John (Technical Monitor)

    2003-01-01

    This 12-part report documents the data obtained from various sensor measurements taken aboard the Russian Express-A2 and Express-A3 spacecraft in Geosynchronous Earth Orbit (GEO). These GEO communications satellites, which were designed and built by NPO Prikladnoy Mekhaniki (NPO PM) of Zheleznogorsk, Russia, utilize Hall thruster propulsion systems for north-south and east-west stationkeeping and as of June 2002, were still operating at 80deg E. and 11deg W., respectively. Express-A2 was launched on March 12, 2000, while Express-A3 was launched on June 24, 2000. The diagnostic equipment from which these data were taken includes electric field strength sensors, ion current and energy sensors, and pressure sensors. The diagnostics and the Hall thruster propulsion systems are described in detail along with lists of tabular data from those diagnostics and propulsion system and other satellite systems. Space Power, Inc., now part of Pratt & Whitney's Chemical Systems Division, under contract NAS3-99151 to the NASA Glenn Research Center, obtained these data over several periods from March 12, 2000, through September 30, 2001. Each of the 12 individual reports describe, in detail, the propulsion systems as well as the diagnostic sensors utilized. Finally, parts 11 and 12 include the requirements to which NPO PM prepared and delivered these data.

  19. Hall Effect Thruster Interactions Data From the Russian Express-A2 and Express-A3 Satellites. Part 12; Express/T-160 Project Express A2 and A3 Sensors Operations Procedures Document

    Science.gov (United States)

    Dunning, John (Technical Monitor); Sitnikova, N.; Volkov, D.; Maximov, I.; Petrusevich, V.; Allen, D.

    2003-01-01

    This 12-part report documents the data obtained from various sensor measurements taken aboard the Russian Express-A2 and Express-A3 spacecraft in Geosynchronous Earth Orbit (GEO). These GEO communications satellites, which were designed and built by NPO Prikladnoy Mekhaniki (NPO PM) of Zheleznogorsk, Russia, utilize Hall thruster propulsion systems for north-south and east-west stationkeeping and as of June 2002, were still operating at 80 deg. E. and 11 deg. W respectively. Express-A2 was launched on March 12, 2000, while Express-A3 was launched on June 24, 2000. The diagnostic equipment from which these data were taken includes electric field strength sensors, ion current and energy sensors, and pressure sensors. The diagnostics and the Hall thruster propulsion systems are described in detail along with lists of tabular data from those diagnostics and propulsion system and other satellite systems. Space Power, Inc., now part of Pratt & Whitney's Chemical Systems Division, under contract NAS3 99151 to the NASA Glenn Research Center, obtained these data over several periods from March 12, 2000, through September 30, 2001. Each of the 12 individual reports describe, in detail, the propulsion systems as well as the diagnostic sensors utilized. Finally, parts 11 and 12 include the requirements to which NPO PM prepared and delivered these data.

  20. Altered Sigma-1 Receptor Expression in Two Animal Models of Cognitive Impairment

    NARCIS (Netherlands)

    Kuzhuppilly Ramakrishnan, Nisha; Marosi, Krisztina; Nyakas, Csaba J.; Kwizera, Chantal; Elsinga, Philip H.; Ishiwata, Kiichi; Luiten, Paul G M; Dierckx, Rudi A. J. O.; van Waarde, Aren

    PURPOSE: Sigma-1 receptors are involved in learning and memory processes. We assessed sigma-1 receptor expression and memory function in two animal models of cognitive impairment. PROCEDURES: Male Wistar-Hannover rats were either lesioned by unilateral injection of N-methyl-D-aspartic acid in the

  1. Comparative genomics reveals tissue-specific regulation of prolactin receptor gene expression

    Science.gov (United States)

    Prolactin (PRL), acting via the prolactin receptor, fulfills a diversity of biological functions including the maintenance of solute balance and mineral homeostasis via tissues such as the heart, kidneys and intestine. Expression and activity of the prolactin receptor (PRLR) is regulated by various ...

  2. Low density lipoprotein induces upregulation of vasoconstrictive endothelin type B receptor expression

    DEFF Research Database (Denmark)

    Xu, Cang-Bao; Zheng, Jian-Pu; Zhang, Wei

    2014-01-01

    Vasoconstrictive endothelin type B (ET(B)) receptors promote vasospasm and ischemic cerebro- and cardiovascular diseases. The present study was designed to examine if low density lipoprotein (LDL) induces upregulation of vasoconstrictive ET(B) receptor expression and if extracellular signal...

  3. Unique expression pattern of the three insulin receptor family members in the rat mammary gland

    DEFF Research Database (Denmark)

    Hvid, Henning; Klopfleisch, Robert; Vienberg, Sara Gry

    2011-01-01

    Supra-pharmacological doses of the insulin analog X10 (AspB10) increased the incidence of mammary tumors in female Sprague-Dawley rats in chronic toxicity studies, most likely via receptor-mediated mechanisms. However, little is known about the expression of the insulin receptor family in the rat...

  4. Altered Sigma-1 Receptor Expression in Two Animal Models of Cognitive Impairment

    NARCIS (Netherlands)

    Kuzhuppilly Ramakrishnan, Nisha; Marosi, Krisztina; Nyakas, Csaba J.; Kwizera, Chantal; Elsinga, Philip H.; Ishiwata, Kiichi; Luiten, Paul G M; Dierckx, Rudi A. J. O.; van Waarde, Aren

    2015-01-01

    PURPOSE: Sigma-1 receptors are involved in learning and memory processes. We assessed sigma-1 receptor expression and memory function in two animal models of cognitive impairment. PROCEDURES: Male Wistar-Hannover rats were either lesioned by unilateral injection of N-methyl-D-aspartic acid in the nu

  5. Larvae of small white butterfly, Pieris rapae, express a novel serotonin receptor

    Science.gov (United States)

    The biogenic amine serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter in vertebrates and invertebrates. It acts in regulation and modulation of many physiological and behavioral processes through G protein-coupled receptors. Insects express five 5-HT receptor subtypes that share high simila...

  6. Histamine H1 Receptor Gene Expression and Drug Action of Antihistamines.

    Science.gov (United States)

    Fukui, Hiroyuki; Mizuguchi, Hiroyuki; Nemoto, Hisao; Kitamura, Yoshiaki; Kashiwada, Yoshiki; Takeda, Noriaki

    2016-11-25

    The upregulation mechanism of histamine H1 receptor through the activation of protein kinase C-δ (PKCδ) and the receptor gene expression was discovered. Levels of histamine H1 receptor mRNA and IL-4 mRNA in nasal mucosa were elevated by the provocation of nasal hypersensitivity model rats. Pretreatment with antihistamines suppressed the elevation of mRNA levels. Scores of nasal symptoms were correlatively alleviated to the suppression level of mRNAs above. A correlation between scores of nasal symptoms and levels of histamine H1 receptor mRNA in the nasal mucosa was observed in patients with pollinosis. Both scores of nasal symptoms and the level of histamine H1 receptor mRNA were improved by prophylactic treatment of antihistamines. Similar to the antihistamines, pretreatment with antiallergic natural medicines showed alleviation of nasal symptoms with correlative suppression of gene expression in nasal hypersensitivity model rats through the suppression of PKCδ. Similar effects of antihistamines and antiallergic natural medicines support that histamine H1 receptor-mediated activation of histamine H1 receptor gene expression is an important signaling pathway for the symptoms of allergic diseases. Antihistamines with inverse agonist activity showed the suppression of constitutive histamine H1 receptor gene expression, suggesting the advantage of therapeutic effect.

  7. Heterologous expression of rat testis GABAA receptor βt variant in Chinese hamster ovary cells

    Institute of Scientific and Technical Information of China (English)

    Shi-FengLi; Yu-GuangChen; Yuan-ChangYan; Yi-PingLi

    2004-01-01

    Aim: To study the characteristics and possible retention functionof specific sequence in the 5'-end of rat testis GABAA receptor β 3t variant, Methods: Rat testis GABAA receptor β 3t variant cDNA was cloned and inserted into two eukaryotic expression vectors of pEGFP-N1 and pEGFP-C1 respectively, which have EGFP reporter gene.

  8. Gender affects macrophage cytokine and prostaglandin E2 production and PGE2 receptor expression after trauma.

    Science.gov (United States)

    Stapleton, Philip P; Strong, Vivian E Mack; Freeman, Tracy A; Winter, Jordan; Yan, Zhaoping; Daly, John M

    2004-11-01

    Gender influences morbidity and mortality after injury. Hormonal differences are important; however, the role of prostaglandins as mediators in immune dysfunction relating to gender differences after trauma is unclear. We hypothesized that gender-dependent differences in PGE(2) receptor expression and signaling may be involved in immune-related differences. This study determined prostaglandin receptor subtype (EP1-EP4) expression following injury and determined whether gender differences influence EP receptor expression. BALB/c male and female mice (estrus and pro-estrus) (n = 6 per group) were subjected to femur fracture and 40% hemorrhage (trauma) or sham injury (anesthesia). Seven days later, the splenic macrophages were harvested and stimulated with lipopolysaccharide (Escherichia coli serotype O55:B5). After 6 h mRNA samples were collected for EP receptor mRNA expression and at 24 h supernatants were collected for PGE(2), TNF-alpha, and IL-6 production. The expression of EP2-4 receptors was higher in female pro-estrus mice compared with male mice. EP1 receptor expression was higher in males than pro-estrus females. There was decreased expression of all four receptors after trauma in female estrus compared with control estrus mice. Macrophage PGE(2), TNF-alpha, and IL-6 production was significantly increased in injured female mice compared with female controls but there were no differences in injured male mice compared with male controls. PGE(2) and TNF-alpha production by traumatized male mice were significantly less than that produced by traumatized pro-estrus females. These data suggest gender-related differences in response to traumatic injury and that alterations in specific EP receptor subtypes may be involved in immune dysfunction after injury. Studies to evaluate targeted modulation of these receptor subtypes may provide further insights to gender-specific differences in the immune response after injury.

  9. Class A scavenger receptor promotes osteoclast differentiation via the enhanced expression of receptor activator of NF-{kappa}B (RANK)

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Kenichi [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Sakashita, Naomi; Fujiwara, Yukio; Komohara, Yoshihiro; Lei, XiaoFeng; Ohnishi, Koji [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Suzuki, Hiroshi [National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido (Japan); Kodama, Tatsuhiko [Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo (Japan); Mizuta, Hiroshi [Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Takeya, Motohiro, E-mail: takeya@kumamoto-u.ac.jp [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan)

    2010-01-22

    Osteoclasts originate from bone marrow monocyte/macrophage lineage cells, and their differentiation depends on macrophage colony-stimulating factor (M-CSF) and receptor activator nuclear factor kappa B (RANK) ligand. Class A scavenger receptor (SR-A) is one of the principal functional molecules of macrophages, and its level of expression declines during osteoclast differentiation. To investigate the role of SR-A in osteoclastogenesis, we examined pathological changes in femoral bone and the expression levels of osteoclastogenesis-related molecules in SR-A{sup -/-} mice. The femoral osseous density of SR-A{sup -/-} mice was higher than that of SR-A{sup +/+} mice, and the number of multinucleated osteoclasts was significantly decreased. An in vitro differentiation assay revealed that the differentiation of multinucleated osteoclasts from bone marrow-derived progenitor cells is impaired in SR-A{sup -/-} mice. Elimination of SR-A did not alter the expression level of the M-CSF receptor, c-fms; however, the expression levels of RANK and RANK-related osteoclast-differentiation molecules such as nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) and microphthalmia-associated transcription factor (MITF) significantly decreased. Furthermore, acetylated low-density lipoprotein (AcLDL), an SR-A ligand, significantly increased the expression level of RANK and MITF during osteoclast differentiation. These data indicate that SR-A promotes osteoclastogenesis via augmentation of the expression level of RANK and its related molecules.

  10. Inhibition of nicotinic acetylcholine receptors, a novel facet in the pleiotropic activities of snake venom phospholipases A2.

    Directory of Open Access Journals (Sweden)

    Catherine A Vulfius

    Full Text Available Phospholipases A2 represent the most abundant family of snake venom proteins. They manifest an array of biological activities, which is constantly expanding. We have recently shown that a protein bitanarin, isolated from the venom of the puff adder Bitis arietans and possessing high phospholipolytic activity, interacts with different types of nicotinic acetylcholine receptors and with the acetylcholine-binding protein. To check if this property is characteristic to all venom phospholipases A2, we have studied the capability of these enzymes from other snakes to block the responses of Lymnaea stagnalis neurons to acetylcholine or cytisine and to inhibit α-bungarotoxin binding to nicotinic acetylcholine receptors and acetylcholine-binding proteins. Here we present the evidence that phospholipases A2 from venoms of vipers Vipera ursinii and V. nikolskii, cobra Naja kaouthia, and krait Bungarus fasciatus from different snake families suppress the acetylcholine- or cytisine-elicited currents in L. stagnalis neurons and compete with α-bungarotoxin for binding to muscle- and neuronal α7-types of nicotinic acetylcholine receptor, as well as to acetylcholine-binding proteins. As the phospholipase A2 content in venoms is quite high, under some conditions the activity found may contribute to the deleterious venom effects. The results obtained suggest that the ability to interact with nicotinic acetylcholine receptors may be a general property of snake venom phospholipases A2, which add a new target to the numerous activities of these enzymes.

  11. Inhibition of nicotinic acetylcholine receptors, a novel facet in the pleiotropic activities of snake venom phospholipases A2.

    Science.gov (United States)

    Vulfius, Catherine A; Kasheverov, Igor E; Starkov, Vladislav G; Osipov, Alexey V; Andreeva, Tatyana V; Filkin, Sergey Yu; Gorbacheva, Elena V; Astashev, Maxim E; Tsetlin, Victor I; Utkin, Yuri N

    2014-01-01

    Phospholipases A2 represent the most abundant family of snake venom proteins. They manifest an array of biological activities, which is constantly expanding. We have recently shown that a protein bitanarin, isolated from the venom of the puff adder Bitis arietans and possessing high phospholipolytic activity, interacts with different types of nicotinic acetylcholine receptors and with the acetylcholine-binding protein. To check if this property is characteristic to all venom phospholipases A2, we have studied the capability of these enzymes from other snakes to block the responses of Lymnaea stagnalis neurons to acetylcholine or cytisine and to inhibit α-bungarotoxin binding to nicotinic acetylcholine receptors and acetylcholine-binding proteins. Here we present the evidence that phospholipases A2 from venoms of vipers Vipera ursinii and V. nikolskii, cobra Naja kaouthia, and krait Bungarus fasciatus from different snake families suppress the acetylcholine- or cytisine-elicited currents in L. stagnalis neurons and compete with α-bungarotoxin for binding to muscle- and neuronal α7-types of nicotinic acetylcholine receptor, as well as to acetylcholine-binding proteins. As the phospholipase A2 content in venoms is quite high, under some conditions the activity found may contribute to the deleterious venom effects. The results obtained suggest that the ability to interact with nicotinic acetylcholine receptors may be a general property of snake venom phospholipases A2, which add a new target to the numerous activities of these enzymes.

  12. Adenosine A2A receptor agonist prevents cardiac remodeling and dysfunction in spontaneously hypertensive male rats after myocardial infarction

    Science.gov (United States)

    da Silva, Jaqueline S; Gabriel-Costa, Daniele; Sudo, Roberto T; Wang, Hao; Groban, Leanne; Ferraz, Emanuele B; Nascimento, José Hamilton M; Fraga, Carlos Alberto M; Barreiro, Eliezer J; Zapata-Sudo, Gisele

    2017-01-01

    Background This work evaluated the hypothesis that 3,4-methylenedioxybenzoyl-2-thienylhydrazone (LASSBio-294), an agonist of adenosine A2A receptor, could be beneficial for preventing cardiac dysfunction due to hypertension associated with myocardial infarction (MI). Methods Male spontaneously hypertensive rats (SHR) were randomly divided into four groups (six animals per group): sham-operation (SHR-Sham), and myocardial infarction rats (SHR-MI) were treated orally either with vehicle or LASSBio-294 (10 and 20 mg.kg−1.d−1) for 4 weeks. Echocardiography and in vivo hemodynamic parameters measured left ventricle (LV) structure and function. Exercise tolerance was evaluated using a treadmill test. Cardiac remodeling was accessed by LV collagen deposition and tumor necrosis factor α expression. Results Early mitral inflow velocity was significantly reduced in the SHR-MI group, and there was significant recovery in a dose-dependent manner after treatment with LASSBio-294. Exercise intolerance observed in the SHR-MI group was prevented by 10 mg.kg−1.d−1 of LASS-Bio-294, and exercise tolerance exceeded that of the SHR-Sham group at 20 mg.kg−1.d−1. LV end-diastolic pressure increased after MI, and this was prevented by 10 and 20 mg.kg−1.d−1 of LASSBio-294. Sarcoplasmic reticulum Ca2+ ATPase levels were restored in a dose-dependent manner after treatment with LASSBio-294. Fibrosis and inflammatory processes were also counteracted by LASSBio-294, with reductions in LV collagen deposition and tumor necrosis factor α expression. Conclusion In summary, oral administration of LASSBio-294 after MI in a dose-dependent manner prevented the development of cardiac dysfunction, demonstrating this compound’s potential as an alternative treatment for heart failure in the setting of ischemic heart disease with superimposed chronic hypertension.

  13. CB1 and CB2 cannabinoid receptor expression during development and in epileptogenic developmental pathologies

    NARCIS (Netherlands)

    Zurolo, E.; Iyer, A.M.; Spliet, W.G.M.; van Rijen, P.C.; Troost, D.; Gorter, J.A.; Aronica, E.

    2010-01-01

    Recent data support the involvement of the endocannabinoid signaling in early brain development, as well as a key role of cannabinoid receptors (CBR) in pathological conditions associated with unbalanced neuronal excitability and inflammation. Using immunocytochemistry, we explored the expression an

  14. Expression of urokinase receptors by human trophoblast. A histochemical and ultrastructural analysis

    DEFF Research Database (Denmark)

    Multhaupt, H A; Mazar, A; Cines, D B

    1994-01-01

    BACKGROUND: Through their ability to invade endometrium, remodel the uterine spiral arteries, and sustain placental blood fluidity, trophoblast cells play a central role in establishing and maintaining the integrity of the uteroplacental vasculature. The expression of urokinase receptors by troph...

  15. T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors

    DEFF Research Database (Denmark)

    Jamnani, Fatemeh Rahimi; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad Ali;

    2014-01-01

    Adoptive cell therapy with engineered T cells expressing chimeric antigen receptors (CARs) originated from antibodies is a promising strategy in cancer immunotherapy. Several unsuccessful trials, however, highlight the need for alternative conventional binding domains and the better combination...

  16. Effect of Curcumin on the Gene Expression of Low Density Lipoprotein Receptors

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective: To investigate the molecular mechanisms and effective target ponits of lipid-lowering drug, Rhizoma Curcumae Longae, and study the effect of curcumin on the expression of low density lipoprotein (LDL) receptors in macrophages in mice. Methods: Macrophages in mice were treated with curcumin, which was purified from the ethanolly extraction of Rhizoma Curcumae Longae for 24 h. The LDL receptors expressed in the macrophages were determined by enzyme-linked immunosorbent assay (ELISA) and assay of Dil labeled LDL uptake by flow cytometer. Results: It was found for the first time that 10 μmol/L-50μmol/L curcumin could obviously up-regulate the expression of LDL receptor in macrophages in mice, and a dose-effect relationship was demonstrated. Conclusion: One of the lipid-lowering mechanisms of traditional Chinese medicine, Rhizoma Curcumae Longae, was completed by the effect of curcumin through the up-regulation of the expression of LDL receptor.

  17. Expression of vascular endothelial growth factor and its two receptors in normal human endometrium

    Institute of Scientific and Technical Information of China (English)

    王海燕; 陈贵安

    2003-01-01

    Objectives: We try to demonstrate the expression of vascular endothelial growthfactor (VEGF) and its receptors, flt-1 and KDR, in normal human emdometrium duringthe menstrual cycle.Methods: Immunohistochemical method was used to observe the expression ofVEGF and its two receptors in emdometrium throughout the normal menstrual cyclemeanwhile the isoforms of VEGF were also detected by Western blot analysis. The en-dothelial cells of micro-vessels were marked with Ⅷ factor antibody.Results: VEGF and its receptors existed in endometrial glandular, stromal and vas-cular endothelial cells of human endometrium. Their expressions were higher in the mid-secretory phase of menstrual cycle and highest at menstruation. VEGF121 and VEGF165were the predominant isoforms in normal human endometrium.Conclusion: The expression of VEGF and its two receptors showed cycle-dependentin human endometrium, probably involved in embryonic implantation and endometrialproliferation and differentiation.

  18. Adenosine A2A receptors in both bone marrow cells and non-bone marrow cells contribute to traumatic brain injury.

    Science.gov (United States)

    Dai, Shuang-Shuang; Li, Wei; An, Jian-Hong; Wang, Hao; Yang, Nan; Chen, Xing-Yun; Zhao, Yan; Li, Ping; Liu, Ping; Chen, Jiang-Fan; Zhou, Yuan-Guo

    2010-06-01

    Adenosine A2A receptors (A(2A)Rs) in bone marrow-derived cells (BMDCs) are involved in regulation of inflammation and outcome in several CNS injuries; however their relative contribution to traumatic brain injury (TBI) is unknown. In this study, we created a mouse cortical impact model, and BMDC A(2A)Rs were selectively inactivated in wild-type (WT) mice or reconstituted in global A(2A)R knockout (KO) mice (i.e. inactivation of non-BMDC A(2A)Rs) by bone marrow transplantation. When compared with WT mice, selective inactivation of BMDC A(2A)Rs significantly attenuated the neurological deficits, brain water content and cell apoptosis at 24 h post-TBI as global A(2A)R KO did. However, compared with the A(2A)R KO mice, selective reconstitution of BMDC A(2A)Rs failed to reinstate brain injury, indicating the contribution of the non-BMDC A(2A)R to TBI. Furthermore, the protective outcome by selective inactivation of BMDC A(2A)R or broad inactivation of non-BMDC A(2A)Rs was accompanied with reduced CSF glutamate level and suppression of the inflammatory cytokines interleukin-1, or interleukin-1 and tumor necrosis factor-alpha. These findings demonstrate that inactivation of A(2A)Rs in either BMDCs or non-BMDCs is sufficient to confer the protective effect as global A(2A)R KO against TBI, indicating the A(2A)R involvement in TBI by multiple cellular mechanisms of A(2A)R involvement including inhibition of glutamate release and inflammatory cytokine expressions.

  19. Mouse Leydig cells express multiple P2X receptor subunits

    OpenAIRE

    2008-01-01

    ATP acts on cellular membranes by interacting with P2X (ionotropic) and P2Y (metabotropic) receptors. Seven homomeric P2X receptors (P2X1–P2X7) and seven heteromeric receptors (P2X1/2, P2X1/4, P2X1/5, P2X2/3, P2X2/6, P2X4/6, P2X4/7) have been described. ATP treatment of Leydig cells leads to an increase in [Ca2+]i and testosterone secretion, supporting the hypothesis that Ca2+ signaling through purinergic receptors contributes to the process of testosterone secretion in these cells. Mouse Ley...

  20. Upregulation of neurokinin-1 receptor expression in the lungs of patients with sarcoidosis.

    LENUS (Irish Health Repository)

    O'Connor, Terence M

    2012-02-03

    Substance P (SP) is a proinflammatory neuropeptide that is secreted by sensory nerves and inflammatory cells. Increased levels of SP are found in sarcoid bronchoalveolar lavage fluid. SP acts by binding to the neurokinin-1 receptor and increases secretion of tumor necrosis factor-alpha in many cell types. We sought to determine neurokinin-1 receptor expression in patients with sarcoidosis compared with normal controls. Neurokinin-1 receptor messenger RNA and protein expression were below the limits of detection by reverse transcriptase-polymerase chain reaction and immunohistochemistry in peripheral blood mononuclear cells of healthy volunteers (n = 9) or patients with stage 1 or 2 pulmonary sarcoidosis (n = 10), but were detected in 1\\/9 bronchoalveolar lavage cells of controls compared with 8\\/10 patients with sarcoidosis (p = 0.012) and 2\\/9 biopsies of controls compared with 9\\/10 patients with sarcoidosis (p = 0.013). Immunohistochemistry localized upregulated neurokinin-1 receptor expression to bronchial and alveolar epithelial cells, macrophages, lymphocytes, and sarcoid granulomas. The patient in whom neurokinin-1 receptor was not detected was taking corticosteroids. Incubation of the type II alveolar and bronchial epithelial cell lines A549 and SK-LU 1 with dexamethasone downregulated neurokinin-1 receptor expression. Upregulated neurokinin-1 receptor expression in patients with sarcoidosis may potentiate substance P-induced proinflammatory cytokine production in patients with sarcoidosis.

  1. Expression of steroid receptors in ameloblasts during amelogenesis in rat incisors

    Directory of Open Access Journals (Sweden)

    Sophia Houari

    2016-11-01

    Full Text Available Endocrine disrupting chemicals (EDCs play a part in the modern burst of diseases and interfere with the steroid hormone axis. Bisphenol A (BPA, one of the most active and widely used EDCs, affects ameloblast functions, leading to an enamel hypomineralization pattern similar to that of Molar Incisor Hypomineralization (MIH. In order to explore the molecular pathways stimulated by BPA during amelogenesis, we thoroughly investigated the receptors known to directly or indirectly mediate the effects of BPA. The expression patterns of high affinity BPA receptors (ERRγ, GPR30, of ketosteroid receptors (ERs, AR, PGR, GR, MR, of the retinoid receptor RXRα and PPARγ were established using RT-qPCR analysis of RNAs extracted from microdissected enamel organ of adult rats. Their expression was dependent on the stage of ameloblast differentiation, except that of ERβ and PPARγ which remained undetectable. An additional large scale microarray analysis revealed three main groups of receptors according to their level of expression in maturation stage ameloblasts. The expression level of RXRα was the highest, similar to the vitamin D receptor (VDR, whereas the others were 13 to 612 fold lower, with AR and GR being intermediate. Immunofluorescent analysis of VDR, ERα and AR confirmed their presence mainly in maturation- stage ameloblasts. These data provide further evidence that ameloblasts express a specific combination of hormonal receptors depending on their developmental stage. This study represents the first step towards understanding dental endocrinology as well as some of the effects of EDCs on the pathophysiology of amelogenesis.

  2. Expression of Steroid Receptors in Ameloblasts during Amelogenesis in Rat Incisors.

    Science.gov (United States)

    Houari, Sophia; Loiodice, Sophia; Jedeon, Katia; Berdal, Ariane; Babajko, Sylvie

    2016-01-01

    Endocrine disrupting chemicals (EDCs) play a part in the modern burst of diseases and interfere with the steroid hormone axis. Bisphenol A (BPA), one of the most active and widely used EDCs, affects ameloblast functions, leading to an enamel hypomineralization pattern similar to that of Molar Incisor Hypomineralization (MIH). In order to explore the molecular pathways stimulated by BPA during amelogenesis, we thoroughly investigated the receptors known to directly or indirectly mediate the effects of BPA. The expression patterns of high affinity BPA receptors (ERRγ, GPR30), of ketosteroid receptors (ERs, AR, PGR, GR, MR), of the retinoid receptor RXRα, and PPARγ were established using RT-qPCR analysis of RNAs extracted from microdissected enamel organ of adult rats. Their expression was dependent on the stage of ameloblast differentiation, except that of ERβ and PPARγ which remained undetectable. An additional large scale microarray analysis revealed three main groups of receptors according to their level of expression in maturation-stage ameloblasts. The expression level of RXRα was the highest, similar to the vitamin D receptor (VDR), whereas the others were 13 to 612-fold lower, with AR and GR being intermediate. Immunofluorescent analysis of VDR, ERα and AR confirmed their presence mainly in maturation- stage ameloblasts. These data provide further evidence that ameloblasts express a specific combination of hormonal receptors depending on their developmental stage. This study represents the first step toward understanding dental endocrinology as well as some of the effects of EDCs on the pathophysiology of amelogenesis.

  3. Expression of Steroid Receptors in Ameloblasts during Amelogenesis in Rat Incisors

    Science.gov (United States)

    Houari, Sophia; Loiodice, Sophia; Jedeon, Katia; Berdal, Ariane; Babajko, Sylvie

    2016-01-01

    Endocrine disrupting chemicals (EDCs) play a part in the modern burst of diseases and interfere with the steroid hormone axis. Bisphenol A (BPA), one of the most active and widely used EDCs, affects ameloblast functions, leading to an enamel hypomineralization pattern similar to that of Molar Incisor Hypomineralization (MIH). In order to explore the molecular pathways stimulated by BPA during amelogenesis, we thoroughly investigated the receptors known to directly or indirectly mediate the effects of BPA. The expression patterns of high affinity BPA receptors (ERRγ, GPR30), of ketosteroid receptors (ERs, AR, PGR, GR, MR), of the retinoid receptor RXRα, and PPARγ were established using RT-qPCR analysis of RNAs extracted from microdissected enamel organ of adult rats. Their expression was dependent on the stage of ameloblast differentiation, except that of ERβ and PPARγ which remained undetectable. An additional large scale microarray analysis revealed three main groups of receptors according to their level of expression in maturation-stage ameloblasts. The expression level of RXRα was the highest, similar to the vitamin D receptor (VDR), whereas the others were 13 to 612-fold lower, with AR and GR being intermediate. Immunofluorescent analysis of VDR, ERα and AR confirmed their presence mainly in maturation- stage ameloblasts. These data provide further evidence that ameloblasts express a specific combination of hormonal receptors depending on their developmental stage. This study represents the first step toward understanding dental endocrinology as well as some of the effects of EDCs on the pathophysiology of amelogenesis. PMID:27853434

  4. Expression of folate receptors in nasopharyngeal and laryngeal carcinoma and folate receptor-mediated endocytosis by molecular targeted nanomedicine

    Directory of Open Access Journals (Sweden)

    Xie M

    2013-07-01

    Full Text Available M Xie, H Zhang, Y Xu, T Liu, S Chen, J Wang, T ZhangDepartment of Otorhinolaryngology Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of ChinaAbstract: Immunohistochemistry and an immunofluorescence technique was used to detect folate receptor expression in tissue samples and cell lines of head and neck squamous carcinoma, including 20 tissue samples of nasopharyngeal carcinoma, 16 tissue samples of laryngeal carcinoma, and HNE-1, HNE-2, CNE-1, CNE-2, SUNE-1, 5-8F, and Hep-2 cell lines. Iron staining, electron microscopy, and magnetic resonance imaging were used to observe endocytosis of folate-conjugated cisplatin-loaded magnetic nanoparticles (CDDP-FA-ASA-MNP in cultured cells and transplanted tumors. As shown by immunohistochemistry, 83.3% (30/36 of the head and neck squamous carcinomas expressed the folate receptor versus none in the control group (0/24. Only the HNE-1 and Hep-2 cell lines expressed the folate receptor, and the other five cell lines did not. Endocytosis of CDDP-FA-ASA-MNP was seen in HNE-1 and Hep-2 cells by iron staining and electron microscopy. A similar result was seen in transplanted tumors in nude mice. Magnetic resonance imaging showed low signal intensity of HNE-1 cells and HNE-1 transplanted tumors on T2-weighted images after uptake of CDDP-FA-ASA-MNP, and this was not seen in CNE-2 transplanted tumors. In conclusion, head and neck squamous carcinoma cell strongly expressed the folate receptor, while normal tissue did not. The folate receptor can mediate endocytosis of folate-conjugated anticancer nanomedicines, and lays the foundation for molecular targeted treatment of cancer.Keywords: nasopharyngeal carcinoma, laryngeal carcinoma, folate receptor, molecular targeting, cisplatin, nanomedicine

  5. Metabotropic glutamate receptor 5 upregulates surface NMDA receptor expression in striatal neurons via CaMKII

    OpenAIRE

    Jin, Dao-Zhong; Xue, Bing; Mao, Li-Min; Wang, John Q

    2015-01-01

    Metabotropic and ionotropic glutamate receptors are closely clustered in postsynaptic membranes and are believed to interact actively with each other to control excitatory synaptic transmission. Metabotropic glutamate receptor 5 (mGluR5), for example, has been well documented to potentiate ionotropic NMDA receptor activity, although underlying mechanisms are poorly understood. In this study, we investigated the role of mGluR5 in regulating trafficking and subcellular distribution of NMDA rece...

  6. Differential Regulation of α7 Nicotinic Receptor Gene (CHRNA7) Expression in Schizophrenic Smokers

    OpenAIRE

    Mexal, Sharon; Berger, Ralph; Logel, Judy; Ross, Randal G.; Freedman, Robert; Leonard, Sherry

    2009-01-01

    The α7 neuronal nicotinic receptor gene (CHRNA7) has been implicated in the pathophysiology of schizophrenia by genetic and pharmacological studies. Expression of the α7* receptor, as measured by [125I]α-bungarotoxin autoradiography, is decreased in postmortem brain of schizophrenic subjects compared to non-mentally ill controls. Most schizophrenic patients are heavy smokers, with high levels of serum cotinine. Smoking changes the expression of multiple genes and differentially regulates gene...

  7. Developmental expression analysis and immunolocalization of a biogenic amine receptor in Schistosoma mansoni

    OpenAIRE

    El-Shehabi, Fouad; Vermeire, Jon J.; Yoshino, Timothy P.; Ribeiro, Paula

    2009-01-01

    A Schistosoma mansoni G-protein coupled receptor (SmGPCR) was previously cloned and shown to be activated by the biogenic amine, histamine. Here we report a first investigation of the receptor’s subunit organization, tissue distribution and expression levels in different stages of the parasite. A polyclonal antibody was produced in rabbits against the recombinant third intracellular loop (il3) of SmGPCR. Western blot studies of the native receptor and recombinant protein expressed in HEK293 c...

  8. Enhanced expression of peroxisome proliferator-activated receptor gamma in epithelial ovarian carcinoma

    OpenAIRE

    Zhang, G.Y.; Ahmed, N; Riley, C; Oliva, K; Barker, G.; Quinn, M A; Rice, G E

    2004-01-01

    The peroxisome proliferator-activated receptors (PPARs) belong to a subclass of nuclear hormone receptor that executes important cellular transcriptional functions. Previous studies have demonstrated the expression of PPAR? in several tumours including colon, breast, bladder, prostate, lung and stomach. This study demonstrates the relative expression of PPAR? in normal ovaries and different pathological grades of ovarian tumours of serous, mucinous, endometrioid, clear cell and mixed subtypes...

  9. Arx together with FoxA2, regulates Shh floor plate expression.

    Science.gov (United States)

    Cho, Ginam; Lim, Youngshin; Cho, Il-Taeg; Simonet, Jacqueline C; Golden, Jeffrey A

    2014-09-01

    Mutations in the Aristaless related homeodomain transcription factor (ARX) are associated with a diverse set of X-linked mental retardation and epilepsy syndromes in humans. Although most studies have been focused on its function in the forebrain, ARX is also expressed in other regions of the developing nervous system including the floor plate (FP) of the spinal cord where its function is incompletely understood. To investigate the role of Arx in the FP, we performed gain-of-function studies in the chick using in ovo electroporation, and loss-of-function studies in Arx-deficient mice. We have found that Arx, in conjunction with FoxA2, directly induces Sonic hedgehog (Shh) expression through binding to a Shh floor plate enhancer (SFPE2). We also observed that FoxA2 induces Arx through its transcriptional activation domain whereas Nkx2.2, induced by Shh, abolishes this induction. Our data support a feedback loop model for Arx function; through interactions with FoxA2, Arx positively regulates Shh expression in the FP, and Shh signaling in turn activates Nkx2.2, which suppresses Arx expression. Furthermore, our data are evidence that Arx plays a role as a context dependent transcriptional activator, rather than a primary inducer of Shh expression, potentially explaining how mutations in ARX are associated with diverse, and often subtle, defects.

  10. BMPR2 expression is suppressed by signaling through the estrogen receptor

    Directory of Open Access Journals (Sweden)

    Austin Eric D

    2012-02-01

    Full Text Available Abstract Background Studies in multiple organ systems have shown cross-talk between signaling through the bone morphogenetic protein receptor type 2 (BMPR2 and estrogen pathways. In humans, pulmonary arterial hypertension (PAH has a female predominance, and is associated with decreased BMPR2 expression. The goal of this study was to determine if estrogens suppress BMPR2 expression. Methods A variety of techniques were utilized across several model platforms to evaluate the relationship between estrogens and BMPR2 gene expression. We used quantitative RT-PCR, gel mobility shift, and luciferase activity assays in human samples, live mice, and cell culture. Results BMPR2 expression is reduced in lymphocytes from female patients compared with male patients, and in whole lungs from female mice compared with male mice. There is an evolutionarily conserved estrogen receptor binding site in the BMPR2 promoter, which binds estrogen receptor by gel-shift assay. Increased exogenous estrogen decreases BMPR2 expression in cell culture, particularly when induced to proliferate. Transfection of increasing quantities of estrogen receptor alpha correlates strongly with decreasing expression of BMPR2. Conclusions BMPR2 gene expression is reduced in females compared to males in live humans and in mice, likely through direct estrogen receptor alpha binding to the BMPR2 promoter. This reduced BMPR2 expression may contribute to the increased prevalence of PAH in females.

  11. Chemokine receptor expression on B cells and effect of interferon-beta in multiple sclerosis

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Roed, Hanne; Sellebjerg, Finn

    2002-01-01

    We investigated the B-cell expression of chemokine receptors CXCR3, CXCR5 and CCR5 in the blood and cerebrospinal fluid (CSF) from patients in relapse of multiple sclerosis (MS) and in neurological controls. Chemokine receptor expression was also studied in interferon-beta-treated patients...... with relapsing-remitting or secondary progressive MS. We observed significantly higher expression of CXCR3 on B cells in the CSF in active MS than in controls. Patients with active MS also had higher B-cell expression of CCR5 in blood. No major differences between RRMS and SPMS patients were detected...

  12. Caffeine induces CYP1A2 expression in rat hepatocytes but not in human hepatocytes

    OpenAIRE

    Vaynshteyn, David; Jeong, Hyunyoung

    2012-01-01

    Caffeine is the active constituent in coffee. Continual consumption of caffeine can lead to an attenuated response also known as tolerance. Results from rat studies have shown that caffeine is an inducer of CYP1A2, the enzyme responsible for caffeine’s metabolism. This suggests that CYP1A2 induction by caffeine may be in part responsible for caffeine tolerance. However, whether caffeine induces CYP1A2 expression in humans remains unknown. Our results from luciferase assays performed in HepG2 ...

  13. Changes of expression of estrogen and progestrone receptors, human epithelial growth factor receptor 2 and Ki-67 after neoadjuvant chemotherapy in the treatment of breast cancer.

    Science.gov (United States)

    Li, M L; Dong, Y; Luan, S L; Zhao, Z H; Ning, F L

    2016-01-01

    Recent studies suggest that the development and prognosis of breast cancer is in close correlation to molecular subtype of breast cancer. Neoadjuvant chemotherapy has been extensively applied in the treatment of local breast cancer in advanced stage. In order to verify the correlation between expression changes of estrogen receptor, progestrone receptor, human epithelial growth factor receptor 2 and Ki-67 after neoadjuvant chemotherapy and neoadjuvant chemotherapy, we studied 120 patients with stage IIAIIIC breast cancer who underwent neoadjuvant chemotherapy in Binzhou Medical University Hospital, Shandong, China from February 2011 to February 2015. Clinical characteristics were retrospectively analyzed. The expression of estrogen receptor, progesterone receptor, human epithelial growth factor receptor 2 and Ki-67 of patients were detected using the immunohistochemical method before and after neoadjuvant chemotherapy. The results suggest that the overall remission rate of neoadjuvant chemotherapy was 76.7% (92/120) of which 16.7% (20/120) of cases had complete remission, 60% (72/120) had partial remission and 23.3% (28/120) were stable. There were no cases of progressive disease. The property of estrogen receptor and the expression of Ki-67 of primary tumor were correlated to the remission rate of neoadjuvant chemotherapy (P less than 0.05). The expression of Ki-67 had a significant decline after neoadjuvant chemotherapy, and the difference had statistical significance (P less than 0.05). The difference in expression of estrogen receptor, progesterone receptor and human epithelial growth factor receptor 2 before and after neoadjuvant chemotherapy had statistical significance (P > 0.05). Hence, it can be concluded that breast cancer patients with negative estrogen receptor expression and high Ki-67 expression before neoadjuvant chemotherapy can achieve better curative effects. Neoadjuvant chemotherapy cannot change the expression states of estrogen receptor

  14. α2-containing GABAA receptors expressed in hippocampal region CA3 control fast network oscillations.

    Science.gov (United States)

    Heistek, Tim S; Ruiperez-Alonso, Marta; Timmerman, A Jaap; Brussaard, Arjen B; Mansvelder, Huibert D

    2013-02-15

    GABA(A) receptors are critically involved in hippocampal oscillations. GABA(A) receptor α1 and α2 subunits are differentially expressed throughout the hippocampal circuitry and thereby may have distinct contributions to oscillations. It is unknown which GABA(A) receptor α subunit controls hippocampal oscillations and where these receptors are expressed. To address these questions we used transgenic mice expressing GABA(A) receptor α1 and/or α2 subunits with point mutations (H101R) that render these receptors insensitive to allosteric modulation at the benzodiazepine binding site, and tested how increased or decreased function of α subunits affects hippocampal oscillations. Positive allosteric modulation by zolpidem prolonged decay kinetics of hippocampal GABAergic synaptic transmission and reduced the frequency of cholinergically induced oscillations. Allosteric modulation of GABAergic receptors in CA3 altered oscillation frequency in CA1, while modulation of GABA receptors in CA1 did not affect oscillations. In mice having a point mutation (H101R) at the GABA(A) receptor α2 subunit, zolpidem effects on cholinergically induced oscillations were strongly reduced compared to wild-type animals, while zolpidem modulation was still present in mice with the H101R mutation at the α1 subunit. Furthermore, genetic knockout of α2 subunits strongly reduced oscillations, whereas knockout of α1 subunits had no effect. Allosteric modulation of GABAergic receptors was strongly reduced in unitary connections between fast spiking interneurons and pyramidal neurons in CA3 of α2H101R mice, but not of α1H101R mice, suggesting that fast spiking interneuron to pyramidal neuron synapses in CA3 contain α2 subunits. These findings suggest that α2-containing GABA(A) receptors expressed in the CA3 region provide the inhibition that controls hippocampal rhythm during cholinergically induced oscillations.

  15. Selective Expression of Progesterone Receptor in Malignant Melanoma Was Inversely Correlated with PCNA

    Institute of Scientific and Technical Information of China (English)

    Jiawen LI; Xianfeng FANG; Xu'e CHEN; Jing CHEN

    2008-01-01

    To investigate the role of progesterone receptor (PR) expression in malignant melanoma (MM), PR and proliferative cell nuclear antigen (PCNA) expression were immunohistochemistri- tally evaluated in a series of 35 specimens of MM, and the correlation between the immunohisto- chemistrical findings and clinicopathological data was also analyzed. PR expression was detected in 25.7% (9/35) of the patients with MM. No PR expression was observed in nevi. PR expression was inversely correlated with PCNA expression (r=-0.353, P=0.026). PR expression was slightly in- creased in females, subjects aged under 55 y, those with ulceration, non-acral subtype and diagnosis delay longer than 1 y, but the difference was not statistically significant. Selective expression of pro- gesterone receptor in malignant melanoma might be correlated with inhibited tumor growth.

  16. Cloning and expression and immunogenicity of Helicobacter pylori BabA2 gene

    Institute of Scientific and Technical Information of China (English)

    Yang Bai; Ya-Li Zhang; Ye Chen; Jian-Feng Jin; Zhao-Shan Zhang; Dian-Yuan Zhou

    2004-01-01

    AIM: To construct a recombinant strain which expresses BabA of Helicobacter pylori(H pylori) and to study the immunogenicity of BabA.METHODS: BabA2 DNA was amplified by PCR and inserted into the prokaryotie expression vector pET-22b (+) and expressed in the BL21 (DE3) E. coli strain. Furthermore,BabA immunogenicity was studied by animal test.RESULTS: DNA sequence analysis showed the sequence of BabA2 DNA was the same as the one published by GenBank.The BabA recombinant protein accounted for 34.8% of the total bacterial protein. The serum from H pylori infected patients and Balb/c miced immunized with BabA itself could recognize rBabA.CONCLUSION: BabA recombinant protein may be an potential vaccine for control and treatment of H pylori infection.

  17. CB1 and CB2 receptor expression and promoter methylation in patients with cannabis dependence.

    Science.gov (United States)

    Rotter, Andrea; Bayerlein, Kristina; Hansbauer, Max; Weiland, Judith; Sperling, Wolfgang; Kornhuber, Johannes; Biermann, Teresa

    2013-01-01

    CB1 and CB2 receptors are influenced via exogenous and endogenous cannabinoids. To date, little is known regarding changes in receptor expression and methylation in THC (tetrahydrocannabinol) dependence. Therefore, the CB1 and CB2 receptor mRNA expression levels and promoter methylation status in the peripheral blood cells of 77 subjects (36 with THC dependence, 21 cigarette smokers and 20 nonsmokers) were assessed by quantitative real-time PCR and methylation-specific PCR. There was a significant difference in CB1 receptor expression levels between the three groups (ANOVA, p CB1 receptor mRNA expression levels (Spearman's rho: r = -0.37; p = 0.002). Using a mixed general linear model, it was demonstrated that the CB1 mRNA expression (as the dependent variable) was associated with the satisfaction with life scale (SWLS) (r = 0.101; T = 2.8; p = 0.007), craving (as measured with the VAS; r = -0.023; T = -2.3; p = 0.023) and the WHO-Assist Subscale for Cannabis consumption (r = -0.068; T = -2.4; p = 0.02). CB1 receptor expression levels and methylation status appear to be altered in subjects with THC dependence.

  18. Synthesis and Preliminary Evaluation of a 2-Oxoquinoline Carboxylic Acid Derivative for PET Imaging the Cannabinoid Type 2 Receptor

    Directory of Open Access Journals (Sweden)

    Linjing Mu

    2014-03-01

    Full Text Available Cannabinoid receptor subtype 2 (CB2 has been shown to be up-regulated in activated microglia and therefore plays an important role in neuroinflammatory and neurodegenerative diseases such as multiple sclerosis, amyotrophic lateral sclerosis and Alzheimer’s disease. The CB2 receptor is therefore considered as a very promising target for therapeutic approaches as well as for imaging. A promising 2-oxoquinoline derivative designated KP23 was synthesized and radiolabeled and its potential as a ligand for PET imaging the CB2 receptor was evaluated. [11C]KP23 was obtained in 10%–25% radiochemical yield (decay corrected and 99% radiochemical purity. It showed high stability in phosphate buffer, rat and mouse plasma. In vitro autoradiography of rat and mouse spleen slices, as spleen expresses a high physiological expression of CB2 receptors, demonstrated that [11C]KP23 exhibits specific binding towards CB2. High spleen uptake of [11C]KP23 was observed in dynamic in vivo PET studies with Wistar rats. In conclusion, [11C]KP23 showed promising in vitro and in vivo characteristics. Further evaluation with diseased animal model which has higher CB2 expression levels in the brain is warranted.

  19. Differential role of nitric oxide in regional sympathetic responses to stimulation of NTS A2a adenosine receptors.

    Science.gov (United States)

    Scislo, Tadeusz J; Tan, Nobusuke; O'Leary, Donal S

    2005-02-01

    Our previous studies showed that preganglionic adrenal (pre-ASNA), renal (RSNA), lumbar, and postganglionic adrenal sympathetic nerve activities (post-ASNA) are inhibited after stimulation of arterial baroreceptors, nucleus of the solitary tract (NTS), and glutamatergic and P2x receptors and are activated after stimulation of adenosine A1 receptors. However, stimulation of adenosine A2a receptors inhibited RSNA and post-ASNA, whereas it activated pre-ASNA. Because the effects evoked by NTS A2a receptors may be mediated via activation of nitric oxide (NO) mechanisms in NTS neurons, we tested the hypothesis that NO synthase (NOS) inhibitors would attenuate regional sympathetic responses to NTS A2a receptor stimulation, whereas NO donors would evoke contrasting responses from pre-ASNA versus RSNA and post-ASNA. Therefore, in chloralose/urethane-anesthetized rats, we compared hemodynamic and regional sympathetic responses to microinjections of selective A2a receptor agonist (CGS-21680, 20 pmol/50 nl) after pretreatment with NOS inhibitors Nomega-nitro-L-arginine methyl ester (10 nmol/100 nl) and 1-[2-(trifluoromethyl)phenyl]imidazole (100 pmol/100 nl) versus pretreatment with vehicle (100 nl). In addition, responses to microinjections into the NTS of different NO donors [40 and 400 pmol/50 nl sodium nitroprusside (SNP); 0.5 and 5 nmol/50 nl 3,3-bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene (DETA NONOate, also known as NOC-18), and 2 nmol/50 nl 3-(2-hydroxy-2-nitroso-1-propylhydrazino)-1-propanamine (PAPA NONOate, also known as NOC-15)], the NO precursor L-arginine (10-50 nmol/50 nl), and sodium glutamate (500 pmol/50 nl) were evaluated. SNP, DETA NONOate, and PAPA NONOate activated pre-ASNA and inhibited RSNA and post-ASNA, whereas l-arginine and glutamate microinjected into the same site of the NTS inhibited all these sympathetic outputs. Decreases in heart rate and depressor or biphasic responses accompanied the neural responses. Pretreatment with NOS inhibitors

  20. Experimental diabetes increases insulin-like growth factor I and II receptor concentration and gene expression in kidney

    Energy Technology Data Exchange (ETDEWEB)

    Werner, H.; Shen-Orr, Z.; Stannard, B.; Burguera, B.; Roberts, C.T. Jr.; LeRoith, D. (National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD (USA))

    1990-12-01

    Insulinlike growth factor I (IGF-I) is a mitogenic hormone with important regulatory roles in growth and development. One of the target organs for IGF-I action is the kidney, which synthesizes abundant IGF-I receptors and IGF-I itself. To study the involvement of IGF-I and the IGF-I receptor in the development of nephropathy, one of the major complications of diabetes mellitus, we measured the expression of these genes in the kidney and in other tissues of the streptozocin-induced diabetic rat. The binding of 125I-labeled IGF-I to crude membranes was measured in the same tissues. We observed a 2.5-fold increase in the steady-state level of IGF-I-receptor mRNA in the diabetic kidney, which was accompanied by a 2.3-fold increase in IGF-I binding. In addition to this increase in IGF-I binding to the IGF-I receptor, there was also binding to a lower-molecular-weight material that may represent an IGF-binding protein. No change was detected in the level of IGF-I-peptide mRNA. Similarly, IGF-II-receptor mRNA levels and IGF-II binding were significantly increased in the diabetic kidney. IGF-I- and IGF-II-receptor mRNA levels and IGF-I and IGF-II binding returned to control values after insulin treatment. Because the IGF-I receptor is able to transduce mitogenic signals on activation of its tyrosine kinase domain, we hypothesize that, among other factors, high levels of receptor in the diabetic kidney may also be involved in the development of diabetic nephropathy. Increased IGF-II-receptor expression in the diabetic kidney may be important for the intracellular transport and packaging of lysosomal enzymes, although a role for this receptor in signal transduction cannot be excluded. Finally, the possible role of IGF-binding proteins requires further study.

  1. Impact of purification conditions and history on A2A adenosine receptor activity: The role of CHAPS and lipids.

    Science.gov (United States)

    Naranjo, Andrea N; McNeely, Patrick M; Katsaras, John; Robinson, Anne Skaja

    2016-08-01

    The adenosine A2A receptor (A2AR) is a much-studied class A G protein-coupled receptor (GPCR). For biophysical studies, A2AR is commonly purified in a detergent mixture of dodecylmaltoside (DDM), 3-(3-cholamidopropyl) dimethylammoniopropane sulfonate (CHAPS), and cholesteryl hemisuccinate (CHS). Here we studied the effects of CHAPS on the ligand binding activity and stability of wild type, full-length human A2AR. We also tested the cholesterol requirement for maintaining the active conformation of the receptor when solubilized in detergent micelles. To this end, the receptor was purified using DDM, DDM/CHAPS, or the short hydrocarbon chain lipid 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC, di-6:0PC). After solubilization in DDM, DDM/CHAPS, or DHPC micelles, although A2AR was found to retain its native-like fold, its binding ability was significantly compromised compared to DDM or DDM/CHAPS with CHS. It therefore appears that although cholesterol is not needed for A2AR to retain a native-like, α-helical conformation, it may be a critical component for high affinity ligand binding. Further, this result suggests that the conformational differences between the active and inactive protein may be so subtle that commonly used spectroscopic methods are unable to differentiate between the two forms, highlighting the need for activity measurements. The studies presented in this paper also underline the importance of the protein's purification history; i.e., detergents that interact with the protein during purification affect the ligand binding properties of the receptor in an irreversible manner. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Effect of phospholipid hydrolysis by phospholipase A2 on the kinetics of antagonist binding to cardiac muscarinic receptors.

    Science.gov (United States)

    Rauch, B; Niroomand, F; Messineo, F C; Weis, A; Kübler, W; Hasselbach, W

    1994-09-15

    Activation of phospholipases during prolonged myocardial ischemia could contribute to the functional derangement of myocardial cells by altering the phospholipid environment of a number of membrane bound proteins including receptors. The present study examined the kinetics of muscarinic receptor antagonist [3H]quinuclidinyl benzilate binding ([3H]QNB) to muscarinic receptors of highly purified sarcolemmal membranes under control conditions and after treatment with phospholipase A2 (PLA2; EC 3.1.1.4). Initial binding rates of QNB exhibited saturation kinetics, when plotted against the ligand concentration in control and PLA2 treated sarcolemmal membranes. This kinetic behaviour of QNB-binding is consistent with at least a two step binding mechanism. According to this two step binding hypothesis an unstable intermediate receptor-QNB complex (R*QNB) forms rapidly, and this form undergoes a slow conversion to the high affinity ligand-receptor complex R-QNB. The Michaelis constant Km of R-QNB formation was 1.8 nM, whereas the dissociation constant Kd obtained from equilibrium measurements was 0.062 nM. After 5 min exposure of sarcolemmal membranes to PLA2QNB binding capacity (Bmax) was reduced by 62%, and the affinity of the remaining receptor sites was decreased by 47% (Kd = 0.116 nM). This PLA2-induced increase of Kd was accompanied by a corresponding increase of Km, whereas the rate constants k2 and k-2 of the hypothetical slow conversion step (second reaction step) remained unchanged. These results suggest that binding of QNB to cardiac muscarinic receptors induces a transition in the receptor-ligand configuration, which is necessary for the formation of the final high affinity R-QNB complex. PLA2-induced changes of the lipid environment result in the inability of a part of the receptor population to undergo this transition, thereby inhibiting high affinity QNB-binding.

  3. C-type lectin-like domain and fibronectin-like type II domain of phospholipase A(2) receptor 1 modulate binding and migratory responses to collagen.

    Science.gov (United States)

    Takahashi, Soichiro; Watanabe, Kazuhiro; Watanabe, Yosuke; Fujioka, Daisuke; Nakamura, Takamitsu; Nakamura, Kazuto; Obata, Jun-ei; Kugiyama, Kiyotaka

    2015-03-24

    Phospholipase A2 receptor 1 (PLA2R) mediates collagen-dependent migration. The mechanisms by which PLA2R interacts with collagen remain unclear. We produced HEK293 cells expressing full-length wild-type PLA2R or a truncated PLA2R that lacks fibronectin-like type II (FNII) domains or several regions of C-type lectin-like domain (CTLD). We show that the CTLD1-2 as well as the FNII domain of PLA2R are responsible for binding to collagen and for collagen-dependent migration. Thus, multiple regions and domains of the extracellular portion of PLA2R participate in the responses to collagen. These data suggest a potentially new mechanism for PLA2R-mediated biological response beyond that of a receptor for secretory PLA2.

  4. Anti-Phospholipase A2 Receptor Antibodies in Recurrent Membranous Nephropathy

    Science.gov (United States)

    Kattah, Andrea; Ayalon, Rivka; Beck, Laurence H.; Sandor, Dana G.; Cosio, Fernando G.; Gandhi, Manish J.; Sethi, Sanjeev; Lorenz, Elizabeth C.; Salant, David J.; Fervenza, Fernando C.

    2015-01-01

    About 70% of patients with primary membranous nephropathy (MN) have circulating anti-phospholipase A2 receptor (PLA2R) antibodies that correlate with disease activity, but their predictive value in post-transplant (Tx) recurrent MN is uncertain. We evaluated 26 patients, 18 with recurrent MN and 8 without recurrence, with serial post-Tx serum samples and renal biopsies to determine if patients with pre-Tx anti-PLA2R are at increased risk of recurrence as compared to seronegative patients and to determine if post-Tx changes in anti-PLA2R correspond to the clinical course. In the recurrent group, 10/17 patients had anti-PLA2R at the time of Tx vs. 2/7 patients in the non-recurrent group. The positive predictive value of pre-Tx anti-PLA2R for recurrence was 83%, while the negative predictive value was 42%. Persistence or reappearance of post-Tx anti-PLA2R was associated with increasing proteinuria and resistant disease in many cases; little or no proteinuria occurred in cases with pre-Tx anti-PLA2R and biopsy evidence of recurrence in which the antibodies resolved with standard immunosuppression. Some cases with positive pre-Tx anti-PLA2R were seronegative at the time of recurrence. In conclusion, patients with positive pre-Tx anti-PLA2R should be monitored closely for recurrent MN. Persistence or reappearance of antibody post-Tx may indicate a more resistant disease. PMID:25766759

  5. Autoantibodies against phospholipase A2 receptor in Korean patients with membranous nephropathy.

    Science.gov (United States)

    Oh, Yun Jung; Yang, Seung Hee; Kim, Dong Ki; Kang, Shin-Wook; Kim, Yon Su

    2013-01-01

    The data were presented in abstract form at the 45(th) meeting of the American Society of Nephrology, October 30-November 04 2012, San Diego, CA, USA. Circulating autoantibodies against M-type phospholipase A2 receptor (PLA2R) are important pathogenic antibodies of idiopathic membranous nephropathy (MN) in adults. However, previous studies on the clinical impact of anti-PLA2R antibodies demonstrated several limitations, including insufficient numbers of study subjects and different time points and methods for anti-PLA2R antibody measurement. To verify the clinical significance of anti-PLA2R antibodies in Korean patients with MN, we measured autoantibodies in serum samples obtained at the time of biopsy from a total of 100 patients with idiopathic MN who had not yet received immunosuppressive treatment. We detected anti-PLA2R antibody in 69 patients, and we observed that autoantibody reactivity reflected the severity of disease activity. Proteinuria and hypoalbuminemia were more severe in patients with anti-PLA2R than in those without the autoantibodies (2.95 g/g vs. 6.85 g/g, P = 0.003; 3.1 g/dL vs. 2.5 g/dL, P = 0.004, respectively). Additionally, the clinical severities worsened proportionally as the levels of anti-PLA2R antibodies increased (P = 0.015 and P for trend PLA2R antibody showed a significant correlation with clinical outcomes, such as remission rate and time to remission. In conclusion, we observed that anti-PLA2R antibodies are highly prevalent in Korean patients with idiopathic MN and that they reflect the clinical disease activity before the administration of immunosuppressive treatment. However, the levels of anti-PLA2R antibody at the time of kidney biopsy may not predict the clinical outcomes in current clinical practice.

  6. Phospholipase A2 receptor autoantibodies and clinical outcome in patients with primary membranous nephropathy.

    Science.gov (United States)

    Hoxha, Elion; Thiele, Ina; Zahner, Gunther; Panzer, Ulf; Harendza, Sigrid; Stahl, Rolf A K

    2014-06-01

    Membranous nephropathy (MN) is the most common cause of nephrotic syndrome in adults, with an uncertain clinical outcome. The characterization of the phospholipase A2 receptor (PLA2R) as the major target antigen in primary MN and the detection of circulating autoantibodies in these patients is a major advance in understanding this disease. To test whether PLA2R antibody levels reflect disease activity or clinical outcome, we performed a prospective multicenter study of 133 adult patients with primary MN and detectable serum PLA2R antibodies who had not received immunosuppressive therapy. Patients were followed ≤24 months. PLA2R antibody levels associated with clinical disease activity (proteinuria) in patients with immunosuppressive therapy (n=101) or supportive care (n=32). Within 3 months, immunosuppressive therapy led to a sustained 81% reduction in PLA2R antibody levels paralleled by a 39% reduction in proteinuria. Patients who experienced remission of proteinuria after 12 months had significantly lower PLA2R antibody levels at the time of study inclusion compared with patients with no remission. Patients with high PLA2R antibody levels achieved remission of proteinuria significantly later than patients with low PLA2R antibody levels. PLA2R antibody levels fell over time in patients with spontaneous remission but remained elevated in patients who did not show a reduction in proteinuria. Multivariable Cox regression analysis confirmed PLA2R antibody level as an independent risk factor for not achieving remission of proteinuria. We conclude that a decrease in PLA2R antibody level is associated with a decrease of proteinuria in patients with primary MN.

  7. Anti-Phospholipase A2 Receptor Antibody Titer Predicts Post-Rituximab Outcome of Membranous Nephropathy.

    Science.gov (United States)

    Ruggenenti, Piero; Debiec, Hanna; Ruggiero, Barbara; Chianca, Antonietta; Pellé, Timothee; Gaspari, Flavio; Suardi, Flavio; Gagliardini, Elena; Orisio, Silvia; Benigni, Ariela; Ronco, Pierre; Remuzzi, Giuseppe

    2015-10-01

    Rituximab induces nephrotic syndrome (NS) remission in two-thirds of patients with primary membranous nephropathy (MN), even after other treatments have failed. To assess the relationships among treatment effect, circulating nephritogenic anti-phospholipase A2 receptor (anti-PLA2R) autoantibodies and genetic polymorphisms predisposing to antibody production we serially monitored 24-hour proteinuria and antibody titer in patients with primary MN and long-lasting NS consenting to rituximab (375 mg/m(2)) therapy and genetic analyses. Over a median (range) follow-up of 30.8 (6.0-145.4) months, 84 of 132 rituximab-treated patients achieved complete or partial NS remission (primary end point), and 25 relapsed after remission. Outcomes of patients with or without detectable anti-PLA2R antibodies at baseline were similar. Among the 81 patients with antibodies, lower anti-PLA2R antibody titer at baseline (P=0.001) and full antibody depletion 6 months post-rituximab (hazard ratio [HR], 7.90; 95% confidence interval [95% CI], 2.54 to 24.60; PPLA2R antibody depletion. On average, 50% anti-PLA2R titer reduction preceded equivalent proteinuria reduction by 10 months. Re-emergence of circulating antibodies predicted disease relapse (HR, 6.54; 95% CI, 1.57 to 27.40; P=0.01), whereas initial complete remission protected from the event (HR, 6.63; 95% CI, 2.37 to 18.53; PPLA2R1 and HLA-DQA1 polymorphisms and of previous immunosuppressive treatment. Therefore, assessing circulating anti-PLA2R autoantibodies and proteinuria may help in monitoring disease activity and guiding personalized rituximab therapy in nephrotic patients with primary MN.

  8. Thromboxane A(2 receptor stimulation promotes closure of the rat ductus arteriosus through enhancing neointima formation.

    Directory of Open Access Journals (Sweden)

    Tomohiro Yokota

    Full Text Available Ductus arteriosus (DA closure follows constriction and remodeling of the entire vessel wall. Patent ductus arteriosus occurs when the DA does not close after birth, and this condition is currently treated using cyclooxygenase inhibitors. However, the efficacy of cyclooxygenase inhibitors is often limited. Our previous study demonstrated that low-dose thromboxane A2 receptor (TP stimulation constricted the DA with minimal adverse effects in rat neonates. However, its effect on DA remodeling remains unknown. In this study, we focused on the impact of the exogenous TP stimulation on the DA remodeling, especially intimal thickening. Using DA explants from rat fetuses at embryonic day 19 as a ex vivo model and primary cultured rat DA smooth muscle cells from embryonic day 21 as a in vitro model, we evaluated the effect of TP stimulation on the DA remodeling. The selective TP agonists U46619 and I-BOP promoted neointima formation in the ex vivo DA explants, and TP stimulation increased DA SMC migration in a dose-dependent manner. Both effects were inhibited by the selective TP antagonist SQ29548 or the siRNA against TP. TP stimulation also increased DA SMC proliferation in the presence of 10% fetal bovine serum. LC/MS/MS analysis revealed that TP stimulation increased secretion of several extracellular matrix proteins that may contribute to an increase in neointima formation. In conclusion, we uncovered that exogenous administration of TP agonist promotes neointima formation through the induction of migration and proliferation of DA SMC, which could contribute to DA closure and also to its vasoconstrictive action.

  9. Estrogen receptor-alpha gene expression in the cortex: sex differences during development and in adulthood.

    Science.gov (United States)

    Wilson, Melinda E; Westberry, Jenne M; Trout, Amanda L

    2011-03-01

    17β-estradiol is a hormone with far-reaching organizational, activational and protective actions in both male and female brains. The organizational effects of early estrogen exposure are essential for long-lasting behavioral and cognitive functions. Estradiol mediates many of its effects through the intracellular receptors, estrogen receptor-alpha (ERα) and estrogen receptor-beta (ERβ). In the rodent cerebral cortex, estrogen receptor expression is high early in postnatal life and declines dramatically as the animal approaches puberty. This decline is accompanied by decreased expression of ERα mRNA. This change in expression is the same in both males and females in the developing isocortex and hippocampus. An understanding of the molecular mechanisms involved in the regulation of estrogen receptor alpha (ERα) gene expression is critical for understanding the developmental, as well as changes in postpubertal expression of the estrogen receptor. One mechanism of suppressing gene expression is by the epigenetic modification of the promoter regions by DNA methylation that results in gene silencing. The decrease in ERα mRNA expression during development is accompanied by an increase in promoter methylation. Another example of regulation of ERα gene expression in the adult cortex is the changes that occur following neuronal injury. Many animal studies have demonstrated that the endogenous estrogen, 17β-estradiol, is neuroprotective. Specifically, low levels of estradiol protect the cortex from neuronal death following middle cerebral artery occlusion (MCAO). In females, this protection is mediated through an ERα-dependent mechanism. ERα expression is rapidly increased following MCAO in females, but not in males. This increase is accompanied by a decrease in methylation of the promoter suggesting a return to the developmental program of gene expression within neurons. Taken together, during development and in adulthood, regulation of ERα gene expression in the

  10. Ionotropic glutamate receptor expression in preganglionic neurons of the rat inferior salivatory nucleus.

    Science.gov (United States)

    Kim, M; Chiego, D J; Bradley, R M

    2008-02-29

    Glutamate receptor (GluR) subunit composition of inferior salivatory nucleus (ISN) neurons was studied by immunohistochemical staining of retrogradely labeled neurons. Preganglionic ISN neurons innervating the von Ebner or parotid salivary glands were labeled by application of a fluorescent tracer to the lingual-tonsilar branch of the glossopharyngeal nerve or the otic ganglion respectively. We used polyclonal antibodies to glutamate receptor subunits NR1, NR2A, NR2B, (NMDA receptor subunits) GluR1, GluR2, GluR3, GluR4 (AMPA receptor subunits), and GluR5-7, KA2 (kainate receptor subunits) to determine their expression in ISN neurons. The distribution of the NMDA, AMPA and kainate receptor subunits in retrogradely labeled ISN neurons innervating the von Ebner and parotid glands was qualitatively similar. The percentage of retrogradley labeled ISN neurons innervating the parotid gland expressing the GluR subunits was always greater than those innervating the von Ebner gland. For both von Ebner and parotid ISN neurons, NR2A subunit staining had the highest expression and the lowest expression of GluR subunit staining was NR2B for von Ebner ISN neurons and GluR1 for parotid ISN neurons. The percentage of NR2B and GluR4 expressing ISN neurons was significantly different between the two glands. The percentage of ISN neurons that expressed GluR receptor subunits ranged widely indicating that the distribution of GluR subunit expression differs amongst the ISN neurons. While ISN preganglionic neurons express all the GluR subunits, differences in the percentage of ISN neurons expression between neurons innervating the von Ebner and parotid glands may relate to the different functional roles of these glands.

  11. Allosteric modulation by benzodiazepine receptor ligands of the GABAA receptor channel expressed in Xenopus oocytes.

    Science.gov (United States)

    Sigel, E; Baur, R

    1988-01-01

    Chick brain mRNA was isolated and injected into Xenopus oocytes. This led to the expression in the surface membrane of functional GABA-activated channels with properties reminiscent of vertebrate GABAA channels. The GABA-induced current was analyzed quantitatively under voltage-clamp conditions. Picrotoxin inhibited this current in a concentration-dependent manner with IC50 = 0.6 microM. The allosteric modulation of GABA currents by a number of drugs acting at the benzodiazepine binding site was characterized quantitatively. In the presence of the benzodiazepine receptor ligands diazepam and clorazepate, GABA responses were enhanced, and in the presence of the convulsant beta-carboline compound methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM), they were depressed. Maximal stimulation of the response elicited by 10 microM GABA was 160% with diazepam and 90% with clorazepate, and maximal inhibition was 42% with DMCM, 30% with methyl beta-carboline-3-carboxylate (beta-CCM), 15% with ethyl-8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo [1,5a][1,4]benzodiazepine-3-carboxylate (Ro 15-1788), and 12% with ethyl beta-carboline-3-carboxylate (beta-CCE). Half-maximal stimulation was observed with 20 nM diazepam and 390 nM clorazepate, respectively, and half-maximal inhibition with 6 nM DMCM. beta-CCM had a similar effect to DMCM, whereas beta-CCE and Ro 15-1788 showed only small inhibition at low concentrations (less than 1 microM). All the tested carboline compounds and Ro 15-1788 showed a biphasic action and stimulated GABA current at concentrations higher than 1 microM.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Hall Effect Thruster Interactions Data From the Russian Express-A2 and Express-A3 Satellites

    Science.gov (United States)

    Sitnikova, N.; Volkov, D.; Maximov, I.; Petrusevich, V.; Allen, D.

    2003-01-01

    This 12-part report documents the data obtained from various sensor measurements taken aboard the Russian Express-A2 and Express-A3 spacecraft in Geosynchronous Earth Orbit (GEO). These GEO communications satellites, which were designed and built by NPO Prikladnoy Mekhaniki (NPO PM) of Zheleznogorsk, Russia, utilize Hall thruster propulsion systems for north-south and east-west stationkeeping and as of June 2002, were still operating at 80 E. and 11 W., respectively. Express-A2 was launched on March 12, 2000, while Express-A3 was launched on June 24, 2000. The diagnostic equipment from which these data were taken includes electric field strength sensors, ion current and energy sensors, and pressure sensors. The diagnostics and the Hall thruster propulsion systems are described in detail along with lists of tabular data from those diagnostics and propulsion system and other satellite systems. Space Power, Inc., now part of Pratt & Whitney's Chemical Systems Division, under contract NAS3 99151 to the NASA Glenn Research Center, obtained these data over several periods from March 12, 2000, through September 30, 2001. Each of the 12 individual reports describe, in detail, the propulsion systems as well as the diagnostic sensors utilized. Finally, parts 11 and 12 include the requirements to which NPO PM prepared and delivered these data.

  13. Synthesis and pharmacological characterization of novel xanthine carboxylate amides as A2A adenosine receptor ligands exhibiting bronchospasmolytic activity.

    Science.gov (United States)

    Yadav, Rakesh; Bansal, Ranju; Rohilla, Suman; Kachler, Sonja; Klotz, Karl-Norbert

    2016-04-01

    The carboxylate amides of 8-phenyl-1,3-dimethylxanthine described herein represent a new series of selective ligands of the adenosine A2A receptors exhibiting bronchospasmolytic activity. The effects of location of 8-phenyl substitutions on the adenosine receptor (AR) binding affinities of the newly synthesized xanthines have also been studied. The compounds displayed moderate to potent binding affinities toward various adenosine receptor subtypes when evaluated through radioligand binding studies. However, most of the compounds showed the maximum affinity for the A2A subtype, some with high selectivity versus all other subtypes. Xanthine carboxylate amide 13b with a diethylaminoethylamino moiety at the para-position of the 8-phenylxanthine scaffold was identified as the most potent A2A adenosine receptor ligand with Ki=0.06μM. Similarly potent and highly A2A-selective are the isovanillin derivatives 16a and 16d. In addition, the newly synthesized xanthine derivatives showed good in vivo bronchospasmolytic activity when tested in guinea pigs.

  14. Synthesis and Properties of a New Water-Soluble Prodrug of the Adenosine A2A Receptor Antagonist MSX-2

    Directory of Open Access Journals (Sweden)

    Christa E. Müller

    2008-02-01

    Full Text Available The compound L-valine-3-{8-[(E-2-[3-methoxyphenylethenyl]-7-methyl-1-propargylxanthine-3-yl}propyl ester hydrochloride (MSX-4 was synthesized as an aminoacid ester prodrug of the adenosine A2A receptor antagonist MSX-2. It was found to bestable in artificial gastric acid, but readily cleaved by pig liver esterase.

  15. Blunted dynamics of adenosine A2A receptors is associated with increased susceptibility to Candida albicans infection in the elderly

    Science.gov (United States)

    Rodrigues, Lisa; Miranda, Isabel M.; Andrade, Geanne M.; Mota, Marta; Cortes, Luísa; Rodrigues, Acácio G.; Cunha, Rodrigo A.; Gonçalves, Teresa

    2016-01-01

    Opportunistic gut infections and chronic inflammation, in particular due to overgrowth of Candida albicans present in the gut microbiota, are increasingly reported in the elder population. In aged, adult and young mice, we now compared the relative intestinal over-colonization by ingested C. albicans and their translocation to other organs, focusing on the role of adenosine A2A receptors that are a main stop signal of inflammation. We report that elderly mice are more prone to over-colonization by C. albicans than adult and young mice. This fungal over-growth seems to be related with higher growth rate in intestinal lumen, independent of gut tissues invasion, but resulting in higher GI tract inflammation. We observed a particularly high colonization of the stomach, with increased rate of yeast-to-hypha transition in aged mice. We found a correlation between A2A receptor density and tissue damage due to yeast infection: comparing with young and adults, aged mice have a lower gut A2A receptor density and C. albicans infection failed to increase it. In conclusion, this study shows that aged mice have a lower ability to cope with inflammation due to C. albicans over-colonization, associated with an inability to adaptively adjust adenosine A2A receptors density. PMID:27590517

  16. Analysis of the epidermal growth factor receptor specific transcriptome: effect of receptor expression level and an activating mutation

    DEFF Research Database (Denmark)

    Pedersen, Mikkel W; Pedersen, Nina; Damstrup, Lars;

    2005-01-01

    moderately expressed or overexpressed at an in-itself transforming level. These changes were compared to those induced by the naturally occurring constitutively active variant EGFRvIII. This study provides novel insight on the activities and mechanisms of EGFRvIII and EGFR mediated transformation, as genes...... by interferons. Expression of this module was absent in the EGFRvIII-expressing cell line and the parental cell line. Treatment with the specific EGFR inhibitor AG1478 indicated that the regulations were primary, receptor-mediated events. Furthermore, activation of this module correlated with activation of STAT1...

  17. Toll-like receptor 3 signalling up-regulates expression of the HIV co-receptor G-protein coupled receptor 15 on human CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Miriam Kiene

    Full Text Available BACKGROUND: Many HIV-2 and SIV isolates, as well as some HIV-1 strains, can use the orphan 7-transmembrane receptor GPR15 as co-receptor for efficient entry into host cells. GPR15 is expressed on central memory and effector memory CD4(+ T cells in healthy individuals and a subset of these cells is susceptible to HIV-1 and SIV infection. However, it has not been determined whether GPR15 expression is altered in the context of HIV-1 infection. RESULTS: Here, we show that GPR15 expression in CD4(+ T cells is markedly up-regulated in some HIV-1 infected individuals compared to the rest of the infected patients and to healthy controls. Infection of the PM1 T cell line with primary HIV-1 isolates was found to up-regulate GPR15 expression on the infected cells, indicating that viral components can induce GPR15 expression. Up-regulation of GPR15 expression on CD4(+ T cells was induced by activation of Toll-like receptor 3 signalling via TIR-domain-containing adapter-inducing interferon-β (TRIF and was more prominent on gut-homing compared to lymph node-homing CD4(+ T cells. CONCLUSION: These results suggest that infection-induced up-regulation of GPR15 expression could increase susceptibility of CD4(+ T cells to HIV infection and target cell availability in the gut in some infected individuals.

  18. Memory consolidation and amnesia modify 5-HT6 receptors expression in rat brain: an autoradiographic study.

    Science.gov (United States)

    Meneses, A; Manuel-Apolinar, L; Castillo, C; Castillo, E

    2007-03-12

    Traditionally, the search for memory circuits has been centered on examinations of amnesic and AD patients, cerebral lesions and, neuroimaging. A complementary alternative might be the use of autoradiography with radioligands. Indeed, ex vivo autoradiographic studies offer the advantage to detect functionally active receptors altered by pharmacological tools and memory formation. Hence, herein the 5-HT(6) receptor antagonist SB-399885 and the amnesic drugs scopolamine or dizocilpine were used to manipulate memory consolidation and 5-HT(6) receptors expression was determined by using [(3)H]-SB-258585. Thus, memory consolidation was impaired in scopolamine and dizocilpine treated groups relative to control vehicle but improved it in SB-399885-treated animals. SB-399885 improved memory consolidation seems to be associated with decreased 5-HT(6) receptors expression in 15 out 17 brain areas. Scopolamine or dizocilpine decreased 5-HT(6) receptors expression in nine different brain areas and increased it in CA3 hippocampus or other eight areas, respectively. In brain areas thought to be in charge of procedural memory such basal ganglia (i.e., nucleus accumbens, caudate putamen, and fundus striate) data showed that relative to control animals amnesic groups showed diminished (scopolamine) or augmented (dizocilpine) 5-HT(6) receptor expression. SB-399885 showing improved memory displayed an intermediate expression in these same brain regions. A similar intermediate expression occurs with regard to amygdala, septum, and some cortical areas in charge of explicit memory storage. However, relative to control group amnesic and SB-399885 rats in the hippocampus, region where explicit memory is formed, showed a complex 5-HT(6) receptors expression. In conclusion, these results indicate neural circuits underlying the effects of 5-HT(6) receptor antagonists in autoshaping task and offer some general clues about cognitive processes in general.

  19. Functional expression in frog oocytes of human ρ1 receptors produced in Saccharomyces cerevisiae

    Science.gov (United States)

    Martínez-Martínez, Alejandro; Reyes-Ruiz, Jorge Mauricio; Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2004-01-01

    The yeast Saccharomyces cerevisiae was engineered to express the ρ1 subunit of the human γ-aminobutyric acid ρ1 (GABAρ1) receptor. RNA that was isolated from several transformed yeast strains produced fully functional GABA receptors in Xenopus oocytes. The GABA currents elicited in the oocytes were fast, nondesensitizing chloride currents; and the order of agonist potency was GABA > β-alanine > glycine. Moreover, the receptors were resistant to bicuculline, strongly antagonized by (1,2,5,6 tetrahydropyridine-4-yl)methylphosphinic acid, and modulated by zinc and lanthanum. Thus, the GABA receptors expressed by the yeast mRNA retained all of the principal characteristics of receptors expressed by cRNA or native retina mRNAs. Western blot assays showed immunoreactivity in yeast plasma membrane preparations, and a ρ1-GFP fusion gene showed mostly intracellular distribution with a faint fluorescence toward the plasma membrane. In situ immunodetection of ρ1 in yeast demonstrated that some receptors reach the plasma membrane. Furthermore, microtransplantation of yeast plasma membranes to frog oocytes resulted in the incorporation of a small number of functional yeast ρ1 receptors into the oocyte plasma membrane. These results show that yeast may be useful to produce complete functional ionotropic receptors suitable for structural analysis. PMID:14704273

  20. Striatal dopamine receptors modulate the expression of insulin receptor, IGF-1 and GLUT-3 in diabetic rats: effect of pyridoxine treatment.

    Science.gov (United States)

    Anitha, M; Abraham, Pretty Mary; Paulose, C S

    2012-12-05

    The incidence of type 2 diabetes mellitus is rising at alarming proportions. Central nervous system plays an important part in orchestrating glucose metabolism, with accumulating evidence linking dysregulated central nervous system circuits to the failure of normal glucoregulatory mechanisms. Pyridoxine is a water soluble vitamin and it has important role in brain function. This study aims to evaluate the role of pyridoxine in striatal glucose regulation through dopaminergic receptor expressions in streptozotocin induced diabetic rats. Radio receptor binding assays for dopamine D(1), D(2) receptors were done using [(3)H] 7-chloro-3-methyl-1-phenyl-1,2,4,5-tetrahydro-3-benzazepin-8-ol and [(3)H] 5-chloro-2-methoxy-4-methylamino-N-[-2-methyl-1-(phenylmethyl)pyrrolidin-3-yl]benzamide. Gene expressions were done using fluorescently labeled Taqman probes of dopamine D(1), D(2) receptor, Insulin receptor, Insulin like growth factor-1(IGF-1) and Glucose transporter-3 (GLUT-3). Bmax of dopamine D(1) receptor is decreased and B(max) of dopamine D(2) was increased in diabetic rats compared to control. Gene expression of dopamine D(1) receptor was down regulated and dopamine D(2) receptor was up regulated in diabetic rats. Our results showed decreased gene expression of Insulin receptor, IGF-1 and increased gene expression of GLUT-3 in diabetic rats compared to control. Pyridoxine treatment restored diabetes induced alterations in dopamine D(1), D(2) receptors, Insulin receptor, IGF-1, GLUT-3 gene expressions in striatum compared to diabetic rats. Insulin treatment reversed dopamine D(1), D(2) receptor, GLUT-3 mRNA expression, D(2) receptor binding parameters in the striatum compared to diabetic group. Our results suggest the potential role of pyridoxine supplementation in ameliorating diabetes mediated dysfunctions in striatal dopaminergic receptor expressions and insulin signaling. Thus pyridoxine has therapeutic significance in diabetes management.

  1. Functional coupling between heterologously expressed dopamine D(2) receptors and KCNQ channels

    DEFF Research Database (Denmark)

    Ljungstrom, Trine; Grunnet, Morten; Jensen, Bo Skaaning

    2003-01-01

    Activation of KCNQ potassium channels by stimulation of co-expressed dopamine D(2) receptors was studied electrophysiologically in Xenopus laevis oocytes and in mammalian cells. To address the specificity of the interaction between D(2)-like receptors and KCNQ channels, combinations of KCNQ1...... activation of the KCNQ channels was confirmed by co-expression of other neuronal K(+) channels (BK, K(V)1.1, and K(V)4.3) with the D(2L) receptor in Xenopus oocytes. None of these K(+) channels responded to stimulation of the D(2L) receptor. In the mammalian brain, dopamine D(2) receptors and KCNQ channels...... co-localise postsynaptically in several brain regions, so modulation of neuronal excitability by dopamine release could in part be mediated via an effect on KCNQ channels....

  2. Expression of prostaglandin receptors in Chlamydia trachomatis-infected recurrent spontaneous aborters.

    Science.gov (United States)

    Singh, Namita; Prasad, Priya; Singh, Laishram Chandreshwar; Das, Banashree; Rastogi, Sangita

    2016-06-01

    A study was undertaken to quantify the expression of prostaglandin (PG) receptors and find the effect of gestational age on expression of PG receptor genes in Chlamydia trachomatis-infected recurrent spontaneous aborters (RSA). Endometrial curettage tissue (ECT) was collected from 130 RSA (Group I) and 100 age-matched controls (Group II) at the Department of Obstetrics and Gynecology, Safdarjung Hospital, New Delhi (India). PCR was performed for diagnosis of C. trachomatis cryptic plasmid; mRNA expression of PG receptor genes was assessed by real-time PCR (q-PCR), while serum progesterone/estrogen levels were determined by respective commercial kits. Data were evaluated statistically. A total of 15.4 % RSA (GroupI) were diagnosed as C. trachomatis-positive (200 bp), whereas controls were uninfected. q-PCR showed significant upregulation (PPGE2 (EP-1, EP-2, EP-3, EP-4), PGF2α (FP) and PGI2 (IP) receptors in Group I versus Group II. The expression of PG receptors increased significantly with advanced gestational age (Preceptors, EP-1, EP-3 and FP, were positively correlated with gestational age in Group-I. In infected RSA, mean serum progesterone level was significantly low (Pexpression of PG receptors, particularly contractile gene receptors (EP-1, EP-3, FP), with advanced gestational age and altered steroid levels could be a possible risk factor for abortion in Chlamydia-infected RSA.

  3. Expression of Serotonin Receptors in the Colonic Tissue of Chronic Diarrhea Rats

    Science.gov (United States)

    Zhu, Tong; Qiu, Juanjuan; Wan, Jiajia; Wang, Fengyun; Tang, Xudong; Guo, Huishu

    2016-01-01

    Background/Aims: This study aimed to investigate the difference among the expression of serotonin receptors (5-HT3, 5-HT4, and 5-HT7 receptors) in colonic tissue of chronic diarrhea rats. Materials and Methods: A rat model of chronic diarrhea was established by lactose diet. The expression of 5-HT3, 5-HT4, and 5-HT7 receptors in the colonic tissue was detected using immunohistochemistry, real-time PCR and Western blotting techniques. Results: There is no significant difference on the protein expression of 5-HT3 receptor between the normal group and the chronic diarrhea model group. The mRNA expression of 5-HT3 receptor in the chronic diarrhea model group was significantly lower than that in the normal group (n = 10; P 5-HT7 receptor in the chronic diarrhea model group were significantly decreased compared with the normal group (n = 10; P < 0.01, P < 0.01). Conclusions: The results suggested the receptors of 5-HT4 and 5-HT7 may be involved in inducing diarrhea by lactose diet. PMID:27184643

  4. mRNA expression of dopamine receptors in peripheral blood lymphocytes of computer game addicts.

    Science.gov (United States)

    Vousooghi, Nasim; Zarei, Seyed Zeinolabedin; Sadat-Shirazi, Mitra-Sadat; Eghbali, Fatemeh; Zarrindast, Mohammad Reza

    2015-10-01

    Excessive playing of computer games like some other behaviors could lead to addiction. Addictive behaviors may induce their reinforcing effects through stimulation of the brain dopaminergic mesolimbic pathway. The status of dopamine receptors in the brain may be parallel to their homologous receptors in peripheral blood lymphocytes (PBLs). Here, we have investigated the mRNA expression of dopamine D3, D4 and D5 receptors in PBLs of computer game addicts (n = 20) in comparison to normal subjects (n = 20), using a real-time PCR method. The results showed that the expression level of D3 and D4 dopamine receptors in computer game addicts were not statistically different from the control group. However, the expression of the mRNA of D5 dopamine receptor was significantly down-regulated in PBLs of computer game addicts and reached 0.42 the amount of the control group. It is concluded that unlike with drug addiction, the expression levels of the D3 and D4 dopamine receptors in computer game addicts are not altered compared to the control group. However, reduced level of the D5 dopamine receptor in computer game addicts may serve as a peripheral marker in studies where the confounding effects of abused drugs are unwanted.

  5. Expression and cellular localization of the Mas receptor in the adult and developing mouse retina.

    Science.gov (United States)

    Prasad, Tuhina; Verma, Amrisha; Li, Qiuhong

    2014-01-01

    Recent studies have provided evidence that a local renin-angiotensin system (RAS) exists in the retina and plays an important role in retinal neurovascular function. We have recently shown that increased expression of ACE2 and angiotensin (1-7) [Ang (1-7)], two components of the protective axis of the RAS, in the retina via adeno-associated virus (AAV)-mediated gene delivery, conferred protection against diabetes-induced retinopathy. We hypothesized that the protective molecular and cellular mechanisms of Ang (1-7) are mediated by its receptor, Mas, and the expression level and cellular localization dictate the response to Ang (1-7) and activation of subsequent protective signaling pathways. We tested this hypothesis by examining the expression and cellular localization of the Mas receptor in adult and developing mouse retinas. The cellular localization of the Mas receptor protein was determined with immunofluorescence of the eyes of adult and postnatal day 1 (P1), P5, P7, P15, and P21 mice using the Mas receptor-specific antibody, and mRNA was detected with in situ hybridization of paraffin-embedded sections. Western blotting and real-time reverse-transcription (RT)-PCR analysis were performed to determine the relative levels of the Mas protein and mRNA in adult and developing retinas, as well as in cultured retinal Müller glial and RPE cells. In the adult eye, the Mas receptor protein was abundantly present in retinal ganglion cells (RGCs) and photoreceptor cells; a lower level of expression was observed in endothelial cells, Müller glial cells, and other neurons in the inner nuclear layer of the retina. In the developing retina, Mas receptor mRNA and protein expression was detected in the inner retina at P1, and the expression levels increased with age to reach the adult level and pattern by P15. In the adult mouse retina, Mas receptor mRNA was expressed at a much higher level when compared to angiotensin II (Ang II) type I (AT1R) and type II (AT2R) receptor m

  6. Expression of the 5-HT receptors in rat brain during memory consolidation.

    Science.gov (United States)

    Meneses, A; Manuel-Apolinar, L; Rocha, L; Castillo, E; Castillo, C

    2004-07-09

    Serotonin (5-hydroxytryptamine, 5-HT) system displays more than 14 receptors subtypes on brain areas involved in learning and memory processes, and pharmacological manipulation of specific receptors selectively affects memory formation. In order to begin the search of 5-HT receptors expression during memory formation, in this work, we aimed to determine, by autoradiography (using 3H 5-HT as ligand, 2 nM, specific activity 123 Ci/mmol), 5-HT receptors (5-HTR) expression in passive (untrained) and autoshaping trained (3 sessions) adult (3 months) and old (9 months) male rats. Thus, trained adult rats had better retention than old animals. Raphe nuclei of adult and old trained rats expressed less receptors on medial and dorsal, respectively. Hippocampal CA1 area and dentate gyrus of adult trained rats expressed less 5-HTR, while dentate gyrus of old increased them. Basomedial amygdaloid nucleus in old trained rats expressed more 5-HTR; while in the basolateral amygdaloid nucleus they were augmented in both groups. Training decreased or did not change 5-HTR in caudate-putamen of adult or old animals. The above profile of 5-HTR expression is consistent with previous reports, and suggests that memory formation and aging modulates 5-HTR expression in brain areas relevant to memory systems.

  7. Epidermal Growth Factor Receptor Expression in Triple Negative and Nontriple Negative Breast Carcinomas.

    Science.gov (United States)

    Changavi, Arathi A; Shashikala, Arundhathi; Ramji, Ashwini S

    2015-01-01

    The panel of markers used for molecular classification include estrogen receptors (ER), progesterone receptors (PR), human epidermal growth factor receptor (HER)-2/neu, p53, Bcl-2 and basal markers like cytokeratin 5/6 or epidermal growth factor receptor (EGFR). Among these, EGFR plays an important role and is associated with bad prognosis. To study EGFR expression in triple negative breast carcinoma (TNBC) and non-TNBCs (NTNBCs). Fifty cases of breast carcinomas were classified and graded according to World Health Organization and Nottingham modification of Scarff-Bloom-Richardson (SBR) system, respectively. The age of the patients ranged from 28 to 69 years. Histological features such as necrosis, pushing borders, lymphocytic infiltrate and periductal elastosis were noted. The panel of markers used in our study included ER, PR, HER-2/neu and EGFR. EGFR expression was assessed based on membrane staining. Chi-square test was applied for statistical analysis to compare EGFR expression with hormonal status and prognostic factors. P triple negative and strongly expressed EGFR. EGFR expression was inversely associated with ER status and showed strong association with necrosis and lymphocytic infiltrate, but not with pushing border and periductal elastosis. EGFR is an important marker to stratify patients with breast cancer according to molecular classification. Its expression correlated positively with young age, higher SBR grade, necrosis, lymphocytic infiltrate and inversely with hormonal receptor expression.