WorldWideScience

Sample records for a2 mediates progression

  1. β-Arrestin2 mediates progression of murine primary myelofibrosis.

    Science.gov (United States)

    Rein, Lindsay Am; Wisler, James W; Kim, Jihee; Theriot, Barbara; Huang, LiYin; Price, Trevor; Yang, Haeyoon; Chen, Minyong; Chen, Wei; Sipkins, Dorothy; Fedoriw, Yuri; Walker, Julia Kl; Premont, Richard T; Lefkowitz, Robert J

    2017-12-21

    Primary myelofibrosis is a myeloproliferative neoplasm associated with significant morbidity and mortality, for which effective therapies are lacking. β-Arrestins are multifunctional adaptor proteins involved in developmental signaling pathways. One isoform, β-arrestin2 (βarr2), has been implicated in initiation and progression of chronic myeloid leukemia, another myeloproliferative neoplasm closely related to primary myelofibrosis. Accordingly, we investigated the relationship between βarr2 and primary myelofibrosis. In a murine model of MPLW515L-mutant primary myelofibrosis, mice transplanted with donor βarr2-knockout (βarr2-/-) hematopoietic stem cells infected with MPL-mutant retrovirus did not develop myelofibrosis, whereas controls uniformly succumbed to disease. Although transplanted βarr2-/- cells homed properly to marrow, they did not repopulate long-term due to increased apoptosis and decreased self-renewal of βarr2-/- cells. In order to assess the effect of acute loss of βarr2 in established primary myelofibrosis in vivo, we utilized a tamoxifen-induced Cre-conditional βarr2-knockout mouse. Mice that received Cre (+) donor cells and developed myelofibrosis had significantly improved survival compared with controls. These data indicate that lack of antiapoptotic βarr2 mediates marrow failure of murine hematopoietic stem cells overexpressing MPLW515L. They also indicate that βarr2 is necessary for progression of primary myelofibrosis, suggesting that it may serve as a novel therapeutic target in this disease.

  2. Progress in Understanding and Treating SCN2A-Mediated Disorders

    DEFF Research Database (Denmark)

    Sanders, Stephan J.; Campbell, Arthur J.; Cottrell, Jeffrey R.

    2018-01-01

    Advances in gene discovery for neurodevelopmental disorders have identified SCN2A dysfunction as a leading cause of infantile seizures, autism spectrum disorder, and intellectual disability. SCN2A encodes the neuronal sodium channel NaV1.2. Functional assays demonstrate strong correlation between...... of neurodevelopmental disorders more generally. Here, we discuss the progress made, through the concerted efforts of a diverse group of academic and industry scientists as well as policy advocates, in understanding and treating SCN2A-related disorders....

  3. From goal motivation to goal progress: the mediating role of coping in the Self-Concordance Model.

    Science.gov (United States)

    Gaudreau, Patrick; Carraro, Natasha; Miranda, Dave

    2012-01-01

    The present studies examined the mediating role of self-regulatory mechanisms in the relationship between goal motivation and goal progress in the Self-Concordance Model. First, a systematic review, using meta-analytical path analysis, supported the mediating role of effort and action planning in the positive association between autonomous goal motivation and goal progress. Second, results from two additional empirical studies, using structural equation modeling, lent credence to the mediating role of coping in the relationship between goal motivation and goal progress of university students. Autonomous goal motivation was positively associated with task-oriented coping, which predicted greater goal progress during midterm exams (Study 1, N=702) and at the end of the semester in a different sample (Study 2, N=167). Controlled goal motivation was associated with greater disengagement-oriented coping (Study 1 and Study 2) and lesser use of task-oriented coping (Study 2), which reduced goal progress. These results held up after controlling for perceived stress (Study 2). Our findings highlight the importance of coping in the "inception-to-attainment" goal process because autonomous goal motivation indirectly rather than directly predicts goal progress of university students through their usage of task-oriented coping.

  4. MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression.

    Science.gov (United States)

    Teng, Yun; Ren, Yi; Hu, Xin; Mu, Jingyao; Samykutty, Abhilash; Zhuang, Xiaoying; Deng, Zhongbin; Kumar, Anil; Zhang, Lifeng; Merchant, Michael L; Yan, Jun; Miller, Donald M; Zhang, Huang-Ge

    2017-02-17

    Exosomes are emerging mediators of intercellular communication; whether the release of exosomes has an effect on the exosome donor cells in addition to the recipient cells has not been investigated to any extent. Here, we examine different exosomal miRNA expression profiles in primary mouse colon tumour, liver metastasis of colon cancer and naive colon tissues. In more advanced disease, higher levels of tumour suppressor miRNAs are encapsulated in the exosomes. miR-193a interacts with major vault protein (MVP). Knockout of MVP leads to miR-193a accumulation in the exosomal donor cells instead of exosomes, inhibiting tumour progression. Furthermore, miR-193a causes cell cycle G1 arrest and cell proliferation repression through targeting of Caprin1, which upregulates Ccnd2 and c-Myc. Human colon cancer patients with more advanced disease show higher levels of circulating exosomal miR-193a. In summary, our data demonstrate that MVP-mediated selective sorting of tumour suppressor miRNA into exosomes promotes tumour progression.

  5. CD147 promotes liver fibrosis progression via VEGF-A/VEGFR2 signalling-mediated cross-talk between hepatocytes and sinusoidal endothelial cells.

    Science.gov (United States)

    Yan, Zhaoyong; Qu, Kai; Zhang, Jing; Huang, Qichao; Qu, Ping; Xu, Xinsen; Yuan, Peng; Huang, Xiaojun; Shao, Yongping; Liu, Chang; Zhang, Hongxin; Xing, Jinliang

    2015-10-01

    Although previous evidence indicates close involvement of CD147 in the pathogenesis of liver fibrosis, the underlying molecular mechanisms and its therapeutic value remain largely unknown. In the present study, we investigated the biological roles of CD147 in liver fibrosis and assessed its therapeutic value as a target molecule in the CCl4-induced liver fibrosis mouse model. We found that CD147 was highly expressed in both hepatocytes and SECs (sinusoidal endothelial cells) in fibrotic liver tissues. Additionally, it was significantly associated with the fibrosis stage. TGF-β1 (transforming growth factor β1) was found to be mainly responsible for the up-regulation of CD147. Bioinformatic and experimental data suggest a functional link between CD147 expression and VEGF-A (vascular endothelial growth factor A)/VEGR-2 (VEGF receptor 2) signalling-mediated angiogenesis in fibrotic liver tissues. Furthermore, we observed that the CD147-induced activation of the PI3K (phosphoinositide 3-kinase)/Akt signalling pathway promotes the production of VEGF-A in hepatocytes and expression of VEGFR-2 in SECs, which was found to enhance the angiogenic capability of SECs. Finally, our data indicate that blocking of CD147 using an mAb (monoclonal antibody) attenuated liver fibrosis progression via inhibition of VEGF-A/VEGFR-2 signalling and subsequent amelioration of microvascular abnormality in the CCl4-induced mouse model. Our findings suggest a novel functional mechanism that CD147 may promote liver fibrosis progression via inducing the VEGF-A/VEGFR-2 signalling pathway-mediated cross-talk between hepatocytes and SECs. New strategies based on the intervention of CD147 can be expected for prevention of liver fibrosis. © 2015 Authors; published by Portland Press Limited.

  6. Ran GTPase promotes cancer progression via Met receptor-mediated downstream signaling

    Science.gov (United States)

    Yuen, Hiu-Fung; Chan, Ka-Kui; Platt-Higgins, Angela; Dakir, El-Habib; Matchett, Kyle B.; Haggag, Yusuf Ahmed; Jithesh, Puthen V.; Habib, Tanwir; Faheem, Ahmed; Dean, Fennell A.; Morgan, Richard; Rudland, Philip S.; El-Tanani, Mohamed

    2016-01-01

    It has been shown previously that cancer cells with an activated oncogenic pathway, including Met activation, require Ran for growth and survival. Here, we show that knockdown of Ran leads to a reduction of Met receptor expression in several breast and lung cancer cell lines. This, in turn suppressed HGF expression and the Met-mediated activation of the Akt pathway, as well as cell adhesion, migration, and invasion. In a cell line model where Met amplification has previously been shown to contribute to gefitinib resistance, Ran knockdown sensitized cells to gefitinib-mediated inhibition of Akt and ERK1/2 phosphorylation and consequently reduced cell proliferation. We further demonstrate that Met reduction-mediated by knockdown of Ran, occurs at the post-transcriptional level, probably via a matrix metalloproteinase. Moreover, the level of immunoreactive Ran and Met are positively associated in human breast cancer specimens, suggesting that a high level of Ran may be a pre-requisite for Met overexpression. Interestingly, a high level of immunoreactive Ran dictates the prognostic significance of Met, indicating that the co-overexpression of Met and Ran may be associated with cancer progression and could be used in combination as a prognostic indicator. PMID:27716616

  7. Progress towards the development of SH2 domain inhibitors.

    Science.gov (United States)

    Kraskouskaya, Dziyana; Duodu, Eugenia; Arpin, Carolynn C; Gunning, Patrick T

    2013-04-21

    Src homology 2 (SH2) domains are 100 amino acid modular units, which recognize and bind to tyrosyl-phosphorylated peptide sequences on their target proteins, and thereby mediate intracellular protein-protein interactions. This review summarizes the progress towards the development of synthetic agents that disrupt the function of the SH2 domains in different proteins as well as the clinical relevance of targeting a specific SH2 domain. Since 1986, SH2 domains have been identified in over 110 human proteins, including kinases, transcription factors, and adaptor proteins. A number of these proteins are over-activated in many diseases, including cancer, and their function is highly dependent on their SH2 domain. Thus, inhibition of a protein's function through disrupting that of its SH2 domain has emerged as a promising approach towards the development of novel therapeutic modalities. Although targeting the SH2 domain is a challenging task in molecular recognition, the progress reported here demonstrates the feasibility of such an approach.

  8. Achievement goals and emotions: The mediational roles of perceived progress, control, and value.

    Science.gov (United States)

    Hall, Nathan C; Sampasivam, Lavanya; Muis, Krista R; Ranellucci, John

    2016-06-01

    The link between achievement goals and achievement emotions is well established; however, research exploring potential mediators of this relationship is lacking. The control-value theory of achievement emotions (Pekrun, 2006, Educational Psychology Review, 18, 315) posits that perceptions of control and value mediate the relationship between achievement goals and achievement emotions, whereas the bidirectional theory of affect (Linnenbrink & Pintrich, 2002, Educational Psychologist, 37, 69) proposes that perceived progress mediates this relationship. The present study empirically evaluated three hypothesized mediators of the effects of achievement goals on learning-related emotions as proposed in the control-value theory and the bidirectional theory of affect. Undergraduate students (N = 273) from humanities, social science, and STEM disciplines participated. Participants completed web-based questionnaires evaluating academic achievement goals, perceptions of control, perceived task value, and achievement emotions. Results provided empirical support primarily for perceived progress as a mediator of mastery-approach goal effects on positive emotions (enjoyment, hope), showing indirect effects of mastery- and performance-approach goals on outcome-related emotions (hope, anxiety) via perceived control. Indirect effects of mastery- and performance-approach goals were further observed on anxiety via perceived value, with higher value levels predicting greater anxiety. Study findings partially support Linnenbrink and Pintrich's (2002, Educational Psychologist, 37, 69) bidirectional theory of affect while underscoring the potential for indirect effects of goals on emotions through perceived control as proposed by Pekrun (2006, Educational Psychology Review, 18, 315). © 2016 The British Psychological Society.

  9. Implementation Planning and Progress on Physical Activity Goals: The Mediating Role of Life-Management Strategies

    Science.gov (United States)

    Dugas, Michelle; Gaudreau, Patrick; Carraro, Natasha

    2012-01-01

    This 4-week prospective study examined whether the use of life-management strategies mediates the relationship between implementation planning and short-term progress on physical activity goals. In particular, the strategies of elective selection, compensation, and loss-based selection were disentangled to assess their specific mediating effects.…

  10. Histone Demethylase RBP2 Is Critical for Breast Cancer Progression and Metastasis

    Directory of Open Access Journals (Sweden)

    Jian Cao

    2014-03-01

    Full Text Available Metastasis is a major clinical challenge for cancer treatment. Emerging evidence suggests that aberrant epigenetic modifications contribute significantly to tumor formation and progression. However, the drivers and roles of such epigenetic changes in tumor metastasis are still poorly understood. Using bioinformatic analysis of human breast cancer gene-expression data sets, we identified histone demethylase RBP2 as a putative mediator of metastatic progression. By using both human breast cancer cells and genetically engineered mice, we demonstrated that RBP2 is critical for breast cancer metastasis to the lung in multiple in vivo models. Mechanistically, RBP2 promotes metastasis as a pleiotropic positive regulator of many metastasis genes, including TNC. In addition, RBP2 loss suppresses tumor formation in MMTV-neu transgenic mice. These results suggest that therapeutic targeting of RBP2 is a potential strategy for inhibition of tumor progression and metastasis.

  11. EMMPRIN promotes melanoma cells malignant properties through a HIF-2alpha mediated up-regulation of VEGF-receptor-2.

    Directory of Open Access Journals (Sweden)

    Faten Bougatef

    Full Text Available EMMPRIN's expression in melanoma tissue was reported to be predictive of poor prognosis. Here we demonstrate that EMMPRIN up-regulated VEGF receptor-2 (VEGFR-2 in two different primary melanoma cell lines and consequently increased migration and proliferation of these cells while inhibiting their apoptosis. SiRNA inhibition of VEGFR-2 expression abrogated these EMMPRIN effects. EMMPRIN regulation of VEGFR-2 was mediated through the over-expression of HIF-2alpha and its translocation to the nucleus where it forms heterodimers with HIF-1beta. These results were supported by an in vivo correlation between the expression of EMMPRIN with that of VEGFR-2 in human melanoma tissues as well as with the extent of HIF-2alpha localization in the nucleus. They demonstrate a novel mechanism by which EMMPRIN promotes tumor progression through HIF-2alpha/VEGFR-2 mediated mechanism, with an autocrine role in melanoma cell malignancy. The inhibition of EMMPRIN in cancer may thus simultaneously target both the VEGFR-2/VEGF system and the matrix degrading proteases to block tumor cell growth and invasion.

  12. Recent Progress in TiO2-Mediated Solar Photocatalysis for Industrial Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2014-01-01

    Full Text Available The current paper reviews the application of TiO2-mediated solar photocatalysis for industrial wastewater treatment, starting with a brief introduction on the background of industrial wastewater and the development of wastewater treatment processes, especially advanced oxidation processes (AOPs. We, then, discuss the application of solar TiO2 photocatalysis in treating different kinds of industrial wastewater, such as paper mill wastewater, textile wastewater, and olive mill wastewater. In the end, we compare solar TiO2 photocatalysis with other AOPs in terms of effectiveness, energy, and chemical consumption. Personal perspectives are also given, which may provide new insights to the future development of TiO2 photocatalysis for industrial wastewater.

  13. Myristoylation of Src kinase mediates Src-induced and high-fat diet-accelerated prostate tumor progression in mice.

    Science.gov (United States)

    Kim, Sungjin; Yang, Xiangkun; Li, Qianjin; Wu, Meng; Costyn, Leah; Beharry, Zanna; Bartlett, Michael G; Cai, Houjian

    2017-11-10

    Exogenous fatty acids provide substrates for energy production and biogenesis of the cytoplasmic membrane, but they also enhance cellular signaling during cancer cell proliferation. However, it remains controversial whether dietary fatty acids are correlated with tumor progression. In this study, we demonstrate that increased Src kinase activity is associated with high-fat diet-accelerated progression of prostate tumors and that Src kinases mediate this pathological process. Moreover, in the in vivo prostate regeneration assay, host SCID mice carrying Src(Y529F)-transduced regeneration tissues were fed a low-fat diet or a high-fat diet and treated with vehicle or dasatinib. The high-fat diet not only accelerated Src-induced prostate tumorigenesis in mice but also compromised the inhibitory effect of the anticancer drug dasatinib on Src kinase oncogenic potential in vivo We further show that myristoylation of Src kinase is essential to facilitate Src-induced and high-fat diet-accelerated tumor progression. Mechanistically, metabolism of exogenous myristic acid increased the biosynthesis of myristoyl CoA and myristoylated Src and promoted Src kinase-mediated oncogenic signaling in human cells. Of the fatty acids tested, only exogenous myristic acid contributed to increased intracellular myristoyl CoA levels. Our results suggest that targeting Src kinase myristoylation, which is required for Src kinase association at the cellular membrane, blocks dietary fat-accelerated tumorigenesis in vivo Our findings uncover the molecular basis of how the metabolism of myristic acid stimulates high-fat diet-mediated prostate tumor progression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. ETS1 mediates MEK1/2-dependent overexpression of cancerous inhibitor of protein phosphatase 2A (CIP2A in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Anchit Khanna

    2011-03-01

    Full Text Available EGFR-MEK-ERK signaling pathway has an established role in promoting malignant growth and disease progression in human cancers. Therefore identification of transcriptional targets mediating the oncogenic effects of the EGFR-MEK-ERK pathway would be highly relevant. Cancerous inhibitor of protein phosphatase 2A (CIP2A is a recently characterized human oncoprotein. CIP2A promotes malignant cell growth and is over expressed at high frequency (40-80% in most of the human cancer types. However, the mechanisms inducing its expression in cancer still remain largely unexplored. Here we present systematic analysis of contribution of potential gene regulatory mechanisms for high CIP2A expression in cancer. Our data shows that evolutionary conserved CpG islands at the proximal CIP2A promoter are not methylated both in normal and cancer cells. Furthermore, sequencing of the active CIP2A promoter region from altogether seven normal and malignant cell types did not reveal any sequence alterations that would increase CIP2A expression specifically in cancer cells. However, treatment of cancer cells with various signaling pathway inhibitors revealed that CIP2A mRNA expression was sensitive to inhibition of EGFR activity as well as inhibition or activation of MEK-ERK pathway. Moreover, MEK1/2-specific siRNAs decreased CIP2A protein expression. Series of CIP2A promoter-luciferase constructs were created to identify proximal -27 to -107 promoter region responsible for MEK-dependent stimulation of CIP2A expression. Additional mutagenesis and chromatin immunoprecipitation experiments revealed ETS1 as the transcription factor mediating stimulation of CIP2A expression through EGFR-MEK pathway. Thus, ETS1 is probably mediating high CIP2A expression in human cancers with increased EGFR-MEK1/2-ERK pathway activity. These results also suggest that in addition to its established role in invasion and angiogenesis, ETS1 may support malignant cellular growth via regulation of

  15. CCND1-CDK4-mediated cell cycle progression provides a competitive advantage for human hematopoietic stem cells in vivo.

    Science.gov (United States)

    Mende, Nicole; Kuchen, Erika E; Lesche, Mathias; Grinenko, Tatyana; Kokkaliaris, Konstantinos D; Hanenberg, Helmut; Lindemann, Dirk; Dahl, Andreas; Platz, Alexander; Höfer, Thomas; Calegari, Federico; Waskow, Claudia

    2015-07-27

    Maintenance of stem cell properties is associated with reduced proliferation. However, in mouse hematopoietic stem cells (HSCs), loss of quiescence results in a wide range of phenotypes, ranging from functional failure to extensive self-renewal. It remains unknown whether the function of human HSCs is controlled by the kinetics of cell cycle progression. Using human HSCs and human progenitor cells (HSPCs), we report here that elevated levels of CCND1-CDK4 complexes promoted the transit from G0 to G1 and shortened the G1 cell cycle phase, resulting in protection from differentiation-inducing signals in vitro and increasing human leukocyte engraftment in vivo. Further, CCND1-CDK4 overexpression conferred a competitive advantage without impacting HSPC numbers. In contrast, accelerated cell cycle progression mediated by elevated levels of CCNE1-CDK2 led to the loss of functional HSPCs in vivo. Collectively, these data suggest that the transition kinetics through the early cell cycle phases are key regulators of human HSPC function and important for lifelong hematopoiesis. © 2015 Mende et al.

  16. Asy2/Mer2: an evolutionarily conserved mediator of meiotic recombination, pairing, and global chromosome compaction.

    Science.gov (United States)

    Tessé, Sophie; Bourbon, Henri-Marc; Debuchy, Robert; Budin, Karine; Dubois, Emeline; Liangran, Zhang; Antoine, Romain; Piolot, Tristan; Kleckner, Nancy; Zickler, Denise; Espagne, Eric

    2017-09-15

    Meiosis is the cellular program by which a diploid cell gives rise to haploid gametes for sexual reproduction. Meiotic progression depends on tight physical and functional coupling of recombination steps at the DNA level with specific organizational features of meiotic-prophase chromosomes. The present study reveals that every step of this coupling is mediated by a single molecule: Asy2/Mer2. We show that Mer2, identified so far only in budding and fission yeasts, is in fact evolutionarily conserved from fungi (Mer2/Rec15/Asy2/Bad42) to plants (PRD3/PAIR1) and mammals (IHO1). In yeasts, Mer2 mediates assembly of recombination-initiation complexes and double-strand breaks (DSBs). This role is conserved in the fungus Sordaria However, functional analysis of 13 mer2 mutants and successive localization of Mer2 to axis, synaptonemal complex (SC), and chromatin revealed, in addition, three further important functions. First, after DSB formation, Mer2 is required for pairing by mediating homolog spatial juxtaposition, with implications for crossover (CO) patterning/interference. Second, Mer2 participates in the transfer/maintenance and release of recombination complexes to/from the SC central region. Third, after completion of recombination, potentially dependent on SUMOylation, Mer2 mediates global chromosome compaction and post-recombination chiasma development. Thus, beyond its role as a recombinosome-axis/SC linker molecule, Mer2 has important functions in relation to basic chromosome structure. © 2017 Tessé et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Caffeine, creatine, GRIN2A and Parkinson's disease progression.

    Science.gov (United States)

    Simon, David K; Wu, Cai; Tilley, Barbara C; Lohmann, Katja; Klein, Christine; Payami, Haydeh; Wills, Anne-Marie; Aminoff, Michael J; Bainbridge, Jacquelyn; Dewey, Richard; Hauser, Robert A; Schaake, Susen; Schneider, Jay S; Sharma, Saloni; Singer, Carlos; Tanner, Caroline M; Truong, Daniel; Wei, Peng; Wong, Pei Shieen; Yang, Tianzhong

    2017-04-15

    Caffeine is neuroprotective in animal models of Parkinson's disease (PD) and caffeine intake is inversely associated with the risk of PD. This association may be influenced by the genotype of GRIN2A, which encodes an NMDA-glutamate-receptor subunit. In two placebo-controlled studies, we detected no association of caffeine intake with the rate of clinical progression of PD, except among subjects taking creatine, for whom higher caffeine intake was associated with more rapid progression. We now have analyzed data from 420 subjects for whom DNA samples and caffeine intake data were available from a placebo-controlled study of creatine in PD. The GRIN2A genotype was not associated with the rate of clinical progression of PD in the placebo group. However, there was a 4-way interaction between GRIN2A genotype, caffeine, creatine and the time since baseline. Among subjects in the creatine group with high levels of caffeine intake, but not among those with low caffeine intake, the GRIN2A T allele was associated with more rapid progression (p=0.03). These data indicate that the deleterious interaction between caffeine and creatine with respect to rate of progression of PD is influenced by GRIN2A genotype. This example of a genetic factor interacting with environmental factors illustrates the complexity of gene-environment interactions in the progression of PD. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. PRR11 regulates late-S to G2/M phase progression and induces premature chromatin condensation (PCC)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chundong; Zhang, Ying; Li, Yi; Zhu, Huifang; Wang, Yitao; Cai, Wei [Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016 (China); Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016 (China); Zhu, Jiang [Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016 (China); Ozaki, Toshinori [Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuohku, Chiba 260-8717 (Japan); Bu, Youquan, E-mail: buyqcn@aliyun.com [Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016 (China); Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016 (China)

    2015-03-13

    Recently, we have demonstrated that proline-rich protein 11 (PRR11) is a novel tumor-related gene product likely implicated in the regulation of cell cycle progression as well as lung cancer development. However, its precise role in cell cycle progression remains unclear. In the present study, we have further investigated the expression pattern and functional implication of PRR11 during cell cycle in detail in human lung carcinoma-derived H1299 cells. According to our immunofluorescence study, PRR11 was expressed largely in cytoplasm, the amount of PRR11 started to increase in the late S phase, and was retained until just before mitotic telophase. Consistent with those observations, siRNA-mediated knockdown of PRR11 caused a significant cell cycle arrest in the late S phase. Intriguingly, the treatment with dNTPs further augmented PRR11 silencing-mediated S phase arrest. Moreover, knockdown of PRR11 also resulted in a remarkable retardation of G2/M progression, and PRR11-knockdown cells subsequently underwent G2 phase cell cycle arrest accompanied by obvious mitotic defects such as multipolar spindles and multiple nuclei. In addition, forced expression of PRR11 promoted the premature Chromatin condensation (PCC), and then proliferation of PRR11-expressing cells was massively attenuated and induced apoptosis. Taken together, our current observations strongly suggest that PRR11, which is strictly regulated during cell cycle progression, plays a pivotal role in the regulation of accurate cell cycle progression through the late S phase to mitosis. - Highlights: • PRR11 started to increase in the late S phase and was retained until just before mitotic telophase. • PRR11-knockdown caused a significant cell cycle arrest in the late S phase and G2 phase. • The treatment with dNTPs further augmented PRR11 silencing-mediated S phase arrest. • PRR11-knockdown led to multipolar spindles and multiple nuclei. • Forced expression of PRR11 promoted the PCC and inhibited

  19. PRR11 regulates late-S to G2/M phase progression and induces premature chromatin condensation (PCC)

    International Nuclear Information System (INIS)

    Zhang, Chundong; Zhang, Ying; Li, Yi; Zhu, Huifang; Wang, Yitao; Cai, Wei; Zhu, Jiang; Ozaki, Toshinori; Bu, Youquan

    2015-01-01

    Recently, we have demonstrated that proline-rich protein 11 (PRR11) is a novel tumor-related gene product likely implicated in the regulation of cell cycle progression as well as lung cancer development. However, its precise role in cell cycle progression remains unclear. In the present study, we have further investigated the expression pattern and functional implication of PRR11 during cell cycle in detail in human lung carcinoma-derived H1299 cells. According to our immunofluorescence study, PRR11 was expressed largely in cytoplasm, the amount of PRR11 started to increase in the late S phase, and was retained until just before mitotic telophase. Consistent with those observations, siRNA-mediated knockdown of PRR11 caused a significant cell cycle arrest in the late S phase. Intriguingly, the treatment with dNTPs further augmented PRR11 silencing-mediated S phase arrest. Moreover, knockdown of PRR11 also resulted in a remarkable retardation of G2/M progression, and PRR11-knockdown cells subsequently underwent G2 phase cell cycle arrest accompanied by obvious mitotic defects such as multipolar spindles and multiple nuclei. In addition, forced expression of PRR11 promoted the premature Chromatin condensation (PCC), and then proliferation of PRR11-expressing cells was massively attenuated and induced apoptosis. Taken together, our current observations strongly suggest that PRR11, which is strictly regulated during cell cycle progression, plays a pivotal role in the regulation of accurate cell cycle progression through the late S phase to mitosis. - Highlights: • PRR11 started to increase in the late S phase and was retained until just before mitotic telophase. • PRR11-knockdown caused a significant cell cycle arrest in the late S phase and G2 phase. • The treatment with dNTPs further augmented PRR11 silencing-mediated S phase arrest. • PRR11-knockdown led to multipolar spindles and multiple nuclei. • Forced expression of PRR11 promoted the PCC and inhibited

  20. Emergence of CD134 cysteine-rich domain 2 (CRD2)-independent strains of feline immunodeficiency virus (FIV) is associated with disease progression in naturally infected cats.

    Science.gov (United States)

    Bęczkowski, Paweł M; Techakriengkrai, Navapon; Logan, Nicola; McMonagle, Elizabeth; Litster, Annette; Willett, Brian J; Hosie, Margaret J

    2014-11-28

    Feline immunodeficiency virus (FIV) infection is mediated by sequential interactions with CD134 and CXCR4. Field strains of virus vary in their dependence on cysteine-rich domain 2 (CRD2) of CD134 for infection. Here, we analyse the receptor usage of viral variants in the blood of 39 naturally infected cats, revealing that CRD2-dependent viral variants dominate in early infection, evolving towards CRD2-independence with disease progression. These findings are consistent with a shift in CRD2 of CD134 usage with disease progression.

  1. CCND1–CDK4–mediated cell cycle progression provides a competitive advantage for human hematopoietic stem cells in vivo

    Science.gov (United States)

    Mende, Nicole; Kuchen, Erika E.; Lesche, Mathias; Grinenko, Tatyana; Kokkaliaris, Konstantinos D.; Hanenberg, Helmut; Lindemann, Dirk; Dahl, Andreas; Platz, Alexander; Höfer, Thomas; Calegari, Federico

    2015-01-01

    Maintenance of stem cell properties is associated with reduced proliferation. However, in mouse hematopoietic stem cells (HSCs), loss of quiescence results in a wide range of phenotypes, ranging from functional failure to extensive self-renewal. It remains unknown whether the function of human HSCs is controlled by the kinetics of cell cycle progression. Using human HSCs and human progenitor cells (HSPCs), we report here that elevated levels of CCND1–CDK4 complexes promoted the transit from G0 to G1 and shortened the G1 cell cycle phase, resulting in protection from differentiation-inducing signals in vitro and increasing human leukocyte engraftment in vivo. Further, CCND1–CDK4 overexpression conferred a competitive advantage without impacting HSPC numbers. In contrast, accelerated cell cycle progression mediated by elevated levels of CCNE1–CDK2 led to the loss of functional HSPCs in vivo. Collectively, these data suggest that the transition kinetics through the early cell cycle phases are key regulators of human HSPC function and important for lifelong hematopoiesis. PMID:26150472

  2. Role of Protein Synthesis Initiation Factors in Dietary Soy Isoflavone-Mediated Effects on Breast Cancer Progression

    Science.gov (United States)

    2012-03-01

    Manuscript s • Submitted to the Journal of Nutritional Biochemistry (Feb 21, 2012) “The soy isoflavone equol may increase cancer malignancy via upregulation...29] Ko KP, Park SK, Park B et al. Isoflavones from phytoestrogens and gastric cancer risk: a nested case-control study within the Korean...Dietary Soy Isoflavone-Mediated Effects on Breast Cancer Progression. PRINCIPAL INVESTIGATOR: Columba de la Parra Simental CONTRACTING

  3. CYP2E1-dependent and leptin-mediated hepatic CD57 expression on CD8 + T cells aid progression of environment-linked nonalcoholic steatohepatitis

    International Nuclear Information System (INIS)

    Seth, Ratanesh Kumar; Das, Suvarthi; Kumar, Ashutosh; Chanda, Anindya; Kadiiska, Maria B.; Michelotti, Gregory; Manautou, Jose; Diehl, Anna Mae; Chatterjee, Saurabh

    2014-01-01

    Environmental toxins induce a novel CYP2E1/leptin signaling axis in liver. This in turn activates a poorly characterized innate immune response that contributes to nonalcoholic steatohepatitis (NASH) progression. To identify the relevant subsets of T-lymphocytes in CYP2E1-dependent, environment-linked NASH, we utilized a model of diet induced obese (DIO) mice that are chronically exposed to bromodichloromethane. Mice deficient in CYP2E1, leptin (ob/ob mice), or both T and B cells (Pfp/Rag2 double knockout (KO) mice) were used to delineate the role of each of these factors in metabolic oxidative stress-induced T cell activation. Results revealed that elevated levels of lipid peroxidation, tyrosyl radical formation, mitochondrial tyrosine nitration and hepatic leptin as a consequence of metabolic oxidative stress caused increased levels of hepatic CD57, a marker of peripheral blood lymphocytes including NKT cells. CD8 + CD57 + cytotoxic T cells but not CD4 + CD57 + cells were significantly decreased in mice lacking CYP2E1 and leptin. There was a significant increase in the levels of T cell cytokines IL-2, IL-1β, and IFN-γ in bromodichloromethane exposed DIO mice but not in mice that lacked CYP2E1, leptin or T and B cells. Apoptosis as evidenced by TUNEL assay and levels of cleaved caspase-3 was significantly lower in leptin and Pfp/Rag2 KO mice and highly correlated with protection from NASH. The results described above suggest that higher levels of oxidative stress-induced leptin mediated CD8 + CD57 + T cells play an important role in the development of NASH. It also provides a novel insight of immune dysregulation and may be a key biomarker in NASH. - Highlights: • Metabolic oxidative stress caused increased levels of hepatic CD57 expression. • CD8+ CD57+ cytotoxic T cells were decreased in mice lacking CYP2E1 and leptin. • There was a significant increase in T cell cytokines in toxin-treated mice. • Apoptosis was significantly lower in leptin and Pfp

  4. CYP2E1-dependent and leptin-mediated hepatic CD57 expression on CD8 + T cells aid progression of environment-linked nonalcoholic steatohepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Seth, Ratanesh Kumar; Das, Suvarthi [Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 (United States); Kumar, Ashutosh [Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Chanda, Anindya [Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 (United States); Kadiiska, Maria B. [Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Michelotti, Gregory [Division of Gastroenterology, Duke University, Durham, NC 27707 (United States); Manautou, Jose [Dept. of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092 (United States); Diehl, Anna Mae [Division of Gastroenterology, Duke University, Durham, NC 27707 (United States); Chatterjee, Saurabh, E-mail: schatt@mailbox.sc.edu [Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 (United States)

    2014-01-01

    Environmental toxins induce a novel CYP2E1/leptin signaling axis in liver. This in turn activates a poorly characterized innate immune response that contributes to nonalcoholic steatohepatitis (NASH) progression. To identify the relevant subsets of T-lymphocytes in CYP2E1-dependent, environment-linked NASH, we utilized a model of diet induced obese (DIO) mice that are chronically exposed to bromodichloromethane. Mice deficient in CYP2E1, leptin (ob/ob mice), or both T and B cells (Pfp/Rag2 double knockout (KO) mice) were used to delineate the role of each of these factors in metabolic oxidative stress-induced T cell activation. Results revealed that elevated levels of lipid peroxidation, tyrosyl radical formation, mitochondrial tyrosine nitration and hepatic leptin as a consequence of metabolic oxidative stress caused increased levels of hepatic CD57, a marker of peripheral blood lymphocytes including NKT cells. CD8 + CD57 + cytotoxic T cells but not CD4 + CD57 + cells were significantly decreased in mice lacking CYP2E1 and leptin. There was a significant increase in the levels of T cell cytokines IL-2, IL-1β, and IFN-γ in bromodichloromethane exposed DIO mice but not in mice that lacked CYP2E1, leptin or T and B cells. Apoptosis as evidenced by TUNEL assay and levels of cleaved caspase-3 was significantly lower in leptin and Pfp/Rag2 KO mice and highly correlated with protection from NASH. The results described above suggest that higher levels of oxidative stress-induced leptin mediated CD8 + CD57 + T cells play an important role in the development of NASH. It also provides a novel insight of immune dysregulation and may be a key biomarker in NASH. - Highlights: • Metabolic oxidative stress caused increased levels of hepatic CD57 expression. • CD8+ CD57+ cytotoxic T cells were decreased in mice lacking CYP2E1 and leptin. • There was a significant increase in T cell cytokines in toxin-treated mice. • Apoptosis was significantly lower in leptin and Pfp

  5. Seizure progression and inflammatory mediators promote pericytosis and pericyte-microglia clustering at the cerebrovasculature.

    Science.gov (United States)

    Klement, Wendy; Garbelli, Rita; Zub, Emma; Rossini, Laura; Tassi, Laura; Girard, Benoit; Blaquiere, Marine; Bertaso, Federica; Perroy, Julie; de Bock, Frederic; Marchi, Nicola

    2018-05-01

    Cerebrovascular dysfunction and inflammation occur in epilepsy. Here we asked whether pericytes, a pivotal cellular component of brain capillaries, undergo pathological modifications during experimental epileptogenesis and in human epilepsy. We evaluated whether pro-inflammatory cytokines, present in the brain during seizures, contribute to pericyte morphological modifications. In vivo, unilateral intra-hippocampal kainic acid (KA) injections were performed in NG2DsRed/C57BL6 mice to induce status epilepticus (SE), epileptogenesis, and spontaneous recurrent seizures (SRS). NG2DsRed mice were used to visualize pericytes during seizure progression. The effect triggered by recombinant IL-1β, TNFα, or IL-6 on pericytes was evaluated in NG2DsRed hippocampal slices and in human-derived cell culture. Human brain specimens obtained from temporal lobe epilepsy (TLE) with or without sclerosis (HS) and focal cortical dysplasia (FCD-IIb) were evaluated for pericyte-microglial cerebrovascular assembly. A disarray of NG2DsRed + pericyte soma and ramifications was found 72 h post-SE and 1 week post-SE (epileptogenesis) in the hippocampus. Pericyte modifications topographically overlapped with IBA1 + microglia clustering around the capillaries with cases of pericytes lodged within the microglial cells. Microglial clustering around the NG2DsRed pericytes lingered at SRS. Pericyte proliferation (Ki67 + ) occurred 72 h post-SE and during epileptogenesis and returned towards control levels at SRS. Human epileptic brain tissues showed pericyte-microglia assemblies with IBA1/HLA microglial cells outlining the capillary wall in TLE-HS and FCD-IIb specimens. Inflammatory mediators contributed to pericyte modifications, in particular IL-1β elicited pericyte morphological changes and pericyte-microglia clustering in NG2DsRed hippocampal slices. Modifications also occurred when pro-inflammatory cytokines were added to an in vitro culture of pericytes. These results indicate the

  6. Defining the ATM-mediated barrier to tumorigenesis in somatic mammary cells following ErbB2 activation.

    Science.gov (United States)

    Reddy, Jay P; Peddibhotla, Sirisha; Bu, Wen; Zhao, Jing; Haricharan, Svasti; Du, Yi-Chieh Nancy; Podsypanina, Katrina; Rosen, Jeffrey M; Donehower, Larry A; Li, Yi

    2010-02-23

    p53, apoptosis, and senescence are frequently activated in preneoplastic lesions and are barriers to progression to malignancy. These barriers have been suggested to result from an ATM-mediated DNA damage response (DDR), which may follow oncogene-induced hyperproliferation and ensuing DNA replication stress. To elucidate the currently untested role of DDR in breast cancer initiation, we examined the effect of oncogene expression in several murine models of breast cancer. We did not observe a detectable DDR in early hyperplastic lesions arising in transgenic mice expressing several different oncogenes. However, DDR signaling was strongly induced in preneoplastic lesions arising from individual mammary cells transduced in vivo by retroviruses expressing either PyMT or ErbB2. Thus, activation of an oncogene after normal tissue development causes a DDR. Furthermore, in this somatic ErbB2 tumor model, ATM, and thus DDR, is required for p53 stabilization, apoptosis, and senescence. In palpable tumors in this model, p53 stabilization and apoptosis are lost, but unexpectedly senescence remains in many tumor cells. Thus, this murine model fully recapitulates early DDR signaling; the eventual suppression of its endpoints in tumorigenesis provides compelling evidence that ErbB2-induced aberrant mammary cell proliferation leads to an ATM-mediated DDR that activates apoptosis and senescence, and at least the former must be overcome to progress to malignancy. This in vivo study also uncovers an unexpected effect of ErbB2 activation previously known for its prosurvival roles, and suggests that protection of the ATM-mediated DDR-p53 signaling pathway may be important in breast cancer prevention.

  7. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression*

    Science.gov (United States)

    Coke, Christopher J.; Scarlett, Kisha A.; Chetram, Mahandranauth A.; Jones, Kia J.; Sandifer, Brittney J.; Davis, Ahriea S.; Marcus, Adam I.

    2016-01-01

    The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression. PMID:26841863

  8. Tributyltin induces a G2/M cell cycle arrest in human amniotic cells via PP2A inhibition-mediated inactivation of the ERK1/2 cascades.

    Science.gov (United States)

    Zhang, Yali; Guo, Zonglou; Xu, Lihong

    2014-03-01

    The molecular mechanisms underlying the cell cycle alterations induced by tributyltin (TBT), a highly toxic environmental contaminant, remain elusive. In this study, cell cycle progression and some key regulators in G2/M phase were investigated in human amniotic cells treated with TBT. Furthermore, protein phosphatase (PP) 2A and the ERK cascades were examined. The results showed that TBT caused a G2/M cell cycle arrest that was accompanied by a decrease in the total cdc25C protein level and an increase in the p-cdc2 level in the nucleus. TBT caused a decrease in PP2A activity and inhibited the ERK cascade by inactivating Raf-1, resulting in the dephosphorylation of MEK1/2, ERK1/2, and c-Myc. Taken together, TBT leads to a G2/M cell cycle arrest in FL cells, an increase in p-cdc2 and a decrease in the levels of total cdc25C protein, which may be caused by the PP2A inhibition-mediated inactivation of the ERK1/2 cascades. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. HIF-2α mediates a marked increase in migration and stemness characteristics in a subset of glioma cells under hypoxia by activating an Oct-4/Sox-2-Mena (INV) axis.

    Science.gov (United States)

    Bhagat, Mohita; Palanichamy, Jayanth Kumar; Ramalingam, Pradeep; Mudassir, Madeeha; Irshad, Khushboo; Chosdol, Kunzang; Sarkar, Chitra; Seth, Pankaj; Goswami, Sumanta; Sinha, Subrata; Chattopadhyay, Parthaprasad

    2016-05-01

    Hypoxia is a salient feature of most solid tumors and plays a central role in tumor progression owing to its multiple contributions to therapeutic resistance, metastasis, angiogenesis and stemness properties. Reports exist in literature about hypoxia increasing stemness characteristics and invasiveness potential of malignant cells. In order to delineate molecular crosstalk among factors driving glioma progression, we used knockdown and overexpression strategies. We have demonstrated that U87MG and A172 glioma cells inherently have a subset of cells with high migratory potential due to migration-inducing Mena transcripts. These cells also have elevated stemness markers (Sox-2 and Oct-4). There was a significant increase of number in this subset of migratory cells on exposure to hypoxia with corresponding elevation (over 1000 fold) in migration-inducing Mena transcripts. We were able to demonstrate that a HIF-2α-Sox-2/Oct-4-Mena (INV) axis that is strongly activated in hypoxia and markedly increases the migratory potential of the cells. Such cells also formed tumor spheres with greater efficiency. We have correlated our in-vitro results with human glioblastoma samples and found that hypoxia, invasiveness and stemness markers correlated well in native tumor samples. This study identifies a novel signaling mechanism mediated by HIF-2α in regulating invasiveness and stemness characteristics, suggesting that under hypoxic conditions, some tumor cells acquire more migratory potential by increased Pan Mena and Mena INV expression as a consequence of this HIF-2α mediated increase in Oct-4 and Sox-2. These properties would help the cells to form a new nidus after local invasion or metastasis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Exploration of new perspectives and limitations in Agrobacterium mediated gene transfer technology. Progress report, [June 1, 1992-- May 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Marton, L.

    1994-12-31

    This report describes progress aimed at constructing gene-transfer technology for Nicotiana plumbaginifolia. Most actual effort as described herein has so far been directed at exploring new perspectives and limitations in Agrobacterium mediated gene transfer. Accomplishments are described using a core homologous gene targeting vector.

  11. 29 CFR 1207.2 - Requests for Mediation Board action.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Requests for Mediation Board action. 1207.2 Section 1207.2 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD ESTABLISHMENT OF SPECIAL ADJUSTMENT BOARDS § 1207.2 Requests for Mediation Board action. (a) Requests for the National Mediation Board...

  12. ERK1/2 signalling pathway is involved in CD147-mediated gastric cancer cell line SGC7901 proliferation and invasion.

    Science.gov (United States)

    Chen, Liping; Pan, Yuqin; Gu, Ling; Nie, Zhenlin; He, Bangshun; Song, Guoqi; Li, Rui; Xu, Yeqiong; Gao, Tianyi; Wang, Shukui

    2013-08-01

    This study aimed to investigate the role of CD147 in the progression of gastric cancer and the signalling pathway involved in CD147-mediated gastric cancer cell line SGC7901 proliferation and invasion. Short hairpin RNA (shRNA) expression vectors targeting CD147 were constructed to silence CD147, and the expression of CD147 was monitored by quantitative realtime reverse transcriptase polymerase chain reaction and Western blot and further confirmed by immunohistochemistry in vivo. Cell proliferation was determined by Cell Counting Kit-8 assay, the activities of matrix metalloproteinase (MMP)-2 and MMP-9 were determined by gelatin zymography, and the invasion of SGC7901 was determined by invasion assay. The phosphorylation and non-phosphorylation of the mitogen-activated protein kinases, extracellular signal-regulated kinase1/2 (ERK1/2), P38 and c-Jun NH2-terminal kinase were examined by Western blot. Additionally, the ERK1/2 inhibitor U0126 were used to confirm the signalling pathway involved in CD147-mediated SGC7901 progression. The BALB/c nude mice were used to study tumour progression in vivo. The results revealed that CD147 silencing inhibited the proliferation and invasion of SGC7901 cells, and down-regulated the activities of MMP-2 and MMP-9 and the phosphorylation of the ERK1/2 in SGC7901 cells. ERK1/2 inhibitor U0126 decreased the proliferation, and invasion of SGC7901 cells, and down-regulated the MMP-2 and MMP-9 activities. In a nude mouse model of subcutaneous xenografts, the tumour volume was significantly smaller in the SGC7901/shRNA group compared to the SGC7901 and SGC7901/snc-RNA group. Immunohistochemistry analysis showed that CD147 and p-ERK1/2 protein expressions were down-regulated in the SGC7901/shRNA2 group compared to the SGC7901 and SGC7901/snc-RNA group. These results suggest that ERK1/2 pathway involves in CD147-mediated gastric cancer growth and invasion. These findings further highlight the importance of CD147 in cancer progression

  13. Baicalein suppresses the androgen receptor (AR)-mediated prostate cancer progression via inhibiting the AR N-C dimerization and AR-coactivators interaction.

    Science.gov (United States)

    Xu, Defeng; Chen, Qiulu; Liu, Yalin; Wen, Xingqiao

    2017-12-01

    Androgen receptor (AR) plays a critical role in prostate cancer (PCa) development and progression. Androgen deprivation therapy with antiandrogens to reduce androgen biosynthesis or prevent androgens from binding to AR are widely used to suppress AR-mediated PCa growth. However, most of ADT may eventually fail with development of the castration resistance after 12-24 months. Here we found that a natural product baicalein can effectively suppress the PCa progression via targeting the androgen-induced AR transactivation with little effect to AR protein expression. PCa cells including LNCaP, CWR22Rv1, C4-2, PC-3, and DU145, were treated with baicalein and luciferase assay was used to evaluate their effect on the AR transactivation. Cell growth and IC 50 were determined by MTT assay after 48 hrs treatment. RT-PCR was used to evaluate the mRNA levels of AR target genes including PSA, TMPRSS2, and TMEPA1. Western blot was used to determine AR and PSA protein expression. The natural product of baicalein can selectively inhibit AR transactivation with little effect on the other nuclear receptors, including ERα, and GR. At a low concentration, 2.5 μM of baicalein effectively suppresses the growth of AR-positive PCa cells, and has little effect on AR-negative PCa cells. Mechanism dissection suggest that baicalein can suppress AR target genes (PSA, TMPRSS2, and TMEPA1) expression in both androgen responsive LNCaP cells and castration resistant CWR22Rv1 cells, that may involve the inhibiting the AR N/C dimerization and AR-coactivators interaction. Baicalein may be developed as an effective anti-AR therapy via its ability to inhibit AR transactivation and AR-mediated PCa cell growth.

  14. PGE2 mediates EGFR internalization and nuclear translocation via caveolin endocytosis promoting its transcriptional activity and proliferation in human NSCLC cells.

    Science.gov (United States)

    Bazzani, Lorenzo; Donnini, Sandra; Giachetti, Antonio; Christofori, Gerhard; Ziche, Marina

    2018-03-13

    Prostaglandin E 2 (PGE 2 ) contributes to tumor progression by promoting cancer cell growth, invasion and by creating a favorable pro-tumor microenvironment. PGE 2 has been reported to transactivate and internalize into the nucleus receptor tyrosine kinases such as Epidermal growth factor receptor (EGFR), thereby supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, PGE 2 induces EGFR nuclear translocation via different dynamin-dependent endocytic pathways, promotes the formation of an EGFR-STAT3 complex, affects nuclear EGFR target gene expression and mediates tumor cell proliferation. Indeed, we find that PGE 2 induces EGFR internalization and consequent nuclear import through Clathrin- and Caveolin-mediated endocytosis and through the interaction of EGFR with Importin β1. Within the nucleus, EGFR forms a complex with STAT3, an event blocked by ablation of Clathrin Heavy Chain or Caveolin-1. The combination of EGF and PGE 2 prolongs nuclear EGFR transcriptional activity manifested by the upregulation of CCND1 , PTGS2 , MYC and NOS2 mRNA levels and potentiates nuclear EGFR-induced NSCLC cell proliferation. Additionally, NSCLC patients with high expression of a nuclear EGFR gene signature display shorter survival times than those with low expression, thus showing a putative correlation between nuclear EGFR and poor prognosis in NSCLC. Together, our findings indicate a complex mechanism underlying PGE 2 -induced EGF/EGFR signaling and transcriptional control, which plays a key role in cancer progression.

  15. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression.

    Science.gov (United States)

    Coke, Christopher J; Scarlett, Kisha A; Chetram, Mahandranauth A; Jones, Kia J; Sandifer, Brittney J; Davis, Ahriea S; Marcus, Adam I; Hinton, Cimona V

    2016-05-06

    The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Targeted Deletion of a Plasmodium Site-2 Protease Impairs Life Cycle Progression in the Mammalian Host.

    Science.gov (United States)

    Koussis, Konstantinos; Goulielmaki, Evi; Chalari, Anna; Withers-Martinez, Chrislaine; Siden-Kiamos, Inga; Matuschewski, Kai; Loukeris, Thanasis G

    2017-01-01

    Site-2 proteases (S2P) belong to the M50 family of metalloproteases, which typically perform essential roles by mediating activation of membrane-bound transcription factors through regulated intramembrane proteolysis (RIP). Protease-dependent liberation of dormant transcription factors triggers diverse cellular responses, such as sterol regulation, Notch signalling and the unfolded protein response. Plasmodium parasites rely on regulated proteolysis for controlling essential pathways throughout the life cycle. In this study we examine the Plasmodium-encoded S2P in a murine malaria model and show that it is expressed in all stages of Plasmodium development. Localisation studies by endogenous gene tagging revealed that in all invasive stages the protein is in close proximity to the nucleus. Ablation of PbS2P by reverse genetics leads to reduced growth rates during liver and blood infection and, hence, virulence attenuation. Strikingly, absence of PbS2P was compatible with parasite life cycle progression in the mosquito and mammalian hosts under physiological conditions, suggesting redundant or dispensable roles in vivo.

  17. Targeted Deletion of a Plasmodium Site-2 Protease Impairs Life Cycle Progression in the Mammalian Host.

    Directory of Open Access Journals (Sweden)

    Konstantinos Koussis

    Full Text Available Site-2 proteases (S2P belong to the M50 family of metalloproteases, which typically perform essential roles by mediating activation of membrane-bound transcription factors through regulated intramembrane proteolysis (RIP. Protease-dependent liberation of dormant transcription factors triggers diverse cellular responses, such as sterol regulation, Notch signalling and the unfolded protein response. Plasmodium parasites rely on regulated proteolysis for controlling essential pathways throughout the life cycle. In this study we examine the Plasmodium-encoded S2P in a murine malaria model and show that it is expressed in all stages of Plasmodium development. Localisation studies by endogenous gene tagging revealed that in all invasive stages the protein is in close proximity to the nucleus. Ablation of PbS2P by reverse genetics leads to reduced growth rates during liver and blood infection and, hence, virulence attenuation. Strikingly, absence of PbS2P was compatible with parasite life cycle progression in the mosquito and mammalian hosts under physiological conditions, suggesting redundant or dispensable roles in vivo.

  18. Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure

    International Nuclear Information System (INIS)

    Huang Shing; Chueh Pinju; Lin Yunwei; Shih Tungsheng; Chuang Showmei

    2009-01-01

    Titanium dioxide (TiO2) nano-particles (< 100 nm in diameter) have been of interest in a wide range of applications, such as in cosmetics and pharmaceuticals because of their low toxicity. However, recent studies have shown that TiO2 nano-particles (nano-TiO2) induce cytotoxicity and genotoxicity in various lines of cultured cells as well as tumorigenesis in animal models. The biological roles of nano-TiO2 are shown to be controversial and no comprehensive study paradigm has been developed to investigate their molecular mechanisms. In this study, we showed that short-term exposure to nano-TiO2 enhanced cell proliferation, survival, ERK signaling activation and ROS production in cultured fibroblast cells. Moreover, long-term exposure to nano-TiO2 not only increased cell survival and growth on soft agar but also the numbers of multinucleated cells and micronucleus (MN) as suggested in confocal microscopy analysis. Cell cycle phase analysis showed G2/M delay and slower cell division in long-term exposed cells. Most importantly, long-term TiO2 exposure remarkably affected mitotic progression at anaphase and telophase leading to aberrant multipolar spindles and chromatin alignment/segregation. Moreover, PLK1 was demonstrated as the target for nano-TiO2 in the regulation of mitotic progression and exit. Notably, a higher fraction of sub-G1 phase population appeared in TiO2-exposed cells after releasing from G2/M synchronization. Our results demonstrate that long-term exposure to nano-TiO2 disturbs cell cycle progression and duplicated genome segregation, leading to chromosomal instability and cell transformation.

  19. Ezh2 does not mediate retinal ganglion cell homeostasis or their susceptibility to injury.

    Directory of Open Access Journals (Sweden)

    Lin Cheng

    Full Text Available Epigenetic predisposition is thought to critically contribute to adult-onset disorders, such as retinal neurodegeneration. The histone methyltransferase, enhancer of zeste homolog 2 (Ezh2, is transiently expressed in the perinatal retina, particularly enriched in retinal ganglion cells (RGCs. We previously showed that embryonic deletion of Ezh2 from retinal progenitors led to progressive photoreceptor degeneration throughout life, demonstrating a role for embryonic predisposition of Ezh2-mediated repressive mark in maintaining the survival and function of photoreceptors in the adult. Enrichment of Ezh2 in RGCs leads to the question if Ezh2 also mediates gene expression and function in postnatal RGCs, and if its deficiency changes RGC susceptibility to cell death under injury or disease in the adult. To test this, we generated mice carrying targeted deletion of Ezh2 from RGC progenitors driven by Math5-Cre (mKO. mKO mice showed no detectable defect in RGC development, survival, or cell homeostasis as determined by physiological analysis, live imaging, histology, and immunohistochemistry. Moreover, RGCs of Ezh2 deficient mice revealed similar susceptibility against glaucomatous and acute optic nerve trauma-induced neurodegeneration compared to littermate floxed or wild-type control mice. In agreement with the above findings, analysis of RNA sequencing of RGCs purified from Ezh2 deficient mice revealed few gene changes that were related to RGC development, survival and function. These results, together with our previous report, support a cell lineage-specific mechanism of Ezh2-mediated gene repression, especially those critically involved in cellular function and homeostasis.

  20. 29 CFR 1202.2 - Interpretation of mediation agreements.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Interpretation of mediation agreements. 1202.2 Section 1202.2 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD RULES OF PROCEDURE § 1202.2 Interpretation of mediation agreements. Under section 5, Second, of title I of the Railway Labor...

  1. CLCA2 as a p53-Inducible Senescence Mediator

    Directory of Open Access Journals (Sweden)

    Chizu Tanikawa

    2012-02-01

    Full Text Available p53 is a tumor suppressor gene that is frequently mutated in multiple cancer tissues. Activated p53 protein regulates its downstream genes and subsequently inhibits malignant transformation by inducing cell cycle arrest, apoptosis, DNA repair, and senescence. However, genes involved in the p53-mediated senescence pathway are not yet fully elucidated. Through the screening of two genome-wide expression profile data sets, one for cells in which exogenous p53 was introduced and the other for senescent fibroblasts, we have identified chloride channel accessory 2 (CLCA2 as a p53-inducible senescence-associated gene. CLCA2 was remarkably induced by replicative senescence as well as oxidative stress in a p53-dependent manner. We also found that ectopically expressed CLCA2 induced cellular senescence, and the down-regulation of CLCA2 by small interfering RNA caused inhibition of oxidative stress-induced senescence. Interestingly, the reduced expression of CLCA2 was frequently observed in various kinds of cancers including prostate cancer, whereas its expression was not affected in precancerous prostatic intraepithelial neoplasia. Thus, our findings suggest a crucial role of p53/CLCA2-mediated senescence induction as a barrier for malignant transformation.

  2. PP2A-Mediated Anticancer Therapy

    Directory of Open Access Journals (Sweden)

    Weibo Chen

    2013-01-01

    Full Text Available PP2A is a family of mammalian serine/threonine phosphatases that is involved in the control of many cellular functions including protein synthesis, cellular signaling, cell cycle determination, apoptosis, metabolism, and stress responses through the negative regulation of signaling pathways initiated by protein kinases. Rapid progress is being made in the understanding of PP2A complex and its functions. Emerging studies have correlated changes in PP2A with human diseases, especially cancer. PP2A is comprised of 3 subunits: a catalytic subunit, a scaffolding subunit, and a regulatory subunit. The alternations of the subunits have been shown to be in association with many human malignancies. Therapeutic agents targeting PP2A inhibitors or activating PP2A directly have shed light on the therapy of cancers. This review focuses on PP2A structure, cancer-associated mutations, and the targeting of PP2A-related molecules to restore or reactivate PP2A in anticancer therapy, especially in digestive system cancer therapy.

  3. Trastuzumab mediates antibody-dependent cell-mediated cytotoxicity and phagocytosis to the same extent in both adjuvant and metastatic HER2/neu breast cancer patients.

    Science.gov (United States)

    Petricevic, Branka; Laengle, Johannes; Singer, Josef; Sachet, Monika; Fazekas, Judit; Steger, Guenther; Bartsch, Rupert; Jensen-Jarolim, Erika; Bergmann, Michael

    2013-12-12

    Monoclonal antibodies (mAb), such as trastuzumab are a valuable addition to breast cancer therapy. Data obtained from neoadjuvant settings revealed that antibody-dependent cell-mediated cytotoxicity (ADCC) is a major mechanism of action for the mAb trastuzumab. Conflicting results still call into question whether disease progression, prolonged treatment or concomitant chemotherapy influences ADCC and related immunological phenomena. We analyzed the activity of ADCC and antibody-dependent cell-mediated phagocytosis (ADCP) of peripheral blood mononuclear cells (PBMCs) from human epidermal growth factor receptor 2 (HER2/neu) positive breast cancer patients receiving trastuzumab therapy either in an adjuvant (n = 13) or metastatic (n = 15) setting as well as from trastuzumab treatment-naive (t-naive) HER2/neu negative patients (n = 15). PBMCs from healthy volunteers (n = 24) were used as controls. ADCC and ADCP activity was correlated with the expression of antibody binding Fc-gamma receptor (FcγR)I (CD64), FcγRII (CD32) and FcγRIII (CD16) on CD14+ (monocytes) and CD56+ (NK) cells, as well as the expression of CD107a+ (LAMP-1) on CD56+ cells and the total amount of CD4+CD25+FOXP3+ (Treg) cells. In metastatic patients, markers were correlated with progression-free survival (PFS). ADCC activity was significantly down regulated in metastatic, adjuvant and t-naive patient cohorts as compared to healthy controls. Reduced ADCC activity was inversely correlated with the expression of CD107a on CD56+ cells in adjuvant patients. ADCC and ADCP activity of the patient cohorts were similar, regardless of treatment duration or additional chemotherapy. PFS in metastatic patients inversely correlated with the number of peripheral Treg cells. The reduction of ADCC in patients as compared to healthy controls calls for adjuvant strategies, such as immune-enhancing agents, to improve the activity of trastuzumab. However, efficacy of trastuzumab-specific ADCC and ADCP appears not to

  4. A collapsin response mediator protein 2 isoform controls myosin II-mediated cell migration and matrix assembly by trapping ROCK II

    DEFF Research Database (Denmark)

    Yoneda, Atsuko; Morgan-Fisher, Marie; Wait, Robin

    2012-01-01

    Collapsin response mediator protein 2 (CRMP-2) is known as a regulator of neuronal polarity and differentiation through microtubule assembly and trafficking. Here, we show that CRMP-2 is ubiquitously expressed and a splice variant (CRMP-2L), which is expressed mainly in epithelial cells among...... nonneuronal cells, regulates myosin II-mediated cellular functions, including cell migration. While the CRMP-2 short form (CRMP-2S) is recognized as a substrate of the Rho-GTP downstream kinase ROCK in neuronal cells, a CRMP-2 complex containing 2L not only bound the catalytic domain of ROCK II through two......-2L but not -2S inhibited fibronectin matrix assembly in fibroblasts. Underlying these responses, CRMP-2L regulated the kinase activity of ROCK II but not ROCK I, independent of GTP-RhoA levels. This study provides a new insight into CRMP-2 as a controller of myosin II-mediated cellular functions...

  5. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis

    International Nuclear Information System (INIS)

    Nemoto, Eiji; Ebe, Yukari; Kanaya, Sousuke; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi

    2012-01-01

    Highlights: ► Wnt5a is identified in osteoblasts in tibial growth plate and bone marrow. ► Osteoblastic differentiation is associated with increased expression of Wnt5a/Ror2. ► Wnt5a/Ror2 signaling is important for BMP-2-mediated osteoblastic differentiation. ► Wnt5a/Ror2 operates independently of BMP-Smad pathway. -- Abstract: Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent pathway.

  6. MeCP2 Promotes Gastric Cancer Progression Through Regulating FOXF1/Wnt5a/β-Catenin and MYOD1/Caspase-3 Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Lingyu Zhao

    2017-02-01

    Full Text Available Methyl-CpG binding protein 2 (MeCP2 has recently been characterized as an oncogene frequently amplified in several types of cancer. However, its precise role in gastric cancer (GC and the molecular mechanism of MeCP2 regulation are still largely unknown. Here we report that MeCP2 is highly expressed in primary GC tissues and the expression level is correlated with the clinicopathologic features of GC. In our experiments, knockdown of MeCP2 inhibited tumor growth. Molecular mechanism of MeCP2 regulation was investigated using an integrated approach with combination of microarray analysis and chromatin immunoprecipitation sequencing (ChIP-Seq. The results suggest that MeCP2 binds to the methylated CpG islands of FOXF1 and MYOD1 promoters and inhibits their expression at the transcription level. Furthermore, we show that MeCP2 promotes GC cell proliferation via FOXF1-mediated Wnt5a/β-Catenin signaling pathway and suppresses apoptosis through MYOD1-mediated Caspase-3 signaling pathway. Due to its high expression level in GC and its critical function in driving GC progression, MeCP2 represents a promising therapeutic target for GC treatment.

  7. Grb2 mediates semaphorin-4D-dependent RhoA inactivation.

    Science.gov (United States)

    Sun, Tianliang; Krishnan, Rameshkumar; Swiercz, Jakub M

    2012-08-01

    Signaling through the semaphorin 4D (Sema4D) receptor plexin-B1 is modulated by its interaction with tyrosine kinases ErbB-2 and Met. In cells expressing the plexin-B1-ErbB-2 receptor complex, ligand stimulation results in the activation of small GTPase RhoA and stimulation of cellular migration. By contrast, in cells expressing plexin-B1 and Met, ligand stimulation results in an association with the RhoGTPase-activating protein p190 RhoGAP and subsequent RhoA inactivation--a process that involves the tyrosine phosphorylation of plexin-B1 by Met. Inactivation of RhoA is necessary for Sema4D-mediated inhibition of cellular migration. It is, however, unknown how plexin-B1 phosphorylation regulates RhoGAP interaction and activity. Here we show that the activation of plexin-B1 by Sema4D and its subsequent tyrosine phosphorylation by Met creates a docking site for the SH2 domain of growth factor receptor bound-2 (Grb2). Grb2 is thereby recruited into the plexin-B1 receptor complex and, through its SH3 domain, interacts with p190 RhoGAP and mediates RhoA deactivation. Phosphorylation of plexin-B1 by Met and the recruitment of Grb2 have no effect on the R-RasGAP activity of plexin-B1, but are required for Sema4D-induced, RhoA-dependent antimigratory effects of Sema4D on breast cancer cells. These data show Grb2 as a direct link between plexin and p190-RhoGAP-mediated downstream signaling.

  8. Transcription factor activating protein 2 beta (TFAP2B) mediates noradrenergic neuronal differentiation in neuroblastoma.

    Science.gov (United States)

    Ikram, Fakhera; Ackermann, Sandra; Kahlert, Yvonne; Volland, Ruth; Roels, Frederik; Engesser, Anne; Hertwig, Falk; Kocak, Hayriye; Hero, Barbara; Dreidax, Daniel; Henrich, Kai-Oliver; Berthold, Frank; Nürnberg, Peter; Westermann, Frank; Fischer, Matthias

    2016-02-01

    Neuroblastoma is an embryonal pediatric tumor that originates from the developing sympathetic nervous system and shows a broad range of clinical behavior, ranging from fatal progression to differentiation into benign ganglioneuroma. In experimental neuroblastoma systems, retinoic acid (RA) effectively induces neuronal differentiation, and RA treatment has been therefore integrated in current therapies. However, the molecular mechanisms underlying differentiation are still poorly understood. We here investigated the role of transcription factor activating protein 2 beta (TFAP2B), a key factor in sympathetic nervous system development, in neuroblastoma pathogenesis and differentiation. Microarray analyses of primary neuroblastomas (n = 649) demonstrated that low TFAP2B expression was significantly associated with unfavorable prognostic markers as well as adverse patient outcome. We also found that low TFAP2B expression was strongly associated with CpG methylation of the TFAP2B locus in primary neuroblastomas (n = 105) and demethylation with 5-aza-2'-deoxycytidine resulted in induction of TFAP2B expression in vitro, suggesting that TFAP2B is silenced by genomic methylation. Tetracycline inducible re-expression of TFAP2B in IMR-32 and SH-EP neuroblastoma cells significantly impaired proliferation and cell cycle progression. In IMR-32 cells, TFAP2B induced neuronal differentiation, which was accompanied by up-regulation of the catecholamine biosynthesizing enzyme genes DBH and TH, and down-regulation of MYCN and REST, a master repressor of neuronal genes. By contrast, knockdown of TFAP2B by lentiviral transduction of shRNAs abrogated RA-induced neuronal differentiation of SH-SY5Y and SK-N-BE(2)c neuroblastoma cells almost completely. Taken together, our results suggest that TFAP2B is playing a vital role in retaining RA responsiveness and mediating noradrenergic neuronal differentiation in neuroblastoma. Copyright © 2015 Federation of European Biochemical Societies

  9. Adenosine A2A receptor-dependent proliferation of pulmonary endothelial cells is mediated through calcium mobilization, PI3-kinase and ERK1/2 pathways

    International Nuclear Information System (INIS)

    Ahmad, Aftab; Schaack, Jerome B.; White, Carl W.; Ahmad, Shama

    2013-01-01

    Highlights: •A 2A receptor-induced pulmonary endothelial growth is mediated by PI3K and ERK1/2. •Cytosolic calcium mobilization is also critical for pulmonary endothelial growth. •Effectors of A 2A receptor, like tyrosine kinases and cAMP increase PI3K/Akt signaling. •Activation of A 2A receptor can contribute to vascular remodeling. -- Abstract: Hypoxia and HIF-2α-dependent A 2A receptor expression and activation increase proliferation of human lung microvascular endothelial cells (HLMVECs). This study was undertaken to investigate the signaling mechanisms that mediate the proliferative effects of A 2A receptor. A 2A receptor-mediated proliferation of HLMVECs was inhibited by intracellular calcium chelation, and by specific inhibitors of ERK1/2 and PI3-kinase (PI3K). The adenosine A 2A receptor agonist CGS21680 caused intracellular calcium mobilization in controls and, to a greater extent, in A 2A receptor-overexpressing HLMVECs. Adenoviral-mediated A 2A receptor overexpression as well as receptor activation by CGS21680 caused increased PI3K activity and Akt phosphorylation. Cells overexpressing A 2A receptor also manifested enhanced ERK1/2 phosphorylation upon CGS21680 treatment. A 2A receptor activation also caused enhanced cAMP production. Likewise, treatment with 8Br-cAMP increased PI3K activity. Hence A 2A receptor-mediated cAMP production and PI3K and Akt phosphorylation are potential mediators of the A 2A -mediated proliferative response of HLMVECs. Cytosolic calcium mobilization and ERK1/2 phosphorylation are other critical effectors of HLMVEC proliferation and growth. These studies underscore the importance of adenosine A 2A receptor in activation of survival and proliferative pathways in pulmonary endothelial cells that are mediated through PI3K/Akt and ERK1/2 pathways

  10. Simplified dark matter models with a spin-2 mediator at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Kraml, Sabine [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Laa, Ursula [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); LAPTh, Universite Savoie Mont Blanc, CNRS, B.P.110, Annecy Cedex (France); Mawatari, Kentarou [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Brussels (Belgium); Yamashita, Kimiko [Ochanomizu University, Department of Physics, Graduate School of Humanities and Sciences, and Program for Leading Graduate Schools, Tokyo (Japan)

    2017-05-15

    We consider simplified dark matter models where a dark matter candidate couples to the standard model (SM) particles via an s-channel spin-2 mediator, and study constraints on the model parameter space from the current LHC data. Our focus lies on the complementarity among different searches, in particular monojet and multijet plus missing-energy searches and resonance searches. For universal couplings of the mediator to SM particles, missing-energy searches can give stronger constraints than WW, ZZ, dijet, dihiggs, t anti t, b anti b resonance searches in the low-mass region and/or when the coupling of the mediator to dark matter is much larger than its couplings to SM particles. The strongest constraints, however, come from diphoton and dilepton resonance searches. Only if these modes are suppressed, missing-energy searches can be competitive in constraining dark matter models with a spin-2 mediator. (orig.)

  11. Simplified dark matter models with a spin-2 mediator at the LHC

    International Nuclear Information System (INIS)

    Kraml, Sabine; Laa, Ursula; Mawatari, Kentarou; Yamashita, Kimiko

    2017-01-01

    We consider simplified dark matter models where a dark matter candidate couples to the standard model (SM) particles via an s-channel spin-2 mediator, and study constraints on the model parameter space from the current LHC data. Our focus lies on the complementarity among different searches, in particular monojet and multijet plus missing-energy searches and resonance searches. For universal couplings of the mediator to SM particles, missing-energy searches can give stronger constraints than WW, ZZ, dijet, dihiggs, t anti t, b anti b resonance searches in the low-mass region and/or when the coupling of the mediator to dark matter is much larger than its couplings to SM particles. The strongest constraints, however, come from diphoton and dilepton resonance searches. Only if these modes are suppressed, missing-energy searches can be competitive in constraining dark matter models with a spin-2 mediator. (orig.)

  12. A resistant starch fiber diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease (CKD)

    Science.gov (United States)

    Inflammation is a constant feature and a major mediator of CKD progression. It is, in part, driven by altered gut microbiome and disruption of intestinal epithelial barrier, events which are primarily caused by: 1- urea influx in the intestine resulting in dominance of urease-possessing bacteria; 2-...

  13. Hypoxia-Inducible Factors: Mediators of Cancer Progression; Prognostic and Therapeutic Targets in Soft Tissue Sarcomas

    International Nuclear Information System (INIS)

    Sadri, Navid; Zhang, Paul J.

    2013-01-01

    Soft-tissue sarcomas remain aggressive tumors that result in death in greater than a third of patients due to either loco-regional recurrence or distant metastasis. Surgical resection remains the main choice of treatment for soft tissue sarcomas with pre- and/or post-operational radiation and neoadjuvant chemotherapy employed in more advanced stage disease. However, in recent decades, there has been little progress in the average five-year survival for the majority of patients with high-grade soft tissue sarcomas, highlighting the need for improved targeted therapeutic agents. Clinical and preclinical studies demonstrate that tumor hypoxia and up-regulation of hypoxia-inducible factors (HIFs) is associated with decreased survival, increased metastasis, and resistance to therapy in soft tissue sarcomas. HIF-mediated gene expression regulates many critical aspects of tumor biology, including cell survival, metabolic programming, angiogenesis, metastasis, and therapy resistance. In this review, we discuss HIFs and HIF-mediated genes as potential prognostic markers and therapeutic targets in sarcomas. Many pharmacological agents targeting hypoxia-related pathways are in development that may hold therapeutic potential for treating both primary and metastatic sarcomas that demonstrate increased HIF expression

  14. Taxane-mediated radiosensitization derives from chromosomal missegregation on tripolar mitotic spindles orchestrated by AURKA and TPX2.

    Science.gov (United States)

    Orth, M; Unger, K; Schoetz, U; Belka, C; Lauber, K

    2018-01-04

    Taxane-based radiochemotherapy is a central treatment option for various cancer entities in locally advanced stages. The therapeutic synergism of this combined modality approach due to taxane-mediated radiosensitization of cancer cells is well-known. However, the underlying molecular mechanisms remain largely elusive, and mechanism-derived predictive markers of taxane-based radiochemotherapy are currently not available. Here, we show that clinically relevant doses of Paclitaxel, the prototype taxane, stimulate a tripolar mode of mitosis leading to chromosomal missegregation and aneuploidization rather than interfering with cell cycle progression. This distinct mitotic phenotype was interlinked with Paclitaxel-mediated radiosensitization via overexpression of mitotic Aurora kinase A (AURKA) and its cofactor TPX2 whose knockdown rescued the bipolar mode of cell division and largely attenuated the radiosensitizing effects of Paclitaxel. In the cancer genome atlas (TCGA) lung adenocarcinoma cohort, high expression levels of AURKA and TPX2 were associated with specifically improved overall survival upon taxane-based radiochemotherapy, but not in case of non-taxane-based radiochemotherapy, chemo- or radiotherapy only. Thus, our data provide insights into Paclitaxel-mediated radiosensitization on a mechanistic and molecular level and identify AURKA and TPX2 as the first potential mechanism-based, predictive markers of taxane-based radiochemotherapy.

  15. α2-adrenergic blockade mimics the enhancing effect of chronic stress on breast cancer progression

    Science.gov (United States)

    Lamkin, Donald M.; Sung, Ha Yeon; Yang, Gyu Sik; David, John M.; Ma, Jeffrey C.Y.; Cole, Steve W.; Sloan, Erica K.

    2014-01-01

    Experimental studies in preclinical mouse models of breast cancer have shown that chronic restraint stress can enhance disease progression by increasing catecholamine levels and subsequent signaling of β-adrenergic receptors. Catecholamines also signal α-adrenergic receptors, and greater α-adrenergic signaling has been shown to promote breast cancer in vitro and in vivo. However, antagonism of α-adrenergic receptors can result in elevated catecholamine levels, which may increase β-adrenergic signaling, because pre-synaptic α2-adrenergic receptors mediate an autoinhibition of sympathetic transmission. Given these findings, we examined the effect of α-adrenergic blockade on breast cancer progression under non-stress and stress conditions (chronic restraint) in an orthotopic mouse model with MDA-MB-231HM cells. Chronic restraint increased primary tumor growth and metastasis to distant tissues as expected, and non-selective α-adrenergic blockade by phentolamine significantly inhibited those effects. However, under non-stress conditions, phentolamine increased primary tumor size and distant metastasis. Sympatho-neural gene expression for catecholamine biosynthesis enzymes was elevated by phentolamine under non-stress conditions, and the non-selective β-blocker propranolol inhibited the effect of phentolamine on breast cancer progression. Selective α2-adrenergic blockade by efaroxan also increased primary tumor size and distant metastasis under non-stress conditions, but selective α1-adrenergic blockade by prazosin did not. These results are consistent with the hypothesis that α2-adrenergic signaling can act through an autoreceptor mechanism to inhibit sympathetic catecholamine release and, thus, modulate established effects of β-adrenergic signaling on tumor progression-relevant biology. PMID:25462899

  16. A Collapsin Response Mediator Protein 2 Isoform Controls Myosin II-Mediated Cell Migration and Matrix Assembly by Trapping ROCK II

    Science.gov (United States)

    Morgan-Fisher, Marie; Wait, Robin; Couchman, John R.; Wewer, Ulla M.

    2012-01-01

    Collapsin response mediator protein 2 (CRMP-2) is known as a regulator of neuronal polarity and differentiation through microtubule assembly and trafficking. Here, we show that CRMP-2 is ubiquitously expressed and a splice variant (CRMP-2L), which is expressed mainly in epithelial cells among nonneuronal cells, regulates myosin II-mediated cellular functions, including cell migration. While the CRMP-2 short form (CRMP-2S) is recognized as a substrate of the Rho-GTP downstream kinase ROCK in neuronal cells, a CRMP-2 complex containing 2L not only bound the catalytic domain of ROCK II through two binding domains but also trapped and inhibited the kinase. CRMP-2L protein levels profoundly affected haptotactic migration and the actin-myosin cytoskeleton of carcinoma cells as well as nontransformed epithelial cell migration in a ROCK activity-dependent manner. Moreover, the ectopic expression of CRMP-2L but not -2S inhibited fibronectin matrix assembly in fibroblasts. Underlying these responses, CRMP-2L regulated the kinase activity of ROCK II but not ROCK I, independent of GTP-RhoA levels. This study provides a new insight into CRMP-2 as a controller of myosin II-mediated cellular functions through the inhibition of ROCK II in nonneuronal cells. PMID:22431514

  17. Calpain-mediated proteolysis of polycystin-1 C-terminus induces JAK2 and ERK signal alterations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunho [Transplantation Research Institute, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Department of Medicine, University of Maryland, Baltimore, MD (United States); Kang, Ah-Young [Transplantation Research Institute, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Department of Medicine, Program of Immunology, Graduate School, Seoul National University, Seoul (Korea, Republic of); Ko, Ah-ra [Clinical Research Center, Samsung Biomedical Research Institute, Seoul (Korea, Republic of); Park, Hayne Cho [Transplantation Research Institute, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul (Korea, Republic of); So, Insuk [Department of Physiology, Seoul National University College of Medicine, Seoul (Korea, Republic of); Park, Jong Hoon [Department of Biological Science, Sookmyung Women’s University, Seoul (Korea, Republic of); Cheong, Hae Il [Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul (Korea, Republic of); Department of Pediatrics, Seoul National University Children’s Hospital, Seoul (Korea, Republic of); Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Hwang, Young-Hwan [Research Coordination Center for Rare Diseases, Seoul National University Hospital, Seoul (Korea, Republic of); Department of Internal Medicine, Eulji General Hospital, Eulji University College of Medicine, Seoul (Korea, Republic of); and others

    2014-01-01

    Autosomal dominant polycystic kidney disease (ADPKD), a hereditary renal disease caused by mutations in PKD1 (85%) or PKD2 (15%), is characterized by the development of gradually enlarging multiple renal cysts and progressive renal failure. Polycystin-1 (PC1), PKD1 gene product, is an integral membrane glycoprotein which regulates a number of different biological processes including cell proliferation, apoptosis, cell polarity, and tubulogenesis. PC1 is a target of various proteolytic cleavages and proteosomal degradations, but its role in intracellular signaling pathways remains poorly understood. Herein, we demonstrated that PC1 is a novel substrate for μ- and m-calpains, which are calcium-dependent cysteine proteases. Overexpression of PC1 altered both Janus-activated kinase 2 (JAK2) and extracellular signal-regulated kinase (ERK) signals, which were independently regulated by calpain-mediated PC1 degradation. They suggest that the PC1 function on JAK2 and ERK signaling pathways might be regulated by calpains in response to the changes in intracellular calcium concentration. - Highlights: • Polycystin-1 is a target of ubiquitin-independent degradation by calpains. • The PEST domain is required for calpain-mediated degradation of polycystin-1. • Polycystin-1 may independently regulate JAK2 and ERK signaling pathways.

  18. Muon g−2 in anomaly mediated SUSY breaking

    International Nuclear Information System (INIS)

    Chowdhury, Debtosh; Yokozaki, Norimi

    2015-01-01

    Motivated by two experimental facts, the muon g−2 anomaly and the observed Higgs boson mass around 125 GeV, we propose a simple model of anomaly mediation, which can be seen as a generalization of mixed modulus-anomaly mediation. In our model, the discrepancy of the muon g−2 and the Higgs boson mass around 125 GeV are easily accommodated. The required mass splitting between the strongly and weakly interacting SUSY particles are naturally achieved by the contribution from anomaly mediation. This model is easily consistent with SU(5) or SO(10) grand unified theory.

  19. Muon g−2 in anomaly mediated SUSY breaking

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debtosh; Yokozaki, Norimi [Istituto Nazionale di Fisica Nucleare, Sezione di Roma,Piazzale Aldo Moro 2, I-00185 Rome (Italy)

    2015-08-24

    Motivated by two experimental facts, the muon g−2 anomaly and the observed Higgs boson mass around 125 GeV, we propose a simple model of anomaly mediation, which can be seen as a generalization of mixed modulus-anomaly mediation. In our model, the discrepancy of the muon g−2 and the Higgs boson mass around 125 GeV are easily accommodated. The required mass splitting between the strongly and weakly interacting SUSY particles are naturally achieved by the contribution from anomaly mediation. This model is easily consistent with SU(5) or SO(10) grand unified theory.

  20. Mutations in TGFbeta-RII and BAX mediate tumor progression in the later stages of colorectal cancer with microsatellite instability

    International Nuclear Information System (INIS)

    Yashiro, Masakazu; Hirakawa, Kosei; Boland, C Richard

    2010-01-01

    Microsatellite instability (MSI) occurs in 15% of colorectal cancers (CRC). The genetic targets for mutation in the MSI phenotype include somatic mutations in the transforming growth factor beta receptor typeII (TGFbetaRII), BAX, hMSH3 and hMSH6. It is not clear how mutations of these genes mediate tumor progression in the MSI pathway, and the temporal sequence of these mutations remains uncertain. In this study, early stage CRCs were examined for frameshift mutations in these target genes, and compared with late stage tumors and CRC cell lines. We investigated 6 CRC cell lines and 71 sporadic CRCs, including 61 early stage cancers and 10 late stage cancers. Mutations of repetitive mononucleotide tracts in the coding regions of TGFbetaRII, BAX, hMSH3, hMSH6, IGFIIR and Fas antigen were identified by direct sequencing. Thirteen (18.3%) of 71 CRC, including 9/61 (14.7%) early stage cancers and 4/10 (40%) late stage cancers, were identified as MSI and analyzed for frameshift mutations. No mutation in the target genes was observed in any of the 9 early stage MSI CRCs. In contrast, frameshift mutations of TGFbetaRII, BAX, hMSH3 and hMSH6 were present in 3/4 late stage MSI tumors. There is a statistical association (p = 0.014) between mutation in any one gene and tumor stage. TGFbetaRII, BAX, hMSH3 and hMSH6 mutations are relatively late events in the genesis of MSI CRCs. The frameshift mutations in these target genes might mediate progression from early to late stage cancer, rather than mediating the adenoma to carcinoma transition

  1. AluY-mediated germline deletion, duplication and somatic stem cell reversion in UBE2T defines a new subtype of Fanconi anemia.

    Science.gov (United States)

    Virts, Elizabeth L; Jankowska, Anna; Mackay, Craig; Glaas, Marcel F; Wiek, Constanze; Kelich, Stephanie L; Lottmann, Nadine; Kennedy, Felicia M; Marchal, Christophe; Lehnert, Erik; Scharf, Rüdiger E; Dufour, Carlo; Lanciotti, Marina; Farruggia, Piero; Santoro, Alessandra; Savasan, Süreyya; Scheckenbach, Kathrin; Schipper, Jörg; Wagenmann, Martin; Lewis, Todd; Leffak, Michael; Farlow, Janice L; Foroud, Tatiana M; Honisch, Ellen; Niederacher, Dieter; Chakraborty, Sujata C; Vance, Gail H; Pruss, Dmitry; Timms, Kirsten M; Lanchbury, Jerry S; Alpi, Arno F; Hanenberg, Helmut

    2015-09-15

    Fanconi anemia (FA) is a rare inherited disorder clinically characterized by congenital malformations, progressive bone marrow failure and cancer susceptibility. At the cellular level, FA is associated with hypersensitivity to DNA-crosslinking genotoxins. Eight of 17 known FA genes assemble the FA E3 ligase complex, which catalyzes monoubiquitination of FANCD2 and is essential for replicative DNA crosslink repair. Here, we identify the first FA patient with biallelic germline mutations in the ubiquitin E2 conjugase UBE2T. Both mutations were aluY-mediated: a paternal deletion and maternal duplication of exons 2-6. These loss-of-function mutations in UBE2T induced a cellular phenotype similar to biallelic defects in early FA genes with the absence of FANCD2 monoubiquitination. The maternal duplication produced a mutant mRNA that could encode a functional protein but was degraded by nonsense-mediated mRNA decay. In the patient's hematopoietic stem cells, the maternal allele with the duplication of exons 2-6 spontaneously reverted to a wild-type allele by monoallelic recombination at the duplicated aluY repeat, thereby preventing bone marrow failure. Analysis of germline DNA of 814 normal individuals and 850 breast cancer patients for deletion or duplication of UBE2T exons 2-6 identified the deletion in only two controls, suggesting aluY-mediated recombinations within the UBE2T locus are rare and not associated with an increased breast cancer risk. Finally, a loss-of-function germline mutation in UBE2T was detected in a high-risk breast cancer patient with wild-type BRCA1/2. Cumulatively, we identified UBE2T as a bona fide FA gene (FANCT) that also may be a rare cancer susceptibility gene. © The Author 2015. Published by Oxford University Press.

  2. A Novel Interaction of Ecdysoneless (ECD) Protein with R2TP Complex Component RUVBL1 Is Required for the Functional Role of ECD in Cell Cycle Progression.

    Science.gov (United States)

    Mir, Riyaz A; Bele, Aditya; Mirza, Sameer; Srivastava, Shashank; Olou, Appolinaire A; Ammons, Shalis A; Kim, Jun Hyun; Gurumurthy, Channabasavaiah B; Qiu, Fang; Band, Hamid; Band, Vimla

    2015-12-28

    Ecdysoneless (ECD) is an evolutionarily conserved protein whose germ line deletion is embryonic lethal. Deletion of Ecd in cells causes cell cycle arrest, which is rescued by exogenous ECD, demonstrating a requirement of ECD for normal mammalian cell cycle progression. However, the exact mechanism by which ECD regulates cell cycle is unknown. Here, we demonstrate that ECD protein levels and subcellular localization are invariant during cell cycle progression, suggesting a potential role of posttranslational modifications or protein-protein interactions. Since phosphorylated ECD was recently shown to interact with the PIH1D1 adaptor component of the R2TP cochaperone complex, we examined the requirement of ECD phosphorylation in cell cycle progression. Notably, phosphorylation-deficient ECD mutants that failed to bind to PIH1D1 in vitro fully retained the ability to interact with the R2TP complex and yet exhibited a reduced ability to rescue Ecd-deficient cells from cell cycle arrest. Biochemical analyses demonstrated an additional phosphorylation-independent interaction of ECD with the RUVBL1 component of the R2TP complex, and this interaction is essential for ECD's cell cycle progression function. These studies demonstrate that interaction of ECD with RUVBL1, and its CK2-mediated phosphorylation, independent of its interaction with PIH1D1, are important for its cell cycle regulatory function. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. IDO2: A Pathogenic Mediator of Inflammatory Autoimmunity

    Directory of Open Access Journals (Sweden)

    Lauren M.F. Merlo

    2016-01-01

    Full Text Available Indoleamine 2,3-dioxygenase 2 (IDO2, a homolog of the better-studied tryptophan-catabolizing enzyme IDO1, is an immunomodulatory molecule with potential effects on various diseases including cancer and autoimmunity. Here, we review what is known about the direct connections between IDO2 and immune function, particularly in relationship to autoimmune inflammatory disorders such as rheumatoid arthritis and lupus. Accumulating evidence indicates that IDO2 acts as a pro-inflammatory mediator of autoimmunity, with a functional phenotype distinct from IDO1. IDO2 is expressed in antigen-presenting cells, including B cells and dendritic cells, but affects inflammatory responses in the autoimmune context specifically by acting in B cells to modulate T cell help in multiple model systems. Given that expression of IDO2 can lead to exacerbation of inflammatory responses, IDO2 should be considered a potential therapeutic target for autoimmune disorders.

  4. The Contrasting Role of the Mediator Subunit MED30 in the Progression of Bladder Cancer.

    Science.gov (United States)

    Syring, Isabella; Weiten, Richard; Müller, Tim; Schmidt, Doris; Steiner, Susanne; Kristiansen, Glen; Müller, Stefan C; Ellinger, Jörg

    2017-12-01

    The Mediator complex is a key regulator of gene transcription, and several studies have demonstrated altered expression of particular subunits in diverse human diseases, especially cancer. To date, nothing is known about the role of MED30 in bladder cancer. We, therefore, performed an RNA expression and survival analysis of the subunit MED30 in 537 samples of bladder cancer by using the database cBioPortal. To validate these data on the protein level, we practiced immunohistochemical staining against MED30 on a tissue microarray containing 210 samples of all tumour stages and performed survival analyses. For functional analysis, the siRNA-mediated knockdown of MED30 was performed in the cell lines T24 and TCCSUP followed by proliferation, migration, and invasion assays. On the mRNA and protein levels, higher expression of MED30 is associated with better patient survival. In accordance with this, advanced T- and N-stages showed lower expression of MED30. In contrast, knockdown of MED30 led to reduction of the tumour parameters proliferation, migration, and invasion in the BCa cell lines. MED30 appears to be integrated in the progression of the urothelial tumour in the bladder. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. Phosphorylation of the human respiratory syncytial virus P protein mediates M2-2 regulation of viral RNA synthesis, a process that involves two P proteins.

    Science.gov (United States)

    Asenjo, Ana; Villanueva, Nieves

    2016-01-04

    The M2-2 protein regulates the balance between human respiratory syncytial virus (HRSV) transcription and replication. Here it is shown that M2-2 mediated transcriptional inhibition is managed through P protein phosphorylation. Transcription inhibition by M2-2 of the HRSV based minigenome pRSVluc, required P protein phosphorylation at serines (S) in positions 116, 117, 119 and increased inhibition is observed if S232 or S237 is also phosphorylated. Phosphorylation of these residues is required for viral particle egression from infected cells. Viral RNA synthesis complementation assays between P protein variants, suggest that two types of P proteins participate in the process as components of RNA dependent RNA polymerase (RdRp). Type I is only functional when, as a homotetramer, it is bound to N and L proteins through residues 203-241. Type II is functionally independent of these interactions and binds to N protein at a region outside residues 232-241. P protein type I phosphorylation at S116, S117 and S119, did not affect the activity of RdRp but this phosphorylation in type II avoids its interaction with N protein and impairs RdRp functionality for transcription and replication. Structural changes in the RdRp, mediated by phosphorylation turnover at the indicated residues, in the two types of P proteins, may result in a fine adjustment, late in the infectious cycle, of transcription, replication and progression in the morphogenetic process that ends in egression of the viral particles from infected cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Implementing general gauge mediation

    International Nuclear Information System (INIS)

    Carpenter, Linda M.; Dine, Michael; Festuccia, Guido; Mason, John D.

    2009-01-01

    Recently there has been much progress in building models of gauge mediation, often with predictions different than those of minimal gauge mediation. Meade, Seiberg, and Shih have characterized the most general spectrum which can arise in gauge-mediated models. We discuss some of the challenges of building models of general gauge mediation, especially the problem of messenger parity and issues connected with R symmetry breaking and CP violation. We build a variety of viable, weakly coupled models which exhibit some or all of the possible low energy parameters.

  7. Enhanced B-Raf-mediated NRF2 gene transcription and HATs-mediated NRF2 protein acetylation contributes to ABCC1-mediated chemoresistance and glutathione-mediated survival in acquired topoisomerase II poison-resistant cancer cells.

    Science.gov (United States)

    Chen, Huang-Hui; Chang, Hsin-Huei; Chang, Jang-Yang; Tang, Ya-Chu; Cheng, Yung-Chi; Lin, Li-Mei; Cheng, Shu-Ying; Huang, Chih-Hsiang; Sun, Man-Wu; Chen, Chiung-Tong; Kuo, Ching-Chuan

    2017-12-01

    Nuclear factor erythroid-2-related factor 2 (NRF2) mainly regulates transcriptional activation through antioxidant-responsive elements (AREs) present in the promoters of NRF2 target genes. Recently, we found that NRF2 was overexpressed in a KB-derived drug-resistant cancer cell panel. In this panel, KB-7D cells, which show acquired resistance to topoisomerase II (Top II) poisons, exhibited the highest NRF2 activation. To investigate whether NRF2 directly contributed to acquired resistance against Top II poisons, we manipulated NRF2 by genetic and pharmacological approaches. The result demonstrated that silencing of NRF2 by RNA interference increased the sensitivity and treatment with NRF2 activator decreased the sensitivity of KB and KB-7D cells toward Top II poisons. Further, increased B-Raf-mediated NRF2 gene transcription and HATs-mediated NRF2 protein acetylation activated NRF2 signaling in KB-7D cells. Moreover, increased binding of NRF2 to an ARE in the promoter of ATP-binding cassette subfamily C member 1 (ABCC1) directly contributed to Top II poison resistance. In addition, activation of NRF2 increased glutathione level and antioxidant capacity in KB-7D cells compared with that in KB cells; moreover, high glutathione level provided survival advantage to KB-7D cells. Our study is the first to show that aberrant NRF2 activation is via increased B-Raf-mediated NRF2 gene transcription and HATs-mediated NRF2 protein acetylation, which increases the acquired resistance and promote the survival of Top II poison-resistant cancer cells. Importantly, NRF2 downstream effectors ABCC1 and glutathione directly contribute to acquired resistance and survival, respectively. These results suggest that blockade of NRF2 signaling may enhance therapeutic efficacy and reduce the survival of Top II poison-refractory tumors in clinical. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression.

    Science.gov (United States)

    Keith, Brian; Johnson, Randall S; Simon, M Celeste

    2011-12-15

    Hypoxia-inducible factors (HIFs) are broadly expressed in human cancers, and HIF1α and HIF2α were previously suspected to promote tumour progression through largely overlapping functions. However, this relatively simple model has now been challenged in light of recent data from various approaches that reveal unique and sometimes opposing activities of these HIFα isoforms in both normal physiology and disease. These effects are mediated in part through the regulation of unique target genes, as well as through direct and indirect interactions with important oncoproteins and tumour suppressors, including MYC and p53. As HIF inhibitors are currently undergoing clinical evaluation as cancer therapeutics, a more thorough understanding of the unique roles performed by HIF1α and HIF2α in human neoplasia is warranted.

  9. TPL-2 Regulates Macrophage Lipid Metabolism and M2 Differentiation to Control TH2-Mediated Immunopathology

    Science.gov (United States)

    Entwistle, Lewis J.; Khoury, Hania; Papoutsopoulou, Stamatia; Mahmood, Radma; Mansour, Nuha R.; Ching-Cheng Huang, Stanley; Pearce, Edward J.; Pedro S. de Carvalho, Luiz; Ley, Steven C.

    2016-01-01

    Persistent TH2 cytokine responses following chronic helminth infections can often lead to the development of tissue pathology and fibrotic scarring. Despite a good understanding of the cellular mechanisms involved in fibrogenesis, there are very few therapeutic options available, highlighting a significant medical need and gap in our understanding of the molecular mechanisms of TH2-mediated immunopathology. In this study, we found that the Map3 kinase, TPL-2 (Map3k8; Cot) regulated TH2-mediated intestinal, hepatic and pulmonary immunopathology following Schistosoma mansoni infection or S. mansoni egg injection. Elevated inflammation, TH2 cell responses and exacerbated fibrosis in Map3k8 –/–mice was observed in mice with myeloid cell-specific (LysM) deletion of Map3k8, but not CD4 cell-specific deletion of Map3k8, indicating that TPL-2 regulated myeloid cell function to limit TH2-mediated immunopathology. Transcriptional and metabolic assays of Map3k8 –/–M2 macrophages identified that TPL-2 was required for lipolysis, M2 macrophage activation and the expression of a variety of genes involved in immuno-regulatory and pro-fibrotic pathways. Taken together this study identified that TPL-2 regulated TH2-mediated inflammation by supporting lipolysis and M2 macrophage activation, preventing TH2 cell expansion and downstream immunopathology and fibrosis. PMID:27487182

  10. R2 effect-size measures for mediation analysis.

    Science.gov (United States)

    Fairchild, Amanda J; Mackinnon, David P; Taborga, Marcia P; Taylor, Aaron B

    2009-05-01

    R(2) effect-size measures are presented to assess variance accounted for in mediation models. The measures offer a means to evaluate both component paths and the overall mediated effect in mediation models. Statistical simulation results indicate acceptable bias across varying parameter and sample-size combinations. The measures are applied to a real-world example using data from a team-based health promotion program to improve the nutrition and exercise habits of firefighters. SAS and SPSS computer code are also provided for researchers to compute the measures in their own data.

  11. R2 effect-size measures for mediation analysis

    Science.gov (United States)

    Fairchild, Amanda J.; MacKinnon, David P.; Taborga, Marcia P.; Taylor, Aaron B.

    2010-01-01

    R2 effect-size measures are presented to assess variance accounted for in mediation models. The measures offer a means to evaluate both component paths and the overall mediated effect in mediation models. Statistical simulation results indicate acceptable bias across varying parameter and sample-size combinations. The measures are applied to a real-world example using data from a team-based health promotion program to improve the nutrition and exercise habits of firefighters. SAS and SPSS computer code are also provided for researchers to compute the measures in their own data. PMID:19363189

  12. Social interaction in type 2 diabetes computer-mediated environments: How inherent features of the channels influence peer-to-peer interaction.

    Science.gov (United States)

    Lewinski, Allison A; Fisher, Edwin B

    2016-06-01

    Interventions via the internet provide support to individuals managing chronic illness. The purpose of this integrative review was to determine how the features of a computer-mediated environment influence social interactions among individuals with type 2 diabetes. A combination of MeSH and keyword terms, based on the cognates of three broad groupings: social interaction, computer-mediated environments, and chronic illness, was used to search the PubMed, PsychInfo, Sociology Research Database, and Cumulative Index to Nursing and Allied Health Literature databases. Eleven articles met the inclusion criteria. Computer-mediated environments enhance an individual's ability to interact with peers while increasing the convenience of obtaining personalized support. A matrix, focused on social interaction among peers, identified themes across all articles, and five characteristics emerged: (1) the presence of synchronous and asynchronous communication, (2) the ability to connect with similar peers, (3) the presence or absence of a moderator, (4) personalization of feedback regarding individual progress and self-management, and (5) the ability of individuals to maintain choice during participation. Individuals interact with peers to obtain relevant, situation-specific information and knowledge about managing their own care. Computer-mediated environments facilitate the ability of individuals to exchange this information despite temporal or geographical barriers that may be present, thus improving T2D self-management. © The Author(s) 2015.

  13. Progressive Multifocal Leukoencephalopathy [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Laura Adang

    2015-12-01

    Full Text Available Progressive multifocal leukoencephalopathy (PML is a devastating demyelinating disease with significant morbidity and mortality and no effective, targeted therapies. It is most often observed in association with abnormalities of cell-mediated immunity, in particular human immunodeficiency virus (HIV infection, but also occurs in association with lymphoproliferative diseases, certain immunosuppressive and immunomodulatory regimens, and other conditions. The etiologic agent of PML is a small, ubiquitous polyomavirus, the JC virus (JCV, also known as JCPyV, for which at least 50% of the adult general population is seropositive. PML results when JCV replicates within cerebral oligodendrocytes and astrocytes, leading to oligodendrocyte death and demyelination. Unfortunately, no treatments have been convincingly demonstrated to be effective, though some have been employed in desperation; treatment otherwise includes attempts to restore any immune system defect, such as the withdrawal of the causative agent if possible, and general supportive care.

  14. Rpi-blb2-Mediated Hypersensitive Cell Death Caused by Phytophthora infestans AVRblb2 Requires SGT1, but not EDS1, NDR1, Salicylic Acid-, Jasmonic Acid-, or Ethylene-Mediated Signaling

    Directory of Open Access Journals (Sweden)

    Sang-Keun Oh

    2014-09-01

    Full Text Available Potato Rpi-blb2 encodes a protein with a coiled-coil-nucleotide binding site and leucine-rich repeat (CC-NBS-LRR motif that recognizes the Phytophthora infestans AVRblb2 effector and triggers hypersensitive cell death (HCD. To better understand the components required for Rpi-blb2-mediated HCD in plants, we used virus-induced gene silencing to repress candidate genes in Rpi-blb2-transgenic Nicotiana benthamiana plants and assayed the plants for AVRblb2 effector. Rpi-blb2 triggers HCD through NbSGT1-mediated pathways, but not NbEDS1- or NbNDR1-mediated pathways. In addition, the role of salicylic acid (SA, jasmonic acid (JA, and ethylene (ET in Rpi-blb2-mediated HCD were analyzed by monitoring of the responses of NbICS1-, NbCOI1-, or NbEIN2-silenced or Rpi-blb2::NahG-transgenic plants. Rpi-blb2-mediated HCD in response to AVRblb2 was not associated with SA accumulation. Thus, SA affects Rpi-blb2-mediated resistance against P. infestans, but not Rpi-blb2-mediated HCD in response to AVRblb2. Additionally, JA and ET signaling were not required for Rpi-blb2-mediated HCD in N. benthamiana. Taken together, these findings suggest that NbSGT1 is a unique positive regulator of Rpi-blb2-mediated HCD in response to AVRblb2, but EDS1, NDR1, SA, JA, and ET are not required.

  15. β-Arrestin 1 has an essential role in neurokinin-1 receptor-mediated glioblastoma cell proliferation and G2/M phase transition.

    Science.gov (United States)

    Zhang, Yi-Xin; Li, Xiao-Fang; Yuan, Guo-Qiang; Hu, Hui; Song, Xiao-Yun; Li, Jing-Yi; Miao, Xiao-Kang; Zhou, Tian-Xiong; Yang, Wen-Le; Zhang, Xiao-Wei; Mou, Ling-Yun; Wang, Rui

    2017-05-26

    Glioblastoma is the most common malignant brain tumor and has a poor prognosis. Tachykinin receptor neurokinin-1 (NK1R) is a promising target in glioblastoma therapy because of its overexpression in human glioblastoma. NK1R agonists promote glioblastoma cell growth, whereas NK1R antagonists efficiently inhibit cell growth both in vitro and in vivo However, the molecular mechanisms involved in these effects are incompletely understood. β-Arrestins (ARRBs) serve as scaffold proteins and adapters to mediate intracellular signal transduction. Here we show that the ARRB1-mediated signaling pathway is essential for NK1-mediated glioblastoma cell proliferation. ARRB1 knockdown significantly inhibited NK1-mediated glioblastoma cell proliferation and induced G 2 /M phase cell cycle arrest. ARRB1 knockdown cells showed remarkable down-regulation of CDC25C/CDK1/cyclin B1 activity. We also demonstrated that ARRB1 mediated prolonged phosphorylation of ERK1/2 and Akt in glioblastoma cells induced by NK1R activation. ERK1/2 and Akt phosphorylation are involved in regulating CDC25C/CDK1/cyclin B1 activity. The lack of long-term ERK1/2 and Akt activation in ARRB1 knockdown cells was at least partly responsible for the delayed cell cycle progression and proliferation. Moreover, we found that ARRB1-mediated ERK1/2 and Akt phosphorylation regulated the transcriptional activity of both NF-κB and AP-1, which were involved in cyclin B1 expression. ARRB1 deficiency increased the sensitivity of glioblastoma cells to the treatment of NK1R antagonists. Taken together, our results suggest that ARRB1 plays an essential role in NK1R-mediated cell proliferation and G 2 /M transition in glioblastoma cells. Interference with ARRB1-mediated signaling via NK1R may have potential significance for therapeutic strategies targeting glioblastoma. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. CRM1-mediated nuclear export is required for 26 S proteasome-dependent degradation of the TRIP-Br2 proto-oncoprotein.

    Science.gov (United States)

    Cheong, Jit Kong; Gunaratnam, Lakshman; Hsu, Stephen I-Hong

    2008-04-25

    Overexpression of the proto-oncogene TRIP-Br2 (SERTAD2) has been shown to induce E2F activity and promote tumorigenesis, whereas ablation of TRIP-Br2 arrests cell proliferation. Timely degradation of many cell cycle regulators is fundamental to the maintenance of proper cell cycle progression. Here we report novel mechanism(s) that govern the tight regulation of TRIP-Br2 levels during cell cycle progression. TRIP-Br2 was observed to be a short-lived protein in which the expression level peaks at the G(1)/S boundary. TRIP-Br2 accumulated in cells treated with 26 S proteasome inhibitors. Co-immunoprecipitation studies revealed that TRIP-Br2 forms ubiquitin conjugates. In silico analysis identified a putative leucine-rich nuclear export signal (NES) motif that overlaps with the PHD-Bromo interaction domain in the acidic C-terminal transactivation domain (TAD) of TRIP-Br2. This NES motif is highly conserved in widely divergent species and in all TRIP-Br family members. TRIP-Br2 was shown to be stabilized in G(2)/M phase cells through nuclear entrapment, either by deletion of the acidic C-terminal TAD, which includes the NES motif, or by leptomycin B-mediated inhibition of the CRM1-dependent nuclear export machinery. Mutation of leucine residue 238 of this NES motif abolished the interaction between CRM1 and TRIP-Br2, as well as the nuclear export of TRIP-Br2 and its subsequent 26 S proteasome-dependent degradation. These data suggest that CRM1-mediated nuclear export may be required for the proper execution of ubiquitin-proteasome-dependent degradation of TRIP-Br2.

  17. BAD-mediated apoptotic pathway is associated with human cancer development.

    Science.gov (United States)

    Stickles, Xiaomang B; Marchion, Douglas C; Bicaku, Elona; Al Sawah, Entidhar; Abbasi, Forough; Xiong, Yin; Bou Zgheib, Nadim; Boac, Bernadette M; Orr, Brian C; Judson, Patricia L; Berry, Amy; Hakam, Ardeshir; Wenham, Robert M; Apte, Sachin M; Berglund, Anders E; Lancaster, Johnathan M

    2015-04-01

    The malignant transformation of normal cells is caused in part by aberrant gene expression disrupting the regulation of cell proliferation, apoptosis, senescence and DNA repair. Evidence suggests that the Bcl-2 antagonist of cell death (BAD)-mediated apoptotic pathway influences cancer chemoresistance. In the present study, we explored the role of the BAD-mediated apoptotic pathway in the development and progression of cancer. Using principal component analysis to derive a numeric score representing pathway expression, we evaluated clinico-genomic datasets (n=427) from corresponding normal, pre-invasive and invasive cancers of different types, such as ovarian, endometrial, breast and colon cancers in order to determine the associations between the BAD-mediated apoptotic pathway and cancer development. Immunofluorescence was used to compare the expression levels of phosphorylated BAD [pBAD (serine-112, -136 and -155)] in immortalized normal and invasive ovarian, colon and breast cancer cells. The expression of the BAD-mediated apoptotic pathway phosphatase, PP2C, was evaluated by RT-qPCR in the normal and ovarian cancer tissue samples. The growth-promoting effects of pBAD protein levels in the immortalized normal and cancer cells were assessed using siRNA depletion experiments with MTS assays. The expression of the BAD-mediated apoptotic pathway was associated with the development and/or progression of ovarian (n=106, pBAD-mediated apoptotic pathway is thus associated with the development of human cancers likely influenced by the protein levels of pBAD.

  18. Does monitoring goal progress promote goal attainment? A meta-analysis of the experimental evidence.

    Science.gov (United States)

    Harkin, Benjamin; Webb, Thomas L; Chang, Betty P I; Prestwich, Andrew; Conner, Mark; Kellar, Ian; Benn, Yael; Sheeran, Paschal

    2016-02-01

    Control theory and other frameworks for understanding self-regulation suggest that monitoring goal progress is a crucial process that intervenes between setting and attaining a goal, and helps to ensure that goals are translated into action. However, the impact of progress monitoring interventions on rates of behavioral performance and goal attainment has yet to be quantified. A systematic literature search identified 138 studies (N = 19,951) that randomly allocated participants to an intervention designed to promote monitoring of goal progress versus a control condition. All studies reported the effects of the treatment on (a) the frequency of progress monitoring and (b) subsequent goal attainment. A random effects model revealed that, on average, interventions were successful at increasing the frequency of monitoring goal progress (d+ = 1.98, 95% CI [1.71, 2.24]) and promoted goal attainment (d+ = 0.40, 95% CI [0.32, 0.48]). Furthermore, changes in the frequency of progress monitoring mediated the effect of the interventions on goal attainment. Moderation tests revealed that progress monitoring had larger effects on goal attainment when the outcomes were reported or made public, and when the information was physically recorded. Taken together, the findings suggest that monitoring goal progress is an effective self-regulation strategy, and that interventions that increase the frequency of progress monitoring are likely to promote behavior change. (c) 2016 APA, all rights reserved).

  19. Evidence for a role of 5-HT2C receptors in the motor aspects of performance, but not the efficacy of food reinforcers, in a progressive ratio schedule.

    Science.gov (United States)

    Bezzina, G; Body, S; Cheung, T H C; Hampson, C L; Bradshaw, C M; Glennon, J C; Szabadi, E

    2015-02-01

    5-Hydroxytryptamine2C (5-HT2C) receptor agonists reduce the breakpoint in progressive ratio schedules of reinforcement, an effect that has been attributed to a decrease of the efficacy of positive reinforcers. However, a reduction of the breakpoint may also reflect motor impairment. Mathematical models can help to differentiate between these processes. The effects of the 5-HT2C receptor agonist Ro-600175 ((αS)-6-chloro-5-fluoro-α-methyl-1H-indole-1-ethanamine) and the non-selective 5-HT receptor agonist 1-(m-chlorophenyl)piperazine (mCPP) on rats' performance on a progressive ratio schedule maintained by food pellet reinforcers were assessed using a model derived from Killeen's Behav Brain Sci 17:105-172, 1994 general theory of schedule-controlled behaviour, 'mathematical principles of reinforcement'. Rats were trained under the progressive ratio schedule, and running and overall response rates in successive ratios were analysed using the model. The effects of the agonists on estimates of the model's parameters, and the sensitivity of these effects to selective antagonists, were examined. Ro-600175 and mCPP reduced the breakpoint. Neither agonist significantly affected a (the parameter expressing incentive value), but both agonists increased δ (the parameter expressing minimum response time). The effects of both agonists could be attenuated by the selective 5-HT2C receptor antagonist SB-242084 (6-chloro-5-methyl-N-{6-[(2-methylpyridin-3-yl)oxy]pyridin-3-yl}indoline-1-carboxamide). The effect of mCPP was not altered by isamoltane, a selective 5-HT1B receptor antagonist, or MDL-100907 ((±)2,3-dimethoxyphenyl-1-(2-(4-piperidine)methanol)), a selective 5-HT2A receptor antagonist. The results are consistent with the hypothesis that the effect of the 5-HT2C receptor agonists on progressive ratio schedule performance is mediated by an impairment of motor capacity rather than by a reduction of the incentive value of the food reinforcer.

  20. Mediator links transcription and DNA repair by facilitating Rad2/XPG recruitment.

    Science.gov (United States)

    Eyboulet, Fanny; Cibot, Camille; Eychenne, Thomas; Neil, Helen; Alibert, Olivier; Werner, Michel; Soutourina, Julie

    2013-12-01

    Mediator is a large multiprotein complex conserved in all eukaryotes. The crucial function of Mediator in transcription is now largely established. However, we found that this complex also plays an important role by connecting transcription with DNA repair. We identified a functional contact between the Med17 Mediator subunit and Rad2/XPG, the 3' endonuclease involved in nucleotide excision DNA repair. Genome-wide location analyses revealed that Rad2 is associated with RNA polymerase II (Pol II)- and Pol III-transcribed genes and telomeric regions in the absence of exogenous genotoxic stress. Rad2 occupancy of Pol II-transcribed genes is transcription-dependent. Genome-wide Rad2 occupancy of class II gene promoters is well correlated with that of Mediator. Furthermore, UV sensitivity of med17 mutants is correlated with reduced Rad2 occupancy of class II genes and concomitant decrease of Mediator interaction with Rad2 protein. Our results suggest that Mediator is involved in DNA repair by facilitating Rad2 recruitment to transcribed genes.

  1. Gut Microbiota Promotes Obesity-Associated Liver Cancer through PGE2-Mediated Suppression of Antitumor Immunity.

    Science.gov (United States)

    Loo, Tze Mun; Kamachi, Fumitaka; Watanabe, Yoshihiro; Yoshimoto, Shin; Kanda, Hiroaki; Arai, Yuriko; Nakajima-Takagi, Yaeko; Iwama, Atsushi; Koga, Tomoaki; Sugimoto, Yukihiko; Ozawa, Takayuki; Nakamura, Masaru; Kumagai, Miho; Watashi, Koichi; Taketo, Makoto M; Aoki, Tomohiro; Narumiya, Shuh; Oshima, Masanobu; Arita, Makoto; Hara, Eiji; Ohtani, Naoko

    2017-05-01

    Obesity increases the risk of cancers, including hepatocellular carcinomas (HCC). However, the precise molecular mechanisms through which obesity promotes HCC development are still unclear. Recent studies have shown that gut microbiota may influence liver diseases by transferring its metabolites and components. Here, we show that the hepatic translocation of obesity-induced lipoteichoic acid (LTA), a Gram-positive gut microbial component, promotes HCC development by creating a tumor-promoting microenvironment. LTA enhances the senescence-associated secretory phenotype (SASP) of hepatic stellate cells (HSC) collaboratively with an obesity-induced gut microbial metabolite, deoxycholic acid, to upregulate the expression of SASP factors and COX2 through Toll-like receptor 2. Interestingly, COX2-mediated prostaglandin E 2 (PGE 2 ) production suppresses the antitumor immunity through a PTGER4 receptor, thereby contributing to HCC progression. Moreover, COX2 overexpression and excess PGE 2 production were detected in HSCs in human HCCs with noncirrhotic, nonalcoholic steatohepatitis (NASH), indicating that a similar mechanism could function in humans. Significance: We showed the importance of the gut-liver axis in obesity-associated HCC. The gut microbiota-driven COX2 pathway produced the lipid mediator PGE 2 in senescent HSCs in the tumor microenvironment, which plays a pivotal role in suppressing antitumor immunity, suggesting that PGE 2 and its receptor may be novel therapeutic targets for noncirrhotic NASH-associated HCC. Cancer Discov; 7(5); 522-38. ©2017 AACR. This article is highlighted in the In This Issue feature, p. 443 . ©2017 American Association for Cancer Research.

  2. Exosomes-mediated transfer of long noncoding RNA ZFAS1 promotes gastric cancer progression.

    Science.gov (United States)

    Pan, Lei; Liang, Wei; Fu, Min; Huang, Zhen-Hua; Li, Xia; Zhang, Wen; Zhang, Peng; Qian, Hui; Jiang, Peng-Cheng; Xu, Wen-Rong; Zhang, Xu

    2017-06-01

    ZFAS1 is a newly identified long noncoding RNA (lncRNA) that promotes tumor growth and metastasis. Exosomes mediate cellular communications in cancer by transmitting active molecules. The presence of ZFAS1 in the circulating exosomes and the roles of exosomal ZFAS1 in gastric cancer (GC) remains unknown. The aim of this study was to investigate the potential roles of exosomal ZFAS1 in GC. The expression of ZFAS1 was examined in the tumor tissues, serum samples, serum exosomes of GC patients and cell lines using qRT-PCR. The correlation between ZFAS1 expression and the clinicopathological characteristics was analyzed. The characteristics of exosomes were identified using transmission electron microscope (TEM), Nanoparticle Tracking Analysis (NTA), and western blot. The biological roles of ZFAS1 in GC cell growth and mobility were investigated using cell counting, cell colony formation, and transwell migration assay. The potential mechanism of ZFAS1 was demonstrated using flow cytometry, western blot, and qRT-PCR. ZFAS1 expression was elevated in GC cells, tumor tissues, serum and serum exosomes of GC patients. The increased ZFAS1 expression was significantly correlated with lymphatic metastasis and TNM stage. ZFAS1 knockdown inhibited the proliferation and migration of GC cells by suppressing cell cycle progression, inducing apoptosis, and inhibiting epithelial-mesenchymal transition (EMT). On the contrary, ZFAS1 overexpression promoted the proliferation and migration of GC cells. Moreover, ZFAS1 was present in exosomes and could be transmitted by exosomes to enhance GC cell proliferation and migration. ZFAS1 could be delivered by exosomes to promote GC progression, which suggests that ZFAS1 may serve as a potential diagnostic and prognostic biomarker for GC.

  3. LACTB, a novel epigenetic silenced tumor suppressor, inhibits colorectal cancer progression by attenuating MDM2-mediated p53 ubiquitination and degradation.

    Science.gov (United States)

    Zeng, Kaixuan; Chen, Xiaoxiang; Hu, Xiuxiu; Liu, Xiangxiang; Xu, Tao; Sun, Huiling; Pan, Yuqin; He, Bangshun; Wang, Shukui

    2018-06-13

    Colorectal cancer (CRC) is one of the most common aggressive malignancies. Like other solid tumors, inactivation of tumor suppressor genes and activation of oncogenes occur during CRC development and progression. Recently, a novel tumor suppressor, LACTB, was proposed to inhibit tumor progression, but the functional and clinical significance of this tumor suppressor in CRC remains unexplored. Herein, we found LACTB was significantly downregulated in CRC due to promoter methylation and histone deacetylation, which was associated with metastasis and advanced clinical stage. CRC patients with low LACTB expression had poorer overall survival and LACTB also determined to be an independent prognostic factor for poorer outcome. Ectopic expression of LACTB suppressed CRC cells proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and inhibited CRC growth and metastasis in vivo, while knockout of LACTB by CRISPR/Cas9 gene editing technique resulted in an opposite phenotype. Interestingly, LACTB could exert antitumorigenic effect only in HCT116 and HCT8 cells harboring wild-type TP53, but not in HT29 and SW480 cells harboring mutant TP53 or HCT116 p53 -/- cells. Mechanistic studies demonstrated that LACTB could directly bind to the C terminus of p53 to inhibit p53 degradation by preventing MDM2 from interacting with p53. Moreover, ablation of p53 attenuated the antitumorigenic effects of LACTB overexpression in CRC. Collectively, our findings successfully demonstrate for the first time that LACTB is a novel epigenetic silenced tumor suppressor through modulating the stability of p53, supporting the pursuit of LACTB as a potential therapeutic target for CRC.

  4. Progressively unstable c2 spondylolysis requiring spinal fusion: case report.

    Science.gov (United States)

    Nishimura, Yusuke; Ellis, Michael John; Anderson, Jennifer; Hara, Masahito; Natsume, Atsushi; Ginsberg, Howard Joeseph

    2014-01-01

    Cervical spondylolysis is a rare condition defined as a corticated cleft at the pars interarticularis in the cervical spine. This is the case of C2 spondylolysis demonstrating progressive significant instability, which was successfully treated by anterior cervical discectomy and fusion (ACDF) with cervical anterior plate. We describe a 20-year-old female with C2 spondylolysis presenting with progressive worsening of neck pain associated with progressive instability at the C2/3 segment. The progression of instability was well-documented on flexion-extension cervical spine x-rays. She was successfully treated by C2/3 ACDF with anterior cervical plate. Her preoperative significant neck pain resolved immediately after the surgical intervention. She was completely free from neurological symptoms at 1-year postoperative follow-up. We also review the literature and discuss 24 reported cases with C2 spondylolysis. When planning treatment, we should make sure to differentiate this pathology from acute traumatic fracture, which is a hangman's fracture. Assessment of C2/3 instability associated with neurological deficits is extremely important to consider management properly. C2/3 ACDF with cervical plate is biomechanically viable, less invasive, and provides adequate surgical stabilization for unstable C2 spondylolysis.

  5. Population Characteristics and Progressive Disability in Neurofibromatosis Type 2.

    Science.gov (United States)

    Iwatate, Kensho; Yokoo, Takeshi; Iwatate, Eriko; Ichikawa, Masahiro; Sato, Taku; Fujii, Masazumi; Sakuma, Jun; Saito, Kiyoshi

    2017-10-01

    To characterize the clinical features of patients with neurofibromatosis type 2 (NF2) and determine prognostic risk factors for progressive disabilities. In this retrospective cohort study of the Japanese national NF2 registry between 2009 and 2013, clinical data (demographic, history, oncologic, and neurologic) of 807 patients with a diagnosis of NF2 were analyzed. The overall severity of neurologic disability was assessed using a comprehensive 25-point scoring system encompassing a wide variety of neurologic deficits. In 587 patients in whom longitudinal disability data were available, multivariate logistic regression was performed to identify risk factors for significant progression of disability. The clinical characteristics of the Japanese NF2 population were heterogeneous. The median age of onset was 24 years (range, 1-80 years), the male:female ratio was 1:1.29, and the initial severity score was 4 (range, 0-22) out of 25 points. A family history of NF2 was present in 33% of the patients. Most frequent clinical features were bilateral cranial nerve VIII nerve sheath tumor (NST) in 87%, spinal NST in 80%, hearing loss in 65%, spinal dysfunction in 50%, intracranial meningioma in 49%, and facial paresis in 36%. The disability score progressed by ≥5 points in 6.1% of patients over the study period. Based on multivariate logistic regression analyses, the significant independent risk factors of progression (P value) included age of onset history (P = 0.007), positive treatment history (P = 0.026), hearing loss (P = 0.014), facial paresis (P = 0.015), blindness (P = 0.011), and hemiparesis (P = 0.025). The Japanese NF2 population has heterogeneous clinical features. Risk factors for progressive disability include younger age of onset, positive family history, positive treatment history, and specific neurologic deficits. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Progressive dysphagia in limb-girdle muscular dystrophy type 2B.

    LENUS (Irish Health Repository)

    Walsh, Richard

    2012-02-01

    Dysphagia has not been reported in genetically confirmed limb-girdle muscular dystrophy type 2B (LGMD2B). A 40-year-old woman reported exercise-induced calf pain at age 34, followed by progressive lower and upper limb weakness. At age 38, progressive dysphagia for solids, and subsequently liquids, ensued. Endoscopic and videofluoroscopic-radiological findings indicated a myopathic swallowing disorder. Molecular genetic analysis confirmed two dysferlin gene mutations consistent with a compound heterozygote state. Progressive dysphagia should be considered as part of the expanding dysferlinopathy phenotype.

  7. The impact of cow's milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer

    Science.gov (United States)

    2012-01-01

    Prostate cancer (PCa) is dependent on androgen receptor signaling and aberrations of the PI3K-Akt-mTORC1 pathway mediating excessive and sustained growth signaling. The nutrient-sensitive kinase mTORC1 is upregulated in nearly 100% of advanced human PCas. Oncogenic mTORC1 signaling activates key subsets of mRNAs that cooperate in distinct steps of PCa initiation and progression. Epidemiological evidence points to increased dairy protein consumption as a major dietary risk factor for the development of PCa. mTORC1 is a master regulator of protein synthesis, lipid synthesis and autophagy pathways that couple nutrient sensing to cell growth and cancer. This review provides evidence that PCa initiation and progression are promoted by cow´s milk, but not human milk, stimulation of mTORC1 signaling. Mammalian milk is presented as an endocrine signaling system, which activates mTORC1, promotes cell growth and proliferation and suppresses autophagy. Naturally, milk-mediated mTORC1 signaling is restricted only to the postnatal growth phase of mammals. However, persistent consumption of cow´s milk proteins in humans provide highly insulinotropic branched-chain amino acids (BCAAs) provided by milk´s fast hydrolysable whey proteins, which elevate postprandial plasma insulin levels, and increase hepatic IGF-1 plasma concentrations by casein-derived amino acids. BCAAs, insulin and IGF-1 are pivotal activating signals of mTORC1. Increased cow´s milk protein-mediated mTORC1 signaling along with constant exposure to commercial cow´s milk estrogens derived from pregnant cows may explain the observed association between high dairy consumption and increased risk of PCa in Westernized societies. As well-balanced mTORC1-signaling plays an important role in appropriate prostate morphogenesis and differentiation, exaggerated mTORC1-signaling by high cow´s milk consumption predominantly during critical growth phases of prostate development and differentiation may exert long

  8. The impact of cow's milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer

    Directory of Open Access Journals (Sweden)

    Melnik Bodo C

    2012-08-01

    Full Text Available Abstract Prostate cancer (PCa is dependent on androgen receptor signaling and aberrations of the PI3K-Akt-mTORC1 pathway mediating excessive and sustained growth signaling. The nutrient-sensitive kinase mTORC1 is upregulated in nearly 100% of advanced human PCas. Oncogenic mTORC1 signaling activates key subsets of mRNAs that cooperate in distinct steps of PCa initiation and progression. Epidemiological evidence points to increased dairy protein consumption as a major dietary risk factor for the development of PCa. mTORC1 is a master regulator of protein synthesis, lipid synthesis and autophagy pathways that couple nutrient sensing to cell growth and cancer. This review provides evidence that PCa initiation and progression are promoted by cow´s milk, but not human milk, stimulation of mTORC1 signaling. Mammalian milk is presented as an endocrine signaling system, which activates mTORC1, promotes cell growth and proliferation and suppresses autophagy. Naturally, milk-mediated mTORC1 signaling is restricted only to the postnatal growth phase of mammals. However, persistent consumption of cow´s milk proteins in humans provide highly insulinotropic branched-chain amino acids (BCAAs provided by milk´s fast hydrolysable whey proteins, which elevate postprandial plasma insulin levels, and increase hepatic IGF-1 plasma concentrations by casein-derived amino acids. BCAAs, insulin and IGF-1 are pivotal activating signals of mTORC1. Increased cow´s milk protein-mediated mTORC1 signaling along with constant exposure to commercial cow´s milk estrogens derived from pregnant cows may explain the observed association between high dairy consumption and increased risk of PCa in Westernized societies. As well-balanced mTORC1-signaling plays an important role in appropriate prostate morphogenesis and differentiation, exaggerated mTORC1-signaling by high cow´s milk consumption predominantly during critical growth phases of prostate development and

  9. Effect of late-stage therapy on disease progression in AAV-mediated rescue of photoreceptor cells in the retinoschisin-deficient mouse.

    Science.gov (United States)

    Janssen, Andreas; Min, Seok H; Molday, Laurie L; Tanimoto, Naoyuki; Seeliger, Mathias W; Hauswirth, William W; Molday, Robert S; Weber, Bernhard H F

    2008-06-01

    Proof-of-concept for a successful adeno-associated virus serotype 5 (AAV5)-mediated gene therapy in X-linked juvenile retinoschisis (XLRS) has been demonstrated in an established mouse model for this condition. The initial studies concentrated on early time-points of treatment. In this study, we aimed to explore the consequences of single subretinal injections administered at various stages of more advanced disease. By electroretinogram (ERG), functional improvement in treated versus untreated eyes is found to be significant in retinoschisin-deficient mice injected at the time-points of 15 days (P15), 1 month (PM1), and 2 months (PM2) after birth. In mice treated at 7 months after birth (PM7), an age previously shown to exhibit advanced retinal disease, ERG responses reveal no beneficial effects of vector treatment. Generally, functional rescue is paralleled by sustained retinoschisin expression and significant photoreceptor survival relative to untreated eyes. Quantitative measures of photoreceptors and peanut agglutinin-labeled ribbon synapses demonstrate rescue effects even in mice injected as late as PM7. Taken together, AAV5-mediated gene replacement is beneficial in slowing disease progression in murine XLRS. In addition, we show the effectiveness of rescue efforts even if treatment is delayed until advanced signs of disease have developed. Human XLRS patients might benefit from these findings, which suggest that the effectiveness of treatment appears not to be restricted to the early stages of the disease, and that treatment may prove to be valuable even when administered at more advanced stages.

  10. Estimation of Indirect Effects in the Presence of Unmeasured Confounding for the Mediator-Outcome Relationship in a Multilevel 2-1-1 Mediation Model

    Science.gov (United States)

    Talloen, Wouter; Moerkerke, Beatrijs; Loeys, Tom; De Naeghel, Jessie; Van Keer, Hilde; Vansteelandt, Stijn

    2016-01-01

    To assess the direct and indirect effect of an intervention, multilevel 2-1-1 studies with intervention randomized at the upper (class) level and mediator and outcome measured at the lower (student) level are frequently used in educational research. In such studies, the mediation process may flow through the student-level mediator (the within…

  11. Progress Report Oct to Dec 1975(2)

    International Nuclear Information System (INIS)

    1976-01-01

    Progress report NO. 2 of Tehran Nuclear Research Centre outlines a brief description of the progress made in each section of the centre. A complete list of dissertations for Master's degrees studied at the Nuclear Research Centre and a list of new technical employee are given at the beginning of the report. Research activities in the third section include, isotope separation, laser research, radiation chemistry, reactor management, environmental research, neutron physics, reactor engineering, and nuclear medicine. The fourth section deals with education and training; technical support and health physics are discussed in sections five and six respectively

  12. Mediator can regulate mitotic entry and direct periodic transcription in fission yeast.

    Science.gov (United States)

    Banyai, Gabor; Lopez, Marcela Davila; Szilagyi, Zsolt; Gustafsson, Claes M

    2014-11-01

    Cdk8 is required for correct timing of mitotic progression in fission yeast. How the activity of Cdk8 is regulated is unclear, since the kinase is not activated by T-loop phosphorylation and its partner, CycC, does not oscillate. Cdk8 is, however, a component of the multiprotein Mediator complex, a conserved coregulator of eukaryotic transcription that is connected to a number of intracellular signaling pathways. We demonstrate here that other Mediator components regulate the activity of Cdk8 in vivo and thereby direct the timing of mitotic entry. Deletion of Mediator components Med12 and Med13 leads to higher cellular Cdk8 protein levels, premature phosphorylation of the Cdk8 target Fkh2, and earlier entry into mitosis. We also demonstrate that Mediator is recruited to clusters of mitotic genes in a periodic fashion and that the complex is required for the transcription of these genes. We suggest that Mediator functions as a hub for coordinated regulation of mitotic progression and cell cycle-dependent transcription. The many signaling pathways and activator proteins shown to function via Mediator may influence the timing of these cell cycle events. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Estrogen receptor signaling in prostate cancer: Implications for carcinogenesis and tumor progression.

    Science.gov (United States)

    Bonkhoff, Helmut

    2018-01-01

    The androgen receptor (AR) is the classical target for prostate cancer prevention and treatment, but more recently estrogens and their receptors have also been implicated in prostate cancer development and tumor progression. Recent experimental and clinical data were reviewed to elucidate pathogenetic mechanisms how estrogens and their receptors may affect prostate carcinogenesis and tumor progression. The estrogen receptor beta (ERβ) is the most prevalent ER in the human prostate, while the estrogen receptor alpha (ERα) is restricted to basal cells of the prostatic epithelium and stromal cells. In high grade prostatic intraepithelial neoplasia (HGPIN), the ERα is up-regulated and most likely mediates carcinogenic effects of estradiol as demonstrated in animal models. The partial loss of the ERβ in HGPIN indicates that the ERβ acts as a tumor suppressor. The tumor promoting function of the TMPRSS2-ERG fusion, a major driver of prostate carcinogenesis, is triggered by the ERα and repressed by the ERβ. The ERβ is generally retained in hormone naïve and metastatic prostate cancer, but is partially lost in castration resistant disease. The progressive emergence of the ERα and ERα-regulated genes (eg, progesterone receptor (PR), PS2, TMPRSS2-ERG fusion, and NEAT1) during prostate cancer progression and hormone refractory disease suggests that these tumors can bypass the AR by using estrogens and progestins for their growth. In addition, nongenomic estrogen signaling pathways mediated by orphan receptors (eg, GPR30 and ERRα) has also been implicated in prostate cancer progression. Increasing evidences demonstrate that local estrogen signaling mechanisms are required for prostate carcinogenesis and tumor progression. Despite the recent progress in this research topic, the translation of the current information into potential therapeutic applications remains highly challenging and clearly warrants further investigation. © 2017 Wiley Periodicals, Inc.

  14. The progress of molecular biology in radiation research

    International Nuclear Information System (INIS)

    Wei Kang

    1989-01-01

    The recent progress in application of molecular biology techniques in the study of radiation biology is reviewed. The three sections are as follows: (1) the study of DNA damage on molecular level, (2) the molecular mechanism of radiation cell genetics, including chromosome abberation and cell mutation, (3) the study on DNA repair gene with DNA mediated gene transfer techniques

  15. Progression-free survival/time to progression as a potential surrogate for overall survival in HR+, HER2– metastatic breast cancer

    Directory of Open Access Journals (Sweden)

    Forsythe A

    2018-05-01

    Full Text Available Anna Forsythe,1 David Chandiwana,2 Janina Barth,3 Marroon Thabane,4 Johan Baeck,2 Gabriel Tremblay1 1Purple Squirrel Economics, New York, NY, 2Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA; 3Novartis Pharma GmbH, Nuremberg, Germany; 4Novartis Pharmaceuticals Incorporated, Dorval, QC, Canada Background: Several recent randomized controlled trials (RCTs in hormone receptor-positive (HR+, human epidermal growth factor receptor 2-negative (HER2– metastatic breast cancer (MBC have demonstrated significant improvements in progression-free survival (PFS; however, few have reported improvement in overall survival (OS. The surrogacy of PFS or time to progression (TTP for OS has not been formally investigated in HR+, HER2– MBC.Methods: A systematic literature review of RCTs in HR+, HER2– MBC was conducted to identify studies that reported both median PFS/TTP and OS. The correlation between PFS/TTP and OS was evaluated using Pearson’s product–moment correlation and Spearman’s rank correlation. Subgroup analyses were performed to explore possible reasons for heterogeneity. Errors-in-variables weighted least squares regression (LSR was used to model incremental OS months as a function of incremental PFS/TTP months. An exploratory analysis investigated the impact of three covariates (chemotherapy vs hormonal/targeted therapy, PFS vs TTP, and first-line therapy vs second-line therapy or greater on OS prediction. The lower 95% prediction band was used to determine the minimum incremental PFS/TTP months required to predict OS benefit (surrogate threshold effect [STE].Results: Forty studies were identified. There was a statistically significant correlation between median PFS/TTP and OS (Pearson =0.741, P=0.000; Spearman =0.650, P=0.000. These results proved consistent for chemotherapy and hormonal/targeted therapy. Univariate LSR analysis yielded an R2 of 0.354 with 1 incremental PFS/TTP month corresponding to 1.13 incremental OS months

  16. Causal mediation analysis with multiple mediators.

    Science.gov (United States)

    Daniel, R M; De Stavola, B L; Cousens, S N; Vansteelandt, S

    2015-03-01

    In diverse fields of empirical research-including many in the biological sciences-attempts are made to decompose the effect of an exposure on an outcome into its effects via a number of different pathways. For example, we may wish to separate the effect of heavy alcohol consumption on systolic blood pressure (SBP) into effects via body mass index (BMI), via gamma-glutamyl transpeptidase (GGT), and via other pathways. Much progress has been made, mainly due to contributions from the field of causal inference, in understanding the precise nature of statistical estimands that capture such intuitive effects, the assumptions under which they can be identified, and statistical methods for doing so. These contributions have focused almost entirely on settings with a single mediator, or a set of mediators considered en bloc; in many applications, however, researchers attempt a much more ambitious decomposition into numerous path-specific effects through many mediators. In this article, we give counterfactual definitions of such path-specific estimands in settings with multiple mediators, when earlier mediators may affect later ones, showing that there are many ways in which decomposition can be done. We discuss the strong assumptions under which the effects are identified, suggesting a sensitivity analysis approach when a particular subset of the assumptions cannot be justified. These ideas are illustrated using data on alcohol consumption, SBP, BMI, and GGT from the Izhevsk Family Study. We aim to bridge the gap from "single mediator theory" to "multiple mediator practice," highlighting the ambitious nature of this endeavor and giving practical suggestions on how to proceed. © 2014 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  17. EWS/FLI mediates transcriptional repression via NKX2.2 during oncogenic transformation in Ewing's sarcoma.

    Directory of Open Access Journals (Sweden)

    Leah A Owen

    2008-04-01

    Full Text Available EWS/FLI is a master regulator of Ewing's sarcoma formation. Gene expression studies in A673 Ewing's sarcoma cells have demonstrated that EWS/FLI downregulates more genes than it upregulates, suggesting that EWS/FLI, and/or its targets, function as transcriptional repressors. One critical EWS/FLI target, NKX2.2, is a transcription factor that contains both transcriptional activation and transcriptional repression domains, raising the possibility that it mediates portions of the EWS/FLI transcriptional signature. We now report that microarray analysis demonstrated that the transcriptional profile of NKX2.2 consists solely of downregulated genes, and overlaps with the EWS/FLI downregulated signature, suggesting that NKX2.2 mediates oncogenic transformation via transcriptional repression. Structure-function analysis revealed that the DNA binding and repressor domains in NKX2.2 are required for oncogenesis in Ewing's sarcoma cells, while the transcriptional activation domain is completely dispensable. Furthermore, blockade of TLE or HDAC function, two protein families thought to mediate the repressive function of NKX2.2, inhibited the transformed phenotype and reversed the NKX2.2 transcriptional profile in Ewing's sarcoma cells. Whole genome localization studies (ChIP-chip revealed that a significant portion of the NKX2.2-repressed gene expression signature was directly mediated by NKX2.2 binding. These data demonstrate that the transcriptional repressive function of NKX2.2 is necessary, and sufficient, for the oncogenic phenotype of Ewing's sarcoma, and suggest a therapeutic approach to this disease.

  18. NFIB Mediates BRN2 Driven Melanoma Cell Migration and Invasion Through Regulation of EZH2 and MITF

    Directory of Open Access Journals (Sweden)

    Mitchell E. Fane

    2017-02-01

    Full Text Available While invasion and metastasis of tumour cells are the principle factor responsible for cancer related deaths, the mechanisms governing the process remain poorly defined. Moreover, phenotypic divergence of sub-populations of tumour cells is known to underpin alternative behaviors linked to tumour progression such as proliferation, survival and invasion. In the context of melanoma, heterogeneity between two transcription factors, BRN2 and MITF, has been associated with phenotypic switching between predominantly invasive and proliferative behaviors respectively. Epigenetic changes, in response to external cues, have been proposed to underpin this process, however the mechanism by which the phenotypic switch occurs is unclear. Here we report the identification of the NFIB transcription factor as a novel downstream effector of BRN2 function in melanoma cells linked to the migratory and invasive characteristics of these cells. Furthermore, the function of NFIB appears to drive an invasive phenotype through an epigenetic mechanism achieved via the upregulation of the polycomb group protein EZH2. A notable target of NFIB mediated up-regulation of EZH2 is decreased MITF expression, which further promotes a less proliferative, more invasive phenotype. Together our data reveal that NFIB has the ability to promote dynamic changes in the chromatin state of melanoma cells to facilitate migration, invasion and metastasis.

  19. Organophotocatalysis: Insights into the Mechanistic Aspects of Thiourea-Mediated Intermolecular [2+2] Photocycloadditions.

    Science.gov (United States)

    Vallavoju, Nandini; Selvakumar, Sermadurai; Pemberton, Barry C; Jockusch, Steffen; Sibi, Mukund P; Sivaguru, Jayaraman

    2016-04-25

    Mechanistic investigations of the intermolecular [2+2] photocycloaddition of coumarin with tetramethylethylene mediated by thiourea catalysts reveal that the reaction is enabled by a combination of minimized aggregation, enhanced intersystem crossing, and altered excited-state lifetime(s). These results clarify how the excited-state reactivity can be manipulated through catalyst-substrate interactions and reveal a third mechanistic pathway for thiourea-mediated organo-photocatalysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    International Nuclear Information System (INIS)

    Xu, Yuan; Cardell, Lars-Olaf

    2014-01-01

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B 2 receptor agonist) and des-Arg 9 -bradykinin- (selective B 1 receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE 2 . The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg 9 -bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B 2 receptors, but not those on B 1 . Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in some patients with asthma

  1. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  2. Role of HIV-2 envelope in Lv2-mediated restriction

    International Nuclear Information System (INIS)

    Reuter, Sandra; Kaumanns, Patrick; Buschhorn, Sabine B.; Dittmar, Matthias T.

    2005-01-01

    We have characterized envelope protein pseudotyped HIV-2 particles derived from two HIV-2 isolates termed prCBL23 and CBL23 in order to define the role of the envelope protein for the Lv2-mediated restriction to infection. Previously, it has been described that the primary isolate prCBL23 is restricted to infection of several human cell types, whereas the T cell line adapted isolate CBL23 is not restricted in these cell types. Molecular cloning of the two isolates revealed that the env and the gag gene are responsible for the observed phenotype and that this restriction is mediated by Lv2, which is distinct from Ref1/Lv1 (Schmitz, C., Marchant, D., Neil, S.J., Aubin, K., Reuter, S., Dittmar, M.T., McKnight, A., Kizhatil, K., Albritton, L.M., 2004. Lv2, a novel postentry restriction, is mediated by both capsid and envelope. J. Virol. 78 (4), 2006-2016). We generated pseudotyped viruses consisting of HIV-2 (ROD-AΔenv-GFP, ROD-AΔenv-RFP, or ROD-AΔenv-REN) and the prCBL23 or CBL23 envelope proteins as well as chimeric proteins between these envelopes. We demonstrate that a single amino acid exchange at position 74 in the surface unit of CBL23-Env confers restriction to infection. This single point mutation causes tighter CD4 binding, resulting in a less efficient fusion into the cytosol of the restricted cell line. Prevention of endosome formation and prevention of endosome acidification enhance infectivity of the restricted particles for GHOST/X4 cells indicating a degradative lysosomal pathway as a cause for the reduced cytosolic entry. The described restriction to infection of the primary isolate prCBL23 is therefore largely caused by an entry defect. A remaining restriction to infection (19-fold) is preserved when endosomal acidification is prevented. This restriction to infection is also dependent on the presence of the point mutation at position 74 (G74E)

  3. Flexible Mediation Analysis With Multiple Mediators.

    Science.gov (United States)

    Steen, Johan; Loeys, Tom; Moerkerke, Beatrijs; Vansteelandt, Stijn

    2017-07-15

    The advent of counterfactual-based mediation analysis has triggered enormous progress on how, and under what assumptions, one may disentangle path-specific effects upon combining arbitrary (possibly nonlinear) models for mediator and outcome. However, current developments have largely focused on single mediators because required identification assumptions prohibit simple extensions to settings with multiple mediators that may depend on one another. In this article, we propose a procedure for obtaining fine-grained decompositions that may still be recovered from observed data in such complex settings. We first show that existing analytical approaches target specific instances of a more general set of decompositions and may therefore fail to provide a comprehensive assessment of the processes that underpin cause-effect relationships between exposure and outcome. We then outline conditions for obtaining the remaining set of decompositions. Because the number of targeted decompositions increases rapidly with the number of mediators, we introduce natural effects models along with estimation methods that allow for flexible and parsimonious modeling. Our procedure can easily be implemented using off-the-shelf software and is illustrated using a reanalysis of the World Health Organization's Large Analysis and Review of European Housing and Health Status (WHO-LARES) study on the effect of mold exposure on mental health (2002-2003). © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Coagulation factor VIIa-mediated protease-activated receptor 2 activation leads to β-catenin accumulation via the AKT/GSK3β pathway and contributes to breast cancer progression.

    Science.gov (United States)

    Roy, Abhishek; Ansari, Shabbir A; Das, Kaushik; Prasad, Ramesh; Bhattacharya, Anindita; Mallik, Suman; Mukherjee, Ashis; Sen, Prosenjit

    2017-08-18

    Cell migration and invasion are very characteristic features of cancer cells that promote metastasis, which is one of the most common causes of mortality among cancer patients. Emerging evidence has shown that coagulation factors can directly mediate cancer-associated complications either by enhancing thrombus formation or by initiating various signaling events leading to metastatic cancer progression. It is well established that, apart from its distinct role in blood coagulation, coagulation factor FVIIa enhances aggressive behaviors of breast cancer cells, but the underlying signaling mechanisms still remain elusive. To this end, we investigated FVIIa's role in the migration and invasiveness of the breast cancer cell line MDA-MB-231. Consistent with previous observations, we observed that FVIIa increased the migratory and invasive potential of these cells. We also provide molecular evidence that protease-activated receptor 2 activation followed by PI3K-AKT activation and GSK3β inactivation is involved in these processes and that β-catenin, a well known tumor-regulatory protein, contributes to this signaling pathway. The pivotal role of β-catenin was further indicated by the up-regulation of its downstream targets cyclin D1, c-Myc, COX-2, MMP-7, MMP-14, and Claudin-1. β-Catenin knockdown almost completely attenuated the FVIIa-induced enhancement of breast cancer migration and invasion. These findings provide a new perspective to counteract the invasive behavior of breast cancer, indicating that blocking PI3K-AKT pathway-dependent β-catenin accumulation may represent a potential therapeutic approach to control breast cancer. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. The role of MT2-MMP in cancer progression

    International Nuclear Information System (INIS)

    Ito, Emiko; Yana, Ikuo; Fujita, Chisato; Irifune, Aiko; Takeda, Maki; Madachi, Ayako; Mori, Seiji; Hamada, Yoshinosuke; Kawaguchi, Naomasa; Matsuura, Nariaki

    2010-01-01

    The role of MT2-MMP in cancer progression remains to be elucidated in spite of many reports on MT1-MMP. Using a human fibrosarcoma cell, HT1080 and a human gastric cancer cell, TMK-1, endogenous expression of MT1-MMP or MT2-MMP was suppressed by siRNA induction to examine the influence of cancer progression in vitro and in vivo. In HT1080 cells, positive both in MT1-MMP and MT2-MMP, the migration as well as the invasion was impaired by MT1-MMP or MT2-MMP suppression. Also cell proliferation in three dimensional (3D) condition was inhibited by MT1-MMP or MT2-MMP suppression and tumor growth in the nude mice transplanted with tumor cells were reduced either MT1-MMP or MT2-MMP suppression with a prolongation of survival time in vivo. MT2-MMP suppression induces more inhibitory effects on 3D proliferation and in vivo tumor growth than MT1-MMP. On the other hand, TMK-1 cells, negative in MT1-MMP and MMP-2 but positive in MT2-MMP, all the migratory, invasive, and 3D proliferative activities in TMK-1 are decreased only by MT2-MMP suppression. These results indicate MT2-MMP might be involved in the cancer progression more than or equal to MT1-MMP independently of MMP-2 and MT1-MMP.

  6. Erbb2 up-regulation of ADAM12 expression accelerates skin cancer progression.

    Science.gov (United States)

    Rao, Velidi H; Vogel, Kristen; Yanagida, Jodi K; Marwaha, Nitin; Kandel, Amrit; Trempus, Carol; Repertinger, Susan K; Hansen, Laura A

    2015-10-01

    Solar ultraviolet (UV) radiation can cause severe damage to the skin and is the primary cause of most skin cancer. UV radiation causes DNA damage leading to mutations and also activates the Erbb2/HER2 receptor through indirect mechanisms involving reactive oxygen species. We hypothesized that Erbb2 activation accelerates the malignant progression of UV-induced skin cancer. Following the induction of benign squamous papillomas by UV exposure of v-ras(Ha) transgenic Tg.AC mice, mice were treated topically with the Erbb2 inhibitor AG825 and tumor progression monitored. AG825 treatment reduced tumor volume, increased tumor regression, and delayed the development of malignant squamous cell carcinoma (SCC). Progression to malignancy was associated with increased Erbb2 and ADAM12 (A Disintegin And Metalloproteinase 12) transcripts and protein, while inhibition of Erbb2 blocked the increase in ADAM12 message upon malignant progression. Similarly, human SCC and SCC cell lines had increased ADAM12 protein and transcripts when compared to normal controls. To determine whether Erbb2 up-regulation of ADAM12 contributed to malignant progression of skin cancer, Erbb2 expression was modulated in cultured SCC cells using forced over-expression or siRNA targeting, demonstrating up-regulation of ADAM12 by Erbb2. Furthermore, ADAM12 transfection or siRNA targeting revealed that ADAM12 increased both the migration and invasion of cutaneous SCC cells. Collectively, these results suggest Erbb2 up-regulation of ADAM12 as a novel mechanism contributing to the malignant progression of UV-induced skin cancer. Inhibition of Erbb2/HER2 reduced tumor burden, increased tumor regression, and delayed the progression of benign skin tumors to malignant SCC in UV-exposed mice. Inhibition of Erbb2 suppressed the increase in metalloproteinase ADAM12 expression in skin tumors, which in turn increased migration and tumor cell invasiveness. © 2014 Wiley Periodicals, Inc.

  7. Disability in progressive MS is associated with T2 lesion changes

    DEFF Research Database (Denmark)

    Ammitzbøll, Cecilie; Dyrby, Tim Bjørn; Lyksborg, Mark

    2017-01-01

    Background: Progressive multiple sclerosis (MS) is characterized by diffuse changes on brain magnetic resonance imaging (MRI), which complicates the use of MRI as a diagnostic and prognostic marker. The relationship between MRI measures (conventional and non-conventional) and clinical disability...... in progressive MS therefore warrants further investigation. Objective: To investigate the relationship between clinical disability and MRI measures in patients with progressive MS. Methods: Data from 93 primary and secondary progressive MS patients who had participated in 3 phase 2 clinical trials were included...... matter. Disability was assessed by the Expanded Disability Status Scale (EDSS) and the MS functional composite. Results: T2 lesion volume was associated with impairment by all clinical measures. MD and MTR in T2 lesions were significantly related to disability, and lower FA values correlated with worse...

  8. Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Alfonso Urbanucci

    2017-06-01

    Full Text Available Global changes in chromatin accessibility may drive cancer progression by reprogramming transcription factor (TF binding. In addition, histone acetylation readers such as bromodomain-containing protein 4 (BRD4 have been shown to associate with these TFs and contribute to aggressive cancers including prostate cancer (PC. Here, we show that chromatin accessibility defines castration-resistant prostate cancer (CRPC. We show that the deregulation of androgen receptor (AR expression is a driver of chromatin relaxation and that AR/androgen-regulated bromodomain-containing proteins (BRDs mediate this effect. We also report that BRDs are overexpressed in CRPCs and that ATAD2 and BRD2 have prognostic value. Finally, we developed gene stratification signature (BROMO-10 for bromodomain response and PC prognostication, to inform current and future trials with drugs targeting these processes. Our findings provide a compelling rational for combination therapy targeting bromodomains in selected patients in which BRD-mediated TF binding is enhanced or modified as cancer progresses.

  9. Downregulation of protein kinase CK2 activity facilitates tumor necrosis factor-α-mediated chondrocyte death through apoptosis and autophagy.

    Directory of Open Access Journals (Sweden)

    Sung Won Lee

    Full Text Available Despite the numerous studies of protein kinase CK2, little progress has been made in understanding its function in chondrocyte death. Our previous study first demonstrated that CK2 is involved in apoptosis of rat articular chondrocytes. Recent studies have suggested that CK2 downregulation is associated with aging. Thus examining the involvement of CK2 downregulation in chondrocyte death is an urgently required task. We undertook this study to examine whether CK2 downregulation modulates chondrocyte death. We first measured CK2 activity in articular chondrocytes of 6-, 21- and 30-month-old rats. Noticeably, CK2 activity was downregulated in chondrocytes with advancing age. To build an in vitro experimental system for simulating tumor necrosis factor (TNF-α-induced cell death in aged chondrocytes with decreased CK2 activity, chondrocytes were co-treated with CK2 inhibitors and TNF-α. Viability assay demonstrated that CK2 inhibitors facilitated TNF-α-mediated chondrocyte death. Pulsed-field gel electrophoresis, nuclear staining, flow cytometry, TUNEL staining, confocal microscopy, western blot and transmission electron microscopy were conducted to assess cell death modes. The results of multiple assays showed that this cell death was mediated by apoptosis. Importantly, autophagy was also involved in this process, as supported by the appearance of a punctuate LC3 pattern and autophagic vacuoles. The inhibition of autophagy by silencing of autophage-related genes 5 and 7 as well as by 3-methyladenine treatment protected chondrocytes against cell death and caspase activation, indicating that autophagy led to the induction of apoptosis. Autophagic cells were observed in cartilage obtained from osteoarthritis (OA model rats and human OA patients. Our findings indicate that CK2 down regulation facilitates TNF-α-mediated chondrocyte death through apoptosis and autophagy. It should be clarified in the future if autophagy observed is a consequence

  10. A critical role of CDKN3 in Bcr-Abl-mediated tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Qinghuang Chen

    Full Text Available CDKN3 (cyclin-dependent kinase inhibitor 3, a dual specificity protein phosphatase, dephosphorylates cyclin-dependent kinases (CDKs and thus functions as a key negative regulator of cell cycle progression. Deregulation or mutations of CDNK3 have been implicated in various cancers. However, the role of CDKN3 in Bcr-Abl-mediated chronic myelogenous leukemia (CML remains unknown. Here we found that CDKN3 acts as a tumor suppressor in Bcr-Abl-mediated leukemogenesis. Overexpression of CDKN3 sensitized the K562 leukemic cells to imanitib-induced apoptosis and dramatically inhibited K562 xenografted tumor growth in nude mouse model. Ectopic expression of CDKN3 significantly reduced the efficiency of Bcr-Abl-mediated transformation of FDCP1 cells to growth factor independence. In contrast, depletion of CDKN3 expression conferred resistance to imatinib-induced apoptosis in the leukemic cells and accelerated the growth of xenograph leukemia in mice. In addition, we found that CDKN3 mutant (CDKN3-C140S devoid of the phosphatase activity failed to affect the K562 leukemic cell survival and xenografted tumor growth, suggesting that the phosphatase of CDKN3 was required for its tumor suppressor function. Furthermore, we observed that overexpression of CDKN3 reduced the leukemic cell survival by dephosphorylating CDK2, thereby inhibiting CDK2-dependent XIAP expression. Moreover, overexpression of CDKN3 delayed G1/S transition in K562 leukemic cells. Our results highlight the importance of CDKN3 in Bcr-Abl-mediated leukemogenesis, and provide new insights into diagnostics and therapeutics of the leukemia.

  11. Do stress responses promote leukemia progression? An animal study suggesting a role for epinephrine and prostaglandin-E2 through reduced NK activity.

    Directory of Open Access Journals (Sweden)

    Shelly Inbar

    2011-04-01

    Full Text Available In leukemia patients, stress and anxiety were suggested to predict poorer prognosis. Oncological patients experience ample physiological and psychological stress, potentially leading to increased secretion of stress factors, including epinephrine, corticosteroids, and prostaglandins. Here we tested whether environmental stress and these stress factors impact survival of leukemia-challenged rats, and studied mediating mechanisms. F344 rats were administered with a miniscule dose of 60 CRNK-16 leukemia cells, and were subjected to intermittent forced swim stress or to administration of physiologically relevant doses of epinephrine, prostaglandin-E(2 or corticosterone. Stress and each stress factor, and/or their combinations, doubled mortality rates when acutely applied simultaneously with, or two or six days after tumor challenge. Acute administration of the β-adrenergic blocker nadolol diminished the effects of environmental stress, without affecting baseline survival rates. Prolonged β-adrenergic blockade or COX inhibition (using etodolac also increased baseline survival rates, possibly by blocking tumor-related or normal levels of catecholamines and prostaglandins. Searching for mediating mechanisms, we found that each of the stress factors transiently suppressed NK activity against CRNK-16 and YAC-1 lines on a per NK basis. In contrast, the direct effects of stress factors on CRNK-16 proliferation, vitality, and VEGF secretion could not explain or even contradicted the in vivo survival findings. Overall, it seems that environmental stress, epinephrine, and prostaglandins promote leukemia progression in rats, potentially through suppressing cell mediated immunity. Thus, patients with hematological malignancies, which often exhibit diminished NK activity, may benefit from extended β-blockade and COX inhibition.

  12. A novel del(8)(q23.2q24.11) contributing to disease progression in a case of JAK2/TET2 double mutated chronic myelomonocytic leukemia

    DEFF Research Database (Denmark)

    Toft-Petersen, Marie; Kjeldsen, Eigil; Nederby, Line

    2014-01-01

    We have identified a novel 7.7 Mb del(8)(q23.2q24.11) in a patient progressing to acute myeloid leukemia (AML) following a 12-year stable phase of chronic myelomonocytic leukemia (CMML). A surprisingly high JAK2+ allelic burden of 92% at the time of AML led us to delineate the molecular aberrations...... relevant for leukemogenesis. While a frameshift mutation in the TET2 gene was stably present throughout the course of disease the JAK2 mutation was acquired after initial diagnosis of CMML. At progression aCGH revealed del(8q)(q23.2q24.11) encompassing various cancer relevant genes of which RAD21 and CSMD3...

  13. Protective Role of Cyclooxygenase (COX)-2 in Experimental Lung Injury: Evidence of a Lipoxin A(4)-Mediated Effect.

    LENUS (Irish Health Repository)

    2012-02-01

    BACKGROUND: Polymorphoneutrophils (PMNs) are activated by inflammatory mediators following splanchnic ischemia\\/reperfusion (I\\/R), potentially injuring organs such as the lung. As a result, some patients develop respiratory failure following abdominal aortic aneurysm repair. Pulmonary cyclooxygenase (COX)-2 protects against acid aspiration and bacterial instillation via lipoxins, a family of potent anti-inflammatory lipid mediators. We explored the role of COX-2 and lipoxin A(4) in experimental I\\/R-mediated lung injury. MATERIALS AND METHODS: Sprague-Dawley rats were assigned to one of the following five groups: (1) controls; (2) aortic cross-clamping for 45 min and reperfusion for 4 h (I\\/R group); (3) I\\/R and SC236, a selective COX-2 inhibitor; (4) I\\/R and aspirin; and (5) I\\/R and iloprost, a prostacyclin (PGI(2)) analogue. Lung injury was assessed by wet\\/dry ratio, myeloperoxidase (MPO) activity, and bronchoalveolar lavage (BAL) neutrophil counts. BAL levels of thromboxane, PGE(2), 6-keto-PGF(1)alpha (a hydrolysis product of prostacyclin), lipoxin A(4), and 15-epi-lipoxin A(4) were analyzed by enzyme immunoassay (EIA). Immunostaining for COX-2 was performed. RESULTS: I\\/R significantly increased tissue MPO, the wet\\/dry lung ratio, and neutrophil counts. These measures were significantly further aggravated by SC236 and improved by iloprost. I\\/R increased COX-2 immunostaining and both PGE(2) and 6-keto-PGF(1alpha) levels in BAL. SC236 markedly reduced these prostanoids and lipoxin A(4) compared with I\\/R alone. Iloprost markedly increased lipoxin A(4) levels. The deleterious effect of SC236 and the beneficial effect of iloprost was associated with a reduction and an increase, respectively, in lipoxin A(4) levels. CONCLUSIONS: Lipoxin A(4) warrants further evaluation as a mediator of COX-2 regulated lung protection.

  14. Damaging role of neutrophilic infiltration in a mouse model of progressive tuberculosis.

    Science.gov (United States)

    Marzo, Elena; Vilaplana, Cristina; Tapia, Gustavo; Diaz, Jorge; Garcia, Vanessa; Cardona, Pere-Joan

    2014-01-01

    Tuberculosis was studied using an experimental model based on the C3HeB/FeJ mouse strain, which mimics the liquefaction of caseous necrosis occurring during active disease in immunocompetent adults. Mice were intravenously infected with 2 × 10(4) Colony Forming Units of Mycobacterium tuberculosis and their histopathology, immune response, bacillary load, and survival were evaluated. The effects of the administration of drugs with anti-inflammatory activity were examined, and the C3H/HeN mouse strain was also included for comparative purposes. Massive intra-alveolar neutrophilic infiltration led to rapid granuloma growth and coalescence of lesions into superlesions. A central necrotic area appeared showing progressive cellular destruction, the alveoli cell walls being initially conserved (caseous necrosis) but finally destroyed (liquefactive necrosis). Increasing levels of pro-inflammatory mediators were detected in lungs. C3HeB/FeJ treated with anti-inflammatory drugs and C3H/HeN animals presented lower levels of pro-inflammatory mediators such as TNF-α, IL-17, IL-6 and CXCL5, a lower bacillary load, better histopathology, and increased survival compared with untreated C3HeB/FeJ. The observation of massive neutrophilic infiltration suggests that inflammation may be a key factor in progression towards active tuberculosis. On the basis of our findings, we consider that the C3HeB/FeJ mouse model would be useful for evaluating new therapeutic strategies against human tuberculosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Relapse May Serve as a Mediator Variable in Longitudinal Outcomes in Multiple Sclerosis.

    Science.gov (United States)

    Stone, Lael Anne; Cutter, Gary Raymond; Fisher, Elizabeth; Richert, Nancy; McCartin, Jennifer; Ohayon, Joan; Bash, Craig; McFarland, Henry

    2016-05-01

    Contrast-enhancing lesions (CEL) on magnetic resonance imaging (MRI) are believed to represent inflammatory disease activity in multiple sclerosis (MS), but their relationship to subsequent long-term disability and progression is unclear, particularly at longer time periods such as 8-10 years. Between 1989 and 1994, 111 MS patients were seen at the National Institutes of Health for clinical evaluations and 3 monthly contrast-enhanced MRI scans. Of these, 94 patients were re-evaluated a mean of 8 years later (range 6.1-10.5 years) with a single MRI scan and clinical evaluation. CEL number and volume were determined at baseline and follow-up. The number of relapses was ascertained over the follow-up period and annualized relapse rates were calculated. Other MRI parameters, such as T2 hyperintensity volume, T1 volume, and brain parenchymal fraction, were also calculated. While there was no direct correlation between CEL number or volume at baseline and disability status at follow-up, CEL measures at baseline did correlate with number of relapses observed in the subsequent years, and the number of relapses in turn correlated with subsequent disability as well as transition to progressive MS. While number and volume of CEL at baseline do not directly correlate with disability in the longer term in MS, our data suggest that 1 route to disability involves relapses as a mediator variable in the causal sequence of MS progression from CEL to disability. Further studies using relapse as a mediator variable in a larger data set may be warranted. Copyright © 2015 by the American Society of Neuroimaging.

  16. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Jie Hong

    Full Text Available Mechanisms of the progression from Barrett's esophagus (BE to esophageal adenocarcinoma (EA are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA.

  17. CD147 reinforces [Ca2+]i oscillations and promotes oncogenic progression in hepatocellular carcinoma.

    Science.gov (United States)

    Tang, Juan; Guo, Yun-Shan; Yu, Xiao-Ling; Huang, Wan; Zheng, Ming; Zhou, Ying-Hui; Nan, Gang; Wang, Jian-Chao; Yang, Hai-Jiao; Yu, Jing-Min; Jiang, Jian-Li; Chen, Zhi-Nan

    2015-10-27

    Oscillations in intracellular Ca2+ concentrations ([Ca2+]i) mediate various cellular function. Although it is known that [Ca2+]i oscillations are susceptible to dysregulation in tumors, the tumor-specific regulators of [Ca2+]i oscillations are poorly characterized. We discovered that CD147 promotes hepatocellular carcinoma (HCC) metastasis and proliferation by enhancing the amplitude and frequency of [Ca2+]i oscillations in HCC cells. CD147 activates two distinct signaling pathways to regulate [Ca2+]i oscillations. By activating FAK-Src-IP3R1 signaling pathway, CD147 promotes Ca2+ release from endoplasmic reticulum (ER) and enhances the amplitude of [Ca2+]i oscillations. Furthermore, CD147 accelerates ER Ca2+refilling and enhances the frequency of [Ca2+]i oscillations through activating CaMKP-PAK1-PP2A-PLB-SERCA signaling pathway. Besides, CD147-promoted ER Ca2+ release and refilling are tightly regulated by changing [Ca2+]i. CD147 may activate IP3R1 channel under low [Ca2+]i conditions and CD147 may activate SERCA pump under high [Ca2+]i conditions. CD147 deletion suppresses HCC tumorigenesis and increases the survival rate of liver-specific CD147 knockout mice by regulating [Ca2+]i oscillations in vivo. Together, these results reveal that CD147 functions as a critical regulator of ER-dependent [Ca2+]i oscillations to promote oncogenic progression in HCC.

  18. A polycomb-mediated epigenetic field defect precedes invasive cervical carcinoma

    Science.gov (United States)

    Wijetunga, Neil Ari; Ben-Dayan, Miriam; Tozour, Jessica; Burk, Robert D.; Schlecht, Nicolas F.; Einstein, Mark H.; Greally, John M.

    2016-01-01

    Human papillomavirus (HPV)-associated cervical carcinoma is preceded by stages of cervical intra-epithelial neoplasia (CIN) that can variably progress to malignancy. Understanding the different molecular processes involved in the progression of pre-malignant CIN is critical to the development of improved predictive and interventional capabilities. We tested the role of regulators of transcription in both the development and the progression of HPV-associated CIN, performing the most comprehensive genomic survey to date of DNA methylation in HPV-associated cervical neoplasia, testing ~2 million loci throughout the human genome in biopsies from 78 HPV+ women, identifying changes starting in early CIN and maintained through carcinogenesis. We identified loci at which DNA methylation is consistently altered, beginning early in the course of neoplastic disease and progressing with disease advancement. While the loss of DNA methylation occurs mostly at intergenic regions, acquisition of DNA methylation is at sites involved in transcriptional regulation, with strong enrichment for targets of polycomb repression. Using an independent cohort from The Cancer Genome Atlas, we validated the loci with increased DNA methylation and found that these regulatory changes were associated with locally decreased gene expression. Secondary validation using immunohistochemistry showed that the progression of neoplasia was associated with increasing polycomb protein expression specifically in the cervical epithelium. We find that perturbations of genomic regulatory processes occur early and persist in cervical carcinoma. The results indicate a polycomb-mediated epigenetic field defect in cervical neoplasia that may represent a target for early, topical interventions using polycomb inhibitors. PMID:27557505

  19. A polycomb-mediated epigenetic field defect precedes invasive cervical carcinoma.

    Science.gov (United States)

    Wijetunga, Neil Ari; Ben-Dayan, Miriam; Tozour, Jessica; Burk, Robert D; Schlecht, Nicolas F; Einstein, Mark H; Greally, John M

    2016-09-20

    Human papillomavirus (HPV)-associated cervical carcinoma is preceded by stages of cervical intra-epithelial neoplasia (CIN) that can variably progress to malignancy. Understanding the different molecular processes involved in the progression of pre-malignant CIN is critical to the development of improved predictive and interventional capabilities. We tested the role of regulators of transcription in both the development and the progression of HPV-associated CIN, performing the most comprehensive genomic survey to date of DNA methylation in HPV-associated cervical neoplasia, testing ~2 million loci throughout the human genome in biopsies from 78 HPV+ women, identifying changes starting in early CIN and maintained through carcinogenesis. We identified loci at which DNA methylation is consistently altered, beginning early in the course of neoplastic disease and progressing with disease advancement. While the loss of DNA methylation occurs mostly at intergenic regions, acquisition of DNA methylation is at sites involved in transcriptional regulation, with strong enrichment for targets of polycomb repression. Using an independent cohort from The Cancer Genome Atlas, we validated the loci with increased DNA methylation and found that these regulatory changes were associated with locally decreased gene expression. Secondary validation using immunohistochemistry showed that the progression of neoplasia was associated with increasing polycomb protein expression specifically in the cervical epithelium. We find that perturbations of genomic regulatory processes occur early and persist in cervical carcinoma. The results indicate a polycomb-mediated epigenetic field defect in cervical neoplasia that may represent a target for early, topical interventions using polycomb inhibitors.

  20. EZH2 in Cancer Progression and Potential Application in Cancer Therapy: A Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Ke-Sin Yan

    2017-05-01

    Full Text Available Enhancer of zeste homolog 2 (EZH2, a histone methyltransferase, catalyzes tri-methylation of histone H3 at Lys 27 (H3K27me3 to regulate gene expression through epigenetic machinery. EZH2 functions as a double-facet molecule in regulation of gene expression via repression or activation mechanisms, depending on the different cellular contexts. EZH2 interacts with both histone and non-histone proteins to modulate diverse physiological functions including cancer progression and malignancy. In this review article, we focused on the updated information regarding microRNAs (miRNAs and long non coding RNAs (lncRNAs in regulation of EZH2, the oncogenic and tumor suppressive roles of EZH2 in cancer progression and malignancy, as well as current pre-clinical and clinical trials of EZH2 inhibitors.

  1. Parental media mediation styles for children aged 2 to 11 years.

    Science.gov (United States)

    Barkin, Shari; Ip, Edward; Richardson, Irma; Klinepeter, Sara; Finch, Stacia; Krcmar, Marina

    2006-04-01

    Studies indicate that children use media (television, video, and computer) more than the recommended limit of 2 h/d, but little is known about parents' role in mediating their children's media use. Office-based survey. Data were collected on demographics, reported media behaviors, parental awareness about media effects, television in the bedroom, and parental concern. We developed logistic regression models to examine factors associated with the following 3 mediation approaches: restrictive, instructive, and unlimited. Pediatric Research in Office Settings practices. Parents with children aged 2 to 11 years (n = 1831) presenting for a well-child visit. Almost half of parents reported a single mediation approach, including restrictive for 23%, instructive for 11%, and unlimited for 7%, with 59% reporting the use of multiple strategies. Restrictive (odds ratio [OR], 1.16; Peffects, whereas a decreased awareness existed for those who used an unlimited approach (OR, 0.87; Pparental concern (OR, 1.77; Pchildren (OR, 1.41; Pparents permitted a television in the child's bedroom (OR, 2.13; Pparental practices and reinforce active media mediation strategies.

  2. Early progressive encephalopathy in boys and MECP2 mutations.

    Science.gov (United States)

    Kankirawatana, P; Leonard, H; Ellaway, C; Scurlock, J; Mansour, A; Makris, C M; Dure, L S; Friez, M; Lane, J; Kiraly-Borri, C; Fabian, V; Davis, M; Jackson, J; Christodoulou, J; Kaufmann, W E; Ravine, D; Percy, A K

    2006-07-11

    MECP2 mutations mainly occur in females with Rett syndrome. Mutations have been described in 11 boys with progressive encephalopathy: seven of nine with affected sisters and two de novo. The authors report four de novo occurrences: three pathogenic and one potentially pathogenic. Common features include failure to thrive, respiratory insufficiency, microcephaly, and abnormal motor control. MECP2 mutations should be assessed in boys with progressive encephalopathy and one or more of respiratory insufficiency, abnormal movements or tone, and intractable seizures.

  3. A study on β-defensin-2 and histatin-5 as a diagnostic marker of early childhood caries progression

    Directory of Open Access Journals (Sweden)

    Anna Jurczak

    2015-01-01

    Full Text Available BACKGROUND: Recently, a continuous growth of interest has been observed in antimicrobial peptides (AMPs in the light of an alarming increase in resistance of bacteria and fungi against antibiotics. AMPs are used as biomarkers in diagnosis and monitoring of oral cavity pathologies. Therefore, the determination of specific protein profiles in children diagnosed with early childhood caries (ECC might be a basis for effective screening tests and specialized examinations which may enable progression of disease METHODS: The objective of the studies was to determine the role of histatin-5 and β-defensing-2 as a diagnostic marker of early childhood caries progression. In this work, results of concentration determination of two salivary proteins (histatin-5 and β-defensin-2 were presented. In addition, bacterial profiles from dental plaque in various stages of ECC and control were marked. The assessment of alteration in the concentration of these two proteins in a study group of children with various stages of ECC and a control group consisting of children with no symptoms was performed by enzyme-linked immunosorbent assays RESULTS: The statistical analysis showed a significant increase in the concentration of histatin-5 and β-defensin-2 in the study group compared to the control group and correlated with the progression of the disease CONCLUSIONS: The confirmation of concentration changes in these proteins during the progression of dental caries may discover valuable disease progression biomarkers

  4. In brown adipocytes, adrenergically induced β1-/β3-(Gs)-, α2-(Gi)- and α1-(Gq)-signalling to Erk1/2 activation is not mediated via EGF receptor transactivation

    International Nuclear Information System (INIS)

    Wang, Yanling; Fälting, Johanna M.; Mattsson, Charlotte L.; Holmström, Therése E.; Nedergaard, Jan

    2013-01-01

    Brown adipose tissue is unusual in that the neurotransmitter norepinephrine influences cell destiny in ways generally associated with effects of classical growth factors: regulation of cell proliferation, of apoptosis, and progression of differentiation. The norepinephrine effects are mediated through G-protein-coupled receptors; further mediation of such stimulation to e.g. Erk1/2 activation is in cell biology in general accepted to occur through transactivation of the EGF receptor (by external or internal pathways). We have examined here the significance of such transactivation in brown adipocytes. Stimulation of mature brown adipocytes with cirazoline (α 1 -adrenoceptor coupled via G q ), clonidine (α 2 via G i ) or CL316243 (β 3 via G s ) or via β 1 -receptors significantly activated Erk1/2. Pretreatment with the EGF receptor kinase inhibitor AG1478 had, remarkably, no significant effect on Erk1/2 activation induced by any of these adrenergic agonists (although it fully abolished EGF-induced Erk1/2 activation), demonstrating absence of EGF receptor-mediated transactivation. Results with brown preadipocytes (cells in more proliferative states) were not qualitatively different. Joint stimulation of all adrenoceptors with norepinephrine did not result in synergism on Erk1/2 activation. AG1478 action on EGF-stimulated Erk1/2 phosphorylation showed a sharp concentration–response relationship (IC 50 0.3 µM); a minor apparent effect of AG1478 on norepinephrine-stimulated Erk1/2 phosphorylation showed nonspecific kinetics, implying caution in interpretation of partial effects of AG1478 as reported in other systems. Transactivation of the EGF receptor is clearly not a universal prerequisite for coupling of G-protein coupled receptors to Erk1/2 signalling cascades. - Highlights: • In brown adipocytes, norepinephrine regulates proliferation, apoptosis, differentiation. • EGF receptor transactivation is supposed to mediate GPCR-induced Erk1/2 activation. •

  5. In silico design and biological evaluation of a dual specificity kinase inhibitor targeting cell cycle progression and angiogenesis.

    Science.gov (United States)

    Latham, Antony M; Kankanala, Jayakanth; Fearnley, Gareth W; Gage, Matthew C; Kearney, Mark T; Homer-Vanniasinkam, Shervanthi; Wheatcroft, Stephen B; Fishwick, Colin W G; Ponnambalam, Sreenivasan

    2014-01-01

    Protein kinases play a central role in tumor progression, regulating fundamental processes such as angiogenesis, proliferation and metastasis. Such enzymes are an increasingly important class of drug target with small molecule kinase inhibitors being a major focus in drug development. However, balancing drug specificity and efficacy is problematic with off-target effects and toxicity issues. We have utilized a rational in silico-based approach to demonstrate the design and study of a novel compound that acts as a dual inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2) and cyclin-dependent kinase 1 (CDK1). This compound acts by simultaneously inhibiting pro-angiogenic signal transduction and cell cycle progression in primary endothelial cells. JK-31 displays potent in vitro activity against recombinant VEGFR2 and CDK1/cyclin B proteins comparable to previously characterized inhibitors. Dual inhibition of the vascular endothelial growth factor A (VEGF-A)-mediated signaling response and CDK1-mediated mitotic entry elicits anti-angiogenic activity both in an endothelial-fibroblast co-culture model and a murine ex vivo model of angiogenesis. We deduce that JK-31 reduces the growth of both human endothelial cells and human breast cancer cells in vitro. This novel synthetic molecule has broad implications for development of similar multi-kinase inhibitors with anti-angiogenic and anti-cancer properties. In silico design is an attractive and innovative method to aid such drug discovery.

  6. Cerebellar Kainate Receptor-Mediated Facilitation of Glutamate Release Requires Ca2+-Calmodulin and PKA

    Directory of Open Access Journals (Sweden)

    Rafael Falcón-Moya

    2018-06-01

    Full Text Available We elucidated the mechanisms underlying the kainate receptor (KAR-mediated facilitatory modulation of synaptic transmission in the cerebellum. In cerebellar slices, KA (3 μM increased the amplitude of evoked excitatory postsynaptic currents (eEPSCs at synapses between axon terminals of parallel fibers (PF and Purkinje neurons. KA-mediated facilitation was antagonized by NBQX under condition where AMPA receptors were previously antagonized. Inhibition of protein kinase A (PKA suppressed the effect of KA on glutamate release, which was also obviated by the prior stimulation of adenylyl cyclase (AC. KAR-mediated facilitation of synaptic transmission was prevented by blocking Ca2+ permeant KARs using philanthotoxin. Furthermore, depletion of intracellular Ca2+ stores by thapsigargin, or inhibition of Ca2+-induced Ca2+-release by ryanodine, abrogated the synaptic facilitation by KA. Thus, the KA-mediated modulation was conditional on extracellular Ca2+ entry through Ca2+-permeable KARs, as well as and mobilization of Ca2+ from intracellular stores. Finally, KAR-mediated facilitation was sensitive to calmodulin inhibitors, W-7 and calmidazolium, indicating that the increased cytosolic [Ca2+] sustaining KAR-mediated facilitation of synaptic transmission operates through a downstream Ca2+/calmodulin coupling. We conclude that, at cerebellar parallel fiber-Purkinje cell synapses, presynaptic KARs mediate glutamate release facilitation, and thereby enhance synaptic transmission through Ca2+-calmodulin dependent activation of adenylyl cyclase/cAMP/protein kinase A signaling.

  7. Calpastatin overexpression prevents progression of S-1,2-dichlorovinyl-L-cysteine (DCVC)-initiated acute renal injury and renal failure (ARF) in diabetes

    International Nuclear Information System (INIS)

    Dnyanmote, Ankur V.; Sawant, Sharmilee P.; Lock, Edward A.; Latendresse, John R.; Warbritton, Alan A.; Mehendale, Harihara M.

    2006-01-01

    Previously we have shown that 90% of streptozotocin (STZ)-induced type-1 diabetic (DB) mice survive from acute renal failure (ARF) and death induced by a normally LD 9 dose (75 mg/kg, i.p.) of the nephrotoxicant S-1,2-dichlorovinyl-L-cysteine (DCVC). This remarkable protection is due to a combination of slower progression of DCVC-initiated renal injury and increased compensatory nephrogenic tissue repair in the DB kidneys. BRDU immunohistochemistry revealed that the DB condition led to 4-fold higher number of proximal tubular cells (PTC) entering S-phase of cell cycle. In the present study, we tested the hypothesis that DB-induced augmentation of PTC into S-phase is accompanied by overexpression of the calpain-inhibitor calpastatin, which endogenously prevents the progression of DCVC-initiated renal injury mediated by the calpain escaping out of damaged PTCs. Immunohistochemical detection of renal calpain and its activity in the urine, over a time course after treatment with the LD 9 dose of DCVC, indicated progressive increase in leakage of calpain into the extracellular spaces of the injured PTCs of the non-diabetic (NDB) kidneys as compared to the DB kidneys. Calpastatin expression was minimally detected in the NDB kidneys, using immunohistochemistry, over the time course. On the other hand, consistently higher number of tubules in the DB kidney showed calpastatin expression over the time course. The lower leakage of calpain in the DB kidneys was commensurate with constitutively higher expression of calpastatin in the S-phase-laden PTCs of these mice. To test the protective role of newly divided/dividing PTCs, DB mice were given the anti-mitotic agent colchicine (CLC) (2 mg/kg and 1.5 mg/kg, i.p., on days 8 and 10 after STZ injection) prior to challenge with a LD 9 dose of DCVC, which led to 100% mortality by 48 h. Mortality was due to rapid progression of DCVC-initiated renal injury, suggesting that newly divided/dividing cells are instrumental in mitigating

  8. Mediators of physical activity change in a behavioral modification program for type 2 diabetes patients

    Directory of Open Access Journals (Sweden)

    Tudor-Locke Catrine E

    2011-09-01

    Full Text Available Abstract Background Many studies have reported significant behavioral impact of physical activity interventions. However, few have examined changes in potential mediators of change preceding behavioral changes, resulting in a lack of information concerning how the intervention worked. Our purpose was to examine mediation effects of changes in psychosocial variables on changes in physical activity in type 2 diabetes patients. Methods Ninety-two patients (62 ± 9 years, 30, 0 ± 2.5 kg/m2, 69% males participated in a randomized controlled trial. The 24-week intervention was based on social-cognitive constructs and consisted of a face-to-face session, telephone follow-ups, and the use of a pedometer. Social-cognitive variables and physical activity (device-based and self-reported were collected at baseline, after the 24-week intervention and at one year post-baseline. PA was measured by pedometer, accelerometer and questionnaire. Results Post-intervention physical activity changes were mediated by coping with relapse, changes in social norm, and social modeling from family members (p ≤ 0.05. One-year physical activity changes were mediated by coping with relapse, changes in social support from family and self-efficacy towards physical activity barriers (p ≤ 0.05 Conclusions For patients with type 2 diabetes, initiatives to increase their physical activity could usefully focus on strategies for resuming regular patterns of activity, on engaging family social support and on building confidence about dealing with actual and perceived barriers to activity. Trial Registration NCT00903500, ClinicalTrials.gov.

  9. Regulation of DNA Methylation Patterns by CK2-Mediated Phosphorylation of Dnmt3a

    Directory of Open Access Journals (Sweden)

    Rachel Deplus

    2014-08-01

    Full Text Available DNA methylation is a central epigenetic modification that is established by de novo DNA methyltransferases. The mechanisms underlying the generation of genomic methylation patterns are still poorly understood. Using mass spectrometry and a phosphospecific Dnmt3a antibody, we demonstrate that CK2 phosphorylates endogenous Dnmt3a at two key residues located near its PWWP domain, thereby downregulating the ability of Dnmt3a to methylate DNA. Genome-wide DNA methylation analysis shows that CK2 primarily modulates CpG methylation of several repeats, most notably of Alu SINEs. This modulation can be directly attributed to CK2-mediated phosphorylation of Dnmt3a. We also find that CK2-mediated phosphorylation is required for localization of Dnmt3a to heterochromatin. By revealing phosphorylation as a mode of regulation of de novo DNA methyltransferase function and by uncovering a mechanism for the regulation of methylation at repetitive elements, our results shed light on the origin of DNA methylation patterns.

  10. A systems biology perspective on Nrf2-mediated antioxidant response

    International Nuclear Information System (INIS)

    Zhang Qiang; Pi Jingbo; Woods, Courtney G.; Andersen, Melvin E.

    2010-01-01

    Cells in vivo are constantly exposed to reactive oxygen species (ROS) generated endogenously and exogenously. To defend against the deleterious consequences of ROS, cells contain multiple antioxidant enzymes expressed in various cellular compartments to scavenge these toxic species. Under oxidative stresses, these antioxidant enzymes are upregulated to restore redox homeostasis. Such an adaptive response results from the activation of a redox-sensitive gene regulatory network mediated by nuclear factor E2-related factor 2. To more completely understand how the redox control system is designed by nature to meet homeostatic goals, we have examined the network from a systems perspective using engineering approaches. As with man-made control devices, the redox control system can be decomposed into distinct functional modules, including transducer, controller, actuator, and plant. Cells achieve specific performance objectives by utilizing nested feedback loops, feedforward control, and ultrasensitive signaling motifs, etc. Given that endogenously generated ROS are also used as signaling molecules, our analysis suggests a novel mode of action to explain oxidative stress-induced pathological conditions and diseases. Specifically, by adaptively upregulating antioxidant enzymes, oxidative stress may inadvertently attenuate ROS signals that mediate physiological processes, resulting in aberrations of cellular functions and adverse consequences. Lastly, by simultaneously considering the two competing cellular tasks-adaptive antioxidant defense and ROS signaling-we re-examine the premise that dietary antioxidant supplements is generally beneficial to human health. Our analysis highlights some possible adverse effects of these widely consumed antioxidants.

  11. Thioredoxin is involved in endothelial cell extracellular transglutaminase 2 activation mediated by celiac disease patient IgA.

    Directory of Open Access Journals (Sweden)

    Cristina Antonella Nadalutti

    Full Text Available PURPOSE: To investigate the role of thioredoxin (TRX, a novel regulator of extracellular transglutaminase 2 (TG2, in celiac patients IgA (CD IgA mediated TG2 enzymatic activation. METHODS: TG2 enzymatic activity was evaluated in endothelial cells (HUVECs under different experimental conditions by ELISA and Western blotting. Extracellular TG2 expression was studied by ELISA and immunofluorescence. TRX was analysed by Western blotting and ELISA. Serum immunoglobulins class A from healthy subjects (H IgA were used as controls. Extracellular TG2 enzymatic activity was inhibited by R281. PX12, a TRX inhibitor, was also employed in the present study. RESULTS: We have found that in HUVECs CD IgA is able to induce the activation of extracellular TG2 in a dose-dependent manner. Particularly, we noted that the extracellular modulation of TG2 activity mediated by CD IgA occurred only under reducing conditions, also needed to maintain antibody binding. Furthermore, CD IgA-treated HUVECs were characterized by a slightly augmented TG2 surface expression which was independent from extracellular TG2 activation. We also observed that HUVECs cultured in the presence of CD IgA evinced decreased TRX surface expression, coupled with increased secretion of the protein into the culture medium. Intriguingly, inhibition of TRX after CD IgA treatment was able to overcome most of the CD IgA-mediated effects including the TG2 extracellular transamidase activity. CONCLUSIONS: Altogether our findings suggest that in endothelial cells CD IgA mediate the constitutive activation of extracellular TG2 by a mechanism involving the redox sensor protein TRX.

  12. Heterotypic contact reveals a COX-2-mediated suppression of osteoblast differentiation by endothelial cells: A negative modulatory role for prostanoids in VEGF-mediated cell: cell communication?

    International Nuclear Information System (INIS)

    Clarkin, Claire E.; Garonna, Elena; Pitsillides, Andrew A.; Wheeler-Jones, Caroline P.D.

    2008-01-01

    In bone, angiogenesis must be initiated appropriately, but limited once remodelling or repair is complete. Our recent findings have supported a role for prostaglandins (PG), known modulators of osteoblast (OB) and endothelial cell (EC) behaviour, in facilitating VEGF-mediated paracrine communication from OBs to 'remotely located' ECs, but the mechanism(s) regulating OB:EC crosstalk when these cells are closely opposed are undefined. In this study we have examined: (i) the effects of exogenous PGE 2 on VEGF-driven events in ECs, and (ii) the role of endogenous COX-2-derived prostanoids in mediating communication between intimately opposed OBs and ECs in direct contact. Exposure of ECs to PGE 2 increased ERK1/2 phosphorylation, COX-2 induction, 6-keto-PGF 1α release and EC proliferation. In contrast, PGE 2 attenuated VEGF 165 -induced VEGFR2/Flk1 phosphorylation, ERK1/2 activation and proliferation of ECs, suggesting that exogenous PGE 2 restricts the actions of VEGF. However, the COX-2-selective inhibitor, NS398, also attenuated VEGF-induced proliferation, implying a distinct role for endogenous COX-2 activity in regulating EC behaviour. To examine the effect of OB:EC proximity and the role of COX-2 products further, we used a confrontational co-culture model. These studies showed that COX-2 blockade with NS398 enhanced EC-dependent increases in OB differentiation, that this effect was reversed by exogenous PGH 2 (immediate COX-2 product), and that exogenous VEGF did not influence EC-dependent OB differentiation under these conditions. Our findings indicate that locally produced prostanoids may serve distinct roles depending on OB:EC proximity and negatively modulate VEGF-mediated changes in EC behaviour when these cells are closely opposed to control angiogenesis during bone (re)modelling

  13. AAV-mediated pancreatic overexpression of Igf1 counteracts progression to autoimmune diabetes in mice.

    Science.gov (United States)

    Mallol, Cristina; Casana, Estefania; Jimenez, Veronica; Casellas, Alba; Haurigot, Virginia; Jambrina, Claudia; Sacristan, Victor; Morró, Meritxell; Agudo, Judith; Vilà, Laia; Bosch, Fatima

    2017-07-01

    Type 1 diabetes is characterized by autoimmune destruction of β-cells leading to severe insulin deficiency. Although many improvements have been made in recent years, exogenous insulin therapy is still imperfect; new therapeutic approaches, focusing on preserving/expanding β-cell mass and/or blocking the autoimmune process that destroys islets, should be developed. The main objective of this work was to test in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes, the effects of local expression of Insulin-like growth factor 1 (IGF1), a potent mitogenic and pro-survival factor for β-cells with immunomodulatory properties. Transgenic NOD mice overexpressing IGF1 specifically in β-cells (NOD-IGF1) were generated and phenotyped. In addition, miRT-containing, IGF1-encoding adeno-associated viruses (AAV) of serotype 8 (AAV8-IGF1-dmiRT) were produced and administered to 4- or 11-week-old non-transgenic NOD females through intraductal delivery. Several histological, immunological, and metabolic parameters were measured to monitor disease over a period of 28-30 weeks. In transgenic mice, local IGF1 expression led to long-term suppression of diabetes onset and robust protection of β-cell mass from the autoimmune insult. AAV-mediated pancreatic-specific overexpression of IGF1 in adult animals also dramatically reduced diabetes incidence, both when vectors were delivered before pathology onset or once insulitis was established. Transgenic NOD-IGF1 and AAV8-IGF1-dmiRT-treated NOD animals had much less islet infiltration than controls, preserved β-cell mass, and normal insulinemia. Transgenic and AAV-treated islets showed less expression of antigen-presenting molecules, inflammatory cytokines, and chemokines important for tissue-specific homing of effector T cells, suggesting IGF1 modulated islet autoimmunity in NOD mice. Local expression of Igf1 by AAV-mediated gene transfer counteracts progression to diabetes in NOD mice. This study suggests a

  14. Gauge-mediated supersymmetry breaking: introduction, review and update

    International Nuclear Information System (INIS)

    Kolda, C.

    1998-01-01

    Recent progress in the gauge-mediated supersymmetry breaking is reviewed, with emphasis on the theoretical problems which gauge-mediated models are so successful at solving, as well as the problems which are endemic to the models themselves and still beguile theorists today. (orig.)

  15. Cigarette smoke regulates VEGFR2-mediated survival signaling in rat lungs

    Directory of Open Access Journals (Sweden)

    Stevenson Christopher S

    2010-02-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF and VEGF receptor 2 (VEGFR2-mediated survival signaling is critical to endothelial cell survival, maintenance of the vasculature and alveolar structure and regeneration of lung tissue. Reduced VEGF and VEGFR2 expression in emphysematous lungs has been linked to increased endothelial cell death and vascular regression. Previously, we have shown that CS down-regulated the VEGFR2 and its downstream signaling in mouse lungs. However, the VEGFR2-mediated survival signaling in response to oxidants/cigarette smoke (CS is not known. We hypothesized that CS exposure leads to disruption of VEGFR2-mediated endothelial survival signaling in rat lungs. Methods Adult male Sprague-Dawley rats were exposed CS for 3 days, 8 weeks and 6 months to investigate the effect of CS on VEGFR2-mediated survival signaling by measuring the Akt/PI3-kinase/eNOS downstream signaling in rat lungs. Results and Discussion We show that CS disrupts VEGFR2/PI3-kinase association leading to decreased Akt and eNOS phosphorylation. This may further alter the phosphorylation of the pro-apoptotic protein Bad and increase the Bad/Bcl-xl association. However, this was not associated with a significant lung cell death as evidenced by active caspase-3 levels. These data suggest that although CS altered the VEGFR2-mediated survival signaling in the rat lungs, but it was not sufficient to cause lung cell death. Conclusion The rat lungs exposed to CS in acute, sub-chronic and chronic levels may be representative of smokers where survival signaling is altered but was not associated with lung cell death whereas emphysema is known to be associated with lung cell apoptosis.

  16. T2 map signal variation predicts symptomatic osteoarthritis progression: data from the Osteoarthritis Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Haoti; Miller, David J. [The Pennsylvania State University, Department of Electrical Engineering, University Park, PA (United States); Urish, Kenneth L. [Magee Womens Hospital of the University of Pittsburgh Medical Center, The Bone and Joint Center, Pittsburgh, PA (United States); University of Pittsburgh School of Medicine, Department of Orthopaedic Surgery, Pittsburgh, PA (United States)

    2016-07-15

    The aim of this work is to use quantitative magnetic resonance imaging (MRI) to identify patients at risk for symptomatic osteoarthritis (OA) progression. We hypothesized that classification of signal variation on T2 maps might predict symptomatic OA progression. Patients were selected from the Osteoarthritis Initiative (OAI), a prospective cohort. Two groups were identified: a symptomatic OA progression group and a control group. At baseline, both groups were asymptomatic (Western Ontario and McMaster Universities Arthritis [WOMAC] pain score total <10) with no radiographic evidence of OA (Kellgren-Lawrence [KL] score ≤ 1). The OA progression group (n = 103) had a change in total WOMAC score greater than 10 by the 3-year follow-up. The control group (n = 79) remained asymptomatic, with a change in total WOMAC score less than 10 at the 3-year follow-up. A classifier was designed to predict OA progression in an independent population based on T2 map cartilage signal variation. The classifier was designed using a nearest neighbor classification based on a Gaussian Mixture Model log-likelihood fit of T2 map cartilage voxel intensities. The use of T2 map signal variation to predict symptomatic OA progression in asymptomatic individuals achieved a specificity of 89.3 %, a sensitivity of 77.2 %, and an overall accuracy rate of 84.2 %. T2 map signal variation can predict symptomatic knee OA progression in asymptomatic individuals, serving as a possible early OA imaging biomarker. (orig.)

  17. Progression of diabetic retinopathy during pregnancy in women with type 2 diabetes

    DEFF Research Database (Denmark)

    Rasmussen, K.L.; Laugesen, C.S.; Nielsen, Lene Ringholm

    2010-01-01

    We studied the progression of diabetic retinopathy during pregnancy in women with type 2 diabetes.......We studied the progression of diabetic retinopathy during pregnancy in women with type 2 diabetes....

  18. Ultrasound-mediated drug delivery by gas bubbles generated from a chemical reaction.

    Science.gov (United States)

    Lee, Sungmun; Al-Kaabi, Leena; Mawart, Aurélie; Khandoker, Ahsan; Alsafar, Habiba; Jelinek, Herbert F; Khalaf, Kinda; Park, Ji-Ho; Kim, Yeu-Chun

    2018-02-01

    Highly echogenic and ultrasound-responsive microbubbles such as nitrogen and perfluorocarbons have been exploited as ultrasound-mediated drug carriers. Here, we propose an innovative method for drug delivery using microbubbles generated from a chemical reaction. In a novel drug delivery system, luminol encapsulated in folate-conjugated bovine serum albumin nanoparticles (Fol-BSAN) can generate nitrogen gas (N 2 ) by chemical reaction when it reacts with hydrogen peroxide (H 2 O 2 ), one of reactive oxygen species (ROS). ROS plays an important role in the initiation and progression of cancer and elevated ROS have been observed in cancer cells both in vitro and in vivo. High-intensity focussed ultrasound (HIFU) is used to burst the N 2 microbubbles, causing site-specific delivery of anticancer drugs such as methotrexate. In this research, the drug delivery system was optimised by using water-soluble luminol and Mobil Composition of Matter-41 (MCM-41), a mesoporous material, so that the delivery system was sensitive to micromolar concentrations of H 2 O 2 . HIFU increased the drug release from Fol-BSAN by 52.9 ± 2.9% in 10 minutes. The cytotoxicity of methotrexate was enhanced when methotrexate is delivered to MDA-MB-231, a metastatic human breast cancer cell line, using Fol-BSAN with HIFU. We anticipate numerous applications of chemically generated microbubbles for ultrasound-mediated drug delivery.

  19. Lipocalin-2 is increased in progressive multiple sclerosis and inhibits remyelination

    DEFF Research Database (Denmark)

    Al Nimer, Faiez; Elliott, Christina; Bergman, Joakim

    2016-01-01

    OBJECTIVE: We aimed to examine the regulation of lipocalin-2 (LCN2) in multiple sclerosis (MS) and its potential functional relevance with regard to myelination and neurodegeneration. METHODS: We determined LCN2 levels in 3 different studies: (1) in CSF and plasma from a case-control study...... natalizumab treatment in a cohort study of 17 patients with progressive MS. Correlation to neurofilament light, a marker of neuroaxonal injury, was tested. The effect of LCN2 on myelination and neurodegeneration was studied in a rat in vitro neuroglial cell coculture model. RESULTS: Intrathecal production....... Treatment with natalizumab in progressive MS reduced LCN2 levels an average of 13% (p

  20. Slow rate of progression of grade 1 and 2+ aortic regurgitation.

    Science.gov (United States)

    Patel, Reena; Kamath, Ashvin; Varadarajan, Padmini; Krishnan, Srikanth; Pai, Ramdas G

    2012-05-01

    Although the progression of aortic stenosis has been well studied, the rate of progression of aortic regurgitation (AR) has not been definitively established. Further data would be valuable for clinical decision-making in patients with milder degrees of AR undergoing non-aortic valve cardiac surgery. Hence, this point was investigated in a large cohort of patients with grade 1 or 2+ AR. The authors' echocardiographic database acquired between 1993 and 2007 was screened for patients with grade 1 or 2+ AR who had undergone follow up echocardiography at least one year later. The AR severity was graded as 1 to 4+, and any annual changes in AR grade were monitored. Among a total of 4,128 patients identified, 3,266 had grade 1+ AR and 862 had grade 2+ AR on the initial echocardiogram: the mean age was 67 +/- 15 years, and the duration of follow up was 4.2 +/- 2.7 years. Of those patients initially with grade 1+ AR, 95% showed no change in AR over a mean interval of 4.2 years, with an annual average increase in AR grade of 0.04. Of those patients initially with grade 2+ AR, 90% showed no change over this period, with an annual average increase in grade of 0.07. In the entire cohort, the AR progression correlated positively with age (p = 0.03), ventricular septal thickness (p grade 1 or 2+ AR in the absence of any higher risk for progression, such as grade 2+ AR combined with any degree of aortic stenosis and advanced age.

  1. Influence of ER leak on resting cytoplasmic Ca2+ and receptor-mediated Ca2+ signalling in human macrophage.

    Science.gov (United States)

    Layhadi, Janice A; Fountain, Samuel J

    2017-06-03

    Mechanisms controlling endoplasmic reticulum (ER) Ca 2+ homeostasis are important regulators of resting cytoplasmic Ca 2+ concentration ([Ca 2+ ] cyto ) and receptor-mediated Ca 2+ signalling. Here we investigate channels responsible for ER Ca 2+ leak in THP-1 macrophage and human primary macrophage. In the absence of extracellular Ca 2+ we employ ionomycin action at the plasma membrane to stimulate ER Ca 2+ leak. Under these conditions ionomycin elevates [Ca 2+ ] cyto revealing a Ca 2+ leak response which is abolished by thapsigargin. IP 3 receptors (Xestospongin C, 2-APB), ryanodine receptors (dantrolene), and translocon (anisomycin) inhibition facilitated ER Ca 2+ leak in model macrophage, with translocon inhibition also reducing resting [Ca 2+ ] cyto . In primary macrophage, translocon inhibition blocks Ca 2+ leak but does not influence resting [Ca 2+ ] cyto . We identify a role for translocon-mediated ER Ca 2+ leak in receptor-mediated Ca 2+ signalling in both model and primary human macrophage, whereby the Ca 2+ response to ADP (P2Y receptor agonist) is augmented following anisomycin treatment. In conclusion, we demonstrate a role of ER Ca 2+ leak via the translocon in controlling resting cytoplasmic Ca 2+ in model macrophage and receptor-mediated Ca 2+ signalling in model macrophage and primary macrophage. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. β-Arrestin-2-Dependent Signaling Promotes CCR4-mediated Chemotaxis of Murine T-Helper Type 2 Cells.

    Science.gov (United States)

    Lin, Rui; Choi, Yeon Ho; Zidar, David A; Walker, Julia K L

    2018-06-01

    Allergic asthma is a complex inflammatory disease that leads to significant healthcare costs and reduction in quality of life. Although many cell types are implicated in the pathogenesis of asthma, CD4 + T-helper cell type 2 (Th2) cells are centrally involved. We previously reported that the asthma phenotype is virtually absent in ovalbumin-sensitized and -challenged mice that lack global expression of β-arrestin (β-arr)-2 and that CD4 + T cells from these mice displayed significantly reduced CCL22-mediated chemotaxis. Because CCL22-mediated activation of CCR4 plays a role in Th2 cell regulation in asthmatic inflammation, we hypothesized that CCR4-mediated migration of CD4 + Th2 cells to the lung in asthma may use β-arr-dependent signaling. To test this hypothesis, we assessed the effect of various signaling inhibitors on CCL22-induced chemotaxis using in vitro-polarized primary CD4 + Th2 cells from β-arr2-knockout and wild-type mice. Our results show, for the first time, that CCL22-induced, CCR4-mediated Th2 cell chemotaxis is dependent, in part, on a β-arr2-dependent signaling pathway. In addition, we show that this chemotactic signaling mechanism involves activation of P-p38 and Rho-associated protein kinase. These findings point to a proinflammatory role for β-arr2-dependent signaling and support β-arr2 as a novel therapeutic target in asthma.

  3. p38 mediates mechanical allodynia in a mouse model of type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Hong Yu

    2010-05-01

    Full Text Available Abstract Background Painful Diabetic Neuropathy (PDN affects more than 25% of patients with type 2 diabetes; however, the pathogenesis remains unclear due to lack of knowledge of the molecular mechanisms leading to PDN. In our current study, we use an animal model of type 2 diabetes in order to understand the roles of p38 in PDN. Previously, we have demonstrated that the C57BLK db/db (db/db mouse, a model of type 2 diabetes that carries the loss-of-function leptin receptor mutant, develops mechanical allodynia in the hind paws during the early stage (6-12 wk of age of diabetes. Using this timeline of PDN, we can investigate the signaling mechanisms underlying mechanical allodynia in the db/db mouse. Results We studied the role of p38 in lumbar dorsal root ganglia (LDRG during the development of mechanical allodynia in db/db mice. p38 phosphorylation was detected by immunoblots at the early stage of mechanical allodynia in LDRG of diabetic mice. Phosphorylated p38 (pp38 immunoreactivity was detected mostly in the small- to medium-sized LDRG neurons during the time period of mechanical allodynia. Treatment with an antibody against nerve growth factor (NGF significantly inhibited p38 phosphorylation in LDRG of diabetic mice. In addition, we detected higher levels of inflammatory mediators, including cyclooxygenase (COX 2, inducible nitric oxide synthases (iNOS, and tumor necrosis factor (TNF-α in LDRG neurons of db/db mice compared to non-diabetic db+ mice. Intrathecal delivery of SB203580, a p38 inhibitor, significantly inhibited the development of mechanical allodynia and the upregulation of COX2, iNOS and TNF-α. Conclusions Our findings suggest that NGF activated-p38 phosphorylation mediates mechanical allodynia in the db/db mouse by upregulation of multiple inflammatory mediators in LDRG.

  4. Technological mediation as a learning tool for writing and reading

    Directory of Open Access Journals (Sweden)

    Gladys Molano Caro

    2015-12-01

    Full Text Available This article disclosed the progress a technological mediation has built to the adquisition, use and development of reading and writing from Cognitive Affective Method for Learning -MACPA-. A development like the one being proposed, is an option for children and young people to, activate, promote, develop and / or enhance the learning of reading and writing. Likewise, it is an option to consider the results achieved in the PISA test and case reports, done by teachers by teachers, showing that that elementary students do not perform production of texts so spontaneous or directed; and they fail to make progress in reading comprehension levels. Given this context, the partial results achieved in the second phase of the research aims to implement a technology platform based mediation MACPA as an educational resource to enhance the processes of reading and writing among students from first to fourth grades of primary education. Accordingly, through Article basis be found in a software for reading and writing that takes into account the particularities of learning of students with intellectual disabilities, learning disabilities in students who have not evidenced difficulties in academic learning processes, though they require a new method to accelerate learning.

  5. Co-immunotherapy with interleukin-2 and taurolidine for progressive metastatic melanoma.

    LENUS (Irish Health Repository)

    O'Brien, G C

    2012-02-03

    BACKGROUND: Recombinant interleukin-2(rIL-2) therapy in metastatic melanoma is limited by toxicities, particularly vascular leak syndrome(VLS). Taurolidine potentiates the anti-neoplastic effects of IL-2 while reducing its associated endothelial cell dysfunction in experimental settings. We hypothesized that co-administration of rIL-2 with taurolidine could enhance tolerability without weakening effectiveness. METHODS: Eleven patients with progressive metastatic melanoma received high-dose rIL-2 with co-infusion of taurolidine. Patients were monitored for the development of toxicities and evidence of response. RESULTS: Ten patients tolerated twenty-nine courses of high-dose rIL-2 without dose-reduction. Most toxicities were low-grade. No patient developed VLS. Seven patients died from disease progression. Two had complete clinical and radiological responses to treatment. Two patients remain alive despite evidence of disease progression a mean of 17.5 months after diagnosing metastatic disease. CONCLUSION: Co-administration of taurolidine with high-dose rIL-2 in stage IV melanoma patients appears to greatly enhance the tolerability of this regime without diminishing its therapeutic value.

  6. Syndromes of rapidly progressive cognitive decline-our experience

    Directory of Open Access Journals (Sweden)

    Sadanandavalli Retnaswami Chandra

    2017-01-01

    Full Text Available Background: Dementias are fairly slowly progressive degenerative diseases of brain for which treatment options are very less and carry a lot of burden on family and society. A small percentage of them are rapidly progressive and mostly carry a different course outcome. However, there are no definite criteria other than the time line for these patients. Aims: The aim of this was to identify and categorize the causes and course of rapidly progressive dementias seen in our center. Settings and Design: Patients who presented with rapid deterioration of cognitive functions within weeks to 1 year between 2011 and December 2016 were evaluated. Patients and Methods: All patients underwent all mandatory tests for dementia including brain imaging. Complete vasculitis workup, autoimmune encephalitis profile including Voltage Gated Potassium Channel, N-methyl-D-aspartic acid receptor, glutamic acid-decarboxylase, thyroid-peroxidase antibody, cerebrospinal fluid, and other special tests such as duodenal biopsy and paraneoplastic workup were done based on clinical indications. Results and Conclusions: Out of 144 patients 42 had immune-mediated encephalopathy, 18 had Creutzfeldt-Jakob disease, 3 had Vitamin B12 deficiency, 63 had infection with neurocysticercosis, 7 had tuberculosis, 2 had HIV, 1 had herpes simplex encephalitis, 1 had neurosyphilis, 1 Whipples disease, 1 had Subacute Sclerosing Panencephalitis, 1 had Mass lesion, 3 had Frontotemporal dementia, and 3 had small vessel disease. Good majority of these patients have infective and immune-mediated causes and less number belong to degenerative group. Therefore, caution is needed to look for treatable cause as it carries a different treatment options and outcome.

  7. Prostaglandin E2 activates the mTORC1 pathway through an EP4/cAMP/PKA- and EP1/Ca2+-mediated mechanism in the human pancreatic carcinoma cell line PANC-1.

    Science.gov (United States)

    Chang, Hui-Hua; Young, Steven H; Sinnett-Smith, James; Chou, Caroline Ei Ne; Moro, Aune; Hertzer, Kathleen M; Hines, Oscar Joe; Rozengurt, Enrique; Eibl, Guido

    2015-11-15

    Obesity, a known risk factor for pancreatic cancer, is associated with inflammation and insulin resistance. Proinflammatory prostaglandin E2 (PGE2) and elevated insulin-like growth factor type 1 (IGF-1), related to insulin resistance, are shown to play critical roles in pancreatic cancer progression. We aimed to explore a potential cross talk between PGE2 signaling and the IGF-1/Akt/mammalian target of rapamycin complex 1 (mTORC1) pathway in pancreatic cancer, which may be a key to unraveling the obesity-cancer link. In PANC-1 human pancreatic cancer cells, we showed that PGE2 stimulated mTORC1 activity independently of Akt, as evaluated by downstream signaling events. Subsequently, using pharmacological and genetic approaches, we demonstrated that PGE2-induced mTORC1 activation is mediated by the EP4/cAMP/PKA pathway, as well as an EP1/Ca(2+)-dependent pathway. The cooperative roles of the two pathways were supported by the maximal inhibition achieved with the combined pharmacological blockade, and the coexistence of highly expressed EP1 (mediating the Ca(2+) response) and EP2 or EP4 (mediating the cAMP/PKA pathway) in PANC-1 cells and in the prostate cancer line PC-3, which also robustly exhibited PGE2-induced mTORC1 activation, as identified from a screen in various cancer cell lines. Importantly, we showed a reinforcing interaction between PGE2 and IGF-1 on mTORC1 signaling, with an increase in IL-23 production as a cellular outcome. Our data reveal a previously unrecognized mechanism of PGE2-stimulated mTORC1 activation mediated by EP4/cAMP/PKA and EP1/Ca(2+) signaling, which may be of great importance in elucidating the promoting effects of obesity in pancreatic cancer. Ultimately, a precise understanding of these molecular links may provide novel targets for efficacious interventions devoid of adverse effects. Copyright © 2015 the American Physiological Society.

  8. 3-(Fur-2-yl)-10-(2-phenylethyl)-[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-one, a novel adenosine receptor antagonist with A(2A)-mediated neuroprotective effects.

    Science.gov (United States)

    Scatena, Alessia; Fornai, Francesco; Trincavelli, Maria Letizia; Taliani, Sabrina; Daniele, Simona; Pugliesi, Isabella; Cosconati, Sandro; Martini, Claudia; Da Settimo, Federico

    2011-09-21

    In this study, compound FTBI (3-(2-furyl)-10-(2-phenylethyl)[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-one) was selected from a small library of triazinobenzimidazole derivatives as a potent A(2A) adenosine receptor (AR) antagonist and tested for its neuroprotective effects against two different kinds of dopaminergic neurotoxins, 1-methyl-4-phenylpyridinium (MPP+) and methamphetamine (METH), in rat PC12 and in human neuroblastoma SH-SY5Y cell lines. FTBI, in a concentration range corresponding to its affinity for A(2A) AR subtype, significantly increased the number of viable PC12 cells after their exposure to METH and, to a similar extent, to MPP+, as demonstrated in both trypan blue exclusion assay and in cytological staining. These neuroprotective effects were also observed with a classical A(2A) AR antagonist, ZM241385, and appeared to be completely counteracted by the AR agonist, NECA, supporting A(2A) ARs are directly involved in FTBI-mediated effects. Similarly, in human SH-SY5Y cells, FTBI was able to prevent cell toxicity induced by MPP+ and METH, showing that this A(2A) AR antagonist has a neuroprotective effect independently by the specific cell model. Altogether these results demonstrate that the A(2A) AR blockade mediates cell protection against neurotoxicity induced by dopaminergic neurotoxins in dopamine containing cells, supporting the potential use of A(2A) AR antagonists in dopaminergic degenerative diseases including Parkinson's disease.

  9. EPHA2 is a mediator of vemurafenib resistance and a novel therapeutic target in melanoma.

    Science.gov (United States)

    Miao, Benchun; Ji, Zhenyu; Tan, Li; Taylor, Michael; Zhang, Jianming; Choi, Hwan Geun; Frederick, Dennie T; Kumar, Raj; Wargo, Jennifer A; Flaherty, Keith T; Gray, Nathanael S; Tsao, Hensin

    2015-03-01

    BRAF(V600E) is the most common oncogenic lesion in melanoma and results in constitutive activation of the MAPK pathway and uncontrolled cell growth. Selective BRAF inhibitors such as vemurafenib have been shown to neutralize oncogenic signaling, restrain cellular growth, and improve patient outcome. Although several mechanisms of vemurafenib resistance have been described, directed solutions to overcome these resistance lesions are still lacking. Herein, we found that vemurafenib resistance can be (i) mediated by EPHA2, a member of the largest receptor tyrosine kinases (RTK) subfamily erythropoietin-producing hepatocellular (EPH) receptors, and (ii) associated with a greater phenotypic dependence on EPHA2. Furthermore, we developed a series of first-in-class EPHA2 inhibitors and show that these new compounds potently induce apoptosis, suppress viability, and abrogate tumorigenic growth of melanoma cells, including those that are resistant to vemurafenib. These results provide proof of concept that RTK-guided growth, and therapeutic resistance, can be prospectively defined and selectively targeted. In this study, we show that resistance to selective BRAF inhibitors can be mediated by the RTK EPHA2. Furthermore, direct targeting of EPHA2 can successfully suppress melanoma growth and mitigate therapeutic resistance. ©2014 American Association for Cancer Research.

  10. Recent Advances in Type-2-Cell-Mediated Immunity: Insights from Helminth Infection.

    Science.gov (United States)

    Harris, Nicola L; Loke, P'ng

    2017-12-19

    Type-2-cell-mediated immune responses play a critical role in mediating both host-resistance and disease-tolerance mechanisms during helminth infections. Recently, type 2 cell responses have emerged as major regulators of tissue repair and metabolic homeostasis even under steady-state conditions. In this review, we consider how studies of helminth infection have contributed toward our expanding cellular and molecular understanding of type-2-cell-mediated immunity, as well as new areas such as the microbiome. By studying how these successful parasites form chronic infections without overt pathology, we are gaining additional insights into allergic and inflammatory diseases, as well as normal physiology. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. EPCR promotes breast cancer progression by altering SPOCK1/testican 1-mediated 3D growth

    Directory of Open Access Journals (Sweden)

    Naiara Perurena

    2017-01-01

    Full Text Available Abstract Background Activated protein C/endothelial protein C receptor (APC/EPCR axis is physiologically involved in anticoagulant and cytoprotective activities in endothelial cells. Emerging evidence indicates that EPCR also plays a role in breast stemness and human tumorigenesis. Yet, its contribution to breast cancer progression and metastasis has not been elucidated. Methods Transcriptomic status of EPCR was examined in a cohort of 286 breast cancer patients. Cell growth kinetics was evaluated in control and EPCR and SPARC/osteonectin, Cwcv, and kazal-like domains proteoglycan (SPOCK1/testican 1 silenced breast cancer cells in 2D, 3D, and in co-culture conditions. Orthotopic tumor growth and lung and osseous metastases were evaluated in several human and murine xenograft breast cancer models. Tumor-stroma interactions were further studied in vivo by immunohistochemistry and flow cytometry. An EPCR-induced gene signature was identified by microarray analysis. Results Analysis of a cohort of breast cancer patients revealed an association of high EPCR levels with adverse clinical outcome. Interestingly, EPCR knockdown did not affect cell growth kinetics in 2D but significantly reduced cell growth in 3D cultures. Using several human and murine xenograft breast cancer models, we showed that EPCR silencing reduced primary tumor growth and secondary outgrowths at metastatic sites, including the skeleton and the lungs. Interestingly, these effects were independent of APC ligand stimulation in vitro and in vivo. Transcriptomic analysis of EPCR-silenced tumors unveiled an effect mediated by matricellular secreted proteoglycan SPOCK1/testican 1. Interestingly, SPOCK1 silencing suppressed in vitro 3D growth. Moreover, SPOCK1 ablation severely decreased orthotopic tumor growth and reduced bone metastatic osteolytic tumors. High SPOCK1 levels were also associated with poor clinical outcome in a subset breast cancer patients. Our results suggest that EPCR

  12. P2X receptor-mediated ATP purinergic signaling in health and disease

    Directory of Open Access Journals (Sweden)

    Jiang LH

    2012-09-01

    Full Text Available Lin-Hua JiangSchool of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United KingdomAbstract: Purinergic P2X receptors are plasma membrane proteins present in a wide range of mammalian cells where they act as a cellular sensor, enabling cells to detect and respond to extracellular adenosine triphosphate (ATP, an important signaling molecule. P2X receptors function as ligand-gated Ca2+-permeable cationic channels that open upon ATP binding to elevate intracellular Ca2+ concentrations and cause membrane depolarization. In response to sustained activation, P2X receptors induce formation of a pore permeable to large molecules. P2X receptors also interact with distinct functional proteins and membrane lipids to form specialized signaling complexes. Studies have provided compelling evidence to show that such P2X receptor-mediated ATP-signaling mechanisms determine and regulate a growing number and diversity of important physiological processes, including neurotransmission, muscle contraction, and cytokine release. There is accumulating evidence to support strong causative relationships of altered receptor expression and function with chronic pain, inflammatory diseases, cancers, and other pathologies or diseases. Numerous high throughput screening drug discovery programs and preclinical studies have thus far demonstrated the proof of concepts that the P2X receptors are druggable targets and selective receptor antagonism is a promising therapeutics approach. This review will discuss the recent progress in understanding the mammalian P2X receptors with respect to the ATP-signaling mechanisms, physiological and pathophysiological roles, and development and preclinical studies of receptor antagonists.Keywords: extracellular ATP, ion channel, large pore, signaling complex, chronic pain, inflammatory diseases

  13. In silico design and biological evaluation of a dual specificity kinase inhibitor targeting cell cycle progression and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Antony M Latham

    Full Text Available Protein kinases play a central role in tumor progression, regulating fundamental processes such as angiogenesis, proliferation and metastasis. Such enzymes are an increasingly important class of drug target with small molecule kinase inhibitors being a major focus in drug development. However, balancing drug specificity and efficacy is problematic with off-target effects and toxicity issues.We have utilized a rational in silico-based approach to demonstrate the design and study of a novel compound that acts as a dual inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2 and cyclin-dependent kinase 1 (CDK1. This compound acts by simultaneously inhibiting pro-angiogenic signal transduction and cell cycle progression in primary endothelial cells. JK-31 displays potent in vitro activity against recombinant VEGFR2 and CDK1/cyclin B proteins comparable to previously characterized inhibitors. Dual inhibition of the vascular endothelial growth factor A (VEGF-A-mediated signaling response and CDK1-mediated mitotic entry elicits anti-angiogenic activity both in an endothelial-fibroblast co-culture model and a murine ex vivo model of angiogenesis.We deduce that JK-31 reduces the growth of both human endothelial cells and human breast cancer cells in vitro. This novel synthetic molecule has broad implications for development of similar multi-kinase inhibitors with anti-angiogenic and anti-cancer properties. In silico design is an attractive and innovative method to aid such drug discovery.

  14. Tumor Progression Locus 2 (Tpl2 Kinase as a Novel Therapeutic Target for Cancer: Double-Sided Effects of Tpl2 on Cancer

    Directory of Open Access Journals (Sweden)

    Hye Won Lee

    2015-02-01

    Full Text Available Tumor progression locus 2 (Tpl2 is a mitogen-activated protein kinase (MAPK kinase kinase (MAP3K that conveys various intra- and extra-cellular stimuli to effector proteins of cells provoking adequate adoptive responses. Recent studies have elucidated that Tpl2 is an indispensable signal transducer as an MAP3K family member in diverse signaling pathways that regulate cell proliferation, survival, and death. Since tumorigenesis results from dysregulation of cellular proliferation, differentiation, and apoptosis, Tpl2 participates in many decisive molecular processes of tumor development and progression. Moreover, Tpl2 is closely associated with cytokine release of inflammatory cells, which has crucial effects on not only tumor cells but also tumor microenvironments. These critical roles of Tpl2 in human cancers make it an attractive anti-cancer therapeutic target. However, Tpl2 contradictorily works as a tumor suppressor in some cancers. The double-sided effects of Tpl2 originate from the specific upstream and downstream signaling environment of each tumor, since Tpl2 interacts with various signaling components. This review summarizes recent studies concerning the possible roles of Tpl2 in human cancers and considers its possibility as a therapeutic target, against which novel anti-cancer agents could be developed.

  15. Dual regulation of adipose triglyceride lipase by pigment epithelium-derived factor: a novel mechanistic insight into progressive obesity.

    Science.gov (United States)

    Dai, Zhiyu; Qi, Weiwei; Li, Cen; Lu, Juling; Mao, Yuling; Yao, Yachao; Li, Lei; Zhang, Ting; Hong, Honghai; Li, Shuai; Zhou, Ti; Yang, Zhonghan; Yang, Xia; Gao, Guoquan; Cai, Weibin

    2013-09-05

    Both elevated plasma free fatty acids (FFA) and accumulating triglyceride in adipose tissue are observed in the process of obesity and insulin resistance. This contradictory phenomenon and its underlying mechanisms have not been thoroughly elucidated. Recent studies have demonstrated that pigment epithelium-derived factor (PEDF) contributes to elevated plasma FFA and insulin resistance in obese mice via the activation of adipose triglyceride lipase (ATGL). However, we found that PEDF downregulated adipose ATGL protein expression despite of enhancing lipolysis. Plasma PEDF and FFA were increased in associated with a progressive high-fat-diet, and those outcomes were also accompanied by fat accumulation and a reduction in adipose ATGL. Exogenous PEDF injection downregulated adipose ATGL protein expression and elevated plasma FFA, while endogenous PEDF neutralization significantly rescued the adipose ATGL reduction and also reduced plasma FFA in obese mice. PEDF reduced ATGL protein expression in a time- and dose-dependent manner in differentiated 3T3-L1 cells. Small interfering RNA-mediated PEDF knockdown and antibody-mediated PEDF blockage increased endogenous ATGL expression, and PEDF overexpression downregulated ATGL. PEDF resulted in a decreased half-life of ATGL and regulated ATGL degradation via ubiquitin-dependent proteasomal degradation pathway. PEDF stimulated lipolysis via ATGL using ATGL inhibitor bromoenol lactone, and PEDF also downregulated G0/G1 switch gene 2 (G0S2) expression, which is an endogenous inhibitor of ATGL activation. Overall, PEDF attenuated ATGL protein accumulation via proteasome-mediated degradation in adipocytes, and PEDF also promoted lipolysis by activating ATGL. Elevated PEDF may contribute to progressive obesity and insulin resistance via its dual regulation of ATGL. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. TNF blockers inhibit spinal radiographic progression in ankylosing spondylitis by reducing disease activity: results from the Swiss Clinical Quality Management cohort.

    Science.gov (United States)

    Molnar, Christoph; Scherer, Almut; Baraliakos, Xenofon; de Hooge, Manouk; Micheroli, Raphael; Exer, Pascale; Kissling, Rudolf O; Tamborrini, Giorgio; Wildi, Lukas M; Nissen, Michael J; Zufferey, Pascal; Bernhard, Jürg; Weber, Ulrich; Landewé, Robert B M; van der Heijde, Désirée; Ciurea, Adrian

    2018-01-01

    To analyse the impact of tumour necrosis factor inhibitors (TNFis) on spinal radiographic progression in ankylosing spondylitis (AS). Patients with AS in the Swiss Clinical Quality Management cohort with up to 10 years of follow-up and radiographic assessments every 2 years were included. Radiographs were scored by two readers according to the modified Stoke Ankylosing Spondylitis Spine Score (mSASSS) with known chronology. The relationship between TNFi use before a 2-year radiographic interval and progression within the interval was investigated using binomial generalised estimating equation models with adjustment for potential confounding and multiple imputation of missing values. Ankylosing Spondylitis Disease Activity Score (ASDAS) was regarded as mediating the effect of TNFi on progression and added to the model in a sensitivity analysis. A total of 432 patients with AS contributed to data for 616 radiographic intervals. Radiographic progression was defined as an increase in ≥2 mSASSS units in 2 years. Mean (SD) mSASSS increase was 0.9 (2.6) units in 2 years. Prior use of TNFi reduced the odds of progression by 50% (OR 0.50, 95% CI 0.28 to 0.88) in the multivariable analysis. While no direct effect of TNFi on progression was present in an analysis including time-varying ASDAS (OR 0.61, 95% CI 0.34 to 1.08), the indirect effect, via a reduction in ASDAS, was statistically significant (OR 0.75, 95% CI 0.59 to 0.97). TNFis are associated with a reduction of spinal radiographic progression in patients with AS. This effect seems mediated through the inhibiting effect of TNFi on disease activity. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Freud-2/CC2D1B mediates dual repression of the serotonin-1A receptor gene.

    Science.gov (United States)

    Hadjighassem, Mahmoud R; Galaraga, Kimberly; Albert, Paul R

    2011-01-01

    The serotonin-1A (5-HT1A) receptor functions as a pre-synaptic autoreceptor in serotonin neurons that regulates their activity, and is also widely expressed on non-serotonergic neurons as a post-synaptic heteroreceptor to mediate serotonin action. The 5-HT1A receptor gene is strongly repressed by a dual repressor element (DRE), which is recognized by two proteins: Freud-1/CC2D1A and another unknown protein. Here we identify mouse Freud-2/CC2D1B as the second repressor of the 5-HT1A-DRE. Freud-2 shares 50% amino acid identity with Freud-1, and contains conserved structural domains. Mouse Freud-2 bound specifically to the rat 5-HT1A-DRE adjacent to, and partially overlapping, the Freud-1 binding site. By supershift assay using nuclear extracts from L6 myoblasts, Freud-2-DRE complexes were distinguished from Freud-1-DRE complexes. Freud-2 mRNA and protein were detected throughout mouse brain and peripheral tissues. Freud-2 repressed 5-HT1A promoter-reporter constructs in a DRE-dependent manner in non-neuronal (L6) or 5-HT1A-expressing neuronal (NG108-15, RN46A) cell models. In NG108-15 cells, knockdown of Freud-2 using a specific short-interfering RNA reduced endogenous Freud-2 protein levels and decreased Freud-2 bound to the 5-HT1A-DRE as detected by chromatin immunoprecipitation assay, but increased 5-HT1A promoter activity and 5-HT1A protein levels. Taken together, these data show that Freud-2 is the second component that, with Freud-1, mediates dual repression of the 5-HT1A receptor gene at the DRE. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  18. Prostaglandin E2 potentiation of P2X3 receptor mediated currents in dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Huang Li-Yen

    2007-08-01

    Full Text Available Abstract Prostaglandin E2 (PGE2 is a well-known inflammatory mediator that enhances the excitability of DRG neurons. Homomeric P2X3 and heteromeric P2X2/3 receptors are abundantly expressed in dorsal root ganglia (DRG neurons and participate in the transmission of nociceptive signals. The interaction between PGE2 and P2X3 receptors has not been well delineated. We studied the actions of PGE2 on ATP-activated currents in dissociated DRG neurons under voltage-clamp conditions. PGE2 had no effects on P2X2/3 receptor-mediated responses, but significantly potentiated fast-inactivating ATP currents mediated by homomeric P2X3 receptors. PGE2 exerted its action by activating EP3 receptors. To study the mechanism underlying the action of PGE2, we found that the adenylyl cyclase activator, forskolin and the membrane-permeable cAMP analogue, 8-Br-cAMP increased ATP currents, mimicking the effect of PGE2. In addition, forskolin occluded the enhancement produced by PGE2. The protein kinase A (PKA inhibitors, H89 and PKA-I blocked the PGE2 effect. In contrast, the PKC inhibitor, bisindolymaleimide (Bis did not change the potentiating action of PGE2. We further showed that PGE2 enhanced α,β-meATP-induced allodynia and hyperalgesia and the enhancement was blocked by H89. These observations suggest that PGE2 binds to EP3 receptors, resulting in the activation of cAMP/PKA signaling pathway and leading to an enhancement of P2X3 homomeric receptor-mediated ATP responses in DRG neurons.

  19. PAX2 regulates ADAM10 expression and mediates anchorage-independent cell growth of melanoma cells.

    Directory of Open Access Journals (Sweden)

    Sophia Boyoung Lee

    Full Text Available PAX transcription factors play an important role during development and carcinogenesis. In this study, we investigated PAX2 protein levels in melanocytes and melanoma cells by Western Blot and immunofluorescence analysis and characterized the role of PAX2 in the pathogenesis of melanoma. In vitro we found weak PAX2 protein expression in keratinocytes and melanocytes. Compared to melanocytes increased PAX2 protein levels were detectable in melanoma cell lines. Interestingly, in tissue sections of melanoma patients nuclear PAX2 expression strongly correlated with nuclear atypia and the degree of prominent nucleoli, indicating an association of PAX2 with a more atypical cellular phenotype. In addition, with chromatin immunoprecipitation assay, PAX2 overexpression and PAX2 siRNA we present compelling evidence that PAX2 can regulate ADAM10 expression, a metalloproteinase known to play important roles in melanoma metastasis. In human tissue samples we found co-expression of PAX2 and ADAM10 in melanocytes of benign nevi and in melanoma cells of patients with malignant melanoma. Importantly, the downregulation of PAX2 by specific siRNA inhibited the anchorage independent cell growth and decreased the migratory and invasive capacity of melanoma cells. Furthermore, the downregulation of PAX2 abrogated the chemoresistance of melanoma cells against cisplatin, indicating that PAX2 expression mediates cell survival and plays important roles during melanoma progression.

  20. Computer-Mediated Communication (CMC) in L2 Oral Proficiency Development: A Meta-Analysis

    Science.gov (United States)

    Lin, Huifen

    2015-01-01

    The ever growing interest in the development of foreign or second (L2) oral proficiency in a computer-mediated communication (CMC) classroom has resulted in a large body of studies looking at both the direct and indirect effects of CMC interventions on the acquisition of oral competences. The present study employed a quantitative meta-analytic…

  1. Mutation in GM2A Leads to a Progressive Chorea-Dementia Syndrome

    Directory of Open Access Journals (Sweden)

    Mustafa A. Salih

    2015-07-01

    Full Text Available Background: The etiology of many cases of childhood-onset chorea remains undetermined, although advances in genomics are revealing both new disease-associated genes and variant phenotypes associated with known genes. Methods: We report a Saudi family with a neurodegenerative course dominated by progressive chorea and dementia in whom we performed homozygosity mapping and whole exome sequencing. Results: We identified a homozygous missense mutation in GM2A within a prominent block of homozygosity. This mutation is predicted to impair protein function. Discussion: Although discovered more than two decades ago, to date, only five patients with this rare form of GM2 gangliosidosis have been reported. The phenotype of previously described GM2A patients has been typified by onset in infancy, profound hypotonia and impaired volitional movement, intractable seizures, hyperacusis, and a macular cherry red spot. Our findings expand the phenotypic spectrum of GM2A mutation-positive gangliosidosis to include generalized chorea without macular findings or hyperacusis and highlight how mutations in neurodegenerative disease genes may present in unexpected ways.

  2. Classical and Non-Classical Roles for Pre-Receptor Control of DHT Metabolism in Prostate Cancer Progression.

    Science.gov (United States)

    Zhang, Ailin; Zhang, Jiawei; Plymate, Stephen; Mostaghel, Elahe A

    2016-04-01

    Androgens play an important role in prostate cancer (PCa) development and progression. Accordingly, androgen deprivation therapy remains the front-line treatment for locally recurrent or advanced PCa, but patients eventually relapse with the lethal form of the disease termed castration resistant PCa (CRPC). Importantly, castration does not eliminate androgens from the prostate tumor microenvironment which is characterized by elevated tissue androgens that are well within the range capable of activating the androgen receptor (AR). In this mini-review, we discuss emerging data that suggest a role for the enzymes mediating pre-receptor control of dihydrotestosterone (DHT) metabolism, including AKR1C2, HSD17B6, HSD17B10, and the UGT family members UGT2B15 and UGT2B17, in controlling intratumoral androgen levels, and thereby influencing PCa progression. We review the expression of steroidogenic enzymes involved in this pathway in primary PCa and CRPC, the activity and regulation of these enzymes in PCa experimental models, and the impact of genetic variation in genes mediating pre-receptor DHT metabolism on PCa risk. Finally, we discuss recent data that suggests several of these enzymes may also play an unrecognized role in CRPC progression separate from their role in androgen inactivation.

  3. Cyanide-induced death of dopaminergic cells is mediated by uncoupling protein-2 up-regulation and reduced Bcl-2 expression

    International Nuclear Information System (INIS)

    Zhang, X.; Li, L.; Zhang, L.; Borowitz, J.L.; Isom, G.E.

    2009-01-01

    Cyanide is a potent inhibitor of mitochondrial oxidative metabolism and produces mitochondria-mediated death of dopaminergic neurons and sublethal intoxications that are associated with a Parkinson-like syndrome. Cyanide toxicity is enhanced when mitochondrial uncoupling is stimulated following up-regulation of uncoupling protein-2 (UCP-2). In this study, the role of a pro-survival protein, Bcl-2, in cyanide-mediated cell death was determined in a rat dopaminergic immortalized mesencephalic cell line (N27 cells). Following pharmacological up-regulation of UCP-2 by treatment with Wy14,643, cyanide reduced cellular Bcl-2 expression by increasing proteasomal degradation of the protein. The increased turnover of Bcl-2 was mediated by an increase of oxidative stress following UCP-2 up-regulation. The oxidative stress involved depletion of mitochondrial glutathione (mtGSH) and increased H 2 O 2 generation. Repletion of mtGSH by loading cells with glutathione ethyl ester reduced H 2 O 2 generation and in turn blocked the cyanide-induced decrease of Bcl-2. To determine if UCP-2 mediated the response, RNAi knock down was conducted. The RNAi decreased cyanide-induced depletion of mtGSH, reduced H 2 O 2 accumulation, and inhibited down-regulation of Bcl-2, thus blocking cell death. To confirm the role of Bcl-2 down-regulation in the cell death, it was shown that over-expression of Bcl-2 by cDNA transfection attenuated the enhancement of cyanide toxicity after UCP-2 up-regulation. It was concluded that UCP-2 up-regulation sensitizes cells to cyanide by increasing cellular oxidative stress, leading to an increase of Bcl-2 degradation. Then the reduced Bcl-2 levels sensitize the cells to cyanide-mediated cell death.

  4. microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2.

    Science.gov (United States)

    Nie, Jing; Liu, Lin; Zheng, Wei; Chen, Lin; Wu, Xin; Xu, Yingxin; Du, Xiaohui; Han, Weidong

    2012-01-01

    Deregulated microRNAs participate in carcinogenesis and cancer progression, but their roles in cancer development remain unclear. In this study, miR-365 expression was found to be downregulated in human colon cancer tissues as compared with that in matched non-neoplastic mucosa tissues, and its downregulation was correlated with cancer progression and poor survival in colon cancer patients. Functional studies revealed that restoration of miR-365 expression inhibited cell cycle progression, promoted 5-fluorouracil-induced apoptosis and repressed tumorigenicity in colon cancer cell lines. Furthermore, bioinformatic prediction and experimental validation were used to identify miR-365 target genes and indicated that the antitumor effects of miR-365 were probably mediated by its targeting and repression of Cyclin D1 and Bcl-2 expression, thus inhibiting cell cycle progression and promoting apoptosis. These results suggest that downregulation of miR-365 in colon cancer may have potential applications in prognosis prediction and gene therapy in colon cancer patients.

  5. Automated chromatographic laccase-mediator-system activity assay.

    Science.gov (United States)

    Anders, Nico; Schelden, Maximilian; Roth, Simon; Spiess, Antje C

    2017-08-01

    To study the interaction of laccases, mediators, and substrates in laccase-mediator systems (LMS), an on-line measurement was developed using high performance anion exchange chromatography equipped with a CarboPac™ PA 100 column coupled to pulsed amperometric detection (HPAEC-PAD). The developed method was optimized for overall chromatographic run time (45 to 120 min) and automated sample drawing. As an example, the Trametes versicolor laccase induced oxidation of 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-1,3-dihydroxypropane (adlerol) using 1-hydroxybenzotriazole (HBT) as mediator was measured and analyzed on-line. Since the Au electrode of the PAD detects only hydroxyl group containing substances with a limit of detection being in the milligram/liter range, not all products are measureable. Therefore, this method was applied for the quantification of adlerol, and-based on adlerol conversion-for the quantification of the LMS activity at a specific T. versicolor laccase/HBT ratio. The automated chromatographic activity assay allowed for a defined reaction start of all laccase-mediator-system reactions mixtures, and the LMS reaction progress was automatically monitored for 48 h. The automatization enabled an integrated monitoring overnight and over-weekend and minimized all manual errors such as pipetting of solutions accordingly. The activity of the LMS based on adlerol consumption was determined to 0.47 U/mg protein for a laccase/mediator ratio of 1.75 U laccase/g HBT. In the future, the automated method will allow for a fast screening of combinations of laccases, mediators, and substrates which are efficient for lignin modification. In particular, it allows for a fast and easy quantification of the oxidizing activity of an LMS on a lignin-related substrate which is not covered by typical colorimetric laccase assays. ᅟ.

  6. RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2.

    Directory of Open Access Journals (Sweden)

    Jafar Kiani

    2013-05-01

    Full Text Available RNA-mediated transmission of phenotypes is an important way to explain non-Mendelian heredity. We have previously shown that small non-coding RNAs can induce hereditary epigenetic variations in mice and act as the transgenerational signalling molecules. Two prominent examples for these paramutations include the epigenetic modulation of the Kit gene, resulting in altered fur coloration, and the modulation of the Sox9 gene, resulting in an overgrowth phenotype. We now report that expression of the Dnmt2 RNA methyltransferase is required for the establishment and hereditary maintenance of both paramutations. Our data show that the Kit paramutant phenotype was not transmitted to the progeny of Dnmt2(-/- mice and that the Sox9 paramutation was also not established in Dnmt2(-/- embryos. Similarly, RNA from Dnmt2-negative Kit heterozygotes did not induce the paramutant phenotype when microinjected into Dnmt2-deficient fertilized eggs and microinjection of the miR-124 microRNA failed to induce the characteristic giant phenotype. In agreement with an RNA-mediated mechanism of inheritance, no change was observed in the DNA methylation profiles of the Kit locus between the wild-type and paramutant mice. RNA bisulfite sequencing confirmed Dnmt2-dependent tRNA methylation in mouse sperm and also indicated Dnmt2-dependent cytosine methylation in Kit RNA in paramutant embryos. Together, these findings uncover a novel function of Dnmt2 in RNA-mediated epigenetic heredity.

  7. HTLV-1 Tax-mediated TAK1 activation involves TAB2 adapter protein

    International Nuclear Information System (INIS)

    Yu Qingsheng; Minoda, Yasumasa; Yoshida, Ryoko; Yoshida, Hideyuki; Iha, Hidekatsu; Kobayashi, Takashi; Yoshimura, Akihiko; Takaesu, Giichi

    2008-01-01

    Human T cell leukemia virus type 1 (HTLV-1) Tax is an oncoprotein that plays a crucial role in the proliferation and transformation of HTLV-1-infected T lymphocytes. It has recently been reported that Tax activates a MAPKKK family, TAK1. However, the molecular mechanism of Tax-mediated TAK1 activation is not well understood. In this report, we investigated the role of TAK1-binding protein 2 (TAB2) in Tax-mediated TAK1 activation. We found that TAB2 physically interacts with Tax and augments Tax-induced NF-κB activity. Tax and TAB2 cooperatively activate TAK1 when they are coexpressed. Furthermore, TAK1 activation by Tax requires TAB2 binding as well as ubiquitination of Tax. We also found that the overexpression of TRAF2, 5, or 6 strongly induces Tax ubiquitination. These results suggest that TAB2 may be critically involved in Tax-mediated activation of TAK1 and that NF-κB-activating TRAF family proteins are potential cellular E3 ubiquitin ligases toward Tax

  8. Lack of dependence of 5-fluorodeoxyuridine-mediated radiosensitization on cytotoxicity

    International Nuclear Information System (INIS)

    Lawrence, T.S.; Davis, M.A.; Chang, E.Y.

    1995-01-01

    It has been proposed that fluoropyrimidine-mediated cytotoxicity and radiosensitization are closely correlated. We have shown that HT29 human colon cancer cells transfected with the E. coli dUTPase gene are resistant to 5-fluorodeoxyuridine (FdUrd)-mediated cytotoxicity, presumably through more effective elimination of dUTP. We used these cells to assess the association between radiosensitization and cytotoxicity produced by FdUrd. The radiation sensitivities of the clones expressing elevated dUTPase activity (dutE clones) were similar to those of untransfected HT29 cells or HT29 cells which has been transfected with only the expression vector for the E. coli gene (con clones). We found that FdUrd produced similar increases in radiation sensitivity regardless of dUTPase activity. Levels of dUTPase in the dutE clones remained elevated during the entire period of FdUrd exposure, demonstrating that the lack of difference between dutE and Con clones was not a reflection of down-regulation of dUTPase activity by FdUrd, Flow cytometry showed that all clones progressed past the G 1 /S-phase boundary and into early S phase during FdUrd treatment. These data suggest that the mechanisms of FdUrd-mediated cytotoxicity and radiosensitization are not closely linked. These findings, combined with our previous investigations, are consistent with the hypothesis that radiosensitization occurs in cells which progress past the G 1 /S-phase boundary in the presence of FdUrd. 24 refs., 2 figs., 2 tabs

  9. Charging a Li-O₂ battery using a redox mediator.

    Science.gov (United States)

    Chen, Yuhui; Freunberger, Stefan A; Peng, Zhangquan; Fontaine, Olivier; Bruce, Peter G

    2013-06-01

    The non-aqueous Li-air (O2) battery is receiving intense interest because its theoretical specific energy exceeds that of Li-ion batteries. Recharging the Li-O2 battery depends on oxidizing solid lithium peroxide (Li2O2), which is formed on discharge within the porous cathode. However, transporting charge between Li2O2 particles and the solid electrode surface is at best very difficult and leads to voltage polarization on charging, even at modest rates. This is a significant problem facing the non-aqueous Li-O2 battery. Here we show that incorporation of a redox mediator, tetrathiafulvalene (TTF), enables recharging at rates that are impossible for the cell in the absence of the mediator. On charging, TTF is oxidized to TTF(+) at the cathode surface; TTF(+) in turn oxidizes the solid Li2O2, which results in the regeneration of TTF. The mediator acts as an electron-hole transfer agent that permits efficient oxidation of solid Li2O2. The cell with the mediator demonstrated 100 charge/discharge cycles.

  10. Copper Nitrate Mediated Regioselective [2+2+1] Cyclization of Alkynes with Alkenes: A Cascade Approach to Δ(2)-Isoxazolines.

    Science.gov (United States)

    Gao, Mingchun; Li, Yingying; Gan, Yuansheng; Xu, Bin

    2015-07-20

    An efficient method for the regioselective synthesis of pharmacologically relevant polysubstituted Δ(2)-isoxazolines is based on the copper-mediated direct transformation of simple terminal alkynes and alkenes. The overall process involves the formation of four chemical bonds with inexpensive and readily available copper nitrate trihydrate as a novel precursor of nitrile oxides. The reaction can be easily handled and proceeds under mild conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. DNA Copy-Number Control through Inhibition of Replication Fork Progression

    Directory of Open Access Journals (Sweden)

    Jared T. Nordman

    2014-11-01

    Full Text Available Proper control of DNA replication is essential to ensure faithful transmission of genetic material and prevent chromosomal aberrations that can drive cancer progression and developmental disorders. DNA replication is regulated primarily at the level of initiation and is under strict cell-cycle regulation. Importantly, DNA replication is highly influenced by developmental cues. In Drosophila, specific regions of the genome are repressed for DNA replication during differentiation by the SNF2 domain-containing protein SUUR through an unknown mechanism. We demonstrate that SUUR is recruited to active replication forks and mediates the repression of DNA replication by directly inhibiting replication fork progression instead of functioning as a replication fork barrier. Mass spectrometry identification of SUUR-associated proteins identified the replicative helicase member CDC45 as a SUUR-associated protein, supporting a role for SUUR directly at replication forks. Our results reveal that control of eukaryotic DNA copy number can occur through the inhibition of replication fork progression.

  12. Protein kinase C-mediated ATP stimulation of Na(+)-ATPase activity in LLC-PK1 cells involves a P2Y2 and/or P2Y4 receptor.

    Science.gov (United States)

    Wengert, M; Ribeiro, M C; Abreu, T P; Coutinho-Silva, R; Leão-Ferreira, L R; Pinheiro, A A S; Caruso-Neves, C

    2013-07-15

    ATP-activated P2Y receptors play an important role in renal sodium excretion. The aim of this study was to evaluate the modulation of ATPase-driven sodium reabsorption in the proximal tubule by ATP or adenosine (Ado). LLC-PK1 cells, a model of porcine proximal tubule cells, were used. ATP (10(-6)M) or Ado (10(-6)M) specifically stimulated Na(+)-ATPase activity without any changes in (Na(+)+K(+))-ATPase activity. Our results show that the Ado effect is mediated by its conversion to ATP. Furthermore, it was observed that the effect of ATP was mimicked by UTP, ATPγS and 2-thio-UTP, an agonist of P2Y2 and P2Y4 receptors. In addition, ATP-stimulated Na(+)-ATPase activity involves protein kinase C (PKC). Our results indicate that ATP-induced stimulation of proximal tubule Na(+)-ATPase activity is mediated by a PKC-dependent P2Y2 and/or P2Y4 pathway. These findings provide new perspectives on the role of the effect of P2Y-mediated extracellular ATP on renal sodium handling. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Orai1 mediates exacerbated Ca(2+ entry in dystrophic skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhao

    Full Text Available There is substantial evidence indicating that disruption of Ca(2+ homeostasis and activation of cytosolic proteases play a key role in the pathogenesis and progression of Duchenne Muscular Dystrophy (DMD. However, the exact nature of the Ca(2+ deregulation and the Ca(2+ signaling pathways that are altered in dystrophic muscles have not yet been resolved. Here we examined the contribution of the store-operated Ca(2+ entry (SOCE for the pathogenesis of DMD. RT-PCR and Western blot found that the expression level of Orai1, the pore-forming unit of SOCE, was significantly elevated in the dystrophic muscles, while parallel increases in SOCE activity and SR Ca(2+ storage were detected in adult mdx muscles using Fura-2 fluorescence measurements. High-efficient shRNA probes against Orai1 were delivered into the flexor digitorum brevis muscle in live mice and knockdown of Orai1 eliminated the differences in SOCE activity and SR Ca(2+ storage between the mdx and wild type muscle fibers. SOCE activity was repressed by intraperitoneal injection of BTP-2, an Orai1 inhibitor, and cytosolic calpain1 activity in single muscle fibers was measured by a membrane-permeable calpain substrate. We found that BTP-2 injection for 2 weeks significantly reduced the cytosolic calpain1 activity in mdx muscle fibers. Additionally, ultrastructural changes were observed by EM as an increase in the number of triad junctions was identified in dystrophic muscles. Compensatory changes in protein levels of SERCA1, TRP and NCX3 appeared in the mdx muscles, suggesting that comprehensive adaptations occur following altered Ca(2+ homeostasis in mdx muscles. Our data indicates that upregulation of the Orai1-mediated SOCE pathway and an overloaded SR Ca(2+ store contributes to the disrupted Ca(2+ homeostasis in mdx muscles and is linked to elevated proteolytic activity, suggesting that targeting Orai1 activity may be a promising therapeutic approach for the prevention and treatment of

  14. GM2 gangliosidosis in a UK study of children with progressive neurodegeneration: 73 cases reviewed.

    Science.gov (United States)

    Smith, Nicholas J; Winstone, Anne Marie; Stellitano, Lesley; Cox, Timothy M; Verity, Christopher M

    2012-02-01

    To report the demographic, phenotypic, and time-to-diagnosis characteristics of children with GM2 gangliosidosis referred to the UK study of Progressive Intellectual and Neurological Deterioration. Case notification is made via monthly surveillance card, administered by the British Paediatric Surveillance Unit to all UK-based paediatricians; children with GM2 gangliosidosis were identified from cases satisfying inclusion in the UK study of Progressive Intellectual and Neurological Deterioration and analysed according to phenotypic and biochemical categories. Between May 1997 and January 2010, 73 individuals with GM2 gangliosidoses were reported: 40 with Tay-Sachs disease, 31 with Sandhoff disease, and two with GM2 activator protein deficiency. Together they account for 6% (73/1164) of all diagnosed cases of progressive intellectual and neurological deterioration. The majority (62/73) were sporadic index cases with no family history. Children of Pakistani ancestry were overrepresented in all subtypes, particularly juvenile Sandhoff disease, accounting for 10 of 11 notified cases. Infantile-onset variants predominated (55/73); the mean age at onset of symptoms was 6.2 and 4.7 months for infantile-onset Tay-Sachs and Sandhoff disease respectively, and 26.2 and 34.7 months for the corresponding juvenile-onset variants. Time to diagnosis averaged 7.4 months and 28.0 months in infantile- and juvenile-onset disease respectively. GM2 gangliosidosis is a significant cause of childhood neurodegenerative disease; timely diagnosis relies upon improved clinical recognition, which may be increasingly important as specific therapies become available. There is a potential benefit from the introduction of screening programmes for high-risk ethnic groups. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.

  15. Disrupting the Indian hedgehog signaling pathway in vivo attenuates surgically induced osteoarthritis progression in Col2a1-CreERT2; Ihhfl/fl mice

    Science.gov (United States)

    2014-01-01

    Introduction Previous observations implicate Indian hedgehog (Ihh) signaling in osteoarthritis (OA) development because it regulates chondrocyte hypertrophy and matrix metallopeptidase 13 (MMP-13) expression. However, there is no direct genetic evidence for the role of Ihh in OA, because mice with cartilage or other tissue-specific deletion of the Ihh gene die shortly after birth. We evaluated the role of Ihh in vivo via a Cre-loxP-mediated approach to circumvent the early death caused by Ihh deficiency. Methods To evaluate the role of Ihh in OA development, Ihh was specifically deleted in murine cartilage using an Ihh conditional deletion construct (Col2a1-CreERT2; Ihhfl/fl). The extent of cartilage degradation and OA progression after Ihh deletion was assessed by histological analysis, immunohistochemistry, real-time PCR and in vivo fluorescence molecular tomography (FMT) 2 months after OA was induced by partial medial meniscectomy. The effect of Ihh signaling on cartilage was compared between Ihh-deleted mice and their control littermates. Results Only mild OA changes were observed in Ihh-deleted mice, while control mice displayed significantly more cartilage damage. Typical OA markers such as type X collagen and MMP-13 were decreased in Ihh-deleted mice. In vivo FMT demonstrated decreased cathepsins and MMP activity in knee joints of animals with deletion of Ihh. Conclusions These findings support the protective role of Ihh deletion in surgically induced OA. Thus, our findings suggest the potential to develop new therapeutic strategies that can prevent and treat OA by inhibiting Ihh signaling in chondrocytes. PMID:24428864

  16. TPL2 (Therapeutic Targeting Tumor Progression Locus-2)/ATF4 (Activating Transcription Factor-4)/SDF1α (Chemokine Stromal Cell-Derived Factor-α) Axis Suppresses Diabetic Retinopathy.

    Science.gov (United States)

    Lai, De-Wei; Lin, Keng-Hung; Sheu, Wayne Huey-Herng; Lee, Maw-Rong; Chen, Chung-Yu; Lee, Wen-Jane; Hung, Yi-Wen; Shen, Chin-Chang; Chung, Tsung-Ju; Liu, Shing-Hwa; Sheu, Meei-Ling

    2017-09-01

    Diabetic retinopathy is characterized by vasopermeability, vascular leakage, inflammation, blood-retinal barrier breakdown, capillary degeneration, and neovascularization. However, the mechanisms underlying the association between diabetes mellitus and progression retinopathy remain unclear. TPL2 (tumor progression locus 2), a serine-threonine protein kinase, exerts a pathological effect on vascular angiogenesis. This study investigated the role of N ε -(carboxymethyl)lysine, a major advanced glycation end products, and the involved TPL2-related molecular signals in diabetic retinopathy using models of in vitro and in vivo and human samples. Serum N ε -(carboxymethyl)lysine levels and TPL2 kinase activity were significantly increased in clinical patients and experimental animals with diabetic retinopathy. Intravitreal administration of pharmacological blocker or neutralizing antibody inhibited TPL2 and effectively suppressed the pathological characteristics of retinopathy in streptozotocin-induced diabetic animal models. Intravitreal VEGF (vascular endothelial growth factor) neutralization also suppressed the diabetic retinopathy in diabetic animal models. Mechanistic studies in primary human umbilical vein endothelial cells and primary retinal microvascular endothelial cells from streptozotocin-diabetic rats, db/db mice, and samples from patients with diabetic retinopathy revealed a positive parallel correlation between N ε -(carboxymethyl)lysine and the TPL2/chemokine SDF1α (stromal cell-derived factor-α) axis that is dependent on endoplasmic reticulum stress-related molecules, especially ATF4 (activating transcription factor-4). This study demonstrates that inhibiting the N ε -(carboxymethyl)lysine-induced TPL2/ATF4/SDF1α axis can effectively prevent diabetes mellitus-mediated retinal microvascular dysfunction. This signaling axis may include the therapeutic potential for other diseases involving pathological neovascularization or macular edema. © 2017

  17. A novel technique with enhanced detection and quantitation of HPV-16 E1- and E2-mediated DNA replication

    International Nuclear Information System (INIS)

    Taylor, Ewan R.; Morgan, Iain M.

    2003-01-01

    Transient DNA replication assays to detect papillomavirus E1/E2-mediated DNA replication have depended upon Southern blotting. This technique is hazardous (radioactive), labour intensive, semiquantitative, and physically limited in the number of samples that can be processed at any one time. We have overcome these problems by developing a real-time PCR protocol for the detection of E1/E2-mediated transient DNA replication. The results demonstrate detection of replication at levels not seen using Southern blotting demonstrating enhanced sensitivity. This technique is also, by definition, highly quantitative. Therefore, the real-time PCR technique is the optimal method for the detection of E1/E2-mediated DNA replication

  18. AAV2-mediated in vivo immune gene therapy of solid tumours

    LENUS (Irish Health Repository)

    Collins, Sara A

    2010-12-20

    Abstract Background Many strategies have been adopted to unleash the potential of gene therapy for cancer, involving a wide range of therapeutic genes delivered by various methods. Immune therapy has become one of the major strategies adopted for cancer gene therapy and seeks to stimulate the immune system to target tumour antigens. In this study, the feasibility of AAV2 mediated immunotherapy of growing tumours was examined, in isolation and combined with anti-angiogenic therapy. Methods Immune-competent Balb\\/C or C57 mice bearing subcutaneous JBS fibrosarcoma or Lewis Lung Carcinoma (LLC) tumour xenografts respectively were treated by intra-tumoural administration of AAV2 vector encoding the immune up-regulating cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) and the co-stimulatory molecule B7-1 to subcutaneous tumours, either alone or in combination with intra-muscular (IM) delivery of AAV2 vector encoding Nk4 14 days prior to tumour induction. Tumour growth and survival was monitored for all animals. Cured animals were re-challenged with tumourigenic doses of the original tumour type. In vivo cytotoxicity assays were used to investigate establishment of cell-mediated responses in treated animals. Results AAV2-mediated GM-CSF, B7-1 treatment resulted in a significant reduction in tumour growth and an increase in survival in both tumour models. Cured animals were resistant to re-challenge, and induction of T cell mediated anti-tumour responses were demonstrated. Adoptive transfer of splenocytes to naïve animals prevented tumour establishment. Systemic production of Nk4 induced by intra-muscular (IM) delivery of Nk4 significantly reduced subcutaneous tumour growth. However, combination of Nk4 treatment with GM-CSF, B7-1 therapy reduced the efficacy of the immune therapy. Conclusions Overall, this study demonstrates the potential for in vivo AAV2 mediated immune gene therapy, and provides data on the inter-relationship between tumour

  19. Cancer Chemoprevention by Traditional Chinese Herbal Medicine and Dietary Phytochemicals: Targeting Nrf2-Mediated Oxidative Stress/Anti-Inflammatory Responses, Epigenetics, and Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Jong Hun Lee

    2013-01-01

    Full Text Available Excessive oxidative stress induced by reactive oxygen species (ROS, reactive nitrogen species (RNS, and reactive metabolites of carcinogens alters cellular homeostasis, leading to genetic/epigenetic changes, genomic instability, neoplastic transformation, and cancer initiation/progression. As a protective mechanism against oxidative stress, antioxidant/detoxifying enzymes reduce these reactive species and protect normal cells from endo-/exogenous oxidative damage. The transcription factor nuclear factor-erythroid 2 p45 (NF-E2-related factor 2 (Nrf2, a master regulator of the antioxidative stress response, plays a critical role in the expression of many cytoprotective enzymes, including NAD(PH:quinine oxidoreductase (NQO1, heme oxygenase-1 (HO-1, UDP-glucuronosyltransferase (UGT, and glutathione S-transferase (GST. Recent studies demonstrated that many dietary phytochemicals derived from various vegetables, fruits, spices, and herbal medicines induce Nrf2-mediated antioxidant/detoxifying enzymes, restore aberrant epigenetic alterations, and eliminate cancer stem cells (CSCs. The Nrf2-mediated antioxidant response prevents many age-related diseases, including cancer. Owing to their fundamental contribution to carcinogenesis, epigenetic modifications and CSCs are novel targets of dietary phytochemicals and traditional Chinese herbal medicine (TCHM. In this review, we summarize cancer chemoprevention by dietary phytochemicals, including TCHM, which have great potential as a safer and more effective strategy for preventing cancer.

  20. HYLIFE-2 progress report

    International Nuclear Information System (INIS)

    Moir, R.W.; Adamson, M.G.; Bangerter, R.O.; Bieri, R.L.; Condit, R.H.; Hartman, C.W.; House, P.A.; Langdon, A.B.; Logan, B.G.; Orth, C.D.; Petzoldt, R.W.; Pitts, J.H.; Post, R.F.; Sacks, R.A.; Tobin, M.T.; Williams, W.H.; Dolan, T.J.; Longhurst, G.R.; Hoffman, M.A.; Meier, W.R.

    1991-12-01

    LIFE-II inertial confinement fusion power plant design study uses a liquid fall, in the form of jets to protect the first structural wall from neutron damage, x rays, and blast to provide a 30-y lifetime. This is a progress report of an incomplete and ongoing study. HYLIFE-I used liquid lithium. HYLIFE-11 avoids the fire hazard of lithium by using a molten salt composed of fluorine, lithium, and beryllium (Li 2 Be 4 ) called Flibe. Access for heavy-ion beams is provided. Calculations for assumed heavy-ion beam performance show a nominal gain of 70 at 5 MJ producing 350 MJ, about 5.2 times less yield than the 1.8 GJ from a driver energy of 4.5 MJ with gain of 400 for HYLIFE-I. The nominal 1 GWe of power can be maintained by increasing the repetition rate by a factor of about 5.2, from 1.5 to 8 Hz. A higher repetition rate requires faster re-establishment of the jets after a shot, which can be accomplished in part by decreasing the jet fall height and increasing the jet flow velocity. Multiple chambers may be required.In addition, although not considered for HYLIFE-I there is undoubtedly liquid splash that must be forcibly cleared because gravity is too slow, especially at high repetition rates. Splash removal can be accomplished by either pulsed or oscillating jet flows. The cost of electricity is estimated to be 0.10 $/kW· in constant 1990 dollars, about twice that of future coal and light water reactor nuclear power. The driver beam cost is about one-half the total cost

  1. Activation Mechanism of LRRK2 and Its Cellular Functions in Parkinson's Disease

    NARCIS (Netherlands)

    Rosenbusch, Katharina E.; Kortholt, Arjan

    2016-01-01

    Human LRRK2 (Leucine-Rich Repeat Kinase 2) has been associated with both familial and idiopathic Parkinson's disease (PD). Although several LRRK2 mediated pathways and interaction partners have been identified, the cellular functions of LRRK2 and LRRK2 mediated progression of PD are still only

  2. ABCG2-mediated suppression of chlorin e6 accumulation and photodynamic therapy efficiency in glioblastoma cell lines can be reversed by KO143.

    Science.gov (United States)

    Abdel Gaber, Sara A; Müller, Patricia; Zimmermann, Wolfgang; Hüttenberger, Dirk; Wittig, Rainer; Abdel Kader, Mahmoud H; Stepp, Herbert

    2018-01-01

    Photodynamic therapy (PDT) of malignant brain tumors is a promising adjunct to standard treatment, especially if tumor stem cells thought to be responsible for tumor progression and therapy resistance were also susceptible to this kind of treatment. However, some photosensitizers have been reported to be substrates of ABCG2, one of the membrane transporters mediating resistance to chemotherapy. Here we investigate, whether inhibition of ABCG2 can restore sensitivity to photosensitizer chlorin e6-mediated PDT. Accumulation of chlorin e6 in wild type U87 and doxycycline-inducible U251 glioblastoma cells with or without induction of ABCG2 expression or ABCG2 inhibition by KO143 was analyzed using flow cytometry. In U251 cells, ABCG2 was inducible by doxycycline after stable transfection with a tet-on expression plasmid. Tumor sphere cultivation under low attachment conditions was used to enrich for cells with stem cell-like properties. PDT was done on monolayer cell cultures by irradiation with laser light at 665nm. Elevated levels of ABCG2 in U87 cells grown as tumor spheres or in U251 cells after ABCG2 induction led to a 6-fold lower accumulation of chlorin e6 and the light dose needed to reduce cell viability by 50% (LD50) was 2.5 to 4-fold higher. Both accumulation and PDT response can be restored by KO143, an efficient non-toxic inhibitor of ABCG2. Glioblastoma stem cells might escape phototoxic destruction by ABCG2-mediated reduction of photosensitizer accumulation. Inhibition of ABCG2 during photosensitizer accumulation and irradiation promises to restore full susceptibility of this crucial tumor cell population to photodynamic treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Progressive taxation, income inequality, and happiness.

    Science.gov (United States)

    Oishi, Shigehiro; Kushlev, Kostadin; Schimmack, Ulrich

    2018-01-01

    Income inequality has become one of the more widely debated social issues today. The current article explores the role of progressive taxation in income inequality and happiness. Using historical data in the United States from 1962 to 2014, we found that income inequality was substantially smaller in years when the income tax was more progressive (i.e., a higher tax rate for higher income brackets), even when controlling for variables like stock market performance and unemployment rate. Time lag analyses further showed that higher progressive taxation predicted increasingly lower income inequality up to 5 years later. Data from the General Social Survey (1972-2014; N = 59,599) with U.S. residents (hereafter referred to as "Americans") showed that during years with higher progressive taxation rates, less wealthy Americans-those in the lowest 40% of the income distribution-tended to be happier, whereas the richest 20% were not significantly less happy. Mediational analyses confirmed that the association of progressive taxation with the happiness of less wealthy Americans can be explained by lower income inequality in years with higher progressive taxation. A separate sample of Americans polled online (N = 373) correctly predicted the positive association between progressive taxation and the happiness of poorer Americans but incorrectly expected a strong negative association between progressive taxation and the happiness of richer Americans. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  4. MnTE-2-PyP modulates thiol oxidation in a hydrogen peroxide-mediated manner in a human prostate cancer cell.

    Science.gov (United States)

    Tong, Qiang; Zhu, Yuxiang; Galaske, Joseph W; Kosmacek, Elizabeth A; Chatterjee, Arpita; Dickinson, Bryan C; Oberley-Deegan, Rebecca E

    2016-12-01

    To improve the treatment of advanced prostate cancer, the development of effective and innovative antitumor agents is needed. Our previous work demonstrated that the ROS (reactive oxygen species) scavenger, MnTE-2-PyP, inhibited human prostate cancer growth and also inhibited prostate cancer migration and invasion. We showed that MnTE-2-PyP treatment altered the affinity of the histone acetyltransferase enzyme, p300, to bind to DNA. We speculate that this may be one mechanism by which MnTE-2-PyP inhibits prostate cancer progression. Specifically, MnTE-2-PyP decreased p300/HIF-1/CREB complex (p300/hypoxia-inducible factor-1/cAMP response element-binding protein) binding to a specific hypoxia-response element (HRE) motif within the plasminogen activator inhibitor-1 (PAI-1) gene promoter region, and consequently, repressed PAI-1 expression. However, it remains unclear how MnTE-2-PyP reduces p300 complex binding affinity to the promoter region of specific genes. In this study, we found that overexpression of Cu/ZnSOD (superoxide dismutase 1, SOD1) significantly suppressed PAI-1 gene expression and p300 complex binding to the promoter region of PAI-1 gene, just as was observed in cells treated with MnTE-2-PyP. Furthermore, catalase (CAT) overexpression rescued the inhibition of PAI-1 expression and p300 binding by MnTE-2-PyP. Taken together, the above findings suggest that hydrogen peroxide (H 2 O 2 ) is likely the mediator through which MnTE-2-PyP inhibits the PAI-1 expression and p300 complex binding in PC3 cells. To confirm this, we measured the production of H 2 O 2 following overexpression of SOD1 or catalase with MnTE-2-PyP treatment in the presence or absence of radiation. We found that MnTE-2-PyP increased the intracellular steady-state levels of H 2 O 2 and increased nuclear H 2 O 2 levels. As expected, catalase overexpression significantly decreased the levels of intracellular H 2 O 2 induced by MnTE-2-PyP. We then determined if this increased H 2 O 2

  5. Nitric oxide mediates insect cellular immunity via phospholipase A2 activation

    Science.gov (United States)

    After infection or invasion is recognized, biochemical mediators act in signaling insect immune functions. These include biogenic amines, insect cytokines, eicosanoids and nitric oxide (NO). Treating insects or isolated hemocyte populations with different mediators often leads to similar results. Se...

  6. Bile Acid-Mediated Sphingosine-1-Phosphate Receptor 2 Signaling Promotes Neuroinflammation during Hepatic Encephalopathy in Mice

    Directory of Open Access Journals (Sweden)

    Matthew McMillin

    2017-07-01

    Full Text Available Hepatic encephalopathy (HE is a neuropsychiatric complication that occurs due to deteriorating hepatic function and this syndrome influences patient quality of life, clinical management strategies and survival. During acute liver failure, circulating bile acids increase due to a disruption of the enterohepatic circulation. We previously identified that bile acid-mediated signaling occurs in the brain during HE and contributes to cognitive impairment. However, the influences of bile acids and their downstream signaling pathways on HE-induced neuroinflammation have not been assessed. Conjugated bile acids, such as taurocholic acid (TCA, can activate sphingosine-1-phosphate receptor 2 (S1PR2, which has been shown to promote immune cell infiltration and inflammation in other models. The current study aimed to assess the role of bile-acid mediated S1PR2 signaling in neuroinflammation and disease progression during azoxymethane (AOM-induced HE in mice. Our findings demonstrate a temporal increase of bile acids in the cortex during AOM-induced HE and identified that cortical bile acids were elevated as an early event in this model. In order to classify the specific bile acids that were elevated during HE, a metabolic screen was performed and this assay identified that TCA was increased in the serum and cortex during AOM-induced HE. To reduce bile acid concentrations in the brain, mice were fed a diet supplemented with cholestyramine, which alleviated neuroinflammation by reducing proinflammatory cytokine expression in the cortex compared to the control diet-fed AOM-treated mice. S1PR2 was expressed primarily in neurons and TCA treatment increased chemokine ligand 2 mRNA expression in these cells. The infusion of JTE-013, a S1PR2 antagonist, into the lateral ventricle prior to AOM injection protected against neurological decline and reduced neuroinflammation compared to DMSO-infused AOM-treated mice. Together, this identifies that reducing bile acid

  7. 2'-Hydroxycinnamaldehyde induces apoptosis through HSF1-mediated BAG3 expression.

    Science.gov (United States)

    Nguyen, Hai-Anh; Kim, Soo-A

    2017-01-01

    BAG3, a member of BAG co-chaperone family, is induced by stressful stimuli such as heat shock and heavy metals. Through interaction with various binding partners, BAG3 is thought to play a role in cellular adaptive responses against stressful conditions in normal and neoplastic cells. 2'-Hydroxycinnamaldehyde (HCA) is a natural derivative of cinnamaldehyde and has antitumor activity in various cancer cells. In the present study, for the first time, we identified that HCA induced BAG3 expression and BAG3-mediated apoptosis in cancer cells. The apoptotic cell death induced by HCA was demonstrated by caspase-7, -9 and PARP activation, and confirmed by Annexin V staining in both SW480 and SW620 colon cancer cells. Notably, both the mRNA and protein levels of BAG3 were largely induced by HCA in a dose- and time-dependent manner. By showing transcription factor HSF1 activation, we demonstrated that HCA induces the expression of BAG3 through HSF1 activation. More importantly, knockdown of BAG3 expression using siRNA largely inhibited HCA-induced apoptosis, suggesting that BAG3 is actively involved in HCA-induced cancer cell death. Considering the importance of the stress response mechanism in cancer progression, our results strongly suggest that BAG3 could be a potential target for anticancer therapy.

  8. State-Level Point-of-Sale Tobacco News Coverage and Policy Progression Over a 2-Year Period.

    Science.gov (United States)

    Myers, Allison E; Southwell, Brian G; Ribisl, Kurt M; Moreland-Russell, Sarah; Bowling, J Michael; Lytle, Leslie A

    2018-01-01

    Mass media content may play an important role in policy change. However, the empirical relationship between media advocacy efforts and tobacco control policy success has rarely been studied. We examined the extent to which newspaper content characteristics (volume, slant, frame, source, use of evidence, and degree of localization) that have been identified as important in past descriptive studies were associated with policy progression over a 2-year period in the context of point-of-sale (POS) tobacco control. We used regression analyses to test the relationships between newspaper content and policy progression from 2012 to 2014. The dependent variable was the level of implementation of state-level POS tobacco control policies at Time 2. Independent variables were newspaper article characteristics (volume, slant, frame, source, use of evidence, and degree of localization) and were collected via content analysis of the articles. State-level policy environment contextual variables were examined as confounders. Positive, significant bivariate relationships exist between characteristics of news content (e.g., high overall volume, public health source present, local quote and local angle present, and pro-tobacco control slant present) and Time 2 POS score. However, in a multivariate model controlling for other factors, significant relationships did not hold. Newspaper coverage can be a marker of POS policy progression. Whether media can influence policy implementation remains an important question. Future work should continue to tease out and confirm the unique characteristics of media content that are most associated with subsequent policy progression, in order to inform media advocacy efforts.

  9. What carries a mediation process? Configural analysis of mediation.

    Science.gov (United States)

    von Eye, Alexander; Mun, Eun Young; Mair, Patrick

    2009-09-01

    Mediation is a process that links a predictor and a criterion via a mediator variable. Mediation can be full or partial. This well-established definition operates at the level of variables even if they are categorical. In this article, two new approaches to the analysis of mediation are proposed. Both of these approaches focus on the analysis of categorical variables. The first involves mediation analysis at the level of configurations instead of variables. Thus, mediation can be incorporated into the arsenal of methods of analysis for person-oriented research. Second, it is proposed that Configural Frequency Analysis (CFA) can be used for both exploration and confirmation of mediation relationships among categorical variables. The implications of using CFA are first that mediation hypotheses can be tested at the level of individual configurations instead of variables. Second, this approach leaves the door open for different types of mediation processes to exist within the same set. Using a data example, it is illustrated that aggregate-level analysis can overlook mediation processes that operate at the level of individual configurations.

  10. Alpha 1-adrenergic receptor-mediated phosphoinositide hydrolysis and prostaglandin E2 formation in Madin-Darby canine kidney cells. Possible parallel activation of phospholipase C and phospholipase A2

    International Nuclear Information System (INIS)

    Slivka, S.R.; Insel, P.A.

    1987-01-01

    alpha 1-Adrenergic receptors mediate two effects on phospholipid metabolism in Madin-Darby canine kidney (MDCK-D1) cells: hydrolysis of phosphoinositides and arachidonic acid release with generation of prostaglandin E2 (PGE2). The similarity in concentration dependence for the agonist (-)-epinephrine in eliciting these two responses implies that they are mediated by a single population of alpha 1-adrenergic receptors. However, we find that the kinetics of the two responses are quite different, PGE2 production occurring more rapidly and transiently than the hydrolysis of phosphoinositides. The antibiotic neomycin selectively decreases alpha 1-receptor-mediated phosphatidylinositol 4,5-bisphosphate hydrolysis without decreasing alpha 1-receptor-mediated arachidonic acid release and PGE2 generation. In addition, receptor-mediated inositol trisphosphate formation is independent of extracellular calcium, whereas release of labeled arachidonic acid is largely calcium-dependent. Moreover, based on studies obtained with labeled arachidonic acid, receptor-mediated generation of arachidonic acid cannot be accounted for by breakdown of phosphatidylinositol monophosphate, phosphatidylinositol bisphosphate, or phosphatidic acid. Further studies indicate that epinephrine produces changes in formation or turnover of several classes of membrane phospholipids in MDCK cells. We conclude that alpha 1-adrenergic receptors in MDCK cells appear to regulate phospholipid metabolism by the parallel activation of phospholipase C and phospholipase A2. This parallel activation of phospholipases contrasts with models described in other systems which imply sequential activation of phospholipase C and diacylglycerol lipase or phospholipase A2

  11. An Analysis of Pathological Activities of CCN Proteins in Joint Disorders: Mechanical Stretch-Mediated CCN2 Expression in Cultured Meniscus Cells.

    Science.gov (United States)

    Furumatsu, Takayuki; Ozaki, Toshifumi

    2017-01-01

    The multifunctional growth factor CYR61/CTGF/NOV (CCN) 2, also known as connective tissue growth factor, regulates cellular proliferation, differentiation, and tissue regeneration. Recent literatures have described important roles of CCN2 in the meniscus metabolism. However, the mechanical stress-mediated transcriptional regulation of CCN2 in the meniscus remains unclear. The meniscus is a fibrocartilaginous tissue that controls complex biomechanics of the knee joint. Therefore, the injured unstable meniscus has a poor healing potential especially in the avascular inner region. In addition, dysfunction of the meniscus correlates with the progression of degenerative knee joint disorders and joint space narrowing. Here, we describe an experimental approach that investigates the distinct cellular behavior of inner and outer meniscus cells in response to mechanical stretch. Our experimental model can analyze the relationships between stretch-induced CCN2 expression and its functional role in the meniscus homeostasis.

  12. Glycemic control and alveolar bone loss progression in type 2 diabetes.

    Science.gov (United States)

    Taylor, G W; Burt, B A; Becker, M P; Genco, R J; Shlossman, M

    1998-07-01

    This study tested the hypothesis that the risk for alveolar bone loss is greater, and bone loss progression more severe, for subjects with poorly controlled (PC) type 2 diabetes mellitus (type 2 DM) compared to those without type 2 DM or with better controlled (BC) type 2 DM. The PC group had glycosylated hemoglobin (HbA1) > or = 9%; the BC group had HbA1 or = 75% were used to identify the worst bone score (WBS) in the dentition. Change in worst bone score at follow-up, the outcome, was specified on a 4-category ordinal scale as no change, or a 1-, 2-, 3-, or 4-category increase over baseline WBS (WBS1). Poorly controlled diabetes, age, calculus, time to follow-up examination, and WBS1 were statistically significant explanatory variables in ordinal logistic regression models. Poorly controlled type 2 DM was positively associated with greater risk for a change in bone score (compared to subjects without type 2 DM) when the covariates were included in the model. The cumulative odds ratio (COR) at each threshold of the ordered response was 11.4 (95% CI = 2.5, 53.3). When contrasted with subjects with BC type 2 DM, the COR for those in the PC group was 5.3 (95% CI = 0.8, 53.3). The COR for subjects with BC type 2 DM was 2.2 (95% CI = 0.7, 6.5), when contrasted to those without type 2 DM. These results suggest that poorer glycemic control leads to both an increased risk for alveolar bone loss and more severe progression over those without type 2 DM, and that there may be a gradient, with the risk for bone loss progression for those with better controlled type 2 DM intermediate to the other 2 groups.

  13. How do text-messaging smoking cessation interventions confer benefit? A multiple mediation analysis of Text2Quit.

    Science.gov (United States)

    Hoeppner, Bettina B; Hoeppner, Susanne S; Abroms, Lorien C

    2017-04-01

    To determine the degree to which the observed benefit of Text2Quit was accounted for by psychosocial mechanisms derived from its quit smoking messaging versus from the use of extra-programmatic smoking cessation treatments and services. Prospective, multiple mediation model of a randomized controlled trial (RCT). United States nation-wide. A total of 409 adult daily smokers participated. Participants were, on average, 35 years of age, predominantly female (68%), white (79%), lacked a college degree (70%), had medium nicotine dependence (average Fagerström Nicotine Dependence Score score of 5.2) and more than half (62%) had made a previous quit attempt. Adult daily smokers browsing the web for smoking cessation support (n = 409; recruited 19 May2011-10 July 2012) were randomized to receive smoking cessation support via Text2Quit versus a smoking cessation material. Mediators (i.e. changes in psychosocial constructs of health behavior change, use of extra-programmatic treatment) were assessed at 1 month using single-item measures and outcome (i.e. self-reported 7-day point prevalence abstinence) at 6-month follow-up. Mediators accounted for 35% of the effect of Text2Quit on smoking cessation. Only psychosocial mechanisms had complete mediational paths, with increases in self-efficacy [b = 0.10 (0.06-0.15)], quitting know-how [b = 0.07 (0.03-0.11)] and the sense that someone cared [b = 0.06 (0.01-0.11)], partially explaining the conferred benefit of Text2Quit. Use of outside resources, including treatments promoted explicitly by Text2Quit, i.e. medication [b = 0.001 (-0.01 to 0.01), quitline [b = -0.002 (-0.01 to 0.04)], treatments and resources not promoted by Text2Quit, i.e. online forums [b = 0.01 (-0.01 to 0.04)] and self-help materials [b = -0.01 (-0.04 to 0.02)], did not have complete mediational paths. An interaction effect existed for medication use that suggested that for participants not using medication, Text2Quit conferred substantial

  14. MUC1 enhances tumor progression and contributes towards immunosuppression in a mouse model of spontaneous pancreatic adenocarcinoma

    Science.gov (United States)

    Tinder, Teresa L.; Subramani, Durai B.; Basu, Gargi D.; Bradley, Judy M.; Schettini, Jorge; Million, Arefayene; Skaar, Todd

    2008-01-01

    MUC1, a membrane tethered mucin glycoprotein, is overexpressed and aberrantly glycosylated in >80% of human ductal pancreatic adenocarcinoma. However, the role of MUC1 in pancreatic cancer has been elusive, partly due to the lack of an appropriate model. We report the characterization of a novel mouse model that expresses human MUC1 as a self molecule (PDA.MUC1 mice). Pancreatic tumors arise in an appropriate MUC1-tolerant background within an immune competent host. Significant enhancement in the development of pancreatic intraepithelial pre-neoplastic lesions (PanINs) and progression to adenocarcinoma is observed in PDA.MUC1 mice, possibly due to increased proliferation. Tumors from PDA.MUC1 mice express higher levels of cyclooxygenase-2 and indoleamine 2,3, dioxygenase compared to PDA mice lacking MUC1, especially during early stages of tumor development. The increased pro-inflammatory milieu correlates with an increased percentage of regulatory T cells and myeloid suppressor cells in the pancreatic tumor and tumor draining lymph nodes. Data shows that during pancreatic cancer progression, MUC1-mediated mechanisms enhance the onset and progression of the disease which in turn regulate the immune responses. Thus, the mouse model is ideally-suited for testing novel chemopreventive and therapeutic strategies against pancreatic cancer. PMID:18713982

  15. Social Sensors (S2ensors): A Kind of Hardware-Software-Integrated Mediators for Social Manufacturing Systems Under Mass Individualization

    Science.gov (United States)

    Ding, Kai; Jiang, Ping-Yu

    2017-09-01

    Currently, little work has been devoted to the mediators and tools for multi-role production interactions in the mass individualization environment. This paper proposes a kind of hardware-software-integrated mediators called social sensors (S2ensors) to facilitate the production interactions among customers, manufacturers, and other stakeholders in the social manufacturing systems (SMS). The concept, classification, operational logics, and formalization of S2ensors are clarified. S2ensors collect subjective data from physical sensors and objective data from sensory input in mobile Apps, merge them into meaningful information for decision-making, and finally feed the decisions back for reaction and execution. Then, an S2ensors-Cloud platform is discussed to integrate different S2ensors to work for SMSs in an autonomous way. A demonstrative case is studied by developing a prototype system and the results show that S2ensors and S2ensors-Cloud platform can assist multi-role stakeholders interact and collaborate for the production tasks. It reveals the mediator-enabled mechanisms and methods for production interactions among stakeholders in SMS.

  16. RhoA/Rho Kinase Mediates Neuronal Death Through Regulating cPLA2 Activation.

    Science.gov (United States)

    Wu, Xiangbing; Walker, Chandler L; Lu, Qingbo; Wu, Wei; Eddelman, Daniel B; Parish, Jonathan M; Xu, Xiao-Ming

    2017-11-01

    Activation of RhoA/Rho kinase leads to growth cone collapse and neurite retraction. Although RhoA/Rho kinase inhibition has been shown to improve axon regeneration, remyelination and functional recovery, its role in neuronal cell death remains unclear. To determine whether RhoA/Rho kinase played a role in neuronal death after injury, we investigated the relationship between RhoA/Rho kinase and cytosolic phospholipase A 2 (cPLA 2 ), a lipase that mediates inflammation and cell death, using an in vitro neuronal death model and an in vivo contusive spinal cord injury model performed at the 10th thoracic (T10) vertebral level. We found that co-administration of TNF-α and glutamate induced spinal neuron death, and activation of RhoA, Rho kinase and cPLA 2 . Inhibition of RhoA, Rho kinase and cPLA 2 significantly reduced TNF-α/glutamate-induced cell death by 33, 52 and 43 %, respectively (p < 0.001). Inhibition of RhoA and Rho kinase also significantly downregulated cPLA 2 activation by 66 and 60 %, respectively (p < 0.01). Furthermore, inhibition of RhoA and Rho kinase reduced the release of arachidonic acid, a downstream substrate of cPLA 2 . The immunofluorescence staining showed that ROCK 1 or ROCK 2 , two isoforms of Rho kinase, was co-localized with cPLA 2 in neuronal cytoplasm. Interestingly, co-immunoprecipitation (Co-IP) assay showed that ROCK 1 or ROCK 2 bonded directly with cPLA 2 and phospho-cPLA 2 . When the Rho kinase inhibitor Y27632 was applied in mice with T10 contusion injury, it significantly decreased cPLA 2 activation and expression and reduced injury-induced apoptosis at and close to the lesion site. Taken together, our results reveal a novel mechanism of RhoA/Rho kinase-mediated neuronal death through regulating cPLA 2 activation.

  17. A progress report on the g-2 storage ring magnet system

    International Nuclear Information System (INIS)

    Bunce, G.; Cullen, J.; Danby, G.

    1995-01-01

    The 3.1 GeV muon storage ring for the g-2 experiment at Brookhaven National Laboratory hat three large solenoid magnets that form a continuous 1.451 tesla storage ring dipole with an average beam bond radius of 7.1 metors. In addition to the three storage ring solenoids, there is an inflector dipole with nested dipole coils that create very little stray magnetic field. A superconducting shield on the infractor gets rid of most of the remaining stray flux. This paper reports on the progress made on the storage ring solenoid magnet system and the inflector as of June 1995. The results of cryogenic system tests are briefly reported

  18. Association between ALDH2 and ADH1B polymorphisms, alcohol drinking and gastric cancer: a replication and mediation analysis.

    Science.gov (United States)

    Ishioka, Kuka; Masaoka, Hiroyuki; Ito, Hidemi; Oze, Isao; Ito, Seiji; Tajika, Masahiro; Shimizu, Yasuhiro; Niwa, Yasumasa; Nakamura, Shigeo; Matsuo, Keitaro

    2018-04-03

    Aldehyde dehydrogenase 2 (ALDH2; rs671, Glu504Lys) and alcohol dehydrogenase 1B (ADH1B; rs1229984, His47Arg) polymorphisms have a strong impact on carcinogenic acetaldehyde accumulation after alcohol drinking. To date, however, evidence for a significant ALDH2-alcohol drinking interaction and a mediation effect of ALDH2/ADH1B through alcohol drinking on gastric cancer have remained unclear. We conducted two case-control studies to validate the interaction and to estimate the mediation effect on gastric cancer. We calculated odds ratios (OR) and 95% confidence intervals (CI) for ALDH2/ADH1B genotypes and alcohol drinking using conditional logistic regression models after adjustment for potential confounding in the HERPACC-2 (697 cases and 1372 controls) and HERPACC-3 studies (678 cases and 678 controls). We also conducted a mediation analysis of the combination of the two studies to assess whether the effects of these polymorphisms operated through alcohol drinking or through other pathways. ALDH2 Lys alleles had a higher risk with increased alcohol consumption compared with ALDH2 Glu/Glu (OR for heavy drinking, 3.57; 95% CI 2.04-6.27; P for trend = 0.007), indicating a significant ALDH2-alcohol drinking interaction (P interaction  = 0.024). The mediation analysis indicated a significant positive direct effect (OR 1.67; 95% CI 1.38-2.03) and a protective indirect effect (OR 0.84; 95% CI 0.76-0.92) of the ALDH2 Lys alleles with the ALDH2-alcohol drinking interaction. No significant association of ADH1B with gastric cancer was observed. The observed ALDH2-alcohol drinking interaction and the direct effect of ALDH2 Lys alleles may suggest the involvement of acetaldehyde in the development of gastric cancer.

  19. Characterization of the functional role of nucleotides within the URE2 IRES element and the requirements for eIF2A-mediated repression.

    Science.gov (United States)

    Reineke, Lucas C; Merrick, William C

    2009-12-01

    Cap-independent initiation of translation is thought to promote protein synthesis on some mRNAs during times when cap-dependent initiation is down-regulated. However, the mechanism of cap-independent initiation is poorly understood. We have previously reported the secondary structure within the yeast minimal URE2 IRES element. In this study, we sought to investigate the mechanism of internal initiation in yeast by assessing the functional role of nucleotides within the minimal URE2 IRES element, and delineating the cis-sequences that modulate levels of internal initiation using a monocistronic reporter vector. Furthermore, we compared the eIF2A sensitivity of the URE2 IRES element with some of the invasive growth IRES elements using DeltaeIF2A yeast. We found that the stability of the stem-loop structure within the minimal URE2 IRES element is not a critical determinant of optimal IRES activity, and the downstream sequences that modulate URE2 IRES-mediated translation can be defined to discrete regions within the URE2 coding region. Repression of internal initiation on the URE2 minimal IRES element by eIF2A is not dependent on the stability of the secondary structure within the URE2 IRES element. Our data also indicate that eIF2A-mediated repression is not specific to the URE2 IRES element, as both the GIC1 and PAB1 IRES elements are repressed by eIF2A. These data provide valuable insights into the mRNA requirements for internal initiation in yeast, and insights into the mechanism of eIF2A-mediated suppression.

  20. Resveratrol and pterostilbene as a microRNA-mediated chemopreventive and therapeutic strategy in prostate cancer

    Science.gov (United States)

    Growing evidence indicates deregulation of the epigenetic machinery comprising the microRNA (miRNA) network as a critical factor in the progression of various diseases including cancer. Concurrently, dietary phytochemicals are being intensively studied for their miRNA-mediated health beneficial prop...

  1. Frosted branch angiitis associated with rapidly progressive glomerulonephritis.

    Directory of Open Access Journals (Sweden)

    Gupta Amod

    2002-01-01

    Full Text Available Simultaneous occurrence of frosted branch angiitis and immune-mediated rapidly progressive glomerulonephritis is reported. The two diseases possibly share a common immune mechanism. Patients of frosted branch angiitis should undergo complete systemic evaluation including renal function tests even if the patient is systemically asymptomatic.

  2. Mediator complex cooperatively regulates transcription of retinoic acid target genes with Polycomb Repressive Complex 2 during neuronal differentiation.

    Science.gov (United States)

    Fukasawa, Rikiya; Iida, Satoshi; Tsutsui, Taiki; Hirose, Yutaka; Ohkuma, Yoshiaki

    2015-11-01

    The Mediator complex (Mediator) plays key roles in transcription and functions as the nexus for integration of various transcriptional signals. Previously, we screened for Mediator cyclin-dependent kinase (CDK)-interacting factors and identified three proteins related to chromatin regulation. One of them, SUZ12 is required for both stability and activity of Polycomb Repressive Complex 2 (PRC2). PRC2 primarily suppresses gene expression through histone H3 lysine 27 trimethylation, resulting in stem cell maintenance and differentiation; perturbation of this process leads to oncogenesis. Recent work showed that Mediator contributes to the embryonic stem cell state through DNA loop formation, which is strongly associated with chromatin architecture; however, it remains unclear how Mediator regulates gene expression in cooperation with chromatin regulators (i.e. writers, readers and remodelers). We found that Mediator CDKs interact directly with the PRC2 subunit EZH2, as well as SUZ12. Known PRC2 target genes were deregulated by Mediator CDK knockdown during neuronal differentiation, and both Mediator and PRC2 complexes co-occupied the promoters of developmental genes regulated by retinoic acid. Our results provide a mechanistic link between Mediator and PRC2 during neuronal differentiation. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  3. LOXL2 induces aberrant acinar morphogenesis via ErbB2 signaling

    DEFF Research Database (Denmark)

    Chang, Joan; Nicolau, Monica; Cox, Thomas R

    2013-01-01

    Lysyl oxidase-like 2 (LOXL2) is a matrix remodeling enzyme that has been shown to play a key role in invasion and metastasis of breast carcinoma cells. However, very little is known about its role in normal tissue homeostasis. Here, we investigate the effects of LOXL2 expression in normal mammary...... epithelial cells in order to gain insight into how LOXL2 mediates cancer progression....

  4. MicroRNA-mediated down-regulation of NKG2D ligands contributes to glioma immune escape.

    Science.gov (United States)

    Codo, Paula; Weller, Michael; Meister, Gunter; Szabo, Emese; Steinle, Alexander; Wolter, Marietta; Reifenberger, Guido; Roth, Patrick

    2014-09-15

    Malignant gliomas are intrinsic brain tumors with a dismal prognosis. They are well-adapted to hypoxic conditions and poorly immunogenic. NKG2D is one of the major activating receptors of natural killer (NK) cells and binds to several ligands (NKG2DL). Here we evaluated the impact of miRNA on the expression of NKG2DL in glioma cells including stem-like glioma cells. Three of the candidate miRNA predicted to target NKG2DL were expressed in various glioma cell lines as well as in glioblastomas in vivo: miR-20a, miR-93 and miR-106b. LNA inhibitor-mediated miRNA silencing up-regulated cell surface NKG2DL expression, which translated into increased susceptibility to NK cell-mediated lysis. This effect was reversed by neutralizing NKG2D antibodies, confirming that enhanced lysis upon miRNA silencing was mediated through the NKG2D system. Hypoxia, a hallmark of glioblastomas in vivo, down-regulated the expression of NKG2DL on glioma cells, associated with reduced susceptibility to NK cell-mediated lysis. This process, however, was not mediated through any of the examined miRNA. Accordingly, both hypoxia and the expression of miRNA targeting NKG2DL may contribute to the immune evasion of glioma cells at the level of the NKG2D recognition pathway. Targeting miRNA may therefore represent a novel approach to increase the immunogenicity of glioblastoma.

  5. Ca2+ influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    International Nuclear Information System (INIS)

    Murata, Naohiko; Ito, Satoru; Furuya, Kishio; Takahara, Norihiro; Naruse, Keiji; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2014-01-01

    Highlights: • Uniaxial stretching activates Ca 2+ signaling in human lung fibroblasts. • Stretch-induced intracellular Ca 2+ elevation is mainly via Ca 2+ influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca 2+ influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca 2+ concentration ([Ca 2+ ] i ) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca 2+ ] i transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca 2+ ] i . The stretch-induced [Ca 2+ ] i elevation was attenuated in Ca 2+ -free solution. In contrast, the increase of [Ca 2+ ] i by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd 3+ , ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca 2+ ] i elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca 2+ influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP

  6. Function and regulation of the Mediator complex.

    Science.gov (United States)

    Conaway, Ronald C; Conaway, Joan Weliky

    2011-04-01

    Over the past few years, advances in biochemical and genetic studies of the structure and function of the Mediator complex have shed new light on its subunit architecture and its mechanism of action in transcription by RNA polymerase II (pol II). The development of improved methods for reconstitution of recombinant Mediator subassemblies is enabling more in-depth analyses of basic features of the mechanisms by which Mediator interacts with and controls the activity of pol II and the general initiation factors. The discovery and characterization of multiple, functionally distinct forms of Mediator characterized by the presence or absence of the Cdk8 kinase module have led to new insights into how Mediator functions in both Pol II transcription activation and repression. Finally, progress in studies of the mechanisms by which the transcriptional activation domains (ADs) of DNA binding transcription factors target Mediator have brought to light unexpected complexities in the way Mediator participates in signal transduction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Src binds cortactin through an SH2 domain cystine-mediated linkage

    Science.gov (United States)

    Evans, Jason V.; Ammer, Amanda G.; Jett, John E.; Bolcato, Chris A.; Breaux, Jason C.; Martin, Karen H.; Culp, Mark V.; Gannett, Peter M.; Weed, Scott A.

    2012-01-01

    Summary Tyrosine-kinase-based signal transduction mediated by modular protein domains is critical for cellular function. The Src homology (SH)2 domain is an important conductor of intracellular signaling that binds to phosphorylated tyrosines on acceptor proteins, producing molecular complexes responsible for signal relay. Cortactin is a cytoskeletal protein and tyrosine kinase substrate that regulates actin-based motility through interactions with SH2-domain-containing proteins. The Src kinase SH2 domain mediates cortactin binding and tyrosine phosphorylation, but how Src interacts with cortactin is unknown. Here we demonstrate that Src binds cortactin through cystine bonding between Src C185 in the SH2 domain within the phosphotyrosine binding pocket and cortactin C112/246 in the cortactin repeats domain, independent of tyrosine phosphorylation. Interaction studies show that the presence of reducing agents ablates Src-cortactin binding, eliminates cortactin phosphorylation by Src, and prevents Src SH2 domain binding to cortactin. Tandem MS/MS sequencing demonstrates cystine bond formation between Src C185 and cortactin C112/246. Mutational studies indicate that an intact cystine binding interface is required for Src-mediated cortactin phosphorylation, cell migration, and pre-invadopodia formation. Our results identify a novel phosphotyrosine-independent binding mode between the Src SH2 domain and cortactin. Besides Src, one quarter of all SH2 domains contain cysteines at or near the analogous Src C185 position. This provides a potential alternative mechanism to tyrosine phosphorylation for cysteine-containing SH2 domains to bind cognate ligands that may be widespread in propagating signals regulating diverse cellular functions. PMID:23097045

  8. Src binds cortactin through an SH2 domain cystine-mediated linkage.

    Science.gov (United States)

    Evans, Jason V; Ammer, Amanda G; Jett, John E; Bolcato, Chris A; Breaux, Jason C; Martin, Karen H; Culp, Mark V; Gannett, Peter M; Weed, Scott A

    2012-12-15

    Tyrosine-kinase-based signal transduction mediated by modular protein domains is critical for cellular function. The Src homology (SH)2 domain is an important conductor of intracellular signaling that binds to phosphorylated tyrosines on acceptor proteins, producing molecular complexes responsible for signal relay. Cortactin is a cytoskeletal protein and tyrosine kinase substrate that regulates actin-based motility through interactions with SH2-domain-containing proteins. The Src kinase SH2 domain mediates cortactin binding and tyrosine phosphorylation, but how Src interacts with cortactin is unknown. Here we demonstrate that Src binds cortactin through cystine bonding between Src C185 in the SH2 domain within the phosphotyrosine binding pocket and cortactin C112/246 in the cortactin repeats domain, independent of tyrosine phosphorylation. Interaction studies show that the presence of reducing agents ablates Src-cortactin binding, eliminates cortactin phosphorylation by Src, and prevents Src SH2 domain binding to cortactin. Tandem MS/MS sequencing demonstrates cystine bond formation between Src C185 and cortactin C112/246. Mutational studies indicate that an intact cystine binding interface is required for Src-mediated cortactin phosphorylation, cell migration, and pre-invadopodia formation. Our results identify a novel phosphotyrosine-independent binding mode between the Src SH2 domain and cortactin. Besides Src, one quarter of all SH2 domains contain cysteines at or near the analogous Src C185 position. This provides a potential alternative mechanism to tyrosine phosphorylation for cysteine-containing SH2 domains to bind cognate ligands that may be widespread in propagating signals regulating diverse cellular functions.

  9. Loss of TRPV2 Homeostatic Control of Cell Proliferation Drives Tumor Progression

    Directory of Open Access Journals (Sweden)

    Sonia Liberati

    2014-02-01

    Full Text Available Herein we evaluate the involvement of the TRPV2 channel, belonging to the Transient Receptor Potential Vanilloid channel family (TRPVs, in development and progression of different tumor types. In normal cells, the activation of TRPV2 channels by growth factors, hormones, and endocannabinoids induces a translocation of the receptor from the endosomal compartment to the plasma membrane, which results in abrogation of cell proliferation and induction of cell death. Consequently, loss or inactivation of TRPV2 signaling (e.g., glioblastomas, induces unchecked proliferation, resistance to apoptotic signals and increased resistance to CD95-induced apoptotic cell death. On the other hand, in prostate cancer cells, Ca2+-dependent activation of TRPV2 induced by lysophospholipids increases the invasion of tumor cells. In addition, the progression of prostate cancer to the castration-resistant phenotype is characterized by de novo TRPV2 expression, with higher TRPV2 transcript levels in patients with metastatic cancer. Finally, TRPV2 functional expression in tumor cells can also depend on the presence of alternative splice variants of TRPV2 mRNA that act as dominant-negative mutant of wild-type TRPV2 channels, by inhibiting its trafficking and translocation to the plasma membrane. In conclusion, as TRP channels are altered in human cancers, and their blockage impair tumor progression, they appear to be a very promising targets for early diagnosis and chemotherapy.

  10. Multimodal imaging of central retinal disease progression in a 2 year mean follow up of Retinitis Pigmentosa

    Science.gov (United States)

    Sujirakul, Tharikarn; Lin, Michael K.; Duong, Jimmy; Wei, Ying; Lopez-Pintado, Sara; Tsang, Stephen H.

    2015-01-01

    Purpose To determine the rate of progression and optimal follow up time in patients with advanced stage retinitis pigmentosa (RP) comparing the use of fundus autofluorescence imaging and spectral domain optical coherence tomography. Design Retrospective analysis of progression rate. Methods Longitudinal imaging follow up in 71 patients with retinitis pigmentosa was studied using the main outcome measurements of hyperautofluoresent ring horizontal diameter and vertical diameter along with ellipsoid zone line width from spectral domain optical coherence tomography. Test-retest reliability and the rate of progression were calculated. The interaction between the progression rates was tested for sex, age, mode of inheritance, and baseline measurement size. Symmetry of left and right eye progression rate was also tested. Results Significant progression was observed in >75% of patients during the 2 year mean follow up. The mean annual progression rates of ellipsoid zone line, and hyperautofluorescent ring horizontal diameter and vertical diameter were 0.45° (4.9%), 0.51° (4.1%), and 0.42° (4.0%), respectively. The e llipsoid zone line width, and hyperautofluorescent ring horizontal diameter and vertical diameter had low test-retest variabilities of 8.9%, 9.5% and 9.6%, respectively. This study is the first to demonstrate asymmetrical structural progression rate between right and left eye, which was found in 19% of patients. The rate of progression was significantly slower as the disease approached the fovea, supporting the theory that RP progresses in an exponential fashion. No significant interaction between progression rate and patient age, sex, or mode of inheritance was observed. Conclusions Fundus autofluorescence and optical coherence tomography detect progression in patients with RP reliably and with strong correlation. These parameters may be useful alongside functional assessments as the outcome measurements for future therapeutic trials. Follow-up at 1 year

  11. Can the TLR-4-Mediated Signaling Pathway Be “A Key Inflammatory Promoter for Sporadic TAA”?

    Directory of Open Access Journals (Sweden)

    Giovanni Ruvolo

    2014-01-01

    Full Text Available Thoracic aorta shows with advancing age various changes and a progressive deterioration in structure and function. As a result, vascular remodeling (VR and medial degeneration (MD occur as pathological entities responsible principally for the sporadic TAA onset. Little is known about their genetic, molecular, and cellular mechanisms. Recent evidence is proposing the strong role of a chronic immune/inflammatory process in their evocation and progression. Thus, we evaluated the potential role of Toll like receptor- (TLR- 4-mediated signaling pathway and its polymorphisms in sporadic TAA. Genetic, immunohistochemical, and biochemical analyses were assessed. Interestingly, the rs4986790 TLR4 polymorphism confers a higher susceptibility for sporadic TAA (OR=14.4, P=0.0008 and it represents, together with rs1799752 ACE, rs3918242 MMP-9, and rs2285053 MMP-2 SNPs, an independent sporadic TAA risk factor. In consistency with these data, a significant association was observed between their combined risk genotype and sporadic TAA. Cases bearing this risk genotype showed higher systemic inflammatory mediator levels, significant inflammatory/immune infiltrate, a typical MD phenotype, lower telomere length, and positive correlations with histopatological abnormalities, hypertension, smoking, and ageing. Thus, TLR4 pathway should seem to have a key role in sporadic TAA. It might represent a potential useful tool for preventing and monitoring sporadic TAA and developing personalized treatments.

  12. Non-Dioxin-Like Polychlorinated Biphenyls Inhibit G-Protein Coupled Receptor-Mediated Ca2+ Signaling by Blocking Store-Operated Ca2+ Entry.

    Directory of Open Access Journals (Sweden)

    Se-Young Choi

    Full Text Available Polychlorinated biphenyls (PCBs are ubiquitous pollutants which accumulate in the food chain. Recently, several molecular mechanisms by which non-dioxin-like (NDL PCBs mediate neurodevelopmental and neurobehavioral toxicity have been elucidated. However, although the G-protein coupled receptor (GPCR is a significant target for neurobehavioral disturbance, our understanding of the effects of PCBs on GPCR signaling remains unclear. In this study, we investigated the effects of NDL-PCBs on GPCR-mediated Ca2+ signaling in PC12 cells. We found that ortho-substituted 2,2',6-trichlorinated biphenyl (PCB19 caused a rapid decline in the Ca2+ signaling of bradykinin, a typical Gq- and phospholipase Cβ-coupled GPCR, without any effect on its inositol 1,4,5-trisphosphate production. PCB19 reduced thapsigargin-induced sustained cytosolic Ca2+ levels, suggesting that PCB19 inhibits SOCE. The abilities of other NDL-PCBs to inhibit store-operated Ca2+ entry (SOCE were also examined and found to be of similar potencies to that of PCB19. PCB19 also showed a manner equivalent to that of known SOCE inhibitors. PCB19-mediated SOCE inhibition was confirmed by demonstrating the ability of PCB19 to inhibit the SOCE current and thapsigargin-induced Mn2+ influx. These results imply that one of the molecular mechanism by which NDL-PCBs cause neurobehavioral disturbances involves NDL-PCB-mediated inhibition of SOCE, thereby interfering with GPCR-mediated Ca2+ signaling.

  13. Ethanol Diffusion on Rutile TiO2(110) Mediated by H Adatoms

    DEFF Research Database (Denmark)

    Huo, Peipei; Hansen, Jonas Ørbæk; Martinez, Umberto

    2012-01-01

    and perpendicular to the rows of surface Ti atoms. The diffusion of ethanol molecules perpendicular to the rows of surface Ti atoms was found to be mediated by H adatoms in the rows of bridge-bonded O (Obr) atoms similarly to previous results obtained for water monomers. In contrast, the diffusion of H adatoms...... across the Ti rows, mediated by ethanol molecules, was observed only very rarely and exclusively on fully hydrogenated TiO2(110) surfaces. Possible reasons why the diffusion of H adatoms across the Ti rows mediated by ethanol molecules occurs less frequently than the cross-row diffusion of ethanol...... molecules mediated by H adatoms are discussed....

  14. Recent progress in surface science v.2

    CERN Document Server

    Danielli, J F; Riddiford, A C

    1964-01-01

    Recent Progress in Surface Science, Volume 2 is a 10-chapter text that covers the significant advances in some aspects of surface science, including in catalysis, genetic control of cell surface, and cell membrane. The opening chapter deals with the major factors affecting adsorption at the gas-solid interface. The subsequent chapters explore the advances in understanding of heterogeneous catalysis in terms of fundamental surface processes, as well as the concept of dynamic contact angles. These topics are followed by discussions on emulsions, flotation, and the extraordinary complexity of cel

  15. Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2

    DEFF Research Database (Denmark)

    Cooper, Sarah; Grijzenhout, Anne; Underwood, Elizabeth

    2016-01-01

    crosstalk between these modifications is critical for the formation of stable Polycomb domains at target gene loci. While the molecular mechanism for recognition of H3K27me3 by PRC1 is well defined, the interaction of PRC2 with H2AK119u1 is poorly understood. Here we demonstrate a critical role for the PRC2...... cofactor Jarid2 in mediating the interaction of PRC2 with H2AK119u1. We identify a ubiquitin interaction motif at the amino-terminus of Jarid2, and demonstrate that this domain facilitates PRC2 localization to H2AK119u1 both in vivo and in vitro. Our findings ascribe a critical function to Jarid2...... and define a key mechanism that links PRC1 and PRC2 in the establishment of Polycomb domains....

  16. Prokineticin 2 is an endangering mediator of cerebral ischemic injury

    OpenAIRE

    Cheng, Michelle Y.; Lee, Alex G.; Culbertson, Collin; Sun, Guohua; Talati, Rushi K.; Manley, Nathan C.; Li, Xiaohan; Zhao, Heng; Lyons, David M.; Zhou, Qun-Yong; Steinberg, Gary K.; Sapolsky, Robert M.

    2012-01-01

    Stroke causes brain dysfunction and neuron death, and the lack of effective therapies heightens the need for new therapeutic targets. Here we identify prokineticin 2 (PK2) as a mediator for cerebral ischemic injury. PK2 is a bioactive peptide initially discovered as a regulator of gastrointestinal motility. Multiple biological roles for PK2 have been discovered, including circadian rhythms, angiogenesis, and neurogenesis. However, the role of PK2 in neuropathology is unknown. Using primary co...

  17. Interpreting instructional cues in task switching procedures: the role of mediator retrieval.

    Science.gov (United States)

    Logan, Gordon D; Schneider, Darryl W

    2006-03-01

    In 3 experiments the role of mediators in task switching with transparent and nontransparent cues was examined. Subjects switched between magnitude (greater or less than 5) and parity (odd or even) judgments of single digits. A cue-target congruency effect indicated mediator use: subjects responded faster to congruent cue-target combinations (e.g., ODD-3) than to incongruent cue-target combinations (e.g., ODD-4). Experiment 1 revealed significant congruency effects with transparent word cues (ODD, EVEN, HIGH, and LOW) and with relatively transparent letter cues (O, E, H, and L) but not with nontransparent letter cues (D, V, G, and W). Experiment 2 revealed significant congruency effects after subjects who were trained with nontransparent letter cues were informed of the relations between cues and word mediators halfway through the experiment. Experiment 3 showed that congruency effects with relatively transparent letter cues diminished over 10 sessions of practice, suggesting that subjects used mediators less as practice progressed. The results are discussed in terms of the role of mediators in interpreting instructional cues.

  18. Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity.

    Science.gov (United States)

    Gallo, Christopher M; Smith, Daniel L; Smith, Jeffrey S

    2004-02-01

    The Saccharomyces cerevisiae Sir2 protein is an NAD(+)-dependent histone deacetylase (HDAC) that functions in transcriptional silencing and longevity. The NAD(+) salvage pathway protein, Npt1, regulates Sir2-mediated processes by maintaining a sufficiently high intracellular NAD(+) concentration. However, another NAD(+) salvage pathway component, Pnc1, modulates silencing independently of the NAD(+) concentration. Nicotinamide (NAM) is a by-product of the Sir2 deacetylase reaction and is a natural Sir2 inhibitor. Pnc1 is a nicotinamidase that converts NAM to nicotinic acid. Here we show that recombinant Pnc1 stimulates Sir2 HDAC activity in vitro by preventing the accumulation of NAM produced by Sir2. In vivo, telomeric, rDNA, and HM silencing are differentially sensitive to inhibition by NAM. Furthermore, PNC1 overexpression suppresses the inhibitory effect of exogenously added NAM on silencing, life span, and Hst1-mediated transcriptional repression. Finally, we show that stress suppresses the inhibitory effect of NAM through the induction of PNC1 expression. Pnc1, therefore, positively regulates Sir2-mediated silencing and longevity by preventing the accumulation of intracellular NAM during times of stress.

  19. The influence of anxiety on the progression of disability

    NARCIS (Netherlands)

    Brenes, G.A.; Guralnik, J.M.; Williamson, J.D.; Fried, L.P.; Simpson, C.; Simonsick, E.M.; Penninx, B.W.J.H.

    2005-01-01

    OBJECTIVES: To determine the influence of anxiety on the progression of disability and examine possible mediators of the relationship. DESIGN: Community-based observational study. SETTING: Women's Health and Aging Study I, a prospective observational study with assessments every 6 months for 3

  20. A service-oriented distributed semantic mediator: integrating multiscale biomedical information.

    Science.gov (United States)

    Mora, Oscar; Engelbrecht, Gerhard; Bisbal, Jesus

    2012-11-01

    Biomedical research continuously generates large amounts of heterogeneous and multimodal data spread over multiple data sources. These data, if appropriately shared and exploited, could dramatically improve the research practice itself, and ultimately the quality of health care delivered. This paper presents DISMED (DIstributed Semantic MEDiator), an open source semantic mediator that provides a unified view of a federated environment of multiscale biomedical data sources. DISMED is a Web-based software application to query and retrieve information distributed over a set of registered data sources, using semantic technologies. It also offers a userfriendly interface specifically designed to simplify the usage of these technologies by non-expert users. Although the architecture of the software mediator is generic and domain independent, in the context of this paper, DISMED has been evaluated for managing biomedical environments and facilitating research with respect to the handling of scientific data distributed in multiple heterogeneous data sources. As part of this contribution, a quantitative evaluation framework has been developed. It consist of a benchmarking scenario and the definition of five realistic use-cases. This framework, created entirely with public datasets, has been used to compare the performance of DISMED against other available mediators. It is also available to the scientific community in order to evaluate progress in the domain of semantic mediation, in a systematic and comparable manner. The results show an average improvement in the execution time by DISMED of 55% compared to the second best alternative in four out of the five use-cases of the experimental evaluation.

  1. Glucose- and interleukin-1beta-induced beta-cell apoptosis requires Ca2+ influx and extracellular signal-regulated kinase (ERK) 1/2 activation and is prevented by a sulfonylurea receptor 1/inwardly rectifying K+ channel 6.2 (SUR/Kir6.2) selective potassium channel opener in human islets

    DEFF Research Database (Denmark)

    Maedler, Kathrin; Størling, Joachim; Sturis, Jeppe

    2004-01-01

    Increasing evidence indicates that a progressive decrease in the functional beta-cell mass is the hallmark of both type 1 and type 2 diabetes. The underlying causes, beta-cell apoptosis and impaired secretory function, seem to be partly mediated by macrophage production of interleukin (IL)-1beta ...

  2. Laminin α2-mediated focal adhesion kinase activation triggers Alport glomerular pathogenesis.

    Directory of Open Access Journals (Sweden)

    Duane Delimont

    Full Text Available It has been known for some time that laminins containing α1 and α2 chains, which are normally restricted to the mesangial matrix, accumulate in the glomerular basement membranes (GBM of Alport mice, dogs, and humans. We show that laminins containing the α2 chain, but not those containing the α1 chain activates focal adhesion kinase (FAK on glomerular podocytes in vitro and in vivo. CD151-null mice, which have weakened podocyte adhesion to the GBM rendering these mice more susceptible to biomechanical strain in the glomerulus, also show progressive accumulation of α2 laminins in the GBM, and podocyte FAK activation. Analysis of glomerular mRNA from both models demonstrates significant induction of MMP-9, MMP-10, MMP-12, MMPs linked to GBM destruction in Alport disease models, as well as the pro-inflammatory cytokine IL-6. SiRNA knockdown of FAK in cultured podocytes significantly reduced expression of MMP-9, MMP-10 and IL-6, but not MMP-12. Treatment of Alport mice with TAE226, a small molecule inhibitor of FAK activation, ameliorated fibrosis and glomerulosclerosis, significantly reduced proteinuria and blood urea nitrogen levels, and partially restored GBM ultrastructure. Glomerular expression of MMP-9, MMP-10 and MMP-12 mRNAs was significantly reduced in TAE226 treated animals. Collectively, this work identifies laminin α2-mediated FAK activation in podocytes as an important early event in Alport glomerular pathogenesis and suggests that FAK inhibitors, if safe formulations can be developed, might be employed as a novel therapeutic approach for treating Alport renal disease in its early stages.

  3. Estimation of causal mediation effects for a dichotomous outcome in multiple-mediator models using the mediation formula.

    Science.gov (United States)

    Wang, Wei; Nelson, Suchitra; Albert, Jeffrey M

    2013-10-30

    Mediators are intermediate variables in the causal pathway between an exposure and an outcome. Mediation analysis investigates the extent to which exposure effects occur through these variables, thus revealing causal mechanisms. In this paper, we consider the estimation of the mediation effect when the outcome is binary and multiple mediators of different types exist. We give a precise definition of the total mediation effect as well as decomposed mediation effects through individual or sets of mediators using the potential outcomes framework. We formulate a model of joint distribution (probit-normal) using continuous latent variables for any binary mediators to account for correlations among multiple mediators. A mediation formula approach is proposed to estimate the total mediation effect and decomposed mediation effects based on this parametric model. Estimation of mediation effects through individual or subsets of mediators requires an assumption involving the joint distribution of multiple counterfactuals. We conduct a simulation study that demonstrates low bias of mediation effect estimators for two-mediator models with various combinations of mediator types. The results also show that the power to detect a nonzero total mediation effect increases as the correlation coefficient between two mediators increases, whereas power for individual mediation effects reaches a maximum when the mediators are uncorrelated. We illustrate our approach by applying it to a retrospective cohort study of dental caries in adolescents with low and high socioeconomic status. Sensitivity analysis is performed to assess the robustness of conclusions regarding mediation effects when the assumption of no unmeasured mediator-outcome confounders is violated. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Estimation of Causal Mediation Effects for a Dichotomous Outcome in Multiple-Mediator Models using the Mediation Formula

    Science.gov (United States)

    Nelson, Suchitra; Albert, Jeffrey M.

    2013-01-01

    Mediators are intermediate variables in the causal pathway between an exposure and an outcome. Mediation analysis investigates the extent to which exposure effects occur through these variables, thus revealing causal mechanisms. In this paper, we consider the estimation of the mediation effect when the outcome is binary and multiple mediators of different types exist. We give a precise definition of the total mediation effect as well as decomposed mediation effects through individual or sets of mediators using the potential outcomes framework. We formulate a model of joint distribution (probit-normal) using continuous latent variables for any binary mediators to account for correlations among multiple mediators. A mediation formula approach is proposed to estimate the total mediation effect and decomposed mediation effects based on this parametric model. Estimation of mediation effects through individual or subsets of mediators requires an assumption involving the joint distribution of multiple counterfactuals. We conduct a simulation study that demonstrates low bias of mediation effect estimators for two-mediator models with various combinations of mediator types. The results also show that the power to detect a non-zero total mediation effect increases as the correlation coefficient between two mediators increases, while power for individual mediation effects reaches a maximum when the mediators are uncorrelated. We illustrate our approach by applying it to a retrospective cohort study of dental caries in adolescents with low and high socioeconomic status. Sensitivity analysis is performed to assess the robustness of conclusions regarding mediation effects when the assumption of no unmeasured mediator-outcome confounders is violated. PMID:23650048

  5. Effect of fluoride on caries progression and dentin apposition in rats fed on a cariogenic or non-cariogenic diet.

    Science.gov (United States)

    Kortelainen, S; Larmas, M

    1993-02-01

    The effect of fluoride in drinking water on the progression of dentinal caries and dentin apposition was studied in Wistar rats. The initiation of enamel caries lesions was first induced for 2 wk with S. sobrinus and a 43% sucrose diet after weaning. Thereafter the animals were fed on either a cariogenic or a non-cariogenic diet and distilled water supplemented with 0, 1, 7 or 19 ppm fluoride. The areas of dentinal caries and dentin apposition were quantified after tetracycline staining. Fluoride reduced dentinal caries progression after the initiation of lesions in the presence of a cariogenic diet at a concentration of 19 ppm F, and without sucrose at 1 ppm F. The effect of fluoride in reducing dentin apposition with a cariogenic diet was dose-dependent, whereas fluoride in non-cariogenic groups had practically no effect on dentin formation. These results suggest that fluoride together with a high concentration of sucrose in the diet might have an odontoblast-mediated effect on the regulation of the progression of dentinal caries.

  6. Deletion of tumor progression locus 2 attenuates alcohol induced hepatic inflammation

    Science.gov (United States)

    BACKGROUND: The pathogenesis of alcoholic liver disease (ALD) involves the interaction of several inflammatory signaling pathways. Tumor progression locus 2 (TPL2), also known as Cancer Osaka Thyroid (COT) and MAP3K8, is a serine threonine kinase that functions as a critical regulator of inflammator...

  7. CO2 laser irradiation enhances CaF2 formation and inhibits lesion progression on demineralized dental enamel-in vitro study.

    Science.gov (United States)

    Zancopé, Bruna R; Rodrigues, Lívia P; Parisotto, Thais M; Steiner-Oliveira, Carolina; Rodrigues, Lidiany K A; Nobre-dos-Santos, Marinês

    2016-04-01

    This study evaluated if Carbon dioxide (CO2) (λ 10.6 μm) laser irradiation combined with acidulated phosphate fluoride gel application (APF gel) enhances "CaF2" uptake by demineralized enamel specimens (DES) and inhibits enamel lesion progression. Thus, two studies were conducted and DES were subjected to APF gel combined or not with CO2 laser irradiation (11.3 or 20.0 J/cm(2), 0.4 or 0.7 W) performed before, during, or after APF gel application. In study 1, 165 DES were allocated to 11 groups. Fluoride as "CaF2 like material" formed on enamel was determined in 100 DES (n = 10/group), and the surface morphologies of 50 specimens were evaluated by scanning electron microscopy (SEM) before and after "CaF2" extraction. In study 2, 165 DES (11 groups, n = 15), subjected to the same treatments as in study 1, were further subjected to a pH-cycling model to simulate a high cariogenic challenge. The progression of demineralization in DES was evaluated by cross-sectional microhardness and polarized light microscopy analyses. Laser at 11.3 J/cm(2) applied during APF gel application increased "CaF2" uptake on enamel surface. Laser irradiation and APF gel alone arrested the lesion progression compared with the control (p enamel surface and a synergistic effect was found. However, regarding the inhibition of caries lesion progression, no synergistic effect could be demonstrated. In conclusion, the results have shown that irradiation with specific laser parameters significantly enhanced CaF2 uptake by demineralized enamel and inhibited lesion progression.

  8. Supporting interoperability of collaborative networks through engineering of a service-based Mediation Information System (MISE 2.0)

    Science.gov (United States)

    Benaben, Frederick; Mu, Wenxin; Boissel-Dallier, Nicolas; Barthe-Delanoe, Anne-Marie; Zribi, Sarah; Pingaud, Herve

    2015-08-01

    The Mediation Information System Engineering project is currently finishing its second iteration (MISE 2.0). The main objective of this scientific project is to provide any emerging collaborative situation with methods and tools to deploy a Mediation Information System (MIS). MISE 2.0 aims at defining and designing a service-based platform, dedicated to initiating and supporting the interoperability of collaborative situations among potential partners. This MISE 2.0 platform implements a model-driven engineering approach to the design of a service-oriented MIS dedicated to supporting the collaborative situation. This approach is structured in three layers, each providing their own key innovative points: (i) the gathering of individual and collaborative knowledge to provide appropriate collaborative business behaviour (key point: knowledge management, including semantics, exploitation and capitalisation), (ii) deployment of a mediation information system able to computerise the previously deduced collaborative processes (key point: the automatic generation of collaborative workflows, including connection with existing devices or services) (iii) the management of the agility of the obtained collaborative network of organisations (key point: supervision of collaborative situations and relevant exploitation of the gathered data). MISE covers business issues (through BPM), technical issues (through an SOA) and agility issues of collaborative situations (through EDA).

  9. Developing a Design Methodology for Web 2.0 Mediated Learning

    DEFF Research Database (Denmark)

    Buus, Lillian; Georgsen, Marianne; Ryberg, Thomas

    In this paper we discuss the notion of a learning methodology and situate this within the wider frame of learning design or ?Designing for Learning?. We discuss existing work within this broad area by trying to categorize different approaches and interpretations and we present our development...... of particular ?mediating design artefacts?. We discuss what can be viewed as a lack of attention paid to integrating the preferred teaching styles and learning philosophies of practitioners into design tools, and present a particular method for learning design; the COllaborative E-learning Design method (Co......Ed). We describe how this method has been adopted as part of a learning methodology building on concepts and models presented in the other symposium papers, in particular those of active, problem based learning and web 2.0-technologies. The challenge of designing on the basis of an explicit learning...

  10. Developing a Design Methodology for Web 2.0 Mediated Learning

    DEFF Research Database (Denmark)

    Buus, Lillian; Georgsen, Marianne; Ryberg, Thomas

    2017-01-01

    In this paper we discuss the notion of a learning methodology and situate this within the wider frame of learning design or ?Designing for Learning?. We discuss existing work within this broad area by trying to categorize different approaches and interpretations and we present our development...... of particular ?mediating design artefacts?. We discuss what can be viewed as a lack of attention paid to integrating the preferred teaching styles and learning philosophies of practitioners into design tools, and present a particular method for learning design; the COllaborative E-learning Design method (Co......Ed). We describe how this method has been adopted as part of a learning methodology building on concepts and models presented in the other symposium papers, in particular those of active, problem based learning and web 2.0-technologies. The challenge of designing on the basis of an explicit learning...

  11. Circumvention of P-gp and MRP2 mediated efflux of lopinavir by a histidine based dipeptide prodrug.

    Science.gov (United States)

    Mandal, Abhirup; Pal, Dhananjay; Mitra, Ashim K

    2016-10-15

    This study was aimed to develop a novel Histidine-Leucine-Lopinavir (His-Leu-LPV) dipeptide prodrug and evaluate its potential for circumvention of P-gp and MRP2-mediated efflux of lopinavir (LPV) indicated for HIV-1 infection. His-Leu-LPV was synthesized following esterification of hydroxyl group of LPV and was identified by (1)H NMR and LCMS/MS techniques. Aqueous solubility, stability and cell cytotoxicity of prodrug was determined. Uptake and permeability studies were carried out using P-gp (MDCK-MDR1) and MRP2 (MDCK-MRP2) transfected cell lines. To further delineate prodrug uptake, prodrug interaction with influx transporters (PepT1 and PHT1) was determined. Enzymatic hydrolysis and reconversion of His-Leu-LPV to LPV was examined using Caco-2 cell homogenates. Aqueous solubility generated by the prodrug was markedly higher relative to unmodified LPV. Importantly, His-Leu-LPV displayed significantly lower affinity towards P-gp and MRP2 as evident from higher uptake and transport rates. [3H]-GlySar and [3H]-l-His uptake receded to approximately 30% in the presence of His-Leu-LPV supporting the PepT1/PHT1 mediated uptake process. A steady regeneration of LPV and Leu-LPV in Caco-2 cell homogenates indicated His-Leu-LPV undergoes both esterase and peptidase-mediated hydrolysis. Histidine based dipeptide prodrug approach can be an alternative strategy to improve LPV absorption across poorly permeable intestinal barrier. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Gross Motor Skills and Cardiometabolic Risk in Children: A Mediation Analysis.

    Science.gov (United States)

    Burns, Ryan D; Brusseau, Timothy A; Fu, You; Hannon, James C

    2017-04-01

    The purpose of this study was to examine the linear relationship between gross motor skills and cardiometabolic risk, with aerobic fitness as a mediator variable, in low-income children from the United States. Participants were a convenience sample of 224 children (mean ± SD age = 9.1 ± 1.1 yr; 129 girls and 95 boys) recruited from five low-income elementary schools from the Mountain West Region of the United States. Gross motor skills were assessed using the Test for Gross Motor Development, 3rd Edition. Gross motor skills were analyzed using a locomotor skill, a ball skill, and a total gross motor skill score. Aerobic fitness was assessed using the Progressive Aerobic Cardiovascular Endurance Run that was administered during physical education class. A continuous and age- and sex-adjusted metabolic syndrome score (MetS) was calculated from health and blood marker measurements collected in a fasted state before school hours. Total effects, average direct effects, and indirect effects (average causal mediation effect) were calculated using a bootstrap mediation analysis method via a linear regression algorithm. The average causal mediation effect of gross locomotor skills on MetS scores, using aerobic fitness as the mediator variable, was statistically significant (β = -0.055, 95% confidence interval = -0.097 to -0.021, P = 0.003). The model explained approximately 17.5% of the total variance in MetS with approximately 43.7% of the relationship between locomotor skills and MetS mediated through aerobic fitness. Ball skills did not significantly relate with cardiometabolic risk. There is a significant relationship between gross locomotor skills and cardiometabolic risk that is partially mediated through aerobic fitness in a sample of low-income children from the United States.

  13. Progressive taxation and the subjective well-being of nations.

    Science.gov (United States)

    Oishi, Shigehiro; Schimmack, Ulrich; Diener, Ed

    2012-01-01

    Using data from the Gallup World Poll, we examined whether progressive taxation is associated with increased levels of subjective well-being. Consistent with Rawls's theory of justice, our results showed that progressive taxation was positively associated with the subjective well-being of nations. However, the overall tax rate and government spending were not associated with the subjective well-being of nations. Furthermore, controlling for the wealth of nations and income inequality, we found that respondents living in a nation with more-progressive taxation evaluated their lives as closer to the best possible life and reported having more positive and less negative daily experiences than did respondents living in a nation with less-progressive taxation. Finally, we found that the association between more-progressive taxation and higher levels of subjective well-being was mediated by citizens' satisfaction with public goods, such as education and public transportation.

  14. Helicobacter pylori-derived Heat shock protein 60 enhances angiogenesis via a CXCR2-mediated signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chen-Si [Department of Biological Science and Technology, National Chiao-Tung University, Hsin-Chu, Taiwan (China); School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan (China); He, Pei-Juin; Hsu, Wei-Tung [Department of Biological Science and Technology, National Chiao-Tung University, Hsin-Chu, Taiwan (China); Wu, Ming-Shiang [Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Wu, Chang-Jer [Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (China); Shen, Hsiao-Wei [Institute of Molecular Medicine and Bioengineering, National Chiao-Tung University, Hsin-Chu, Taiwan (China); Hwang, Chia-Hsiang [Yung-Shin Pharmaceutical Industry Co., Ltd., Tachia, Taichung, Taiwan (China); Lai, Yiu-Kay [Department of Life Science, Institute of Biotechnology, National Tsing Hua University, Hsin-Chu, Taiwan (China); Tsai, Nu-Man [School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Liao, Kuang-Wen, E-mail: kitchhen@yahoo.com.tw [Institute of Molecular Medicine and Bioengineering, National Chiao-Tung University, Hsin-Chu, Taiwan (China)

    2010-06-25

    Helicobacter pylori is a potent carcinogen associated with gastric cancer malignancy. Recently, H. pylori Heat shock protein 60 (HpHSP60) has been reported to promote cancer development by inducing chronic inflammation and promoting tumor cell migration. This study demonstrates a role for HpHSP60 in angiogenesis, a necessary precursor to tumor growth. We showed that HpHSP60 enhanced cell migration and tube formation, but not cell proliferation, in human umbilical vein endothelial cells (HUVECs). HpHSP60 also indirectly promoted HUVEC proliferation when HUVECs were co-cultured with supernatants collected from HpHSP60-treated AGS or THP-1 cells. The angiogenic array showed that HpHSP60 dramatically induced THP-1 cells and HUVECs to produce the chemotactic factors IL-8 and GRO. Inhibition of CXCR2, the receptor for IL-8 and GRO, or downstream PLC{beta}2/Ca2+-mediated signaling, significantly abolished HpHSP60-induced tube formation. In contrast, suppression of MAP K or PI3 K signaling did not affect HpHSP60-mediated tubulogenesis. These data suggest that HpHSP60 enhances angiogenesis via CXCR2/PLC{beta}2/Ca2+ signal transduction in endothelial cells.

  15. Helicobacter pylori-derived Heat shock protein 60 enhances angiogenesis via a CXCR2-mediated signaling pathway

    International Nuclear Information System (INIS)

    Lin, Chen-Si; He, Pei-Juin; Hsu, Wei-Tung; Wu, Ming-Shiang; Wu, Chang-Jer; Shen, Hsiao-Wei; Hwang, Chia-Hsiang; Lai, Yiu-Kay; Tsai, Nu-Man; Liao, Kuang-Wen

    2010-01-01

    Helicobacter pylori is a potent carcinogen associated with gastric cancer malignancy. Recently, H. pylori Heat shock protein 60 (HpHSP60) has been reported to promote cancer development by inducing chronic inflammation and promoting tumor cell migration. This study demonstrates a role for HpHSP60 in angiogenesis, a necessary precursor to tumor growth. We showed that HpHSP60 enhanced cell migration and tube formation, but not cell proliferation, in human umbilical vein endothelial cells (HUVECs). HpHSP60 also indirectly promoted HUVEC proliferation when HUVECs were co-cultured with supernatants collected from HpHSP60-treated AGS or THP-1 cells. The angiogenic array showed that HpHSP60 dramatically induced THP-1 cells and HUVECs to produce the chemotactic factors IL-8 and GRO. Inhibition of CXCR2, the receptor for IL-8 and GRO, or downstream PLCβ2/Ca2+-mediated signaling, significantly abolished HpHSP60-induced tube formation. In contrast, suppression of MAP K or PI3 K signaling did not affect HpHSP60-mediated tubulogenesis. These data suggest that HpHSP60 enhances angiogenesis via CXCR2/PLCβ2/Ca2+ signal transduction in endothelial cells.

  16. Progression of Diabetic Capillary Occlusion: A Model.

    Directory of Open Access Journals (Sweden)

    Xiao Fu

    2016-06-01

    Full Text Available An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability of occlusion of surrounding capillaries. A retinal perifoveal vascular sector as well as a peripheral retinal capillary network and a deleted hexagonal capillary network are modelled using Compucell3D. The perifoveal modelling produces a pattern of spreading capillary loss with associated macular edema. In the peripheral network, spreading ischemia results from the progressive loss of the ladder capillaries which connect peripheral arterioles and venules. System blood flow was elevated in the macular model before a later reduction in flow in cases with progression of capillary occlusions. Simulations differing only in initial vascular network structures but with identical dynamics for oxygen, growth factors and vascular occlusions, replicate key clinical observations of ischemia and macular edema in the posterior pole and ischemia in the retinal periphery. The simulation results also seem consistent with quantitative data on macular blood flow and qualitative data on venous oxygenation. One computational model applied to distinct capillary networks in different retinal regions yielded results comparable to clinical observations in those regions.

  17. Cognitive behavioural therapy for MS-related fatigue explained: A longitudinal mediation analysis.

    Science.gov (United States)

    van den Akker, L E; Beckerman, H; Collette, E H; Knoop, H; Bleijenberg, G; Twisk, J W; Dekker, J; de Groot, V

    2018-03-01

    Cognitive behavioural therapy (CBT) effectively reduces fatigue directly following treatment in patients with Multiple Sclerosis (MS), but little is known about the process of change during and after CBT. Additional analysis of a randomized clinical trial. To investigate which psychological factors mediate change in fatigue during and after CBT. TREFAMS-CBT studied the effectiveness of a 16-week CBT treatment for MS-related fatigue. Ninety-one patients were randomized (44 to CBT, 47 to the MS-nurse consultations). Mediation during CBT treatment was studied using assessments at baseline, 8 and 16weeks. Mediation of the change in fatigue from post-treatment to follow-up was studied separately using assessments at 16, 26 and 52weeks. Proposed mediators were: changes in illness cognitions, general self-efficacy, coping styles, daytime sleepiness, concentration and physical activity, fear of disease progression, fatigue perceptions, depression and physical functioning. Mediators were separately analysed according to the product-of-coefficients approach. Confidence intervals were calculated with a bootstrap procedure. During treatment the decrease in fatigue brought on by CBT was mediated by improved fatigue perceptions, increased physical activity, less sleepiness, less helplessness, and improved physical functioning. Post-treatment increases in fatigue levels were mediated by reduced physical activity, reduced concentration, and increased sleepiness. These results suggests that focusing on improving fatigue perceptions, perceived physical activity, daytime sleepiness, helplessness, and physical functioning may further improve the effectiveness of CBT for fatigue in patients with MS. Maintenance of treatment effects may be obtained by focusing on improving physical activity, concentration and sleepiness. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Progression of brain atrophy in spinocerebellar ataxia type 2: a longitudinal tensor-based morphometry study.

    Science.gov (United States)

    Mascalchi, Mario; Diciotti, Stefano; Giannelli, Marco; Ginestroni, Andrea; Soricelli, Andrea; Nicolai, Emanuele; Aiello, Marco; Tessa, Carlo; Galli, Lucia; Dotti, Maria Teresa; Piacentini, Silvia; Salvatore, Elena; Toschi, Nicola

    2014-01-01

    Spinocerebellar ataxia type 2 (SCA2) is the second most frequent autosomal dominant inherited ataxia worldwide. We investigated the capability of magnetic resonance imaging (MRI) to track in vivo progression of brain atrophy in SCA2 by examining twice 10 SCA2 patients (mean interval 3.6 years) and 16 age- and gender-matched healthy controls (mean interval 3.3 years) on the same 1.5 T MRI scanner. We used T1-weighted images and tensor-based morphometry (TBM) to investigate volume changes and the Inherited Ataxia Clinical Rating Scale to assess the clinical deficit. With respect to controls, SCA2 patients showed significant higher atrophy rates in the midbrain, including substantia nigra, basis pontis, middle cerebellar peduncles and posterior medulla corresponding to the gracilis and cuneatus tracts and nuclei, cerebellar white matter (WM) and cortical gray matter (GM) in the inferior portions of the cerebellar hemisphers. No differences in WM or GM volume loss were observed in the supratentorial compartment. TBM findings did not correlate with modifications of the neurological deficit. In conclusion, MRI volumetry using TBM is capable of demonstrating the progression of pontocerebellar atrophy in SCA2, supporting a possible role of MRI as biomarker in future trials.

  19. Progression of brain atrophy in spinocerebellar ataxia type 2: a longitudinal tensor-based morphometry study.

    Directory of Open Access Journals (Sweden)

    Mario Mascalchi

    Full Text Available Spinocerebellar ataxia type 2 (SCA2 is the second most frequent autosomal dominant inherited ataxia worldwide. We investigated the capability of magnetic resonance imaging (MRI to track in vivo progression of brain atrophy in SCA2 by examining twice 10 SCA2 patients (mean interval 3.6 years and 16 age- and gender-matched healthy controls (mean interval 3.3 years on the same 1.5 T MRI scanner. We used T1-weighted images and tensor-based morphometry (TBM to investigate volume changes and the Inherited Ataxia Clinical Rating Scale to assess the clinical deficit. With respect to controls, SCA2 patients showed significant higher atrophy rates in the midbrain, including substantia nigra, basis pontis, middle cerebellar peduncles and posterior medulla corresponding to the gracilis and cuneatus tracts and nuclei, cerebellar white matter (WM and cortical gray matter (GM in the inferior portions of the cerebellar hemisphers. No differences in WM or GM volume loss were observed in the supratentorial compartment. TBM findings did not correlate with modifications of the neurological deficit. In conclusion, MRI volumetry using TBM is capable of demonstrating the progression of pontocerebellar atrophy in SCA2, supporting a possible role of MRI as biomarker in future trials.

  20. Tousled-like kinase-dependent phosphorylation of Rad9 plays a role in cell cycle progression and G2/M checkpoint exit.

    Directory of Open Access Journals (Sweden)

    Ryan Kelly

    Full Text Available Genomic integrity is preserved by checkpoints, which act to delay cell cycle progression in the presence of DNA damage or replication stress. The heterotrimeric Rad9-Rad1-Hus1 (9-1-1 complex is a PCNA-like clamp that is loaded onto DNA at structures resulting from damage and is important for initiating and maintaining the checkpoint response. Rad9 possesses a C-terminal tail that is phosphorylated constitutively and in response to cell cycle position and DNA damage. Previous studies have identified tousled-like kinase 1 (TLK1 as a kinase that may modify Rad9. Here we show that Rad9 is phosphorylated in a TLK-dependent manner in vitro and in vivo, and that T355 within the C-terminal tail is the primary targeted residue. Phosphorylation of Rad9 at T355 is quickly reduced upon exposure to ionizing radiation before returning to baseline later in the damage response. We also show that TLK1 and Rad9 interact constitutively, and that this interaction is enhanced in chromatin-bound Rad9 at later stages of the damage response. Furthermore, we demonstrate via siRNA-mediated depletion that TLK1 is required for progression through S-phase in normally cycling cells, and that cells lacking TLK1 display a prolonged G2/M arrest upon exposure to ionizing radiation, a phenotype that is mimicked by over-expression of a Rad9-T355A mutant. Given that TLK1 has previously been shown to be transiently inactivated upon phosphorylation by Chk1 in response to DNA damage, we propose that TLK1 and Chk1 act in concert to modulate the phosphorylation status of Rad9, which in turn serves to regulate the DNA damage response.

  1. Chk2 mediates RITA-induced apoptosis.

    Science.gov (United States)

    de Lange, J; Verlaan-de Vries, M; Teunisse, A F A S; Jochemsen, A G

    2012-06-01

    Reactivation of the p53 tumor-suppressor protein by small molecules like Nutlin-3 and RITA (reactivation of p53 and induction of tumor cell apoptosis) is a promising strategy for cancer therapy. The molecular mechanisms involved in the responses to RITA remain enigmatic. Several groups reported the induction of a p53-dependent DNA damage response. Furthermore, the existence of a p53-dependent S-phase checkpoint has been suggested, involving the checkpoint kinase Chk1. We have recently shown synergistic induction of apoptosis by RITA in combination with Nutlin-3, and we observed concomitant Chk2 phosphorylation. Therefore, we investigated whether Chk2 contributes to the cellular responses to RITA. Strikingly, the induction of apoptosis seemed entirely Chk2 dependent. Transcriptional activity of p53 in response to RITA required the presence of Chk2. A partial rescue of apoptosis observed in Noxa knockdown cells emphasized the relevance of p53 transcriptional activity for RITA-induced apoptosis. In addition, we observed an early p53- and Chk2-dependent block of DNA replication upon RITA treatment. Replicating cells seemed more prone to entering RITA-induced apoptosis. Furthermore, the RITA-induced DNA damage response, which was not a secondary effect of apoptosis induction, was strongly attenuated in cells lacking p53 or Chk2. In conclusion, we identified Chk2 as an essential mediator of the cellular responses to RITA.

  2. STAT5A-mediated NOX5-L expression promotes the proliferation and metastasis of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Dho, So Hee [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Ji Young; Lee, Kwang-Pyo; Kwon, Eun-Soo [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Lim, Jae Cheong [Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Chang-Jin [Department of Pathology, Soonchunhyang Medical Science Research Institute, Chonan 330-090 (Korea, Republic of); Jeong, Dongjun, E-mail: juny1024@sch.ac.kr [Department of Pathology, Soonchunhyang Medical Science Research Institute, Chonan 330-090 (Korea, Republic of); Kwon, Ki-Sun, E-mail: kwonks@kribb.re.kr [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon 305-333 (Korea, Republic of)

    2017-02-01

    NADPH oxidase (NOX) generates reactive oxygen species (ROS) and has been suggested to mediate cell proliferation in some cancers. Here, we show that an increase in the expression of NOX5 long form (NOX5-L) is critical for tumor progression in breast tumor tissues. Immunostaining of clinical samples indicated that NOX5 was overexpressed in 41.1% of breast ductal carcinoma samples. NOX5-L depletion consistently suppressed cell proliferation, invasion, and migration in vitro. Antibody-mediated neutralization of NOX5-L attenuated tumor progression in a mouse xenograft model. Promoter analysis revealed that NOX5-L expression is regulated by STAT5A in breast cancer cells. Based on our novel findings, we suggest that inhibition of NOX5-L may be a promising therapeutic strategy that exerts anti-cancer effects via the modulation of ROS-mediated cell signaling. - Highlights: • The ROS-generating protein, NOX5-L, determines cellular proliferation and metastasis in subset of breast tumor. • Tumor growth was attenuated by the treatment of anti-NOX5-L antibody in a xenograft model. • NOX5-L expression is transcriptionally regulated by STAT5A in breast cancer cells.

  3. Clinical inertia causing new or progression of diabetic retinopathy in type 2 diabetes: A retrospective cohort study.

    Science.gov (United States)

    Osataphan, Soravis; Chalermchai, Thep; Ngaosuwan, Kanchana

    2017-03-01

    Clinical inertia is a failure to intensify treatment according to evidence-based guidelines, and can have both short- and long-term adverse effects for type 2 diabetes (T2D). The aim of the present study was to demonstrate the effects of clinical inertia on glycemic control and diabetes-related complications. A retrospective cohort study was conducted at a university-based hospital in Thailand. Medical records were evaluated retrospectively from January 2010 to December 2014. Patients were classified into two groups: clinical inertia and non-inertia. Clinical inertia was defined as failure to initiate insulin within 3 months in patients with HbA1c ≥9 % who were already taking two oral antidiabetic agents. From 1206 records, 98 patients with mean HbA1c of 10.3 % were identified and enrolled in the study. The median follow-up time of these patients was 29.5 months and 68.4 % were classified into the clinical inertia group. The mean (± SD) HbA1c decrement in the clinical inertia and non-inertia groups was 0.82 ± 1.50 % and 3.02 ± 1.80 %, respectively, at 6 months (P inertia was associated with a significantly shorter median time to progression of diabetic retinopathy (DR); log rank test, P = 0.02 and a higher incidence of DR progression (10 vs 2.2 cases per 1000 person-months; P = 0.003). The adjusted incidence rate ratio for DR progression in the clinical inertia group was 4.92 (95 % confidence interval 1.11-21.77; P = 0.036). Being treated by general practitioners was the strongest risk factor associated with clinical inertia. Clinical inertia can cause persistently poor glycemic control and speed up the progression of DR in T2D. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  4. ERK1/2 mediates glucose-regulated POMC gene expression in hypothalamic neurons.

    Science.gov (United States)

    Zhang, Juan; Zhou, Yunting; Chen, Cheng; Yu, Feiyuan; Wang, Yun; Gu, Jiang; Ma, Lian; Ho, Guyu

    2015-04-01

    Hypothalamic glucose-sensing neurons regulate the expression of genes encoding feeding-related neuropetides POMC, AgRP, and NPY - the key components governing metabolic homeostasis. AMP-activated protein kinase (AMPK) is postulated to be the molecular mediator relaying glucose signals to regulate the expression of these neuropeptides. Whether other signaling mediator(s) plays a role is not clear. In this study, we investigated the role of ERK1/2 using primary hypothalamic neurons as the model system. The primary neurons were differentiated from hypothalamic progenitor cells. The differentiated neurons possessed the characteristic neuronal cell morphology and expressed neuronal post-mitotic markers as well as leptin-regulated orexigenic POMC and anorexigenic AgRP/NPY genes. Treatment of cells with glucose dose-dependently increased POMC and decreased AgRP/NPY expression with a concurrent suppression of AMPK phosphorylation. In addition, glucose treatment dose-dependently increased the ERK1/2 phosphorylation. Blockade of ERK1/2 activity with its specific inhibitor PD98059 partially (approximately 50%) abolished glucose-induced POMC expression, but had little effect on AgRP/NPY expression. Conversely, blockade of AMPK activity with its specific inhibitor produced a partial (approximately 50%) reversion of low-glucose-suppressed POMC expression, but almost completely blunted the low-glucose-induced AgRP/NPY expression. The results indicate that ERK1/2 mediated POMC but not AgRP/NPY expression. Confirming the in vitro findings, i.c.v. administration of PD98059 in rats similarly attenuated glucose-induced POMC expression in the hypothalamus, but again had little effect on AgRP/NPY expression. The results are indicative of a novel role of ERK1/2 in glucose-regulated POMC expression and offer new mechanistic insights into hypothalamic glucose sensing. © 2015 Society for Endocrinology.

  5. Progress Toward Containment of Poliovirus Type 2 - Worldwide, 2017.

    Science.gov (United States)

    Previsani, Nicoletta; Singh, Harpal; St Pierre, Jeanette; Boualam, Liliane; Fournier-Caruana, Jacqueline; Sutter, Roland W; Zaffran, Michel

    2017-06-23

    The Global Polio Eradication Initiative (GPEI) continues to make progress toward the eradication target. Only one of the three serotypes, wild poliovirus (WPV) type 1 (WPV1), is still circulating, and the numbers of cases and countries with endemic transmission are at record lows. With the certification of wild poliovirus type 2 (WPV2) eradication in 2015 and the global replacement of trivalent oral poliovirus vaccine (tOPV) containing Sabin poliovirus types 1, 2, and 3 with bivalent OPV containing only Sabin poliovirus types 1 and 3 during April-May 2016, poliovirus type 2 (PV2) is now an eradicated pathogen. However, in eight countries (Cameroon, Chad, Democratic Republic of Congo, Mozambique, Niger, Nigeria, Pakistan, and Syria), monovalent type 2 OPV (mOPV2) was authorized for large-scale outbreak control after tOPV withdrawal (1). Poliovirus containment, an evolving area of work that affects every country, aims to ensure that all PV2 specimens are safely contained to minimize the risk for reintroducing the virus into communities. This report summarizes the current status of poliovirus containment and progress since the last report (2), and outlines remaining challenges. Within 30 countries, 86 facilities have been designated by the relevant national authorities (usually the Ministry of Health) to become poliovirus-essential facilities for the continued storage or handling of PV2 materials; each country is responsible for ensuring that these facilities meet all biorisk management requirements.

  6. Synthesis and characterization of KCu3S2 microstructures through a composite-hydroxide mediated method

    International Nuclear Information System (INIS)

    Huang Linyong; Liu Jing; Zuo Zhiyuan; Liu Hong; Liu Duo; Wang Jiyang; Boughton, Robert I.

    2010-01-01

    Graphical abstract: Display Omitted Research highlights: → One of the ternary K-Cu-S compounds, KCu 3 S 2 microbelts and nanobelts were synthesized by using a composite-hydroxide mediated (CHM) approach with the absence of any organic surfactants. → X-ray powder diffraction results indicate that the belts possess a monoclinic KCu 3 S 2 crystalline structure. → Scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) were used to obtain detailed characterization of the microstructure and nanostructure of this material. → A growth mechanism of KCu 3 S 2 microbelts was proposed. → Measurements of the UV-vis absorption spectrum have been performed, and the results reveal that this material is semiconducting with a bandgap of 1.459 eV. - Abstract: KCu 3 S 2 microslabs and microbelts have been synthesized using a composite-hydroxide mediated (CHM) approach without the presence of an organic surfactant. X-ray powder diffraction results indicate that the belts possess a monoclinic KCu 3 S 2 crystalline structure. Scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) were used to obtain detailed characterization of the microstructure and nanostructure of this material. Measurements of the UV-vis absorption spectrum have been performed, and the results reveal that this material is semiconducting with a bandgap of 1.459 eV.

  7. Enzymic resolution of 2-substituted cyclohexanols through lipase-mediated esterification

    Czech Academy of Sciences Publication Activity Database

    Wimmer, Zdeněk; Skouridou, V.; Zarevúcka, Marie; Šaman, David; Kolisis, F. N.

    2004-01-01

    Roč. 15, - (2004), s. 3911-3917 ISSN 0957-4166 R&D Projects: GA MŠk ME 692 Institutional research plan: CEZ:AV0Z4055905 Keywords : enzymic resolution * 2-substituted cyclohexanols * lipase -mediated esterification Subject RIV: CC - Organic Chemistry Impact factor: 2.386, year: 2004

  8. The four and a half LIM domains 2 (FHL2) regulates ovarian granulosa cell tumor progression via controlling AKT1 transcription

    OpenAIRE

    Hua, G; He, C; Lv, X; Fan, L; Wang, C; Remmenga, S W; Rodabaugh, K J; Yang, L; Lele, S M; Yang, P; Karpf, A R; Davis, J S; Wang, C

    2016-01-01

    The four and a half LIM domains 2 (FHL2) has been shown to play important roles in the regulation of cell proliferation, survival, adhesion, motility and signal transduction in a cell type and tissue-dependent manner. However, the function of FHL2 in ovarian physiology and pathology is unclear. The aim of this study was to determine the role and functional mechanism of FHL2 in the progression of ovarian granulosa cell tumors (GCTs). Immunohistochemical analysis indicated that FHL2 was overexp...

  9. Dimerization of DOCK2 is essential for DOCK2-mediated Rac activation and lymphocyte migration.

    Directory of Open Access Journals (Sweden)

    Masao Terasawa

    Full Text Available The migratory properties of lymphocytes depend on DOCK2, an atypical Rac activator predominantly expressed in hematopoietic cells. Although DOCK2 does not contain the Dbl homology domain typically found in guanine nucleotide exchange factors (GEFs, DOCK2 mediates the GTP-GDP exchange reaction for Rac via its DOCK homology region (DHR-2 (also known as CZH2 or Docker domain. DOCK2 DHR-2 domain is composed of three lobes, and Rac binding site and catalytic center are generated entirely from lobes B and C. On the other hand, lobe A has been implicated in dimer formation, yet its physiological significance remains unknown. Here, we report that lobe A-mediated DOCK2 dimerization is crucial for Rac activation and lymphocyte migration. We found that unlike wild-type DOCK2, DOCK2 mutant lacking lobe A failed to restore motility and polarity when expressed in thymoma cells and primary T cells lacking endogenous expression of DOCK2. Similar results were obtained with the DOCK2 point mutant having a defect in dimerization. Deletion of lobe A from the DHR-2 domain did not affect Rac GEF activity in vitro. However, fluorescence resonance energy transfer analyses revealed that lobe A is required for DOCK2 to activate Rac effectively during cell migration. Our results thus indicate that DOCK2 dimerization is functionally important under the physiological condition where only limited amounts of DOCK2 and Rac are localized to the plasma membrane.

  10. 4T1 Murine Mammary Carcinoma Cells Enhance Macrophage-Mediated Innate Inflammatory Responses.

    Directory of Open Access Journals (Sweden)

    Laurence Madera

    Full Text Available Tumor progression and the immune response are intricately linked. While it is known that cancers alter macrophage inflammatory responses to promote tumor progression, little is known regarding how cancers affect macrophage-dependent innate host defense. In this study, murine bone-marrow-derived macrophages (BMDM were exposed to murine carcinoma-conditioned media prior to assessment of the macrophage inflammatory response. BMDMs exposed to 4T1 mammary carcinoma-conditioned medium demonstrated enhanced production of pro-inflammatory cytokines tumor necrosis factor α, interleukin-6, and CCL2 in response to lipopolysaccharide (LPS while production of interleukin-10 remained unchanged. The increased LPS-induced production of pro-inflammatory cytokines was transient and correlated with enhanced cytokine production in response to other Toll-like receptor agonists, including peptidoglycan and flagellin. In addition, 4T1-conditioned BMDMs exhibited strengthened LPS-induced nitric oxide production and enhanced phagocytosis of Escherichia coli. 4T1-mediated augmentation of macrophage responses to LPS was partially dependent on the NFκB pathway, macrophage-colony stimulating factor, and actin polymerization, as well as the presence of 4T1-secreted extracellular vesicles. Furthermore, peritoneal macrophages obtained from 4T1 tumor-bearing mice displayed enhanced pro-inflammatory cytokine production in response to LPS. These results suggest that uptake of 4T1-secreted factors and actin-mediated ingestion of 4T1-secreted exosomes by macrophages cause a transient enhancement of innate inflammatory responses. Mammary carcinoma-mediated regulation of innate immunity may have significant implications for our understanding of host defense and cancer progression.

  11. Lipopolysaccharide inhibits colonic biotin uptake via interference with membrane expression of its transporter: a role for a casein kinase 2-mediated pathway.

    Science.gov (United States)

    Lakhan, Ram; Said, Hamid M

    2017-04-01

    Biotin (vitamin B7), an essential micronutrient for normal cellular functions, is obtained from both dietary sources as well as gut microbiota. Absorption of biotin in both the small and large intestine is via a carrier-mediated process that involves the sodium-dependent multivitamin transporter (SMVT). Although different physiological and molecular aspects of intestinal biotin uptake have been delineated, nothing is known about the effect of LPS on the process. We addressed this issue using in vitro (human colonic epithelial NCM460 cells) and in vivo (mice) models of LPS exposure. Treating NCM460 cells with LPS was found to lead to a significant inhibition in carrier-mediated biotin uptake. Similarly, administration of LPS to mice led to a significant inhibition in biotin uptake by native colonic tissue. Although no changes in total cellular SMVT protein and mRNA levels were observed, LPS caused a decrease in the fraction of SMVT expressed at the cell surface. A role for casein kinase 2 (CK2) (whose activity was also inhibited by LPS) in mediating the endotoxin effects on biotin uptake and on membrane expression of SMVT was suggested by findings that specific inhibitors of CK2, as well as mutating the putative CK2 phosphorylation site (Thr 78 Ala) in the SMVT protein, led to inhibition in biotin uptake and membrane expression of SMVT. This study shows for the first time that LPS inhibits colonic biotin uptake via decreasing membrane expression of its transporter and that these effects likely involve a CK2-mediated pathway.

  12. Mediated electrochemical oxidation of organic wastes using a Co(III) mediator in a neutral electrolyte

    International Nuclear Information System (INIS)

    Balazs, G.B.; Lewis, P.R.

    1999-01-01

    An electrochemical cell with a Co(III) mediator and neutral pH anolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the cobalt mediator oxidizes the organics and insoluble radioactive species and is regenerated at the anode until all organics are converted to carbon dioxide and destroyed. The neutral electrolyte is non-corrosive, and thus extends the lifetime of the cell and its components. 2 figs

  13. Meeting carbon budgets - ensuring a low-carbon recovery. 2nd progress report to Parliament

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-06-15

    This is our second annual report to Parliament on progress reducing emissions and meeting carbon budgets as required under the Climate Change Act. It follows our first report to Parliament in October 2009. In this report, we consider latest trends in annual emissions relative to current budget limits, and we assess progress against our forward indicators which determine whether we are on track to meet future budgets. The UK's greenhouse gas emissions fell 8.6% from 2008 to 2009 with reductions of 9.7% in CO{sub 2} and 1.9% in non-CO{sub 2} emissions. But the reduction was largely due to the recession and other exogenous factors, which we estimate could reduce emissions by up to 6% over the first budget period. Underlying progress, which we assess by looking at the impact of specific policy measures, was limited relative to that needed to put the UK on the path towards the 2050 target, implying that a step change in the pace of emissions reduction is still required. We therefore reiterate our recommendation (set out in our first annual report) that outperformance in the first budget period should not be banked. We raise the issue of whether the second and third budgets should be tightened in the face of the easier short term challenge - for instance by moving to the Commmitee's 'Intended budget' even in the absence of a new global agreement. And we recommend that new policies are introduced to strengthen incentives for energy efficiency improvement, investment in low-carbon power generation, development of an electric car market, and introduction of new practices in agriculture. 56 figs., 8 tabs.

  14. Nrf2 mediates redox adaptations to exercise

    Directory of Open Access Journals (Sweden)

    Aaron J. Done

    2016-12-01

    Full Text Available The primary aim of this review is to summarize the current literature on the effects of acute exercise and regular exercise on nuclear factor erythroid 2-related factor 2 (Nrf2 activity and downstream targets of Nrf2 signaling. Nrf2 (encoded in humans by the NFE2L2 gene is the master regulator of antioxidant defenses, a transcription factor that regulates expression of more than 200 cytoprotective genes. Increasing evidence indicates that Nrf2 signaling plays a key role in how oxidative stress mediates the beneficial effects of exercise. Episodic increases in oxidative stress induced through bouts of acute exercise stimulate Nrf2 activation and when applied repeatedly, as with regular exercise, leads to upregulation of endogenous antioxidant defenses and overall greater ability to counteract the damaging effects of oxidative stress. The evidence of Nrf2 activation in response to exercise across variety of tissues may be an important mechanism of how exercise exerts its well-known systemic effects that are not limited to skeletal muscle and myocardium. Additionally there are emerging data that results from animal studies translate to humans.

  15. JAK2V617F mutation in chronic myeloid leukemia predicts early disease progression

    International Nuclear Information System (INIS)

    Pahore, Z.A.A.; Shamsi, T.S.; Taj, M.; Farzana, T.; Ansari, S.H.; Nadeem, M.; Ahmad, M.; Naz, A.

    2011-01-01

    Objective: To determine the association of JAK2V617F mutation along with BCR-ABL translocation or Philadelphia chromosome in chronic myeloid leukemia with early disease progression to advanced stages (accelerated phase or blast crisis) and poor outcome. Study Design: Case series. Place and Duration of Study: National Institute of Blood Diseases and Bone Marrow Transplantation, Karachi, from February 2008 to August 2009. Methodology: All the newly diagnosed cases of BCR-ABL or Philadelphia positive CML were tested for JAK2V617F mutation by Nested PCR. Demographic data, spleen size, hemoglobin levels, white blood cell and platelet counts were recorded. Independent sample t-test was used for age, haemoglobin level and spleen size. Fisher's exact test was applied to compare disease progression in JAK2V617F mutation positive and negative cases. Results: Out of 45 newly diagnosed cases of CML, 40 were in chronic phase, 01 in accelerated phase and 04 in blast crisis. JAK2V617F mutation was detected in 12 (26.7%) patients; 09 (22.5%) in chronic phase, none in accelerated phase and 03 (75%) in blast crisis. During a mean follow-up of 8 months, 03 patients in chronic phase transformed in blast crisis and 02 into accelerated phase. Overall 08 out of 11 (73%) JAK2V617F positive patients either had advanced disease or showed disease progression. Only 2 of 20 (10%) available patients, negative for the mutation, showed disease progression by transforming into blast crisis (p < 0.001). No statistically significant difference was seen in the age, spleen size, haemoglobin levels, white blood cells and platelets counts in JAK2V617F positive patients. Conclusion: JAK2V617F mutation was detected in 26.7% cases of chronic myeloid leukemia. A significant proportion of them showed early disease progression. (author)

  16. Second generation tyrosine kinase inhibitors prevent disease progression in high-risk (high CIP2A) chronic myeloid leukaemia patients.

    Science.gov (United States)

    Lucas, C M; Harris, R J; Holcroft, A K; Scott, L J; Carmell, N; McDonald, E; Polydoros, F; Clark, R E

    2015-07-01

    High cancerous inhibitor of PP2A (CIP2A) protein levels at diagnosis of chronic myeloid leukaemia (CML) are predictive of disease progression in imatinib-treated patients. It is not known whether this is true in patients treated with second generation tyrosine kinase inhibitors (2G TKI) from diagnosis, and whether 2G TKIs modulate the CIP2A pathway. Here, we show that patients with high diagnostic CIP2A levels who receive a 2G TKI do not progress, unlike those treated with imatinib (P=<0.0001). 2G TKIs induce more potent suppression of CIP2A and c-Myc than imatinib. The transcription factor E2F1 is elevated in high CIP2A patients and following 1 month of in vivo treatment 2G TKIs suppress E2F1 and reduce CIP2A; these effects are not seen with imatinib. Silencing of CIP2A, c-Myc or E2F1 in K562 cells or CML CD34+ cells reactivates PP2A leading to BCR-ABL suppression. CIP2A increases proliferation and this is only reduced by 2G TKIs. Patients with high CIP2A levels should be offered 2G TKI treatment in preference to imatinib. 2G TKIs disrupt the CIP2A/c-Myc/E2F1 positive feedback loop, leading to lower disease progression risk. The data supports the view that CIP2A inhibits PP2Ac, stabilising E2F1, creating a CIP2A/c-Myc/E2F1 positive feedback loop, which imatinib cannot overcome.

  17. Effect of bleomycin and irradiation on G2 progression

    International Nuclear Information System (INIS)

    Kimler, B.F.

    1979-01-01

    The interaction of bleomycin and x-irradiation on the induction of G 2 delay in Chinese hamster ovary cells was investigated utilizing the mitotic selection procedure for cell cycle analysis. Following the addition of BLM, the number of cells selected in mitosis remained at control level for a refractory period and then decreased. The location of the transition point, i.e., the age in G 2 at which cells become refractory to a progression blockade, was concentration-dependent, ranging from the S/G 2 boundary at low concentrations to the G 2 /M boundary at high concentrations. Depending upon the concentration of the drug used and the duration of exposure, the mitotic rate either decreased to zero or else leveled off at some intermediate value and then recovered to the control level. The duration of BLM-induced division delay was thus dependent upon the concentration used and the duration of exposure. When cells were treated with pulses of bleomycin (10-500 μg/ml) in addition to x-irradiation, the mitotic rate declined as with exposure to x-ray alone. However, the recovery from radiation-induced division delay and the subsequent reappearance of mitotic cells in the selection window was delayed until the cells had recovered from their BLM-induced division delay. This implies that, in contrast to the synergistic effects observed for cell lethality, BLM and radiation do not interact in the production of a progression blockade and the resultant division delay

  18. Glaucoma Monitoring in a Clinical Setting Glaucoma Progression Analysis vs Nonparametric Progression Analysis in the Groningen Longitudinal Glaucoma Study

    NARCIS (Netherlands)

    Wesselink, Christiaan; Heeg, Govert P.; Jansonius, Nomdo M.

    Objective: To compare prospectively 2 perimetric progression detection algorithms for glaucoma, the Early Manifest Glaucoma Trial algorithm (glaucoma progression analysis [GPA]) and a nonparametric algorithm applied to the mean deviation (MD) (nonparametric progression analysis [NPA]). Methods:

  19. Redox Mediators for Li-O2 Batteries: Status and Perspectives.

    Science.gov (United States)

    Park, Jin-Bum; Lee, Seon Hwa; Jung, Hun-Gi; Aurbach, Doron; Sun, Yang-Kook

    2018-01-01

    Li-O 2 batteries have received much attention due to their extremely large theoretical energy density. However, the high overpotentials required for charging Li-O 2 batteries lower their energy efficiency and degrade the electrolytes and carbon electrodes. This problem is one of the main obstacles in developing practical Li-O 2 batteries. To solve this problem, it is important to facilitate the oxidation of Li 2 O 2 upon charging by using effective electrocatalysis. Using solid catalysts is not too effective for oxidizing the electronically isolating Li-peroxide layers. In turn, for soluble catalysts, red-ox mediators (RMs) are homogeneously dissolved in the electrolyte solutions and can effectively oxidize all of the Li 2 O 2 precipitated during discharge. RMs can decompose solid Li 2 O 2 species no matter their size, morphology, or thickness and thus dramatically increase energy efficiency. However, some negative side effects, such as the shuttle reactions of RMs and deterioration of the Li-metal occur. Therefore, it is necessary to study the activity and stability of RMs in Li-O 2 batteries in detail. Herein, recent studies related to redox mediators are reviewed and the mechanisms of redox reactions are illustrated. The development opportunities of RMs for this important battery technology are discussed and future directions are suggested. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Microglia P2Y13 Receptors Prevent Astrocyte Proliferation Mediated by P2Y1 Receptors

    Directory of Open Access Journals (Sweden)

    Clara Quintas

    2018-05-01

    Full Text Available Cerebral inflammation is a common feature of several neurodegenerative diseases that requires a fine interplay between astrocytes and microglia to acquire appropriate phenotypes for an efficient response to neuronal damage. During brain inflammation, ATP is massively released into the extracellular medium and converted into ADP. Both nucleotides acting on P2 receptors, modulate astrogliosis through mechanisms involving microglia-astrocytes communication. In previous studies, primary cultures of astrocytes and co-cultures of astrocytes and microglia were used to investigate the influence of microglia on astroglial proliferation induced by ADPβS, a stable ADP analog. In astrocyte cultures, ADPβS increased cell proliferation through activation of P2Y1 and P2Y12 receptors, an effect abolished in co-cultures (of astrocytes with ∼12.5% microglia. The possibility that the loss of the ADPβS-mediated effect could have been caused by a microglia-induced degradation of ADPβS or by a preferential microglial localization of P2Y1 or P2Y12 receptors was excluded. Since ADPβS also activates P2Y13 receptors, the contribution of microglial P2Y13 receptors to prevent the proliferative effect of ADPβS in co-cultures was investigated. The results obtained indicate that P2Y13 receptors are low expressed in astrocytes and mainly expressed in microglia. Furthermore, in co-cultures, ADPβS induced astroglial proliferation in the presence of the selective P2Y13 antagonist MRS 2211 (3 μM and of the selective P2Y12 antagonist AR-C66096 (0.1 μM, suggesting that activation of microglial P2Y12 and P2Y13 receptors may induce the release of messengers that inhibit astroglial proliferation mediated by P2Y1,12 receptors. In this microglia-astrocyte paracrine communication, P2Y12 receptors exert opposite effects in astroglial proliferation as a result of its cellular localization: cooperating in astrocytes with P2Y1 receptors to directly stimulate proliferation and in

  1. A Sm(II)-mediated cascade approach to Dibenzoindolo[3,2-b]carbazoles : synthesis and evaluation

    OpenAIRE

    Levick, Matthew T.; Grace, Iain; Dai, Sheng-Yao; Kasch, Nicholas; Muryn, Christopher; Lambert, Colin; Turner, Michael L.; Procter, David J.

    2014-01-01

    Previously unstudied dibenzoindolo[3,2-b]carbazoles have been prepared by two-directional, phase tag-assisted synthesis utilizing a connective-Pummerer cyclization and a SmI2-mediated tag cleavage-cyclization cascade. The use of a phase tag allows us to exploit unstable intermediates that would otherwise need to be avoided. The novel materials were characterized by X-ray, cyclic voltammetry, UV-vis spectroscopy, TGA, and DSC. Preliminary studies on the performance of OFET devices are also des...

  2. Itk tyrosine kinase substrate docking is mediated by a nonclassical SH2 domain surface of PLCgamma1.

    Science.gov (United States)

    Min, Lie; Joseph, Raji E; Fulton, D Bruce; Andreotti, Amy H

    2009-12-15

    Interleukin-2 tyrosine kinase (Itk) is a Tec family tyrosine kinase that mediates signaling processes after T cell receptor engagement. Activation of Itk requires recruitment to the membrane via its pleckstrin homology domain, phosphorylation of Itk by the Src kinase, Lck, and binding of Itk to the SLP-76/LAT adapter complex. After activation, Itk phosphorylates and activates phospholipase C-gamma1 (PLC-gamma1), leading to production of two second messengers, DAG and IP(3). We have previously shown that phosphorylation of PLC-gamma1 by Itk requires a direct, phosphotyrosine-independent interaction between the Src homology 2 (SH2) domain of PLC-gamma1 and the kinase domain of Itk. We now define this docking interface using a combination of mutagenesis and NMR spectroscopy and show that disruption of the Itk/PLCgamma1 docking interaction attenuates T cell signaling. The binding surface on PLCgamma1 that mediates recognition by Itk highlights a nonclassical binding activity of the well-studied SH2 domain providing further evidence that SH2 domains participate in important signaling interactions beyond recognition of phosphotyrosine.

  3. Immune mediated liver failure.

    Science.gov (United States)

    Wang, Xiaojing; Ning, Qin

    2014-01-01

    Liver failure is a clinical syndrome of various etiologies, manifesting as jaundice, encephalopathy, coagulopathy and circulatory dysfunction, which result in subsequent multiorgan failure. Clinically, liver failure is classified into four categories: acute, subacute, acute-on-chronic and chronic liver failure. Massive hepatocyte death is considered to be the core event in the development of liver failure, which occurs when the extent of hepatocyte death is beyond the liver regenerative capacity. Direct damage and immune-mediated liver injury are two major factors involved in this process. Increasing evidence has suggested the essential role of immune-mediated liver injury in the pathogenesis of liver failure. Here, we review the evolved concepts concerning the mechanisms of immune-mediated liver injury in liver failure from human and animal studies. Both innate and adaptive immunity, especially the interaction of various immune cells and molecules as well as death receptor signaling system are discussed. In addition, we highlight the concept of "immune coagulation", which has been shown to be related to the disease progression and liver injury exacerbation in HBV related acute-on-chronic liver failure.

  4. Lipoxin A₄ prevents the progression of de novo and established endometriosis in a mouse model by attenuating prostaglandin E₂ production and estrogen signaling.

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    Full Text Available Endometriosis, a leading cause of pelvic pain and infertility, is characterized by ectopic growth of endometrial-like tissue and affects approximately 176 million women worldwide. The pathophysiology involves inflammatory and angiogenic mediators as well as estrogen-mediated signaling and novel, improved therapeutics targeting these pathways are necessary. The aim of this study was to investigate mechanisms leading to the establishment and progression of endometriosis as well as the effect of local treatment with Lipoxin A4 (LXA₄, an anti-inflammatory and pro-resolving lipid mediator that we have recently characterized as an estrogen receptor agonist. LXA₄ treatment significantly reduced endometriotic lesion size and downregulated the pro-inflammatory cytokines IL-1β and IL-6, as well as the angiogenic factor VEGF. LXA₄ also inhibited COX-2 expression in both endometriotic lesions and peritoneal fluid cells, resulting in attenuated peritoneal fluid Prostaglandin E₂ (PGE₂ levels. Besides its anti-inflammatory effects, LXA₄ differentially regulated the expression and activity of the matrix remodeling enzyme matrix metalloproteinase (MMP-9 as well as modulating transforming growth factor (TGF-β isoform expression within endometriotic lesions and in peritoneal fluid cells. We also report for first time that LXA₄ attenuated aromatase expression, estrogen signaling and estrogen-regulated genes implicated in cellular proliferation in a mouse model of disease. These effects were observed both when LXA₄ was administered prior to disease induction and during established disease. Collectively, our findings highlight potential targets for the treatment of endometriosis and suggest a pleotropic effect of LXA₄ on disease progression, by attenuating pro-inflammatory and angiogenic mediators, matrix remodeling enzymes, estrogen metabolism and signaling, as well as downstream proliferative pathways.

  5. Improved confidence in performing nutrition and physical activity behaviours mediates behavioural change in young adults: Mediation results of a randomised controlled mHealth intervention.

    Science.gov (United States)

    Partridge, Stephanie R; McGeechan, Kevin; Bauman, Adrian; Phongsavan, Philayrath; Allman-Farinelli, Margaret

    2017-01-01

    The burden of weight gain disproportionally affects young adults. Understanding the underlying behavioural mechanisms of change in mHealth nutrition and physical activity interventions designed for young adults is important for enhancing and translating effective interventions. First, we hypothesised that knowledge, self-efficacy and stage-of-change for nutrition and physical activity behaviours would improve, and second, that self-efficacy changes in nutrition and physical activity behaviours mediate the behaviour changes observed in an mHealth RCT for prevention of weight gain. Young adults, aged 18-35 years at risk of weight gain (n = 250) were randomly assigned to an mHealth-program, TXT2BFiT, consisting of a three-month intensive phase and six-month maintenance phase or to a control group. Self-reported online surveys at baseline, three- and nine-months assessed nutrition and physical activity behaviours, knowledge, self-efficacy and stage-of-change. The mediating effect of self-efficacy was assessed in multiple PROCESS macro-models for three- and nine-month nutrition and physical activity behaviour change. Young adults randomised to the intervention increased and maintained knowledge of fruit requirements (P = 0.029) compared to controls. Intervention participants' fruit and takeaway behaviours improved to meet recommendations at nine months, with a greater proportion progressing to action or maintenance stage-of-change (P behaviours did not meet recommendations, thereby halting progress to action or maintenance stage-of-change. Indirect effects of improved nutrition and physical activity behaviours at three- and nine-months in the intervention group were explained by changes in self-efficacy, accounting for 8%-37% of the total effect. This provides insights into how the mHealth intervention achieved part of its effects and the importance of improving self-efficacy to facilitate improved eating and physical activity behaviours in young adults

  6. E2F1-Mediated Induction of NFYB Attenuates Apoptosis via Joint Regulation of a Pro-Survival Transcriptional Program.

    Directory of Open Access Journals (Sweden)

    Xiaolei Jiang

    Full Text Available The E2F1 transcription factor regulates cell proliferation and apoptosis through the control of a considerable variety of target genes. Previous work has detailed the role of other transcription factors in mediating the specificity of E2F function. Here we identify the NF-YB transcription factor as a novel direct E2F1 target. Genome-wide expression analysis of the effects of NFYB knockdown on E2F1-mediated transcription identified a large group of genes that are co-regulated by E2F1 and NFYB. We also provide evidence that knockdown of NFYB enhances E2F1-induced apoptosis, suggesting a pro-survival function of the NFYB/E2F1 joint transcriptional program. Bioinformatic analysis suggests that deregulation of these NFY-dependent E2F1 target genes might play a role in sarcomagenesis as well as drug resistance.

  7. Biomarkers for disease progression and AAV therapeutic efficacy in feline Sandhoff disease

    Science.gov (United States)

    Bradbury, Allison M; Gray-Edwards, Heather L; Shirley, Jamie L; McCurdy, Victoria J; Colaco, Alexandria N; Randle, Ashley N; Christopherson, Pete W; Bird, Allison C; Johnson, Aime K; Wilson, Diane U; Hudson, Judith A; De Pompa, Nicholas L; Sorjonen, Donald C; Brunson, Brandon L; Jeyakumar, Mylvaganam; Platt, Frances M; Baker, Henry J; Cox, Nancy R; Sena-Esteves, Miguel; Martin, Douglas R

    2014-01-01

    The GM2 gangliosidoses, Tay-Sachs disease (TSD) and Sandhoff disease (SD), are progressive neurodegenerative disorders that are caused by a mutation in the enzyme β-N-acetylhexosaminidase (Hex). Due to the recent emergence of novel experimental treatments, biomarker development has become particularly relevant in GM2 gangliosidosis as an objective means to measure therapeutic efficacy. Here we describe blood, cerebrospinal fluid (CSF), magnetic resonance imaging (MRI), and electrodiagnostic methods for evaluating disease progression in the feline SD model and application of these approaches to assess AAV-mediated gene therapy. SD cats were treated by intracranial injections of the thalami combined with either the deep cerebellar nuclei or a single lateral ventricle using AAVrh8 vectors encoding feline Hex. Significantly altered in untreated SD cats, blood and CSF based biomarkers were normalized after AAV gene therapy. Also reduced after treatment were expansion of the lysosomal compartment in peripheral blood mononuclear cells and elevated activity of secondary lysosomal enzymes. MRI changes characteristic of the gangliosidoses were documented in SD cats and normalized after AAV gene therapy. The minimally invasive biomarkers reported herein should be useful to assess disease progression of untreated GM2 patients and those in future clinical trials. PMID:25284324

  8. MnO2 nanosheet mediated "DD-A" FRET binary probes for sensitive detection of intracellular mRNA.

    Science.gov (United States)

    Ou, Min; Huang, Jin; Yang, Xiaohai; Quan, Ke; Yang, Yanjing; Xie, Nuli; Wang, Kemin

    2017-01-01

    The donor donor-acceptor (DD-A) FRET model has proven to have a higher FRET efficiency than donor-acceptor acceptor (D-AA), donor-acceptor (D-A), and donor donor-acceptor acceptor (DD-AA) FRET models. The in-tube and in-cell experiments clearly demonstrate that the "DD-A" FRET binary probes can indeed increase the FRET efficiency and provide higher imaging contrast, which is about one order of magnitude higher than the ordinary "D-A" model. Furthermore, MnO 2 nanosheets were employed to deliver these probes into living cells for intracellular TK1 mRNA detection because they can adsorb ssDNA probes, penetrate across the cell membrane and be reduced to Mn 2+ ions by intracellular GSH. The results indicated that the MnO 2 nanosheet mediated "DD-A" FRET binary probes are capable of sensitive and selective sensing gene expression and chemical-stimuli changes in gene expression levels in cancer cells. We believe that the MnO 2 nanosheet mediated "DD-A" FRET binary probes have the potential as a simple but powerful tool for basic research and clinical diagnosis.

  9. The role of Toll-like receptor 2 in inflammation and fibrosis during progressive renal injury.

    Directory of Open Access Journals (Sweden)

    Jaklien C Leemans

    Full Text Available Tissue fibrosis and chronic inflammation are common causes of progressive organ damage, including progressive renal disease, leading to loss of physiological functions. Recently, it was shown that Toll-like receptor 2 (TLR2 is expressed in the kidney and activated by endogenous danger signals. The expression and function of TLR2 during renal fibrosis and chronic inflammation has however not yet been elucidated. Therefore, we studied TLR2 expression in human and murine progressive renal diseases and explored its role by inducing obstructive nephropathy in TLR2(-/- or TLR2(+/+ mice. We found that TLR2 is markedly upregulated on tubular and tubulointerstitial cells in patients with chronic renal injury. In mice with obstructive nephropathy, renal injury was associated with a marked upregulation and change in distribution of TLR2 and upregulation of murine TLR2 danger ligands Gp96, biglycan, and HMGB1. Notably, TLR2 enhanced inflammation as reflected by a significantly reduced influx of neutrophils and production of chemokines and TGF-beta in kidneys of TLR2(-/- mice compared with TLR2(+/+ animals. Although, the obstructed kidneys of TLR2(-/- mice had less interstitial myofibroblasts in the later phase of obstructive nephropathy, tubular injury and renal matrix accumulation was similar in both mouse strains. Together, these data demonstrate that TLR2 can initiate renal inflammation during progressive renal injury and that the absence of TLR2 does not affect the development of chronic renal injury and fibrosis.

  10. γ-Oryzanol suppresses COX-2 expression by inhibiting reactive oxygen species-mediated Erk1/2 and Egr-1 signaling in LPS-stimulated RAW264.7 macrophages.

    Science.gov (United States)

    Shin, Soon Young; Kim, Heon-Woong; Jang, Hwan-Hee; Hwang, Yu-Jin; Choe, Jeong-Sook; Kim, Jung-Bong; Lim, Yoongho; Lee, Young Han

    2017-09-16

    Cyclooxygenase (COX)-2 produces prostanoids, which contribute to inflammatory responses. Nuclear factor (NF)-κB is a key transcription factor mediating COX-2 expression. γ-Oryzanol is an active component in rice bran oil, which inhibits lipopolysaccharide (LPS)-mediated COX-2 expression by inhibiting NF-κB. However, the inhibition of COX-2 expression by γ-oryzanol independently of NF-κB is poorly understood. We found that LPS upregulated Egr-1 expression at the transcriptional level. Forced expression of Egr-1 trans-activated the Cox-2 promoter independently of NF-κB. In contrast, silencing of Egr-1 abrogated LPS-mediated COX-2 expression. LPS produced reactive oxygen species (ROS), which, in turn, induced Egr-1 expression via the Erk1/2 MAPK pathway. ROS scavenging activity of γ-oryzanol suppressed Egr-1 expression by inhibiting the Erk1/2 MAPK pathway. Our results suggest that γ-oryzanol inhibits LPS-mediated COX-2 expression by suppressing Erk1/2-mediated Egr-1 expression. This study supports that γ-oryzanol may be useful for ameliorating LPS-mediated inflammatory responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. In brown adipocytes, adrenergically induced β{sub 1}-/β{sub 3}-(G{sub s})-, α{sub 2}-(G{sub i})- and α{sub 1}-(G{sub q})-signalling to Erk1/2 activation is not mediated via EGF receptor transactivation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanling; Fälting, Johanna M.; Mattsson, Charlotte L.; Holmström, Therése E.; Nedergaard, Jan, E-mail: jan@metabol.su.se

    2013-10-15

    Brown adipose tissue is unusual in that the neurotransmitter norepinephrine influences cell destiny in ways generally associated with effects of classical growth factors: regulation of cell proliferation, of apoptosis, and progression of differentiation. The norepinephrine effects are mediated through G-protein-coupled receptors; further mediation of such stimulation to e.g. Erk1/2 activation is in cell biology in general accepted to occur through transactivation of the EGF receptor (by external or internal pathways). We have examined here the significance of such transactivation in brown adipocytes. Stimulation of mature brown adipocytes with cirazoline (α{sub 1}-adrenoceptor coupled via G{sub q}), clonidine (α{sub 2} via G{sub i}) or CL316243 (β{sub 3} via G{sub s}) or via β{sub 1}-receptors significantly activated Erk1/2. Pretreatment with the EGF receptor kinase inhibitor AG1478 had, remarkably, no significant effect on Erk1/2 activation induced by any of these adrenergic agonists (although it fully abolished EGF-induced Erk1/2 activation), demonstrating absence of EGF receptor-mediated transactivation. Results with brown preadipocytes (cells in more proliferative states) were not qualitatively different. Joint stimulation of all adrenoceptors with norepinephrine did not result in synergism on Erk1/2 activation. AG1478 action on EGF-stimulated Erk1/2 phosphorylation showed a sharp concentration–response relationship (IC{sub 50} 0.3 µM); a minor apparent effect of AG1478 on norepinephrine-stimulated Erk1/2 phosphorylation showed nonspecific kinetics, implying caution in interpretation of partial effects of AG1478 as reported in other systems. Transactivation of the EGF receptor is clearly not a universal prerequisite for coupling of G-protein coupled receptors to Erk1/2 signalling cascades. - Highlights: • In brown adipocytes, norepinephrine regulates proliferation, apoptosis, differentiation. • EGF receptor transactivation is supposed to mediate GPCR

  12. Genetic variants in nuclear-encoded mitochondrial genes influence AIDS progression.

    Directory of Open Access Journals (Sweden)

    Sher L Hendrickson

    2010-09-01

    Full Text Available The human mitochondrial genome includes only 13 coding genes while nuclear-encoded genes account for 99% of proteins responsible for mitochondrial morphology, redox regulation, and energetics. Mitochondrial pathogenesis occurs in HIV patients and genetically, mitochondrial DNA haplogroups with presumed functional differences have been associated with differential AIDS progression.Here we explore whether single nucleotide polymorphisms (SNPs within 904 of the estimated 1,500 genes that specify nuclear-encoded mitochondrial proteins (NEMPs influence AIDS progression among HIV-1 infected patients. We examined NEMPs for association with the rate of AIDS progression using genotypes generated by an Affymetrix 6.0 genotyping array of 1,455 European American patients from five US AIDS cohorts. Successfully genotyped SNPs gave 50% or better haplotype coverage for 679 of known NEMP genes. With a Bonferroni adjustment for the number of genes and tests examined, multiple SNPs within two NEMP genes showed significant association with AIDS progression: acyl-CoA synthetase medium-chain family member 4 (ACSM4 on chromosome 12 and peroxisomal D3,D2-enoyl-CoA isomerase (PECI on chromosome 6.Our previous studies on mitochondrial DNA showed that European haplogroups with presumed functional differences were associated with AIDS progression and HAART mediated adverse events. The modest influences of nuclear-encoded mitochondrial genes found in the current study add support to the idea that mitochondrial function plays a role in AIDS pathogenesis.

  13. Prevalence of Gestational Diabetes and Risk of Progression to Type 2 Diabetes: a Global Perspective.

    Science.gov (United States)

    Zhu, Yeyi; Zhang, Cuilin

    2016-01-01

    Despite the increasing epidemic of diabetes mellitus affecting populations at different life stages, the global burden of gestational diabetes mellitus (GDM) is not well assessed. Systematically synthesized data on global prevalence estimates of GDM are lacking, particularly among developing countries. The hyperglycemic intrauterine environment as exemplified in pregnancies complicated by GDM might not only reflect but also fuel the epidemic of type 2 diabetes mellitus (T2DM). We comprehensively reviewed available data in the past decade in an attempt to estimate the contemporary global prevalence of GDM by country and region. We reviewed the risk of progression from GDM to T2DM as well. Synthesized data demonstrate wide variations in both prevalence estimates of GDM and the risk of progression from GDM to T2DM. Direct comparisons of GDM burden across countries or regions are challenging given the great heterogeneity in screening approaches, diagnostic criteria, and underlying population characteristics. In this regard, collaborative efforts to estimate global GDM prevalence would be a large but important leap forward. Such efforts may have substantial public health implications in terms of informing health policy makers and healthcare providers for disease burden and for developing more targeted and effective diabetes prevention and management strategies globally.

  14. Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux.

    Science.gov (United States)

    Ligaba, Ayalew; Maron, Lyza; Shaff, Jon; Kochian, Leon; Piñeros, Miguel

    2012-07-01

    Root efflux of organic acid anions underlies a major mechanism of plant aluminium (Al) tolerance on acid soils. This efflux is mediated by transporters of the Al-activated malate transporter (ALMT) or the multi-drug and toxin extrusion (MATE) families. ZmALMT2 was previously suggested to be involved in Al tolerance based on joint association-linkage mapping for maize Al tolerance. In the current study, we functionally characterized ZmALMT2 by heterologously expressing it in Xenopus laevis oocytes and transgenic Arabidopsis. In oocytes, ZmALMT2 mediated an Al-independent electrogenic transport product of organic and inorganic anion efflux. Ectopic overexpression of ZmALMT2 in an Al-hypersensitive Arabidopsis KO/KD line lacking the Al tolerance genes, AtALMT1 and AtMATE, resulted in Al-independent constitutive root malate efflux which partially restored the Al tolerance phenotype. The lack of correlation between ZmALMT2 expression and Al tolerance (e.g., expression not localized to the root tip, not up-regulated by Al, and higher in sensitive versus tolerance maize lines) also led us to question ZmALMT2's role in Al tolerance. The functional properties of the ZmALMT2 transporter presented here, along with the gene expression data, suggest that ZmALMT2 is not involved in maize Al tolerance but, rather, may play a role in mineral nutrient acquisition and transport. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  15. NK cell cytotoxicity mediated by 2B4 and NTB-A is dependent on SAP acting downstream of receptor phosphorylation

    Directory of Open Access Journals (Sweden)

    Stephan eMeinke

    2013-01-01

    Full Text Available 2B4 (CD244 and NK-T-B-antigen (NTB-A, CD352 are activating receptors on human NK cells and belong to the family of SLAM-related receptors. Engagement of these receptors leads to phosphorylation of their cytoplasmic tails and recruitment of the adapter proteins SAP and EAT-2. X-linked lymphoproliferative syndrome (XLP is a severe immunodeficiency that results from mutations in the SAP gene. 2B4 and NTB-A-mediated cytotoxicity are abrogated in XLP NK cells. To elucidate the molecular basis for this defect we analyzed early signaling events in SAP knockdown cells. Similar to XLP NK cells, knockdown of SAP in primary human NK cells leads to a reduction of 2B4 and NTB-A-mediated cytotoxicity. We found that early signaling events such as raft recruitment and receptor phosphorylation are not affected by the absence of SAP, indicating the defect in the absence of SAP is downstream of these events. In addition, knockdown of EAT-2 does not impair 2B4 or NTB-A-mediated cytotoxicity. Surprisingly, EAT-2 recruitment to both receptors is abrogated in the absence of SAP, revealing a novel cooperativity between these adapters.

  16. Insights into CYP2B6-mediated drug–drug interactions

    Directory of Open Access Journals (Sweden)

    William D. Hedrich

    2016-09-01

    Full Text Available Mounting evidence demonstrates that CYP2B6 plays a much larger role in human drug metabolism than was previously believed. The discovery of multiple important substrates of CYP2B6 as well as polymorphic differences has sparked increasing interest in the genetic and xenobiotic factors contributing to the expression and function of the enzyme. The expression of CYP2B6 is regulated primarily by the xenobiotic receptors constitutive androstane receptor (CAR and pregnane X receptor (PXR in the liver. In addition to CYP2B6, these receptors also mediate the inductive expression of CYP3A4, and a number of important phase II enzymes and drug transporters. CYP2B6 has been demonstrated to play a role in the metabolism of 2%–10% of clinically used drugs including widely used antineoplastic agents cyclophosphamide and ifosfamide, anesthetics propofol and ketamine, synthetic opioids pethidine and methadone, and the antiretrovirals nevirapine and efavirenz, among others. Significant inter-individual variability in the expression and function of the human CYP2B6 gene exists and can result in altered clinical outcomes in patients receiving treatment with CYP2B6-substrate drugs. These variances arise from a number of sources including genetic polymorphism, and xenobiotic intervention. In this review, we will provide an overview of the key players in CYP2B6 expression and function and highlight recent advances made in assessing clinical ramifications of important CYP2B6-mediated drug–drug interactions.

  17. A mutation in synaptojanin 2 causes progressive hearing loss in the ENU-mutagenised mouse strain Mozart.

    Science.gov (United States)

    Manji, Shehnaaz S M; Williams, Louise H; Miller, Kerry A; Ooms, Lisa M; Bahlo, Melanie; Mitchell, Christina A; Dahl, Hans-Henrik M

    2011-03-15

    Hearing impairment is the most common sensory impairment in humans, affecting 1:1,000 births. We have identified an ENU generated mouse mutant, Mozart, with recessively inherited, non-syndromic progressive hearing loss caused by a mutation in the synaptojanin 2 (Synj2), a central regulatory enzyme in the phosphoinositide-signaling cascade. The hearing loss in Mozart is caused by a p.Asn538Lys mutation in the catalytic domain of the inositol polyphosphate 5-phosphatase synaptojanin 2. Within the cochlea, Synj2 mRNA expression was detected in the inner and outer hair cells but not in the spiral ganglion. Synj2(N538K) mutant protein showed loss of lipid phosphatase activity, and was unable to degrade phosphoinositide signaling molecules. Mutant Mozart mice (Synj2(N538K/N538K)) exhibited progressive hearing loss and showed signs of hair cell degeneration as early as two weeks of age, with fusion of stereocilia followed by complete loss of hair bundles and ultimately loss of hair cells. No changes in vestibular or neurological function, or other clinical or behavioral manifestations were apparent. Phosphoinositides are membrane associated signaling molecules that regulate many cellular processes including cell death, proliferation, actin polymerization and ion channel activity. These results reveal Synj2 as a critical regulator of hair cell survival that is essential for hair cell maintenance and hearing function.

  18. Causal mediation analysis with a binary outcome and multiple continuous or ordinal mediators: Simulations and application to an alcohol intervention.

    Science.gov (United States)

    Nguyen, Trang Quynh; Webb-Vargas, Yenny; Koning, Ina M; Stuart, Elizabeth A

    We investigate a method to estimate the combined effect of multiple continuous/ordinal mediators on a binary outcome: 1) fit a structural equation model with probit link for the outcome and identity/probit link for continuous/ordinal mediators, 2) predict potential outcome probabilities, and 3) compute natural direct and indirect effects. Step 2 involves rescaling the latent continuous variable underlying the outcome to address residual mediator variance/covariance. We evaluate the estimation of risk-difference- and risk-ratio-based effects (RDs, RRs) using the ML, WLSMV and Bayes estimators in Mplus. Across most variations in path-coefficient and mediator-residual-correlation signs and strengths, and confounding situations investigated, the method performs well with all estimators, but favors ML/WLSMV for RDs with continuous mediators, and Bayes for RRs with ordinal mediators. Bayes outperforms WLSMV/ML regardless of mediator type when estimating RRs with small potential outcome probabilities and in two other special cases. An adolescent alcohol prevention study is used for illustration.

  19. Nrf2 mediates redox adaptation in NOX4-overexpressed non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qipeng; Yao, Bei; Li, Ning; Ma, Lei; Deng, Yanchao; Yang, Yang; Zeng, Cheng; Yang, Zhicheng [Department of Clinical Pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Liu, Bing, E-mail: liubing520@gdpu.edu.cn [Department of Clinical Pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006 (China)

    2017-03-15

    The redox adaptation mechanisms in cancer cells are very complex and remain largely unclear. Our previous studies have confirmed that NADPH oxidase 4 (NOX4) is abundantly expressed in non-small cell lung cancer (NSCLC) and confers apoptosis resistance on NSCLC cells. However, the comprehensive mechanisms for NOX4-mediated oxidative resistance of cancer cells remain still undentified. The present study found that NOX4-derived H{sub 2}O{sub 2} enhanced the nuclear factor erythroid 2-related factor 2 (Nrf2) stability via disruption of redox-dependent proteasomal degradation and stimulated its activity through activation of PI3K signaling. Specifically, the results showed that ectopic NOX4 expression did not induce apoptosis of A549 cells; however, inhibition of Nrf2 resulted in obvious apoptotic death of NOX4-overexpressed A549 cells, accompanied by a significant increase in H{sub 2}O{sub 2} level and decrease in GSH content. Besides, inhibition of Nrf2 could suppress cell growth and efficiently reverse the enhancement effect of NOX4 on cell growth. The in vivo data confirmed that inhibition of Nrf2 could interfere apoptosis resistance in NOX4-overexpressed A549 tumors and led to cell growth inhibition. In conclusion, these results reveal that Nrf2 is critically involved in redox adaptation regulation in NOX4-overexpressed NSCLC cells. Therefore, NOX4 and Nrf2 may be promising combination targets against malignant progression of NSCLC. - Highlights: • NOX4-derived H{sub 2}O{sub 2} upregulates Nrf2 expression and activity in NSCLC. • Nrf2 confers apoptosis resistance in NOX4-overexpressed NSCLC cells. • Inhibition of Nrf2 reverses the enhancement effect of NOX4 on cell growth.

  20. Recent progresses on AI-2 bacterial quorum sensing inhibitors.

    Science.gov (United States)

    Zhu, Peng; Li, Minyong

    2012-01-01

    Quorum sensing (QS) is a communication procedure that predominates gene expression in response to cell density and fluctuations in the neighboring environment as a result of discerning molecules termed autoinducers (AIs). It has been embroiled that QS can govern bacterial behaviors such as the secretion of virulence factors, biofilm formation, bioluminescence production, conjugation, sporulation and swarming motility. Autoinducer 2 (AI-2), a QS signaling molecule brought up to be involved in interspecies communication, exists in both gram-negative and -positive bacteria. Therefore, novel approaches to interrupt AI-2 quorum sensing are being recognized as next generation antimicrobials. In the present review article, we summarized recent progresses on AI-2 bacterial quorum sensing inhibitors and discussed their potential as the antibacterial agents.

  1. Hollow TiO2 modified reduced graphene oxide microspheres encapsulating hemoglobin for a mediator-free biosensor.

    Science.gov (United States)

    Liu, Hui; Guo, Kai; Duan, Congyue; Dong, Xiaonan; Gao, Jiaojiao

    2017-01-15

    Hollow TiO 2 modified reduced graphene oxide microspheres (hollow TiO 2 -rGO microspheres or H-TiO 2 -rGO MS) have been synthesized and then be used to immobilize hemoglobin (Hb) to fabricate a mediator-free biosensor. The morphology and structure of hollow TiO 2 -rGO microspheres were characterized by scanning electron microscopy, transmission electronic microscopy and X-ray diffraction. Results of spectroscopy and electrochemistry tests revealed that hollow TiO 2 -rGO microsphere is an excellent immobilization matrix with biocompatibility for redox protein, affording good protein bioactivity and stability. The hollow TiO 2 -rGO microspheres with special structure and component enhance the immobilization efficiency of proteins and facilitate the direct electron transfer, which result in the better H 2 O 2 detection performance-the wide linear range of 0.1-360μM for H 2 O 2 (sensitivity of 417.6 μA mM -1 cm -2 ) and the extremely low detection limit of 10nM for H 2 O 2 . Moreover, the hollow microsphere can provide a protective microenvironment for Hb to make the as-prepared biosensor improve long-term stability. The as-prepared biosensor retains 95.4% of the initial response to H 2 O 2 after 60-d storage. Hence, this work suggests that if can be fabricated a mediator-free biosensor, hollow TiO 2 -rGO microspheres will find wide potential applications in environmental analysis and biomedical detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Neuropilin-2 mediated β-catenin signaling and survival in human gastro-intestinal cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Shaija Samuel

    Full Text Available NRP-2 is a high-affinity kinase-deficient receptor for ligands belonging to the class 3 semaphorin and vascular endothelial growth factor families. NRP-2 has been detected on the surface of several types of human cancer cells, but its expression and function in gastrointestinal (GI cancer cells remains to be determined. We sought to determine the function of NRP-2 in mediating downstream signals regulating the growth and survival of human gastrointestinal cancer cells. In human gastric cancer specimens, NRP-2 expression was detected in tumor tissues but not in adjacent normal mucosa. In CNDT 2.5 cells, shRNA mediated knockdown NRP-2 expression led to decreased migration and invasion in vitro (p<0.01. Focused gene-array analysis demonstrated that loss of NRP-2 reduced the expression of a critical metastasis mediator gene, S100A4. Steady-state levels and function of β-catenin, a known regulator of S100A4, were also decreased in the shNRP-2 clones. Furthermore, knockdown of NRP-2 sensitized CNDT 2.5 cells in vitro to 5FU toxicity. This effect was associated with activation of caspases 3 and 7, cleavage of PARP, and downregulation of Bcl-2. In vivo growth of CNDT 2.5 cells in the livers of nude mice was significantly decreased in the shNRP-2 group (p<0.05. Intraperitoneal administration of NRP-2 siRNA-DOPC decreased the tumor burden in mice (p = 0.01. Collectively, our results demonstrate that tumor cell-derived NRP-2 mediates critical survival signaling in gastrointestinal cancer cells.

  3. Characterization of Retinal Disease Progression in a 1-Year Longitudinal Study of Eyes With Mild Nonproliferative Retinopathy in Diabetes Type 2

    DEFF Research Database (Denmark)

    Ribeiro, Luisa; Bandello, Francesco; Tejerina, Amparo Navea

    2015-01-01

    PURPOSE: To identify eyes of patients with diabetes type 2 that show progression of retinal disease within a 1-year period using noninvasive techniques. METHODS: Three hundred seventy-four type 2 diabetic patients with mild nonproliferative diabetic retinopathy (Early Treatment Diabetic Retinopathy......DR and in central retinal thickness in eyes with mild nonproliferative diabetic retinopathy and diabetes type 2 are able to identify eyes at risk of progression. These eyes/patients should be selected for inclusion in future clinical trials of drugs targeted to prevent diabetic retinopathy progression to vision...... (SD-OCT) were assessed by a central reading center at all visits and ETDRS severity level in the first and last visits. RESULTS: Three hundred thirty-one eyes/patients completed the study. Microaneurysm formation rate greater than or equal to 2 was present in 68.1% of the eyes and MA turnover greater...

  4. NOVEL EPIGENETIC CHANGES IN CDKN2A ARE ASSOCIATED WITH PROGRESSION OF CERVICAL INTRAEPITHELIAL NEOPLASIA

    Science.gov (United States)

    Wijetunga, N. Ari; Belbin, Thomas J.; Burk, Robert D.; Whitney, Kathleen; Abadi, Maria; Greally, John M.; Einstein, Mark H.; Schlecht, Nicolas F.

    2016-01-01

    Objective To conduct a comprehensive mapping of the genomic DNA methylation in CDKN2A, which codes for the p16INK4A and p14ARF proteins, and 14 of the most promising DNA methylation marker candidates previously reported to be associated with progression of low-grade cervical intraepithelial neoplasia (CIN1) to cervical cancer. Methods We analyzed DNA methylation in 68 HIV-seropositive and negative women with incident CIN1, CIN2, CIN3 and invasive cervical cancer, assaying 120 CpG dinucleotide sites spanning APC, CDH1, CDH13, CDKN2A, CDKN2B, DAPK1, FHIT, GSTP1, HIC1, MGMT, MLH1, RARB, RASSF1, TERT and TIMP3 using the Illumina Infinium array. Validation was performed using high resolution mapping of the target genes with HELP-tagging for 286 CpGs, followed by fine mapping of candidate genes with targeted bisulfite sequencing. We assessed for statistical differences in DNA methylation levels for each CpG loci assayed using univariate and multivariate methods correcting for multiple comparisons. Results In our discovery sample set, we identified dose dependent differences in DNA methylation with grade of disease in CDKN2A, APC, MGMT, MLH1 and HIC1, whereas single CpG locus differences between CIN2/3 and cancer groups were seen for CDH13, DAPK1 and TERT. Only those CpGs in the gene body of CDKN2A showed a monotonic increase in methylation between persistent CIN1, CIN2, CIN3 and cancers. Conclusion Our data suggests a novel link between early cervical disease progression and DNA methylation in a region downstream of the CDKN2A transcription start site that may lead to increased p16INK4A/p14ARF expression prior to development of malignant disease. PMID:27401842

  5. Novel epigenetic changes in CDKN2A are associated with progression of cervical intraepithelial neoplasia.

    Science.gov (United States)

    Wijetunga, N Ari; Belbin, Thomas J; Burk, Robert D; Whitney, Kathleen; Abadi, Maria; Greally, John M; Einstein, Mark H; Schlecht, Nicolas F

    2016-09-01

    To conduct a comprehensive mapping of the genomic DNA methylation in CDKN2A, which codes for the p16(INK4A) and p14(ARF) proteins, and 14 of the most promising DNA methylation marker candidates previously reported to be associated with progression of low-grade cervical intraepithelial neoplasia (CIN1) to cervical cancer. We analyzed DNA methylation in 68 HIV-seropositive and negative women with incident CIN1, CIN2, CIN3 and invasive cervical cancer, assaying 120 CpG dinucleotide sites spanning APC, CDH1, CDH13, CDKN2A, CDKN2B, DAPK1, FHIT, GSTP1, HIC1, MGMT, MLH1, RARB, RASSF1, TERT and TIMP3 using the Illumina Infinium array. Validation was performed using high resolution mapping of the target genes with HELP-tagging for 286 CpGs, followed by fine mapping of candidate genes with targeted bisulfite sequencing. We assessed for statistical differences in DNA methylation levels for each CpG loci assayed using univariate and multivariate methods correcting for multiple comparisons. In our discovery sample set, we identified dose dependent differences in DNA methylation with grade of disease in CDKN2A, APC, MGMT, MLH1 and HIC1, whereas single CpG locus differences between CIN2/3 and cancer groups were seen for CDH13, DAPK1 and TERT. Only those CpGs in the gene body of CDKN2A showed a monotonic increase in methylation between persistent CIN1, CIN2, CIN3 and cancers. Our data suggests a novel link between early cervical disease progression and DNA methylation in a region downstream of the CDKN2A transcription start site that may lead to increased p16(INK4A)/p14(ARF) expression prior to development of malignant disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. MUC1 enhances tumor progression and contributes toward immunosuppression in a mouse model of spontaneous pancreatic adenocarcinoma.

    Science.gov (United States)

    Tinder, Teresa L; Subramani, Durai B; Basu, Gargi D; Bradley, Judy M; Schettini, Jorge; Million, Arefayene; Skaar, Todd; Mukherjee, Pinku

    2008-09-01

    MUC1, a membrane tethered mucin glycoprotein, is overexpressed and aberrantly glycosylated in >80% of human ductal pancreatic adenocarcinoma. However, the role of MUC1 in pancreatic cancer has been elusive, partly due to the lack of an appropriate model. We report the characterization of a novel mouse model that expresses human MUC1 as a self molecule (PDA.MUC1 mice). Pancreatic tumors arise in an appropriate MUC1-tolerant background within an immune-competent host. Significant enhancement in the development of pancreatic intraepithelial preneoplastic lesions and progression to adenocarcinoma is observed in PDA.MUC1 mice, possibly due to increased proliferation. Tumors from PDA.MUC1 mice express higher levels of cyclooxygenase-2 and IDO compared with PDA mice lacking MUC1, especially during early stages of tumor development. The increased proinflammatory milieu correlates with an increased percentage of regulatory T cells and myeloid suppressor cells in the pancreatic tumor and tumor draining lymph nodes. Data shows that during pancreatic cancer progression, MUC1-mediated mechanisms enhance the onset and progression of the disease, which in turn regulate the immune responses. Thus, the mouse model is ideally suited for testing novel chemopreventive and therapeutic strategies against pancreatic cancer.

  7. CXCL-8 Regulates Head and Neck Carcinoma Progression through NOD Signalling Pathway

    Directory of Open Access Journals (Sweden)

    Chan Leong-Perng

    2017-01-01

    Full Text Available Head and neck squamous cell carcinoma (HNSCC ranks sixth among the most common cancers in the world. Interlukin-8 (CXCL-8, a major role in inflammatory response and tumor microenvironment, correlates with tumor progression, metastasis and invasion. We explored CXCL-8 promotes tumor progression in different differentiation HNSCC cells. This project would apply to development on biomarker and target in HNSCC as well as provide a basis of early diagnosis and treatment for clinical. CXCL-8, NOD1 (nucleotide-binding oligomerization domain-containing protein 1 and receptor-interacting protein kinase (RIPK2 levels were detected statistically higher in patient tissue with HNSCC than in non-cancerous matched tissue (NCMT in the microarray and qRT-PCR study, whereas NOD2 was weakly expressed. Similar results were obtained for CXCL-8, NOD1, NOD2 and RIP2 from RT-PCR and western blotting. High CXCL-8, NOD1 and RIP2 expressions were found on HNSCC patient tissue than that of NCMT, whereas NOD2 was weakly expressed. The analytical results indicate that CXCL-8 is required in NOD 1-mediated signalling pathways in HNSCC.

  8. Targeted Deletion of a Plasmodium Site-2 Protease Impairs Life Cycle Progression in the Mammalian Host

    OpenAIRE

    Koussis, K.; Goulielmaki, E.; Chalari, A.; Withers-Martinez, C.; Siden-Kiamos, I.; Matuschewski, K.; Loukeris, T.

    2017-01-01

    Site-2 proteases (S2P) belong to the M50 family of metalloproteases, which typically perform essential roles by mediating activation of membrane?bound transcription factors through regulated intramembrane proteolysis (RIP). Protease-dependent liberation of dormant transcription factors triggers diverse cellular responses, such as sterol regulation, Notch signalling and the unfolded protein response. Plasmodium parasites rely on regulated proteolysis for controlling essential pathways througho...

  9. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Naohiko [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ito, Satoru, E-mail: itori@med.nagoya-u.ac.jp [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Furuya, Kishio [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Takahara, Norihiro [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Naruse, Keiji [Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Okayama 700-8558 (Japan); Aso, Hiromichi; Kondo, Masashi [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Sokabe, Masahiro [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Hasegawa, Yoshinori [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan)

    2014-10-10

    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.

  10. Tissue Transglutaminase (TG2)-Induced Inflammation in Initiation, Progression, and Pathogenesis of Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Kapil, E-mail: kmehta@mdanderson.org; Han, Amy [Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030 (United States); Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030 (United States)

    2011-02-25

    Pancreatic cancer (PC) is among the deadliest cancers, with a median survival of six months. It is generally believed that infiltrating PC arises through the progression of early grade pancreatic intraepithelial lesions (PanINs). In one model of the disease, the K-ras mutation is an early molecular event during progression of pancreatic cancer; it is followed by the accumulation of additional genetic abnormalities. This model has been supported by animal studies in which activated K-ras and p53 mutations produced metastatic pancreatic ductal adenocarcinoma in mice. According to this model, oncogenic K-ras induces PanIN formation but fails to promote the invasive stage. However, when these mice are subjected to caerulein treatment, which induces a chronic pancreatitis-like state and inflammatory response, PanINs rapidly progress to invasive carcinoma. These results are consistent with epidemiologic studies showing that patients with chronic pancreatitis have a much higher risk of developing PC. In line with these observations, recent studies have revealed elevated expression of the pro-inflammatory protein tissue transglutaminase (TG2) in early PanINs, and its expression increases even more as the disease progresses. In this review we discuss the implications of increased TG2 expression in initiation, progression, and pathogenesis of pancreatic cancer.

  11. The pioneer factor PBX1 is a novel driver of metastatic progression in ERα-positive breast cancer

    Science.gov (United States)

    Magnani, Luca; Patten, Darren K.; Nguyen, Van T.M.; Hong, Sung-Pil; Steel, Jennifer H.; Patel, Naina; Lombardo, Ylenia; Faronato, Monica; Gomes, Ana R.; Woodley, Laura; Page, Karen; Guttery, David; Primrose, Lindsay; Garcia, Daniel Fernandez; Shaw, Jacqui; Viola, Patrizia; Green, Andrew; Nolan, Christopher; Ellis, Ian O.; Rakha, Emad A.; Shousha, Sami; Lam, Eric W.-F.; Győrffy, Balázs; Lupien, Mathieu; Coombes, R. Charles

    2015-01-01

    Over 30% of ERα breast cancer patients develop relapses and progress to metastatic disease despite treatment with endocrine therapies. The pioneer factor PBX1 translates epigenetic cues and mediates estrogen induced ERα binding. Here we demonstrate that PBX1 plays a central role in regulating the ERα transcriptional response to epidermal growth factor (EGF) signaling. PBX1 regulates a subset of EGF-ERα genes highly expressed in aggressive breast tumours. Retrospective stratification of luminal patients using PBX1 protein levels in primary cancer further demonstrates that elevated PBX1 protein levels correlate with earlier metastatic progression. In agreement, PBX1 protein levels are significantly upregulated during metastatic progression in ERα-positive breast cancer patients. Finally we reveal that PBX1 upregulation in aggressive tumours is partly mediated by genomic amplification of the PBX1 locus. Correspondingly, ERα-positive breast cancer patients carrying PBX1 amplification are characterized by poor survival. Notably, we demonstrate that PBX1 amplification can be identified in tumor derived-circulating free DNA of ERα-positive metastatic patients. Metastatic patients with PBX1 amplification are also characterized by shorter relapse-free survival. Our data identifies PBX1 amplification as a functional hallmark of aggressive ERα-positive breast cancers. Mechanistically, PBX1 amplification impinges on several critical pathways associated with aggressive ERα-positive breast cancer. PMID:26215677

  12. MicroRNA-29b regulates TGF-β1-mediated epithelial–mesenchymal transition of retinal pigment epithelial cells by targeting AKT2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Min; Li, Hui; Liu, Xiaoqiang; Xu, Ding; Wang, Fang, E-mail: milwang_122@msn.com

    2016-07-15

    The role of microRNA (miRNA) in proliferative vitreoretinopathy (PVR) progression has not been studied extensively, especially in retinal pigment epithelial–mesenchymal transition (EMT) which is the main reason for formation of PVR. In this study, we first investigated the miRNA expression profile in transforming growth factor beta 1 (TGF-β1) mediated EMT of ARPE-19 cells. Among the five changed miRNAs, miR-29b showed the most significant downregulation. Enhanced expression of miR-29b could reverse TGF-β1 induced EMT through targeting Akt2. Akt2 downregulation could inhibit TGF-β1-induced EMT. Furthermore, inhibition of miR-29b in ARPE-19 cells directly triggered EMT process, which characterized by the phenotypic transition and the upregulation of α-smooth muscle actin (α-SMA) and downregulation of E-cadherin and zona occludin-1 (ZO-1) with increased cell migration. Akt2-shRNA also inhibited miR-29 inhibitor-induced EMT process. These data indicate that miR-29b plays an important role in TGF-β1-mediated EMT in ARPE-19 cells by targeting Akt2. - Highlights: • MiR-29b expression is decreased in TGF-β1-induced EMT of ARPE-19 cells. • MiR-29b inhibits TGF-β1-induced EMT in ARPE-19 cells. • MiR-29b inhibitor induces EMT in ARPE-19 cells. • Akt2 is the target for miR-29b. • Downregulation of Akt2 prevents TGF-β1-induced EMT of ARPE-19 cells.

  13. Causal mediation analysis with a binary outcome and multiple continuous or ordinal mediators: Simulations and application to an alcohol intervention

    OpenAIRE

    Nguyen, Trang Quynh; Webb-Vargas, Yenny; Koning, Ina M.; Stuart, Elizabeth A.

    2016-01-01

    We investigate a method to estimate the combined effect of multiple continuous/ordinal mediators on a binary outcome: 1) fit a structural equation model with probit link for the outcome and identity/probit link for continuous/ordinal mediators, 2) predict potential outcome probabilities, and 3) compute natural direct and indirect effects. Step 2 involves rescaling the latent continuous variable underlying the outcome to address residual mediator variance/covariance. We evaluate the estimation...

  14. SGLT1-mediated transport in Caco-2 cells is highly dependent on cell bank origin

    DEFF Research Database (Denmark)

    Steffansen, B; Pedersen, Maria; Laghmoch, A M

    2017-01-01

    The Caco-2 cell line is a well-established in vitro model for studying transport phenomena for prediction of intestinal nutrient and drug absorption. However, for substances depending on transporters such predictions are complicated due to variable transporter expression and limited knowledge about...... transporter function during multiple cell passaging and cell thawings. In the case of SGLT1, a key transporter of oral absorption of D-glucose, one reason for compromised prediction could be inadequate expression of SGLT1 in Caco-2 cells and thereby limited sensitivity in the determination of SGLT1-mediated...... permeability (PSGLT1). Here, the objective was to characterize and compare SGLT1-mediated uptake in Caco-2 cells obtained from different cell banks. SGLT1-mediated uptake of the standard SGLT1 substrate, α-MDG, in Caco-2 cells was shown to be highly dependent on cell bank origin. The most robust and reliable...

  15. Liver X receptor alpha mediated genistein induction of human dehydroepiandrosterone sulfotransferase (hSULT2A1) in Hep G2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yue; Zhang, Shunfen [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078 (United States); Zhou, Tianyan [Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100083 (China); Huang, Chaoqun; McLaughlin, Alicia [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078 (United States); Chen, Guangping, E-mail: guangping.chen@okstate.edu [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078 (United States)

    2013-04-15

    Cytosolic sulfotransferases are one of the major families of phase II drug metabolizing enzymes. Sulfotransferase-catalyzed sulfonation regulates hormone activities, metabolizes drugs, detoxifies xenobiotics, and bioactivates carcinogens. Human dehydroepiandrosterone sulfotransferase (hSULT2A1) plays important biological roles by sulfating endogenous hydroxysteroids and exogenous xenobiotics. Genistein, mainly existing in soy food products, is a naturally occurring phytoestrogen with both chemopreventive and chemotherapeutic potential. Our previous studies have shown that genistein significantly induces hSULT2A1 in Hep G2 and Caco-2 cells. In this study, we investigated the roles of liver X receptor (LXRα) in the genistein induction of hSULT2A1. LXRs have been shown to induce expression of mouse Sult2a9 and hSULT2A1 gene. Our results demonstrate that LXRα mediates the genistein induction of hSULT2A1, supported by Western blot analysis results, hSULT2A1 promoter driven luciferase reporter gene assay results, and mRNA interference results. Chromatin immunoprecipitation (ChIP) assay results demonstrate that genistein increase the recruitment of hLXRα binding to the hSULT2A1 promoter. These results suggest that hLXRα plays an important role in the hSULT2A1 gene regulation. The biological functions of phytoestrogens may partially relate to their induction activity toward hydroxysteroid SULT. - Highlights: ► Liver X receptor α mediated genistein induction of hSULT2A1 in Hep G2 cells. ► LXRα and RXRα dimerization further activated this induction. ► Western blot results agreed well with luciferase reporter gene assay results. ► LXRs gene silencing significantly decreased hSULT2A1 expression. ► ChIP analysis suggested that genistein enhances hLXRα binding to the hSULT2A1 promoter.

  16. Analysis of a conserved RGE/RGD motif in HCV E2 in mediating entry

    Directory of Open Access Journals (Sweden)

    Rong Lijun

    2009-01-01

    Full Text Available Abstract Background Hepatitis C virus (HCV encodes two transmembrane glycoproteins E1 and E2 which form a heterodimer. E1 is believed to mediate fusion while E2 has been shown to bind cellular receptors. It is clear that HCV uses a multi-receptor complex to gain entry into susceptible cells, however key elements of this complex remain elusive. In this study, the role of a highly conserved RGE/RGD motif of HCV E2 glycoprotein in viral entry was examined. The effect of each substitution mutation in this motif was tested by challenging susceptible cell lines with mutant HCV E1E2 pseudotyped viruses generated using a lentiviral system (HCVpp. In addition to assaying infectivity, producer cell expression and HCVpp incorporation of HCV E2 proteins, CD81 binding profiles, and conformation of mutants were examined. Results Based on these characteristics, mutants either displayed wt characteristics (high infectivity [≥ 90% of wt HCVpp], CD81 binding, E1E2 expression, and incorporation into viral particles and proper conformation or very low infectivity (≤ 20% of wt HCVpp. Only amino acid substitutions of the 3rd position (D or E resulted in wt characteristics as long as the negative charge was maintained or a neutral alanine was introduced. A change in charge to a positive lysine, disrupted HCVpp infectivity at this position. Conclusion Although most amino acid substitutions within this conserved motif displayed greatly reduced HCVpp infectivity, they retained soluble CD81 binding, proper E2 conformation, and incorporation into HCVpp. Our results suggest that although RGE/D is a well-defined integrin binding motif, in this case the role of these three hyperconserved amino acids does not appear to be integrin binding. As the extent of conservation of this region extends well beyond these three amino acids, we speculate that this region may play an important role in the structure of HCV E2 or in mediating the interaction with other factor(s during

  17. Regulation of CNKSR2 protein stability by the HECT E3 ubiquitin ligase Smurf2, and its role in breast cancer progression.

    Science.gov (United States)

    David, Diana; Surendran, Arun; Thulaseedharan, Jissa V; Nair, Asha S

    2018-03-13

    Smurf2 E3 ubiquitin ligase physically associates with and regulate the stability of distinct cellular protein substrates. The multi-functional scaffold protein Connector enhancer of kinase suppressor of ras 2 (CNKSR2) plays a key role in regulating cell proliferation, and differentiation through multiple receptor tyrosine kinase pathways. The aim of this study was to investigate whether the interaction between Smurf2 and CNKSR2 has any significant role in the post transcriptional regulation of CNKSR2 expression in breast cancer. Here we demonstrate a novel interaction of CNKSR2 with Smurf2 by co-immunoprecipitation, indirect immunofluorescence studies, and surface plasmon resonance (SPR) analysis, which can ubiquitinate, but stabilize CNKSR2 by protecting it from proteasome mediated degradation. CNKSR2 protein levels were significantly increased upon forced overexpression of Smurf2, indicating the role of Smurf2 in regulating the stability of CNKSR2. Conversely, Smurf2 knockdown resulted in a marked decrease in the protein level expression of CNKSR2 by facilitating enhanced polyubiquitination and proteasomal degradation and reduced the proliferation and clonogenic survival of MDA-MB-231 breast cancer cell lines. Tissue microarray data from 84 patients with various stages of mammary carcinoma, including (in order of increasing malignant potential) normal, usual hyperplasia, fibrocystic changes, fibroadenoma, carcinoma-in-situ, and invasive ductal carcinoma showed a statistically significant association between Smurf2 and CNKSR2 expression, which is also well correlated with the ER, PR, and HER2 status of the tissue samples. A comparatively high expression of Smurf2 and CNKSR2 was observed when the expression of ER and PR was low, and HER2 was high. Consistently, both Smurf2 and CNKSR2 showed an integrated expression in MCF10 breast progression model cell lines. Altogether, our findings reveal that Smurf2 is a novel positive regulator of CNKSR2 and suggest that Smurf

  18. Exposure to peer delinquency as a mediator between self-report pubertal timing and delinquency: A longitudinal study of mediation

    Science.gov (United States)

    Negriff, Sonya; Ji, Juye; Trickett, Penelope K.

    2013-01-01

    This study examined exposure to peer delinquency as a mediator between pubertal timing and self-reported delinquency longitudinally and whether this mediational model was moderated by either gender or maltreatment experience. Data were obtained from Time 1, 2, and 3 of a longitudinal study of maltreatment and development. At Time 1 the sample comprised 454 children aged 9–13 years. Analyses via structural equation modeling supported full mediation. Gender did not moderate this mediational relationship, but maltreatment experience did. The results show that early maturing males and females are both at risk for being exposed to peers that may draw them into delinquent behavior. Additionally, the mechanism linking early pubertal timing to delinquency differs depending on maltreatment experience. PMID:21262055

  19. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    International Nuclear Information System (INIS)

    Li, Ruizhao; Zhang, Li; Shi, Wei; Zhang, Bin; Liang, Xinling; Liu, Shuangxin; Wang, Wenjian

    2013-01-01

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca 2+ was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca 2+ ]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway, which may

  20. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruizhao, E-mail: liruizhao1979@126.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Li, E-mail: Zhanglichangde@163.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Southern Medical University, Guangzhou, Guangdong (China); Shi, Wei, E-mail: shiwei.gd@139.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Bin, E-mail: zhangbinyes@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liang, Xinling, E-mail: xinlingliang@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liu, Shuangxin, E-mail: mplsxi@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Wang, Wenjian, E-mail: wwjph@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China)

    2013-04-15

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca{sup 2+} was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca{sup 2+}]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway

  1. Time perspective and weight management behaviors in newly diagnosed Type 2 diabetes: a mediational analysis.

    Science.gov (United States)

    Hall, Peter A; Fong, Geoffrey T; Cheng, Alice Y

    2012-12-01

    The primary objective of the current study was to examine the extent to which domain-specific time perspective predicts weight management behaviors (dietary behavior and physical activity) among those newly diagnosed with Type 2 diabetes. A secondary objective was to test potential mediators of the hypothesized effect (behavioral intention, self-efficacy and control beliefs). A total of 204 adults newly diagnosed (≤6 months) with Type 2 diabetes participated in the study, which included a baseline assessment of domain-general and domain-specific time perspective, as well as strength of intention to perform two weight-management behaviors (dietary choice and physical activity); both weight-management behaviors were assessed again at 6 month follow-up. Hierarchical multiple regression analyses revealed a prospective association between domain-specific time perspective and uptake of weight management behaviors. Individuals with newly diagnosed T2DM possessing a future-oriented time perspective reported making less frequent fatty food choices and greater increases in physical activity over the 6-month follow-up interval. These effects were selectively mediated by intention strength, and not competing social cognitive variables. For both behaviors, the total effects and meditational models were robust to adjustments for demographics, body composition and disease variables. A future-oriented time perspective is prospectively associated with superior uptake of weight management behaviors among those with newly diagnosed Type 2 diabetes. The facilitating effect of future-oriented thinking appears to occur via enhanced strength of intentions to perform weight management behaviors.

  2. Estimation of Causal Mediation Effects for a Dichotomous Outcome in Multiple-Mediator Models using the Mediation Formula

    OpenAIRE

    Wang, Wei; Nelson, Suchitra; Albert, Jeffrey M.

    2013-01-01

    Mediators are intermediate variables in the causal pathway between an exposure and an outcome. Mediation analysis investigates the extent to which exposure effects occur through these variables, thus revealing causal mechanisms. In this paper, we consider the estimation of the mediation effect when the outcome is binary and multiple mediators of different types exist. We give a precise definition of the total mediation effect as well as decomposed mediation effects through individual or sets ...

  3. The Role of Toll-Like Receptor 2 in Inflammation and Fibrosis during Progressive Renal Injury

    NARCIS (Netherlands)

    Leemans, Jaklien C.; Butter, Loes M.; Pulskens, Wilco P. C.; Teske, Gwendoline J. D.; Claessen, Nike; van der Poll, Tom; Florquin, Sandrine

    2009-01-01

    Tissue fibrosis and chronic inflammation are common causes of progressive organ damage, including progressive renal disease, leading to loss of physiological functions. Recently, it was shown that Toll-like receptor 2 (TLR2) is expressed in the kidney and activated by endogenous danger signals. The

  4. [Various pathways leading to the progression of chronic liver diseases].

    Science.gov (United States)

    Egresi, Anna; Lengyel, Gabriella; Somogyi, Anikó; Blázovics, Anna; Hagymási, Krisztina

    2016-02-21

    As the result of various effects (viruses, metabolic diseases, nutritional factors, toxic agents, autoimmune processes) abnormal liver function, liver steatosis and connective tissue remodeling may develop. Progression of this process is complex including various pathways and a number of factors. The authors summarize the factors involved in the progression of chronic liver disease. They describe the role of cells and the produced inflammatory mediators and cytokines, as well as the relationship between the disease and the intestinal flora. They emphasize the role of oxidative stress, mitochondrial dysfunction and cell death in disease progression. Insulin resistance and micro-elements (iron, copper) in relation to liver damage are also discussed, and genetic and epigenetic aspects underlying disease progression are summarized. Discovery of novel treatment options, assessment of the effectiveness of treatment, as well as the success and proper timing of liver transplantation may depend on a better understanding of the process of disease progression.

  5. Host and Viral Factors in HIV-Mediated Bystander Apoptosis

    Science.gov (United States)

    Garg, Himanshu; Joshi, Anjali

    2017-01-01

    Human immunodeficiency virus (HIV) infections lead to a progressive loss of CD4 T cells primarily via the process of apoptosis. With a limited number of infected cells and vastly disproportionate apoptosis in HIV infected patients, it is believed that apoptosis of uninfected bystander cells plays a significant role in this process. Disease progression in HIV infected individuals is highly variable suggesting that both host and viral factors may influence HIV mediated apoptosis. Amongst the viral factors, the role of Envelope (Env) glycoprotein in bystander apoptosis is well documented. Recent evidence on the variability in apoptosis induction by primary patient derived Envs underscores the role of Env glycoprotein in HIV disease. Amongst the host factors, the role of C-C Chemokine Receptor type 5 (CCR5), a coreceptor for HIV Env, is also becoming increasingly evident. Polymorphisms in the CCR5 gene and promoter affect CCR5 cell surface expression and correlate with both apoptosis and CD4 loss. Finally, chronic immune activation in HIV infections induces multiple defects in the immune system and has recently been shown to accelerate HIV Env mediated CD4 apoptosis. Consequently, those factors that affect CCR5 expression and/or immune activation in turn indirectly regulate HIV mediated apoptosis making this phenomenon both complex and multifactorial. This review explores the complex role of various host and viral factors in determining HIV mediated bystander apoptosis. PMID:28829402

  6. Glutamine-derived 2-hydroxyglutarate is associated with disease progression in plasma cell malignancies

    Science.gov (United States)

    Gonsalves, Wilson I.; Hitosugi, Taro; Ghosh, Toshi; Jevremovic, Dragan; Petterson, Xuan-Mai; Wellik, Linda; Kumar, Shaji K.; Nair, K. Sreekumaran

    2018-01-01

    The production of the oncometabolite 2-hydroxyglutarate (2-HG) has been associated with c-MYC overexpression. c-MYC also regulates glutamine metabolism and drives progression of asymptomatic precursor plasma cell (PC) malignancies to symptomatic multiple myeloma (MM). However, the presence of 2-HG and its clinical significance in PC malignancies is unknown. By performing 13C stable isotope resolved metabolomics (SIRM) using U[13C6]Glucose and U[13C5]Glutamine in human myeloma cell lines (HMCLs), we show that 2-HG is produced in clonal PCs and is derived predominantly from glutamine anaplerosis into the TCA cycle. Furthermore, the 13C SIRM studies in HMCLs also demonstrate that glutamine is preferentially utilized by the TCA cycle compared with glucose. Finally, measuring the levels of 2-HG in the BM supernatant and peripheral blood plasma from patients with precursor PC malignancies such as smoldering MM (SMM) demonstrates that relatively elevated levels of 2-HG are associated with higher levels of c-MYC expression in the BM clonal PCs and with a subsequent shorter time to progression (TTP) to MM. Thus, measuring 2-HG levels in BM supernatant or peripheral blood plasma of SMM patients offers potential early identification of those patients at high risk of progression to MM, who could benefit from early therapeutic intervention. PMID:29321378

  7. Mediation analysis with multiple versions of the mediator.

    Science.gov (United States)

    Vanderweele, Tyler J

    2012-05-01

    The causal inference literature has provided definitions of direct and indirect effects based on counterfactuals that generalize the approach found in the social science literature. However, these definitions presuppose well-defined hypothetical interventions on the mediator. In many settings, there may be multiple ways to fix the mediator to a particular value, and these various hypothetical interventions may have very different implications for the outcome of interest. In this paper, we consider mediation analysis when multiple versions of the mediator are present. Specifically, we consider the problem of attempting to decompose a total effect of an exposure on an outcome into the portion through the intermediate and the portion through other pathways. We consider the setting in which there are multiple versions of the mediator but the investigator has access only to data on the particular measurement, not information on which version of the mediator may have brought that value about. We show that the quantity that is estimated as a natural indirect effect using only the available data does indeed have an interpretation as a particular type of mediated effect; however, the quantity estimated as a natural direct effect, in fact, captures both a true direct effect and an effect of the exposure on the outcome mediated through the effect of the version of the mediator that is not captured by the mediator measurement. The results are illustrated using 2 examples from the literature, one in which the versions of the mediator are unknown and another in which the mediator itself has been dichotomized.

  8. Lysosomal membrane protein SIDT2 mediates the direct uptake of DNA by lysosomes.

    Science.gov (United States)

    Aizawa, Shu; Contu, Viorica Raluca; Fujiwara, Yuuki; Hase, Katsunori; Kikuchi, Hisae; Kabuta, Chihana; Wada, Keiji; Kabuta, Tomohiro

    2017-01-02

    Lysosomes degrade macromolecules such as proteins and nucleic acids. We previously identified 2 novel types of autophagy, RNautophagy and DNautophagy, where lysosomes directly take up RNA and DNA, in an ATP-dependent manner, for degradation. We have also reported that SIDT2 (SID1 transmembrane family, member 2), an ortholog of the Caenorhabditis elegans putative RNA transporter SID-1 (systemic RNA interference defective-1), mediates RNA translocation during RNautophagy. In this addendum, we report that SIDT2 also mediates DNA translocation in the process of DNautophagy. These findings help elucidate the mechanisms underlying the direct uptake of nucleic acids by lysosomes and the physiological functions of DNautophagy.

  9. Code-Switching: L1-Coded Mediation in a Kindergarten Foreign Language Classroom

    Science.gov (United States)

    Lin, Zheng

    2012-01-01

    This paper is based on a qualitative inquiry that investigated the role of teachers' mediation in three different modes of coding in a kindergarten foreign language classroom in China (i.e. L2-coded intralinguistic mediation, L1-coded cross-lingual mediation, and L2-and-L1-mixed mediation). Through an exploratory examination of the varying effects…

  10. Icotinib antagonizes ABCG2-mediated multidrug resistance, but not the pemetrexed resistance mediated by thymidylate synthase and ABCG2.

    Science.gov (United States)

    Wang, De-Shen; Patel, Atish; Shukla, Suneet; Zhang, Yun-Kai; Wang, Yi-Jun; Kathawala, Rishil J; Robey, Robert W; Zhang, Li; Yang, Dong-Hua; Talele, Tanaji T; Bates, Susan E; Ambudkar, Suresh V; Xu, Rui-Hua; Chen, Zhe-Sheng

    2014-06-30

    ABCG2 is a potential biomarker causing multidrug resistance (MDR) in Non-Small Cell Lung Cancer (NSCLC). We conducted this study to investigate whether Icotinib, a small-molecule inhibitor of EGFR tyrosine kinase, could interact with ABCG2 transporter in NSCLC. Our results showed that Icotinib reversed ABCG2-mediated MDR by antagonizing the drug efflux function of ABCG2. Icotinib stimulated the ATPase activity in a concentration-dependent manner and inhibited the photolabeling of ABCG2 with [125I]-Iodoarylazidoprazosin, demonstrating that it interacts at the drug-binding pocket. Homology modeling predicted the binding conformation of Icotinib at Asn629 centroid-based grid of ABCG2. However, Icotinib at reversal concentration did not affect the expression levels of AKT and ABCG2. Furthermore, a combination of Icotinib and topotecan exhibited significant synergistic anticancer activity against NCI-H460/MX20 tumor xenografts. However, the inhibition of transport activity of ABCG2 was insufficient to overcome pemetrexed resistance in NCI-H460/MX20 cells, which was due to the co-upregulated thymidylate synthase (TS) and ABCG2 expression. This is the first report to show that the up-regulation of TS in ABCG2-overexpressing cell line NCI-H460/MX20 may play a role of resistance to pemetrexate. Our findings suggested different possible strategies of overcoming the resistance of topotecan and pemetrexed in the NSCLC patients.

  11. A 2D suspension of active agents: the role of fluid mediated interactions

    International Nuclear Information System (INIS)

    Behmadi, Hojjat; Najafi, Ali; Fazli, Zahra

    2017-01-01

    Taking into account both the Vicsek short-range ordering and the far-field hydrodynamic interactions mediated by the ambient fluid, we investigate the role of long-range interactions in the ordering phenomena in a quasi 2-dimensional active suspension. By studying the number fluctuations, the velocity correlation functions and cluster size distribution function, we show that depending on the number density of swimmers and the strength of noise, the hydrodynamic interactions can have significant effects in a suspension. For a fixed value of noise, at larger density of particles, long-range interactions enhance the particle pairing and cluster formation in the system. (paper)

  12. Solute concentration affects bradykinin-mediated increases in renal prostaglandin E2

    International Nuclear Information System (INIS)

    Zenser, T.V.; Davis, E.S.; Rapp, N.S.; Davis, B.B.

    1981-01-01

    The effects of solute concentration on the bradykinin-mediated increase in inner medullary slice prostaglandin E2 (PGE2) synthesis were investigated. PG content was determined by specific RIA. Bradykinin stimulation was prevented by the addition of the following solutes to Krebs buffer: 1.0 M urea, 0.5 or 1.0 M NaCl, 0.5 or 1.0 M mannitol, 1.0 M urea plus 0.5 M NaCl, or 1.0 M mannitol plus 0.5 M NaCl. By contrast, basal PGE2 synthesis was increased by 1.0 M mannitol or by 1.0 M mannitol plus 0.5 M NaCl, but decreased by 1.0 M urea. Urea elicited a concentration-dependent, reversible inhibition of bradykinin stimulation, with 0.01 M urea being the lowest effective concentration. By contrast, basal PGE2 synthesis was only reduced at a urea concentration greater than 0.6 M. Arachidonic acid-mediated increases in both PGE2 and PGF2 alpha synthesis were not prevented by 1.0 M urea. The latter suggests that neither PG endoperoxide synthetase nor PG endoperoxide E isomerase are inhibited by urea. The data indicate that different hypertonic solutions have different effects on basal PG production, but all inhibit bradykinin stimulation

  13. Trap-mediated electronic transport properties of gate-tunable pentacene/MoS2 p-n heterojunction diodes.

    Science.gov (United States)

    Kim, Jae-Keun; Cho, Kyungjune; Kim, Tae-Young; Pak, Jinsu; Jang, Jingon; Song, Younggul; Kim, Youngrok; Choi, Barbara Yuri; Chung, Seungjun; Hong, Woong-Ki; Lee, Takhee

    2016-11-10

    We investigated the trap-mediated electronic transport properties of pentacene/molybdenum disulphide (MoS 2 ) p-n heterojunction devices. We observed that the hybrid p-n heterojunctions were gate-tunable and were strongly affected by trap-assisted tunnelling through the van der Waals gap at the heterojunction interfaces between MoS 2 and pentacene. The pentacene/MoS 2 p-n heterojunction diodes had gate-tunable high ideality factor, which resulted from trap-mediated conduction nature of devices. From the temperature-variable current-voltage measurement, a space-charge-limited conduction and a variable range hopping conduction at a low temperature were suggested as the gate-tunable charge transport characteristics of these hybrid p-n heterojunctions. Our study provides a better understanding of the trap-mediated electronic transport properties in organic/2-dimensional material hybrid heterojunction devices.

  14. CD8+ T cells undergo activation and programmed death-1 repression in the liver of aged Ae2a,b-/- mice favoring autoimmune cholangitis

    NARCIS (Netherlands)

    Concepcion, Axel R.; Salas, January T.; Sáez, Elena; Sarvide, Sarai; Ferrer, Alex; Portu, Ainhoa; Uriarte, Iker; Hervás-Stubbs, Sandra; Oude Elferink, Ronald P. J.; Prieto, Jesús; Medina, Juan F.

    2015-01-01

    Primary biliary cirrhosis (PBC) is a chronic cholestatic disease of unknown etiopathogenesis showing progressive autoimmune-mediated cholangitis. In PBC patients, the liver and lymphocytes exhibit diminished expression of AE2/SLC4A2, a Cl-/HCO3- anion exchanger involved in biliary bicarbonate

  15. Silver Nanoparticles Induce HePG-2 Cells Apoptosis Through ROS-Mediated Signaling Pathways

    Science.gov (United States)

    Zhu, Bing; Li, Yinghua; Lin, Zhengfang; Zhao, Mingqi; Xu, Tiantian; Wang, Changbing; Deng, Ning

    2016-04-01

    Recently, silver nanoparticles (AgNPs) have been shown to provide a novel approach to overcome tumors, especially those of hepatocarcinoma. However, the anticancer mechanism of silver nanoparticles is unclear. Thus, the purpose of this study was to estimate the effect of AgNPs on proliferation and activation of ROS-mediated signaling pathway on human hepatocellular carcinoma HePG-2 cells. A simple chemical method for preparing AgNPs with superior anticancer activity has been showed in this study. AgNPs were detected by transmission electronic microscopy (TEM) and energy dispersive X-ray (EDX). The size distribution and zeta potential of silver nanoparticles were detected by Zetasizer Nano. The average size of AgNPs (2 nm) observably increased the cellular uptake by endocytosis. AgNPs markedly inhibited the proliferation of HePG-2 cells through induction of apoptosis with caspase-3 activation and PARP cleavage. AgNPs with dose-dependent manner significantly increased the apoptotic cell population (sub-G1). Furthermore, AgNP-induced apoptosis was found dependent on the overproduction of reactive oxygen species (ROS) and affecting of MAPKs and AKT signaling and DNA damage-mediated p53 phosphorylation to advance HePG-2 cells apoptosis. Therefore, our results show that the mechanism of ROS-mediated signaling pathways may provide useful information in AgNP-induced HePG-2 cell apoptosis.

  16. IT-26IDENTIFICATION OF PSEUDO-PROGRESSION IN NEW DIAGNOSED GLIOBLASTOMA (GBM) IN A RANDOMIZED PHASE 2 OF ICT-107: MRI AND PATHOLOGY CORRELATION

    Science.gov (United States)

    Phuphanich, Surasak; Yu, John; Bannykh, Serguei; Zhu, Jay-Jiguang

    2014-01-01

    BACKGROUND: Previously reports of pseudo-progression in patients with brain tumor after therapeutic vaccines in pediatric and adult glioma (Pollack, JCO online on June 2, 2014 and Okada, JCO Jan 20, 2011; 29: 330-336) demonstrated that RANO criteria for tumor progression may not be adequate for immunotherapy trials. Similar observations were also seen in other checkpoint inhibitor in melanoma and NSLSC. METHODS: We identified 2 patients, who developed tumor progression by RANO criteria, underwent surgery following enrollment in a phase 2 randomized ICT-107 (an autologous vaccine consisting of patient dendritic cells pulsed with peptides from AIM-2, TRP-2, HER2/neu, IL-13Ra2, gp100, MAGE1) after radiation and Temozolomide (TMZ). RESULTS: The first case is a 69 years old Chinese male, who underwent 1st surgery of gross total resection right occipital GBM on 10/26/2011. Subsequently he received 19 cycles of TMZ and 9 vaccines/placebo. MRI from 7/2/2013 showed enhancement surrounding surgical cavity. After 2nd surgery, pathology showed only rare residual tumor cells with macrophages and positive CD 8 cells. He continued on this vaccine program and MRI showed more progression with finger-like extension into parietal lobe 4 months later. The 3rd surgery also showed extensive reactive changes with no active tumor cells. For 2nd case, a 62 years old male, who underwent first surgery on 7/11/2011 of right temporal lobe, developed 2 areas of enhancement after 6 cycles of TMZ and 7 vaccines/placebo on 4/18/2012. With 2nd surgery, pathology showed reactive gliosis without active tumor. The subject continued in this trial. CONCLUSION: Pseudo-progression was confirmed by pathology in these 2 patients at 20 and 9 months which were delayed comparing to pseudo-progression observed in patients treated with concurrent XRT/TMZ (3-6 months). Future iRANO criteria development is essential for immunotherapy trials. Accurately identifying and managing such patients is necessary to avoid

  17. TLR5 signaling, commensal microbiota and systemic tumor promoting inflammation: the three parcae of malignant progression.

    Science.gov (United States)

    Rutkowski, Melanie R; Conejo-Garcia, Jose R

    2015-08-01

    We have reported that TLR5-mediated recognition of commensal microbiota modulates systemic tumor-promoting inflammation and malignant progression of tumors at distal locations. Approximately 7-10% of the general population harbors a deleterious single nucleotide polymorphism in TLR5, implicating a novel role for genetic variation during the initiation and progression of cancer.

  18. Regulation of DNA Damage Response by Estrogen Receptor β-Mediated Inhibition of Breast Cancer Associated Gene 2

    Directory of Open Access Journals (Sweden)

    Yuan-Hao Lee

    2015-04-01

    Full Text Available Accumulating evidence suggests that ubiquitin E3 ligases are involved in cancer development as their mutations correlate with genomic instability and genetic susceptibility to cancer. Despite significant findings of cancer-driving mutations in the BRCA1 gene, estrogen receptor (ER-positive breast cancers progress upon treatment with DNA damaging-cytotoxic therapies. In order to understand the underlying mechanism by which ER-positive breast cancer cells develop resistance to DNA damaging agents, we employed an estrogen receptor agonist, Erb-041, to increase the activity of ERβ and negatively regulate the expression and function of the estrogen receptor α (ERα in MCF-7 breast cancer cells. Upon Erb-041-mediated ERα down-regulation, the transcription of an ERα downstream effector, BCA2 (Breast Cancer Associated gene 2, correspondingly decreased. The ubiquitination of chromatin-bound BCA2 was induced by ultraviolet C (UVC irradiation but suppressed by Erb-041 pretreatment, resulting in a blunted DNA damage response. Upon BCA2 silencing, DNA double-stranded breaks increased with Rad51 up-regulation and ataxia telangiectasia mutated (ATM activation. Mechanistically, UV-induced BCA2 ubiquitination and chromatin binding were found to promote DNA damage response and repair via the interaction of BCA2 with ATM, γH2AX and Rad51. Taken together, this study suggests that Erb-041 potentiates BCA2 dissociation from chromatin and co-localization with Rad51, resulting in inhibition of homologous recombination repair.

  19. Focal status epilepticus and progressive dyskinesia: A novel phenotype for glycine receptor antibody-mediated neurological disease in children.

    Science.gov (United States)

    Chan, D W S; Thomas, T; Lim, M; Ling, S; Woodhall, M; Vincent, A

    2017-03-01

    Antibody-associated disorders of the central nervous system are increasingly recognised in adults and children. Some are known to be paraneoplastic, whereas in others an infective trigger is postulated. They include disorders associated with antibodies to N-methyl-d-aspartate receptor (NMDAR), voltage-gated potassium channel-complexes (VGKC-complex), GABA B receptor or glycine receptor (GlyR). With antibodies to NMDAR or VGKC-complexes, distinct clinical patterns are well characterised, but as more antibodies are discovered, the spectra of associated disorders are evolving. GlyR antibodies have been detected in patients with progressive encephalopathy with rigidity and myoclonus (PERM), or stiff man syndrome, both rare but disabling conditions. We report a case of a young child with focal seizures and progressive dyskinesia in whom GlyR antibodies were detected. Anticonvulsants and immunotherapy were effective in treating both the seizures and movement disorder with good neurological outcome and with a decline in the patient's serum GlyR-Ab titres. Glycine receptor antibodies are associated with focal status epilepticus and seizures, encephalopathy and progressive dyskinesia and should be evaluated in autoimmune encephalitis. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  20. miR-1297 mediates PTEN expression and contributes to cell progression in LSCC

    International Nuclear Information System (INIS)

    Li, Xin; Wang, Hong-liang; Peng, Xin; Zhou, Hui-fang; Wang, Xin

    2012-01-01

    Highlights: ► miR-1297 was found to be overexpressed in LSCC and contribute to the cell progression. ► PTEN was confirmed to be a target gene of miR-1297. ► Downregulation of PTEN can rescue the proliferation and invasion ability of miR-1297 downregulated Hep-2 cells. ► Downregulation of miR-1297 inhibits tumor growth in vivo. -- Abstract: MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression after transcription, and are involved in cancer development. Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant neoplasms with increasing incidence in recent years. In this paper, we report the overexpression of miR-1297 in LSCC and Hep-2 cells. In addition, PTEN was identified to be directly regulated by miR-1297 through western blot and luciferase activity assay. Furthermore, downregulation of miR-1297 in Hep-2 cells was shown to inhibit cancer cell proliferation, migration, and tumor genesis. Our results document a new epigenetic mechanism for PTEN regulation in LSCC, which is crucial for the development of these tumors.

  1. Bone marrow mesenchymal stem cells promote head and neck cancer progression through Periostin-mediated phosphoinositide 3-kinase/Akt/mammalian target of rapamycin.

    Science.gov (United States)

    Liu, Chuanxia; Feng, Xiaoxia; Wang, Baixiang; Wang, Xinhua; Wang, Chaowei; Yu, Mengfei; Cao, Guifen; Wang, Huiming

    2018-03-01

    Bone marrow mesenchymal stem cells (BMMSC) have been shown to be recruited to the tumor microenvironment and exert a tumor-promoting effect in a variety of cancers. However, the molecular mechanisms related to the tumor-promoting effect of BMMSC on head and neck cancer (HNC) are not clear. In this study, we investigated Periostin (POSTN) and its roles in the tumor-promoting effect of BMMSC on HNC. In vitro analysis of HNC cells cultured in BMMSC-conditioned media (MSC-CM) showed that MSC-CM significantly promoted cancer progression by enhancing cell proliferation, migration, epithelial-mesenchymal transformation (EMT), and altering expression of cell cycle regulatory proteins and inhibition of apoptosis. Moreover, MSC-CM promoted the expression of POSTN and POSTN promoted HNC progression through the activation of the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway. In a murine model of HNC, we found that BMMSC promoted tumor growth, invasion, metastasis and enhanced the expression of POSTN and EMT in tumor tissues. Clinical sample analysis further confirmed that the expression of POSTN and N-cadherin were correlated with pathological grade and lymph node metastasis of HNC. In conclusion, this study indicated that BMMSC promoted proliferation, invasion, survival, tumorigenicity and migration of head and neck cancer through POSTN-mediated PI3K/Akt/mTOR activation. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  2. Theory of mind as a mediator of reasoning and facial emotion recognition: findings from 200 healthy people.

    Science.gov (United States)

    Lee, Seul Bee; Koo, Se Jun; Song, Yun Young; Lee, Mi Kyung; Jeong, Yu-Jin; Kwon, Catherine; Park, Kyoung Ri; Park, Jin Young; Kang, Jee In; Lee, Eun; An, Suk Kyoon

    2014-04-01

    It was proposed that the ability to recognize facial emotions is closely related to complex neurocognitive processes and/or skills related to theory of mind (ToM). This study examines whether ToM skills mediate the relationship between higher neurocognitive functions, such as reasoning ability, and facial emotion recognition. A total of 200 healthy subjects (101 males, 99 females) were recruited. Facial emotion recognition was measured through the use of 64 facial emotional stimuli that were selected from photographs from the Korean Facial Expressions of Emotion (KOFEE). Participants were requested to complete the Theory of Mind Picture Stories task and Standard Progressive Matrices (SPM). Multiple regression analysis showed that the SPM score (t=3.19, p=0.002, β=0.22) and the overall ToM score (t=2.56, p=0.011, β=0.18) were primarily associated with a total hit rate (%) of the emotion recognition task. Hierarchical regression analysis through a three-step mediation model showed that ToM may partially mediate the relationship between SPM and performance on facial emotion recognition. These findings imply that higher neurocognitive functioning, inclusive of reasoning, may not only directly contribute towards facial emotion recognition but also influence ToM, which in turn, influences facial emotion recognition. These findings are particularly true for healthy young people.

  3. Quantitative muscle MRI as an assessment tool for monitoring disease progression in LGMD2I: a multicentre longitudinal study.

    Directory of Open Access Journals (Sweden)

    Tracey A Willis

    Full Text Available Outcome measures for clinical trials in neuromuscular diseases are typically based on physical assessments which are dependent on patient effort, combine the effort of different muscle groups, and may not be sensitive to progression over short trial periods in slow-progressing diseases. We hypothesised that quantitative fat imaging by MRI (Dixon technique could provide more discriminating quantitative, patient-independent measurements of the progress of muscle fat replacement within individual muscle groups.To determine whether quantitative fat imaging could measure disease progression in a cohort of limb-girdle muscular dystrophy 2I (LGMD2I patients over a 12 month period.32 adult patients (17 male;15 female from 4 European tertiary referral centres with the homozygous c.826C>A mutation in the fukutin-related protein gene (FKRP completed baseline and follow up measurements 12 months later. Quantitative fat imaging was performed and muscle fat fraction change was compared with (i muscle strength and function assessed using standardized physical tests and (ii standard T1-weighted MRI graded on a 6 point scale.There was a significant increase in muscle fat fraction in 9 of the 14 muscles analyzed using the quantitative MRI technique from baseline to 12 months follow up. Changes were not seen in the conventional longitudinal physical assessments or in qualitative scoring of the T₁w images.Quantitative muscle MRI, using the Dixon technique, could be used as an important longitudinal outcome measure to assess muscle pathology and monitor therapeutic efficacy in patients with LGMD2I.

  4. A single dose of a neuron-binding human monoclonal antibody improves brainstem NAA concentrations, a biomarker for density of spinal cord axons, in a model of progressive multiple sclerosis.

    Science.gov (United States)

    Wootla, Bharath; Denic, Aleksandar; Watzlawik, Jens O; Warrington, Arthur E; Rodriguez, Moses

    2015-04-29

    Intracerebral infection of susceptible mouse strains with Theiler's murine encephalomyelitis virus (TMEV) results in chronic demyelinating disease with progressive axonal loss and neurologic dysfunction similar to progressive forms of multiple sclerosis (MS). We previously showed that as the disease progresses, a marked decrease in brainstem N-acetyl aspartate (NAA; metabolite associated with neuronal integrity) concentrations, reflecting axon health, is measured. We also demonstrated stimulation of neurite outgrowth by a neuron-binding natural human antibody, IgM12. Treatment with either the serum-derived or recombinant human immunoglobulin M 12 (HIgM12) preserved functional motor activity in the TMEV model. In this study, we examined IgM-mediated changes in brainstem NAA concentrations and central nervous system (CNS) pathology. (1)H-magnetic resonance spectroscopy (MRS) showed that treatment with HIgM12 significantly increased brainstem NAA concentrations compared to controls in TMEV-infected mice. Pathologic analysis demonstrated a significant preservation of axons in the spinal cord of animals treated with HIgM12. This study links drug efficacy of slowing deficits with axon preservation and NAA concentrations in the brainstem in a model of progressive MS. HIgM12-mediated changes of NAA concentrations in the brainstem are a surrogate marker of axon injury/preservation throughout the spinal cord. This study provides proof-of-concept that a neuron-reactive human IgM can be therapeutic and provides a biomarker for clinical trials.

  5. Adenosine A2b receptor promotes progression of human oral cancer

    International Nuclear Information System (INIS)

    Kasama, Hiroki; Sakamoto, Yosuke; Kasamatsu, Atsushi; Okamoto, Atsushi; Koyama, Tomoyoshi; Minakawa, Yasuyuki; Ogawara, Katsunori; Yokoe, Hidetaka; Shiiba, Masashi; Tanzawa, Hideki; Uzawa, Katsuhiro

    2015-01-01

    Adenosine A2b receptor (ADORA2B) encodes an adenosine receptor that is a member of the G protein-coupled receptor superfamily. This integral membrane protein stimulates adenylate cyclase activity in the presence of adenosine. Little is known about the relevance of ADORA2B to human malignancy including oral squamous cell carcinoma (OSCC). We aimed to characterize the expression state and function of ADORA2B in OSCC. The ADORA2B expression levels in nine OSCC-derived cells were analyzed by quantitative reverse transcriptase-polymerase chain reaction and immunoblotting analyses. Using an ADORA2B knockdown model, we assessed cellular proliferation and expression of hypoxia-inducible factor1α (HIF-1α). We examined the adenosine receptor expression profile under both normoxic and hypoxic conditions in the OSCC-derived cells. In addition to in vitro data, the clinical correlation between the ADORA2B expression levels in primary OSCCs (n = 100 patients) and the clinicopathological status by immunohistochemistry (IHC) also was evaluated. ADORA2B mRNA and protein were up-regulated significantly (p < 0.05) in seven OSCC-derived cells compared with human normal oral keratinocytes. Suppression of ADORA2B expression with shRNA significantly (p < 0.05) inhibited cellular proliferation compared with the control cells. HIF-1α also was down-regulated in ADORA2B knockdown OSCC cells. During hypoxia, ADORA2B expression was induced significantly (p < 0.05) in the mRNA and protein after 24 hours of incubation in OSCC-derived cells. IHC showed that ADORA2B expression in primary OSCCs was significantly (p < 0.05) greater than in the normal oral counterparts and that ADORA2B-positive OSCCs were correlated closely (p < 0.05) with tumoral size. Our results suggested that ADORA2B controls cellular proliferation via HIF-1α activation, indicating that ADORA2B may be a key regulator of tumoral progression in OSCCs. The online version of this article (doi:10.1186/s12885-015-1577-2) contains

  6. ATM/ATR-mediated phosphorylation of PALB2 promotes RAD51 function

    DEFF Research Database (Denmark)

    Ahlskog, Johanna K; Larsen, Brian D; Achanta, Kavya

    2016-01-01

    DNA damage activates the ATM and ATR kinases that coordinate checkpoint and DNA repair pathways. An essential step in homology-directed repair (HDR) of DNA breaks is the formation of RAD51 nucleofilaments mediated by PALB2-BRCA2; however, roles of ATM and ATR in this critical step of HDR are poor...... function, as the PALB2-dependent checkpoint response is normal in cells expressing the phospho-deficient PALB2 mutant. Collectively, our findings highlight a critical importance of PALB2 phosphorylation as a novel regulatory step in genome maintenance after genotoxic stress....

  7. Carbachol-mediated pigment granule dispersion in retinal pigment epithelium requires Ca2+ and calcineurin.

    Science.gov (United States)

    Johnson, Adam S; García, Dana M

    2007-12-19

    Inside bluegill (Lepomis macrochirus) retinal pigment epithelial cells, pigment granules move in response to extracellular signals. During the process of aggregation, pigment motility is directed toward the cell nucleus; in dispersion, pigment is directed away from the nucleus and into long apical processes. A number of different chemicals have been found to initiate dispersion, and carbachol (an acetylcholine analog) is one example. Previous research indicates that the carbachol-receptor interaction activates a Gq-mediated pathway which is commonly linked to Ca2+ mobilization. The purpose of the present study was to test for involvement of calcium and to probe calcium-dependent mediators to reveal their role in carbachol-mediated dispersion. Carbachol-induced pigment granule dispersion was blocked by the calcium chelator BAPTA. In contrast, the calcium channel antagonist verapamil, and incubation in Ca2+-free medium failed to block carbachol-induced dispersion. The calcineurin inhibitor cypermethrin blocked carbachol-induced dispersion; whereas, two protein kinase C inhibitors (staurosporine and bisindolylmaleimide II) failed to block carbachol-induced dispersion, and the protein kinase C activator phorbol 12-myristate 13-acetate failed to elicit dispersion. A rise in intracellular calcium is necessary for carbachol-induced dispersion; however, the Ca2+ requirement is not dependent on extracellular sources, implying that intracellular stores are sufficient to enable pigment granule dispersion to occur. Calcineurin is a likely Ca2+-dependent mediator involved in the signal cascade. Although the pathway leads to the generation of diacylglycerol and calcium (both required for the activation of certain PKC isoforms), our evidence does not support a significant role for PKC.

  8. The cobalt-mediated [2+2+2]cycloaddition of thiophenes and benzofurans to alkynes

    Energy Technology Data Exchange (ETDEWEB)

    Malaska, M.J.

    1991-01-01

    The cobalt-mediated [2+2+2]cycloaddition of thiophenes and benzofurans to alkynes was investigated. The cocyclization of 2-propynyloxymethylthiophenes provided two types of cyclohexadiene complexes. It was found that one of these complexes could be converted to the other by a thermal rearrangement. This novel transformation was investigated by deuterium-labelling and kinetic studies, and a mechanism was proposed. The complexes could be oxidatively demetallated to provide the liberated organic framework. Further reorganization of these dienes were observed during the decomplexation process and in the presence of CpCo(C[sub 2]H[sub 4])[sub 2]. In this manner several new heterocyclic ring systems could be constructed from 2-substituted thiophenes. Following the success of the thiophene cyclizations, the cocyclization of the benzofuran nucleus was examined. Reagents and conditions were developed that provide an efficient synthesis of alkynols from carboxylic acids; other functional group interconversions of the alkynols were briefly studied. The synthesis and cyclization of 1-[7-methoxy-4-benzofuranyl]-3-butyn-2-ol produced a cobalt complex containing the A,B,C, and D rings of the morphine skeleton. A synthetic advantage of this methodology would be the ease of substitution at pharmaco-logically relevant C-6 and C-7 positions of the morphine framework. Synthetic routes using a cobalt cyclization strategy were proposed.

  9. Reduced ceramide synthase 2 activity causes progressive myoclonic epilepsy

    DEFF Research Database (Denmark)

    Mosbech, Mai-Britt; Olsen, Anne S B; Neess, Ditte

    2014-01-01

    between genes involved in SL metabolism and epilepsy. METHODS: We used quantitative real-time PCR, Western blotting, and enzymatic assays to determine the mRNA, protein, and activity levels of ceramide synthase 2 (CERS2) in fiibroblasts isolated from parental control subjects and from a patient diagnosed...... with progressive myoclonic epilepsy (PME). Mass spectrometry and fluorescence microscopy were used to examine the effects of reduced CERS2 activity on cellular lipid composition and plasma membrane functions. RESULTS: We identify a novel 27 kb heterozygous deletion including the CERS2 gene in a proband diagnosed...... with PME. Compared to parental controls, levels of CERS2 mRNA, protein, and activity were reduced by ˜50% in fibroblasts isolated from this proband, resulting in significantly reduced levels of ceramides and sphingomyelins containing the very long-chain fatty acids C24:0 and C26:0. The change in SL...

  10. Neutralization of interleukin-17A delays progression of silica-induced lung inflammation and fibrosis in C57BL/6 mice

    International Nuclear Information System (INIS)

    Chen, Ying; Li, Cuiying; Weng, Dong; Song, Laiyu; Tang, Wen; Dai, Wujing; Yu, Ye; Liu, Fangwei; Zhao, Ming; Lu, Chunwei; Chen, Jie

    2014-01-01

    Silica exposure can cause lung inflammation and fibrosis, known as silicosis. Interleukin-17A (IL-17A) and Th17 cells play a pivotal role in controlling inflammatory diseases. However, the roles of IL-17A and Th17 cells in the progress of silica-induced inflammation and fibrosis are poorly understood. This study explored the effects of IL-17A on silica-induced inflammation and fibrosis. We used an anti-mouse IL-17A antibody to establish an IL-17A-neutralized mice model, and mice were exposed to silica to establish an experimental silicosis model. We showed that IL-17A neutralization delayed neutrophil accumulation and progression of silica-induced lung inflammation and fibrosis. IL-17A neutralization reduced the percentage of Th17 in CD4 + T cells, decreased IL-6 and IL-1β expression, and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A delayed silica-induced Th1/Th2 immune and autoimmune responses. These results suggest that IL-17A neutralization alleviates early stage silica-induced lung inflammation and delays progression of silica-induced lung inflammation and fibrosis. Neutralization of IL-17A suppressed Th17 cell development by decreasing IL-6 and/or IL-1β and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A also delayed the Th1/Th2 immune response during silica-induced lung inflammation and fibrosis. IL-17A may play a pivotal role in the early phase of silica-induced inflammation and may mediate the Th immune response to influence silica-induced lung inflammation and fibrosis in mice. - Highlights: • Neutralization of IL-17A alleviated silica-induced lung inflammation of early stage. • Neutralization of IL-17A decreased Th17 cells and increased Tregs. • IL-17A mediated the reciprocal relationship of Th17/Tregs by IL-6 and/or IL-1β. • Neutralization of IL-17A delayed silica-induced Th1/Th2 immune response. • Neutralization of IL-17A delayed silica-induced lung

  11. Neutralization of interleukin-17A delays progression of silica-induced lung inflammation and fibrosis in C57BL/6 mice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying; Li, Cuiying [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Weng, Dong [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai (China); Song, Laiyu; Tang, Wen; Dai, Wujing; Yu, Ye; Liu, Fangwei; Zhao, Ming; Lu, Chunwei [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Chen, Jie, E-mail: chenjie@mail.cmu.edu.cn [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China)

    2014-02-15

    Silica exposure can cause lung inflammation and fibrosis, known as silicosis. Interleukin-17A (IL-17A) and Th17 cells play a pivotal role in controlling inflammatory diseases. However, the roles of IL-17A and Th17 cells in the progress of silica-induced inflammation and fibrosis are poorly understood. This study explored the effects of IL-17A on silica-induced inflammation and fibrosis. We used an anti-mouse IL-17A antibody to establish an IL-17A-neutralized mice model, and mice were exposed to silica to establish an experimental silicosis model. We showed that IL-17A neutralization delayed neutrophil accumulation and progression of silica-induced lung inflammation and fibrosis. IL-17A neutralization reduced the percentage of Th17 in CD4 + T cells, decreased IL-6 and IL-1β expression, and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A delayed silica-induced Th1/Th2 immune and autoimmune responses. These results suggest that IL-17A neutralization alleviates early stage silica-induced lung inflammation and delays progression of silica-induced lung inflammation and fibrosis. Neutralization of IL-17A suppressed Th17 cell development by decreasing IL-6 and/or IL-1β and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A also delayed the Th1/Th2 immune response during silica-induced lung inflammation and fibrosis. IL-17A may play a pivotal role in the early phase of silica-induced inflammation and may mediate the Th immune response to influence silica-induced lung inflammation and fibrosis in mice. - Highlights: • Neutralization of IL-17A alleviated silica-induced lung inflammation of early stage. • Neutralization of IL-17A decreased Th17 cells and increased Tregs. • IL-17A mediated the reciprocal relationship of Th17/Tregs by IL-6 and/or IL-1β. • Neutralization of IL-17A delayed silica-induced Th1/Th2 immune response. • Neutralization of IL-17A delayed silica-induced lung

  12. Curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway.

    Science.gov (United States)

    Tian, Binqiang; Zhao, Yingmei; Liang, Tao; Ye, Xuxiao; Li, Zuowei; Yan, Dongliang; Fu, Qiang; Li, Yonghui

    2017-08-01

    We have previously reported that curcumin inhibits urothelial tumor development in a rat bladder carcinogenesis model. In this study, we report that curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway. Curcumin inhibits IGF2 expression at the transcriptional level and decreases the phosphorylation levels of IGF1R and IRS-1 in bladder cancer cells and N-methyl-N-nitrosourea (MNU)-induced urothelial tumor tissue. Ectopic expression of IGF2 and IGF1R, but not IGF1, in bladder cancer cells restored this process, suggesting that IGF2 is a target of curcumin. Moreover, introduction of constitutively active AKT1 abolished the inhibitory effect of curcumin on cell proliferation, migration, and restored the phosphorylation levels of 4E-BP1 and S6K1, suggesting that curcumin functions via suppressing IGF2-mediated AKT/mTOR signaling pathway. In summary, our results reveal that suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway is one of the mechanisms of action of curcumin. Our findings suggest a new therapeutic strategy against human bladder cancer caused by aberrant activation of IGF2, which are useful for translational application of curcumin.

  13. Curcumin slows osteoarthritis progression and relieves osteoarthritis-associated pain symptoms in a post-traumatic osteoarthritis mouse model.

    Science.gov (United States)

    Zhang, Zhuo; Leong, Daniel J; Xu, Lin; He, Zhiyong; Wang, Angela; Navati, Mahantesh; Kim, Sun J; Hirsh, David M; Hardin, John A; Cobelli, Neil J; Friedman, Joel M; Sun, Hui B

    2016-06-03

    Curcumin has been shown to have chondroprotective potential in vitro. However, its effect on disease and symptom modification in osteoarthritis (OA) is largely unknown. This study aimed to determine whether curcumin could slow progression of OA and relieve OA-related pain in a mouse model of destabilization of the medial meniscus (DMM). Expression of selected cartilage degradative-associated genes was evaluated in human primary chondrocytes treated with curcumin and curcumin nanoparticles and assayed by real-time PCR. The mice subjected to DMM surgery were orally administered curcumin or topically administered curcumin nanoparticles for 8 weeks. Cartilage integrity was evaluated by Safranin O staining and Osteoarthritis Research Society International (OARSI) score, and by immunohistochemical staining of cleaved aggrecan and type II collagen, and levels of matrix metalloproteinase (MMP)-13 and ADAMTS5. Synovitis and subchondral bone thickness were scored based on histologic images. OA-associated pain and symptoms were evaluated by von Frey assay, and locomotor behavior including distance traveled and rearing. Both curcumin and nanoparticles encapsulating curcumin suppressed mRNA expression of pro-inflammatory mediators IL-1β and TNF-α, MMPs 1, 3, and 13, and aggrecanase ADAMTS5, and upregulated the chondroprotective transcriptional regulator CITED2, in primary cultured chondrocytes in the absence or presence of IL-1β. Oral administration of curcumin significantly reduced OA disease progression, but showed no significant effect on OA pain relief. Curcumin was detected in the infrapatellar fat pad (IPFP) following topical administration of curcumin nanoparticles on the skin of the injured mouse knee. Compared to vehicle-treated controls, topical treatment led to: (1) reduced proteoglycan loss and cartilage erosion and lower OARSI scores, (2) reduced synovitis and subchondral plate thickness, (3) reduced immunochemical staining of type II collagen and aggrecan

  14. Direct trans-activation of the human cyclin D2 gene by the oncogene product Tax of human T-cell leukemia virus type I.

    Science.gov (United States)

    Huang, Y; Ohtani, K; Iwanaga, R; Matsumura, Y; Nakamura, M

    2001-03-01

    Cyclins are one of the pivotal determinants regulating cell cycle progression. We previously reported that the trans-activator Tax of human T-cell leukemia virus type I (HTLV-I) induces endogenous cyclin D2 expression along with cell cycle progression in a resting human T-cell line, Kit 225, suggesting a role of cyclin D2 in Tax-mediated cell cycle progression. The cyclin D2 gene has a typical E2F binding element, raising the possibility that induction of cyclin D2 expression is a consequence of cell cycle progression. In this study, we examined the role and molecular mechanism of induction of the endogenous human cyclin D2 gene by Tax. Introduction of p19(INK4d), a cyclin dependent kinase (CDK) inhibitor of the INK4 family specific for D-type CDK, inhibited Tax-mediated activation of E2F, indicating requirement of D-type CDK in Tax-mediated activation of E2F. Previously indicated E2F binding element and two NF-kappaB-like binding elements in the 1.6 kbp cyclin D2 promoter fragment had little, if any, effect on responsiveness to Tax. We found that trans-activation of the cyclin D2 promoter by Tax was mainly mediated by a newly identified NF-kappaB-like element with auxiliary contribution of a CRE-like element residing in sequences downstream of -444 which were by themselves sufficient for trans-activation by Tax. These results indicate that Tax directly trans-activates the cyclin D2 gene, resulting in growth promotion and perhaps leukemogenesis through activation of D-type CDK.

  15. Bone sialoprotein does not interact with pro-gelatinase A (MMP-2 or mediate MMP-2 activation

    Directory of Open Access Journals (Sweden)

    McCulloch Christopher A

    2009-04-01

    Full Text Available Abstract Background A recent model for activation of the zymogen form of matrix metalloproteinase 2 (MMP-2, also known as gelatinase A has suggested that interactions between the SIBLING protein bone sialoprotein (BSP and MMP-2 leads to conformational change in MMP-2 that initiates the conversion of the pro-enzyme into a catalytically active form. This model is particularly relevant to cancer cell metastasis to bone since BSP, bound to the αvβ3 integrin through its arginine-glycine-aspartic acid motif, could recruit MMP-2 to the cell surface. Methods We critically assessed the relationship between BSP and proMMP-2 and its activation using various forms of recombinant and purified BSP and MMP-2. Gelatinase and collagenase assays, fluorescence binding assays, real-time PCR, cell culture and pull-down assays were employed to test the model. Results Studies with a fluorogenic substrate for MMP-2 showed no activation of proMMP-2 by BSP. Binding and pull-down assays demonstrated no interaction between MMP-2 and BSP. While BSP-mediated invasiveness has been shown to depend on its integrin-binding RGD sequence, analysis of proMMP-2 activation and the level of membrane type 1 (MT1-MMP in cells grown on a BSP substratum showed that the BSP-αvβ3 integrin interaction does not induce the expression of MT1-MMP. Conclusion These studies do not support a role for BSP in promoting metastasis through interactions with pro-MMP-2.

  16. Nuclear import of Nkx2-2 is mediated by multiple pathways

    International Nuclear Information System (INIS)

    Lin, Wenbo; Xu, PengPeng; Guo, YingYing; Jia, Qingjie; Tao, Tao

    2017-01-01

    Nkx2-2 homeoprotein is essential for the development of the central nervous system and pancreas. Although the nuclear localization signals of Nkx2-2 have been identified, the responsible transport receptor is still unknown. Here, we demonstrate that imp α1 not only interacts with Nkx2-2 but also transports it into the nucleus in vitro by acting together with imp β1. However, the nuclear import of Nkx2-2 in cells was not inhibited in response to knockdown expression of endogenous imp β1 or over-expression of Bimax2. Furthermore, imp β1 and imp 13, but not imp 4, directly interact with Nkx2-2 and are capable of transporting Nkx2-2 in an in vitro import assay. By GST pull-down assay, we demonstrate that mutation of NLS1 or NLS2 has no effect on interaction with imp α1 or imp 13, but significantly reduced binding to imp β1. Thus, the nuclear import of Nkx2-2 is mediated not only by the classical import pathway but also directly by imp β1 or imp 13.

  17. Early induction of NRF2 antioxidant pathway by RHBDF2 mediates rapid cutaneous wound healing.

    Science.gov (United States)

    Hosur, Vishnu; Burzenski, Lisa M; Stearns, Timothy M; Farley, Michelle L; Sundberg, John P; Wiles, Michael V; Shultz, Leonard D

    2017-04-01

    Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. In humans, a gain-of-function mutation in the RHBDF2 gene accelerates cutaneous wound healing in an EGFR-dependent manner. Likewise, a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2 cub/cub ) shows a regenerative phenotype (rapid ear-hole closure) resulting from constitutive activation of the EGFR pathway. Because the RHBDF2-regulated EGFR pathway is relevant to cutaneous wound healing in humans, we used Rhbdf2 cub/cub mice to investigate the biological networks and pathways leading to accelerated ear-hole closure, with the goal of identifying therapeutic targets potentially effective in promoting wound healing in humans. Comparative transcriptome analysis of ear pinna tissue from Rhbdf2 cub/cub and Rhbdf2 +/+ mice at 0h, 15min, 2h, and 24h post-wounding revealed an early induction of the nuclear factor E2-related factor 2 (NRF2)-mediated anti-oxidative pathway (0h and 15min), followed by the integrin-receptor aggregation pathway (2h) as early-stage events immediately and shortly after wounding in Rhbdf2 cub/cub mice. Additionally, we observed genes enriched for the Fc fragment of the IgG receptor IIIa (FCGR3A)-mediated phagocytosis pathway 24h post-wounding. Although cutaneous wound repair in healthy individuals is generally non-problematic, it can be severely impaired due to aging, diabetes, and chronic inflammation. This study suggests that activation of the NRF2-antioxidant pathway by rhomboid protein RHBDF2 might be beneficial in treating chronic non-healing wounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) and its receptor PROKR2 are associated to human colorectal cancer progression and peritoneal carcinomatosis.

    Science.gov (United States)

    Benlahfid, Mohammed; Traboulsi, Wael; Sergent, Frederic; Benharouga, Mohamed; Elhattabi, Khalid; Erguibi, Driss; Karkouri, Mehdi; Elattar, Hicham; Fadil, Abdelaziz; Fahmi, Yassine; Aboussaouira, Touria; Alfaidy, Nadia

    2018-02-06

    The highest risk factor for mortality among malignant tumors is metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor which biological activity is mediated via two G protein-coupled receptors, prokineticin receptor1 (PROKR1) and PROKR2. Recent studies suggested that EG-VEGF expression is deregulated in multiple cancers including colorectal cancer (CRC). Using distinctive CRC and peritoneal carcinomatosis (PC) cohorts and a corresponding control cohort, we determined the circulating levels of EG-VEGF and its in situ expression, and that of its related receptors. Circulating EG-VEGF levels were significantly increased in patients with metastatic PC compared to CRC and control patients (p< 0.05). Furthermore, according to clinicopathologic examinations, local EG-VEGF expression correlated with higher tumor and nodal stages (p< 0.001) of CRC. EG-VEGF and PROKR2 were highly expressed in colorectal primary lesions compared to positive controls. PROKR1 expression was lower and did not change in tumor specimens. Also, EG-VEGF and its receptor PROKR2 were differentially expressed in the colorectal primary lesions and in the control groups. Altogether these findings suggest that EG-VEGF/receptors system might be an important actor in the CRC progression into PC and might be involved in the ability of tumor cells to invade other organs. Circulating EG-VEGF could be proposed as a prognostic marker in human CRC and its progression into PC.

  19. A review on primary progressive aphasia

    Directory of Open Access Journals (Sweden)

    Gabriel C Léger

    2007-01-01

    Full Text Available Gabriel C Léger1,2, Nancy Johnson31Neurology Service, Hôtel-Dieu du Centre Hospitalier de l’Univertité de Montréal, Montréal, Québec, Canada; 2Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; 3Cognitive Neurology and Alzheimer’s Disease Center, Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USAAbstract: Primary progressive aphasia (PPA is a neurodegenerative disease of insidious onset presenting with progressive isolated loss of language function, without significant impairment in other cognitive domains. Current diagnostic criteria require the language dysfunction to remain isolated for at least two years, and to remain the salient feature as the disease progresses, usually to involve other domains such as behavior, executive functions, and judgment. Although PPA in its early stages can usually be differentiated from probable Alzheimer’s disease (PRAD and the behavioral variant of frontotemporal lobar degeneration by the absence of significant changes in memory and behavior, and the preservation of activities daily living, progression of the disease often leads to deficits more consistent with the latter. Underlying etiologies remain heterogeneous: the neuropathological characteristics associated with frontotemporal lobar degeneration, cortocobasal degeneration, and motor neuron disease are usually found. There is a strong genetic susceptibility with affliction of first-degree relatives with similar disease in up to 40 to 50% in some series. Pathogenic mutations in genes coding for the proteins tau and progranulin have been isolated. These are leading to a better understanding of the neuropathological mechanisms and hopefully targeted disease-modifying therapy. Current therapy is limited to improving mood symptoms and targeting behavior changes as they develop. Referral to specialized centers where speech therapy, counseling, and education

  20. Caffeine Inhibits the Activation of Hepatic Stellate Cells Induced by Acetaldehyde via Adenosine A2A Receptor Mediated by the cAMP/PKA/SRC/ERK1/2/P38 MAPK Signal Pathway

    Science.gov (United States)

    Yang, Wanzhi; Wang, Qi; Zhao, Han; Yang, Feng; Lv, Xiongwen; Li, Jun

    2014-01-01

    Hepatic stellate cell (HSC) activation is an essential event during alcoholic liver fibrosis. Evidence suggests that adenosine aggravates liver fibrosis via the adenosine A2A receptor (A2AR). Caffeine, which is being widely consumed during daily life, inhibits the action of adenosine. In this study, we attempted to validate the hypothesis that caffeine influences acetaldehyde-induced HSC activation by acting on A2AR. Acetaldehyde at 50, 100, 200, and 400 μM significantly increased HSC-T6 cells proliferation, and cell proliferation reached a maximum at 48 h after exposure to 200 μM acetaldehyde. Caffeine and the A2AR antagonist ZM241385 decreased the cell viability and inhibited the expression of procollagen type I and type III in acetaldehyde-induced HSC-T6 cells. In addition, the inhibitory effect of caffeine on the expression of procollagen type I was regulated by A2AR-mediated signal pathway involving cAMP, PKA, SRC, and ERK1/2. Interestingly, caffeine’s inhibitory effect on the expression of procollagen type III may depend upon the A2AR-mediated P38 MAPK-dependent pathway. Conclusions: Caffeine significantly inhibited acetaldehyde-induced HSC-T6 cells activation by distinct A2AR mediated signal pathway via inhibition of cAMP-PKA-SRC-ERK1/2 for procollagen type I and via P38 MAPK for procollagen type III. PMID:24682220

  1. First clinical results on the finnish study on BPA-mediated BNCT in glioblastoma

    International Nuclear Information System (INIS)

    Kankaanranta, L.; Seppaelae, T.; Kallio, M.

    2000-01-01

    An open phase I dose-escalation boron neutron capture therapy (BNCT) study on glioblastoma multiforme (GBM) was initiated at the BNCT facility FiR 1, Espoo, Finland, in May 1999. The aim of the study is to investigate the safety of boronophenylalanine (BPA)-mediated BNCT. Ten GBM patients were treated with a 2-field treatment plan using one fraction. BPA-F was used as the 10 B carrier infused as a fructose solution 290 mg BPA/kg over 2-hours prior to irradiation with epithermal neutrons. Average doses to the normal brain, contrast enhancing tumour, and the target ranged from 3.0 to 5.6 Gy (W), from 35.1 to 66.7 Gy (W), and from 29.6 to 53.6 Gy (W), respectively. BNCT was associated with acceptable toxicity. The median follow-up is 9 months (range, 3 to 16 months) post diagnosis in July 2000. Seven of the 10 patients have recurrent or persistent GBM, and the median time to progression is 8 months. Only one patient has died, and the estimated 1-year overall survival is 86%. Five of the recurrent tumours were treated with external beam photon radiation therapy to the total dose of 30-40 Gy with few acute side-effects. These preliminary findings suggest that acute toxicity of BPA-mediated BNCT is acceptable when average brain doses of 5.6 Gy (W) or less are used. The followup time is too short to evaluate survival, but the estimated 1-year survival of 86% achieved with BNCT followed by conventional photon irradiation at the time of tumour progression is encouraging and emphasises the need of further investigation of BPA-mediated BNCT. (author)

  2. Improved eating behaviours mediate weight gain prevention of young adults: moderation and mediation results of a randomised controlled trial of TXT2BFiT, mHealth program.

    Science.gov (United States)

    Partridge, Stephanie R; McGeechan, Kevin; Bauman, Adrian; Phongsavan, Philayrath; Allman-Farinelli, Margaret

    2016-04-02

    Explanatory evaluation of interventions for prevention of weight gain is required beyond changes in weight, to determine for whom the intervention works and the underlying mechanisms of change. It was hypothesised that participant characteristics moderate intervention effect on weight change and improved eating and physical activity behaviours during the 3-month program mediate the relationship between intervention and weight. In our randomised controlled trial, young adults at risk of weight gain (n = 250) were assigned either to an intervention group that received a 3-month mHealth (TXT2BFiT) program with 6-month maintenance or to a control group. Data were collected via online self-report surveys. Hypothesised moderators and mediators of the intervention effect on weight were independently assessed in PROCESS macro models for 3 and 9-month weight change. Males (P = 0.01), mid-20s age group (P = 0.04), and higher income earners (P = 0.02) moderated intervention effects on weight change at 3-months and males only at 9-months (P = 0.02). Weight change at 3 (-1.12 kg) and 9-months (-1.38 kg) remained significant when 3-month nutrition and physical activity behaviours were specified as mediators (P <0.01 and P = 0.01 respectively). Indirect paths explained 39% (0.72/1.85 kg) and 40 % (0.92/2.3 kg) of total effect on weight change at 3 and 9-months respectively. Increased vegetable intake by intervention group at 3-months accounted for 19 and 17% and decreased sugar-sweetened beverages accounted for 8 and 13% of indirect weight change effects at 3 and 9-months respectively. TXT2BFiT was effective for both young men and women. Small sustained behavioural changes, including increased vegetable intake and decreased sugar-sweetened beverages consumption significantly mediated the intervention's effects on weight change. Improved eating behaviours and increased physical activity accounted for approximately 40% of the weight change. The trial is

  3. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling.

    Science.gov (United States)

    Karampelias, Michael; Neyt, Pia; De Groeve, Steven; Aesaert, Stijn; Coussens, Griet; Rolčík, Jakub; Bruno, Leonardo; De Winne, Nancy; Van Minnebruggen, Annemie; Van Montagu, Marc; Ponce, María Rosa; Micol, José Luis; Friml, Jiří; De Jaeger, Geert; Van Lijsebettens, Mieke

    2016-03-08

    The shaping of organs in plants depends on the intercellular flow of the phytohormone auxin, of which the directional signaling is determined by the polar subcellular localization of PIN-FORMED (PIN) auxin transport proteins. Phosphorylation dynamics of PIN proteins are affected by the protein phosphatase 2A (PP2A) and the PINOID kinase, which act antagonistically to mediate their apical-basal polar delivery. Here, we identified the ROTUNDA3 (RON3) protein as a regulator of the PP2A phosphatase activity in Arabidopsis thaliana. The RON3 gene was map-based cloned starting from the ron3-1 leaf mutant and found to be a unique, plant-specific gene coding for a protein with high and dispersed proline content. The ron3-1 and ron3-2 mutant phenotypes [i.e., reduced apical dominance, primary root length, lateral root emergence, and growth; increased ectopic stages II, IV, and V lateral root primordia; decreased auxin maxima in indole-3-acetic acid (IAA)-treated root apical meristems; hypergravitropic root growth and response; increased IAA levels in shoot apices; and reduced auxin accumulation in root meristems] support a role for RON3 in auxin biology. The affinity-purified PP2A complex with RON3 as bait suggested that RON3 might act in PIN transporter trafficking. Indeed, pharmacological interference with vesicle trafficking processes revealed that single ron3-2 and double ron3-2 rcn1 mutants have altered PIN polarity and endocytosis in specific cells. Our data indicate that RON3 contributes to auxin-mediated development by playing a role in PIN recycling and polarity establishment through regulation of the PP2A complex activity.

  4. Enabling rechargeable non-aqueous Mg-O2 battery operations with dual redox mediators.

    Science.gov (United States)

    Dong, Qi; Yao, Xiahui; Luo, Jingru; Zhang, Xizi; Hwang, Hajin; Wang, Dunwei

    2016-12-11

    Dual redox mediators (RMs) were introduced for Mg-O 2 batteries. 1,4-Benzoquinone (BQ) facilitates the discharge with an overpotential reduction of 0.3 V. 5,10,15,20-Tetraphenyl-21H,23H-porphine cobalt(ii) (Co(ii)TPP) facilitates the recharge with an overpotential decrease of up to 0.3 V. Importantly, the two redox mediators are compatible in the same DMSO-based electrolyte.

  5. The Effect of Dynamic Assessment in Synchronous Computer-Mediated Communication on Iranian EFL Learners' Listening Comprehension Ability at Upper-Intermediate Level

    Science.gov (United States)

    Heidar, Davood Mashhadi; Afghari, Akbar

    2015-01-01

    The present paper concentrates on a web-based inquiry in the synchronous computer-mediated communication (SCMC) via Web 2.0 technologies of Talk and Write and Skype. It investigates EFL learners' socio-cognitive progress through dynamic assessment (DA), which follows Vygotsky's inclination for supportive interchange in the zone of proximal…

  6. The role of acquired immunity and periodontal disease progression.

    Science.gov (United States)

    Teng, Yen-Tung A

    2003-01-01

    Our understanding of the pathogenesis in human periodontal diseases is limited by the lack of specific and sensitive tools or models to study the complex microbial challenges and their interactions with the host's immune system. Recent advances in cellular and molecular biology research have demonstrated the importance of the acquired immune system not only in fighting the virulent periodontal pathogens but also in protecting the host from developing further devastating conditions in periodontal infections. The use of genetic knockout and immunodeficient mouse strains has shown that the acquired immune response-in particular, CD4+ T-cells-plays a pivotal role in controlling the ongoing infection, the immune/inflammatory responses, and the subsequent host's tissue destruction. In particular, studies of the pathogen-specific CD4+ T-cell-mediated immunity have clarified the roles of: (i) the relative diverse immune repertoire involved in periodontal pathogenesis, (ii) the contribution of pathogen-associated Th1-Th2 cytokine expressions in periodontal disease progression, and (iii) micro-organism-triggered periodontal CD4+ T-cell-mediated osteoclastogenic factor, 'RANK-L', which is linked to the induction of alveolar bone destruction in situ. The present review will focus on some recent advances in the acquired immune responses involving B-cells, CD8+ T-cells, and CD4+ T-cells in the context of periodontal disease progression. New approaches will further facilitate our understanding of their underlying molecular mechanisms that may lead to the development of new treatment modalities for periodontal diseases and their associated complications.

  7. Lignin Biodegradation with Laccase-Mediator Systems

    International Nuclear Information System (INIS)

    Christopher, Lew Paul; Yao, Bin; Ji, Yun

    2014-01-01

    Lignin has a significant and largely unrealized potential as a source for the sustainable production of fuels and bulk high-value chemicals. It can replace fossil-based oil as a renewable feedstock that would bring about socio-economic and environmental benefits in our transition to a biobased economy. The efficient utilization of lignin however requires its depolymerization to low-molecular weight phenolics and aromatics that can then serve as the building blocks for chemical syntheses of high-value products. The ability of laccase to attack and degrade lignin in conjunction with laccase mediators is currently viewed as one of the potential “breakthrough” applications for lignin valorization. Here, we review the recent progress in lignin biodegradation with laccase-mediator systems, and research needs that need to be addressed in this field.

  8. Lignin Biodegradation with Laccase-Mediator Systems

    Energy Technology Data Exchange (ETDEWEB)

    Christopher, Lew Paul, E-mail: lew.christopher@sdsmt.edu [Center for Bioprocessing Research and Development, South Dakota School of Mines & Technology, Rapid City, SD (United States); Department of Civil and Environmental Engineering, South Dakota School of Mines & Technology, Rapid City, SD (United States); Yao, Bin [Center for Bioprocessing Research and Development, South Dakota School of Mines & Technology, Rapid City, SD (United States); Ji, Yun [Department of Chemical Engineering, University of North Dakota, Grand Forks, ND (United States)

    2014-03-31

    Lignin has a significant and largely unrealized potential as a source for the sustainable production of fuels and bulk high-value chemicals. It can replace fossil-based oil as a renewable feedstock that would bring about socio-economic and environmental benefits in our transition to a biobased economy. The efficient utilization of lignin however requires its depolymerization to low-molecular weight phenolics and aromatics that can then serve as the building blocks for chemical syntheses of high-value products. The ability of laccase to attack and degrade lignin in conjunction with laccase mediators is currently viewed as one of the potential “breakthrough” applications for lignin valorization. Here, we review the recent progress in lignin biodegradation with laccase-mediator systems, and research needs that need to be addressed in this field.

  9. Au@Pt nanoparticles as catalase mimics to attenuate tumor hypoxia and enhance immune cell-mediated cytotoxicity

    Science.gov (United States)

    Liang, Hong; Wu, Ying; Ou, Xiang-Yu; Li, Jing-Ying; Li, Juan

    2017-11-01

    Hypoxic tumor microenvironment (TME) is closely linked to tumor progression, heterogeneity and immune suppression. Therefore, the development of effective methods to overcome hypoxia and substantially enhance the immunotherapy efficacy remains a desirable goal. Herein, we engineered a biocompatible Au core/Pt shell nanoparticles (Au@Pt NPs) to reoxygenate the TME by reacting with endogenous H2O2. Treatment with Au@Pt NPs appeared to improve oxygen in intracellular environments and decrease hypoxia-inducible factor-1α expression. Furthermore, the integration of high catalytic efficiency of Au@Pt NPs with cytokine-induced killer (CIK) cell immunotherapy, could lead to significantly improve the effect of CIK cell-mediated cytotoxicity. These results suggest great potential of Au@Pt NPs for regulation of the hypoxic TME and enhance immune cell mediated anti-tumor immunity.

  10. Use of a temperature-sensitive p53 mutant to evaluate mechanisms of 5-fluorodeoxyuridine-mediated radiosensitization

    International Nuclear Information System (INIS)

    Naida, J.D.; Davis, M.A.; Lawrence, T.S.

    1996-01-01

    Purpose/Objective: Evidence exists that fluorodeoxyuridine (FdUrd)-mediated radiosensitization occurs in HT29 human colon carcinoma cells (which are p53 mutant) when these cells progress past the G 1 /S boundary in the presence of the drug. It has been demonstrated that wild type p53 levels increase following fluoropyrimidine treatment and that G 1 arrest is associated with increased p53 levels. We hypothesized that the restoration of wild type p53 function might restore G 1 /S arrest after FdUrd treatment, and that this would prevent FdUrd-mediated radiosensitization. Similarly, we hypothesized that cells containing wild type p53 would not be radiosensitized by FdUrd. Materials and Methods: Two clones of HT29 human colon cancer cells (ts29-A and ts29-G) containing murine temperature-sensitive p53 were constructed using electroporation and Geneticin selection. Incubation of these cells at the permissive temperature of 32 deg. C produces wild type p53 function and at the non permissive temperature of 38 deg. C causes mutant p53 function. A G418 resistant control cell line was also constructed (HT29neo). Cells were incubated at either 32 deg. C or 38 deg. C for 24 hours prior to irradiation and with FdUrd (100 nM) or medium only during the last 14 hours of the temperature shift. To assess progression into S phase, single-parameter (propidium iodide (PI)) and two-parameter (PI and bromodeoxyuridine) flow cytometry were performed at the end of drug exposure. A standard clonogenic assay was used. Results: We found that when ts29-A and ts29-G cells were incubated at the non-permissive (inactive p53 conformation) temperature, they progressed into S phase following exposure to FdUrd and were radiosensitized (enhancement ratio 1.5) to a degree similar to that seen in parental HT29 cells. Cells incubated at the permissive (wild-type p53 conformation) temperature demonstrated G 1 arrest, S phase depletion, and G2 arrest. In addition, FdUrd-mediated radiosensitization was

  11. Raf-mediated cardiac hypertrophy in adult Drosophila

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2013-07-01

    In response to stress and extracellular signals, the heart undergoes a process called cardiac hypertrophy during which cardiomyocytes increase in size. If untreated, cardiac hypertrophy can progress to overt heart failure that causes significant morbidity and mortality. The identification of molecular signals that cause or modify cardiomyopathies is necessary to understand how the normal heart progresses to cardiac hypertrophy and heart failure. Receptor tyrosine kinase (RTK signaling is essential for normal human cardiac function, and the inhibition of RTKs can cause dilated cardiomyopathies. However, neither investigations of activated RTK signaling pathways nor the characterization of hypertrophic cardiomyopathy in the adult fly heart has been previously described. Therefore, we developed strategies using Drosophila as a model to circumvent some of the complexities associated with mammalian models of cardiovascular disease. Transgenes encoding activated EGFRA887T, Ras85DV12 and Ras85DV12S35, which preferentially signal to Raf, or constitutively active human or fly Raf caused hypertrophic cardiomyopathy as determined by decreased end diastolic lumen dimensions, abnormal cardiomyocyte fiber morphology and increased heart wall thicknesses. There were no changes in cardiomyocyte cell numbers. Additionally, activated Raf also induced an increase in cardiomyocyte ploidy compared with control hearts. However, preventing increases in cardiomyocyte ploidy using fizzy-related (Fzr RNAi did not rescue Raf-mediated cardiac hypertrophy, suggesting that Raf-mediated polyploidization is not required for cardiac hypertrophy. Similar to mammals, the cardiac-specific expression of RNAi directed against MEK or ERK rescued Raf-mediated cardiac hypertrophy. However, the cardiac-specific expression of activated ERKD334N, which promotes hyperplasia in non-cardiac tissues, did not cause myocyte hypertrophy. These results suggest that ERK is necessary, but not sufficient, for Raf-mediated

  12. Straight A's: Public Education Policy and Progress. Volume 12, Number 2

    Science.gov (United States)

    Amos, Jason, Ed.

    2012-01-01

    "Straight A's: Public Education Policy and Progress" is a biweekly newsletter that focuses on education news and events both in Washington, DC and around the country. The following articles are included in this issue: (1) Waiving Away High School Graduation Rate Accountability?: State NCLB Waiver Proposals Threaten to Weaken…

  13. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling*♦

    Science.gov (United States)

    Walliser, Claudia; Tron, Kyrylo; Clauss, Karen; Gutman, Orit; Kobitski, Andrei Yu.; Retlich, Michael; Schade, Anja; Röcker, Carlheinz; Henis, Yoav I.; Nienhaus, G. Ulrich; Gierschik, Peter

    2015-01-01

    The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca2+. The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca2+ and regulation of Ca2+-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca2+ release from intracellular stores; (iii) Ca2+ entry from the extracellular compartment; and (iv) nuclear translocation of the Ca2+-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca2+ signaling. PMID:25903139

  14. FGFR2c-mediated ERK-MAPK activity regulates coronal suture development

    Science.gov (United States)

    Pfaff, Miles J.; Xue, Ke; Li, Li; Horowitz, Mark C.; Steinbacher, Derek M.; Eswarakumar, Jacob V.P.

    2017-01-01

    Fibroblast growth factor receptor 2 (FGFR2) signaling is critical for proper craniofacial development. A gain-of-function mutation in the 2c splice variant of the receptor’s gene is associated with Crouzon syndrome, which is characterized by craniosynostosis, the premature fusion of one or more of the cranial vault sutures, leading to craniofacial maldevelopment. Insight into the molecular mechanism of craniosynostosis has identified the ERK-MAPK signaling cascade as a critical regulator of suture patency. The aim of this study is to investigate the role of FGFR2c-induced ERK-MAPK activation in the regulation of coronal suture development. Loss-of-function and gain-of-function Fgfr2c mutant mice have overlapping phenotypes, including coronal synostosis and craniofacial dysmorphia. In vivo analysis of coronal sutures in loss-of-function and gain-of-function models demonstrated fundamentally different pathogenesis underlying coronal suture synostosis. Calvarial osteoblasts from gain-of-function mice demonstrated enhanced osteoblastic function and maturation with concomitant increase in ERK-MAPK activation. In vitro inhibition with the ERK protein inhibitor U0126 mitigated ERK protein activation levels with a concomitant reduction in alkaline phosphatase activity. This study identifies FGFR2c-mediated ERK-MAPK signaling as a key mediator of craniofacial growth and coronal suture development. Furthermore, our results solve the apparent paradox between loss-of-function and gain-of-function FGFR2c mutants with respect to coronal suture synostosis. PMID:27034231

  15. Dimensional Anxiety Mediates Linkage of GABRA2 Haplotypes With Alcoholism

    Science.gov (United States)

    Enoch, Mary-Anne; Schwartz, Lori; Albaugh, Bernard; Virkkunen, Matti; Goldman, David

    2015-01-01

    The GABAAα2 receptor gene (GABRA2) modulates anxiety and stress response. Three recent association studies implicate GABRA2 in alcoholism, however in these papers both common, opposite-configuration haplotypes in the region distal to intron3 predict risk. We have now replicated the GABRA2 association with alcoholism in 331 Plains Indian men and women and 461 Finnish Caucasian men. Using a dimensional measure of anxiety, harm avoidance (HA), we also found that the association with alcoholism is mediated, or moderated, by anxiety. Nine SNPs were genotyped revealing two haplotype blocks. Within the previously implicated block 2 region, we identified the two common, opposite-configuration risk haplotypes, A and B. Their frequencies differed markedly in Finns and Plains Indians. In both populations, most block 2 SNPs were significantly associated with alcoholism. The associations were due to increased frequencies of both homozygotes in alcoholics, indicating the possibility of alcoholic subtypes with opposite genotypes. Congruently, there was no significant haplotype association. Using HA as an indicator variable for anxiety, we found haplotype linkage to alcoholism with high and low dimensional anxiety, and to HA itself, in both populations. High HA alcoholics had the highest frequency of the more abundant haplotype (A in Finns, B in Plains Indians); low HA alcoholics had the highest frequency of the less abundant haplotype (B in Finns, A in Plains Indians) (Finns: P α0.007, OR α2.1, Plains Indians: P α0.040, OR α1.9). Non-alcoholics had intermediate frequencies. Our results suggest that within the distal GABRA2 region is a functional locus or loci that may differ between populations but that alters risk for alcoholism via the mediating action of anxiety. PMID:16874763

  16. Novel neuroprotective function of apical-basal polarity gene crumbs in amyloid beta 42 (aβ42 mediated neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Andrew M Steffensmeier

    Full Text Available Alzheimer's disease (AD, OMIM: 104300, a progressive neurodegenerative disorder with no cure to date, is caused by the generation of amyloid-beta-42 (Aβ42 aggregates that trigger neuronal cell death by unknown mechanism(s. We have developed a transgenic Drosophila eye model where misexpression of human Aβ42 results in AD-like neuropathology in the neural retina. We have identified an apical-basal polarity gene crumbs (crb as a genetic modifier of Aβ42-mediated-neuropathology. Misexpression of Aβ42 caused upregulation of Crb expression, whereas downregulation of Crb either by RNAi or null allele approach rescued the Aβ42-mediated-neurodegeneration. Co-expression of full length Crb with Aβ42 increased severity of Aβ42-mediated-neurodegeneration, due to three fold induction of cell death in comparison to the wild type. Higher Crb levels affect axonal targeting from the retina to the brain. The structure function analysis identified intracellular domain of Crb to be required for Aβ42-mediated-neurodegeneration. We demonstrate a novel neuroprotective role of Crb in Aβ42-mediated-neurodegeneration.

  17. Phosphorylation of the Usher syndrome 1G protein SANS controls Magi2-mediated endocytosis.

    Science.gov (United States)

    Bauß, Katharina; Knapp, Barbara; Jores, Pia; Roepman, Ronald; Kremer, Hannie; Wijk, Erwin V; Märker, Tina; Wolfrum, Uwe

    2014-08-01

    The human Usher syndrome (USH) is a complex ciliopathy with at least 12 chromosomal loci assigned to three clinical subtypes, USH1-3. The heterogeneous USH proteins are organized into protein networks. Here, we identified Magi2 (membrane-associated guanylate kinase inverted-2) as a new component of the USH protein interactome, binding to the multifunctional scaffold protein SANS (USH1G). We showed that the SANS-Magi2 complex assembly is regulated by the phosphorylation of an internal PDZ-binding motif in the sterile alpha motif domain of SANS by the protein kinase CK2. We affirmed Magi2's role in receptor-mediated, clathrin-dependent endocytosis and showed that phosphorylated SANS tightly regulates Magi2-mediated endocytosis. Specific depletions by RNAi revealed that SANS and Magi2-mediated endocytosis regulates aspects of ciliogenesis. Furthermore, we demonstrated the localization of the SANS-Magi2 complex in the periciliary membrane complex facing the ciliary pocket of retinal photoreceptor cells in situ. Our data suggest that endocytotic processes may not only contribute to photoreceptor cell homeostasis but also counterbalance the periciliary membrane delivery accompanying the exocytosis processes for the cargo vesicle delivery. In USH1G patients, mutations in SANS eliminate Magi2 binding and thereby deregulate endocytosis, lead to defective ciliary transport modules and ultimately disrupt photoreceptor cell function inducing retinal degeneration. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Blockade of A2b Adenosine Receptor Reduces Tumor Growth and Immune Suppression Mediated by Myeloid-Derived Suppressor Cells in a Mouse Model of Melanoma

    Directory of Open Access Journals (Sweden)

    Raffaella Iannone

    2013-12-01

    Full Text Available The A2b receptor (A2bR belongs to the adenosine receptor family. Emerging evidence suggest that A2bR is implicated in tumor progression in some murine tumor models, but the therapeutic potential of targeting A2bR in melanoma has not been examined. This study first shows that melanoma-bearing mice treated with Bay 60-6583, a selective A2bR agonist, had increased melanoma growth. This effect was associated with higher levels of immune regulatory mediators interleukin-10 (IL-10 and monocyte chemoattractant protein 1 (MCP-1 and accumulation of tumor-associated CD11b positive Gr1 positive cells (CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs. Depletion of CD11b+Gr1+ cells completely reversed the protumor activity of Bay 60-6583. Conversely, pharmacological blockade of A2bR with PSB1115 reversed immune suppression in the tumor microenvironment, leading to a significant melanoma growth delay. PSB1115 treatment reduced both levels of IL-10 and MCP-1 and CD11b+Gr1+ cell number in melanoma lesions. These effects were associated with higher frequency of tumor-infiltrating CD8 positive (CD8+ T cells and natural killer T (NKT cells and increased levels of T helper 1 (Th1-like cytokines. Adoptive transfer of CD11b+Gr1+ cells abrogated the antitumor activity of PSB1115. These data suggest that the antitumor activity of PSB1115 relies on its ability to lower accumulation of tumor-infiltrating MDSCs and restore an efficient antitumor T cell response. The antitumor effect of PSB1115 was not observed in melanoma-bearing nude mice. Furthermore, PSB1115 enhanced the antitumor efficacy of dacarbazine. These data indicate that A2bR antagonists such as PSB1115 should be investigated as adjuvants in the treatment of melanoma.

  19. Testing a spin-2 mediator by angular observables in b →s μ+μ-

    Science.gov (United States)

    Fajfer, Svjetlana; Melić, Blaženka; Patra, Monalisa

    2018-05-01

    We consider the effects of the spin-2 particle in the b →s μ+μ- transition assuming that the spin-2 particle couples in a flavor-nonuniversal way to b and s quarks and in the leptonic sector couples only to the muons, thereby only contributing to the process b →s μ+μ-. The Bs-B¯s transition gives the strong constraint on the coupling of the spin-2 mediator and b and s quarks, while the observed discrepancy from the standard model prediction for the muon anomalous magnetic moment (g -2 )μ serves to constrain the μ coupling to a spin-2 particle. We find that the spin-2 particle can modify the angular observables in the B →K μ+μ- and B →K*μ+μ- decays and produce effects that do not exist in the standard model. The generated forward-backward asymmetries in these processes can reach 15%, while other observables for these decays receive tiny effects.

  20. Carbachol-mediated pigment granule dispersion in retinal pigment epithelium requires Ca2+ and calcineurin

    Directory of Open Access Journals (Sweden)

    García Dana M

    2007-12-01

    Full Text Available Abstract Background Inside bluegill (Lepomis macrochirus retinal pigment epithelial cells, pigment granules move in response to extracellular signals. During the process of aggregation, pigment motility is directed toward the cell nucleus; in dispersion, pigment is directed away from the nucleus and into long apical processes. A number of different chemicals have been found to initiate dispersion, and carbachol (an acetylcholine analog is one example. Previous research indicates that the carbachol-receptor interaction activates a Gq-mediated pathway which is commonly linked to Ca2+ mobilization. The purpose of the present study was to test for involvement of calcium and to probe calcium-dependent mediators to reveal their role in carbachol-mediated dispersion. Results Carbachol-induced pigment granule dispersion was blocked by the calcium chelator BAPTA. In contrast, the calcium channel antagonist verapamil, and incubation in Ca2+-free medium failed to block carbachol-induced dispersion. The calcineurin inhibitor cypermethrin blocked carbachol-induced dispersion; whereas, two protein kinase C inhibitors (staurosporine and bisindolylmaleimide II failed to block carbachol-induced dispersion, and the protein kinase C activator phorbol 12-myristate 13-acetate failed to elicit dispersion. Conclusion A rise in intracellular calcium is necessary for carbachol-induced dispersion; however, the Ca2+ requirement is not dependent on extracellular sources, implying that intracellular stores are sufficient to enable pigment granule dispersion to occur. Calcineurin is a likely Ca2+-dependent mediator involved in the signal cascade. Although the pathway leads to the generation of diacylglycerol and calcium (both required for the activation of certain PKC isoforms, our evidence does not support a significant role for PKC.

  1. Diet-induced obesity mediated by the JNK/DIO2 signal transduction pathway

    Science.gov (United States)

    Vernia, Santiago; Cavanagh-Kyros, Julie; Barrett, Tamera; Jung, Dae Young; Kim, Jason K.; Davis, Roger J.

    2013-01-01

    The cJun N-terminal kinase (JNK) signaling pathway is a key mediator of metabolic stress responses caused by consuming a high-fat diet, including the development of obesity. To test the role of JNK, we examined diet-induced obesity in mice with targeted ablation of Jnk genes in the anterior pituitary gland. These mice exhibited an increase in the pituitary expression of thyroid-stimulating hormone (TSH), an increase in the blood concentration of thyroid hormone (T4), increased energy expenditure, and markedly reduced obesity compared with control mice. The increased amount of pituitary TSH was caused by reduced expression of type 2 iodothyronine deiodinase (Dio2), a gene that is required for T4-mediated negative feedback regulation of TSH expression. These data establish a molecular mechanism that accounts for the regulation of energy expenditure and the development of obesity by the JNK signaling pathway. PMID:24186979

  2. Prediction and optimization of the laccase-mediated synthesis of the antimicrobial compound iodine (I2).

    Science.gov (United States)

    Schubert, M; Fey, A; Ihssen, J; Civardi, C; Schwarze, F W M R; Mourad, S

    2015-01-10

    An artificial neural network (ANN) and genetic algorithm (GA) were applied to improve the laccase-mediated oxidation of iodide (I(-)) to elemental iodine (I2). Biosynthesis of iodine (I2) was studied with a 5-level-4-factor central composite design (CCD). The generated ANN network was mathematically evaluated by several statistical indices and revealed better results than a classical quadratic response surface (RS) model. Determination of the relative significance of model input parameters, ranking the process parameters in order of importance (pH>laccase>mediator>iodide), was performed by sensitivity analysis. ANN-GA methodology was used to optimize the input space of the neural network model to find optimal settings for the laccase-mediated synthesis of iodine. ANN-GA optimized parameters resulted in a 9.9% increase in the conversion rate. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Bis(formylphenolatocobalt(II-Mediated Alternating Radical Copolymerization of tert-Butyl 2-Trifluoromethylacrylate with Vinyl Acetate

    Directory of Open Access Journals (Sweden)

    Sanjib Banerjee

    2017-12-01

    Full Text Available The organometallic-mediated radical polymerization (OMRP of vinyl acetate (VAc and its OMR copolymerization (OMRcoP with tert-butyl 2-trifluoromethylacrylate (MAF-TBE mediated by Co(SAL2 (SAL = 2-formylphenolato or deprotonated salicylaldehyde produced relatively well-defined PVAc and poly(VAc-alt-MAF-TBE copolymers at moderate temperature (<40 °C in bulk. The resulting alternating copolymer was characterized by 1H-, 13C- and 19F-nuclear magnetic resonance (NMR spectroscopies, and by size exclusion chromatography. The linear first-order kinetic plot, the linear evolutions of the molar mass with total monomer conversion, and the relatively low dispersity (Đ~1.55 of the resulting copolymers suggest that this cobalt complex provides some degree of control over the copolymerization of VAc and MAF-TBE. Compared to the previously investigated cobalt complex OMRP mediators having a fully oxygen-based first coordination sphere, this study emphasizes a few peculiarities of Co(SAL2: a lower ability to trap radical chains as compared to Co(acac2 and the absence of catalytic chain transfer reactions, which dominates polymerizations carried in the presence of 9-oxyphenalenone cobalt derivative.

  4. The Rac Activator DOCK2 Mediates Plasma Cell Differentiation and IgG Antibody Production.

    Science.gov (United States)

    Ushijima, Miho; Uruno, Takehito; Nishikimi, Akihiko; Sanematsu, Fumiyuki; Kamikaseda, Yasuhisa; Kunimura, Kazufumi; Sakata, Daiji; Okada, Takaharu; Fukui, Yoshinori

    2018-01-01

    A hallmark of humoral immune responses is the production of antibodies. This process involves a complex cascade of molecular and cellular interactions, including recognition of specific antigen by the B cell receptor (BCR), which triggers activation of B cells and differentiation into plasma cells (PCs). Although activation of the small GTPase Rac has been implicated in BCR-mediated antigen recognition, its precise role in humoral immunity and the upstream regulator remain elusive. DOCK2 is a Rac-specific guanine nucleotide exchange factor predominantly expressed in hematopoietic cells. We found that BCR-mediated Rac activation was almost completely lost in DOCK2-deficient B cells, resulting in defects in B cell spreading over the target cell-membrane and sustained growth of BCR microclusters at the interface. When wild-type B cells were stimulated in vitro with anti-IgM F(ab') 2 antibody in the presence of IL-4 and IL-5, they differentiated efficiently into PCs. However, BCR-mediated PC differentiation was severely impaired in the case of DOCK2-deficient B cells. Similar results were obtained in vivo when DOCK2-deficient B cells expressing a defined BCR specificity were adoptively transferred into mice and challenged with the cognate antigen. In addition, by generating the conditional knockout mice, we found that DOCK2 expression in B-cell lineage is required to mount antigen-specific IgG antibody. These results highlight important role of the DOCK2-Rac axis in PC differentiation and IgG antibody responses.

  5. A growth hormone receptor SNP promotes lung cancer by impairment of SOCS2-mediated degradation

    DEFF Research Database (Denmark)

    Chhabra, Y.; Wong, H. Y.; Nikolajsen, Louise Fletcher

    2018-01-01

    Both humans and mice lacking functional growth hormone (GH) receptors are known to be resistant to cancer. Further, autocrine GH has been reported to act as a cancer promoter. Here we present the first example of a variant of the GH receptor (GHR) associated with cancer promotion, in this case lu......-mesenchymal transition and metastases (TWIST1, SNAI2, EGFR, MYC and CCND1) at 2 h after a GH pulse. This is consistent with prolonged GH signalling acting to promote cancer progression in lung cancer.Oncogene advance online publication, 2 October 2017; doi:10.1038/onc.2017.352....

  6. Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells

    Science.gov (United States)

    Chen, Y.; Hughes-Fulford, M.

    2000-01-01

    Arachidonic acid (AA) is the precursor for prostaglandin E2 (PGE2) synthesis and increases growth of prostate cancer cells. To further elucidate the mechanisms involved in AA-induced prostate cell growth, induction of c-fos expression by AA was investigated in a human prostate cancer cell line, PC-3. c-fos mRNA was induced shortly after addition of AA, along with a remarkable increase in PGE2 production. c-fos expression and PGE2 production induced by AA was blocked by a cyclo-oxygenase inhibitor, flurbiprofen, suggesting that PGE2 mediated c-fos induction. Protein kinase A (PKA) inhibitor H-89 abolished induction of c-fos expression by AA, and partially inhibited PGE2 production. Protein kinase C (PKC) inhibitor GF109203X had no significant effect on c-fos expression or PGE2 production. Expression of prostaglandin (EP) receptors, which mediate signal transduction from PGE2 to the cells, was examined by reverse transcription polymerase chain reaction in several human prostate cell lines. EP4 and EP2, which are coupled to the PKA signalling pathway, were expressed in all cells tested. Expression of EP1, which activates the PKC pathway, was not detected. The current study showed that induction of the immediate early gene c-fos by AA is mediated by PGE2, which activates the PKA pathway via the EP2/4 receptor in the PC-3 cells.

  7. [Ru(bpy){sub 3}]{sup 2+}-mediated photoelectrochemical detection of bisphenol A on a molecularly imprinted polypyrrole modified SnO{sub 2} electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bintian [State Key Laboratory of Structures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China); Lu, Lili; Huang, Feng [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China); Lin, Zhang, E-mail: zlin@fjirsm.ac.cn [State Key Laboratory of Structures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China)

    2015-08-05

    A ruthenium-mediated photoelectrochemical sensor was developed for the detection of BPA, using molecularly imprinted polymers (MIPs) as the recognition element, a tin oxide (SnO{sub 2}) nanoparticle-modified ITO as the electrode, and a blue 473-nm LED as the excitation light source. Photoelectrochemical oxidation of BPA on SnO{sub 2} electrode was achieved by [Ru(bpy){sub 3}]{sup 2+} under the irradiation of light. It was found that BPA was oxidized by Ru{sup 3+} species produced in the photoelectrochemical reaction, resulting in the regeneration of Ru{sup 2+} and the concomitant photocurrent enhancement. MIPs film was prepared by electropolymerization of pyrrole on SnO{sub 2} electrode using BPA as the template. Surface morphology and properties of the as-prepared electrode were characterized by SEM, electrochemical impedance spectroscopy, and photocurrent measurement. In the presence of BPA, an enhanced photocurrent was observed, which was dependent on the amount of BPA captured on the electrode. A detection limit of 1.2 nM was obtained under the optimized conditions, with a linear range of 2–500 nM. Selectivity of the sensor was demonstrated by measuring five BPA analogs. To verify its practicality, this sensor was applied to analyze BPA spiked tap water and river water. With advantages of high sensitivity and selectivity, low-cost instrument, and facile sensor preparation procedure, this sensor is potentially suitable for the rapid monitoring of BPA in real environmental samples. Moreover, the configuration of this sensor is universal and can be extended to organic molecules that can be photoelectrochemically oxidized by Ru{sup 3+}. - Highlights: • [Ru(bpy){sub 3}]{sup 2+}-mediated photoelectrochemical sensor was developed for BPA detection. • Molecularly imprinted polypyrrole was modified on a SnO{sub 2} electrode as the recognition element. • The measurement was realized using a visible light source. • This sensor was highly sensitive and

  8. Resistance Exercise and Inflammation in Breast Cancer Patients Undergoing Adjuvant Radiation Therapy: Mediation Analysis From a Randomized, Controlled Intervention Trial

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Martina E., E-mail: m.schmidt@dkfz.de [Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg (Germany); Meynköhn, Anna; Habermann, Nina [Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg (Germany); Wiskemann, Joachim [Division of Medical Oncology, National Center for Tumor Diseases and University Hospital, Heidelberg (Germany); Oelmann, Jan; Hof, Holger; Wessels, Sabine [Department of Radiation Oncology, National Center for Tumor Diseases and University Hospital, Heidelberg (Germany); Klassen, Oliver [Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg (Germany); Debus, Jürgen; Potthoff, Karin [Department of Radiation Oncology, National Center for Tumor Diseases and University Hospital, Heidelberg (Germany); Steindorf, Karen; Ulrich, Cornelia M. [Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg (Germany)

    2016-02-01

    Purpose: To explore the mediating role of inflammatory parameters in the development of fatigue, pain, and potentially related depressive symptoms during radiation therapy for breast cancer and its mitigation by resistance exercise. Methods and Materials: Breast cancer patients scheduled for adjuvant radiation therapy were randomized to 12-week progressive resistance exercise training (EX) or a relaxation control group. Interleukin-6 (IL-6) and interleukin-1 receptor antagonist (IL-1ra) were measured in serum samples collected before, at the end, and 6 weeks after radiation therapy from 103 chemotherapy-naïve participants. Fatigue was assessed with the multidimensional Fatigue Assessment Questionnaire, pain with the European Organization for Research and Treatment of Cancer QLQ-C30, and depressive symptoms with the Center for Epidemiologic Studies Depression Scale. Analysis of covariance models, partial correlations, Freedman-Schatzkin tests, and R{sup 2} effect-size measures for mediation were calculated. Results: The analysis of covariance models revealed a significant intervention effect on IL-6 (P=.010) and the IL-6/IL-1ra ratio (P=.018), characterized by a marked increase during radiation therapy among controls, but no significant change in EX. Interleukin-1 receptor antagonist did not change significantly in either group (P=.88). Increased IL-6 and IL-6/IL-1ra levels at the end of radiation therapy were significantly associated with increased physical fatigue and pain 6 weeks after radiation. We observed significant partial mediation by IL-6 and IL-6/IL-1ra of the effect of resistance exercise on physical fatigue (Freedman-Schatzkin P=.023 and P<.001) and pain (both P<.001). Hereby IL-6 and IL-6/IL-1ra mediated between 15% and 24% of the variance of physical fatigue and pain explained by the intervention. Conclusions: This randomized, controlled trial showed a significantly increased proinflammatory cytokine level after adjuvant radiation therapy in breast

  9. Resistance Exercise and Inflammation in Breast Cancer Patients Undergoing Adjuvant Radiation Therapy: Mediation Analysis From a Randomized, Controlled Intervention Trial

    International Nuclear Information System (INIS)

    Schmidt, Martina E.; Meynköhn, Anna; Habermann, Nina; Wiskemann, Joachim; Oelmann, Jan; Hof, Holger; Wessels, Sabine; Klassen, Oliver; Debus, Jürgen; Potthoff, Karin; Steindorf, Karen; Ulrich, Cornelia M.

    2016-01-01

    Purpose: To explore the mediating role of inflammatory parameters in the development of fatigue, pain, and potentially related depressive symptoms during radiation therapy for breast cancer and its mitigation by resistance exercise. Methods and Materials: Breast cancer patients scheduled for adjuvant radiation therapy were randomized to 12-week progressive resistance exercise training (EX) or a relaxation control group. Interleukin-6 (IL-6) and interleukin-1 receptor antagonist (IL-1ra) were measured in serum samples collected before, at the end, and 6 weeks after radiation therapy from 103 chemotherapy-naïve participants. Fatigue was assessed with the multidimensional Fatigue Assessment Questionnaire, pain with the European Organization for Research and Treatment of Cancer QLQ-C30, and depressive symptoms with the Center for Epidemiologic Studies Depression Scale. Analysis of covariance models, partial correlations, Freedman-Schatzkin tests, and R"2 effect-size measures for mediation were calculated. Results: The analysis of covariance models revealed a significant intervention effect on IL-6 (P=.010) and the IL-6/IL-1ra ratio (P=.018), characterized by a marked increase during radiation therapy among controls, but no significant change in EX. Interleukin-1 receptor antagonist did not change significantly in either group (P=.88). Increased IL-6 and IL-6/IL-1ra levels at the end of radiation therapy were significantly associated with increased physical fatigue and pain 6 weeks after radiation. We observed significant partial mediation by IL-6 and IL-6/IL-1ra of the effect of resistance exercise on physical fatigue (Freedman-Schatzkin P=.023 and P<.001) and pain (both P<.001). Hereby IL-6 and IL-6/IL-1ra mediated between 15% and 24% of the variance of physical fatigue and pain explained by the intervention. Conclusions: This randomized, controlled trial showed a significantly increased proinflammatory cytokine level after adjuvant radiation therapy in breast

  10. Activation of Nrf2-mediated oxidative stress response in macrophages by hypochlorous acid

    International Nuclear Information System (INIS)

    Pi Jingbo; Zhang Qiang; Woods, Courtney G.; Wong, Victoria; Collins, Sheila; Andersen, Melvin E.

    2008-01-01

    Hypochlorous acid (HOCl), a potent oxidant generated when chlorine gas reacts with water, is important in the pathogenesis of many disorders. Transcription factor Nrf2-mediated antioxidant response represents a critical cellular defense mechanism that serves to maintain intracellular redox homeostasis and limit oxidative damage. In the present study, the effect of HOCl on Nrf2 activation was investigated in macrophages, one of the target cells of chlorine gas exposure. Exposure of RAW 264.7 macrophages to HOCl resulted in increased protein levels of Nrf2 in nuclear extractions, as well as a time- and dose-dependent increase in the expression of Nrf2 target genes, including heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1 (NQO-1), glutamate cysteine ligase catalytic subunit (GCLC), and glutathione synthetase (GS). Additionally, intracellular glutathione (GSH), which is the prime scavenger for HOCl in cells, decreased within the first hour of HOCl exposure. The decline was followed by a GSH rebound that surpassed the initial basal levels by up to 4-fold. This reversal in GSH levels closely correlated with the gene expression profile of GCLC and GS. To study the mechanisms of Nrf2 activation in response to HOCl exposure, we examined the effects of several antioxidants on Nrf2-mediated response. Pretreatment with cell-permeable catalase, N-acetyl-L-cysteine or GSH-monoethyl ester markedly reduced expression of NQO-1 and GCLC under HOCl challenge conditions, suggesting intracellular ROS-scavenging capacity affects HOCl-induced Nrf2 activation. Importantly, pre-activation of Nrf2 with low concentrations of pro-oxidants protected the cells against HOCl-induced cell damage. Taken together, we provide direct evidence that HOCl activates Nrf2-mediated antioxidant response, which protects cells from oxidative damage

  11. Palmitoylation of the Cysteine Residue in the DHHC Motif of a Palmitoyl Transferase Mediates Ca2+ Homeostasis in Aspergillus.

    Directory of Open Access Journals (Sweden)

    Yuanwei Zhang

    2016-04-01

    Full Text Available Finely tuned changes in cytosolic free calcium ([Ca2+]c mediate numerous intracellular functions resulting in the activation or inactivation of a series of target proteins. Palmitoylation is a reversible post-translational modification involved in membrane protein trafficking between membranes and in their functional modulation. However, studies on the relationship between palmitoylation and calcium signaling have been limited. Here, we demonstrate that the yeast palmitoyl transferase ScAkr1p homolog, AkrA in Aspergillus nidulans, regulates [Ca2+]c homeostasis. Deletion of akrA showed marked defects in hyphal growth and conidiation under low calcium conditions which were similar to the effects of deleting components of the high-affinity calcium uptake system (HACS. The [Ca2+]c dynamics in living cells expressing the calcium reporter aequorin in different akrA mutant backgrounds were defective in their [Ca2+]c responses to high extracellular Ca2+ stress or drugs that cause ER or plasma membrane stress. All of these effects on the [Ca2+]c responses mediated by AkrA were closely associated with the cysteine residue of the AkrA DHHC motif, which is required for palmitoylation by AkrA. Using the acyl-biotin exchange chemistry assay combined with proteomic mass spectrometry, we identified protein substrates palmitoylated by AkrA including two new putative P-type ATPases (Pmc1 and Spf1 homologs, a putative proton V-type proton ATPase (Vma5 homolog and three putative proteins in A. nidulans, the transcripts of which have previously been shown to be induced by extracellular calcium stress in a CrzA-dependent manner. Thus, our findings provide strong evidence that the AkrA protein regulates [Ca2+]c homeostasis by palmitoylating these protein candidates and give new insights the role of palmitoylation in the regulation of calcium-mediated responses to extracellular, ER or plasma membrane stress.

  12. HER2-Specific Chimeric Antigen Receptor-Modified Virus-Specific T Cells for Progressive Glioblastoma: A Phase 1 Dose-Escalation Trial.

    Science.gov (United States)

    Ahmed, Nabil; Brawley, Vita; Hegde, Meenakshi; Bielamowicz, Kevin; Kalra, Mamta; Landi, Daniel; Robertson, Catherine; Gray, Tara L; Diouf, Oumar; Wakefield, Amanda; Ghazi, Alexia; Gerken, Claudia; Yi, Zhongzhen; Ashoori, Aidin; Wu, Meng-Fen; Liu, Hao; Rooney, Cliona; Dotti, Gianpietro; Gee, Adrian; Su, Jack; Kew, Yvonne; Baskin, David; Zhang, Yi Jonathan; New, Pamela; Grilley, Bambi; Stojakovic, Milica; Hicks, John; Powell, Suzanne Z; Brenner, Malcolm K; Heslop, Helen E; Grossman, Robert; Wels, Winfried S; Gottschalk, Stephen

    2017-08-01

    Glioblastoma is an incurable tumor, and the therapeutic options for patients are limited. To determine whether the systemic administration of HER2-specific chimeric antigen receptor (CAR)-modified virus-specific T cells (VSTs) is safe and whether these cells have antiglioblastoma activity. In this open-label phase 1 dose-escalation study conducted at Baylor College of Medicine, Houston Methodist Hospital, and Texas Children's Hospital, patients with progressive HER2-positive glioblastoma were enrolled between July 25, 2011, and April 21, 2014. The duration of follow-up was 10 weeks to 29 months (median, 8 months). Monotherapy with autologous VSTs specific for cytomegalovirus, Epstein-Barr virus, or adenovirus and genetically modified to express HER2-CARs with a CD28.ζ-signaling endodomain (HER2-CAR VSTs). Primary end points were feasibility and safety. The key secondary end points were T-cell persistence and their antiglioblastoma activity. A total of 17 patients (8 females and 9 males; 10 patients ≥18 years [median age, 60 years; range, 30-69 years] and 7 patients VSTs (1 × 106/m2 to 1 × 108/m2) without prior lymphodepletion. Infusions were well tolerated, with no dose-limiting toxic effects. HER2-CAR VSTs were detected in the peripheral blood for up to 12 months after the infusion by quantitative real-time polymerase chain reaction. Of 16 evaluable patients (9 adults and 7 children), 1 had a partial response for more than 9 months, 7 had stable disease for 8 weeks to 29 months, and 8 progressed after T-cell infusion. Three patients with stable disease are alive without any evidence of progression during 24 to 29 months of follow-up. For the entire study cohort, median overall survival was 11.1 months (95% CI, 4.1-27.2 months) from the first T-cell infusion and 24.5 months (95% CI, 17.2-34.6 months) from diagnosis. Infusion of autologous HER2-CAR VSTs is safe and can be associated with clinical benefit for patients with progressive glioblastoma

  13. Agonist-induced CXCR4 and CB2 Heterodimerization Inhibits Gα13/RhoA-mediated Migration.

    Science.gov (United States)

    Scarlett, Kisha A; White, El-Shaddai Z; Coke, Christopher J; Carter, Jada R; Bryant, Latoya K; Hinton, Cimona V

    2018-04-01

    G-protein-coupled receptor (GPCR) heterodimerization has emerged as a means by which alternative signaling entities can be created; yet, how receptor heterodimers affect receptor pharmacology remains unknown. Previous observations suggested a biochemical antagonism between GPCRs, CXCR4 and CB2 (CNR2), where agonist-bound CXCR4 and agonist-bound CB2 formed a physiologically nonfunctional heterodimer on the membrane of cancer cells, inhibiting their metastatic potential in vitro However, the reduced signaling entities responsible for the observed functional outputs remain elusive. This study now delineates the signaling mechanism whereby heterodimeric association between CXCR4 and CB2, induced by simultaneous agonist treatment, results in decreased CXCR4-mediated cell migration, invasion, and adhesion through inhibition of the Gα13/RhoA signaling axis. Activation of CXCR4 by its cognate ligand, CXCL12, stimulates Gα13 (GNA13), and subsequently, the small GTPase RhoA, which is required for directional cell migration and the metastatic potential of cancer cells. These studies in prostate cancer cells demonstrate decreased protein expression levels of Gα13 and RhoA upon simultaneous CXCR4/CB2 agonist stimulation. Furthermore, the agonist-induced heterodimer abrogated RhoA-mediated cytoskeletal rearrangement resulting in the attenuation of cell migration and invasion of an endothelial cell barrier. Finally, a reduction was observed in the expression of integrin α5 (ITGA5) upon heterodimerization, supported by decreased cell adhesion to extracellular matrices in vitro Taken together, the data identify a novel pharmacologic mechanism for the modulation of tumor cell migration and invasion in the context of metastatic disease. Implications: This study investigates a signaling mechanism by which GPCR heterodimerization inhibits cancer cell migration. Mol Cancer Res; 16(4); 728-39. ©2018 AACR . ©2018 American Association for Cancer Research.

  14. Epidermal growth factor receptor signaling mediates aldosterone-induced profibrotic responses in kidney

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Lili; Yang, Min; Ding, Wei [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Zhang, Minmin [Department of Nephrology, Shanghai Huashan Hospital, Fudan University, Shanghai 200240 (China); Niu, Jianying [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Qiao, Zhongdong [School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240 (China); Gu, Yong, E-mail: yonggu@vip.163.com [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Department of Nephrology, Shanghai Huashan Hospital, Fudan University, Shanghai 200240 (China)

    2016-08-01

    Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis. - Highlights: • EGFR was involved in aldosterone-induced renal profibrotic responses. • Aldosterone-induced EGFR activation was mediated by MR-dependent ROS generation. • EGFR activated the MAPK/ERK1/2 signaling to promote renal fibrosis.

  15. Mediation Analysis with Multiple Mediators.

    Science.gov (United States)

    VanderWeele, T J; Vansteelandt, S

    2014-01-01

    Recent advances in the causal inference literature on mediation have extended traditional approaches to direct and indirect effects to settings that allow for interactions and non-linearities. In this paper, these approaches from causal inference are further extended to settings in which multiple mediators may be of interest. Two analytic approaches, one based on regression and one based on weighting are proposed to estimate the effect mediated through multiple mediators and the effects through other pathways. The approaches proposed here accommodate exposure-mediator interactions and, to a certain extent, mediator-mediator interactions as well. The methods handle binary or continuous mediators and binary, continuous or count outcomes. When the mediators affect one another, the strategy of trying to assess direct and indirect effects one mediator at a time will in general fail; the approach given in this paper can still be used. A characterization is moreover given as to when the sum of the mediated effects for multiple mediators considered separately will be equal to the mediated effect of all of the mediators considered jointly. The approach proposed in this paper is robust to unmeasured common causes of two or more mediators.

  16. The brain cytoplasmic RNA BC1 regulates dopamine D2 receptor-mediated transmission in the striatum.

    Science.gov (United States)

    Centonze, Diego; Rossi, Silvia; Napoli, Ilaria; Mercaldo, Valentina; Lacoux, Caroline; Ferrari, Francesca; Ciotti, Maria Teresa; De Chiara, Valentina; Prosperetti, Chiara; Maccarrone, Mauro; Fezza, Filomena; Calabresi, Paolo; Bernardi, Giorgio; Bagni, Claudia

    2007-08-15

    Dopamine D(2) receptor (D(2)DR)-mediated transmission in the striatum is remarkably flexible, and changes in its efficacy have been heavily implicated in a variety of physiological and pathological conditions. Although receptor-associated proteins are clearly involved in specific forms of synaptic plasticity, the molecular mechanisms regulating the sensitivity of D(2) receptors in this brain area are essentially obscure. We have studied the physiological responses of the D(2)DR stimulations in mice lacking the brain cytoplasmic RNA BC1, a small noncoding dendritically localized RNA that is supposed to play a role in mRNA translation. We show that the efficiency of D(2)-mediated transmission regulating striatal GABA synapses is under the control of BC1 RNA, through a negative influence on D(2) receptor protein level affecting the functional pool of receptors. Ablation of the BC1 gene did not result in widespread dysregulation of synaptic transmission, because the sensitivity of cannabinoid CB(1) receptors was intact in the striatum of BC1 knock-out (KO) mice despite D(2) and CB(1) receptors mediated similar electrophysiological actions. Interestingly, the fragile X mental retardation protein FMRP, one of the multiple BC1 partners, is not involved in the BC1 effects on the D(2)-mediated transmission. Because D(2)DR mRNA is apparently equally translated in the BC1-KO and wild-type mice, whereas the protein level is higher in BC1-KO mice, we suggest that BC1 RNA controls D(2)DR indirectly, probably regulating translation of molecules involved in D(2)DR turnover and/or stability.

  17. The Prevalence of Eosinophilic Esophagitis in Pediatric Patients with IgE-Mediated Food Allergy.

    Science.gov (United States)

    Hill, David A; Dudley, Jesse W; Spergel, Jonathan M

    Eosinophilic esophagitis (EoE) is an allergic inflammatory disease that is triggered by food allergens and characterized by progressive esophageal dysfunction. Recently, EoE has been identified in patients who underwent oral immunotherapy (OIT) for IgE-mediated food allergy, suggesting an association. We sought to ascertain whether significant associations exist between IgE-mediated food allergies and EoE. Using the analysis of electronic medical record data and manual chart review, we examined our subspecialty care network of 35,528 children and adolescents to identify and characterize patients with IgE-mediated and EoE food allergy. The most common food allergens were defined, and the prevalence of EoE in patients with IgE-mediated food allergy was determined. Logistic regression was used to measure the extent to which IgE-mediated food allergy to specific foods is associated with EoE. The most common causes of EoE were milk, soy, egg, grains, and meats, an allergen pattern that is distinct from that of IgE-mediated food allergy. The prevalence of EoE in patients with IgE-mediated food allergy was higher than that reported in the general population (4.7% vs 0.04%). The distribution of IgE-mediated food allergens in patients with EoE was similar to that of the general population, and IgE-mediated allergy to egg (2.27; 1.91-2.64), milk (4.19; 3.52-4.97), or shellfish (1.55; 1.24-1.92) was significantly associated with an EoE diagnosis. Our findings support a clinical association between these conditions that has implications for the management of children with food allergy, and particular relevance to patients undergoing OIT. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. Imipenem-resistance in Serratia marcescens is mediated by plasmid expression of KPC-2.

    Science.gov (United States)

    Su, W-Q; Zhu, Y-Q; Deng, N-M; Li, L

    2017-04-01

    Imipenem is a broad-spectrum carbapenem antibiotic with applications against severe bacterial infections. Here, we describe the identification of imipenem-resistant Serratia marcescens in our hospital and the role of plasmid-mediated KPC-2 expression in imipenem resistance. We used the modified Hodge test to detect carbapenemase produced in imipenem-resistant strains. His resistance can be transferred to E. coli in co-culture tests, which implicates the plasmid in imipenem resistance. PCR amplification from the plasmid identified two products consistent with KPC-2 of 583 and 1050 bp that were also present in E. coli after co-culture. The restriction pattern for both plasmids was identical, supporting the transfer from the S. marcescens isolate to E. coli. Finally, gene sequencing confirmed KPC-2 in the plasmid. Due to the presence of KPC-2 in the imipenem-resistant S. marcescens, we propose that KPC-2 mediates antibiotic resistance in the S. marcescens isolate.

  19. Fibrocytes: A Novel Stromal Cells to Regulate Resistance to Anti-Angiogenic Therapy and Cancer Progression.

    Science.gov (United States)

    Goto, Hisatsugu; Nishioka, Yasuhiko

    2017-12-29

    An adequate blood supply is essential for cancer cells to survive and grow; thus, the concept of inhibiting tumor angiogenesis has been applied to cancer therapy, and several drugs are already in clinical use. It has been shown that treatment with those anti-angiogenic drugs improved the response rate and prolonged the survival of patients with various types of cancer; however, it is also true that the effect was mostly limited. Currently, the disappointing clinical results are explained by the existence of intrinsic or acquired resistance to the therapy mediated by both tumor cells and stromal cells. This article reviews the mechanisms of resistance mediated by stromal cells such as endothelial cells, pericytes, fibroblasts and myeloid cells, with an emphasis on fibrocytes, which were recently identified as the cell type responsible for regulating acquired resistance to anti-angiogenic therapy. In addition, the other emerging role of fibrocytes as mediator-producing cells in tumor progression is discussed.

  20. Amyloid β-mediated Zn2+ influx into dentate granule cells transiently induces a short-term cognitive deficit.

    Directory of Open Access Journals (Sweden)

    Atsushi Takeda

    Full Text Available We examined an idea that short-term cognition is transiently affected by a state of confusion in Zn2+ transport system due to a local increase in amyloid-β (Aβ concentration. A single injection of Aβ (25 pmol into the dentate gyrus affected dentate gyrus long-term potentiation (LTP 1 h after the injection, but not 4 h after the injection. Simultaneously, 1-h memory of object recognition was affected when the training was performed 1 h after the injection, but not 4 h after the injection. Aβ-mediated impairments of LTP and memory were rescued in the presence of zinc chelators, suggesting that Zn2+ is involved in Aβ action. When Aβ was injected into the dentate gyrus, intracellular Zn2+ levels were increased only in the injected area in the dentate gyrus, suggesting that Aβ induces the influx of Zn2+ into cells in the injected area. When Aβ was added to hippocampal slices, Aβ did not increase intracellular Zn2+ levels in the dentate granule cell layer in ACSF without Zn2+, but in ACSF containing Zn2+. The increase in intracellular Zn2+ levels was inhibited in the presence of CaEDTA, an extracellular zinc chelator, but not in the presence of CNQX, an AMPA receptor antagonist. The present study indicates that Aβ-mediated Zn2+ influx into dentate granule cells, which may occur without AMPA receptor activation, transiently induces a short-term cognitive deficit. Extracellular Zn2+ may play a key role for transiently Aβ-induced cognition deficits.

  1. Amyloid β-mediated Zn2+ influx into dentate granule cells transiently induces a short-term cognitive deficit.

    Science.gov (United States)

    Takeda, Atsushi; Nakamura, Masatoshi; Fujii, Hiroaki; Uematsu, Chihiro; Minamino, Tatsuya; Adlard, Paul A; Bush, Ashley I; Tamano, Haruna

    2014-01-01

    We examined an idea that short-term cognition is transiently affected by a state of confusion in Zn2+ transport system due to a local increase in amyloid-β (Aβ) concentration. A single injection of Aβ (25 pmol) into the dentate gyrus affected dentate gyrus long-term potentiation (LTP) 1 h after the injection, but not 4 h after the injection. Simultaneously, 1-h memory of object recognition was affected when the training was performed 1 h after the injection, but not 4 h after the injection. Aβ-mediated impairments of LTP and memory were rescued in the presence of zinc chelators, suggesting that Zn2+ is involved in Aβ action. When Aβ was injected into the dentate gyrus, intracellular Zn2+ levels were increased only in the injected area in the dentate gyrus, suggesting that Aβ induces the influx of Zn2+ into cells in the injected area. When Aβ was added to hippocampal slices, Aβ did not increase intracellular Zn2+ levels in the dentate granule cell layer in ACSF without Zn2+, but in ACSF containing Zn2+. The increase in intracellular Zn2+ levels was inhibited in the presence of CaEDTA, an extracellular zinc chelator, but not in the presence of CNQX, an AMPA receptor antagonist. The present study indicates that Aβ-mediated Zn2+ influx into dentate granule cells, which may occur without AMPA receptor activation, transiently induces a short-term cognitive deficit. Extracellular Zn2+ may play a key role for transiently Aβ-induced cognition deficits.

  2. Data in support of the negative influence of divalent cations on (?)-epigallocatechin-3-gallate (EGCG)-mediated inhibition of matrix metalloproteinase-2 (MMP-2)

    OpenAIRE

    Deb, Gauri; Batra, Sahil; Limaye, Anil M.

    2015-01-01

    In this data article we have provided evidence for the negative influence of divalent cations on (−)‐epigallocatechin-3-gallate (EGCG)-mediated inhibition of matrix metalloproteinase-2 (MMP-2) activity in cell-free experiments. Chelating agents, such as EDTA and sodium citrate alone, did not affect MMP-2 activity. While EDTA enhanced, excess of divalent cations interfered with EGCG-mediated inhibition of MMP-2.

  3. Mediators and Metaphorical Analysis: A Phenomenological Study of Florida Family Court Mediators

    Science.gov (United States)

    Storrow, Rebecca A.

    2012-01-01

    Florida family court mediation programs have typically been assessed with quantitative analysis. To understand the complexity of the experience of being a family mediator, it was necessary to explore how mediators practiced through qualitative research. Metaphors have been considered to be representations of mediators' mental models regarding…

  4. Mutations in PTRH2 cause novel infantile-onset multisystem disease with intellectual disability, microcephaly, progressive ataxia, and muscle weakness.

    Science.gov (United States)

    Hu, Hao; Matter, Michelle L; Issa-Jahns, Lina; Jijiwa, Mayumi; Kraemer, Nadine; Musante, Luciana; de la Vega, Michelle; Ninnemann, Olaf; Schindler, Detlev; Damatova, Natalia; Eirich, Katharina; Sifringer, Marco; Schrötter, Sandra; Eickholt, Britta J; van den Heuvel, Lambert; Casamina, Chanel; Stoltenburg-Didinger, Gisela; Ropers, Hans-Hilger; Wienker, Thomas F; Hübner, Christoph; Kaindl, Angela M

    2014-12-01

    To identify the cause of a so-far unreported phenotype of infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD). We characterized a consanguineous family of Yazidian-Turkish descent with IMNEPD. The two affected children suffer from intellectual disability, postnatal microcephaly, growth retardation, progressive ataxia, distal muscle weakness, peripheral demyelinating sensorimotor neuropathy, sensorineural deafness, exocrine pancreas insufficiency, hypothyroidism, and show signs of liver fibrosis. We performed whole-exome sequencing followed by bioinformatic analysis and Sanger sequencing on affected and unaffected family members. The effect of mutations in the candidate gene was studied in wild-type and mutant mice and in patient and control fibroblasts. In a consanguineous family with two individuals with IMNEPD, we identified a homozygous frameshift mutation in the previously not disease-associated peptidyl-tRNA hydrolase 2 (PTRH2) gene. PTRH2 encodes a primarily mitochondrial protein involved in integrin-mediated cell survival and apoptosis signaling. We show that PTRH2 is highly expressed in the developing brain and is a key determinant in maintaining cell survival during human tissue development. Moreover, we link PTRH2 to the mTOR pathway and thus the control of cell size. The pathology suggested by the human phenotype and neuroimaging studies is supported by analysis of mutant mice and patient fibroblasts. We report a novel disease phenotype, show that the genetic cause is a homozygous mutation in the PTRH2 gene, and demonstrate functional effects in mouse and human tissues. Mutations in PTRH2 should be considered in patients with undiagnosed multisystem neurologic, endocrine, and pancreatic disease.

  5. Mutations in PTRH2 cause novel infantile-onset multisystem disease with intellectual disability, microcephaly, progressive ataxia, and muscle weakness

    Science.gov (United States)

    Hu, Hao; Matter, Michelle L; Issa-Jahns, Lina; Jijiwa, Mayumi; Kraemer, Nadine; Musante, Luciana; de la Vega, Michelle; Ninnemann, Olaf; Schindler, Detlev; Damatova, Natalia; Eirich, Katharina; Sifringer, Marco; Schrötter, Sandra; Eickholt, Britta J; van den Heuvel, Lambert; Casamina, Chanel; Stoltenburg-Didinger, Gisela; Ropers, Hans-Hilger; Wienker, Thomas F; Hübner, Christoph; Kaindl, Angela M

    2014-01-01

    Objective To identify the cause of a so-far unreported phenotype of infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD). Methods We characterized a consanguineous family of Yazidian-Turkish descent with IMNEPD. The two affected children suffer from intellectual disability, postnatal microcephaly, growth retardation, progressive ataxia, distal muscle weakness, peripheral demyelinating sensorimotor neuropathy, sensorineural deafness, exocrine pancreas insufficiency, hypothyroidism, and show signs of liver fibrosis. We performed whole-exome sequencing followed by bioinformatic analysis and Sanger sequencing on affected and unaffected family members. The effect of mutations in the candidate gene was studied in wild-type and mutant mice and in patient and control fibroblasts. Results In a consanguineous family with two individuals with IMNEPD, we identified a homozygous frameshift mutation in the previously not disease-associated peptidyl-tRNA hydrolase 2 (PTRH2) gene. PTRH2 encodes a primarily mitochondrial protein involved in integrin-mediated cell survival and apoptosis signaling. We show that PTRH2 is highly expressed in the developing brain and is a key determinant in maintaining cell survival during human tissue development. Moreover, we link PTRH2 to the mTOR pathway and thus the control of cell size. The pathology suggested by the human phenotype and neuroimaging studies is supported by analysis of mutant mice and patient fibroblasts. Interpretation We report a novel disease phenotype, show that the genetic cause is a homozygous mutation in the PTRH2 gene, and demonstrate functional effects in mouse and human tissues. Mutations in PTRH2 should be considered in patients with undiagnosed multisystem neurologic, endocrine, and pancreatic disease. PMID:25574476

  6. Straight A's: Public Education Policy and Progress. Volume 6, Number 2

    Science.gov (United States)

    Amos, Jason, Ed.

    2006-01-01

    "Straight A's: Public Education Policy and Progress" is a biweekly newsletter that focuses on education news and events both in Washington, DC and around the country. The following articles are included in this issue: (1) State of American Business: U.S. Chamber of Commerce Says U.S. Could Face a "Severe Worker Shortage" Unless…

  7. Redox-Mediated and Ionizing-Radiation-Induced Inflammatory Mediators in Prostate Cancer Development and Treatment

    Science.gov (United States)

    Miao, Lu; Holley, Aaron K.; Zhao, Yanming; St. Clair, William H.

    2014-01-01

    Abstract Significance: Radiation therapy is widely used for treatment of prostate cancer. Radiation can directly damage biologically important molecules; however, most effects of radiation-mediated cell killing are derived from the generated free radicals that alter cellular redox status. Multiple proinflammatory mediators can also influence redox status in irradiated cells and the surrounding microenvironment, thereby affecting prostate cancer progression and radiotherapy efficiency. Recent Advances: Ionizing radiation (IR)–generated oxidative stress can regulate and be regulated by the production of proinflammatory mediators. Depending on the type and stage of the prostate cancer cells, these proinflammatory mediators may lead to different biological consequences ranging from cell death to development of radioresistance. Critical Issues: Tumors are heterogeneous and dynamic communication occurs between stromal and prostate cancer cells, and complicated redox-regulated mechanisms exist in the tumor microenvironment. Thus, antioxidant and anti-inflammatory strategies should be carefully evaluated for each patient at different stages of the disease to maximize therapeutic benefits while minimizing unintended side effects. Future Directions: Compared with normal cells, tumor cells are usually under higher oxidative stress and secrete more proinflammatory mediators. Thus, redox status is often less adaptive in tumor cells than in their normal counterparts. This difference can be exploited in a search for new cancer therapeutics and treatment regimes that selectively activate cell death pathways in tumor cells with minimal unintended consequences in terms of chemo- and radio-resistance in tumor cells and toxicity in normal tissues. Antioxid. Redox Signal. 20, 1481–1500. PMID:24093432

  8. IL-4 Receptor Alpha Signaling through Macrophages Differentially Regulates Liver Fibrosis Progression and Reversal

    Directory of Open Access Journals (Sweden)

    Shih-Yen Weng

    2018-03-01

    Full Text Available Chronic hepatitis leads to liver fibrosis and cirrhosis. Cirrhosis is a major cause of worldwide morbidity and mortality. Macrophages play a key role in fibrosis progression and reversal. However, the signals that determine fibrogenic vs fibrolytic macrophage function remain ill defined. We studied the role of interleukin-4 receptor α (IL-4Rα, a potential central switch of macrophage polarization, in liver fibrosis progression and reversal. We demonstrate that inflammatory monocyte infiltration and liver fibrogenesis were suppressed in general IL-4Rα−/− as well as in macrophage-specific IL-4Rα−/− (IL-4RαΔLysM mice. However, with deletion of IL-4RαΔLysM spontaneous fibrosis reversal was retarded. Results were replicated by pharmacological intervention using IL-4Rα-specific antisense oligonucleotides. Retarded resolution was linked to the loss of M2-type resident macrophages, which secreted MMP-12 through IL-4 and IL-13-mediated phospho-STAT6 activation. We conclude that IL-4Rα signaling regulates macrophage functional polarization in a context-dependent manner. Pharmacological targeting of macrophage polarization therefore requires disease stage-specific treatment strategies. Research in Context: Alternative (M2-type macrophage activation through IL-4Rα promotes liver inflammation and fibrosis progression but speeds up fibrosis reversal. This demonstrates context dependent, opposing roles of M2-type macrophages. During reversal IL-4Rα induces fibrolytic MMPs, especially MMP-12, through STAT6. Liver-specific antisense oligonucleotides efficiently block IL-4Rα expression and attenuate fibrosis progression. Keywords: Fibrosis, IL-4 receptor alpha, Liver, Macrophage, MMP12, Progression, Reversal

  9. A Critical Review on the Effect of Docosahexaenoic Acid (DHA) on Cancer Cell Cycle Progression.

    Science.gov (United States)

    Newell, Marnie; Baker, Kristi; Postovit, Lynne M; Field, Catherine J

    2017-08-17

    Globally, there were 14.1 million new cancer diagnoses and 8.2 million cancer deaths in 2012. For many cancers, conventional therapies are limited in their successes and an improved understanding of disease progression is needed in conjunction with exploration of alternative therapies. The long chain polyunsaturated fatty acid, docosahexaenoic acid (DHA), has been shown to enhance many cellular responses that reduce cancer cell viability and decrease proliferation both in vitro and in vivo. A small number of studies suggest that DHA improves chemotherapy outcomes in cancer patients. It is readily incorporated into cancer cell membranes and, as a result there has been considerable research regarding cell membrane initiated events. For example, DHA has been shown to mediate the induction of apoptosis/reduction of proliferation in vitro and in vivo. However, there is limited research into the effect of DHA on cell cycle regulation in cancer cells and the mechanism(s) by which DHA acts are not fully understood. The purpose of the current review is to provide a critical examination of the literature investigating the ability of DHA to stall progression during different cell cycle phases in cancer cells, as well as the consequences that these changes may have on tumour growth, independently and in conjunction with chemotherapy.

  10. Dual Roles of RNF2 in Melanoma Progression | Office of Cancer Genomics

    Science.gov (United States)

    Epigenetic regulators have emerged as critical factors governing the biology of cancer. Here, in the context of melanoma, we show that RNF2 is prognostic, exhibiting progression-correlated expression in human melanocytic neoplasms. Through a series of complementary gain-of-function and loss-of-function studies in mouse and human systems, we establish that RNF2 is oncogenic and prometastatic.

  11. Clinical reactivations of herpes simplex virus type 2 infection and human immunodeficiency virus disease progression markers.

    Directory of Open Access Journals (Sweden)

    Bulbulgul Aumakhan

    Full Text Available BACKGROUND: The natural history of HSV-2 infection and role of HSV-2 reactivations in HIV disease progression are unclear. METHODS: Clinical symptoms of active HSV-2 infection were used to classify 1,938 HIV/HSV-2 co-infected participants of the Women's Interagency HIV Study (WIHS into groups of varying degree of HSV-2 clinical activity. Differences in plasma HIV RNA and CD4+ T cell counts between groups were explored longitudinally across three study visits and cross-sectionally at the last study visit. RESULTS: A dose dependent association between markers of HIV disease progression and degree of HSV-2 clinical activity was observed. In multivariate analyses after adjusting for baseline CD4+ T cell levels, active HSV-2 infection with frequent symptomatic reactivations was associated with 21% to 32% increase in the probability of detectable plasma HIV RNA (trend p = 0.004, an average of 0.27 to 0.29 log10 copies/ml higher plasma HIV RNA on a continuous scale (trend p<0.001 and 51 to 101 reduced CD4+ T cells/mm(3 over time compared to asymptomatic HSV-2 infection (trend p<0.001. CONCLUSIONS: HIV induced CD4+ T cell loss was associated with frequent symptomatic HSV-2 reactivations. However, effect of HSV-2 reactivations on HIV disease progression markers in this population was modest and appears to be dependent on the frequency and severity of reactivations. Further studies will be necessary to determine whether HSV-2 reactivations contribute to acceleration of HIV disease progression.

  12. Does the level of physical activity in university students influence development and progression of myopia? - A 2-year prospective cohort study

    DEFF Research Database (Denmark)

    Jacobsen, Niels; Jensen, Hanne; Goldschmidt, E.

    2008-01-01

    PURPOSE. To study whether physical activity has a protective effect on the development and progression of myopia in medical students. METHODS. In a 2-year longitudinal cohort study, 156 Caucasian first-year medical students from the University of Copenhagen were enrolled. The baseline examination...... with a refractive change toward myopia, whereas physical activity was inversely associated with a refractive change toward myopia (P = 0.015). Myopic eyes progressed significantly more than did emmetropic and hyperopic eyes (P = 0.002). CONCLUSIONS. An association between physical activity and myopia was observed......, suggesting a protective effect of physical activity on the development and progression of myopia in university students. The results confirm that intensive studying is a risk factor of myopia and that myopic progression or development is more likely in medical students in their early 20s than in their late...

  13. K-Cl Cotransporter 2-mediated Cl- Extrusion Determines Developmental Stage-dependent Impact of Propofol Anesthesia on Dendritic Spines.

    Science.gov (United States)

    Puskarjov, Martin; Fiumelli, Hubert; Briner, Adrian; Bodogan, Timea; Demeter, Kornel; Lacoh, Claudia-Marvine; Mavrovic, Martina; Blaesse, Peter; Kaila, Kai; Vutskits, Laszlo

    2017-05-01

    General anesthetics potentiating γ-aminobutyric acid (GABA)-mediated signaling are known to induce a persistent decrement in excitatory synapse number in the cerebral cortex when applied during early postnatal development, while an opposite action is produced at later stages. Here, the authors test the hypothesis that the effect of general anesthetics on synaptogenesis depends upon the efficacy of GABA receptor type A (GABAA)-mediated inhibition controlled by the developmental up-regulation of the potassium-chloride (K-Cl) cotransporter 2 (KCC2). In utero electroporation of KCC2 was used to prematurely increase the efficacy of (GABAA)-mediated inhibition in layer 2/3 pyramidal neurons in the immature rat somatosensory cortex. Parallel experiments with expression of the inward-rectifier potassium channel Kir2.1 were done to reduce intrinsic neuronal excitability. The effects of these genetic manipulations (n = 3 to 4 animals per experimental group) were evaluated using iontophoretic injection of Lucifer Yellow (n = 8 to 12 cells per animal). The total number of spines analyzed per group ranged between 907 and 3,371. The authors found a robust effect of the developmental up-regulation of KCC2-mediated Cl transport on the age-dependent action of propofol on dendritic spines. Premature expression of KCC2, unlike expression of a transport-inactive KCC2 variant, prevented a propofol-induced decrease in spine density. In line with a reduction in neuronal excitability, the above result was qualitatively replicated by overexpression of Kir2.1. The KCC2-dependent developmental increase in the efficacy of GABAA-mediated inhibition is a major determinant of the age-dependent actions of propofol on dendritic spinogenesis.

  14. P(NMe2)3-Mediated Umpolung Alkylation and Nonylidic Olefination of α-Keto Esters.

    Science.gov (United States)

    Wang, Sunewang Rixin; Radosevich, Alexander T

    2015-08-07

    A commercial phosphorus-based reagent (P(NMe2)3) mediates umpolung alkylation of methyl aroylformates with benzylic and allylic bromides, leading to either Barbier-type addition or ylide-free olefination products upon workup. The reaction sequence is initiated by a two-electron redox addition of the tricoordinate phosphorus reagent with an α-keto ester compound (Kukhtin-Ramirez addition). A mechanistic rationale is offered for the chemoselectivity upon which the success of this nonmetal mediated C-C bond forming strategy is based.

  15. Distinguishing anomaly mediation from gauge mediation with a W-ino next-to-lightest supersymmetric particle

    International Nuclear Information System (INIS)

    Kribs, Graham D.

    2000-01-01

    A striking consequence of supersymmetry breaking communicated purely via the superconformal anomaly is that the gaugino masses are proportional to the gauge β functions. This result, however, is not unique to anomaly mediation. We present examples of ''generalized'' gauge-mediated models with messengers in standard model representations that give nearly identical predictions for the gaugino masses, but positive (mass) 2 for all sleptons. There are remarkable similarities between an anomaly-mediated model with a small additional universal mass added to all scalars and the gauge-mediated models with a long-lived W-ino next-to-lightest supersymmetric particle, leading to only a small set of observables that provide robust distinguishing criteria. These include ratios of the heaviest to lightest selectrons, smuons, and top squarks. The sign of the gluino soft mass is an unambiguous distinction, but requires measuring a difficult class of one-loop radiative corrections to sparticle interactions. A high precision measurement of the Higgs-boson-b-b(bar sign) coupling is probably the most promising interaction from which this sign might be extracted. (c) 2000 The American Physical Society

  16. Primary progressive aphasia: A dementia of the language network

    Directory of Open Access Journals (Sweden)

    Marsel Mesulam

    Full Text Available ABSTRACT Primary progressive aphasia (PPA is a clinical syndrome diagnosed when three core criteria are met. First, there should be a language impairment (i.e., aphasia that interferes with the usage or comprehension of words. Second, the neurological work-up should determine that the disease is neurodegenerative, and therefore progressive. Third, the aphasia should arise in relative isolation, without equivalent deficits of comportment or episodic memory. The language impairment can be fluent or non-fluent and may or may not interfere with word comprehension. Memory for recent events is preserved although memory scores obtained in verbally mediated tests may be abnormal. Minor changes in personality and behavior may be present but are not the leading factors that bring the patient to medical attention or that limit daily living activities. This distinctive clinical pattern is most conspicuous in the initial stages of the disease, and reflects a relatively selective atrophy of the language network, usually located in the left hemisphere. There are different clinical variants of PPA, each with a characteristic pattern of atrophy. The underlying neuropathological diseases are heterogeneous and can include Alzheimer's disease as well as frontotemporal lobar degeneration. The clinician's task is to recognize PPA and differentiate it from other neurodegenerative phenotypes, use biomarkers to surmise the nature of the underlying neuropathology, and institute the most fitting multimodal interventions.

  17. CRY Drives Cyclic CK2-Mediated BMAL1 Phosphorylation to Control the Mammalian Circadian Clock.

    Directory of Open Access Journals (Sweden)

    Teruya Tamaru

    Full Text Available Intracellular circadian clocks, composed of clock genes that act in transcription-translation feedback loops, drive global rhythmic expression of the mammalian transcriptome and allow an organism to anticipate to the momentum of the day. Using a novel clock-perturbing peptide, we established a pivotal role for casein kinase (CK-2-mediated circadian BMAL1-Ser90 phosphorylation (BMAL1-P in regulating central and peripheral core clocks. Subsequent analysis of the underlying mechanism showed a novel role of CRY as a repressor for protein kinase. Co-immunoprecipitation experiments and real-time monitoring of protein-protein interactions revealed that CRY-mediated periodic binding of CK2β to BMAL1 inhibits BMAL1-Ser90 phosphorylation by CK2α. The FAD binding domain of CRY1, two C-terminal BMAL1 domains, and particularly BMAL1-Lys537 acetylation/deacetylation by CLOCK/SIRT1, were shown to be critical for CRY-mediated BMAL1-CK2β binding. Reciprocally, BMAL1-Ser90 phosphorylation is prerequisite for BMAL1-Lys537 acetylation. We propose a dual negative-feedback model in which a CRY-dependent CK2-driven posttranslational BMAL1-P-BMAL1 loop is an integral part of the core clock oscillator.

  18. TUG1 mediates methotrexate resistance in colorectal cancer via miR-186/CPEB2 axis.

    Science.gov (United States)

    Li, Changfeng; Gao, Yongjian; Li, Yongchao; Ding, Dayong

    2017-09-16

    Colorectal cancer (CRC) is a common malignancy, most of which remain unresponsive to chemotherapy. Methotrexate (MTX) is one of the earliest cytotoxic drugs and serves as an anti-metabolite and anti-folate chemotherapy for various types of cancer. However, MTX resistance prevents its clinical application in cancer therapy. Thereby, overcoming the drug resistance is an alternative strategy to maximize the efficacy of MTX therapies in clinics. Long non-coding RNAs (lncRNAs) have gained widespread attention in recent years. More and more evidences have shown that lncRNAs play regulatory roles in various biological activities and disease progression including drug resistance in cancer cells. Here, we observed lncRNA TUG1 was associated to the MTX resistant in colorectal cancer cells. Firstly, quantitative analysis indicated that TUG1 was significantly increased in tumors which were resistant to MTX treatment. TUG1 knockdown re-sensitized the MTX resistance in colorectal cancer cells, which were MTX-resistant colorectal cell line. Furthermore, bioinformatics analysis showed that miR-186 could directly bind to TUG1, suggesting TUG1 might worked as a ceRNA to sponge miR-186. Extensively, our study also showed that CPEB2 was the direct target of miR-186 in colorectal cancer cells. Taken together, our study suggests that lncRNA TUG1 mediates MTX resistance in colorectal cancer via miR-186/CPEB2 axis. Copyright © 2017. Published by Elsevier Inc.

  19. Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Mogensen, Martin; Petersen, Ingrid

    2005-01-01

    In myotubes established from patients with type 2 diabetes (T2D), lipid oxidation and insulin-mediated glucose oxidation are reduced, whereas in myotubes from obese non-diabetic subjects, exposure to palmitate impairs insulin-mediated glucose oxidation. To determine the underlying mechanisms...

  20. USP22 Induces Cisplatin Resistance in Lung Adenocarcinoma by Regulating γH2AX-Mediated DNA Damage Repair and Ku70/Bax-Mediated Apoptosis

    Directory of Open Access Journals (Sweden)

    Aman Wang

    2017-05-01

    Full Text Available Resistance to platinum-based chemotherapy is one of the most important reasons for treatment failure in advanced non-small cell lung cancer, but the underlying mechanism is extremely complex and unclear. The present study aimed to investigate the correlation of ubiquitin-specific peptidase 22 (USP22 with acquired resistance to cisplatin in lung adenocarcinoma. In this study, we found that overexpression of USP22 could lead to cisplatin resistance in A549 cells. USP22 and its downstream proteins γH2AX and Sirt1 levels are upregulated in the cisplatin- resistant A549/CDDP cell line. USP22 enhances DNA damage repair and induce cisplatin resistance by promoting the phosphorylation of histone H2AX via deubiquitinating histone H2A. In addition, USP22 decreases the acetylation of Ku70 by stabilizing Sirt1, thus inhibiting Bax-mediated apoptosis and inducing cisplatin resistance. The cisplatin sensitivity in cisplatin-resistant A549/CDDP cells was restored by USP22 inhibition in vivo and vitro. In summary, our findings reveal the dual mechanism of USP22 involvement in cisplatin resistance that USP22 can regulate γH2AX-mediated DNA damage repair and Ku70/Bax-mediated apoptosis. USP22 is a potential target in cisplatin-resistant lung adenocarcinoma and should be considered in future therapeutic practice.

  1. Prevention of autoantibody-mediated Graves'-like hyperthyroidism in mice with IL-4, a Th2 cytokine.

    Science.gov (United States)

    Nagayama, Yuji; Mizuguchi, Hiroyuki; Hayakawa, Takao; Niwa, Masami; McLachlan, Sandra M; Rapoport, Basil

    2003-04-01

    Graves' hyperthyroidism has long been considered to be a Th2-type autoimmune disease because it is directly mediated by autoantibodies against the thyrotropin receptor (TSHR). However, several lines of evidence have recently challenged this concept. The present study evaluated the Th1/Th2 paradigm in Graves' disease using a recently established murine model involving injection of adenovirus expressing the TSHR (AdCMVTSHR). Coinjection with adenovirus expressing IL-4 (AdRGDCMVIL-4) decreased the ratio of Th1/Th2-type anti-TSHR Ab subclasses (IgG2a/IgG1) and suppressed the production of IFN-gamma by splenocytes in response to TSHR Ag. Importantly, immune deviation toward Th2 was accompanied by significant inhibition of thyroid-stimulating Ab production and reduction in hyperthyroidism. However, in a therapeutic setting, injection of AdRGDCMVIL-4 alone or in combination with AdCMVTSHR into hyperthyroid mice had no beneficial effect. In contrast, coinjection of adenoviruses expressing IL-12 and the TSHR promoted the differentiation of Th1-type anti-TSHR immune responses as demonstrated by augmented Ag-specific IFN-gamma secretion from splenocytes without changing disease incidence. Coinjection of adenoviral vectors expressing IL-4 or IL-12 had no effect on the titers of anti-TSHR Abs determined by ELISA or thyroid-stimulating hormone-binding inhibiting Ig assays, suggesting that Ab quality, not quantity, is responsible for disease induction. Our observations demonstrate the critical role of Th1 immune responses in a murine model of Graves' hyperthyroidism. These data may raise a cautionary note for therapeutic strategies aimed at reversing Th2-mediated autoimmune responses in Graves' disease in humans.

  2. Antimicrobial aspects of inflammatory resolution in the mucosa: A role for pro-resolving mediators1

    Science.gov (United States)

    Campbell, Eric L.; Serhan, Charles N.; Colgan, Sean P.

    2011-01-01

    Mucosal surfaces function as selectively permeable barriers between the host and the outside world. Given their close proximity to microbial antigens, mucosal surfaces have evolved sophisticated mechanisms for maintaining homeostasis and preventing excessive acute inflammatory reactions. The role attributed to epithelial cells was historically limited to serving as a selective barrier, in recent years numerous findings implicate an active role of the epithelium with pro-resolving mediators in the maintenance of immunological equilibrium. In this brief review, we highlight new evidence that the epithelium actively contributes to coordination and resolution of inflammation, principally through the generation of anti-inflammatory and pro-resolution lipid mediators. These autacoids, derived from ω-6 and ω-3 polyunsaturated fatty acids, are implicated in the initiation, progression and resolution of acute inflammation and display specific, epithelial-directed actions focused on mucosalhomeostasis. We also summarize present knowledge of mechanisms for resolution via regulation of epithelial-derived antimicrobial peptides in response to pro-resolving lipid mediators. PMID:21934099

  3. Androgen Receptor-Mediated Growth Suppression of HPr-1AR and PC3-Lenti-AR Prostate Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Young-Chae Kim

    Full Text Available The androgen receptor (AR mediates the developmental, physiologic, and pathologic effects of androgens including 5α-dihydrotestosterone (DHT. However, the mechanisms whereby AR regulates growth suppression and differentiation of luminal epithelial cells in the prostate gland and proliferation of malignant versions of these cells are not well understood, though they are central to prostate development, homeostasis, and neoplasia. Here, we identify androgen-responsive genes that restrain cell cycle progression and proliferation of human prostate epithelial cell lines (HPr-1AR and PC3-Lenti-AR, and we investigate the mechanisms through which AR regulates their expression. DHT inhibited proliferation of HPr-1AR and PC3-Lenti-AR, and cell cycle analysis revealed a prolonged G1 interval. In the cell cycle, the G1/S-phase transition is initiated by the activity of cyclin D and cyclin-dependent kinase (CDK complexes, which relieve growth suppression. In HPr-1AR, cyclin D1/2 and CDK4/6 mRNAs were androgen-repressed, whereas CDK inhibitor, CDKN1A, mRNA was androgen-induced. The regulation of these transcripts was AR-dependent, and involved multiple mechanisms. Similar AR-mediated down-regulation of CDK4/6 mRNAs and up-regulation of CDKN1A mRNA occurred in PC3-Lenti-AR. Further, CDK4/6 overexpression suppressed DHT-inhibited cell cycle progression and proliferation of HPr-1AR and PC3-Lenti-AR, whereas CDKN1A overexpression induced cell cycle arrest. We therefore propose that AR-mediated growth suppression of HPr-1AR involves cyclin D1 mRNA decay, transcriptional repression of cyclin D2 and CDK4/6, and transcriptional activation of CDKN1A, which serve to decrease CDK4/6 activity. AR-mediated inhibition of PC3-Lenti-AR proliferation occurs through a similar mechanism, albeit without down-regulation of cyclin D. Our findings provide insight into AR-mediated regulation of prostate epithelial cell proliferation.

  4. Connective tissue growth factor (CTGF) and cancer progression.

    Science.gov (United States)

    Chu, Chia-Yu; Chang, Cheng-Chi; Prakash, Ekambaranellore; Kuo, Min-Liang

    2008-11-01

    Connective tissue growth factor (CTGF) is a member of the CCN family of secreted, matrix-associated proteins encoded by immediate early genes that play various roles in angiogenesis and tumor growth. CCN family proteins share uniform modular structure which mediates various cellular functions such as regulation of cell division, chemotaxis, apoptosis, adhesion, motility, angiogenesis, neoplastic transformation, and ion transport. Recently, CTGF expression has been shown to be associated with tumor development and progression. There is growing body of evidence that CTGF may regulate cancer cell migration, invasion, angiogenesis, and anoikis. In this review, we will highlight the influence of CTGF expression on the biological behavior and progression of various cancer cells, as well as its regulation on various types of protein signals and their mechanisms.

  5. TbRGG2 facilitates kinetoplastid RNA editing initiation and progression past intrinsic pause sites.

    Science.gov (United States)

    Ammerman, Michelle L; Presnyak, Vladimir; Fisk, John C; Foda, Bardees M; Read, Laurie K

    2010-11-01

    TbRGG2 is an essential kinetoplastid RNA editing accessory factor that acts specifically on pan-edited RNAs. To understand the mechanism of TbRGG2 action, we undertook an in-depth analysis of edited RNA populations in TbRGG2 knockdown cells and an in vitro examination of the biochemical activities of the protein. We demonstrate that TbRGG2 down-regulation more severely impacts editing at the 5' ends of pan-edited RNAs than at their 3' ends. The initiation of editing is reduced to some extent in TbRGG2 knockdown cells. In addition, TbRGG2 plays a post-initiation role as editing becomes stalled in TbRGG2-depleted cells, resulting in an overall decrease in the 3' to 5' progression of editing. Detailed analyses of edited RNAs from wild-type and TbRGG2-depleted cells reveal that TbRGG2 facilitates progression of editing past intrinsic pause sites that often correspond to the 3' ends of cognate guide RNAs (gRNAs). In addition, noncanonically edited junction regions are either absent or significantly shortened in TbRGG2-depleted cells, consistent with impaired gRNA transitions. Sequence analysis further suggests that TbRGG2 facilitates complete utilization of certain gRNAs. In vitro RNA annealing and in vivo RNA unwinding assays demonstrate that TbRGG2 can modulate RNA-RNA interactions. Collectively, these data are consistent with a model in which TbRGG2 facilitates initiation and 3' to 5' progression of editing through its ability to affect gRNA utilization, both during the transition between specific gRNAs and during usage of certain gRNAs.

  6. SOX2 plays a critical role in EGFR-mediated self-renewal of human prostate cancer stem-like cells.

    Science.gov (United States)

    Rybak, Adrian P; Tang, Damu

    2013-12-01

    SOX2 is an essential transcription factor for stem cells and plays a role in tumorigenesis, however its role in prostate cancer stem cells (PCSCs) remains unclear. We report here a significant upregulation of SOX2 at both mRNA and protein levels in DU145 PCSCs propagated as suspension spheres in vitro. The expression of SOX2 in DU145 PCSCs is positively regulated by epidermal growth factor receptor (EGFR) signaling. Activation of EGFR signaling, following the addition of epidermal growth factor (EGF) or ectopic expression of a constitutively-active EGFR mutant (EGFRvIII), increased SOX2 expression and the self-renewal of DU145 PCSCs. Conversely, a small molecule EGFR inhibitor (AG1478) blocked EGFR activation, reduced SOX2 expression and inhibited PCSC self-renewal activity, implicating SOX2 in mediating EGFR-dependent self-renewal of PCSCs. In line with this notion, ectopic SOX2 expression enhanced EGF-induced self-renewal of DU145 PCSCs, while SOX2 knockdown reduced PCSC self-renewal with EGF treatment no longer capable of enhancing their propagation. Furthermore, SOX2 knockdown reduced the capacity of DU145 PCSCs to grow under anchorage-independent conditions. Finally, DU145 PCSCs generated xenograft tumors more aggressively with elevated levels of SOX2 expression compared to xenograft tumors derived from non-PCSCs. Collectively, we provide evidence that SOX2 plays a critical role in EGFR-mediated self-renewal of DU145 PCSCs. © 2013.

  7. Nitroxide-mediated homopolymerization and copolymerization of 2-vinylpyridine with styrene

    Czech Academy of Sciences Publication Activity Database

    Lokaj, Jan; Holler, Petr

    2001-01-01

    Roč. 80, č. 11 (2001), s. 2024-2030 ISSN 0021-8995 R&D Projects: GA ČR GA203/99/0572; GA AV ČR KSK2050602 Institutional research plan: CEZ:AV0Z4050913 Keywords : nitroxide-mediated polymerization * pseudoliving mechanism * 2-vinylpyridine polymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.992, year: 2001

  8. β2-Adrenergic Receptor-Mediated HIF-1α Upregulation Mediates Blood Brain Barrier Damage in Acute Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Yanyun Sun

    2017-08-01

    Full Text Available Disruption of the blood brain barrier (BBB within the thrombolytic time window is an antecedent event to intracerebral hemorrhage in ischemic stroke. Our recent studies showed that 2-h cerebral ischemia induced BBB damage in non-infarcted area and secreted matrix metalloproteinase-2 (MMP-2 accounted for this disruption. However, the factors that affect MMP-2 secretion and regulate BBB damage remains unknown. Since hypoxia-inducible factor-1 alpha (HIF-1α was discovered as a mater regulator in hypoxia, we sought to investigate the roles of HIF-1α in BBB damage as well as the factors regulating HIF-1α expression in the ischemic brain. in vivo rat middle cerebral artery occlusion (MCAO and in vitro oxygen glucose deprivation (OGD models were used to mimic ischemia. Pretreatment with HIF-1α inhibitor YC-1 significantly inhibited 2-h MCAO-induced BBB damage, which was accompanied by suppressed occludin degradation and vascular endothelial growth factor (VEGF mRNA upregulation. Interestingly, β2-adrenergic receptor (β2-AR antagonist ICI 118551 attenuated ischemia-induced BBB damage by regulating HIF-1α expression. Double immunostaining showed that HIF-1α was upregulated in ischemic neurons but not in astrocytes andendothelial cells. Of note, HIF-1α inhibition with inhibitor YC-1 or siRNA significantly prevented OGD-induced VEGF upregulation as well as the secretion of VEGF and MMP-2 in neurons. More importantly, blocking β2-AR with ICI 118551 suppressedHIF-1α upregulation in ischemic neurons and attenuated occludin degradation induced by the conditioned media of OGD-treatedneurons. Taken together, blockade of β2-AR-mediated HIF-1α upregulation mediates BBB damage during acute cerebral ischemia. These findings provide new mechanistic understanding of early BBB damage in ischemic stroke and may help reduce thrombolysis-related hemorrhagic complications.

  9. Characterization of radioactive waste forms. Progress report for 1986 Volume 2

    International Nuclear Information System (INIS)

    Reed, D.L.; Mallinson, L.G.

    1988-01-01

    The Council of Ministers of the European Communities adopted the third five-year EC programme of research on radioactive waste management and disposal in March 1985. It was recognized that the inevitable production of radioactive waste required perfecting and demonstrating systems for managing the waste produced by the nuclear industry, ensuring at the various stages the best possible protection of man and the environment. Task 3 of the programme 'evaluation of conditioned waste and qualification of engineered barriers' is subdivided into five sections. This book, in two volumes, is a compilation of reports on the progress achieved in four of the sections during 1986, the first year of the third programme. Volume 1 is concerned with Sections 1 and 5, 'Research on low-and medium- active waste' and 'Quality control methods'. Volume 2 covers Section 2 'HLW form characterization' and Section 3 'Other engineered barriers' Section 4 'Development of standard test methods' is not included in this edition, as results from an interlaboratory round robin test now in progress will only be available for inclusion for the year 1988

  10. Bombyx mori histone methyltransferase BmAsh2 is essential for silkworm piRNA-mediated sex determination.

    Science.gov (United States)

    Li, Zhiqian; You, Lang; Yan, Dong; James, Anthony A; Huang, Yongping; Tan, Anjiang

    2018-02-01

    Sex determination is a hierarchically-regulated process with high diversity in different organisms including insects. The W chromosome-derived Fem piRNA has been identified as the primary sex determination factor in the lepidopteran insect, Bombyx mori, revealing a distinctive piRNA-mediated sex determination pathway. However, the comprehensive mechanism of silkworm sex determination is still poorly understood. We show here that the silkworm PIWI protein BmSiwi, but not BmAgo3, is essential for silkworm sex determination. CRISPR/Cas9-mediated depletion of BmSiwi results in developmental arrest in oogenesis and partial female sexual reversal, while BmAgo3 depletion only affects oogenesis. We identify three histone methyltransferases (HMTs) that are significantly down-regulated in BmSiwi mutant moths. Disruption one of these, BmAsh2, causes dysregulation of piRNAs and transposable elements (TEs), supporting a role for it in the piRNA signaling pathway. More importantly, we find that BmAsh2 mutagenesis results in oogenesis arrest and partial female-to-male sexual reversal as well as dysregulation of the sex determination genes, Bmdsx and BmMasc. Mutagenesis of other two HMTs, BmSETD2 and BmEggless, does not affect piRNA-mediated sex determination. Histological analysis and immunoprecipitation results support a functional interaction between the BmAsh2 and BmSiwi proteins. Our data provide the first evidence that the HMT, BmAsh2, plays key roles in silkworm piRNA-mediated sex determination.

  11. Bombyx mori histone methyltransferase BmAsh2 is essential for silkworm piRNA-mediated sex determination.

    Directory of Open Access Journals (Sweden)

    Zhiqian Li

    2018-02-01

    Full Text Available Sex determination is a hierarchically-regulated process with high diversity in different organisms including insects. The W chromosome-derived Fem piRNA has been identified as the primary sex determination factor in the lepidopteran insect, Bombyx mori, revealing a distinctive piRNA-mediated sex determination pathway. However, the comprehensive mechanism of silkworm sex determination is still poorly understood. We show here that the silkworm PIWI protein BmSiwi, but not BmAgo3, is essential for silkworm sex determination. CRISPR/Cas9-mediated depletion of BmSiwi results in developmental arrest in oogenesis and partial female sexual reversal, while BmAgo3 depletion only affects oogenesis. We identify three histone methyltransferases (HMTs that are significantly down-regulated in BmSiwi mutant moths. Disruption one of these, BmAsh2, causes dysregulation of piRNAs and transposable elements (TEs, supporting a role for it in the piRNA signaling pathway. More importantly, we find that BmAsh2 mutagenesis results in oogenesis arrest and partial female-to-male sexual reversal as well as dysregulation of the sex determination genes, Bmdsx and BmMasc. Mutagenesis of other two HMTs, BmSETD2 and BmEggless, does not affect piRNA-mediated sex determination. Histological analysis and immunoprecipitation results support a functional interaction between the BmAsh2 and BmSiwi proteins. Our data provide the first evidence that the HMT, BmAsh2, plays key roles in silkworm piRNA-mediated sex determination.

  12. The Rac Activator DOCK2 Mediates Plasma Cell Differentiation and IgG Antibody Production

    Directory of Open Access Journals (Sweden)

    Miho Ushijima

    2018-02-01

    Full Text Available A hallmark of humoral immune responses is the production of antibodies. This process involves a complex cascade of molecular and cellular interactions, including recognition of specific antigen by the B cell receptor (BCR, which triggers activation of B cells and differentiation into plasma cells (PCs. Although activation of the small GTPase Rac has been implicated in BCR-mediated antigen recognition, its precise role in humoral immunity and the upstream regulator remain elusive. DOCK2 is a Rac-specific guanine nucleotide exchange factor predominantly expressed in hematopoietic cells. We found that BCR-mediated Rac activation was almost completely lost in DOCK2-deficient B cells, resulting in defects in B cell spreading over the target cell-membrane and sustained growth of BCR microclusters at the interface. When wild-type B cells were stimulated in vitro with anti-IgM F(ab′2 antibody in the presence of IL-4 and IL-5, they differentiated efficiently into PCs. However, BCR-mediated PC differentiation was severely impaired in the case of DOCK2-deficient B cells. Similar results were obtained in vivo when DOCK2-deficient B cells expressing a defined BCR specificity were adoptively transferred into mice and challenged with the cognate antigen. In addition, by generating the conditional knockout mice, we found that DOCK2 expression in B-cell lineage is required to mount antigen-specific IgG antibody. These results highlight important role of the DOCK2–Rac axis in PC differentiation and IgG antibody responses.

  13. Theory of Mind as a Mediator of Reasoning and Facial Emotion Recognition: Findings from 200 Healthy People

    Science.gov (United States)

    Lee, Seul Bee; Koo, Se Jun; Song, Yun Young; Lee, Mi Kyung; Jeong, Yu-Jin; Kwon, Catherine; Park, Kyoung Ri; Kang, Jee In; Lee, Eun

    2014-01-01

    Objective It was proposed that the ability to recognize facial emotions is closely related to complex neurocognitive processes and/or skills related to theory of mind (ToM). This study examines whether ToM skills mediate the relationship between higher neurocognitive functions, such as reasoning ability, and facial emotion recognition. Methods A total of 200 healthy subjects (101 males, 99 females) were recruited. Facial emotion recognition was measured through the use of 64 facial emotional stimuli that were selected from photographs from the Korean Facial Expressions of Emotion (KOFEE). Participants were requested to complete the Theory of Mind Picture Stories task and Standard Progressive Matrices (SPM). Results Multiple regression analysis showed that the SPM score (t=3.19, p=0.002, β=0.22) and the overall ToM score (t=2.56, p=0.011, β=0.18) were primarily associated with a total hit rate (%) of the emotion recognition task. Hierarchical regression analysis through a three-step mediation model showed that ToM may partially mediate the relationship between SPM and performance on facial emotion recognition. Conclusion These findings imply that higher neurocognitive functioning, inclusive of reasoning, may not only directly contribute towards facial emotion recognition but also influence ToM, which in turn, influences facial emotion recognition. These findings are particularly true for healthy young people. PMID:24843363

  14. A CNGB1 frameshift mutation in Papillon and Phalene dogs with progressive retinal atrophy.

    Directory of Open Access Journals (Sweden)

    Saija J Ahonen

    Full Text Available Progressive retinal degenerations are the most common causes of complete blindness both in human and in dogs. Canine progressive retinal atrophy (PRA or degeneration resembles human retinitis pigmentosa (RP and is characterized by a progressive loss of rod photoreceptor cells followed by a loss of cone function. The primary clinical signs are detected as vision impairment in a dim light. Although several genes have been associated with PRAs, there are still PRAs of unknown genetic cause in many breeds, including Papillons and Phalènes. We have performed a genome wide association and linkage studies in cohort of 6 affected Papillons and Phalènes and 14 healthy control dogs to map a novel PRA locus on canine chromosome 2, with a 1.9 Mb shared homozygous region in the affected dogs. Parallel exome sequencing of a trio identified an indel mutation, including a 1-bp deletion, followed by a 6-bp insertion in the CNGB1 gene. This mutation causes a frameshift and premature stop codon leading to probable nonsense mediated decay (NMD of the CNGB1 mRNA. The mutation segregated with the disease and was confirmed in a larger cohort of 145 Papillons and Phalènes (PFisher = 1.4×10(-8 with a carrier frequency of 17.2 %. This breed specific mutation was not present in 334 healthy dogs from 10 other breeds or 121 PRA affected dogs from 44 other breeds. CNGB1 is important for the photoreceptor cell function its defects have been previously associated with retinal degeneration in both human and mouse. Our study indicates that a frameshift mutation in CNGB1 is a cause of PRA in Papillons and Phalènes and establishes the breed as a large functional animal model for further characterization of retinal CNGB1 biology and possible retinal gene therapy trials. This study enables also the development of a genetic test for breeding purposes.

  15. The Tomato U-Box Type E3 Ligase PUB13 Acts With Group III Ubiquitin E2 Enzymes to Modulate FLS2-Mediated Immune Signaling

    Directory of Open Access Journals (Sweden)

    Bangjun Zhou

    2018-05-01

    Full Text Available In Arabidopsis and rice, the ubiquitin ligase PUB13-mediated protein degradation plays a significant role in plant pattern-triggered immunity (PTI and flowering time control. The Arabidopsis PUB13 has been shown to attenuate the pattern recognition receptor FLS2-mediated immune signaling by ubiquitinating FLS2 and consequently promoting its degradation by the 26S proteasome. Nevertheless, the cognate ubiquitin-conjugating enzymes (E2 with which PUB13 acts to modulate FLS2-mediated PTI are unknown. To address this question, we investigate here the tomato (Solanum lycopersicum homolog of PUB13, SlPUB13 by utilizing the recently characterized complete set of tomato E2s. Of the 13 groups of tomato E2s, only members in group III are found to interact and act with SlPUB13. Knocking-down of the group III E2 genes enhances callose deposition and induction of the RbohB gene in the immunity-associated, early oxidative burst after flg22 treatment. The group III E2s are also found to work with SlPUB13 to ubiquitinate FLS2 in vitro and are required for PUB13-mediated degradation of FLS2 in vivo upon flg22 treatment, suggesting an essential role for group III E2s in the modulation of FLS2-mediated immune signaling by PUB13. Additionally, another immunity-associated E3, NtCMPG1 is shown to also work specifically with members of group III E2 in the in vitro ubiquitination assay, which implies the group III E2 enzymes may cooperate with many E3 ligases to regulate different aspects of PTI. Taken together, these data corroborate the notion that group III E2 enzymes play an important role in PTI and build a foundation for further functional and mechanistic characterization of tomato PUB13.

  16. Progress in studies on nucleolus functions

    International Nuclear Information System (INIS)

    Chang Lei; Zhou Guangming

    2011-01-01

    Nucleoli is the sites for ribosome synthesis and processing, however, recent approaches have revealed that it is also involved in variety of cellular processes, especially the cellular stress response. As sensors, nucleoli regulate the localization of nucleolar proteins, such as (Alternate Reading Frame, ARF), and the activation of key factors, such as P53, and consequently mediate the cellular stress response.In this paper, recent progress in the studies on nucleolar functions in cellular stress response to radiation is reviewed. (authors)

  17. The rat acute-phase protein {alpha}{sub 2}-macroglobulin plays a central role in amifostine-mediated radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    Mirjana, Mihailovic; Goran, Poznanovic; Nevena, Grdovic; Melita, Vidakovic; Svetlana, Dinic; Ilijana, Grigorov; Desanka, Bogojevic, E-mail: mista@ibiss.bg.ac.r [Department of Molecular Biology, Institute for Biological Research ' Sinisa Stankovic' , University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade (Serbia)

    2010-09-15

    Previously we reported that elevated circulating concentrations of the acute-phase (AP) protein {alpha}{sub 2}-macroglobulin ({alpha}{sub 2}M), either as typically occurring in pregnant female rats or after administration to male rats, provides radioprotection, displayed as 100% survival of experimental animals exposed to total-body irradiation with 6.7 Gy (LD{sub 50/30}) x-rays, that is as effective as that afforded by the synthetic radioprotector amifostine. The finding that amifostine administration induces a 45-fold increase in {alpha}{sub 2}M in the circulation led us to hypothesise that {alpha}{sub 2}M assumes an essential role in both natural and amifostine-mediated radioprotection in the rat. In the present work we examined the activation of cytoprotective mechanisms in rat hepatocytes after the exogenous administration of {alpha}{sub 2}M and amifostine. Our results showed that the IL6/JAK/STAT3 hepatoprotective signal pathway, described in a variety of liver-injury models, upregulated the {alpha}{sub 2}M gene in amifostine-pretreated animals. In both {alpha}{sub 2}M- and amifostine-pretreated rats we observed the activation of the Akt signalling pathways that mediate cellular survival. At the cellular level this was reflected as a significant reduction of irradiation-induced DNA damage that allowed for the rapid and complete restoration of liver mass and ultimately at the level of the whole organism the complete restoration of body weight. We conclude that the selective upregulation of {alpha}{sub 2}M plays a central role in amifostine-provided radioprotection.

  18. The development of CotA mediator cocktail system for dyes decolorization.

    Science.gov (United States)

    Luo, S; Xie, T; Liu, Z; Sun, F; Wang, G

    2018-05-01

    The increasing use of dyes leads to serious environmental concerns, it is significant to explore eco-friendly and economic approaches for dye decolorization. This study aimed to develop mediator cocktail (AS and ABTS) for enhancing the capability of laccase-mediator system in the removal of dyes. By mediator screening, the mediators of ABTS and AS (ABTS, 2, 2'-azino-bis-(3-ethylbenzothiazo-thiazoline-6-sulphonic acid); AS, acetosyringone) were combined for dyes decolorization. The Box-Behnken Design and response surface analysis was performed to optimize experiment conditions. Comparing the CotA-ABTS-AS cocktail system with CotA-single mediator system showed that the coupling of ABTS and AS could increase the decolorization rate 15 times higher, save a third of the cost and shorten the reaction time by 50%. In addition, our studies revealed that sequential oxidation may occur in CotA-ABTS-AS system. Compared with CotA laccase-single mediator system, the CotA-ABTS-AS cocktail system showed advantages including higher efficiency, lower cost and shorter reaction time. This was the first report on the dyes decolorization by laccase mediator cocktail system. These results paved the curb for the application of laccase mediator system in various industrial processes. © 2018 The Society for Applied Microbiology.

  19. "You've got a friend in me": can social networks mediate the relationship between mood and MCI?

    Science.gov (United States)

    Yates, Jennifer A; Clare, Linda; Woods, Robert T

    2017-07-13

    Social networks can change with age, for reasons that are adaptive or unwanted. Social engagement is beneficial to both mental health and cognition, and represents a potentially modifiable factor. Consequently this study explored this association and assessed whether the relationship between mild cognitive impairment (MCI) and mood problems was mediated by social networks. This study includes an analysis of data from the Cognitive Function and Ageing Study Wales (CFAS Wales). CFAS Wales Phase 1 data were collected from 2010 to 2013 by conducting structured interviews with older people aged over 65 years of age living in urban and rural areas of Wales, and included questions that assessed cognitive functioning, mood, and social networks. Regression analyses were used to investigate the associations between individual variables and the mediating role of social networks. Having richer social networks was beneficial to both mood and cognition. Participants in the MCI category had weaker social networks than participants without cognitive impairment, whereas stronger social networks were associated with a decrease in the odds of experiencing mood problems, suggesting that they may offer a protective effect against anxiety and depression. Regression analyses revealed that social networks are a significant mediator of the relationship between MCI and mood problems. These findings are important, as mood problems are a risk factor for progression from MCI to dementia, so interventions that increase and strengthen social networks may have beneficial effects on slowing the progression of cognitive decline.

  20. 2-methoxyestradiol-mediated anti-tumor effect increases osteoprotegerin expression in osteosarcoma cells.

    Science.gov (United States)

    Benedikt, Michaela B; Mahlum, Eric W; Shogren, Kristen L; Subramaniam, Malayannan; Spelsberg, Thomas C; Yaszemski, Michael J; Maran, Avudaiappan

    2010-04-01

    Osteosarcoma is a bone tumor that frequently develops during adolescence. 2-Methoxyestradiol (2-ME), a naturally occurring metabolite of 17beta-estradiol, induces cell cycle arrest and cell death in human osteosarcoma cells. To investigate whether the osteoprotegrin (OPG) protein plays a role in 2-ME actions, we studied the effect of 2-ME treatment on OPG gene expression in human osteosarcoma cells. 2-ME treatment induced OPG gene promoter activity and mRNA levels. Also, Western blot analysis showed that 2-ME treatment increased OPG protein levels in MG63, KHOS, 143B and LM7 osteosarcoma cells by 3-, 1.9-, 2.8-, and 2.5-fold, respectively, but did not affect OPG expression in normal bone cells. In addition, increases in OPG protein levels were observed in osteosarcoma cell culture media after 3 days of 2-ME treatment. The effect of 2-ME on osteosarcoma cells was ligand-specific as parent estrogen, 17beta-estradiol and a tumorigenic estrogen metabolite, 16alpha-hydroxyestradiol, which do not affect osteosarcoma cell cycle and cell death, had no effect on OPG protein expression. Furthermore, co-treating osteosarcoma cells with OPG protein did not further enhance 2-ME-mediated anti-tumor effects. OPG-released in 2-ME-treated cultures led to an increase in osteoblastic activity and a decrease in osteoclast number, respectively. These findings suggest that OPG is not directly involved in 2-ME-mediated anti-proliferative effects in osteosarcoma cells, but rather participates in anti-resorptive functions of 2-ME in bone tumor environment. Copyright 2010 Wiley-Liss, Inc.

  1. Frontal EEG asymmetry as a moderator and mediator of emotion.

    Science.gov (United States)

    Coan, James A; Allen, John J B

    2004-10-01

    Frontal EEG asymmetry appears to serve as (1) an individual difference variable related to emotional responding and emotional disorders, and (2) a state-dependent concomitant of emotional responding. Such findings, highlighted in this review, suggest that frontal EEG asymmetry may serve as both a moderator and a mediator of emotion- and motivation-related constructs. Unequivocal evidence supporting frontal EEG asymmetry as a moderator and/or mediator of emotion is lacking, as insufficient attention has been given to analyzing the frontal EEG asymmetries in terms of moderators and mediators. The present report reviews the frontal EEG asymmetry literature from the framework of moderators and mediators, and overviews data analytic strategies that would support claims of moderation and mediation.

  2. Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates later-life Notch1-mediated T cell development and leukemogenesis

    International Nuclear Information System (INIS)

    Ahrenhoerster, Lori S.; Leuthner, Tess C.; Tate, Everett R.; Lakatos, Peter A.; Laiosa, Michael D.

    2015-01-01

    Over half of T cell acute lymphoblastic leukemia (T-ALL) patients have activating mutations in the Notch gene. Moreover, the contaminant 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) is a known carcinogen that mediates its toxicity through the aryl hydrocarbon receptor (AHR), and crosstalk between activated AHR and Notch signaling pathways has previously been observed. Given the importance of Notch signaling in thymocyte development and T-ALL disease progression, we hypothesized that the activated AHR potentiates disease initiation and progression in an in vivo model of Notch1-induced thymoma. This hypothesis was tested utilizing adult and developmental exposure paradigms to TCDD in mice expressing a constitutively active Notch1 transgene (Notch ICN-TG ). Following exposure of adult Notch ICN-TG mice to a single high dose of TCDD, we observed a significant increase in the efficiency of CD8 thymocyte generation. We next exposed pregnant mice to 3 μg/kg of TCDD throughout gestation and lactation to elucidate effects of developmental AHR activation on later-life T cell development and T-ALL-like thymoma susceptibility induced by Notch1. We found that the vehicle-exposed Notch ICN-TG offspring have a peripheral T cell pool heavily biased toward the CD4 lineage, while TCDD-exposed Notch ICN-TG offspring were biased toward the CD8 lineage. Furthermore, while the vehicle-exposed NotchICN-TG mice showed increased splenomegaly and B to T cell ratios indicative of disease, mice developmentally exposed to TCDD were largely protected from disease. These studies support a model where developmental AHR activation attenuates later-life Notch1-dependent impacts on thymocyte development and disease progression. - Highlights: • Adult mice exposed to 30 μg/kg TCDD have higher efficiency of CD8 thymocyte generation. • Mice carrying a constitutively active Notch transgene were exposed to 3 μg/kg TCDD throughout development. • Progression of Notch-induced thymoma was different in

  3. Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates later-life Notch1-mediated T cell development and leukemogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenhoerster, Lori S.; Leuthner, Tess C.; Tate, Everett R.; Lakatos, Peter A.; Laiosa, Michael D., E-mail: laiosa@uwm.edu

    2015-03-01

    Over half of T cell acute lymphoblastic leukemia (T-ALL) patients have activating mutations in the Notch gene. Moreover, the contaminant 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) is a known carcinogen that mediates its toxicity through the aryl hydrocarbon receptor (AHR), and crosstalk between activated AHR and Notch signaling pathways has previously been observed. Given the importance of Notch signaling in thymocyte development and T-ALL disease progression, we hypothesized that the activated AHR potentiates disease initiation and progression in an in vivo model of Notch1-induced thymoma. This hypothesis was tested utilizing adult and developmental exposure paradigms to TCDD in mice expressing a constitutively active Notch1 transgene (Notch{sup ICN-TG}). Following exposure of adult Notch{sup ICN-TG} mice to a single high dose of TCDD, we observed a significant increase in the efficiency of CD8 thymocyte generation. We next exposed pregnant mice to 3 μg/kg of TCDD throughout gestation and lactation to elucidate effects of developmental AHR activation on later-life T cell development and T-ALL-like thymoma susceptibility induced by Notch1. We found that the vehicle-exposed Notch{sup ICN-TG} offspring have a peripheral T cell pool heavily biased toward the CD4 lineage, while TCDD-exposed Notch{sup ICN-TG} offspring were biased toward the CD8 lineage. Furthermore, while the vehicle-exposed NotchICN-TG mice showed increased splenomegaly and B to T cell ratios indicative of disease, mice developmentally exposed to TCDD were largely protected from disease. These studies support a model where developmental AHR activation attenuates later-life Notch1-dependent impacts on thymocyte development and disease progression. - Highlights: • Adult mice exposed to 30 μg/kg TCDD have higher efficiency of CD8 thymocyte generation. • Mice carrying a constitutively active Notch transgene were exposed to 3 μg/kg TCDD throughout development. • Progression of Notch

  4. Characterization of Eosinophil Adhesion to TNF-a-Activated Endothelium Under Flow Conditions: a4 Integrins Mediate Initial Attachment, and E-Selectin Mediates Rolling

    NARCIS (Netherlands)

    Ulfman, L.H.; Kuijper, P.H.M.; Linden, J.A.M. van der; Lammers, J.W.J.; Zwaginga, Jaap Jan; Koenderman, L.

    1999-01-01

    The multistep model of leukocyte adhesion reveals that selectins mediate rolling interactions and that integrins mediate firm adhesion processes. In this study, the interaction between eosinophils and TNF-a-activated HUVEC (second or third passage) was studied under flow conditions (0.8 and 3.2

  5. Iodine-Mediated Intramolecular Dehydrogenative Coupling: Synthesis of N-Alkylindolo[3,2-c]- and -[2,3-c]quinoline Iodides.

    Science.gov (United States)

    Volvoikar, Prajesh S; Tilve, Santosh G

    2016-03-04

    An I2/TBHP-mediated intramolecular dehydrogenative coupling reaction is developed for the synthesis of a library of medicinally important 5,11-dialkylindolo[3,2-c]quinoline salts and 5,7-dimethylindolo[2,3-c]quinoline salts. The annulation reaction is followed by aromatization to yield tetracycles in good yield. This protocol is also demonstrated for the synthesis of the naturally occurring isocryptolepine in salt form.

  6. The Arabidopsis mediator complex subunits MED16, MED14, and MED2 regulate mediator and RNA polymerase II recruitment to CBF-responsive cold-regulated genes.

    Science.gov (United States)

    Hemsley, Piers A; Hurst, Charlotte H; Kaliyadasa, Ewon; Lamb, Rebecca; Knight, Marc R; De Cothi, Elizabeth A; Steele, John F; Knight, Heather

    2014-01-01

    The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-of-function mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation-induced freezing tolerance. In addition, these three subunits are required for low temperature-induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced.

  7. MicroRNA-301a mediated regulation of Kv4.2 in diabetes: identification of key modulators.

    Directory of Open Access Journals (Sweden)

    Siva K Panguluri

    Full Text Available Diabetes is a metabolic disorder that ultimately results in major pathophysiological complications in the cardiovascular system. Diabetics are predisposed to higher incidences of sudden cardiac deaths (SCD. Several studies have associated diabetes as a major underlying risk for heart diseases and its complications. The diabetic heart undergoes remodeling to cope up with the underlying changes, however ultimately fails. In the present study we investigated the changes associated with a key ion channel and transcriptional factors in a diabetic heart model. In the mouse db/db model, we identified key transcriptional regulators and mediators that play important roles in the regulation of ion channel expression. Voltage-gated potassium channel (Kv4.2 is modulated in diabetes and is down regulated. We hypothesized that Kv4.2 expression is altered by potassium channel interacting protein-2 (KChIP2 which is regulated upstream by NFkB and miR-301a. We utilized qRT-PCR analysis and identified the genes that are affected in diabetes in a regional specific manner in the heart. At protein level we identified and validated differential expression of Kv4.2 and KChIP2 along with NFkB in both ventricles of diabetic hearts. In addition, we identified up-regulation of miR-301a in diabetic ventricles. We utilized loss and gain of function approaches to identify and validate the role of miR-301a in regulating Kv4.2. Based on in vivo and in vitro studies we conclude that miR-301a may be a central regulator for the expression of Kv4.2 in diabetes. This miR-301 mediated regulation of Kv4.2 is independent of NFkB and Irx5 and modulates Kv4.2 by direct binding on Kv4.2 3'untranslated region (3'-UTR. Therefore targeting miR-301a may offer new potential for developing therapeutic approaches.

  8. Genomic analysis reveals a potential role for cell cycle perturbation in HCV-mediated apoptosis of cultured hepatocytes.

    Directory of Open Access Journals (Sweden)

    Kathie-Anne Walters

    2009-01-01

    Full Text Available The mechanisms of liver injury associated with chronic HCV infection, as well as the individual roles of both viral and host factors, are not clearly defined. However, it is becoming increasingly clear that direct cytopathic effects, in addition to immune-mediated processes, play an important role in liver injury. Gene expression profiling during multiple time-points of acute HCV infection of cultured Huh-7.5 cells was performed to gain insight into the cellular mechanism of HCV-associated cytopathic effect. Maximal induction of cell-death-related genes and appearance of activated caspase-3 in HCV-infected cells coincided with peak viral replication, suggesting a link between viral load and apoptosis. Gene ontology analysis revealed that many of the cell-death genes function to induce apoptosis in response to cell cycle arrest. Labeling of dividing cells in culture followed by flow cytometry also demonstrated the presence of significantly fewer cells in S-phase in HCV-infected relative to mock cultures, suggesting HCV infection is associated with delayed cell cycle progression. Regulation of numerous genes involved in anti-oxidative stress response and TGF-beta1 signaling suggest these as possible causes of delayed cell cycle progression. Significantly, a subset of cell-death genes regulated during in vitro HCV infection was similarly regulated specifically in liver tissue from a cohort of HCV-infected liver transplant patients with rapidly progressive fibrosis. Collectively, these data suggest that HCV mediates direct cytopathic effects through deregulation of the cell cycle and that this process may contribute to liver disease progression. This in vitro system could be utilized to further define the cellular mechanism of this perturbation.

  9. Maternal steroid therapy for fetuses with second-degree immune-mediated congenital atrioventricular block: a systematic review and meta-analysis.

    Science.gov (United States)

    Ciardulli, Andrea; D'Antonio, Francesco; Magro-Malosso, Elena R; Manzoli, Lamberto; Anisman, Paul; Saccone, Gabriele; Berghella, Vincenzo

    2018-03-07

    To explore the effect of maternal fluorinated steroid therapy on fetuses affected by second-degree immune-mediated congenital atrioventricular block. Studies reporting the outcome of fetuses with second-degree immune-mediated congenital atrioventricular block diagnosed on prenatal ultrasound and treated with fluorinated steroids compared with those not treated were included. The primary outcome was the overall progression of congenital atrioventricular block to either continuous or intermittent third-degree congenital atrioventricular block at birth. Meta-analyses of proportions using random effect model and meta-analyses using individual data random-effect logistic regression were used. Five studies (71 fetuses) were included. The progression rate to congenital atrioventricular block at birth in fetuses treated with steroids was 52% (95% confidence interval 23-79) and in fetuses not receiving steroid therapy 73% (95% confidence interval 39-94). The overall rate of regression to either first-degree, intermittent first-/second-degree or sinus rhythm in fetuses treated with steroids was 25% (95% confidence interval 12-41) compared with 23% (95% confidence interval 8-44) in those not treated. Stable (constant) second-degree congenital atrioventricular block at birth was present in 11% (95% confidence interval 2-27) of cases in the treated group and in none of the newborns in the untreated group, whereas complete regression to sinus rhythm occurred in 21% (95% confidence interval 6-42) of fetuses receiving steroids vs. 9% (95% confidence interval 0-41) of those untreated. There is still limited evidence as to the benefit of administered fluorinated steroids in terms of affecting outcome of fetuses with second-degree immune-mediated congenital atrioventricular block. © 2018 Nordic Federation of Societies of Obstetrics and Gynecology.

  10. Conformal Gauge Mediation and Light Gravitino of Mass m3/2 < O(10) eV

    International Nuclear Information System (INIS)

    Ibe, M.; SLAC; Nakayama, Y.; Yanagida, T.T.

    2008-01-01

    We discuss a class of gauge mediated supersymmetry breaking models with conformal invariance above the messenger mass scale (conformal gauge mediation). The spectrum of the supersymmetric particles including the gravitino is uniquely determined by the messenger mass. When the conformal fixed point is strongly interacting, it predicts a light gravitino of mass m 3/2 < O(10) eV, which is attractive since such a light gravitino causes no problem in cosmology

  11. Differential protection by wildtype vs. organelle-specific Bcl-2 suggests a combined requirement of both the ER and mitochondria in ceramide-mediated caspase-independent programmed cell death

    International Nuclear Information System (INIS)

    Deerberg, Andrea; Sosna, Justyna; Thon, Lutz; Belka, Claus; Adam, Dieter

    2009-01-01

    Programmed cell death (PCD) is essential for development and homeostasis of multicellular organisms and can occur by caspase-dependent apoptosis or alternatively, by caspase-independent PCD (ciPCD). Bcl-2, a central regulator of apoptosis, localizes to both mitochondria and the endoplasmic reticulum (ER). Whereas a function of mitochondrial and ER-specific Bcl-2 in apoptosis has been established in multiple studies, corresponding data for ciPCD do not exist. We utilized Bcl-2 constructs specifically localizing to mitochondria (Bcl-2 ActA), the ER (Bcl-2 cb5), both (Bcl-2 WT) or the cytosol/nucleus (Bcl-2 ΔTM) and determined their protective effect on ceramide-mediated ciPCD in transiently and stably transfected Jurkat cells. Expression of the constructs was verified by immunoblots. Ceramide-mediated ciPCD was induced by treatment with human recombinant tumor necrosis factor and determined by flow cytometric measurement of propidium iodide uptake as well as by optical analysis of cell morphology. Only wildtype Bcl-2 had the ability to efficiently protect from ceramide-mediated ciPCD, whereas expression of Bcl-2 solely at mitochondria, the ER, or the cytosol/nucleus did not prevent ceramide-mediated ciPCD. Our data suggest a combined requirement for both mitochondria and the ER in the induction and the signaling pathways of ciPCD mediated by ceramide

  12. Differential protection by wildtype vs. organelle-specific Bcl-2 suggests a combined requirement of both the ER and mitochondria in ceramide-mediated caspase-independent programmed cell death

    Directory of Open Access Journals (Sweden)

    Belka Claus

    2009-10-01

    Full Text Available Abstract Background Programmed cell death (PCD is essential for development and homeostasis of multicellular organisms and can occur by caspase-dependent apoptosis or alternatively, by caspase-independent PCD (ciPCD. Bcl-2, a central regulator of apoptosis, localizes to both mitochondria and the endoplasmic reticulum (ER. Whereas a function of mitochondrial and ER-specific Bcl-2 in apoptosis has been established in multiple studies, corresponding data for ciPCD do not exist. Methods We utilized Bcl-2 constructs specifically localizing to mitochondria (Bcl-2 ActA, the ER (Bcl-2 cb5, both (Bcl-2 WT or the cytosol/nucleus (Bcl-2 ΔTM and determined their protective effect on ceramide-mediated ciPCD in transiently and stably transfected Jurkat cells. Expression of the constructs was verified by immunoblots. Ceramide-mediated ciPCD was induced by treatment with human recombinant tumor necrosis factor and determined by flow cytometric measurement of propidium iodide uptake as well as by optical analysis of cell morphology. Results Only wildtype Bcl-2 had the ability to efficiently protect from ceramide-mediated ciPCD, whereas expression of Bcl-2 solely at mitochondria, the ER, or the cytosol/nucleus did not prevent ceramide-mediated ciPCD. Conclusion Our data suggest a combined requirement for both mitochondria and the ER in the induction and the signaling pathways of ciPCD mediated by ceramide.

  13. A redox-mediated chromogenic reaction and application in immunoassay.

    Science.gov (United States)

    Yu, Ru-Jia; Ma, Wei; Peng, Mao-Pan; Bai, Zhi-Shan; Long, Yi-Tao

    2016-08-31

    A novel redox-mediated chromogenic reaction was demonstrated based on the reaction between HAuCl4 and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), which generate various color responses from red to green in the resulting solutions. Various redox substance could be used to mediate the reaction and trigger a distinct color response. We established a sensitive hydrogen peroxide colorimetric sensor based on the redox-mediated chromogenic reaction and depicted the application both in detection of enzyme and in an immunoassay. Combining the traditional chromogenic reagent with gold nanoparticles, our assay has the advantage in short response time (within three minutes), high sensitivity (10(-12) g mL(-1) for HBsAg) and stability. Copyright © 2016. Published by Elsevier B.V.

  14. Desperately Trying to Mediate Immediacy

    Directory of Open Access Journals (Sweden)

    Andreas Oliver Schellewald

    2018-01-01

    Full Text Available Evermore aspects of contemporary cultures, societies and human life appear to be changed through processes of digitization and mediatization. A great body of work is touching on these processes of change. However, not many discuss aspects of leisure and aesthetics. And if they do so, seldom regarding bodily and worldly aspects. This paper thus seeks to discuss such changes alongside the phenomenon of esports. More precisely, the paper situates the aesthetic dimension and practices of watching and doing esports in contemporary cultures and societies, focusing on lived experiences (ästhetisches Erleben in digital and mediated contexts. The failing attempt to understand, the attempt to re-present and Gelassenheit (composure or serenity are introduced as modes of coping with immediate aesthetic experiences. Here, especially the constitutive transition from a physical to a meta-physical dimension of reality will be grasped on. By that, ongoing philosophical debates about the constitution of reality and being can be supported in their progress.

  15. Progress in the treatment of diabetes type 1 and 2.

    Science.gov (United States)

    Wasikowa, Renata B; Basiak, Aleksander

    2007-01-01

    In the last years an increased incidence of diabetes was observed in the whole world. It was estimated that in the year 2030 there will be around 300 million patients with diabetes. Diabetes, especially not adequately treated, develops serious chronic complications. The main aim of the therapy in diabetes is, as we know, to achieve a stable normoglycemia, normal levels of HbA1c, the prevention or inhibition of the progression of late consequences of diabetes. In the paper the authors discuss new more perfect insulins which enable a better imitation of the physiological rhythm of insulin secretion, the therapy with personal insulin pumps, the more perfect equipment for the appreciation and monitoring of the metabolic control. The authors present also the actual data about the transplantation of the pancreas, the islets and recently the beta cells alone. They enumerate also the inclusion and exclusion criteria for transplantation. The gene therapy is mentioned. The present possibilities of the therapy of type 2 diabetes are presented. It is stressed that in the year 2006 for the first time an expert crew was appointed to elaborate a prevention and therapeutical program for diabetes in Poland. The program was accepted by the Ministry of Health for realisation in the years 2006-2008. The authors conclude that in the recent years an enormous progress in the prevention, diagnostics and therapy in diabetes has been achieved. However, the time which should elapse to the moment when the complete success would be achieved is dependent on the further scientific progress the intensity of investigations in the whole world.

  16. The Voltage-dependent Anion Channel 1 Mediates Amyloid β Toxicity and Represents a Potential Target for Alzheimer Disease Therapy.

    Science.gov (United States)

    Smilansky, Angela; Dangoor, Liron; Nakdimon, Itay; Ben-Hail, Danya; Mizrachi, Dario; Shoshan-Barmatz, Varda

    2015-12-25

    The voltage-dependent anion channel 1 (VDAC1), found in the mitochondrial outer membrane, forms the main interface between mitochondrial and cellular metabolisms, mediates the passage of a variety of molecules across the mitochondrial outer membrane, and is central to mitochondria-mediated apoptosis. VDAC1 is overexpressed in post-mortem brains of Alzheimer disease (AD) patients. The development and progress of AD are associated with mitochondrial dysfunction resulting from the cytotoxic effects of accumulated amyloid β (Aβ). In this study we demonstrate the involvement of VDAC1 and a VDAC1 N-terminal peptide (VDAC1-N-Ter) in Aβ cell penetration and cell death induction. Aβ directly interacted with VDAC1 and VDAC1-N-Ter, as monitored by VDAC1 channel conductance, surface plasmon resonance, and microscale thermophoresis. Preincubated Aβ interacted with bilayer-reconstituted VDAC1 and increased its conductance ∼ 2-fold. Incubation of cells with Aβ resulted in mitochondria-mediated apoptotic cell death. However, the presence of non-cell-penetrating VDAC1-N-Ter peptide prevented Aβ cellular entry and Aβ-induced mitochondria-mediated apoptosis. Likewise, silencing VDAC1 expression by specific siRNA prevented Aβ entry into the cytosol as well as Aβ-induced toxicity. Finally, the mode of Aβ-mediated action involves detachment of mitochondria-bound hexokinase, induction of VDAC1 oligomerization, and cytochrome c release, a sequence of events leading to apoptosis. As such, we suggest that Aβ-mediated toxicity involves mitochondrial and plasma membrane VDAC1, leading to mitochondrial dysfunction and apoptosis induction. The VDAC1-N-Ter peptide targeting Aβ cytotoxicity is thus a potential new therapeutic strategy for AD treatment. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Impact of KChIP2 on Cardiac Electrophysiology and the Progression of Heart Failure

    DEFF Research Database (Denmark)

    Grubb, Søren; Callø, Kirstine; Thomsen, Morten B

    2012-01-01

    Electrophysiological remodeling of cardiac potassium ion channels is important in the progression of heart failure. A reduction of the transient outward potassium current (I(to)) in mammalian heart failure is consistent with a reduced expression of potassium channel interacting protein 2 (KChIP2...

  18. Progress report no. 2, 1981-1984. Arbeitsgruppe Strahlenschaeden in Festkoerpern

    International Nuclear Information System (INIS)

    1984-10-01

    This progress report no. 2 refers to the work performed for the R and D project 3.2 'Radiation Damage in Solids' of the Hahn-Meitner-Institut fuer Kernforschung, Berlin in the period 1981-1984 and was prepared on the occasion of the review sessions of the committee of consultants (Wissenschaftlicher Beirat des HMI). These sessions take place in fall every year. Each project of the Hahn-Meitner-Institut is reviewed every four years. The report was edited under the guidance of C. Abromeit. (orig./RK)

  19. Protein kinase A-induced internalization of Slack channels from the neuronal membrane occurs by adaptor protein-2/clathrin-mediated endocytosis.

    Science.gov (United States)

    Gururaj, Sushmitha; Evely, Katherine M; Pryce, Kerri D; Li, Jun; Qu, Jun; Bhattacharjee, Arin

    2017-11-24

    The sodium-activated potassium (K Na ) channel Kcnt1 (Slack) is abundantly expressed in nociceptor (pain-sensing) neurons of the dorsal root ganglion (DRG), where they transmit the large outward conductance I KNa and arbitrate membrane excitability. Slack channel expression at the DRG membrane is necessary for their characteristic firing accommodation during maintained stimulation, and reduced membrane channel density causes hyperexcitability. We have previously shown that in a pro-inflammatory state, a decrease in membrane channel expression leading to reduced Slack-mediated I KNa expression underlies DRG neuronal sensitization. An important component of the inflammatory milieu, PKA internalizes Slack channels from the DRG membrane, reduces I KNa , and produces DRG neuronal hyperexcitability when activated in cultured primary DRG neurons. Here, we show that this PKA-induced retrograde trafficking of Slack channels also occurs in intact spinal cord slices and that it is carried out by adaptor protein-2 (AP-2) via clathrin-mediated endocytosis. We provide mass spectrometric and biochemical evidence of an association of native neuronal AP-2 adaptor proteins with Slack channels, facilitated by a dileucine motif housed in the cytoplasmic Slack C terminus that binds AP-2. By creating a competitive peptide blocker of AP-2-Slack binding, we demonstrated that this interaction is essential for clathrin recruitment to the DRG membrane, Slack channel endocytosis, and DRG neuronal hyperexcitability after PKA activation. Together, these findings uncover AP-2 and clathrin as players in Slack channel regulation. Given the significant role of Slack in nociceptive neuronal excitability, the AP-2 clathrin-mediated endocytosis trafficking mechanism may enable targeting of peripheral and possibly, central neuronal sensitization. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. The Role of Inflammatory Mediators in the Pathogenesis of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Gholamreza Azizi

    2015-08-01

    Full Text Available Alzheimer’s disease (AD, a neurodegenerative disorder associated with advanced age, is the most common cause of dementia globally. AD is characterised by cognitive dysfunction, deposition of amyloid plaques, neurofibrillary tangles and neuro-inflammation. Inflammation of the brain is a key pathological hallmark of AD. Thus, clinical and immunopathological evidence of AD could be potentially supported by inflammatory mediators, including cytokines, chemokines, the complement system, acute phase proteins and oxidative mediators. In particular, oxidative mediators may actively contribute to the progression of AD and on-going inflammation in the brain. This review provides an overview of the functions and activities of inflammatory mediators in AD. An improved understanding of inflammatory processes and their role in AD is needed to improve therapeutic research aims in the field of AD and similar diseases.

  1. A Natural CCR2 Antagonist Relieves Tumor-associated Macrophage-mediated Immunosuppression to Produce a Therapeutic Effect for Liver Cancer

    Directory of Open Access Journals (Sweden)

    Wenbo Yao

    2017-08-01

    Full Text Available Hepatocellular carcinoma (HCC is a common malignant tumor in the digestive tract with limited therapeutic choices. Although sorafenib, an orally administered multikinase inhibitor, has produced survival benefits for patients with advanced HCC, favorable clinical outcomes are limited due to individual differences and resistance. The application of immunotherapy, a promising approach for HCC is urgently needed. Macrophage infiltration, mediated by the CCL2/CCR2 axis, is a potential immunotherapeutic target. Here, we report that a natural product from Abies georgei, named 747 and related in structure to kaempferol, exhibits sensitivity and selectivity as a CCR2 antagonist. The specificity of 747 on CCR2 was demonstrated via calcium flux, the binding domain of CCR2 was identified in an extracellular loop by chimera binding assay, and in vivo antagonistic activity of 747 was confirmed through a thioglycollate-induced peritonitis model. In animals, 747 elevated the number of CD8+ T cells in tumors via blocking tumor-infiltrating macrophage-mediated immunosuppression and inhibited orthotopic and subcutaneous tumor growth in a CD8+ T cell-dependent manner. Further, 747 enhanced the therapeutic efficacy of low-dose sorafenib without obvious toxicity, through elevating the numbers of intra-tumoral CD8+ T cells and increasing death of tumor cells. Thus, we have discovered a natural CCR2 antagonist and have provided a new perspective on development of this antagonist for treatment of HCC. In mouse models of HCC, 747 enhanced the tumor immunosuppressive microenvironment and potentiated the therapeutic effect of sorafenib, indicating that the combination of an immunomodulator with a chemotherapeutic drug could be a new approach for treating HCC.

  2. Deregulation of MiR-34b/Sox2 Predicts Prostate Cancer Progression.

    Directory of Open Access Journals (Sweden)

    Irene Forno

    Full Text Available Most men diagnosed with prostate cancer will have an indolent and curable disease, whereas approximately 15% of these patients will rapidly progress to a castrate-resistant and metastatic stage with high morbidity and mortality. Therefore, the identification of molecular signature(s that detect men at risk of progressing disease remains a pressing and still unmet need for these patients. Here, we used an integrated discovery platform combining prostate cancer cell lines, a Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP model and clinically-annotated human tissue samples to identify loss of expression of microRNA-34b as consistently associated with prostate cancer relapse. Mechanistically, this was associated with epigenetics silencing of the MIR34B/C locus and increased DNA copy number loss, selectively in androgen-dependent prostate cancer. In turn, loss of miR-34b resulted in downstream deregulation and overexpression of the "stemness" marker, Sox2. These findings identify loss of miR-34b as a robust biomarker for prostate cancer progression in androgen-sensitive tumors, and anticipate a potential role of progenitor/stem cell signaling in this stage of disease.

  3. Deregulation of MiR-34b/Sox2 Predicts Prostate Cancer Progression.

    Science.gov (United States)

    Forno, Irene; Ferrero, Stefano; Russo, Maria Veronica; Gazzano, Giacomo; Giangiobbe, Sara; Montanari, Emanuele; Del Nero, Alberto; Rocco, Bernardo; Albo, Giancarlo; Languino, Lucia R; Altieri, Dario C; Vaira, Valentina; Bosari, Silvano

    2015-01-01

    Most men diagnosed with prostate cancer will have an indolent and curable disease, whereas approximately 15% of these patients will rapidly progress to a castrate-resistant and metastatic stage with high morbidity and mortality. Therefore, the identification of molecular signature(s) that detect men at risk of progressing disease remains a pressing and still unmet need for these patients. Here, we used an integrated discovery platform combining prostate cancer cell lines, a Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model and clinically-annotated human tissue samples to identify loss of expression of microRNA-34b as consistently associated with prostate cancer relapse. Mechanistically, this was associated with epigenetics silencing of the MIR34B/C locus and increased DNA copy number loss, selectively in androgen-dependent prostate cancer. In turn, loss of miR-34b resulted in downstream deregulation and overexpression of the "stemness" marker, Sox2. These findings identify loss of miR-34b as a robust biomarker for prostate cancer progression in androgen-sensitive tumors, and anticipate a potential role of progenitor/stem cell signaling in this stage of disease.

  4. Progressive supranuclear palsy dopamine D2 receptor tomoscintigraphy to detect L-dopamine efficiency. Paralysies supra-nucleaires progressives. Quantification des recepteurs dopaminergiques D2 par tomoscintigraphie

    Energy Technology Data Exchange (ETDEWEB)

    Tranquart, F; Henry Le Bras, F; Toffol, B de; Autret, A; Guilloteau, D; Baulieu, J L [Hopital Bretonneau, 37 - Tours (France)

    1994-09-01

    Progressive supranuclear palsy (PSP) may sometimes be misdiagnosed as Parkinson's disease in its early stages, hence an early positive diagnosis of PSP based on dopamine D2 receptor density could be extremely valuable. In the present case report, the absence of dopamine D2 receptors was clearly demonstrated in the striatum using [sup 123]I-iodobenzamide (IBZM) tomoscintigraphy. This illustrates the potential use of IBZM tomoscintigraphy to identify Parkinson-like's disease presenting with decreased dopamine D2 receptor density; and hence to predict L-Dopa effectiveness. Further studies are needed to evaluate the value of IBZM tomoscintigraphy in the different Parkinson's like diseases. (authors). 11 refs., 2 figs.

  5. Albumin-bound fatty acids but not albumin itself alter redox balance in tubular epithelial cells and induce a peroxide-mediated redox-sensitive apoptosis

    Science.gov (United States)

    Ruggiero, Christine; Elks, Carrie M.; Kruger, Claudia; Cleland, Ellen; Addison, Kaity; Noland, Robert C.

    2014-01-01

    Albuminuria is associated with metabolic syndrome and diabetes. It correlates with the progression of chronic kidney disease, particularly with tubular atrophy. The fatty acid load on albumin significantly increases in obesity, presenting a proinflammatory environment to the proximal tubules. However, little is known about changes in the redox milieu during fatty acid overload and how redox-sensitive mechanisms mediate cell death. Here, we show that albumin with fatty acid impurities or conjugated with palmitate but not albumin itself compromised mitochondrial and cell viability, membrane potential and respiration. Fatty acid overload led to a redox imbalance which deactivated the antioxidant protein peroxiredoxin 2 and caused a peroxide-mediated apoptosis through the redox-sensitive pJNK/caspase-3 pathway. Transfection of tubular cells with peroxiredoxin 2 was protective and mitigated apoptosis. Mitochondrial fatty acid entry and ceramide synthesis modulators suggested that mitochondrial β oxidation but not ceramide synthesis may modulate lipotoxic effects on tubular cell survival. These results suggest that albumin overloaded with fatty acids but not albumin itself changes the redox environment in the tubules, inducing a peroxide-mediated redox-sensitive apoptosis. Thus, mitigating circulating fatty acid levels may be an important factor in both preserving redox balance and preventing tubular cell damage in proteinuric diseases. PMID:24500687

  6. Intracellular collagen degradation mediated by uPARAP/Endo180 is a major pathway of extracellular matrix turnover during malignancy

    DEFF Research Database (Denmark)

    Curino, Alejandro C; Engelholm, Lars H; Yamada, Susan S

    2005-01-01

    We recently reported that uPARAP/Endo180 can mediate the cellular uptake and lysosomal degradation of collagen by cultured fibroblasts. Here, we show that uPARAP/Endo180 has a key role in the degradation of collagen during mammary carcinoma progression. In the normal murine mammary gland, uPARAP/...

  7. Raf-1/CK2 and RhoA/ROCK signaling promote TNF-α-mediated endothelial apoptosis via regulating vimentin cytoskeleton.

    Science.gov (United States)

    Yang, Lifeng; Tang, Lian; Dai, Fan; Meng, Guoliang; Yin, Runting; Xu, Xiaole; Yao, Wenjuan

    2017-08-15

    Both RhoA/ROCK and Raf-1/CK2 pathway play essential roles in cell proliferation, apoptosis, differentiation, and multiple other common cellular functions. We previously reported that vimentin is responsible for TNF-α-induced cell apoptosis. Herein, we investigated the regulation of RhoA/ROCK and Raf-1/CK2 signaling on vimentin filaments and endothelial apoptosis mediated by TNF-α. Treatment with TNF-α significantly induced the activation of RhoA and ROCK, and the expression of ROCK1. RhoA deficiency could obviously inhibit ROCK activation and ROCK1 expression induced by TNF-α. Both RhoA deficiency and ROCK activity inhibition (Y-27632) greatly inhibited endothelial apoptosis and preserved cell viability in TNF-α-induced human umbilical vein endothelial cells (HUVECs). Also vimentin phosphorylation and the remodeling of vimentin or phospho-vimentin induced by TNF-α were obviously attenuated by RhoA suppression and ROCK inhibition. TNF-α-mediated vimentin cleavage was significantly inhibited by RhoA suppression and ROCK inhibition through decreasing the activation of caspase3 and 8. Furthermore, TNF-α treatment greatly enhanced the activation of Raf-1. Suppression of Raf-1 or CK2 by its inhibitor (GW5074 or TBB) blocked vimentin phosphorylation, remodeling and endothelial apoptosis, and preserved cell viability in TNF-α-induced HUVECs. However, Raf-1 inhibition showed no significant effect on TNF-α-induced ROCK expression and activation, suggesting that the regulation of Raf-1/CK2 signaling on vimentin was independent of ROCK. Taken together, these results indicate that both RhoA/ROCK and Raf-1/CK2 pathway are responsible for TNF-α-mediated endothelial cytotoxicity via regulating vimentin cytoskeleton. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Reprogramming the Dynamin 2 mRNA by Spliceosome-mediated RNA Trans-splicing

    Directory of Open Access Journals (Sweden)

    Delphine Trochet

    2016-01-01

    Full Text Available Dynamin 2 (DNM2 is a large GTPase, ubiquitously expressed, involved in membrane trafficking and regulation of actin and microtubule cytoskeletons. DNM2 mutations cause autosomal dominant centronuclear myopathy which is a rare congenital myopathy characterized by skeletal muscle weakness and histopathological features including nuclear centralization in absence of regeneration. No curative treatment is currently available for the DNM2-related autosomal dominant centronuclear myopathy. In order to develop therapeutic strategy, we evaluated here the potential of Spliceosome-Mediated RNA Trans-splicing technology to reprogram the Dnm2-mRNA in vitro and in vivo in mice. We show that classical 3′-trans-splicing strategy cannot be considered as accurate therapeutic strategy regarding toxicity of the pre-trans-splicing molecules leading to low rate of trans-splicing in vivo. Thus, we tested alternative strategies devoted to prevent this toxicity and enhance frequency of trans-splicing events. We succeeded to overcome the toxicity through a 5′-trans-splicing strategy which also allows detection of trans-splicing events at mRNA and protein levels in vitro and in vivo. These results suggest that the Spliceosome-Mediated RNA Trans-splicing strategy may be used to reprogram mutated Dnm2-mRNA but highlight the potential toxicity linked to the molecular tools which have to be carefully investigated during preclinical development.

  9. Electroacupuncture preconditioning-induced neuroprotection may be mediated by glutamate transporter type 2.

    Science.gov (United States)

    Zhu, Xiaoling; Yin, Jinbo; Li, Liaoliao; Ma, Lei; Tan, Hongying; Deng, Jiao; Chen, Shaoyang; Zuo, Zhiyi

    2013-10-01

    Electroacupuncture has been shown to induce a preconditioning effect in the brain. The mechanisms for this protection are not fully elucidated. We hypothesize that this protection is mediated by excitatory amino acid transporters (EAATs) that have been shown to be neuroprotective. To test this hypothesis, two-month old male Sprague-Dawley rats and EAAT type 3 (EAAT3) knockout mice received or did not receive 30-min electroacupuncture once a day for five consecutive days. They were subjected to a 120-min middle cerebral arterial occlusion (MCAO) at 24h after the last electroacupuncture. Neurological outcome was assessed 2days after the MCAO. Brain tissues were harvested at 24h after the last electroacupuncture for Western blotting. Rats subjected to electroacupuncture at the Baihui acupoint had smaller brain infarct volumes and better neurological deficit scores than control rats. Electroacupuncture increased EAAT type 2 (EAAT2) in the cerebral cortex, tended to increase EAAT3 in the hippocampus, and had no effect on EAAT type 1 expression. Dihydrokainate, an EAAT2 inhibitor, worsened the neurological outcome of rats with electroacupuncture pretreatment. Electroacupuncture pretreatment at the Baihui acupoint increased EAAT2 in the cerebral cortex and improved the neurological outcome of EAAT3 knockout mice. Together, our results suggest that EAAT2 may mediate the electroacupuncture preconditioning-induced neuroprotection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. KLF2 in Regulation of NF-κB-Mediated Immune Cell Function and Inflammation

    Directory of Open Access Journals (Sweden)

    Prerana Jha

    2017-11-01

    Full Text Available KLF2 (Kruppel-like factor 2 is a member of the zinc finger transcription factor family, which critically regulates embryonic lung development, function of endothelial cells and maintenance of quiescence in T-cells and monocytes. It is expressed in naïve T-cells and monocytes, however its level of expression decreases during activation and differentiation. KLF2 also plays critical regulatory role in various inflammatory diseases and their pathogenesis. Nuclear factor-kappaB (NF-κB is an important inducer of inflammation and the inflammation is mediated through the transcription of several proinflammatory cytokines, chemokines and adhesion molecules. So, both transcriptional factors KLF2 and NF-κB are being associated with the similar cellular functions and their maintenance. It was shown that KLF2 regulates most of the NF-κB-mediated activities. In this review, we focused on emphasizing the involvement of KLF2 in health and disease states and how they interact with transcriptional master regulator NF-κB.

  11. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators

    Science.gov (United States)

    Badalyan, Artavazd; Stahl, Shannon S.

    2016-07-01

    The electrochemical oxidation of alcohols is a major focus of energy and chemical conversion efforts, with potential applications ranging from fuel cells to biomass utilization and fine-chemical synthesis. Small-molecule electrocatalysts for processes of this type are promising targets for further development, as demonstrated by recent advances in nickel catalysts for electrochemical production and oxidation of hydrogen. Complexes with tethered amines that resemble the active site of hydrogenases have been shown both to catalyse hydrogen production (from protons and electrons) with rates far exceeding those of such enzymes and to mediate reversible electrocatalytic hydrogen production and oxidation with enzyme-like performance. Progress in electrocatalytic alcohol oxidation has been more modest. Nickel complexes similar to those used for hydrogen oxidation have been shown to mediate efficient electrochemical oxidation of benzyl alcohol, with a turnover frequency of 2.1 per second. These compounds exhibit poor reactivity with ethanol and methanol, however. Organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidine N-oxyl), are the most widely studied electrocatalysts for alcohol oxidation. These catalysts exhibit good activity (1-2 turnovers per second) with a wide range of alcohols and have great promise for electro-organic synthesis. Their use in energy-conversion applications, however, is limited by the high electrode potentials required to generate the reactive oxoammonium species. Here we report (2,2‧-bipyridine)Cu/nitroxyl co-catalyst systems for electrochemical alcohol oxidation that proceed with much faster rates, while operating at an electrode potential a half-volt lower than that used for the TEMPO-only process. The (2,2‧-bipyridine)Cu(II) and TEMPO redox partners exhibit cooperative reactivity and exploit the low-potential, proton-coupled TEMPO/TEMPOH redox process rather than the high-potential TEMPO/TEMPO+ process. The results show how

  12. Mediation Analysis: A Practitioner's Guide.

    Science.gov (United States)

    VanderWeele, Tyler J

    2016-01-01

    This article provides an overview of recent developments in mediation analysis, that is, analyses used to assess the relative magnitude of different pathways and mechanisms by which an exposure may affect an outcome. Traditional approaches to mediation in the biomedical and social sciences are described. Attention is given to the confounding assumptions required for a causal interpretation of direct and indirect effect estimates. Methods from the causal inference literature to conduct mediation in the presence of exposure-mediator interactions, binary outcomes, binary mediators, and case-control study designs are presented. Sensitivity analysis techniques for unmeasured confounding and measurement error are introduced. Discussion is given to extensions to time-to-event outcomes and multiple mediators. Further flexible modeling strategies arising from the precise counterfactual definitions of direct and indirect effects are also described. The focus throughout is on methodology that is easily implementable in practice across a broad range of potential applications.

  13. NCOA5 is correlated with progression and prognosis in luminal breast cancer

    International Nuclear Information System (INIS)

    Ye, Xiao-He; Huang, Du-Ping; Luo, Rong-Cheng

    2017-01-01

    Nuclear receptor coactivator 5 (NCOA5) is known to modulate ERα-mediated transcription and has been found to be involved in the progression of several malignancies. However, the potential correlation between NCOA5 and clinical outcome in patients with luminal breast cancer remains unknown. In the present study, we demonstrated that NCOA5 was significantly up-regulated in luminal breast cancer tissues compared with adjacent non-cancerous tissues both in validated cohort and TCGA cohort. Moreover, Kaplan-Meier analysis indicated that patients with high NOCA5 expression had significantly lower overall survival (P = 0.021). Cox regression analysis indicated that the high NOCA5 expression was independent high risk factor as well as old age (>60) and HER-2 expression (P = 0.039; P = 0.003; P = 0.005; respectively). This study provides new insights and evidences that NOCA5 over-expression was significantly correlated with progression and prognosis in luminal breast cancer. However, the precise cellular mechanisms for NOCA5 in luminal breast cancer need to be further explored. - Highlights: • NCOA5 is significantly over-expressed in human luminal breast cancer tissues. • NOCA5 was involved in the progression of luminal breast cancer. • NCOA5 can predict the progression of luminal breast cancer.

  14. ATM and SIRT6/SNF2H Mediate Transient H2AX Stabilization When DSBs Form by Blocking HUWE1 to Allow Efficient γH2AX Foci Formation

    Directory of Open Access Journals (Sweden)

    Yuko Atsumi

    2015-12-01

    Full Text Available In response to DNA double-strand breaks (DSBs, H2AX is rapidly phosphorylated at Ser139 to promote DSB repair. Here we show that H2AX is rapidly stabilized in response to DSBs to efficiently generate γH2AX foci. This mechanism operated even in quiescent cells that barely expressed H2AX. H2AX stabilization resulted from the inhibition of proteasome-mediated degradation. Synthesized H2AX ordinarily underwent degradation through poly-ubiquitination mediated by the E3 ligase HUWE1; however, H2AX ubiquitination was transiently halted upon DSB formation. Such rapid H2AX stabilization by DSBs was associated with chromatin incorporation of H2AX and halting of its poly-ubiquitination mediated by the ATM kinase, the sirtuin protein SIRT6, and the chromatin remodeler SNF2H. H2AX Ser139, the ATM phosphorylation site, was essential for H2AX stabilization upon DSB formation. Our results reveal a pathway controlled by ATM, SIRT6, and SNF2H to block HUWE1, which stabilizes H2AX and induces its incorporation into chromatin only when cells are damaged.

  15. The eukaryotic translation elongation factor eEF1A2 induces neoplastic properties and mediates tumorigenic effects of ZNF217 in precursor cells of human ovarian carcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu; Wong, Nicholas; Guan, Yinghui; Salamanca, Clara M.; Cheng, Jung Chien; Lee, Jonathan M.; Gray, Joe W.; Auersperg, Nelly

    2008-04-25

    Ovarian epithelial carcinomas (OEC) frequently exhibit amplifications at the 20q13 locus which is the site of several oncogenes, including the eukaryotic elongation factor EEF1A2 and the transcription factor ZNF217. We reported previously that overexpressed ZNF217 induces neoplastic characteristics in precursor cells of OEC. Unexpectedly, ZNF217, which is a transcriptional repressor, enhanced expression of eEF1A2. In this study, array comparative genomic hybridization, single nucleotide polymorphism and Affymetrix analysis of ZNF217-overexpressing cell lines confirmed consistently increased expression of eEF1A2 but not of other oncogenes, and revealed early changes in EEF1A2 gene copy numbers and increased expression at crisis during immortalization. We defined the influence of eEF1A2 overexpression on immortalized ovarian surface epithelial cells, and investigated interrelationships between effects of ZNF217 and eEF1A2 on cellular phenotypes. Lentivirally induced eEF1A2 overexpression caused delayed crisis, apoptosis resistance and increases in serum-independence, saturation densities, and anchorage independence. siRNA to eEF1A2 reversed apoptosis resistance and reduced anchorage independence in eEF1A2-overexpressing lines. Remarkably, siRNA to eEF1A2 was equally efficient in inhibiting both anchorage independence and resistance to apoptosis conferred by ZNF217 overexpression. Our data define neoplastic properties that are caused by eEF1A2 in nontumorigenic ovarian cancer precursor cells, and suggest that eEF1A2 plays a role in mediating ZNF217-induced neoplastic progression.

  16. Mediator Variables in Headache Research: Methodological Critique and Exemplar Using Self-Efficacy as a Mediator of the Relationship Between Headache Severity and Disability.

    Science.gov (United States)

    Peck, Kelly R; Smitherman, Todd A

    2015-09-01

    Despite advances in headache medicine, there remains little research on process-related variables that mediate relations between headache and outcomes, as well as limited dissemination of optimal statistical methodology for conducting mediation analyses. The present paper thus aims to promote and demonstrate a contemporary approach to mediation analysis as applied to headache. An overview of a contemporary path-analytic approach to mediation analysis is presented, with an empirical exemplar for illustrative purposes. In the exemplar, headache management self-efficacy (HMSE) was proposed as a mediator between headache severity and disability. The sample included 907 young adults (M age = 19.03 [SD = 2.26]; 70.8% female) with primary headache. Direct and indirect effects of headache severity on headache disability through HMSE were assessed using the espoused methods. Pain severity was positively associated with headache disability (β = 2.91, 95% confidence interval [CI; 2.62, 3.19]) and negatively associated with HMSE (β = -3.50, 95% CI [-4.24, -2.76]); HMSE was negatively associated with headache disability (β = 0.07, 95% CI [-0.09, -0.04]). A positive indirect effect of pain severity on disability through HMSE was identified (point estimate = 0.24, 95% CI [0.14, 0.34]); thus, self-efficacy mediated the association between pain severity and disability. The proposed mediation model accounted for 38% of total variance in disability (P headache literature. In one exemplar application, self-efficacy partially accounted for the disability resulting from headache. We advocate for increased attention to intervening variables in headache via dissemination of contemporary mediation analyses. © 2015 American Headache Society.

  17. Pain and functional impairment as mediators of the link between medical symptoms and depression in type 2 diabetes.

    Science.gov (United States)

    Sacco, William P; Bykowski, Cathy A; Mayhew, Laura L

    2013-03-01

    Among people with diabetes, depression is more common and is associated with greater morbidity and mortality. A better understanding of mechanisms underlying the link between poor health and depression is needed. Pain and functional impairment may account for the effect of poor health on depression in diabetes. The purpose of the study was to examine whether pain and functional impairment mediate the association between diabetes-related medical symptoms and depression in type 2 diabetes. Adults diagnosed with type 2 diabetes (N = 77) completed the following measures: Patient Health Questionnaire (PHQ), Diabetes Symptom Checklist (DSC), and Medical Outcomes Study 12-item Short-Form Health Survey (SF-12). Body mass index (BMI) was computed using height and weight data from medical records. Mediation and linear regression analyses were conducted. Pain and functional impairment made significant, independent contributions to depression. Functional impairment mediated the link between diabetes-related medical symptoms and depression. Pain mediated the association between higher BMI and depression. Pain and functional impairment appear to play important, independent roles in depression in type 2 diabetes. Mediation analyses suggest the following: 1. diabetes-related medical problems increase functional impairment, which in turn leads to greater depression; and 2. the burden of carrying greater body mass (higher BMI) increases pain, which leads to increased depression.

  18. K-Cl Cotransporter 2mediated Cl− Extrusion Determines Developmental Stage–dependent Impact of Propofol Anesthesia on Dendritic Spines

    KAUST Repository

    Puskarjov, Martin; Fiumelli, Hubert; Briner, Adrian; Bodogan, Timea; Demeter, Kornel; Lacoh, Claudia Marvine; Mavrovic, Martina; Blaesse, Peter; Kaila, Kai; Vutskits, Laszlo

    2017-01-01

    Background: General anesthetics potentiating γ-aminobutyric acid (GABA)-mediated signaling are known to induce a persistent decrement in excitatory synapse number in the cerebral cortex when applied during early postnatal development, while an opposite action is produced at later stages. Here, the authors test the hypothesis that the effect of general anesthetics on synaptogenesis depends upon the efficacy of GABA receptor type A (GABA A)-mediated inhibition controlled by the developmental up-regulation of the potassium-chloride (K-Cl) cotransporter 2 (KCC2). Methods: In utero electroporation of KCC2 was used to prematurely increase the efficacy of (GABA A)-mediated inhibition in layer 2/3 pyramidal neurons in the immature rat somatosensory cortex. Parallel experiments with expression of the inward-rectifier potassium channel Kir2.1 were done to reduce intrinsic neuronal excitability. The effects of these genetic manipulations (n = 3 to 4 animals per experimental group) were evaluated using iontophoretic injection of Lucifer Yellow (n = 8 to 12 cells per animal). The total number of spines analyzed per group ranged between 907 and 3,371. Results: The authors found a robust effect of the developmental up-regulation of KCC2-mediated Cl - transport on the age-dependent action of propofol on dendritic spines. Premature expression of KCC2, unlike expression of a transport-inactive KCC2 variant, prevented a propofol-induced decrease in spine density. In line with a reduction in neuronal excitability, the above result was qualitatively replicated by overexpression of Kir2.1. Conclusions: The KCC2-dependent developmental increase in the efficacy of GABA A -mediated inhibition is a major determinant of the age-dependent actions of propofol on dendritic spinogenesis.

  19. K-Cl Cotransporter 2mediated Cl− Extrusion Determines Developmental Stage–dependent Impact of Propofol Anesthesia on Dendritic Spines

    KAUST Repository

    Puskarjov, Martin

    2017-03-16

    Background: General anesthetics potentiating γ-aminobutyric acid (GABA)-mediated signaling are known to induce a persistent decrement in excitatory synapse number in the cerebral cortex when applied during early postnatal development, while an opposite action is produced at later stages. Here, the authors test the hypothesis that the effect of general anesthetics on synaptogenesis depends upon the efficacy of GABA receptor type A (GABA A)-mediated inhibition controlled by the developmental up-regulation of the potassium-chloride (K-Cl) cotransporter 2 (KCC2). Methods: In utero electroporation of KCC2 was used to prematurely increase the efficacy of (GABA A)-mediated inhibition in layer 2/3 pyramidal neurons in the immature rat somatosensory cortex. Parallel experiments with expression of the inward-rectifier potassium channel Kir2.1 were done to reduce intrinsic neuronal excitability. The effects of these genetic manipulations (n = 3 to 4 animals per experimental group) were evaluated using iontophoretic injection of Lucifer Yellow (n = 8 to 12 cells per animal). The total number of spines analyzed per group ranged between 907 and 3,371. Results: The authors found a robust effect of the developmental up-regulation of KCC2-mediated Cl - transport on the age-dependent action of propofol on dendritic spines. Premature expression of KCC2, unlike expression of a transport-inactive KCC2 variant, prevented a propofol-induced decrease in spine density. In line with a reduction in neuronal excitability, the above result was qualitatively replicated by overexpression of Kir2.1. Conclusions: The KCC2-dependent developmental increase in the efficacy of GABA A -mediated inhibition is a major determinant of the age-dependent actions of propofol on dendritic spinogenesis.

  20. Ihh enhances differentiation of CFK-2 chondrocytic cells and antagonizes PTHrP-mediated activation of PKA.

    Science.gov (United States)

    Deckelbaum, Ron A; Chan, George; Miao, Dengshun; Goltzman, David; Karaplis, Andrew C

    2002-07-15

    Indian Hedgehog (Ihh), a member of the hedgehog (HH) family of secreted morphogens, and parathyroid hormone-related peptide (PTHrP) are key regulators of cartilage cell (chondrocyte) differentiation. We have investigated, in vitro, the actions of HH signalling and its possible interplay with PTHrP using rat CFK-2 chondrocytic cells. Markers of chondrocyte differentiation [alkaline phosphatase (ALP) activity, and type II (Col2a1) and type X collagen (Col10a1) expression] were enhanced by overexpression of Ihh or its N-terminal domain (N-Ihh), effects mimicked by exogenous administration of recombinant N-terminal HH peptide. Moreover, a missense mutation mapping to the N-terminal domain of Ihh (W160G) reduces the capacity of N-Ihh to induce differentiation. Prolonged exposure of CFK-2 cells to exogenous N-Shh (5x10(-9) M) in the presence of PTHrP (10(-8) M) or forskolin (10(-7) M) resulted in perturbation of HH-mediated differentiation. In addition, overexpression of a constitutively active form of the PTHrP receptor (PTHR1 H223R) inhibited Ihh-mediated differentiation, implicating activation of protein kinase A (PKA) by PTHR1 as a probable mediator of the antagonistic effects of PTHrP. Conversely, overexpression of Ihh/N-Ihh or exogenous treatment with N-Shh led to dampening of PTHrP-mediated activation of PKA. Taken together, our data suggest that Ihh harbors the capacity to induce rather than inhibit chondrogenic differentiation, that PTHrP antagonizes HH-mediated differentiation through a PKA-dependent mechanism and that HH signalling, in turn, modulates PTHrP action through functional inhibition of signalling by PTHR1 to PKA.

  1. Autophagy-dependent secretion: contribution to tumor progression

    Directory of Open Access Journals (Sweden)

    Tom Keulers

    2016-11-01

    Full Text Available Autophagy is best known as a lysosomal degradation and recycling pathway to maintain cellular homeostasis. During autophagy, cytoplasmic content is recognized and packed in autophagic vacuoles, or autophagosomes, and targeted for degradation. However, during the last years, it has become evident that the role of autophagy is not restricted to degradation alone but also mediates unconventional forms of secretion. Furthermore, cells with defects in autophagy apparently are able to reroute their cargo, like mitochondria, to the extracellular environment; effects that contribute to an array of pathologies. In this review we discuss the current knowledge of the physiological roles of autophagy-dependent secretion, i.e. the effect on inflammation and insulin/ hormone secretion. Finally, we focus on the effects of autophagy-dependent secretion on the tumour microenvironment and tumour progression. The autophagy mediated secreted factors may stimulate cellular proliferation via auto- and paracrine signaling. The autophagy mediated release of immune modulating proteins change the immunosuppresive tumor microenvironment and may promote an invasive phenotype. These effects may be either direct or indirect through facilitating formation of the mobilized vesicle, aid in anterograde trafficking or alterations in homeostasis and/or autonomous cell signaling.

  2. Astrocytes protect neurons against methylmercury via ATP/P2Y(1) receptor-mediated pathways in astrocytes.

    Science.gov (United States)

    Noguchi, Yusuke; Shinozaki, Youichi; Fujishita, Kayoko; Shibata, Keisuke; Imura, Yoshio; Morizawa, Yosuke; Gachet, Christian; Koizumi, Schuichi

    2013-01-01

    Methylmercury (MeHg) is a well known environmental pollutant that induces serious neuronal damage. Although MeHg readily crosses the blood-brain barrier, and should affect both neurons and glial cells, how it affects glia or neuron-to-glia interactions has received only limited attention. Here, we report that MeHg triggers ATP/P2Y1 receptor signals in astrocytes, thereby protecting neurons against MeHg via interleukin-6 (IL-6)-mediated pathways. MeHg increased several mRNAs in astrocytes, among which IL-6 was the highest. For this, ATP/P2Y1 receptor-mediated mechanisms were required because the IL-6 production was (i) inhibited by a P2Y1 receptor antagonist, MRS2179, (ii) abolished in astrocytes obtained from P2Y1 receptor-knockout mice, and (iii) mimicked by exogenously applied ATP. In addition, (iv) MeHg released ATP by exocytosis from astrocytes. As for the intracellular mechanisms responsible for IL-6 production, p38 MAP kinase was involved. MeHg-treated astrocyte-conditioned medium (ACM) showed neuro-protective effects against MeHg, which was blocked by anti-IL-6 antibody and was mimicked by the application of recombinant IL-6. As for the mechanism of neuro-protection by IL-6, an adenosine A1 receptor-mediated pathway in neurons seems to be involved. Taken together, when astrocytes sense MeHg, they release ATP that autostimulates P2Y1 receptors to upregulate IL-6, thereby leading to A1 receptor-mediated neuro-protection against MeHg.

  3. RhoA determines disease progression by controlling neutrophil motility and restricting hyperresponsiveness

    DEFF Research Database (Denmark)

    Jennings, Richard T; Strengert, Monika; Hayes, Patti

    2014-01-01

    Neutrophil responses are central to host protection and inflammation. Neutrophil activation follows a two-step process where priming amplifies responses to activating stimuli. Priming is essential for life span extension, chemotaxis and respiratory burst activity. Here we show that the cytoskeletal...... organizer RhoA suppresses neutrophil priming via formins. Premature granule exocytosis in Rho-deficient neutrophils activated numerous signaling pathways and amplified superoxide generation. Deletion of Rho altered front-to-back coordination by simultaneously increasing uropod elongation, leading edge...... neutrophils exacerbated LPS-mediated lung injury, deleting Rho in innate immune cells was highly protective in Influenza A virus infection. Hence, Rho is a key regulator of disease progression by maintaining neutrophil quiescence and suppressing hyperresponsiveness....

  4. A dominant mutation in mediator of paramutation2, one of three second-largest subunits of a plant-specific RNA polymerase, disrupts multiple siRNA silencing processes.

    Science.gov (United States)

    Sidorenko, Lyudmila; Dorweiler, Jane E; Cigan, A Mark; Arteaga-Vazquez, Mario; Vyas, Meenal; Kermicle, Jerry; Jurcin, Diane; Brzeski, Jan; Cai, Yu; Chandler, Vicki L

    2009-11-01

    Paramutation involves homologous sequence communication that leads to meiotically heritable transcriptional silencing. We demonstrate that mop2 (mediator of paramutation2), which alters paramutation at multiple loci, encodes a gene similar to Arabidopsis NRPD2/E2, the second-largest subunit of plant-specific RNA polymerases IV and V. In Arabidopsis, Pol-IV and Pol-V play major roles in RNA-mediated silencing and a single second-largest subunit is shared between Pol-IV and Pol-V. Maize encodes three second-largest subunit genes: all three genes potentially encode full length proteins with highly conserved polymerase domains, and each are expressed in multiple overlapping tissues. The isolation of a recessive paramutation mutation in mop2 from a forward genetic screen suggests limited or no functional redundancy of these three genes. Potential alternative Pol-IV/Pol-V-like complexes could provide maize with a greater diversification of RNA-mediated transcriptional silencing machinery relative to Arabidopsis. Mop2-1 disrupts paramutation at multiple loci when heterozygous, whereas previously silenced alleles are only up-regulated when Mop2-1 is homozygous. The dramatic reduction in b1 tandem repeat siRNAs, but no disruption of silencing in Mop2-1 heterozygotes, suggests the major role for tandem repeat siRNAs is not to maintain silencing. Instead, we hypothesize the tandem repeat siRNAs mediate the establishment of the heritable silent state-a process fully disrupted in Mop2-1 heterozygotes. The dominant Mop2-1 mutation, which has a single nucleotide change in a domain highly conserved among all polymerases (E. coli to eukaryotes), disrupts both siRNA biogenesis (Pol-IV-like) and potentially processes downstream (Pol-V-like). These results suggest either the wild-type protein is a subunit in both complexes or the dominant mutant protein disrupts both complexes. Dominant mutations in the same domain in E. coli RNA polymerase suggest a model for Mop2-1 dominance

  5. Phosphatase PP2A and microtubule-mediated pulling forces disassemble centrosomes during mitotic exit

    Directory of Open Access Journals (Sweden)

    Stephen J. Enos

    2018-01-01

    Full Text Available Centrosomes are microtubule-nucleating organelles that facilitate chromosome segregation and cell division in metazoans. Centrosomes comprise centrioles that organize a micron-scale mass of protein called pericentriolar material (PCM from which microtubules nucleate. During each cell cycle, PCM accumulates around centrioles through phosphorylation-mediated assembly of PCM scaffold proteins. During mitotic exit, PCM swiftly disassembles by an unknown mechanism. Here, we used Caenorhabditis elegans embryos to determine the mechanism and importance of PCM disassembly in dividing cells. We found that the phosphatase PP2A and its regulatory subunit SUR-6 (PP2ASUR-6, together with cortically directed microtubule pulling forces, actively disassemble PCM. In embryos depleted of these activities, ∼25% of PCM persisted from one cell cycle into the next. Purified PP2ASUR-6 could dephosphorylate the major PCM scaffold protein SPD-5 in vitro. Our data suggest that PCM disassembly occurs through a combination of dephosphorylation of PCM components and force-driven fragmentation of the PCM scaffold.

  6. Non-pulmonary vein mediated atrial fibrillation: A novel sub-phenotype.

    Directory of Open Access Journals (Sweden)

    Maureen Farrell

    Full Text Available Atrial fibrillation (AF is a mechanistically heterogeneous disorder, and the ability to identify sub-phenotypes ("endophenotypes" of AF would assist in the delivery of personalized medicine. We used the clinical response to pulmonary vein isolation (PVI to identify a sub-group of patients with non-PV mediated AF and sought to define the clinical associations.Subjects enrolled in the Vanderbilt AF Ablation Registry who underwent a repeat AF ablation due to arrhythmia recurrence were analyzed on the basis of PV reconnection. Subjects who had no PV reconnection were defined as "non-PV mediated AF". A comparison group of subjects were identified who had AF that was treated with PVI-only and experienced no arrhythmia recurrence >12 months. They were considered a group enriched for "PV-mediated AF". Univariate and multivariable binary logistic regression analysis was performed to investigate clinical associations between the PV and non-PV mediated AF groups.Two hundred and twenty nine subjects underwent repeat AF ablation and thirty three (14% had no PV reconnection. They were compared with 91 subjects identified as having PV-mediated AF. Subjects with non-PV mediated AF were older (64 years [IQR 60,71] vs. 60 [52,67], P = 0.01, more likely to have non-paroxysmal AF (82% [N = 27] vs. 35% [N = 32], P<0.001, and had a larger left atrium (LA (4.2cm [3.6,4.8] vs. 4.0 [3.3,4.4], P = 0.04. In univariate analysis, age (per decade: OR 1.56 [95% CI: 1.04 to 2.33], P = 0.03, LA size (per cm: OR 1.8 [1.06 to 3.21], P = 0.03 and non-paroxysmal AF (OR 8.3 [3.10 to 22.19], P<0.001 were all significantly associated with non-PV mediated AF. However, in multivariable analysis only non-paroxysmal AF was independently associated with non-PV mediated AF (OR 7.47 [95% CI 2.62 to 21.29], P<0.001, when adjusted for age (per decade: OR 1.25 [0.81 to 1.94], P = 0.31, male gender (OR 0.48 [0.18 to 1.28], P = 0.14, and LA size (per 1cm: 1.24 [0.65 to 2.33], P = 0.52.Non

  7. Designing business rules for mediation : a process towards agent-mediated business coordination

    NARCIS (Netherlands)

    Zhao, Z.; Dignum, M.V.; Dignum, F.P.M.

    2008-01-01

    Business process integration is a very active research area, in which mediation is one of the fundamental architectural choices. Mediators have difficulties to design mediation services that meet the requirements of the different stakeholders. Business rules play an important role in the

  8. Localization of aPKC lambda/iota and its interacting protein, Lgl2, is significantly associated with lung adenocarcinoma progression.

    Science.gov (United States)

    Imamura, Naoko; Horikoshi, Yosuke; Matsuzaki, Tomohiko; Toriumi, Kentaro; Kitatani, Kanae; Ogura, Go; Masuda, Ryota; Nakamura, Naoya; Takekoshi, Susumu; Iwazaki, Masayuki

    2013-12-20

    Atypical protein kinase C lambda/iota (aPKC λ/ι) is expressed in several human cancers; however, the correlation between aPKC λ/ι localization and cancer progression in human lung adenocarcinoma (LAC) remains to be clarified. We found that patients with a high level of aPKC λ/ι expression in LAC had significantly shorter overall survival than those with a low level of aPKC λ/ι expression. In addition, localization of aPKC λ/ι in the apical membrane or at the cell-cell contact was associated with both lymphatic invasion and metastasis. The intercellular adhesion molecule, E-cadherin, was decreased in LACs with highly expressed aPKC λ/ι at the invasion site of tumor cells. This result suggested that the expression levels of aPKC λ/ι and E-cadherin reflect the progression of LAC. On double-immunohistochemical analysis, aPKC λ/ι and Lgl2, a protein that interacts with aPKC λ/ι, were co-localized within LACs. Furthermore, we found that Lgl2 bound the aPKC λ/ι-Par6 complex in tumor tissue by immune-cosedimentation analysis. Apical membrane localization of Lgl2 was correlated with lymphatic invasion and lymph node metastasis. These results thus indicate that aPKC λ/ι expression is altered upon the progression of LAC. This is also the first evidence to show aPKC λ/ι overexpression in LAC and demonstrates that aPKC λ/ι localization at the apical membrane or cell-cell contact is associated with lymphatic invasion and metastasis of the tumor.

  9. A Critical Role of TET1/2 Proteins in Cell-Cycle Progression of Trophoblast Stem Cells

    Directory of Open Access Journals (Sweden)

    Stephanie Chrysanthou

    2018-04-01

    Full Text Available Summary: The ten-eleven translocation (TET proteins are well known for their role in maintaining naive pluripotency of embryonic stem cells. Here, we demonstrate that, jointly, TET1 and TET2 also safeguard the self-renewal potential of trophoblast stem cells (TSCs and have partially redundant roles in maintaining the epithelial integrity of TSCs. For the more abundantly expressed TET1, we show that this is achieved by binding to critical epithelial genes, notably E-cadherin, which becomes hyper-methylated and downregulated in the absence of TET1. The epithelial-to-mesenchymal transition phenotype of mutant TSCs is accompanied by centrosome duplication and separation defects. Moreover, we identify a role of TET1 in maintaining cyclin B1 stability, thereby acting as facilitator of mitotic cell-cycle progression. As a result, Tet1/2 mutant TSCs are prone to undergo endoreduplicative cell cycles leading to the formation of polyploid trophoblast giant cells. Taken together, our data reveal essential functions of TET proteins in the trophoblast lineage. : TET proteins are well known for their role in pluripotency. Here, Hemberger and colleagues show that TET1 and TET2 are also critical for maintaining the epithelial integrity of trophoblast stem cells. TET1/2 ensure mitotic cell-cycle progression by stabilizing cyclin B1 and by regulating centrosome organization. These insights reveal the importance of TET proteins beyond their role in epigenome remodeling. Keywords: TET proteins, trophoblast stem cells, cell cycle, endoreduplication, self-renewal, mitosis, trophoblast giant cells, differentiation

  10. Surrogate marker analysis in cancer clinical trials through time-to-event mediation techniques.

    Science.gov (United States)

    Vandenberghe, Sjouke; Duchateau, Luc; Slaets, Leen; Bogaerts, Jan; Vansteelandt, Stijn

    2017-01-01

    The meta-analytic approach is the gold standard for validation of surrogate markers, but has the drawback of requiring data from several trials. We refine modern mediation analysis techniques for time-to-event endpoints and apply them to investigate whether pathological complete response can be used as a surrogate marker for disease-free survival in the EORTC 10994/BIG 1-00 randomised phase 3 trial in which locally advanced breast cancer patients were randomised to either taxane or anthracycline based neoadjuvant chemotherapy. In the mediation analysis, the treatment effect is decomposed into an indirect effect via pathological complete response and the remaining direct effect. It shows that only 4.2% of the treatment effect on disease-free survival after five years is mediated by the treatment effect on pathological complete response. There is thus no evidence from our analysis that pathological complete response is a valuable surrogate marker to evaluate the effect of taxane versus anthracycline based chemotherapies on progression free survival of locally advanced breast cancer patients. The proposed analysis strategy is broadly applicable to mediation analyses of time-to-event endpoints, is easy to apply and outperforms existing strategies in terms of precision as well as robustness against model misspecification.

  11. miR2Pathway: A Novel Analytical Method to Discover MicroRNA-mediated Dysregulated Pathways Involved in Hepatocellular Carcinoma.

    Science.gov (United States)

    Li, Chaoxing; Dinu, Valentin

    2018-03-22

    MicroRNAs (miRNAs) are small, non-coding RNAs involved in the regulation of gene expression at a post-transcriptional level. Recent studies have shown miRNAs as key regulators of a variety of biological processes, such as proliferation, differentiation, apoptosis, metabolism, etc. Aberrantly expressed miRNAs influence individual gene expression level, but rewired miRNA-mRNA connections can influence the activity of biological pathways. Here, we define rewired miRNA-mRNA connections as the differential (rewiring) effects on the activity of biological pathways between hepatocellular carcinoma (HCC) and normal phenotypes. Our work presented here uses a PageRank-based approach to measure the degree of miRNA-mediated dysregulation of biological pathways between HCC and normal samples based on rewired miRNA-mRNA connections. In our study, we regard the degree of miRNA-mediated dysregulation of biological pathways as disease risk of biological pathways. Therefore, we propose a new method, miR2Pathway, to measure and rank the degree of miRNA-mediated dysregulation of biological pathways by measuring the total differential influence of miRNAs on the activity of pathways between HCC and normal states. miR2Pathway proposed here systematically shows the first evidence for a mechanism of biological pathways being dysregulated by rewired miRNA-mRNA connections, and provides new insight into exploring mechanisms behind HCC. Thus, miR2Pathway is a novel method to identify and rank miRNA-dysregulated pathways in HCC. Copyright © 2018. Published by Elsevier Inc.

  12. Social-ecological resources as mediators of two-year diet and physical activity outcomes in type 2 diabetes patients.

    Science.gov (United States)

    Barrera, Manuel; Strycker, Lisa A; Mackinnon, David P; Toobert, Deborah J

    2008-03-01

    In behavioral research directed at the treatment of type 2 diabetes, the challenge is to understand how interventions might facilitate long-term lifestyle changes. The Mediterranean Lifestyle Program (MLP) is an intervention for postmenopausal women diagnosed with type 2 diabetes that has shown promising effects on outcomes that include increased physical activity and reduced fat consumption. The present study extended previous findings by evaluating diet-specific and activity-specific social-ecological resources as possible mediators of intervention effects over a 2-year period. Percent calories from saturated fat and caloric expenditure per week in all physical activities were assessed with self-report questionnaires. The MLP was successful in increasing participants' use of diet-specific and activity-specific family/friend and neighborhood resources. There was some evidence that changes in those resources mediated intervention effects on saturated fat consumption and physical activity outcomes. The experimental manipulation of mediators and the demonstrated mediational effects provided some support for the conclusion that social-ecological resources can contribute to improvements in healthful lifestyles for women with type 2 diabetes. (c) 2008 APA, all rights reserved

  13. The combination of maltose-binding protein and BCG-induced Th1 activation is involved in TLR2/9-mediated upregulation of MyD88-TRAF6 and TLR4-mediated downregulation of TRIF-TRAF3.

    Science.gov (United States)

    Liu, Guomu; Zhai, Xiaoyu; Zhou, Hongyue; Yang, Xiaoyu; Zhang, Nannan; Tai, Guixiang; Ni, Weihua

    2018-03-01

    Our previous study demonstrated that maltose-binding protein (MBP) activated Th1 through the TLR2-mediated MyD88-dependent pathway and the TLR4-mediated TRIF-dependent pathway. The combination of MBP and BCG synergistically induced Th1 activation, and the TLR2/9-mediated MyD88-dependent pathway is involved in this process. To further explore this mechanism, we stimulated purified mouse CD4 + T cells with MBP and BCG in vitro. The results demonstrated that MBP combined with BCG synergistically increased IFN-γ production and TLR2/4/9 expression, suggesting the involvement of TLR2/4/9 in the combination-induced Th1 activation. Next, TLRs 2/4/9 were blocked to analyze the effects of TLRs on Th1 activation. The results demonstrated that MBP induced a low level of Th1 activation by upregulating TLR2-mediated MyD88-TRAF6 and TLR4-mediated TRIF-TRAF3 expression, whereas MBP combined with BCG induced synergistic Th1 activation, which was not only triggered by strong upregulation of TLR2/9-mediated MyD88-TRAF6 expression but also by shifting TLR4-mediated TRIF-TRAF3 into the TRIF-TRAF6 pathway. Moreover, we observed that a TLR4 antibody upregulated MyD88 expression and a TLR9 inhibitor downregulated TRIF expression, indicating that there was cross-talk between TLRs 2/4/9 in MBP combined with BCG-induced Th1 activation. Our findings may expand the knowledge regarding TLR cross-talk involved in regulating the Th1 response. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. 38 CFR 18.543 - Mediation.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Mediation. 18.543 Section... Enforcement Procedures § 18.543 Mediation. (a) Referral of complaints for mediation. VA will refer to the Federal Mediation and Conciliation Service all complaints that: (1) Fall within the jurisdiction of the...

  15. O2-mediated oxidation of ferrous nitrosylated human serum heme-albumin is limited by nitrogen monoxide dissociation

    International Nuclear Information System (INIS)

    Ascenzi, Paolo; Gullotta, Francesca; Gioia, Magda; Coletta, Massimo; Fasano, Mauro

    2011-01-01

    Research highlights: → Human serum heme-albumin displays globin-like properties. → O 2 -mediated oxidation of ferrous nitrosylated human serum heme-albumin. → Allosteric modulation of human serum heme-albumin reactivity. → Rifampicin is an allosteric effector of human serum heme-albumin. → Human serum heme-albumin is a ROS and NOS scavenger. -- Abstract: Human serum heme-albumin (HSA-heme-Fe) displays globin-like properties. Here, kinetics of O 2 -mediated oxidation of ferrous nitrosylated HSA-heme-Fe (HSA-heme-Fe(II)-NO) is reported. Values of the first-order rate constants for O 2 -mediated oxidation of HSA-heme-Fe(II)-NO (i.e., for ferric HSA-heme-Fe formation) and for NO dissociation from HSA-heme-Fe(II)-NO (i.e., for NO replacement by CO) are k = 9.8 x 10 -5 and 8.3 x 10 -4 s -1 , and h = 1.3 x 10 -4 and 8.5 x 10 -4 s -1 , in the absence and presence of rifampicin, respectively, at pH = 7.0 and T = 20.0 o C. The coincidence of values of k and h indicates that NO dissociation represents the rate limiting step of O 2 -mediated oxidation of HSA-heme-Fe(II)-NO. Mixing HSA-heme-Fe(II)-NO with O 2 does not lead to the formation of the transient adduct(s), but leads to the final ferric HSA-heme-Fe derivative. These results reflect the fast O 2 -mediated oxidation of ferrous HSA-heme-Fe and highlight the role of drugs in modulating allosterically the heme-Fe-atom reactivity.

  16. TLR4, NOD1 and NOD2 mediate immune recognition of putative newly identified periodontal pathogens.

    Science.gov (United States)

    Marchesan, Julie; Jiao, Yizu; Schaff, Riley A; Hao, Jie; Morelli, Thiago; Kinney, Janet S; Gerow, Elizabeth; Sheridan, Rachel; Rodrigues, Vinicius; Paster, Bruce J; Inohara, Naohiro; Giannobile, William V

    2016-06-01

    Periodontitis is a polymicrobial inflammatory disease that results from the interaction between the oral microbiota and the host immunity. Although the innate immune response is important for disease initiation and progression, the innate immune receptors that recognize both classical and putative periodontal pathogens that elicit an immune response have not been elucidated. By using the Human Oral Microbe Identification Microarray (HOMIM), we identified multiple predominant oral bacterial species in human plaque biofilm that strongly associate with severe periodontitis. Ten of the identified species were evaluated in greater depth, six being classical pathogens and four putative novel pathogens. Using human peripheral blood monocytes (HPBM) and murine bone-marrow-derived macrophages (BMDM) from wild-type (WT) and Toll-like receptor (TLR)-specific and MyD88 knockouts (KOs), we demonstrated that heat-killed Campylobacter concisus, Campylobacter rectus, Selenomonas infelix, Porphyromonas endodontalis, Porphyromonas gingivalis, and Tannerella forsythia mediate high immunostimulatory activity. Campylobacter concisus, C. rectus, and S. infelix exhibited robust TLR4 stimulatory activity. Studies using mesothelial cells from WT and NOD1-specific KOs and NOD2-expressing human embryonic kidney cells demonstrated that Eubacterium saphenum, Eubacterium nodatum and Filifactor alocis exhibit robust NOD1 stimulatory activity, and that Porphyromonas endodontalis and Parvimonas micra have the highest NOD2 stimulatory activity. These studies allowed us to provide important evidence on newly identified putative pathogens in periodontal disease pathogenesis showing that these bacteria exhibit different immunostimulatory activity via TLR4, NOD1, and NOD2 (Clinicaltrials.gov NCT01154855). © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. trans-2-Tritylcyclohexanol as a chiral auxiliary in permanganate-mediated oxidative cyclization of 2-methylenehept-5-enoates: application to the synthesis of trans-(+)-linalool oxide.

    Science.gov (United States)

    Al Hazmi, Ali M; Sheikh, Nadeem S; Bataille, Carole J R; Al-Hadedi, Azzam A M; Watkin, Sam V; Luker, Tim J; Camp, Nicholas P; Brown, Richard C D

    2014-10-03

    The permanganate-mediated oxidative cyclization of a series of 2-methylenehept-5-eneoates bearing different chiral auxiliaries was investigated, leading to the discovery of trans-2-tritylcyclohexanol (TTC) as a highly effective chiral controller for the formation of the 2,5-substituted THF diol product with high diastereoselectivity (dr ∼97:3). Chiral resolution of (±)-TTC, prepared in one step from cyclohexene oxide, afforded (-)-(1S,2R)-TTC (er >99:1), which was applied to the synthesis of (+)-trans-(2S,5S)-linalool oxide.

  18. Designing business rules for mediation : a process towards agent-mediated business coordination

    OpenAIRE

    Zhao, Z.; Dignum, M.V.; Dignum, F.P.M.

    2008-01-01

    Business process integration is a very active research area, in which mediation is one of the fundamental architectural choices. Mediators have difficulties to design mediation services that meet the requirements of the different stakeholders. Business rules play an important role in the decision process of mediation. In this paper, we analyze the role of business rules in the decision process, and use some examples to illustrate how business rules should be designed in order to help the deci...

  19. Endothelial dysfunction and low-grade inflammation and the progression of retinopathy in Type 2 diabetes

    DEFF Research Database (Denmark)

    Spijkerman, Annemieke M W; Gall, Mari-Anne; Tarnow, L

    2007-01-01

    AIMS: To study whether microalbuminuria, endothelial dysfunction and low-grade inflammation are associated with the presence and progression of diabetic retinopathy. METHODS: Patients with Type 2 diabetes (n = 328) attending a diabetes clinic were followed for 10 years and examined annually during.......65 (1.21-2.25). CONCLUSIONS: In this population of patients with Type 2 diabetes who attended a diabetes clinic, there was some evidence for a role of endothelial dysfunction in the progression of retinopathy. We could not demonstrate a role for low-grade inflammation. Our study emphasizes......E-selectin), and soluble vascular cell adhesion molecule 1) and inflammatory activity (C-reactive protein and fibrinogen) were determined. RESULTS: The prevalence of retinopathy was 33.8%. The median diabetes duration at baseline was 7 years (interquartile range 2-12 years). The highest tertiles of baseline urinary...

  20. Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene- and abscisic acid-mediated defense signaling.

    Science.gov (United States)

    Trusov, Yuri; Sewelam, Nasser; Rookes, James Edward; Kunkel, Matt; Nowak, Ekaterina; Schenk, Peer Martin; Botella, José Ramón

    2009-04-01

    Heterotrimeric G proteins are involved in the defense response against necrotrophic fungi in Arabidopsis. In order to elucidate the resistance mechanisms involving heterotrimeric G proteins, we analyzed the effects of the Gβ (subunit deficiency in the mutant agb1-2 on pathogenesis-related gene expression, as well as the genetic interaction between agb1-2 and a number of mutants of established defense pathways. Gβ-mediated signaling suppresses the induction of salicylic acid (SA)-, jasmonic acid (JA)-, ethylene (ET)- and abscisic acid (ABA)-dependent genes during the initial phase of the infection with Fusarium oxysporum (up to 48 h after inoculation). However, at a later phase it enhances JA/ET-dependent genes such as PDF1.2 and PR4. Quantification of the Fusarium wilt symptoms revealed that Gβ- and SA-deficient mutants were more susceptible than wild-type plants, whereas JA- and ET-insensitive and ABA-deficient mutants demonstrated various levels of resistance. Analysis of the double mutants showed that the Gβ-mediated resistance to F. oxysporum and Alternaria brassicicola was mostly independent of all of the previously mentioned pathways. However, the progressive decay of agb1-2 mutants was compensated by coi1-21 and jin1-9 mutations, suggesting that at this stage of F. oxysporum infection Gβ acts upstream of COI1 and ATMYC2 in JA signaling. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.

  1. Progression of cardiac involvement in patients with limb-girdle type 2 and Becker muscular dystrophies

    DEFF Research Database (Denmark)

    Petri, Helle; Sveen, Marie-Louise; Thune, Jens Jakob

    2015-01-01

    AIM: To assess the degree and progression of cardiac involvement in patients with limb-girdle type 2 (LGMD2) and Becker muscular dystrophies (BMD). METHODS: A follow-up study of 100 LGMD2 (types A-L) and 30 BMD patients assessed by electrocardiogram (ECG) and echocardiography, supplemented...

  2. Epigenetic Regulation in Particulate Matter-Mediated Cardiopulmonary Toxicities: A Systems Biology Perspective.

    Science.gov (United States)

    Wang, Ting; Garcia, Joe Gn; Zhang, Wei

    2012-12-01

    Particulate matter (PM) air pollution exerts significant adverse health effects in global populations, particularly in developing countries with extensive air pollution. Understanding of the mechanisms of PM-induced health effects including the risk for cardiovascular diseases remains limited. In addition to the direct cellular physiological responses such as mitochondrial dysfunction and oxidative stress, PM mediates remarkable dysregulation of gene expression, especially in cardiovascular tissues. The PM-mediated gene dysregulation is likely to be a complex mechanism affected by various genetic and non-genetic factors. Notably, PM is known to alter epigenetic markers (e.g., DNA methylation and histone modifications), which may contribute to air pollution-mediated health consequences including the risk for cardiovascular diseases. Notably, epigenetic changes induced by ambient PM exposure have emerged to play a critical role in gene regulation. Though the underlying mechanism(s) are not completely clear, the available evidence suggests that the modulated activities of DNA methyltransferase (DNMT), histone acetylase (HAT) and histone deacetylase (HDAC) may contribute to the epigenetic changes induced by PM or PM-related chemicals. By employing genome-wide epigenomic and systems biology approaches, PM toxicogenomics could conceivably progress greatly with the potential identification of individual epigenetic loci associated with dysregulated gene expression after PM exposure, as well the interactions between epigenetic pathways and PM. Furthermore, novel therapeutic targets based on epigenetic markers could be identified through future epigenomic studies on PM-mediated cardiopulmonary toxicities. These considerations collectively inform the future population health applications of genomics in developing countries while benefiting global personalized medicine at the same time.

  3. The potential roles of T-type Ca2+ channels in motor coordination

    Directory of Open Access Journals (Sweden)

    Young-Gyun ePark

    2013-10-01

    Full Text Available Specific behavioral patterns are expressed by complex combinations of muscle coordination. Tremors are simple behavioral patterns and are the focus of studies investigating motor coordination mechanisms in the brain. T-type Ca2+ channels mediate intrinsic neuronal oscillations and rhythmic burst spiking, and facilitate the generation of tremor rhythms in motor circuits. Despite substantial evidence that T-type Ca2+ channels mediate pathological tremors, their roles in physiological motor coordination and behavior remain unknown. Here, we review recent progress in understanding the roles that T-type Ca2+ channels play under pathological conditions, and discuss the potential relevance of these channels in mediating physiological motor coordination.

  4. The effects of environmental regulation and technical progress on CO2 Kuznets curve: An evidence from China

    International Nuclear Information System (INIS)

    Yin, Jianhua; Zheng, Mingzheng; Chen, Jian

    2015-01-01

    Based on environmental Kuznets curve theory, a panel data model which takes environmental regulation and technical progress as its moderating factors was developed to analyse the institutional and technical factors that affect the path of low-carbon economic development. The results indicated that there was a CO 2 emission Kuznets curve seen in China. Environmental regulation had a significant moderating effect on the curve, and the inflection of CO 2 emissions could come substantially earlier under stricter environmental regulation. Meanwhile, the impact of technical progress on the low-carbon economic development path had a longer hysteresis effect but restrained CO 2 emission during its increasing stage and accelerated its downward trend during the decreasing stage which was conducive to emission reduction. Strict environmental regulation could force the high-carbon emitting industries to transfer from the eastern regions to the central or the western regions of China, which would make the CO 2 Kuznets curve higher in its increasing stage and lower in its decreasing stage than that under looser regulation. Furthermore, energy efficiency, energy structure, and industrial structure exerted a significant direct impact on CO 2 emissions; we should consider the above factors as essential in the quest for low-carbon economic development. - Highlights: • Estimate moderating effect of environmental regulation and technical progress on EKC. • There was a CO 2 emission Kuznets curve in effect in China. • Environmental regulation presents significant moderating effect on EKC. • Technical progress moderates the relationship between income and CO 2 emissions

  5. Lineage-specific function of Engrailed-2 in the progression of chronic myelogenous leukemia to T-cell blast crisis.

    Science.gov (United States)

    Abollo-Jiménez, Fernando; Campos-Sánchez, Elena; Toboso-Navasa, Amparo; Vicente-Dueñas, Carolina; González-Herrero, Inés; Alonso-Escudero, Esther; González, Marcos; Segura, Víctor; Blanco, Oscar; Martínez-Climent, José Angel; Sánchez-García, Isidro; Cobaleda, César

    2014-01-01

    In hematopoietic malignancies, oncogenic alterations interfere with cellular differentiation and lead to tumoral development. Identification of the proteins regulating differentiation is essential to understand how they are altered in malignancies. Chronic myelogenous leukemia (CML) is a biphasic disease initiated by an alteration taking place in hematopoietic stem cells. CML progresses to a blast crisis (BC) due to a secondary differentiation block in any of the hematopoietic lineages. However, the molecular mechanisms of CML evolution to T-cell BC remain unclear. Here, we have profiled the changes in DNA methylation patterns in human samples from BC-CML, in order to identify genes whose expression is epigenetically silenced during progression to T-cell lineage-specific BC. We have found that the CpG-island of the ENGRAILED-2 (EN2) gene becomes methylated in this progression. Afterwards, we demonstrate that En2 is expressed during T-cell development in mice and humans. Finally, we further show that genetic deletion of En2 in a CML transgenic mouse model induces a T-cell lineage BC that recapitulates human disease. These results identify En2 as a new regulator of T-cell differentiation whose disruption induces a malignant T-cell fate in CML progression, and validate the strategy used to identify new developmental regulators of hematopoiesis.

  6. Depression of Complement Regulatory Factors in Rat and Human Renal Grafts Is Associated with the Progress of Acute T-Cell Mediated Rejection.

    Directory of Open Access Journals (Sweden)

    Kazuaki Yamanaka

    Full Text Available The association of complement with the progression of acute T cell mediated rejection (ATCMR is not well understood. We investigated the production of complement components and the expression of complement regulatory proteins (Cregs in acute T-cell mediated rejection using rat and human renal allografts.We prepared rat allograft and syngeneic graft models of renal transplantation. The expression of Complement components and Cregs was assessed in the rat grafts using quantitative real-time PCR (qRT-PCR and immunofluorescent staining. We also administered anti-Crry and anti-CD59 antibodies to the rat allograft model. Further, we assessed the relationship between the expression of membrane cofactor protein (MCP by immunohistochemical staining in human renal grafts and their clinical course.qRT-PCR results showed that the expression of Cregs, CD59 and rodent-specific complement regulator complement receptor 1-related gene/protein-y (Crry, was diminished in the rat allograft model especially on day 5 after transplantation in comparison with the syngeneic model. In contrast, the expression of complement components and receptors: C3, C3a receptor, C5a receptor, Factor B, C9, C1q, was increased, but not the expression of C4 and C5, indicating a possible activation of the alternative pathway. When anti-Crry and anti-CD59 mAbs were administered to the allograft, the survival period for each group was shortened. In the human ATCMR cases, the group with higher MCP expression in the grafts showed improved serum creatinine levels after the ATCMR treatment as well as a better 5-year graft survival rate.We conclude that the expression of Cregs in allografts is connected with ATCMR. Our results suggest that controlling complement activation in renal grafts can be a new strategy for the treatment of ATCMR.

  7. Annexin A2 Mediates the Localization of Measles Virus Matrix Protein at the Plasma Membrane.

    Science.gov (United States)

    Koga, Ritsuko; Kubota, Marie; Hashiguchi, Takao; Yanagi, Yusuke; Ohno, Shinji

    2018-02-28

    Annexins are a family of structurally related proteins that bind negatively charged membrane phospholipids in a Ca 2+ -dependent manner. Annexin A2 (AnxA2), a member of the family, has been implicated in a variety of cellular functions including the organization of membrane domains, vesicular trafficking and cell-cell adhesion. AnxA2 generally forms the heterotetrameric complex with a small Ca 2+ -binding protein S100A10. Measles virus (MV), a member of the family Paramyxoviridae , is an enveloped virus with a nonsegmented negative strand RNA genome. Knockdown of AnxA2 greatly reduced MV growth in cells, without affecting its entry and viral RNA production. In MV-infected, AnxA2-knockdown cells, the expression level of the matrix (M) protein, but not other viral proteins, was reduced compared with that in control cells, and the distribution of the M protein at the plasma membrane was decreased. The M protein lines the inner surface of the envelope and plays an important role in virus assembly by connecting the nucleocapsid to the envelope proteins. The M protein bound to AnxA2 independently of AnxA2's phosphorylation or its association with S100A10, and was co-localized with AnxA2 within cells. Truncation of the N-terminal 10 amino acid residues, but not the N-terminal 5 residues, compromised the ability of the M protein to interact with AnxA2 and localize at the plasma membrane. These results indicate that AnxA2 mediates the localization of the MV M protein at the plasma membrane by interacting with its N-terminal region (especially residues at positions 6-10), thereby aiding in MV assembly. IMPORTANCE Measles virus (MV) is an important human pathogen, still claiming ∼ 100,000 lives per year despite the presence of effective vaccines, and causes occasional outbreaks even in developed countries. Replication of viruses largely relies on the functions of host cells. Our study revealed that the reduction of the host protein annexin A2 compromises the replication of

  8. SUSY breaking mediation mechanisms and (g-2)μ, B→Xsγ, B→Xsl+l- and Bs→μ+μ-

    International Nuclear Information System (INIS)

    Baek, Seungwon; Ko, P.; Song, Wan Young

    2003-01-01

    We show that there are qualitative differences in correlations among (g-2)μ, B→X s γ, B→X l + l - and B s →μ + μ - in various SUSY breaking mediation mechanisms: minimal supergravity (mSUGRA), gauge mediation (GMSB), anomaly mediation (AMSB), guagino mediation (g-tildeMSB), weakly and strongly interacting string theories, and D brane models. After imposing the direct search limits on the Higgs boson and SUSY particle search limits and B→X s γ branching ratio, we find all the scenarios can accommodate the aμ≡(g-2)μ/2 in the range of (a few tens) x 10 -10 , and predict that the branching ratio for B→X s l + l - can differ from the standard model (SM) prediction by ±20% but no more. On the other hand, the B s →μ + μ - is sensitive to the SUSY breaking mediation mechanisms through the pseudoscalar and stop masses (m A and mt-tilde 1 ), and the stop mixing angle. In the GMSB with a small messenger number, the AMSB, the g-tildeMSB and the noscale scenarios, one finds that B(B s →μ + μ - ) -8 , which is below the search limit at the Tevatron Run II. Only the mSUGRA or string inspired models can generate a large branching ratio for this decay. (author)

  9. Patient-specific mutations impair BESTROPHIN1’s essential role in mediating Ca2+-dependent Cl- currents in human RPE

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yao [Jonas Children’s Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology and Pathology & Cell Biology, Edward S. Harkness Eye Institute, New York Presbyterian Hospital/Columbia University, New York, United States; Zhang, Yu [Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, United States; Xu, Yu [Jonas Children’s Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology and Pathology & Cell Biology, Edward S. Harkness Eye Institute, New York Presbyterian Hospital/Columbia University, New York, United States; Department of Ophthalmology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Kittredge, Alec [Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, United States; Ward, Nancy [Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, United States; Chen, Shoudeng [Molecular Imaging Center, Department of Experimental Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China; Tsang, Stephen H. [Jonas Children’s Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology and Pathology & Cell Biology, Edward S. Harkness Eye Institute, New York Presbyterian Hospital/Columbia University, New York, United States; Yang, Tingting [Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, United States

    2017-10-24

    Mutations in the human BEST1 gene lead to retinal degenerative diseases displaying progressive vision loss and even blindness. BESTROPHIN1, encoded by BEST1, is predominantly expressed in retinal pigment epithelium (RPE), but its physiological role has been a mystery for the last two decades. Using a patient-specific iPSC-based disease model and interdisciplinary approaches, we comprehensively analyzed two distinct BEST1 patient mutations, and discovered mechanistic correlations between patient clinical phenotypes, electrophysiology in their RPEs, and the structure and function of BESTROPHIN1 mutant channels. Our results revealed that the disease-causing mechanism of BEST1 mutations is centered on the indispensable role of BESTROPHIN1 in mediating the long speculated Ca2+-dependent Cl- current in RPE, and demonstrate that the pathological potential of BEST1 mutations can be evaluated and predicted with our iPSC-based ‘disease-in-a-dish’ approach. Moreover, we demonstrated that patient RPE is rescuable with viral gene supplementation, providing a proof-of-concept for curing BEST1-associated diseases.

  10. Inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ signaling mediates delayed myogenesis in Duchenne muscular dystrophy fetal muscle.

    Science.gov (United States)

    Farini, Andrea; Sitzia, Clementina; Cassinelli, Letizia; Colleoni, Federica; Parolini, Daniele; Giovanella, Umberto; Maciotta, Simona; Colombo, Augusto; Meregalli, Mirella; Torrente, Yvan

    2016-02-15

    Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disorder characterized by muscle wasting and premature death. The defective gene is dystrophin, a structural protein, absence of which causes membrane fragility and myofiber necrosis. Several lines of evidence showed that in adult DMD patients dystrophin is involved in signaling pathways that regulate calcium homeostasis and differentiation programs. However, secondary aspects of the disease, such as inflammation and fibrosis development, might represent a bias in the analysis. Because fetal muscle is not influenced by gravity and does not suffer from mechanical load and/or inflammation, we investigated 12-week-old fetal DMD skeletal muscles, highlighting for the first time early alterations in signaling pathways mediated by the absence of dystrophin itself. We found that PLC/IP3/IP3R/Ryr1/Ca(2+) signaling is widely active in fetal DMD skeletal muscles and, through the calcium-dependent PKCα protein, exerts a fundamental regulatory role in delaying myogenesis and in myofiber commitment. These data provide new insights into the origin of DMD pathology during muscle development. © 2016. Published by The Company of Biologists Ltd.

  11. Does a Progressive PIT Stabilize the Economy? A Comparison of Progressive and Flat Taxes

    Directory of Open Access Journals (Sweden)

    Krajewski Piotr

    2017-03-01

    Full Text Available The aim of the article is to examine the impact of progressive personal income tax rates and the effectiveness of this tax as an automatic economic stabilizer. The assessment of automatic stabilizers is based on the estimates of tax cyclical components. The study shows that the output elasticity of PIT is higher than one, which means that the analysed tax acts relatively efficiently as an automatic stabilizer. However, it was also observed that the tax progressivity is not the main reason of the effectiveness of a progressive PIT as an automatic stabilizer. The study shows that changes in progressive rates of PIT, contrary to widespread opinions, have little effect on the effectiveness of passive fiscal policy. Personal income tax acts as automatic stabilizer mostly due not to the progressive tax rates, but because of the sensitivity of employment to GDP fluctuations.

  12. Hypoxia-Induced Signaling Promotes Prostate Cancer Progression: Exosomes Role as Messenger of Hypoxic Response in Tumor Microenvironment

    Science.gov (United States)

    Deep, Gagan; Panigrahi, Gati K.

    2017-01-01

    Prostate cancer (PCA) is the leading malignancy in men and the second leading cause of cancer-related deaths. Hypoxia (low O2 condition) is considered an early event in prostate carcinogenesis associated with an aggressive phenotype. In fact, clinically, hypoxia and hypoxia-related biomarkers are associated with treatment failure and disease progression. Hypoxia-inducible factor 1 (HIF-1) is the key factor that is activated under hypoxia, and mediates adaptation of cells to hypoxic conditions through regulating the expression of genes associated with angiogenesis, epithelial-to-mesenchymal transition (EMT), metastasis, survival, proliferation, metabolism, stemness, hormone-refractory progression, and therapeutic resistance. Besides HIF-1, several other signaling pathways including PI3K/Akt/mTOR, NADPH oxidase (NOX), Wnt/β-catenin, and Hedgehog are activated in cancer cells under hypoxic conditions, and also contribute in hypoxia-induced biological effects in HIF-1-dependent and -independent manners. Hypoxic cancer cells cause extensive changes in the tumor microenvironment both local and distant, and recent studies have provided ample evidence supporting the crucial role of nanosized vesicles “exosomes” in mediating hypoxia-induced tumor microenvironment remodeling. Exosomes’ role has been reported in hypoxia-induced angiogenesis, stemness, activation of cancer-associated fibroblasts (CAFs), and EMT. Together, existing literature suggests that hypoxia plays a predominant role in PCA growth and progression, and PCA could be effectively prevented and treated via targeting hypoxia/hypoxia-related signaling pathways. PMID:27279239

  13. Enhanced estradiol-induced vasorelaxation in aortas from type 2 diabetic mice may reflect a compensatory role of p38 MAPK-mediated eNOS activation.

    Science.gov (United States)

    Taguchi, Kumiko; Morishige, Akitaka; Matsumoto, Takayuki; Kamata, Katsuo; Kobayashi, Tsuneo

    2012-08-01

    Cardiovascular problems are a major cause of morbidity and mortality, mainly due to coronary artery disease and atherosclerosis, in type 2 diabetes mellitus. However, female gender is a protective factor in the development of, for example, atherosclerosis and hypertension. One of the female hormones, 17β-estradiol (E2), is known to protect against the cardiovascular injury resulting from endothelial dysfunction, but the mechanism by which it does so remains unknown. Our hypothesis was that E2-mediated activation of Akt and mitogen-activated protein kinase (MAPK), and the subsequent endothelial NO synthase (eNOS) phosphorylation, might protect the aorta in diabetic mellitus. The experimental type 2 diabetic model we employed to test that hypothesis (female mice given streptozotocin and nicotinamide) is here termed fDM. In fDM aortas, we examined the E2-induced relaxation response and the associated protein activities. In control (age-matched, nondiabetic) aortas, E2 induced a vascular relaxation response that was mediated via Akt/eNOS and mitogen-activated/ERK-activating kinase (MEK)/eNOS pathways. In fDM aortas (vs. control aortas), (a) the E2-induced relaxation was enhanced, (b) the mediation of the response was different (via Akt/eNOS and p38 MAPK/eNOS pathways), and (c) E2 stimulation increased p38 MAPK and eNOS phosphorylations, decreased MEK phosphorylation, but did not alter estrogen receptor activity. We infer that at least in fDM aortas, E2 has beneficial effects (enhanced vascular relaxation and protection) that are mediated through Akt activation and (compensating for reduced MEK activation) p38 MAPK activation, leading to enhanced eNOS phosphorylation.

  14. Adaptor Protein Complex-2 (AP-2) and Epsin-1 Mediate Protease-activated Receptor-1 Internalization via Phosphorylation- and Ubiquitination-dependent Sorting Signals*

    Science.gov (United States)

    Chen, Buxin; Dores, Michael R.; Grimsey, Neil; Canto, Isabel; Barker, Breann L.; Trejo, JoAnn

    2011-01-01

    Signaling by protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is regulated by desensitization and internalization. PAR1 desensitization is mediated by β-arrestins, like most classic GPCRs. In contrast, internalization of PAR1 occurs through a clathrin- and dynamin-dependent pathway independent of β-arrestins. PAR1 displays two modes of internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), where the μ2-adaptin subunit binds directly to a tyrosine-based motif localized within the receptor C-tail domain. However, AP-2 depletion only partially inhibits agonist-induced internalization of PAR1, suggesting a function for other clathrin adaptors in this process. Here, we now report that AP-2 and epsin-1 are both critical mediators of agonist-stimulated PAR1 internalization. We show that ubiquitination of PAR1 and the ubiquitin-interacting motifs of epsin-1 are required for epsin-1-dependent internalization of activated PAR1. In addition, activation of PAR1 promotes epsin-1 de-ubiquitination, which may increase its endocytic adaptor activity to facilitate receptor internalization. AP-2 also regulates activated PAR1 internalization via recognition of distal C-tail phosphorylation sites rather than the canonical tyrosine-based motif. Thus, AP-2 and epsin-1 are both required to promote efficient internalization of activated PAR1 and recognize discrete receptor sorting signals. This study defines a new pathway for internalization of mammalian GPCRs. PMID:21965661

  15. Dehydroeffusol effectively inhibits human gastric cancer cell-mediated vasculogenic mimicry with low toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenming; Meng, Mei; Zhang, Bin; Du, Longsheng; Pan, Yanyan; Yang, Ping; Gu, Zhenlun; Zhou, Quansheng, E-mail: quanshengzhou@yahoo.com; Cao, Zhifei, E-mail: hunancao@163.com

    2015-09-01

    Accumulated data has shown that various vasculogenic tumor cells, including gastric cancer cells, are able to directly form tumor blood vessels via vasculogenic mimicry, supplying oxygen and nutrients to tumors, and facilitating progression and metastasis of malignant tumors. Therefore, tumor vasculogenic mimicry is a rational target for developing novel anticancer therapeutics. However, effective antitumor vasculogenic mimicry-targeting drugs are not clinically available. In this study, we purified 2,7-dihydroxyl-1-methyl-5-vinyl-phenanthrene, termed dehydroeffusol, from the traditional Chinese medicinal herb Juncus effusus L., and found that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry in vitro and in vivo with very low toxicity. Dehydroeffusol significantly suppressed gastric cancer cell adhesion, migration, and invasion. Molecular mechanistic studies revealed that dehydroeffusol markedly inhibited the expression of a vasculogenic mimicry master gene VE-cadherin and reduced adherent protein exposure on the cell surface by inhibiting gene promoter activity. In addition, dehydroeffusol significantly decreased the expression of a key vasculogenic gene matrix metalloproteinase 2 (MMP2) in gastric cancer cells, and diminished MMP2 protease activity. Together, our results showed that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry with very low toxicity, suggesting that dehydroeffusol is a potential drug candidate for anti-gastric cancer neovascularization and anti-gastric cancer therapy. - Highlights: • Dehydroeffusol markedly inhibits gastric cancer cell-mediated vasculogenic mimicry. • Dehydroeffusol suppresses the expression of vasculogenic mimicry key gene VE-cadherin. • Dehydroeffusol decreases the MMP2 expression and activity in gastric cancer cells. • Dehydroeffusol is a potential anti-cancer drug candidate with very low toxicity.

  16. Progresses in studies on 2-alkylcyclobutanones in irradiated lipid-containing foods

    International Nuclear Information System (INIS)

    Zhang Haiwei; Ha Yiming; Wang Feng

    2007-01-01

    When foods are irradiated, the free fatty acids and triacylglycerides in the food are decomposed to 2-alkylcyclobutanones (2-ACBs), which have been one of the focuses in food irradiation studies since they were dis- covered in irradiated lipid-containing foods. As specific markers, 2-ACBs could be used to detect irradiated food. The production and stability of 2-ACBs are affected strongly by the irradiation does and temperature and preservation conditions, etc. On the other hand, potential health hazard assessments of 2-ACBs have been studied extensively. Re- cent progresses in 2-ACBs detecting methods from irradiated food, toxicological studies on 2-ACBs, and factors affecting production and stability of 2-ACBs are reviewed in this paper. (authors)

  17. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    Directory of Open Access Journals (Sweden)

    Felicita Pedata

    2014-01-01

    Full Text Available The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes. Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke.

  18. [(35)S]-GTPgammaS autoradiography reveals alpha(2) adrenoceptor-mediated G-protein activation in amygdala and lateral septum.

    Science.gov (United States)

    Newman-Tancredi, A; Chaput, C; Touzard, M; Millan, M J

    2000-04-03

    alpha(2)-adrenoceptor-mediated G-protein activation was examined by [(35)S]-GTPgammaS autoradiography. In alpha(2)-adrenoceptor-rich regions (amygdala, lateral septum), noradrenaline stimulated [(35)S]-GTPgammaS binding. These actions were abolished by the selective alpha(2) antagonist, atipamezole. Conversely, in caudate nucleus, which expresses few alpha(2) receptors, noradrenaline-induced stimulation was not inhibited by atipamezole, suggesting that it is not mediated by alpha(2)-adrenoceptors.

  19. Myeloid HIF-1 is protective in Helicobacter pylori-mediated gastritis.

    Science.gov (United States)

    Matak, Pavle; Heinis, Mylène; Mathieu, Jacques R R; Corriden, Ross; Cuvellier, Sylvain; Delga, Stéphanie; Mounier, Rémi; Rouquette, Alexandre; Raymond, Josette; Lamarque, Dominique; Emile, Jean-François; Nizet, Victor; Touati, Eliette; Peyssonnaux, Carole

    2015-04-01

    Helicobacter pylori infection triggers chronic inflammation of the gastric mucosa that may progress to gastric cancer. The hypoxia-inducible factors (HIFs) are the central mediators of cellular adaptation to low oxygen levels (hypoxia), but they have emerged recently as major transcriptional regulators of immunity and inflammation. No studies have investigated whether H. pylori affects HIF signaling in immune cells and a potential role for HIF in H. pylori-mediated gastritis. HIF-1 and HIF-2 expression was examined in human H. pylori-positive gastritis biopsies. Subsequent experiments were performed in naive and polarized bone marrow-derived macrophages from wild-type (WT) and myeloid HIF-1α-null mice (HIF-1(Δmyel)). WT and HIF-1(Δmyel) mice were inoculated with H. pylori by oral gavage and sacrificed 6 mo postinfection. HIF-1 was specifically expressed in macrophages of human H. pylori-positive gastritis biopsies. Macrophage HIF-1 strongly contributed to the induction of proinflammatory genes (IL-6, IL-1β) and inducible NO synthase in response to H. pylori. HIF-2 expression and markers of M2 macrophage differentiation were decreased in response to H. pylori. HIF-1(Δmyel) mice inoculated with H. pylori for 6 mo presented with a similar bacterial colonization than WT mice but, surprisingly, a global increase of inflammation, leading to a worsening of the gastritis, measured by an increased epithelial cell proliferation. In conclusion, myeloid HIF-1 is protective in H. pylori-mediated gastritis, pointing to the complex counterbalancing roles of innate immune and inflammatory phenotypes in driving this pathology. Copyright © 2015 by The American Association of Immunologists, Inc.

  20. Changes in triglycerides and high-density lipoprotein cholesterol may precede peripheral insulin resistance, with 2-h insulin partially mediating this unidirectional relationship: a prospective cohort study.

    Science.gov (United States)

    Han, Tianshu; Cheng, Yu; Tian, Shuang; Wang, Li; Liang, Xi; Duan, Wei; Na, Lixin; Sun, Changhao

    2016-11-04

    Results of longitudinal researches regarding the temporal relationship between dyslipidemia and insulin resistance (IR) are inconsistent. This study assessed temporal relationships of blood lipids with IR and determined whether there are any mediating effects existed in these temporal relationships. This study examined a longitudinal cohort of 3325 subjects aged 20-74 years from China with an average of 4.2 years follow-up. Measurements of fasting blood lipids, as well as fasting and 2-h serum glucose and insulin, were obtained at two time points. The Gutt index and HOMA-IR were calculated as indicators of peripheral IR and hepatic IR. A cross-lagged path analysis was performed to examine the temporal relationships between blood lipids and IR. A mediation analysis was used to examine mediating effect. After adjusting for covariates, the cross-lagged path coefficients from baseline TG and HDL-C to follow-up Gutt index were significantly greater than those from baseline Gutt index to follow-up TG and HDL-C (β 1  = -0.131 vs β 2  = -0.047, P index with a 59.3% mediating effect for TG and 61.0% for HDL-C. These findings provide strong evidence that dyslipidemia probably precede peripheral IR and that 2-h insulin partially mediates this unidirectional temporal relationship.